WorldWideScience

Sample records for blood-retinal barrier cells

  1. The blood-retinal barrier permeability in diabetic patients

    DEFF Research Database (Denmark)

    Krogsaa, B; Lund-Andersen, H; Mehlsen, J

    1981-01-01

    By the of aid an extended corpus vitreum fluorophotometric technique, the blood-retinal barrier permeability for fluorescein was studied in diabetologically well characterized patients with insulin dependent diabetes mellitus. The method, which involves simultaneous determination of the fluorescein...... concentration in corpus vitreum and plasma, is described and discussed. A clear correlation was found between the degree of retinopathy and permeability (P). Patients with normal visus, ophthalmoscophy, fundus photo and fluorescence angiography exhibited P-values of 1.10(-7) cm . sec-1. This was similar to P...

  2. Imidazole-4-acetic acid, a new lead structure for interaction with the taurine transporter in outer blood-retinal barrier cells.

    Science.gov (United States)

    Valembois, Sophie; Krall, Jacob; Frølund, Bente; Steffansen, Bente

    2017-05-30

    Retinal diseases leading to impaired vision and ultimately blindness are mainly characterized by ischemic and hypoxic stress. Targeting the retinal ρ-containing γ-aminobutyric acid type A receptors (ρ GABA A Rs) and thereby decreasing the retinal neuronal activity has been proposed as a novel therapeutic approach. The taurine transporter (TAUT) plays a key role in the retinal transport of GABA and has been previously suggested to display a higher functional activity in the retina compared to the brain. TAUT would therefore stand as a suitable target for the selective delivery of ρ GABA A R ligands into the retina. Consequently, an in vitro model of TAUT at the outer blood-retinal barrier (BRB) was developed and characterized using the ARPE-19 cell line. Furthermore, the structural requirements of GABA A R ligands for interacting with TAUT at the BRB were investigated for a series of standard GABA A R ligands by testing their ability to inhibit the TAUT-mediated influx of taurine in ARPE-19 cells. Results showed that taurine influx was seven-fold higher when the ARPE-19 cells were cultured under hyperosmotic conditions and was demonstrated to display saturable kinetics (K m =27.7±2.2μM and J max =24.2±0.6pmol/cm 2 ·min). Furthermore, the taurine influx was significantly inhibited in a concentration-dependent manner by GABA and imidazole-4-acetic acid (IAA), which is a naturally occurring metabolite of histamine. These compounds display similar K i values of 644.2μM and 658.6μM, respectively. Moreover, IAA demonstrated higher inhibitory properties than the other tested GABA analogs: 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP), 4,5,6,7-tetrahydropyrazolo[5,4-c]pyridin-3-ol (Aza-THIP), muscimol, and thiomuscimol. These studies demonstrated that IAA interacts with TAUT, which makes IAA a new lead structure in the development of new compounds, which are not only interacting with TAUT but also potent ρ GABA A R ligands. Copyright © 2017 Elsevier B

  3. Oral delivery of bioencapsulated proteins across blood-brain and blood-retinal barriers.

    Science.gov (United States)

    Kohli, Neha; Westerveld, Donevan R; Ayache, Alexandra C; Verma, Amrisha; Shil, Pollob; Prasad, Tuhina; Zhu, Ping; Chan, Sic L; Li, Qiuhong; Daniell, Henry

    2014-03-01

    Delivering neurotherapeutics to target brain-associated diseases is a major challenge. Therefore, we investigated oral delivery of green fluorescence protein (GFP) or myelin basic protein (MBP) fused with the transmucosal carrier cholera toxin B subunit (CTB), expressed in chloroplasts (bioencapsulated within plant cells) to the brain and retinae of triple transgenic Alzheimer's disease (3×TgAD) mice, across the blood-brain barriers (BBB) and blood-retinal barriers (BRB). Human neuroblastoma cells internalized GFP when incubated with CTB-GFP but not with GFP alone. Oral delivery of CTB-MBP in healthy and 3×TgAD mice shows increased MBP levels in different regions of the brain, crossing intact BBB. Thioflavin S-stained amyloid plaque intensity was reduced up to 60% by CTB-MBP incubation with human AD and 3×TgAD mice brain sections ex vivo. Amyloid loads were reduced in vivo by 70% in hippocampus and cortex brain regions of 3×TgAD mice fed with bioencapsulated CTB-MBP, along with reduction in the ratio of insoluble amyloid β 42 (Aβ42) to soluble fractions. CTB-MBP oral delivery reduced Aβ42 accumulation in retinae and prevented loss of retinal ganglion cells in 3×TgAD mice. Lyophilization of leaves increased CTB-MBP concentration by 17-fold and stabilized it during long-term storage in capsules, facilitating low-cost oral delivery of therapeutic proteins across the BBB and BRB.

  4. Caffeine Prevents Blood Retinal Barrier Damage in a Model, In Vitro, of Diabetic Macular Edema.

    Science.gov (United States)

    Maugeri, Grazia; D'Amico, Agata Grazia; Rasà, Daniela Maria; La Cognata, Valentina; Saccone, Salvatore; Federico, Concetta; Cavallaro, Sebastiano; D'Agata, Velia

    2017-08-01

    Diabetic macular edema (DME) is the major cause of vision loss in patients affected by diabetic retinopathy. Hyperglycemia and hypoxia represent the key elements in the progression of these pathologies, leading to breakdown of the blood-retinal barrier (BRB). Caffeine, a psychoactive substance largely consumed in the world, is a nonselective antagonist of adenosine receptors (AR) and it possesses a protective effect in various diseases, including eye pathologies. Here, we have investigated the effect of this substance on BRB integrity following exposure to hyperglycemic/hypoxic insult. Retinal pigmented epithelial cells, ARPE-19, have been grown on semi-permeable supports mimicking an experimental model, in vitro, of outer BRB. Caffeine treatment has reduced cell monolayer permeability after exposure to high glucose and desferoxamine as shown by TEER and FITC-dextran permeability assays. This effect is also mediated through the restoration of membrane's tight junction expression, ZO-1. Moreover, we have demonstrated that caffeine is able to prevent outer BRB damage by inhibiting apoptotic cell death induced by hyperglycemic/hypoxic insult since it downregulates the proapoptotic Bax and upregulates the anti-apoptotic Bcl-2 genes. Although further studies are needed to better comprise the beneficial effect of caffeine, we can speculate that it might be used as an innovative drug for DME treatment. J. Cell. Biochem. 118: 2371-2379, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  5. VIP Family Members Prevent Outer Blood Retinal Barrier Damage in a Model of Diabetic Macular Edema.

    Science.gov (United States)

    Maugeri, Grazia; D'Amico, Agata Grazia; Gagliano, Caterina; Saccone, Salvatore; Federico, Concetta; Cavallaro, Sebastiano; D'Agata, Velia

    2017-05-01

    Diabetic macular edema (DME), characterized by an increase of thickness in the eye macular area, is due to breakdown of the blood-retinal barrier (BRB). Hypoxia plays a key role in the progression of this pathology by activating the hypoxia-inducible factors. In the last years, various studies have put their attention on the role of pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) in retinal dysfunction. However, until now, no study has investigated their protective role against the harmful combined effect of both hyperglycemia and hypoxia on outer BRB. Therefore, in the present study, we have analyzed the role of these peptides on permeability, restoration of tight junctions expression and inhibition of hyperglycemia/hypoxia-induced apoptosis, in an experimental in vitro model of outer BRB. Our results have demonstrated that the peptides' treatment have restored the integrity of outer BRB induced by cell exposure to hyperglycemia/hypoxia. Their effect is mediated through the activation of phosphoinositide 3 kinase (PI3K)/Akt and mammalian mitogen activated protein kinase/Erk kinase (MAPK/ERK) signaling pathways. In conclusion, our study further clarifies the mechanism through which PACAP and VIP perform the beneficial effect on retinal damage induced by hyperglycemic/hypoxic insult, responsible of DME progression. J. Cell. Physiol. 232: 1079-1085, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. Bloodstream-To-Eye Infections Are Facilitated by Outer Blood-Retinal Barrier Dysfunction.

    Directory of Open Access Journals (Sweden)

    Phillip S Coburn

    Full Text Available The blood-retinal barrier (BRB functions to maintain the immune privilege of the eye, which is necessary for normal vision. The outer BRB is formed by tightly-associated retinal pigment epithelial (RPE cells which limit transport within the retinal environment, maintaining retinal function and viability. Retinal microvascular complications and RPE dysfunction resulting from diabetes and diabetic retinopathy cause permeability changes in the BRB that compromise barrier function. Diabetes is the major predisposing condition underlying endogenous bacterial endophthalmitis (EBE, a blinding intraocular infection resulting from bacterial invasion of the eye from the bloodstream. However, significant numbers of EBE cases occur in non-diabetics. In this work, we hypothesized that dysfunction of the outer BRB may be associated with EBE development. To disrupt the RPE component of the outer BRB in vivo, sodium iodate (NaIO3 was administered to C57BL/6J mice. NaIO3-treated and untreated mice were intravenously injected with 108 colony forming units (cfu of Staphylococcus aureus or Klebsiella pneumoniae. At 4 and 6 days postinfection, EBE was observed in NaIO3-treated mice after infection with K. pneumoniae and S. aureus, although the incidence was higher following S. aureus infection. Invasion of the eye was observed in control mice following S. aureus infection, but not in control mice following K. pneumoniae infection. Immunohistochemistry and FITC-dextran conjugate transmigration assays of human RPE barriers after infection with an exoprotein-deficient agr/sar mutant of S. aureus suggested that S. aureus exoproteins may be required for the loss of the tight junction protein, ZO-1, and for permeability of this in vitro barrier. Our results support the clinical findings that for both pathogens, complications which result in BRB permeability increase the likelihood of bacterial transmigration from the bloodstream into the eye. For S. aureus, however, BRB

  7. Imidazole-4-acetic acid, a new lead structure for interaction with the taurine transporter in outer blood-retinal barrier cells

    DEFF Research Database (Denmark)

    Valembois, Sophie Annick N; Krall, Jacob; Frølund, Bente

    2017-01-01

    therapeutic approach. The taurine transporter (TAUT) plays a key role in the retinal transport of GABA and has been previously suggested to display a higher functional activity in the retina compared to the brain. TAUT would therefore stand as a suitable target for the selective delivery of ρ GABAAR ligands...... by testing their ability to inhibit the TAUT-mediated influx of taurine in ARPE-19 cells. Results showed that taurine influx was seven-fold higher when the ARPE-19 cells were cultured under hyperosmotic conditions and was demonstrated to display saturable kinetics (Km = 27.7 ± 2.2 μM and Jmax = 24.2 ± 0.......6 pmol/cm2·min). Furthermore, the taurine influx was significantly inhibited in a concentration-dependent manner by GABA and imidazole-4-acetic acid (IAA), which is a naturally occurring metabolite of histamine. These compounds display similar Ki values of 644.2 μM and 658.6 μM, respectively. Moreover...

  8. A novel transgenic zebrafish model for blood-brain and blood-retinal barrier development

    Directory of Open Access Journals (Sweden)

    Sugimoto Masahiko

    2010-07-01

    Full Text Available Abstract Background Development and maintenance of the blood-brain and blood-retinal barrier is critical for the homeostasis of brain and retinal tissue. Despite decades of research our knowledge of the formation and maintenance of the blood-brain (BBB and blood-retinal (BRB barrier is very limited. We have established an in vivo model to study the development and maintenance of these barriers by generating a transgenic zebrafish line that expresses a vitamin D-binding protein fused with enhanced green fluorescent protein (DBP-EGFP in blood plasma, as an endogenous tracer. Results The temporal establishment of the BBB and BRB was examined using this transgenic line and the results were compared with that obtained by injection of fluorescent dyes into the sinus venosus of embryos at various stages of development. We also examined the expression of claudin-5, a component of tight junctions during the first 4 days of development. We observed that the BBB of zebrafish starts to develop by 3 dpf, with expression of claudin-5 in the central arteries preceding it at 2 dpf. The hyaloid vasculature in the zebrafish retina develops a barrier function at 3 dpf, which endows the zebrafish with unique advantages for studying the BRB. Conclusion Zebrafish embryos develop BBB and BRB function simultaneously by 3 dpf, which is regulated by tight junction proteins. The Tg(l-fabp:DBP-EGFP zebrafish will have great advantages in studying development and maintenance of the blood-neural barrier, which is a new application for the widely used vertebrate model.

  9. Radionuclide detection of blood-retinal barrier disruption in diabetes mellitus

    International Nuclear Information System (INIS)

    Freeman, M.L.; Barnes, W.E.; Eastman, G.; Evans, L.; Gergans, G.; Kelertas, A.; Emanuele, N.; Kaplan, E.

    1984-01-01

    Diabetic retinopathy is one of the leading causes of blindness in the United States today. Because early treatment of proliferative retinopathy offers the best chance for visual salvation, there is an essential need for methods of identifying eyes at high risk. Recent research has shown that subclinical leakage from retinal blood vessels is one of the earliest signs of retinopathy. The feasibility of using radionuclide techniques to quantitate blood-retinal barrier disruption is demonstrated by a study in which 23 diabetics and 7 nondiabetics were imaged with an Anger camera in the anterior Waters projection at 2 hours after the administration of Tc-99m DTPA. In the digitized images, regions of interest were placed over each orbit and over one of the cerebral hemispheres. Orbital counts were then compared to cerebral counts on a per pixel basis. Eye to brain ratios were found to be lowest for nondiabetics and highest for patients with proliferative retinopathy. Additionally, the dynamic analysis of the same radiopharmaceutical may allow investigators to further study the pathophysiology of the diabetic eye

  10. Nicotine promotes blood retinal barrier damage in a model of human diabetic macular edema.

    Science.gov (United States)

    Maugeri, Grazia; D'Amico, Agata Grazia; Rasà, Daniela Maria; La Cognata, Valentina; Saccone, Salvatore; Federico, Concetta; Cavallaro, Sebastiano; D'Agata, Velia

    2017-10-01

    More than 1 billion world's population actively smokes tobacco containing the bioactive component nicotine (NT). The biological role of this molecule is mediated through the activation of nicotinic cholinergic receptors, widely distributed in various human tissues including retinal pigmented epithelium. The long-term assumption of NT contributes to several diseases development such as diabetic retinopathy. The major complication of this pathology is the diabetic macular edema (DME), characterized by macular area thinning and blood-retinal barrier (BRB) breakdown. Retinal hyperglycemic/hypoxic microenvironment represents one of the main factors favoring DME progression by eliciting the hypoxia-inducible factors (HIFs) expression. The latter induce new vessels formation by stimulating cellular secretion of vascular endothelial growth factor (VEGF). The etiology of DME is multifactorial, but little is known about the risk factors linked to cigarette smoking, in particular to nicotine's contribution. In the present study, we have investigated the NT role in a model, in vitro, of DME, by evaluating its effect on outer BRB permeability and HIFs/VEGF expression following exposure to hyperglycemic/hypoxic insult. Our results have demonstrated that this compound alters outer BRB integrity exposed to high glucose and low oxygen pressure microenvironment by upregulating HIF-1α/HIF-2α, VEGF expression and ERK1/2 phosphorylation. These data have suggested that NT may play a negative role in active smokers affected by DME. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Relationship between blood-retinal barrier development and formation of selenite nuclear cataract in rat

    Directory of Open Access Journals (Sweden)

    Ping Lu

    2017-12-01

    Full Text Available AIM: To investigate the relationship between development of blood-retinal barrier and formation of selenite nuclear cataract in rat. METHODS: Activity of GPx, MDA level in lens and selenium content in the eyeballs of different ages rats were determined. Besides, lanthanum hydroxide \\〖La(OH3\\〗 tracer method was used to detect development status of blood-retina barrier at different ages. RESULTS: The result showed that the enzyme activity of GPx was highest in young rats before open eyes, but then decreased gradually with age. Distribution of La(OH3 in retinal pigment epithelial layer of 20-day-old rats was significantly less than 11-day-old rats. Injecting sodium selenite to 9-day-old rats, lanthanum hydroxide increased obviously and extended to the inner layers of the retina after 48h, and the retinal pigment epithelial layer was damaged seriously; while injecting sodium selenite to 18-day-old rats with the same dose, number of lanthanum hydroxide decreased significantly and did not extend to the inner layer after 48h.Before opening eyes, the content of MDA in the lens of rats was the highest, and decreased significantly after opening eyes. The Se group was 5 times as that of the control group. Besides, in these groups of rats, selenium content in the eyeballs and MDA level in the lens were in agreement with the change of La(OH3 distribution. CONCLUSION: These results indicated that antioxidant capacity in the eyelid unopened rats is not the main reason for selenite induced cataract formation. The real reason is that blood-retina barrier development is not mature in the eyelid unopened rats.

  12. Zika virus infection of cellular components of the blood-retinal barriers: implications for viral associated congenital ocular disease.

    Science.gov (United States)

    Roach, Tracoyia; Alcendor, Donald J

    2017-03-03

    Ocular abnormalities present in microcephalic infants with presumed Zika virus (ZIKV) congenital disease includes focal pigment mottling of the retina, chorioretinal atrophy, optic nerve abnormalities, and lens dislocation. Target cells in the ocular compartment for ZIKV infectivity are unknown. The cellular response of ocular cells to ZIKV infection has not been described. Mechanisms for viral dissemination in the ocular compartment of ZIKV-infected infants and adults have not been reported. Here, we identify target cells for ZIKV infectivity in both the inner and outer blood-retinal barriers (IBRB and OBRB), describe the cytokine expression profile in the IBRB after ZIKV exposure, and propose a mechanism for viral dissemination in the retina. We expose primary cellular components of the IBRB including human retinal microvascular endothelial cells, retinal pericytes, and Müller cells as well as retinal pigmented epithelial cells of the OBRB to the PRVABC56 strain of ZIKV. Viral infectivity was analyzed by microscopy, immunofluorescence, and reverse transcription polymerase chain reaction (RT-PCR and qRT-PCR). Angiogenic and proinflammatory cytokines were measured by Luminex assays. We find by immunofluorescent staining using the Flavivirus 4G2 monoclonal antibody that retinal endothelial cells and pericytes of the IBRB and retinal pigmented epithelial cells of the OBRB are fully permissive for ZIKV infection but not Müller cells when compared to mock-infected controls. We confirmed ZIKV infectivity in retinal endothelial cells, retinal pericytes, and retinal pigmented epithelial cells by RT-PCR and qRT-PCR using ZIKV-specific oligonucleotide primers. Expression profiles by Luminex assays in retinal endothelial cells infected with ZIKV revealed a marginal increase in levels of beta-2 microglobulin (β2-m), granulocyte macrophage colony-stimulating factor (GMCSF), intercellular adhesion molecule 1 (ICAM-1), interleukin-6 (IL-6), monocyte chemotactic protein-1 (MCP

  13. Lycium barbarum polysaccharides reduce neuronal damage, blood-retinal barrier disruption and oxidative stress in retinal ischemia/reperfusion injury.

