WorldWideScience

Sample records for bloodstream parasite stages

  1. Genome-wide expression profiling of in vivo-derived bloodstream parasite stages and dynamic analysis of mRNA alterations during synchronous differentiation in Trypanosoma brucei

    Directory of Open Access Journals (Sweden)

    Ghazal Peter

    2009-09-01

    Full Text Available Abstract Background Trypanosomes undergo extensive developmental changes during their complex life cycle. Crucial among these is the transition between slender and stumpy bloodstream forms and, thereafter, the differentiation from stumpy to tsetse-midgut procyclic forms. These developmental events are highly regulated, temporally reproducible and accompanied by expression changes mediated almost exclusively at the post-transcriptional level. Results In this study we have examined, by whole-genome microarray analysis, the mRNA abundance of genes in slender and stumpy forms of T.brucei AnTat1.1 cells, and also during their synchronous differentiation to procyclic forms. In total, five biological replicates representing the differentiation of matched parasite populations derived from five individual mouse infections were assayed, with RNAs being derived at key biological time points during the time course of their synchronous differentiation to procyclic forms. Importantly, the biological context of these mRNA profiles was established by assaying the coincident cellular events in each population (surface antigen exchange, morphological restructuring, cell cycle re-entry, thereby linking the observed gene expression changes to the well-established framework of trypanosome differentiation. Conclusion Using stringent statistical analysis and validation of the derived profiles against experimentally-predicted gene expression and phenotypic changes, we have established the profile of regulated gene expression during these important life-cycle transitions. The highly synchronous nature of differentiation between stumpy and procyclic forms also means that these studies of mRNA profiles are directly relevant to the changes in mRNA abundance within individual cells during this well-characterised developmental transition.

  2. In vitro cultivation of Trypanosoma acomys: production of insect stages and bloodstream forms.

    Science.gov (United States)

    Maraghi, S; Wallbanks, K R; Molyneux, D H; Abdel-Hafez, S K

    1995-01-01

    When Trypanosoma acomys bloodstream forms were cultivated at 37 degrees C in Schneider's Drosophila medium supplemented with 20% (v/v) heat-inactivated foetal calf serum (FCS), with Microtus agrestis embryonic fibroblasts in RPMI 1640 medium supplemented with 20% FCS or in Baltz's medium supplemented with 10% FCS, the parasites transformed and largely remained as epimastigotes. Epimastigotes were also usually the commonest stage observed when the parasites were co-cultivated with a mosquito cell line at 27 degrees C. However, if these cultures were initiated with the supernatant suspensions from fibroblast cultures that had been cryopreserved, trypomastigotes, including bloodstream-like forms, were the predominant stage for the first 4 days of culture. It is suggested that the glycerol supplement or the temperature changes stimulated this unusual morphogenesis. At 27 degrees C, T. acomys was incapable of multiplying and died when cultured in fresh Schneider's Drosophila medium supplemented with 20% FCS, but co-cultivation with the mosquito cell lines or cultivation in cell-free supernatants from 1-week-old mosquito cell cultures was successful at this temperature; most of the parasites multiplied as epimastigotes.

  3. Diverse effects on mitochondrial and nuclear functions elicited by drugs and genetic knockdowns in bloodstream stage Trypanosoma brucei.

    Directory of Open Access Journals (Sweden)

    Christal Worthen

    Full Text Available BACKGROUND: The options for treating the fatal disease human African trypanosomiasis are limited to a few drugs that are toxic or facing increasing resistance. New drugs that kill the causative agents, subspecies of Trypanosoma brucei, are therefore urgently needed. Little is known about the cellular mechanisms that lead to death of the pathogenic bloodstream stage. METHODOLOGY/PRINCIPAL FINDINGS: We therefore conducted the first side by side comparison of the cellular effects of multiple death inducers that target different systems in bloodstream form parasites, including six drugs (pentamidine, prostaglandin D(2, quercetin, etoposide, camptothecin, and a tetrahydroquinoline and six RNAi knockdowns that target distinct cellular functions. All compounds tested were static at low concentrations and killed at high concentrations. Dead parasites were rapidly quantified by forward and side scatter during flow cytometry, as confirmed by ethidium homodimer and esterase staining, making these assays convenient for quantitating parasite death. The various treatments yielded different combinations of defects in mitochondrial potential, reactive oxygen species, cell cycle, and genome segregation. No evidence was seen for phosphatidylserine exposure, a marker of apoptosis. Reduction in ATP levels lagged behind decreases in live cell number. Even when the impact on growth was similar at 24 hours, drug-treated cells showed dramatic differences in their ability to further proliferate, demonstrating differences in the reversibility of effects induced by the diverse compounds. CONCLUSIONS/SIGNIFICANCE: Parasites showed different phenotypes depending on the treatment, but none of them were clear predictors of whether apparently live cells could go on to proliferate after drugs were removed. We therefore suggest that clonal proliferation assays may be a useful step in selecting anti-trypanosomal compounds for further development. Elucidating the genetic or

  4. Identification and characterization of a liver stage-specific promoter region of the malaria parasite Plasmodium.

    Directory of Open Access Journals (Sweden)

    Susanne Helm

    Full Text Available During the blood meal of a Plasmodium-infected mosquito, 10 to 100 parasites are inoculated into the skin and a proportion of these migrate via the bloodstream to the liver where they infect hepatocytes. The Plasmodium liver stage, despite its clinical silence, represents a highly promising target for antimalarial drug and vaccine approaches. Successfully invaded parasites undergo a massive proliferation in hepatocytes, producing thousands of merozoites that are transported into a blood vessel to infect red blood cells. To successfully develop from the liver stage into infective merozoites, a tight regulation of gene expression is needed. Although this is a very interesting aspect in the biology of Plasmodium, little is known about gene regulation in Plasmodium parasites in general and in the liver stage in particular. We have functionally analyzed a novel promoter region of the rodent parasite Plasmodium berghei that is exclusively active during the liver stage of the parasite. To prove stage-specific activity of the promoter, GFP and luciferase reporter assays have been successfully established, allowing both qualitative and accurate quantitative analysis. To further characterize the promoter region, the transcription start site was mapped by rapid amplification of cDNA ends (5'-RACE. Using promoter truncation experiments and site-directed mutagenesis within potential transcription factor binding sites, we suggest that the minimal promoter contains more than one binding site for the recently identified parasite-specific ApiAP2 transcription factors. The identification of a liver stage-specific promoter in P. berghei confirms that the parasite is able to tightly regulate gene expression during its life cycle. The identified promoter region might now be used to study the biology of the Plasmodium liver stage, which has thus far proven problematic on a molecular level. Stage-specific expression of dominant-negative mutant proteins and

  5. Developmental stage of parasites influences the structure of fish-parasite networks.

    Science.gov (United States)

    Bellay, Sybelle; de Oliveira, Edson Fontes; Almeida-Neto, Mário; Lima Junior, Dilermando Pereira; Takemoto, Ricardo Massato; Luque, José Luis

    2013-01-01

    Specialized interactions tend to be more common in systems that require strong reciprocal adaptation between species, such as those observed between parasites and hosts. Parasites exhibit a high diversity of species and life history strategies, presenting host specificity which increases the complexity of these antagonistic systems. However, most studies are limited to the description of interactions between a few parasite and host species, which restricts our understanding of these systems as a whole. We investigated the effect of the developmental stage of the parasite on the structure of 30 metazoan fish-parasite networks, with an emphasis on the specificity of the interactions, connectance and modularity. We assessed the functional role of each species in modular networks and its interactions within and among the modules according to the developmental stage (larval and adult) and taxonomic group of the parasites. We observed that most parasite and host species perform a few interactions but that parasites at the larval stage tended to be generalists, increasing the network connectivity within and among modules. The parasite groups did not differ among each other in the number of interactions within and among the modules when considering only species at the larval stage. However, the same groups of adult individuals differed from each other in their interaction patterns, which were related to variations in the degree of host specificity at this stage. Our results show that the interaction pattern of fishes with parasites, such as acanthocephalans, cestodes, digeneans and nematodes, is more closely associated with their developmental stage than their phylogenetic history. This finding corroborates the hypothesis that the life history of parasites results in adaptations that cross phylogenetic boundaries.

  6. Changes in parasite transmission stage excretion after pheasant release

    OpenAIRE

    2006-01-01

    The production of parasite transmission stages was investigated in the faeces of 77 farm-bred ring-necked pheasants (Phasianus colchicus). Coccidian oocysts (Eimeria sp.), and nematode eggs (Heterakis sp., and Capillaria-like eggs) were recovered before and after release but all birds were treated prior to release. Treatment with fenbendazole significantly reduced the abundance of trans-mission-stage excretion for all parasites, and reduced the prevalence in the case of Eimeria sp. and Hetera...

  7. Changes in parasite transmission stage excretion after pheasant release.

    Science.gov (United States)

    Villanúa, D; Acevedo, P; Höfle, U; Rodríguez, O; Gortázar, C

    2006-09-01

    The production of parasite transmission stages was investigated in the faeces of 77 farm-bred ring-necked pheasants (Phasianus colchicus). Coccidian oocysts (Eimeria sp.), and nematode eggs (Heterakis sp., and Capillaria-like eggs) were recovered before and after release but all birds were treated prior to release. Treatment with fenbendazole significantly reduced the abundance of transmission-stage excretion for all parasites, and reduced the prevalence in the case of Eimeria sp. and Heterakis sp. Nonetheless, a significant increase in the excretion abundance for all parasites and in the prevalence of Eimeria sp. and Heterakis sp. was found after release. Eggs of Ascaridia sp. were found only after releasing, suggesting infection ocurred in the wild. A negative relationship was found between the pheasant body condition and Heterakis excretion abundance and a higher abundance of Capillaria sp. eggs in female birds. No significant relationship was found between parasite excretion abundance and pheasant survival. Despite this, results suggest that an increase in the excretion of parasite transmission stages follows the release of captive pheasants into the wild. This can in part explain restocking failures, but also means that autochtonous free-living birds may become exposed to new and potentially harmful pathogens. To avoid these risks it is proposed that improved prophylactic measures should be taken.

  8. The Ontology for Parasite Lifecycle (OPL: towards a consistent vocabulary of lifecycle stages in parasitic organisms

    Directory of Open Access Journals (Sweden)

    Parikh Priti P

    2012-05-01

    Full Text Available Abstract Background Genome sequencing of many eukaryotic pathogens and the volume of data available on public resources have created a clear requirement for a consistent vocabulary to describe the range of developmental forms of parasites. Consistent labeling of experimental data and external data, in databases and the literature, is essential for integration, cross database comparison, and knowledge discovery. The primary objective of this work was to develop a dynamic and controlled vocabulary that can be used for various parasites. The paper describes the Ontology for Parasite Lifecycle (OPL and discusses its application in parasite research. Results The OPL is based on the Basic Formal Ontology (BFO and follows the rules set by the OBO Foundry consortium. The first version of the OPL models complex life cycle stage details of a range of parasites, such as Trypanosoma sp., Leishmaniasp., Plasmodium sp., and Shicstosoma sp. In addition, the ontology also models necessary contextual details, such as host information, vector information, and anatomical locations. OPL is primarily designed to serve as a reference ontology for parasite life cycle stages that can be used for database annotation purposes and in the lab for data integration or information retrieval as exemplified in the application section below. Conclusion OPL is freely available at http://purl.obolibrary.org/obo/opl.owl and has been submitted to the BioPortal site of NCBO and to the OBO Foundry. We believe that database and phenotype annotations using OPL will help run fundamental queries on databases to know more about gene functions and to find intervention targets for various parasites. The OPL is under continuous development and new parasites and/or terms are being added.

  9. Bloodstream infection in patients with end-stage renal disease in a teaching hospital in central-western Brazil

    Directory of Open Access Journals (Sweden)

    Tamara Trelha Gauna

    2013-08-01

    Full Text Available Introduction Vascular access in patients undergoing hemodialysis is considered a critical determinant of bloodstream infection (BSI and is associated with high morbidity and mortality. The purpose of this study was to investigate the occurrence of BSI in patients with end-stage renal disease using central venous catheters for hemodialysis. Methods A cohort study was conducted in a public teaching hospital in central-western Brazil from April 2010 to December 2011. For every patient, we noted the presence of hyperemia/exudation upon catheter insertion, as well as fever, shivering, and chills during hemodialysis. Results Fifty-nine patients were evaluated. Thirty-five (59.3% patients started dialysis due to urgency, 37 (62.7% had BSI, and 12 (20% died. Hyperemia at the catheter insertion site (64.9% was a significant clinical manifestation in patients with BSI. Statistical analysis revealed 1.7 times more cases of BSI in patients with hypoalbuminemia compared with patients with normal albumin levels. The principal infective agents identified in blood cultures and catheter-tip cultures were Staphylococcus species (24 cases, non-fermentative Gram-negative bacilli (7 cases of Stenotrophomonas maltophilia and 5 cases of Chryseobacterium indologenes, and Candida species (6. Among the Staphylococci identified, 77.7% were methicillin-resistant, coagulase-negative Staphylococci. Of the bacteria isolated, the most resistant were Chryseobacterium indologenes and Acinetobacter baumannii. Conclusions Blood culture was demonstrated to be an important diagnostic test and identified over 50% of positive BSI cases. The high frequency of BSI and the isolation of multiresistant bacteria were disturbing findings. Staphylococcus aureus was the most frequently isolated microorganism, although Gram-negative bacteria predominated overall. These results highlight the importance of infection prevention and control measures in dialysis units.

  10. Chloroquine neither eliminates liver stage parasites nor delays their development in a murine Chemoprophylaxis Vaccination model

    Directory of Open Access Journals (Sweden)

    Tejram eSahu

    2015-04-01

    Full Text Available Chemoprophylaxis Vaccination (CVac confers long lasting sterile protection against homologous parasite strains in humans, and involves inoculation of infectious sporozoites under drug cover. CVac using the drug chloroquine (CQ induces pre-erythrocytic immunity in humans that includes antibody to sporozoites and T-cell responses to liver stage parasites. The mechanism by which CVac with CQ induces strong protective immunity is not understood as untreated infections do not confer protection. CQ kills blood stage parasites, but its effect on liver stage parasites is poorly studied. Here we hypothesized that CQ may prolong or perturb liver stage development of Plasmodium, as a potential explanation for enhanced pre-erythrocytic immune responses. Balb/c mice with or without CQ prophylaxis were infected with sporozoite forms of a luciferase-expressing rodent parasite, Plasmodium yoelii-Luc (Py-Luc. Mice that received primaquine (PQ, a drug that kills liver stage parasites, served as a positive control of drug effect. Parasite burden in liver was measured both by bioluminescence and by qRT-PCR quantification of parasite transcript. Time to appearance of parasites in the blood was monitored by microscopic analysis of Giemsa-stained thick and thin blood smears. The parasite load in livers of CQ-treated and untreated mice did not significantly differ at any of the time points studied. Parasites appeared in the blood smears of both CQ-treated and untreated mice 3 days after infection. Taken together, our findings confirm that CQ neither eliminates liver stage parasites nor delays their development. Further investigations into the mechanism of CQ-induced protection after CVac are required, and may give insights relevant to drug and vaccine development.

  11. Diagnostic stages of the parasites of the Florida manatee, Trichechus manatus latirostris.

    Science.gov (United States)

    Bando, Monica; Larkin, Iskande V; Wright, Scott D; Greiner, Ellis C

    2014-02-01

    Limited information is available on diagnostic stages of parasites in Florida manatees (Trichechus manatus latirostris). We examined 67 fecal samples from captive and wild manatees to define the diagnostic stages of the parasite fauna known to occur in Florida manatees. Parasite eggs were freshly extracted ex utero from identified mature helminths and subsequently characterized, illustrated, and matched to those isolated from fecal samples. In addition, coccidian oocysts in the fecal samples were identified. These diagnostic stages included eggs from 5 species of trematodes (Chiorchis fabaceus, Chiorchis groschafti, Pulmonicola cochleotrema, Moniligerum blairi, and Nudacotyle undicola), 1 nematode (Heterocheilus tunicatus), and oocysts of 2 coccidians (Eimeria manatus and Eimeria nodulosa).

  12. Plasmodium circumsporozoite protein promotes the development of the liver stages of the parasite.

    Science.gov (United States)

    Singh, Agam Prasad; Buscaglia, Carlos A; Wang, Qian; Levay, Agata; Nussenzweig, Daniel R; Walker, John R; Winzeler, Elizabeth A; Fujii, Hodaka; Fontoura, Beatriz M A; Nussenzweig, Victor

    2007-11-01

    The liver stages of malaria are clinically silent but have a central role in the Plasmodium life cycle. Liver stages of the parasite containing thousands of merozoites grow inside hepatocytes for several days without triggering an inflammatory response. We show here that Plasmodium uses a PEXEL/VTS motif to introduce the circumsporozoite (CS) protein into the hepatocyte cytoplasm and a nuclear localization signal (NLS) to enter its nucleus. CS outcompetes NFkappaB nuclear import, thus downregulating the expression of many genes controlled by NFkappaB, including those involved in inflammation. CS also influences the expression of over one thousand host genes involved in diverse metabolic processes to create a favorable niche for the parasite growth. The presence of CS in the hepatocyte enhances parasite growth of the liver stages in vitro and in vivo. These findings have far reaching implications for drug and vaccine development against the liver stages of the malaria parasite.

  13. Bloodstream form pre-adaptation to the tsetse fly in Trypanosoma brucei.

    Science.gov (United States)

    Rico, Eva; Rojas, Federico; Mony, Binny M; Szoor, Balazs; Macgregor, Paula; Matthews, Keith R

    2013-01-01

    African trypanosomes are sustained in the bloodstream of their mammalian hosts by their extreme capacity for antigenic variation. However, for life cycle progression, trypanosomes also must generate transmission stages called stumpy forms that are pre-adapted to survive when taken up during the bloodmeal of the disease vector, tsetse flies. These stumpy forms are rather different to the proliferative slender forms that maintain the bloodstream parasitaemia. Firstly, they are non proliferative and morphologically distinct, secondly, they show particular sensitivity to environmental cues that signal entry to the tsetse fly and, thirdly, they are relatively robust such that they survive the changes in temperature, pH and proteolytic environment encountered within the tsetse midgut. These characteristics require regulated changes in gene expression to pre-adapt the parasite and the use of environmental sensing mechanisms, both of which allow the rapid initiation of differentiation to tsetse midgut procyclic forms upon transmission. Interestingly, the generation of stumpy forms is also regulated and periodic in the mammalian blood, this being governed by a density-sensing mechanism whereby a parasite-derived signal drives cell cycle arrest and cellular development both to optimize transmission and to prevent uncontrolled parasite multiplication overwhelming the host. In this review we detail recent developments in our understanding of the molecular mechanisms that underpin the production of stumpy forms in the mammalian bloodstream and their signal perception pathways both in the mammalian bloodstream and upon entry into the tsetse fly. These discoveries are discussed in the context of conserved eukaryotic signaling and differentiation mechanisms. Further, their potential to act as targets for therapeutic strategies that disrupt parasite development either in the mammalian bloodstream or upon their transmission to tsetse flies is also discussed.

  14. Apoptosis of erythrocytic stage parasites of Plasmodium berghei chloroquine-resistant strain

    Institute of Scientific and Technical Information of China (English)

    CHEN Ke-qiang; SONG Guan-hong

    2002-01-01

    Objective: To explore the characteristics of crisis state at erythrocytic stage of Plasmodium berghei chloroquine-resistant (RC) strain. Methods: Agarose electrophoresis, optical and transmission electron microscopes were used. Patterns of genomic DNA structures and ultra-structures of the erythrocytic parasites were observed in ICA mice (infected with the RC strain) during rising and declining of parasitemia. Results: During the declining parasitemia, the erythrocytic stage parasites of the RC strain showed round or oval appearance with intact plasma membrane and shrank nuclei with no metabolic window, mitochondria or other membranaceous structures. Their DNA electrophoretogram revealed a ladder pattern which evidently differed from the parasites of the RC strain in the rising parasitemia and the chloroquine-sensitive (N) strain.Conclusion: The crisis state of the erythrocytic stage parasites of the P. berghei chloroquine-resistant (RC)strain is characterized by apoptosis.

  15. Climate changes influence free-living stages of soil-transmitted parasites of European rabbits.

    Science.gov (United States)

    Hernandez, Alexander D; Poole, Adam; Cattadori, Isabella M

    2013-04-01

    Climate warming has been suggested to augment the risk of infectious disease outbreaks by extending the seasonal window for parasite growth and by increasing the rate of transmission. Understanding how this occurs in parasite-host systems is important for appreciating long-term and seasonal changes in host exposure to infection and to reduce species extinction caused by diseases. We investigated how free-living stages of two soil-transmitted helminths of the European rabbit (Oryctolagus cuniculus) responded to experimental changes in temperature by performing laboratory experiments with environmental chambers and field manipulations using open-top-chambers. This study was motivated by our previous observations that air temperature has increased over the last 30 years in our field site and that during this period intensity of infection of Graphidium strigosum but not Trichostrongylus retortaeformis was positively associated with this temperature increase. Laboratory and field experiments showed that both parasites accelerated egg development and increased hatching rate and larval survival in response to accumulating thermal energy. Both parasites behaved similarly when exposed to diverse temperature regimes, decadal trends, and monthly fluctuations, however, T. retortaeformis was more successful than G. strigosum by showing higher rates of egg hatching and larval survival. Across the months, the first day of hatching occurred earlier in warmer conditions suggesting that climate warming can lengthen the period of parasite growth and host exposure to infective stages. Also, T. retortaeformis hatched earlier than G. strigosum. These findings showed that seasonal changes in intensity, frequency, and duration of daily temperature are important causes of variability in egg hatching and larva survival. Overall, this study emphasizes the important role of climate warming and seasonality on the dynamics of free-living stages in soil-transmitted helminths and their

  16. Features of autophagic cell death in Plasmodium liver-stage parasites.

    Science.gov (United States)

    Eickel, Nina; Kaiser, Gesine; Prado, Monica; Burda, Paul-Christian; Roelli, Matthias; Stanway, Rebecca R; Heussler, Volker T

    2013-04-01

    Analyzing molecular determinants of Plasmodium parasite cell death is a promising approach for exploring new avenues in the fight against malaria. Three major forms of cell death (apoptosis, necrosis and autophagic cell death) have been described in multicellular organisms but which cell death processes exist in protozoa is still a matter of debate. Here we suggest that all three types of cell death occur in Plasmodium liver-stage parasites. Whereas typical molecular markers for apoptosis and necrosis have not been found in the genome of Plasmodium parasites, we identified genes coding for putative autophagy-marker proteins and thus concentrated on autophagic cell death. We characterized the Plasmodium berghei homolog of the prominent autophagy marker protein Atg8/LC3 and found that it localized to the apicoplast. A relocalization of PbAtg8 to autophagosome-like vesicles or vacuoles that appear in dying parasites was not, however, observed. This strongly suggests that the function of this protein in liver-stage parasites is restricted to apicoplast biology.

  17. Comparative anatomy and histology of developmental and parasitic stages in the life cycle of the lined sea anemone Edwardsiella lineata.

    Science.gov (United States)

    Reitzel, Adam M; Daly, Marymegan; Sullivan, James C; Finnerty, John R

    2009-02-01

    The evolution of parasitism is often accompanied by profound changes to the developmental program. However, relatively few studies have directly examined the developmental evolution of parasitic species from free-living ancestors. The lined sea anemone Edwardsiella lineata is a relatively recently evolved parasite for which closely related free-living outgroups are known, including the starlet sea anemone Nematostella vectensis. The larva of E. lineata parasitizes the ctenophore Mnemiopsis leidyi, and, once embedded in its host, the anemone assumes a novel vermiform body plan. That we might begin to understand how the developmental program of this species has been transformed during the evolution of parasitism, we characterized the gross anatomy, histology, and cnidom of the parasitic stage, post-parasitic larval stage, and adult stage of the E. lineata life cycle. The distinct parasitic stage of the life cycle differs from the post-parasitic larva with respect to overall shape, external ciliation, cnida frequency, and tissue architecture. The parasitic stage and planula both contain holotrichs, a type of cnida not previously reported in Edwardsiidae. The internal morphology of the post-parasitic planula is extremely similar to the adult morphology, with a complete set of mesenterial tissue and musculature despite this stage having little external differentiation. Finally, we observed 2 previously undocumented aspects of asexual reproduction in E. lineata: (1) the parasitic stage undergoes transverse fission via physal pinching, the first report of asexual reproduction in a pre-adult stage in the Edwardsiidae; and (2) the juvenile polyp undergoes transverse fission via polarity reversal, the first time this form of fission has been reported in E. lineata.

  18. Parasites

    Centers for Disease Control (CDC) Podcasts

    2010-05-06

    In this podcast, a listener wants to know what to do if he thinks he has a parasite or parasitic disease.  Created: 5/6/2010 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 5/6/2010.

  19. Characterization of Plasmodium falciparum adenylyl cyclase-β and its role in erythrocytic stage parasites.

    Directory of Open Access Journals (Sweden)

    Eric Salazar

    Full Text Available The most severe form of human malaria is caused by the parasite Plasmodium falciparum. The second messenger cAMP has been shown to be important for the parasite's ability to infect the host's liver, but its role during parasite growth inside erythrocytes, the stage responsible for symptomatic malaria, is less clear. The P. falciparum genome encodes two adenylyl cyclases, the enzymes that synthesize cAMP, PfACα and PfACβ. We now show that one of these, PfACβ, plays an important role during the erythrocytic stage of the P. falciparum life cycle. Biochemical characterization of PfACβ revealed a marked pH dependence, and sensitivity to a number of small molecule inhibitors. These inhibitors kill parasites growing inside red blood cells. One particular inhibitor is selective for PfACβ relative to its human ortholog, soluble adenylyl cyclase (sAC; thus, PfACβ represents a potential target for development of safe and effective antimalarial therapeutics.

  20. Malaria parasite-synthesized heme is essential in the mosquito and liver stages and complements host heme in the blood stages of infection.

    Directory of Open Access Journals (Sweden)

    Viswanathan Arun Nagaraj

    Full Text Available Heme metabolism is central to malaria parasite biology. The parasite acquires heme from host hemoglobin in the intraerythrocytic stages and stores it as hemozoin to prevent free heme toxicity. The parasite can also synthesize heme de novo, and all the enzymes in the pathway are characterized. To study the role of the dual heme sources in malaria parasite growth and development, we knocked out the first enzyme, δ-aminolevulinate synthase (ALAS, and the last enzyme, ferrochelatase (FC, in the heme-biosynthetic pathway of Plasmodium berghei (Pb. The wild-type and knockout (KO parasites had similar intraerythrocytic growth patterns in mice. We carried out in vitro radiolabeling of heme in Pb-infected mouse reticulocytes and Plasmodium falciparum-infected human RBCs using [4-(14C] aminolevulinic acid (ALA. We found that the parasites incorporated both host hemoglobin-heme and parasite-synthesized heme into hemozoin and mitochondrial cytochromes. The similar fates of the two heme sources suggest that they may serve as backup mechanisms to provide heme in the intraerythrocytic stages. Nevertheless, the de novo pathway is absolutely essential for parasite development in the mosquito and liver stages. PbKO parasites formed drastically reduced oocysts and did not form sporozoites in the salivary glands. Oocyst production in PbALASKO parasites recovered when mosquitoes received an ALA supplement. PbALASKO sporozoites could infect mice only when the mice received an ALA supplement. Our results indicate the potential for new therapeutic interventions targeting the heme-biosynthetic pathway in the parasite during the mosquito and liver stages.

  1. Polyamidoamine nanoparticles as nanocarriers for the drug delivery to malaria parasite stages in the mosquito vector.

    Science.gov (United States)

    Urbán, Patricia; Ranucci, Elisabetta; Fernàndez-Busquets, Xavier

    2015-11-01

    Malaria is arguably one of the main medical concerns worldwide because of the numbers of people affected, the severity of the disease and the complexity of the life cycle of its causative agent, the protist Plasmodium spp. With the advent of nanoscience, renewed hopes have appeared of finally obtaining the long sought-after magic bullet against malaria in the form of a nanovector for the targeted delivery of antimalarial compounds exclusively to Plasmodium-infected cells, thus increasing drug efficacy and minimizing the induction of resistance to newly developed therapeutic agents. Polyamidoamine-derived nanovectors combine into a single chemical structure drug encapsulating capacity, antimalarial activity, low unspecific toxicity, specific targeting to Plasmodium, optimal in vivo activity and affordable synthesis cost. After having shown their efficacy in targeting drugs to intraerythrocytic parasites, now polyamidoamines face the challenge of spearheading a new generation of nanocarriers aiming at the malaria parasite stages in the mosquito vector.

  2. A whole parasite vaccine to control the blood stages of Plasmodium: the case for lateral thinking.

    Science.gov (United States)

    Good, Michael F

    2011-08-01

    Now, 27 years following the cloning of malaria antigens with the promise of the rapid development of a malaria vaccine, we face significant obstacles that are belatedly being addressed. Poor immunogenicity of subunit vaccine antigens and significant antigenic diversity of target epitopes represent major hurdles for which there are no clear strategies for a way forward within the current paradigm. Thus, a different paradigm - a vaccine that uses the whole organism - is now being examined. Although most advances in this approach relate to a vaccine for the pre-erythrocytic stages (sporozoites, liver stages), this opinion paper will outline the possibilities of developing a whole parasite vaccine for the blood stage and address some of the challenges for this strategy, which are entirely different to the challenges for a subunit vaccine. It is the view of the author that both vaccine paradigms should be pursued, but that success will come more quickly using the paranormal approach of exposing individuals to ultra-low doses of whole attenuated or killed parasites.

  3. KREX2 is not essential for either procyclic or bloodstream form Trypanosoma brucei.

    Directory of Open Access Journals (Sweden)

    Jason Carnes

    Full Text Available BACKGROUND: Most mitochondrial mRNAs in Trypanosoma brucei require RNA editing for maturation and translation. The edited RNAs primarily encode proteins of the oxidative phosphorylation system. These parasites undergo extensive changes in energy metabolism between the insect and bloodstream stages which are mirrored by alterations in RNA editing. Two U-specific exonucleases, KREX1 and KREX2, are both present in protein complexes (editosomes that catalyze RNA editing but the relative roles of each protein are not known. METHODOLOGY/PRINCIPAL FINDINGS: The requirement for KREX2 for RNA editing in vivo was assessed in both procyclic (insect and bloodstream form parasites by methods that use homologous recombination for gene elimination. These studies resulted in null mutant cells in which both alleles were eliminated. The viability of these cells demonstrates that KREX2 is not essential in either life cycle stage, despite certain defects in RNA editing in vivo. Furthermore, editosomes isolated from KREX2 null cells require KREX1 for in vitro U-specific exonuclease activity. CONCLUSIONS: KREX2 is a U-specific exonuclease that is dispensable for RNA editing in vivo in T. brucei BFs and PFs. This result suggests that the U deletion activity, which is required for RNA editing, is primarily mediated in vivo by KREX1 which is normally found associated with only one type of editosome. The retention of the KREX2 gene implies a non-essential role or a role that is essential in other life cycle stages or conditions.

  4. Protection from experimental cerebral malaria with a single dose of radiation-attenuated, blood-stage Plasmodium berghei parasites.

    Directory of Open Access Journals (Sweden)

    Noel J Gerald

    Full Text Available BACKGROUND: Whole malaria parasites are highly effective in inducing immunity against malaria. Due to the limited success of subunit based vaccines in clinical studies, there has been a renewed interest in whole parasite-based malaria vaccines. Apart from attenuated sporozoites, there have also been efforts to use live asexual stage parasites as vaccine immunogens. METHODOLOGY AND RESULTS: We used radiation exposure to attenuate the highly virulent asexual blood stages of the murine malaria parasite P. berghei to a non-replicable, avirulent form. We tested the ability of the attenuated blood stage parasites to induce immunity to parasitemia and the symptoms of severe malaria disease. Depending on the mouse genetic background, a single high dose immunization without adjuvant protected mice from parasitemia and severe disease (CD1 mice or from experimental cerebral malaria (ECM (C57BL/6 mice. A low dose immunization did not protect against parasitemia or severe disease in either model after one or two immunizations. The protection from ECM was associated with a parasite specific antibody response and also with a lower level of splenic parasite-specific IFN-γ production, which is a mediator of ECM pathology in C57BL/6 mice. Surprisingly, there was no difference in the sequestration of CD8+ T cells and CD45+ CD11b+ macrophages in the brains of immunized, ECM-protected mice. CONCLUSIONS: This report further demonstrates the effectiveness of a whole parasite blood-stage vaccine in inducing immunity to malaria and explicitly demonstrates its effectiveness against ECM, the most pathogenic consequence of malaria infection. This experimental model will be important to explore the formulation of whole parasite blood-stage vaccines against malaria and to investigate the immune mechanisms that mediate protection against parasitemia and cerebral malaria.

  5. Optimizing culture conditions for free-living stages of the nematode parasite Strongyloides ratti.

    Science.gov (United States)

    Dulovic, Alex; Puller, Vadim; Streit, Adrian

    2016-09-01

    The rat parasitic nematode Strongyloides ratti (S. ratti) has recently emerged as a model system for various aspects of parasite biology and evolution. In addition to parasitic parthenogenetic females, this species can also form facultative free-living generations of sexually reproducing adults. These free-living worms are bacteriovorous and grow very well when cultured in the feces of their host. However, in fecal cultures the worms are rather difficult to find for observation and experimental manipulation. Therefore, it has also been attempted to raise S. ratti on Nematode Growth Media (NGM) plates with Escherichia coli OP50 as food, exactly as described for the model nematode Caenorhabditis elegans. Whilst worms did grow on these plates, their longevity and reproductive output compared to fecal cultures were dramatically reduced. In order to improve the culture success we tested other plates occasionally used for C. elegans and, starting from the best performing one, systematically varied the plate composition, the temperature and the food in order to further optimize the conditions. Here we present a plate culturing protocol for free-living stages of S. ratti with strongly improved reproductive success and longevity.

  6. The Puf-family RNA-binding protein Puf2 controls sporozoite conversion to liver stages in the malaria parasite.

    Directory of Open Access Journals (Sweden)

    Katja Müller

    Full Text Available Malaria is a vector-borne infectious disease caused by unicellular, obligate intracellular parasites of the genus Plasmodium. During host switch the malaria parasite employs specialized latent stages that colonize the new host environment. Previous work has established that gametocytes, sexually differentiated stages that are taken up by the mosquito vector, control expression of genes required for mosquito colonization by translational repression. Sexual parasite development is controlled by a DEAD-box RNA helicase of the DDX6 family, termed DOZI. Latency of sporozoites, the transmission stage injected during an infectious blood meal, is controlled by the eIF2alpha kinase IK2, a general inhibitor of protein synthesis. Whether RNA-binding proteins participate in translational regulation in sporozoites remains to be studied. Here, we investigated the roles of two RNA-binding proteins of the Puf-family, Plasmodium Puf1 and Puf2, during sporozoite stage conversion. Our data reveal that, in the rodent malaria parasite P. berghei, Puf2 participates in the regulation of IK2 and inhibits premature sporozoite transformation. Inside mosquito salivary glands puf2⁻ sporozoites transform over time to round forms resembling early intra-hepatic stages. As a result, mutant parasites display strong defects in initiating a malaria infection. In contrast, Puf1 is dispensable in vivo throughout the entire Plasmodium life cycle. Our findings support the notion of a central role for Puf2 in parasite latency during switch between the insect and mammalian hosts.

  7. A transcriptomic analysis of Echinococcus granulosus larval stages: implications for parasite biology and host adaptation.

    Directory of Open Access Journals (Sweden)

    John Parkinson

    Full Text Available BACKGROUND: The cestode Echinococcus granulosus--the agent of cystic echinococcosis, a zoonosis affecting humans and domestic animals worldwide--is an excellent model for the study of host-parasite cross-talk that interfaces with two mammalian hosts. To develop the molecular analysis of these interactions, we carried out an EST survey of E. granulosus larval stages. We report the salient features of this study with a focus on genes reflecting physiological adaptations of different parasite stages. METHODOLOGY/PRINCIPAL FINDINGS: We generated ~10,000 ESTs from two sets of full-length enriched libraries (derived from oligo-capped and trans-spliced cDNAs prepared with three parasite materials: hydatid cyst wall, larval worms (protoscoleces, and pepsin/H(+-activated protoscoleces. The ESTs were clustered into 2700 distinct gene products. In the context of the biology of E. granulosus, our analyses reveal: (i a diverse group of abundant long non-protein coding transcripts showing homology to a middle repetitive element (EgBRep that could either be active molecular species or represent precursors of small RNAs (like piRNAs; (ii an up-regulation of fermentative pathways in the tissue of the cyst wall; (iii highly expressed thiol- and selenol-dependent antioxidant enzyme targets of thioredoxin glutathione reductase, the functional hub of redox metabolism in parasitic flatworms; (iv candidate apomucins for the external layer of the tissue-dwelling hydatid cyst, a mucin-rich structure that is critical for survival in the intermediate host; (v a set of tetraspanins, a protein family that appears to have expanded in the cestode lineage; and (vi a set of platyhelminth-specific gene products that may offer targets for novel pan-platyhelminth drug development. CONCLUSIONS/SIGNIFICANCE: This survey has greatly increased the quality and the quantity of the molecular information on E. granulosus and constitutes a valuable resource for gene prediction on the

  8. Interruption of the blood-stage cycle of the malaria parasite, Plasmodium chabaudi, by protein tyrosine kinase inhibitors

    Directory of Open Access Journals (Sweden)

    M.L. Gazarini

    2003-11-01

    Full Text Available Malaria is a devastating disease caused by a unicellular protozoan, Plasmodium, which affects 3.7 million people every year. Resistance of the parasite to classical treatments such as chloroquine requires the development of new drugs. To gain insight into the mechanisms that control Plasmodium cell cycle, we have examined the effects of kinase inhibitors on the blood-stage cycle of the rodent malaria parasite, Plasmodium chabaudi. In vitro incubation of red blood cells for 17 h at 37ºC with the inhibitors led to a decrease in the percent of infected cells, compared to control treatment, as follows: genistein (200 µM - 75%, staurosporine (1 µM - 58%, R03 (1 µM - 75%, and tyrphostins B44 (100 µM - 66% and B46 (100 µM - 68%. All these treatments were shown to retard or prevent maturation of the intraerythrocytic parasites. The diverse concentration ranges at which these inhibitors exert their effects give a clue as to the types of signals that initiate the transitions between the different developmental stages of the parasite. The present data support our hypothesis that the maturation of the intraerythrocytic cycle of malaria parasites requires phosphorylation. In this respect, we have recently reported a high Ca2+ microenvironment surrounding the parasite within red blood cells. Several kinase activities are modulated by Ca2+. The molecular identification of the targets of these kinases could provide new strategies against malaria.

  9. PLASMODIUM PRE-ERYTHROCYTIC STAGES: BIOLOGY, WHOLE PARASITE VACCINES AND TRANSGENIC MODELS

    Directory of Open Access Journals (Sweden)

    Kota Arun Kumar

    2012-01-01

    Full Text Available Malaria remains one of the world’s worst health problems, which causes 216 million new cases and approximately 655,000 deaths every year WHO World Malaria Report, 2011. Malaria transmission to the mammalian host is initiated through a mosquito bite that delivers sporozoites into the vertebrate host. The injected sporozoites are selectively targeted to liver which is the first obligatory step in infection thus making this stage an attractive target for both drug and vaccine development. Research using rodent models of malaria has greatly facilitated the understanding of several aspects of pre-erythrocytic parasite biology and immunology. However, translation of this knowledge to combat Plasmodium falciparum infections still offers several challenges. We highlight in this review some of the recent advances in the field of Plasmodium sporozoite and liver stage biology and in the generation of whole organism attenuated vaccines. We also comment on the application of transgenic models central to Circumsporozoite Protein (CSP in understanding the mechanism of pre-erythrocytic immunity.

  10. Ontology-based Malaria Parasite Stage and Species Identification from Peripheral Blood Smear Images

    NARCIS (Netherlands)

    Makkapati, V.; Rao, R.

    2011-01-01

    The diagnosis and treatment of malaria infection requires detectingthe presence of malaria parasite in the patient as well as identification of the parasite species. We present an image processing-basedapproach to detect parasites in microscope images of blood smear andan ontology-based classificati

  11. Food webs including parasites, biomass, body sizes, and life stages for three California/Baja California estuaries

    Science.gov (United States)

    Hechinger, Ryan F.; Lafferty, Kevin D.; McLaughlin, John P.; Fredensborg, Brian L.; Huspeni, Todd C.; Lorda, Julio; Sandhu, Parwant K.; Shaw, Jenny C.; Torchin, Mark E.; Whitney, Kathleen L.; Kuris, Armand M.

    2001-01-01

    This data set presents food webs for three North American Pacific coast estuaries and a “Metaweb” composed of the species/stages compiled from all three estuaries. The webs have four noteworthy attributes: (1) parasites (infectious agents), (2) body-size information, (3) biomass information, and (4) ontogenetic stages of many animals with complex life cycles. The estuaries are Carpinteria Salt Marsh, California (CSM); Estero de Punta Banda, Baja California (EPB); and Bahía Falsa in Bahía San Quintín, Baja California (BSQ). Most data on species assemblages and parasitism were gathered via consistent sampling that acquired body size and biomass information for plants and animals larger than ∼1 mm, and for many infectious agents (mostly metazoan parasites, but also some microbes). We augmented this with information from additional published sources and by sampling unrepresented groups (e.g., plankton). We estimated free-living consumer–resource links primarily by extending a previously published version of the CSM web (which the current CSM web supplants) and determined most parasite consumer–resource links from direct observation. We recognize 21 possible link types including four general interactions: predators consuming prey, parasites consuming hosts, predators consuming parasites, and parasites consuming parasites. While generally resolved to the species level, we report stage-specific nodes for many animals with complex life cycles. We include additional biological information for each node, such as taxonomy, lifestyle (free-living, infectious, commensal, mutualist), mobility, and residency. The Metaweb includes 500 nodes, 314 species, and 11 270 links projected to be present given appropriate species' co-occurrences. Of these, 9247 links were present in one or more of the estuarine webs. The remaining 2023 links were not present in the estuaries but are included here because they may occur in other places or times. Initial analyses have examined

  12. An Overview of Trypanosoma brucei Infections: An Intense Host–Parasite Interaction

    Science.gov (United States)

    Ponte-Sucre, Alicia

    2016-01-01

    Trypanosoma brucei rhodesiense and T. brucei gambiense, the causative agents of Human African Trypanosomiasis, are transmitted by tsetse flies. Within the vector, the parasite undergoes through transformations that prepares it to infect the human host. Sequentially these developmental stages are the replicative procyclic (in which the parasite surface is covered by procyclins) and trypo-epimastigote forms, as well as the non-replicative, infective, metacyclic form that develops in the vector salivary glands. As a pre-adaptation to their life in humans, metacyclic parasites begin to express and be densely covered by the Variant Surface Glycoprotein (VSG). Once the metacyclic form invades the human host the parasite develops into the bloodstream form. Herein the VSG triggers a humoral immune response. To avoid this humoral response, and essential for survival while in the bloodstream, the parasite changes its cover periodically and sheds into the surroundings the expressed VSG, thus evading the consequences of the immune system activation. Additionally, tools comparable to quorum sensing are used by the parasite for the successful parasite transmission from human to insect. On the other hand, the human host promotes clearance of the parasite triggering innate and adaptive immune responses and stimulating cytokine and chemokine secretion. All in all, the host–parasite interaction is extremely active and leads to responses that need multiple control sites to develop appropriately. PMID:28082973

  13. A multi-stage malaria vaccine candidate targeting both transmission and asexual parasite life-cycle stages

    DEFF Research Database (Denmark)

    Theisen, Michael; Roeffen, Will; Singh, Susheel K;

    2014-01-01

    Effective control and eventual eradication of malaria drives the imperative need for clinical development of a malaria vaccine. Asexual parasite forms are responsible for clinical disease and death while apathogenic gametocytes are responsible for transmission from man to mosquito. Vaccines...

  14. Plasmodium Apicoplast Gln-tRNAGln Biosynthesis Utilizes a Unique GatAB Amidotransferase Essential for Erythrocytic Stage Parasites.

    Science.gov (United States)

    Mailu, Boniface M; Li, Ling; Arthur, Jen; Nelson, Todd M; Ramasamy, Gowthaman; Fritz-Wolf, Karin; Becker, Katja; Gardner, Malcolm J

    2015-12-04

    The malaria parasite Plasmodium falciparum apicoplast indirect aminoacylation pathway utilizes a non-discriminating glutamyl-tRNA synthetase to synthesize Glu-tRNA(Gln) and a glutaminyl-tRNA amidotransferase to convert Glu-tRNA(Gln) to Gln-tRNA(Gln). Here, we show that Plasmodium falciparum and other apicomplexans possess a unique heterodimeric glutamyl-tRNA amidotransferase consisting of GatA and GatB subunits (GatAB). We localized the P. falciparum GatA and GatB subunits to the apicoplast in blood stage parasites and demonstrated that recombinant GatAB converts Glu-tRNA(Gln) to Gln-tRNA(Gln) in vitro. We demonstrate that the apicoplast GatAB-catalyzed reaction is essential to the parasite blood stages because we could not delete the Plasmodium berghei gene encoding GatA in blood stage parasites in vivo. A phylogenetic analysis placed the split between Plasmodium GatB, archaeal GatE, and bacterial GatB prior to the phylogenetic divide between bacteria and archaea. Moreover, Plasmodium GatA also appears to have emerged prior to the bacterial-archaeal phylogenetic divide. Thus, although GatAB is found in Plasmodium, it emerged prior to the phylogenetic separation of archaea and bacteria.

  15. Plasmodium Apicoplast Gln-tRNAGln Biosynthesis Utilizes a Unique GatAB Amidotransferase Essential for Erythrocytic Stage Parasites*

    Science.gov (United States)

    Mailu, Boniface M.; Li, Ling; Arthur, Jen; Nelson, Todd M.; Ramasamy, Gowthaman; Fritz-Wolf, Karin; Becker, Katja; Gardner, Malcolm J.

    2015-01-01

    The malaria parasite Plasmodium falciparum apicoplast indirect aminoacylation pathway utilizes a non-discriminating glutamyl-tRNA synthetase to synthesize Glu-tRNAGln and a glutaminyl-tRNA amidotransferase to convert Glu-tRNAGln to Gln-tRNAGln. Here, we show that Plasmodium falciparum and other apicomplexans possess a unique heterodimeric glutamyl-tRNA amidotransferase consisting of GatA and GatB subunits (GatAB). We localized the P. falciparum GatA and GatB subunits to the apicoplast in blood stage parasites and demonstrated that recombinant GatAB converts Glu-tRNAGln to Gln-tRNAGln in vitro. We demonstrate that the apicoplast GatAB-catalyzed reaction is essential to the parasite blood stages because we could not delete the Plasmodium berghei gene encoding GatA in blood stage parasites in vivo. A phylogenetic analysis placed the split between Plasmodium GatB, archaeal GatE, and bacterial GatB prior to the phylogenetic divide between bacteria and archaea. Moreover, Plasmodium GatA also appears to have emerged prior to the bacterial-archaeal phylogenetic divide. Thus, although GatAB is found in Plasmodium, it emerged prior to the phylogenetic separation of archaea and bacteria. PMID:26318454

  16. Plasmodium Apicoplast Gln-tRNA Gln Biosynthesis Utilizes a Unique GatAB Amidotransferase Essential for Erythrocytic Stage Parasites

    KAUST Repository

    Mailu, Boniface M.

    2015-08-28

    © 2015 by The American Society for Biochemistry and Molecular Biology, Inc. The malaria parasite Plasmodium falciparum apicoplast indirect aminoacylation pathway utilizes a non-discriminating glutamyl-tRNA synthetase to synthesize Glu-tRNAGln and a glutaminyl-tRNA amidotransferase to convert Glu-tRNAGln to Gln-tRNAGln. Here, we show that Plasmodium falciparum and other apicomplexans possess a unique heterodimeric glutamyltRNA amidotransferase consisting of GatA and GatB subunits (GatAB). We localized the P. falciparum GatA and GatB subunits to the apicoplast in blood stage parasites and demonstrated that recombinant GatAB converts Glu-tRNAGln to Gln-tRNAGln in vitro. We demonstrate that the apicoplast GatAB-catalyzed reaction is essential to the parasite blood stages because we could not delete the Plasmodium berghei gene encoding GatA in blood stage parasites in vivo. A phylogenetic analysis placed the split between Plasmodium GatB, archaeal GatE, and bacterial GatB prior to the phylogenetic divide between bacteria and archaea. Moreover, Plasmodium GatA also appears to have emerged prior to the bacterial-archaeal phylogenetic divide. Thus, although GatAB is found in Plasmodium, it emerged prior to the phylogenetic separation of archaea and bacteria.

  17. Host cell phosphatidylcholine is a key mediator of malaria parasite survival during liver stage infection.

    Science.gov (United States)

    Itoe, Maurice A; Sampaio, Júlio L; Cabal, Ghislain G; Real, Eliana; Zuzarte-Luis, Vanessa; March, Sandra; Bhatia, Sangeeta N; Frischknecht, Friedrich; Thiele, Christoph; Shevchenko, Andrej; Mota, Maria M

    2014-12-10

    During invasion, Plasmodium, the causative agent of malaria, wraps itself in a parasitophorous vacuole membrane (PVM), which constitutes a critical interface between the parasite and its host cell. Within hepatocytes, each Plasmodium sporozoite generates thousands of new parasites, creating high demand for lipids to support this replication and enlarge the PVM. Here, a global analysis of the total lipid repertoire of Plasmodium-infected hepatocytes reveals an enrichment of neutral lipids and the major membrane phospholipid, phosphatidylcholine (PC). While infection is unaffected in mice deficient in key enzymes involved in neutral lipid synthesis and lipolysis, ablation of rate-limiting enzymes in hepatic PC biosynthetic pathways significantly decreases parasite numbers. Host PC is taken up by both P. berghei and P. falciparum and is necessary for correct localization of parasite proteins to the PVM, which is essential for parasite survival. Thus, Plasmodium relies on the abundance of these lipids within hepatocytes to support infection.

  18. Spontaneous stage differentiation of mouse-virulent Toxoplasma gondii RH parasites in skeletal muscle cells: an ultrastructural evaluation

    Directory of Open Access Journals (Sweden)

    Marialice da Fonseca Ferreira-da-Silva

    2009-03-01

    Full Text Available Although the predilection for Toxoplasma gondii to form cysts in the nervous system and skeletal and heart muscles has been described for more than fifty years, skeletal muscle cells (SkMCs have not been explored as a host cell type to study the Toxoplasma-host cell interaction and investigate the intracellular development of the parasite. Morphological aspects of the initial events in the Toxoplasma-SkMC interaction were analysed and suggest that there are different processes of protozoan adhesion and invasion and of the subsequent fate of the parasite inside the parasitophorous vacuole (PV. Using scanning electron microscopy,Toxoplasma tachyzoites from the mouse-virulent RH strain were found to be attached to SkMCs by the anterior or posterior region of the body, with or without expansion of the SkMC membrane. This suggests that different types of parasite internalization occurred. Asynchronous multiplication and differentiation of T. gondii were observed. Importantly, intracellular parasites were seen to display high amounts of amylopectin granules in their cytoplasm, indicating that tachyzoites of the RH strain were able to differentiate spontaneously into bradyzoites in SkMCs. This stage conversion occurred in approximately 3% of the PVs. This is particularly intriguing as tachyzoites of virulent Toxoplasma strains are not thought to be prone to cyst formation. We discuss whether biological differences in host cells are crucial to Toxoplasma stage conversion and suggest that important questions concerning the host cell type and its relevance in Toxoplasma differentiation are still unanswered.

  19. Subcompartmentalisation of proteins in the rhoptries correlates with ordered events of erythrocyte invasion by the blood stage malaria parasite.

    Directory of Open Access Journals (Sweden)

    Elizabeth S Zuccala

    Full Text Available Host cell infection by apicomplexan parasites plays an essential role in lifecycle progression for these obligate intracellular pathogens. For most species, including the etiological agents of malaria and toxoplasmosis, infection requires active host-cell invasion dependent on formation of a tight junction - the organising interface between parasite and host cell during entry. Formation of this structure is not, however, shared across all Apicomplexa or indeed all parasite lifecycle stages. Here, using an in silico integrative genomic search and endogenous gene-tagging strategy, we sought to characterise proteins that function specifically during junction-dependent invasion, a class of proteins we term invasins to distinguish them from adhesins that function in species specific host-cell recognition. High-definition imaging of tagged Plasmodium falciparum invasins localised proteins to multiple cellular compartments of the blood stage merozoite. This includes several that localise to distinct subcompartments within the rhoptries. While originating from the same organelle, however, each has very different dynamics during invasion. Apical Sushi Protein and Rhoptry Neck protein 2 release early, following the junction, whilst a novel rhoptry protein PFF0645c releases only after invasion is complete. This supports the idea that organisation of proteins within a secretory organelle determines the order and destination of protein secretion and provides a localisation-based classification strategy for predicting invasin function during apicomplexan parasite invasion.

  20. An evolving picture of the interactions between malaria parasites and their host erythrocytes

    Institute of Scientific and Technical Information of China (English)

    Thomas E Wellems; Rick M Fairhurst

    2012-01-01

    In patients with malaria,Plasmodium falciparum parasites multiply to enormous numbers in the bloodstream,initiating processes of erythrocyte destruction,endothelial activation and microvascular inflammation that cause devastating pathological effects on host tissues and organs.Recent research casts new Iight on a mechanism by which hemoglobin mutations may protect against these effects,and on a critical receptor-ligand interaction that provides fresh opportunities for the development of vaccines against blood-stage infection.

  1. Effectiveness of Selected Stages of Wastewater Treatment in Elimination of Eggs of Intestinal Parasites

    Directory of Open Access Journals (Sweden)

    Zdybel Jolanta

    2015-04-01

    Full Text Available The objective of the study was to determine the degree of municipal wastewater contamination with intestinal parasite eggs of the genera Ascaris, Toxocara, and Trichuris at individual stages of treatment, and indication of potentially weak points in the hygienisation of sewage sludge. The study was conducted in 17 municipal mechanical-biological wastewater treatment plants which, to a slight degree, differed in the technological process of wastewater treatment and the method of hygienisation of sewage sludge. The selected treatment plants, located in seven regions, included five classified as large agglomerations (population equivalent - PE >100 000, ten as medium-size (PE 15 000-100 000, and two as smaller size with PE 10 000 - 5000. The largest number of viable eggs of Ascaris spp., Toxocara spp., and Trichuris spp. was found in the sewage sludge collected from the primary settling tank. A slightly lower number of the eggs were found in the samples of excess sludge, which indicates that the sedimentation process in the primary settling tank is not sufficiently long to effectively separate parasites’ eggs from the sewage treated. The number of eggs of Ascaris spp. and Toxocara spp. in the fermented sludge was nearly 3 times lower than that in the raw sludge. The effectiveness of hygienisation of dehydrated sewage sludge by means of quicklime was confirmed in two wastewater treatment plants, with respect to Ascaris spp. eggs, in three plants with respect to Toxocara spp. eggs, and in one plant with respect to Trichuris spp. eggs. The mean reduction of the number of eggs was 65%, 61%, and 100%, respectively. In one wastewater treatment plant, a reduction in the number of viable eggs of Ascaris and Trichuris species was also noted as a result of composting sludge by 85% and 75%, respectively. In the remaining treatment plants, no effect of hygienisation of sewage sludge was observed on the contents of viable eggs of these nematodes.

  2. Three-dimensional visualisation of developmental stages of an apicomplexan fish blood parasite in its invertebrate host

    Directory of Open Access Journals (Sweden)

    Hayes Polly M

    2011-11-01

    Full Text Available Abstract Background Although widely used in medicine, the application of three-dimensional (3D imaging to parasitology appears limited to date. In this study, developmental stages of a marine fish haemogregarine, Haemogregarina curvata (Apicomplexa: Adeleorina, were investigated in their leech vector, Zeylanicobdella arugamensis; this involved 3D visualisation of brightfield and confocal microscopy images of histological sections through infected leech salivary gland cells. Findings 3D assessment demonstrated the morphology of the haemogregarine stages, their spatial layout, and their relationship with enlarged host cells showing reduced cellular content. Haemogregarine meronts, located marginally within leech salivary gland cells, had small tail-like connections to the host cell limiting membrane; this parasite-host cell interface was not visible in two-dimensional (2D light micrographs and no records of a similar connection in apicomplexan development have been traced. Conclusions This is likely the first account of the use of 3D visualisation to study developmental stages of an apicomplexan parasite in its invertebrate vector. Elucidation of the extent of development of the haemogregarine within the leech salivary cells, together with the unusual connections between meronts and the host cell membrane, illustrates the future potential of 3D visualisation in parasite-vector biology.

  3. Evolution and architecture of the inner membrane complex in asexual and sexual stages of the malaria parasite.

    Science.gov (United States)

    Kono, Maya; Herrmann, Susann; Loughran, Noeleen B; Cabrera, Ana; Engelberg, Klemens; Lehmann, Christine; Sinha, Dipto; Prinz, Boris; Ruch, Ulrike; Heussler, Volker; Spielmann, Tobias; Parkinson, John; Gilberger, Tim W

    2012-09-01

    The inner membrane complex (IMC) is a unifying morphological feature of all alveolate organisms. It consists of flattened vesicles underlying the plasma membrane and is interconnected with the cytoskeleton. Depending on the ecological niche of the organisms, the function of the IMC ranges from a fundamental role as reinforcement system to more specialized roles in motility and cytokinesis. In this article, we present a comprehensive evolutionary analysis of IMC components, which exemplifies the adaptive nature of the IMCs' protein composition. Focusing on eight structurally distinct proteins in the most prominent "genus" of the Alveolata-the malaria parasite Plasmodium-we demonstrate that the level of conservation is reflected in phenotypic characteristics, accentuated in differential spatial-temporal patterns of these proteins in the motile stages of the parasite's life cycle. Colocalization studies with the centromere and the spindle apparatus reveal their discriminative biogenesis. We also reveal that the IMC is an essential structural compartment for the development of the sexual stages of Plasmodium, as it seems to drive the morphological changes of the parasite during the long and multistaged process of sexual differentiation. We further found a Plasmodium-specific IMC membrane matrix protein that highlights transversal structures in gametocytes, which could represent a genus-specific structural innovation required by Plasmodium. We conclude that the IMC has an additional role during sexual development supporting morphogenesis of the cell, which in addition to its functions in the asexual stages highlights the multifunctional nature of the IMC in the Plasmodium life cycle.

  4. Cytosolic peroxidases protect the lysosome of bloodstream African trypanosomes from iron-mediated membrane damage.

    Directory of Open Access Journals (Sweden)

    Corinna Hiller

    2014-04-01

    Full Text Available African trypanosomes express three virtually identical non-selenium glutathione peroxidase (Px-type enzymes which preferably detoxify lipid-derived hydroperoxides. As shown previously, bloodstream Trypanosoma brucei lacking the mitochondrial Px III display only a weak and transient proliferation defect whereas parasites that lack the cytosolic Px I and Px II undergo extremely fast lipid peroxidation and cell lysis. The phenotype can completely be rescued by supplementing the medium with the α-tocopherol derivative Trolox. The mechanism underlying the rapid cell death remained however elusive. Here we show that the lysosome is the origin of the cellular injury. Feeding the px I-II knockout parasites with Alexa Fluor-conjugated dextran or LysoTracker in the presence of Trolox yielded a discrete lysosomal staining. Yet upon withdrawal of the antioxidant, the signal became progressively spread over the whole cell body and was completely lost, respectively. T. brucei acquire iron by endocytosis of host transferrin. Supplementing the medium with iron or transferrin induced, whereas the iron chelator deferoxamine and apo-transferrin attenuated lysis of the px I-II knockout cells. Immunofluorescence microscopy with MitoTracker and antibodies against the lysosomal marker protein p67 revealed that disintegration of the lysosome precedes mitochondrial damage. In vivo experiments confirmed the negligible role of the mitochondrial peroxidase: Mice infected with px III knockout cells displayed only a slightly delayed disease development compared to wild-type parasites. Our data demonstrate that in bloodstream African trypanosomes, the lysosome, not the mitochondrion, is the primary site of oxidative damage and cytosolic trypanothione/tryparedoxin-dependent peroxidases protect the lysosome from iron-induced membrane peroxidation. This process appears to be closely linked to the high endocytic rate and distinct iron acquisition mechanisms of the infective

  5. Identification of Echinococcus granulosus microRNAs and their expression in different life cycle stages and parasite genotypes.

    Science.gov (United States)

    Cucher, M; Prada, L; Mourglia-Ettlin, G; Dematteis, S; Camicia, F; Asurmendi, S; Rosenzvit, M

    2011-03-01

    The aetiological agent of cystic hydatid disease, the platyhelminth parasite Echinococcus granulosus, undergoes a series of metamorphic events during its complex life cycle. One of its developmental stages, the protoscolex, shows a remarkable degree of heterogeneous morphogenesis, being able to develop either into the vesicular or strobilar direction. Another level of complexity is added by the existence of genotypes or strains that differ in the range of intermediate hosts where they can develop and form fertile cysts. These features make E. granulosus an interesting model for developmental studies. Hence, we focused on the study of the regulation of gene expression by microRNAs (miRNAs), one of the key mechanisms that control development in metazoans and plants and which has not been analysed in E. granulosus yet. In this study, we cloned 38 distinct miRNAs, including four candidate new miRNAs that seem to be specific to Echinococcus spp. Thirty-four cloned sequences were orthologous to miRNAs already described in other organisms and were grouped in 16 metazoan miRNA families, some of them known for their role in the development of other organisms. The expression of some of the cloned miRNAs differs according to the parasite life cycle stage analysed, showing differential developmental expression. We did not detect differences in the expression of the analysed miRNAs between protoscoleces of two parasite genotypes. This work sets the scene for the study of gene regulation mediated by miRNAs in E. granulosus and provides a new approach to study the molecules involved in its developmental plasticity and intermediate host specificity. Understanding the developmental processes of E. granulosus may help to find new strategies for the control of cystic hydatid disease, caused by the metacestode stage of the parasite.

  6. Fighting while parasitized: can nematode infections affect the outcome of staged combat in beetles?

    Science.gov (United States)

    Vasquez, David; Willoughby, Anna; Davis, Andrew K

    2015-01-01

    The effects of non-lethal parasites may be felt most strongly when hosts engage in intense, energy-demanding behaviors. One such behavior is fighting with conspecifics, which is common among territorial animals, including many beetle species. We examined the effects of parasites on the fighting ability of a saproxylic beetle, the horned passalus (Odontotaenius disjunctus, Family: Passalidae), which is host to a non-lethal nematode, Chondronema passali. We pitted pairs of randomly-chosen (but equally-weighted) beetles against each other in a small arena and determined the winner and aggression level of fights. Then we examined beetles for the presence, and severity of nematode infections. There was a non-significant tendency (p = 0.065) for the frequency of wins, losses and draws to differ between beetles with and without C. passali; non-parasitized individuals (n = 104) won 47% of their fights while those with the parasite (n = 88) won 34%, a 13% difference in wins. The number of nematodes in a beetle affected the outcome of fights between infected and uninfected individuals in an unexpected fashion: fighting ability was lowest in beetles with the lowest (p = 0.033), not highest (p = 0.266), nematode burdens. Within-fight aggression was highest when both beetles were uninfected and lowest when both were infected (p = 0.034). Collectively, these results suggest the nematode parasite, C. passali, is associated with a modest reduction in fighting ability in horned passalus beetles, consistent with the idea that parasitized beetles have lower energy available for fighting. This study adds to a small but growing body of evidence showing how parasites negatively influence fighting behavior in animals.

  7. Fighting while parasitized: can nematode infections affect the outcome of staged combat in beetles?

    Directory of Open Access Journals (Sweden)

    David Vasquez

    Full Text Available The effects of non-lethal parasites may be felt most strongly when hosts engage in intense, energy-demanding behaviors. One such behavior is fighting with conspecifics, which is common among territorial animals, including many beetle species. We examined the effects of parasites on the fighting ability of a saproxylic beetle, the horned passalus (Odontotaenius disjunctus, Family: Passalidae, which is host to a non-lethal nematode, Chondronema passali. We pitted pairs of randomly-chosen (but equally-weighted beetles against each other in a small arena and determined the winner and aggression level of fights. Then we examined beetles for the presence, and severity of nematode infections. There was a non-significant tendency (p = 0.065 for the frequency of wins, losses and draws to differ between beetles with and without C. passali; non-parasitized individuals (n = 104 won 47% of their fights while those with the parasite (n = 88 won 34%, a 13% difference in wins. The number of nematodes in a beetle affected the outcome of fights between infected and uninfected individuals in an unexpected fashion: fighting ability was lowest in beetles with the lowest (p = 0.033, not highest (p = 0.266, nematode burdens. Within-fight aggression was highest when both beetles were uninfected and lowest when both were infected (p = 0.034. Collectively, these results suggest the nematode parasite, C. passali, is associated with a modest reduction in fighting ability in horned passalus beetles, consistent with the idea that parasitized beetles have lower energy available for fighting. This study adds to a small but growing body of evidence showing how parasites negatively influence fighting behavior in animals.

  8. Cyclosporin A treatment of Leishmania donovani reveals stage-specific functions of cyclophilins in parasite proliferation and viability.

    Directory of Open Access Journals (Sweden)

    Wai-Lok Yau

    Full Text Available BACKGROUND: Cyclosporin A (CsA has important anti-microbial activity against parasites of the genus Leishmania, suggesting CsA-binding cyclophilins (CyPs as potential drug targets. However, no information is available on the genetic diversity of this important protein family, and the mechanisms underlying the cytotoxic effects of CsA on intracellular amastigotes are only poorly understood. Here, we performed a first genome-wide analysis of Leishmania CyPs and investigated the effects of CsA on host-free L. donovani amastigotes in order to elucidate the relevance of these parasite proteins for drug development. METHODOLOGY/PRINCIPAL FINDINGS: Multiple sequence alignment and cluster analysis identified 17 Leishmania CyPs with significant sequence differences to human CyPs, but with highly conserved functional residues implicated in PPIase function and CsA binding. CsA treatment of promastigotes resulted in a dose-dependent inhibition of cell growth with an IC50 between 15 and 20 microM as demonstrated by proliferation assay and cell cycle analysis. Scanning electron microscopy revealed striking morphological changes in CsA treated promastigotes reminiscent to developing amastigotes, suggesting a role for parasite CyPs in Leishmania differentiation. In contrast to promastigotes, CsA was highly toxic to amastigotes with an IC50 between 5 and 10 microM, revealing for the first time a direct lethal effect of CsA on the pathogenic mammalian stage linked to parasite thermotolerance, independent from host CyPs. Structural modeling, enrichment of CsA-binding proteins from parasite extracts by FPLC, and PPIase activity assays revealed direct interaction of the inhibitor with LmaCyP40, a bifunctional cyclophilin with potential co-chaperone function. CONCLUSIONS/SIGNIFICANCE: The evolutionary expansion of the Leishmania CyP protein family and the toxicity of CsA on host-free amastigotes suggest important roles of PPIases in parasite biology and implicate

  9. Assessment of the anthelmintic activity of medicinal plant extracts and purified condensed tannins against free-living and parasitic stages of Oesophagostomum dentatum

    DEFF Research Database (Denmark)

    Williams, Andrew Richard; Ropiak, Honorata M.; Fryganas, Christos

    2014-01-01

    . Oesophagostomum dentatum is an economically important parasite of pigs, as well as serving as a useful laboratory model of helminth parasites due to the ability to culture it in vitro for long periods through several life-cycle stages. Here, we investigated the anthelmintic effects of CT on multiple life cycle...

  10. Use of a selective inhibitor to define the chemotherapeutic potential of the plasmodial hexose transporter in different stages of the parasite's life cycle.

    Science.gov (United States)

    Slavic, Ksenija; Delves, Michael J; Prudêncio, Miguel; Talman, Arthur M; Straschil, Ursula; Derbyshire, Elvira T; Xu, Zhengyao; Sinden, Robert E; Mota, Maria M; Morin, Christophe; Tewari, Rita; Krishna, Sanjeev; Staines, Henry M

    2011-06-01

    During blood infection, malarial parasites use D-glucose as their main energy source. The Plasmodium falciparum hexose transporter (PfHT), which mediates the uptake of D-glucose into parasites, is essential for survival of asexual blood-stage parasites. Recently, genetic studies in the rodent malaria model, Plasmodium berghei, found that the orthologous hexose transporter (PbHT) is expressed throughout the parasite's development within the mosquito vector, in addition to being essential during intraerythrocytic development. Here, using a D-glucose-derived specific inhibitor of plasmodial hexose transporters, compound 3361, we have investigated the importance of D-glucose uptake during liver and transmission stages of P. berghei. Initially, we confirmed the expression of PbHT during liver stage development, using a green fluorescent protein (GFP) tagging strategy. Compound 3361 inhibited liver-stage parasite development, with a 50% inhibitory concentration (IC₅₀) of 11 μM. This process was insensitive to the external D-glucose concentration. In addition, compound 3361 inhibited ookinete development and microgametogenesis, with IC₅₀s in the region of 250 μM (the latter in a D-glucose-sensitive manner). Consistent with our findings for the effect of compound 3361 on vector parasite stages, 1 mM compound 3361 demonstrated transmission blocking activity. These data indicate that novel chemotherapeutic interventions that target PfHT may be active against liver and, to a lesser extent, transmission stages, in addition to blood stages.

  11. Transgenic Analysis of the Leishmania MAP Kinase MPK10 Reveals an Auto-inhibitory Mechanism Crucial for Stage-Regulated Activity and Parasite Viability

    DEFF Research Database (Denmark)

    Cayla, M.; Rachidi, N.; Leclercq, O.;

    2014-01-01

    Protozoan pathogens of the genus Leishmania have evolved unique signaling mechanisms that can sense changes in the host environment and trigger adaptive stage differentiation essential for host cell infection. The signaling mechanisms underlying parasite development remain largely elusive even th...

  12. SOIL CONTAMINATION IN PUBLIC SQUARES IN BELO HORIZONTE, MINAS GERAIS, BY CANINE PARASITES IN DIFFERENT DEVELOPMENTAL STAGES

    Directory of Open Access Journals (Sweden)

    Luciane Madureira Ribeiro

    2013-07-01

    Full Text Available SUMMARY To evaluate soil contamination by parasites in different developmental stages in public squares used as recreation and leisure areas for children in Belo Horizonte (MG, Brazil, 210 soil samples and 141 canine fecal samples were collected from 42 squares in the city. These samples were analyzed by the Caldwell and Caldwell technique and the Hoffman, Pons, and Janer technique. Of the samples analyzed, 89 (42.4% soil samples and 104 (73.5% fecal samples were contaminated with Ancylostoma sp., Toxocara sp., Trichuris sp., or Dipylidium sp. eggs; Giardia sp. cysts; or Isospora sp. oocysts. The commonest parasite was Ancylostoma sp., found in 85% soil and 99% fecal samples, followed by Toxocara sp., found in 43.7% soil and 30.7% fecal samples.

  13. Prolonged antigen presentation is required for optimal CD8+ T cell responses against malaria liver stage parasites.

    Directory of Open Access Journals (Sweden)

    Ian A Cockburn

    2010-05-01

    Full Text Available Immunization with irradiated sporozoites is currently the most effective vaccination strategy against liver stages of malaria parasites, yet the mechanisms underpinning the success of this approach are unknown. Here we show that the complete development of protective CD8+ T cell responses requires prolonged antigen presentation. Using TCR transgenic cells specific for the malaria circumsporozoite protein, a leading vaccine candidate, we found that sporozoite antigen persists for over 8 weeks after immunization--a remarkable finding since irradiated sporozoites are incapable of replication and do not differentiate beyond early liver stages. Persisting antigen was detected in lymphoid organs and depends on the presence of CD11c+ cells. Prolonged antigen presentation enhanced the magnitude of the CD8+ T cell response in a number of ways. Firstly, reducing the time primed CD8+ T cells were exposed to antigen in vivo severely reduced the final size of the developing memory population. Secondly, fully developed memory cells expanded in previously immunized mice but not when transferred to naïve animals. Finally, persisting antigen was able to prime naïve cells, including recent thymic emigrants, to become functional effector cells capable of eliminating parasites in the liver. Together these data show that the optimal development of protective CD8+ T cell immunity against malaria liver stages is dependent upon the prolonged presentation of sporozoite-derived antigen.

  14. Two-stage sample-to-answer system based on nucleic acid amplification approach for detection of malaria parasites.

    Science.gov (United States)

    Liu, Qing; Nam, Jeonghun; Kim, Sangho; Lim, Chwee Teck; Park, Mi Kyoung; Shin, Yong

    2016-08-15

    Rapid, early, and accurate diagnosis of malaria is essential for effective disease management and surveillance, and can reduce morbidity and mortality associated with the disease. Although significant advances have been achieved for the diagnosis of malaria, these technologies are still far from ideal, being time consuming, complex and poorly sensitive as well as requiring separate assays for sample processing and detection. Therefore, the development of a fast and sensitive method that can integrate sample processing with detection of malarial infection is desirable. Here, we report a two-stage sample-to-answer system based on nucleic acid amplification approach for detection of malaria parasites. It combines the Dimethyl adipimidate (DMA)/Thin film Sample processing (DTS) technique as a first stage and the Mach-Zehnder Interferometer-Isothermal solid-phase DNA Amplification (MZI-IDA) sensing technique as a second stage. The system can extract DNA from malarial parasites using DTS technique in a closed system, not only reducing sample loss and contamination, but also facilitating the multiplexed malarial DNA detection using the fast and accurate MZI-IDA technique. Here, we demonstrated that this system can deliver results within 60min (including sample processing, amplification and detection) with high sensitivity (malaria in low-resource settings.

  15. Phosphoproteomic analysis of differentiating Leishmania parasites reveals a unique stage-specific phosphorylation motif

    OpenAIRE

    Tsigankov, Polina; Gherardini, Pier Federico; Helmer-Citterich, Manuela; Späth, Gerald F; Zilberstein, Dan

    2013-01-01

    International audience; Protists of the genus Leishmania are obligatory intracellular parasites that cause a wide range of cutaneous, mucocutaneous, and visceral diseases in humans. They cycle between phagolysosomes of mammalian macrophages and the sand fly midgut, proliferating as intracellular amastigotes and extracellular promastigotes, respectively. Exposure to a lysosomal environment, i.e. acidic pH and body temperature, signals promastigotes to differentiate into amastigotes. Time cours...

  16. Flow cytometric readout based on Mitotracker Red CMXRos staining of live asexual blood stage malarial parasites reliably assesses antibody dependent cellular inhibition

    Directory of Open Access Journals (Sweden)

    Jogdand Prajakta S

    2012-07-01

    Full Text Available Abstract Background Functional in vitro assays could provide insights into the efficacy of malaria vaccine candidates. For estimating the anti-parasite effect induced by a vaccine candidate, an accurate determination of live parasite count is an essential component of most in vitro bioassays. Although traditionally parasites are counted microscopically, a faster, more accurate and less subjective method for counting parasites is desirable. In this study mitochondrial dye (Mitotracker Red CMXRos was used for obtaining reliable live parasite counts through flow cytometry. Methods Both asynchronous and tightly synchronized asexual blood stage cultures of Plasmodium falciparum were stained with CMXRos and subjected to detection by flow cytometry and fluorescence microscopy. The parasite counts obtained by flow cytometry were compared to standard microscopic counts obtained through examination of Giemsa-stained thin smears. A comparison of the ability of CMXRos to stain live and compromised parasites (induced by either medium starvation or by anti-malarial drug treatment was carried out. Finally, parasite counts obtained by CMXRos staining through flow cytometry were used to determine specific growth inhibition index (SGI in an antibody-dependent cellular inhibition (ADCI assay. Results Mitotracker Red CMXRos can reliably detect live intra-erythrocytic stages of P. falciparum. Comparison between staining of live with compromised parasites shows that CMXRos predominantly stains live parasites with functional mitochondria. Parasite counts obtained by CMXRos staining and flow cytometry were highly reproducible and can reliably determine the ability of IgG from hyper-immune individuals to inhibit parasite growth in presence of monocytes in ADCI assay. Further, a dose-dependent parasite growth inhibitory effect could be detected for both total IgG purified from hyper-immune sera and affinity purified IgGs against the N-terminal non-repeat region of GLURP

  17. Sensory neuroanatomy of Parastrongyloides trichosuri, a nematode parasite of mammals: Amphidial neurons of the first-stage larva.