    Directory of Open Access Journals (Sweden)

    Suk-Yee Li

    Full Text Available Neuronal cell death, glial cell activation, retinal swelling and oxidative injury are complications in retinal ischemia/reperfusion (I/R injuries. Lycium barbarum polysaccharides (LBP, extracts from the wolfberries, are good for "eye health" according to Chinese medicine. The aim of our present study is to explore the use of LBP in retinal I/R injury. Retinal I/R injury was induced by surgical occlusion of the internal carotid artery. Prior to induction of ischemia, mice were treated orally with either vehicle (PBS or LBP (1 mg/kg once a day for 1 week. Paraffin-embedded retinal sections were prepared. Viable cells were counted; apoptosis was assessed using TUNEL assay. Expression levels of glial fibrillary acidic protein (GFAP, aquaporin-4 (AQP4, poly(ADP-ribose (PAR and nitrotyrosine (NT were investigated by immunohistochemistry. The integrity of blood-retinal barrier (BRB was examined by IgG extravasations. Apoptosis and decreased viable cell count were found in the ganglion cell layer (GCL and the inner nuclear layer (INL of the vehicle-treated I/R retina. Additionally, increased retinal thickness, GFAP activation, AQP4 up-regulation, IgG extravasations and PAR expression levels were observed in the vehicle-treated I/R retina. Many of these changes were diminished or abolished in the LBP-treated I/R retina. Pre-treatment with LBP for 1 week effectively protected the retina from neuronal death, apoptosis, glial cell activation, aquaporin water channel up-regulation, disruption of BRB and oxidative stress. The present study suggests that LBP may have a neuroprotective role to play in ocular diseases for which I/R is a feature.

  14. Protection of blood retinal barrier and systemic vasculature by insulin-like growth factor binding protein-3.

    Directory of Open Access Journals (Sweden)

    Yagna P R Jarajapu

    Full Text Available Previously, we showed that insulin growth factor (IGF-1 binding protein-3 (IGFBP-3, independent of IGF-1, reduces pathological angiogenesis in a mouse model of the oxygen-induced retinopathy (OIR. The current study evaluates novel endothelium-dependent functions of IGFBP-3 including blood retinal barrier (BRB integrity and vasorelaxation. To evaluate vascular barrier function, either plasmid expressing IGFBP-3 under the regulation of an endothelial-specific promoter or a control plasmid was injected into the vitreous humor of mouse pups (P1 and compared to the non-injected eyes of the same pups undergoing standard OIR protocol. Prior to sacrifice, the mice were given an injection of horseradish peroxidase (HRP. IGFBP-3 plasmid-injected eyes displayed near-normal vessel morphology and enhanced vascular barrier function. Further, in vitro IGFBP-3 protects retinal endothelial cells from VEGF-induced loss of junctional integrity by antagonizing the dissociation of the junctional complexes. To assess the vasodilatory effects of IGFBP-3, rat posterior cerebral arteries were examined in vitro. Intraluminal IGFBP-3 decreased both pressure- and serotonin-induced constrictions by stimulating nitric oxide (NO release that were blocked by L-NAME or scavenger receptor-B1 neutralizing antibody (SRB1-Ab. Both wild-type and IGF-1-nonbinding mutant IGFBP-3 (IGFBP-3NB stimulated eNOS activity/NO release to a similar extent in human microvascular endothelial cells (HMVECs. NO release was neither associated with an increase in intracellular calcium nor decreased by Ca(2+/calmodulin-dependent protein kinase II (CamKII blockade; however, dephosphorylation of eNOS-Thr(495 was observed. Phosphatidylinositol 3-kinase (PI3K activity and Akt-Ser(473 phosphorylation were both increased by IGFBP-3 and selectively blocked by the SRB1-Ab or PI3K blocker LY294002. In conclusion, IGFBP-3 mediates protective effects on BRB integrity and mediates robust NO release to stimulate

  15. The blood-retinal barrier permeability to fluorescein in normal subjects and in juvenile diabetics without retinopathy

    DEFF Research Database (Denmark)

    Krogsaa, B; Lund-Andersen, H; Mehlsen, J

    1986-01-01

    .1 +/- 0.4) X 10(-7) cm/sec (mean +/- 2 X SD) and in juvenile diabetics (1.1 +/- 0.7) X 10(-7) cm/sec (mean +/- 2 X SD). Thus a break-down of the blood-retinal barrier cannot be demonstrated as a very early and general phenomenon in the early course of the diabetic disease. The fluorescein diffusion...... coefficient in the vitreous body was determined and juvenile diabetics without apparent retinopathy showed a diffusion coefficient of (0.80 +/- 0.25) X 10(-5) cm2/sec (mean +/- 2 X SD), which was the same as in normals where the diffusion coefficient was (0.69 +/- 0.46) X 10(-5) cm2/sec (mean +/- 2 X SD)....

  16. Vasoinhibins regulate the inner and outer blood-retinal barrier and limit retinal oxidative stress

    Directory of Open Access Journals (Sweden)

    David eArredondo Zamarripa

    2014-10-01

    Full Text Available Vasoinhibins are prolactin fragments present in the retina, where they have been shown to prevent the hypervasopermeability associated with diabetes. Enhanced bradykinin (BK production contributes to the increased transport through the blood-retina barrier (BRB in diabetes. Here, we studied if vasoinhibins regulate BRB permeability by targeting the vascular endothelium and retinal pigment epithelium (RPE components of this barrier. Intravitreal injection of BK in male rats increased BRB permeability. Vasoinhibins prevented this effect, as did the B2 receptor antagonist Hoe-140. BK induced a transient decrease in mouse retinal and brain capillary endothelial monolayer resistance that was blocked by vasoinhibins. Both vasoinhibins and the nitric oxide (NO synthase inhibitor L-NAME, but not the antioxidant N-acetyl cysteine (NAC, blocked the transient decrease in bovine umbilical vein endothelial cell (BUVEC monolayer resistance induced by BK; this block was reversed by the NO donor DETANONOate. Vasoinhibins also prevented the BK-induced actin cytoskeleton redistribution, as did L-NAME. BK transiently decreased human RPE (ARPE-19 cell monolayer resistance, and this effect was blocked by vasoinhibins, L-NAME, and NAC. DETANONOate reverted the blocking effect of vasoinhibins. Similar to BK, the radical initiator Luperox induced a reduction in ARPE-19 cell monolayer resistance, which was prevented by vasoinhibins. These effects on RPE resistance coincided with actin cytoskeleton redistribution. Intravitreal injection of vasoinhibins reduced the levels of reactive oxygen species (ROS in retinas of streptozotocin-induced diabetic rats, particularly in the RPE and capillary-containing layers. Thus, vasoinhibins reduce BRB permeability by targeting both its main inner and outer components through NO- and ROS-dependent pathways, offering potential treatment strategies against diabetic retinopathies.

  17. Intravenously administered gold nanoparticles pass through the blood-retinal barrier depending on the particle size, and induce no retinal toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong Hun; Kim, Jin Hyoung; Yu, Young Suk [Department of Ophthalmology, Seoul National University College of Medicine and Seoul Artificial Eye Center, Clinical Research Institute, Seoul National University Hospital, Seoul 151744 (Korea, Republic of); Kim, Kyu-Won [NeuroVascular Coordination Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151742 (Korea, Republic of); Kim, Myung Hun, E-mail: hunin315@paran.com, E-mail: ysyu@snu.ac.kr [Department of Chemistry, Yonsei University, 134 Shinchon-dong, Seodaemun-ku, Seoul 120749 (Korea, Republic of)

    2009-12-16

    The retina maintains homeostasis through the blood-retinal barrier (BRB). Although it is ideal to deliver the drug to the retina via systemic administration, it is still challenging due to the BRB strictly regulating permeation from blood to the retina. Herein, we demonstrated that intravenously administered gold nanoparticles could pass through the BRB and are distributed in all retinal layers without cytotoxicity. After intravenous injection of gold nanoparticles into C57BL/6 mice, 100 nm nanoparticles were not detected in the retina whereas 20 nm nanoparticles passed through the BRB and were distributed in all retinal layers. 20 nm nanoparticles in the retina were observed in neurons (75 {+-} 5%), endothelial cells (17 {+-} 6%) and peri-endothelial glial cells (8 {+-} 3%), where nanoparticles were bound on the membrane. In the retina, cells containing nanoparticles did not show any structural abnormality and increase of cell death compared to cells without nanoparticles. Gold nanoparticles never affected the viability of retinal endothelial cells, astrocytes and retinoblastoma cells. Furthermore, gold nanoparticles never led to any change in expression of representative biological molecules including zonula occludens-1 and glut-1 in retinal endothelial cells, neurofilaments in differentiated retinoblastoma cells and glial fibrillary acidic protein in astrocytes. Therefore, our data suggests that small gold nanoparticles (20 nm) could be an alternative for drug delivery across the BRB, which could be safely applied in vivo.

  18. Intravenously administered gold nanoparticles pass through the blood-retinal barrier depending on the particle size, and induce no retinal toxicity

    International Nuclear Information System (INIS)

    Kim, Jeong Hun; Kim, Jin Hyoung; Yu, Young Suk; Kim, Kyu-Won; Kim, Myung Hun

    2009-01-01

    The retina maintains homeostasis through the blood-retinal barrier (BRB). Although it is ideal to deliver the drug to the retina via systemic administration, it is still challenging due to the BRB strictly regulating permeation from blood to the retina. Herein, we demonstrated that intravenously administered gold nanoparticles could pass through the BRB and are distributed in all retinal layers without cytotoxicity. After intravenous injection of gold nanoparticles into C57BL/6 mice, 100 nm nanoparticles were not detected in the retina whereas 20 nm nanoparticles passed through the BRB and were distributed in all retinal layers. 20 nm nanoparticles in the retina were observed in neurons (75 ± 5%), endothelial cells (17 ± 6%) and peri-endothelial glial cells (8 ± 3%), where nanoparticles were bound on the membrane. In the retina, cells containing nanoparticles did not show any structural abnormality and increase of cell death compared to cells without nanoparticles. Gold nanoparticles never affected the viability of retinal endothelial cells, astrocytes and retinoblastoma cells. Furthermore, gold nanoparticles never led to any change in expression of representative biological molecules including zonula occludens-1 and glut-1 in retinal endothelial cells, neurofilaments in differentiated retinoblastoma cells and glial fibrillary acidic protein in astrocytes. Therefore, our data suggests that small gold nanoparticles (20 nm) could be an alternative for drug delivery across the BRB, which could be safely applied in vivo.

  19. AAV-mediated gene therapy in Dystrophin-Dp71 deficient mouse leads to blood-retinal barrier restoration and oedema reabsorption.

    Science.gov (United States)

    Vacca, Ophélie; Charles-Messance, Hugo; El Mathari, Brahim; Sene, Abdoulaye; Barbe, Peggy; Fouquet, Stéphane; Aragón, Jorge; Darche, Marie; Giocanti-Aurégan, Audrey; Paques, Michel; Sahel, José-Alain; Tadayoni, Ramin; Montañez, Cecilia; Dalkara, Deniz; Rendon, Alvaro

    2016-07-15

    Dystrophin-Dp71 being a key membrane cytoskeletal protein, expressed mainly in Müller cells that provide a mechanical link at the Müller cell membrane by direct binding to actin and a transmembrane protein complex. Its absence has been related to blood-retinal barrier (BRB) permeability through delocalization and down-regulation of the AQP4 and Kir4.1 channels (1). We have previously shown that the adeno-associated virus (AAV) variant, ShH10, transduces Müller cells in the Dp71-null mouse retina efficiently and specifically (2,3). Here, we use ShH10 to restore Dp71 expression in Müller cells of Dp71 deficient mouse to study molecular and functional effects of this restoration in an adult mouse displaying retinal permeability. We show that strong and specific expression of exogenous Dp71 in Müller cells leads to correct localization of Dp71 protein restoring all protein interactions in order to re-establish a proper functional BRB and retina homeostasis thus preventing retina from oedema. This study is the basis for the development of new therapeutic strategies in dealing with diseases with BRB breakdown and macular oedema such as diabetic retinopathy (DR). © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Carrier-Mediated Transport of Nicotine Across the Inner Blood-Retinal Barrier: Involvement of a Novel Organic Cation Transporter Driven by an Outward H(+) Gradient.

    Science.gov (United States)

    Tega, Yuma; Kubo, Yoshiyuki; Yuzurihara, Chihiro; Akanuma, Shin-Ichi; Hosoya, Ken-Ichi

    2015-09-01

    The present study was carried out to investigate the blood-to-retina transport of nicotine across the inner blood-retinal barrier (BRB). Using the in vivo vascular injection method, the blood-to-retina influx clearance of nicotine across the BRB was determined as 131 μL/(min?g retina), which is much higher than that of a nonpermeable paracellular marker, and blood-to-retina transport of nicotine was inhibited by organic cations such as pyrilamine and verapamil. The nicotine uptake by a conditionally immortalized rat retinal capillary endothelial cell line (TR-iBRB2 cells), an in vitro model of the inner BRB, exhibited time, temperature, and concentration dependence with a Km of 492 μM. These results suggest the involvement of a carrier-mediated transport process in nicotine transport in the inner BRB. The nicotine uptake by TR-iBRB2 cells was stimulated by an outwardly directed H(+) gradient, and the uptake was significantly inhibited by bulky and hydrophobic cationic drugs, whereas inhibitors of organic cation transporters did not show inhibitory effect. These results suggest that the novel organic cation transport system driven by an outwardly directed H(+) gradient is involved in the blood-to-retina transport of nicotine across the inner BRB. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  1. Consumption of Polyphenol-Rich Zingiber Zerumbet Rhizome Extracts Protects against the Breakdown of the Blood-Retinal Barrier and Retinal Inflammation Induced by Diabetes

    Directory of Open Access Journals (Sweden)

    Thing-Fong Tzeng

    2015-09-01

    Full Text Available The present study investigates the amelioration of diabetic retinopathy (DR by Zingiber zerumbet rhizome ethanol extracts (ZZRext in streptozotocin-induced diabetic rats (STZ-diabetic rats. ZZRext contains high phenolic and flavonoid contents. STZ-diabetic rats were treated orally with ZZRext (200, 300 mg/kg per day for three months. Blood-retinal barrier (BRB breakdown and increased vascular permeability were found in diabetic rats, with downregulation of occludin, and claudin-5. ZZRext treatment effectively preserved the expression of occludin, and claudin-5, leading to less BRB breakdown and less vascular permeability. Retinal histopathological observation showed that the disarrangement and reduction in thickness of retinal layers were reversed in ZZRext-treated diabetic rats. Retinal gene expression of tumor necrosis factor-α, interleukin (IL-1β, IL-6, vascular endothelial growth factor, intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 were all decreased in ZZRext-treated diabetic rats. Moreover, ZZRext treatment not only inhibited the nuclear factor κB (NF-κB activation, but also downregulated the protein expression of p38 mitogen-activated protein kinase (MAPK in diabetic retina. In conclusion, the results suggest that the retinal protective effects of ZZRext occur through improved retinal structural change and inhibiting retinal inflammation. The antiretinopathy property of ZZRext might be related to the downregulation of p38 MAPK and NF-κB signal transduction induced by diabetes.

  2. Upregulated inflammatory associated factors and blood-retinal barrier changes in the retina of type 2 diabetes mellitus model

    Directory of Open Access Journals (Sweden)

    Rui-Jin Ran

    2016-11-01

    Full Text Available AIM: To examine the expression of high mobility group box-1 (HMGB-1 and intercellular adhesion molecule-1 (ICAM-1 in the retina and the hippocampal tissues; and further to evaluate the association of these two molecules with the alterations of blood-retinal barrier (BRB and blood-brain barrier (BBB in a rat model of type 2 diabetes. METHODS: The type-2 diabetes mellitus (DM model was established with a high-fat and high-glucose diet combined with streptozotocin (STZ. Sixteen weeks after DM induction, morphological changes of retina and hippocampus were observed with hematoxylin-eosin staining, and alternations of BRB and BBB permeability were measured using Evans blue method. Levels of HMGB-1 and ICAM-1 in retina and hippocampus were detected by Western blot. Serum HMGB-1 levels were determined by enzyme-linked immunosorbent assay (ELISA. RESULTS: A significantly higher serum fasting blood glucose level in DM rats was observed 2wk after STZ injection (P<0.01. The serum levels of fasting insulin, Insulin resistance homeostatic model assessment (IRHOMA, total cholesterol (TC, total triglycerides (TG and low density lipoprotein cholesterol (LDL-C in the DM rats significantly higher than those in the controls (all P<0.01. HMGB-1 (0.96±0.03, P<0.01 and ICAM-1 (0.76±0.12, P<0.05 levels in the retina in the DM rats were significantly higher than those in the controls. HMGB-1 (0.83±0.13, P<0.01 and ICAM-1 (1.15±0.08, P<0.01 levels in the hippocampal tissues in the DM rats were also significantly higher than those in the controls. Sixteen weeks after induction of DM, the BRB permeability to albumin-bound Evans blue dye in the DM rats was significantly higher than that in the controls (P<0.01. However, there was no difference of BBB permeability between the DM rats and controls. When compared to the controls, hematoxylin and eosin staining showed obvious irregularities in the DM rats. CONCLUSION: BRB permeability increases significantly

  3. Blood-retinal barrier glycerol permeability in diabetic macular edema and healthy eyes: estimations from macular volume changes after peroral glycerol

    DEFF Research Database (Denmark)

    Thornit, Dorte Nellemann; Vinten, Carl Martin; Sander, Birgit

    2010-01-01

    PURPOSE: To compare the changes in macular volume (MV) between healthy subjects and patients with diabetic macular edema (DME) after an osmotic load and to determine the glycerol permeability (P(gly)) of the blood-retinal barrier (BRB). METHODS: In this unmasked study, 13 patients with DME and 5...... model of glycerol and osmotic water movements across the BRB was constructed to estimate P(gly). RESULTS: Median MV decreased from 7.30 mm(3) (range, 6.68-7.35) to the maximum median DeltaMV of -0.30 mm(3) (25%-75% quartile: -0.34 to -0.25) in the healthy volunteers and from 7.97 mm(3) (range, 6...

  4. The effect of a preoperative subconjuntival injection of dexamethasone on blood-retinal barrier breakdown following scleral buckling retinal detachment surgery: a prospective randomized placebo-controlled double blind clinical trial

    NARCIS (Netherlands)

    E. Bali (Ernesto); E.J. Feron (Eric); E. Peperkamp (Ed); M.A.H. Veckeneer (Marc); P.G.H. Mulder (Paul); J.C. van Meurs (Jan)

    2010-01-01

    textabstractBackground: Blood-retinal barrier breakdown secondary to retinal detachment and retinal detachment repair is a factor in the pathogenesis of proliferative vitreoretinopathy (PVR). We wished to investigate whether an estimated 700 to 1000 ng/ml subretinal dexamethasone concentration at

  5. Hyperthermia of magnetic nanoparticles allows passage of sodium fluorescein and Evans blue dye across the blood-retinal barrier.

    Science.gov (United States)

    Tabatabaei, Seyed Nasrollah; Tabatabaei, Maryam Sadat; Girouard, Hélène; Martel, Sylvain

    2016-09-01

    The blood-retina barrier (BRB) is a biological barrier consisting of tightly interconnected endothelial cells inside the retinal vascular network that protects the neural tissue from harmful pathogens and neurotoxic molecules circulating in the bloodstream. Unfortunately, with regard to retinoblastoma, this barrier also prevents systemically administered therapeutics reaching the retinal tissue. In this study we introduce a novel technique to locally and transiently increase BRB permeability for drug delivery using hyperthermia of magnetic nanoparticles (MNPs). An alternating current (AC) magnetic field was used to induce hyperthermia of locally injected MNPs in the left ophthalmic artery of a rat model. To improve adherence on the surface of the endothelium, commercially available MNPs coated with human transferrin glycoproteins were used. After hyperthermia we assessed the extravasation of systemically injected sodium fluorescein (NaF) as well as Evans blue dye (EBD) into the retinal tissue. Spectrofluorometry and fluorescent microscopy image analysis show a significant increase of dye penetration in the retina where hyperthermia of MNPs was applied. Our proposed new technique can allow both small and large dye molecules to cross the BRB. While the results are preliminary and thorough evaluation of the retinal tissue following hyperthermia is necessary, this technique has the potential to be an effective mean for the treatment of various diseases such as retinoblastoma.

  6. Alpha-Mangostin Attenuation of Hyperglycemia-Induced Ocular Hypoperfusion and Blood Retinal Barrier Leakage in the Early Stage of Type 2 Diabetes Rats

    Directory of Open Access Journals (Sweden)

    Amporn Jariyapongskul

    2015-01-01

    Full Text Available The present study examined effects of alpha-mangostin (α-MG supplementation on the retinal microvasculature, including ocular blood flow (OBF and blood-retinal barrier (BRB permeability in a type 2 diabetic animal model. Male Sprague-Dawley rats were divided into four groups: normal control and diabetes with or without α-MG supplementation. Alpha-mangostin (200 mg/Kg/day was administered by gavage feeding for 8 weeks. The effects of α-MG on biochemical and physiological parameters including mean arterial pressure (MAP, OBF, and BRB leakage were investigated. Additionally, levels of retinal malondialdehyde (MDA, advance glycation end products (AGEs, receptor of advance glycation end products (RAGE, tumour necrosis factor alpha (TNF-α, and vascular endothelial growth factor (VEGF were evaluated. The elevated blood glucose, HbA1c, cholesterol, triglyceride, serum insulin, and HOMA-IR were observed in DM2 rats. Moreover, DM2 rats had significantly decreased OBF but statistically increased MAP and leakage of the BRB. The α-MG-treated DM2 rats showed significantly lower levels of retinal MDA, AGEs, RAGE, TNF-α, and VEGF than the untreated group. Interestingly, α-MG supplementation significantly increased OBF while it decreased MAP and leakage of BRB. In conclusion, α-MG supplementation could restore OBF and improve the BRB integrity, indicating its properties closely associated with antihyperglycemic, antioxidant, anti-inflammatory, and antiglycation activities.

  7. Alpha-Mangostin Attenuation of Hyperglycemia-Induced Ocular Hypoperfusion and Blood Retinal Barrier Leakage in the Early Stage of Type 2 Diabetes Rats

    Science.gov (United States)

    Jariyapongskul, Amporn; Areebambud, Chonticha; Suksamrarn, Sunit; Mekseepralard, Chantana

    2015-01-01

    The present study examined effects of alpha-mangostin (α-MG) supplementation on the retinal microvasculature, including ocular blood flow (OBF) and blood-retinal barrier (BRB) permeability in a type 2 diabetic animal model. Male Sprague-Dawley rats were divided into four groups: normal control and diabetes with or without α-MG supplementation. Alpha-mangostin (200 mg/Kg/day) was administered by gavage feeding for 8 weeks. The effects of α-MG on biochemical and physiological parameters including mean arterial pressure (MAP), OBF, and BRB leakage were investigated. Additionally, levels of retinal malondialdehyde (MDA), advance glycation end products (AGEs), receptor of advance glycation end products (RAGE), tumour necrosis factor alpha (TNF-α), and vascular endothelial growth factor (VEGF) were evaluated. The elevated blood glucose, HbA1c, cholesterol, triglyceride, serum insulin, and HOMA-IR were observed in DM2 rats. Moreover, DM2 rats had significantly decreased OBF but statistically increased MAP and leakage of the BRB. The α-MG-treated DM2 rats showed significantly lower levels of retinal MDA, AGEs, RAGE, TNF-α, and VEGF than the untreated group. Interestingly, α-MG supplementation significantly increased OBF while it decreased MAP and leakage of BRB. In conclusion, α-MG supplementation could restore OBF and improve the BRB integrity, indicating its properties closely associated with antihyperglycemic, antioxidant, anti-inflammatory, and antiglycation activities. PMID:25950001

  8. Mitochondrial expression and activity of P-glycoprotein under oxidative stress in outer blood-retinal barrier

    Directory of Open Access Journals (Sweden)

    Yue-Hong Zhang

    2017-07-01

    Full Text Available AIM: To investigate the role of oxidative stress in regulating the functional expression of P-glycoprotein (P-gp in mitochondria of D407 cells. METHODS: D407 cells were exposed to different ranges of concentrations of H2O2. The mitochondrial location of P-gp in the cells subjected to oxidative stress was detected by confocal analysis. Expression of P-gp in isolated mitochondria was assessed by Western blot. The pump activity of P-gp was evaluated by performing the efflux study on isolated mitochondria with Rhodamine 123 (Rho-123 alone and in the presence of P-gp inhibitor (Tariquidar using flow cytometry analysis. The cells were pretreated with 10 mmol/L N-acetylcysteine (NAC for 30min before exposing to H2O2, and analyzed the mitochondrial extracts by Western blot and flow cytometry. RESULTS: P-gp was co-localized in the mitochondria by confocal laser scanning microscopy, and it was also detected in the mitochondria of D407 cells using Western blot. Exposure to increasing concentrations of H2O2 led to gradually increased expression and location of P-gp in the mitochondria of cells. Rho-123 efflux assay showed higher uptake of Rho-123 on isolated mitochondria in the presence of Tariquidar both in normal and oxidative stress state. H2O2 up-regulated P-gp in D407 cells, which could be reversed by NAC treatment. CONCLUSION: H2O2 could up-regulate the functional expression of P-gp in mitochondria of D407 cells, while antioxidants might suppress oxidative-stress-induced over-expression of functional P-gp. It is indicative that limiting the mitochondrial P-gp transport in retinal pigment epithelium cells would be to improve the effect of mitochondria-targeted antioxidant therapy in age-related macular degeneration-like retinopathy.

  9. Transient and local increase in the permeability of the blood-brain barrier and the blood-retinal barrier by hyperthermia of magnetic nanoparticles in a rat model

    Science.gov (United States)

    Tabatabaei Shafie, Seyed Nasrollah

    After successfully propelling therapeutic agents encapsulated in magnetic micro-carriers to a specific location inside an animal model by the gradient magnetic field of a modified clinical Magnetic Resonance (MR) scanner, we are now aiming to perform local drug delivery in the region of the central nervous system (CNS). To achieve localized drug delivery and increase efficacy, this project advances the theme that the therapeutic agents must be administered by means no more invasive than an intravenous injection followed by remote propulsion, controlled tracking, and on-command actuation in the CNS. The demanding function of the CNS requires an extremely stable environment. In fact, any small change in the composition of the interstitial fluid in the CNS plays a predominant role in regulating its microenvironment and neuronal activity. Therefore, the CNS is conceived to protect itself from frequent fluctuations of extracellular concentration of hormones, amino acids, and ion levels that occur after meals, exercise, or stress - as well as from toxic pathogens that may be circulating in the blood stream. This preventive barrier consists mainly of tightly interconnected endothelial cells that carpet the inner surface of most blood vessels in the CNS. While it provides a stable neuronal environment, more than 98% of all drug molecules are not able to cross this barrier and the extent to which a molecule enters is determined only by the permeability characteristics of the barrier. Therefore, while pharmaceutical research progresses for drug delivery to the CNS, it is limited by its pharmacokinetics through physiological barriers. Successful transient and local opening of the barrier for diffusion of therapeutics could strongly support the feasibility of treating a variety of neurological disorders. A recent effort presented in this dissertation provides evidence for the emergence of a novel approach to overcome this problem. This technique uses magnetic nanoparticles

  10. Contacting co-culture of human retinal microvascular endothelial cells alters barrier function of human embryonic stem cell derived retinal pigment epithelial cells.

    Science.gov (United States)

    Skottman, H; Muranen, J; Lähdekorpi, H; Pajula, E; Mäkelä, K; Koivusalo, L; Koistinen, A; Uusitalo, H; Kaarniranta, K; Juuti-Uusitalo, K

    2017-10-01

    Here we evaluated the effects of human retinal microvascular endothelial cells (hREC) on mature human embryonic stem cell (hESC) derived retinal pigment epithelial (RPE) cells. The hESC-RPE cells (Regea08/017, Regea08/023 or Regea11/013) and hREC (ACBRI 181) were co-cultured on opposite sides of transparent membranes for up to six weeks. Thereafter barrier function, small molecule permeability, localization of RPE and endothelial cell marker proteins, cellular fine structure, and growth factor secretion of were evaluated. After co-culture, the RPE specific CRALBP and endothelial cell specific von Willebrand factor were appropriately localized. In addition, the general morphology, pigmentation, and fine structure of hESC-RPE cells were unaffected. Co-culture increased the barrier function of hESC-RPE cells, detected both with TEER measurements and cumulative permeability of FD4 - although the differences varied among the cell lines. Co-culturing significantly altered VEGF and PEDF secretion, but again the differences were cell line specific. The results of this study showed that co-culture with hREC affects hESC-RPE functionality. In addition, co-culture revealed drastic cell line specific differences, most notably in growth factor secretion. This model has the potential to be used as an in vitro outer blood-retinal barrier model for drug permeability testing. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Plastic Schottky barrier solar cells

    Science.gov (United States)

    Waldrop, James R.; Cohen, Marshall J.

    1984-01-24

    A photovoltaic cell structure is fabricated from an active medium including an undoped, intrinsically p-type organic semiconductor comprising polyacetylene. When a film of such material is in rectifying contact with a magnesium electrode, a Schottky-barrier junction is obtained within the body of the cell structure. Also, a gold overlayer passivates the magnesium layer on the undoped polyacetylene film.

  12. Cannabidiol attenuates high glucose-induced endothelial cell inflammatory response and barrier disruption

    Science.gov (United States)

    Rajesh, Mohanraj; Mukhopadhyay, Partha; Bátkai, Sándor; Haskó, György; Liaudet, Lucas; Drel, Viktor R.; Obrosova, Irina G.; Pacher, Pál

    2008-01-01

    A nonpsychoactive cannabinoid cannabidiol (CBD) has been shown to exert potent anti-inflammatory and antioxidant effects and has recently been reported to lower the incidence of diabetes in nonobese diabetic mice and to preserve the blood-retinal barrier in experimental diabetes. In this study we have investigated the effects of CBD on high glucose (HG)-induced, mitochondrial superoxide generation, NF-κB activation, nitrotyrosine formation, inducible nitric oxide synthase (iNOS) and adhesion molecules ICAM-1 and VCAM-1 expression, monocyte-endothelial adhesion, transendothelial migration of monocytes, and disruption of endothelial barrier function in human coronary artery endothelial cells (HCAECs). HG markedly increased mitochondrial superoxide generation (measured by flow cytometry using MitoSOX), NF-κB activation, nitrotyrosine formation, upregulation of iNOS and adhesion molecules ICAM-1 and VCAM-1, transendothelial migration of monocytes, and monocyte-endothelial adhesion in HCAECs. HG also decreased endothelial barrier function measured by increased permeability and diminished expression of vascular endothelial cadherin in HCAECs. Remarkably, all the above mentioned effects of HG were attenuated by CBD pretreatment. Since a disruption of the endothelial function and integrity by HG is a crucial early event underlying the development of various diabetic complications, our results suggest that CBD, which has recently been approved for the treatment of inflammation, pain, and spasticity associated with multiple sclerosis in humans, may have significant therapeutic benefits against diabetic complications and atherosclerosis. PMID:17384130

  13. Plastic Schottky-barrier solar cells

    Science.gov (United States)

    Waldrop, J.R.; Cohen, M.J.

    1981-12-30

    A photovoltaic cell structure is fabricated from an active medium including an undoped polyacetylene, organic semiconductor. When a film of such material is in rectifying contact with a metallic area electrode, a Schottky-barrier junction is obtained within the body of the cell structure. Also, a gold overlayer passivates a magnesium layer on the undoped polyacetylene film. With the proper selection and location of elements a photovoltaic cell structure and solar cell are obtained.

  14. Electrochemical cell structure including an ionomeric barrier

    Science.gov (United States)

    Lambert, Timothy N.; Hibbs, Michael

    2017-06-20

    An apparatus includes an electrochemical half-cell comprising: an electrolyte, an anode; and an ionomeric barrier positioned between the electrolyte and the anode. The anode may comprise a multi-electron vanadium phosphorous alloy, such as VP.sub.x, wherein x is 1-5. The electrochemical half-cell is configured to oxidize the vanadium and phosphorous alloy to release electrons. A method of mitigating corrosion in an electrochemical cell includes disposing an ionomeric barrier in a path of electrolyte or ion flow to an anode and mitigating anion accumulation on the surface of the anode.

  15. The Retinal Pigment Epithelium: Something More than a Constituent of the Blood-Retinal Barrier—Implications for the Pathogenesis of Diabetic Retinopathy

    Directory of Open Access Journals (Sweden)

    Rafael Simó

    2010-01-01

    Full Text Available The retinal pigment epithelium (RPE is an specialized epithelium lying in the interface between the neural retina and the choriocapillaris where it forms the outer blood-retinal barrier (BRB. The main functions of the RPE are the following: (1 transport of nutrients, ions, and water, (2 absorption of light and protection against photooxidation, (3 reisomerization of all-trans-retinal into 11-cis-retinal, which is crucial for the visual cycle, (4 phagocytosis of shed photoreceptor membranes, and (5 secretion of essential factors for the structural integrity of the retina. An overview of these functions will be given. Most of the research on the physiopathology of diabetic retinopathy has been focused on the impairment of the neuroretina and the breakdown of the inner BRB. By contrast, the effects of diabetes on the RPE and in particular on its secretory activity have received less attention. In this regard, new therapeutic strategies addressed to modulating RPE impairment are warranted.

  16. The Retinal Pigment Epithelium: Something More than a Constituent of the Blood-Retinal Barrier—Implications for the Pathogenesis of Diabetic Retinopathy

    Science.gov (United States)

    Simó, Rafael; Villarroel, Marta; Corraliza, Lídia; Hernández, Cristina; Garcia-Ramírez, Marta

    2010-01-01

    The retinal pigment epithelium (RPE) is an specialized epithelium lying in the interface between the neural retina and the choriocapillaris where it forms the outer blood-retinal barrier (BRB). The main functions of the RPE are the following: (1) transport of nutrients, ions, and water, (2) absorption of light and protection against photooxidation, (3) reisomerization of all-trans-retinal into 11-cis-retinal, which is crucial for the visual cycle, (4) phagocytosis of shed photoreceptor membranes, and (5) secretion of essential factors for the structural integrity of the retina. An overview of these functions will be given. Most of the research on the physiopathology of diabetic retinopathy has been focused on the impairment of the neuroretina and the breakdown of the inner BRB. By contrast, the effects of diabetes on the RPE and in particular on its secretory activity have received less attention. In this regard, new therapeutic strategies addressed to modulating RPE impairment are warranted. PMID:20182540

  17. NAP counteracts hyperglycemia/hypoxia induced retinal pigment epithelial barrier breakdown through modulation of HIFs and VEGF expression.

    Science.gov (United States)

    D'Amico, Agata G; Maugeri, Grazia; Rasà, Daniela M; La Cognata, Valentina; Saccone, Salvatore; Federico, Concetta; Cavallaro, Sebastiano; D'Agata, Velia

    2018-02-01

    Diabetic macular edema (DME) is a common complication leading to a central vision loss in patients with diabetes. In this eye pathology, the hyperglycaemic/hypoxic microenvironment of pigmented epithelium is responsible for outer blood retinal barrier integrity changes. More recently, we have shown that a small peptide derived from the activity-dependent neuroprotective protein (ADNP), known as NAP, counteracts damages occurring during progression of diabetic retinopathy by modulating HIFs/VEGF pathway. Here, we have investigated for the first time the role of this peptide on outer blood retinal barrier (BRB) integrity exposed to hyperglycaemic/hypoxic insult mimicking a model in vitro of DME. To characterize NAP role on disease's pathogenesis, we have analyzed its effect on HIFs/VEGF system in human retinal pigmented epithelial cells, ARPE-19, grown in high glucose and low oxygen tension. The results have shown that NAP prevents outer BRB breakdown by reducing HIF1α/HIF2α, VEGF/VEGFRs, and increasing HIF3α expression, moreover it is able to reduce the percentage of apoptotic cells by modulating the expression of two death related genes, BAX and Bcl2. Further investigations are needed to determine the possible use of NAP in DME treatment. © 2017 Wiley Periodicals, Inc.