    Science.gov (United States)

    Zhu, He; Li, Jian; Nolan, Thomas J; Schad, Gerhard A; Lok, James B

    2011-08-15

    Owing to its ability to switch between free-living and parasitic modes of development, Parastrongyloides trichosuri represents a valuable model with which to study the evolution of parasitism among the nematodes, especially aspects pertaining to morphogenesis of infective third-stage larvae. In the free-living nematode Caenorhabditis elegans, developmental fates of third-stage larvae are determined in part by environmental cues received by chemosensory neurons in the amphidial sensillae. As a basis for comparative study, we have described the neuroanatomy of the amphidial sensillae of P. trichosuri. By using computational methods, we incorporated serial electron micrographs into a three-dimensional reconstruction of the amphidial neurons of this parasite. Each amphid is innervated by 13 neurons, and the dendritic processes of 10 of these extend nearly to the amphidial pore. Dendritic processes of two specialized neurons leave the amphidial channel and terminate within invaginations of the sheath cell. One of these is similar to the finger cell of C. elegans, terminating in digitiform projections. The other projects a single cilium into the sheath cell. The dendritic process of a third specialized neuron terminates within the tight junction of the amphid. Each amphidial neuron was traced from the tip of its dendrite(s) to its cell body in the lateral ganglion. Positions of these cell bodies approximate those of morphologically similar amphidial neurons in Caenorhabditis elegans, so the standard nomenclature for amphidial neurons in C. elegans was adopted. A map of cell bodies within the lateral ganglion of P. trichosuri was prepared to facilitate functional study of these neurons.

  18. Expression of Plasmodium vivax crt-o Is Related to Parasite Stage but Not Ex Vivo Chloroquine Susceptibility.

    Science.gov (United States)

    Pava, Zuleima; Handayuni, Irene; Wirjanata, Grennady; To, Sheren; Trianty, Leily; Noviyanti, Rintis; Poespoprodjo, Jeanne Rini; Auburn, Sarah; Price, Ric N; Marfurt, Jutta

    2015-11-02

    Chloroquine (CQ)-resistant Plasmodium vivax is present in most countries where P. vivax infection is endemic, but the underlying molecular mechanisms responsible remain unknown. Increased expression of P. vivax crt-o (pvcrt-o) has been correlated with in vivo CQ resistance in an area with low-grade resistance. We assessed pvcrt-o expression in isolates from Papua (Indonesia), where P. vivax is highly CQ resistant. Ex vivo drug susceptibilities to CQ, amodiaquine, piperaquine, mefloquine, and artesunate were determined using a modified schizont maturation assay. Expression levels of pvcrt-o were measured using a novel real-time quantitative reverse transcription-PCR method. Large variations in pvcrt-o expression were observed across the 51 isolates evaluated, with the fold change in expression level ranging from 0.01 to 59 relative to that seen with the P. vivax β-tubulin gene and from 0.01 to 24 relative to that seen with the P. vivax aldolase gene. Expression was significantly higher in isolates with the majority of parasites at the ring stage of development (median fold change, 1.7) compared to those at the trophozoite stage (median fold change, 0.5; P < 0.001). Twenty-nine isolates fulfilled the criteria for ex vivo drug susceptibility testing and showed high variability in CQ responses (median, 107.9 [range, 6.5 to 345.7] nM). After controlling for the parasite stage, we found that pvcrt-o expression levels did not correlate with the ex vivo response to CQ or with that to any of the other antimalarials tested. Our results highlight the importance of development-stage composition for measuring pvcrt-o expression and suggest that pvcrt-o transcription is not a primary determinant of ex vivo drug susceptibility. A comprehensive transcriptomic approach is warranted for an in-depth investigation of the role of gene expression levels and P. vivax drug resistance.

  19. Brugia malayi excreted/secreted proteins at the host/parasite interface: stage- and gender-specific proteomic profiling.

    Directory of Open Access Journals (Sweden)

    Sasisekhar Bennuru

    Full Text Available Relatively little is known about the filarial proteins that interact with the human host. Although the filarial genome has recently been completed, protein profiles have been limited to only a few recombinants or purified proteins of interest. Here, we describe a large-scale proteomic analysis using microcapillary reverse-phase liquid chromatography-tandem-mass spectrometry to identify the excretory-secretory (ES products of the L3, L3 to L4 molting ES, adult male, adult female, and microfilarial stages of the filarial parasite Brugia malayi. The analysis of the ES products from adult male, adult female, microfilariae (Mf, L3, and molting L3 larvae identified 852 proteins. Annotation suggests that the functional and component distribution was very similar across each of the stages studied; however, the Mf contributed a higher proportion to the total number of identified proteins than the other stages. Of the 852 proteins identified in the ES, only 229 had previous confirmatory expressed sequence tags (ESTs in the available databases. Moreover, this analysis was able to confirm the presence of 274 "hypothetical" proteins inferred from gene prediction algorithms applied to the B. malayi (Bm genome. Not surprisingly, the majority (160/274 of these "hypothetical" proteins were predicted to be secreted by Signal IP and/or SecretomeP 2.0 analysis. Of major interest is the abundance of previously characterized immunomodulatory proteins such as ES-62 (leucyl aminopeptidase, MIF-1, SERPIN, glutathione peroxidase, and galectin in the ES of microfilariae (and Mf-containing adult females compared to the adult males. In addition, searching the ES protein spectra against the Wolbachia database resulted in the identification of 90 Wolbachia-specific proteins, most of which were metabolic enzymes that have not been shown to be immunogenic. This proteomic analysis extends our knowledge of the ES and provides insight into the host-parasite interaction.

  20. Flow cytometric readout based on Mitotracker Red CMXRos staining of live asexual blood stage malarial parasites reliably assesses antibody dependent cellular inhibition

    DEFF Research Database (Denmark)

    Jogdand, Prajakta S; Singh, Susheel K; Christiansen, Michael;

    2012-01-01

    ABSTRACT: BACKGROUND: Functional in vitro assays could provide insights into the efficacy of malaria vaccine candidates. For estimating the anti-parasite effect induced by a vaccine candidate, an accurate determination of live parasite count is an essential component of most in vitro bioassays...... asynchronous and tightly synchronized asexual blood stage cultures of Plasmodium falciparum were stained with CMXRos and subjected to detection by flow cytometry and fluorescence microscopy. The parasite counts obtained by flow cytometry were compared to standard microscopic counts obtained through examination...

  1. Attempts to culture the parasitic stage of Dermatobia hominis (L. Jr.) in vitro (Diptera: Cuterebridae).

    Science.gov (United States)

    Zeledón, R; Silva, S

    1987-10-01

    Dermatobia hominis larvae were cultured in a semidefined liquid medium. First-instar larvae (L1) grew well up to 44 days; 29.1% molted in a mean period of 8.62 days. Two larvae reached the third instar but lived only 1 and 18 days, respectively, after the second molt. The increase in size, measured in 4 larvae, was about 10-fold. Second- and third-instar larvae, obtained from the skin of cattle, survived and grew in the medium for up to 2 mo; 39.0% of the L2 molted while 77.3% of the L3 pupated, and some produced flies when transferred to sand after 14.84 +/- 10.08 days in the culture medium. Some maturation factor, obtained from the skin, may be necessary for the larvae to grow satisfactorily and to complete the full parasitic cycle in vitro.

  2. Influence of the gestational stage on the clinical course, lesional development and parasite distribution in experimental ovine neosporosis.

    Science.gov (United States)

    Arranz-Solís, David; Benavides, Julio; Regidor-Cerrillo, Javier; Fuertes, Miguel; Ferre, Ignacio; Ferreras, Maria Del Carmen; Collantes-Fernández, Esther; Hemphill, Andrew; Pérez, Valentín; Ortega-Mora, Luis Miguel

    2015-03-03

    Neospora caninum is considered one of the main causes of abortion in cattle, yet recent studies have also emphasised its relevance as an abortifacient in small ruminants. In order to gain deeper insight into the pathogenesis of ovine neosporosis, pregnant ewes were intravenously inoculated with 10(6) tachyzoites of the Nc-Spain7 isolate at days 40, 90 or 120 of gestation. Infection during the first term resulted in the death of all foetuses between days 19 and 21 post-infection, showing mainly necrotic lesions in foetal liver and the highest parasite DNA detection and burden in both placenta and foetal viscera. After infection at day 90, foetal death was also detected in all ewes, although later (34-48 days post-infection). In this group, lesions were mainly inflammatory. Foetal livers showed the lowest frequency of lesions, as well as the lowest parasite detection and burden. All ewes infected at day 120 delivered viable lambs, although 3 out of 9 showed weakness and recumbency. Neospora DNA was detected in all lambs but one, and parasite burden was similar to that observed in day 90 group. Lesions in this group showed more conspicuous infiltration of inflammatory cells and higher frequency in foetal brain and muscle when compared to both previous groups. These results highlight the crucial role that the stage of gestation plays on the course of ovine neosporosis, similar to that reported in bovine neosporosis, and open the doors to consider sheep as a valid model for exogenous transplacental transmission for ruminant neosporosis.

  3. Stage-Specific Transcriptome and Proteome Analyses of the Filarial Parasite Onchocerca volvulus and Its Wolbachia Endosymbiont

    Science.gov (United States)

    Bennuru, Sasisekhar; Cotton, James A.; Ribeiro, Jose M. C.; Grote, Alexandra; Harsha, Bhavana; Holroyd, Nancy; Mhashilkar, Amruta; Molina, Douglas M.; Randall, Arlo Z.; Shandling, Adam D.; Unnasch, Thomas R.; Ghedin, Elodie; Berriman, Matthew

    2016-01-01

    ABSTRACT Onchocerciasis (river blindness) is a neglected tropical disease that has been successfully targeted by mass drug treatment programs in the Americas and small parts of Africa. Achieving the long-term goal of elimination of onchocerciasis, however, requires additional tools, including drugs, vaccines, and biomarkers of infection. Here, we describe the transcriptome and proteome profiles of the major vector and the human host stages (L1, L2, L3, molting L3, L4, adult male, and adult female) of Onchocerca volvulus along with the proteome of each parasitic stage and of its Wolbachia endosymbiont (wOv). In so doing, we have identified stage-specific pathways important to the parasite’s adaptation to its human host during its early development. Further, we generated a protein array that, when screened with well-characterized human samples, identified novel diagnostic biomarkers of O. volvulus infection and new potential vaccine candidates. This immunomic approach not only demonstrates the power of this postgenomic discovery platform but also provides additional tools for onchocerciasis control programs. PMID:27881553

  4. Parasite distribution and early-stage encephalitis in Sarcocystis calchasi infections in domestic pigeons (Columba livia f. domestica).

    Science.gov (United States)

    Maier, Kristina; Olias, Philipp; Enderlein, Dirk; Klopfleisch, Robert; Mayr, Sylvia L; Gruber, Achim D; Lierz, Michael

    2015-01-01

    Pigeon protozoal encephalitis is a biphasic, neurologic disease of domestic pigeons (Columba livia f. domestica) caused by the apicomplexan parasite Sarcocystis calchasi. Despite severe inflammatory lesions of the brain, associated parasitic stages have only rarely been identified and the cause of the lesions is still unclear. The aim of this study was therefore to characterize the tissue distribution of S. calchasi within pigeons between the two clinical phases and during the occurrence of neurological signs. For this purpose, a semi-quantitative real-time polymerase chain reaction (PCR) was developed. Forty-five domestic pigeons were infected orally (via a cannula into the crop) with 200 S. calchasi sporocysts and euthanized in groups of three pigeons at intervals of 2 to 10 days over a period of 61 days. Tissue samples including brain and skeletal muscle were examined by histology, immunohistochemistry, and PCR. Schizonts were detected in the liver of one pigeon at day 10 post infection. A mild encephalitis was detected at day 20 post infection, around 4 weeks before the onset of neurological signs. At the same time, immature sarcocysts were present in the skeletal muscle. In seven pigeons a few sarcocysts were identified in the brain, but not associated with any lesion. These results suggest that the encephalitis is induced at a very early stage of the S. calchasi lifecycle rather than in the chronic phase of pigeon protozoal encephalitis. Despite the increasing severity of lesions in the central nervous system, the amount of sarcocysts did not increase. This supports the hypothesis of a delayed-type hypersensitivity response as the cause of the encephalitis. The study also demonstrated that S. calchasi DNA is detectable in tissues negative by histological methods, indicating a higher sensitivity of the real-time PCR.

  5. Western blot diagnosis of vivax malaria with multiple stage-specific antigens of the parasite

    OpenAIRE

    Son, Eui-Sun; Kim, Tong Soo; Nam, Ho-Woo

    2001-01-01

    Western blot analysis was performed to diagnose vivax malaria using stage-specific recombinant antigens. Genomic DNA from the whole blood of a malaria patient was used as templates to amplify the coding regions for the antigenic domains of circumsporozoite protein (CSP-1), merozoite surface protein (MSP-1), apical merozoite antigen (AMA-1), serine repeat antigen (SERA), and exported antigen (EXP-1) of Plasmodium vivax. Each amplified DNA fragment was inserted into a pGEX-4T plasmid to induce ...

  6. Effects of temperature and host stage on the parasitization rate and offspring sex ratio of Aenasius bambawalei Hayat in Phenacoccus solenopsis Tinsley

    Science.gov (United States)

    Zhang, Juan; Xia, Tianfeng

    2016-01-01

    Temperature and host stage are important factors that determine the successful development of parasitoids. Aenasius bambawalei Hayat (Hymenoptera: Encyrtidae) is a primary parasitoid of the newly invasive mealybug, Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae). The effects of temperature on the parasitic characteristics of A. bambawalei have seldom been investigated. In the study, we explored the effects of temperature, exposure time, and host stage on the parasitization rate and offspring sex ratio (female to male) of A. bambawalei under laboratory conditions. The laboratory results showed that the successful parasitization rate of A. bambawalei increased with higher temperatures and older host stages. When the parasitoids were exposed to 36 °C for 24 h, the parasitization rate of female adults (52%) was nearly two times that of 3rd instar nymphs. Additionally, heat stress duration and host stage resulted in an increase in the offspring sex ratio of A. bambawalei. When A. bambawalei was exposed to 36 °C for 24 h, the offspring sex ratio increased dramatically to 81.78% compared with those exposed for 12 h, and it increased to 45.34% compared with those exposed for 16 h. The offspring sex ratio was clearly higher when the host stage was an adult female mealybug Our findings provide important guidance for the mass rearing and field releases of A. bambawalei for the management of P. solenopsis in the future. PMID:26788437

  7. Optogenetic Modulation of an Adenylate Cyclase in Toxoplasma gondii Demonstrates a Requirement of the Parasite cAMP for Host-Cell Invasion and Stage Differentiation*

    Science.gov (United States)

    Hartmann, Anne; Arroyo-Olarte, Ruben Dario; Imkeller, Katharina; Hegemann, Peter; Lucius, Richard; Gupta, Nishith

    2013-01-01

    Successful infection and transmission of the obligate intracellular parasite Toxoplasma gondii depends on its ability to switch between fast-replicating tachyzoite (acute) and quiescent bradyzoite (chronic) stages. Induction of cAMP in the parasitized host cells has been proposed to influence parasite differentiation. It is not known whether the parasite or host cAMP is required to drive this phenomenon. Other putative roles of cAMP for the parasite biology also remain to be identified. Unequivocal research on cAMP-mediated signaling in such intertwined systems also requires a method for an efficient and spatial control of the cAMP pool in the pathogen or in the enclosing host cell. We have resolved these critical concerns by expressing a photoactivated adenylate cyclase that allows light-sensitive control of the parasite or host-cell cAMP. Using this method, we reveal multiple roles of the parasite-derived cAMP in host-cell invasion, stage-specific expression, and asexual differentiation. An optogenetic method provides many desired advantages such as: (i) rapid, transient, and efficient cAMP induction in extracellular/intracellular and acute/chronic stages; (ii) circumvention of the difficulties often faced in cultures, i.e. poor diffusion, premature degradation, steady activation, and/or pleiotropic effects of cAMP agonists and antagonists; (iii) genetically encoded enzyme expression, thus inheritable to the cell progeny; and (iv) conditional and spatiotemporal control of cAMP levels. Importantly, a successful optogenetic application in Toxoplasma also illustrates its wider utility to study cAMP-mediated signaling in other genetically amenable two-organism systems such as in symbiotic and pathogen-host models. PMID:23525100

  8. Filaria-induced immune evasion: suppression by the infective stage of Brugia malayi at the earliest host-parasite interface.

    Science.gov (United States)

    Semnani, Roshanak Tolouei; Law, Melissa; Kubofcik, Joseph; Nutman, Thomas B

    2004-05-15

    To assess the physiologic interactions between the infective stage of Brugia malayi--one of the extracellular parasites responsible for lymphatic filariasis in humans--and the APC with which they come in contact during their development and routes of travel, we have investigated the interaction between the infective stage (L3) of B. malayi and human Langerhans cells (LC) in the skin. Our data indicate that live L3 result in increased migration of LC from the epidermis without affecting the viability of these cells and up-regulation of the IL-18 cytokine involved in LC migration. Live L3 also result in down-regulation of MHC class I and II on the LC cell surface. Additionally, microarray data indicate that live L3 significantly down-regulated expression of IL-8 as well as of multiple genes involved in Ag presentation, reducing the capacity of LC to induce CD4(+) T cells in allogeneic MLR, and thus resulting in a decreased ability of LC to promote CD4(+) T cell proliferation and production of IFN-gamma and IL-10. These data suggest that L3 exert a down-regulatory response in epidermal LC that leads to a diminished capacity of these cells to activate CD4(+) T cells.

  9. Distinct patterns of blood-stage parasite antigens detected by plasma IgG subclasses from individuals with different level of exposure to Plasmodium falciparum infections

    DEFF Research Database (Denmark)

    Olesen, Cathrine Holm; Brahimi, Karima; Vandahl, Brian;

    2010-01-01

    ABSTRACT: BACKGROUND: In endemic regions naturally acquired immunity against Plasmodium falciparum develops as a function of age and exposure to parasite infections and is known to be mediated by IgG. The targets of protective antibodies remain to be fully defined. Several immunoepidemiological...... then gradually develop into protective response dominated by cytophilic IgG1 and IgG3 antibodies. METHODS: Naturally occurring IgG antibodies against P. falciparum blood-stage antigens were analysed from plasma samples collected from four groups of individuals differing in age and level of exposure to P....... falciparum infections. Western Blot profiling of blood-stage parasite antigens displaying reactivity with individual plasma samples in terms of their subclass specificities was conducted. Parasite antigens detected by IgG were grouped based on their apparent molecular sizes resolved by SDS-PAGE as high...

  10. Western blot diagnosis of vivax malaria with multiple stage-specific antigens of the parasite.

    Science.gov (United States)

    Son, E S; Kim, T S; Nam, H W

    2001-06-01

    Western blot analysis was performed to diagnose vivax malaria using stage-specific recombinant antigens. Genomic DNA from the whole blood of a malaria patient was used as templates to amplify the coding regions for the antigenic domains of circumsporozoite protein (CSP-1), merozoite surface protein (MSP-1), apical merozoite antigen (AMA-1), serine repeat antigen (SERA), and exported antigen (EXP-1) of Plasmodium vivax. Each amplified DNA fragment was inserted into a pGEX-4T plasmid to induce the expression of GST fusion protein in Escherichia coli by IPTG. The bacterial cell extracts were separated on 10% SDS-PAGE followed by western blot analysis with patient sera which was confirmed by blood smear examination. When applied with patient sera, 147 (91.9%) out of 160 vivax malaria, 12 (92.3%) out of 13 falciparum malaria, and all 9 vivax/falciparum mixed malaria reacted with at least one antigen, while no reactions occurred with 20 normal uninfected sera. In the case of vivax malaria, CSP-1 reacted with 128 (80.0%) sera, MSP-1 with 102 (63.8%), AMA-1 with 128 (80.0%), SERA with 115 (71.9%), and EXP-1 with 89 (55.6%), respectively. We obtained higher detection rates when using 5 antigens (91.9%) rather than using each antigen solely (55.6-80%), a combination of 2 (76.3-87.5%), 3 (85.6-90.6%), or 4 antigens (89.4-91.3%). This method can be applied to serological diagnosis, mass screening in endemic regions, or safety test in transfusion of prevalent vivax malaria.

  11. Trophic relationships between the parasitic plant species Phelipanche ramosa (L. and different hosts depending on host phenological stage and host growth rate

    Directory of Open Access Journals (Sweden)

    Delphine Moreau

    2016-07-01

    Full Text Available Phelipanche ramosa (L. Pomel (branched broomrape is a holoparasitic plant that reproduces on crops and also on weeds, which contributes to increase the parasite seed bank in fields. This parasite extracts all its nutrients at the host's expense so that host-parasite trophic relationships are crucial to determine host and parasite growth. This study quantified the intensity with which P. ramosa draws assimilates from its host and analyzed whether it varied with host species, host phenological stage and host growth rate. A greenhouse experiment was conducted on three host species: the crop species Brassica napus (L. (oilseed rape and two weed species, Capsella bursa-pastoris (L. Medik. and Geranium dissectum (L.. Plants were grown with or without P. ramosa and under three light levels to modulate host growth rate. The proportion of host biomass loss due to parasitism by P. ramosa differed between host species (at host fructification, biomass loss ranged from 34% to 84%. Brassica napus and C. bursa-pastoris displayed a similar response to P. ramosa, probably because they belong to the same botanical family. The sensitivity to P. ramosa in each host species could be related to the precocity of P. ramosa development on them. Host compartments could be ranked as a function of their sensitivity to parasitism, with the reproductive compartment being the most severely affected, followed by stems and roots. The proportion of biomass allocated to leaves was not reduced by parasitism. The proportion of pathosystem biomass allocated to the parasite depended on host species. It generally increased with host stage progression but was constant across light induced-host growth rate, showing that P. ramosa adapts its growth to host biomass production. The rank order of host species in terms of sink strength differed from that in terms of host sensitivity. Finally, for B. napus, the biomass of individual parasite shoots decreased with increasing their number per

  12. Genomic-bioinformatic analysis of transcripts enriched in the third-stage larva of the parasitic nematode Ascaris suum.

    Directory of Open Access Journals (Sweden)

    Cui-Qin Huang

    Full Text Available Differential transcription in Ascaris suum was investigated using a genomic-bioinformatic approach. A cDNA archive enriched for molecules in the infective third-stage larva (L3 of A. suum was constructed by suppressive-subtractive hybridization (SSH, and a subset of cDNAs from 3075 clones subjected to microarray analysis using cDNA probes derived from RNA from different developmental stages of A. suum. The cDNAs (n = 498 shown by microarray analysis to be enriched in the L3 were sequenced and subjected to bioinformatic analyses using a semi-automated pipeline (ESTExplorer. Using gene ontology (GO, 235 of these molecules were assigned to 'biological process' (n = 68, 'cellular component' (n = 50, or 'molecular function' (n = 117. Of the 91 clusters assembled, 56 molecules (61.5% had homologues/orthologues in the free-living nematodes Caenorhabditis elegans and C. briggsae and/or other organisms, whereas 35 (38.5% had no significant similarity to any sequences available in current gene databases. Transcripts encoding protein kinases, protein phosphatases (and their precursors, and enolases were abundantly represented in the L3 of A. suum, as were molecules involved in cellular processes, such as ubiquitination and proteasome function, gene transcription, protein-protein interactions, and function. In silico analyses inferred the C. elegans orthologues/homologues (n = 50 to be involved in apoptosis and insulin signaling (2%, ATP synthesis (2%, carbon metabolism (6%, fatty acid biosynthesis (2%, gap junction (2%, glucose metabolism (6%, or porphyrin metabolism (2%, although 34 (68% of them could not be mapped to a specific metabolic pathway. Small numbers of these 50 molecules were predicted to be secreted (10%, anchored (2%, and/or transmembrane (12% proteins. Functionally, 17 (34% of them were predicted to be associated with (non-wild-type RNAi phenotypes in C. elegans, the majority being embryonic lethality (Emb (13 types; 58.8%, larval arrest

  13. Ultrastructure of developmental stages of Hemolivia mariae (Apicomplexa: Haemogregarinidae), natural parasite of the Australian sleepy lizard, in experimentally infected deviant hosts.

    Science.gov (United States)

    Paperna, I; Smallridge, C J

    2001-01-01

    Mabuya vitatta (Olivier) (Scincidae) and Agama stellio (L.) (Agamidae) were infected with Hemolivia mariae Smallridge et Paperna, 1997 by ingestion of tick viscera from Amblyomma limbatum Neumann, fed as nymphs on naturally infected Australian sleepy lizards, Tiliqua rugosa Gray. The unnatural infection apparently interfered with the developmental schedule of the parasites. Transmission electron microscopic images of merogonic stages were obtained, as well as images of early developing gametocytes. Tissue and intraerythrocytic meronts were bound by a hardened wall. Intraerythrocytic gametocytes were lodged in a parasitophorous vacuole, which was filled with granular material, and were bound by a two-membrane wall. Small and large osmiophilic bodies were located in a sub-pellicular position. With differentiation, the wall membranes tightened with the parasitophorous vacuole wall, and the osmiophilic bodies disappeared. The outer parasite membrane consolidated into a thick encasing with distinct sutures. Late infection in A. stellio comprised gametocytes only.

  14. Regulation of gene expression in the protozoan parasite Entamoeba invadens: identification of core promoter elements and promoters with stage-specific expression patterns.

    Science.gov (United States)

    Manna, Dipak; Ehrenkaufer, Gretchen M; Singh, Upinder

    2014-10-01

    Developmental switching between life-cycle stages is a common feature among many pathogenic organisms. Entamoeba histolytica is an important human pathogen and is a leading parasitic cause of death globally. During its life cycle, Entamoeba converts between cysts (essential for disease transmission) and trophozoites (responsible for tissue invasion). Despite being central to its biology, the triggers that are involved in the developmental pathways of this parasite are not well understood. In order to define the transcriptional network associated with stage conversion we used Entamoeba invadens which serves as a model system for Entamoeba developmental biology, and performed RNA sequencing at different developmental time points. In this study RNA-Seq data was utilised to define basal transcriptional control elements as well as to identify promoters which regulate stage-specific gene expression patterns. We discovered that the 5' and 3' untranslated regions of E. invadens genes are short, a median of 20 nucleotides (nt) and 26 nt respectively. Bioinformatics analysis of DNA sequences proximate to the start and stop codons identified two conserved motifs: (i) E. invadens Core Promoter Motif - GAAC-Like (EiCPM-GL) (GAACTACAAA), and (ii) E. invadens 3'-U-Rich Motif (Ei3'-URM) (TTTGTT) in the 5' and 3' flanking regions, respectively. Electrophoretic mobility shift assays demonstrated that both motifs specifically bind nuclear protein(s) from E. invadens trophozoites. Additionally, we identified select genes with stage-specific expression patterns and analysed the ability of each gene promoter to drive a luciferase reporter gene during the developmental cycle. This approach confirmed three trophozoite-specific, four encystation-specific and two excystation-specific promoters. This work lays the framework for use of stage-specific promoters to express proteins of interest in a particular life-cycle stage, adding to the molecular toolbox for genetic manipulation of E

  15. In vitro activity of neem (Azadirachta indica) and cassava (Manihot esculenta) on three pre-parasitic stages of susceptible and resistant strains of Teladorsagia (Ostertagia) circumcincta.

    Science.gov (United States)

    Al-Rofaai, A; Rahman, W A; Sulaiman, S F; Yahaya, Z S

    2012-08-13

    Anthelmintic resistance of gastrointestinal nematodes is considered as one of the main limiting factors causing significant economic losses to the small ruminant industry. The anthelmintic properties of some plants are among the suggested alternative solutions to control these parasitic worms. The present study investigated the anthelmintic activity of neem (Azadirachta indica) and cassava (Manihot esculenta) leaf extracts against the susceptible and resistant strains of one of the most important nematodes in small ruminants, Teladorsagia (Ostertagia) circumcincta. Three different in vitro tests: egg hatch test, larval development assay, and larval paralysis assay were used to determine the efficiency of neem and cassava extracts on three pre-parasitic stages of T. circumcincta. The LC(50) was determined for the most potent extract in each plant as well as the phytochemical tests, total tannin quantification and cytotoxicity on peripheral blood mononuclear cells of goats. The results revealed a high anthelmintic activity of neem methanol extract (NME) and cassava methanol extract (CME) on both strains of T. circumcincta without significant differences between the strains. The first stage larvae were more sensitive with the lowest LC(50) at 7.15 mg/ml and 10.72 mg/ml for NME and CME, respectively, compared with 44.20mg/ml and 56.68 mg/ml on eggs and 24.91 mg/ml and 71.96 mg/ml on infective stage larvae.

  16. A Novel Trypanosoma cruzi Protein Associated to the Flagellar Pocket of Replicative Stages and Involved in Parasite Growth.

    Science.gov (United States)

    Durante, Ignacio M; Cámara, María de Los Milagros; Buscaglia, Carlos A

    2015-01-01

    The flagellar pocket constitutes an active and strategic site in the body of trypanosomatids (i.e. parasitic protozoa that cause important human and/or livestock diseases), which participates in several important processes such as cell polarity, morphogenesis and replication. Most importantly, the flagellar pocket is the unique site of surface protein export and nutrient uptake in trypanosomatids, and thus constitutes a key portal for the interaction with the host. In this work, we identified and characterized a novel Trypanosoma cruzi protein, termed TCLP 1, that accumulates at the flagellar pocket area of parasite replicative forms, as revealed by biochemical, immuno-cytochemistry and electron microscopy techniques. Different in silico analyses revealed that TCLP 1 is the founding member of a family of chimeric molecules restricted to trypanosomatids bearing, in addition to eukaryotic ubiquitin-like and protein-protein interacting domains, a motif displaying significant structural homology to bacterial multi-cargo chaperones involved in the secretion of virulence factors. Using the fidelity of an homologous expression system we confirmed TCLP 1 sub-cellular distribution and showed that TCLP 1-over-expressing parasites display impaired survival and accelerated progression to late stationary phase under starvation conditions. The reduced endocytic capacity of TCLP 1-over-expressors likely underlies (at least in part) this growth phenotype. TCLP 1 is involved in the uptake of extracellular macromolecules required for nutrition and hence in T. cruzi growth. Due to the bacterial origin, sub-cellular distribution and putative function(s), we propose TCLP 1 and related orthologs in trypanosomatids as appealing therapeutic targets for intervention against these health-threatening parasites.

  17. A Novel Trypanosoma cruzi Protein Associated to the Flagellar Pocket of Replicative Stages and Involved in Parasite Growth.

    Directory of Open Access Journals (Sweden)

    Ignacio M Durante

    Full Text Available The flagellar pocket constitutes an active and strategic site in the body of trypanosomatids (i.e. parasitic protozoa that cause important human and/or livestock diseases, which participates in several important processes such as cell polarity, morphogenesis and replication. Most importantly, the flagellar pocket is the unique site of surface protein export and nutrient uptake in trypanosomatids, and thus constitutes a key portal for the interaction with the host. In this work, we identified and characterized a novel Trypanosoma cruzi protein, termed TCLP 1, that accumulates at the flagellar pocket area of parasite replicative forms, as revealed by biochemical, immuno-cytochemistry and electron microscopy techniques. Different in silico analyses revealed that TCLP 1 is the founding member of a family of chimeric molecules restricted to trypanosomatids bearing, in addition to eukaryotic ubiquitin-like and protein-protein interacting domains, a motif displaying significant structural homology to bacterial multi-cargo chaperones involved in the secretion of virulence factors. Using the fidelity of an homologous expression system we confirmed TCLP 1 sub-cellular distribution and showed that TCLP 1-over-expressing parasites display impaired survival and accelerated progression to late stationary phase under starvation conditions. The reduced endocytic capacity of TCLP 1-over-expressors likely underlies (at least in part this growth phenotype. TCLP 1 is involved in the uptake of extracellular macromolecules required for nutrition and hence in T. cruzi growth. Due to the bacterial origin, sub-cellular distribution and putative function(s, we propose TCLP 1 and related orthologs in trypanosomatids as appealing therapeutic targets for intervention against these health-threatening parasites.

  18. The genome and life-stage specific transcriptomes of Globodera pallida elucidate key aspects of plant parasitism by a cyst nematode

    KAUST Repository

    Cotton, James A

    2014-03-03

    Background: Globodera pallida is a devastating pathogen of potato crops, making it one of the most economically important plant parasitic nematodes. It is also an important model for the biology of cyst nematodes. Cyst nematodes and root-knot nematodes are the two most important plant parasitic nematode groups and together represent a global threat to food security. Results: We present the complete genome sequence of G. pallida, together with transcriptomic data from most of the nematode life cycle, particularly focusing on the life cycle stages involved in root invasion and establishment of the biotrophic feeding site. Despite the relatively close phylogenetic relationship with root-knot nematodes, we describe a very different gene family content between the two groups and in particular extensive differences in the repertoire of effectors, including an enormous expansion of the SPRY domain protein family in G. pallida, which includes the SPRYSEC family of effectors. This highlights the distinct biology of cyst nematodes compared to the root-knot nematodes that were, until now, the only sedentary plant parasitic nematodes for which genome information was available. We also present in-depth descriptions of the repertoires of other genes likely to be important in understanding the unique biology of cyst nematodes and of potential drug targets and other targets for their control. Conclusions: The data and analyses we present will be central in exploiting post-genomic approaches in the development of much-needed novel strategies for the control of G. pallida and related pathogens. 2014 Cotton et al.; licensee BioMed Central Ltd.

  19. Dual stage synthesis and crucial role of cytoadherence-linked asexual gene 9 in the surface expression of malaria parasite var proteins

    DEFF Research Database (Denmark)

    Goel, Suchi; Valiyaveettil, Manojkumar; Achur, Rajeshwara N;

    2010-01-01

    ring and late trophozoite stages. Localization studies revealed that a substantial level of CLAG9 is located mainly at or in close proximity of the IRBC membrane in association with VAR2CSA. Upon treatment of IRBCs with trypsin, a significant amount of CLAG9 (˜150 kDa) was converted into ˜142-k......Da polypeptide. Together these data demonstrate that a considerable amount of CLAG9 is embedded in the IRBC membrane such that at least a portion of the polypeptide at either N or C terminus is exposed on the cell surface. In parasites lacking CLAG9, VAR2CSA failed to express on the IRBC surface and was located...... within the parasite. Based on these findings, we propose that CLAG9 plays a critical role in the trafficking of PfEMP1s onto the IRBC surface. These results have important implications for the development of therapeutics for cerebral, placental, and other cytoadherence-associated malaria illnesses....

  20. Spotted fever group rickettsiae detected in immature stages of ticks parasitizing on Iberian endemic lizard Lacerta schreiberi Bedriaga, 1878.

    Science.gov (United States)

    Kubelová, Michaela; Papoušek, Ivo; Bělohlávek, Tomáš; de Bellocq, Joëlle Goüy; Baird, Stuart J E; Široký, Pavel

    2015-09-01

    Spotted fever rickettsioses are tick-borne diseases of growing public health concern. The prevalence of rickettsia-infected ticks and their ability to parasitize humans significantly influence the risk of human infection. Altogether 466 Ixodes ricinus ticks (428 nymphs and 38 larvae) collected from 73 Lacerta schreiberi lizards were examined by PCR targeting the citrate synthetase gene gltA for the presence of Rickettsia spp. Rickettsial DNA was detected in 47% of nymphs and 31.6% of larvae. They were subsequently subjected to a second PCR reaction using primers derived from the outer membrane protein rOmpA encoding gene (ompA) to detect spotted fever group rickettsiae (SFG). This analysis shows that 41.4% of nymphs and 7.9% of larvae collected from the lizards contain DNA of SFG rickettsiae. Sequencing of 43 randomly selected samples revealed two different haplotypes, both closely related to R. monacensis (39 and 4 samples, respectively). The remaining ompA negative Rickettsia spp. samples were determined to be R. helvetica based on sequencing of ompB and gltA fragments. Our results indicate that the role of Iberian endemic lizard L. schreiberi and its ectoparasites in the ecology and epidemiology of zoonotic SFG rickettsioses may be appreciable.

  1. Computer algorithms to detect bloodstream infections.

    Science.gov (United States)

    Trick, William E; Zagorski, Brandon M; Tokars, Jerome I; Vernon, Michael O; Welbel, Sharon F; Wisniewski, Mary F; Richards, Chesley; Weinstein, Robert A

    2004-09-01

    We compared manual and computer-assisted bloodstream infection surveillance for adult inpatients at two hospitals. We identified hospital-acquired, primary, central-venous catheter (CVC)-associated bloodstream infections by using five methods: retrospective, manual record review by investigators; prospective, manual review by infection control professionals; positive blood culture plus manual CVC determination; computer algorithms; and computer algorithms and manual CVC determination. We calculated sensitivity, specificity, predictive values, plus the kappa statistic (kappa) between investigator review and other methods, and we correlated infection rates for seven units. The kappa value was 0.37 for infection control review, 0.48 for positive blood culture plus manual CVC determination, 0.49 for computer algorithm, and 0.73 for computer algorithm plus manual CVC determination. Unit-specific infection rates, per 1,000 patient days, were 1.0-12.5 by investigator review and 1.4-10.2 by computer algorithm (correlation r = 0.91, p = 0.004). Automated bloodstream infection surveillance with electronic data is an accurate alternative to surveillance with manually collected data.

  2. Parasitic Diseases

    Science.gov (United States)

    ... water, a bug bite, or sexual contact. Some parasitic diseases are easily treated and some are not. Parasites ... can be seen with the naked eye. Some parasitic diseases occur in the United States. Contaminated water supplies ...

  3. Profiling the anti-protozoal activity of anti-cancer HDAC inhibitors against Plasmodium and Trypanosoma parasites

    Directory of Open Access Journals (Sweden)

    Jessica A. Engel

    2015-12-01

    Full Text Available Histone deacetylase (HDAC enzymes work together with histone acetyltransferases (HATs to reversibly acetylate both histone and non-histone proteins. As a result, these enzymes are involved in regulating chromatin structure and gene expression as well as other important cellular processes. HDACs are validated drug targets for some types of cancer, with four HDAC inhibitors clinically approved. However, they are also showing promise as novel drug targets for other indications, including malaria and other parasitic diseases. In this study the in vitro activity of four anti-cancer HDAC inhibitors was examined against parasites that cause malaria and trypanosomiasis. Three of these inhibitors, suberoylanilide hydroxamic acid (SAHA; vorinostat®, romidepsin (Istodax® and belinostat (Beleodaq®, are clinically approved for the treatment of T-cell lymphoma, while the fourth, panobinostat, has recently been approved for combination therapy use in certain patients with multiple myeloma. All HDAC inhibitors were found to inhibit the growth of asexual-stage Plasmodium falciparum malaria parasites in the nanomolar range (IC50 10–200 nM, while only romidepsin was active at sub-μM concentrations against bloodstream form Trypanosoma brucei brucei parasites (IC50 35 nM. The compounds were found to have some selectivity for malaria parasites compared with mammalian cells, but were not selective for trypanosome parasites versus mammalian cells. All compounds caused hyperacetylation of histone and non-histone proteins in P. falciparum asexual stage parasites and inhibited deacetylase activity in P. falciparum nuclear extracts in addition to recombinant PfHDAC1 activity. P. falciparum histone hyperacetylation data indicate that HDAC inhibitors may differentially affect the acetylation profiles of histone H3 and H4.

  4. Profiling the anti-protozoal activity of anti-cancer HDAC inhibitors against Plasmodium and Trypanosoma parasites.

    Science.gov (United States)

    Engel, Jessica A; Jones, Amy J; Avery, Vicky M; Sumanadasa, Subathdrage D M; Ng, Susanna S; Fairlie, David P; Adams, Tina S; Andrews, Katherine T

    2015-12-01

    Histone deacetylase (HDAC) enzymes work together with histone acetyltransferases (HATs) to reversibly acetylate both histone and non-histone proteins. As a result, these enzymes are involved in regulating chromatin structure and gene expression as well as other important cellular processes. HDACs are validated drug targets for some types of cancer, with four HDAC inhibitors clinically approved. However, they are also showing promise as novel drug targets for other indications, including malaria and other parasitic diseases. In this study the in vitro activity of four anti-cancer HDAC inhibitors was examined against parasites that cause malaria and trypanosomiasis. Three of these inhibitors, suberoylanilide hydroxamic acid (SAHA; vorinostat(®)), romidepsin (Istodax(®)) and belinostat (Beleodaq(®)), are clinically approved for the treatment of T-cell lymphoma, while the fourth, panobinostat, has recently been approved for combination therapy use in certain patients with multiple myeloma. All HDAC inhibitors were found to inhibit the growth of asexual-stage Plasmodium falciparum malaria parasites in the nanomolar range (IC50 10-200 nM), while only romidepsin was active at sub-μM concentrations against bloodstream form Trypanosoma brucei brucei parasites (IC50 35 nM). The compounds were found to have some selectivity for malaria parasites compared with mammalian cells, but were not selective for trypanosome parasites versus mammalian cells. All compounds caused hyperacetylation of histone and non-histone proteins in P. falciparum asexual stage parasites and inhibited deacetylase activity in P. falciparum nuclear extracts in addition to recombinant PfHDAC1 activity. P. falciparum histone hyperacetylation data indicate that HDAC inhibitors may differentially affect the acetylation profiles of histone H3 and H4.

  5. Differential Gel Electrophoresis (DIGE) Evaluation of Naphthoimidazoles Mode of Action: A Study in Trypanosoma cruzi Bloodstream Trypomastigotes

    Science.gov (United States)

    Brunoro, Giselle Villa Flor; Faça, Vitor Marcel; Caminha, Marcelle Almeida; Ferreira, André Teixeira da Silva; Trugilho, Monique; de Moura, Kelly Cristina Gallan; Perales, Jonas; Valente, Richard Hemmi; Menna-Barreto, Rubem Figueiredo Sadok

    2016-01-01

    Background The obligate intracellular protozoan Trypanosoma cruzi is the causative agent of Chagas disease, a neglected illness affecting millions of people in Latin America that recently entered non-endemic countries through immigration, as a consequence of globalization. The chemotherapy for this disease is based mainly on benznidazole and nifurtimox, which are very efficient nitroderivatives against the acute stage but present limited efficacy during the chronic phase. Our group has been studying the trypanocidal effects of naturally occurring quinones and their derivatives, and naphthoimidazoles derived from β-lapachone N1, N2 and N3 were the most active. To assess the molecular mechanisms of action of these compounds, we applied proteomic techniques to analyze treated bloodstream trypomastigotes, which are the clinically relevant stage of the parasite. Methodology/Principal Findings The approach consisted of quantification by 2D-DIGE followed by MALDI-TOF/TOF protein identification. A total of 61 differentially abundant protein spots were detected when comparing the control with each N1, N2 or N3 treatment, for 34 identified spots. Among the differentially abundant proteins were activated protein kinase C receptor, tubulin isoforms, asparagine synthetase, arginine kinase, elongation factor 2, enolase, guanine deaminase, heat shock proteins, hypothetical proteins, paraflagellar rod components, RAB GDP dissociation inhibitor, succinyl-CoA ligase, ATP synthase subunit B and methionine sulfoxide reductase. Conclusion/Significance Our results point to different modes of action for N1, N2 and N3, which indicate a great variety of metabolic pathways involved and allow for novel perspectives on the development of trypanocidal agents. PMID:27551855

  6. In vivo approaches reveal a key role for DCs in CD4+ T cell activation and parasite clearance during the acute phase of experimental blood-stage malaria.

    Directory of Open Access Journals (Sweden)

    Henrique Borges da Silva

    2015-02-01

    Full Text Available Dendritic cells (DCs are phagocytes that are highly specialized for antigen presentation. Heterogeneous populations of macrophages and DCs form a phagocyte network inside the red pulp (RP of the spleen, which is a major site for the control of blood-borne infections such as malaria. However, the dynamics of splenic DCs during Plasmodium infections are poorly understood, limiting our knowledge regarding their protective role in malaria. Here, we used in vivo experimental approaches that enabled us to deplete or visualize DCs in order to clarify these issues. To elucidate the roles of DCs and marginal zone macrophages in the protection against blood-stage malaria, we infected DTx (diphtheria toxin-treated C57BL/6.CD11c-DTR mice, as well as C57BL/6 mice treated with low doses of clodronate liposomes (ClLip, with Plasmodium chabaudi AS (Pc parasites. The first evidence suggesting that DCs could contribute directly to parasite clearance was an early effect of the DTx treatment, but not of the ClLip treatment, in parasitemia control. DCs were also required for CD4+ T cell responses during infection. The phagocytosis of infected red blood cells (iRBCs by splenic DCs was analyzed by confocal intravital microscopy, as well as by flow cytometry and immunofluorescence, at three distinct phases of Pc malaria: at the first encounter, at pre-crisis concomitant with parasitemia growth and at crisis when the parasitemia decline coincides with spleen closure. In vivo and ex vivo imaging of the spleen revealed that DCs actively phagocytize iRBCs and interact with CD4+ T cells both in T cell-rich areas and in the RP. Subcapsular RP DCs were highly efficient in the recognition and capture of iRBCs during pre-crisis, while complete DC maturation was only achieved during crisis. These findings indicate that, beyond their classical role in antigen presentation, DCs also contribute to the direct elimination of iRBCs during acute Plasmodium infection.

  7. In Vivo Approaches Reveal a Key Role for DCs in CD4+ T Cell Activation and Parasite Clearance during the Acute Phase of Experimental Blood-Stage Malaria

    Science.gov (United States)

    Borges da Silva, Henrique; Fonseca, Raíssa; Cassado, Alexandra dos Anjos; Machado de Salles, Érika; de Menezes, Maria Nogueira; Langhorne, Jean; Perez, Katia Regina; Cuccovia, Iolanda Midea; Ryffel, Bernhard; Barreto, Vasco M.; Marinho, Cláudio Romero Farias; Boscardin, Silvia Beatriz; Álvarez, José Maria; D’Império-Lima, Maria Regina; Tadokoro, Carlos Eduardo

    2015-01-01

    Dendritic cells (DCs) are phagocytes that are highly specialized for antigen presentation. Heterogeneous populations of macrophages and DCs form a phagocyte network inside the red pulp (RP) of the spleen, which is a major site for the control of blood-borne infections such as malaria. However, the dynamics of splenic DCs during Plasmodium infections are poorly understood, limiting our knowledge regarding their protective role in malaria. Here, we used in vivo experimental approaches that enabled us to deplete or visualize DCs in order to clarify these issues. To elucidate the roles of DCs and marginal zone macrophages in the protection against blood-stage malaria, we infected DTx (diphtheria toxin)-treated C57BL/6.CD11c-DTR mice, as well as C57BL/6 mice treated with low doses of clodronate liposomes (ClLip), with Plasmodium chabaudi AS (Pc) parasites. The first evidence suggesting that DCs could contribute directly to parasite clearance was an early effect of the DTx treatment, but not of the ClLip treatment, in parasitemia control. DCs were also required for CD4+ T cell responses during infection. The phagocytosis of infected red blood cells (iRBCs) by splenic DCs was analyzed by confocal intravital microscopy, as well as by flow cytometry and immunofluorescence, at three distinct phases of Pc malaria: at the first encounter, at pre-crisis concomitant with parasitemia growth and at crisis when the parasitemia decline coincides with spleen closure. In vivo and ex vivo imaging of the spleen revealed that DCs actively phagocytize iRBCs and interact with CD4+ T cells both in T cell-rich areas and in the RP. Subcapsular RP DCs were highly efficient in the recognition and capture of iRBCs during pre-crisis, while complete DC maturation was only achieved during crisis. These findings indicate that, beyond their classical role in antigen presentation, DCs also contribute to the direct elimination of iRBCs during acute Plasmodium infection. PMID:25658925

  8. In Vitro Assessment of Anthelmintic Activities of Rauwolfia vomitoria (Apocynaceae Stem Bark and Roots against Parasitic Stages of Schistosoma mansoni and Cytotoxic Study

    Directory of Open Access Journals (Sweden)

    Emmanuel Mouafo Tekwu

    2017-01-01

    Full Text Available Schistosomiasis is a Neglected Tropical Diseases which can be prevented with mass deworming chemotherapy. The reliance on a single drug, praziquantel, is a motivation for the search of novel antischistosomal compounds. This study investigated the anthelmintic activity of the stem bark and roots of Rauwolfia vomitoria against two life stages of Schistosoma mansoni. Both plant parts were found to be active against cercariae and adult worms. Within 2 h of exposure all cercariae were killed at a concentration range of 62.5–1000 µg/mL and 250–1000 µg/mL of R. vomitoria stem bark and roots, respectively. The LC50 values determined for the stem bark after 1 and 2 h of exposure were 207.4 and 61.18 µg/mL, respectively. All adult worms exposed to the concentrations range of 250–1000 µg/mL for both plant parts died within 120 h of incubation. The cytotoxic effects against HepG2 and Chang liver cell assessed using MTT assay method indicated that both plant extracts which were inhibitory to the proliferation of cell lines with IC50 > 20 μg/mL appear to be safe. This report provides the first evidence of in vitro schistosomicidal potency of R. vomitoria with the stem bark being moderately, but relatively, more active and selective against schistosome parasites. This suggests the presence of promising medicinal constituent(s.

  9. Bloodstream infections in HIV-infected patients.

    Science.gov (United States)

    Taramasso, Lucia; Tatarelli, Paola; Di Biagio, Antonio

    2016-04-02

    In the combined antiretroviral therapy era, HIV-infected patients remain a vulnerable population for the onset of bloodstream infections (BSI). Worldwide, nontyphoid salmonellae, Streptococcus pneumoniae, Escherichia coli, Staphylococcus aureus and coagulase negative staphylococci are the most important pathogens. Intravenous catheter associated infection, skin-soft tissue infection and endocarditis are associated with Gram-positive bacteremia. Among the Gram-negative, nontyphoidal Salmonella have been previously correlated to sepsis. Other causes of BSI in HIV-infected patients are mycobacteria and fungi. Mycobacteria constitute a major cause of BSI in limited resource countries. Fungal BSI are not frequent and among them Cryptococcus neoformans is the most common life-threatening infection. The degree of immunosuppression remains the key prognostic factor leading to the development of BSI.

  10. Parasites: Water

    Science.gov (United States)

    ... Tropical Diseases Laboratory Diagnostic Assistance [DPDx] Parasites Home Water Recommend on Facebook Tweet Share Compartir Parasites can live in natural water sources. When outdoors, treat your water before drinking ...

  11. Bloodstream Infections with Mycobacterium tuberculosis among HIV patients

    Centers for Disease Control (CDC) Podcasts

    2010-09-23

    This podcast looks at bloodstream infections with Mycobacterium tuberculosis and other pathogens among outpatients infected with HIV in Southeast Asia. CDC health scientist Kimberly McCarthy discusses the study and why bloodstream infections occur in HIV-infected populations.  Created: 9/23/2010 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 9/23/2010.

  12. When Prostate Cancer Circulates in the Bloodstream

    Directory of Open Access Journals (Sweden)

    Virginie Vlaeminck-Guillem

    2015-10-01

    Full Text Available Management of patients with prostate cancer is currently based on imperfect clinical, biological, radiological and pathological evaluation. Prostate cancer aggressiveness, including metastatic potential, remains difficult to accurately estimate. In an attempt to better adapt therapeutics to an individual (personalized medicine, reliable evaluation of the intrinsic molecular biology of the tumor is warranted, and particularly for all tumor sites (primary tumors and secondary sites at any time of the disease progression. As a consequence of their natural tendency to grow (passive invasion or as a consequence of an active blood vessel invasion by metastase-initiating cells, tumors shed various materials into the bloodstream. Major efforts have been recently made to develop powerful and accurate methods able to detect, quantify and/or analyze all these circulating tumor materials: circulating tumors cells, disseminating tumor cells, extracellular vesicles (including exosomes, nucleic acids, etc. The aim of this review is to summarize current knowledge about these circulating tumor materials and their applications in translational research.

  13. JVG9, a benzimidazole derivative, alters the surface and cytoskeleton of Trypanosoma cruzi bloodstream trypomastigotes

    Science.gov (United States)

    Díaz-Chiguer, Dylan L; Hernández-Luis, Francisco; Nogueda-Torres, Benjamín; Castillo, Rafael; Reynoso-Ducoing, Olivia; Hernández-Campos, Alicia; Ambrosio, Javier R

    2014-01-01

    Trypanosoma cruzi has a particular cytoskeleton that consists of a subpellicular network of microtubules and actin microfilaments. Therefore, it is an excellent target for the development of new anti-parasitic drugs. Benzimidazole 2-carbamates, a class of well-known broad-spectrum anthelmintics, have been shown to inhibit the in vitro growth of many protozoa. Therefore, to find efficient anti-trypanosomal (trypanocidal) drugs, our group has designed and synthesised several benzimidazole derivatives. One, named JVG9 (5-chloro-1H-benzimidazole-2-thiol), has been found to be effective against T. cruzi bloodstream trypomastigotes under both in vitro and in vivo conditions. Here, we present the in vitro effects observed by laser scanning confocal and scanning electron microscopy on T. cruzi trypomastigotes. Changes in the surface and the distribution of the cytoskeletal proteins are consistent with the hypothesis that the trypanocidal activity of JVG9 involves the cytoskeleton as a target. PMID:25317703

  14. Assessment of the anthelmintic activity of medicinal plant extracts and purified condensed tannins against free-living and parasitic stages of Oesophagostomum dentatum

    DEFF Research Database (Denmark)

    Williams, Andrew Richard; Ropiak, Honorata M.; Fryganas, Christos;

    2014-01-01

    BackgroundPlant-derived condensed tannins (CT) show promise as a complementary option to treat gastrointestinal helminth infections, thus reducing reliance on synthetic anthelmintic drugs. Most studies on the anthelmintic effects of CT have been conducted on parasites of ruminant livestock. Oesop...

  15. Parasitic Colitis

    Science.gov (United States)

    Hechenbleikner, Elizabeth M.; McQuade, Jennifer A.

    2015-01-01

    Over one billion people worldwide harbor intestinal parasites. Parasitic intestinal infections have a predilection for developing countries due to overcrowding and poor sanitation but are also found in developed nations, such as the United States, particularly in immigrants or in the setting of sporadic outbreaks. Although the majority of people are asymptomatically colonized with parasites, the clinical presentation can range from mild abdominal discomfort or diarrhea to serious complications, such as perforation or bleeding. Protozoa and helminths (worms) are the two major classes of intestinal parasites. Protozoal intestinal infections include cryptosporidiosis, cystoisosporiasis, cyclosporiasis, balantidiasis, giardiasis, amebiasis, and Chagas disease, while helminth infections include ascariasis, trichuriasis, strongyloidiasis, enterobiasis, and schistosomiasis. Intestinal parasites are predominantly small intestine pathogens but the large intestine is also frequently involved. This article highlights important aspects of parasitic infections of the colon including epidemiology, transmission, symptoms, and diagnostic methods as well as appropriate medical and surgical treatment. PMID:26034403

  16. Parasitic Colitis

    OpenAIRE

    Hechenbleikner, Elizabeth M.; McQuade, Jennifer A.

    2015-01-01

    Over one billion people worldwide harbor intestinal parasites. Parasitic intestinal infections have a predilection for developing countries due to overcrowding and poor sanitation but are also found in developed nations, such as the United States, particularly in immigrants or in the setting of sporadic outbreaks. Although the majority of people are asymptomatically colonized with parasites, the clinical presentation can range from mild abdominal discomfort or diarrhea to serious complication...

  17. Cat parasites

    OpenAIRE

    Vošická, Kristýna

    2016-01-01

    The content of this bachelor thesis describes a different variety of cat parasites. This study discovers that the most infected group of the outdoor cats due to the fact that these animals are not provided with the same care as the household pets. Those cats are usually not vaccinated, not rid of worms, no one takes care of their fur and so they tend to become a host for the parasites. There are several kinds of parasites which attack cats. Among those belong the skin parasites like a cat fle...

  18. Antigenic variation in trypanosomes: enhanced phenotypic variation in a eukaryotic parasite.

    Science.gov (United States)

    Barry, J D; McCulloch, R

    2001-01-01

    African trypanosomes are unicellular, eukaryotic parasites that live extracellularly in a wide range of mammals, including humans. They have a surface coat, composed of variant surface glycoprotein (VSG), which probably is essential and acts as a defence against general innate immunity and against acquired immunity directed at invariant surface antigens. In effect, the VSG is the only antigen that the host can target, and each trypanosome expresses only one VSG. To counter specific antibodies against the VSG, trypanosomes periodically undergo antigenic variation, the change to expression of another VSG. Antigenic variation belongs to the general survival strategy of enhanced phenotypic variation, where a subset of 'contingency' genes of viruses, bacteria and parasites hypermutate, allowing rapid adaptation to hostile or changing environments. A fundamental feature of antigenic variation is its link with the population dynamics of trypanosomes within the single host. Antigenic variants appear hierarchically within the mammalian host, with a mixture of order and randomness. The underlying mechanisms of this are not understood, although differential VSG gene activation may play a prominent part. Trypanosome antigenic variation has evolved a second arm in which the infective metacyclic population in the tsetse fly expresses a defined mixture of VSGs, although again each trypanosome expresses a single VSG. Differential VSG expression enhances transmission to new hosts, in the case of bloodstream trypanosomes by prolonging infection, and in the metacyclic population by generating diversity that may counter existing partial immunity in reservoir hosts. Antigenic variation employs a huge repertoire of VSG genes. Only one is expressed at a time in bloodstream trypanosomes, as a result of transcription being restricted to a set of about 20 bloodstream expression sites (BESs), which are at chromosome telomeres. Only one BES is active at a time, probably through

  19. Fish parasites

    DEFF Research Database (Denmark)

    This book contains 22 chapters on some of the most important parasitic diseases in wild and farmed fish. International experts give updated reviews and provide solutions to the problems......This book contains 22 chapters on some of the most important parasitic diseases in wild and farmed fish. International experts give updated reviews and provide solutions to the problems...

  20. Malaria infection of the mosquito Anopheles gambiae activates immune-responsive genes during critical transition stages of the parasite life cycle.

    Science.gov (United States)

    Dimopoulos, G; Seeley, D; Wolf, A; Kafatos, F C

    1998-01-01

    Six gene markers have been used to map the progress of the innate immune response of the mosquito vector, Anopheles gambiae, upon infection by the malaria parasite, Plasmodium berghei. In addition to four previously reported genes, the set of markers included NOS (a nitric oxide synthase gene fragment) and ICHIT (a gene encoding two putative chitin-binding domains separated by a polythreonine-rich mucin region). In the midgut, a robust response occurs at 24 h post-infection, at a time when malaria ookinetes traverse the midgut epithelium, but subsides at later phases of malaria development. In contrast, the salivary glands show no significant response at 24 h, but are activated in a prolonged late phase when sporozoites are released from the midgut into the haemolymph and invade the glands, between 10 and 25 days after blood feeding. Furthermore, the abdomen of the mosquito minus the midgut shows significant activation of immune markers, with complex kinetics that are distinct from those of both midgut and salivary glands. The parasite evidently elicits immune responses in multiple tissues of the mosquito, two of which are epithelia that the parasite must traverse to complete its development. The mechanisms of these responses and their significance for malaria transmission are discussed. PMID:9799221

  1. Genotypic analysis of Acinetobacter bloodstream infection isolates in a Turkish university hospital.

    NARCIS (Netherlands)

    Alp, E.; Esel, D.; Yildiz, O.; Voss, A.; Melchers, W.J.G.; Doganay, M.

    2006-01-01

    Acinetobacter baumannii is a significant pathogen of bloodstream infections in hospital patients that frequently causes single clone outbreaks. We aimed to evaluate the genetic relatedness and antimicrobial susceptibility of Acinetobacter spp. bloodstream isolates, in order to obtain insight into th

  2. Discovery and verification of osteopontin and Beta-2-microglobulin as promising markers for staging human African trypanosomiasis.

    Science.gov (United States)

    Tiberti, Natalia; Hainard, Alexandre; Lejon, Veerle; Robin, Xavier; Ngoyi, Dieudonné Mumba; Turck, Natacha; Matovu, Enock; Enyaru, John; Ndung'u, Joseph Mathu; Scherl, Alexander; Dayon, Loïc; Sanchez, Jean-Charles

    2010-12-01

    Human African trypanosomiasis, or sleeping sickness, is a parasitic disease endemic in sub-Saharan Africa, transmitted to humans through the bite of a tsetse fly. The first or hemolymphatic stage of the disease is associated with presence of parasites in the bloodstream, lymphatic system, and body tissues. If patients are left untreated, parasites cross the blood-brain barrier and invade the cerebrospinal fluid and the brain parenchyma, giving rise to the second or meningoencephalitic stage. Stage determination is a crucial step in guiding the choice of treatment, as drugs used for S2 are potentially dangerous. Current staging methods, based on counting white blood cells and demonstrating trypanosomes in cerebrospinal fluid, lack specificity and/or sensitivity. In the present study, we used several proteomic strategies to discover new markers with potential for staging human African trypanosomiasis. Cerebrospinal fluid (CSF) samples were collected from patients infected with Trypanosoma brucei gambiense in the Democratic Republic of Congo. The stage was determined following the guidelines of the national control program. The proteome of the samples was analyzed by two-dimensional gel electrophoresis (n = 9), and by sixplex tandem mass tag (TMT) isobaric labeling (n = 6) quantitative mass spectrometry. Overall, 73 proteins were overexpressed in patients presenting the second stage of the disease. Two of these, osteopontin and β-2-microglobulin, were confirmed to be potential markers for staging human African trypanosomiasis (HAT) by Western blot and ELISA. The two proteins significantly discriminated between S1 and S2 patients with high sensitivity (68% and 78%, respectively) for 100% specificity, and a combination of both improved the sensitivity to 91%. The levels of osteopontin and β-2-microglobulin in CSF of S2 patients (μg/ml range), as well as the fold increased concentration in S2 compared with S1 (3.8 and 5.5 respectively) make the two markers good

  3. Mechanisms of CNS invasion and damage by parasites.

    Science.gov (United States)

    Kristensson, Krister; Masocha, Willias; Bentivoglio, Marina

    2013-01-01

    Invasion of the central nervous system (CNS) is a most devastating complication of a parasitic infection. Several physical and immunological barriers provide obstacles to such an invasion. In this broad overview focus is given to the physical barriers to neuroinvasion of parasites provided at the portal of entry of the parasites, i.e., the skin and epithelial cells of the gastrointestinal tract, and between the blood and the brain parenchyma, i.e., the blood-brain barrier (BBB). A description is given on how human pathogenic parasites can reach the CNS via the bloodstream either as free-living or extracellular parasites, by embolization of eggs, or within red or white blood cells when adapted to intracellular life. Molecular mechanisms are discussed by which parasites can interact with or pass across the BBB. The possible targeting of the circumventricular organs by parasites, as well as the parasites' direct entry to the brain from the nasal cavity through the olfactory nerve pathway, is also highlighted. Finally, examples are given which illustrate different mechanisms by which parasites can cause dysfunction or damage in the CNS related to toxic effects of parasite-derived molecules or to immune responses to the infection.

  4. Parasites as prey in aquatic food webs: implications for predator infection and parasite transmission

    Science.gov (United States)

    Thieltges, David W.; Amundsen, Per-Arne; Hechinger, Ryan F.; Johnson, Pieter T.J.; Lafferty, Levin D.; Mouritsen, Kim N.; Preston, Daniel L.; Reise, Karsten; Zander, C. Dieter; Poulin, Robert

    2013-01-01

    While the recent inclusion of parasites into food-web studies has highlighted the role of parasites as consumers, there is accumulating evidence that parasites can also serve as prey for predators. Here we investigated empirical patterns of predation on parasites and their relationships with parasite transmission in eight topological food webs representing marine and freshwater ecosystems. Within each food web, we examined links in the typical predator–prey sub web as well as the predator–parasite sub web, i.e. the quadrant of the food web indicating which predators eat parasites. Most predator– parasite links represented ‘concomitant predation’ (consumption and death of a parasite along with the prey/host; 58–72%), followed by ‘trophic transmission’ (predator feeds on infected prey and becomes infected; 8–32%) and predation on free-living parasite life-cycle stages (4–30%). Parasite life-cycle stages had, on average, between 4.2 and 14.2 predators. Among the food webs, as predator richness increased, the number of links exploited by trophically transmitted parasites increased at about the same rate as did the number of links where these stages serve as prey. On the whole, our analyses suggest that predation on parasites has important consequences for both predators and parasites, and food web structure. Because our analysis is solely based on topological webs, determining the strength of these interactions is a promising avenue for future research.

  5. Malaria infection of the mosquito Anopheles gambiae activates immune-responsive genes during critical transition stages of the parasite life cycle.

    OpenAIRE

    Dimopoulos, G; Seeley, D; Wolf, A.; Kafatos, F C

    1998-01-01

    Six gene markers have been used to map the progress of the innate immune response of the mosquito vector, Anopheles gambiae, upon infection by the malaria parasite, Plasmodium berghei. In addition to four previously reported genes, the set of markers included NOS (a nitric oxide synthase gene fragment) and ICHIT (a gene encoding two putative chitin-binding domains separated by a polythreonine-rich mucin region). In the midgut, a robust response occurs at 24 h post-infection, at a time when ma...

  6. The changing epidemiology of Staphylococcus aureus bloodstream infection

    DEFF Research Database (Denmark)

    Laupland, K B; Lyytikäinen, O; Søgaard, M;

    2012-01-01

    Clin Microbiol Infect ABSTRACT: Although the epidemiology of Staphylococcus aureus bloodstream infection (BSI) has been changing, international comparisons are lacking. We sought to determine the incidence of S. aureus BSI and assess trends over time and by region. Population-based surveillance...

  7. Prevention of nosocomial bloodstream infections in preterm infants

    NARCIS (Netherlands)

    K. Helder MScN (Onno)

    2013-01-01

    textabstractProtecting patients from harm is the overarching theme of the studies presented here. More precisely, this thesis places a focus on the prevention of nosocomial or hospitalacquired bloodstream infections in preterm infants, thus saving them from further harm. A nosocomial infection is an

  8. Neonatal bloodstream infections in a pediatric hospital in Vietnam

    DEFF Research Database (Denmark)

    Kruse, Alexandra Yasmin; Thieu Chuong, D.H.; Phuong, C.N.;

    2013-01-01

    Septicemia and bloodstream infections (BSIs) are major causes of neonatal morbidity and mortality in developing countries. We prospectively recorded all positive blood cultures (BSI) among neonates admitted consecutively to a tertiary pediatric hospital in Vietnam during a 12-month period. Among...

  9. Controle biológico de helmintos parasitos de animais: estágio atual e perspectivas futuras Biological control of helminth parasites of animals: current stage and future outlook

    Directory of Open Access Journals (Sweden)

    Marcelo de Andrade Mota

    2003-09-01

    Full Text Available O controle biológico é um método desenvolvido para diminuir uma população de parasitas pela utilização de antagonista natural. A administração de fungos nematófagos aos animais domésticos é considerada uma promissora alternativa na profilaxia das helmintíases gastrintestinais parasitárias. Os fungos nematófagos desenvolvem estruturas em forma de armadilhas, responsáveis pela captura e destruição dos estágios infectantes dos nematóides. Os fungos dos gêneros Arthrobotrys, Duddingtonia e Monacrosporium têm demonstrado eficácia em experimentos laboratoriais e no campo no controle de parasitos de bovinos, eqüinos, ovinos e suínos. Diversas formulações fúngicas têm sido avaliadas, no entanto, ainda não há nenhum produto comercial disponível. A associação dos grupos de pesquisa e o envolvimento das indústrias poderão colaborar para o sucesso na implementação desta forma de controle.Biological control is a non-chemical alternative method with its main goal to reduce the amount of parasite population using natural antagonists. The administration of nematophagous fungi to animals has been considered an alternative in gastrointestinal helminthiasis prophylaxis. The nematophagous fungi produce trap-shaped structures, which are responsible for capturing and destroying the free-living stages of nematodes. The genera Arthrobotrys, Duddingtonia and Monacrosporium has been shown efficacy in laboratory and field experiments against cattle, equine, ovine and swine parasites. Several fungi formulations have been evaluated, but there is so far no commercial product available. The association of research groups with industry could improve the successful implementation of this control method.

  10. Trypanosome Motion Represents an Adaptation to the Crowded Environment of the Vertebrate Bloodstream

    Science.gov (United States)

    Heddergott, Niko; Krüger, Timothy; Babu, Sujin B.; Wei, Ai; Stellamanns, Erik; Uppaluri, Sravanti; Pfohl, Thomas; Stark, Holger; Engstler, Markus

    2012-01-01

    Blood is a remarkable habitat: it is highly viscous, contains a dense packaging of cells and perpetually flows at velocities varying over three orders of magnitude. Only few pathogens endure the harsh physical conditions within the vertebrate bloodstream and prosper despite being constantly attacked by host antibodies. African trypanosomes are strictly extracellular blood parasites, which evade the immune response through a system of antigenic variation and incessant motility. How the flagellates actually swim in blood remains to be elucidated. Here, we show that the mode and dynamics of trypanosome locomotion are a trait of life within a crowded environment. Using high-speed fluorescence microscopy and ordered micro-pillar arrays we show that the parasites mode of motility is adapted to the density of cells in blood. Trypanosomes are pulled forward by the planar beat of the single flagellum. Hydrodynamic flow across the asymmetrically shaped cell body translates into its rotational movement. Importantly, the presence of particles with the shape, size and spacing of blood cells is required and sufficient for trypanosomes to reach maximum forward velocity. If the density of obstacles, however, is further increased to resemble collagen networks or tissue spaces, the parasites reverse their flagellar beat and consequently swim backwards, in this way avoiding getting trapped. In the absence of obstacles, this flagellar beat reversal occurs randomly resulting in irregular waveforms and apparent cell tumbling. Thus, the swimming behavior of trypanosomes is a surprising example of micro-adaptation to life at low Reynolds numbers. For a precise physical interpretation, we compare our high-resolution microscopic data to results from a simulation technique that combines the method of multi-particle collision dynamics with a triangulated surface model. The simulation produces a rotating cell body and a helical swimming path, providing a functioning simulation method for a

  11. [Phenotype structure and its dynamics at different stages of the reproductive period of Proteocephalus osculatus (Cestoda: Proteocephalidae)--a parasite of catfish (Silurus glanis L.)].

    Science.gov (United States)

    Anikieva, L V; Kharin, V N

    2003-01-01

    Discrete variability of four P. osculatus characteristics descriptive of cestodes' major functional complexes: attachment and trophic-reproduction, was determined. Phenotypic diversity of P. osculatus from 2 samples collected at different stages of the population reproductive period was analysed. Unequal adaptation of phenotypes to the ambient conditions was hypothesised.

  12. Central line-associated bloodstream infections: prevention and management.

    Science.gov (United States)

    Weber, David J; Rutala, William A

    2011-03-01

    Approximately 80,000 central venous line-associated bloodstream infections (CLA-BSI) occur in the United States each year. CLA-BSI is most commonly caused by coagulase-negative staphylococci, Staphylococcus aureus, Candida spp, and aerobic gram-negative bacilli. These organisms commonly gain entrance in into the bloodstream via the catheter-skin interface (insertion site) or via the catheter hub. Use of strict aseptic technique for insertion is the key method for the prevention of CLA-BSI. Various methods can be used to reduce unacceptably high rates of CLA-BSI, including use of an antiseptic- or antibiotic-impregnated catheter, daily chlorhexidine baths/washes, and placement of a chlorhexidine-impregnated sponge over the insertion site.

  13. Accumulation of persistent organic pollutants in parasites.

    Science.gov (United States)

    Yen Le, T T; Rijsdijk, Laurie; Sures, Bern; Hendriks, A Jan

    2014-08-01

    Organisms are simultaneously exposed to various stressors, including parasites and pollutants, that may interact with each other. Research on the accumulation of organic compounds in host-parasite systems is scant compared to studies on parasite-metal interactions and mainly focuses on intestinal endoparasites. We reviewed factors that determine the accumulation of persistent organic pollutants (POPs) in host-parasite systems. The wet/dry weight-based concentration of POPs in these parasites is usually lower than that in host tissues because of lower lipid contents in the parasites. However, the fractionation of the pollutants into parasites and their hosts may vary, depending on developmental stages in the life cycle of the parasites. Developmental stages determine the trophic relationship and the taxon of the parasite in the host-parasite systems because of different feeding strategies between the stages. Lipid-corrected concentrations of organic chemicals in the host are usually higher than those in the endoparasites studied. This phenomenon is attributed to a number of physiological and behavioural processes, such as feeding selectivity and strategy and excretion. Moreover, no significant relationship was found between the accumulation factor (i.e. the ratio between the lipid-corrected concentrations in parasites and in their hosts) for polychlorinated biphenyls and either hydrophobicity or molecular size. At the intermediate hydrophobicity, larger and more lipophilic compounds are accumulated at higher levels in both parasites and the host than smaller and less lipophilic compounds. The bioaccumulation of POPs in parasites is affected by some other abiotic, e.g. temperature, and biotic factors, e.g. the number of host species infected by parasites.

  14. Emerging food-borne parasites.

    Science.gov (United States)

    Dorny, P; Praet, N; Deckers, N; Gabriel, S

    2009-08-07

    Parasitic food-borne diseases are generally underrecognised, however they are becoming more common. Globalization of the food supply, increased international travel, increase of the population of highly susceptible persons, change in culinary habits, but also improved diagnostic tools and communication are some factors associated with the increased diagnosis of food-borne parasitic diseases worldwide. This paper reviews the most important emerging food-borne parasites, with emphasis on transmission routes. In a first part, waterborne parasites transmitted by contaminated food such as Cyclospora cayetanensis, Cryptosporidium and Giardia are discussed. Also human fasciolosis, of which the importance has only been recognised in the last decades, with total numbers of reported cases increasing from less than 3000 to 17 million, is looked at. Furthermore, fasciolopsiosis, an intestinal trematode of humans and pigs belongs to the waterborne parasites as well. A few parasites that may be transmitted through faecal contamination of foods and that have received renewed attention, such as Toxoplasma gondii, or that are (re-)emerging, such as Trypanosoma cruzi and Echinococcus spp., are briefly reviewed. In a second part, meat-borne parasite infections are reviewed. Humans get infected by eating raw or undercooked meat infected with cyst stages of these parasites. Meat inspection is the principal method applied in the control of Taenia spp. and Trichinella spp. However, it is often not very sensitive, frequently not practised, and not done for T. gondii and Sarcocystis spp. Meat of reptiles, amphibians and fish can be infected with a variety of parasites, including trematodes (Opisthorchis spp., Clonorchis sinensis, minute intestinal flukes), cestodes (Diphyllobothrium spp., Spirometra), nematodes (Gnathostoma, spp., anisakine parasites), and pentastomids that can cause zoonotic infections in humans when consumed raw or not properly cooked. Another important zoonotic food

  15. Probing the metabolic network in bloodstream-form Trypanosoma brucei using untargeted metabolomics with stable isotope labelled glucose.

    Directory of Open Access Journals (Sweden)

    Darren J Creek

    2015-03-01

    Full Text Available Metabolomics coupled with heavy-atom isotope-labelled glucose has been used to probe the metabolic pathways active in cultured bloodstream form trypomastigotes of Trypanosoma brucei, a parasite responsible for human African trypanosomiasis. Glucose enters many branches of metabolism beyond glycolysis, which has been widely held to be the sole route of glucose metabolism. Whilst pyruvate is the major end-product of glucose catabolism, its transamination product, alanine, is also produced in significant quantities. The oxidative branch of the pentose phosphate pathway is operative, although the non-oxidative branch is not. Ribose 5-phosphate generated through this pathway distributes widely into nucleotide synthesis and other branches of metabolism. Acetate, derived from glucose, is found associated with a range of acetylated amino acids and, to a lesser extent, fatty acids; while labelled glycerol is found in many glycerophospholipids. Glucose also enters inositol and several sugar nucleotides that serve as precursors to macromolecule biosynthesis. Although a Krebs cycle is not operative, malate, fumarate and succinate, primarily labelled in three carbons, were present, indicating an origin from phosphoenolpyruvate via oxaloacetate. Interestingly, the enzyme responsible for conversion of phosphoenolpyruvate to oxaloacetate, phosphoenolpyruvate carboxykinase, was shown to be essential to the bloodstream form trypanosomes, as demonstrated by the lethal phenotype induced by RNAi-mediated downregulation of its expression. In addition, glucose derivatives enter pyrimidine biosynthesis via oxaloacetate as a precursor to aspartate and orotate.

  16. Prosthetic valve endocarditis and bloodstream infection due to Mycobacterium chimaera.

    Science.gov (United States)

    Achermann, Yvonne; Rössle, Matthias; Hoffmann, Matthias; Deggim, Vanessa; Kuster, Stefan; Zimmermann, Dieter R; Bloemberg, Guido; Hombach, Michael; Hasse, Barbara

    2013-06-01

    Prosthetic valve endocarditis (PVE) due to fast-growing nontuberculous mycobacteria (NTM) has been reported anecdotally. Reports of PVE with slowly growing NTM, however, are lacking. We present here one case of PVE and one case of bloodstream infection caused by Mycobacterium chimaera. Randomly amplified polymorphic DNA (RAPD)-PCR indicated a relatedness of the two M. chimaera strains. Both patients had heart surgery 2 years apart from each other. A nosocomial link was not detected.

  17. Prosthetic Valve Endocarditis and Bloodstream Infection Due to Mycobacterium chimaera

    OpenAIRE

    Achermann, Yvonne; Rössle, Matthias; Hoffmann, Matthias; Deggim, Vanessa; Kuster, Stefan; Zimmermann, Dieter R.; Bloemberg, Guido; Hombach, Michael; Hasse, Barbara

    2013-01-01

    Prosthetic valve endocarditis (PVE) due to fast-growing nontuberculous mycobacteria (NTM) has been reported anecdotally. Reports of PVE with slowly growing NTM, however, are lacking. We present here one case of PVE and one case of bloodstream infection caused by Mycobacterium chimaera. Randomly amplified polymorphic DNA (RAPD)-PCR indicated a relatedness of the two M. chimaera strains. Both patients had heart surgery 2 years apart from each other. A nosocomial link was not detected.

  18. Diagnosis of Parasitic Diseases

    Science.gov (United States)

    ... Laboratory Diagnostic Assistance [DPDx] Parasites Home Diagnosis of Parasitic Diseases Recommend on Facebook Tweet Share Compartir On this ... the United States cannot diagnose parasites? How are parasitic diseases diagnosed? Many kinds of lab tests are available ...

  19. Endothelial JAM-A promotes reovirus viremia and bloodstream dissemination.

    Science.gov (United States)

    Lai, Caroline M; Boehme, Karl W; Pruijssers, Andrea J; Parekh, Vrajesh V; Van Kaer, Luc; Parkos, Charles A; Dermody, Terence S

    2015-02-01

    Viruses that cause systemic disease often spread through the bloodstream to infect target tissues. Although viremia is an important step in the pathogenesis of many viruses, how viremia is established is not well understood. Reovirus has been used to dissect mechanisms of viral pathogenesis and is being evaluated in clinical trials as an oncolytic agent. After peroral entry into mice, reovirus replicates within the gastrointestinal tract and disseminates systemically via hematogenous or neural routes. Junctional adhesion molecule-A (JAM-A) is a tight junction protein that serves as a receptor for reovirus. JAM-A is required for establishment of viremia and viral spread to sites of secondary replication. JAM-A also is expressed on the surface of circulating hematopoietic cells. To determine contributions of endothelial and hematopoietic JAM-A to reovirus dissemination and pathogenesis, we generated strains of mice with altered JAM-A expression in these cell types and assessed bloodstream spread of reovirus strain type 1 Lang (T1L), which disseminates solely by hematogenous routes. We found that endothelial JAM-A but not hematopoietic JAM-A facilitates reovirus T1L bloodstream entry and egress. Understanding how viruses establish viremia may aid in development of inhibitors of this critical step in viral pathogenesis and foster engineering of improved oncolytic viral vectors.

  20. The adaptive significance of inquiline parasite workers

    DEFF Research Database (Denmark)

    Sumner, Seirian; Nash, David R; Boomsma, Jacobus J

    2003-01-01

    Social parasites exploit the socially managed resources of their host's society. Inquiline social parasites are dependent on their host throughout their life cycle, and so many of the traits inherited from their free-living ancestor are removed by natural selection. One trait that is commonly lost...... is the worker caste, the functions of which are adequately fulfilled by host workers. The few inquiline parasites that have retained a worker caste are thought to be at a transitional stage in the evolution of social parasitism, and their worker castes are considered vestigial and non-adaptive. However...... a vital role in ensuring the parasite's fitness. We show that the presence of these parasite workers has a positive effect on the production of parasite sexuals and a negative effect on the production of host sexuals. This suggests that inquiline workers play a vital role in suppressing host queen...

  1. Plasmodium vivax merozoite surface protein-3 (PvMSP3: expression of an 11 member multigene family in blood-stage parasites.

    Directory of Open Access Journals (Sweden)

    Jianlin Jiang

    Full Text Available BACKGROUND: Three members of the Plasmodium vivax merozoite surface protein-3 (PvMSP3 family (PvMSP3-α, PvMSP3-β and PvMSP3-γ were initially characterized and later shown to be part of a larger highly diverse family, encoded by a cluster of genes arranged head-to-tail in chromosome 10. PvMSP3-α and PvMSP3-β have become genetic markers in epidemiological studies, and are being evaluated as vaccine candidates. This research investigates the gene and protein expression of the entire family and pertinent implications. METHODOLOGY/PRINCIPAL FINDINGS: A 60 kb multigene locus from chromosome 10 in P. vivax (Salvador 1 strain was studied to classify the number of pvmsp3 genes present, and compare their transcription, translation and protein localization patterns during blood-stage development. Eleven pvmsp3 paralogs encode an N-terminal NLRNG signature motif, a central domain containing repeated variable heptad sequences, and conserved hydrophilic C-terminal features. One additional ORF in the locus lacks these features and was excluded as a member of the family. Transcripts representing all eleven pvmsp3 genes were detected in trophozoite- and schizont-stage RNA. Quantitative immunoblots using schizont-stage extracts and antibodies specific for each PvMSP3 protein demonstrated that all but PvMSP3.11 could be detected. Homologs were also detected by immunoblot in the closely related simian species, P. cynomolgi and P. knowlesi. Immunofluorescence assays confirmed that eight of the PvMSP3s are present in mature schizonts. Uniquely, PvMSP3.7 was expressed exclusively at the apical end of merozoites. CONCLUSION/SIGNIFICANCE: Specific proteins were detected representing the expression of 10 out of 11 genes confirmed as members of the pvmsp3 family. Eight PvMSP3s were visualized surrounding merozoites. In contrast, PvMSP3.7 was detected at the apical end of the merozoites. Pvmsp3.11 transcripts were present, though no corresponding protein was detected

  2. Atividade de fungos nematófagos nos estágios pré-parasitários de nematódeos trichostrongilídeos Predacious activity of nematophagous fungi on free living stages of trichostrongylid nematodes

    Directory of Open Access Journals (Sweden)

    Terezinha Padilha

    1996-08-01

    Full Text Available O controle dos nematódeos trichostrongilídeos é obtido através da aplicação de anti-helmínticos nos hospedeiros. Nas últimas décadas, estratégias de controle foram desenvolvidas visando a aplicação de anti-helmínticos em épocas em que as condições ambientais são desfavoráveis ao desenvolvimento dos estádios pré-parasitários. Estas estratégias apesar de serem bem sucedidas, apresentam inconveniências tais como o desenvolvimento de resistência aos princípios ativos mais comumente usados, a possibilidade de ocorrerem resíduos na carne e no leite e a ecotoxicidade de alguns compostos. Esses problemas reais e potenciais tem impulsionado estudos visando o desenvolvimento de alternativas que possam contribuir para redução ou substituição do uso desses compostos. Entre elas, o controle biológico dos estádios pré-parasitários através da ação de fungos nematófagos é uma alternativa promissora. Este artigo reúne as principais informações geradas nos estudos com estes microrganismos visando a redução do número de larvas de nematódeos trichostrongilídeos disponíveis nas pastagens.Nematophagous fungi are promising candidates for use as biological control agents to reduce the numbers of infective larvae of trichostrongylid on pasture. In the last five years research aimed at the use of nematophagous fungi to control trichostrongylid nematodes has been intensified. This paper presents a review of the current status of knowledge on the effect of this group of microorganism on the free living stages of these nematodes.

  3. Ribose 5-phosphate isomerase B knockdown compromises Trypanosoma brucei bloodstream form infectivity.

    Science.gov (United States)

    Loureiro, Inês; Faria, Joana; Clayton, Christine; Macedo-Ribeiro, Sandra; Santarém, Nuno; Roy, Nilanjan; Cordeiro-da-Siva, Anabela; Tavares, Joana

    2015-01-01

    Ribose 5-phosphate isomerase is an enzyme involved in the non-oxidative branch of the pentose phosphate pathway, and catalyzes the inter-conversion of D-ribose 5-phosphate and D-ribulose 5-phosphate. Trypanosomatids, including the agent of African sleeping sickness namely Trypanosoma brucei, have a type B ribose-5-phosphate isomerase. This enzyme is absent from humans, which have a structurally unrelated ribose 5-phosphate isomerase type A, and therefore has been proposed as an attractive drug target waiting further characterization. In this study, Trypanosoma brucei ribose 5-phosphate isomerase B showed in vitro isomerase activity. RNAi against this enzyme reduced parasites' in vitro growth, and more importantly, bloodstream forms infectivity. Mice infected with induced RNAi clones exhibited lower parasitaemia and a prolonged survival compared to control mice. Phenotypic reversion was achieved by complementing induced RNAi clones with an ectopic copy of Trypanosoma cruzi gene. Our results present the first functional characterization of Trypanosoma brucei ribose 5-phosphate isomerase B, and show the relevance of an enzyme belonging to the non-oxidative branch of the pentose phosphate pathway in the context of Trypanosoma brucei infection.

  4. Stearoyl-CoA desaturase is an essential enzyme for the parasitic protist Trypanosoma brucei

    Energy Technology Data Exchange (ETDEWEB)

    Alloatti, Andres [Instituto de Biologia Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquimicas y Farmaceuticas, Universidad Nacional de Rosario, Santa Fe (Argentina); Gupta, Shreedhara; Gualdron-Lopez, Melisa; Nguewa, Paul A. [Research Unit for Tropical Diseases, de Duve Institute and Laboratory of Biochemistry, Universite Catholique de Louvain, Brussels (Belgium); Altabe, Silvia G. [Instituto de Biologia Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquimicas y Farmaceuticas, Universidad Nacional de Rosario, Santa Fe (Argentina); Deumer, Gladys; Wallemacq, Pierre [Department of Clinical Chemistry, Cliniques Universitaires Saint-Luc, LTAP, Universite Catholique de Louvain, Brussels (Belgium); Michels, Paul A.M. [Research Unit for Tropical Diseases, de Duve Institute and Laboratory of Biochemistry, Universite Catholique de Louvain, Brussels (Belgium); Uttaro, Antonio D., E-mail: toniuttaro@yahoo.com.ar [Instituto de Biologia Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquimicas y Farmaceuticas, Universidad Nacional de Rosario, Santa Fe (Argentina)

    2011-08-26

    Highlights: {yields} Inhibiting {Delta}9 desaturase drastically changes T. brucei's fatty-acid composition. {yields} Isoxyl specifically inhibits the {Delta}9 desaturase causing a growth arrest. {yields} RNA interference of desaturase expression causes a similar effect. {yields} Feeding T. brucei-infected mice with Isoxyl decreases the parasitemia. {yields} 70% of Isoxyl-treated mice survived the trypanosome infection. -- Abstract: Trypanosoma brucei, the etiologic agent of sleeping sickness, is exposed to important changes in nutrients and temperature during its life cycle. To adapt to these changes, the fluidity of its membranes plays a crucial role. This fluidity, mediated by the fatty-acid composition, is regulated by enzymes named desaturases. We have previously shown that the oleoyl desaturase is essential for Trypanosoma cruzi and T. brucei. In this work, we present experimental support for the relevance of stearoyl-CoA desaturase (SCD) for T. brucei's survival, in both its insect or procyclic-form (PCF) and bloodstream-form (BSF) stages. We evaluated this essentiality in two different ways: by generating a SCD knocked-down parasite line using RNA interference, and by chemical inhibition of the enzyme with two compounds, Isoxyl and a thiastearate with the sulfur atom at position 10 (10-TS). The effective concentration for 50% growth inhibition (EC{sub 50}) of PCF was 1.0 {+-} 0.2 {mu}M for Isoxyl and 5 {+-} 2 {mu}M for 10-TS, whereas BSF appeared more susceptible with EC{sub 50} values 0.10 {+-} 0.03 {mu}M (Isoxyl) and 1.0 {+-} 0.6 {mu}M (10-TS). RNA interference showed to be deleterious for both stages of the parasite. In addition, T. brucei-infected mice were fed with Isoxyl, causing a reduction of the parasitemia and an increase of the rodents' survival.

  5. No effect of human serum and erythrocytes enriched in n-3 fatty acids by oral intake on Plasmodium falciparum blood stage parasites in vitro

    DEFF Research Database (Denmark)

    Abu-Zeid, Y A; Hansen, H S; Jakobsen, P H;

    1993-01-01

    To examine the effect of n-3 polyunsaturated fatty acids (n-3 PUFA) on the erythrocytic growth of Plasmodium falciparum, serum and erythrocytes were separated from blood of a healthy donor before and after he had taken fish oil capsules for 8 days. Such intake supplied an amount of eicosapentaenoic...... acid (EPA, 20:5n-3) of 3.5 g/d and docosahexaenoic acid (DHA, 22:6n-3) of 2.5 g/d and 24 mg/d of total tocopherol. Post-intake fish oil serum (post-s) and erythrocytes (post-e) were tested in vitro for inhibitory activity against blood stages of P. falciparum compared with pre-intake serum (pre......-s) and pre-intake erythrocyte (pre-e). Also the effect of EPA and arachidonic acid (AA, 20:4n-6) on the erythrocytic growth of P. falciparum was tested using in vitro assays. The results show that both post-s and post-e had no antimalarial activity on P. falciparum. No differential antimalarial effect...

  6. Plasmodium falciparum synthetic LbL microparticle vaccine elicits protective neutralizing antibody and parasite-specific cellular immune responses.

    Science.gov (United States)

    Powell, Thomas J; Tang, Jie; Derome, Mary E; Mitchell, Robert A; Jacobs, Andrea; Deng, Yanhong; Palath, Naveen; Cardenas, Edwin; Boyd, James G; Nardin, Elizabeth

    2013-04-01

    Epitopes of the circumsporozoite (CS) protein of Plasmodium falciparum, the most pathogenic species of the malaria parasite, have been shown to elicit protective immunity in experimental animals and human volunteers. The mechanisms of immunity include parasite-neutralizing antibodies that can inhibit parasite motility in the skin at the site of infection and in the bloodstream during transit to the hepatocyte host cell and also block interaction with host cell receptors on hepatocytes. In addition, specific CD4+ and CD8+ cellular mechanisms target the intracellular hepatic forms, thus preventing release of erythrocytic stage parasites from the infected hepatocyte and the ensuing blood stage cycle responsible for clinical disease. An innovative method for producing particle vaccines, layer-by-layer (LbL) fabrication of polypeptide films on solid CaCO3 cores, was used to produce synthetic malaria vaccines containing a tri-epitope CS peptide T1BT comprising the antibody epitope of the CS repeat region (B) and two T-cell epitopes, the highly conserved T1 epitope and the universal epitope T. Mice immunized with microparticles loaded with T1BT peptide developed parasite-neutralizing antibodies and malaria-specific T-cell responses including cytotoxic effector T-cells. Protection from liver stage infection following challenge with live sporozoites from infected mosquitoes correlated with neutralizing antibody levels. Although some immunized mice with low or undetectable neutralizing antibodies were also protected, depletion of T-cells prior to challenge resulted in the majority of mice remaining resistant to challenge. In addition, mice immunized with microparticles bearing only T-cell epitopes were not protected, demonstrating that cellular immunity alone was not sufficient for protective immunity. Although the microparticles without adjuvant were immunogenic and protective, a simple modification with the lipopeptide TLR2 agonist Pam3Cys increased the potency and

  7. Bloodstream infection caused by nontoxigenic Corynebacterium diphtheriae in an immunocompromised host in the United States.

    Science.gov (United States)

    Wojewoda, Christina M; Koval, Christine E; Wilson, Deborah A; Chakos, Mary H; Harrington, Susan M

    2012-06-01

    Corynebacterium species are well-known causes of catheter-related bloodstream infections. Toxigenic strains of Corynebacterium diphtheriae cause respiratory diphtheria. We report a bloodstream infection caused by a nontoxigenic strain of C. diphtheriae and discuss the epidemiology, possible sources of the infection, and the implications of rapid species identification of corynebacteria.

  8. Trypanosoma congolense Infections: Induced Nitric Oxide Inhibits Parasite Growth In Vivo

    Directory of Open Access Journals (Sweden)

    Wenfa Lu

    2011-01-01

    Full Text Available Wild-type (WT C57BL/6 mice infected intraperitoneally with 5×106 Trypanosoma congolense survive for more than 30 days. C57BL/6 mice deficient in inducible nitric oxide synthase (iNOS−/− and infected with 103 or 5×106 parasites do not control the parasitemia and survive for only 14±7 or 6.8±0.1 days, respectively. Bloodstream trypanosomes of iNOS−/− mice infected with 5×106  T. congolense had a significantly higher ratio of organisms in the S+G2+M phases of the cell cycle than trypanosomes in WT mice. We have reported that IgM anti-VSG-mediated phagocytosis of T. congolense by macrophages inhibits nitric oxide (NO synthesis via CR3 (CD11b/CD18. Here, we show that during the first parasitemia, but not at later stages of infection, T. congolense-infected CD11b−/− mice produce more NO and have a significantly lower parasitemia than infected WT mice. We conclude that induced NO contributes to the control of parasitemia by inhibiting the growth of the trypanosomes.

  9. A life cycle database for parasitic acanthocephalans, cestodes, and nematodes

    Science.gov (United States)

    Benesh, Daniel P.; Lafferty, Kevin D.; Kuris, Armand

    2017-01-01

    Parasitologists have worked out many complex life cycles over the last ~150 years, yet there have been few efforts to synthesize this information to facilitate comparisons among taxa. Most existing host-parasite databases focus on particular host taxa, do not distinguish final from intermediate hosts, and lack parasite life-history information. We summarized the known life cycles of trophically transmitted parasitic acanthocephalans, cestodes, and nematodes. For 973 parasite species, we gathered information from the literature on the hosts infected at each stage of the parasite life cycle (8510 host-parasite species associations), what parasite stage is in each host, and whether parasites need to infect certain hosts to complete the life cycle. We also collected life-history data for these parasites at each life cycle stage, including 2313 development time measurements and 7660 body size measurements. The result is the most comprehensive data summary available for these parasite taxa. In addition to identifying gaps in our knowledge of parasite life cycles, these data can be used to test hypotheses about life cycle evolution, host specificity, parasite life-history strategies, and the roles of parasites in food webs.

  10. Parasitic Diseases: Glossary

    Science.gov (United States)

    ... Departments Laboratory Science Related Links Parasites A-Z Index Parasites Glossary Neglected Tropical Diseases Laboratory Diagnostic Assistance [DPDx] Parasites ... A Anemia: A reduction in the number of circulating red ...

  11. Visualization of Malaria Parasites in the Skin Using the Luciferase Transgenic Parasite, Plasmodium berghei

    OpenAIRE

    Matsuoka, Hiroyuki; TOMITA, HIROYUKI; Hattori, Ryuta; Arai,Meiji; Hirai, Makoto

    2014-01-01

    We produced a transgenic rodent malaria parasite (Plasmodium berghei) that contained the luciferase gene under a promoter region of elongation factor-1α. These transgenic (TG) parasites expressed luciferase in all stages of their life cycle, as previously reported. However, we were the first to succeed in observing sporozoites as a mass in mouse skin following their deposition by the probing of infective mosquitoes. Our transgenic parasites may have emitted stronger bioluminescence than previ...

  12. Protozoan Parasites.

    Science.gov (United States)

    Custodio, Haidee

    2016-02-01

    • Stool antigen detection for Cryptosporidium sp, Giardia lamblia and Entamoeba histolytica are now commercially available, have better sensitivity and specificity than the traditional stool microscopy, and are less dependent on personnel skill. Tests employing newer techniques with faster turnaround time are also available for diagnosing trichomoniasis.• Nitazoxanide, the only U.S. Food and Drug Administration-approved medication for therapy of cryptosporidiosis, is effective among immunocompetent patients. However, on the basis of strong evidence from multiple clinical trials, nitazoxanide is considered ineffective among immunocompromised patients. (14) • Giardiasis can be asymptomatic or have a chronic course leading to malabsorption and failure to thrive. It can be treated with metronidazole, tinidazole, or nitazoxanide. On the basis of growing observational studies, postinfectious and extraintestinal manifestations of giardiasis occur, but the mechanisms are unclear. Given the high prevalence of giardiasis, public health implications need to be defined. (16) • Eradicating E histolytica from the gastrointestinal tract requires only intraluminal agent therapy. Therapy for invasive illnesses requires use of imidazole followed by intraluminal agents to eliminate persistent intraluminal parasites. • Malaria is considered the most lethal parasitic infection, with Plasmodium falciparum as the predominant cause of mortality. P vivax and P ovale can be dormant in the liver, and primaquine is necessary to resolve infection by P vivax and P ovale. • Among immunocompetent patients, infection with Toxoplasma gondii may be asymptomatic, involve localized lymphadenopathy, or cause ocular infection. In immunocompromised patients, reactivation or severe infection is not uncommon. On the basis of limited observational studies (there are no well-controlled randomized trials), therapy is recommended for acute infection during pregnancy to prevent transmission to the

  13. Systemic effects of locally injected platelet rich plasma in a rat model: an analysis on muscle and bloodstream.

    Science.gov (United States)

    Borrione, P; Grasso, L; Racca, S; Abbadessa, G; Carriero, V; Fagnani, F; Quaranta, F; Pigozzi, F

    2015-01-01

    Abundant evidence suggests that growth factors, contained in platelets alpha granules, may play a key role in the early stages of the muscle healing process with particular regard to the inflammatory phase. Although the contents of the platelet-rich plasma preparations have been extensively studied, the biological mechanisms involved as well as the systemic effects and the related potential doping implications of this approach are still largely unknown. The aim of the present study was to investigate whether local platelet-rich plasma administration may modify the levels of specific cytokines and growth factors both in treated muscle and bloodstream in rats. An additional aim was to investigate more deeply whether the local platelet-rich plasma administration may exert systemic effects by analyzing contralateral lesioned but untreated muscles. The results showed that platelet-rich plasma treatment induced a modification of certain cytokines and growth factor levels in muscle but not in the bloodstream, suggesting that local platelet-rich plasma treatment influenced directly or, more plausibly, indirectly the synthesis or recruitment of cytokines and growth factors at the site of injury. Moreover, the observed modifications of cytokine and growth factor levels in contralateral injured but not treated muscles, strongly suggested a systemic effect of locally injected platelet-rich plasma.

  14. Food Safety-Related Aspects of Parasites in Foods.

    Science.gov (United States)

    Watthanakulpanich, Dorn

    2015-01-01

    As natural foods derive from soil or water environments, they may contain the infective stages of parasites endemic to these environments. Infective stages may enter the human food supply via infected animal hosts so there is a need for increased awareness of the impact of parasites on the food supply. Safe handling of food and good kitchen hygiene can prevent or reduce the risk posed by contaminated foodstuffs. In addition, parasites cannot cause a health problem in any thoroughly cooked foods.

  15. Concentration of erythrocyte-based magnetic carriers in the bloodstream

    Energy Technology Data Exchange (ETDEWEB)

    Danilov, Y.N.; Il' ina, M.B.; Makharudov, S.Y.; Orekhov, A.N.; Rodchenko, S.A.; Samokhin, G.P.

    1986-04-01

    The writers postulated that magnetic erythrocytes (ME), injected into the bloodstream, may be concentrated in an assigned region of the vascular bed with the aid of the field of a permanent magnet. To test this hypothesis, erythrocytes ''loaded'' with colloidal magnetite were used, and concentrated in experiments in vitro and in vivo. For the experiments in vivo ME were labeled with sodium pertechnetate (Na /SUP 99n/ TcO4) was estimated in ME with a Rackgamma 1270 counter by determining radioactivity in the ME suspension and in the supernatant. For the experiment in vivo, a midline laparotomy was performed on a dog weighing 14 kg under intravenous hexobarbital anesthesia. The distribution of ME was recorded by means of a gamma-camera.

  16. Mortality in enterococcal bloodstream infections increases with inappropriate antimicrobial therapy

    DEFF Research Database (Denmark)

    Suppli, M.; Aabenhus, R.; Harboe, Z.B.;

    2010-01-01

    Enterococcus species are common in nosocomial bloodstream infections and their incidence is rising. Although well recognized in several serious bacterial infections, the influence of appropriate antimicrobial therapy in enterococcal bacteraemia has not been fully settled. The aim of the study...... in Denmark. Patients with growth of non-enterococcus co-pathogens apart from the enterococcal bacteraemia were also included, as were patients with repeated enterococcal bacteraemia. Time to appropriate antimicrobial therapy was counted from the first episode. Appropriate antibiotic therapy was defined...... as any therapy with documented clinical effect, in vitro activity and a minimum treatment length of 6 days. Multivariate regression models were built to determine the independent risk factors for mortality. We included 196 patients with enterococcal bacteraemia. Appropriate antibiotics for at least 6...

  17. Reducing bloodstream infection with a chlorhexidine gel IV dressing.

    Science.gov (United States)

    Jeanes, Annette; Bitmead, James

    The use of vascular access devices (VAD) is common in healthcare provision but there is a significant risk of acquiring an infection. Central venous catheters (CVC) are associated with the highest risk of intravenous catheter-related bloodstream infection (CRBSI). 3M™ Tegaderm™ CHG IV dressing is a semi-permeable transparent adhesive dressing with an integrated gel pad containing chlorhexidine gluconate 2%. This product was reviewed by the National Institute for Health and Care Excellence (NICE) in 2015, recommending that Tegaderm CHG could be used for CVC and arterial line dressings in high-dependency and intensive-care settings. This article discusses issues around CRBSI, interventions to reduce the risk of CRBSI, and the use of Tegaderm CHG dressing.

  18. Antimicrobial resistance predicts death in Tanzanian children with bloodstream infections: a prospective cohort study

    Directory of Open Access Journals (Sweden)

    Msangi Viola

    2007-05-01

    Full Text Available Abstract Background Bloodstream infection is a common cause of hospitalization, morbidity and death in children. The impact of antimicrobial resistance and HIV infection on outcome is not firmly established. Methods We assessed the incidence of bloodstream infection and risk factors for fatal outcome in a prospective cohort study of 1828 consecutive admissions of children aged zero to seven years with signs of systemic infection. Blood was obtained for culture, malaria microscopy, HIV antibody test and, when necessary, HIV PCR. We recorded data on clinical features, underlying diseases, antimicrobial drug use and patients' outcome. Results The incidence of laboratory-confirmed bloodstream infection was 13.9% (255/1828 of admissions, despite two thirds of the study population having received antimicrobial therapy prior to blood culture. The most frequent isolates were klebsiella, salmonellae, Escherichia coli, enterococci and Staphylococcus aureus. Furthermore, 21.6% had malaria and 16.8% HIV infection. One third (34.9% of the children with laboratory-confirmed bloodstream infection died. The mortality rate from Gram-negative bloodstream infection (43.5% was more than double that of malaria (20.2% and Gram-positive bloodstream infection (16.7%. Significant risk factors for death by logistic regression modeling were inappropriate treatment due to antimicrobial resistance, HIV infection, other underlying infectious diseases, malnutrition and bloodstream infection caused by Enterobacteriaceae, other Gram-negatives and candida. Conclusion Bloodstream infection was less common than malaria, but caused more deaths. The frequent use of antimicrobials prior to blood culture may have hampered the detection of organisms susceptible to commonly used antimicrobials, including pneumococci, and thus the study probably underestimates the incidence of bloodstream infection. The finding that antimicrobial resistance, HIV-infection and malnutrition predict fatal

  19. Cefotaxime resistance and outcome of Klebsiella spp bloodstream infection.

    Science.gov (United States)

    Ortega, M; Marco, F; Soriano, A; Almela, M; Martínez, J A; López, J; Pitart, C; Mensa, J

    2011-12-01

    We attempt to describe the epidemiology and outcome associated with cefotaxime-resistant (CTX-R) Klebsiella spp bacteraemia. Klebsiella spp bloodstream infection episodes prospectively collected through a blood culture surveillance programme from January 1991 to December 2008 in a single institution were analysed. A total of 910 monomicrobial episodes of Klebsiella spp bacteraemia were identified during the study period. The most important sources were from urinary tract infection, unknown sources, billiary focus and catheter related infection. There were 112 (12%) CTX-R isolates. Out of 112 isolates, 98 were CTX-R by Extended-Spectrum β-Lactamase production. Shock on presentation and mortality were significantly more frequent in CTX-R than in CTX susceptible isolates. Inappropriate empirical therapy was received in 50 (45%) cases in the CTX-R Klebsiella spp group (13 cases of death, 26%). Predictive factors associated with CTX-R Klebsiella spp isolate were: previous β-lactam therapy (OR = 4.16), nosocomial acquired bacteraemia (OR = 1.93), solid organ trasplantation (OR = 2.09) and shock (OR = 1.90). Independent risk factors associated with mortality in Klebsiella spp bacteraemia were: age (OR = 1.03), liver cirrhosis (OR = 2.63), ultimately or rapidly fatal prognosis of underlying disease (OR = 2.44), shock (OR = 8.60), pneumonia (OR = 4.96) or intraabdominal (OR = 3.85) source of bacteraemia and CTX-R isolate (OR = 4.63). Klebsiella spp is an important cause of bloodstream infection. CTX-R isolates have been increasing since 2000. CTX-R is an independent factor associated with mortality in Klebsiella spp bacteraemia.

  20. Mechanisms of host seeking by parasitic nematodes.

    Science.gov (United States)

    Gang, Spencer S; Hallem, Elissa A

    2016-07-01

    The phylum Nematoda comprises a diverse group of roundworms that includes parasites of vertebrates, invertebrates, and plants. Human-parasitic nematodes infect more than one billion people worldwide and cause some of the most common neglected tropical diseases, particularly in low-resource countries [1]. Parasitic nematodes of livestock and crops result in billions of dollars in losses each year [1]. Many nematode infections are treatable with low-cost anthelmintic drugs, but repeated infections are common in endemic areas and drug resistance is a growing concern with increasing therapeutic and agricultural administration [1]. Many parasitic nematodes have an environmental infective larval stage that engages in host seeking, a process whereby the infective larvae use sensory cues to search for hosts. Host seeking is a complex behavior that involves multiple sensory modalities, including olfaction, gustation, thermosensation, and humidity sensation. As the initial step of the parasite-host interaction, host seeking could be a powerful target for preventative intervention. However, host-seeking behavior remains poorly understood. Here we review what is currently known about the host-seeking behaviors of different parasitic nematodes, including insect-parasitic nematodes, mammalian-parasitic nematodes, and plant-parasitic nematodes. We also discuss the neural bases of these behaviors.

  1. Genetic determinism of parasitic circadian periodicity and subperiodicity in human lymphatic filariasis.

    Science.gov (United States)

    Pichon, Gaston; Treuil, Jean-Pierre

    2004-12-01

    The larval parasites of the pantropical lymphatic filariasis exhibit two types of circadian behaviour. Typically, they only appear in the human bloodstream at nighttime, synchronised with their mosquito vectors. In Polynesia and parts of Southeast Asia, free of nocturnal vectors, they are found at all hours, and each population biorhythm differs. Through a geometrical approach, we explain this circadian diversity by a single, dominant mutation: the clocks of individual parasites are set at midnight (ubiquitous) or at 2 p.m. Compared to other circadian genes, this mutation must be very old, as it is shared by four biologically remote genera of parasites. This seniority sheds new light on several theoretical and practical aspects of vector-parasite temporal relations.

  2. Bacterial bloodstream infections in liver transplantation: etiologic agents and antimicrobial susceptibility profiles.

    Science.gov (United States)

    Sganga, G; Spanu, T; Bianco, G; Fiori, B; Nure, E; Pepe, G; D'inzeo, T; Lirosi, M C; Frongillo, F; Agnes, S

    2012-09-01

    Liver transplantation (OLT) is a lifesaving procedure for the treatment of many end-stage liver diseases, but infection and acute rejection episodes still remain the main causes of morbidity and mortality. Bloodstream infections (BSIs), particularly, are the major cause of mortality among these patients. BSIs in OLT, are from intra-abdominal, biliary, respiratory, urinary, wound and/or central venous catheter sources. A certain percentage are of unknown origin. Using the computerized database of our microbiology laboratory, we analyzed all BSIs in 75 consecutive adult liver transplant patients in a single center between January 2008 and July 2011. BSIs occurred in 21/75 (28%) patients. Thirteen subjects had a single; two, two episodes, and the other six patients each >4 episodes. All episodes occurred in the first 60 days following OLT; the majority (74%), in the first month. Among 44 microorganisms recovered, 52.3% were gram-negative, the most frequent being Pseudomonas aeruginosa and Klebsiella pneumoniae; 47.7% were gram-positive, the most frequent being coagulase-negative staphylococci, particularly Staphylococcus epidermidis. Overall 65.9% of the isolates were resistant to several antibiotics: 40.9% displayed the multiding-resistant and 25% the panding-resistant phenotype. There was a high incidence of gram-negative and most importantly, resistant bacteria, which required appropriate therapy. These data showed that it is imperative to promote strategies to prevention and contain antimicrobial resistance.

  3. Catheter Removal versus Retention in the Management of Catheter-Associated Enterococcal Bloodstream Infections

    Directory of Open Access Journals (Sweden)

    Jonas Marschall

    2013-01-01

    Full Text Available BACKGROUND: Enterococci are an important cause of central venous catheter (CVC-associated bloodstream infections (CA-BSI. It is unclear whether CVC removal is necessary to successfully manage enterococcal CA-BSI.

  4. Parasites and marine invasions: Ecological and evolutionary perspectives

    Science.gov (United States)

    Goedknegt, M. Anouk; Feis, Marieke E.; Wegner, K. Mathias; Luttikhuizen, Pieternella C.; Buschbaum, Christian; Camphuysen, Kees (C. J.); van der Meer, Jaap; Thieltges, David W.

    2016-07-01

    Worldwide, marine and coastal ecosystems are heavily invaded by introduced species and the potential role of parasites in the success and impact of marine invasions has been increasingly recognized. In this review, we link recent theoretical developments in invasion ecology with empirical studies from marine ecosystems in order to provide a conceptual framework for studying the role of parasites and their hosts in marine invasions. Based on an extensive literature search, we identified six mechanisms in which invaders directly or indirectly affect parasite and host populations and communities: I) invaders can lose some or all of their parasites during the invasion process (parasite release or reduction), often causing a competitive advantage over native species; II) invaders can also act as a host for native parasites, which may indirectly amplify the parasite load of native hosts (parasite spillback); III) invaders can also be parasites themselves and be introduced without needing co-introduction of the host (introduction of free-living infective stages); IV) alternatively, parasites may be introduced together with their hosts (parasite co-introduction with host); V) consequently, these co-introduced parasites can sometimes also infect native hosts (parasite spillover); and VI) invasive species may be neither a host nor a parasite, but nevertheless affect native parasite host interactions by interfering with parasite transmission (transmission interference). We discuss the ecological and evolutionary implications of each of these mechanisms and generally note several substantial effects on natural communities and ecosystems via i) mass mortalities of native populations creating strong selection gradients, ii) indirect changes in species interactions within communities and iii) trophic cascading and knock-on effects in food webs that may affect ecosystem function and services. Our review demonstrates a wide range of ecological and evolutionary implications of

  5. Bacillus Cereus Catheter Related Bloodstream Infection in a Patient with Acute Lymphoblastic Leukemia

    OpenAIRE

    N Gurler; Oksuz, L; M Muftuoglu; Sargin, FD; Besisik, SK

    2012-01-01

    Bacillus cereus infection is rarely associated with actual infection and for this reason single positive blood culture is usually regarded as contamination . However it may cause a number of infections, such catheter-related bloodstream infections. Significant catheter-related bloodstream infections (CRBSI) caused by Bacillus spp. are mainly due to B. cereus and have been predominantly reported in immunocompromised hosts. Catheter removal is generally advised for management of infection. In t...

  6. Parasites in grizzly bears from the central Canadian Arctic.

    Science.gov (United States)

    Gau, R J; Kutz, S; Elkin, B T

    1999-07-01

    Standardized flotation techniques were used to survey 56 grizzly bear (Ursus arctos) fecal samples for parasites. The samples were collected during the spring and autumn of 1995 and 1996 in the central Arctic of the Northwest Territories (Canada). Parasites of the genera Nematodirus, gastrointestinal coccidia, and an unidentified first stage protostrongylid larva are reported for the first time from grizzly bear feces in North America. Parasites of the genera Diphyllobothrium and Baylisascaris also were collected. Prevalence of gastrointestinal parasites were significantly different between the spring and autumn seasons (31% and 58% respectively). Thus, we provide evidence supporting the theory that bears void gastrointestinal parasites before hibernation.

  7. Elimination of central line-associated bloodstream infections: application of the evidence.

    Science.gov (United States)

    Posa, Patricia J; Harrison, Denise; Vollman, Kathleen M

    2006-01-01

    Central line-associated bloodstream infections are considered to be an avoidable complication of care delivery. In addition to considerable morbidity and use of resources, central line-associated bloodstream infections carry an attributable morality between 12% and 25%. The estimated cost per infection is approximately 25,000 US dollars. Research over the last decade has focused on a number of care activities that have been shown to reduce the incidence of bloodstream infections related to central line placement in the critically ill patient. A significant reduction or elimination of central line-associated bloodstream infections can occur with implementation of a comprehensive central line-associated bloodstream infection prevention program that includes staff education, hand hygiene, use of maximal sterile barrier precautions, chlorhexidine gluconate skin antisepsis, avoidance of femoral lines, empowerment of staff to stop the procedure if sterile technique is broken, and daily assessment of the continued need for a central line. This article focuses on strategies for implementing a comprehensive central line-associated bloodstream infections prevention program and a tool and process for defect analysis as part of a statewide collaborative in Michigan.

  8. Epidemiology, surveillance, and prevention of bloodstream infections in hemodialysis patients.

    Science.gov (United States)

    Patel, Priti R; Kallen, Alexander J; Arduino, Matthew J

    2010-09-01

    Infections cause significant morbidity and mortality in patients undergoing hemodialysis. Bloodstream infections (BSIs) are particularly problematic, accounting for a substantial number of hospitalizations in these patients. Hospitalizations for BSI and other vascular access infections appear to have increased dramatically in hemodialysis patients since 1993. These infections frequently are related to central venous catheter (CVC) use for dialysis access. Regional initiatives that have shown successful decreases in catheter-related BSIs in hospitalized patients have generated interest in replicating this success in outpatient hemodialysis populations. Several interventions have been effective in preventing BSIs in the hemodialysis setting. Avoiding the use of CVCs in favor of access types with lower associated BSI risk is among the most important. When CVCs are used, adherence to evidence-based catheter insertion and maintenance practices can positively influence BSI rates. In addition, facility-level surveillance to detect BSIs and stimulate examination of vascular access use and care practices is essential to a comprehensive approach to prevention. This article describes the current epidemiology of BSIs in hemodialysis patients and effective prevention strategies to decrease the incidence of these devastating infections.

  9. Bloodstream Infections in a Neonatal Intensive Care Unit

    Directory of Open Access Journals (Sweden)

    Mehmet Sah Ižpek

    2016-09-01

    Full Text Available Aim: To determine the pattern of bloodstream infections (BSIs and antimicrobial susceptibility of pathogens in a neonatal intensive care unit (NICU.Material and Method: Positive hemoculture of neonates diagnosed with nosocomial sepsis from March 2011 to March 2014 in the NICU of Diyarbakir Maternity and Children%u2019s Hospital, in the southeastern region of Anatolia, Turkey, were retrospectively reviewed. Results: A total of 148 pathogens were isolated in 142 neonates. The most common microorganisms isolated were Klebsiella pneumoniae (40.5% and Acinetobacter baumannii (29.7% which was a result of a hospital outbreak. Multi-drug resistant (MDR strains accounted for 20.0% of K. pneumoniae isolates and 93.2% of A. baumannii isolates. The sepsis-attributable mortality rate was higher in cases infected with MDR strains than in cases infected without MDR strains or Candida spp (24% vs. 9.7%, p=0.032. Discussion: In our unit, BSIs were more often caused by Gram negative bacteria. BSIs caused by MDR strains were associated with a higher rate of sepsis-attributable mortality.

  10. Women and Parasitic Diseases

    Science.gov (United States)

    ... Resources How to Find A Physician Diagnosis of Parasitic Diseases Statistics More Information Get Email Updates To receive ... often need special consideration when being treated for parasitic diseases in order to avoid harm to the fetus, ...

  11. Children and Parasitic Diseases

    Science.gov (United States)

    ... CDC.gov . Parasites About Parasites Animals Blood Food Insects Water Education and Training CDC Bottle Bioassay References ... flowing water. It can cause itching and impaired vision in children, and lead to blindness in adulthood. ...

  12. Eaten alive: cannibalism is enhanced by parasites.

    Science.gov (United States)

    Bunke, Mandy; Alexander, Mhairi E; Dick, Jaimie T A; Hatcher, Melanie J; Paterson, Rachel; Dunn, Alison M

    2015-03-01

    Cannibalism is ubiquitous in nature and especially pervasive in consumers with stage-specific resource utilization in resource-limited environments. Cannibalism is thus influential in the structure and functioning of biological communities. Parasites are also pervasive in nature and, we hypothesize, might affect cannibalism since infection can alter host foraging behaviour. We investigated the effects of a common parasite, the microsporidian Pleistophora mulleri, on the cannibalism rate of its host, the freshwater amphipod Gammarus duebeni celticus. Parasitic infection increased the rate of cannibalism by adults towards uninfected juvenile conspecifics, as measured by adult functional responses, that is, the rate of resource uptake as a function of resource density. This may reflect the increased metabolic requirements of the host as driven by the parasite. Furthermore, when presented with a choice, uninfected adults preferred to cannibalize uninfected rather than infected juvenile conspecifics, probably reflecting selection pressure to avoid the risk of parasite acquisition. By contrast, infected adults were indiscriminate with respect to infection status of their victims, probably owing to metabolic costs of infection and the lack of risk as the cannibals were already infected. Thus parasitism, by enhancing cannibalism rates, may have previously unrecognized effects on stage structure and population dynamics for cannibalistic species and may also act as a selective pressure leading to changes in resource use.

  13. Gene targeting in malaria parasites.

    Science.gov (United States)

    Ménard, R; Janse, C

    1997-10-01

    Gene targeting, which permits alteration of a chosen gene in a predetermined way by homologous recombination, is an emerging technology in malaria research. Soon after the development of techniques for stable transformation of red blood cell stages of Plasmodium falciparum and Plasmodium berghei, genes of interest were disrupted in the two species. The main limitations of gene targeting in malaria parasites result from the intracellular growth and slow replication of these parasites. On the other hand, the technology is facilitated by the very high rate of homologous recombination following transformation with targeting constructs (approximately 100%). Here, we describe (i) the vector design and the type of mutation that may be generated in a target locus, (ii) the selection and screening strategies that can be used to identify clones with the desired modification, and (iii) the protocol that was used for disrupting the circumsporozoite protein (CS) and thrombospondin-related anonymous protein (TRAP) genes of P. berghei.

  14. Paradigms for parasite conservation.

    Science.gov (United States)

    Dougherty, Eric R; Carlson, Colin J; Bueno, Veronica M; Burgio, Kevin R; Cizauskas, Carrie A; Clements, Christopher F; Seidel, Dana P; Harris, Nyeema C

    2016-08-01

    Parasitic species, which depend directly on host species for their survival, represent a major regulatory force in ecosystems and a significant component of Earth's biodiversity. Yet the negative impacts of parasites observed at the host level have motivated a conservation paradigm of eradication, moving us farther from attainment of taxonomically unbiased conservation goals. Despite a growing body of literature highlighting the importance of parasite-inclusive conservation, most parasite species remain understudied, underfunded, and underappreciated. We argue the protection of parasitic biodiversity requires a paradigm shift in the perception and valuation of their role as consumer species, similar to that of apex predators in the mid-20th century. Beyond recognizing parasites as vital trophic regulators, existing tools available to conservation practitioners should explicitly account for the unique threats facing dependent species. We built upon concepts from epidemiology and economics (e.g., host-density threshold and cost-benefit analysis) to devise novel metrics of margin of error and minimum investment for parasite conservation. We define margin of error as the risk of accidental host extinction from misestimating equilibrium population sizes and predicted oscillations, while minimum investment represents the cost associated with conserving the additional hosts required to maintain viable parasite populations. This framework will aid in the identification of readily conserved parasites that present minimal health risks. To establish parasite conservation, we propose an extension of population viability analysis for host-parasite assemblages to assess extinction risk. In the direst cases, ex situ breeding programs for parasites should be evaluated to maximize success without undermining host protection. Though parasitic species pose a considerable conservation challenge, adaptations to conservation tools will help protect parasite biodiversity in the face of

  15. Blood parasites in reptiles imported to Germany.

    Science.gov (United States)

    Halla, Ursula; Ursula, Halla; Korbel, Rüdiger; Rüdiger, Korbel; Mutschmann, Frank; Frank, Mutschmann; Rinder, Monika; Monika, Rinder

    2014-12-01

    Though international trade is increasing, the significance of imported reptiles as carriers of pathogens with relevance to animal and human health is largely unknown. Reptiles imported to Germany were therefore investigated for blood parasites using light microscopy, and the detected parasites were morphologically characterized. Four hundred ten reptiles belonging to 17 species originating from 11 Asian, South American and African countries were included. Parasites were detected in 117 (29%) of individual reptiles and in 12 species. Haemococcidea (Haemogregarina, Hepatozoon, Schellackia) were found in 84% of snakes (Python regius, Corallus caninus), 20% of lizards (Acanthocercus atricollis, Agama agama, Kinyongia fischeri, Gekko gecko) and 50% of turtles (Pelusios castaneus). Infections with Hematozoea (Plasmodium, Sauroplasma) were detected in 14% of lizards (Acanthocercus atricollis, Agama agama, Agama mwanzae, K. fischeri, Furcifer pardalis, Xenagama batillifera, Acanthosaura capra, Physignathus cocincinus), while those with Kinetoplastea (Trypanosoma) were found in 9% of snakes (Python regius, Corallus caninus) and 25 % of lizards (K. fischeri, Acanthosaura capra, G. gecko). Nematoda including filarial larvae parasitized in 10% of lizards (Agama agama, Agama mwanzae, K. fischeri, Fu. pardalis, Physignathus cocincinus). Light microscopy mostly allowed diagnosis of the parasites' genus, while species identification was not possible because of limited morphological characteristics available for parasitic developmental stages. The investigation revealed a high percentage of imported reptiles being carriers of parasites while possible vectors and pathogenicity are largely unknown so far. The spreading of haemoparasites thus represents an incalculable risk for pet reptiles, native herpetofauna and even human beings.

  16. The impact of host starvation on parasite development and population dynamics in an intestinal trypanosome parasite of bumble bees.

    Science.gov (United States)

    Logan, A; Ruiz-González, M X; Brown, M J F

    2005-06-01

    Host nutrition plays an important role in determining the development and success of parasitic infections. While studies of vertebrate hosts are accumulating, little is known about how host nutrition affects parasites of invertebrate hosts. Crithidia bombi is a gut trypanosome parasite of the bumble bee, Bombus terrestris and here we use it as a model system to determine the impact of host nutrition on the population dynamics and development of micro-parasites in invertebrates. Pollen-starved bees supported significantly smaller populations of the parasite. In pollen-fed bees the parasite showed a temporal pattern in development, with promastigote transmission stages appearing at the start of the infection and gradually being replaced by choanomastigote and amastigote forms. In pollen-starved bees this developmental process was disrupted, and there was no pattern in the appearance of these three forms. We discuss the implications of these results for parasite transmission, and speculate about the mechanisms behind these changes.

  17. Emerging parasitic diseases of sheep.

    Science.gov (United States)

    Taylor, M A

    2012-09-30

    There have been changes in the emergence and inability to control of a number of sheep parasitic infections over the last decade. This review focuses on the more globally important sheep parasites, whose reported changes in epidemiology, occurrence or failure to control are becoming increasingly evident. One of the main perceived driving forces is climate change, which can have profound effects on parasite epidemiology, especially for those parasitic diseases where weather has a direct effect on the development of free-living stages. The emergence of anthelmintic-resistant strains of parasitic nematodes and the increasing reliance placed on anthelmintics for their control, can exert profound changes on the epidemiology of those nematodes causing parasitic gastroenteritis. As a consequence, the effectiveness of existing control strategies presents a major threat to sheep production in many areas around the world. The incidence of the liver fluke, Fasciola hepatica, is inextricably linked to high rainfall and is particularly prevalent in high rainfall years. Over the last few decades, there have also been increasing reports of other fluke associated diseases, such as dicroceliosis and paramphistomosis, in a number of western European countries, possibly introduced through animal movements, and able to establish with changing climates. External parasite infections, such as myiasis, can cause significant economic loss and presents as a major welfare problem. The range of elevated temperatures predicted by current climate change scenarios, result in an elongated blowfly season with earlier spring emergence and a higher cumulative incidence of fly strike. Additionally, legislative decisions leading to enforced changes in pesticide usage and choices have resulted in increased reports and spread of ectoparasitic infections, particularly mite, lice and tick infestations in sheep. Factors, such as dip disposal and associated environmental concerns, and, perhaps more

  18. Host species exploitation and discrimination by animal parasites

    Science.gov (United States)

    Forbes, Mark R.; Morrill, André; Schellinck, Jennifer

    2017-01-01

    Parasite species often show differential fitness on different host species. We developed an equation-based model to explore conditions favouring host species exploitation and discrimination. In our model, diploid infective stages randomly encountered hosts of two species; the parasite's relative fitness in exploiting each host species, and its ability to discriminate between them, was determined by the parasite's genotype at two independent diallelic loci. Relative host species frequency determined allele frequencies at the exploitation locus, whereas differential fitness and combined host density determined frequency of discrimination alleles. The model predicts instances where populations contain mixes of discriminatory and non-discriminatory infective stages. Also, non-discriminatory parasites should evolve when differential fitness is low to moderate and when combined host densities are low, but not so low as to cause parasite extinction. A corollary is that parasite discrimination (and host-specificity) increases with higher combined host densities. Instances in nature where parasites fail to discriminate when differential fitness is extreme could be explained by one host species evolving resistance, following from earlier selection for parasite non-discrimination. Similar results overall were obtained for haploid extensions of the model. Our model emulates multi-host associations and has implications for understanding broadening of host species ranges by parasites. This article is part of the themed issue ‘Opening the black box: re-examining the ecology and evolution of parasite transmission’. PMID:28289258

  19. Parasites: evolution's neurobiologists.

    Science.gov (United States)

    Adamo, Shelley Anne

    2013-01-01

    For millions of years, parasites have altered the behaviour of their hosts. Parasites can affect host behaviour by: (1) interfering with the host's normal immune-neural communication, (2) secreting substances that directly alter neuronal activity via non-genomic mechanisms and (3) inducing genomic- and/or proteomic-based changes in the brain of the host. Changes in host behaviour are often restricted to particular behaviours, with many other behaviours remaining unaffected. Neuroscientists can produce this degree of selectivity by targeting specific brain areas. Parasites, however, do not selectively attack discrete brain areas. Parasites typically induce a variety of effects in several parts of the brain. Parasitic manipulation of host behaviour evolved within the context of the manipulation of other host physiological systems (especially the immune system) that was required for a parasite's survival. This starting point, coupled with the fortuitous nature of evolutionary innovation and evolutionary pressures to minimize the costs of parasitic manipulation, likely contributed to the complex and indirect nature of the mechanisms involved in host behavioural control. Because parasites and neuroscientists use different tactics to control behaviour, studying the methods used by parasites can provide novel insights into how nervous systems generate and regulate behaviour. Studying how parasites influence host behaviour will also help us integrate genomic, proteomic and neurophysiological perspectives on behaviour.

  20. Zoonotic foodborne parasites and their surveillance.

    Science.gov (United States)

    Murrell, K D

    2013-08-01

    Humans suffer from several foodborne helminth zoonotic diseases, some of which can be deadly (e.g., trichinellosis, cerebral cysticercosis) while others are chronic and cause only mild illness (e.g., intestinal taeniosis). The route of infection is normally consumption of the parasite's natural host as a human food item (e.g., meat). The risk for infection with these parasites is highest wherever people have an inadequate knowledge of infection and hygiene, poor animal husbandry practices, and unsafe management and disposal of human and animal waste products. The design of surveillance and control strategies for the various foodborne parasite species, and the involvement of veterinary and public health agencies, vary considerably because of the different life cycles of these parasites, and epidemiological features. Trichinella spiralis, which causes most human trichinellosis, is acquired from the consumption of pork, although increasingly cases occur from eating wild game. For cysticercosis, however, the only sources for human infection are pork (Taenia solium) or beef (T. saginata). The chief risk factor for infection of humans with these parasites is the consumption of meat that has been inadequately prepared. For the pig or cow, however, the risk factors are quite different between Trichinella and Taenia. For T. spiralis the major source of infection of pigs is exposure to infected animal meat (which carries the infective larval stage), while for both Taenia species it is human faecal material contaminated with parasite eggs shed by the adult intestinal stage of the tapeworm. Consequently, the means for preventing exposure of pigs and cattle to infective stages of T. spiralis, T. solium, and T. saginata vary markedly, especially the requirements for ensuring the biosecurity of these animals at the farm. The surveillance strategies and methods required for these parasites in livestock are discussed, including the required policy-level actions and the necessary

  1. Malaria parasite epigenetics: when virulence and romance collide.

    Science.gov (United States)

    Flueck, Christian; Baker, David A

    2014-08-13

    Blood-stage malaria parasites evade the immune system by switching the protein exposed at the surface of the infected erythrocyte. A small proportion of these parasites commits to sexual development to mediate mosquito transmission. Two studies in this issue (Brancucci et al., 2014; Coleman et al., 2014) shed light on shared epigenetic machinery underlying both of these events.

  2. Ecosystem energetic implications of parasite and free-living biomass in three estuaries.

    Science.gov (United States)

    Kuris, Armand M; Hechinger, Ryan F; Shaw, Jenny C; Whitney, Kathleen L; Aguirre-Macedo, Leopoldina; Boch, Charlie A; Dobson, Andrew P; Dunham, Eleca J; Fredensborg, Brian L; Huspeni, Todd C; Lorda, Julio; Mababa, Luzviminda; Mancini, Frank T; Mora, Adrienne B; Pickering, Maria; Talhouk, Nadia L; Torchin, Mark E; Lafferty, Kevin D

    2008-07-24

    Parasites can have strong impacts but are thought to contribute little biomass to ecosystems. We quantified the biomass of free-living and parasitic species in three estuaries on the Pacific coast of California and Baja California. Here we show that parasites have substantial biomass in these ecosystems. We found that parasite biomass exceeded that of top predators. The biomass of trematodes was particularly high, being comparable to that of the abundant birds, fishes, burrowing shrimps and polychaetes. Trophically transmitted parasites and parasitic castrators subsumed more biomass than did other parasitic functional groups. The extended phenotype biomass controlled by parasitic castrators sometimes exceeded that of their uninfected hosts. The annual production of free-swimming trematode transmission stages was greater than the combined biomass of all quantified parasites and was also greater than bird biomass. This biomass and productivity of parasites implies a profound role for infectious processes in these estuaries.

  3. Cystatins of parasitic organisms.

    Science.gov (United States)

    Klotz, Christian; Ziegler, Thomas; Daniłowicz-Luebert, Emilia; Hartmann, Susanne

    2011-01-01

    The cystatin superfamily comprises several groups of protease inhibitors. In this chapter we will focus on I25 family members, which consist predominantly of the type 2 cystatins. Recently, a wealth of information on these molecules and their activities has been described. Parasite cystatins are shown to have dual functions via interaction with both parasite and host proteases. Thereby, parasite cystatins are not only essentially involved in the regulation of physiological processes during parasite development, but also represent important pathogenicity factors. Interestingly, some studies indicate that parasite cystatins evolved exceptional immuno-modulatory properties. these capacities could be exploited to interfere with unwanted immune responses in unrelated human inflammatory diseases. We highlight the different biological roles of parasite cystatins and the anticipated future developments.

  4. Parasites, pets, and people.

    Science.gov (United States)

    Marx, M B

    1991-03-01

    It is important for the family physician to understand that patients' relationships with their pets play an important role in helping maintain mental and physical health yet provide the potential for causing illness in the patient. Toxocara canis (dog roundworm) and Toxocara cati (cat roundworm) are the ascarids most commonly responsible for VLM and ocular larva migrans in humans. These roundworms live in their adult stage in the small intestine of the dog and cat where their eggs are passed in the feces. The eggs containing the infective larva are very sticky, thus an infant crawling around on the floor can easily pick these up on fingers that almost invariably end up in the mouth. Infections are usually mild and asymptomatic but with a persistent eosinophilia. Ocular larva migrans is the form usually occurring in older children and adults. Some public health veterinarians recommend that a puppy or kitten should not be obtained as a companion for a child who is not old enough to read, thus bypassing the crawling and toddler stages. Hookworm eggs, shed in the feces of infected dogs or cats, develop into the infective second stage within a week. Humans are usually infected when bare areas of skin such as bare feet or the torso come in contact with soil contaminated with the larvae. The second-stage larvae are able to penetrate the intact skin of humans and the foot pads of dogs and cats. In the United States, the common dog hookworm, A. caninum, is a widespread parasite. Human intestinal ancylostomiasis caused by this species is rare, with only six cases recorded in the literature. Infection in humans or animals by the common tapeworm of dogs and cats (Dipylidium caninum) requires ingestion of the intermediate host, the dog or cat flea containing the larva (cysticercoids) of the agent. Many cases in humans are asymptomatic. Dipylidiasis affects mainly infants and young children who may swallow a flea that hops up while the infant is crawling on the floor or fondling

  5. Candida bloodstream infections in intensive care units: analysis of the extended prevalence of infection in intensive care unit study

    NARCIS (Netherlands)

    Kett, D.H.; Azoulay, E.; Echeverria, P.M.; Vincent, J.L.; Pickkers, P.

    2011-01-01

    OBJECTIVES: To provide a global, up-to-date picture of the prevalence, treatment, and outcomes of Candida bloodstream infections in intensive care unit patients and compare Candida with bacterial bloodstream infection. DESIGN: A retrospective analysis of the Extended Prevalence of Infection in the I

  6. Foodborne parasites from wildlife

    DEFF Research Database (Denmark)

    Kapel, Christian Moliin Outzen; Fredensborg, Brian Lund

    2015-01-01

    The majority of wild foods consumed by humans are sourced from intensively managed or semi-farmed populations. Management practices inevitably affect wildlife density and habitat characteristics, which are key elements in the transmission of parasites. We consider the risk of transmission...... of foodborne parasites to humans from wildlife maintained under natural or semi-natural conditions. A deeper understanding will be useful in counteracting foodborne parasites arising from the growing industry of novel and exotic foods....

  7. Bacillus cereus catheter related bloodstream infection in a patient with acute lymphoblastic leukemia.

    Science.gov (United States)

    Gurler, N; Oksuz, L; Muftuoglu, M; Sargin, Fd; Besisik, Sk

    2012-01-01

    Bacillus cereus infection is rarely associated with actual infection and for this reason single positive blood culture is usually regarded as contamination . However it may cause a number of infections, such catheter-related bloodstream infections. Significant catheter-related bloodstream infections (CRBSI) caused by Bacillus spp. are mainly due to B. cereus and have been predominantly reported in immunocompromised hosts. Catheter removal is generally advised for management of infection. In this report, catheter-related bacteremia caused by B. cereus in a patient with acute lymphoblast c leukemia (ALL) in Istanbul Medical Faculty was presented.

  8. Neglected Parasitic Infections: Toxocariasis

    Centers for Disease Control (CDC) Podcasts

    2012-01-05

    This podcast is an overview of the Clinician Outreach and Communication Activity (COCA) Call: Neglected Parasitic Infections in the United States. Neglected Parasitic Infections are a group of diseases that afflict vulnerable populations and are often not well studied or diagnosed. A subject matter expert from CDC's Division of Parasitic Diseases and Malaria describes the epidemiology, diagnosis, and treatment of toxocariasis.  Created: 1/5/2012 by Center for Global Health, Division of Parasitic Diseases and Malaria (DPDM); Emergency Risk Communication Branch (ERCB)/Joint Information Center (JIC), Office of Public Health Preparedness and Response (OPHPR).   Date Released: 1/9/2012.

  9. Parasite development and host responses during the establishment of Trypanosoma brucei infection transmitted by tsetse fly.

    Science.gov (United States)

    Barry, J D; Emergy, D L

    1984-02-01

    Following inoculation of Trypanosoma brucei into large mammals by the tsetse fly a local skin reaction, the 'chancre', develops due to trypanosome proliferation. We have cannulated the afferent and efferent lymphatics of the draining lymph node in goats and examined the onset of a cellular reaction, the emigration of the parasite from the chancre and the development of both antigenic variation and the specific immune response. The chancre first became detectable by day 3 post-infection, peaked by day 6 and then subsided. Lymphocyte output increased 6- to 8-fold by day 10 and the number of lymphoblasts increased 50-fold in this period. Both then declined. Trypanosomes were detected in lymph 1-2 days before the chancre, peaked by days 5-6, declined during development of the chancre and then peaked again. The bloodstream population appeared by days 4-5 and displayed different kinetics from that in lymph. Recirculation of parasites through the lymphatics ensued. Lymph-borne trypanosome populations were highly pleomorphic. Parasites in lymph expressed firstly a mixture of the Variable Antigen Types (VATs) which are found characteristically in the tsetse fly, this being followed by a mixture of other VATs. The two groups overlapped in appearance. In the bloodstream the same sequence of events occurred although 2 or 3 days later. The specific antibody response, as measured by radioimmunoassay and agglutination, arose within a few days of the first detection of each VAT. Activities appeared first in the lymph and then in plasma.

  10. Immune Escape Strategies of Malaria Parasites

    Science.gov (United States)

    Gomes, Pollyanna S.; Bhardwaj, Jyoti; Rivera-Correa, Juan; Freire-De-Lima, Celio G.; Morrot, Alexandre

    2016-01-01

    Malaria is one of the most life-threatening infectious diseases worldwide. Immunity to malaria is slow and short-lived despite the repeated parasite exposure in endemic areas. Malaria parasites have evolved refined machinery to evade the immune system based on a range of genetic changes that include allelic variation, biomolecular exposure of proteins, and intracellular replication. All of these features increase the probability of survival in both mosquitoes and the vertebrate host. Plasmodium species escape from the first immunological trap in its invertebrate vector host, the Anopheles mosquitoes. The parasites have to pass through various immunological barriers within the mosquito such as anti-microbial molecules and the mosquito microbiota in order to achieve successful transmission to the vertebrate host. Within these hosts, Plasmodium species employ various immune evasion strategies during different life cycle stages. Parasite persistence against the vertebrate immune response depends on the balance among virulence factors, pathology, metabolic cost of the host immune response, and the parasites ability to evade the immune response. In this review we discuss the strategies that Plasmodium parasites use to avoid the vertebrate host immune system and how they promote successful infection and transmission. PMID:27799922

  11. Parasitic disease of the liver and biliary tree

    Directory of Open Access Journals (Sweden)

    Mohamed Abdulrahman

    1997-01-01

    Full Text Available Several parasites infest liver or biliary tree, either during their maturation stages or as adult worms. Bile iry tree parasites may cause pancreatitis, cholecystitis, biliary tree obstruction, recurrent cholangitis, biliary tree strictures and some may lead to cholangiocarcinoma. This review discusses the hepatobiliary parasites, and shows our experience in diagnosis and management of these parasites. Ultrasonography of the liver is diagnostic in schistosomiasis, hydatid cysts, amebic liver abscess, ascariasis and other biliary tree parasites showing bile duct dilatation. Percutaneous aspiration under ultrasonography guidance of hydatid liver cysts or amebic abscess are effective measures in management. Endoscopic retrograde cholangiopancreatography (ERCP is safe and effective in diagnosis and management of biliary tree parasites.

  12. Parasite fauna of farmed Nile tilapia (Oreochromis niloticus) and African catfish (Clarias gariepinus) in Uganda.

    Science.gov (United States)

    Akoll, Peter; Konecny, Robert; Mwanja, Wilson W; Nattabi, Juliet K; Agoe, Catherine; Schiemer, Fritz

    2012-01-01

    An intensive parasite survey was conducted in 2008 to better understand the parasite fauna occurrence, distribution and diversity in the commercial aquaculture fish species in Uganda. A total of 265 fish collected from hatcheries and grow-out systems were examined for parasites using routine parasitological techniques. The survey yielded 17 parasite species: 11 from Oreochromis niloticus and ten from Clarias gariepinus. Four parasites-Amirthalingamia macracantha, Monobothrioides sp., Zoogonoides sp. and a member of the family Amphilinidae-were recorded for the first time in the country. The parasite diversity was similar between hosts; however, O. niloticus was dominated by free-living stage-transmitted parasites in lower numbers, whereas both trophically and free-living stage-transmitted parasites were equally represented in C. gariepinus in relatively high intensities. The patterns in parasite numbers and composition in the two hosts reflect differences in fish habitat use and diet. A shift in parasite composition from monoxenous species-dominated communities in small-sized fish to heteroxenous in large fishes was recorded in both hosts. This was linked to ontogenetic feeding changes and prolonged exposure to parasites. Polyculture systems showed no effect on parasite intensity and composition. The gills were highly parasitized, mainly by protozoans and monogeneans. Generally, the occurrence and diversity of parasites in these fish species highlight the likelihood of disease outbreak in the proposed intensive aquaculture systems. This calls for raising awareness in fish health management among potential farmers, service providers and researchers.

  13. Parasites from the Past

    DEFF Research Database (Denmark)

    Søe, Martin Jensen; Fredensborg, Brian Lund; Nejsum, Peter

    will investigate how the diversity of food-borne parasitic infections has changed with cultural and dietary habits, hunting practice and intensity of animal husbandry. This is done by isolating and typing ancient DNA remains from parasite eggs found in archeological samples from across Denmark....

  14. Parasite infections revisited

    NARCIS (Netherlands)

    Wiegertjes, G.F.; Forlenza, M.; Joerink, M.; Scharsack, J.P.

    2005-01-01

    Studying parasites helps reveal basic mechanisms in immunology. For long this has been recognized for studies on the immune system of mice and man. But it is not true for immunological studies on fish. To support this argument we discuss selected examples of parasite infections not only in warm-bloo

  15. Parasites and marine invasions

    Science.gov (United States)

    Torchin, M.E.; Lafferty, K.D.; Kuris, A.M.

    2002-01-01

    Introduced marine species are a major environmental and economic problem. The rate of these biological invasions has substantially increased in recent years due to the globalization of the world's economies. The damage caused by invasive species is often a result of the higher densities and larger sizes they attain compared to where they are native. A prominent hypothesis explaining the success of introduced species is that they are relatively free of the effects of natural enemies. Most notably, they may encounter fewer parasites in their introduced range compared to their native range. Parasites are ubiquitous and pervasive in marine systems, yet their role in marine invasions is relatively unexplored. Although data on parasites of marine organisms exist, the extent to which parasites can mediate marine invasions, or the extent to which invasive parasites and pathogens are responsible for infecting or potentially decimating native marine species have not been examined. In this review, we present a theoretical framework to model invasion success and examine the evidence for a relationship between parasite presence and the success of introduced marine species. For this, we compare the prevalence and species richness of parasites in several introduced populations of marine species with populations where they are native. We also discuss the potential impacts of introduced marine parasites on native ecosystems.

  16. PARASITES OF FISH

    Science.gov (United States)

    The intent of this chapter is to describe the parasites of importance to fishes maintained and used in laboratory settings. In contrast to the frist edition, the focus will be only on those parasites that pose a serious threat to or are common in fishes held in these confined en...

  17. Pitting of malaria parasites and spherocyte formation

    Directory of Open Access Journals (Sweden)

    Gichuki Charity W

    2006-07-01

    Full Text Available Abstract Background A high prevalence of spherocytes was detected in blood smears of children enrolled in a case control study conducted in the malaria holoendemic Lake Victoria basin. It was speculated that the spherocytes reflect intraerythrocytic removal of malarial parasites with a concurrent removal of RBC membrane through a process analogous to pitting of intraerythrocytic inclusion bodies. Pitting and re-circulation of RBCs devoid of malaria parasites could be a host mechanism for parasite clearance while minimizing the anaemia that would occur were the entire parasitized RBC removed. The prior demonstration of RBCs containing ring-infected erythrocyte surface antigen (pf 155 or RESA but no intracellular parasites, support the idea of pitting. Methods An in vitro model was developed to examine the phenomenon of pitting and spherocyte formation in Plasmodium falciparum infected RBCs (iRBC co-incubated with human macrophages. In vivo application of this model was evaluated using blood specimens from patients attending Kisumu Ditrict Hospital. RBCs were probed with anti-RESA monoclonal antibody and a DNA stain (propidium iodide. Flow cytometry and fluorescent microscopy was used to compare RBCs containing both the antigen and the parasites to those that were only RESA positive. Results Co-incubation of iRBC and tumor necrosis factor-alpha activated macrophages led to pitting (14% ± 1.31% macrophages with engulfed trophozoites as opposed to erythrophagocytosis (5.33% ± 0.95% (P Conclusion It is proposed that in malaria holoendemic areas where prevalence of asexual stage parasites approaches 100% in children, RBCs with pitted parasites are re-circulated and pitting may produce spherocytes.

  18. AIDS - associated parasitic diarrhoea

    Directory of Open Access Journals (Sweden)

    Arora D

    2009-01-01

    Full Text Available Since the advent of human immunodeficiency virus infection, with its profound and progressive effect on the cellular immune system, a group of human opportunistic pathogens has come into prominence. Opportunistic parasitic infection can cause severe morbidity and mortality. Because many of these infections are treatable, an early and accurate diagnosis is important. This can be accomplished by a variety of methods such as direct demonstration of parasites and by serological tests to detect antigen and/or specific antibodies. However, antibody response may be poor in these patients and therefore immunodiagnostic tests have to be interpreted with caution. Cryptosporidium parvum , Isospora belli , Cyclospora cayetanensis , Microsporidia, Entamoeba histolytica and Strongyloides stercoralis are the commonly detected parasites. Detection of these parasites will help in proper management of these patients because drugs are available for most of these parasitic infections.

  19. Improvement of routine diagnosis of intestinal parasites with multiple sampling and SAF-fixative in the Triple-Faeces-Test

    NARCIS (Netherlands)

    O. Vandenberg; Y. van Laethem; H. Souayah; W.T. Kutane; T. van Gool; A. Dediste

    2006-01-01

    Background and study aim : To perform optimal laboratory diagnosis of intestinal parasites is demanding. Because intestinal parasites are intermittently shedded, examination of multiple stools is imperative. For reliable detection of vegetative stages of protozoa, fresh stools should be examined dir

  20. Using real time process measurements to reduce catheter related bloodstream infections in the intensive care unit

    OpenAIRE

    Wall, R; Ely, E; Elasy, T; Dittus, R; Foss, J.; Wilkerson, K; Speroff, T

    2005-01-01

    

Problem: Measuring a process of care in real time is essential for continuous quality improvement (CQI). Our inability to measure the process of central venous catheter (CVC) care in real time prevented CQI efforts aimed at reducing catheter related bloodstream infections (CR-BSIs) from these devices.

  1. Patients with Central Lines - What You Need to Know to Avoid a Bloodstream Infection PSA (:60)

    Centers for Disease Control (CDC) Podcasts

    2011-03-01

    This 60 second PSA is based on the March, 2011 CDC Vital Signs report which indicates bloodstream infections in patients with central lines are largely preventable when healthcare providers use CDC-recommended infection control steps.  Created: 3/1/2011 by Centers for Disease Control and Prevention (CDC).   Date Released: 3/1/2011.

  2. Routine Surveillance for Bloodstream Infections in a Pediatric Hematopoietic Stem Cell Transplant Cohort: Do Patients Benefit?

    Directory of Open Access Journals (Sweden)

    Heather Rigby

    2007-01-01

    Full Text Available BACKGROUND: Hematopoietic stem cell transplant (HSCT recipients are at a high risk for late bloodstream infection (BSI. Controversy exists regarding the benefit of surveillance blood cultures in this immunosuppressed population. Despite the common use of this practice, the practical value is not well established in non-neutropenic children following HSCT.

  3. Secular Trends in Nosocomial Bloodstream Infections : Antibiotic-Resistant Bacteria Increase the Total Burden of Infection

    NARCIS (Netherlands)

    Ammerlaan, H. S. M.; Harbarth, S.; Buiting, A. G. M.; Crook, D. W.; Fitzpatrick, F.; Hanberger, H.; Herwaldt, L. A.; van Keulen, P. H. J.; Kluytmans, J. A. J. W.; Kola, A.; Kuchenbecker, R. S.; Lingaas, E.; Meessen, N.; Morris-Downes, M. M.; Pottinger, J. M.; Rohner, P.; dos Santos, R. P.; Seifert, H.; Wisplinghoff, H.; Ziesing, S.; Walker, A. S.; Bonten, M. J. M.

    2013-01-01

    Background. It is unknown whether rising incidence rates of nosocomial bloodstream infections (BSIs) caused by antibiotic-resistant bacteria (ARB) replace antibiotic-susceptible bacteria (ASB), leaving the total BSI rate unaffected. Methods. We investigated temporal trends in annual incidence densit

  4. Severe Community-Acquired Bloodstream Infection with Acinetobacter ursingii in Person who Injects Drugs.

    Science.gov (United States)

    Salzer, Helmut J F; Rolling, Thierry; Schmiedel, Stefan; Klupp, Eva-Maria; Lange, Christoph; Seifert, Harald

    2016-01-01

    We report a community-acquired bloodstream infection with Acinteobacter ursingii in an HIV-negative woman who injected drugs. The infection was successfully treated with meropenem. Species identification was performed by using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Improved identification of Acinetobacter spp. by using this method will help identify clinical effects of this underdiagnosed pathogen.