  18. Relationship between encapsulation barrier performance and organic solar cell lifetime

    Science.gov (United States)

    Cros, Stéphane; Guillerez, Stéphane; de Bettignies, Rémi; Lemaître, Noëlla; Bailly, Severine; Maisse, Pascal

    2008-08-01

    This article describes a method to have a better knowledge of barrier performances needed for encapsulating materials, particularly in the case of organic solar cells devices. We have developed a high sensitivity permeameter which enables simultaneous measurements of water and oxygen permeation. Various polymers and inorganic coatings on polymer substrates have been measured. Experimental barrier parameters have been plotted considering the steady and transient states of permeation curves and compared to theoretical values. In addition, we have performed ageing experiments on encapsulated organic solar cells to establish a barrier requirement directly related to the device. Finally, we have performed such experiments using different cathode materials and encapsulating materials.

  19. InGaP Heterojunction Barrier Solar Cells

    Science.gov (United States)

    Welser, Roger E. (Inventor)

    2014-01-01

    A new solar cell structure called a heterojunction barrier solar cell is described. As with previously reported quantum-well and quantum-dot solar cell structures, a layer of narrow band-gap material, such as GaAs or indium-rich InGaP, is inserted into the depletion region of a wide band-gap PN junction. Rather than being thin, however, the layer of narrow band-gap material is about 400-430 nm wide and forms a single, ultrawide well in the depletion region. Thin (e.g., 20-50 nm), wide band-gap InGaP barrier layers in the depletion region reduce the diode dark current. Engineering the electric field and barrier profile of the absorber layer, barrier layer, and p-type layer of the PN junction maximizes photogenerated carrier escape. This new twist on nanostructured solar cell design allows the separate optimization of current and voltage to maximize conversion efficiency.

  20. Vascular Cell Senescence Contributes to Blood-Brain Barrier Breakdown

    NARCIS (Netherlands)

    Yamazaki, Y.; Baker, D.J.; Tachibana, M.; Liu, C.C.; Deursen, J.M.A. van; Brott, T.G.; Bu, G.; Kanekiyo, T.

    2016-01-01

    BACKGROUND AND PURPOSE: Age-related changes in the cerebrovasculature, including blood-brain barrier (BBB) disruption, are emerging as potential risks for diverse neurological conditions. Because the accumulation of senescent cells in tissues is increasingly recognized as a critical step leading to

  1. InGaP Heterojunction Barrier Solar Cells

    Science.gov (United States)

    Welser, Roger E.

    2010-01-01

    A new solar-cell structure utilizes a single, ultra-wide well of either gallium arsenide (GaAs) or indium-gallium-phosphide (InGaP) in the depletion region of a wide bandgap matrix, instead of the usual multiple quantum well layers. These InGaP barrier layers are effective at reducing diode dark current, and photogenerated carrier escape is maximized by the proper design of the electric field and barrier profile. With the new material, open-circuit voltage enhancements of 40 and 100 mV (versus PIN control systems) are possible without any degradation in short-circuit current. Basic tenets of quantum-well and quantum- dot solar cells are utilized, but instead of using multiple thin layers, a single wide well works better. InGaP is used as a barrier material, which increases open current, while simultaneously lowering dark current, reducing both hole diffusion from the base, and space charge recombination within the depletion region. Both the built-in field and the barrier profile are tailored to enhance thermionic emissions, which maximizes the photocurrent at forward bias, with a demonstrated voltage increase. An InGaP heterojunction barrier solar cell consists of a single, ultra-wide GaAs, aluminum-gallium-arsenide (AlGaAs), or lower-energy-gap InGaP absorber well placed within the depletion region of an otherwise wide bandgap PIN diode. Photogenerated electron collection is unencumbered in this structure. InGaAs wells can be added to the thick GaAs absorber layer to capture lower-energy photons.

  2. Cell-penetrating peptides for drug delivery across membrane barriers

    DEFF Research Database (Denmark)

    Foged, Camilla; Nielsen, Hanne Moerck

    2008-01-01

    During the last decade, cell-penetrating peptides have been investigated for their ability to overcome the plasma membrane barrier of mammalian cells for the intracellular or transcellular delivery of cargoes as diverse as low molecular weight drugs, imaging agents, oligonucleotides, peptides......-penetrating peptides as transmembrane drug delivery agents, according to the recent literature, and discusses critical issues and future challenges in relation to fully understanding the fundamental principles of the cell-penetrating peptide-mediated membrane translocation of cargoes and the exploitation......, proteins and colloidal carriers such as liposomes and polymeric nanoparticles. Their ability to cross biological membranes in a non-disruptive way without apparent toxicity is highly desired for increasing drug bioavailability. This review provides an overview of the application of cell...

  3. Barrier Functionality of Porcine and Bovine Brain Capillary Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Ailar Nakhlband

    2011-09-01

    Full Text Available Introduction: To date, isolated cell based blood-brain barrier (BBB models have been widely used for brain drug delivery and targeting, due to their relatively proper bioelectrical and permeability properties. However, primary cultures of brain capillary endothelial cells (BCECs isolated from different species vary in terms of bioelectrical and permeability properties. Methods: To pursue this, in the current investigation, primary porcine and bovine BCECs (PBCECs and BBCECs, respectively were isolated and used as an in vitro BBB model. The bioelectrical and permeability properties were assessed in BCECs co-cultured with C6 cells with/without hydrocortisone (550 nM. The bioelectrical properties were further validated by means of the permeability coefficients of transcellular and paracellular markers. Results: The primary PBCECs displayed significantly higher trans-endothelial electrical resistance (~900 W.cm2 than BBCECs (~700 W.cm2 - both co-cultured with C6 cells in presence of hydrocortisone. Permeability coefficients of propranolol/diazepam and mannitol/sucrose in PBCECs were ~21 and ~2 (×10-6 cm.sec-1, where these values for BBCECs were ~25 and ~5 (×10-6 cm.sec-1. Conclusion: Upon our bioelectrical and permeability findings, both models display discriminative barrier functionality but porcine BCECs seem to provide a better platform than bovine BCECs for drug screening and brain targeting.

  4. High glucose promotes the migration of retinal pigment epithelial cells through increased oxidative stress and PEDF expression

    Science.gov (United States)

    Farnoodian, Mitra; Halbach, Caroline; Slinger, Cassidy; Pattnaik, Bikash R.; Sorenson, Christine M.

    2016-01-01

    Defects in the outer blood-retinal barrier have significant impact on the pathogenesis of diabetic retinopathy and macular edema. However, the detailed mechanisms involved remain largely unknown. This is, in part, attributed to the lack of suitable animal and cell culture models, including those of mouse origin. We recently reported a method for the culture of retinal pigment epithelial (RPE) cells from wild-type and transgenic mice. The RPE cells are responsible for maintaining the integrity of the outer blood-retinal barrier whose dysfunction during diabetes has a significant impact on vision. Here we determined the impact of high glucose on the function of RPE cells. We showed that high glucose conditions resulted in enhanced migration and increased the level of oxidative stress in RPE cells, but minimally impacted their rate of proliferation and apoptosis. High glucose also minimally affected the cell-matrix and cell-cell interactions of RPE cells. However, the expression of integrins and extracellular matrix proteins including pigment epithelium-derived factor (PEDF) were altered under high glucose conditions. Incubation of RPE cells with the antioxidant N-acetylcysteine under high glucose conditions restored normal migration and PEDF expression. These cells also exhibited increased nuclear localization of the antioxidant transcription factor Nrf2 and ZO-1, reduced levels of β-catenin and phagocytic activity, and minimal effect on production of vascular endothelial growth factor, inflammatory cytokines, and Akt, MAPK, and Src signaling pathways. Thus high glucose conditions promote RPE cell migration through increased oxidative stress and expression of PEDF without a significant effect on the rate of proliferation and apoptosis. PMID:27440660

  5. Barrier-protective effects of activated protein C in human alveolar epithelial cells.

    Directory of Open Access Journals (Sweden)

    Ferranda Puig

    Full Text Available Acute lung injury (ALI is a clinical manifestation of respiratory failure, caused by lung inflammation and the disruption of the alveolar-capillary barrier. Preservation of the physical integrity of the alveolar epithelial monolayer is of critical importance to prevent alveolar edema. Barrier integrity depends largely on the balance between physical forces on cell-cell and cell-matrix contacts, and this balance might be affected by alterations in the coagulation cascade in patients with ALI. We aimed to study the effects of activated protein C (APC on mechanical tension and barrier integrity in human alveolar epithelial cells (A549 exposed to thrombin. Cells were pretreated for 3 h with APC (50 µg/ml or vehicle (control. Subsequently, thrombin (50 nM or medium was added to the cell culture. APC significantly reduced thrombin-induced cell monolayer permeability, cell stiffening, and cell contraction, measured by electrical impedance, optical magnetic twisting cytometry, and traction microscopy, respectively, suggesting a barrier-protective response. The dynamics of the barrier integrity was also assessed by western blotting and immunofluorescence analysis of the tight junction ZO-1. Thrombin resulted in more elongated ZO-1 aggregates at cell-cell interface areas and induced an increase in ZO-1 membrane protein content. APC attenuated the length of these ZO-1 aggregates and reduced the ZO-1 membrane protein levels induced by thrombin. In conclusion, pretreatment with APC reduced the disruption of barrier integrity induced by thrombin, thus contributing to alveolar epithelial barrier protection.

  6. A novel cell exclusion zone assay with a barrier made from room temperature vulcanizing silicone rubber.

    Directory of Open Access Journals (Sweden)

    Yusuke Shiode

    Full Text Available To examine the usefulness of room temperature vulcanizing (RTV silicone rubber as a barrier material for cell exclusion zone assays.We created barriers using three types of RTV silicone rubber with differing viscosities. We then assessed the adherence of these barriers to culture dishes and their ease of removal from the dishes. We tested the effect of the newly created barriers on the extracellular matrix (ECM protein fibronectin by attaching and then removing them from fibronectin-coated culture dishes. We also conducted cell exclusion zone assays with MIO-M1 cells using this new barrier in order to measure cell migration. We used real time reverse transcription polymerase chain reaction (RT-PCR and immunohistochemical staining to measure the effect of fibronectin on MIO-M1 cell migration and the effect of migration (with fibronectin coating on basic fibroblast growth factor (bFGF expression in MIO-M1 cells.Of the three types of RTV silicon rubber tested, KE-3495-T was the best in terms of adherence to the dish and ease of removal from the dish. When barrier attachment and removal tests were performed, this rubber type did not have an effect on the fibronectin that coated the dish. In the cell exclusion assay, removal of the barrier revealed that a cell-free area with a distinct margin had been created, which allowed us to conduct a quantitative assessment of migration. Fibronectin significantly promoted the migration of MIO-M1 cells (P = 0.02. In addition, both real time RT-PCR and immunohistological staining indicated that bFGF expression in migrating MIO-M1 cells was significantly higher than that in non-migrating cells (P = 0.03.RTV silicone rubber can be used to create an effective barrier in cell exclusion zone assays and allows simple and low-cost multi-parametric analysis of cell migration.

  7. Enteric glial cells and their role in the intestinal epithelial barrier.

    Science.gov (United States)

    Yu, Yan-Bo; Li, Yan-Qing

    2014-08-28

    The intestinal epithelium constitutes a physical and functional barrier between the external environment and the host organism. It is formed by a continuous monolayer of intestinal epithelial cells maintained together by intercellular junctional complex, limiting access of pathogens, toxins and xenobiotics to host tissues. Once this barrier integrity is disrupted, inflammatory disorders and tissue injury are initiated and perpetuated. Beneath the intestinal epithelial cells lies a population of astrocyte-like cells that are known as enteric glia. The morphological characteristics and expression markers of these enteric glia cells were identical to the astrocytes of the central nervous system. In the past few years, enteric glia have been demonstrated to have a trophic and supporting relationship with intestinal epithelial cells. Enteric glia lesions and/or functional defects can be involved in the barrier dysfunction. Besides, factors secreted by enteric glia are important for the regulation of gut barrier function. Moreover, enteric glia have an important impact on epithelial cell transcriptome and induce a shift in epithelial cell phenotype towards increased cell adhesion and cell differentiation. Enteric glia can also preserve epithelial barrier against intestinal bacteria insult. In this review, we will describe the current body of evidence supporting functional roles of enteric glia on intestinal barrier.

  8. Zebrafish as a visual and dynamic model to study the transport of nanosized drug delivery systems across the biological barriers.

    Science.gov (United States)

    Li, Ye; Miao, Xiaoqing; Chen, Tongkai; Yi, Xiang; Wang, Ruibing; Zhao, Haitao; Lee, Simon Ming-Yuen; Wang, Xueqing; Zheng, Ying

    2017-08-01

    With the wide application of nanotechnology to drug delivery systems, a simple, dynamic and visual in vivo model for high-throughput screening of novel formulations with fluorescence markers across biological barriers is desperately needed. In vitro cell culture models have been widely used, although they are far from a complimentary in vivo system. Mammalian animal models are common predictive models to study transport, but they are costly and time consuming. Zebrafish (Danio rerio), a small vertebrate model, have the potential to be developed as an "intermediate" model for quick evaluations. Based on our previously established coumarin 6 nanocrystals (C6-NCs), which have two different sizes, the present study investigates the transportation of C6-NCs across four biological barriers, including the chorion, blood brain barrier (BBB), blood retinal barrier (BRB) and gastrointestinal (GI) barrier, using zebrafish embryos and larvae as in vivo models. The biodistribution and elimination of C6 from different organs were quantified in adult zebrafish. The results showed that compared to 200nm C6-NCs, 70nm C6-NCs showed better permeability across these biological barriers. A FRET study suggested that intact C6-NCs together with the free dissolved form of C6 were absorbed into the larval zebrafish. More C6 was accumulated in different organs after incubation with small sized NCs via lipid raft-mediated endocytosis in adult zebrafish, which is consistent with the findings from in vitro cell monolayers and the zebrafish larvae model. C6-NCs could be gradually eliminated in each organ over time. This study demonstrated the successful application of zebrafish as a simple and dynamic model to simultaneously assess the transport of nanosized drug delivery systems across several biological barriers and biodistribution in different organs, especially in the brain, which could be used for central nervous system (CNS) drug and delivery system screening. Copyright © 2017 Elsevier B

  9. Enteric glial cells and their role in the intestinal epithelial barrier

    OpenAIRE

    Yu, Yan-Bo; Li, Yan-Qing

    2014-01-01

    The intestinal epithelium constitutes a physical and functional barrier between the external environment and the host organism. It is formed by a continuous monolayer of intestinal epithelial cells maintained together by intercellular junctional complex, limiting access of pathogens, toxins and xenobiotics to host tissues. Once this barrier integrity is disrupted, inflammatory disorders and tissue injury are initiated and perpetuated. Beneath the intestinal epithelial cells lies a population ...

  10. High performance metal-supported solid oxide fuel cells with Gd-doped ceria barrier layers

    DEFF Research Database (Denmark)

    Klemensø, Trine; Nielsen, Jimmi; Blennow Tullmar, Peter

    2011-01-01

    Metal-supported solid oxide fuel cells are believed to have commercial advantages compared to conventional anode (Ni–YSZ) supported cells, with the metal-supported cells having lower material costs, increased tolerance to mechanical and thermal stresses, and lower operational temperatures...... at 650 °C and 0.6 V, were obtained on cells with barrier layers fabricated by magnetron sputtering. The performance is dependent on the density of the barrier layer, indicating Sr2+ diffusion is occurring at the intermediate SOFC temperatures. The optimized design further demonstrate improved durability...

  11. Inflammatory response and barrier properties of a new alveolar type 1-like cell line (TT1).

    NARCIS (Netherlands)

    Bogaard, E.H.J. van den; Dailey, L.A.; Thorley, A.J.; Tetley, T.D.; Forbes, B.

    2009-01-01

    PURPOSE: To evaluate the inflammatory response and barrier formation of a new alveolar type 1-like (transformed type I; TT1) cell line to establish its suitability for toxicity and drug transport studies. METHODS: TT1 and A549 cells were challenged with lipopolysaccharide (LPS). Secretion of

  12. γδ T cells in homeostasis and host defence of epithelial barrier tissues

    DEFF Research Database (Denmark)

    Nielsen, Morten M.; Witherden, Deborah A.; Havran, Wendy L.

    2017-01-01

    Epithelial surfaces line the body and provide a crucial interface between the body and the external environment. Tissue-resident epithelial γδ T cells represent a major T cell population in the epithelial tissues and are ideally positioned to carry out barrier surveillance and aid in tissue...

  13. Interleukin-4 and interleukin-13 cause barrier dysfunction in human airway epithelial cells

    OpenAIRE

    Saatian, Bahman; Rezaee, Fariba; Desando, Samantha; Emo, Jason; Chapman, Tim; Knowlden, Sara; Georas, Steve N.

    2013-01-01

    Emerging evidence indicates that airway epithelial barrier function is compromised in asthma, a disease characterized by Th2-skewed immune response against inhaled allergens, but the mechanisms involved are not well understood. The purpose of this study was to investigate the effects of Th2-type cytokines on airway epithelial barrier function. 16HBE14o- human bronchial epithelial cells monolayers were grown on collagen coated Transwell inserts. The basolateral or apical surfaces of airway epi...