  5. Bloodstream Infections in Very Low Birth Weight Infants with Intestinal Failure

    NARCIS (Netherlands)

    Cole, Conrad R.; Hansen, Nellie I.; Higgins, Rosemary D.; Bell, Edward F.; Shankaran, Seetha; Laptook, Abbot R.; Walsh, Michele C.; Hale, Ellen C.; Newman, Nancy S.; Das, Abhik; Stoll, Barbara J.

    2012-01-01

    Objective To examine pathogens and other characteristics associated with late-onset bloodstream infections (BSIs) in infants with intestinal failure (IF) as a consequence of necrotizing enterocolitis (NEC). Study design Infants weighing 401-1500 g at birth who survived for >72 hours and received car

  6. Visualization of Malaria Parasites in the Skin Using the Luciferase Transgenic Parasite, Plasmodium berghei.

    Science.gov (United States)

    Matsuoka, Hiroyuki; Tomita, Hiroyuki; Hattori, Ryuta; Arai, Meiji; Hirai, Makoto

    2015-03-01

    We produced a transgenic rodent malaria parasite (Plasmodium berghei) that contained the luciferase gene under a promoter region of elongation factor-1α. These transgenic (TG) parasites expressed luciferase in all stages of their life cycle, as previously reported. However, we were the first to succeed in observing sporozoites as a mass in mouse skin following their deposition by the probing of infective mosquitoes. Our transgenic parasites may have emitted stronger bioluminescence than previous TG parasites. The estimated number of injected sporozoites by mosquitoes was between 34 and 775 (median 80). Since luciferase activity diminished immediately after the death of the parasites, luciferase activity could be an indicator of the existence of live parasites. Our results indicated that sporozoites survived at the probed site for more than 42 hours. We also detected sporozoites in the liver within 15 min of the intravenous injection. Bioluminescence was not observed in the lung, kidney or spleen. We confirmed the observation that the liver was the first organ in which malaria parasites entered and increased in number.

  7. A simple method to purify biologically and antigenically preserved bloodstream trypomastigotes of Trypanosoma cruzi using Deae-cellulose columns

    Directory of Open Access Journals (Sweden)

    Maria Auxiliadora de Sousa

    1983-09-01

    Full Text Available A method to purify trypanosomastigotes of some strains of Trypanosoma cruzi (Y, CL, FL, F, "Berenice", "Colombiana" and "São Felipe" from mouse blood by using DEAE-cellulose columns was standardized. This procedure is a modification of the Lanham & Godfrey methods and differs in some aspects from others described to purify T. cruzi bloodstream trypomastigotes, mainly by avoidance of prior purifications of parasites. By this method, the broad trypomastigotes were mainly isolated, accounting for higher recoveries obtained with strains having higher percentages of these forms: processing of infected blood from irradiated mice could be advantageous by increasing the recovery of parasites (percentage and/or total number and elution of more slender trypomastigotes. Trypomastigotes purified by this method presented normal morphology and motility, remained infective to triatomine bugs and mice, showing in the latter prepatent periods and courses parasitemia similar to those of control parasites, and also reproducing the polymorphism pattern of each strain. Their virulence and pathogenicity also remained considerably preserved, the latter property being evaluated by LD 50 tests, mortality rates and mean survival time of inoculated mice. Moreover, these parasites presented positive, clear and peripheral immunofluorescence reaction at titres similar to those of control organisms, thus suggesting important preservation of their surface antigens.Usando colunas de DEAE-cellulose foi padronizado um método para purificação de tripomastigotas de várias cepas de Trypanosoma cruzi (Y, CL, FL, F, "Berenice", "Columbiana" e "São Felipe" a partir do sangue de camundongos. Este método é uma modificação daqueles descritos por Lanham & Godfrey e difere em vários aspectos de outros descritos para purificar as formas sanguíneas deste parasita, particularmente na dispensa de pré-purificações. Por ele foram isolados principalmente os tripomastigotas largos

  8. Cross-stage immunity for malaria vaccine development.

    Science.gov (United States)

    Nahrendorf, Wiebke; Scholzen, Anja; Sauerwein, Robert W; Langhorne, Jean

    2015-12-22

    A vaccine against malaria is urgently needed for control and eventual eradication. Different approaches are pursued to induce either sterile immunity directed against pre-erythrocytic parasites or to mimic naturally acquired immunity by controlling blood-stage parasite densities and disease severity. Pre-erythrocytic and blood-stage malaria vaccines are often seen as opposing tactics, but it is likely that they have to be combined into a multi-stage malaria vaccine to be optimally safe and effective. Since many antigenic targets are shared between liver- and blood-stage parasites, malaria vaccines have the potential to elicit cross-stage protection with immune mechanisms against both stages complementing and enhancing each other. Here we discuss evidence from pre-erythrocytic and blood-stage subunit and whole parasite vaccination approaches that show that protection against malaria is not necessarily stage-specific. Parasites arresting at late liver-stages especially, can induce powerful blood-stage immunity, and similarly exposure to blood-stage parasites can afford pre-erythrocytic immunity. The incorporation of a blood-stage component into a multi-stage malaria vaccine would hence not only combat breakthrough infections in the blood should the pre-erythrocytic component fail to induce sterile protection, but would also actively enhance the pre-erythrocytic potency of this vaccine. We therefore advocate that future studies should concentrate on the identification of cross-stage protective malaria antigens, which can empower multi-stage malaria vaccine development.

  9. [Parasitism and ecological parasitology].

    Science.gov (United States)

    Balashov, Iu S

    2011-01-01

    Parasitism as one of the life modes is a general biological phenomenon and is a characteristic of all viruses, many taxa of bacteria, fungi, protists, metaphytes, and metazoans. Zooparasitology is focused on studies of parasitic animals, particularly, on their taxonomy, anatomy, life cycles, host-parasite relations, biocoenotic connections, and evolution. Ecological parasitology is a component of ecology, as the scientific study of the relation of living organisms with each other and their surroundings. In the present paper, critical analysis of the problems, main postulates, and terminology of the modern ecological parasitology is given.

  10. Transfection of malaria parasites.

    Science.gov (United States)

    Waters, A P; Thomas, A W; van Dijk, M R; Janse, C J

    1997-10-01

    The stable genetic transformation of three phylogenetically diverse species of Plasmodium, the parasitic etiological agent of malaria, is now possible. The parasite is haploid throughout the vast majority of its life cycle. Therefore with the single selectable marker activity and protocols currently available, it is possible not only to express introduced transgenes but also to study the effects of site-specific homologous recombination such as gene knockout. Transgene expression will allow the detailed study of many aspects of the cellular biology of malaria parasites, for example, the mechanisms underlying drug resistance and protein trafficking. We describe here the methods for propagation of the two animal models (Plasmodium berghei and Plasmodium knowlesi) and for transfection of these two species and the human parasite, Plasmodium falciparum. Examples of transgene expression are given.

  11. Metabolomics and protozoan parasites.

    Science.gov (United States)

    Paget, Timothy; Haroune, Nicolas; Bagchi, Sushmita; Jarroll, Edward

    2013-06-01

    In this review, we examine the state-of-the-art technologies (gas and liquid chromatography, mass spectroscopy and nuclear magnetic resonance, etc.) in the well-established area of metabolomics especially as they relate to protozoan parasites.

  12. Parasites and Foodborne Illness

    Science.gov (United States)

    ... Cyclospora cayetanensis Toxoplasma gondii Trichinella spiralis Taenia saginata/Taenia solium (Tapeworms) Parasites may be present in food or ... gondii , Trichinella spiralis , Taenia saginata (beef tapeworm), and Taenia solium (pork tapeworm). [ Top of Page ] Giardia duodenalis or ...

  13. Leishmania development in sand flies: parasite-vector interactions overview

    Directory of Open Access Journals (Sweden)

    Dostálová Anna

    2012-12-01

    Full Text Available Abstract Leishmaniases are vector-borne parasitic diseases with 0.9 – 1.4 million new human cases each year worldwide. In the vectorial part of the life-cycle, Leishmania development is confined to the digestive tract. During the first few days after blood feeding, natural barriers to Leishmania development include secreted proteolytic enzymes, the peritrophic matrix surrounding the ingested blood meal and sand fly immune reactions. As the blood digestion proceeds, parasites need to bind to the midgut epithelium to avoid being excreted with the blood remnant. This binding is strictly stage-dependent as it is a property of nectomonad and leptomonad forms only. While the attachment in specific vectors (P. papatasi, P. duboscqi and P. sergenti involves lipophosphoglycan (LPG, this Leishmania molecule is not required for parasite attachment in other sand fly species experimentally permissive for various Leishmania. During late-stage infections, large numbers of parasites accumulate in the anterior midgut and produce filamentous proteophosphoglycan creating a gel-like plug physically obstructing the gut. The parasites attached to the stomodeal valve cause damage to the chitin lining and epithelial cells of the valve, interfering with its function and facilitating reflux of parasites from the midgut. Transformation to metacyclic stages highly infective for the vertebrate host is the other prerequisite for effective transmission. Here, we review the current state of knowledge of molecular interactions occurring in all these distinct phases of parasite colonization of the sand fly gut, highlighting recent discoveries in the field.

  14. Pathoecology of Chiribaya parasitism

    Directory of Open Access Journals (Sweden)

    Martinson Elizabeth

    2003-01-01

    Full Text Available The excavations of Chiribaya culture sites in the Osmore drainage of southern Peru focused on the recovery of information about prehistoric disease, including parasitism. The archaeologists excavated human, dog, guinea pig, and llama mummies. These mummies were analyzed for internal and external parasites. The results of the analysis and reconstruction of prehistoric life from the excavations allows us to interpret the pathoecology of the Chiribaya culture.

  15. Flagellar motility in eukaryotic human parasites.

    Science.gov (United States)

    Krüger, Timothy; Engstler, Markus

    2015-10-01

    A huge variety of protists rely on one or more motile flagella to either move themselves or move fluids and substances around them. Many of these flagellates have evolved a symbiotic or parasitic lifestyle. Several of the parasites have adapted to human hosts, and include agents of prevalent and serious diseases. These unicellular parasites have become specialised in colonising a wide range of biological niches within humans. They usually have diverse transmission cycles, and frequently manifest a variety of distinct morphological stages. The motility of the single or multiple flagella plays important but understudied roles in parasite transmission, host invasion, dispersal, survival, proliferation and pathology. In this review we provide an overview of the important human pathogens that possess a motile flagellum for at least part of their life cycle. We highlight recently published studies that aim to elucidate motility mechanisms, and their relevance for human disease. We then bring the physics of swimming at the microscale into context, emphasising the importance of interdisciplinary approaches for a full understanding of flagellate motility - especially in light of the parasites' microenvironments and population dynamics. Finally, we summarise some important technological aspects, describing challenges for the field and possibilities for motility analyses in the future.

  16. Parasitic nematodes - from genomes to control.

    Science.gov (United States)

    Mitreva, Makedonka; Zarlenga, Dante S; McCarter, James P; Jasmer, Douglas P

    2007-08-19

    The diseases caused by parasitic nematodes in domestic and companion animals are major factors that decrease production and quality of the agricultural products. Methods available for the control of the parasitic nematode infections are mainly based on chemical treatment, non-chemical management practices, immune modulation and biological control. However, even with integrated pest management that frequently combines these approaches, the effective and long-lasting control strategies are hampered by the persistent exposure of host animals to environmental stages of parasites, the incomplete protective response of the host and acquisition of anthelmintic resistance by an increasing number of parasitic nematodes. Therefore, the challenges to improve control of parasitic nematode infections are multi-fold and no single category of information will meet them all. However, new information, such as nematode genomics, functional genomics and proteomics, can strengthen basic and applied biological research aimed to develop improvements. In this review we will, summarize existing control strategies of nematode infections and discuss ongoing developments in nematode genomics. Genomics approaches offer a growing and fundamental base of information, which when coupled with downstream functional genomics and proteomics can accelerate progress towards developing more efficient and sustainable control programs.

  17. Parasites and human evolution.

    Science.gov (United States)

    Perry, George H

    2014-01-01

    Our understanding of human evolutionary and population history can be advanced by ecological and evolutionary studies of our parasites. Many parasites flourish only in the presence of very specific human behaviors and in specific habitats, are wholly dependent on us, and have evolved with us for thousands or millions of years. Therefore, by asking when and how we first acquired those parasites, under which environmental and cultural conditions we are the most susceptible, and how the parasites have evolved and adapted to us and we in response to them, we can gain considerable insight into our own evolutionary history. As examples, the tapeworm life cycle is dependent on our consumption of meat, the divergence of body and head lice may have been subsequent to the development of clothing, and malaria hyperendemicity may be associated with agriculture. Thus, the evolutionary and population histories of these parasites are likely intertwined with critical aspects of human biology and culture. Here I review the mechanics of these and multiple other parasite proxies for human evolutionary history and discuss how they currently complement our fossil, archeological, molecular, linguistic, historical, and ethnographic records. I also highlight potential future applications of this promising model for the field of evolutionary anthropology.

  18. The immunological balance between host and parasite in malaria.

    Science.gov (United States)

    Deroost, Katrien; Pham, Thao-Thy; Opdenakker, Ghislain; Van den Steen, Philippe E

    2016-03-01

    Coevolution of humans and malaria parasites has generated an intricate balance between the immune system of the host and virulence factors of the parasite, equilibrating maximal parasite transmission with limited host damage. Focusing on the blood stage of the disease, we discuss how the balance between anti-parasite immunity versus immunomodulatory and evasion mechanisms of the parasite may result in parasite clearance or chronic infection without major symptoms, whereas imbalances characterized by excessive parasite growth, exaggerated immune reactions or a combination of both cause severe pathology and death, which is detrimental for both parasite and host. A thorough understanding of the immunological balance of malaria and its relation to other physiological balances in the body is of crucial importance for developing effective interventions to reduce malaria-related morbidity and to diminish fatal outcomes due to severe complications. Therefore, we discuss in this review the detailed mechanisms of anti-malarial immunity, parasite virulence factors including immune evasion mechanisms and pathogenesis. Furthermore, we propose a comprehensive classification of malaria complications according to the different types of imbalances.

  19. Host plant resistance to parasitic weeds; recent progress and bottlenecks.

    Science.gov (United States)

    Yoder, John I; Scholes, Julie D

    2010-08-01

    Parasitic witchweeds (Striga spp.) and broomrapes (Orobanche and Phelipanche spp.) directly invade the roots of crop plants connecting to the vascular system and abstracting nutrients and water. As a consequence they cause devastating losses in crop yield. Genetic resistance to parasitic weeds is a highly desirable component of any control strategy. Resistance to parasitic plants can occur at different stages of the parasite lifecycle: before attachment to the host, during penetration of the root or after establishment of vascular connections. New studies are beginning to shed light on the molecular mechanisms and signaling pathways involved in plant-plant resistance. The first resistance gene to Striga, encoding a CC-NBS-LRR Resistance protein (R) has been identified and cloned suggesting that host plants resist attack from parasitic plants using similar surveillance mechanisms as those used against fungal and bacterial pathogens. It is becoming clear that the salicylic acid (SA) signaling pathway plays an important role in resistance to parasitic plants and genes encoding pathogenesis-related (PR) proteins are upregulated in a number of the resistant interactions. New strategies for engineering resistance to parasitic plants are also being explored, including the expression of parasite-specific toxins in host roots and RNAi to silence parasite genes crucial for development.

  20. Parasites in marine food webs

    Science.gov (United States)

    Lafferty, Kevin D.

    2013-01-01

    Most species interactions probably involve parasites. This review considers the extent to which marine ecologists should consider parasites to fully understand marine communities. Parasites are influential parts of food webs in estuaries, temperate reefs, and coral reefs, but their ecological importance is seldom recognized. Though difficult to observe, parasites can have substantial biomass, and they can be just as common as free-living consumers after controlling for body mass and trophic level. Parasites have direct impacts on the energetics of their hosts and some affect host behaviors, with ecosystem-level consequences. Although they cause disease, parasites are sensitive components of ecosystems. In particular, they suffer secondary extinctions due to biodiversity loss. Some parasites can also return to a system after habitat restoration. For these reasons, parasites can make good indicators of ecosystem integrity. Fishing can indirectly increase or decrease parasite populations and the effects of climate change on parasites are likely to be equally as complex.

  1. Early oral switch therapy in low-risk Staphylococcus aureus bloodstream infection (SABATO) : Study protocol for a randomized controlled trial

    NARCIS (Netherlands)

    Kaasch, Achim J.; Fätkenheuer, Gerd; Prinz-Langenohl, Reinhild; Paulus, Ursula; Hellmich, Martin; Weiß, Verena; Jung, Norma; Rieg, Siegbert; Kern, Winfried V.; Seifert, Harald; Lewalter, Karl; Lemmen, Sebastian; Stijnis, Cornelis; Van der Meer, Jan; Soriano, Alex; Ruiz, Laura Morata; Arastéh, Keikawus; Stocker, Hartmut; Kluytmans, Jan; Veenemans, Jacobien; Brodt, Hans Reinhard; Stephan, Christoph; Wolf, Timo; Kessel, Johanna; Joost, Insa; Sinha, Bhanu; van Assen, Sander; Wilting, Kasper; Tobias Welte, Welte; Christiane Mölgen, Mölgen; Julia Freise, Freise; Brunkhorst, Frank; Pletz, Mathias; Hagel, Stefan; Becker, Christian; Frieling, Thomas; Kösters, Katrin; Reuter, Stefan; Hsiao, Mikai; Rupp, Jan; Dalhoff, Klaus; Turner, David; Snape, Susan; Crusz, Shanika; Venkatesan, Pradhib; Salzberger, Bernd; Hanses, Frank; Rodriguez-Baño, Jesùs; Méndez, Adoración Valiente; López-Cortés, Luis Eduardo; Cisneros, José Miguel; Navarro-Amuedo, Maria Dolores; Bonten, Marc; Oosterheert, Jan Jelrik; Ekkelenkamp, Miquel

    2015-01-01

    Background: Current guidelines recommend that patients with Staphylococcus aureus bloodstream infection (SAB) are treated with long courses of intravenous antimicrobial therapy. This serves to avoid SAB-related complications such as relapses, local extension and distant metastatic foci. However, in

  2. Current strategies for the prevention and management of central line-associated bloodstream infections

    Directory of Open Access Journals (Sweden)

    Zhuolin Han

    2010-11-01

    Full Text Available Zhuolin Han, Stephen Y Liang, Jonas MarschallDivision of Infectious Diseases, Washington University School of Medicine in St Louis, St Louis, MO, USAAbstract: Central venous catheters are an invaluable tool for diagnostic and therapeutic purposes in today’s medicine, but their use can be complicated by bloodstream infections (BSIs. While evidence-based preventive measures are disseminated by infection control associations, the optimal management of established central line-associated BSIs has been summarized in infectious diseases guidelines. We prepared an overview of the state-of-the-art of prevention and management of central line-associated BSIs and included topics such as the role of antibiotic-coated catheters, the role of catheter removal in the management, and a review of currently used antibiotic compounds and the duration of treatment.Keywords: central venous catheters, bloodstream infections, guidelines, prevention

  3. Cluster of Candida parapsilosis primary bloodstream infection in a neonatal intensive care unit

    Directory of Open Access Journals (Sweden)

    Silva Carmem Lúcia P. da

    2001-01-01

    Full Text Available Candida parapsilosis is an increasingly important bloodstream pathogen in neonatal intensive care units (NICU. We investigated a cluster of bloodstream infections in a NICU to determine whether nosocomial transmission occurred. During a 3-day period, 3 premature infants hospitalized in the same unit presented with sepsis caused by C. parapsilosis. Electrophoretic karyotype of the organisms was performed by using pulsed field gel electrophoresis in a countour-clamped homogeneous electric field system. The isolate from 1 newborn could not be typed, and the isolates from the remaining 2 infants had identical patterns. All 3 cases are described. We conclude that nosocomial transmission of C. parapsilosis occurred and that neonates under intensive care may represent a risk group for this pathogen.

  4. Tsukamurella catheter-related bloodstream infection in a pediatric patient with pulmonary hypertension

    Directory of Open Access Journals (Sweden)

    Kristen A. Wendorf

    2010-03-01

    Full Text Available Catheter-related bloodstream infections (CR-BSI are important complications in patients with long-term indwelling central venous catheters. In this report, we present the case of a 14-year-old male with pulmonary hypertension treated with continuous treprostinil infusion, who presented with a CR-BSI caused by a Tsukamurella species. This case highlights the potential for this unusual organism to cause infection in immunocompetent patients.

  5. Enterococcal bloodstream infection. Design and validation of a mortality prediction rule

    OpenAIRE

    Perez-Garcia, Alejandra; Landecho, Manuel; Beunza Nuin, Juan Jose; Conde-Estévez, D; Horcajada, J.P.; Grau, S.; Gea Sánchez, Alfredo; E. Mauleón; Sorli, L.; Gómez, J.; Terradas, R.; Lucena, J.F. (Juan F.); Alegre Garrido, Félix; A. Huerta; Pozo, José Luis del

    2016-01-01

    To develop a prediction rule to describe the risk of death as a result of enterococcal bloodstream infection. A prediction rule was developed by analysing data collected from 122 patients diagnosed with enterococcal BSI admitted to the Clínica Universidad de Navarra (Pamplona, Spain); and validated by confirming its accuracy with the data of an external population (Hospital del Mar, Barcelona). According to this model, independent significant predictors for the risk of death were being diabet...

  6. Risk of vancomycin-resistant enterococci bloodstream infection among patients colonized with vancomycin-resistant enterococci

    Directory of Open Access Journals (Sweden)

    Ahu Kara

    2015-02-01

    Full Text Available Background:Vancomycin-resistant enterococci colonization has been reported to increase the risk of developing infections, including bloodstream infections.Aim:In this study, we aimed to share our experience with the vancomycin-resistant enterococci bloodstream infections following gastrointestinal vancomycin-resistant enterococci colonization in pediatric population during a period of 18 months.Method:A retrospective cohort of children admitted to a 400-bed tertiary teaching hospital in Izmir, Turkey whose vancomycin-resistant enterococci colonization was newly detected during routine surveillances for gastrointestinal vancomycin-resistant enterococci colonization during the period of January 2009 and December 2012 were included in this study. All vancomycin-resistant enterococci isolates found within 18 months after initial detection were evaluated for evidence of infection.Findings: Two hundred and sixteen patients with vancomycin-resistant enterococci were included in the study. Vancomycin-resistant enterococci colonization was detected in 136 patients (62.3% while they were hospitalized at intensive care units; while the remaining majority (33.0% were hospitalized at hematology-oncology department. Vancomycinresistant enterococci bacteremia was present only in three (1.55% patients. All these patients were immunosuppressed due to human immunodeficiency virus (one patient and intensive chemotherapy (two patients.Conclusion:In conclusion, our study found that 1.55% of vancomycin-resistant enterococcicolonized children had developed vancomycin-resistant enterococci bloodstream infection among the pediatric intensive care unit and hematology/oncology patients; according to our findings, we suggest that immunosupression is the key point for developing vancomycinresistant enterococci bloodstream infections.

  7. Efficacy of an infection control programme in reducing nosocomial bloodstream infections in a Senegalese neonatal unit.

    Science.gov (United States)

    Landre-Peigne, C; Ka, A S; Peigne, V; Bougere, J; Seye, M N; Imbert, P

    2011-10-01

    Neonatal nosocomial infections are public health threats in the developing world, and successful interventions are rarely reported. A before-and-after study was conducted in the neonatal unit of the Hôpital Principal de Dakar, Senegal to assess the efficacy of a multi-faceted hospital infection control programme implemented from March to May 2005. The interventions included clustering of nursing care, a simple algorithm for empirical therapy of suspected early-onset sepsis, minimal invasive care and promotion of early discharge of neonates. Data on nosocomial bloodstream infections, mortality, bacterial resistance and antibiotic use were collected before and after implementation of the infection control programme. One hundred and twenty-five infants were admitted immediately before the programme (Period 1, January-February 2005) and 148 infants were admitted immediately after the programme (Period 2, June-July 2005). The two groups of infants were comparable in terms of reason for admission and birth weight. After implementation of the infection control programme, the overall rate of nosocomial bloodstream infections decreased from 8.8% to 2.0% (P=0.01), and the rate of nosocomial bloodstream infections/patient-day decreased from 10.9 to 2.9/1000 patient-days (P=0.03). Overall mortality rates did not differ significantly. The proportion of neonates who received antimicrobial therapy for suspected early-onset sepsis decreased significantly from 100% to 51% of at-risk infants (Pnosocomial bloodstream infections, and the efficacy of these interventions was long-lasting. Such interventions could be extended to other low-income countries.

  8. Cell division in apicomplexan parasites.

    Science.gov (United States)

    Francia, Maria E; Striepen, Boris

    2014-02-01

    Toxoplasma gondii and Plasmodium falciparum are important human pathogens. These parasites and many of their apicomplexan relatives undergo a complex developmental process in the cells of their hosts, which includes genome replication, cell division and the assembly of new invasive stages. Apicomplexan cell cycle progression is both globally and locally regulated. Global regulation is carried out throughout the cytoplasm by diffusible factors that include cell cycle-specific kinases, cyclins and transcription factors. Local regulation acts on individual nuclei and daughter cells that are developing inside the mother cell. We propose that the centrosome is a master regulator that physically tethers cellular components and that provides spatial and temporal control of apicomplexan cell division.

  9. Second-Generation central venous catheter in the prevention of bloodstream infection: a systematic review 1

    Science.gov (United States)

    Stocco, Janislei Gislei Dorociaki; Hoers, Hellen; Pott, Franciele Soares; Crozeta, Karla; Barbosa, Dulce Aparecida; Meier, Marineli Joaquim

    2016-01-01

    Abstract Objective: to evaluate the effectiveness and safety in the use of second-generation central venous catheters impregnated in clorhexidine and silver sulfadiazine when compared with other catheters, being them impregnated or not, in order to prevent the bloodstream infection prevention. Method: systematic review with meta-analysis. Databases searched: MEDLINE, EMBASE, CINAHL, LILACS/SciELO, Cochrane CENTRAL; search in Congress Proceedings and records from Clinical Trials. Results: 1.235 studies were identified, 97 were pre-selected and 4 were included. In catheter-related bloodstream infection, there was no statistical significance between second-generation impregnated catheter compared with the non-impregnated ones, absolute relative risk 1,5% confidence interval 95% (3%-1%), relative risk 0,68 (confidence interval 95%, 0,40-1,15) and number needed to treat 66. In the sensitivity analysis, there was less bloodstream infection in impregnated catheters (relative risk 0,50, confidence interval 95%, 0,26-0,96). Lower colonization, absolute relative risk 9,6% (confidence interval 95%, 10% to 4%), relative risk 0,51 (confidence interval 95% from 0,38-0,85) and number needed to treat 5. Conclusion: the use of second-generation catheters was effective in reducing the catheter colonization and infection when a sensitivity analysis is performed. Future clinical trials are suggested to evaluate sepsis rates, mortality and adverse effects. PMID:27508901

  10. Cost-Effectiveness of Surveillance for Bloodstream Infections for Sepsis Management in Low-Resource Settings.

    Science.gov (United States)

    Penno, Erin C; Baird, Sarah J; Crump, John A

    2015-10-01

    Bacterial sepsis is a leading cause of mortality among febrile patients in low- and middle-income countries, but blood culture services are not widely available. Consequently, empiric antimicrobial management of suspected bloodstream infection is based on generic guidelines that are rarely informed by local data on etiology and patterns of antimicrobial resistance. To evaluate the cost-effectiveness of surveillance for bloodstream infections to inform empiric management of suspected sepsis in low-resource areas, we compared costs and outcomes of generic antimicrobial management with management informed by local data on etiology and patterns of antimicrobial resistance. We applied a decision tree model to a hypothetical population of febrile patients presenting at the district hospital level in Africa. We found that the evidence-based regimen saved 534 more lives per 100,000 patients at an additional cost of $25.35 per patient, resulting in an incremental cost-effectiveness ratio of $4,739. This ratio compares favorably to standard cost-effectiveness thresholds, but should ultimately be compared with other policy-relevant alternatives to determine whether routine surveillance for bloodstream infections is a cost-effective strategy in the African context.

  11. Clinical and microbiological characteristics of bloodstream infections in a tertiary hospital in Maceió, Alagoas, Brazil

    Directory of Open Access Journals (Sweden)

    Maria Tereza Freitas Tenório

    2010-04-01

    Full Text Available We observed the clinical and microbiological characteristics of several stages of bloodstream infections (BSI, as well as the mortality attributed to it in a tertiary hospital in the northeast of Brazil (in the city of Maceió, Alagoas. A prospective cohort of 143 patients who had at least one positive blood culture was enrolled in the study. Their clinical evolution was followed up for 30 days from October 2005 to December 2006. The relation among the qualitative variables was verified through Chi-square test. The significance level was 5%. The statistical package adopted was SPSS 15.0 for Windows. Up to the thirtieth day, 30.1% of the patients presented bacteremia and 69.9% developed sepsis.Among these, 20.3% developed severe sepsis and 10.5% septic shock. The mortality attributed to it was 37.8%. In bacteremia, sepsis, severe sepsis, and septic shock conditions, mortality rates were 9.3%, 50%, 65.5%, and 84.6%, respectively. Respiratory (32.2% and urinary (14% sources and the ones related to central venous catheter (14% were prevalent. In the wards 55.12% of the cases developed sepsis, whereas in the intensive care units, the rate was 87.69% (p < 0.05. Chronic renal failure, diabetes melitus, and neuropathy were present in 21.7%, 26.6%, and 29.4% of the cases, respectively. Coagulase-negative Staphylococcus (25.9%, Staphylococcus aureus (21%, and Klebsiella pneumoniae (14% were the most present microorganism in the sample. The high morbidity and mortality rates in this study are attributed to the lack of knowledge on BSI characteristics and on instituted protocols for detection and treatment in early stages.

  12. Internal parasites of reptiles.

    Science.gov (United States)

    Raś-Noryńska, Małgorzata; Sokół, Rajmund

    2015-01-01

    Nowadays a growing number of exotic reptiles are kept as pets. The aim of this study was to determine the species of parasites found in reptile patients of veterinary practices in Poland. Fecal samples obtained from 76 lizards, 15 turtles and 10 snakes were examined by flotation method and direct smear stained with Lugol's iodine. In 63 samples (62.4%) the presence of parasite eggs and oocysts was revealed. Oocysts of Isospora spp. (from 33% to 100% of the samples, depending on the reptilian species) and Oxyurids eggs (10% to 75%) were predominant. In addition, isolated Eimeria spp. oocysts and Giardia intestinalis cysts were found, as well as Strongylus spp. and Hymenolepis spp. eggs. Pet reptiles are often infected with parasites, some of which are potentially dangerous to humans. A routine parasitological examination should be done in such animals.

  13. Immune Evasion Strategies of Pre-Erythrocytic Malaria Parasites

    Directory of Open Access Journals (Sweden)

    Hong Zheng

    2014-01-01

    Full Text Available Malaria is a mosquito-borne infectious disease of humans. It begins with a bite from an infected female Anopheles mosquito and leads to the development of the pre-erythrocytic and blood stages. Blood-stage infection is the exclusive cause of clinical symptoms of malaria. In contrast, the pre-erythrocytic stage is clinically asymptomatic and could be an excellent target for preventive therapies. Although the robust host immune responses limit the development of the liver stage, malaria parasites have also evolved strategies to suppress host defenses at the pre-erythrocytic stage. This paper reviews the immune evasion strategies of malaria parasites at the pre-erythrocytic stage, which could provide us with potential targets to design prophylactic strategies against malaria.

  14. Facultative social parasitism in the allodapine bee Macrogalea berentyensis

    Institute of Scientific and Technical Information of China (English)

    JACLYN A. SMITH

    2007-01-01

    Previous research on social parasitism has largely ignored allodapine socialparasites, which is surprising given the huge potential of these bees to provide a betterunderstanding of social parasitism. Macrogalea berentyensis, a species that was previouslysuggested to be a social parasite, was collected in nests of M. ellioti, and also in nestsconsisting of only M. berentyensis. These findings, along with morphological and phyloge-netic evidence, show that this species is a facultative social parasite. In the independentlyliving M. berentyensis nests, brood were present that had been reared to an advanced stage,suggesting that: (i) these parasites may be effective at foraging and caring for their brood;or (ii) these nests may be colonies where all the hosts had died, and these parasites had yetto disperse. Macrogalea berentyensis is the closest relative of the facultative social parasite,M. antanosy, and both these species represent the most recent evolutionary origin of socialparasitism within the allodapines. Further behavioral research on both these parasitic specieswould therefore have important implications for the understanding of the evolution of socialparasitism.

  15. 寄主龄期对松粉蚧抑虱跳小蜂寄生和发育的影响%Effects of Host-stage on the Parasitism and Development of the Endoparasitoid, Acerophagus coccois Smith (Hymenoptera: Encyrtidae) on Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae)

    Institute of Scientific and Technical Information of China (English)

    李盼; 许再福

    2012-01-01

    通过限制选择和自由选择试验,研究松粉蚧抑虱跳小蜂(Acerophagus coccois Smith)在扶桑绵粉蚧(Phenacoccus solenopsis Tinsley)的1~3龄若虫与雌成虫体上的寄生及其子代生长发育情况.结果表明:在限制选择和自由选择的2种试验中,松粉蚧抑虱跳小蜂均可寄生扶桑绵粉蚧的1~3龄若虫和雌成虫,其中对2龄若虫的寄生率最高,分别是41.20%和45.00%;对粉蚧雌成虫的寄生率最低,但每头僵蚧平均羽化出蜂数最多,分别为9.42头和7.00头,子代雌蜂比例也最大;子代雌蜂在粉蚧1龄若虫体内发育的历期最长,为14.62 d;在粉蚧雌成虫上发育的历期最短,为13.97 d;在粉蚧1龄若虫体内发育的子代蜂的个体最小,在粉蚧雌成虫上发育的子代蜂个体最大.因此,利用松粉蚧抑虱跳小蜂防治扶桑绵粉蚧,应以粉蚧2龄若虫为防治对象,以粉蚧雌成虫为繁殖寄主.%Non-choice and choice parasitic experiments of Acerophagus coccois Smith (Hymenoptera: Encyrtidae)on the lst-3rd instar nymphes and female adult of Phenacoccus solenopsis Tinsley(Homoptera: Pseudococcidae)were carried out in the laboratory. Host age preference and development of the offspring were evaluated. The results showed that, all lst-3rd instar nymphes and female adults of the mealybug were susceptible to parasitism in both non -choice and choice situation, while the parasitism on the 2 nd instar nymph was 41.20% and 45.00%, respectively, which was significantly higher than those of the others. The lowest parasitism was observed on host female adult, which, however, had the greatest mean number of progeny, 11.40 and 7.00 offsprings per female mealybug in non梒hoice and choice, respectively, and the sex ratio of the parasitoids on mealybug adult is the highest. Developmental durations of A. coccois progenies on different instars or stage of the mealybug were also investigated. Longest development duration of female A. coccois progeny was 14

  16. National Bloodstream Infection Surveillance in Switzerland 2008-2014: Different Patterns and Trends for University and Community Hospitals.

    Science.gov (United States)

    Buetti, Niccolò; Marschall, Jonas; Atkinson, Andrew; Kronenberg, Andreas

    2016-09-01

    OBJECTIVE To characterize the epidemiology of bloodstream infections in Switzerland, comparing selected pathogens in community and university hospitals. DESIGN Observational, retrospective, multicenter laboratory surveillance study. METHODS Data on bloodstream infections from 2008 through 2014 were obtained from the Swiss infection surveillance system, which is part of the Swiss Centre for Antibiotic Resistance (ANRESIS). We compared pathogen prevalences across 26 acute care hospitals. A subanalysis for community-acquired and hospital-acquired bloodstream infections in community and university hospitals was performed. RESULTS A total of 42,802 bloodstream infection episodes were analyzed. The most common etiologies were Escherichia coli (28.3%), Staphylococcus aureus (12.4%), and polymicrobial bloodstream infections (11.4%). The proportion of E. coli increased from 27.5% in 2008 to 29.6% in 2014 (P = .04). E. coli and S. aureus were more commonly reported in community than university hospitals (34.3% vs 22.7%, P<.001 and 13.9% vs 11.1%, P<.001, respectively). Fifty percent of episodes were community-acquired, with E. coli again being more common in community hospitals (41.0% vs 32.4%, P<.001). The proportion of E. coli in community-acquired bloodstream infections increased in community hospitals only. Community-acquired polymicrobial infections (9.9% vs 5.6%, P<.001) and community-acquired coagulase-negative staphylococci (6.7% vs 3.4%, P<0.001) were more prevalent in university hospitals. CONCLUSIONS The role of E. coli as predominant pathogen in bloodstream infections has become more pronounced. There are distinct patterns in community and university hospitals, potentially influencing empirical antibiotic treatment. Infect Control Hosp Epidemiol 2016;37:1060-1067.

  17. Effects of insect growth regulators on the mosquito-parasitic nematode Romanomermis iyengari.

    Science.gov (United States)

    Suman, Devi Shankar; Brey, Christopher W; Wang, Yi; Sanad, Manar; Shamseldean, Muhammed S M; Gaugler, Randy

    2013-02-01

    Pyriproxyfen, a juvenile hormone analogue, diflubenzuron, a chitin synthesis inhibitor, and azadirachtin, an ecdysone agonist, are three insect growth regulators (IGRs) considered as selective and effective insecticides for mosquitoes. Romanomermis iyengari (Welch) is a mosquito-parasitic mermithid that can provide biological control against many medically important mosquito species. The compatibility of these two control tactics was tested by evaluating the sublethal effects of exposure to IGR on nematode developmental stages (preparasitic, parasitic, and preparasitic + parasitic) using Culex pipiens larvae as the host. Sublethal concentrations of IGRs were 90 % emergence inhibition of host mosquito. Preparasitic exposure to pyriproxyfen, azadirachtin, and diflurbenzuron had no effect on infectivity, parasite load, sex ratio, or male size but reduced nematode female length and increased male sex ratio at one parasite/larva. When IGRs treatments were made against the parasitic and preparasitic + parasitic stages, pyriproxyfen and azadirachtin reduced R. iyengari infectivity, parasite load, and male nematode length, whereas pyriproxyfen exposure increased male sex ratio and reduced the female R. iyengari length. Thus, IGRs have significant negative impacts on different stages of mosquito mermithid that can destabilize the balance of host-parasite population interaction. Therefore, IGRs should be used with caution in mosquito habitats where these parasites have established.

  18. Enteric parasites and AIDS

    Directory of Open Access Journals (Sweden)

    Sérgio Cimerman

    1999-11-01

    Full Text Available OBJECTIVE: To report on the importance of intestinal parasites in patients with AIDS, showing relevant data in the medical literature, with special emphasis on epidemiology, diagnosis and treatment of enteroparasitosis, especially cryptosporidiasis, isosporiasis, microsporidiasis and strongyloidiasis. DESIGN: Narrative review.

  19. Parasitic Diseases With Cutaneous Manifestations.

    Science.gov (United States)

    Ash, Mark M; Phillips, Charles M

    2016-01-01

    Parasitic diseases result in a significant global health burden. While often thought to be isolated to returning travelers, parasitic diseases can also be acquired locally in the United States. Therefore, clinicians must be aware of the cutaneous manifestations of parasitic diseases to allow for prompt recognition, effective management, and subsequent mitigation of complications. This commentary also reviews pharmacologic treatment options for several common diseases.

  20. microRNAs in parasites and parasite infection.

    Science.gov (United States)

    Zheng, Yadong; Cai, Xuepeng; Bradley, Janette E

    2013-03-01

    miRNAs, a subclass of small regulatory RNAs, are present from ancient unicellular protozoans to parasitic helminths and parasitic arthropods. The miRNA-silencing mechanism appears, however, to be absent in a number of protozoan parasites. Protozoan miRNAs and components of their silencing machinery possess features different from other eukaryotes, providing some clues on the evolution of the RNA-induced silencing machinery. miRNA functions possibly associate with neoblast biology, development, physiology, infection and immunity of parasites. Parasite infection can alter host miRNA expression that can favor both parasite clearance and infection. miRNA pathways are, thus, a potential target for the therapeutic control of parasitic diseases.

  1. The In Vitro Effects of Aqueous and Ethanolic Extracts of the Leaves of Ageratum conyzoides (Asteraceae on Three Life Cycle Stages of the Parasitic Nematode Heligmosomoides bakeri (Nematoda: Heligmosomatidae

    Directory of Open Access Journals (Sweden)

    J. Wabo Poné

    2011-01-01

    Full Text Available A comparative in vitro study was carried out to determine the ovicidal and larvicidal activity of aqueous and ethanolic extracts of Ageratum conyzoides (Asteraceae leaves on the eggs (unembryonated and embryonated, first and second larval stages of Heligmosomoides bakeri. Four different concentrations (0.625, 1.25, 2.5, and 3.75 mg·mL−1 of both aqueous and ethanolic extracts were tested. Distilled water and 5% tween were used as negative controls in the bioassay. In fact, they did not affect development of eggs, hatching, and larval survival. The extract activities were dose dependent. The ethanolic extract was more potent against embryonation (39.6 ± 2.9% than the aqueous extract (53.3 ± 10.9% at the highest concentration (3.75 mg·ml−1. Both types of extracts killed larvae. Mebendazole proved more lethal (EC50 of 0.745 and 0.323 mg·mL−1, resp., for L1 and L2 larvae. The aqueous extracts were the least lethal (EC50 of 4.76 and 2.29 mg·mL−1, resp., for L1 and L2 larvae. The ethanolic extracts showed intermediate activity (EC50 of 1.323 and 1.511 mg·mL−1, resp., for L1 and L2 larvae. It is concluded that the ovicidal and larvicidal properties of aqueous and ethanolic extracts of Ageratum conyzoides leaves are demonstrated in this work.

  2. Transient and stable transfection in the protozoan parasite Entamoeba invadens.

    Science.gov (United States)

    Ehrenkaufer, Gretchen M; Singh, Upinder

    2012-07-01

    Entamoeba histolytica is an important human pathogen and a major health problem worldwide. Many aspects of parasite biology can be studied with the exception of stage conversion, which cannot be reproduced adequately in E. histolytica. The reptile parasite Entamoeba invadens is a vital model system for studying stage conversion since it can be induced to undergo both encystation and excystation with high efficiency in vitro. However, functional studies using E. invadens have been limited by the lack of genetic tools in this species. Here, we report a new method for both transient and stable transfection of E. invadens. These new tools will greatly enhance research into Entamoeba development.

  3. Detection of circulating parasite-derived microRNAs in filarial infections.

    Directory of Open Access Journals (Sweden)

    Lucienne Tritten

    2014-07-01

    Full Text Available Filarial nematodes cause chronic and profoundly debilitating diseases in both humans and animals. Applications of novel technology are providing unprecedented opportunities to improve diagnosis and our understanding of the molecular basis for host-parasite interactions. As a first step, we investigated the presence of circulating miRNAs released by filarial nematodes into the host bloodstream. miRNA deep-sequencing combined with bioinformatics revealed over 200 mature miRNA sequences of potential nematode origin in Dirofilaria immitis-infected dog plasma in two independent analyses, and 21 in Onchocerca volvulus-infected human serum. Total RNA obtained from D. immitis-infected dog plasma was subjected to stem-loop RT-qPCR assays targeting two detected miRNA candidates, miR-71 and miR-34. Additionally, Brugia pahangi-infected dog samples were included in the analysis, as these miRNAs were previously detected in extracts prepared from this species. The presence of miR-71 and miR-34 discriminated infected samples (both species from uninfected samples, in which no specific miRNA amplification occurred. However, absolute miRNA copy numbers were not significantly correlated with microfilaraemia for either parasite. This may be due to the imprecision of mf counts to estimate infection intensity or to miRNA contributions from the unknown number of adult worms present. Nonetheless, parasite-derived circulating miRNAs are found in plasma or serum even for those species that do not live in the bloodstream.

  4. Detection of circulating parasite-derived microRNAs in filarial infections.

    Science.gov (United States)

    Tritten, Lucienne; Burkman, Erica; Moorhead, Andrew; Satti, Mohammed; Geary, James; Mackenzie, Charles; Geary, Timothy

    2014-07-01

    Filarial nematodes cause chronic and profoundly debilitating diseases in both humans and animals. Applications of novel technology are providing unprecedented opportunities to improve diagnosis and our understanding of the molecular basis for host-parasite interactions. As a first step, we investigated the presence of circulating miRNAs released by filarial nematodes into the host bloodstream. miRNA deep-sequencing combined with bioinformatics revealed over 200 mature miRNA sequences of potential nematode origin in Dirofilaria immitis-infected dog plasma in two independent analyses, and 21 in Onchocerca volvulus-infected human serum. Total RNA obtained from D. immitis-infected dog plasma was subjected to stem-loop RT-qPCR assays targeting two detected miRNA candidates, miR-71 and miR-34. Additionally, Brugia pahangi-infected dog samples were included in the analysis, as these miRNAs were previously detected in extracts prepared from this species. The presence of miR-71 and miR-34 discriminated infected samples (both species) from uninfected samples, in which no specific miRNA amplification occurred. However, absolute miRNA copy numbers were not significantly correlated with microfilaraemia for either parasite. This may be due to the imprecision of mf counts to estimate infection intensity or to miRNA contributions from the unknown number of adult worms present. Nonetheless, parasite-derived circulating miRNAs are found in plasma or serum even for those species that do not live in the bloodstream.

  5. Gastrointestinal parasite fauna of Emperor Penguins (Aptenodytes forsteri) at the Atka Bay, Antarctica.

    Science.gov (United States)

    Kleinertz, S; Christmann, S; Silva, L M R; Hirzmann, J; Hermosilla, C; Taubert, A

    2014-11-01

    In general, the knowledge on parasites infecting Antarctic birds is scarce. The present study intends to extend the knowledge on gastrointestinal parasites of Emperor Penguins (Aptenodytes forsteri) at the Atka Bay, Antarctica. Fecal samples of 50 individual Emperor Penguins were collected at the Atka Bay and analyzed using the sodium-acetate-formaldehyde (SAF) method for the identification of intestinal helminth eggs and/or protozoan parasite stages. In addition, coproantigen ELISAs were performed to detect Cryptosporidium and Giardia infections. Overall, 13 out of 50 penguins proved parasitized (26%). The following stages of gastrointestinal parasites were identified: One Capillaria sp. egg, Tetrabothrius spp. eggs, Diphyllobothrium spp. eggs, and proglottids of the cestode Parorchites zederi. The recorded Capillaria infection represents a new host record for Emperor Penguins. All coproantigen ELISAs for the detection of Cryptosporidium spp. and Giardia spp. were negative. This paper provides current data on parasites of the Emperor Penguin, a protected endemic species of the Antarctica.

  6. Metazoan Parasites of Antarctic Fishes.

    Science.gov (United States)

    Oğuz, Mehmet Cemal; Tepe, Yahya; Belk, Mark C; Heckmann, Richard A; Aslan, Burçak; Gürgen, Meryem; Bray, Rodney A; Akgül, Ülker

    2015-06-01

    To date, there have been nearly 100 papers published on metazoan parasites of Antarctic fishes, but there has not yet been any compilation of a species list of fish parasites for this large geographic area. Herein, we provide a list of all documented occurrences of monogenean, cestode, digenean, acanthocephalan, nematode, and hirudinean parasites of Antarctic fishes. The list includes nearly 250 parasite species found in 142 species of host fishes. It is likely that there are more species of fish parasites, which are yet to be documented from Antarctic waters.

  7. Treatment and Outcomes in Carbapenem-resistant Klebsiella pneumoniae Bloodstream Infections

    Science.gov (United States)

    Neuner, Elizabeth A.; Yeh, Jun-Yen; Hall, Gerri S.; Sekeres, Jennifer; Endimiani, Andrea; Bonomo, Robert A.; Shrestha, Nabin K.; Fraser, Thomas G.; van Duin, David

    2010-01-01

    Carbapenem-resistant K. pneumoniae (CR-Kp) is an emerging multi-drug resistant nosocomial pathogen. This is a retrospective chart review describing the outcomes and treatment of 60 cases of CR-Kp bloodstream infections. All CR-Kp isolated from blood cultures were identified retrospectively from the microbiology laboratory from January 2007 to May 2009. Clinical information was collected from the electronic medical record. Patients with 14 day-hospital mortality were compared to those who survived 14 days. The all-cause in-hospital and 14-day mortality for all 60 CR-Kp bloodstream infections was 58.3% and 41.7%, respectively. In this collection, 98% of tested isolates were susceptible in vitro to tigecycline, compared to 86% to colistimethate, 45% to amikacin and 22% to gentamicin. Nine patients died prior to cultures being finalized, and received no therapy active against CR-Kp. In the remaining 51 patients, those who survived to day14 (n=35) were compared to non-survivor at day 14 (n=16). These patients were characterized by both chronic disease and acute illness. The 90-day readmission rate for hospital survivors was 72%. Time to active therapy was not significantly different between survivors and non-survivors, and hospital mortality was also similar regardless of therapy chosen. Pitt bacteremia score was the only significant factor associated with mortality in Cox regression analysis. In summary, CR-Kp bloodstream infections occur in patients who are chronically and acutely ill. They are associated with high 14-day mortality and poor outcomes regardless of tigecycline or other treatment regimens were selected. PMID:21396529

  8. Epidemic increase in Salmonella bloodstream infection in children, Bwamanda, the Democratic Republic of Congo.

    Science.gov (United States)

    Phoba, M-F; De Boeck, H; Ifeka, B B; Dawili, J; Lunguya, O; Vanhoof, R; Muyembe, J-J; Van Geet, C; Bertrand, S; Jacobs, J

    2014-01-01

    Salmonella enterica is the leading cause of bloodstream infection in children in sub-Saharan Africa, but few data are available from Central-Africa. We documented during the period November 2011 to May 2012 an epidemic increase in invasive Salmonella bloodstream infections in HGR Bwamanda, a referral hospital in Equateur Province, DR Congo. Salmonella spp. represented 90.4 % (103 out of 114) of clinically significant blood culture isolates and comprised Salmonella Typhimurium (54.4 %, 56 out of 103), Salmonella Enteritidis (28.2 %, 29 out of 103) and Salmonella Typhi (17.5 %, 18 out of 103), with Salmonella Enteritidis accounting for most of the increase. Most (82 out of 103, 79.6 %) isolates were obtained from children infected with Salmonella Typhimurium and Salmonella Enteritidis were 14 months (14 days to 64 years) and 19 months (3 months to 8 years) respectively. Clinical presentation was non-specific; the in-hospital case fatality rate was 11.1 %. More than two thirds (69.7 %, 53 out of 76) of children infection. Most (83/85, 97.6 %) non-typhoid Salmonella isolates as well as 6/18 (33.3 %) Salmonella Typhi isolates were multidrug resistant (i.e. resistant to the first-line oral antibiotics amoxicillin, trimethoprim-sulfamethoxazole and chloramphenicol), one (1.0 %) Salmonella Typhimurium had decreased ciprofloxacin susceptibility owing to a point mutation in the gyrA gene (Gly81Cys). Multilocus variable-number tandem-repeat (MLVA) analysis of the Salmonella Enteritidis isolates revealed closely related patterns comprising three major and four minor profiles, with differences limited to one out of five loci. These data show an epidemic increase in clonally related multidrug-resistant Salmonella bloodstream infection in children in DR Congo.

  9. Control method exploration of nosocomial bloodstream infection and its effect evaluation

    Institute of Scientific and Technical Information of China (English)

    CHAI Wen-zhao; WANG Xiao-ting; ZHOU Jiong; LI Xin; LUO Hong-bo; LIU Da-wei

    2012-01-01

    Background Currently,slightly more than 50% of bloodstream infections (BSIs) are hospital acquired.When these infections occur in patients in intensive care units,they are associated with a high mortality rate,additional hospital days and excess hospital costs.Because of multifactor of nosocomial BSIs,measurements of control nosocomial BSIs are wide variety and lead to some confusion in practice.The aim of this study was to explore special way in accordance with self-hospital base on common principle.Methods In one ward of the Intensive Care Unit,Peking Union Medical College Hospital,at first,we divided the all operation about bloodstream way into three sections used as keypoints.By surveying keypoints respectively,some operation faults of blood way were discovered.For decreasing the mobidity of nosocomial BSls,some intervention measurements were executed.The rate of nosocomial BSIs was analyzed by chi-square test.Results According to the statistics from January to June,we received and cured 618 patients in total; among them,there were 13 cases of nosocomial BSI and the average occurrence was 2.3 cases/month.After intervention measurements from July to December 2011,we received and cured 639 patients in total with seven cases of nosocomial BSI,and the average occurrence was 1.2 cases/month (P <0.05).From January to April 2012,no nosocomial BSI occurred in the investigated ward.Conclusion Removing the operation faults of bloodstream way might decrease the nosocomial BSI rapidly and efficiently by utilizing a key point survey.

  10. EFFECT OF INFLIXIMAB ON PARAMETERS OF REMODELING OF ARTERIAL BLOODSTREAM, RANKL AND OSTEOPROTEGERIN LEVELS IN PATIENTS WITH RHEUMATOID ARTHRITIS

    Directory of Open Access Journals (Sweden)

    Larisa Aleksandrovna Knyazeva

    2013-01-01

    Full Text Available Objective. To study the effect of infliximab (INF on serum levels of RANKL and osteoprotegerin (OPG, as well as on structural and functional properties of the vascular wall in patients with rheumatoid arthritis (RA.Material and Methods. A total of 79 RA patients who corresponded to the classification criteria ACR (1987 or ACR/EULAR (2010 and were seronegative for IgM rheumatoid factor (RF were examined. The mean age of patients was 43.6±8.5 years. The serum levels of OPG and RANKL were determined by ELISA (Biomedica, Austria; the common carotid arteries (CCAs were visualized using an Acuson X/10 ultrasonic complex equipped with a 7 MHz linear sensor in the β-mode prior to therapy and after 12-month therapy with INF.Results and Discussion. An increased OPG level was observed mostly in patients with RA duration up to 1 year; an increase in RANKL level was pronounced stronger in patients with PA duration over 2 years. The disturbance of structural and functional properties of the arterial bloodstream was revealed, manifesting itself as an increase in the intimamedia complex thickness, diameter and rigidity index of CCA that were stronger pronounced in patients with late onset RA. A correlation analysis showed the presence of reliable relationship between the RANKL and OPG levels and CCA remodeling parameters. INF therapy showed high clinical effectiveness and correction effect on the RANKL/OPG system. In addition, it was accompanied by a reduction of signs of CCA remodeling, which was stronger pronounced in patients with early RA.Conclusion. The results prove the reasonability of using INF at early stages of RA in order to optimize the therapy and achieve more efficient control of cardiovascular complications.

  11. A transgenic Plasmodium falciparum NF54 strain that expresses GFP-luciferase throughout the parasite life cycle.

    Science.gov (United States)

    Vaughan, Ashley M; Mikolajczak, Sebastian A; Camargo, Nelly; Lakshmanan, Viswanathan; Kennedy, Mark; Lindner, Scott E; Miller, Jessica L; Hume, Jen C C; Kappe, Stefan H I

    2012-12-01

    Plasmodium falciparum is the pathogenic agent of the most lethal of human malarias. Transgenic P. falciparum parasites expressing luciferase have been created to study drug interventions of both asexual and sexual blood stages but luciferase-expressing mosquito stage and liver stage parasites have not been created which has prevented the easy quantification of mosquito stage development (e.g. for transmission blocking interventions) and liver stage development (for interventions that prevent infection). To overcome this obstacle, we have created a transgenic P. falciparum NF54 parasite that expresses a GFP-luciferase transgene throughout the life cycle. Luciferase expression is robust and measurable at all life cycle stages, including midgut oocyst, salivary gland sporozoites and liver stages, where in vivo development is easily measurable using humanized mouse infections in conjunction with an in vivo imaging system. This parasite reporter strain will accelerate testing of interventions against pre-erythrocytic life cycle stages.

  12. Zinc finger nuclease technology: A stable tool for high efficiency transformation in bloodstream form T. brucei.

    Science.gov (United States)

    Schumann, Gabriela; Kangussu-Marcolino, Monica M; Doiron, Nicholas; Käser, Sandro; de Assis Burle-Caldas, Gabriela; DaRocha, Wanderson D; Teixeira, Santuza M; Roditi, Isabel

    2017-02-20

    In Trypanosoma brucei, the generation of knockout mutants is relatively easy compared to other organisms as transfection methods are well established. These methods have their limitations, however, when it comes to the generation of genome-wide libraries that require a minimum of several hundred thousand transformants. Double-strand breaks with the meganuclease ISce-I dramatically increase transformation efficiency, but are not widely in use as cell lines need to be generated de novo before each transfection. Here we show that zinc finger nucleases are a robust and stable tool that can enhance transformation in bloodstream forms by more than an order of magnitude.

  13. Bacillus cereus Bloodstream Infection in a Preterm Neonate Complicated by Late Meningitis

    Directory of Open Access Journals (Sweden)

    Toshinobu Horii

    2012-01-01

    Full Text Available Central nervous system infections caused by Bacillus cereus have rarely been reported in infants. In this paper, the case of a 2-month-old low-birth-weight female who developed meningitis 45 days after resolution of a bloodstream infection (BSI is described. The pulsed-field gel electrophoresis results revealed that the patterns of both B. cereus isolates responsible for the acute meningitis and for the prior bacteraemic episode were closely related. Although the source of the infection from within the patient was not clear, it is suggested that the B. cereus BSI developed in the neonate was complicated by acute meningitis.

  14. INTESTINAL PARASITES IN IRAN

    Directory of Open Access Journals (Sweden)

    K. Mohammad

    1995-12-01

    Full Text Available The purpose of this study was to investigate the status and epidemiology of Intestinal Parasites in Iran. The information was driven from an extensive Health Survey which was done by the Ministry of Health and Medical Education, deputy of Research Affairs in 1990-92. Sampling fraction was 1 per 1000 of individuals aged between 2 and 69, the sampling method was cluster sampling and each cluster consisted of 7 families. Formal-ether was the method of finding parasites which included: Oxior, Ascariasis, Giardiasis, Entamoeba-histolytica, Tinea, Strongyloidiasis, Ancylostoma, and Trichocephaliasis. The highest prevalence rate belonged to Giardiasis with 14.4% and the lowest one belonged to Tinea and Ancylostoma with 0.2%. The prevalence rate in rural area was significantly lower than urban area (p<0.0001.

  15. Host-parasite interactions under extreme climatic conditions

    Institute of Scientific and Technical Information of China (English)

    J. MARTINEZ; S. MERINO

    2011-01-01

    The effect that climatic changes can exert on parasitic interactions represents a multifactor problem whose results are difficult to predict. The actual impact of changes will depend on their magnitude and the physiological tolerance of affected organisms. When the change is considered extreme (I.e. Unusual weather events that are at the extremes of the historical distribution for a given area), the probability of an alteration in an organisms' homeostasis increases dramatically. However, factors determining the altered dynamics of host-parasite interactions due to an extreme change are the same as those acting in response to changes of lower magnitude. Only a deep knowledge of these factors will help to produce more accurate predictive models for the effects of extreme changes on parasitic interactions. Extreme environmental conditions may affect pathogens directly when they include free-living stages in their life-cycles and indirectly through reduced resource availability for hosts and thus reduced ability to produce efficient anti-parasite defenses, or by effects on host density affecting transmission dynamics of diseases or the frequency of intraspecific contact. What are the consequences for host-parasite interactions? Here we summarize the present knowledge on three principal factors in determining host-parasite associations; biodiversity, population density and immunocompetence. In addition, we analyzed examples of the effects of environmental alteration of anthropogenic origin on parasitic systems because the effects are analogous to that exerted by an extreme climatic change.

  16. Chlorophyllin as a possible measure against vectors of human parasites and fish parasites

    OpenAIRE

    Peter Rolf Richter; Sebastian Michael Strauch; Azizullah eAzizullah; Donat P. Häder

    2014-01-01

    Water soluble chlorophyll (chlorophyllin) exerts pronounced photodynamic activity. Chlorophyllin is a potential remedy against mosquito larvae and aquatic stages in the life cycle of parasites as well as against ectoparasites in fish. In the recent years it was found that mosquito larvae and other pest organisms can be killed by means of photodynamic substances such as different porphyrin derivates (e.g. hematoporphyrin, meso-tri(N-methylpyridyl), meso-mono(N-tetra-decylpyridyl) porphyrine, h...

  17. Taurolidine is effective in the treatment of central venous catheter-related bloodstream infections in cancer patients.

    Science.gov (United States)

    Koldehoff, M; Zakrzewski, J L

    2004-11-01

    Taurolidine is an antimicrobial agent that was originally used in the local treatment of peritonitis and was shown to be effective in the prevention of catheter-related bloodstream infections (CR-BSI). In this pilot study, we used taurolidine solution as an intravenous (i.v.) lock into the totally implantable intravascular devices of 11 consecutive oncological patients with catheter-related bloodstream infections not responding to systemic antimicrobial chemotherapy. All patients recovered completely from the infection. No adverse drug effects were seen. Three patients were successfully retreated for a recurrent infection. Our data suggest a beneficial role of taurolidine i.v. lock for the therapy of catheter-related bloodstream infections in oncological patients. Taurolidine i.v. lock application is feasible and could especially be useful in infections resistant to antibiotic chemotherapy.

  18. DNA vaccines: a rational design against parasitic diseases.

    Science.gov (United States)

    Carvalho, Joana A; Rodgers, Jean; Atouguia, Jorge; Prazeres, Duarte M F; Monteiro, Gabriel A

    2010-02-01

    Parasitic diseases are one of the most devastating causes of morbidity and mortality worldwide. Although immunization against these infections would be an ideal solution, the development of effective vaccines has been hampered by specific challenges posed by parasitic pathogens. Plasmid-based DNA vaccines may prove to be promising immunization tools in this area because vectors can be designed to integrate several antigens from different stages of the parasite life cycle or different subspecies; vaccines, formulations and immunization protocols can be tuned to match the immune response that offers protective immunity; and DNA vaccination is an affordable platform for developing countries. Partial and full protective immunity have been reported following DNA vaccination against the most significant parasitic diseases in the world.

  19. Characterization of metabolically quiescent Leishmania parasites in murine lesions using heavy water labeling.

    Directory of Open Access Journals (Sweden)

    Joachim Kloehn

    2015-02-01

    Full Text Available Information on the growth rate and metabolism of microbial pathogens that cause long-term chronic infections is limited, reflecting the absence of suitable tools for measuring these parameters in vivo. Here, we have measured the replication and physiological state of Leishmania mexicana parasites in murine inflammatory lesions using 2H2O labeling. Infected BALB/c mice were labeled with 2H2O for up to 4 months, and the turnover of parasite DNA, RNA, protein and membrane lipids estimated from the rate of deuterium enrichment in constituent pentose sugars, amino acids, and fatty acids, respectively. We show that the replication rate of parasite stages in these tissues is very slow (doubling time of ~12 days, but remarkably constant throughout lesion development. Lesion parasites also exhibit markedly lower rates of RNA synthesis, protein turnover and membrane lipid synthesis than parasite stages isolated from ex vivo infected macrophages or cultured in vitro, suggesting that formation of lesions induces parasites to enter a semi-quiescent physiological state. Significantly, the determined parasite growth rate accounts for the overall increase in parasite burden indicating that parasite death and turnover of infected host cells in these lesions is minimal. We propose that the Leishmania response to lesion formation is an important adaptive strategy that minimizes macrophage activation, providing a permissive environment that supports progressive expansion of parasite burden. This labeling approach can be used to measure the dynamics of other host-microbe interactions in situ.

  20. Global gene expression analysis of the zoonotic parasite Trichinella spiralis revealed novel genes in host parasite interaction.

    Directory of Open Access Journals (Sweden)

    Xiaolei Liu

    Full Text Available BACKGROUND: Trichinellosis is a typical food-borne zoonotic disease which is epidemic worldwide and the nematode Trichinella spiralis is the main pathogen. The life cycle of T. spiralis contains three developmental stages, i.e. adult worms, new borne larva (new borne L1 larva and muscular larva (infective L1 larva. Stage-specific gene expression in the parasites has been investigated with various immunological and cDNA cloning approaches, whereas the genome-wide transcriptome and expression features of the parasite have been largely unknown. The availability of the genome sequence information of T. spiralis has made it possible to deeply dissect parasite biology in association with global gene expression and pathogenesis. METHODOLOGY AND PRINCIPAL FINDINGS: In this study, we analyzed the global gene expression patterns in the three developmental stages of T. spiralis using digital gene expression (DGE analysis. Almost 15 million sequence tags were generated with the Illumina RNA-seq technology, producing expression data for more than 9,000 genes, covering 65% of the genome. The transcriptome analysis revealed thousands of differentially expressed genes within the genome, and importantly, a panel of genes encoding functional proteins associated with parasite invasion and immuno-modulation were identified. More than 45% of the genes were found to be transcribed from both strands, indicating the importance of RNA-mediated gene regulation in the development of the parasite. Further, based on gene ontological analysis, over 3000 genes were functionally categorized and biological pathways in the three life cycle stage were elucidated. CONCLUSIONS AND SIGNIFICANCE: The global transcriptome of T. spiralis in three developmental stages has been profiled, and most gene activity in the genome was found to be developmentally regulated. Many metabolic and biological pathways have been revealed. The findings of the differential expression of several protein

  1. Density-dependence and within-host competition in a semelparous parasite of leaf-cutting ants

    Directory of Open Access Journals (Sweden)

    Thomsen Lene

    2004-11-01

    Full Text Available Abstract Background Parasite heterogeneity and within-host competition are thought to be important factors influencing the dynamics of host-parasite relationships. Yet, while there have been many theoretical investigations of how these factors may act, empirical data is more limited. We investigated the effects of parasite density and heterogeneity on parasite virulence and fitness using four strains of the entomopathogenic fungus, Metarhizium anisopliae var. anisopliae, and its leaf-cutting ant host Acromyrmex echinatior as the model system. Results The relationship between parasite density and infection was sigmoidal, with there being an invasion threshold for an infection to occur (an Allee effect. Although spore production was positively density-dependent, parasite fitness decreased with increasing parasite density, indicating within-host scramble competition. The dynamics differed little between the four strains tested. In mixed infections of three strains the infection-growth dynamics were unaffected by parasite heterogeneity. Conclusions The strength of within-host competition makes dispersal the best strategy for the parasite. Parasite heterogeneity may not have effected virulence or the infection dynamics either because the most virulent strain outcompeted the others, or because the interaction involved scramble competition that was impervious to parasite heterogeneity. The dynamics observed may be common for virulent parasites, such as Metarhizium, that produce aggregated transmission stages. Such parasites make useful models for investigating infection dynamics and the impact of parasite competition.

  2. P. berghei telomerase subunit TERT is essential for parasite survival.

    Science.gov (United States)

    Religa, Agnieszka A; Ramesar, Jai; Janse, Chris J; Scherf, Artur; Waters, Andrew P

    2014-01-01

    Telomeres define the ends of chromosomes protecting eukaryotic cells from chromosome instability and eventual cell death. The complex regulation of telomeres involves various proteins including telomerase, which is a specialized ribonucleoprotein responsible for telomere maintenance. Telomeres of chromosomes of malaria parasites are kept at a constant length during blood stage proliferation. The 7-bp telomere repeat sequence is universal across different Plasmodium species (GGGTTT/CA), though the average telomere length varies. The catalytic subunit of telomerase, telomerase reverse transcriptase (TERT), is present in all sequenced Plasmodium species and is approximately three times larger than other eukaryotic TERTs. The Plasmodium RNA component of TERT has recently been identified in silico. A strategy to delete the gene encoding TERT via double cross-over (DXO) homologous recombination was undertaken to study the telomerase function in P. berghei. Expression of both TERT and the RNA component (TR) in P. berghei blood stages was analysed by Western blotting and Northern analysis. Average telomere length was measured in several Plasmodium species using Telomere Restriction Fragment (TRF) analysis. TERT and TR were detected in blood stages and an average telomere length of ∼ 950 bp established. Deletion of the tert gene was performed using standard transfection methodologies and we show the presence of tert- mutants in the transfected parasite populations. Cloning of tert- mutants has been attempted multiple times without success. Thorough analysis of the transfected parasite populations and the parasite obtained from extensive parasite cloning from these populations provide evidence for a so called delayed death phenotype as observed in different organisms lacking TERT. The findings indicate that TERT is essential for P. berghei cell survival. The study extends our current knowledge on telomere biology in malaria parasites and validates further investigations to

  3. P. berghei telomerase subunit TERT is essential for parasite survival.

    Directory of Open Access Journals (Sweden)

    Agnieszka A Religa

    Full Text Available Telomeres define the ends of chromosomes protecting eukaryotic cells from chromosome instability and eventual cell death. The complex regulation of telomeres involves various proteins including telomerase, which is a specialized ribonucleoprotein responsible for telomere maintenance. Telomeres of chromosomes of malaria parasites are kept at a constant length during blood stage proliferation. The 7-bp telomere repeat sequence is universal across different Plasmodium species (GGGTTT/CA, though the average telomere length varies. The catalytic subunit of telomerase, telomerase reverse transcriptase (TERT, is present in all sequenced Plasmodium species and is approximately three times larger than other eukaryotic TERTs. The Plasmodium RNA component of TERT has recently been identified in silico. A strategy to delete the gene encoding TERT via double cross-over (DXO homologous recombination was undertaken to study the telomerase function in P. berghei. Expression of both TERT and the RNA component (TR in P. berghei blood stages was analysed by Western blotting and Northern analysis. Average telomere length was measured in several Plasmodium species using Telomere Restriction Fragment (TRF analysis. TERT and TR were detected in blood stages and an average telomere length of ∼ 950 bp established. Deletion of the tert gene was performed using standard transfection methodologies and we show the presence of tert- mutants in the transfected parasite populations. Cloning of tert- mutants has been attempted multiple times without success. Thorough analysis of the transfected parasite populations and the parasite obtained from extensive parasite cloning from these populations provide evidence for a so called delayed death phenotype as observed in different organisms lacking TERT. The findings indicate that TERT is essential for P. berghei cell survival. The study extends our current knowledge on telomere biology in malaria parasites and validates further

  4. Microarray analysis of gender- and parasite-specific gene transcription in Strongyloides ratti

    NARCIS (Netherlands)

    Evans, Helen; Mello, Luciane V.; Fang, Yongxiang; Wit, Ernst; Thompson, Fiona J.; Viney, Mark E.; Paterson, Steve

    2008-01-01

    The molecular mechanisms by which parasitic nematodes reproduce and have adapted to life within a host are unclear. In the present study, microarray analysis was used to explore differential transcription among the different stages and sexes of Strongyloides ratti, a parasitic nematode of brown rats

  5. Muscle Releases Alpha-Sarcoglycan Positive Extracellular Vesicles Carrying miRNAs in the Bloodstream.

    Directory of Open Access Journals (Sweden)

    Michele Guescini

    Full Text Available In the past few years, skeletal muscle has emerged as an important secretory organ producing soluble factors, called myokines, that exert either autocrine, paracrine or endocrine effects. Moreover, recent studies have shown that muscle releases microRNAs into the bloodstream in response to physical exercise. These microRNAs affect target cells, such as hormones and cytokines. The mechanisms underlying microRNA secretion are poorly characterized at present. Here, we investigated whether muscle tissue releases extracellular vesicles (EVs, which carry microRNAs in the bloodstream under physiological conditions such as physical exercise. Using density gradient separation of plasma from sedentary and physically fit young men we found EVs positive for TSG101 and alpha-sarcoglycan (SGCA, and enriched for miR-206. Cytometric analysis showed that the SGCA+ EVs account for 1-5% of the total and that 60-65% of these EVs were also positive for the exosomal marker CD81. Furthermore, the SGCA-immuno captured sub-population of EVs exhibited higher levels of the miR-206/miR16 ratio compared to total plasma EVs. Finally, a significant positive correlation was found between the aerobic fitness and muscle-specific miRNAs and EV miR-133b and -181a-5p were significantly up-regulated after acute exercise. Thus, our study proposes EVs as a novel means of muscle communication potentially involved in muscle remodeling and homeostasis.

  6.   Bloodstream Bacterial Pathogens and their Antibiotic Resistance Pattern in Dhahira Region, Oman

    Directory of Open Access Journals (Sweden)

    PP Geethanjali

    2011-07-01

    Full Text Available Objectives: To describe the epidemiological, clinical, microbiological characteristics and antimicrobial resistance pattern of Bloodstream infections in Dhahira region, Oman.Methods: Clinical data was collected from all patients with positive blood cultures for two years period. Standard laboratory methods were used for blood culture. Antibiotic sensitivity was tested using Kirby-Bauer disc diffusion method.Results: Of the 360 bacterial pathogens isolated from 348 patients, 57.8�0were gram-positive and 42.2�0were gram-negative. The common isolates were: Streptococcus species 76 (21.1� coagulase-negative Staphylococci 75 (20.8� Escherichia coli 43 (11.9� Staphylococcus aureus 41 (11.4� Overall, mortality was 21.3�0(74/348. Staphylococcus species (Staphylococcus aureus and CoNS were more commonly resistant to Trimethoprim/ Sulphamethoxazole (35.3�20and Penicillin (25.9� Streptococcus species were resistant to Trimethoprim/Sulphamethoxazole (39.1�20and Erythromycin (19.6�Conclusion: Bloodstream infections are important causes of morbidity and mortality in our patients, especially among chronically ill elderly adult males. Prescription of proven resistant antibiotics to suspected bacteremic patients needs attention in Dhahira region.

  7. Coordinated Molecular Cross-Talk between Staphylococcus aureus, Endothelial Cells and Platelets in Bloodstream Infection

    Directory of Open Access Journals (Sweden)

    Carolina D. Garciarena

    2015-12-01

    Full Text Available Staphylococcus aureus is an opportunistic pathogen often carried asymptomatically on the human body. Upon entry to the otherwise sterile environment of the cardiovascular system, S. aureus can lead to serious complications resulting in organ failure and death. The success of S. aureus as a pathogen in the bloodstream is due to its ability to express a wide array of cell wall proteins on its surface that recognise host receptors, extracellular matrix proteins and plasma proteins. Endothelial cells and platelets are important cells in the cardiovascular system and are a major target of bloodstream infection. Endothelial cells form the inner lining of a blood vessel and provide an antithrombotic barrier between the vessel wall and blood. Platelets on the other hand travel throughout the cardiovascular system and respond by aggregating around the site of injury and initiating clot formation. Activation of either of these cells leads to functional dysregulation in the cardiovascular system. In this review, we will illustrate how S. aureus establish intimate interactions with both endothelial cells and platelets leading to cardiovascular dysregulation.

  8. Risk factors for nosocomial bloodstream infection caused by multidrug resistant gram-negative bacilli in pediatrics

    Directory of Open Access Journals (Sweden)

    Mariana V. Arnoni

    2007-04-01

    Full Text Available The aim of this study was to identify the risk factors for nosocomial bloodstream infections by multidrug resistant Gram-negative bacilli. From November 2001 to December 2003, in the Pediatric Department of the Santa Casa de São Paulo, a retrospective case-control study was developed concerning patients who had nosocomial bloodstream infection caused by Gram-negative bacilli. Patients with multidrug resistant infections were designated as case patients, and control patients were those with an infection that did not meet the criteria for multidrug resistance. Previous use of central venous catheter and previous use of vancomycin plus third generation cephalosporins were associated to a higher chance of infections by multidrug resistant Gram-negative bacilli (Odds ratio - 5.8 and 5.2, respectively. Regarding sensitivity of the isolated agents, 47.8% were multidrug resistant, 54.2% were Klebsiella spp. ESBL producers and 36.4% were imipenem resistant Pseudomonas aeruginosa. The lethality rate was 36.9% in the studied cases and this rate was significantly higher in the group of patients with multidrug resistant infections (p=0.013. Risk factor identification as well as the knowledge of the susceptibility of the nosocomial infectious agents gave us the possibility to perform preventive and control strategies to reduce the costs and mortality related to these infections.

  9. Exchange of peripherally inserted central catheters is associated with an increased risk for bloodstream infection.

    Science.gov (United States)

    McCoy, Michael; Bedwell, Susan; Noori, Shahab

    2011-06-01

    It is not uncommon that the peripherally inserted central catheter (PICC) needs to be replaced either due to blockage or migration to a peripheral position. In such circumstances, there are two methods of PICC placement: new-site insertion and exchange by using the old PICC as a guide wire. Our objective was to investigate risk of infection associated with the exchange method. In this retrospective study, data on all PICC insertions in the neonatal intensive care unit in 2004 to 2008 were obtained. In the population who needed removal of existing PICC and insertion of a new one, we compared central line-associated bloodstream infection (CLABSI) within 1 week of insertion between the two insertion methods. Of 1148 PICC insertions reviewed, 164 (103 new-site and 61 exchange insertions) were performed after removal of a blocked/malpositioned PICC and therefore comprised the study population. The rate of CLABSI was higher in the exchange method (9.8% versus 1%, P exchange method (odds ratio 25.2, 95% confidence interval: 2.17 to 292.98; P = 0.01). In infants, insertion of PICCs using the exchange method carries an increased risk of bloodstream infection.

  10. Modelling parasite transmission in a grazing system: the importance of host behaviour and immunity.

    Science.gov (United States)

    Fox, Naomi J; Marion, Glenn; Davidson, Ross S; White, Piran C L; Hutchings, Michael R

    2013-01-01

    Parasitic helminths present one of the most pervasive challenges to grazing herbivores. Many macro-parasite transmission models focus on host physiological defence strategies, omitting more complex interactions between hosts and their environments. This work represents the first model that integrates both the behavioural and physiological elements of gastro-intestinal nematode transmission dynamics in a managed grazing system. A spatially explicit, individual-based, stochastic model is developed, that incorporates both the hosts' immunological responses to parasitism, and key grazing behaviours including faecal avoidance. The results demonstrate that grazing behaviour affects both the timing and intensity of parasite outbreaks, through generating spatial heterogeneity in parasite risk and nutritional resources, and changing the timing of exposure to the parasites' free-living stages. The influence of grazing behaviour varies with the host-parasite combination, dependent on the development times of different parasite species and variations in host immune response. Our outputs include the counterintuitive finding that under certain conditions perceived parasite avoidance behaviours (faecal avoidance) can increase parasite risk, for certain host-parasite combinations. Through incorporating the two-way interaction between infection dynamics and grazing behaviour, the potential benefits of parasite-induced anorexia are also demonstrated. Hosts with phenotypic plasticity in grazing behaviour, that make grazing decisions dependent on current parasite burden, can reduce infection with minimal loss of intake over the grazing season. This paper explores how both host behaviours and immunity influence macro-parasite transmission in a spatially and temporally heterogeneous environment. The magnitude and timing of parasite outbreaks is influenced by host immunity and behaviour, and the interactions between them; the incorporation of both regulatory processes is required to

  11. Modelling parasite transmission in a grazing system: the importance of host behaviour and immunity.

    Directory of Open Access Journals (Sweden)

    Naomi J Fox

    Full Text Available Parasitic helminths present one of the most pervasive challenges to grazing herbivores. Many macro-parasite transmission models focus on host physiological defence strategies, omitting more complex interactions between hosts and their environments. This work represents the first model that integrates both the behavioural and physiological elements of gastro-intestinal nematode transmission dynamics in a managed grazing system. A spatially explicit, individual-based, stochastic model is developed, that incorporates both the hosts' immunological responses to parasitism, and key grazing behaviours including faecal avoidance. The results demonstrate that grazing behaviour affects both the timing and intensity of parasite outbreaks, through generating spatial heterogeneity in parasite risk and nutritional resources, and changing the timing of exposure to the parasites' free-living stages. The influence of grazing behaviour varies with the host-parasite combination, dependent on the development times of different parasite species and variations in host immune response. Our outputs include the counterintuitive finding that under certain conditions perceived parasite avoidance behaviours (faecal avoidance can increase parasite risk, for certain host-parasite combinations. Through incorporating the two-way interaction between infection dynamics and grazing behaviour, the potential benefits of parasite-induced anorexia are also demonstrated. Hosts with phenotypic plasticity in grazing behaviour, that make grazing decisions dependent on current parasite burden, can reduce infection with minimal loss of intake over the grazing season. This paper explores how both host behaviours and immunity influence macro-parasite transmission in a spatially and temporally heterogeneous environment. The magnitude and timing of parasite outbreaks is influenced by host immunity and behaviour, and the interactions between them; the incorporation of both regulatory processes

  12. Proliferative kidney disease in rainbow trout: time- and temperature-related renal pathology and parasite distribution.

    Science.gov (United States)

    Bettge, Kathrin; Wahli, Thomas; Segner, Helmut; Schmidt-Posthaus, Heike

    2009-01-28

    Proliferative kidney disease is a parasitic infection of salmonid fishes caused by Tetracapsuloides bryosalmonae. The main target organ of the parasite in the fish is the kidney. To investigate the influence of water temperature on the disease in fish, rainbow trout Oncorhynchus mykiss infected with T bryosalmonae were kept at 12 degrees C and 18 degrees C. The number of parasites, the type and degree of lesions in the kidney and the mortality rate was evaluated from infection until full development of disease. While mortality stayed low at 12 degrees C, it reached 77% at 18 degrees C. At 12 degrees C, pathological lesions were dominated by a multifocal proliferative and granulomatous interstitial nephritis. This was accompanied by low numbers of T. bryosalmonae, mainly located in the interstitial lesions. With progression of the disease, small numbers of parasites appeared in the excretory tubuli, and parasite DNA was detected in the urine. Parasite degeneration in the interstitium was observed at late stages of the disease. At 18 degrees C, pathological lesions in kidneys were more severe and more widely distributed, and accompanied by significantly higher parasite numbers. Distribution of parasites in the renal compartments, onset of parasite degeneration and time course of appearance of parasite DNA in urine were not clearly different from the 12 degrees C group. These findings indicate that higher mortality at 18 degrees C compared to 12 degrees C is associated with an enhanced severity of renal pathology and increased parasite numbers.

  13. Nutrition and parasite interaction.

    Science.gov (United States)

    Coop, R L; Holmes, P H

    1996-01-01

    This overview focuses on the interaction between nutritional status and gastrointestinal nematode infection in ruminants and considers: (i) the influence of the parasite on host metabolism; and (ii) the effect of host nutrition on the establishment and survival of parasite populations, the development of the host-immune response and the pathophysiology of infection. Gastrointestinal nematodes reduce voluntary feed intake and efficiency of feed utilisation, a key feature being an increased endogenous loss of protein into the gastrointestinal tract. Overall there is movement of protein from productive processes into repair of the gastrointestinal tract, synthesis of plasma proteins and mucoprotein production. Although reduction in feed intake is a major factor contributing to the reduced performance of parasitised ruminants, the underlying mechanisms of the anorexia are poorly understood. Supplementation of the diet with additional protein does not appear to affect initial establishment of nematode infections but the pathophysiological consequences are generally more severe on lower planes of protein nutrition. The main effect of protein supplementation is to increase the rate of acquisition of immunity and increase resistance to reinfection and this has been associated with an enhanced cellular immune response in the gastrointestinal mucosa. The unresponsiveness of the young lamb can be improved by dietary protein supplementation. Recent trials have shown that growing sheep offered a free choice between a low and a high protein ration are able to modify their diet selection in order to alleviate the increase in protein requirements which result from gastrointestinal nematode infection. Studies on the influence of nutrition on the expression of genotype have shown that the benefits of a superior genotype are not lost on a low protein diet whereas a high protein diet can partially emeliorate the disadvantages of an inferior genotype. In addition to dietary protein

  14. The neurotropic parasite Toxoplasma gondii increases dopamine metabolism

    Science.gov (United States)

    The common parasite Toxoplasma gondii induces behavioral alterations in its hosts including phenotypes increasing the likelihood of its transmission in rodents and reports of psychobehavioral alterations in humans. We have found that elevated levels of dopamine are associated with the encysted stage...

  15. Survival strategies of the malarial parasite Plasmodium falciparum

    OpenAIRE

    Ramya, TNC; Surolia, Namita; Surolia, Avadhesha

    2002-01-01

    Plasmodium falciparum, the protozoan parasite causing falciparum malaria, is undoubtedly highly versatile when it comes to survival and defence strategies. Strategies adopted by the asexual blood stages of Plasmodium range from unique pathways of nutrient uptake to immune evasion strategies and multiple drug resistance. Studying the survival strategies of Plasmodium could help us envisage strategies of tackling one of the worst scourges of mankind.

  16. Unexpected hosts: imaging parasitic diseases.

    Science.gov (United States)

    Rodríguez Carnero, Pablo; Hernández Mateo, Paula; Martín-Garre, Susana; García Pérez, Ángela; Del Campo, Lourdes

    2017-02-01

    Radiologists seldom encounter parasitic diseases in their daily practice in most of Europe, although the incidence of these diseases is increasing due to migration and tourism from/to endemic areas. Moreover, some parasitic diseases are still endemic in certain European regions, and immunocompromised individuals also pose a higher risk of developing these conditions. This article reviews and summarises the imaging findings of some of the most important and frequent human parasitic diseases, including information about the parasite's life cycle, pathophysiology, clinical findings, diagnosis, and treatment. We include malaria, amoebiasis, toxoplasmosis, trypanosomiasis, leishmaniasis, echinococcosis, cysticercosis, clonorchiasis, schistosomiasis, fascioliasis, ascariasis, anisakiasis, dracunculiasis, and strongyloidiasis. The aim of this review is to help radiologists when dealing with these diseases or in cases where they are suspected. Teaching Points • Incidence of parasitic diseases is increasing due to migratory movements and travelling. • Some parasitic diseases are still endemic in certain regions in Europe. • Parasitic diseases can have complex life cycles often involving different hosts. • Prompt diagnosis and treatment is essential for patient management in parasitic diseases. • Radiologists should be able to recognise and suspect the most relevant parasitic diseases.

  17. Natural metabolites for parasitic weed management.

    Science.gov (United States)

    Vurro, Maurizio; Boari, Angela; Evidente, Antonio; Andolfi, Anna; Zermane, Nadjia

    2009-05-01

    Compounds of natural origin, such as phytotoxins produced by fungi or natural amino acids, could be used in parasitic weed management strategies by interfering with the early growth stages of the parasites. These metabolites could inhibit seed germination or germ tube elongation, so preventing attachment to the host plant, or, conversely, stimulate seed germination in the absence of the host, contributing to a reduction in the parasite seed bank. Some of the fungal metabolites assayed were very active even at very low concentrations, such as some macrocyclic trichothecenes, which at 0.1 microM strongly suppressed the germination of Orobanche ramosa L. seeds. Interesting results were also obtained with some novel toxins, such as phyllostictine A, highly active in reducing germ tube elongation and seed germination both of O. ramosa and of Cuscuta campestris Yuncker. Among the amino acids tested, methionine and arginine were particularly interesting, as they were able to suppress seed germination at concentrations lower than 1 mM. Some of the fungal metabolites tested were also able to stimulate the germination of O. ramosa seeds. The major findings in this research field are described and discussed.

  18. An unusual coccidian parasite causing pneumonia in a northern cardinal (Cardinalis cardinalis).

    Science.gov (United States)

    Baker, D G; Speer, C A; Yamaguchi, A; Griffey, S M; Dubey, J P

    1996-01-01

    In June 1993 an unusual coccidian parasite was identified in lung tissue from a northern cardinal (Cardinalis cardinalis), collected near Tucson, Arizona (USA), which died in respiratory distress. Histologically, there was evidence of severe, generalized interstitial pneumonia, associated with the parasite. Both asexual and sexual stages were seen. Schizonts, gamonts, and sporulated oocysts were seen in lung tissue. The parasite most closely resembled coccidia of the genus Lankesterella. This is the first report of such a coccidian parasite in the alveolar tissue of a cardinal.

  19. Sunrise nest attendance and aggression by least Bell's vireos fail to deter cowbird parasitism

    Science.gov (United States)

    Sharp, Bryan L.; Kus, Barbara E.

    2004-01-01

    We video-recorded three, natural, brood-parasitism events by Brown-headed Cowbirds (Molothrus ater) at nests of Least Bell's Vireos (Vireo bellii pusillus). All instances occurred near dawn, during both egg-laying and incubation stages of the nesting cycle. In each case, an adult vireo was on the nest when the female cowbird arrived. Both members of each parasitized pair vigorously attacked the intruding cowbird, but in no encounter did a pair of vireos successfully defend its nest from parasitism. Thus, Least Bell's Vireos in our study were unable to prevent a female cowbird from parasitizing their nests once the cowbird had reached the nest.

  20. Parasitism and calfhood diseases.

    Science.gov (United States)

    Herlich, H; Douvres, F W

    1977-02-01

    That animals can and do acquire an effective immunity against helminth parasites has been demonstrated extensively experimentally, and the fact that domestic animals such as cattle, sheep, and horses become adults while maintaining good health in spite of constant exposure to reinfection long has suggested that immunity must be important to such survival. Although our attempts to date to vaccinate calves against helminth parasites have either failed or been unsatisfactory because of the pathosis induced by the experimental vaccines, the results are not surprising or discouraging. In contrast to the long history of immunization research on bacterial and viral diseases, only within a relatively short time have serious efforts been directed at exploiting hostal immunity for prevention and control of helminthic diseases. Unlike the comparatively simple structures of viruses and bacteria, helminths are complex multicellular animals with vast arrays of antigens and complicated physiological and immunological interactions with their hosts. Much more fundamental information on helminth-bovine interactions, on helminth antigens, and on cattle antibody systems must be developed before progress on control of cattle helminths by vaccination can be meaningful.

  1. Algorithm for pre-emptive glycopeptide treatment in patients with haematologic malignancies and an Enterococcus faecium bloodstream infection

    NARCIS (Netherlands)

    Zhou, Xuewei; Arends, Jan P; Span, Lambert Fr; Friedrich, Alexander W

    2013-01-01

    INTRODUCTION: Nowadays Enterococcus faecium has become one of the most emerging and challenging nosocomial pathogens. The aim of this study was to determine risk factors in haematology patients who are at risk of an Enterococcus faecium bloodstream infection (BSI) and should be considered for pre-em

  2. The Resistance Phenotype and Molecular Epidemiology of Klebsiella pneumoniae in Bloodstream Infections in Shanghai, China, 2012–2015

    Science.gov (United States)

    Xiao, Shu-zhen; Wang, Su; Wu, Wen-man; Zhao, Sheng-yuan; Gu, Fei-fei; Ni, Yu-xing; Guo, Xiao-kui; Qu, Jie-ming; Han, Li-zhong

    2017-01-01

    Klebsiella pneumoniae (K.pneumoniae) is a common nosocomial pathogen causing bloodstream infections. Antibiotic susceptibility surveillance and molecular characterization will facilitate prevention and management of K. pneumoniae bloodstream infections. K. pneumoniae isolates causing bloodstream infections were consecutively collected between January 2012 and December 2015 in Shanghai. Eighty isolates (20 per year) were randomly selected and enrolled in this study. Drug susceptibility were determined by the disk diffusion method. Polymerase chain reaction (PCR) was employed to detect extended-spectrum β-lactamases (ESBLs), carbapenemases, and seven housekeeping genes of K. pneumoniae. eBURST was used for multi-locus sequence typing (MLST). More than 50% isolates were resistant to cefuroxime, ampicillin-sulbactam, and piperacillin, while carbapenems had lower resistant rates than other antibiotics. Of the 80 isolates, 22 produced ESBLs, and 14 were carbapenemase producers. In the ESBL-producing K. pneumoniae isolates, the most common ESBL genes were blaSHV and blaCTX−M. Thirteen carbapenemase producers harbored blaKPC−2 and one other carried blaNDM−5. ST11 (14/80) was the most frequent sequence type (ST), followed by ST15 (7/80) and ST29 (4/80). Our data revealed high prevalence of antibiotic resistant K. pneumoniae isolates from bloodstream infections but their genetic diversity suggested no clonal dissemination in the region. Also, one K. pneumoniae isolate harbored blaNDM−5 in this study, which was firstly reported in Shanghai. PMID:28280486

  3. Patients with Central Lines — What You Need to Know to Avoid a Bloodstream Infection

    Centers for Disease Control (CDC) Podcasts

    2011-03-01

    This podcast is based on the March, 2011 CDC Vital Signs report which indicates bloodstream infections in patients with central lines are largely preventable when healthcare providers use CDC-recommended infection control steps.  Created: 3/1/2011 by Centers for Disease Control and Prevention (CDC).   Date Released: 3/1/2011.

  4. Density-dependence and within-host competition in a semelparous parasite of leaf-cutting ants

    DEFF Research Database (Denmark)

    Hughes, William; Petersen, Klaus; Ugelvig, Line;

    2004-01-01

    the effects of parasite density and heterogeneity on parasite virulence and fitness using four strains of the entomopathogenic fungus, Metarhizium anisopliae var. anisopliae, and its leaf-cutting ant host Acromyrmex echinatior as the model system.RESULTS:The relationship between parasite density and infection...... dynamics either because the most virulent strain outcompeted the others, or because the interaction involved scramble competition that was impervious to parasite heterogeneity. The dynamics observed may be common for virulent parasites, such as Metarhizium, that produce aggregated transmission stages...

  5. Bacterial etiology of bloodstream infections and antimicrobial resistance in Dhaka, Bangladesh, 2005–2014

    Directory of Open Access Journals (Sweden)

    Dilruba Ahmed

    2017-01-01

    Full Text Available Abstract Background Bloodstream infections due to bacterial pathogens are a major cause of morbidity and mortality in Bangladesh and other developing countries. In these countries, most patients are treated empirically based on their clinical symptoms. Therefore, up to date etiological data for major pathogens causing bloodstream infections may play a positive role in better healthcare management. The aim of this study was to identify the bacterial pathogens causing major bloodstream infections in Dhaka, Bangladesh and determine their antibiotic susceptibility pattern. Methods From January 2005 to December 2014, a total of 103,679 single bottle blood samples were collected from both hospitalized and domiciliary patients attending Dhaka hospital, icddrb, Bangladesh All the blood samples were processed for culture using a BACT/Alert blood culture machine. Further identification of bacterial pathogens and their antimicrobial susceptibility test were performed using standard microbiological procedures. Results Overall, 13.6% of the cultured blood samples were positive and Gram-negative (72.1% bacteria were predominant throughout the study period. Salmonella Typhi was the most frequently isolated organism (36.9% of samples in this study and a high percentage of those strains were multidrug-resistant (MDR. However, a decreasing trend in the S. Typhi isolation rate was observed and, noticeably, the percentage of MDR S. Typhi isolated declined sharply over the study period. An overall increase in the presence of Gram-positive bacteria was observed, but most significantly we observed the percentage of MDR Gram-positive bacteria to double over the study period. Overall, Gram positive bacteria were more resistant to most of the commonly used antibiotics than Gram-negative bacteria, but the MDR level was high in both groups. Conclusions This study identified the major bacterial pathogens involved with BSI in Dhaka, Bangladesh and also revealed their

  6. Taken to the limit--Is desiccation stress causing precocious encystment of trematode parasites in snails?

    Science.gov (United States)

    O'Dwyer, Katie; Poulin, Robert

    2015-12-01

    When hosts experience environmental stress, the quantity and quality of resources they provide for parasites may be diminished, and host longevity may be decreased. Under stress, parasites may adopt alternative strategies to avoid fitness reductions. Trematode parasites typically have complex life cycles, involving asexual reproduction in a gastropod first intermediate host. A rare phenomenon, briefly mentioned in the literature, and termed 'precocious encystment' involves the next stage in the parasites' life cycle (metacercarial cyst) forming within the preceding stage (redia), while still inside the snail. In the trematode Parorchis sp. NZ using rocky shore snails exposed to long periods outside water, we hypothesised that this might be an adaptive strategy against desiccation, preventing parasite emergence from the snail. To test this, we first investigated the effect of prolonged desiccation on the survival of two species of high intertidal snails. Secondly, we measured the reproductive output (cercarial production) of the parasite under wet and dry conditions. Finally, we quantified the influence of desiccation stress on the occurrence of precocious encystment. Snail mortality was higher under dry conditions, indicating stress, and it was somewhat exacerbated for infected snails. Parasite reproductive output differed between wet and dry conditions, with parasites of snails kept in dry conditions producing more cercariae when placed in water. Little variation was observed in the occurrence of precocious encystment, although some subtle patterns emerged. Given the stresses associated with living in high intertidal environments, we discuss precocious encystment as a possible stress response in this trematode parasite.

  7. Environmentally transmitted parasites: Host-jumping in a heterogeneous environment.

    Science.gov (United States)

    Caraco, Thomas; Cizauskas, Carrie A; Wang, Ing-Nang

    2016-05-21

    Groups of chronically infected reservoir-hosts contaminate resource patches by shedding a parasite׳s free-living stage. Novel-host groups visit the same patches, where they are exposed to infection. We treat arrival at patches, levels of parasite deposition, and infection of the novel host as stochastic processes, and derive the expected time elapsing until a host-jump (initial infection of a novel host) occurs. At stationarity, mean parasite densities are independent of reservoir-host group size. But within-patch parasite-density variances increase with reservoir group size. The probability of infecting a novel host declines with parasite-density variance; consequently larger reservoir groups extend the mean waiting time for host-jumping. Larger novel-host groups increase the probability of a host-jump during any single patch visit, but also reduce the total number of visits per unit time. Interaction of these effects implies that the waiting time for the first infection increases with the novel-host group size. If the reservoir-host uses resource patches in any non-uniform manner, reduced spatial overlap between host species increases the waiting time for host-jumping.

  8. Well staged

    Energy Technology Data Exchange (ETDEWEB)

    Budd, Godfrey

    2011-06-15

    Packers Plus Energy Services Inc. has commercially launched QuickFRAC, a multi-stage completition system which can fracture four to five isolated stages in one treatment and set up a record of 23-stage slickwater frac in less than 10 hours. It could take up to 40 days to do 100 fracture treatments with other systems. This technology makes it possible to distribute fluid at each port thanks to the limited entry system. In order to make multiple isolated stages within one treatment zone, each zone includes multiple QuickPORT sleeves with packers on either side. The other technology which made this possible is the repeater port system, it allows them to perform more frac stages. This technology could be useful in the future since the need for stages will be doubling soon with microdarcy shale oil extraction which is more difficult than gas.

  9. Disease transmission in an extreme environment: nematode parasites infect reindeer during the Arctic winter.

    Science.gov (United States)

    Carlsson, Anja M; Justin Irvine, R; Wilson, Kenneth; Piertney, Stuart B; Halvorsen, Odd; Coulson, Stephen J; Stien, Audun; Albon, Steve D

    2012-07-01

    Parasitic nematodes are found in almost all wild vertebrate populations but few studies have investigated these host-parasite relationships in the wild. For parasites with free-living stages, the external environment has a major influence on life-history traits, and development and survival is generally low at sub-zero temperatures. For reindeer that inhabit the high Arctic archipelago of Svalbard, parasite transmission is expected to occur in the summer, due to the extreme environmental conditions and the reduced food intake by the host in winter. Here we show experimentally that, contrary to most parasitic nematodes, Marshallagia marshalli of Svalbard reindeer is transmitted during the Arctic winter. Winter transmission was demonstrated by removing parasites in the autumn, using a novel delayed-release anthelmintic bolus, and estimating re-infection rates in reindeer sampled in October, February and April. Larval stages of nematodes were identified using molecular tools, whereas adult stages were identified using microscopy. The abundance of M. marshalli adult worms and L4s increased significantly from October to April, indicating that reindeer were being infected with L3s from the pasture throughout the winter. To our knowledge, this study is the first to experimentally demonstrate over-winter transmission of a gastro-intestinal nematode parasite in a wild animal. Potential mechanisms associated with this unusual transmission strategy are discussed in light of our knowledge of the life-history traits of this parasite.

  10. Trading stages

    DEFF Research Database (Denmark)

    Steiner, Uli; Tuljapurkar, Shripad; Coulson, Tim

    2012-01-01

    Interest in stage-and age structured models has recently increased because they can describe quantitative traits such as size that are left out of age-only demography. Available methods for the analysis of effects of vital rates on lifespan in stage-structured models have not been widely applied ...... examples. Much of our approach relies on trading of time and mortality risk in one stage for time and risk in others. Our approach contributes to the new framework of the study of age- and stage-structured biodemography....

  11. Taurolidine lock is superior to heparin lock in the prevention of catheter related bloodstream infections and occlusions.

    Directory of Open Access Journals (Sweden)

    Evelyn D Olthof

    Full Text Available BACKGROUND AND AIMS: Patients on home parenteral nutrition (HPN are at risk for catheter-related complications; mainly infections and occlusions. We have previously shown in HPN patients presenting with catheter sepsis that catheter locking with taurolidine dramatically reduced re-infections when compared with heparin. Our HPN population therefore switched from heparin to taurolidine in 2008. The aim of the present study was to compare long-term effects of this catheter lock strategy on the occurrence of catheter-related bloodstream infections and occlusions in HPN patients. METHODS: Data of catheter-related complications were retrospectively collected from 212 patients who received HPN between January 2000 and November 2011, comprising 545 and 200 catheters during catheter lock therapy with heparin and taurolidine, respectively. We evaluated catheter-related bloodstream infection and occlusion incidence rates using Poisson-normal regression analysis. Incidence rate ratios were calculated by dividing incidence rates of heparin by those of taurolidine, adjusting for underlying disease, use of anticoagulants or immune suppressives, frequency of HPN/fluid administration, composition of infusion fluids, and duration of HPN/fluid use before catheter creation. RESULTS: Bloodstream infection incidence rates were 1.1/year for heparin and 0.2/year for taurolidine locked catheters. Occlusion incidence rates were 0.2/year for heparin and 0.1/year for taurolidine locked catheters. Adjusted incidence ratios of heparin compared to taurolidine were 5.9 (95% confidence interval, 3.9-8.7 for bloodstream infections and 1.9 (95% confidence interval, 1.1-3.1 for occlusions. CONCLUSIONS: Given that no other procedural changes than the catheter lock strategy were implemented during the observation period, these data strongly suggest that taurolidine decreases catheter-related bloodstream infections and occlusions in HPN patients compared with heparin.

  12. Two types of parasitic assimilation

    Directory of Open Access Journals (Sweden)

    Peter Jurgec

    2013-02-01

    Full Text Available This paper shows that consonant harmony and parasitic vowel harmony are more similar than previously assumed. I provide a unified and restrictive analysis of parasitic assimilation using feature spreading constraints. In particular, I attribute the differences between the attested and unattested patterns to two types of markedness constraints—alignment and agreement.

  13. Repetitive elements in parasitic protozoa

    Directory of Open Access Journals (Sweden)

    Clayton Christine

    2010-05-01

    Full Text Available Abstract A recent paper published in BMC Genomics suggests that retrotransposition may be active in the human gut parasite Entamoeba histolytica. This adds to our knowledge of the various types of repetitive elements in parasitic protists and the potential influence of such elements on pathogenicity. See research article http://www.biomedcentral.com/1471-2164/11/321

  14. APPROACH OF IMPROVING PRECISION IN ULTRASONIC DOPPLER BLOODSTREAM SPEED MEASUREMENT BY CHAOS-BASED FREQUENCY DETECTING

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    It is critical for cerebral vascular disease diagnosis through Doppler to detect the maximum and the minimum of the carotid blood flow speed accurately. A kind of Duffing system under an external periodic power with dump is introduced in the letter, numerical analysis is carried out by four-order Runge-Kutta method. An oscillator array is designed according to the frequency of the ultrasonic wave. When the external signals are inputted, computational algorithm is used to scan the array in turn and analyze the result, and the frequency can be determined. Based on the methods above, detecting the carotid blood flow speed accurately is realized. The Signal-to-Noise Ratio (SNR) of-20.23dB is obtained by the result of experiments. In conclusion, the SNR has been improved and the precision of the measured bloodstream speed has been increased,which can be 0.069% to 0.13%.

  15. Evidence-based measures to prevent central line-associated bloodstream infections: a systematic review

    Directory of Open Access Journals (Sweden)

    Daniele Cristina Perin

    Full Text Available ABSTRACT Objective: to identify evidence-based care to prevent CLABSI among adult patients hospitalized in ICUs. Method: systematic review conducted in the following databases: PubMed, Scopus, Cinahl, Web of Science, Lilacs, Bdenf and Cochrane Studies addressing care and maintenance of central venous catheters, published from January 2011 to July 2014 were searched. The 34 studies identified were organized in an instrument and assessed by using the classification provided by the Joanna Briggs Institute. Results: the studies presented care bundles including elements such as hand hygiene and maximal barrier precautions; multidimensional programs and strategies such as impregnated catheters and bandages and the involvement of facilities in and commitment of staff to preventing infections. Conclusions: care bundles coupled with education and the commitment of both staff and institutions is a strategy that can contribute to decreased rates of central line-associated bloodstream infections among adult patients hospitalized in intensive care units.

  16. Healthcare-associated Gram-negative bloodstream infections: antibiotic resistance and predictors of mortality.

    Science.gov (United States)

    Ergönül, Ö; Aydin, M; Azap, A; Başaran, S; Tekin, S; Kaya, Ş; Gülsün, S; Yörük, G; Kurşun, E; Yeşilkaya, A; Şimşek, F; Yılmaz, E; Bilgin, H; Hatipoğlu, Ç; Cabadak, H; Tezer, Y; Togan, T; Karaoğlan, I; İnan, A; Engin, A; Alışkan, H E; Yavuz, S Ş; Erdinç, Ş; Mulazimoglu, L; Azap, Ö; Can, F; Akalın, H; Timurkaynak, F

    2016-12-01

    This article describes the prevalence of antibiotic resistance and predictors of mortality for healthcare-associated (HA) Gram-negative bloodstream infections (GN-BSI). In total, 831 cases of HA GN-BSI from 17 intensive care units in different centres in Turkey were included; the all-cause mortality rate was 44%. Carbapenem resistance in Klebsiella pneumoniae was 38%, and the colistin resistance rate was 6%. Multi-variate analysis showed that age >70 years [odds ratio (OR) 2, 95% confidence interval (CI) 1.22-3.51], central venous catheter use (OR 2.1, 95% CI 1.09-4.07), ventilator-associated pneumonia (OR 1.9, 95% CI 1.1-3.16), carbapenem resistance (OR 1.8, 95% CI 1.11-2.95) and APACHE II score (OR 1.1, 95% CI 1.07-1.13) were significantly associated with mortality.

  17. Achromobacter Xylosoxidans Bloodstream Infection in Elderly Patient with Hepatocellular Carcinoma: Case Report and Review of Literature.

    Science.gov (United States)

    Raghuraman, Kausalya; Ahmed, Nishat H; Baruah, Frincy K; Grover, Rajesh K

    2015-01-01

    Achromobacter xylosoxidansis a nonfermentative Gram-negative organism, known to cause opportunistic infection in humans. We report a case of septicemia in a 76-year-old male patient with underlying hepatocellular carcinoma due to A. xylosoxidans, which showed a different antimicrobial susceptibility pattern from what is usually reported. From aerobic blood culture of the patient, A. xylosoxidans was isolated which was found to be sensitive to amoxicillin-clavulanic acid, piperacillin-tazobactam, ceftazidime, cefoperazone-sulbactam, meropenem, minocycline, tigecycline, and trimethoprim/sulfamethoxazole. The patient recovered with amoxicillin-clavulanic acid treatment, which was given empirically to the patient. The present case highlights the possible role of amoxicillin-clavulanic acid for treatment of bloodstream infection with A. xylosoxidans.

  18. Achromobacter Xylosoxidans bloodstream infection in elderly patient with Hepatocellular Carcinoma: Case report and review of literature

    Directory of Open Access Journals (Sweden)

    Kausalya Raghuraman

    2015-01-01

    Full Text Available Achromobacter xylosoxidansis a nonfermentative Gram-negative organism, known to cause opportunistic infection in humans. We report a case of septicemia in a 76-year-old male patient with underlying hepatocellular carcinoma due to A. xylosoxidans, which showed a different antimicrobial susceptibility pattern from what is usually reported. From aerobic blood culture of the patient, A. xylosoxidanswas isolated which was found to be sensitive to amoxicillin-clavulanic acid, piperacillin-tazobactam, ceftazidime, cefoperazone-sulbactam, meropenem, minocycline, tigecycline, and trimethoprim/sulfamethoxazole. The patient recovered with amoxicillin-clavulanic acid treatment, which was given empirically to the patient. The present case highlights the possible role of amoxicillin-clavulanic acid for treatment of bloodstream infection with A. xylosoxidans.

  19. Positive deviance as a strategy to prevent and control bloodstream infections in intensive care

    Directory of Open Access Journals (Sweden)

    Francimar Tinoco de Oliveira

    Full Text Available Abstract OBJECTIVE To describe the application of positive deviance as a strategy to prevent and control bloodstream infections. METHOD An intervention study with nursing and medical team members working in an intensive care unit in a university hospital, between June and December 2014. The four steps of the positive defiance methodology were applied: to define, to determine, to discover and to design. RESULTS In 90 days, 188 actions were observed, of these, 36.70% (n=69 were related to catheter dressing. In 81.15% (n=56 of these dressings, the professionals most adhered to the use of flexible sterile cotton-tipped swabs to perform antisepsis at catheter entry sites and fixation dressing. CONCLUSION Positive deviance contributed to the implementation of proposals to improve work processes and team development related to problems identified in central venous catheter care.

  20. Prevalence of Parasitic Infections in Iranian Stable Hemodialysis Patients

    Directory of Open Access Journals (Sweden)

    Shiva SEYRAFIAN

    2011-09-01

    Full Text Available Background: Hemodialysis (HD patients are prone to infections as a result of impaired immune system. Early detection of disease helps to prevent complications. The aim of this study was to evaluate the prevalence of intestinal parasite infections in HD patients and compare it with control groups. Methods: In a cross sectional study, the stool sample of 155 HD patients, and 294 controls were examined for parasitic contaminations. Control groups included: 130 patients’ family, 16 staffs of three HD wards and 148 normal populations. 3 stool samples were taken from each participant. After perceiving the appearance of the samples and preceding the stages of concentration with Formaline-ether method, direct smear were prepared and inspected by trichrome staining. Then, groups were compared with SPSS version12 by chi-square and T-test methods. Results: 43.9% of 155 HD patients were infected by intestinal parasites. There was 40% parasite infection in non diabetic and 45% in diabetic case groups with no significant difference between the 2 groups (P>0.05. There was no relation between parasite infection with sex, HD duration and use of immunosuppressive drugs. 43.1% of control group was also infected. No significant difference was seen between the 2 groups (P>0.05.The most common parasite was Blastocystis hominis in the 2 groups. Conclusion: This study could not show increased parasite infection in HD patients compared to control groups. The high prevalence of intestinal parasites in HD patients and control groups, may indicate that population hygiene status is not well controlled, and emphasizes more health care providers’ attention.

  1. Parasitic zoonotic diseases in Turkey

    Directory of Open Access Journals (Sweden)

    Nazmiye Altintas

    2008-12-01

    Full Text Available Zoonoses and zoonotic diseases are becoming more common and they are now receiving increased attention across the world. Zoonotic parasites are found in a wide variety of protozoa, cestodes, nematodes, trematodes and arthropods worldwide and many zoonotic parasites have assumed an important role. The importance of some parasitic zoonoses has increased in recent years due to the fact that they can be agents of opportunistic infections. Although a number of zoonotic parasites are often found and do cause serious illnesses in Turkey, some are more common and these diseases are more important as they cause serious public health problems, such as leishmaniasis, toxoplasmosis, cryptosporidiosis, echinococcosis, trichinellosis and toxocariasis. Information on these zoonotic diseases is provided here as these are the most important zoonotic parasitic diseases in Turkey.

  2. Navigating parasite webs and parasite flow: emerging and re-emerging parasitic zoonoses of wildlife origin.

    Science.gov (United States)

    Polley, Lydden

    2005-10-01

    Wildlife are now recognised as an important source of emerging human pathogens, including parasites. This paper discusses the linkages between wildlife, people, zoonotic parasites and the ecosystems in which they co-exist, revisits definitions for 'emerging' and 're-emerging', and lists zoonotic parasites that can be acquired from wildlife including, for some, estimates of the associated global human health burdens. The paper also introduces the concepts of 'parasite webs' and 'parasite flow', provides a context for parasites, relative to other infectious agents, as causes of emerging human disease, and discusses drivers of disease emergence and re-emergence, especially changes in biodiversity and climate. Angiostrongylus cantonensis in the Caribbean and the southern United States, Baylisascaris procyonis in California and Georgia, Plasmodium knowlesi in Sarawak, Malaysia, Human African Trypanosomiasis, Sarcoptes scabiei in carnivores, and Cryptosporidium, Giardia and Toxoplasma in marine ecosystems are presented as examples of wildlife-derived zoonotic parasites of particular recent interest. An ecological approach to disease is promoted, as is a need for an increased profile for this approach in undergraduate and graduate education in the health sciences. Synergy among scientists and disciplines is identified as critical for the study of parasites and parasitic disease in wildlife populations. Recent advances in techniques for the investigation of parasite fauna of wildlife are presented and monitoring and surveillance systems for wildlife disease are discussed. Some of the limitations inherent in predictions for the emergence and re-emergence of infection and disease associated with zoonotic parasites of wildlife are identified. The importance of public awareness and public education in the prevention and control of emerging and re-emerging zoonotic infection and disease are emphasised. Finally, some thoughts for the future are presented.

  3. Bloodstream-To-Eye Infections Are Facilitated by Outer Blood-Retinal Barrier Dysfunction.

    Directory of Open Access Journals (Sweden)

    Phillip S Coburn

    Full Text Available The blood-retinal barrier (BRB functions to maintain the immune privilege of the eye, which is necessary for normal vision. The outer BRB is formed by tightly-associated retinal pigment epithelial (RPE cells which limit transport within the retinal environment, maintaining retinal function and viability. Retinal microvascular complications and RPE dysfunction resulting from diabetes and diabetic retinopathy cause permeability changes in the BRB that compromise barrier function. Diabetes is the major predisposing condition underlying endogenous bacterial endophthalmitis (EBE, a blinding intraocular infection resulting from bacterial invasion of the eye from the bloodstream. However, significant numbers of EBE cases occur in non-diabetics. In this work, we hypothesized that dysfunction of the outer BRB may be associated with EBE development. To disrupt the RPE component of the outer BRB in vivo, sodium iodate (NaIO3 was administered to C57BL/6J mice. NaIO3-treated and untreated mice were intravenously injected with 108 colony forming units (cfu of Staphylococcus aureus or Klebsiella pneumoniae. At 4 and 6 days postinfection, EBE was observed in NaIO3-treated mice after infection with K. pneumoniae and S. aureus, although the incidence was higher following S. aureus infection. Invasion of the eye was observed in control mice following S. aureus infection, but not in control mice following K. pneumoniae infection. Immunohistochemistry and FITC-dextran conjugate transmigration assays of human RPE barriers after infection with an exoprotein-deficient agr/sar mutant of S. aureus suggested that S. aureus exoproteins may be required for the loss of the tight junction protein, ZO-1, and for permeability of this in vitro barrier. Our results support the clinical findings that for both pathogens, complications which result in BRB permeability increase the likelihood of bacterial transmigration from the bloodstream into the eye. For S. aureus, however, BRB

  4. Port central venous catheters-associated bloodstream infection during outpatient-based chemotherapy.

    Science.gov (United States)

    Mauri, Davide; Roumbkou, Sofia; Michalopoulou, Stella; Tsali, Lamprini; Spiliopoulou, Anastasia; Panou, Charalampos; Valachis, Antonis; Panagopoulos, Angelos; Polyzos, Nikolaos P

    2010-12-01

    Central venous catheters (CVCs) are commonly used for the administration of intravenous chemotherapy in outpatient setting. Nevertheless, outbreaks of catheter-associated bloodstream infections had been reported from oncology centers. We describe a large outbreak of CVCs-associated Klebsiella oxytoca bloodstream infection, occurring in an oncology chemotherapy outpatient unit of northern Greece between October 2006 and May 2007. The outbreak involved approximately 10% of the patients with CVCs who were receiving home-based chemotherapy, and it represents the second larger outbreak of CVCs-associated BSIs due to Klebsiella oxytoca in oncology outpatient centers. We retrospectively analyzed the chain of investigations and prophylactic/diagnostic measures taken to eradicate the infection: (1) patients' chart audit, (2) estimation of the infection among asymptomatic patients, (3) implementation of the level of awareness of medical and paramedical personnel, (4) collection of samples from environment, medications and infusion materials, (5) critical appraisal of chemotherapeutical schemes and (6) cooperation with peripheral institutions. The isolation of Klebsiella oxytoca in a chemotherapy solution (infusional 5-FU in dextrose 5% solution within a 48 h pump) from a peripheral General Hospital and the prompt transmission of the data to the chemotherapy center played a key role for the management of the infection cluster. This is the first report that evidenced the detection of Klebsiella oxytoca within a chemotherapeutical preparation. Data transmission from peripheral hospitals to the central institution resulted in an important feedback that allowed a better estimation of the infection cluster and more tailored actions for the eradication of the infection.

  5. Bloodstream infection among children presenting to a general hospital outpatient clinic in urban Nepal.

    Directory of Open Access Journals (Sweden)

    Rahul Pradhan

    Full Text Available BACKGROUND: There are limited data on the etiology and characteristics of bloodstream infections in children presenting in hospital outpatient settings in South Asia. Previous studies in Nepal have highlighted the importance of murine typhus as a cause of febrile illness in adults and enteric fever as a leading bacterial cause of fever among children admitted to hospital. METHODS: We prospectively studied a total of 1084 febrile children aged between 2 months and 14 years presenting to a general hospital outpatient department in Kathmandu Valley, Nepal, over two study periods (summer and winter. Blood from all patients was tested by conventional culture and by real-time PCR for Rickettsia typhi. RESULTS: Putative etiological agents for fever were identified in 164 (15% patients. Salmonella enterica serovar Typhi (S. Typhi was identified in 107 (10%, S. enterica serovar Paratyphi A (S. Paratyphi in 30 (3%, Streptococcus pneumoniae in 6 (0.6%, S. enterica serovar Typhimurium in 2 (0.2%, Haemophilus influenzae type b in 1 (0.1%, and Escherichia coli in 1 (0.1% patient. S. Typhi was the most common organism isolated from blood during both summer and winter. Twenty-two (2% patients were PCR positive for R. typhi. No significant demographic, clinical and laboratory features distinguished culture positive enteric fever and murine typhus. CONCLUSIONS: Salmonella infections are the leading cause of bloodstream infection among pediatric outpatients with fever in Kathmandu Valley. Extension of immunization programs against invasive bacterial disease to include the agents of enteric fever and pneumococcus could improve the health of children in Nepal.

  6. Bloodstream-To-Eye Infections Are Facilitated by Outer Blood-Retinal Barrier Dysfunction

    Science.gov (United States)

    Coburn, Phillip S.; Wiskur, Brandt J.; Miller, Frederick C.; LaGrow, Austin L.; Astley, Roger A.; Elliott, Michael H.; Callegan, Michelle C.

    2016-01-01

    The blood-retinal barrier (BRB) functions to maintain the immune privilege of the eye, which is necessary for normal vision. The outer BRB is formed by tightly-associated retinal pigment epithelial (RPE) cells which limit transport within the retinal environment, maintaining retinal function and viability. Retinal microvascular complications and RPE dysfunction resulting from diabetes and diabetic retinopathy cause permeability changes in the BRB that compromise barrier function. Diabetes is the major predisposing condition underlying endogenous bacterial endophthalmitis (EBE), a blinding intraocular infection resulting from bacterial invasion of the eye from the bloodstream. However, significant numbers of EBE cases occur in non-diabetics. In this work, we hypothesized that dysfunction of the outer BRB may be associated with EBE development. To disrupt the RPE component of the outer BRB in vivo, sodium iodate (NaIO3) was administered to C57BL/6J mice. NaIO3-treated and untreated mice were intravenously injected with 108 colony forming units (cfu) of Staphylococcus aureus or Klebsiella pneumoniae. At 4 and 6 days postinfection, EBE was observed in NaIO3-treated mice after infection with K. pneumoniae and S. aureus, although the incidence was higher following S. aureus infection. Invasion of the eye was observed in control mice following S. aureus infection, but not in control mice following K. pneumoniae infection. Immunohistochemistry and FITC-dextran conjugate transmigration assays of human RPE barriers after infection with an exoprotein-deficient agr/sar mutant of S. aureus suggested that S. aureus exoproteins may be required for the loss of the tight junction protein, ZO-1, and for permeability of this in vitro barrier. Our results support the clinical findings that for both pathogens, complications which result in BRB permeability increase the likelihood of bacterial transmigration from the bloodstream into the eye. For S. aureus, however, BRB permeability is

  7. Bloodstream-To-Eye Infections Are Facilitated by Outer Blood-Retinal Barrier Dysfunction.

    Science.gov (United States)

    Coburn, Phillip S; Wiskur, Brandt J; Miller, Frederick C; LaGrow, Austin L; Astley, Roger A; Elliott, Michael H; Callegan, Michelle C

    2016-01-01

    The blood-retinal barrier (BRB) functions to maintain the immune privilege of the eye, which is necessary for normal vision. The outer BRB is formed by tightly-associated retinal pigment epithelial (RPE) cells which limit transport within the retinal environment, maintaining retinal function and viability. Retinal microvascular complications and RPE dysfunction resulting from diabetes and diabetic retinopathy cause permeability changes in the BRB that compromise barrier function. Diabetes is the major predisposing condition underlying endogenous bacterial endophthalmitis (EBE), a blinding intraocular infection resulting from bacterial invasion of the eye from the bloodstream. However, significant numbers of EBE cases occur in non-diabetics. In this work, we hypothesized that dysfunction of the outer BRB may be associated with EBE development. To disrupt the RPE component of the outer BRB in vivo, sodium iodate (NaIO3) was administered to C57BL/6J mice. NaIO3-treated and untreated mice were intravenously injected with 108 colony forming units (cfu) of Staphylococcus aureus or Klebsiella pneumoniae. At 4 and 6 days postinfection, EBE was observed in NaIO3-treated mice after infection with K. pneumoniae and S. aureus, although the incidence was higher following S. aureus infection. Invasion of the eye was observed in control mice following S. aureus infection, but not in control mice following K. pneumoniae infection. Immunohistochemistry and FITC-dextran conjugate transmigration assays of human RPE barriers after infection with an exoprotein-deficient agr/sar mutant of S. aureus suggested that S. aureus exoproteins may be required for the loss of the tight junction protein, ZO-1, and for permeability of this in vitro barrier. Our results support the clinical findings that for both pathogens, complications which result in BRB permeability increase the likelihood of bacterial transmigration from the bloodstream into the eye. For S. aureus, however, BRB permeability is

  8. Bloodstream infections in intensive care unit patients: distribution and antibiotic resistance of bacteria

    Directory of Open Access Journals (Sweden)

    Russotto V

    2015-08-01

    Full Text Available Vincenzo Russotto,1 Andrea Cortegiani,1 Giorgio Graziano,2 Laura Saporito,2 Santi Maurizio Raineri,1 Caterina Mammina,2 Antonino Giarratano1 1Department of Biopathology and Medical Biotechnologies (DIBIMED, Section of Anaesthesia, Analgesia, Intensive Care and Emergency, Paolo Giaccone University Hospital, University of Palermo, Palermo, Italy; 2Department of Sciences for Health Promotion and Mother-Child Care, University of Palermo, Palermo, Italy Abstract: Bloodstream infections (BSIs are among the leading infections in critically ill patients. The case-fatality rate associated with BSIs in patients admitted to intensive care units (ICUs reaches 35%–50%. The emergence and diffusion of bacteria with resistance to antibiotics is a global health problem. Multidrug-resistant bacteria were detected in 50.7% of patients with BSIs in a recently published international observational study, with methicillin resistance detected in 48% of Staphylococcus aureus strains, carbapenem resistance detected in 69% of Acinetobacter spp., in 38% of Klebsiella pneumoniae, and in 37% of Pseudomonas spp. Prior hospitalization and antibiotic exposure have been identified as risk factors for infections caused by resistant bacteria in different studies. Patients with BSIs caused by resistant strains showed an increased risk of mortality, which may be explained by a higher incidence of inappropriate empirical therapy in different studies. The molecular genetic characterization of resistant bacteria allows the understanding of the most common mechanisms underlying their resistance and the adoption of surveillance measures. Knowledge of epidemiology, risk factors, mechanisms of resistance, and outcomes of BSIs caused by resistant bacteria may have a major influence on global management of ICU patients. The aim of this review is to provide the clinician an update on BSIs caused by resistant bacteria in ICU patients. Keywords: bloodstream infections, multidrug resistant

  9. Integrated parasite management

    DEFF Research Database (Denmark)

    Clausen, Jesper Hedegaard; Madsen, Henry; Van, Phan Thi

    2015-01-01

    Fishborne zoonotic trematodes (FZT) are an emerging problem and there is now a consensus that, in addition to wild-caught fish, fish produced in aquaculture present a major food safety risk, especially in Southeast Asia where aquaculture is important economically. Current control programs target ...... that target critical control points in the aquaculture production cycle identified from a thorough understanding of FZT and host biology and epidemiology. We present recommendations for an integrated parasite management (IPM) program for aquaculture farms.......Fishborne zoonotic trematodes (FZT) are an emerging problem and there is now a consensus that, in addition to wild-caught fish, fish produced in aquaculture present a major food safety risk, especially in Southeast Asia where aquaculture is important economically. Current control programs target...

  10. Acanthocephala Larvae parasitizing Ameiva ameiva ameiva (Linnaeus, 1758) (Squamata: Teiidae).

    Science.gov (United States)

    Macedo, Lilian Cristina; Melo, Francisco Tiago de Vasconcelos; Ávila-Pires, Teresa Cristina Sauer; Giese, Elane Guerreiro; dos Santos, Jeannie Nascimento

    2016-01-01

    Knowledge concerning the taxonomy and biology of species of Acanthocephala, helminth parasites of the helminth species of the phylum Acanthocephala, parasites of lizards in Brazilian Amazonia, is still insufficient, but reports of Acanthocephala in reptiles are becoming increasingly common in the literature. Cystacanth-stage Acanthocephalan larvae have been found in the visceral peritoneum during necropsy of Ameiva ameiva ameivalizards from the "Osvaldo Rodrigues da Cunha" Herpetology Collection of the Emílio Goeldi Museum, Belém, Pará, Brazil. The aim of this study was to present the morphological study of the Acanthocephala larvae found in A. ameiva ameiva lizard.

  11. Acanthocephala Larvae parasitizing Ameiva ameiva ameiva (Linnaeus, 1758) (Squamata: Teiidae).

    Science.gov (United States)

    Macedo, Lilian Cristina; Melo, Francisco Tiago de Vasconcelos; Ávila-Pires, Teresa Cristina Sauer; Giese, Elane Guerreiro; Santos, Jeannie Nascimento Dos

    2016-03-11

    Knowledge concerning the taxonomy and biology of species of Acanthocephala, helminth parasites of the helminth species of the phylum Acanthocephala, parasites of lizards in Brazilian Amazonia, is still insufficient, but reports of Acanthocephala in reptiles are becoming increasingly common in the literature. Cystacanth-stage Acanthocephalan larvae have been found in the visceral peritoneum during necropsy of Ameiva ameiva ameivalizards from the "Osvaldo Rodrigues da Cunha" Herpetology Collection of the Emílio Goeldi Museum, Belém, Pará, Brazil. The aim of this study was to present the morphological study of the Acanthocephala larvae found in A. ameiva ameiva lizard.

  12. How have fisheries affected parasite communities?

    Science.gov (United States)

    Wood, Chelsea L.; Lafferty, Kevin D.

    2015-01-01

    To understand how fisheries affect parasites, we conducted a meta-analysis of studies that contrasted parasite assemblages in fished and unfished areas. Parasite diversity was lower in hosts from fished areas. Larger hosts had a greater abundance of parasites, suggesting that fishing might reduce the abundance of parasites by selectively removing the largest, most heavily parasitized individuals. After controlling for size, the effect of fishing on parasite abundance varied according to whether the host was fished and the parasite's life cycle. Parasites of unfished hosts were more likely to increase in abundance in response to fishing than were parasites of fished hosts, possibly due to compensatory increases in the abundance of unfished hosts. While complex life cycle parasites tended to decline in abundance in response to fishing, directly transmitted parasites tended to increase. Among complex life cycle parasites, those with fished hosts tended to decline in abundance in response to fishing, while those with unfished hosts tended to increase. However, among directly transmitted parasites, responses did not differ between parasites with and without fished hosts. This work suggests that parasite assemblages are likely to change substantially in composition in increasingly fished ecosystems, and that parasite life history and fishing status of the host are important in predicting the response of individual parasite species or groups to fishing.

  13. In silico identification of genetically attenuated vaccine candidate genes for Plasmodium liver stage.

    Science.gov (United States)

    Kumar, Hirdesh; Frischknecht, Friedrich; Mair, Gunnar R; Gomes, James

    2015-12-01

    Genetically attenuated parasites (GAPs) that lack genes essential for the liver stage of the malaria parasite, and therefore cause developmental arrest, have been developed as live vaccines in rodent malaria models and recently been tested in humans. The genes targeted for deletion were often identified by trial and error. Here we present a systematic gene - protein and transcript - expression analyses of several Plasmodium species with the aim to identify candidate genes for the generation of novel GAPs. With a lack of liver stage expression data for human malaria parasites, we used data available for liver stage development of Plasmodium yoelii, a rodent malaria model, to identify proteins expressed in the liver stage but absent from blood stage parasites. An orthology-based search was then employed to identify orthologous proteins in the human malaria parasite Plasmodium falciparum resulting in a total of 310 genes expressed in the liver stage but lacking evidence of protein expression in blood stage parasites. Among these 310 possible GAP candidates, we further studied Plasmodium liver stage proteins by phyletic distribution and functional domain analyses and shortlisted twenty GAP-candidates; these are: fabB/F, fabI, arp, 3 genes encoding subunits of the PDH complex, dnaJ, urm1, rS5, ancp, mcp, arh, gk, lisp2, valS, palm, and four conserved Plasmodium proteins of unknown function. Parasites lacking one or several of these genes might yield new attenuated malaria parasites for experimental vaccination studies.

  14. Parasites in algae mass culture

    Directory of Open Access Journals (Sweden)

    Todd William Lane

    2014-06-01

    Full Text Available Parasites are now known to be ubiquitous across biological systems and can play an important role in modulating algal populations. However, there is a lack of extensive information on their role in artificial ecosystems such as algal production ponds and photobioreactors. Parasites have been implicated in the demise of algal blooms. Because individual mass culture systems often tend to be unialgal and a select few algal species are in wide scale application, there is an increased potential for parasites to have a devastating effect on commercial scale monoculture. As commercial algal production continues to expand with a widening variety of applications, including biofuel, food and pharmaceuticals, the parasites associated with algae will become of greater interest and potential economic impact. A number of important algal parasites have been identified in algal mass culture systems in the last few years and this number is sure to grow as the number of commercial algae ventures increases. Here, we review the research that has identified and characterized parasites infecting mass cultivated algae, the techniques being proposed and or developed to control them, and the potential impact of parasites on the future of the algal biomass industry.

  15. Evicting cuckoo nestlings from the nest: a new anti-parasitism behaviour.

    Science.gov (United States)

    Sato, Nozomu J; Tokue, Kihoko; Noske, Richard A; Mikami, Osamu K; Ueda, Keisuke

    2010-02-23

    As avian brood parasitism usually reduces hosts' reproductive success, hosts often exhibit strong defence mechanisms. While such host defences at the egg stage (especially egg rejection) have been extensively studied, defence mechanisms at the nestling stage have been reported only recently. We found a previously unknown anti-parasitism behaviour in the large-billed Gerygone, which is a host species of the little bronze-cuckoo, a host-evicting brood parasite. The hosts forcibly pulled resisting nestlings out of their nests and dumped them. Although it has been suggested that defence mechanisms at the nestling stage may evolve when host defence at the egg stage is evaded by the parasite, the studied host seems to lack an anti-parasitism strategy at the egg stage. This suggests that the evolutionary pathway may be quite different from those of previously studied cuckoo-host systems. Future research on this unique system may give us new insights into the evolution of avian brood parasitism.

  16. Metazoan parasites of fishes from the Celestun coastal lagoon, Yucatan, Mexico.

    Science.gov (United States)

    Sosa-Medina, Trinidad; Vidal-Martínez, Víctor M; Aguirre-Macedo, M Leopoldina

    2015-08-31

    The aims of this study were to produce a checklist of the metazoan parasites of fishes from the Celestun coastal lagoon and to determine the degree of faunal similarity among the fishes based on the metazoan parasites they share. A checklist was prepared including all available records (1996-2014) of parasites of marine, brackish water and freshwater fishes of the area. All of these data were included in a presence/absence database and used to determine similarity via Jaccard's index. The results indicate the presence of 62 metazoan parasite species infecting 22 fish species. The number of metazoan parasite species found in the fishes from the Celestún lagoon is apparently the highest reported worldwide for a tropical coastal lagoon. The parasites included 12 species of adult digeneans, 27 digeneans in the metacercarial stage, 6 monogeneans, 3 metacestodes, 9 nematodes, 2 acanthocephalans, 2 crustaceans and 1 annelid. Forty parasite species were autogenic and 23 were allogenic and 1 unknown. The overall similarity among all of the species of fish with respect to the metazoan parasites they share was low (0.08 ± 0.12), with few similarity values above 0.4 being obtained. This low similarity was due primarily to the presence of suites of parasites exclusive to specific species of fish. The autogenic component of the parasite fauna (40 species) dominated the allogenic component (21 species). The most likely explanation for the large number of fish parasites found at Celestún is the good environmental condition of the lagoon, which allows the completion of parasite life cycles and free circulation of euryhaline fishes from the marine environment bringing marine parasites into the lagoon.

  17. Parasites on parasites: coupled fluctuations in stacked contact processes

    CERN Document Server

    Court, Steven J; Allen, Rosalind J

    2012-01-01

    We present a model for host-parasite dynamics which incorporates both vertical and horizontal transmission as well as spatial structure. Our model consists of stacked contact processes (CP), where the dynamics of the host is a simple CP on a lattice while the dynamics of the parasite is a secondary CP which sits on top of the host-occupied sites. In the simplest case, where infection does not incur any cost, we uncover a novel effect: a nonmonotonic dependence of parasite prevalence on host turnover. Inspired by natural examples of hyperparasitism, we extend our model to multiple levels of parasites and identify a transition between the maintenance of a finite and infinite number of levels, which we conjecture is connected to a roughening transition in models of surface-growth.

  18. Platelets kill intraerythrocytic malarial parasites and mediate survival to infection.

    Science.gov (United States)

    McMorran, Brendan J; Marshall, Vikki M; de Graaf, Carolyn; Drysdale, Karen E; Shabbar, Meriam; Smyth, Gordon K; Corbin, Jason E; Alexander, Warren S; Foote, Simon J

    2009-02-01

    Platelets play a critical role in the pathogenesis of malarial infections by encouraging the sequestration of infected red blood cells within the cerebral vasculature. But platelets also have well-established roles in innate protection against microbial infections. We found that purified human platelets killed Plasmodium falciparum parasites cultured in red blood cells. Inhibition of platelet function by aspirin and other platelet inhibitors abrogated the lethal effect human platelets exert on P. falciparum parasites. Likewise, platelet-deficient and aspirin-treated mice were more susceptible to death during erythrocytic infection with Plasmodium chabaudi. Both mouse and human platelets bind malarial-infected red cells and kill the parasite within. These results indicate a protective function for platelets in the early stages of erythrocytic infection distinct from their role in cerebral malaria.

  19. Delay in the administration of appropriate antimicrobial therapy in Staphylococcus aureus bloodstream infection : A prospective multicenter hospital-based cohort study

    NARCIS (Netherlands)

    Kaasch, A. J.; Rieg, S.; Kuetscher, J.; Brodt, H. -R.; Widmann, T.; Herrmann, M.; Meyer, C.; Welte, T.; Kern, P.; Haars, U.; Reuter, S.; Huebner, I.; Strauss, R.; Sinha, B.; Brunkhorst, F. M.; Hellmich, M.; Faetkenheuer, G.; Kern, W. V.; Seifert, H.

    2013-01-01

    Early broad-spectrum antimicrobial treatment reduces mortality in patients with septic shock. In a multicenter, prospective observational study, we explored whether delayed appropriate antimicrobial therapy (AAT) influences outcome in Staphylococcus aureus bloodstream infection (SAB). Two hundred an

  20. Synanthropic birds and parasites.

    Science.gov (United States)

    Dipineto, Ludovico; Borrelli, Luca; Pepe, Paola; Fioretti, Alessandro; Caputo, Vincenzo; Cringoli, Giuseppe; Rinaldi, Laura

    2013-12-01

    This paper describes the parasitologic findings for 60 synanthropic bird carcasses recovered in the Campania region of southern Italy. Birds consisted of 20 yellow-legged gulls (Larus michahellis), 15 rock pigeons (Columba livia), 15 common kestrels (Falco tinnunculus), and 10 carrion crows (Corvus corone). Each carcass was examined to detect the presence of ectoparasites and then necropsied to detect helminths. Ectoparasites occurred in 100% of the birds examined. In particular, chewing lice were recovered with a prevalence of 100%, whereas Pseudolynchia canariensis (Hippoboscidae) were found only in pigeons with a prevalence of 80%. Regarding endoparasites, a total of seven helminth species were identified: three nematodes (Ascaridia columbae, Capillaria columbae, Physaloptera alata), one cestoda (Raillietina tetragona), one trematoda (Cardiocephalus longicollis), and two acanthocephalans (Centrorhynchus globocaudatus and Centrorhynchus buteonis). The findings of the present study add data to the parasitologic scenario of synanthropic birds. This is important because parasitic infection can lead to serious health problems when combined with other factors and may affect flying performance and predatory effectiveness.

  1. MENGENAL PARASIT FILARIA

    Directory of Open Access Journals (Sweden)

    Tri Ramadhani

    2012-11-01

    Full Text Available Filariasis atau kaki gajah adalah penyakit menular yang disebabkan karena infeksi cacing filaria yang hidup disaluran dan kelenjar getah bening (limfe serta menyebabkan gejala akut, kronis. Filariasis mulai dikenal di Indonesia tahun 1889 sejak Haga dan Van Eecke menemukan kasus pembesaran scrotum di Jakarta. Penyakit tersebut dapat menular kepada orang lain dengan perantara gigitan nyamuk. Seluruh wilayah Indonesia berpotensi untuk terjangkitnya penyakit tersebut, hal ini mengingat cacing sebagai penyebabnya dan nyamuk penularnya tersebar luas. Keadaan ini didukung oleh kerusakan lingkungan, seperti banjir, penebangan hutan dan lainnya yang memperluas tempat berkembangbiaknya nyamuk. Meskipun filariasis tidak mematikan secara langsung, dengan adanya demam dan bisul-bisul (abses yang hilang timbul, dan gejala menahun berupa pembesaran/elefantiasis yang merupakan cacat menetap akan sangat mengganggu. Secara ekonomis keadaan tersebut sangat merugikan, karena mengurangi produktivitas masyarakat, serta diperlukan biaya pengobatan dan perawatan yang tidak mudah dan tidak murah.Di Indonesia filariasis limfatik di sebabkan oleh tiga spesies cacing filaria yaitu Brugia malayi,B.timori dan Wuchereria bancrofti, yang terbagi lagi menjadi 6 tipe secara epidemiologi.Tiap parasit mempunyai siklus hidup yang kompleks dan infeksi pada manusia tidak akan berhasil kecuali jika terjadi pemaparan larva infektif untuk waktu yang lama. Setelah terjadi pemaparan, dibutuhkan waktu bertahun-tahun sebelum timbulnya perubahan patologis yang nyata pada manusia. Periodisitas dalam sirkulasi setiap mikrofilaria akan berbeda, tergantung dari spesiesnya.

  2. Hierarchical phosphorylation of apical membrane antigen 1 is required for efficient red blood cell invasion by malaria parasites

    OpenAIRE

    Boris Prinz; Katherine L. Harvey; Louisa Wilcke; Ulrike Ruch; Klemens Engelberg; Laura Biller; Isabelle Lucet; Steffen Erkelenz; Dorothee Heincke; Tobias Spielmann; Christian Doerig; Conrad Kunick; Brendan S Crabb; Gilson, Paul R.; Gilberger, Tim W

    2016-01-01

    Central to the pathogenesis of malaria is the proliferation of Plasmodium falciparum parasites within human erythrocytes. Parasites invade erythrocytes via a coordinated sequence of receptor-ligand interactions between the parasite and host cell. One key ligand, Apical Membrane Antigen 1 (AMA1), is a leading blood-stage vaccine and previous work indicates that phosphorylation of its cytoplasmic domain (CPD) is important to its function during invasion. Here we investigate the significance of ...

  3. Tropical parasitic diseases and women.

    Science.gov (United States)

    Okwa, O O

    2007-12-01

    Tropical parasitic diseases constitute the greatest threat to the health and socio-economic status of women as a gender and social group. There are some gender specific ways in which parasitic diseases affect women in contrast to men due to differences in exposure, occupational risk, sociocultural behavior, gender roles and practices. These parasitic diseases confer some social stigma, which affects the health seeking behavior of women. Women are therefore important in the control of these parasitic diseases and they are key agents of change, if they are included in community control programs. Women need more attention in endemic areas as a group that had been neglected. This deprived and excluded group have got vital role to play, as discussed in this review.

  4. Energetic cost of bot fly parasitism in free-ranging eastern chipmunks.

    Science.gov (United States)

    Careau, Vincent; Thomas, Donald W; Humphries, Murray M

    2010-02-01

    The energy and nutrient demands of parasites on their hosts are frequently invoked as an explanation for negative impacts of parasitism on host survival and reproductive success. Although cuterebrid bot flies are among the physically largest and most-studied insect parasites of mammals, the only study conducted on metabolic consequences of bot fly parasitism revealed a surprisingly small effect of bot flies on host metabolism. Here we test the prediction that bot fly parasitism increases the resting metabolic rate (RMR) of free-ranging eastern chipmunks (Tamias striatus), particularly in juveniles who have not previously encountered parasites and have to allocate energy to growth. We found no effect of bot fly parasitism on adults. In juveniles, however, we found that RMR strongly increased with the number of bot fly larvae hosted. For a subset of 12 juveniles during a year where parasite prevalence was particularly high, we also compared the RMR before versus during the peak of bot fly prevalence, allowing each individual to act as its own control. Each bot fly larva resulted in a approximately 7.6% increase in the RMR of its host while reducing juvenile growth rates. Finally, bot fly parasitism at the juvenile stage was positively correlated with adult stage RMR, suggesting persistent effects of bot flies on RMR. This study is the first to show an important effect of bot fly parasitism on the metabolism and growth of a wild mammal. Our work highlights the importance of studying cost of parasitism over multiple years in natural settings, as negative effects on hosts are more likely to emerge in periods of high energetic demand (e.g. growing juveniles) and/or in harsh environmental conditions (e.g. low food availability).

  5. Host-Parasite-Bacteria Triangle: The Microbiome of the Parasitic Weed Phelipanche aegyptiaca and Tomato-Solanum lycopersicum (Mill.) as a Host

    Science.gov (United States)

    Iasur Kruh, Lilach; Lahav, Tamar; Abu-Nassar, Jacline; Achdari, Guy; Salami, Raghda; Freilich, Shiri; Aly, Radi

    2017-01-01

    Broomrapes (Phelipanche/Orobanche spp.) are holoparasitic plants that subsist on the roots of a variety of agricultural crops, establishing direct connections with the host vascular system. This connection allows for the exchange of various substances and a possible exchange of endophytic microorganisms that inhabit the internal tissues of both plants. To shed some light on bacterial interactions occurring between the parasitic Phelipanche aegyptiaca and its host tomato, we characterized the endophytic composition in the parasite during the parasitization process and ascertained if these changes were accompanied by changes to endophytes in the host root. Endophyte communities of the parasitic weed were significantly different from that of the non-parasitized tomato root but no significant differences were observed between the parasite and its host after parasitization, suggesting the occurrence of bacterial exchange between these two plants. Moreover, the P. aegyptiaca endophytic community composition showed a clear shift from gram negative to gram-positive bacteria at different developmental stages of the parasite life cycle. To examine possible functions of the endophytic bacteria in both the host and the parasite plants, a number of unique bacterial candidates were isolated and characterized. Results showed that a Pseudomonas strain PhelS10, originating from the tomato roots, suppressed approximately 80% of P. aegyptiaca seed germination and significantly reduced P. aegyptiaca parasitism. The information gleaned in the present study regarding the endophytic microbial communities in this unique ecological system of two plants connected by their vascular system, highlights the potential of exploiting alternative environmentally friendly approaches for parasitic weed control. PMID:28298918

  6. Correlating early evolution of parasitic platyhelminths to Gondwana breakup.

    Science.gov (United States)

    Badets, Mathieu; Whittington, Ian; Lalubin, Fabrice; Allienne, Jean-Francois; Maspimby, Jean-Luc; Bentz, Sophie; Du Preez, Louis H; Barton, Diane; Hasegawa, Hideo; Tandon, Veena; Imkongwapang, Rangpenyuba; Imkongwapang, Rangpenyubai; Ohler, Annemarie; Combes, Claude; Verneau, Olivier

    2011-12-01

    Investigating patterns and processes of parasite diversification over ancient geological periods should involve comparisons of host and parasite phylogenies in a biogeographic context. It has been shown previously that the geographical distribution of host-specific parasites of sarcopterygians was guided, from Palaeozoic to Cainozoic times, mostly by evolution and diversification of their freshwater hosts. Here, we propose phylogenies of neobatrachian frogs and their specific parasites (Platyhelminthes, Monogenea) to investigate coevolutionary processes and historical biogeography of polystomes and further discuss all the possible assumptions that may account for the early evolution of these parasites. Phylogenetic analyses of concatenated rRNA nuclear genes (18S and partial 28S) supplemented by cophylogenetic and biogeographic vicariance analyses reveal four main parasite lineages that can be ascribed to centers of diversity, namely Australia, India, Africa, and South America. In addition, the relationships among these biogeographical monophyletic groups, substantiated by molecular dating, reflect sequential origins during the breakup of Gondwana. The Australian polystome lineage may have been isolated during the first stages of the breakup, whereas the Indian lineage would have arisen after the complete separation of western and eastern Gondwanan components. Next, polystomes would have codiverged with hyloid sensu stricto and ranoid frog lineages before the completion of South American and African plate separation. Ultimately, they would have undergone an extensive diversification in South America when their ancestral host families diversified. Therefore, the presence of polystome parasites in specific anuran host clades and in discrete geographic areas reveals the importance of biogeographic vicariance in diversification processes and supports the occurrence and radiation of amphibians over ancient and recent geological periods.

  7. Parasites and altruism: converging roads.

    Science.gov (United States)

    Zuk, Marlene; Borrello, Mark E

    2013-01-01

    W.D. Hamilton was most known for his work on two topics: social evolution and parasites. Although at first glance these seem to be disparate interests, they share many attributes and have logical connections within evolutionary biology. Nevertheless, Hamilton's contributions in these areas met with very different receptions, with his place in the field of social evolution assured, but his work on the role of parasites perceived as more specialized. We take an historical approach to examine the reasons for this difference.

  8. Molecular diagnostics and parasitic disease.

    Science.gov (United States)

    Vasoo, Shawn; Pritt, Bobbi S

    2013-09-01

    Molecular parasitology represents an emerging field in microbiology diagnostics. Although most assays use nonstandardized, laboratory-developed methods, a few commercial systems have recently become available and are slowly being introduced into larger laboratories. In addition, a few methodologies show promise for use in field settings in which parasitic infections are endemic. This article reviews the available techniques and their applications to major parasitic diseases such as malaria, leishmaniasis, and trichomoniasis.

  9. Pervasiveness of parasites in pollinators.

    Science.gov (United States)

    Evison, Sophie E F; Roberts, Katherine E; Laurenson, Lynn; Pietravalle, Stéphane; Hui, Jeffrey; Biesmeijer, Jacobus C; Smith, Judith E; Budge, Giles; Hughes, William O H

    2012-01-01

    Many pollinator populations are declining, with large economic and ecological implications. Parasites are known to be an important factor in the some of the population declines of honey bees and bumblebees, but little is known about the parasites afflicting most other pollinators, or the extent of interspecific transmission or vectoring of parasites. Here we carry out a preliminary screening of pollinators (honey bees, five species of bumblebee, three species of wasp, four species of hoverfly and three genera of other bees) in the UK for parasites. We used molecular methods to screen for six honey bee viruses, Ascosphaera fungi, Microsporidia, and Wolbachia intracellular bacteria. We aimed simply to detect the presence of the parasites, encompassing vectoring as well as actual infections. Many pollinators of all types were positive for Ascosphaera fungi, while Microsporidia were rarer, being most frequently found in bumblebees. We also detected that most pollinators were positive for Wolbachia, most probably indicating infection with this intracellular symbiont, and raising the possibility that it may be an important factor in influencing host sex ratios or fitness in a diversity of pollinators. Importantly, we found that about a third of bumblebees (Bombus pascuorum and Bombus terrestris) and a third of wasps (Vespula vulgaris), as well as all honey bees, were positive for deformed wing virus, but that this virus was not present in other pollinators. Deformed wing virus therefore does not appear to be a general parasite of pollinators, but does interact significantly with at least three species of bumblebee and wasp. Further work is needed to establish the identity of some of the parasites, their spatiotemporal variation, and whether they are infecting the various pollinator species or being vectored. However, these results provide a first insight into the diversity, and potential exchange, of parasites in pollinator communities.

  10. Pervasiveness of parasites in pollinators.

    Directory of Open Access Journals (Sweden)

    Sophie E F Evison

    Full Text Available Many pollinator populations are declining, with large economic and ecological implications. Parasites are known to be an important factor in the some of the population declines of honey bees and bumblebees, but little is known about the parasites afflicting most other pollinators, or the extent of interspecific transmission or vectoring of parasites. Here we carry out a preliminary screening of pollinators (honey bees, five species of bumblebee, three species of wasp, four species of hoverfly and three genera of other bees in the UK for parasites. We used molecular methods to screen for six honey bee viruses, Ascosphaera fungi, Microsporidia, and Wolbachia intracellular bacteria. We aimed simply to detect the presence of the parasites, encompassing vectoring as well as actual infections. Many pollinators of all types were positive for Ascosphaera fungi, while Microsporidia were rarer, being most frequently found in bumblebees. We also detected that most pollinators were positive for Wolbachia, most probably indicating infection with this intracellular symbiont, and raising the possibility that it may be an important factor in influencing host sex ratios or fitness in a diversity of pollinators. Importantly, we found that about a third of bumblebees (Bombus pascuorum and Bombus terrestris and a third of wasps (Vespula vulgaris, as well as all honey bees, were positive for deformed wing virus, but that this virus was not present in other pollinators. Deformed wing virus therefore does not appear to be a general parasite of pollinators, but does interact significantly with at least three species of bumblebee and wasp. Further work is needed to establish the identity of some of the parasites, their spatiotemporal variation, and whether they are infecting the various pollinator species or being vectored. However, these results provide a first insight into the diversity, and potential exchange, of parasites in pollinator communities.