  14. Functional and cytometric examination of different human lung epithelial cell types as drug transport barriers.

    Science.gov (United States)

    Min, Kyoung Ah; Rosania, Gus R; Kim, Chong-Kook; Shin, Meong Cheol

    2016-03-01

    To develop inhaled medications, various cell culture models have been used to examine the transcellular transport or cellular uptake properties of small molecules. For the reproducible high throughput screening of the inhaled drug candidates, a further verification of cell architectures as drug transport barriers can contribute to establishing appropriate in vitro cell models. In the present study, side-by-side experiments were performed to compare the structure and transport function of three lung epithelial cells (Calu-3, normal human bronchial primary cells (NHBE), and NL-20). The cells were cultured on the nucleopore membranes in the air-liquid interface (ALI) culture conditions, with cell culture medium in the basolateral side only, starting from day 1. In transport assays, paracellular transport across all three types of cells appeared to be markedly different with the NHBE or Calu-3 cells, showing low paracellular permeability and high TEER values, while the NL-20 cells showed high paracellular permeability and low TEER. Quantitative image analysis of the confocal microscope sections further confirmed that the Calu-3 cells formed intact cell monolayers in contrast to the NHBE and NL-20 cells with multilayers. Among three lung epithelial cell types, the Calu-3 cell cultures under the ALI condition showed optimal cytometric features for mimicking the biophysical characteristics of in vivo airway epithelium. Therefore, the Calu-3 cell monolayers could be used as functional cell barriers for the lung-targeted drug transport studies.

  15. Edaravone protects against methylglyoxal-induced barrier damage in human brain endothelial cells.

    Directory of Open Access Journals (Sweden)

    Andrea E Tóth

    Full Text Available Elevated level of reactive carbonyl species, such as methylglyoxal, triggers carbonyl stress and activates a series of inflammatory responses leading to accelerated vascular damage. Edaravone is the active substance of a Japanese medicine, which aids neurological recovery following acute brain ischemia and subsequent cerebral infarction. Our aim was to test whether edaravone can exert a protective effect on the barrier properties of human brain endothelial cells (hCMEC/D3 cell line treated with methylglyoxal.Cell viability was monitored in real-time by impedance-based cell electronic sensing. The barrier function of the monolayer was characterized by measurement of resistance and flux of permeability markers, and visualized by immunohistochemistry for claudin-5 and β-catenin. Cell morphology was also examined by holographic phase imaging.Methylglyoxal exerted a time- and dose-dependent toxicity on cultured human brain endothelial cells: a concentration of 600 µM resulted in about 50% toxicity, significantly reduced the integrity and increased the permeability of the barrier. The cell morphology also changed dramatically: the area of cells decreased, their optical height significantly increased. Edaravone (3 mM provided a complete protection against the toxic effect of methylglyoxal. Co-administration of edaravone restored cell viability, barrier integrity and functions of brain endothelial cells. Similar protection was obtained by the well-known antiglycating molecule, aminoguanidine, our reference compound.These results indicate for the first time that edaravone is protective in carbonyl stress induced barrier damage. Our data may contribute to the development of compounds to treat brain endothelial dysfunction in carbonyl stress related diseases.

  16. Transmigration of neural stem cells across the blood brain barrier induced by glioma cells.

    Directory of Open Access Journals (Sweden)

    Mónica Díaz-Coránguez

    Full Text Available Transit of human neural stem cells, ReNcell CX, through the blood brain barrier (BBB was evaluated in an in vitro model of BBB and in nude mice. The BBB model was based on rat brain microvascular endothelial cells (RBMECs cultured on Millicell inserts bathed from the basolateral side with conditioned media (CM from astrocytes or glioma C6 cells. Glioma C6 CM induced a significant transendothelial migration of ReNcells CX in comparison to astrocyte CM. The presence in glioma C6 CM of high amounts of HGF, VEGF, zonulin and PGE2, together with the low abundance of EGF, promoted ReNcells CX transmigration. In contrast cytokines IFN-α, TNF-α, IL-12p70, IL-1β, IL-6, IL-8 and IL-10, as well as metalloproteinases -2 and -9 were present in equal amounts in glioma C6 and astrocyte CMs. ReNcells expressed the tight junction proteins occludin and claudins 1, 3 and 4, and the cell adhesion molecule CRTAM, while RBMECs expressed occludin, claudins 1 and 5 and CRTAM. Competing CRTAM mediated adhesion with soluble CRTAM, inhibited ReNcells CX transmigration, and at the sites of transmigration, the expression of occludin and claudin-5 diminished in RBMECs. In nude mice we found that ReNcells CX injected into systemic circulation passed the BBB and reached intracranial gliomas, which overexpressed HGF, VEGF and zonulin/prehaptoglobin 2.

  17. Transmigration of neural stem cells across the blood brain barrier induced by glioma cells.

    Science.gov (United States)

    Díaz-Coránguez, Mónica; Segovia, José; López-Ornelas, Adolfo; Puerta-Guardo, Henry; Ludert, Juan; Chávez, Bibiana; Meraz-Cruz, Noemi; González-Mariscal, Lorenza

    2013-01-01

    Transit of human neural stem cells, ReNcell CX, through the blood brain barrier (BBB) was evaluated in an in vitro model of BBB and in nude mice. The BBB model was based on rat brain microvascular endothelial cells (RBMECs) cultured on Millicell inserts bathed from the basolateral side with conditioned media (CM) from astrocytes or glioma C6 cells. Glioma C6 CM induced a significant transendothelial migration of ReNcells CX in comparison to astrocyte CM. The presence in glioma C6 CM of high amounts of HGF, VEGF, zonulin and PGE2, together with the low abundance of EGF, promoted ReNcells CX transmigration. In contrast cytokines IFN-α, TNF-α, IL-12p70, IL-1β, IL-6, IL-8 and IL-10, as well as metalloproteinases -2 and -9 were present in equal amounts in glioma C6 and astrocyte CMs. ReNcells expressed the tight junction proteins occludin and claudins 1, 3 and 4, and the cell adhesion molecule CRTAM, while RBMECs expressed occludin, claudins 1 and 5 and CRTAM. Competing CRTAM mediated adhesion with soluble CRTAM, inhibited ReNcells CX transmigration, and at the sites of transmigration, the expression of occludin and claudin-5 diminished in RBMECs. In nude mice we found that ReNcells CX injected into systemic circulation passed the BBB and reached intracranial gliomas, which overexpressed HGF, VEGF and zonulin/prehaptoglobin 2.

  18. Paving the way towards complex blood-brain barrier models using pluripotent stem cells

    DEFF Research Database (Denmark)

    Lauschke, Karin; Frederiksen, Lise; Hall, Vanessa Jane

    2017-01-01

    to the unique tightness and selective permeability of the BBB and has been shown to be disrupted in many diseases and brain disorders, such as, vascular dementia, stroke, multiple sclerosis and Alzheimer's disease. Given the progress that pluripotent stem cells (PSCs) have made in the last two decades......A tissue with great need to be modelled in vitro is the blood-brain barrier (BBB). The BBB is a tight barrier that covers all blood vessels in the brain and separates the brain microenvironment from the blood system. It consists of three cell types (neurovascular unit (NVU)) that contribute...

  19. Toxoplasma gondii Infection Promotes Epithelial Barrier Dysfunction of Caco-2 Cells

    Science.gov (United States)

    Briceño, Marisol Pallete; Nascimento, Layane Alencar Costa; Nogueira, Nathalia Pires; Barenco, Paulo Victor Czarnewski; Ferro, Eloisa Amália Vieira; Rezende-Oliveira, Karine; Goulart, Luiz Ricardo; Alves, Patrícia Terra; Barbosa, Bellisa de Freitas; Lima, Wânia Rezende; Silva, Neide Maria

    2016-01-01

    After oral infection, Toxoplasma gondii invades intestinal cells, induces breakdown of intestinal physiology and barrier functions, and causes intestinal pathology in some animal species. Although parasites’ invasion into host cells is a known phenomenon, the effects of T. gondii infection in the intestinal barrier are still not well established. To evaluate morphological and physiological modifications on the colorectal adenocarcinoma-derived Caco-2 cell line during T. gondii infection, microvilli, tight junction integrity, and transepithelial electrical resistance (TEER) were investigated under infection. It was observed that the dextran uptake (endocytosis) and distribution were smaller in infected than in noninfected Caco-2 cells. The infection leads to the partial loss of microvilli at the cell surface. Claudin-1, zonula occludens-1 (ZO-1), and occludin expressions were colocalized by immunofluorescence and presented discontinuous net patterns in infected cells. Immunoblotting analysis at 24 hr postinfection revealed decreasing expression of occludin and ZO-1 proteins, whereas claudin-1 presented similar expression level compared with noninfected cells. T. gondii decreased TEER in Caco-2 cells 24 hr after infection. Our results suggest that T. gondii infection may lead to the loss of integrity of intestinal mucosa, resulting in impaired barrier function. PMID:27370796

  20. Building barriers.

    Science.gov (United States)

    Turksen, Kursad

    2017-10-02

    Formation of tissue barriers starts in early development where it is critical for normal cell fate selection, differentiation and organogenesis. Barrier maintenance is critical to the ongoing function of organs during adulthood and aging. Dysfunctional tissue barrier formation and function at any stage of the organismal life cycle underlies many disease states.

  1. Recombination barrier layers in solid-state quantum dot-sensitized solar cells

    KAUST Repository

    Roelofs, Katherine E.

    2012-06-01

    By replacing the dye in the dye-sensitized solar cell design with semiconductor quantum dots as the light-absorbing material, solid-state quantum dot-sensitized solar cells (ss-QDSSCs) were fabricated. Cadmium sulfide quantum dots (QDs) were grown in situ by successive ion layer adsorption and reaction (SILAR). Aluminum oxide recombination barrier layers were deposited by atomic layer deposition (ALD) at the TiO2/hole-conductor interface. For low numbers of ALD cycles, the Al2O3 barrier layer increased open circuit voltage, causing an increase in device efficiency. For thicker Al2O3 barrier layers, photocurrent decreased substantially, leading to a decrease in device efficiency. © 2012 IEEE.

  2. Magnetron sputtered gadolinia-doped ceria diffusion barriers for metal-supported solid oxide fuel cells

    DEFF Research Database (Denmark)

    Sønderby, Steffen; Klemensø, Trine; Christensen, Bjarke H.

    2014-01-01

    Gadolinia-doped ceria (GDC) thin films are deposited by reactive magnetron sputtering in an industrial-scale setup and implemented as barrier layers between the cathode and electrolyte in metal-based solid oxide fuel cells consisting of a metal support, an electrolyte of ZrO2 co-doped with Sc2O3 ...

  3. Inflammatory response to mucosal barrier injury after myeloablative therapy in allogeneic stem cell transplant recipients.

    NARCIS (Netherlands)

    Blijlevens, N.M.A.; Donnelly, J.P.; Pauw, B.E. de

    2005-01-01

    We noted a significant increase of interleukin-8 (IL-8), LBP and CRP mirroring the pattern of mucosal barrier injury as measured by gut integrity (lactulose/rhamnose ratio), daily mucositis score (DMS) and serum citrulline concentrations of 32 haematopoietic stem cell transplant (HSCT) recipients

  4. Non-Saccharomyces yeasts protect against epithelial cell barrier disruption induced by Salmonella enterica subsp. enterica serovar Typhimurium.

    Science.gov (United States)

    Smith, I M; Baker, A; Arneborg, N; Jespersen, L

    2015-11-01

    The human gastrointestinal epithelium makes up the largest barrier separating the body from the external environment. Whereas invasive pathogens cause epithelial barrier disruption, probiotic micro-organisms modulate tight junction regulation and improve epithelial barrier function. In addition, probiotic strains may be able to reduce epithelial barrier disruption caused by pathogenic species. The aim of this study was to explore non-Saccharomyces yeast modulation of epithelial cell barrier function in vitro. Benchmarking against established probiotic strains, we evaluated the ability of four nonpathogenic yeast species to modulate transepithelial electrical resistance (TER) across a monolayer of differentiated human colonocytes (Caco-2 cells). Further, we assessed yeast modulation of a Salmonella Typhimurium-induced epithelial cell barrier function insult. Our findings demonstrate distinct patterns of non-Saccharomyces yeast modulation of epithelial cell barrier function. While the established probiotic yeast Saccharomyces boulardii increased TER across a Caco-2 monolayer by 30%, Kluyveromyces marxianus exhibited significantly stronger properties of TER enhancement (50% TER increase). In addition, our data demonstrate significant yeast-mediated modulation of Salmonella-induced epithelial cell barrier disruption and identify K. marxianus and Metschnikowia gruessii as two non-Saccharomyces yeasts capable of protecting human epithelial cells from pathogen invasion. This study demonstrates distinct patterns of non-Saccharomyces yeast modulation of epithelial cell barrier function in vitro. Further, our data demonstrate significant yeast-mediated modulation of Salmonella Typhimurium-induced epithelial cell barrier disruption and identify Kluyveromyces marxianus and Metschnikowia gruessii as two non-Saccharomyces yeasts capable of protecting human epithelial cells from pathogen invasion. This study is the first to demonstrate significant non-Saccharomyces yeast

  5. Barriers to conceiving sibling donors for sickle cell disease: perspectives from patients and parents.

    Science.gov (United States)

    Jae, Gina A; Lewkowitz, Adam K; Yang, Joanna C; Shen, Liang; Rahman, Amal; Del Toro, Gustavo

    2011-01-01

    The lack of matched sibling donors poses a significant barrier to utilizing hematopoietic cell transplantation (HCT), the only proven cure for children with sickle cell disease (SCD). Little is known about current patient and parent perspectives towards HCT for SCD. This study examines the perceived barriers of transplant, and the use of in vitro fertilization (IVF) and preimplantation genetic diagnosis (PGD), when there is no pre-existing sibling donor. Semi-structured interviews were conducted with adult patients with SCD and parents of children with SCD in an urban medical center in the US. Transcribed data was analyzed using qualitative methods. Of 23 participants, 17 reported having heard of HCT for SCD. Fewer knew of IVF or PGD as a means for conceiving an unaffected child (n =7) or to select a potential umbilical cord blood donor (n =1). The financial cost of IVF and PGD was perceived as a significant initial barrier to accessing these technologies, with the clinical risks of HCT and the ethical appropriateness of using PGD also identified as barriers. The value of informing families of these options was a recurring theme, even among respondents who personally disagreed with their application. The low utilization of curative strategies for SCD appears to be partly attributable to a lack of information about the technologies available to facilitate transplantation. Ethical reservations, while present, were not static and did not preclude patients' and parents' desire to be informed. We discuss the implications of these perceived barriers to the dissemination of advanced medical technologies for SCD.

  6. Arctigenin from Fructus Arctii (Seed of Burdock Reinforces Intestinal Barrier Function in Caco-2 Cell Monolayers

    Directory of Open Access Journals (Sweden)

    Hee Soon Shin

    2015-01-01

    Full Text Available Fructus Arctii is used as a traditional herbal medicine to treat inflammatory diseases in oriental countries. This study aimed to investigate effect of F. Arctii extract on intestinal barrier function in human intestinal epithelial Caco-2 cells and to reveal the active component of F. Arctii. We measured transepithelial electrical resistance (TEER value (as an index of barrier function and ovalbumin (OVA permeation (as an index of permeability to observe the changes of intestinal barrier function. The treatment of F. Arctii increased TEER value and decreased OVA influx on Caco-2 cell monolayers. Furthermore, we found that arctigenin as an active component of F. Arctii increased TEER value and reduced permeability of OVA from apical to the basolateral side but not arctiin. In the present study, we revealed that F. Arctii could enhance intestinal barrier function, and its active component was an arctigenin on the functionality. We expect that the arctigenin from F. Arctii could contribute to prevention of inflammatory, allergic, and infectious diseases by reinforcing intestinal barrier function.

  7. Arctigenin from Fructus Arctii (Seed of Burdock) Reinforces Intestinal Barrier Function in Caco-2 Cell Monolayers

    Science.gov (United States)

    Shin, Hee Soon; Jung, Sun Young; Back, Su Yeon; Do, Jeong-Ryong; Shon, Dong-Hwa

    2015-01-01

    Fructus Arctii is used as a traditional herbal medicine to treat inflammatory diseases in oriental countries. This study aimed to investigate effect of F. Arctii extract on intestinal barrier function in human intestinal epithelial Caco-2 cells and to reveal the active component of F. Arctii. We measured transepithelial electrical resistance (TEER) value (as an index of barrier function) and ovalbumin (OVA) permeation (as an index of permeability) to observe the changes of intestinal barrier function. The treatment of F. Arctii increased TEER value and decreased OVA influx on Caco-2 cell monolayers. Furthermore, we found that arctigenin as an active component of F. Arctii increased TEER value and reduced permeability of OVA from apical to the basolateral side but not arctiin. In the present study, we revealed that F. Arctii could enhance intestinal barrier function, and its active component was an arctigenin on the functionality. We expect that the arctigenin from F. Arctii could contribute to prevention of inflammatory, allergic, and infectious diseases by reinforcing intestinal barrier function. PMID:26550018

  8. Live cell imaging techniques to study T cell trafficking across the blood-brain barrier in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Coisne Caroline

    2013-01-01

    Full Text Available Abstract Background The central nervous system (CNS is an immunologically privileged site to which access for circulating immune cells is tightly controlled by the endothelial blood–brain barrier (BBB located in CNS microvessels. Under physiological conditions immune cell migration across the BBB is low. However, in neuroinflammatory diseases such as multiple sclerosis, many immune cells can cross the BBB and cause neurological symptoms. Extravasation of circulating immune cells is a multi-step process that is regulated by the sequential interaction of different adhesion and signaling molecules on the immune cells and on the endothelium. The specialized barrier characteristics of the BBB, therefore, imply the existence of unique mechanisms for immune cell migration across the BBB. Methods and design An in vitro mouse BBB model maintaining physiological barrier characteristics in a flow chamber and combined with high magnification live cell imaging, has been established. This model enables the molecular mechanisms involved in the multi-step extravasation of T cells across the in vitro BBB, to be defined with high-throughput analyses. Subsequently these mechanisms have been verified in vivo using a limited number of experimental animals and a spinal cord window surgical technique. The window enables live observation of the dynamic interaction between T cells and spinal cord microvessels under physiological and pathological conditions using real time epifluorescence intravital imaging. These in vitro and in vivo live cell imaging methods have shown that the BBB endothelium possesses unique and specialized mechanisms involved in the multi-step T cell migration across this endothelial barrier under physiological flow. The initial T cell interaction with the endothelium is either mediated by T cell capture or by T cell rolling. Arrest follows, and then T cells polarize and especially CD4+ T cells crawl over long distances against the direction of

  9. Particle-in-cell modeling of gas-confined barrier discharge

    Energy Technology Data Exchange (ETDEWEB)

    Levko, Dmitry; Raja, Laxminarayan L. [Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712 (United States)

    2016-04-15

    Gas-confined barrier discharge is studied using the one-dimensional Particle-in-Cell Monte Carlo Collisions model for the conditions reported by Guerra-Garcia and Martinez-Sanchez [Appl. Phys. Lett. 106, 041601 (2015)]. Depending on the applied voltage, two modes of discharge are observed. In the first mode, the discharge develops in the entire interelectrode gap. In the second mode, the discharge is ignited and develops only in the gas layer having smaller breakdown voltage. The one-dimensional model shows that for the conditions considered, there is no streamer stage of breakdown as is typical for a traditional dielectric barrier discharge.