  11. Adaptations in the energy metabolism of parasites

    NARCIS (Netherlands)

    van Grinsven, K.W.A.

    2009-01-01

    For this thesis fundamental research was performed on the metabolic adaptations found in parasites. Studying the adaptations in parasite metabolisms leads to a better understanding of parasite bioenergetics and can also result in the identification of new anti-parasitic drug targets. We focussed on

  12. Fungal parasitism: life cycle, dynamics and impact on cyanobacterial blooms.

    Directory of Open Access Journals (Sweden)

    Mélanie Gerphagnon

    Full Text Available Many species of phytoplankton are susceptible to parasitism by fungi from the phylum Chytridiomycota (i.e. chytrids. However, few studies have reported the effects of fungal parasites on filamentous cyanobacterial blooms. To investigate the missing components of bloom ecosystems, we examined an entire field bloom of the cyanobacterium Anabaena macrospora for evidence of chytrid infection in a productive freshwater lake, using a high resolution sampling strategy. A. macrospora was infected by two species of the genus Rhizosiphon which have similar life cycles but differed in their infective regimes depending on the cellular niches offered by their host. R. crassum infected both vegetative cells and akinetes while R. akinetum infected only akinetes. A tentative reconstruction of the developmental stages suggested that the life cycle of R. crassum was completed in about 3 days. The infection affected 6% of total cells (and 4% of akinètes, spread over a maximum of 17% of the filaments of cyanobacteria, in which 60% of the cells could be parasitized. Furthermore, chytrids may reduce the length of filaments of Anabaena macrospora significantly by "mechanistic fragmentation" following infection. All these results suggest that chytrid parasitism is one of the driving factors involved in the decline of a cyanobacteria blooms, by direct mortality of parasitized cells and indirectly by the mechanistic fragmentation, which could weaken the resistance of A. macrospora to grazing.

  13. Parasitic Pneumonia and Lung Involvement

    Directory of Open Access Journals (Sweden)

    Attapon Cheepsattayakorn

    2014-01-01

    Full Text Available Parasitic infestations demonstrated a decline in the past decade as a result of better hygiene practices and improved socioeconomic conditions. Nevertheless, global immigration, increased numbers of the immunocompromised people, international traveling, global warming, and rapid urbanization of the cities have increased the susceptibility of the world population to parasitic diseases. A number of new human parasites, such as Plasmodium knowlesi, in addition to many potential parasites, have urged the interest of scientific community. A broad spectrum of protozoal parasites frequently affects the respiratory system, particularly the lungs. The diagnosis of parasitic diseases of airway is challenging due to their wide varieties of clinical and roentgenographic presentations. So detailed interrogations of travel history to endemic areas are critical for clinicians or pulmonologists to manage this entity. The migrating adult worms can cause mechanical airway obstruction, while the larvae can cause airway inflammation. This paper provides a comprehensive review of both protozoal and helminthic infestations that affect the airway system, particularly the lungs, including clinical and roentgenographic presentations, diagnostic tests, and therapeutic approaches.

  14. Interactions among four parasite species in an amphipod population from Patagonia.

    Science.gov (United States)

    Rauque, C A; Semenas, L

    2013-03-01

    Parasites commonly share their hosts with specimens of the same or different parasite species, resulting in multiple parasites obtaining resources from the same host. This could potentially lead to conflicts between co-infecting parasites, especially at high infection intensities. In Pool Los Juncos (Patagonia, Argentina), the amphipod Hyalella patagonica is an intermediate host to three parasites that mature in birds (the acanthocephalan Pseudocorynosoma sp. and larval stages of two Cyclophyllidea cestodes), in addition to a microsporidian (Thelohania sp.), whose life cycle is unknown, but very likely to be monoxenous. The aim of this study was to describe interactions between these parasite species in their amphipod host population. Amphipods were collected monthly between June 2002 and January 2004 to assess parasite infection. Infection prevalence and mean intensity were greatest in larger male amphipods for all parasite species. We also found a positive association between Thelohania sp. and both Pseudocorynosoma sp. and Cyclophyllidea sp. 1 infections, though Pseudocorynosoma sp. and Cyclophyllidea sp. 1 were negatively associated with each other. We conclude that contrasting associations between parasite species may be associated with competition for both food intake and space in the haemocoel.

  15. Pathogens and antimicrobial susceptibility profiles in critically ill patients with bloodstream infections: a descriptive study

    Science.gov (United States)

    Savage, Rachel D.; Fowler, Robert A.; Rishu, Asgar H.; Bagshaw, Sean M.; Cook, Deborah; Dodek, Peter; Hall, Richard; Kumar, Anand; Lamontagne, François; Lauzier, François; Marshall, John; Martin, Claudio M.; McIntyre, Lauralyn; Muscedere, John; Reynolds, Steven; Stelfox, Henry T.; Daneman, Nick

    2016-01-01

    Background: Surveillance of antimicrobial resistance is vital to guiding empirical treatment of infections. Collating and reporting routine data on clinical isolate testing may offer more timely information about resistance patterns than traditional surveillance network methods. Methods: Using routine microbiology testing data collected from the Bacteremia Antibiotic Length Actually Needed for Clinical Effectiveness retrospective cohort study, we conducted a descriptive secondary analysis among critically ill patients in whom bloodstream infections had been diagnosed in 14 intensive care units (ICUs) in Canada. The participating sites were located within tertiary care teaching hospitals and represented 6 provinces and 10 cities. More than 80% of the study population was accrued from 2011-2013. We assessed the epidemiologic features of the infections and corresponding antimicrobial susceptibility profiles. Susceptibility testing was done according to Clinical Laboratory Standards Institute guidelines at accredited laboratories. Results: A total of 1416 pathogens were isolated from 1202 patients. The most common organisms were Escherichia coli (217 isolates [15.3%]), Staphylococcus aureus (175 [12.4%]), coagulase-negative staphylococci (117 [8.3%]), Klebsiella pneumoniae (86 [6.1%]) and Streptococcus pneumoniae (85 [6.0%]). The contribution of individual pathogens varied by site. For 13 ICUs, gram-negative susceptibility rates were high for carbapenems (95.4%), tobramycin (91.2%) and piperacillin-tazobactam (90.0%); however, the proportion of specimens susceptible to these agents ranged from 75.0%-100%, 66.7%-100% and 75.0%-100%, respectively, across sites. Fewer gram-negative bacteria were susceptible to fluoroquinolones (84.5% [range 64.1%-97.2%]). A total of 145 patients (12.1%) had infections caused by highly resistant microorganisms, with significant intersite variation (range 2.6%-24.0%, χ2 = 57.50, p < 0.001). Interpretation: We assessed the epidemiologic

  16. Clinical and microbiological characterization of carbapenem-resistant Acinetobacter baumannii bloodstream infections.

    Science.gov (United States)

    Song, Joon Young; Cheong, Hee Jin; Choi, Won Suk; Heo, Jung Yeon; Noh, Ji Yun; Kim, Woo Joo

    2011-05-01

    The incidence of carbapenem-resistant Acinetobacter baumannii infection is increasing, which might be associated with high morbidity and mortality among critically ill patients with limited therapeutic options. This study was conducted to evaluate the clinical and microbiological features of carbapenem-resistant A. baumannii bacteraemia. The medical records of 28 adult patients with this bacteraemia admitted to Korea University Guro Hospital, from January 2005 through December 2010, were reviewed. Using the 28 bloodstream isolates, we intended to detect genes encoding carbapenemases, and investigate the inoculum effect on each of the antimicrobial agents rifampicin, imipenem, colistin and tigecycline. With one blood isolate from a patient with pneumonia, rifampicin-inducible resistance was examined using the experimental mouse pneumonia model. Out of 28 carbapenem-resistant A. baumannii bloodstream infections (BIs), the most common primary focus was the central venous catheter (35.7 %) and then the lung (32.1 %). The 30 day overall mortality was 53.6 %; in most cases (80 %) the patients died within 10 days after the onset of the bacteraemia. By univariate analysis, inappropriate antimicrobial therapy (73.3 vs 30.8 %, P = 0.02), mechanical ventilation (53.3 vs 15.4 %, P = 0.04) and a high Pitt bacteraemia score (4.9±1.9 vs 2.2±1.2, P<0.01) were statistically significant risk factors for mortality, while only a high Pitt bacteraemia score (odds ratio 2.6; 95 % confidence interval 1.1-6.5) was independently associated with 30 day mortality by multivariate analysis. All 28 isolates had the bla(OXA-51)-like gene with upstream ISAbaI, 2 of which additionally had the bla(OXA-58)-like gene and the bla(OXA-23)-like gene. Inoculum effect and rifampicin inducible resistance were not detected. Considering the rapid progression to death in carbapenem-resistant A. baumannii BIs, early empirical antibiotic therapy would be warranted based on the local

  17. Paleoparasitology: the origin of human parasites

    Directory of Open Access Journals (Sweden)

    Adauto Araujo

    2013-09-01

    Full Text Available Parasitism is composed by three subsystems: the parasite, the host, and the environment. There are no organisms that cannot be parasitized. The relationship between a parasite and its host species most of the time do not result in damage or disease to the host. However, in a parasitic disease the presence of a given parasite is always necessary, at least in a given moment of the infection. Some parasite species that infect humans were inherited from pre-hominids, and were shared with other phylogenetically close host species, but other parasite species were acquired from the environment as humans evolved. Human migration spread inherited parasites throughout the globe. To recover and trace the origin and evolution of infectious diseases, paleoparasitology was created. Paleoparasitology is the study of parasites in ancient material, which provided new information on the evolution, paleoepidemiology, ecology and phylogenetics of infectious diseases.

  18. Paleoparasitology: the origin of human parasites.

    Science.gov (United States)

    Araújo, Adauto; Reinhard, Karl; Ferreira, Luiz Fernando; Pucu, Elisa; Chieffi, Pedro Paulo

    2013-09-01

    Parasitism is composed by three subsystems: the parasite, the host, and the environment. There are no organisms that cannot be parasitized. The relationship between a parasite and its host species most of the time do not result in damage or disease to the host. However, in a parasitic disease the presence of a given parasite is always necessary, at least in a given moment of the infection. Some parasite species that infect humans were inherited from pre-hominids, and were shared with other phylogenetically close host species, but other parasite species were acquired from the environment as humans evolved. Human migration spread inherited parasites throughout the globe. To recover and trace the origin and evolution of infectious diseases, paleoparasitology was created. Paleoparasitology is the study of parasites in ancient material, which provided new information on the evolution, paleoepidemiology, ecology and phylogenetics of infectious diseases.

  19. Parasites as prey in aquatic food webs: implications for predator infection and parasite transmission

    NARCIS (Netherlands)

    Thieltges, D.W.; Amundsen, P.-A.; Hechinger, R.F.; Johnson, P.T.J.; Lafferty, K.D.; Mouritsen, K.N.; Preston, D.L.; Reise, K.; Zander, C.D.; Poulin, R.

    2013-01-01

    While the recent inclusion of parasites into food-web studies has highlighted the role of parasites as consumers, there is accumulating evidence that parasites can also serve as prey for predators. Here we investigated empirical patterns of predation on parasites and their relationships with parasit

  20. Staging atmospheres

    DEFF Research Database (Denmark)

    Bille, Mikkel; Bjerregaard, Peter; Sørensen, Tim Flohr

    2015-01-01

    The article introduces the special issue on staging atmospheres by surveying the philosophical, political and anthropological literature on atmosphere, and explores the relationship between atmosphere, material culture, subjectivity and affect. Atmosphere seems to occupy one of the classic...... localities of tensions between matter and the immaterial, the practical and the ideal, and subject and object. In the colloquial language there can, moreover, often seem to be something authentic or genuine about atmosphere, juxtaposing it to staging, which is implied to be something simulated or artificial....... This introduction seeks to outline how a number of scholars have addressed the relationship between staged atmospheres and experience, and thus highlight both the philosophical, social and political aspects of atmospheres...

  1. Transfection of the protozoan parasite Perkinsus marinus.

    Science.gov (United States)

    Fernández-Robledo, José A; Lin, Zhuoer; Vasta, Gerardo R

    2008-01-01

    Ongoing efforts for sequencing the genome of the protozoan parasite Perkinsus marinus, together with functional genomic initiatives, have continued to provide invaluable information about genes and metabolic pathways that not only will increase our understanding of its biology, but also have the potential to reveal useful targets for intervention. The lack of molecular tools for the functional characterization of genes of interest, however, has hindered progress in this regard. Here we report the development and validation of transfection methodology for this parasite. We first selected from our P. marinus EST collection a highly expressed gene, which we designated "MOE" (PmMOE), to which we fused at the C-terminus the enhanced green fluorescent protein (GFP) as a reporter gene (pPmMOE-GFP). The exogenous DNA was introduced into the trophozoite stage of the parasite by electroporation using the Nucleofector technology. The transfection efficiency was 37.8% with fluorescence detected as early as 14 h after electroporation, with the transfectants still remaining fluorescent after 8 months even in the absence of drug selection. The 5' flanking region was essential for transcription; constructs with 100 and 204 bp flanking the transcription start site also drove transcription effectively. Polymerase chain reaction (PCR) and Southern blot analyses was consistent with integration by non-homologous recombination. This transfection technique, the first one reported for a member of the Perkinsozoa, provides a new tool for studies of gene regulation and expression, protein targeting, and protein-protein interactions, and should significantly contribute to gain further insight into the biology of Perkinsus spp.

  2. Update on pathology of ocular parasitic disease

    OpenAIRE

    2016-01-01

    Parasites are a group of eukaryotic organisms that may be free-living or form a symbiotic or parasitic relationship with the hosts. Consisting of over 800,000 recognized species, parasites may be unicellular (Protozoa) or multicellular (helminths and arthropods). The association of parasites with human population started long before the emergence of civilization. Parasitic zoonotic diseases are prevalent worldwide including India. Appropriate epidemiological data are lacking on existing zoono...

  3. Recent advances in understanding apicomplexan parasites

    Science.gov (United States)

    Seeber, Frank; Steinfelder, Svenja

    2016-01-01

    Intracellular single-celled parasites belonging to the large phylum Apicomplexa are amongst the most prevalent and morbidity-causing pathogens worldwide. In this review, we highlight a few of the many recent advances in the field that helped to clarify some important aspects of their fascinating biology and interaction with their hosts. Plasmodium falciparum causes malaria, and thus the recent emergence of resistance against the currently used drug combinations based on artemisinin has been of major interest for the scientific community. It resulted in great advances in understanding the resistance mechanisms that can hopefully be translated into altered future drug regimens. Apicomplexa are also experts in host cell manipulation and immune evasion. Toxoplasma gondii and Theileria sp., besides Plasmodium sp., are species that secrete effector molecules into the host cell to reach this aim. The underlying molecular mechanisms for how these proteins are trafficked to the host cytosol ( T. gondii and Plasmodium) and how a secreted protein can immortalize the host cell ( Theileria sp.) have been illuminated recently. Moreover, how such secreted proteins affect the host innate immune responses against T. gondii and the liver stages of Plasmodium has also been unraveled at the genetic and molecular level, leading to unexpected insights. Methodological advances in metabolomics and molecular biology have been instrumental to solving some fundamental puzzles of mitochondrial carbon metabolism in Apicomplexa. Also, for the first time, the generation of stably transfected Cryptosporidium parasites was achieved, which opens up a wide variety of experimental possibilities for this understudied, important apicomplexan pathogen. PMID:27347391

  4. Parasites in soil/sludge systems

    Energy Technology Data Exchange (ETDEWEB)

    Brandon, J.R.

    1978-03-01

    The potential for the transmission of parasites, such as Entamoeba sp., schistosomes, and nematodes such as Ascaris sp., to man through the use of sewage sludges as fertilizer is reviewed. The eggs of Ascaris have been found to be the most resistant of these parasites to normal sludge treatment methods. Results of studies on the effectiveness of heat and ionizing radiation treatments reported show that a treatment of 55/sup 0/C for 1 hour or more sufficiently reduces the number of viable Ascaris eggs in seeded sludge systems. An absorbed dose of 300 kilorads radiation is more than adequate for the same purpose. However, before an unequivocal statement can be made about the effectiveness of either of these treatments in reducing viable ova in real systems, certain qualifying factors must be investigated. There are conflicting reports on the radiation sensitivities of Ascaris eggs in different stages of development. Also, irradiation of composted sludge using an electron beam was unsuccessful in rendering all naturally-occurring Ascaris ova non-viable, even at 300 kilorads. The significant differences in radiation and heat sensitivities of Ascaris eggs in compost vs liquid systems points out the need to further investigate the effects of moisture levels on these sensitivities.

  5. Quantitative Proteomic and Phosphoproteomic Analysis of Trypanosoma cruzi Amastigogenesis

    DEFF Research Database (Denmark)

    Queiroz, Rayner M L; Charneau, Sebastien; Mandacaru, Samuel C;

    2014-01-01

    Chagas disease is a tropical neglected disease endemic in Latin America and it is caused by the protozoan Trypanosoma cruzi. The parasite has four major life stages: epimastigote, metacyclic trypomastigote, bloodstream trypomastigote and amastigote. The differentiation from infective trypomastigo......Chagas disease is a tropical neglected disease endemic in Latin America and it is caused by the protozoan Trypanosoma cruzi. The parasite has four major life stages: epimastigote, metacyclic trypomastigote, bloodstream trypomastigote and amastigote. The differentiation from infective...

  6. Bacillus Cereus catheter related bloodstream infection in a patient in a patient with acute lymphblastic leukemia

    Directory of Open Access Journals (Sweden)

    Lütfiye Öksüz

    2012-01-01

    Full Text Available Bacillus cereus infection is rarely associated with actual infection and for this reason single positive blood culture is usually regarded as contamination . However it may cause a number of infections, such catheter-related blood stream infections. Significant catheter-related bloodstream infections (CRBSI caused by Bacillus spp. are mainly due to B.cereus and have been predominantly reported in immunocompromised hosts1 . Catheter removal is generally advised for management of infection. In this report, catheter-related bacteremia caused by B.cereus in a patient with acute lymphoblastıc leukemia (ALL in Istanbul Medical Faculty was presented.A 44-year old man presented with fatigue, weight loss, epistaxis and high fever. A double-lumen Hickman–catheter (Bard 12.0 Fr, Round Dual Lumen was inserted by surgical cut-down to access the right subclavian vein which would be necessary for allogeneic stem cell transplantation. Three weeks later the patient presented with high fever and headache. Bacillus spp. was isolated from the cathether while blood culture obtained from the peripheral vein remained negative. The bacterial identification was confirmed as B.cereus using VITEK identification system It has been reported Bacillus cereus septicemia may be fatal in immunocompromised hosts despite broad-spectrum appropriate treatment10. Catheter removal is essential for prevention of recurrent bacteremia. Long-term cathater salvage should be reserved for appropriate patient group.

  7. Molecular differentiation and antifungal susceptibilities of Candida parapsilosis isolated from patients with bloodstream infections.

    Science.gov (United States)

    Tay, Sun Tee; Na, Shiang Ling; Chong, Jennifer

    2009-02-01

    The genetic heterogeneity and antifungal susceptibility patterns of Candida parapsilosis isolated from blood cultures of patients were investigated in this study. Randomly amplified polymorphic DNA (RAPD) analysis generated 5 unique profiles from 42 isolates. Based on the major DNA fragments of the RAPD profiles, the isolates were identified as RAPD type P1 (29 isolates), P2 (6 isolates), P3 (4 isolates), P4 (2 isolates) and P5 (1 isolate). Sequence analysis of the internal transcribed spacer (ITS) gene of the isolates identified RAPD type P1 as C. parapsilosis, P2 and P3 as Candida orthopsilosis, P4 as Candida metapsilosis, and P5 as Lodderomyces elongisporus. Nucleotide variations in ITS gene sequences of C. orthopsilosis and C. metapsilosis were detected. Antifungal susceptibility testing using Etests showed that all isolates tested in this study were susceptible to amphotericin B, fluconazole, ketoconazole, itraconazole and voriconazole. C. parapsilosis isolates exhibited higher MIC(50) values than those of C. orthopsilosis for all of the drugs tested in this study; however, no significant difference in the MICs for these two Candida species was observed. The fact that C. orthopsilosis and C. metapsilosis were responsible for 23.8 and 4.8 % of the cases attributed to C. parapsilosis bloodstream infections, respectively, indicates the clinical relevance of these newly described yeasts. Further investigations of the ecological niche, mode of transmission and virulence of these species are thus essential.

  8. Effectiveness of oral antibiotics for definitive therapy of Gram-negative bloodstream infections.

    Science.gov (United States)

    Kutob, Leila F; Justo, Julie Ann; Bookstaver, P Brandon; Kohn, Joseph; Albrecht, Helmut; Al-Hasan, Majdi N

    2016-11-01

    There is paucity of data evaluating intravenous-to-oral antibiotic switch options for Gram-negative bloodstream infections (BSIs). This retrospective cohort study examined the effectiveness of oral antibiotics for definitive treatment of Gram-negative BSI. Patients with Gram-negative BSI hospitalised for antibiotics were included in this study. The cohort was stratified into three groups based on bioavailability of oral antibiotics prescribed (high, ≥95%; moderate, 75-94%; and low, antibiotics were prescribed to 106, 179 and 77 patients, respectively, for definitive therapy of Gram-negative BSI. Mean patient age was 63 years, 217 (59.9%) were women and 254 (70.2%) had a urinary source of infection. Treatment failure rates were 2%, 12% and 14% in patients receiving oral antibiotics with high, moderate and low bioavailability, respectively (P = 0.02). Risk of treatment failure in the multivariate Cox model was higher in patients receiving antibiotics with moderate [adjusted hazard ratio (aHR) = 5.9, 95% CI 1.6-38.5; P = 0.005] and low bioavailability (aHR = 7.7, 95% CI 1.9-51.5; P = 0.003) compared with those receiving oral antimicrobial agents with high bioavailability. These data demonstrate the effectiveness of oral antibiotics with high bioavailability for definitive therapy of Gram-negative BSI. Risk of treatment failure increases as bioavailability of the oral regimen declines.

  9. Changes in plasma protein levels as an early indication of a bloodstream infection

    Science.gov (United States)

    Joenväärä, Sakari; Kaartinen, Johanna; Järvinen, Asko; Renkonen, Risto

    2017-01-01

    Blood culture is the primary diagnostic test performed in a suspicion of bloodstream infection to detect the presence of microorganisms and direct the treatment. However, blood culture is slow and time consuming method to detect blood stream infections or separate septic and/or bacteremic patients from others with less serious febrile disease. Plasma proteomics, despite its challenges, remains an important source for early biomarkers for systemic diseases and might show changes before direct evidence from bacteria can be obtained. We have performed a plasma proteomic analysis, simultaneously at the time of blood culture sampling from ten blood culture positive and ten blood culture negative patients, and quantified 172 proteins with two or more unique peptides. Principal components analysis, Orthogonal Projections to Latent Structures Discriminant Analysis (OPLS-DA) and ROC curve analysis were performed to select protein(s) features which can classify the two groups of samples. We propose a number of candidates which qualify as potential biomarkers to select the blood culture positive cases from negative ones. Pathway analysis by two methods revealed complement activation, phagocytosis pathway and alterations in lipid metabolism as enriched pathways which are relevant for the condition. Data are available via ProteomeXchange with identifier PXD005022. PMID:28235076

  10. Nosocomial bloodstream infections: organisms, risk factors and resistant phenotypes in the Brazilian University Hospital

    Directory of Open Access Journals (Sweden)

    Rosineide M. Ribas

    2007-06-01

    Full Text Available Bacteremia is one of the most frequent and challenging hospital-acquired infection and it is associated with high attributable morbidity and mortality and additional use of healthcare resources. The objective of this work was to determine the frequencies of its occurrence, organisms and resistance phenotypes associated to nosocomial acquired bloodstream infections. A total number of 51 nosocomial bacteremia by Gram-negative and 99 by Gram-positive were evaluated and compared during a 15-month period. The risk factors associated with these bacteremias were analyzed and antibiotic use and surgery were associated with bacteremia by Gram-negative and > 2 invasive devices with Gram-positive. The resistance phenotypes ESBL (extended-spectrum beta-lactamases (23.5% and AmpC/others (17.6% correspond to 41.2 % with predominance of E. agglomerans among AmpC (44.4% and K. pneumoniae among ESBLs (38.5%. Among S. aureus bacteremia, approximately 40% were associated to MRSA (methicillin-resistant Staphylococcus aureus.

  11. Risk Factors and Outcomes for Bloodstream Infections Secondary to Clostridium difficile Infection.

    Science.gov (United States)

    Falcone, Marco; Russo, Alessandro; Iraci, Federica; Carfagna, Paolo; Goldoni, Paola; Vullo, Vincenzo; Venditti, Mario

    2015-10-19

    We determined the incidence, risk factors, and outcomes of bloodstream infections (BSI) subsequent to Clostridium difficile infection (CDI). We performed a retrospective study of all patients with definite diagnosis of CDI admitted from January 2014 to December 2014 in two large hospitals in Rome. Two groups of patients were analyzed: those with CDI and subsequent BSI (CDI/BSI(+)) and those with CDI and no evidence of primary BSI (CDI/BSI(-)). Data about clinical features, microbiology, treatments, and mortality were obtained. Overall, 393 cases of CDI were included in the final analysis: 72 developed a primary nosocomial BSI, while 321 had CDI without microbiological and clinical evidence of BSI. Etiologic agents of BSI were Candida species (47.3%), Enterobacteriaceae (19.4%), enterococci (13.9%), and mixed infections (19.4%). In multivariate analysis, ribotype 027 status (odds ratio [OR], 6.5), CDI recurrence (OR, 5.5), severe CDI infection (OR, 8.3), and oral vancomycin at >500 mg/day (OR, 3.1) were recognized as factors independently associated with the development of nosocomial BSI. Thirty-day mortality from CDI diagnosis was higher for patients of the CDI/BSI(+) group than for the controls (38.9 versus 13.1%; P nosocomial BSI. Candida species and enteric bacteria appear to be the leading causative pathogens and are associated with poor outcomes.

  12. Haemodialysis catheter-related bloodstream infections: current treatment options and strategies for prevention.

    Science.gov (United States)

    Saxena, Anil K; Panhotra, Bodh R

    2005-03-05

    Regardless of the repeated reservations raised by countless researchers with reference to the use of catheters as vascular access for haemodialysis (HD), central venous catheters (CVCs) remain irreplaceable tools of the modern dialysis delivery system as a reliable option for the clinical situations requiring instant access to circulation, for various reasons. Patients on long-term haemodialysis are therefore at a significantly high risk for catheterrelated bloodstream infections (CRBSI) and ensuing serious complications. Although early systemic antibiotic treatment should include the coverage for Staphylococcus aureus, the pathogen with most devastating consequences including bacterial endocarditis; optimal treatment of CRBSI while preserving the catheter site, remains contentious. Nonetheless, catheter exchange over a guide wire and antimicrobial-anticoagulant "locks" have shown promising results as novel access salvage techniques. Despite the fact that a number of novel potentially useful strategies for the prevention of CRBSI are in the pipeline; equally essential however, remains the role of rigorous implementation of standard infection control measures for hygiene and aseptic handling of CVCs in long-term HD patients. The policy of increasing the AVF (arteriovenous fistula) prevalence beyond 50% while minimising the use of CVCs, dependent largely upon the timely referrals and prudently implemented pre-ESRD program - ought to have a positive impact on long-term HD outcomes.

  13. Seasonal trend and clinical presentation of Bacillus cereus bloodstream infection: association with summer and indwelling catheter.

    Science.gov (United States)

    Kato, K; Matsumura, Y; Yamamoto, M; Nagao, M; Ito, Y; Takakura, S; Ichiyama, S

    2014-08-01

    Bacillus cereus, an opportunistic pathogen, can cause fatal infection. However, B. cereus bloodstream infections (BSIs) have not been well characterised. From 2008 to 2013, B. cereus isolates from all of the specimens and patients with B. cereus BSIs were identified. Environmental samples were collected to detect B. cereus contamination. We also characterised the clinical presentation of B. cereus BSI through analyses of risk factors for BSI and mortality. A total of 217 clinical B. cereus isolates was detected. Fifty-one patients with nosocomial infections were diagnosed as B. cereus BSI, and 37 had contaminated blood cultures. The number of B. cereus isolates and BSI patients was significantly greater from June to September than from January to April (4.9 vs. 1.5 per month and 1.2 vs. 0.2, respectively). All BSIs were nosocomial and related to central or peripheral vascular catheter. Urinary catheter [odds ratio (OR) 6.93, 95% confidence interval (CI) 2.40-20.0] was the independent risk factor associated with BSI patients when compared to patients regarded as contaminated. In-hospital mortality among BSI patients was 20% and was associated with urinary catheter (OR 34.7, 95 % CI 1.89-63.6) and higher Charlson index (OR 1.99, 95 % CI 1.26-3.12). The number of B. cereus isolates and BSI increased during summer. Inpatients with indwelling vascular or urinary catheters should be carefully monitored for potential B. cereus BSIs.

  14. Risk factors and outcomes of imipenem-resistant Acinetobacter bloodstream infection in North-eastern Malaysia

    Institute of Scientific and Technical Information of China (English)

    Zakuan Zainy Deris; Mohd Nazri Shafei; Azian Harun

    2011-01-01

    Objective: To determine the risk factors and outcomes of imipenem-resistant Acinetobacterbaumannii (IRAB) bloodstream infection (BSI) cases, since there is very little publication on Acinetobacter baumannii infections from Malaysia. Methods: A cross sectional study of 41 cases (73.2%) of imipenem-sensitive Acinetobacter baumanii (ISAB) and 15 cases (26.8%) of IRAB was conducted in a teaching hospital which was located at North-Eastern state of Malaysia. Results:There was no independent risk factor for IRAB BSI identified but IRAB BSI was significantly associated with longer bacteraemic days [OR 1.23 (95% CI 1.01, 1.50)]. Although prior use of carbepenems and cephalosporin were higher among IRAB than ISAB group, statistically they were not significant. There was no significant difference in term of outcomes between the two groups. Conclusions: Although statistically not significant, this analysis compliments previous publication highlighting the importance of appropriate empiric antibiotic usage in hospital especially carbepenems and need further evaluation with bigger subjects.

  15. Species distribution and antifungal susceptibility profile of Candida spp. bloodstream isolates from Latin American hospitals

    Directory of Open Access Journals (Sweden)

    Godoy Patrício

    2003-01-01

    Full Text Available From March 1999 to March 2000, we conducted a prospective multicenter study of candidemia involving five tertiary care hospitals from four countries in Latin America. Yeast isolates were identified by classical methods and the antifungal susceptibility profile was determined according to the National Committee for Clinical Laboratory Standards microbroth assay method. During a 12 month-period we were able to collect a total of 103 bloodstream isolates of Candida spp. C. albicans was the most frequently isolated species accounting for 42% of all isolates. Non-albicans Candida species strains accounted for 58% of all episodes of candidemia and were mostly represented by C. tropicalis (24.2% and C. parapsilosis (21.3%. It is noteworthy that we were able to identify two cases of C. lusitaniae from different institutions. In our casuistic, non-albicans Candida species isolates related to candidemic episodes were susceptible to fluconazole. Continuously surveillance programs are needed in order to identify possible changes in the species distribution and antifungal susceptibility patterns of yeasts that may occurs after increasing the use of azoles in Latin American hospitals.

  16. Central venous catheter-related bloodstream infection caused by Staphylococcus aureus: microbiology and risk factors

    Directory of Open Access Journals (Sweden)

    Geraldo Sadoyma

    2006-04-01

    Full Text Available Although central vascular catheters (CVC are indispensable in modern medicine, they are an important risk factor for primary bacteremias. We examined the incidence and risk factors associated with catheter-related bloodstream infection (CR-BSI caused by Staphylococcus aureus in surgical patients. A prospective study was carried out in the Hospital das Clínicas da Universidade Federal de Uberlândia (HC-UFU from September 2000 to December 2002. The skin insertion site, catheter tip, and blood were microbiologically analyzed. Demographics and risk factors were recorded for each patient, and cultures were identified phenotypically. Staphylococcus aureus was the most frequent pathogen, with an incidence rate of 4.9 episodes of CR-BSIs per 1,000 catheter/days. Based on logistic regression, the independent risk factors were: colonization on the insertion site =200 colony forming units (CFU/20 cm² (p=0.03; odds ratio (OR =6.89 and catheter tip (p=0.01; OR=7.95. The CR-BSI rate was high; it was mainly associated with S. aureus, and skin colonization at the insertion site and on the catheter tip were important risk factors for CR-BSI.

  17. Magnet® Hospital Recognition Linked to Lower Central Line-Associated Bloodstream Infection Rates.

    Science.gov (United States)

    Barnes, Hilary; Rearden, Jessica; McHugh, Matthew D

    2016-04-01

    Central-line-associated bloodstream infections (CLABSI) are among the deadliest heathcare-associated infections, with an estimated 12-25% mortality rate. In 2014, the Centers for Medicare and Medicaid Services (CMS) began to penalize hospitals for poor performance with respect to selected hospital-acquired conditions, including CLABSI. A structural factor associated with high-quality nursing care and better patient outcomes is The Magnet Recognition Program®. The purpose of this study was to explore the relationship between Magnet status and hospital CLABSI rates. We used propensity score matching to match Magnet and non-Magnet hospitals with similar hospital characteristics. In a matched sample of 291 Magnet hospitals and 291 non-Magnet hospitals, logistic regression models were used to examine whether there was a link between Magnet status and CLABSI rates. Both before and after matching, Magnet hospital status was associated with better (lower than the national average) CLABSI rates (OR = 1.60, 95%CI: 1.10, 2.33 after matching). While established programs such as Magnet recognition are consistently correlated with high-quality nursing work environments and positive patient outcomes, additional research is needed to determine whether Magnet designation produces positive patient outcomes or rewards existing excellence.

  18. Antifungal susceptibility survey of 2,000 bloodstream Candida isolates in the United States.

    Science.gov (United States)

    Ostrosky-Zeichner, Luis; Rex, John H; Pappas, Peter G; Hamill, Richard J; Larsen, Robert A; Horowitz, Harold W; Powderly, William G; Hyslop, Newton; Kauffman, Carol A; Cleary, John; Mangino, Julie E; Lee, Jeannette

    2003-10-01

    Candida bloodstream isolates (n = 2,000) from two multicenter clinical trials carried out by the National Institute of Allergy and Infectious Diseases Mycoses Study Group between 1995 and 1999 were tested against amphotericin B (AMB), flucytosine (5FC), fluconazole (FLU), itraconazole (ITR), voriconazole (VOR), posaconazole (POS), caspofungin (CFG), micafungin (MFG), and anidulafungin (AFG) using the NCCLS M27-A2 microdilution method. All drugs were tested in the NCCLS-specified RPMI 1640 medium except for AMB, which was tested in antibiotic medium 3. A sample of isolates was also tested in RPMI 1640 supplemented to 2% glucose and by using the diluent polyethylene glycol (PEG) in lieu of dimethyl sulfoxide for those drugs insoluble in water. Glucose supplementation tended to elevate the MIC, whereas using PEG tended to decrease the MIC. Trailing growth occurred frequently with azoles. Isolates were generally susceptible to AMB, 5FC, and FLU. Rates of resistance to ITR approached 20%. Although no established interpretative breakpoints are available for the candins (CFG, MFG, and AFG) and the new azoles (VOR and POS), they all exhibited excellent antifungal activity, even for those strains resistant to the other aforementioned agents.

  19. Do molecules matter more than morphology? Promises and pitfalls in parasites.

    Science.gov (United States)

    Perkins, S L; Martinsen, E S; Falk, B G

    2011-11-01

    Systematics involves resolving both the taxonomy and phylogenetic placement of organisms. We review the advantages and disadvantages of the two kinds of information commonly used for such inferences--morphological and molecular data--as applied to the systematics of metazoan parasites generally, with special attention to the malaria parasites. The problems that potentially confound the use of morphology in parasites include challenges to consistent specimen preservation, plasticity of features depending on hosts or other environmental factors, and morphological convergence. Molecular characters such as DNA sequences present an alternative data source and are particularly useful when not all the parasite's life stages are present or when parasitaemia is low. Nonetheless, molecular data can bring challenges that include troublesome DNA isolation, paralogous gene copies, difficulty in developing molecular markers, and preferential amplification in mixed species infections. Given the differential benefits and shortcomings of both molecular and morphological characters, both should be implemented in parasite taxonomy and phylogenetics.

  20. Echinococcus granulosus antigen B: a Hydrophobic Ligand Binding Protein at the host-parasite interface.

    Science.gov (United States)

    Silva-Álvarez, Valeria; Folle, Ana Maite; Ramos, Ana Lía; Zamarreño, Fernando; Costabel, Marcelo D; García-Zepeda, Eduardo; Salinas, Gustavo; Córsico, Betina; Ferreira, Ana María

    2015-02-01

    Lipids are mainly solubilized by various families of lipid binding proteins which participate in their transport between tissues as well as cell compartments. Among these families, Hydrophobic Ligand Binding Proteins (HLBPs) deserve special consideration since they comprise intracellular and extracellular members, are able to bind a variety of fatty acids, retinoids and some sterols, and are present exclusively in cestodes. Since these parasites have lost catabolic and biosynthetic pathways for fatty acids and cholesterol, HLBPs are likely relevant for lipid uptake and transportation between parasite and host cells. Echinococcus granulosus antigen B (EgAgB) is a lipoprotein belonging to the HLBP family, which is very abundant in the larval stage of this parasite. Herein, we review the literature on EgAgB composition, structural organization and biological properties, and propose an integrated scenario in which this parasite HLBP contributes to adaptation to mammalian hosts by meeting both metabolic and immunomodulatory parasite demands.

  1. Rodlet Cells in the Head and Trunk Kidney of the Domestic Carp (Cyprinus carpio): Enigmatic Gland Cells or Coccidian Parasites?

    Science.gov (United States)

    Fishelson, Lev; Becker, Klaus

    Rodlet cells have been found in the head and trunk kidneys of the common carp (Cyprinus carpio L.). From an experimental sample of 50 carps of various ages, we detected these cells in only seven fishes, contradicting the hypothesis that they constitute a normal component of the fish epithelia. The rodlet cells have a typical structure: 12-16μm in diameter, with a basal nucleus various in form, and an encasing layer of fibrillar structure. The cells contain rodlets, composed of elongated, opaque sacs featuring dark rods in the center, which strongly elongate in ripening cells. Remarkable pseudopodia-like extensions from the apical parts of the rodlet cells penetrate into the delicate blood vessels and sinusoids of the organs. The encasing layer at the cell apex then opens to release the rodlets into the bloodstream. No junctions were found between the rodlet cells and neighboring cells. It is suggested that these cells comprise some kind of "symbiosis" between leukocyte, possible granulocyte cells, and the parasitic rodlets. The cells serve the rodlets as an incubation chamber, as well as a means of transportation into the bloodstream after ripening.

  2. Dual RNA-seq of parasite and host reveals gene expression dynamics during filarial worm-mosquito interactions.

    Directory of Open Access Journals (Sweden)

    Young-Jun Choi

    2014-05-01

    Full Text Available BACKGROUND: Parasite biology, by its very nature, cannot be understood without integrating it with that of the host, nor can the host response be adequately explained without considering the activity of the parasite. However, due to experimental limitations, molecular studies of parasite-host systems have been predominantly one-sided investigations focusing on either of the partners involved. Here, we conducted a dual RNA-seq time course analysis of filarial worm parasite and host mosquito to better understand the parasite processes underlying development in and interaction with the host tissue, from the establishment of infection to the development of infective-stage larva. METHODOLOGY/PRINCIPAL FINDINGS: Using the Brugia malayi-Aedes aegypti system, we report parasite gene transcription dynamics, which exhibited a highly ordered developmental program consisting of a series of cyclical and state-transitioning temporal patterns. In addition, we contextualized these parasite data in relation to the concurrent dynamics of the host transcriptome. Comparative analyses using uninfected tissues and different host strains revealed the influence of parasite development on host gene transcription as well as the influence of the host environment on parasite gene transcription. We also critically evaluated the life-cycle transcriptome of B. malayi by comparing developmental stages in the mosquito relative to those in the mammalian host, providing insight into gene expression changes underpinning the mosquito-borne parasitic lifestyle of this heteroxenous parasite. CONCLUSIONS/SIGNIFICANCE: The data presented herein provide the research community with information to design wet lab experiments and select candidates for future study to more fully dissect the whole set of molecular interactions of both organisms in this mosquito-filarial worm symbiotic relationship. Furthermore, characterization of the transcriptional program over the complete life cycle of

  3. Methods for parasitic protozoans detection in the environmental samples

    OpenAIRE

    Skotarczak B.

    2009-01-01

    The environmental route of transmission of many parasitic protozoa and their potential for producing large numbers of transmissive stages constitute persistent threats to public and veterinary health. Conventional and new immunological and molecular methods enable to assess the occurrence, prevalence, levels and sources of waterborne protozoa. Concentration, purification, and detection are the three key steps in all methods that have been approved for routine monitoring of waterborne cysts an...

  4. Differences in Crenate Broomrape Parasitism Dynamics on Three Legume Crops Using a Thermal Time Model

    Science.gov (United States)

    Pérez-de-Luque, Alejandro; Flores, Fernando; Rubiales, Diego

    2016-01-01

    Root parasitic weeds are a major limiting production factor in a number of crops, and control is difficult. Genetic resistance and chemical control lead the fight, but without unequivocal success. Models that help to describe and even predict the evolution of parasitism underground are a valuable tool for herbicide applications, and even could help in breeding programs. Legumes are heavily affected by Orobanche crenata (crenate broomrape) in the Mediterranean basin. This work presents a descriptive model based on thermal time and correlating growing degree days (GDD) with the different developmental stages of the parasite. The model was developed in three different legume crops (faba bean, grass pea and lentil) attacked by crenate broomrape. The developmental stages of the parasite strongly correlated with the GDD and differences were found depending on the host crop. PMID:28018421

  5. Early gametocytes of the malaria parasite Plasmodium falciparum specifically remodel the adhesive properties of infected erythrocyte surface

    DEFF Research Database (Denmark)

    Tibúrcio, Marta; Silvestrini, Francesco; Bertuccini, Lucia;

    2013-01-01

    In Plasmodium falciparum infections the parasite transmission stages, the gametocytes, mature in 10 days sequestered in internal organs. Recent studies suggest that cell mechanical properties rather than adhesive interactions play a role in sequestration during gametocyte maturation. It remains...

  6. Protein palmitoylation in protozoan parasites.

    Science.gov (United States)

    Corvi, Maria Martha; Berthiaume, Luc Gerard; De Napoli, Maximiliano Gabriel

    2011-06-01

    Palmitoylation plays an important role in the regulation of the localization and function of the modified protein. Although many aspects of protein palmitoylation have been identified in mammalian and yeast cells, little information is available of this modification in protozoan parasites. Protein palmitoylation has been described for a few set of proteins in E.tenella, P. falciparum, T. gondii, G. lamblia and T. cruzi. Interestingly, in all these parasites palmitoylated proteins appears to be involved in vital processes such as invasion and motility. In addition, most of these parasites contain in their genomes genes that encode for putative palmitoyl-acyl transferases, the enzymes catalyzing the palmitoylation reaction. Although protein palmitoylation could be playing key roles in invasion and motility in a variety of parasites, little is known about this important reversible modification of proteins that typically plays a role in membrane tethering. As such, this review will focus on the main features of protein palmitoylation as well as provide an overview of the state of knowledge of this modification in protozoan parasites.

  7. Effects of shortened host life span on the evolution of parasite life history and virulence in a microbial host-parasite system

    Directory of Open Access Journals (Sweden)

    Koella Jacob C

    2009-03-01

    Full Text Available Abstract Background Ecological factors play an important role in the evolution of parasite exploitation strategies. A common prediction is that, as shorter host life span reduces future opportunities of transmission, parasites compensate with an evolutionary shift towards earlier transmission. They may grow more rapidly within the host, have a shorter latency time and, consequently, be more virulent. Thus, increased extrinsic (i.e., not caused by the parasite host mortality leads to the evolution of more virulent parasites. To test these predictions, we performed a serial transfer experiment, using the protozoan Paramecium caudatum and its bacterial parasite Holospora undulata. We simulated variation in host life span by killing hosts after 11 (early killing or 14 (late killing days post inoculation; after killing, parasite transmission stages were collected and used for a new infection cycle. Results After 13 cycles (≈ 300 generations, parasites from the early-killing treatment were less infectious, but had shorter latency time and higher virulence than those from the late-killing treatment. Overall, shorter latency time was associated with higher parasite loads and thus presumably with more rapid within-host replication. Conclusion The analysis of the means of the two treatments is thus consistent with theory, and suggests that evolution is constrained by trade-offs between virulence, transmission and within-host growth. In contrast, we found little evidence for such trade-offs across parasite selection lines within treatments; thus, to some extent, these traits may evolve independently. This study illustrates how environmental variation (experienced by the host can lead to the evolution of distinct parasite strategies.

  8. Staging Mobilities

    DEFF Research Database (Denmark)

    Jensen, Ole B.

    In recent years, the social sciences have taken a “mobilities turn.” There has been a developing realisation that mobilities do not “just happen.” Mobilities are carefully and meticulously designed, planned and staged (from above). However, they are equally importantly acted out, performed...... that mobility is more than movement between point A and B. It explores how the movement of people, goods, information, and signs influences human understandings of self, other and the built environment. Moving towards a new understanding of the relationship between movement, interaction and environments......, the book asks: what are the physical, social, technical, and cultural conditions to the staging of contemporary urban mobilities?...

  9. Host-parasite interactions: Marine bivalve molluscs and protozoan parasites, Perkinsus species.

    Science.gov (United States)

    Soudant, Philippe; E Chu, Fu-Lin; Volety, Aswani

    2013-10-01

    This review assesses and examines the work conducted to date concerning host and parasite interactions between marine bivalve molluscs and protozoan parasites, belonging to Perkinsus species. The review focuses on two well-studied host-parasite interaction models: the two clam species, Ruditapes philippinarum and R. decussatus, and the parasite Perkinsus olseni, and the eastern oyster, Crassostrea virginica, and the parasite Perkinsus marinus. Cellular and humoral defense responses of the host in combating parasitic infection, the mechanisms (e.g., antioxidant enzymes, extracellular products) employed by the parasite in evading host defenses as well as the role of environmental factors in modulating the host-parasite interactions are described.

  10. Parasitic Contamination of Commonly Consumed Fresh Leafy Vegetables in Benha, Egypt

    OpenAIRE

    Maysa Ahmad Eraky; Samia Mostafa Rashed; Mona El-Sayed Nasr; Azza Mohammed Salah El-Hamshary; Amera Salah El-Ghannam

    2014-01-01

    This study evaluated the degree of parasitic contamination of vegetables which are commercialized and consumed fresh in Benha, Egypt. It included 530 vegetables: lettuce, watercress, parsley, green onion, and leek. Vegetables were collected randomly from markets within Benha. Samples were washed in saline, and the resulting washing solution was filtered and centrifuged to concentrate the parasitic stages. Sediments and supernatants were examined by iodine and modified Ziehl-Neelsen stained sm...

  11. Serine Proteases of Malaria Parasite Plasmodium falciparum: Potential as Antimalarial Drug Targets

    OpenAIRE

    Asrar Alam

    2014-01-01

    Malaria is a major global parasitic disease and a cause of enormous mortality and morbidity. Widespread drug resistance against currently available antimalarials warrants the identification of novel drug targets and development of new drugs. Malarial proteases are a group of molecules that serve as potential drug targets because of their essentiality for parasite life cycle stages and feasibility of designing specific inhibitors against them. Proteases belonging to various mechanistic classes...

  12. Morphological and Molecular Descriptors of the Developmental Cycle of Babesia divergens Parasites in Human Erythrocytes.

    Directory of Open Access Journals (Sweden)

    Ingrid Rossouw

    2015-05-01

    Full Text Available Human babesiosis, especially caused by the cattle derived Babesia divergens parasite, is on the increase, resulting in renewed attentiveness to this potentially life threatening emerging zoonotic disease. The molecular mechanisms underlying the pathophysiology and intra-erythrocytic development of these parasites are poorly understood. This impedes concerted efforts aimed at the discovery of novel anti-babesiacidal agents. By applying sensitive cell biological and molecular functional genomics tools, we describe the intra-erythrocytic development cycle of B. divergens parasites from immature, mono-nucleated ring forms to bi-nucleated paired piriforms and ultimately multi-nucleated tetrads that characterizes zoonotic Babesia spp. This is further correlated for the first time to nuclear content increases during intra-erythrocytic development progression, providing insight into the part of the life cycle that occurs during human infection. High-content temporal evaluation elucidated the contribution of the different stages to life cycle progression. Moreover, molecular descriptors indicate that B. divergens parasites employ physiological adaptation to in vitro cultivation. Additionally, differential expression is observed as the parasite equilibrates its developmental stages during its life cycle. Together, this information provides the first temporal evaluation of the functional transcriptome of B. divergens parasites, information that could be useful in identifying biological processes essential to parasite survival for future anti-babesiacidal discoveries.

  13. Parasitic diseases of the pleura.

    Science.gov (United States)

    Lal, Chitra; Huggins, John Terrill; Sahn, Steven A

    2013-05-01

    Parasitic infections are prevalent in certain parts of the world and may cause pleural involvement, which often goes unrecognized. Common parasites involving the pleura include Entamoeba histolytica, Echinococcus granulosus and Paragonimus westermani. Amebiasis can cause empyema with "anchovy sauce" pus, reactive pleural effusions and bronchopleural fistula with hydropneumothorax. Echinococcosis may result in pleural thickening, pneumothorax, secondary pleural hydatidosis and pleural effusions. Paragonimiasis may cause chylous and cholesterol pleural effusions, pleural thickening and pneumothorax. Less commonly, pulmonary eosinophilia, or Loeffler's syndrome, caused by Ascaris lumbricoides, Ancylostoma duodenale and Necator americanus and tropical pulmonary eosinophilia caused by Wuchereria bancrofti and Brugia malayi may involve the pleura. This article provides a comprehensive review of parasitic infections involving the pleura. A high index of suspicion in the appropriate clinical setting is required to facilitate prompt diagnosis and treatment of these diseases.

  14. Anti-parasitic effects of plant secondary metabolites on swine nematodes

    DEFF Research Database (Denmark)

    Williams, A.R.; Pena-Espinoza, Miguel Angel; Fryganas, Christos

    Organic production presents challenges to animal health and productivity. In organic pig production, animals must have access to outdoor pastures which increases exposure to gastrointestinal parasites. Moreover, the routine use of synthetic anti-parasitic drugs is not allowed. Thus, novel parasite...... extract showed potent inhibition of A. suum larval migration (EC50 value of 42 μg/ml) and was also active against larval and adult stages of O. dentatum. Electron microscopy demonstrated significant structural damage to the cuticle and digestive tissues in nematodes exposed to PSM. Plants rich in PSM...

  15. Canine and feline parasitic zoonoses in China.

    Science.gov (United States)

    Chen, Jia; Xu, Min-Jun; Zhou, Dong-Hui; Song, Hui-Qun; Wang, Chun-Ren; Zhu, Xing-Quan

    2012-07-28

    Canine and feline parasitic zoonoses have not been given high priority in China, although the role of companion animals as reservoirs for zoonotic parasitic diseases has been recognized worldwide. With an increasing number of dogs and cats under unregulated conditions in China, the canine and feline parasitic zoonoses are showing a trend towards being gradually uncontrolled. Currently, canine and feline parasitic zoonoses threaten human health, and cause death and serious diseases in China. This article comprehensively reviews the current status of major canine and feline parasitic zoonoses in mainland China, discusses the risks dogs and cats pose with regard to zoonotic transmission of canine and feline parasites, and proposes control strategies and measures.

  16. Parasites, emerging disease and wildlife conservation.

    Science.gov (United States)

    Thompson, R C A; Lymbery, A J; Smith, A

    2010-08-15

    In this review some emerging issues of parasite infections in wildlife, particularly in Australia, are considered. We discuss the importance of understanding parasite biodiversity in wildlife in terms of conservation, the role of wildlife as reservoirs of parasite infection, and the role of parasites within the broader context of the ecosystem. Using a number of parasite species, the value of undertaking longitudinal surveillance in natural systems using non-invasive sampling and molecular tools to characterise infectious agents is illustrated in terms of wildlife health, parasite biodiversity and ecology.

  17. Oncogenic Brain Metazoan Parasite Infection

    Directory of Open Access Journals (Sweden)

    Angela N. Spurgeon

    2013-01-01

    Full Text Available Multiple observations suggest that certain parasitic infections can be oncogenic. Among these, neurocysticercosis is associated with increased risk for gliomas and hematologic malignancies. We report the case of a 71-year-old woman with colocalization of a metazoan parasite, possibly cysticercosis, and a WHO grade IV neuroepithelial tumor with exclusively neuronal differentiation by immunohistochemical stains (immunopositive for synaptophysin, neurofilament protein, and Neu-N and not for GFAP, vimentin, or S100. The colocalization and temporal relationship of these two entities suggest a causal relationship.

  18. Inhibition of cathepsin B by E-64 induces oxidative stress and apoptosis in filarial parasite.

    Directory of Open Access Journals (Sweden)

    Mohit Wadhawan

    Full Text Available Current available antifilarial drug strategies only eliminate the larval stages of filarial parasites. Therefore, there is an urgent need of drugs which are macrofilaricidals. Identification of molecular targets crucial for survival of parasite is a prerequisite for drug designing. Cathepsin B, a cysteine protease family member is known to play crucial role in the normal growth, digestion of nutrients, exsheathment of the helminth parasites. Therefore, we targeted this enzyme in the filarial parasite using its specific inhibitor, E-64.We have exposed the parasites to E-64 and observed their motility and viability at various time intervals. It caused marked decrease in the motility and viability of the parasites ultimately leading to their death after 8 hours. It is well known that E-64 protects the cell from apoptosis, however, it causes apoptotic effect in carcinoma cell lines. To understand the mechanism of action of E-64 on parasite survival, we have measured levels of different apoptotic markers in the treated parasites. E-64 significantly reduced the level of ced-9 and activity of tyrosine phosphatases, cytochrome c oxidase. It also activated ced-3, homolog of mammalian caspase 3 suggesting initiation of an apoptotic like event in the filarial parasites. Different antioxidant enzymes were also evaluated to further explore the mechanism behind the death of the parasites. There was marked decrease in the level of GSH and activity of Glutathione reductase and glutathione-s-transferase leading to increased generation of reactive oxygen species. This led to the induced oxidation of fatty acids and protein which might alter the mitochondrial membrane permeability.This study suggests that inhibition of cathepsin B by E-64 generates oxidative stress followed by mitochondrial mediated apoptotic like event in filarial parasites leading to their death. Hence, suggesting filarial cathepsin B as a potential chemotherapeutic target for lymphatic

  19. Leishmania tropica experimental infection in the rat using luciferase-transfected parasites.

    Science.gov (United States)

    Talmi-Frank, Dalit; Jaffe, Charles L; Nasereddin, Abedelmajeed; Baneth, Gad

    2012-06-08

    Leishmania tropica is the causative agent of zoonotic cutaneous leishmaniasis in different parts of the Old World. Although it is a common cause of disease in some areas of the world, there is insufficient knowledge on the pathogenicity of this parasite in mammalian hosts and animal models. L. tropica luciferase-transfected metacyclic-stage promastigotes were inoculated into the footpad or ear of Sprague Dawley (SD) rats. Parasite DNA was detected by kDNA real time PCR in the blood at varying levels from 2 days to 5 weeks post infection (PI) in the absence of clinical signs. Parasite DNA was found in the spleen of all rats at the end of the study, and the parasitic load was up to 40 times higher in the spleen when compared with inoculation sites. Parasites were cultured from the spleen, and skin inoculation sites 5 weeks PI. Bioluminescent parasites were observed by in vivo imaging at one day PI, but the technique was not sufficiently sensitive to follow parasite spread after this time. This study provides new evidence for the viscerotropic spread of L. tropica in the rat and demonstrates that the rat can serve as a model for persistent visceralizing infection with this parasite.

  20. A rapid and robust selection procedure for generating drug-selectable marker-free recombinant malaria parasites.

    Science.gov (United States)

    Manzoni, Giulia; Briquet, Sylvie; Risco-Castillo, Veronica; Gaultier, Charlotte; Topçu, Selma; Ivănescu, Maria Larisa; Franetich, Jean-François; Hoareau-Coudert, Bénédicte; Mazier, Dominique; Silvie, Olivier

    2014-04-23

    Experimental genetics have been widely used to explore the biology of the malaria parasites. The rodent parasites Plasmodium berghei and less frequently P. yoelii are commonly utilised, as their complete life cycle can be reproduced in the laboratory and because they are genetically tractable via homologous recombination. However, due to the limited number of drug-selectable markers, multiple modifications of the parasite genome are difficult to achieve and require large numbers of mice. Here we describe a novel strategy that combines positive-negative drug selection and flow cytometry-assisted sorting of fluorescent parasites for the rapid generation of drug-selectable marker-free P. berghei and P. yoelii mutant parasites expressing a GFP or a GFP-luciferase cassette, using minimal numbers of mice. We further illustrate how this new strategy facilitates phenotypic analysis of genetically modified parasites by fluorescence and bioluminescence imaging of P. berghei mutants arrested during liver stage development.

  1. Significance of plankton community structure and nutrient availability for the control of dinoflagellate blooms by parasites: a modeling approach.

    Science.gov (United States)

    Alves-de-Souza, Catharina; Pecqueur, David; Le Floc'h, Emilie; Mas, Sébastien; Roques, Cécile; Mostajir, Behzad; Vidussi, Franscesca; Velo-Suárez, Lourdes; Sourisseau, Marc; Fouilland, Eric; Guillou, Laure

    2015-01-01

    Dinoflagellate blooms are frequently observed under temporary eutrophication of coastal waters after heavy rains. Growth of these opportunistic microalgae is believed to be promoted by sudden input of nutrients and the absence or inefficiency of their natural enemies, such as grazers and parasites. Here, numerical simulations indicate that increasing nutrient availability not only promotes the formation of dinoflagellate blooms but can also stimulate their control by protozoan parasites. Moreover, high abundance of phytoplankton other than dinoflagellate hosts might have a significant dilution effect on the control of dinoflagellate blooms by parasites, either by resource competition with dinoflagellates (thus limiting the number of hosts available for infection) or by affecting numerical-functional responses of grazers that consume free-living parasite stages. These outcomes indicate that although both dinoflagellates and their protozoan parasites are directly affected by nutrient availability, the efficacy of the parasitic control of dinoflagellate blooms under temporary eutrophication depends strongly on the structure of the plankton community as a whole.

  2. Closed Catheter Access System Implementation in Reducing Bloodstream Infection Rate in Low Birth Weight Preterm Infants

    Directory of Open Access Journals (Sweden)

    Lily eRundjan

    2015-03-01

    Full Text Available Background Bloodstream infection (BSI is one of the significant causes of morbidity and mortality encountered in a neonatal intensive care unit (NICU, especially in developing countries. Despite the implementation of infection control practices, such as strict hand hygiene, the BSI rate in our hospital is still high. The use of a closed catheter access system to reduce BSI related to intravascular catheter has hitherto never been evaluated in our hospital. Objective To determine the effects of closed catheter access system implementation in reducing the BSI rate in preterm neonates with low birth weight.Methods Randomized clinical trial was conducted on 60 low birth weight preterm infants hospitalized in the neonatal unit at Cipto Mangunkusumo Hospital, Jakarta, Indonesia from June to September, 2013. Randomized subjects either received a closed or non-closed catheter access system. Subjects were monitored for 2 weeks for the development of BSI based on clinical signs, abnormal infection parameters, and blood culture. Results Closed catheter access system implementation gave a protective effect towards the occurrence of culture-proven BSI (relative risk 0.095, 95% CI 0.011 to 0.85, p=0.026. Risk of culture-proven BSI in the control group was 10.545 (95% CI 1.227 to 90.662, p=0.026. BSI occurred in 75% of neonates without risk factors of infection in the control group compared to none in the study group.Conclusions The use of a closed catheter access system reduced the BSI in low birth weight preterm infants. Choosing the right device design, proper disinfection of device and appropriate frequency of connector change should be done simultaneously.

  3. Bacillus Cereus catheter related bloodstream infection in a patient in a patient with acute lymphblastic leukemia

    Directory of Open Access Journals (Sweden)

    Lütfiye Öksüz

    2012-01-01

    Full Text Available

    Bacillus cereus infection is rarely associated with actual infection and for this reason single positive blood culture is usually regarded as contamination . However it may cause a number of infections, such catheter-related blood stream infections. Significant catheter-related bloodstream infections (CRBSI caused by Bacillus spp. are mainly due to B.cereus and have been predominantly reported in immunocompromised hosts1 . Catheter removal is generally advised for management of infection. In this report, catheter-related bacteremia caused by B.cereus in a patient with acute lymphoblastıc leukemia (ALL in Istanbul Medical Faculty was presented.A 44-year old man presented with fatigue, weight loss, epistaxis and high fever. A double-lumen Hickman–catheter (Bard 12.0 Fr, Round Dual Lumen was inserted by surgical cut-down to access the right subclavian vein which would be necessary for allogeneic stem cell transplantation. Three weeks later the patient presented with high fever and headache. Bacillus spp. was isolated from the cathether while blood culture obtained from the peripheral vein remained negative. The bacterial identification was confirmed as B.cereus using VITEK identification system

    It has been reported Bacillus cereus septicemia may be fatal in immunocompromised hosts despite broad-spectrum appropriate treatment10. Catheter removal is essential for prevention of recurrent bacteremia. Long-term cathater salvage should be reserved for appropriate patient group.

  4. Molecular epidemiology and antimicrobial resistance of methicillin-resistant Staphylococcus aureus bloodstream isolates in Taiwan, 2010.

    Directory of Open Access Journals (Sweden)

    Chih-Jung Chen

    Full Text Available The information of molecular characteristics and antimicrobial susceptibility pattern of methicillin-resistant Staphylococcus aureus (MRSA is essential for control and treatment of diseases caused by this medically important pathogen. A total of 577 clinical MRSA bloodstream isolates from six major hospitals in Taiwan were determined for molecular types, carriage of Panton-Valentine leukocidin (PVL and sasX genes and susceptibilities to 9 non-beta-lactam antimicrobial agents. A total of 17 genotypes were identified in 577 strains by pulsotyping. Five major pulsotypes, which included type A (26.2%, belonging to sequence type (ST 239, carrying type III staphylococcal chromosomal cassette mec (SCCmec, type F (18.9%, ST5-SCCmecII, type C (18.5%, ST59-SCCmecIV, type B (12.0%, ST239-SCCmecIII and type D (10.9%, ST59-SCCmecVT/IV, prevailed in each of the six sampled hospitals. PVL and sasX genes were respectively carried by ST59-type D strains and ST239 strains with high frequencies (93.7% and 99.1%, respectively but rarely detected in strains of other genotypes. Isolates of different genotypes and from different hospitals exhibited distinct antibiograms. Multi-resistance to ≥3 non-beta-lactams was more common in ST239 isolates (100% than in ST5 isolates (97.2%, P = 0.0347 and ST59 isolates (8.2%, P<0.0001. Multivariate analysis further indicated that the genotype, but not the hospital, was an independent factor associated with muti-resistance of the MRSA strains. In conclusion, five common MRSA clones with distinct antibiograms prevailed in the major hospitals in Taiwan in 2010. The antimicrobial susceptibility pattern of invasive MRSA was mainly determined by the clonal distribution.

  5. Prevalence and Antimicrobial Resistance of Microbes Causing Bloodstream Infections in Unguja, Zanzibar.

    Directory of Open Access Journals (Sweden)

    Annette Onken

    Full Text Available Bloodstream infections (BSI are frequent and cause high case-fatality rates. Urgent antibiotic treatment can save patients' lives, but antibiotic resistance can render antibiotic therapy futile. This study is the first to collect epidemiological data on BSI from Unguja, Zanzibar.Clinical data and blood for culturing and susceptibility testing of isolated microbes were obtained from 469 consecutively enrolled neonates, children and adults presenting with signs of systemic infections at Mnazi Mmoja Hospital (MMH, Zanzibar.Pathogenic bacteria were recovered from the blood of 14% of the patients (66/469. The most frequently isolated microbes were Klebsiella pneumoniae, Escherichia coli, Acinetobacter spp. and Staphylococcus aureus. Infections were community-acquired in 56 patients (85% and hospital-acquired in 8 (12% (data missing for 2 patients. BSI caused by extended-spectrum beta-lactamase (ESBL producing Enterobacteriaceae (E. coli, K. pneumoniae was found in 5 cases, of which 3 were community-acquired and 2 hospital-acquired. Three of these patients died. Six of 7 Salmonella Typhi isolates were multidrug resistant. Streptococcus pneumoniae was found in one patient only.This is the first report of ESBL-producing bacteria causing BSI from the Zanzibar archipelago. Our finding of community-acquired BSI caused by ESBL-producing bacteria is alarming, as it implies that these difficult-to-treat bacteria have already spread in the society. In the local setting these infections are virtually impossible to cure. The findings call for increased awareness of rational antibiotic use, infection control and surveillance to counteract the problem of emerging antimicrobial resistance.

  6. Outbreak of Pantoea agglomerans Bloodstream Infections at an Oncology Clinic-Illinois, 2012-2013.

    Science.gov (United States)

    Yablon, Brian R; Dantes, Raymund; Tsai, Victoria; Lim, Rachel; Moulton-Meissner, Heather; Arduino, Matthew; Jensen, Bette; Patel, Megan Toth; Vernon, Michael O; Grant-Greene, Yoran; Christiansen, Demian; Conover, Craig; Kallen, Alexander; Guh, Alice Y

    2017-03-01

    OBJECTIVE To determine the source of a healthcare-associated outbreak of Pantoea agglomerans bloodstream infections. DESIGN Epidemiologic investigation of the outbreak. SETTING Oncology clinic (clinic A). METHODS Cases were defined as Pantoea isolation from blood or catheter tip cultures of clinic A patients during July 2012-May 2013. Clinic A medical charts and laboratory records were reviewed; infection prevention practices and the facility's water system were evaluated. Environmental samples were collected for culture. Clinical and environmental P. agglomerans isolates were compared using pulsed-field gel electrophoresis. RESULTS Twelve cases were identified; median (range) age was 65 (41-78) years. All patients had malignant tumors and had received infusions at clinic A. Deficiencies in parenteral medication preparation and handling were identified (eg, placing infusates near sinks with potential for splash-back contamination). Facility inspection revealed substantial dead-end water piping and inadequate chlorine residual in tap water from multiple sinks, including the pharmacy clean room sink. P. agglomerans was isolated from composite surface swabs of 7 sinks and an ice machine; the pharmacy clean room sink isolate was indistinguishable by pulsed-field gel electrophoresis from 7 of 9 available patient isolates. CONCLUSIONS Exposure of locally prepared infusates to a contaminated pharmacy sink caused the outbreak. Improvements in parenteral medication preparation, including moving chemotherapy preparation offsite, along with terminal sink cleaning and water system remediation ended the outbreak. Greater awareness of recommended medication preparation and handling practices as well as further efforts to better define the contribution of contaminated sinks and plumbing deficiencies to healthcare-associated infections are needed. Infect Control Hosp Epidemiol 2017;38:314-319.

  7. Incidence, Clinical Characteristics and Attributable Mortality of Persistent Bloodstream Infection in the Neonatal Intensive Care Unit

    Science.gov (United States)

    Hsu, Jen-Fu; Chu, Shih-Ming; Lee, Chiang-Wen; Yang, Pong-Hong; Lien, Reyin; Chiang, Ming-Chou; Fu, Ren-Huei; Huang, Hsuan-Rong; Tsai, Ming-Horng

    2015-01-01

    Background An atypical pattern of neonatal sepsis, characterized by persistent positive blood culture despite effective antimicrobial therapy, has been correlated with adverse outcomes. However, previous studies focused only on coagulate-negative staphylococcus infection. Methods All episodes of persistent bloodstream infection (BSI), defined as 3 or more consecutive positive blood cultures with the same bacterial species, at least two of them 48 hours apart, during a single sepsis episode, were enrolled over an 8-year period in a tertiary level neonatal intensive care unit. These cases were compared with all non-persistent BSI during the same period. Results We identified 81 episodes of persistent BSI (8.5% of all neonatal late-onset sepsis) in 74 infants, caused by gram-positive pathogens (n=38, 46.9%), gram-negative pathogens (n=21, 25.9%), fungus (n=20, 24.7%) and polymicrobial bacteremia (n=2, 2.5%). Persistent BSI does not differ from non-persistent BSI in most clinical characteristics and patient demographics, but tends to have a prolonged septic course, longer duration of feeding intolerance and more frequent requirement of blood transfusions. No difference was observed for death attributable to infection (9.8% vs. 6.5%), but neonates with persistent BSI had significantly higher rates of infectious complications (29.6% vs. 9.2%, P < 0.001), death from all causes (21.6% vs. 11.7%, P = 0.025), and duration of hospitalization among survivors [median (interquartile range): 80.0 (52.5-117.5) vs. 64.0 (40.0-96.0) days, P = 0.005] than those without persistent BSI. Conclusions Although persistent BSI does not contribute directly to increased mortality, the associated morbidities, infectious complications and prolonged septic courses highlight the importance of aggressive treatment to optimize outcomes. PMID:25875677

  8. Using real time process measurements to reduce catheter related bloodstream infections in the intensive care unit

    Science.gov (United States)

    Wall, R; Ely, E; Elasy, T; Dittus, R; Foss, J; Wilkerson, K; Speroff, T

    2005-01-01

    

Problem: Measuring a process of care in real time is essential for continuous quality improvement (CQI). Our inability to measure the process of central venous catheter (CVC) care in real time prevented CQI efforts aimed at reducing catheter related bloodstream infections (CR-BSIs) from these devices. Design: A system was developed for measuring the process of CVC care in real time. We used these new process measurements to continuously monitor the system, guide CQI activities, and deliver performance feedback to providers. Setting: Adult medical intensive care unit (MICU). Key measures for improvement: Measured process of CVC care in real time; CR-BSI rate and time between CR-BSI events; and performance feedback to staff. Strategies for change: An interdisciplinary team developed a standardized, user friendly nursing checklist for CVC insertion. Infection control practitioners scanned the completed checklists into a computerized database, thereby generating real time measurements for the process of CVC insertion. Armed with these new process measurements, the team optimized the impact of a multifaceted intervention aimed at reducing CR-BSIs. Effects of change: The new checklist immediately provided real time measurements for the process of CVC insertion. These process measures allowed the team to directly monitor adherence to evidence-based guidelines. Through continuous process measurement, the team successfully overcame barriers to change, reduced the CR-BSI rate, and improved patient safety. Two years after the introduction of the checklist the CR-BSI rate remained at a historic low. Lessons learnt: Measuring the process of CVC care in real time is feasible in the ICU. When trying to improve care, real time process measurements are an excellent tool for overcoming barriers to change and enhancing the sustainability of efforts. To continually improve patient safety, healthcare organizations should continually measure their key clinical processes in real

  9. Clinical and microbiological characteristics of bloodstream infections in hematological cancer patients

    Directory of Open Access Journals (Sweden)

    V. N. Chebotkevich

    2016-01-01

    Full Text Available Introduction. Bloodstream infections (BSI are life-threatening illness for immunocompromised patients with hematological malignancies.The aim of the study was to compare epidemiology, causative pathogens and outcome of hospital-acquired BSI and clarifying the role of herpes group of viruses in their development.Materials and methods. During the period 1991–2013 438 bacterial strains obtained from 360 patients (pts with hematological malignancies wеre studied. All blood cultures were incubated in the continuous monitoring system for 7 days before discard. The real-time PCR was used for human herpesviruses DNA detection: Herpes simplex viruses types 1 and 2 (HSV 1, 2, Cytomegalovirus (CMV, Epstein–Barr virus(EBV and Herpesvirus 6 (HHV-6. In this study 64 hematological cancer patients with infectious complications who fulfilled criteria of systemic inflammatory response syndrome with positive peripheral blood cultures were investigated. All pts received empirical anti-infectious therapy with subsequent correction based on the bacteriological, virological and mycological analyses.Results and discussion. A total Gram-positive (G+ accounted for 69.2 % of BSI, Gram-negative (G– for 30.8 %. Among G+ BSI Coagulase Negative Staphylococci and Staphylococcus aureus were the most frequent pathogens (58.8 %, among G– BSI Escherichia coli (13.0 % was predominant. It is shown that the development of bacteremia were significantly more frequently occurs in the case of cytomegalovirusand the Epstein–Barr virus detection.Conclusion. Further epidemiological surveillance is warranted in order emerging resistant strains and related mortality. Reactivation of CMV and EBV is significantly associated with higher incidence of bacterial BSI.

  10. Hospital-wide multidisciplinary, multimodal intervention programme to reduce central venous catheter-associated bloodstream infection.

    Directory of Open Access Journals (Sweden)

    Walter Zingg

    Full Text Available Central line-associated bloodstream infection (CLABSI is the major complication of central venous catheters (CVC. The aim of the study was to test the effectiveness of a hospital-wide strategy on CLABSI reduction. Between 2008 and 2011, all CVCs were observed individually and hospital-wide at a large university-affiliated, tertiary care hospital. CVC insertion training started from the 3rd quarter and a total of 146 physicians employed or newly entering the hospital were trained in simulator workshops. CVC care started from quarter 7 and a total of 1274 nurses were trained by their supervisors using a web-based, modular, e-learning programme. The study included 3952 patients with 6353 CVCs accumulating 61,366 catheter-days. Hospital-wide, 106 patients had 114 CLABSIs with a cumulative incidence of 1.79 infections per 100 catheters. We observed a significant quarterly reduction of the incidence density (incidence rate ratios [95% confidence interval]: 0.92 [0.88-0.96]; P<0.001 after adjusting for multiple confounders. The incidence densities (n/1000 catheter-days in the first and last study year were 2.3/1000 and 0.7/1000 hospital-wide, 1.7/1000 and 0.4/1000 in the intensive care units, and 2.7/1000 and 0.9/1000 in non-intensive care settings, respectively. Median time-to-infection was 15 days (Interquartile range, 8-22. Our findings suggest that clinically relevant reduction of hospital-wide CLABSI was reached with a comprehensive, multidisciplinary and multimodal quality improvement programme including aspects of behavioural change and key principles of good implementation practice. This is one of the first multimodal, multidisciplinary, hospital-wide training strategies successfully reducing CLABSI.