  10. Particle-in-cell modeling of gas-confined barrier discharge

    Science.gov (United States)

    Levko, Dmitry; Raja, Laxminarayan L.

    2016-04-01

    Gas-confined barrier discharge is studied using the one-dimensional Particle-in-Cell Monte Carlo Collisions model for the conditions reported by Guerra-Garcia and Martinez-Sanchez [Appl. Phys. Lett. 106, 041601 (2015)]. Depending on the applied voltage, two modes of discharge are observed. In the first mode, the discharge develops in the entire interelectrode gap. In the second mode, the discharge is ignited and develops only in the gas layer having smaller breakdown voltage. The one-dimensional model shows that for the conditions considered, there is no streamer stage of breakdown as is typical for a traditional dielectric barrier discharge.

  11. Particle-in-cell modeling of gas-confined barrier discharge

    International Nuclear Information System (INIS)

    Levko, Dmitry; Raja, Laxminarayan L.

    2016-01-01

    Gas-confined barrier discharge is studied using the one-dimensional Particle-in-Cell Monte Carlo Collisions model for the conditions reported by Guerra-Garcia and Martinez-Sanchez [Appl. Phys. Lett. 106, 041601 (2015)]. Depending on the applied voltage, two modes of discharge are observed. In the first mode, the discharge develops in the entire interelectrode gap. In the second mode, the discharge is ignited and develops only in the gas layer having smaller breakdown voltage. The one-dimensional model shows that for the conditions considered, there is no streamer stage of breakdown as is typical for a traditional dielectric barrier discharge.

  12. Arsenic compromises conducting airway epithelial barrier properties in primary mouse and immortalized human cell cultures.

    Directory of Open Access Journals (Sweden)

    Cara L Sherwood

    Full Text Available Arsenic is a lung toxicant that can lead to respiratory illness through inhalation and ingestion, although the most common exposure is through contaminated drinking water. Lung effects reported from arsenic exposure include lung cancer and obstructive lung disease, as well as reductions in lung function and immune response. As part of their role in innate immune function, airway epithelial cells provide a barrier that protects underlying tissue from inhaled particulates, pathogens, and toxicants frequently found in inspired air. We evaluated the effects of a five-day exposure to environmentally relevant levels of arsenic {<4μM [~300 μg/L (ppb] as NaAsO2} on airway epithelial barrier function and structure. In a primary mouse tracheal epithelial (MTE cell model we found that both micromolar (3.9 μM and submicromolar (0.8 μM arsenic concentrations reduced transepithelial resistance, a measure of barrier function. Immunofluorescent staining of arsenic-treated MTE cells showed altered patterns of localization of the transmembrane tight junction proteins claudin (Cl Cl-1, Cl-4, Cl-7 and occludin at cell-cell contacts when compared with untreated controls. To better quantify arsenic-induced changes in tight junction transmembrane proteins we conducted arsenic exposure experiments with an immortalized human bronchial epithelial cell line (16HBE14o-. We found that arsenic exposure significantly increased the protein expression of Cl-4 and occludin as well as the mRNA levels of Cl-4 and Cl-7 in these cells. Additionally, arsenic exposure resulted in altered phosphorylation of occludin. In summary, exposure to environmentally relevant levels of arsenic can alter both the function and structure of airway epithelial barrier constituents. These changes likely contribute to the observed arsenic-induced loss in basic innate immune defense and increased infection in the airway.

  13. Radionuclide transport modeling of diffusion cell experiments specific to a backfill barrier in a salt repository

    International Nuclear Information System (INIS)

    Anderson, H.M.; Pietz, J.M.; Smith, D.M.

    1984-01-01

    Experimental radionuclide migration diffusion cell data have been collected as part of the WIPP Waste Package Performance Program. This data was collected under conditions approximating geologic isolation of a backfill barrier in a salt repository. The experiments are designed to aid in the evaluation of engineered backfill barriers. This paper describes a radionuclide transport model designed to aid interpreting experimental diffusion cell migration data and eventually to simulate the long-term effectiveness of the backfill barrier in a salt repository. The model is designed to test a variety of expressions representative of potential mechanisms for retardation within the backfill for the best-fit with experimental data. From the comparison, the aim is to select the appropriate mechanism from the host of potential mechanisms for retardation. The model employs a novel integral equation approach to the solution of the transport equation with nonlinear retardation terms. The solution technique used in this model is a semi-analytical, iterative method for the general nonlinear problem. It is felt the technique offers improved computational efficiency over comparable finite difference methods. Comparisons between experimental migration diffusion cell data and the model predictions are presented in this paper. Tentative conclusions concerning the importance of the retardation mechanism to radionuclide transport in the backfill barrier will be drawn. 8 references, 7 figures

  14. Regulation of blood-testis barrier assembly in vivo by germ cells.

    Science.gov (United States)

    Li, Xiao-Yu; Zhang, Yan; Wang, Xiu-Xia; Jin, Cheng; Wang, Yu-Qian; Sun, Tie-Cheng; Li, Jian; Tang, Ji-Xin; Batool, Alia; Deng, Shou-Long; Chen, Su-Ren; Cheng, C Yan; Liu, Yi-Xun

    2018-01-03

    The assembly of the blood-testis barrier (BTB) during postnatal development is crucial to support meiosis. However, the role of germ cells in BTB assembly remains unclear. Herein, Kit W /Kit WV mice were used as a study model. These mice were infertile, failing to establish a functional BTB to support meiosis due to c-Kit mutation. Transplantation of undifferentiated spermatogonia derived from normal mice into the testis of Kit W /Kit WV mice triggered functional BTB assembly, displaying cyclic remodeling during the epithelial cycle. Also, transplanted germ cells were capable of inducing Leydig cell testosterone production, which could enhance the expression of integral membrane protein claudin 3 in Sertoli cells. Early spermatocytes were shown to play a vital role in directing BTB assembly by expressing claudin 3, which likely created a transient adhesion structure to mediate BTB and cytoskeleton assembly in adjacent Sertoli cells. In summary, the positive modulation of germ cells on somatic cell function provides useful information regarding somatic-germ cell interactions.-Li, X.-Y., Zhang, Y., Wang, X.-X., Jin, C., Wang, Y.-Q., Sun, T.-C., Li, J., Tang, J.-X., Batool, A., Deng, S.-L., Chen, S.-R., Cheng, C. Y., Liu, Y.-X. Regulation of blood-testis barrier assembly in vivo by germ cells.

  15. Biosensor Technology Reveals the Disruption of the Endothelial Barrier Function and the Subsequent Death of Blood Brain Barrier Endothelial Cells to Sodium Azide and Its Gaseous Products

    Directory of Open Access Journals (Sweden)

    Dan T. Kho

    2017-09-01

    Full Text Available Herein we demonstrate the sensitive nature of human blood-brain barrier (BBB endothelial cells to sodium azide and its gaseous product. Sodium azide is known to be acutely cytotoxic at low millimolar concentrations, hence its use as a biological preservative (e.g., in antibodies. Loss of barrier integrity was noticed in experiments using Electric Cell-substrate Impedance Sensing (ECIS biosensor technology, to measure endothelial barrier integrity continuously in real-time. Initially the effect of sodium azide was observed as an artefact where it was present in antibodies being employed in neutralisation experiments. This was confirmed where antibody clones that were azide-free did not mediate loss of barrier function. A delayed loss of barrier function in neighbouring wells implied the influence of a liberated gaseous product. ECIS technology demonstrated that the BBB endothelial cells had a lower level of direct sensitivity to sodium azide of ~3 µM. Evidence of gaseous toxicity was consistently observed at 30 µM and above, with disrupted barrier function and cell death in neighbouring wells. We highlight the ability of this cellular biosensor technology to reveal both the direct and gaseous toxicity mediated by sodium azide. The sensitivity and temporal dimension of ECIS technology was instrumental in these observations. These findings have substantial implications for the wide use of sodium azide in biological reagents, raising issues of their application in live-cell assays and with regard to the protection of the user. This research also has wider relevance highlighting the sensitivity of brain endothelial cells to a known mitochondrial disruptor. It is logical to hypothesise that BBB endothelial dysfunction due to mitochondrial dys-regulation could have an important but underappreciated role in a range of neurological diseases.

  16. Biosensor Technology Reveals the Disruption of the Endothelial Barrier Function and the Subsequent Death of Blood Brain Barrier Endothelial Cells to Sodium Azide and Its Gaseous Products.

    Science.gov (United States)

    Kho, Dan T; Johnson, Rebecca H; O'Carroll, Simon J; Angel, Catherine E; Graham, E Scott

    2017-09-21

    Herein we demonstrate the sensitive nature of human blood-brain barrier (BBB) endothelial cells to sodium azide and its gaseous product. Sodium azide is known to be acutely cytotoxic at low millimolar concentrations, hence its use as a biological preservative (e.g., in antibodies). Loss of barrier integrity was noticed in experiments using Electric Cell-substrate Impedance Sensing (ECIS) biosensor technology, to measure endothelial barrier integrity continuously in real-time. Initially the effect of sodium azide was observed as an artefact where it was present in antibodies being employed in neutralisation experiments. This was confirmed where antibody clones that were azide-free did not mediate loss of barrier function. A delayed loss of barrier function in neighbouring wells implied the influence of a liberated gaseous product. ECIS technology demonstrated that the BBB endothelial cells had a lower level of direct sensitivity to sodium azide of ~3 µM. Evidence of gaseous toxicity was consistently observed at 30 µM and above, with disrupted barrier function and cell death in neighbouring wells. We highlight the ability of this cellular biosensor technology to reveal both the direct and gaseous toxicity mediated by sodium azide. The sensitivity and temporal dimension of ECIS technology was instrumental in these observations. These findings have substantial implications for the wide use of sodium azide in biological reagents, raising issues of their application in live-cell assays and with regard to the protection of the user. This research also has wider relevance highlighting the sensitivity of brain endothelial cells to a known mitochondrial disruptor. It is logical to hypothesise that BBB endothelial dysfunction due to mitochondrial dys-regulation could have an important but underappreciated role in a range of neurological diseases.

  17. Spray pyrolysis of doped-ceria barrier layers for solid oxide fuel cells

    DEFF Research Database (Denmark)

    Szymczewska, Dagmara; Chrzan, Aleksander; Karczewski, Jakub

    2017-01-01

    of elements. The parameters of the fabrication process are linked to the measured area specific resistances of the symmetrical cells and the efficiency of the fuel cells. Results show, that application of 800 nm thick barrier effectively hinder negative reactions, while 400 nm thick layer is sufficient......Gadolinium doped ceria (Ce0.8Gd0.2O2 − x-CGO) layer fabricated by spray pyrolysis is investigated as the diffusion barrier for solid oxide fuel cell. It is deposited between the La0.6Sr0.4FeO3 − δ cathode and the yttria stabilized zirconia electrolyte to mitigate harmful interdiffusion...

  18. The effects of interfacial recombination and injection barrier on the electrical characteristics of perovskite solar cells

    Science.gov (United States)

    Shi, Lin Xing; Wang, Zi Shuai; Huang, Zengguang; Sha, Wei E. I.; Wang, Haoran; Zhou, Zhen

    2018-02-01

    Charge carrier recombination in the perovskite solar cells (PSCs) has a deep influence on the electrical performance, such as open circuit voltage, short circuit current, fill factor and ultimately power conversion efficiency. The impacts of injection barrier, recombination channels, doping properties of carrier transport layers and light intensity on the performance of PSCs are theoretically investigated by drift-diffusion model in this work. The results indicate that due to the injection barrier at the interfaces of perovskite and carrier transport layer, the accumulated carriers modify the electric field distribution throughout the PSCs. Thus, a zero electric field is generated at a specific applied voltage, with greatly increases the interfacial recombination, resulting in a local kink of current density-voltage (J-V) curve. This work provides an effective strategy to improve the efficiency of PSCs by pertinently reducing both the injection barrier and interfacial recombination.

  19. Interleukin-4 and interleukin-13 cause barrier dysfunction in human airway epithelial cells.

    Science.gov (United States)

    Saatian, Bahman; Rezaee, Fariba; Desando, Samantha; Emo, Jason; Chapman, Tim; Knowlden, Sara; Georas, Steve N

    2013-04-01

    Emerging evidence indicates that airway epithelial barrier function is compromised in asthma, a disease characterized by Th2-skewed immune response against inhaled allergens, but the mechanisms involved are not well understood. The purpose of this study was to investigate the effects of Th2-type cytokines on airway epithelial barrier function. 16HBE14o- human bronchial epithelial cells monolayers were grown on collagen coated Transwell inserts. The basolateral or apical surfaces of airway epithelia were exposed to human interleukin-4 (IL-4), IL-13, IL-25, IL-33, thymic stromal lymphopoietin (TSLP) alone or in combination at various concentrations and time points. We analyzed epithelial apical junctional complex (AJC) function by measuring transepithelial electrical resistance (TEER) and permeability to FITC-conjugated dextran over time. We analyzed AJC structure using immunofluorescence with antibodies directed against key junctional components including occludin, ZO-1, β-catenin and E-cadherin. Transepithelial resistance was significantly decreased after both basolateral and apical exposure to IL-4. Permeability to 3 kDa dextran was also increased in IL-4-exposed cells. Similar results were obtained with IL-13, but none of the innate type 2 cytokines examined (TSLP, IL-25 or IL-33) significantly affected barrier function. IL-4 and IL-13-induced barrier dysfunction was accompanied by reduced expression of membrane AJC components but not by induction of claudin- 2. Enhanced permeability caused by IL-4 was not affected by wortmannin, an inhibitor of PI3 kinase signaling, but was attenuated by a broad spectrum inhibitor of janus associated kinases. Our study indicates that IL-4 and IL-13 have disruptive effect on airway epithelial barrier function. Th2-cytokine induced epithelial barrier dysfunction may contribute to airway inflammation in allergic asthma.

  20. A screen-printed interdigitated back contact cell using a boron-source diffusion barrier

    Energy Technology Data Exchange (ETDEWEB)

    Hacke, P.; Gee, J.M. [Advent Solar Inc., Albuquerque, NM (United States)

    2005-06-15

    A low-cost approach to fabricating interdigitated back contact cells is carried out on the principle of screen-printing a material that serves both to dope the rear surface and as a diffusion barrier to the dopant species of the opposite polarity. With this technique, an interdigitated pattern of n{sup +} and p{sup +} regions is formed on the cell back. Shunt-free rear interdigitated junctions are achieved. This work produced a cell with confirmed conversion efficiency of 10.5%. Areas for further efficiency gains are discussed. (author)

  1. Yogurt inhibits intestinal barrier dysfunction in Caco-2 cells by increasing tight junctions.

    Science.gov (United States)

    Putt, Kelley K; Pei, Ruisong; White, Heather M; Bolling, Bradley W

    2017-01-25

    Chronic inflammation disrupts intestinal barrier function and may contribute to the pathology of obesity and other diseases. The goal of this study was to determine the mechanism by which yogurt improves intestinal barrier function. Caco-2 cells were differentiated on Transwell inserts and used as a model of intestinal barrier permeability. Transepithelial electrical resistance (TEER) and flux of 4 kDa fluorescein isothiocyanate-dextran (FD) and lucifer yellow (LY) were used as indicators of monolayer integrity and paracellular permeability. Immunofluorescence microscopy and real time quantitative polymerase chain were used to assess the localization and expression of tight junction proteins known to regulate intestinal permeability. Differentiated cells were treated with a vehicle control (C), inflammatory stimulus (I) (interleukin-1β, tumor necrosis factor-α, interferon-γ, and lipopolysaccharide), or I and 0.03 g mL -1 yogurt (IY). After 48 h, I reduced Caco-2 TEER by 46%, while IY reduced TEER by only 27% (P effect on barrier function was reduced at latter stages of digestion.

  2. Barrier potential design criteria in multiple-quantum-well-based solar-cell structures

    Science.gov (United States)

    Mohaidat, Jihad M.; Shum, Kai; Wang, W. B.; Alfano, R. R.

    1994-01-01

    The barrier potential design criteria in multiple-quantum-well (MQW)-based solar-cell structures is reported for the purpose of achieving maximum efficiency. The time-dependent short-circuit current density at the collector side of various MQW solar-cell structures under resonant condition was numerically calculated using the time-dependent Schroedinger equation. The energy efficiency of solar cells based on the InAs/Ga(y)In(1-y)As and GaAs/Al(x)Ga(1-x)As MQW structues were compared when carriers are excited at a particular solar-energy band. Using InAs/Ga(y)In(1-y)As MQW structures it is found that a maximum energy efficiency can be achieved if the structure is designed with barrier potential of about 450 meV. The efficiency is found to decline linearly as the barrier potential increases for GaAs/Al(x)Ga(1-x)As MQW-structure-based solar cells.

  3. Selective ablation of the androgen receptor in mouse sertoli cells affects sertoli cell maturation, barrier formation and cytoskeletal development.

    Directory of Open Access Journals (Sweden)

    Ariane Willems

    2010-11-01

    Full Text Available The observation that mice with a selective ablation of the androgen receptor (AR in Sertoli cells (SC (SCARKO mice display a complete block in meiosis supports the contention that SC play a pivotal role in the control of germ cell development by androgens. To delineate the physiological and molecular mechanism responsible for this control, we compared tubular development in pubertal SCARKO mice and littermate controls. Particular attention was paid to differences in SC maturation, SC barrier formation and cytoskeletal organization and to the molecular mediators potentially involved. Functional analysis of SC barrier development by hypertonic perfusion and lanthanum permeation techniques and immunohistochemical analysis of junction formation showed that SCARKO mice still attempt to produce a barrier separating basal and adluminal compartment but that barrier formation is delayed and defective. Defective barrier formation was accompanied by disturbances in SC nuclear maturation (immature shape, absence of prominent, tripartite nucleoli and SC polarization (aberrant positioning of SC nuclei and cytoskeletal elements such as vimentin. Quantitative RT-PCR was used to study the transcript levels of genes potentially related to the described phenomena between day 8 and 35. Differences in the expression of SC genes known to play a role in junction formation could be shown from day 8 for Cldn11, from day 15 for Cldn3 and Espn, from day 20 for Cdh2 and Jam3 and from day 35 for ZO-1. Marked differences were also noted in the transcript levels of several genes that are also related to cell adhesion and cytoskeletal dynamics but that have not yet been studied in SC (Actn3, Ank3, Anxa9, Scin, Emb, Mpzl2. It is concluded that absence of a functional AR in SC impedes the remodeling of testicular tubules expected at the onset of spermatogenesis and interferes with the creation of the specific environment needed for germ cell development.

  4. The atopic march: current insights into skin barrier dysfunction and epithelial cell-derived cytokines.

    Science.gov (United States)

    Han, Hongwei; Roan, Florence; Ziegler, Steven F

    2017-07-01

    Atopic dermatitis often precedes the development of other atopic diseases. The atopic march describes this temporal relationship in the natural history of atopic diseases. Although the pathophysiological mechanisms that underlie this relationship are poorly understood, epidemiological and genetic data have suggested that the skin might be an important route of sensitization to allergens. Animal models have begun to elucidate how skin barrier defects can lead to systemic allergen sensitization. Emerging data now suggest that epithelial cell-derived cytokines such as thymic stromal lymphopoietin (TSLP), IL-33, and IL-25 may drive the progression from atopic dermatitis to asthma and food allergy. This review focuses on current concepts of the role of skin barrier defects and epithelial cell-derived cytokines in the initiation and maintenance of allergic inflammation and the atopic march. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Sulodexide prevents activation of the PLA2/COX-2/VEGF inflammatory pathway in human retinal endothelial cells by blocking the effect of AGE/RAGE.

    Science.gov (United States)

    Giurdanella, Giovanni; Lazzara, Francesca; Caporarello, Nunzia; Lupo, Gabriella; Anfuso, Carmelina Daniela; Eandi, Chiara M; Leggio, Gian Marco; Drago, Filippo; Bucolo, Claudio; Salomone, Salvatore

    2017-10-15

    Diabetic retinopathy is characterized by the breakdown of endothelial blood-retinal barrier. We tested the hypothesis that sulodexide (SDX), a highly purified glycosaminoglycan composed of 80% iduronylglycosaminoglycan sulfate and 20% dermatan sulfate, protects human retinal endothelial cells (HREC) from high glucose (HG)-induced damage, through the suppression of inflammatory ERK/cPLA2/COX-2/PGE 2 pathway, by blocking the effect of advanced glycation end-products (AGEs). HREC were treated with HG (25mM) or AGEs (glycated-BSA, 2mg/ml) for 48h, with or without SDX (60μg/ml) or aflibercept (AFL, 40μg/ml), a VEGF-trap. SDX protected HREC from HG-induced damage (MTT and LDH release) and preserved their blood-retinal barrier-like properties (Trans Endothelial Electrical Resistance and junction proteins, claudin-5, VE-cadherin and occludin, immunofluorescence and immunoblot) as well as their angiogenic potential (Tube Formation Assay). Both HG and AGEs increased phosphoERK and phospho-cPLA 2 , an effect counteracted by SDX and, less efficiently, by AFL. Both HG and exogenous VEGF (80ng/ml) increased PGE 2 release, an effect partially reverted by SDX for HG and by AFL for VEGF. Analysis of NFκB activity revealed that HG increased the abundance of p65 in the nuclear fraction (nuclear translocation), an effect entirely reverted by SDX, but only partially by AFL. SDX, AFL and SDX+AFL protected HREC even when added 24h after HG. These data show that SDX protects HREC from HG damage and suggest that it counteracts the activation of ERK/cPLA2/COX-2/PGE 2 pathway by reducing AGE-related signaling and downstream NFκB activity. This mechanism, partially distinct from VEGF blockade, may contribute to the therapeutic effect of SDX. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. The B-Cell Follicle in HIV Infection: Barrier to a Cure

    Directory of Open Access Journals (Sweden)

    Matthew P. Bronnimann

    2018-01-01

    Full Text Available The majority of HIV replication occurs in secondary lymphoid organs (SLOs such as the spleen, lymph nodes, and gut-associated lymphoid tissue. Within SLOs, HIV RNA+ cells are concentrated in the B-cell follicle during chronic untreated infection, and emerging data suggest that they are a major source of replication in treated disease as well. The concentration of HIV RNA+ cells in the B-cell follicle is mediated by several factors. Follicular CD4+ T-cell subsets including T-follicular helper cells and T-follicular regulatory cells are significantly more permissive to HIV than extrafollicular subsets. The B cell follicle also contains a large reservoir of extracellular HIV virions, which accumulate on the surface of follicular dendritic cells (FDCs in germinal centers. FDC-bound HIV virions remain infectious even in the presence of neutralizing antibodies and can persist for months or even years. Moreover, the B-cell follicle is semi-immune privileged from CTL control. Frequencies of HIV- and SIV-specific CTL are lower in B-cell follicles compared to extrafollicular regions as the majority of CTL do not express the follicular homing receptor CXCR5. Additionally, CTL in the B-cell follicle may be less functional than extrafollicular CTL as many exhibit the recently described CD8 T follicular regulatory phenotype. Other factors may also contribute to the follicular concentration of HIV RNA+ cells. Notably, the contribution of NK cells and γδ T cells to control and/or persistence of HIV RNA+ cells in secondary lymphoid tissue remains poorly characterized. As HIV research moves increasingly toward the development of cure strategies, a greater understanding of the barriers to control of HIV infection in B-cell follicles is critical. Although no strategy has as of yet proven to be effective, a range of novel therapies to address these barriers are currently being investigated including genetically engineered CTL or chimeric antigen receptor T cells

  7. The B-Cell Follicle in HIV Infection: Barrier to a Cure.

    Science.gov (United States)

    Bronnimann, Matthew P; Skinner, Pamela J; Connick, Elizabeth

    2018-01-01

    The majority of HIV replication occurs in secondary lymphoid organs (SLOs) such as the spleen, lymph nodes, and gut-associated lymphoid tissue. Within SLOs, HIV RNA + cells are concentrated in the B-cell follicle during chronic untreated infection, and emerging data suggest that they are a major source of replication in treated disease as well. The concentration of HIV RNA + cells in the B-cell follicle is mediated by several factors. Follicular CD4 + T-cell subsets including T-follicular helper cells and T-follicular regulatory cells are significantly more permissive to HIV than extrafollicular subsets. The B cell follicle also contains a large reservoir of extracellular HIV virions, which accumulate on the surface of follicular dendritic cells (FDCs) in germinal centers. FDC-bound HIV virions remain infectious even in the presence of neutralizing antibodies and can persist for months or even years. Moreover, the B-cell follicle is semi-immune privileged from CTL control. Frequencies of HIV- and SIV-specific CTL are lower in B-cell follicles compared to extrafollicular regions as the majority of CTL do not express the follicular homing receptor CXCR5. Additionally, CTL in the B-cell follicle may be less functional than extrafollicular CTL as many exhibit the recently described CD8 T follicular regulatory phenotype. Other factors may also contribute to the follicular concentration of HIV RNA + cells. Notably, the contribution of NK cells and γδ T cells to control and/or persistence of HIV RNA + cells in secondary lymphoid tissue remains poorly characterized. As HIV research moves increasingly toward the development of cure strategies, a greater understanding of the barriers to control of HIV infection in B-cell follicles is critical. Although no strategy has as of yet proven to be effective, a range of novel therapies to address these barriers are currently being investigated including genetically engineered CTL or chimeric antigen receptor T cells that express

  8. γδ T cells in homeostasis and host defence of epithelial barrier tissues.

    Science.gov (United States)

    Nielsen, Morten M; Witherden, Deborah A; Havran, Wendy L

    2017-12-01

    Epithelial surfaces line the body and provide a crucial interface between the body and the external environment. Tissue-resident epithelial γδ T cells represent a major T cell population in the epithelial tissues and are ideally positioned to carry out barrier surveillance and aid in tissue homeostasis and repair. In this Review, we focus on the intraepithelial γδ T cell compartment of the two largest epithelial tissues in the body - namely, the epidermis and the intestine - and provide a comprehensive overview of the crucial contributions of intraepithelial γδ T cells to tissue integrity and repair, host homeostasis and protection in the context of the symbiotic relationship with the microbiome and during pathogen clearance. Finally, we describe epithelium-specific butyrophilin-like molecules and briefly review their emerging role in selectively shaping and regulating epidermal and intestinal γδ T cell repertoires.

  9. Leukotriene B4 receptor 2 regulates the proliferation, migration, and barrier integrity of bronchial epithelial cells.

    Science.gov (United States)

    Liu, Min; Shen, Juan; Yuan, Huimin; Chen, Fengling; Song, Huaidong; Qin, Hui; Li, Yanqin; Xu, Jiabo; Ye, Qing; Li, Shenxian; Saeki, Kazuko; Yokomizo, Takehiko

    2018-01-11

    The airway epithelium plays a crucial role in the pathogenesis of asthma. The functions of leukotriene B4 receptor 2 (BLT2) on the airway epithelial cells remains unknown. In our study, BLT2 expression in 16HBE bronchial epithelial cells were manipulated by transfection with BLT2 overexpression plasmid or BLT2 small interference RNA. 16HBE cells were then exposed to BLT2 antagonist (LY255283) or BLT2 agonist (12(S)-hydroxyheptadeca-5Z,8E,10E-trienoic acid [12-HHT] or CAY10583). The results showed that BLT2 overexpression, 12-HHT stimulation, or CAY10583 treatment resulted in the enhanced proliferation and migration of 16HBE cells. In addition, BLT2 showed an inhibitory effect on epithelial permeability as illustrated by the measurement of transepithelial electrical resistance (TER) and epithelial permeability, and a promoting effect on the levels of tight junction proteins (occludin and claudin-4) and phosphorylated p38 as demonstrated by real-time PCR and Western blotting analyses. These results suggest BLT2 as a key determinant of airway epithelial barrier integrity. On the contrary, RNAi-mediated knockdown or LY255283 treatment had reversed effects on the proliferation, migration, and epithelial barrier integrity. Together, our findings suggest the critical roles of BLT2 on the functions of bronchial epithelial cells and that BLT2 agonists are potential therapeutic agents for asthma treatment. © 2018 Wiley Periodicals, Inc.

  10. A stable and reproducible human blood-brain barrier model derived from hematopoietic stem cells.

    Directory of Open Access Journals (Sweden)

    Romeo Cecchelli

    Full Text Available The human blood brain barrier (BBB is a selective barrier formed by human brain endothelial cells (hBECs, which is important to ensure adequate neuronal function and protect the central nervous system (CNS from disease. The development of human in vitro BBB models is thus of utmost importance for drug discovery programs related to CNS diseases. Here, we describe a method to generate a human BBB model using cord blood-derived hematopoietic stem cells. The cells were initially differentiated into ECs followed by the induction of BBB properties by co-culture with pericytes. The brain-like endothelial cells (BLECs express tight junctions and transporters typically observed in brain endothelium and maintain expression of most in vivo BBB properties for at least 20 days. The model is very reproducible since it can be generated from stem cells isolated from different donors and in different laboratories, and could be used to predict CNS distribution of compounds in human. Finally, we provide evidence that Wnt/β-catenin signaling pathway mediates in part the BBB inductive properties of pericytes.

  11. CB2 Receptor Activation Inhibits Melanoma Cell Transmigration through the Blood-Brain Barrier

    Directory of Open Access Journals (Sweden)

    János Haskó

    2014-05-01

    Full Text Available During parenchymal brain metastasis formation tumor cells need to migrate through cerebral endothelial cells, which form the morphological basis of the blood-brain barrier (BBB. The mechanisms of extravasation of tumor cells are highly uncharacterized, but in some aspects recapitulate the diapedesis of leukocytes. Extravasation of leukocytes through the BBB is decreased by the activation of type 2 cannabinoid receptors (CB2; therefore, in the present study we sought to investigate the role of CB2 receptors in the interaction of melanoma cells with the brain endothelium. First, we identified the presence of CB1, CB2(A, GPR18 (transcriptional variant 1 and GPR55 receptors in brain endothelial cells, while melanoma cells expressed CB1, CB2(A, GPR18 (transcriptional variants 1 and 2, GPR55 and GPR119. We observed that activation of CB2 receptors with JWH-133 reduced the adhesion of melanoma cells to the layer of brain endothelial cells. JWH-133 decreased the transendothelial migration rate of melanoma cells as well. Our results suggest that changes induced in endothelial cells are critical in the mediation of the effect of CB2 agonists. Our data identify CB2 as a potential target in reducing the number of brain metastastes originating from melanoma.

  12. Gap junction proteins in the blood-brain barrier control nutrient-dependent reactivation of Drosophila neural stem cells.

    Science.gov (United States)

    Spéder, Pauline; Brand, Andrea H

    2014-08-11

    Neural stem cells in the adult brain exist primarily in a quiescent state but are reactivated in response to changing physiological conditions. How do stem cells sense and respond to metabolic changes? In the Drosophila CNS, quiescent neural stem cells are reactivated synchronously in response to a nutritional stimulus. Feeding triggers insulin production by blood-brain barrier glial cells, activating the insulin/insulin-like growth factor pathway in underlying neural stem cells and stimulating their growth and proliferation. Here we show that gap junctions in the blood-brain barrier glia mediate the influence of metabolic changes on stem cell behavior, enabling glia to respond to nutritional signals and reactivate quiescent stem cells. We propose that gap junctions in the blood-brain barrier are required to translate metabolic signals into synchronized calcium pulses and insulin secretion. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  13. A study of the characteristics of solar cells with a p-InP Schottky barrier

    Science.gov (United States)

    Kobzarenko, V. N.; Nartia, N. M.; Pavlovskii, M. V.; Russu, M. A.; Tarabukin, A. B.

    A study is made of the electrophysical characteristics of MS and MOS solar cells based on p-InP using their own oxides formed by thermal oxidation as the dielectric layer. A barrier contact in these structures is obtained by the vacuum vapor deposition of nickel or aluminum. The volt-ampere, volt-capacitance, and loading characteristics of the solar cell structures are examined, as are their spectral photosensitivity distribution and the effect of the oxide layer on the cell performance. It is found that the addition of the oxide layer makes it possible to increase the open-circuit voltage and the efficiency of the solar cells. In the case of MOS structures, the open circuit voltage is 0.65-0.75 V, the short-circuit current is 15-25 mA/sq cm, and the efficiency is 12 percent (AMI, 5).

  14. Breaking down the barriers to commercialization of fuel cells in transportation through Government - industry R&D programs

    Energy Technology Data Exchange (ETDEWEB)

    Chalk, S.G. [Dept. of Energy, Washington, DC (United States); Venkateswaran, S.R. [Energetics, Inc., Columbia, MD (United States)

    1996-12-31

    PEM fuel cell technology is rapidly emerging as a viable propulsion alternative to the internal combustion engine. Fuel cells offer the advantages of low emissions, high efficiency, fuel flexibility, quiet and continuous operation, and modularity. Over the last decade, dramatic advances have been achieved in the performance and cost of PEM fuel cell technologies for automotive applications. However, significant technical barriers remain to making fuel cell propulsion systems viable alternatives to the internal combustion engine. This paper focuses on the progress achieved and remaining technical barriers while highlighting Government-industry R&D efforts that are accelerating fuel cell technology toward commercialization.

  15. A method of producing a multilayer barrier structure for a solid oxide fuel cell

    DEFF Research Database (Denmark)

    2010-01-01

    The present invention provides a method of producing a multilayer barrier structure for a solid oxide cell stack, comprising the steps of: - providing a metal interconnect, wherein the metal interconnect is a ferritic stainless steel layer; - applying a first metal oxide layer on said metal...... oxide; and - reacting the metal oxide in said first metal oxide layer with the metal of said metal interconnect during the SOC-stack initialisation, and a solid oxide stack comprising an anode contact layer and support structure, an anode layer, an electrolyte layer, a cathode layer, a cathode contact...... layer, a metallic interconnect, and a multilayer barrier structure which is obtainable by the above method and through an initialisation step, which is carried out under controlled conditions for atmosphere composition and current load, which depends on the layer composition facilitating the formation...

  16. An actomyosin-based barrier inhibits cell mixing at compartmental boundaries in Drosophila embryos.

    Science.gov (United States)

    Monier, Bruno; Pélissier-Monier, Anne; Brand, Andrea H; Sanson, Bénédicte

    2010-01-01

    Partitioning tissues into compartments that do not intermix is essential for the correct morphogenesis of animal embryos and organs. Several hypotheses have been proposed to explain compartmental cell sorting, mainly differential adhesion, but also regulation of the cytoskeleton or of cell proliferation. Nevertheless, the molecular and cellular mechanisms that keep cells apart at boundaries remain unclear. Here we demonstrate, in early Drosophila melanogaster embryos, that actomyosin-based barriers stop cells from invading neighbouring compartments. Our analysis shows that cells can transiently invade neighbouring compartments, especially when they divide, but are then pushed back into their compartment of origin. Actomyosin cytoskeletal components are enriched at compartmental boundaries, forming cable-like structures when the epidermis is mitotically active. When MyoII (non-muscle myosin II) function is inhibited, including locally at the cable by chromophore-assisted laser inactivation (CALI), in live embryos, dividing cells are no longer pushed back, leading to compartmental cell mixing. We propose that local regulation of actomyosin contractibility, rather than differential adhesion, is the primary mechanism sorting cells at compartmental boundaries.

  17. Three cell flying capacitor inverter for dielectric barrier discharge plasma applications

    International Nuclear Information System (INIS)

    Flores-Fuentes, A.; Lopez-Callejas, A.; Piedad-Beneitez, A. de la; Pena-Eguiluz, R.; Mercado-Cabrera, A.; Valencia-Alvarado, R.; Barocio, S.R.