  11. Bloodstream infection following 217 consecutive systemic-enteric drained pancreas transplants

    Directory of Open Access Journals (Sweden)

    Mark Walter

    2006-08-01

    Full Text Available Abstract Background Combined kidney pancreas transplantation (PTx evolved as excellent treatment for diabetic nephropathy. Infections remain common and serious complications. Methods 217 consecutive enteric drained PTxs performed from 1997 to 2004 were retrospectively analyzed with regard to bloodstream infection. Immunosuppression consisted of antithymocyteglobuline induction, tacrolimus, mycophenolic acid and steroids for the majority of cases. Standard perioperative antimicrobial prophylaxis consisted of pipercillin/tazobactam in combination with ciprofloxacin and fluconazole. Results One year patient, pancreas and kidney graft survival were 96.4%, 88.5% and 94.8%, surgical complication rate was 35%, rejection rate 30% and rate of infection 59%. In total 46 sepsis episodes were diagnosed in 35 patients (16% with a median onset on day 12 (range 1–45 post transplant. Sepsis source was intraabdominal infection (IAI (n = 21, a contaminated central venous line (n = 10, wound infection (n = 5, urinary tract infection (n = 2 and graft transmitted (n = 2. Nine patients (4% experienced multiple episodes of sepsis. Overall 65 pathogens (IAI sepsis 39, line sepsis 15, others 11 were isolated from blood. Gram positive cocci accounted for 50 isolates (77%: Coagulase negative staphylococci (n = 28, i.e. 43% (nine multi-resistant, Staphylococcus aureus (n = 11, i.e. 17% (four multi-resistant, enterococci (n = 9, i.e. 14% (one E. faecium. Gram negative rods were cultured in twelve cases (18%. Patients with blood borne infection had a two year pancreas graft survival of 76.5% versus 89.4% for those without sepsis (p = 0.036, patient survival was not affected. Conclusion Sepsis remains a serious complication after PTx with significantly reduced pancreas graft, but not patient survival. The most common source is IAI.

  12. Patterns and trends of pediatric bloodstream infections: a 7-year surveillance study.

    Science.gov (United States)

    Buetti, N; Atkinson, A; Kottanattu, L; Bielicki, J; Marschall, J; Kronenberg, A

    2017-03-01

    We characterize the epidemiology of pediatric bloodstream infections (BSIs) in Switzerland. We analyzed pathogen distribution and resistance patterns in monomicrobial and polymicrobial BSIs in children from 2008 to 2014 using data from the Swiss antibiotic resistance centre (ANRESIS). A confirmatory statistical analysis was performed comparing pathogens and resistance across 20 acute care hospitals. We identified 3,067 bacteremia episodes, of which 1,823 (59 %) were considered true BSI episodes. Overall, S. aureus (16.5 %, 300) was the most frequent pathogen, followed by E. coli (15.1 %, 276), coagulase-negative staphylococci (CoNS, 12.9 %, 235), S. pneumoniae (11.1 %, 202) and non-E. coli Enterobacteriaceae (8.7 %, 159). S. aureus and E. coli showed similar frequencies in all of the variables analyzed (e.g., hospital acquisition, hospital type, medical specialty). The proportion of these microorganisms did not change over time, resistance rates remained low (4.3 % methicillin resistance in S. aureus; 7.3 % third-/fourth-generation cephalosporin resistance in E. coli), and no significant resistance trends were observed. We observed a 50 % increase of CoNS BSIs from 2008 (9.8 %, 27) to 2014 (15.2 %, 46, p value for trend = 0.03). S. pneumoniae decreased from 17.5 % (48) to 6.6 % (20) during that timeframe (p for trend = 0.007). S. aureus and E. coli remained the most significant pathogens among pediatric BSIs in Switzerland, exhibiting low resistance rates. CoNS accounted for a greater proportion of BSIs over time. The decrease in bacteremic pneumococcal infections can likely be attributed to the introduction of the 13-valent conjugate vaccine in 2011.

  13. The Changing Epidemiology of Bloodstream Infections and Resistance in Hematopoietic Stem Cell Transplantation Recipients

    Directory of Open Access Journals (Sweden)

    Mücahit Yemişen

    2016-08-01

    Full Text Available Objective: Patients receiving hematopoietic stem cell transplantation (HSCT are exposed to highly immunosuppressive conditions and bloodstream infections (BSIs are one of the most common major complications within this period. Our aim, in this study, was to evaluate the epidemiology of BSIs in these patients retrospectively. Materials and Methods: The epidemiological properties of 312 patients with HSCT were retrospectively evaluated. Results: A total of 312 patients, followed between 2000 and 2011, who underwent autologous (62% and allogeneic (38% HSCT were included in the study. The most common underlying malignancies were multiple myeloma (28% and Hodgkin lymphoma (21.5%. A total of 142 (45% patients developed at least 1 episode of BSI and 193 separate pathogens were isolated from the blood cultures. There was a trend of increase in the numbers of BSIs in 2005-2008 and a relative increase in the proportion of gram-positive infections in recent years (2009-2011, and central venous catheter-related BSI was found to be most common source. Coagulase-negative staphylococci (49.2% and Acinetobacter baumannii (8.8% were the most common pathogens. Extended-spectrum beta-lactamase-producing strains were 23% and 22% among Escherichia coli and Klebsiella spp. isolates, respectively. Quinolone resistance was detected in 10% of Enterobacteriaceae. Resistance to carbapenems was not detected in Enterobacteriaceae, while it was seen at 11.1% and 23.5% in Pseudomonas and Acinetobacter strains, respectively. Conclusion: A shift was detected from gram-negative bacteria to gram-positive in the etiology over the years and central lines were the most common sources of BSIs.

  14. Risk factors and outcomes for patients with bloodstream infection due to Acinetobacter baumannii-calcoaceticus complex.

    Science.gov (United States)

    Chopra, Teena; Marchaim, Dror; Johnson, Paul C; Awali, Reda A; Doshi, Hardik; Chalana, Indu; Davis, Naomi; Zhao, Jing J; Pogue, Jason M; Parmar, Sapna; Kaye, Keith S

    2014-08-01

    Identifying patients at risk for bloodstream infection (BSI) due to Acinetobacter baumannii-Acinetobacter calcoaceticus complex (ABC) and providing early appropriate therapy are critical for improving patient outcomes. A retrospective matched case-control study was conducted to investigate the risk factors for BSI due to ABC in patients admitted to the Detroit Medical Center (DMC) between January 2006 and April 2009. The cases were patients with BSI due to ABC; the controls were patients not infected with ABC. Potential risk factors were collected 30 days prior to the ABC-positive culture date for the cases and 30 days prior to admission for the controls. A total of 245 case patients were matched with 245 control patients. Independent risk factors associated with BSI due to ABC included a Charlson's comorbidity score of ≥ 3 (odds ratio [OR], 2.34; P = 0.001), a direct admission from another health care facility (OR, 4.63; P < 0.0001), a prior hospitalization (OR, 3.11; P < 0.0001), the presence of an indwelling central venous line (OR, 2.75; P = 0.011), the receipt of total parenteral nutrition (OR, 21.2; P < 0.0001), the prior receipt of β-lactams (OR, 3.58; P < 0.0001), the prior receipt of carbapenems (OR, 3.18; P = 0.006), and the prior receipt of chemotherapy (OR, 15.42; P < 0.0001). The median time from the ABC-positive culture date to the initiation of the appropriate antimicrobial therapy was 2 days (interquartile range [IQR], 1 to 3 days). The in-hospital mortality rate was significantly higher among case patients than among control patients (OR, 3.40; P < 0.0001). BSIs due to ABC are more common among critically ill and debilitated institutionalized patients, who are heavily exposed to health care settings and invasive devices.

  15. A multicentre analysis of epidemiology of the nosocomial bloodstream infections in Japanese university hospitals.

    Science.gov (United States)

    Nagao, M

    2013-09-01

    Nosocomial bloodstream infections (BSIs) are an important cause of morbidity and mortality. The current study analysed data from a concurrent surveillance programme to examine the current epidemiological trends for nosocomial BSIs at 22 Japanese university hospitals from 1 April 2008 to 31 March 2012. The number of blood culture sets taken, the rate of multiple blood culture sets and the rates of antibiotic-resistant isolates among six major nosocomial BSI pathogens (Staphylococcus aureus, Enterococcus spp., Escherichia coli, Klebsiella spp., Pseudomonas aeruginosa, and Candida spp.) not including coagulase-negative staphylococci, were evaluated. The clinical characteristics of nosocomial BSIs caused by these pathogens were also collected for 2941 patients. The number of blood culture sets taken per bed increased during the 4-year study period (from 4.07 in 2008 to 5.37 in 2011), and the rates of multiple blood culture sets also increased (from 29.9% in 2008 to 50.0% in 2011). Methicillin resistance was detected in 50.2% of S. aureus isolates. The prevalence rates of extended-spectrum beta-lactamase-producing E. coli and Klebsiella spp. isolates increased annually during the study period, and the average prevalence rates were 12.3% and 5.8%, respectively. The overall crude mortality of nosocomial BSIs due to the six pathogens evaluated was 24.5% (43.2% in ICU settings and 20.5% in non-ICU settings). Thus, our multicentre study evaluated the current epidemiological trends for nosocomial BSIs, and we found that further efforts are needed to increase the use of multiple blood culture sets and improve the prognosis of nosocomial BSIs in Japanese university hospitals.

  16. Staphylococcus species and their Methicillin-Resistance in 7424 Blood Cultures for Suspected Bloodstream Infections

    Directory of Open Access Journals (Sweden)

    Ariana ALMAŞ

    2011-06-01

    Full Text Available Objectives: The aim of this study was to evaluate the distribution of Staphylococcus species in bloodstream infections and to assess their susceptibility to methicillin. Material and Methods: Between January 1st 2008 - December 31st 2010, 7424 blood culture sets were submitted to the Laboratory Department of the Hospital for Clinical Infectious Diseases in Cluj-Napoca, Romania. The blood cultures were performed using BacT/Alert until January 2010 and BacT/Alert 3D automated system (bioMérieux after that date. The blood culture bottles were incubated at 37°C in a continuously monitoring system for up to 7 days. The strain identifications were performed by conventional methods, ApiStaph galleries and Vitek 2 Compact system. Susceptibility to methicillin was determined by disk diffusion method with cefoxitin disk and by using Vitek 2 Compact system. Results: From the total number of performed blood cultures, 568 were positive with Staphylococcus species. From 168 bacteriemic episodes 103 were with Staphylococcus aureus. Among 65 coagulase-negative staphylococci isolates, Staphylococcus epidermidis was the most frequently isolated species (34, followed by Staphylococcus hominis (15, Staphylococcus haemolyticus (8, Staphylococcus saprophyticus (3, Staphylococcus cohnii (1, Staphylococcus auricularis (1, and 3 strains that were not identified at species level. Methicillin resistance was encountered in 53.40% of Staphylococcus aureus strains and in 80% of coagulase-negative staphylococci. Conclusions: An important percentage of blood cultures were contaminated with Staphylococcus species. The main species identified in true bacteriemia cases were Staphylococcus aureus and Staphylococcus epidermidis. The percentage of methicillin-resistance, proved to be high not only for coagulase-negative staphylococci but also for Staphylococcus aureus.

  17. Co-Infection and Wild Animal Health: Effects of Trypanosomatids and Gastrointestinal Parasites on Coatis of the Brazilian Pantanal.

    Directory of Open Access Journals (Sweden)

    Natalie Olifiers

    Full Text Available Wild animals are infected by diverse parasites, but how they influence host health is poorly understood. We examined the relationship of trypanosomatids and gastrointestinal parasites with health of wild brown-nosed coatis (Nasua nasua from the Brazilian Pantanal. We used coati body condition and hematological parameters as response variables in linear models that were compared using an information theoretic approach. Predictors were high/low parasitemias by Trypanosoma cruzi and T. evansi, and indices representing the abundance of distinct groups of gastrointestinal parasites. We also analyzed how host health changed with host sex and reproductive seasonality. Hemoparasites was best related to coati body condition and hematological indices, whereas abundance of gastrointestinal parasites was relatively less associated with coati health. Additionally, some associations were best predicted by models that incorporated reproductive seasonality and host sex. Overall, we observed a lower health condition during the breeding season, when coatis are under reproductive stress and may be less able to handle infection. In addition, females seem to handle infection better than males. Body condition was lower in coatis with high parasitemias of T. evansi, especially during the reproductive season. Total red blood cell counts, packed cell volume, platelets and eosinophils were also lower in animals with high T. evansi parasitemias. Total white blood cell counts and mature neutrophils were lower in animals with high parasitemias for both Trypanosoma species, with neutrophils decreasing mainly during the reproductive season. Overall, decreases in hematological parameters of females with T. evansi high parasitemias were less evident. For T. cruzi, monocytes decreased in individuals with high parasitemias. High abundances of microfilariae in the bloodstream, and cestode eggs and coccidian oocysts in feces were also associated with coati blood parameters. This

  18. Co-Infection and Wild Animal Health: Effects of Trypanosomatids and Gastrointestinal Parasites on Coatis of the Brazilian Pantanal

    Science.gov (United States)

    Olifiers, Natalie; Jansen, Ana Maria; Herrera, Heitor Miraglia; Bianchi, Rita de Cassia; D’Andrea, Paulo Sergio; Mourão, Guilherme de Miranda; Gompper, Matthew Edzart

    2015-01-01

    Wild animals are infected by diverse parasites, but how they influence host health is poorly understood. We examined the relationship of trypanosomatids and gastrointestinal parasites with health of wild brown-nosed coatis (Nasua nasua) from the Brazilian Pantanal. We used coati body condition and hematological parameters as response variables in linear models that were compared using an information theoretic approach. Predictors were high/low parasitemias by Trypanosoma cruzi and T. evansi, and indices representing the abundance of distinct groups of gastrointestinal parasites. We also analyzed how host health changed with host sex and reproductive seasonality. Hemoparasites was best related to coati body condition and hematological indices, whereas abundance of gastrointestinal parasites was relatively less associated with coati health. Additionally, some associations were best predicted by models that incorporated reproductive seasonality and host sex. Overall, we observed a lower health condition during the breeding season, when coatis are under reproductive stress and may be less able to handle infection. In addition, females seem to handle infection better than males. Body condition was lower in coatis with high parasitemias of T. evansi, especially during the reproductive season. Total red blood cell counts, packed cell volume, platelets and eosinophils were also lower in animals with high T. evansi parasitemias. Total white blood cell counts and mature neutrophils were lower in animals with high parasitemias for both Trypanosoma species, with neutrophils decreasing mainly during the reproductive season. Overall, decreases in hematological parameters of females with T. evansi high parasitemias were less evident. For T. cruzi, monocytes decreased in individuals with high parasitemias. High abundances of microfilariae in the bloodstream, and cestode eggs and coccidian oocysts in feces were also associated with coati blood parameters. This study shows the

  19. Co-Infection and Wild Animal Health: Effects of Trypanosomatids and Gastrointestinal Parasites on Coatis of the Brazilian Pantanal.

    Science.gov (United States)

    Olifiers, Natalie; Jansen, Ana Maria; Herrera, Heitor Miraglia; Bianchi, Rita de Cassia; D'Andrea, Paulo Sergio; Mourão, Guilherme de Miranda; Gompper, Matthew Edzart

    2015-01-01

    Wild animals are infected by diverse parasites, but how they influence host health is poorly understood. We examined the relationship of trypanosomatids and gastrointestinal parasites with health of wild brown-nosed coatis (Nasua nasua) from the Brazilian Pantanal. We used coati body condition and hematological parameters as response variables in linear models that were compared using an information theoretic approach. Predictors were high/low parasitemias by Trypanosoma cruzi and T. evansi, and indices representing the abundance of distinct groups of gastrointestinal parasites. We also analyzed how host health changed with host sex and reproductive seasonality. Hemoparasites was best related to coati body condition and hematological indices, whereas abundance of gastrointestinal parasites was relatively less associated with coati health. Additionally, some associations were best predicted by models that incorporated reproductive seasonality and host sex. Overall, we observed a lower health condition during the breeding season, when coatis are under reproductive stress and may be less able to handle infection. In addition, females seem to handle infection better than males. Body condition was lower in coatis with high parasitemias of T. evansi, especially during the reproductive season. Total red blood cell counts, packed cell volume, platelets and eosinophils were also lower in animals with high T. evansi parasitemias. Total white blood cell counts and mature neutrophils were lower in animals with high parasitemias for both Trypanosoma species, with neutrophils decreasing mainly during the reproductive season. Overall, decreases in hematological parameters of females with T. evansi high parasitemias were less evident. For T. cruzi, monocytes decreased in individuals with high parasitemias. High abundances of microfilariae in the bloodstream, and cestode eggs and coccidian oocysts in feces were also associated with coati blood parameters. This study shows the

  20. Classification of positive blood cultures: computer algorithms versus physicians' assessment - development of tools for surveillance of bloodstream infection prognosis using population-based laboratory databases

    Directory of Open Access Journals (Sweden)

    Gradel Kim O

    2012-09-01

    Full Text Available Abstract Background Information from blood cultures is utilized for infection control, public health surveillance, and clinical outcome research. This information can be enriched by physicians’ assessments of positive blood cultures, which are, however, often available from selected patient groups or pathogens only. The aim of this work was to determine whether patients with positive blood cultures can be classified effectively for outcome research in epidemiological studies by the use of administrative data and computer algorithms, taking physicians’ assessments as reference. Methods Physicians’ assessments of positive blood cultures were routinely recorded at two Danish hospitals from 2006 through 2008. The physicians’ assessments classified positive blood cultures as: a contamination or bloodstream infection; b bloodstream infection as mono- or polymicrobial; c bloodstream infection as community- or hospital-onset; d community-onset bloodstream infection as healthcare-associated or not. We applied the computer algorithms to data from laboratory databases and the Danish National Patient Registry to classify the same groups and compared these with the physicians’ assessments as reference episodes. For each classification, we tabulated episodes derived by the physicians’ assessment and the computer algorithm and compared 30-day mortality between concordant and discrepant groups with adjustment for age, gender, and comorbidity. Results Physicians derived 9,482 reference episodes from 21,705 positive blood cultures. The agreement between computer algorithms and physicians’ assessments was high for contamination vs. bloodstream infection (8,966/9,482 reference episodes [96.6%], Kappa = 0.83 and mono- vs. polymicrobial bloodstream infection (6,932/7,288 reference episodes [95.2%], Kappa = 0.76, but lower for community- vs. hospital-onset bloodstream infection (6,056/7,288 reference episodes [83.1%], Kappa = 0.57 and

  1. Infection of North Sea cod (Gadus morhua L.) postlarvae and juveniles with the parasites Hysterothylacium aduncum Rudolphi and Caligus sp

    DEFF Research Database (Denmark)

    Mehrdana, F.; Bahlool, Q. M.; Skovgaard, A.;

    Parasitic infections of individual juvenile and adult Atlantic cod (Gadus morhua L.) have been well studied for decades, but infections of early life stages and the impact of parasitism on population level have been less well elucidated. It is generally assumed that early developmental stages...... of fish are more vulnerable to infection compared to older age groups, but merely few investigations on parasitic infections in young cod are available. We have therefore performed a parasitological investigation of a total of 3361 specimens of Atlantic cod post larvae and juveniles sampled from the North...

  2. Parasitic Diseases - Multiple Languages: MedlinePlus

    Science.gov (United States)

    ... Are Here: Home → Multiple Languages → All Health Topics → Parasitic Diseases URL of this page: https://medlineplus.gov/languages/ ... V W XYZ List of All Topics All Parasitic Diseases - Multiple Languages To use the sharing features on ...

  3. Sacral Rachipagus Parasite: A Case Report

    Directory of Open Access Journals (Sweden)

    Kamal Nain Rattan

    2016-03-01

    Full Text Available We are reporting a case of sacral rachipagus parasite which was vaginally delivered as a large irregular mass attached to the sacral region by a vascular pedicle. This case was managed successfully by surgical excision of parasite.

  4. O&P (Ova and Parasite) Test

    Science.gov (United States)

    ... Was this page helpful? Also known as: O&P Formal name: Parasitic Examination, stool Related tests: Gastrointestinal ... is it used? The ova and parasite (O&P) exam is used to detect the presence of ...

  5. Sacral Rachipagus Parasite: A Case Report.

    Science.gov (United States)

    Rattan, Kamal Nain; Singh, Jasbir; Dalal, Poonam; Sonika, Pallavi; Rattan, Ananta

    2016-01-01

    We are reporting a case of sacral rachipagus parasite which was vaginally delivered as a large irregular mass attached to the sacral region by a vascular pedicle. This case was managed successfully by surgical excision of parasite.

  6. Parasites and food: ripe for exploitation.

    Science.gov (United States)

    Thompson, R C Andrew

    2014-01-01

    Parasites are often exploited for emotive or political purposes. This is especially so for a number of foodborne parasitic zoonoses, where this exploitation may not necessarily best serve the public good.

  7. Can Parasites Really Reveal Environmental Impact?

    Science.gov (United States)

    This review assesses the usefulness of parasites as bioindicators of environmental impact. Relevant studies published in the past decade were compiled; factorial meta-analysis demonstrated significant effects and interactions between parasite levels and the presence and concentra...

  8. Decoys in Predation and Parasitism

    NARCIS (Netherlands)

    Wilkinson, Michael H.F.

    2003-01-01

    Predator-prey or host-parasite dynamics can be altered by the presence of other species through several mechanisms. One such mechanism is the ‘‘decoy effect,’’ which itself can take a variety of forms. In its simplest form, the third species, which is inedible to the predator, nonetheless interferes

  9. Antimicrobial peptide action on parasites.

    Science.gov (United States)

    Torrent, Marc; Pulido, David; Rivas, Luis; Andreu, David

    2012-08-01

    Diseases caused by protozoan parasites can pose a severe thread to human health and are behind some serious neglected tropical diseases like malaria and leishmaniasis. Though several different drugs have been developed in order to eradicate these diseases, a successful candidate has not yet been discovered. Among the most active compounds tested, antimicrobial peptides (AMPs) are particularly appealing because of their wide spectrum of action. AMPs have been described to perturb protozoan homeostasis by disrupting the cellular membranes but also by interfering with key processes in the parasite metabolism. In this review we describe the diverse mechanisms of action of AMPs on protozoan targets and how they can be exploited to treat diseases. Moreover, we describe with detail the antimicrobial action of AMPs on two major parasitical infections: leishmaniasis and malaria. All the features reviewed here show that AMPs are promising drugs to target protozoan parasites and that further understanding of the mechanism of action of these compounds will lead to improved drugs that could be worth to test in a clinical phase.

  10. Parasitism and mutualism in Wolbachia

    DEFF Research Database (Denmark)

    Bordenstein, Seth R; Paraskevopoulos, Charalampos; Dunning Hotopp, Julie C;

    2009-01-01

    Ecological and evolutionary theories predict that parasitism and mutualism are not fixed endpoints of the symbiotic spectrum. Rather, parasitism and mutualism may be host or environment dependent, induced by the same genetic machinery, and shifted due to selection. These models presume the existe......Ecological and evolutionary theories predict that parasitism and mutualism are not fixed endpoints of the symbiotic spectrum. Rather, parasitism and mutualism may be host or environment dependent, induced by the same genetic machinery, and shifted due to selection. These models presume...... the existence of genetic or environmental variation that can spur incipient changes in symbiotic lifestyle. However, for obligate intracellular bacteria whose genomes are highly reduced, studies specify that discrete symbiotic associations can be evolutionarily stable for hundreds of millions of years...... in symbiotic lifestyle with a comprehensive, phylogenomic analysis. Contrary to previous claims, we show unequivocally that the transition in lifestyle cannot be reconstructed with current methods due to long-branch attraction (LBA) artifacts of the distant Anaplasma and Ehrlichia outgroups. Despite the use...

  11. The kinomes of apicomplexan parasites

    OpenAIRE

    Miranda-Saavedra, D.; Gabaldón, T.; Barton, G; Langsley, G; Doerig, C.

    2012-01-01

    Protein phosphorylation plays a fundamental role in the biology of apicomplexan parasites. Many apicomplexan protein kinases are substantially different from their mammalian orthologues, and thus constitute a landscape of potential drug targets. Here, we integrate genomic, biochemical, genetic and evolutionary information to provide an integrated and up-to-date analysis of twelve apicomplexan kinomes. All kinome sequences are available through the Kinomer database.

  12. Cytoplasmic free Ca2+ is essential for multiple steps in malaria parasite egress from infected erythrocytes

    Directory of Open Access Journals (Sweden)

    Glushakova Svetlana

    2013-01-01

    programme requires intracellular free Ca2+ for egress initiation, vacuole swelling, and host cell cytoskeleton digestion. The evidence that parasitophorous vacuole swelling, a stage of unaffected egress, is dependent upon a rise in intracellular Ca2+ suggests a mechanism for ionophore-inducible egress and a new target for Ca2+ in the programme liberating parasites from the host cell. A regulatory pathway for egress that depends upon increases in intracellular free Ca2+ is proposed.

  13. One Health: parasites and beyond.

    Science.gov (United States)

    Blake, Damer P; Betson, Martha

    2017-01-01

    The field of parasitism is broad, encompassing relationships between organisms where one benefits at the expense of another. Traditionally the discipline focuses on eukaryotes, with the study of bacteria and viruses complementary but distinct. Nonetheless, parasites vary in size and complexity from single celled protozoa, to enormous plants like those in the genus Rafflesia. Lifecycles range from obligate intracellular to extensive exoparasitism. Examples of parasites include high-profile medical and zoonotic pathogens such as Plasmodium, veterinary pathogens of wild and captive animals and many of the agents which cause neglected tropical diseases, stretching to parasites which infect plants and other parasites (e.g. Kikuchi et al. 2011; Hotez et al. 2014; Blake et al. 2015; Hemingway, 2015; Meekums et al. 2015; Sandlund et al. 2015). The breadth of parasitology has been matched by the variety of ways in which parasites are studied, drawing upon biological, chemical, molecular, epidemiological and other expertise. Despite such breadth bridging between disciplines has commonly been problematic, regardless of extensive encouragement from government agencies, peer audiences and funding bodies promoting multidisciplinary research. Now, progress in understanding and collaboration can benefit from establishment of the One Health concept (Zinsstag et al. 2012; Stark et al. 2015). One Health draws upon biological, environmental, medical, veterinary and social science disciplines in order to improve human, animal and environmental health, although it remains tantalizingly difficult to engage many relevant parties. For infectious diseases traditional divides have been exacerbated as the importance of wildlife reservoirs, climate change, food production systems and socio-economic diversity have been recognized but often not addressed in a multidisciplinary manner. In response the 2015 Autumn Symposium organized by the British Society for Parasitology (BSP; https

  14. Helminth parasites of finfish commercial aquaculture in Latin America.

    Science.gov (United States)

    Soler-Jiménez, L C; Paredes-Trujillo, A I; Vidal-Martínez, V M

    2017-03-01

    Latin America has tripled production by aquaculture up to 78 million tonnes in the past 20 years. However, one of the problems that aquaculture is facing is the presence of helminth parasites and the diseases caused by them in the region. In this review we have collected all the available information on helminths affecting commercial aquaculture in Latin America and the Caribbean (LAC), emphasizing those causing serious economic losses. Monogeneans are by far the most common and aggressive parasites affecting farmed fish in LAC. They have been recognized as serious pathogens in intensive fish culture because they reach high levels of infection rapidly, and can infect other phylogenetically related fish species. The next most important group comprises the larval stages of digeneans (metacercariae) such as Diplostomum sp. and Centrocestus formosanus, which cause serious damage to farmed fish. Since LAC aquaculture has been based mainly on exotic species (tilapia, salmon, trout and carp), most of their parasites have been brought into the region together with the fish for aquaculture. Recently, one of us (A.I.P.-T.) has suggested that monogeneans, which have generally been considered to be harmless, can produce serious effects on the growth of cultured Nile tilapia. Therefore, the introduction of fish together with their 'harmless' parasites into new sites, regions or countries in LAC should be considered a breakdown of biosecurity in those countries involved. Therefore, the application of quarantine procedures and preventive therapeutic treatments should be considered before allowing these introductions into a country.

  15. Helicosporidia: a genomic snapshot of an early transition to parasitism

    Directory of Open Access Journals (Sweden)

    Yukun Sun

    2014-12-01

    Full Text Available Helicosporidia are gut parasites of invertebrates. These achlorophyllous, non-photosynthetic green algae are the first reported to infect insects. Helicosporidia are members of the green algal class Trebouxiophyceae and are further related to the photosynthetic and non-photosynthetic genera Auxenochlorella and Prototheca, respectively, the latter of which can also turn to parasitism under opportunistic conditions. Molecular analyses suggest that Helicosporidia diverged from other photosynthetic trebouxiophytes less than 200 million years ago and that its adaptation to parasitism is therefore recent. In this minireview, we summarize the current knowledge of helicosporidian genomics. Unlike many well-known parasitic lineages, the Helicosporidium sp. organelle and nuclear genomes have lost surprisingly little in terms of coding content aside from photosynthesis-related genes. While the small size of its nuclear genome compared to other sequenced trebouxiophycean representatives suggests that Helicosporidium is going through a streamlining process, this scenario cannot be ascertained at this stage. Genome expansions and contractions have occurred independently multiple times in the green algae, and the small size of the Helicosporidium genome may reflect a lack of expansion from a lean ancestor state rather than a tendency towards reduction.

  16. Canine and feline parasitic zoonoses in China

    OpenAIRE

    2012-01-01

    Abstract Canine and feline parasitic zoonoses have not been given high priority in China, although the role of companion animals as reservoirs for zoonotic parasitic diseases has been recognized worldwide. With an increasing number of dogs and cats under unregulated conditions in China, the canine and feline parasitic zoonoses are showing a trend towards being gradually uncontrolled. Currently, canine and feline parasitic zoonoses threaten human health, and cause death and serious diseases in...

  17. Review of Parasitic Zoonoses in Egypt

    OpenAIRE

    2014-01-01

    This review presents a comprehensive picture of the zoonotic parasitic diseases in Egypt, with particular reference to their relative prevalence among humans, animal reservoirs of infection, and sources of human infection. A review of the available literature indicates that many parasitic zoonoses are endemic in Egypt. Intestinal infections of parasitic zoonoses are widespread and are the leading cause of diarrhea, particularly among children and residents of rural areas. Some parasitic zoono...

  18. In vivo observation of the hypo-echoic "black hole" phenomenon in rat arterial bloodstream: a preliminary Study.

    Science.gov (United States)

    Nam, Kweon-Ho; Paeng, Dong-Guk

    2014-07-01

    The "black hole," a hypo-echoic hole at the center of the bloodstream surrounded by a hyper-echoic zone in cross-sectional views, has been observed in ultrasound backscattering measurements of blood with red blood cell aggregation in in vitro studies. We investigated whether the phenomenon occurs in the in vivo arterial bloodstream of rats using a high-frequency ultrasound imaging system. Longitudinal and cross-sectional ultrasound images of the rat common carotid artery (CCA) and abdominal aorta were obtained using a 40-MHz ultrasound system. A high-frame-rate retrospective imaging mode was employed to precisely examine the dynamic changes in blood echogenicity in the arteries. When the imaging was performed with non-invasive scanning, blood echogenicity was very low in the CCA as compared with the surrounding tissues, exhibiting no hypo-echoic zone at the center of the vessel. Invasive imaging of the CCA by incising the skin and subcutaneous tissues at the imaging area provided clearer and brighter blood echo images, showing the "black hole" phenomenon near the center of the vessel in longitudinal view. The "black hole" was also observed in the abdominal aorta under direct imaging after laparotomy. The aortic "black hole" was clearly observed in both longitudinal and cross-sectional views. Although the "black hole" was always observed near the center of the arteries during the diastolic phase, it dissipated or was off-center along with the asymmetric arterial wall dilation at systole. In conclusion, we report the first in vivo observation of the hypo-echoic "black hole" caused by the radial variation of red blood cell aggregation in arterial bloodstream.

  19. Biofilm formation is a risk factor for mortality in patients with Candida albicans bloodstream infection—Scotland, 2012–2013

    Science.gov (United States)

    Rajendran, R.; Sherry, L.; Nile, C.J.; Sherriff, A.; Johnson, E.M.; Hanson, M.F.; Williams, C.; Munro, C.A.; Jones, B.J.; Ramage, G.

    2016-01-01

    Bloodstream infections caused by Candida species remain a significant cause of morbidity and mortality in hospitalized patients. Biofilm formation by Candida species is an important virulence factor for disease pathogenesis. A prospective analysis of patients with Candida bloodstream infection (n = 217) in Scotland (2012–2013) was performed to assess the risk factors associated with patient mortality, in particular the impact of biofilm formation. Candida bloodstream isolates (n = 280) and clinical records for 157 patients were collected through 11 different health boards across Scotland. Biofilm formation by clinical isolates was assessed in vitro with standard biomass assays. The role of biofilm phenotype on treatment efficacy was also evaluated in vitro by treating preformed biofilms with fixed concentrations of different classes of antifungal. Available mortality data for 134 patients showed that the 30-day candidaemia case mortality rate was 41%, with predisposing factors including patient age and catheter removal. Multivariate Cox regression survival analysis for 42 patients showed a significantly higher mortality rate for Candida albicans infection than for Candida glabrata infection. Biofilm-forming ability was significantly associated with C. albicans mortality (34 patients). Finally, in vitro antifungal sensitivity testing showed that low biofilm formers and high biofilm formers were differentially affected by azoles and echinocandins, but not by polyenes. This study provides further evidence that the biofilm phenotype represents a significant clinical entity, and that isolates with this phenotype differentially respond to antifungal therapy in vitro. Collectively, these findings show that greater clinical understanding is required with respect to Candida biofilm infections, and the implications of isolate heterogeneity. PMID:26432192

  20. Parasite control in transhumant situations.

    Science.gov (United States)

    Eckert, J; Hertzberg, H

    1994-08-01

    Transhumance is defined as 'seasonal moving of livestock to regions of different climate'. It is an integral part of livestock production in many parts of the world and takes several forms including moving of livestock from lowland to mountainous pastures or from dry to humid areas. The impact of transhumance on parasite populations of livestock and on parasite control is described, mainly using examples from Europe. The epidemiology of trichostrongylidosis of cattle, mainly caused by Ostertagia ostertagi and Cooperia oncophora, is characterised by prolonged survival of overwintered infective larvae until the end of June. Cattle moved to such contaminated pastures in a transhumant grazing system are exposed to these larvae and may be protected, during the second half of the grazing season until autumn, by a late application (June/July) of an intraruminal drug-release device. Community pastures used in a transhumant system with mixed grazing of young cattle originating from various farms may enhance transmission of dictyocaulosis. Therefore, specific prophylactic measures are required. Hill sheep nematode populations may differ from those in lowland sheep in that Haemonchus contortus generally plays a minor role in hill sheep in which Ostertagia circumcincta and Nematodirus spp. predominate. Infections with Fasciola hepatica and Dicrocoelium dendriticum can be acquired on mountainous pastures by cattle, sheep and other livestock grazing in a transhumant system as intermediate hosts of these parasites may find suitable habitats in these regions. There is evidence that in the prealpine and alpine area both parasites are mainly transmitted in two-season cycles. Further examples for the impact of transhumance on parasite-host inter-relationships include cysticercosis in cattle, echinococcosis, psoroptic manage in sheep, tick-borne fever of cattle, and hypodermosis in cattle. These are described and discussed.

  1. Parasitic infections of the gastrointestinal tract.

    Science.gov (United States)

    Noyer, C M; Brandt, L J

    1999-08-01

    Parasitic infections of the gastrointestinal tract are a major cause of morbidity and mortality worldwide. Increased international travel means that gastroenterologists are now more likely to care for patients with parasitic diseases. This article reviews various aspects of the more common intestinal parasites and their infections, including epidemiology, life cycle, pathogenesis, clinical manifestations, diagnosis, and treatment.

  2. Immigration, parasitic infection, and United States religiosity.

    Science.gov (United States)

    Wall, Jaimie N; Shackelford, Todd K

    2012-04-01

    Fincher & Thornhill (F&T) present a powerful case for the relationship between parasite-stress and religiosity. We argue, however, that the United States may be more religious than can be accounted for by parasite-stress. This greater religiosity might be attributable to greater sensitivity to immigration, which may hyperactivate evolved mechanisms that motivate avoidance of potential carriers of novel parasites.

  3. The changing epidemiology of Acinetobacter spp. producing OXA carbapenemases causing bloodstream infections in Brazil: a BrasNet report.

    Science.gov (United States)

    Vasconcelos, Ana Tereza R; Barth, Afonso L; Zavascki, Alexandre P; Gales, Ana C; Levin, Anna S; Lucarevschi, Bianca R; Cabral, Blenda G; Brasiliense, Danielle M; Rossi, Flavia; Furtado, Guilherme H C; Carneiro, Irna Carla R S; da Silva, Juliana O; Ribeiro, Julival; Lima, Karla V B; Correa, Luci; Britto, Maria H; Silva, Mariama T; da Conceição, Marília L; Moreira, Marina; Martino, Marinês D V; de Freitas, Marise R; Oliveira, Maura S; Dalben, Mirian F; Guzman, Ricardo D; Cayô, Rodrigo; Morais, Rosângela; Santos, Sânia A; Martins, Willames M B S

    2015-12-01

    We evaluated the epidemiology of Acinetobacter spp. recovered from patients diagnosed with bloodstream infections in 9 tertiary hospitals located in all Brazilian geographic regions between April and August 2014. Although OXA-23-producing Acinetobacter baumannii clones were disseminated in most hospitals, it was observed for the first time the spread of OXA-72 among clonally related A. baumannii isolated from distinct hospitals. Interestingly, Acinetobacter pittii was the most frequent species found in a Northern region hospital. Contrasting with the multisusceptible profile displayed by A. pittii isolates, the tetracyclines and polymyxins were the only antimicrobials active against all A. baumannii isolates.

  4. A transcriptional switch underlies commitment to sexual development in malaria parasites.

    Science.gov (United States)

    Kafsack, Björn F C; Rovira-Graells, Núria; Clark, Taane G; Bancells, Cristina; Crowley, Valerie M; Campino, Susana G; Williams, April E; Drought, Laura G; Kwiatkowski, Dominic P; Baker, David A; Cortés, Alfred; Llinás, Manuel

    2014-03-13

    The life cycles of many parasites involve transitions between disparate host species, requiring these parasites to go through multiple developmental stages adapted to each of these specialized niches. Transmission of malaria parasites (Plasmodium spp.) from humans to the mosquito vector requires differentiation from asexual stages replicating within red blood cells into non-dividing male and female gametocytes. Although gametocytes were first described in 1880, our understanding of the molecular mechanisms involved in commitment to gametocyte formation is extremely limited, and disrupting this critical developmental transition remains a long-standing goal. Here we show that expression levels of the DNA-binding protein PfAP2-G correlate strongly with levels of gametocyte formation. Using independent forward and reverse genetics approaches, we demonstrate that PfAP2-G function is essential for parasite sexual differentiation. By combining genome-wide PfAP2-G cognate motif occurrence with global transcriptional changes resulting from PfAP2-G ablation, we identify early gametocyte genes as probable targets of PfAP2-G and show that their regulation by PfAP2-G is critical for their wild-type level expression. In the asexual blood-stage parasites pfap2-g appears to be among a set of epigenetically silenced loci prone to spontaneous activation. Stochastic activation presents a simple mechanism for a low baseline of gametocyte production. Overall, these findings identify PfAP2-G as a master regulator of sexual-stage development in malaria parasites and mark the first discovery of a transcriptional switch controlling a differentiation decision in protozoan parasites.

  5. Parasites of wild cod postlarvae (Gadus morhua L.) in the North Sea

    DEFF Research Database (Denmark)

    Kuhn, Jesper; Kania, Per W.; Skovgaard, Alf

    gadoid species in the North Atlantic and has been the subject of several parasitological studies. Past research is however primarily concentrated around adult or juvenile fish and our knowledge concerning the larval stage is very sparse. This is in spite of the general belief that at this stage, fish...... Hysterothylacium aduncum, 5 trematodes (1 Lecithaster levinseni, 4 Hemiurus) and 5 individuals of a tetraphyllidean plerocercoid cestode larva. Intensity, abundance and prevalence will be presented as well as area of infection. Brief introduction to the parasites and known literature on the parasitic effect...

  6. Methods to determine the transcriptomes of trypanosomes in mixtures with mammalian cells: the effects of parasite purification and selective cDNA amplification.

    Directory of Open Access Journals (Sweden)

    Julius Mulindwa

    2014-04-01

    Full Text Available Patterns of gene expression in cultured Trypanosoma brucei bloodstream and procyclic forms have been extensively characterized, and some comparisons have been made with trypanosomes grown to high parasitaemias in laboratory rodents. We do not know, however, to what extent these transcriptomes resemble those in infected Tsetse flies - or in humans or cattle, where parasitaemias are substantially lower. For clinical and field samples it is difficult to characterize parasite gene expression because of the large excess of host cell RNA. We have here examined two potential solutions to this problem for bloodstream form trypanosomes, assaying transcriptomes by high throughput cDNA sequencing (RNASeq. We first purified the parasites from blood of infected rats. We found that a red blood cell lysis procedure affected the transcriptome substantially more than purification using a DEAE cellulose column, but that too introduced significant distortions and variability. As an alternative, we specifically amplified parasite sequences from a mixture containing a 1000-fold excess of human RNA. We first purified polyadenylated RNA, then made trypanosome-specific cDNA by priming with a spliced leader primer. Finally, the cDNA was amplified using nested primers. The amplification procedure was able to produce samples in which 20% of sequence reads mapped to the trypanosome genome. Synthesis of the second cDNA strand with a spliced leader primer, followed by amplification, is sufficiently reproducible to allow comparison of different samples so long as they are all treated in the same way. However, SL priming distorted the abundances of the cDNA products and definitely cannot be used, by itself, to measure absolute mRNA levels. The amplification method might be suitable for clinical samples with low parasitaemias, and could also be adapted for other Kinetoplastids and to samples from infected vectors.

  7. Postcolonial Ecologies of Parasite and Host: Making Parasitism Cosmopolitan.

    Science.gov (United States)

    Anderson, Warwick

    2016-04-01

    The interest of F. Macfarlane Burnet in host-parasite interactions grew through the 1920s and 1930s, culminating in his book, Biological Aspects of Infectious Disease (1940), often regarded as the founding text of disease ecology. Our knowledge of the influences on Burnet's ecological thinking is still incomplete. Burnet later attributed much of his conceptual development to his reading of British theoretical biology, especially the work of Julian Huxley and Charles Elton, and regretted he did not study Theobald Smith's Parasitism and Disease (1934) until after he had formulated his ideas. Scholars also have adduced Burnet's fascination with natural history and the clinical and public health demands on his research effort, among other influences. I want to consider here additional contributions to Burnet's ecological thinking, focusing on his intellectual milieu, placing his research in a settler society with exceptional expertise in environmental studies and pest management. In part, an ''ecological turn'' in Australian science in the 1930s, derived to a degree from British colonial scientific investments, shaped Burnet's conceptual development. This raises the question of whether we might characterize, in postcolonial fashion, disease ecology, and other studies of parasitism, as successful settler colonial or dominion science.

  8. Chlorophyllin as a possible measure against vectors of human parasites and fish parasites

    Directory of Open Access Journals (Sweden)

    Peter Rolf Richter

    2014-06-01

    Full Text Available Water soluble chlorophyll (chlorophyllin exerts pronounced photodynamic activity. Chlorophyllin is a potential remedy against mosquito larvae and aquatic stages in the life cycle of parasites as well as against ectoparasites in fish. In the recent years it was found that mosquito larvae and other pest organisms can be killed by means of photodynamic substances such as different porphyrin derivates (e.g. hematoporphyrin, meso-tri(N-methylpyridyl, meso-mono(N-tetra-decylpyridyl porphyrine, hematoporphyrin IX, or hermatoporphyrin formula (HPF. It was found that incubation of mosquito larvae in chlorophyllin solution and subsequent irradiation results in photodynamic destruction of the larvae. Incorporation of about 8 ng chlorophyllin per larvae was sufficient to induce its death. In fish mass cultivation ichthyophthiriosis is a severe parasitic protozoan disease caused by the ciliate Ichthyophthirius multifiliis. It was found that incubation of infected fishes in chlorophyllin and subsequent illumination reduced the number of trophonts significantly (more than 50 %. The fishes were not impaired. Chlorophyllin and other photodynamic substances may become a possible countermeasure against I. multifiliis and other ectoparasites in aquaculture. The effectiveness of chlorophyllin depends on light attenuation in the water body.

  9. Molecular Identification and Echinocandin Susceptibility of Candida parapsilosis Complex Bloodstream Isolates in Italy, 2007-2014.

    Science.gov (United States)

    Lovero, Grazia; Borghi, Elisa; Balbino, Stella; Cirasola, Daniela; De Giglio, Osvalda; Perdoni, Federica; Caggiano, Giuseppina; Morace, Giulia; Montagna, Maria Teresa

    2016-01-01

    The Candida parapsilosis group encompasses three species: C. parapsilosis, C. orthopsilosis, and C. metapsilosis. Here, we describe the incidence and echinocandin susceptibility profile of bloodstream isolates of these three species collected from patients admitted to an Italian university hospital from 2007 to 2014. Molecular identification of cryptic species of the C. parapsilosis complex was performed using polymerase chain reaction amplification of the gene encoding secondary alcohol dehydrogenase, followed by digestion with the restriction enzyme BanI. Minimum inhibitory concentrations were determined using the broth microdilution method according to European Committee for Antimicrobial Susceptibility Testing (EUCAST EDef 7.2) and Clinical Laboratory Standards Institute (CLSI M27-A3) guidelines, and the results were compared with those obtained using the E-test and Sensititre methods. Of the 163 C. parapsilosis complex isolates, 136 (83.4%) were identified as C. parapsilosis, and 27 (16.6%) as C. orthopsilosis. The species-specific incidences were 2.9/10,000 admissions for C. parapsilosis and 0.6/10,000 admissions for C. orthopsilosis. No resistance to echinocandins was detected with any of the methods. The percent essential agreement (EA) between the EUCAST and E-test/Sensititre methods for anidulafungin, caspofungin, and micafungin susceptibility was, respectively, as follows: C. parapsilosis, 95.6/97.8, 98.5/88.2, and 93.4/96.3; C. orthopsilosis, 92.6/92.6, 96.3/77.8, and 63.0/66.7. The EA between the CLSI and E-test/Sensititre methods was, respectively, as follows: C. parapsilosis, 99.3/100, 98.5/89.0, and 96.3/98.5; C. orthopsilosis, 96.3/92.6, 100/81.5, and 92.6/88.9. Only minor discrepancies, ranging from 16.9% (C. parapsilosis) to 11.1% (C. orthopsilosis), were observed between the CLSI and E-test/Sensititre methods. In conclusion, this epidemiologic study shows a typical C. parapsilosis complex species distribution, no echinocandin resistance, and it

  10. Molecular Identification and Echinocandin Susceptibility of Candida parapsilosis Complex Bloodstream Isolates in Italy, 2007–2014

    Science.gov (United States)

    Lovero, Grazia; Borghi, Elisa; Balbino, Stella; Cirasola, Daniela; De Giglio, Osvalda; Perdoni, Federica; Caggiano, Giuseppina; Morace, Giulia; Montagna, Maria Teresa

    2016-01-01

    The Candida parapsilosis group encompasses three species: C. parapsilosis, C. orthopsilosis, and C. metapsilosis. Here, we describe the incidence and echinocandin susceptibility profile of bloodstream isolates of these three species collected from patients admitted to an Italian university hospital from 2007 to 2014. Molecular identification of cryptic species of the C. parapsilosis complex was performed using polymerase chain reaction amplification of the gene encoding secondary alcohol dehydrogenase, followed by digestion with the restriction enzyme BanI. Minimum inhibitory concentrations were determined using the broth microdilution method according to European Committee for Antimicrobial Susceptibility Testing (EUCAST EDef 7.2) and Clinical Laboratory Standards Institute (CLSI M27-A3) guidelines, and the results were compared with those obtained using the E-test and Sensititre methods. Of the 163 C. parapsilosis complex isolates, 136 (83.4%) were identified as C. parapsilosis, and 27 (16.6%) as C. orthopsilosis. The species-specific incidences were 2.9/10,000 admissions for C. parapsilosis and 0.6/10,000 admissions for C. orthopsilosis. No resistance to echinocandins was detected with any of the methods. The percent essential agreement (EA) between the EUCAST and E-test/Sensititre methods for anidulafungin, caspofungin, and micafungin susceptibility was, respectively, as follows: C. parapsilosis, 95.6/97.8, 98.5/88.2, and 93.4/96.3; C. orthopsilosis, 92.6/92.6, 96.3/77.8, and 63.0/66.7. The EA between the CLSI and E-test/Sensititre methods was, respectively, as follows: C. parapsilosis, 99.3/100, 98.5/89.0, and 96.3/98.5; C. orthopsilosis, 96.3/92.6, 100/81.5, and 92.6/88.9. Only minor discrepancies, ranging from 16.9% (C. parapsilosis) to 11.1% (C. orthopsilosis), were observed between the CLSI and E-test/Sensititre methods. In conclusion, this epidemiologic study shows a typical C. parapsilosis complex species distribution, no echinocandin resistance, and it

  11. Molecular Identification and Echinocandin Susceptibility of Candida parapsilosis Complex Bloodstream Isolates in Italy, 2007-2014.

    Directory of Open Access Journals (Sweden)

    Grazia Lovero

    Full Text Available The Candida parapsilosis group encompasses three species: C. parapsilosis, C. orthopsilosis, and C. metapsilosis. Here, we describe the incidence and echinocandin susceptibility profile of bloodstream isolates of these three species collected from patients admitted to an Italian university hospital from 2007 to 2014. Molecular identification of cryptic species of the C. parapsilosis complex was performed using polymerase chain reaction amplification of the gene encoding secondary alcohol dehydrogenase, followed by digestion with the restriction enzyme BanI. Minimum inhibitory concentrations were determined using the broth microdilution method according to European Committee for Antimicrobial Susceptibility Testing (EUCAST EDef 7.2 and Clinical Laboratory Standards Institute (CLSI M27-A3 guidelines, and the results were compared with those obtained using the E-test and Sensititre methods. Of the 163 C. parapsilosis complex isolates, 136 (83.4% were identified as C. parapsilosis, and 27 (16.6% as C. orthopsilosis. The species-specific incidences were 2.9/10,000 admissions for C. parapsilosis and 0.6/10,000 admissions for C. orthopsilosis. No resistance to echinocandins was detected with any of the methods. The percent essential agreement (EA between the EUCAST and E-test/Sensititre methods for anidulafungin, caspofungin, and micafungin susceptibility was, respectively, as follows: C. parapsilosis, 95.6/97.8, 98.5/88.2, and 93.4/96.3; C. orthopsilosis, 92.6/92.6, 96.3/77.8, and 63.0/66.7. The EA between the CLSI and E-test/Sensititre methods was, respectively, as follows: C. parapsilosis, 99.3/100, 98.5/89.0, and 96.3/98.5; C. orthopsilosis, 96.3/92.6, 100/81.5, and 92.6/88.9. Only minor discrepancies, ranging from 16.9% (C. parapsilosis to 11.1% (C. orthopsilosis, were observed between the CLSI and E-test/Sensititre methods. In conclusion, this epidemiologic study shows a typical C. parapsilosis complex species distribution, no echinocandin

  12. Comparison of the systemic inflammatory response syndrome between monomicrobial and polymicrobial Pseudomonas aeruginosa nosocomial bloodstream infections

    Directory of Open Access Journals (Sweden)

    Wenzel Richard P

    2005-10-01

    Full Text Available Abstract Background Some studies of nosocomial bloodstream infection (nBSI have demonstrated a higher mortality for polymicrobial bacteremia when compared to monomicrobial nBSI. The purpose of this study was to compare differences in systemic inflammatory response and mortality between monomicrobial and polymicrobial nBSI with Pseudomonas aeruginosa. Methods We performed a historical cohort study on 98 adults with P. aeruginosa (Pa nBSI. SIRS scores were determined 2 days prior to the first positive blood culture through 14 days afterwards. Monomicrobial (n = 77 and polymicrobial BSIs (n = 21 were compared. Results 78.6% of BSIs were caused by monomicrobial P. aeruginosa infection (MPa and 21.4% by polymicrobial P. aeruginosa infection (PPa. Median APACHE II score on the day of BSI was 22 for MPa and 23 for PPa BSIs. Septic shock occurred in 33.3% of PPa and in 39.0% of MPa (p = 0.64. Progression to septic shock was associated with death more frequently in PPa (OR 38.5, CI95 2.9–508.5 than MPa (OR 4.5, CI95 1.7–12.1. Maximal SIR (severe sepsis, septic shock or death was seen on day 0 for PPa BSI vs. day 1 for MPa. No significant difference was noted in the incidence of organ failure, 7-day or overall mortality between the two groups. Univariate analysis revealed that APACHE II score ≥20 at BSI onset, Charlson weighted comorbidity index ≥3, burn injury and respiratory, cardiovascular, renal and hematologic failure were associated with death, while age, malignant disease, diabetes mellitus, hepatic failure, gastrointestinal complications, inappropriate antimicrobial therapy, infection with imipenem resistant P. aeruginosa and polymicrobial nBSI were not. Multivariate analysis revealed that hematologic failure (p Conclusion In this historical cohort study of nBSI with P. aeruginosa, the incidence of septic shock and organ failure was high in both groups. Additionally, patients with PPa BSI were not more acutely ill, as judged by APACHE II

  13. Host-Parasite Relationship in Cystic Echinococcosis: An Evolving Story

    Directory of Open Access Journals (Sweden)

    Alessandra Siracusano

    2012-01-01

    Full Text Available The larval stage of Echinococcus granulosus causes cystic echinococcosis, a neglected infectious disease that constitutes a major public health problem in developing countries. Despite being under constant barrage by the immune system, E. granulosus modulates antiparasite immune responses and persists in the human hosts with detectable humoral and cellular responses against the parasite. In vitro and in vivo immunological approaches, together with molecular biology and immunoproteomic technologies, provided us exciting insights into the mechanisms involved in the initiation of E. granulosus infection and the consequent induction and regulation of the immune response. Although the last decade has clarified many aspects of host-parasite relationship in human cystic echinococcosis, establishing the full mechanisms that cause the disease requires more studies. Here, we review some of the recent developments and discuss new avenues in this evolving story of E. granulosus infection in man.

  14. Parasite cyclophilins and antiparasite activity of cyclosporin A.

    Science.gov (United States)

    Page, A P; Kumar, S; Carlow, C K

    1995-10-01

    Cyclosporin A (CsA) was initially developed as an immunosuppressive drug. In the past several years, it has been shown to possess antiparasite activity independent of the immune system. It is not known how the drug exerts these antiparasite effects, or why it is stage and/or species specific. The answers may lie in the enzymatic function of cyclophilins. The cyclophilins are a growing family of proteins that exhibit peptidyl-prolyl cis-trans isomerase (PPiase) activity and bid CsA to varying degrees. PPiases have been shown to play a role in the folding of many essential proteins. Antony Page, Sanjay Kumar and Clotilde Carlow here review parasite cyclophilins and their association with CsA. The possible biological function of parasite cyclophilins and their potential role in future drug discovery are also discussed.

  15. Parasitic interference in nulling interferometry

    CERN Document Server

    Matter, Alexis; Danchi, William C; Lopez, Bruno; Absil, Olivier

    2013-01-01

    Nulling interferometry aims to detect faint objects close to bright stars. Its principle is to produce a destructive interference along the line-of-sight so that the stellar flux is rejected, while the flux of the off-axis source can be transmitted. In practice, various instrumental perturbations can degrade the nulling performance. Any imperfection in phase, amplitude, or polarization produces a spurious flux that leaks to the interferometer output and corrupts the transmitted off-axis flux. One of these instrumental pertubations is the crosstalk phenomenon, which occurs because of multiple parasitic reflections inside transmitting optics, and/or diffraction effects related to beam propagation along finite size optics. It can include a crosstalk of a beam with itself, and a mutual crosstalk between different beams. This can create a parasitic interference pattern, which degrades the intrinsic transmission map - or intensity response - of the interferometer. In this context, we describe how this instrumental ...

  16. Moonlighting enzymes in parasitic protozoa.

    Science.gov (United States)

    Collingridge, Peter W; Brown, Robert W B; Ginger, Michael L

    2010-08-01

    Enzymes moonlight in a non-enzymatic capacity in a diverse variety of cellular processes. The discovery of these non-enzymatic functions is generally unexpected, and moonlighting enzymes are known in both prokaryotes and eukaryotes. Importantly, this unexpected multi-functionality indicates that caution might be needed on some occasions in interpreting phenotypes that result from the deletion or gene-silencing of some enzymes, including some of the best known enzymes from classic intermediary metabolism. Here, we provide an overview of enzyme moonlighting in parasitic protists. Unequivocal and putative examples of moonlighting are discussed, together with the possibility that the unusual biological characteristics of some parasites either limit opportunities for moonlighting to arise or perhaps contribute to the evolution of novel proteins with clear metabolic ancestry.

  17. Transfusion-transmitted parasitic infections

    Directory of Open Access Journals (Sweden)

    Singh Gagandeep

    2010-01-01

    Full Text Available The transmission of parasitic organisms through transfusion is relatively rare. Of the major transfusion-transmitted diseases, malaria is a major cause of TTIP in tropical countries whereas babesiosis and Chagas′ disease pose the greatest threat to donors in the USA In both cases, this is due to the increased number of potentially infected donors. There are no reliable serologic tests available to screen donors for any of these organisms and the focus for prevention remains on adherence to donor screening guidelines that address travel history and previous infection with the etiologic agent. One goal is the development of tests that are able to screen for and identify donors potentially infectious for parasitic infections without causing the deferral of a large number of non-infectious donors or significantly increasing costs. Ideally, methods to inactivate the infectious organism will provide an element of added safety to the blood supply.

  18. Targeting protein-protein interactions for parasite control.

    Directory of Open Access Journals (Sweden)

    Christina M Taylor

    Full Text Available Finding new drug targets for pathogenic infections would be of great utility for humanity, as there is a large need to develop new drugs to fight infections due to the developing resistance and side effects of current treatments. Current drug targets for pathogen infections involve only a single protein. However, proteins rarely act in isolation, and the majority of biological processes occur via interactions with other proteins, so protein-protein interactions (PPIs offer a realm of unexplored potential drug targets and are thought to be the next-generation of drug targets. Parasitic worms were chosen for this study because they have deleterious effects on human health, livestock, and plants, costing society billions of dollars annually and many sequenced genomes are available. In this study, we present a computational approach that utilizes whole genomes of 6 parasitic and 1 free-living worm species and 2 hosts. The species were placed in orthologous groups, then binned in species-specific orthologous groups. Proteins that are essential and conserved among species that span a phyla are of greatest value, as they provide foundations for developing broad-control strategies. Two PPI databases were used to find PPIs within the species specific bins. PPIs with unique helminth proteins and helminth proteins with unique features relative to the host, such as indels, were prioritized as drug targets. The PPIs were scored based on RNAi phenotype and homology to the PDB (Protein DataBank. EST data for the various life stages, GO annotation, and druggability were also taken into consideration. Several PPIs emerged from this study as potential drug targets. A few interactions were supported by co-localization of expression in M. incognita (plant parasite and B. malayi (H. sapiens parasite, which have extremely different modes of parasitism. As more genomes of pathogens are sequenced and PPI databases expanded, this methodology will become increasingly

  19. Evaluation of Real-time PCR and Pyrosequencing for Screening Incubating Blood Culture Bottles from Adults with Suspected Bloodstream Infection

    Science.gov (United States)

    McCann, Chase D.; Moore, Miranda S.; May, Larissa S.; McCarroll, Matthew; Jordan, Jeanne A.

    2015-01-01

    Several molecular platforms can identify bacteria associated with bloodstream infections, but require positive culture bottles as starting material. Here we describe results of screening 1140 blood cultures at 8 hours post-inoculation, from 918 eligible adults being evaluated for bloodstream infection. DNA was extracted and analyzed by 16S and/or 23S rRNA real-time PCR/Pyrosequencing. Compared to culture, PCR/Pyrosequencing displayed 90.9% sensitivity, 99.6% specificity, 95.7% PPV, and 99.1% NPV. Overall concordance rate was 98.9% (1127/1140). In four cases with molecular-positive/culture-negative results, medical chart reviews provided evidence of identical bacteria from subsequent blood or concomitant urine/sputum cultures. Nine culture-positive/molecular-negative cases were associated with either polymicrobial growth, grew only in the anaerobic bottle of the clinical pair, and/or were detected by PCR/Pyrosequencing after 8 hours. In summary, this approach accurately detected and identified bacteria in ~91% of culture-confirmed cases significantly sooner than the phenotypic identification was available, having the potential to improve antibiotic stewardship. PMID:25534615

  20. Evaluation of real-time PCR and pyrosequencing for screening incubating blood culture bottles from adults with suspected bloodstream infection.

    Science.gov (United States)

    McCann, Chase D; Moore, Miranda S; May, Larissa S; McCarroll, Matthew G; Jordan, Jeanne A

    2015-03-01

    Several molecular platforms can identify bacteria associated with bloodstream infections but require positive culture bottles as starting material. Here, we describe results of screening 1140 blood cultures at 8h postinoculation, from 918 eligible adults being evaluated for bloodstream infection. DNA was extracted and analyzed by 16S and/or 23S rRNA real-time PCR/pyrosequencing. Compared to culture, PCR/pyrosequencing displayed 90.9% sensitivity, 99.6% specificity, 95.7% positive predictive value, and 99.1% negative predictive value. Overall concordance rate was 98.9% (1127/1140). In 4 cases with molecular-positive/culture-negative results, medical chart reviews provided evidence of identical bacteria from subsequent blood or concomitant urine/sputum cultures. Nine culture-positive/molecular-negative cases were associated with either polymicrobial growth, grew only in the anaerobic bottle of the clinical pair, and/or were detected by PCR/pyrosequencing after 8h. In summary, this approach accurately detected and identified bacteria in ~91% of culture-confirmed cases significantly sooner than the phenotypic identification was available, having the potential to improve antibiotic stewardship.

  1. Clonal distribution of bone sialoprotein-binding protein gene among Staphylococcus aureus isolates associated with bloodstream infections.

    Science.gov (United States)

    Wiśniewska, Katarzyna; Piórkowska, Anna; Kasprzyk, Joanna; Bronk, Marek; Świeć, Krystyna

    2014-11-01

    Staphylococcus aureus is a leading cause of bloodstream infections (BSI) and diseases that may be caused by hematogenous spread. The staphylococcal adhesin, for which the association with the infections emerging as a complication of septicemia has been well documented, is a bone sialoprotein-binding protein (Bbp). The aim of the study was to assess the prevalence of a bbp gene in S. aureus bloodstream isolates associated with BSI and to investigate to what degree the distribution of this gene is linked to the clonality of the population. Spa typing, used in order to explore the genetic population structure of the isolates, yielded 29 types. Six spa clusters and seven singletons were identified. The most frequent was spa clonal complex CC021 associated with MLST CC30 (38%). The bbp gene was found in 47% of isolates. Almost all isolates (95%) clustered in spa clonal complex CC021 were positive for this gene. All isolates carrying the bbp gene were sensitive to methicillin, and if clustered in the spa CC021, belonged to agr group III. Our study shows that Bbp is not strictly associated with BSI. However, one may conclude that for clonally related S. aureus strains most commonly causing BSI, the risk of Bbp-mediated complications of septicemia is expected to be higher than for other strains.

  2. Host Characteristics and Bacterial Traits Predict Experimental Virulence for Escherichia coli Bloodstream Isolates From Patients With Urosepsis.

    Science.gov (United States)

    Johnson, James R; Porter, Stephen; Johnston, Brian; Kuskowski, Michael A; Spurbeck, Rachel R; Mobley, Harry L T; Williamson, Deborah A

    2015-09-01

    Background.  Extraintestinal Escherichia coli infections are common, costly, and potentially serious. A better understanding of their pathogenesis is needed. Methods.  Sixty-seven E coli bloodstream isolates from adults with urosepsis (Seattle, WA; 1980s) underwent extensive molecular characterization and virulence assessment in 2 infection models (murine subcutaneous sepsis and moth larval lethality). Statistical comparisons were made among host characteristics, bacterial traits, and experimental virulence. Results.  The 67 source patients were diverse for age, sex, and underlying medical and urological conditions. The corresponding E coli isolates exhibited diverse phylogenetic backgrounds and virulence profiles. Despite the E coli isolates' common bloodstream origin, they exhibited a broad range of experimental virulence in mice and moth larvae, in patterns that (for the murine model only) corresponded significantly with host characteristics and bacterial traits. The most highly mouse-lethal strains were enriched with classic "urovirulence" traits and typically were from younger women with anatomically and functionally normal urinary tracts. The 2 animal models corresponded poorly with one another. Conclusions.  Host compromise, including older age and urinary tract abnormalities, allows comparatively low-virulence E coli strains to cause urosepsis. Multiple E coli traits predict both experimental and epidemiological virulence. The larval lethality model cannot be a substitute for the murine sepsis model.

  3. Workshop on Cytokines and Parasites

    Science.gov (United States)

    1988-03-01

    Research Institute, Seattle, WA) demonstra- ted that GM-CSF, greater than 500 U/ml, induced the intracellular destruction of Trypanosoma cruzi by...increases the uptake of Trypanosoma cruzi by ,crophaqes, and induces a modest killing of the intracellular parasite. Dr. Gerald Byrne (University of...diseases by describing an exceedingly complex interaction of TNF and Trypanosoma musculi. TNF administered to mice early during disease actually enhanced

  4. PARASITE MYCOPOPULATION OF SOYBEAN GRAIN

    OpenAIRE

    Jasenka Ćosić; Karolina Vrandečić; Draženka Jurković; Ivan Ereš; Jelena Poštić

    2008-01-01

    Disease appearance on soybean can influence quality and quantity of yield. Different spieces of saprophyte and parasite fungi can be isolated from stems, pods and grain of soybean. The aim of the research was to evaluate the incidence of important disease on natural soybean grain over the period of 4 years (2004-2007) of experiment held on the location Sopot-Vinkovci and included 9 cultivars of soybean. The following plant pathogenic fungi were identified: Peronospora, Sclerotinia, Cercospora...

  5. Parasitism Performance of Tetrastichus brontispae Ferriere over the Coconut Hispine Beetle, Brontispa longissima (Gestro).

    Science.gov (United States)

    Liu, K; Fu, B L; Lin, J R; Fu, Y G; Peng, Z Q; Jin, Q A; Tang, L D

    2016-08-01

    In this study, the effect of host density, host, and parasitoid ages in choice and no-choice tests on the parasitism performance of Tetrastichus brontispae Ferriere, one of the major parasitoid of Brontispa longissima (Gestro), was investigated in the laboratory. The results revealed that an increased host density resulted in no increased parasitism of B. longissima by T. brontispae; the optimal host density was three host pupae per parasitoid when considering the costs for mass rearing. Moreover, parasitoid age was quite crucial for effective parasitism and affected the emergence rate. Although 2-h to 4-day-old parasitoids successfully parasitized the host pupae, younger parasitoids (within 2-day-old) presented higher parasitism capacity than older parasitoids. More importantly, both choice and no-choice tests confirmed that all host stages tested from 2-h to 4-day-old were suitable for T. brontispae parasitization, although 2-h to 2-day-old hosts were preferred. We also demonstrated that sex ratio, emergence rate, and egg to adult developmental time were not influenced by host density, parasitoid, and host age in both choice and no-choice tests. Our data will allow for more accurate prediction and interpretation on the parasitization by T. brontispae, supporting mass-production initiatives and mass release in programs of B. longissima.

  6. Helminth parasites of fish and shellfish from the Santa Gilla Lagoon in southern Sardinia, Italy.

    Science.gov (United States)

    Culurgioni, J; Sabatini, A; De Murtas, R; Mattiucci, S; Figus, V

    2014-12-01

    An extensive survey of helminth parasites in fish and shellfish species from Santa Gilla, a brackish water lagoon in southern Sardinia (western Mediterranean), resulted in the identification of 69 helminth parasite taxa and/or species from 13 fish species (n= 515) and seven bivalve species (n= 2322) examined between September 2001 and July 2011. The list summarizes information on the helminth parasites harboured by fish and molluscs contained in the available literature. Digenea species (37), both adults and larvae, dominated the parasite fauna, whereas Cestoda were the least represented class (three species). Monogenea, Nematoda and Acanthocephala were present with 17, 6 and 6 species, respectively, which were mainly adults. The most widespread parasite species was the generalist Contracaecum rudolphii A (Nematoda). Other species, such as the Haploporidae and Ascocotyle (Phagicola) spp. 1 and 2 (Digenea), showed a high family specificity in Mugilidae. Importantly, the study recorded the occurrence of potential zoonotic agents, such as Heterophyes heterophyes, Ascocotyle (Phagicola) spp. and C. rudolphii A, the latter two reaching the highest indices of infection in the highly marketed fish grey mullet and sea bass, respectively. The highest parasite richness was detected in Dicentrarchus labrax, which harboured 17 helminth species, whereas the lowest value was observed in Atherina boyeri, infected by only three species. The list includes the first geographical record in Italian coastal waters of Robinia aurata and Stictodora sawakinensis, and 30 reports of new host-parasite complexes, including the larval stages of Ascocotyle (Ascocotyle) sp. and Southwellina hispida in D. labrax.

  7. Eosinophilic fasciitis after parasite infection.

    Science.gov (United States)

    Oliveira, Marta; Patinha, Fabia; Marinho, Antonio

    2016-01-01

    Eosinophilic fasciitis is a systemic inflammatory disease characterized by symmetrical swelling and skin induration of the distal portions of the arms and/or legs, evolving into a scleroderma-like appearance, accompanied by peripheral blood eosinophilia. It is a rare disease with a poorly understood etiology. Corticosteroid treatment remains the standard therapy, either taken alone or in association with an immunosuppressive drug. This paper presents a case of a male patient with palpebral edema and marked eosinophilia, diagnosed with intestinal parasitic infection in October 2006. He was treated with an antiparasitic drug, but both the swelling and the analytical changes remained. This was followed by a skin and muscle biopsy, which turned out to be compatible with eosinophilic fasciitis. There was progressive worsening of the clinical state, with stiffness of the abdominal wall and elevated inflammatory parameters, and the patient was referred to the Immunology Department, medicated with corticosteroids and methotrexate. Over the years there were therapeutic adjustments and other causes were excluded. Currently the patient continues to be monitored, and there is no evidence of active disease. The case described in this article is interesting because of the diagnosis of eosinophilic fasciitis probably associated/coexisting with a parasite infection. This case report differs from others in that there is an uncommon cause associated with the onset of the disease, instead of the common causes such as trauma, medication, non-parasitic infections or cancer.

  8. Fauna Europaea: Helminths (Animal Parasitic

    Directory of Open Access Journals (Sweden)

    David Gibson

    2014-09-01

    Full Text Available Fauna Europaea provides a public web-service with an index of scientific names (including important synonyms of all living European land and freshwater animals, their geographical distribution at country level (up to the Urals, excluding the Caucasus region, and some additional information. The Fauna Europaea project covers about 230,000 taxonomic names, including 130,000 accepted species and 14,000 accepted subspecies, which is much more than the originally projected number of 100,000 species. This represents a huge effort by more than 400 contributing specialists throughout Europe and is a unique (standard reference suitable for many users in science, government, industry, nature conservation and education. Helminths parasitic in animals represent a large assemblage of worms, representing three phyla, with more than 200 families and almost 4,000 species of parasites from all major vertebrate and many invertebrate groups. A general introduction is given for each of the major groups of parasitic worms, i.e. the Acanthocephala, Monogenea, Trematoda (Aspidogastrea and Digenea, Cestoda and Nematoda. Basic information for each group includes its size, host-range, distribution, morphological features, life-cycle, classification, identification and recent key-works. Tabulations include a complete list of families dealt with, the number of species in each and the name of the specialist responsible for data acquisition, a list of additional specialists who helped with particular groups, and a list of higher taxa dealt with down to the family level. A compilation of useful references is appended.

  9. Gene Expression in Trypanosomatid Parasites

    Directory of Open Access Journals (Sweden)

    Santiago Martínez-Calvillo

    2010-01-01

    Full Text Available The parasites Leishmania spp., Trypanosoma brucei, and Trypanosoma cruzi are the trypanosomatid protozoa that cause the deadly human diseases leishmaniasis, African sleeping sickness, and Chagas disease, respectively. These organisms possess unique mechanisms for gene expression such as constitutive polycistronic transcription of protein-coding genes and trans-splicing. Little is known about either the DNA sequences or the proteins that are involved in the initiation and termination of transcription in trypanosomatids. In silico analyses of the genome databases of these parasites led to the identification of a small number of proteins involved in gene expression. However, functional studies have revealed that trypanosomatids have more general transcription factors than originally estimated. Many posttranslational histone modifications, histone variants, and chromatin modifying enzymes have been identified in trypanosomatids, and recent genome-wide studies showed that epigenetic regulation might play a very important role in gene expression in this group of parasites. Here, we review and comment on the most recent findings related to transcription initiation and termination in trypanosomatid protozoa.

  10. Prevalence of Intestinal Parasites in Leafy Vegetables in Riyadh, Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Wafa A.I. Al-Megrin

    2010-01-01

    Full Text Available The present study was carried out to evaluate some of the leafy vegetable plants sold in local markets for human consumption to check whether they harbor different parasites stages. A total of 470 leafy vegetable samples were collected from 12 different plant species randomly from local markets in the Riyadh city during the period April and March 2008. The samples were analysed in the laboratory for parasitic stages contained in these samples after washing them in physiological saline and then examining the sediment. Results of the present study has shown that 76 out of 470 samples (16.2% contained parasite stages. Depending on the type of leafy plant, examined the prevalence of parasitic stages in these plants, was found to be 27.8% (17/61 in lettuce, 22.8% (13/57 in watercress, 20.6% (7/34 in leek, 19.1% (9/47 in green onion, 17.4% (15/87 in parsley, 15.4% (4/26 in spinach, 13.6% (3/22 in basil, 11.5% (3/26 in coriander, 9.4% (3/32 in radish, 5.3% (1/19 in dill and 4.7% (2/42 in mint. No parasites were detected in 17 samples collected from cabbage. Stages of intestinal parasites detected were Entamoeba coli (35.5%, Giardia lamblia (31.6%, Dicrocoelium sp. (28.9%, Ascaris sp. (26.3%, Taenia sp. (19.7%, Blastocystis hominis (17.1%, Fasciola sp. (14.5%, Hymenolepis sp. (14.5%, Ancylostoma sp. (11.8%, Toxoplasma gondii (6.6% and Trichostrongylus sp. (2.6%. The results indicated a significant seasonal variation (p<0.05, with highest prevalence in spring (23.1%, followed in descending order by Summer (17.9%, Autumn (10.6% and Winter (9.9%.

  11. Using parasitic trematode larvae to quantify an elusive vertebrate host.

    Science.gov (United States)

    Byers, James E; Altman, Irit; Grosse, Andrew M; Huspeni, Todd C; Maerz, John C

    2011-02-01

    Digenean trematode parasites require multiple host species to complete their life cycles, and their abundance can often be strongly correlated with the abundance of their host species. Species richness and abundance of parasites in easily sampled host species may yield an accurate estimate of the species richness and abundance of other hosts in a parasite's life cycle that are difficult to survey directly. Accordingly, we investigated whether prevalence and mean abundance of trematodes could be used to estimate the abundance of one of their host species, diamondback terrapins (Malaclemys terrapin), which are difficult to sample and are designated as near threatened (by the International Union for Conservation of Nature [IUCN Red List]) along some U.S. coasts. As an adult the trematode Pleurogonius malaclemys is specific to terrapins. Its larval stages live first inside mud snails (Ilyanassa obsoleta) and are subsequently shed into the environment where they form external metacercarial cysts on hard surfaces such as snail opercula. The life cycle of P. malaclemys is completed when terrapins ingest these cysts. At 12 sites along the coast of Georgia (U.S.A.), we determined the prevalence of internal P. malaclemys larvae in mud snails (proportion of infected snails in a population) and the prevalence and mean abundance of external trematode cysts. We examined whether these data were correlated with terrapin abundance, which we estimated with mark-recapture methods. The abundance of external cysts and salinity explained ≥59% of the variability in terrapin abundance. We suggest that dependent linkages between the life stages of multihost parasites make them reliable predictors of host species' abundance, including hosts with abundances that are challenging to quantify directly.

  12. Cyst and encystment in protozoan parasites: optimal targets for new life-cycle interrupting strategies?

    Science.gov (United States)

    Aguilar-Díaz, Hugo; Carrero, Julio César; Argüello-García, Raúl; Laclette, Juan Pedro; Morales-Montor, Jorge

    2011-10-01

    Certain protozoan parasites use survival strategies to reside outside the host such as the formation of cysts. This dormant and resistant stage results from the complex process of encystment that involves diverse molecular and cellular modifications. The stimuli and changes associated with cyst biogenesis are a matter of ongoing studies in human and animal protozoan parasites such as amoeba and Giardia species because blocking every step in the encystment pathway should, in theory, interrupt their life cycles. The present review thoroughly examines this essential process in those protozoan parasites and discusses the possibility of using that information to develop new kinds of anti-parasite specific and life cycle-interrupting drugs, aimed at holding back the dissemination of these infections.

  13. Nematodes parasitizing Trachurus trachurus (L.) and Boops boops (L.) from Algeria.

    Science.gov (United States)

    Ichalal, Keltoum; Ramdane, Zouhir; Ider, Djamila; Kacher, Mohammed; Iguerouada, Mokrane; Trilles, Jean-Paul; Courcot, Luci; Amara, Rachid

    2015-11-01

    A total of 455 Boops boops (Linnaeus, 1758) and 953 Trachurus trachurus Linnaeus, 1758 from the east coast of Algeria were examined for their parasitic Nematoda. Two hundred ninety-five specimens of larval stages L3 and L4 were collected from the peritoneal cavity of these two examined fishes. Photonic and scanning electronic microscopy (SEM) studies were performed on these larvae specimens in order to characterize their morphology. Two different species of Nematoda (Anisikidae) were identified: Anisakis simplex (Rudolphi, 1809) and Hysterothylacium aduncum (Rudolphi, 1802). These two parasitic species were reported for the first time on T. trachurus and B. boops from the eastern coast of Algeria. These parasites were attached on different organs in the abdominal cavity (particularly on ovaries and testes). The infestation rate changed according to the month and the host size. The parasitism did not show a significant negative impact on the condition of the examined fishes.

  14. Simultaneous gene expression profiling in human macrophages infected with Leishmania major parasites using SAGE

    Directory of Open Access Journals (Sweden)

    Smandi Sondos

    2008-05-01

    Full Text Available Abstract Background Leishmania (L are intracellular protozoan parasites that are able to survive and replicate within the harsh and potentially hostile phagolysosomal environment of mammalian mononuclear phagocytes. A complex interplay then takes place between the macrophage (MΦ striving to eliminate the pathogen and the parasite struggling for its own survival. To investigate this host-parasite conflict at the transcriptional level, in the context of monocyte-derived human MΦs (MDM infection by L. major metacyclic promastigotes, the quantitative technique of serial analysis of gene expression (SAGE was used. Results After extracting mRNA from resting human MΦs, Leishmania-infected human MΦs and L. major parasites, three SAGE libraries were constructed and sequenced generating up to 28,173; 57,514 and 33,906 tags respectively (corresponding to 12,946; 23,442 and 9,530 unique tags. Using computational data analysis and direct comparison to 357,888 publicly available experimental human tags, the parasite and the host cell transcriptomes were then simultaneously characterized from the mixed cellular extract, confidently discriminating host from parasite transcripts. This procedure led us to reliably assign 3,814 tags to MΦs' and 3,666 tags to L. major parasites transcripts. We focused on these, showing significant changes in their expression that are likely to be relevant to the pathogenesis of parasite infection: (i human MΦs genes, belonging to key immune response proteins (e.g., IFNγ pathway, S100 and chemokine families and (ii a group of Leishmania genes showing a preferential expression at the parasite's intra-cellular developing stage. Conclusion Dual SAGE transcriptome analysis provided a useful, powerful and accurate approach to discriminating genes of human or parasitic origin in Leishmania-infected human MΦs. The findings presented in this work suggest that the Leishmania parasite modulates key transcripts in human MΦs that may

  15. In vivo transmission blocking activities of artesunate on the avian malaria parasite Plasmodium gallinaceum.

    Science.gov (United States)

    Kumnuan, Rapeeporn; Pattaradilokrat, Sittiporn; Chumpolbanchorn, Kamlang; Pimnon, Suntorn; Narkpinit, Somphong; Harnyuttanakorn, Pongchai; Saiwichai, Tawee

    2013-11-08

    Infection and transmission of the avian malaria parasite Plasmodium gallinaceum in domestic chickens is associated with high economic burden and presents a major challenge to poultry industry in South East Asia. Development of drugs targeting both asexual blood stage parasites and sexual stages of the avian malarias will be beneficial for malaria treatment and eradication. However, current drugs recommended for treatment of the avian malaria parasites target specifically the asexual blood stage parasites, but have little or no impact to the gametocytes, the major target for development of transmission-blocking strategies. In the present work, we established a simple procedure to evaluate gametocytocidal and transmission blocking activities in a P. gallinaceum-avian model. The assays involved administration of seven consecutive daily doses of test compounds into P. gallinaceum-infected chickens with 10% parasitaemia and 1% gametocytaemia. Our studies indicated that intramuscular injection with seven daily low doses (the minimum effective dose of 10mg/kg) of artesunate blocked the gametocyte production and transmission to the mosquito vector Aedes aegypti. This assay can be further applicable for testing new compounds against P. gallinaceum and for other parasitic protozoa infecting birds.

  16. Contamination of public squares and parks with parasites in Erbil city, Iraq

    Directory of Open Access Journals (Sweden)

    Khder Nooraldeen

    2015-09-01

    Full Text Available Introduction and objective. The soil of public squares and parks may be contaminated with the infective stages of parasites because of the presence of stray animals in these parks. Many people take a rest in these places and they may be at risk of infection with parasites because the infective stages of parasites can survive for months, or even years, in spite of the factors of weather. Objective. To evaluate contamination with the eggs of parasites in the soil of parks in Erbil city, Iraq. Material and methods. Forty-eight soil samples were collected from 12 public parks and gardens from 11 different neighbourhoods (8 parks and 3 playgrounds and one district in Erbil city. The zinc sulfate floatation method was used to recover the eggs of parasites from the samples. Results. Eggs of parasites were identified in 91.6% of the parks. Eggs of [i]Hymenolepis diminuta[/i] were found in 75%, [i]Toxocara [/i]spp. in 50%, [i]Ascaris[/i] spp. in 33.3%, [i]Taenia[/i] spp. in 25%, hookworm in 25%, [i]Trichostrongylus[/i] spp. in 16.7% and Trichuris spp. in 16.7% of the parks. [i]Helminth[/i] eggs were found in 48% soil samples with a mean number of 1.1 per soil sample. The most contaminated soil sample was found in a park in neighbourhood number 325 with 6 eggs. Conclusions. The presence of pathogenic parasites in the soil of parks in Erbil city constitutes a high risk to the people who use these parks for recreation, and requires the appropriate control for these parasites.

  17. RNA trafficking in parasitic plant systems

    Directory of Open Access Journals (Sweden)

    Megan L LeBlanc

    2012-08-01

    Full Text Available RNA trafficking in plants contributes to local and long-distance coordination of plant development and response to the environment. However, investigations of mobile RNA identity and function are hindered by the inherent difficulty of tracing a given molecule of RNA from its cell of origin to its destination. Several methods have been used to address this problem, but all are limited to some extent by constraints associated with accurately sampling phloem sap or detecting trafficked RNA. Certain parasitic plant species form symplastic connections to their hosts and thereby provide an additional system for studying RNA trafficking. The haustorial connections of Cuscuta and Phelipanche species are similar to graft junctions in that they are able to transmit mRNAs, viral RNAs, siRNAs and proteins from the host plants to the parasite. In contrast to other graft systems, these parasites form connections with host species that span a wide phylogenetic range, such that a high degree of nucleotide sequence divergence may exist between host and parasites and allow confident identification of most host RNAs in the parasite system. The ability to identify host RNAs in parasites, and vice versa, will facilitate genomics approaches to understanding RNA trafficking. This review discusses the nature of host parasite connections and the potential significance of host RNAs for the parasite. Additional research on host-parasite interactions is needed to interpret results of RNA trafficking studies, but parasitic plants may provide a fascinating new perspective on RNA trafficking.

  18. Survey of parasites in threatened stocks of coho salmon (Oncorhynchus kisutch) in Oregon by examination of wet tissues and histology.

    Science.gov (United States)

    Ferguson, Jayde A; St-Hilaire, Sophie; Peterson, Tracy S; Rodnick, Kenneth J; Kent, Michael L

    2011-12-01

    We are conducting studies on the impacts of parasites on Oregon coastal coho salmon (Oncorhynchus kistuch). An essential first step is documenting the geographic distribution of infections, which may be accomplished by using different methods for parasite detection. Thus, the objectives of the current study were to (1) identify parasite species infecting these stocks of coho salmon and document their prevalence, density, and geographic distribution; (2) assess the pathology of these infections; and (3) for the first time, determine the sensitivity and specificity of histology for detecting parasites compared with examining wet preparations for muscle and gill infections. We examined 576 fry, parr, and smolt coho salmon in total by histology. The muscle and gills of 219 of these fish also were examined by wet preparation. Fish were collected from 10 different locations in 2006-2007. We identified 21 different species of parasites in these fish. Some parasites, such as Nanophyetus salmincola and Myxobolus insidiosus, were common across all fish life stages from most basins. Other parasites, such as Apophallus sp., were more common in underyearling fish than smolts and had a more restricted geographic distribution. Additional parasites commonly observed were as follows: Sanguinicola sp., Trichodina truttae , Epistylis sp., Capriniana piscium, and unidentified metacercariae in gills; Myxobolus sp. in brain; Myxidium salvelini and Chloromyxum majori in kidney; Pseudocapillaria salvelini and adult digenean spp. in the intestine. Only a few parasites, such as the unidentified gill metacercariae, elicted overt pathologic changes. Histology had generally poor sensitivity for detecting parasites; however, it had relatively good specificity. We recommend using both methods for studies or monitoring programs requiring a comprehensive assessment of parasite identification, enumeration, and parasite-related pathology.

  19. Knowledge and risk factors of intestinal parasitic infections among women in Makurdi, Benue State

    Institute of Scientific and Technical Information of China (English)

    Amuta EU; Houmsou RS; Mker SD

    2010-01-01

    Objective: To assess women's perceptions and risk factors that could expose them to intestinal parasitic infections in Makurdi, Benue State, Nigeria. Methods: A total of 750 faecal samples were collected from women at different reproductive stages (pre-menstrual, menstrual and post-menstrual), and the faeces were tested by the formol ether concentration technique. Results: A total of 426 (56.8%) samples were found positive for various intestinal parasites with hookworm (4.8%), Ascaris lumbricoides (9.3%), Taenia sp (2.1%), Entamoeba histolytica (18.9%) and Entamoeba coli (21.6%). Women at pre-menstrual and post-menstrual stages recorded higher prevalence rates with 72.8% and 63.9%, respectively. No significant difference in prevalence was observed between women at different reproductive stages and women infected by different parasites (χ2=30.6, P> 0.05). Sweet things, rotten fruits and improperly cooked meat were perceived as the causes of intestinal parasitic infections among the pre and post menstrual women. Sources of drinking water like river, well, water bought from vendors and patronizing food vendors were observed as risk factors contributing to the prevalence of intestinal parasitic infections among women. Factors like not washing hands before eating and after defaecation, use of leaves and ordinary papers for cleaning after defaecation were also observed to be contributing to the prevalence of intestinal parasitic infections. Conclusions: Persuasive health education and rigorous hygiene measures should be employed in schools, maternity clinics and among the populace to reduce transmission and infection with intestinal parasites.

  20. Antibodies against the Plasmodium falciparum glutamate-rich protein from naturally exposed individuals living in a Brazilian malaria-endemic area can inhibit in vitro parasite growth

    DEFF Research Database (Denmark)

    Pratt-Riccio, Lilian Rose; Bianco, Cesare; Totino, Paulo Renato Rivas

    2011-01-01

    The glutamate-rich protein (GLURP) is an exoantigen expressed in all stages of the Plasmodium falciparum life cycle in humans. Anti-GLURP antibodies can inhibit parasite growth in the presence of monocytes via antibody-dependent cellular inhibition (ADCI), and a major parasite-inhibitory region h...

  1. A novel FIKK kinase regulates the development of mosquito and liver stages of the malaria

    OpenAIRE

    Jaijyan, Dabbu Kumar; Verma, Praveen Kumar; Singh, Agam Prasad

    2016-01-01

    Protein phosphorylation is the most important post-translational event in the regulation of various essential signaling pathways in a cell. Here, we show the functional characterization of a FIKK family protein kinase of the rodent malaria parasite (PbMLFK), which is expressed only in mosquito and liver stages and contains two functional C-terminal PEXEL motifs. We demonstrate that this protein plays a role in mosquito and liver stages of parasite growth. The oocysts of PbMLFK-deficient paras...

  2. Occurrence of entomopathogenic fungi and parasitic nematodes on Spodoptera frugiperda (Lepidoptera: Noctuidae) larvae collected in Central Chiapas, Mexico

    Science.gov (United States)

    Fall armyworm larvae (FAW), Spodoptera frugiperda (J. E. Smith) were collected from whorl-stage cornfields, between the V2 and V4 stages, in 22 localities of Central, Chiapas, México, called "La Frailesca" during late June 2009 to determine the occurrence of native entomopathogens and parasitic nema...

  3. [Assessment of diagnostic methods for the catheter-related bloodstream infections in intensive care units].

    Science.gov (United States)

    Ataman Hatipoğlu, Ciğdem; Ipekkan, Korhan; Oral, Behiç; Onde, Ufuk; Bulut, Cemal; Demiröz, Ali Pekcan

    2011-01-01

    The majority of catheter-related bloodstream infections (CR-BSI) are associated with central venous catheters (CVCs) and most of them develop in patients staying at intensive care units (ICUs). The aim of this study was to assess the performance of different methods for the diagnosis of CR-BSI in neurology and neurosurgery ICUs of our hospital. This prospective study was carried out between January 2007 and January 2008 and all of the patients were followed daily for CR-BSI after the insertion of CVCs. Blood cultures were taken simultaneously from the catheter lumen and from at least one peripheral vein when there was a suspicion of CR-BSI. Additionally, from patients whose CVCs were removed, catheter tip cultures were taken and from patients with exit site infection, cultures of the skin surrounding the catheter entrance were taken. Catheter tip cultures were done by using quantitative and semiquantitative culture methods. Blood cultures taken from the catheter lumen and peripheral vein were incubated in the BACTEC 9050 (Becton Dickinson, USA) automated blood culture system. Gram and acridine orange (AO) staining were used for the smears prepared from the catheter tips and blood cultures. To evaluate the value of culture and staining methods in the diagnosis of CR-BSI; sensitivity, specificity, positive and negative predictive values (PPV and NPV, respectively) of each method were determined. A total of 148 patients (66 male, 82 female; age range: 1-94 years, mean age: 58.7 ± 21.8 years) were included in the study, of whom 67 (45.3%) were from neurology and 81 (54.7%) were from neurosurgery ICUs. One hundred ninety-nine CVC application performed in 148 patients were evaluated. Mean duration of catheterization was 8.5 ± 5.2 days. Thirty-two episodes of CR-BSI among 199 catheterizations (16%) in 29 patients among a total of 148 patients (19.6%) were determined. The most frequently isolated microorganisms were methicillin-resistant coagulase-negative staphylococci

  4. Impact of a modified Broviac maintenance care bundle on bloodstream infections in paediatric cancer patients

    Directory of Open Access Journals (Sweden)

    Furtwängler, Rhoikos

    2015-11-01

    Full Text Available Background: During intensive chemotherapy, bloodstream infection (BSI represents an important complication in paediatric cancer patients. Most patients carry a long-term central venous access device (CVAD. Improved maintenance care of these vascular catheters may decrease the risk of BSI.Methods: Intervention study (adapted CVAD prevention protocol with two observation periods (P1: 09-2009 until 05-2011; P2: 09-2011 until 05-2013; prospective surveillance of all laboratory confirmed BSIs. In P2, ready to use sterile NaCl 0.9% syringes were used for CVAD flushing and octenidine/isopropanol for the disinfection of catheter hubs and 3-way stopcocks. Results: During P1, 84 patients were included versus 81 patients during P2. There were no significant differences between the two patient populations in terms of median age, gender, underlying malignancy or disease status (first illness or relapse. Nearly all CVADs were Broviac catheters. The median duration from implantation to removal of the CVAD was 192 days (Inter-quartile-range (IQR; 110–288 days in P1 and 191 days (IQR; 103–270 days in P2. 28 BSI were diagnosed in 22 patients in P1 (26% of all patients experienced at least one BSI and 15 BSI in 12 patients in P2 (15% of all patients. The corresponding results for incidence density (ID were 0.44 (CI95 0.29–0.62 for P1 vs. 0.34 (0.19–0.53 BSI per 100 inpatient days for P2 and for incidence rate (IR 7.76 (5.16–10.86 in P1 vs. 4.75 (2.66–7.43 BSI per 1,000 inpatient CVAD utilization days. In P1, 9 BSI were caused by CoNS vs. only 2 in P2 (IR 2.49; CI95 0.17–4.17 vs. 0.63; CI95 0.08–1.72. In P1 two BSI (7% lead to early removal of the device. During P2 one CVAD was prematurely removed due to a Broviac-related BSI (6.7%.Conclusion: The preventive protocol investigated in this study led to a reduction of BSI in paediatric cancer patients. This result was clinically relevant but – due to insufficient power in a single centre observation

  5. Stage-selective inhibition of rodent malaria by cyclosporine.

    Science.gov (United States)

    Murphy, J R; Baqar, S; Baker, R H; Roberts, E; Nickell, S P; Cole, G A

    1988-01-01

    The relative susceptibility of different developmental stages of Plasmodium berghei to cyclosporine was investigated in vivo. Within 12 h of receiving a single 25-mg/kg (body weight) dose of cyclosporine, mice with patent P. berghei infections uniformly exhibited a rapid fall in asexual parasite stages. Initially, ring forms and mature schizonts disappeared. Subsequently, trophozoites disappeared between 21 and 24 h, whereas gametocytes persisted for 36 h. In contrast, when cyclosporine was administered to mice 1 day before inoculation (100 mg/kg) with P. berghei sporozoites and for 2 consecutive days after inoculation (25 mg/kg), infections developed normally. When mice with patent infections were placed on prolonged cyclosporine therapy (25 mg/kg per day), parasitemia initially disappeared but often recrudesced. Recrudescent parasites were frequently resistant to cyclosporine (Csr). The Csr phenotype remained stable after serial passage of parasites in mice and after transmission through Anopheles stephensi mosquitoes, in which the capacity to produce oocysts was reduced. When infections of untreated mice were initiated with equal numbers of Csr and cyclosporine-susceptible (Css) parasites and then carried through two serial cycles of mosquito-to-mouse transmission without cyclosporine treatment, the Csr phenotype was lost. The results indicate that cyclosporine selectively inhibits asexual blood stages of P. berghei and favors the emergence of Csr parasites with diminished infectivity for mosquitoes. PMID:3288113

  6. DNA microarray genotyping and virulence and antimicrobial resistance gene profiling of methicillin-resistant Staphylococcus aureus bloodstream isolates from renal patients.

    LENUS (Irish Health Repository)

    McNicholas, Sinead

    2012-02-01

    Thirty-six methicillin-resistant Staphylococcus aureus (MRSA) bloodstream isolates from renal patients were genetically characterized by DNA microarray analysis and spa typing. The isolates were highly clonal, belonging mainly to ST22-MRSA-IV. The immune evasion and enterotoxin gene clusters were found in 29\\/36 (80%) and 33\\/36 (92%) isolates, respectively.

  7. DNA microarray genotyping and virulence and antimicrobial resistance gene profiling of methicillin-resistant Staphylococcus aureus bloodstream isolates from renal patients.

    LENUS (Irish Health Repository)

    McNicholas, Sinead

    2011-12-01

    Thirty-six methicillin-resistant Staphylococcus aureus (MRSA) bloodstream isolates from renal patients were genetically characterized by DNA microarray analysis and spa typing. The isolates were highly clonal, belonging mainly to ST22-MRSA-IV. The immune evasion and enterotoxin gene clusters were found in 29\\/36 (80%) and 33\\/36 (92%) isolates, respectively.

  8. Evaluation of the MALDI-TOF VITEK MS™ system for the identification of Candida parapsilosis, C. orthopsilosis and C. metapsilosis from bloodstream infections.

    Science.gov (United States)

    Nobrega de Almeida Júnior, João; de Souza, Letícia Bonato; Motta, Adriana Lopes; Rossi, Flávia; Romano Di Gioia, Thais Sabato; Benard, Gil; Del Negro, Gilda Maria Barbaro

    2014-10-01

    Twenty-nine Candida parapsilosis, seventeen Candida orthopsilosis and two Candida metapsilosis bloodstream isolates were submitted for identification by VITEK-MS™ mass spectrometer. Four isolates, two C. orthopsilosis and two C. metapsilosis, were not identified. Inclusion of Superspectra of both species in this database is required to improve its discrimination power.

  9. Burden of antimicrobial resistance in European hospitals : excess mortality and length of hospital stay associated with bloodstream infections due to Escherichia coli resistant to third-generation cephalosporins

    NARCIS (Netherlands)

    de Kraker, M. E. A.; Wolkewitz, M.; Davey, P. G.; Koller, W.; Berger, J.; Nagler, J.; Icket, C.; Kalenic, S.; Horvatic, J.; Seifert, H.; Kaasch, A.; Paniara, O.; Argyropoulou, A.; Bompola, M.; Smyth, E.; Skally, M.; Raglio, A.; Dumpis, U.; Kelmere, A. Melbarde; Borg, M.; Xuereb, D.; Ghita, M. C.; Noble, M.; Kolman, J.; Grabljevec, S.; Turner, D.; Lansbury, L.; Grundmann, H.

    2011-01-01

    This study determined excess mortality and length of hospital stay (LOS) attributable to bloodstream infection (BSI) caused by third-generation-cephalosporin-resistant Escherichia coli in Europe. A prospective parallel matched cohort design was used. Cohort I consisted of patients with third-generat

  10. Etiology and epidemiology of catheter related bloodstream infections in patients receiving home parenteral nutrition in a gastromedical center at a tertiary hospital in denmark

    DEFF Research Database (Denmark)

    Nielsen, Xiaohui Chen; Chen, Ming; Hellesøe, Anne-Marie Blok

    2012-01-01

    We conducted a retrospective epidemiologic study of catheter related bloodstream infections (CRBSI) in patients receiving long-term home parenteral nutrition (HPN) from January 2002 to December 2005. Our results showed that coagulase negative staphylococci (CoNS) were the most prevalent pathogens...

  11. Taurolidine lock is highly effective in preventing catheter-related bloodstream infections in patients on home parenteral nutrition: a heparin-controlled prospective trial.

    NARCIS (Netherlands)

    Bisseling, T.M.; Willems, M.C.M.; Versleijen, M.W.J.; Hendriks, J.C.M.; Vissers, R.K.; Wanten, G.J.A.

    2010-01-01

    BACKGROUND & AIMS: Catheter-related bloodstream infections remain the major threat for Home Parenteral Nutrition programs. Taurolidine, a potent antimicrobial agent, holds promise as an effective catheter lock to prevent such infections. Aim of the present study was to compare taurolidine with hepar

  12. Absence of microbial adaptation to taurolidine in patients on home parenteral nutrition who develop catheter related bloodstream infections and use taurolidine locks

    NARCIS (Netherlands)

    Olthof, E.D.; Rentenaar, R.J.; Rijs, A.J.M.M.; Wanten, G.J.A.

    2013-01-01

    BACKGROUND & AIMS: Some home parenteral nutrition (HPN) patients develop catheter related bloodstream infections (CRBSI) despite using an anti-microbial catheter lock solution taurolidine. The aim of this study was to assess whether long-term use of taurolidine leads to selective growth of microorga

  13. Effect of a vascular access team on central line-associated bloodstream infections in infants admitted to a neonatal intensive care unit : a systematic review

    NARCIS (Netherlands)

    Legemaat, Monique M; Jongerden, IP; van Rens, Roland M F P T; Zielman, Marjanne; van den Hoogen, Agnes

    2015-01-01

    OBJECTIVE: To review the effect of a vascular access team on the incidence of central line-associated bloodstream infections in infants admitted to a neonatal intensive care unit. DATA SOURCES: MEDLINE, CINAHL, Embase, Web-of-Science and the Cochrane Library were searched until December 2013. STUDY

  14. Draft Genome Sequence of Extremely Drug-Resistant Pseudomonas aeruginosa (ST357) Strain CMC_VB_PA_B22862 Isolated from a Community-Acquired Bloodstream Infection

    Science.gov (United States)

    Pragasam, Agila Kumari; Yesurajan, Francis; Doss C, George Priya; George, Biju; Devanga Ragupathi, Naveen Kumar; Walia, Kamini

    2016-01-01

    Extremely drug-resistant Pseudomonas aeruginosa strains causing severe infections have become a serious concern across the world. Here, we report draft genome sequence of P. aeruginosa with an extremely drug-resistant profile isolated from a patient with community-acquired bloodstream infection in India.

  15. Bloodstream infections during the onset of necrotizing enterocolitis and their relation with the pro-inflammatory response, gut wall integrity and severity of disease in NEC

    NARCIS (Netherlands)

    Heida, F. H.; Hulscher, J. B. F.; Schurink, M.; van Vliet, M. J.; Kooi, E. M. W.; Kasper, D. C.; Pones, M.; Bos, A. F.; Benkoe, T. M.

    2015-01-01

    Introduction: Bacterial involvement is believed to play a pivotal role in the development and disease outcome of NEC. However, whether a bloodstream infection (BSI) predisposes to NEC (e.g. by activating the pro-inflammatory response) or result from the loss of gut wall integrity during NEC developm

  16. Bloodstream infections during the onset of necrotizing enterocolitis and their relation with the pro-inflammatory response, gut wall integrity and severity of disease in NEC

    NARCIS (Netherlands)

    Heida, F.H.; Hulscher, J.B.; Schurink, M.; Vliet, M.J. van; Kooi, E.M.; Kasper, D.C.; Pones, M.; Bos, A.F; Benkoe, T.M.

    2015-01-01

    INTRODUCTION: Bacterial involvement is believed to play a pivotal role in the development and disease outcome of NEC. However, whether a bloodstream infection (BSI) predisposes to NEC (e.g. by activating the pro-inflammatory response) or result from the loss of gut wall integrity during NEC developm

  17. Parasitic diseases in the abdomen: imaging findings.

    Science.gov (United States)

    Lim, Jae Hoon

    2008-01-01

    Parasitic diseases of the liver and biliary tract include echinococcosis, schistosomiasis, toxocariasis, clonorchiasis, and opisthorchiasis, affecting millions people in some endemic areas. Amebiasis and ascariasis are believed to be the most common bowel lumen indwelling parasitic diseases, affecting billions people worldwide, but sometimes these parasites migrate inadvertently to the liver and biliary tract, resulting in liver abscess or obstructive jaundice. Imaging findings of these parasitic diseases are fairly characteristic and easy to recognize if radiologists are aware of the findings, especially in endemic areas. Because of increased immigration and frequent travelling, some patients with "exotic" parasitic diseases may be encountered in non-endemic areas, and the diagnosis may be delayed or difficult, and it is often made only after operation. This feature section was designed to provide the detailed imaging features of common parasitic diseases affecting the abdominal organs and peritoneal cavity, based on pathology-image correlation.

  18. PARASITES INFECTIONS OF GOLDFISH (Carassius auratus L.

    Directory of Open Access Journals (Sweden)

    Emil Gjurčević

    2006-01-01

    Full Text Available Removing fish from their natural environment, and placing them in aquariums, where large number is concentrated on small space, causes not only stress but increases the possibility of disease. In these unnatural conditions but often adequate for parasite reproduction, parasites can cause diseases leading to death. In our work we investigated parasites presence in goldfish (Carassius auratus L. kept in aquarium, from three different pet shops. The study showed presence of: Trypanoplasma sp., Trichodina sp., Ichthyophthirius multifiliis, Myxoboulus sp., Dactylogyrus sp. and Gyrodactylus sp. Considering the number of parasites found in examined fish, it can be possible that parasites can cause mortality in goldfish. Therefore, special caution has to be on quarantine and healthcare while importing especially exotic aquarium fish that may be infected with exotic parasites. In case of disease, proper treatment in due time has to be conducted.

  19. The evolution of parasitism in plants.

    Science.gov (United States)

    Westwood, James H; Yoder, John I; Timko, Michael P; dePamphilis, Claude W

    2010-04-01

    The multiple independent origins of plant parasitism suggest that numerous ancestral plant lineages possessed the developmental flexibility to meet the requirements of a parasitic life style, including such adaptations as the ability to recognize host plants, form an invasive haustorium, and regulate the transfer of nutrients and other molecules between two different plants. In this review, we focus on the Orobanchaceae, which are unique among the parasitic plants in that extant member species include the full range of host dependence from facultative to obligate parasites. The recent emergence of genomic resources for these plants should provide new insights into parasitic plant evolution and enable the development of novel genetic strategies for controlling parasitic weeds.

  20. Control and prevention of emerging parasitic zoonoses.

    Science.gov (United States)

    Chomel, Bruno B

    2008-09-01

    Emerging zoonoses have been defined as zoonoses that are newly recognised or newly evolved, or that have occurred previously but show an increase in incidence or expansion in geographical, host or vector range. Among parasitic zoonoses, protozoa are particularly likely to emerge. Control and prevention of emerging parasitic zoonoses are complex tasks that require an integrative and multidisciplinary approach. Reduction of parasite burden is certainly a major objective but cannot be set alone. Therefore, environmental and ecological modifications need to be implemented to reduce not only the parasitic load, but also the risk of parasite transmission. Finally, education and behavioral changes are critical for the success of both control and prevention of these diseases. However, without appropriate financial resources specifically allocated at the local and national levels as well as through international cooperation, control and prevention of these emerging parasitic diseases will not be possible.

  1. Canine and feline parasitic zoonoses in China

    Directory of Open Access Journals (Sweden)

    Chen Jia

    2012-07-01

    Full Text Available Abstract Canine and feline parasitic zoonoses have not been given high priority in China, although the role of companion animals as reservoirs for zoonotic parasitic diseases has been recognized worldwide. With an increasing number of dogs and cats under unregulated conditions in China, the canine and feline parasitic zoonoses are showing a trend towards being gradually uncontrolled. Currently, canine and feline parasitic zoonoses threaten human health, and cause death and serious diseases in China. This article comprehensively reviews the current status of major canine and feline parasitic zoonoses in mainland China, discusses the risks dogs and cats pose with regard to zoonotic transmission of canine and feline parasites, and proposes control strategies and measures.

  2. [Anisakiasis - a little-known parasitic zoonosis].

    Science.gov (United States)

    Bardoň, Jan; Harna, Jiří; Pijáček, Martin

    2013-06-01

    Parasites of the family Anisakidae cause enteric parasitic zoonoses developing after consumption of inadequately cooked marine fish. Cases of such diseases are reported mainly from Japan or other countries where raw or uncooked fish are traditionally consumed. The presented short communication briefly reports detection of larvae of Pseudoterranova spp., parasites of the family Anisakidae, in a fresh chilled angler-fish (Lophius piscatorius) bought at a retail store in the Czech Republic.

  3. LOG PERIODIC DIPOLE ARRAY WITH PARASITIC ELEMENTS

    Science.gov (United States)

    The design and measured characteristics of dipole and monopole versions of a log periodic array with parasitic elements are discussed. In a dipole...array with parasitic elements, these elements are used in place of every alternate dipole, thereby eliminating the need of a twisted feed arrangement...for the elements to obtain log periodic performance of the anntenna. This design with parasitic elements lends itself to a monopole version of the

  4. Etiological characteristics of 108 patients with secondary bloodstream infections%继发性血流感染108例病原学特点分析

    Institute of Scientific and Technical Information of China (English)

    黄仁刚; 杨兴祥; 喻华; 龙姗姗; 林健梅; 江南

    2015-01-01

    Objective To investigate the etiological characteristics of laboratory-confirmed bloodstream infections with identi-fied infective sources. Methods The data of the patients with laboratory-confirmed bloodstream infections and identified infective sources, who were treated at Sichuan Provincial People's Hospital from Jan. 2011 to Jun. 2013 were collected to analyze the etiological characteristics retrospectively. Results A total of 108 patients with identified infective sources were enrolled in this study, of whom 93 patients suffered from monomicrobial infection, and 15 patients suffered from polymicrobial infection. Bloodstream infections were com-monly found in urinary tract, abdominal cavity and respiratory tract. Infection with Escherichia coli. accounted for 75.8%and 42.4%in patients with bloodstream infections in urinary tract and abdominal cavity, respectively; Infection with Acinetobacter baumannii ac-counted for 62.5%in patients with bloodstream infections in respiratory tract, and Acinetobacter baumannii was resistant to carbapen-em antibiotics. The 30-day mortality of 108 patients with bloodstream infections was 19.4%. The patients with bloodstream infections in urinary tract had the lowest 30-day mortality rate (3.0%), while the patients with bloodstream infections in lower respiratory tract had the highest 30-day mortality rate (45.8%). The 30-day mortality rates of the patients with bloodstream infections with non-fermentation gram negative bacillus and fungi were 55.0%and 50.0%, respectively. Conclusions The pathogen distribution of the patients with different sources of bloodstream infections varies widely. Appropriate antibiotic therapy should take infective sources, types of bacteria and drug resistance into consideration.%目的 研究感染来源明确的血流感染患者的病原学特点. 方法 收集四川省人民医院2011年1月—2013年6月实验室确诊、感染来源明确的血流感染患者临床资料,回

  5. MODERN PARASITIC SYSTEMS OF TICK-BORNE INFECTIONS IN LVIV OBLAST

    Directory of Open Access Journals (Sweden)

    Fedoruk V.,

    2012-12-01

    Full Text Available The results of the study of parasitic systems of associated with ixodal ticks infections in the Lviv region for the period 2007-2012 were analyzed. The main vectors and reservoirs, carrying at the present stage a high loimopotential of natural dangerous diseases foci were submitted.

  6. Postembryonic development of the parasitic amphipod Hyperia galba

    Science.gov (United States)

    Dittrich, Birgit

    1987-06-01

    Hyperia galba Montagu is associated with gelatinous zooplankton as are many species of the Hyperiidea. The hosts preferred in the European seas are the large scyphomedusae Aurelia aurita, Chrysaora hysoscella, Rhizostoma pulmo, Cyanea capillata and Cyanea lamarckii, which harbour the first developmental stages. The anamorphic development produces young that are incapable of swimming at the time of hatching. They are characterized by an embryonic abdomen without extremities and external segmentation; the eyes are not completely developed and the mouth is primitive lacking bristles, molar and incisor. The postembryonic development, described in detail, is subdivided into two phases: the pantochelis phase and the protopleon phase; the former comprises only one stage; the latter can be subdivided into four stages. In the course of postnatal development the larval organs are reduced and characters typical of the adult are gradually differentiated. H. galba plays an important role as obligatory endoparasite of scyphomedusae at least during the first stages of development; without a host this amphipod cannot survive, neither benthically nor in the plankton. The transition from life in the female's marsupium to endoparasitism in the jellyfish generally occurs during stage of the postembryonic development which is the first stage of the protopleon phase. The specific adaptations of its reproductive biology to a parasitic mode of life such as moult inhibition under starvation, development of larval organs and the behavioural patterns of the females as well as the young are described. Further, the influence of external factors such as temperature and food supply on the course of development is examined.

  7. Parasites in the Wadden Sea food web

    Science.gov (United States)

    Thieltges, David W.; Engelsma, Marc Y.; Wendling, Carolin C.; Wegner, K. Mathias

    2013-09-01

    While the free-living fauna of the Wadden Sea has received much interest, little is known on the distribution and effects of parasites in the Wadden Sea food web. However, recent studies on this special type of trophic interaction indicate a high diversity of parasites in the Wadden Sea and suggest a multitude of effects on the hosts. This also includes effects on specific predator-prey relationships and the general structure of the food web. Focussing on molluscs, a major group in the Wadden Sea in terms of biomass and abundance and an important link between primary producers and predators, we review existing studies and exemplify the ecological role of parasites in the Wadden Sea food web. First, we give a brief inventory of parasites occurring in the Wadden Sea, ranging from microparasites (e.g. protozoa, bacteria) to macroparasites (e.g. helminths, parasitic copepods) and discuss the effects of spatial scale on heterogeneities in infection levels. We then demonstrate how parasites can affect host population dynamics by acting as a strong mortality factor, causing mollusc mass mortalities. In addition, we will exemplify how parasites can mediate the interaction strength of predator-prey relationships and affect the topological structure of the Wadden Sea food web as a whole. Finally, we highlight some ongoing changes regarding parasitism in the Wadden Sea in the course of global change (e.g. species introduction, climate change) and identify important future research questions to entangle the role of parasites in the Wadden Sea food web.

  8. Internal parasite management in grazing livestock.

    Science.gov (United States)

    Kumar, Niranjan; Rao, Thakur Krishan Shankar; Varghese, Anju; Rathor, Veer Singh

    2013-10-01

    It is a challenging task to control internal parasites in grazing livestock even by applying multi label and multi directional approach. It is impossible to draw general recommendations to control parasitic diseases due to varied geo-climatic conditions and methods adopted for rearing the livestock in the country like India. In view of increasing incidence of anti-parasitic drug resistance in animals, there is an urgent need to design sustainable parasite control strategy which must include on the host as well as off the host control measures to harvest the maximum productivity from the animal for an indefinite period.

  9. Fish Parasites: A Growing Concern During Pregnancy.

    Science.gov (United States)

    Villazanakretzer, Diana L; Napolitano, Peter G; Cummings, Kelly F; Magann, Everett F

    2016-04-01

    Intestinal parasitic worms affect more than 2 billion people worldwide according to the World Health Organization. Fish-borne parasitic infections are becoming more common with the increasing popularity of sushi, sashimi, Carpaccio, tartare, gefilte, and ceviche. The ingestion of these parasites can cause serve anemia, malabsorption, severe abdominal pain, nausea, vomiting, strong allergic reactions, and gastric ulcers. Knowledge about fish parasites and pregnancy is limited. A literature search on PubMed and Web of Science used the search terms "fish parasites" OR "diphyllobothrium" OR "anisakiasis" OR "pseudoterranova" OR ("food borne parasites" AND "fish") AND "pregnancy" OR "maternal" OR "fetus" OR "fetal" OR "newborn" OR "neonatal" OR "childbirth." No limit was put on the number of years searched. There were 281 publications identified. The abstracts of all of these publications were read. After exclusion of the articles that were not relevant to pregnancy, pregnancy outcome, and fish parasites, there were 24 articles that became the basis of this review. The pathophysiology, altered maternal immunity related to the infection, limited information about fish-borne parasitic infections and pregnancy, and treatments are discussed. The main impact of a fish-borne parasitic infection on pregnant women is anemia and altered immunity, which may increase the risk of a maternal infection. The primary fetal effects include intrauterine growth restriction and preterm delivery.

  10. Parasitic zoonoses in India: an overview.

    Science.gov (United States)

    Singh, B B; Sharma, R; Sharma, J K; Juyal, P D

    2010-12-01

    Parasitic zoonotic diseases are prevalent throughout India at varying rates. First reports of zoonotic parasites and new emerging diseases have been recorded in both the human and animal populations in recent decades. The prevalence of zoonotic parasites is likely to be an underestimate, owing to the lack of proper surveillance and the shortage of information about the existence of asymptomatic animal carriers. Emergence of diseases such as human echinococcosis/hydatidosis, neurocysticercosis, cryptosporidiosis and toxoplasmosis in those with acquired immune deficiency syndrome, together with the re-emergence of cutaneous leishmaniosis, poses a serious threat in India and the prevention and control of these parasitic zoonoses, and others, is a great challenge.

  11. Mimetic host shifts in an endangered social parasite of ants

    Science.gov (United States)

    Thomas, Jeremy A.; Elmes, Graham W.; Sielezniew, Marcin; Stankiewicz-Fiedurek, Anna; Simcox, David J.; Settele, Josef; Schönrogge, Karsten

    2013-01-01

    An emerging problem in conservation is whether listed morpho-species with broad distributions, yet specialized lifestyles, consist of more than one cryptic species or functionally distinct forms that have different ecological requirements. We describe extreme regional divergence within an iconic endangered butterfly, whose socially parasitic young stages use non-visual, non-tactile cues to infiltrate and supplant the brood in ant societies. Although indistinguishable morphologically or when using current mitochondrial and nuclear sequence-, or microsatellite data, Maculinea rebeli from Spain and southeast Poland exploit different Myrmica ant species and experience 100 per cent mortality with each other's hosts. This reflects major differences in the hydrocarbons synthesized from each region by the larvae, which so closely mimic the recognition profiles of their respective hosts that nurse ants afford each parasite a social status above that of their own kin larvae. The two host ants occupy separate niches within grassland; thus, conservation management must differ in each region. Similar cryptic differentiation may be common, yet equally hard to detect, among the approximately 10 000 unstudied morpho-species of social parasite that are estimated to exist, many of which are Red Data Book listed. PMID:23193127

  12. Incidence of colonization and bloodstream infection with carbapenem-resistant Enterobacteriaceae in children receiving antineoplastic chemotherapy in Italy.

    Science.gov (United States)

    Caselli, Desiree; Cesaro, Simone; Fagioli, Franca; Carraro, Francesca; Ziino, Ottavio; Zanazzo, Giulio; Meazza, Cristina; Colombini, Antonella; Castagnola, Elio

    2016-02-01

    Few data are available on the incidence of carbapenemase-producing Enterobacteriaceae (CPE) infection or colonization in children receiving anticancer chemotherapy. We performed a nationwide survey among centers participating in the pediatric hematology-oncology cooperative study group (Associazione Italiana Ematologia Oncologia Pediatrica, AIEOP). During a 2-year observation period, we observed a threefold increase in the colonization rate, and a fourfold increase of bloodstream infection episodes, caused by CPE, with a 90-day mortality of 14%. This first nationwide Italian pediatric survey shows that the circulation of CPE strains in the pediatric hematology-oncology environment is increasing. Given the mortality rate, which is higher than for other bacterial strains, specific monitoring should be applied and the results should have implications for health-care practice in pediatric hematology-oncology.

  13. Apoptotic markers in protozoan parasites

    Directory of Open Access Journals (Sweden)

    Fasel Nicolas

    2010-11-01

    Full Text Available Abstract The execution of the apoptotic death program in metazoans is characterized by a sequence of morphological and biochemical changes that include cell shrinkage, presentation of phosphatidylserine at the cell surface, mitochondrial alterations, chromatin condensation, nuclear fragmentation, membrane blebbing and the formation of apoptotic bodies. Methodologies for measuring apoptosis are based on these markers. Except for membrane blebbing and formation of apoptotic bodies, all other events have been observed in most protozoan parasites undergoing cell death. However, while techniques exist to detect these markers, they are often optimised for metazoan cells and therefore may not pick up subtle differences between the events occurring in unicellular organisms and multi-cellular organisms. In this review we discuss the markers most frequently used to analyze cell death in protozoan parasites, paying special attention to changes in cell morphology, mitochondrial activity, chromatin structure and plasma membrane structure/permeability. Regarding classical regulators/executors of apoptosis, we have reviewed the present knowledge of caspase-like and nuclease activities.

  14. Apoptotic markers in protozoan parasites.

    Science.gov (United States)

    Jiménez-Ruiz, Antonio; Alzate, Juan Fernando; Macleod, Ewan Thomas; Lüder, Carsten Günter Kurt; Fasel, Nicolas; Hurd, Hilary

    2010-11-09

    The execution of the apoptotic death program in metazoans is characterized by a sequence of morphological and biochemical changes that include cell shrinkage, presentation of phosphatidylserine at the cell surface, mitochondrial alterations, chromatin condensation, nuclear fragmentation, membrane blebbing and the formation of apoptotic bodies. Methodologies for measuring apoptosis are based on these markers. Except for membrane blebbing and formation of apoptotic bodies, all other events have been observed in most protozoan parasites undergoing cell death. However, while techniques exist to detect these markers, they are often optimised for metazoan cells and therefore may not pick up subtle differences between the events occurring in unicellular organisms and multi-cellular organisms.In this review we discuss the markers most frequently used to analyze cell death in protozoan parasites, paying special attention to changes in cell morphology, mitochondrial activity, chromatin structure and plasma membrane structure/permeability. Regarding classical regulators/executors of apoptosis, we have reviewed the present knowledge of caspase-like and nuclease activities.

  15. How Many Parasites Species a Frog Might Have? Determinants of Parasite Diversity in South American Anurans.

    Directory of Open Access Journals (Sweden)

    Karla Magalhães Campião

    Full Text Available There is an increasing interest in unveiling the dynamics of parasite infection. Understanding the interaction patterns, and determinants of host-parasite association contributes to filling knowledge gaps in both community and disease ecology. Despite being targeted as a relevant group for conservation efforts, determinants of the association of amphibians and their parasites in broad scales are poorly understood. Here we describe parasite biodiversity in South American amphibians, testing the influence of host body size and geographic range in helminth parasites species richness (PSR. We also test whether parasite diversity is related to hosts' phylogenetic diversity. Results showed that nematodes are the most common anuran parasites. Host-parasite network has a nested pattern, with specialist helminth taxa generally associated with hosts that harbour the richest parasite faunas. Host size is positively correlated with helminth fauna richness, but we found no support for the association of host geographic range and PSR. These results remained consistent after correcting for uneven study effort and hosts' phylogenic correlation. However, we found no association between host and parasite diversity, indicating that more diversified anuran clades not necessarily support higher parasite diversity. Overall, considering both the structure and the determinants of PRS in anurans, we conclude that specialist parasites are more likely to be associated with large anurans, which are the ones harbouring higher PSR, and that the lack of association of PSR with hosts' clade diversification suggests it is strongly influenced by ecological and contemporary constrains.

  16. [Discussion on the usage of terminology of some parasites and parasitic diseases].

    Science.gov (United States)

    Wang, Zhong-quan; Cui, Jing

    2006-04-30

    According to the International Code of Zoological Nomenclature and the Standardized Nomenclature of Animal Parasitic Diseases (SNOAPAD), and considering the new advances in parasitology, the usage of the terminology of some parasites and parasitic diseases (such as Trichinella and trichinellosis, filariae and filariasis, Echinococcus and echinococcosis, etc.) was discussed.

  17. Effects of experimental reduction in nest micro-parasite and macro-parasite loads on nestling hemoglobin level in blue tits Parus caeruleus

    Science.gov (United States)

    Słomczyński, Robert; Kaliński, Adam; Wawrzyniak, Jarosław; Bańbura, Mirosława; Skwarska, Joanna; Zieliński, Piotr; Bańbura, Jerzy

    2006-09-01

    Theory suggests that macro- and micro-parasites may be important factors of selection for life-histories. They generate selection pressures by detrimental effects on host health. Nests of secondary cavity nesters provide a convenient habitat for an assemblage of parasites exploiting nestlings. In this study, natural blue tit Parus caeruleus nests (26) were replaced with clean artificial nests, twice during the nestling stage. This treatment caused an increase of 7-10.5 g/l in hemoglobin level of 12-day-old nestlings in comparison with control nestlings. Nestlings that developed in parasite-pathogen-free nests improved their health status. The experimental sterilization did not affect a morphometric index of condition. Potential effects on condition indices might be masked by trophic conditions.

  18. Ten-year study of species distribution and antifungal susceptibilities of Candida bloodstream isolates at a Brazilian tertiary hospital.

    Science.gov (United States)

    Bonfietti, L X; Szeszs, M W; Chang, M R; Martins, M A; Pukinskas, S R B S; Nunes, M O; Pereira, G H; Paniago, A M M; Purisco, S U; Melhem, M S C

    2012-12-01

    To describe the incidence and susceptibility profile of Candida bloodstream infections in a tertiary-care hospital, we performed a retrospective observational study from 1998 to 2007. Comorbidities and risk factors were compiled from all cases. In vitro susceptibility testing to fluconazole, itraconazole, voriconazole, and amphotericin B was performed for 100 isolates, and caspofungin was tested for C. parapsilosis complex. In a ten-year evaluation of candidemias, 44 % were caused by C. albicans, and species of the C. parapsilosis complex were the second most frequent agents (37 %). Other species presented lower incidences (C. tropicalis, 13 %, C. glabrata, 5 %, and C. krusei, 1 %). Neither C. dubliniensis nor C. metapsilosis were observed in this study. C. orthopsilosis (3 %) and C. parapsilosis stricto sensu (34 %) were also found. Species distribution was independent of catheterization, mechanical ventilation, or previous use of antifungals or corticoids. Parenteral nutrition administration was strongly related to C. glabrata infection, and the highest mortality (80 %) was observed in patients infected by this species. All C. albicans isolates showed high susceptibility to all tested drugs. However, two C. parapsilosis stricto sensu isolates presented high minimum inhibitory concentration (MIC) (4 mg/L each) to fluconazole, and one exhibited voriconazole MIC of 0.25 mg/L, highlighting the cross-resistance to these azoles. All isolates of C. tropicalis and C. glabrata showed no resistance to any drug tested. No difference was noted between C. parapsilosis and C. orthopsilosis susceptibilities to caspofungin. Our results suggest that resistance to amphotericin B, fluconazole, voriconazole, itraconazole, and caspofungin in Brazilian Candida bloodstream isolates is still uncommon.

  19. Antimicrobial Resistance and Molecular Epidemiology of Escherichia coli Causing Bloodstream Infections in Three Hospitals in Shanghai, China.

    Directory of Open Access Journals (Sweden)

    Su Wang

    Full Text Available Escherichia coli (E. coli is one of the most frequent and lethal causes of bloodstream infections (BSIs. We carried out a retrospective multicenter study on antimicrobial resistance and phylogenetic background of clinical E. coli isolates recovered from bloodstream in three hospitals in Shanghai. E. coli isolates causing BSIs were consecutively collected between Sept 2013 and Sept 2014. Ninety isolates randomly selected (30 from each hospital were enrolled in the study. Antimicrobial susceptibility testing was performed by disk diffusion. PCR was used to detect antimicrobial resistance genes coding for β-lactamases (TEM, CTX-M, OXA, etc., carbapenemases (IMP, VIM, KPC, NDM-1 and OXA-48, and phylogenetic groups. eBURST was applied for analysis of multi-locus sequence typing (MLST. The resistance rates for penicillins, second-generation cephalosporins, fluoroquinolone and tetracyclines were high (>60%. Sixty-one of the 90 (67.8% strains enrolled produced ESBLs and no carbapenemases were found. Molecular analysis showed that CTX-M-15 (25/61, CTX-M-14 (18/61 and CTX-M-55 (9/61 were the most common ESBLs. Phylogenetic group B2 predominated (43.3% and exhibited the highest rates of ESBLs production. ST131 (20/90 was the most common sequence type and almost assigned to phylogenetic group B2 (19/20. The following sequence types were ST405 (8/90 and ST69 (5/90. Among 61 ESBL-producers isolates, B2 (26, 42.6% and ST131 (18, 29.5% were also the most common phylogenetic group and sequence type. Genetic diversity showed no evidence suggesting a spread of these antimicrobial resistant isolates in the three hospitals. In order to provide more comprehensive and reliable epidemiological information for preventing further dissemination, well-designed and continuous surveillance with more hospitals participating was important.

  20. Antimicrobial Resistance and Molecular Epidemiology of Escherichia coli Causing Bloodstream Infections in Three Hospitals in Shanghai, China.

    Science.gov (United States)

    Wang, Su; Zhao, Sheng-Yuan; Xiao, Shu-Zhen; Gu, Fei-Fei; Liu, Qing-Zhong; Tang, Jin; Guo, Xiao-Kui; Ni, Yu-Xing; Han, Li-Zhong

    2016-01-01

    Escherichia coli (E. coli) is one of the most frequent and lethal causes of bloodstream infections (BSIs). We carried out a retrospective multicenter study on antimicrobial resistance and phylogenetic background of clinical E. coli isolates recovered from bloodstream in three hospitals in Shanghai. E. coli isolates causing BSIs were consecutively collected between Sept 2013 and Sept 2014. Ninety isolates randomly selected (30 from each hospital) were enrolled in the study. Antimicrobial susceptibility testing was performed by disk diffusion. PCR was used to detect antimicrobial resistance genes coding for β-lactamases (TEM, CTX-M, OXA, etc.), carbapenemases (IMP, VIM, KPC, NDM-1 and OXA-48), and phylogenetic groups. eBURST was applied for analysis of multi-locus sequence typing (MLST). The resistance rates for penicillins, second-generation cephalosporins, fluoroquinolone and tetracyclines were high (>60%). Sixty-one of the 90 (67.8%) strains enrolled produced ESBLs and no carbapenemases were found. Molecular analysis showed that CTX-M-15 (25/61), CTX-M-14 (18/61) and CTX-M-55 (9/61) were the most common ESBLs. Phylogenetic group B2 predominated (43.3%) and exhibited the highest rates of ESBLs production. ST131 (20/90) was the most common sequence type and almost assigned to phylogenetic group B2 (19/20). The following sequence types were ST405 (8/90) and ST69 (5/90). Among 61 ESBL-producers isolates, B2 (26, 42.6%) and ST131 (18, 29.5%) were also the most common phylogenetic group and sequence type. Genetic diversity showed no evidence suggesting a spread of these antimicrobial resistant isolates in the three hospitals. In order to provide more comprehensive and reliable epidemiological information for preventing further dissemination, well-designed and continuous surveillance with more hospitals participating was important.

  1. Surveillance of Candida spp bloodstream infections: epidemiological trends and risk factors of death in two Mexican tertiary care hospitals.

    Directory of Open Access Journals (Sweden)

    Dora E Corzo-Leon

    Full Text Available INTRODUCTION: Larger populations at risk, broader use of antibiotics and longer hospital stays have impacted on the incidence of Candida sp. bloodstream infections (CBSI. OBJECTIVE: To determine clinical and epidemiologic characteristics of patients with CBSI in two tertiary care reference medical institutions in Mexico City. DESIGN: Prospective and observational laboratory-based surveillance study conducted from 07/2008 to 06/2010. METHODS: All patients with CBSI were included. Identification and antifungal susceptibility were performed using CLSI M27-A3 standard procedures. Frequencies, Mann-Whitney U test or T test were used as needed. Risk factors were determined with multivariable analysis and binary logistic regression analysis. RESULTS: CBSI represented 3.8% of nosocomial bloodstream infections. Cumulative incidence was 2.8 per 1000 discharges (incidence rate: 0.38 per 1000 patient-days. C. albicans was the predominant species (46%, followed by C. tropicalis (26%. C. glabrata was isolated from patients with diabetes (50%, and elderly patients. Sixty-four patients (86% received antifungals. Amphotericin-B deoxycholate (AmBD was the most commonly used agent (66%. Overall mortality rate reached 46%, and risk factors for death were APACHE II score ≥ 16 (OR = 6.94, CI95% = 2.34-20.58, p<0.0001, and liver disease (OR = 186.11, CI95% = 7.61-4550.20, p = 0.001. Full susceptibility to fluconazole, AmBD and echinocandins among C. albicans, C. tropicalis, and C. parapsilosis was observed. CONCLUSIONS: The cumulative incidence rate in these centers was higher than other reports from tertiary care hospitals from Latin America. Knowledge of local epidemiologic patterns permits the design of more specific strategies for prevention and preemptive therapy of CBSI.

  2. Surveillance of Candida spp Bloodstream Infections: Epidemiological Trends and Risk Factors of Death in Two Mexican Tertiary Care Hospitals

    Science.gov (United States)

    Corzo-Leon, Dora E.; Alvarado-Matute, Tito; Colombo, Arnaldo L.; Cornejo-Juarez, Patricia; Cortes, Jorge; Echevarria, Juan I.; Guzman-Blanco, Manuel; Macias, Alejandro E.; Nucci, Marcio; Ostrosky-Zeichner, Luis; Ponce-de-Leon, Alfredo; Queiroz-Telles, Flavio; Santolaya, Maria E.; Thompson-Moya, Luis; Tiraboschi, Iris N.; Zurita, Jeannete; Sifuentes-Osornio, Jose

    2014-01-01

    Introduction Larger populations at risk, broader use of antibiotics and longer hospital stays have impacted on the incidence of Candida sp. bloodstream infections (CBSI). Objective To determine clinical and epidemiologic characteristics of patients with CBSI in two tertiary care reference medical institutions in Mexico City. Design Prospective and observational laboratory-based surveillance study conducted from 07/2008 to 06/2010. Methods All patients with CBSI were included. Identification and antifungal susceptibility were performed using CLSI M27-A3 standard procedures. Frequencies, Mann-Whitney U test or T test were used as needed. Risk factors were determined with multivariable analysis and binary logistic regression analysis. Results CBSI represented 3.8% of nosocomial bloodstream infections. Cumulative incidence was 2.8 per 1000 discharges (incidence rate: 0.38 per 1000 patient-days). C. albicans was the predominant species (46%), followed by C. tropicalis (26%). C. glabrata was isolated from patients with diabetes (50%), and elderly patients. Sixty-four patients (86%) received antifungals. Amphotericin-B deoxycholate (AmBD) was the most commonly used agent (66%). Overall mortality rate reached 46%, and risk factors for death were APACHE II score ≥16 (OR = 6.94, CI95% = 2.34–20.58, p<0.0001), and liver disease (OR = 186.11, CI95% = 7.61–4550.20, p = 0.001). Full susceptibility to fluconazole, AmBD and echinocandins among C. albicans, C. tropicalis, and C. parapsilosis was observed. Conclusions The cumulative incidence rate in these centers was higher than other reports from tertiary care hospitals from Latin America. Knowledge of local epidemiologic patterns permits the design of more specific strategies for prevention and preemptive therapy of CBSI. PMID:24830654

  3. High prevalence of tuberculosis and serious bloodstream infections in ambulatory individuals presenting for antiretroviral therapy in Malawi.

    Directory of Open Access Journals (Sweden)

    Richard A Bedell

    Full Text Available BACKGROUND: Tuberculosis (TB and serious bloodstream infections (BSI may contribute to the high early mortality observed among patients qualifying for antiretroviral therapy (ART with unexplained weight loss, chronic fever or chronic diarrhea. METHODS AND FINDINGS: A prospective cohort study determined the prevalence of undiagnosed TB or BSI among ambulatory HIV-infected adults with unexplained weight loss and/or chronic fever, or diarrhea in two routine program settings in Malawi. Subjects with positive expectorated sputum smears for AFB were excluded. Investigations Bacterial and mycobacterial blood cultures, cryptococcal antigen test (CrAg, induced sputum (IS for TB microscopy and solid culture, full blood count and CD4 lymphocyte count. Among 469 subjects, 52 (11% had microbiological evidence of TB; 50 (11% had a positive (non-TB blood culture and/or positive CrAg. Sixty-five additional TB cases were diagnosed on clinical and radiological grounds. Nontyphoidal Salmonellae (NTS were the most common blood culture pathogens (29 cases; 6% of participants and 52% of bloodstream isolates. Multivariate analysis of baseline clinical and hematological characteristics found significant independent associations between oral candidiasis or lymphadenopathy and TB, marked CD4 lymphopenia and NTS infection, and severe anemia and either infection, but low positive likelihood ratios (<2 for all combinations. CONCLUSIONS: We observed a high prevalence of TB and serious BSI, particularly NTS, in a program cohort of chronically ill HIV-infected outpatients. Baseline clinical and hematological characteristics were inadequate predictors of infection. HIV clinics need better rapid screening tools for TB and BSI. Clinical trials to evaluate empiric TB or NTS treatment are required in similar populations.

  4. Regional variations in fluoroquinolone non-susceptibility among Escherichia coli bloodstream infections within the Veterans Healthcare Administration

    Directory of Open Access Journals (Sweden)

    Daniel J. Livorsi

    2016-10-01

    Full Text Available Abstract Objectives We sought to define regional variations in fluoroquinolone non-susceptibility (FQ-NS among bloodstream isolates of Escherichia coli across the Veterans Health Administration (VHA in the United States. Methods We analyzed a retrospective cohort of patients managed at 136 VHA hospitals who had a blood culture positive for E.coli between 2003 and 2013. Hospitals were classified based on US Census Divisions, and regional variations in FQ-NS were analyzed. Results Twenty-four thousand five hundred twenty-three unique E.coli bloodstream infections (BSIs were identified between 2003 and 2013. 53.9 % of these were community-acquired, 30.7 % were healthcare-associated, and 15.4 % were hospital-onset BSIs. The proportion of E.coli BSIs with FQ-NS significantly varied across US Census Divisions (p < 0.001. During 2003–2013, the proportion of E.coli BSIs with FQ-NS was highest in the West South-Central Division (32.7 % and lowest in the Mountain Division (20.0 %. Multivariable analysis showed that there were universal secular trends towards higher FQ-NS rates (p < 0.001 with significant variability of slopes across US Census Divisions (p < 0.001. Conclusion There has been a universal increase in FQ-NS among E.coli BSIs within VHA, but the rate of increase has significantly varied across Census Divisions. The reasons for this variability are unclear. These findings reinforce the importance of using local data to develop and update local antibiograms and antibiotic-prescribing guidelines.

  5. Does antimicrobial use density at the ward level influence monthly central line-associated bloodstream infection rates?

    Directory of Open Access Journals (Sweden)

    Yoshida J

    2014-12-01

    Full Text Available Junichi Yoshida, Yukiko Harada, Tetsuya Kikuchi, Ikuyo Asano, Takako Ueno, Nobuo Matsubara Infection Control Committee, Shimonoseki City Hospital, Shimonoseki, Japan Abstract: The aim of this study was to elucidate risk factors, including ward antimicrobial use density (AUD, for central line-associated bloodstream infection (CLABSI as defined by the Centers for Disease Control and Prevention in a 430-bed community hospital using central venous lines with closed-hub systems. We calculated AUD as (total dose/(defined daily dose × patient days ×1,000 for a total of 20 drugs, nine wards, and 24 months. Into each line day data, we inputed AUD and device utilization ratios, number of central line days, and CLABSI. The ratio of susceptible strains in isolates were subjected to correlation analysis with AUD. Of a total of 9,997 line days over 24 months, CLABSI was present in 33 cases (3.3 ‰, 14 (42.4% of which were on surgical wards out of nine wards. Of a total of 43 strains isolated, eight (18.6% were methicillin-resistant Staphylococcus aureus (MRSA; none of the MRSA-positive patients had received cefotiam before the onset of infection. Receiver-operating characteristic analysis showed that central line day 7 had the highest accuracy. Logistic regression analysis showed the central line day showed an odds ratio of 5.511 with a 95% confidence interval of 1.936–15.690 as did AUD of cefotiam showing an odds ratio of 0.220 with 95% confidence interval of 0.00527–0.922 (P=0.038. Susceptible strains ratio and AUD showed a negative correlation (R2=0.1897. Thus, CLABSI could be prevented by making the number of central line days as short as possible. The preventative role of AUD remains to be investigated. Keywords: bloodstream infection, central line, antimicrobial use density

  6. Clinical and Microbiological Characteristics of Heteroresistant and Vancomycin-Intermediate Staphylococcus aureus from Bloodstream Infections in a Brazilian Teaching Hospital

    Science.gov (United States)

    da Costa, Thaina Miranda; Morgado, Priscylla Guimarães Migueres; Cavalcante, Fernanda Sampaio; Damasco, Andreia Paredes; Nouér, Simone Aranha; dos Santos, Kátia Regina Netto

    2016-01-01

    This study analyzed clinical and microbiological characteristics of heteroresistant (hVISA) and vancomycin-intermediate Staphylococcus aureus (VISA) from bloodstream infections (BSI) in a Brazilian teaching hospital, between 2011 and 2013. Minimum inhibitory concentrations (MIC) of antimicrobials were determined by broth microdilution method and SCCmec was detected by PCR. Isolates with a vancomycin MIC ≥ 2mg/L were cultured on BHI agar with 3, 4 or 6 mg/L (BHIa3, BHIa4 or BHIa6) of vancomycin and BHIa4 with casein (BHIa4ca). Macromethod Etest® and Etest® Glicopeptides Resistance Detection were also used. VISA and hVISA isolates were confirmed by the population analysis profile then typed by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing. Medical data from the patients were obtained from their medical records. Among 110 consecutive isolates, 31 (28%) were MRSA and carried the SCCmec type II (15 isolates) or IV (16 isolates). Vancomycin MIC50 and MIC90 were 1 and 2 mg/L, respectively. MRSA isolates had increased non-susceptibility to daptomycin (p = 0.0003). Six (5%) isolates were VISA, four of which were MRSA, three SCCmec type II/USA100/ST5 and one type IV/USA800/ST3192. One MRSA SCCmec II isolate grew on agar BHIa3, BHIa4 and BHIa4ca, and it was confirmed as hVISA. Among the six VISA isolates, five (83%) grew on BHIa3 and three (50%) on BHI4ca. Four of the six VISA isolates and the one hVISA isolate were from patients who had undergone dialysis. Thus, a possible dissemination of the SCCmec II/USA100/ST5 lineage may have occurred in the hospital comprising the VISA, hVISA and daptomycin non-susceptible S. aureus Brazilian isolates from health care associated bloodstream infections. PMID:27575698

  7. Epidemiological characterization of Acinetobacter baumannii bloodstream isolates from a Chinese Burn Institute: A three-year study.

    Science.gov (United States)

    Huang, Guangtao; Yin, Supeng; Xiang, Lijuan; Gong, Yali; Sun, Kedai; Luo, Xiaoqiang; Zhang, Cheng; Yang, Zichen; Deng, Liuyang; Jiang, Bei; Jin, Shouguang; Chen, Jing; Peng, Yizhi

    2016-11-01

    Acinetobacter baumannii infection is a serious threat to burn patients. Bacteremia due to A. baumannii is becoming the most common cause of mortality following burn. However, the epidemiology of A. baumannii causing burn-related bloodstream infections has rarely been reported. We retrospectively collected 81 A. baumannii isolates from the bloodstream of burn patients over a three-year period. Antibiotic susceptibility tests, the prevalence of antibiotic-resistant genes and sequence typing (ST) were conducted to characterize these strains. Most of the isolates showed an extensive drug-resistant phenotype. The resistance frequencies to imipenem and meropenem were 94% and 91%, respectively. The blaOXA-23-like gene, AmpC, IS-AmpC, PER and SIM are the five most prevalent resistant genes, and their prevalence rates are 93% (75/81), 86% (70/81), 73% (59/81), 73% (59/81) and 52% (42/81), respectively. The 81 isolates were grouped into 10 known and 18 unknown ST types, with ST368 (38%) being the most prevalent. Except for ST457 and four new types (STn2, STn6, STn11 and STn14), the remaining 23 ST types belonged to one clonal complex 92, which is most common among clinical isolate in China. The above results indicated that ST368 isolates possessing both the blaOXA-23-like gene and ampC gene were the main culprits of the increasing nosocomial A. baumannii infection in this study. More attention should be paid to monitoring the molecular epidemiology of A. baumannii isolates from burn patients to prevent further distribution. Such information may help clinicians with therapeutic decisions and infection control in the Burns Institute.

  8. Parasitic gastro-enteritis in lambs — A model for estimating the timing of the larval emergence peak

    Science.gov (United States)

    Starr, J. R.; Thomas, R. J.

    1980-09-01

    The life history of the nematode parasites of domestic ruminants usually involves the development and survival of free-living stages on pasture. The pasture is, therefore, the site of deposition, development and transmission of nematode infection and meteorological factors affecting the pasture will affect the parasites. Recently Thomas and Starr (1978) discussed an empirical technique for forecasting the timing of the summer wave of gastro-intestinal parasitism in North-East England in the lamb crop using meteorological data and in particular estimates of the duration of “surface wetness”. This paper presents an attempt to model “surface wetness” and the temperature limitation to nematode development.

  9. Protease-associated cellular networks in malaria parasite Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Lilburn Timothy G

    2011-12-01

    Full Text Available Abstract Background Malaria continues to be one of the most severe global infectious diseases, responsible for 1-2 million deaths yearly. The rapid evolution and spread of drug resistance in parasites has led to an urgent need for the development of novel antimalarial targets. Proteases are a group of enzymes that play essential roles in parasite growth and invasion. The possibility of designing specific inhibitors for proteases makes them promising drug targets. Previously, combining a comparative genomics approach and a machine learning approach, we identified the complement of proteases (degradome in the malaria parasite Plasmodium falciparum and its sibling species 123, providing a catalog of targets for functional characterization and rational inhibitor design. Network analysis represents another route to revealing the role of proteins in the biology of parasites and we use this approach here to expand our understanding of the systems involving the proteases of P. falciparum. Results We investigated the roles of proteases in the parasite life cycle by constructing a network using protein-protein association data from the STRING database 4, and analyzing these data, in conjunction with the data from protein-protein interaction assays using the yeast 2-hybrid (Y2H system 5, blood stage microarray experiments 678, proteomics 9101112, literature text mining, and sequence homology analysis. Seventy-seven (77 out of 124 predicted proteases were associated with at least one other protein, constituting 2,431 protein-protein interactions (PPIs. These proteases appear to play diverse roles in metabolism, cell cycle regulation, invasion and infection. Their degrees of connectivity (i.e., connections to other proteins, range from one to 143. The largest protease-associated sub-network is the ubiquitin-proteasome system which is crucial for protein recycling and stress response. Proteases are also implicated in heat shock response, signal peptide

  10. Consequences of Food Restriction for Immune Defense, Parasite Infection, and Fitness in Monarch Butterflies.

    Science.gov (United States)

    McKay, Alexa Fritzsche; Ezenwa, Vanessa O; Altizer, Sonia

    2016-01-01

    Organisms have a finite pool of resources to allocate toward multiple competing needs, such as development, reproduction, and enemy defense. Abundant resources can support investment in multiple traits simultaneously, but limited resources might promote trade-offs between fitness-related traits and immune defenses. We asked how food restriction at both larval and adult life stages of the monarch butterfly (Danaus plexippus) affected measures of immunity, fitness, and immune-fitness interactions. We experimentally infected a subset of monarchs with a specialist protozoan parasite to determine whether parasitism further affected these relationships and whether food restriction influenced the outcome of infection. Larval food restriction reduced monarch fitness measures both within the same life stage (e.g., pupal mass) as well as later in life (e.g., adult lifespan); adult food restriction further reduced adult lifespan. Larval food restriction lowered both hemocyte concentration and phenoloxidase activity at the larval stage, and the effects of larval food restriction on phenoloxidase activity persisted when immunity was sampled at the adult stage. Adult food restriction reduced only adult phenoloxidase activity but not hemocyte concentration. Parasite spore load decreased with one measure of larval immunity, but food restriction did not increase the probability of parasite infection. Across monarchs, we found a negative relationship between larval hemocyte concentration and pupal mass, and a trade-off between adult hemocyte concentration and adult life span was evident in parasitized female monarchs. Adult life span increased with phenoloxidase activity in some subsets of monarchs. Our results emphasize that food restriction can alter fitness and immunity across multiple life stages. Understanding the consequences of resource limitation for immune defense is therefore important for predicting how increasing constraints on wildlife resources will affect fitness and

  11. Lipid synthesis in protozoan parasites: a comparison between kinetoplastids and apicomplexans.

    Science.gov (United States)

    Ramakrishnan, Srinivasan; Serricchio, Mauro; Striepen, Boris; Bütikofer, Peter

    2013-10-01

    Lipid metabolism is of crucial importance for pathogens. Lipids serve as cellular building blocks, signalling molecules, energy stores, posttranslational modifiers, and pathogenesis factors. Parasites rely on a complex system of uptake and synthesis mechanisms to satisfy their lipid needs. The parameters of this system change dramatically as the parasite transits through the various stages of its life cycle. Here we discuss the tremendous recent advances that have been made in the understanding of the synthesis and uptake pathways for fatty acids and phospholipids in apicomplexan and kinetoplastid parasites, including Plasmodium, Toxoplasma, Cryptosporidium, Trypanosoma and Leishmania. Lipid synthesis differs in significant ways between parasites from both phyla and the human host. Parasites have acquired novel pathways through endosymbiosis, as in the case of the apicoplast, have dramatically reshaped substrate and product profiles, and have evolved specialized lipids to interact with or manipulate the host. These differences potentially provide opportunities for drug development. We outline the lipid pathways for key species in detail as they progress through the developmental cycle and highlight those that are of particular importance to the biology of the pathogens and/or are the most promising targets for parasite-specific treatment.

  12. Parasitic contamination of commonly consumed fresh leafy vegetables in benha, egypt.

    Science.gov (United States)

    Eraky, Maysa Ahmad; Rashed, Samia Mostafa; Nasr, Mona El-Sayed; El-Hamshary, Azza Mohammed Salah; Salah El-Ghannam, Amera

    2014-01-01

    This study evaluated the degree of parasitic contamination of vegetables which are commercialized and consumed fresh in Benha, Egypt. It included 530 vegetables: lettuce, watercress, parsley, green onion, and leek. Vegetables were collected randomly from markets within Benha. Samples were washed in saline, and the resulting washing solution was filtered and centrifuged to concentrate the parasitic stages. Sediments and supernatants were examined by iodine and modified Ziehl-Neelsen stained smears. Intestinal parasites were detected in 157/530 (29.6%) samples. Giardia lamblia cysts were the most prevalent parasite (8.8%) followed by Entamoeba spp. cysts (6.8%), Enterobius vermicularis eggs (4.9%), various helminth larvae (3.6%), Hymenolepis nana eggs (2.8%), Hymenolepis diminuta eggs (2.1%), and Ascaris lumbricoides eggs (0.6%). The highest contaminated vegetable was lettuce (45.5%) followed by watercress (41.3%), parsley (34.3%), green onion (16.5%), and leek (10.7%). These results indicate a significant seasonal variation (P parasitic infection from the consumption of raw vegetables in Benha, Egypt. Effective measures are necessary to reduce parasitic contamination of vegetables.

  13. H2O2 dynamics in the malaria parasite Plasmodium falciparum

    Science.gov (United States)

    Rahbari, Mahsa; Bogeski, Ivan

    2017-01-01

    Hydrogen peroxide is an important antimicrobial agent but is also crucially involved in redox signaling and pathogen-host cell interactions. As a basis for systematically investigating intracellular H2O2 dynamics and regulation in living malaria parasites, we established the genetically encoded fluorescent H2O2 sensors roGFP2-Orp1 and HyPer-3 in Plasmodium falciparum. Both ratiometric redox probes as well as the pH control SypHer were expressed in the cytosol of blood-stage parasites. Both redox sensors showed reproducible sensitivity towards H2O2 in the lower micromolar range in vitro and in the parasites. Due to the pH sensitivity of HyPer-3, we used parasites expressing roGFP2-Orp1 for evaluation of short-, medium-, and long-term effects of antimalarial drugs on H2O2 levels and detoxification in Plasmodium. None of the quinolines or artemisinins tested had detectable direct effects on the H2O2 homeostasis at pharmacologically relevant concentrations. However, pre-treatment of the cells with antimalarial drugs or heat shock led to a higher tolerance towards exogenous H2O2. The systematic evaluation and comparison of the two genetically encoded cytosolic H2O2 probes in malaria parasites provides a basis for studying parasite-host cell interactions or drug effects with spatio-temporal resolution while preserving cell integrity. PMID:28369083

  14. Parasitic contamination of surface and deep soil in different areas of Sari in north of Iran

    Directory of Open Access Journals (Sweden)