    2009-01-01

    It is reported the design, construction and initial tests of a three cell flying capacitor inverter (TCFCI) in a half-bridge configuration. The device operates at a 200 k Hz frequency which leads to a voltage output at 12.5 k Hz presenting an acceptable response in an open-loop configuration. These features outdo those reported in the current multilevel converter literature. The TCFCI is driven by pulse width modulation, following a phase shift (PS-PWM) control strategy, in order to generate a steady AC voltage signal. This inverter is used to excite a dielectric barrier discharge cell (DBDC) intended for cold plasma generation at room pressure. Some results obtained for two different kinds of atmosphere, helium and argon, are presented. All the system having been tested, early recorded voltage and current waveforms, are included. Finally, three methods for calculating the related electric efficiency of the discharge cell are discussed. (author)

  18. Paving the Way Toward Complex Blood-Brain Barrier Models Using Pluripotent Stem Cells.

    Science.gov (United States)

    Lauschke, Karin; Frederiksen, Lise; Hall, Vanessa Jane

    2017-06-15

    A tissue with great need to be modeled in vitro is the blood-brain barrier (BBB). The BBB is a tight barrier that covers all blood vessels in the brain and separates the brain microenvironment from the blood system. It consists of three cell types [neurovascular unit (NVU)] that contribute to the unique tightness and selective permeability of the BBB and has been shown to be disrupted in many diseases and brain disorders, such as vascular dementia, stroke, multiple sclerosis, and Alzheimer's disease. Given the progress that pluripotent stem cells (PSCs) have made in the past two decades, it is now possible to produce many cell types from the BBB and even partially recapitulate this complex tissue in vitro. In this review, we summarize the most recent developments in PSC differentiation and modeling of the BBB. We also suggest how patient-specific human-induced PSCs could be used to model BBB dysfunction in the future. Lastly, we provide perspectives on how to improve production of the BBB in vitro, for example by improving pericyte differentiation protocols and by better modeling the NVU in the dish.

  19. Understanding the free energy barrier and multiple timescale dynamics of charge separation in organic photovoltaic cells

    Science.gov (United States)

    Yan, Yaming; Song, Linze; Shi, Qiang

    2018-02-01

    By employing several lattice model systems, we investigate the free energy barrier and real-time dynamics of charge separation in organic photovoltaic (OPV) cells. It is found that the combined effects of the external electric field, entropy, and charge delocalization reduce the free energy barrier significantly. The dynamic disorder reduces charge carrier delocalization and results in the increased charge separation barrier, while the effect of static disorder is more complicated. Simulation of the real-time dynamics indicates that the free charge generation process involves multiple time scales, including an ultrafast component within hundreds of femtoseconds, an intermediate component related to the relaxation of the hot charge transfer (CT) state, and a slow component on the time scale of tens of picoseconds from the thermally equilibrated CT state. Effects of hot exciton dissociation as well as its dependence on the energy offset between the Frenkel exciton and the CT state are also analyzed. The current results indicate that only a small energy offset between the band gap and the lowest energy CT state is needed to achieve efficient free charge generation in OPV devices, which agrees with recent experimental findings.

  20. Understanding the free energy barrier and multiple timescale dynamics of charge separation in organic photovoltaic cells.

    Science.gov (United States)

    Yan, Yaming; Song, Linze; Shi, Qiang

    2018-02-28

    By employing several lattice model systems, we investigate the free energy barrier and real-time dynamics of charge separation in organic photovoltaic (OPV) cells. It is found that the combined effects of the external electric field, entropy, and charge delocalization reduce the free energy barrier significantly. The dynamic disorder reduces charge carrier delocalization and results in the increased charge separation barrier, while the effect of static disorder is more complicated. Simulation of the real-time dynamics indicates that the free charge generation process involves multiple time scales, including an ultrafast component within hundreds of femtoseconds, an intermediate component related to the relaxation of the hot charge transfer (CT) state, and a slow component on the time scale of tens of picoseconds from the thermally equilibrated CT state. Effects of hot exciton dissociation as well as its dependence on the energy offset between the Frenkel exciton and the CT state are also analyzed. The current results indicate that only a small energy offset between the band gap and the lowest energy CT state is needed to achieve efficient free charge generation in OPV devices, which agrees with recent experimental findings.

  1. Astilbin from Engelhardtia chrysolepis enhances intestinal barrier functions in Caco-2 cell monolayers.

    Science.gov (United States)

    Nakahara, Tatsuo; Nishitani, Yosuke; Nishiumi, Shin; Yoshida, Masaru; Azuma, Takeshi

    2017-06-05

    Astilbin, which is one of polyphenolic compounds isolated from the leaves of Engelhardtia chrysolepis H ANCE (Chinese name, huang-qui), is available as the effective component in food and cosmetics because of its anti-oxidant and anti-inflammatory effects. The tight junction (TJ) proteins, which protect the body from foreign substances, are related to adhesion between a cell and a cell. Previously, the enhancement of TJ's functions induced by aglycones of flavonoids has been demonstrated, but the effects of the glycosides such as astilbin have not been observed yet. In this study, we investigated the effects of astilbin on the TJ's functions, and human colon carcinoma Caco-2 cell monolayers were used to evaluate the effects of astilbin on transepithelial electrical resistance (TER) value and the mRNA and proteins expressions of TJ-related molecules. Astilbin increased the TER value, mRNA expression levels of claudin-1 and ZO-2, and protein expression levels of occludin and ZO-2 in Caco-2 cells. Astilbin also increased the TER value in Caco-2 cells co-stimulated with TNF-α plus IFN-γ, and moreover upregulated the protein expression of TJ-related molecules in Caco-2 cells co-treated with TNF-α plus IFN-γ. These results suggest that astilbin can enhance the expressions of TJ-related molecules, leading to upregulation of the barrier functions in the intestinal cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Schottky barrier enhancement on n-InP solar cell applications

    DEFF Research Database (Denmark)

    Clausen, Thomas; Leistiko, Otto

    1994-01-01

    It is demonstrated that the Schottky barrier height on n-type InP can be enhanced to values close to the energy bandgap (1.35 eV) by employing a AuZnCr metallization. The process is simple and requires only mild and fast annealing sequences with temperatures not exceeding 500°C. Also, no critical...... epitaxial growth step of junctions is needed, making the process fairly cheap. Thus, prospects for an efficient and simple solar cell device structure for space application purposes based on highly radiant-resistant InP are greatly improved...

  3. Barriers to Infection of Human Cells by Feline Leukemia Virus: Insights into Resistance to Zoonosis.

    Science.gov (United States)

    Terry, Anne; Kilbey, Anna; Naseer, Asif; Levy, Laura S; Ahmad, Shamim; Watts, Ciorsdaidh; Mackay, Nancy; Cameron, Ewan; Wilson, Sam; Neil, James C

    2017-03-01

    The human genome displays a rich fossil record of past gammaretrovirus infections, yet no current epidemic is evident, despite environmental exposure to viruses that infect human cells in vitro Feline leukemia viruses (FeLVs) rank high on this list, but neither domestic nor workplace exposure has been associated with detectable serological responses. Nonspecific inactivation of gammaretroviruses by serum factors appears insufficient to explain these observations. To investigate further, we explored the susceptibilities of primary and established human cell lines to FeLV-B, the most likely zoonotic variant. Fully permissive infection was common in cancer-derived cell lines but was also a feature of nontransformed keratinocytes and lung fibroblasts. Cells of hematopoietic origin were generally less permissive and formed discrete groups on the basis of high or low intracellular protein expression and virion release. Potent repression was observed in primary human blood mononuclear cells and a subset of leukemia cell lines. However, the early steps of reverse transcription and integration appear to be unimpaired in nonpermissive cells. FeLV-B was subject to G→A hypermutation with a predominant APOBEC3G signature in partially permissive cells but was not mutated in permissive cells or in nonpermissive cells that block secondary viral spread. Distinct cellular barriers that protect primary human blood cells are likely to be important in protection against zoonotic infection with FeLV. IMPORTANCE Domestic exposure to gammaretroviruses such as feline leukemia viruses (FeLVs) occurs worldwide, but the basis of human resistance to infection remains incompletely understood. The potential threat is evident from the human genome sequence, which reveals many past epidemics of gammaretrovirus infection, and from recent cross-species jumps of gammaretroviruses from rodents to primates and marsupials. This study examined resistance to infection at the cellular level with the most

  4. Optimal indium-gallium-nitride Schottky-barrier thin-film solar cells

    Science.gov (United States)

    Anderson, Tom H.; Lakhtakia, Akhlesh; Monk, Peter B.

    2017-08-01

    A two-dimensional model was developed to simulate the optoelectronic characteristics of indium-gallium-nitride (InξGa1-ξN), thin-film, Schottky-barrier-junction solar cells. The solar cell comprises a window designed to reduce the reflection of incident light, Schottky-barrier and ohmic front electrodes, an n-doped InξGa1-ξN wafer, and a metallic periodically corrugated back-reflector (PCBR). The ratio of indium to gallium in the wafer varies periodically in the thickness direction, and thus the optical and electrical constitutive properties of the alloy also vary periodically. This material nonhomogeneity could be physically achieved by varying the fractional composition of indium and gallium during deposition. Empirical models for indium nitride and gallium nitride, combined with Vegard's law, were used to calculate the optical and electrical constitutive properties of the alloy. The periodic nonhomogeneity aids charge separation and, in conjunction with the PCBR, enables incident light to couple to multiple surface plasmon-polariton waves and waveguide modes. The profile of the resulting chargecarrier-generation rate when the solar cell is illuminated by the AM1.5G spectrum was calculated using the rigorous coupled-wave approach. The steady-state drift-diffusion equations were solved using COMSOL, which employs finite-element methods, to calculate the current density as a function of the voltage. Mid-band Shockley- Read-Hall, Auger, and radiative recombination rates were taken to be the dominant methods of recombination. The model was used to study the effects of the solar-cell geometry and the shape of the periodic material nonhomogeneity on efficiency. The solar-cell efficiency was optimized using the differential evolution algorithm.

  5. A porcine astrocyte/endothelial cell co-culture model of the blood-brain barrier.

    Science.gov (United States)

    Jeliazkova-Mecheva, Valentina V; Bobilya, Dennis J

    2003-10-01

    A method for the isolation of porcine atrocytes as a simple extension of a previously described procedure for isolation of brain capillary endothelial cells from adolescent pigs [Methods Cell Sci. 17 (1995) 2] is described. The obtained astroglial culture purified through two passages and by the method of the selective detachment was validated by a phase contrast microscopy and through an immunofluorescent assay for the glial fibrillary acidic protein (GFAP). Porcine astrocytes were co-cultivated with porcine brain capillary endothelial cells (PBCEC) for the development of an in vitro blood-brain barrier (BBB) model. The model was visualized by an electron microscopy and showed elevated transendothellial electrical resistance and reduced inulin permeability. To our knowledge, this is the first report for the establishment of a porcine astrocyte/endothelial cell co-culture BBB model, which avoids interspecies and age differences between the two cell types, usually encountered in the other reported co-culture BBB models. Considering the availability of the porcine brain tissue and the close physiological and anatomical relation between the human and pig brain, the porcine astrocyte/endothelial cell co-culture system can serve as a reliable and easily reproducible model for different in vitro BBB studies.

  6. TRIM28 is an Epigenetic Barrier to Induced Pluripotent Stem Cell Reprogramming.

    Science.gov (United States)

    Miles, Denise Catherine; de Vries, Nienke Alexandra; Gisler, Santiago; Lieftink, Cor; Akhtar, Waseem; Gogola, Ewa; Pawlitzky, Inka; Hulsman, Danielle; Tanger, Ellen; Koppens, Martijn; Beijersbergen, Roderick Leonardus; van Lohuizen, Maarten

    2017-01-01

    Since the discovery of induced pluripotent stem cells there has been intense interest in understanding the mechanisms that allow a somatic cell to be reprogrammed back to a pluripotent state. Several groups have studied the alterations in gene expression that occur as somatic cells modify their genome to that of an embryonic stem cell. Underpinning many of the gene expression changes are modifications to the epigenetic profile of the associated chromatin. We have used a large-scale shRNA screen to identify epigenetic modifiers that act as barriers to reprogramming. We have uncovered an important role for TRIM28 in cells resisting transition between somatic and pluripotent states. TRIM28 achieves this by maintaining the H3K9me3 repressed state and keeping endogenous retroviruses (ERVs) silenced. We propose that knockdown of TRIM28 during reprogramming results in more plastic H3K9me3 domains, dysregulation of genes nearby H3K9me3 marks, and up regulation of ERVs, thus facilitating the transition through reprogramming. Stem Cells 2017;35:147-157. © 2016 AlphaMed Press.

  7. Tryps and trips: cell trafficking across the 100-year-old blood-brain barrier.

    Science.gov (United States)

    Bentivoglio, Marina; Kristensson, Krister

    2014-06-01

    One hundred years ago, Edwin E. Goldmann discovered the blood-brain barrier (BBB) using trypan dyes. These dyes were developed and named by Paul Ehrlich during his search for drugs to kill African trypanosomes (extracellular parasites that cause sleeping sickness) while sparing host cells. For Ehrlich, this was the first strategy based on the 'chemotherapy' concept he had introduced. The discovery of the BBB revealed, however, the difficulties in drug delivery to the brain. Mechanisms by which parasites enter, dwell, and exit the brain currently provide novel views on cell trafficking across the BBB. These mechanisms also highlight the role of pericytes and endocytosis regulation in BBB functioning and in disrupted BBB gating, which may be involved in the pathogenesis of neurodegeneration. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. A bovine mammary endothelial/epithelial cell culture model of the blood/milk barrier.

    Science.gov (United States)

    Guidry, A J; O'Brien, C N; Douglass, L W

    1998-04-01

    The complex nature of the mammary gland has hampered in-depth studies of the relationship of the circulatory system to cells lining the teat ducts and alveoli of the gland. This study reports an in vitro model of endothelial and epithelial cells separated by a subcellular matrix that simulates the blood milk barrier of the bovine mammary gland. Dual chamber culture dishes with a porous membrane separating the upper and lower chamber were used. Endothelial and epithelial cells were cultured on opposite sides of the porous membrane. A collagen and fibroblast subcellular matrix, separating the 2 cell layers, simulated the in vivo interstitial tissue. Changes in surface binding of anti-bodies to polymorphonuclear neutrophils (PMN) following their migration from the upper to the lower chamber simulated the passage of PMN from blood to milk. Changes in the binding of antibodies to PMN agreed with results observed following the migration of PMN from blood to milk in vivo. This gives credence to the model's potential value for studies where more direct observation of the blood/milk barrier is required. The model will be further tested for its usefulness as an assay for determining: 1) antibiotic diffusion from milk to blood and from blood to milk, 2) cytotoxicity of prophylactic and therapeutic mammary infusion products, 3) factors affecting bacterial adhesion and penetration of mammary epithelial tissue, 4) effectiveness of antibodies present in lacteal secretions in preventing bacterial adhesion, and 5) the feasibility of gene constructs to induce synthesis and secretion of mastitis-preventing compounds and prophylactic and therapeutic compounds for treatment of human disorders.

  9. Transporter-Guided Delivery of Nanoparticles to Improve Drug Permeation across Cellular Barriers and Drug Exposure to Selective Cell Types

    Directory of Open Access Journals (Sweden)

    Longfa Kou

    2018-01-01

    Full Text Available Targeted nano-drug delivery systems conjugated with specific ligands to target selective cell-surface receptors or transporters could enhance the efficacy of drug delivery and therapy. Transporters are expressed differentially on the cell-surface of different cell types, and also specific transporters are expressed at higher than normal levels in selective cell types under pathological conditions. They also play a key role in intestinal absorption, delivery via non-oral routes (e.g., pulmonary route and nasal route, and transfer across biological barriers (e.g., blood–brain barrier and blood–retinal barrier. As such, the cell-surface transporters represent ideal targets for nano-drug delivery systems to facilitate drug delivery to selective cell types under normal or pathological conditions and also to avoid off-target adverse side effects of the drugs. There is increasing evidence in recent years supporting the utility of cell-surface transporters in the field of nano-drug delivery to increase oral bioavailability, to improve transfer across the blood–brain barrier, and to enhance delivery of therapeutics in a cell-type selective manner in disease states. Here we provide a comprehensive review of recent advancements in this interesting and important area. We also highlight certain key aspects that need to be taken into account for optimal development of transporter-assisted nano-drug delivery systems.

  10. Lactic Acid Bacteria May Impact Intestinal Barrier Function by Modulating Goblet Cells.

    Science.gov (United States)

    Ren, Chengcheng; Dokter-Fokkens, Jelleke; Figueroa Lozano, Susana; Zhang, Qiuxiang; de Haan, Bart J; Zhang, Hao; Faas, Marijke M; de Vos, Paul

    2018-01-15

    Lactic acid bacteria (LAB) are recognized to promote gastrointestinal health by mechanisms that are not fully understood. LABs might modulate the mucus and thereby enhance intestinal barrier function. Herein, we investigate effects of different LAB strains and species on goblet cell genes involved in mucus synthesis. Gene expression profiles of goblet-cell-associated products (mucin MUC2, trefoil factor 3, resistin-like molecule β, carbohydrate sulfotransferase 5, and galactose-3-O-sulfotransferase 2) induced by LAB or their derived conditioned medium in human goblet cell line LS174T are studied. Effects of LAB on gene transcription are assessed with or without exposure to TNF-α, IL-13, or the mucus damaging agent tunicamycin. LAB do impact the related genes in a species- and strain-specific fashion and their effects are different in the presence of the cytokines and tunicamycin. Bioactive factors secreted by some strains are also found to regulate goblet cell-related genes. Our findings provide novel insights in differences in modulatory efficacy on mucus genes between LAB species and strains. This study further unravels direct interactions between LAB and intestinal goblet cells, and highlights the importance of rationally selecting appropriate LAB candidates to achieve specific benefits in the gut. © 2018 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. NK cells promote Th-17 mediated corneal barrier disruption in dry eye.

    Directory of Open Access Journals (Sweden)

    Xiaobo Zhang

    Full Text Available The conjunctiva contains a specialized population of lymphocytes that reside in the epithelium, named intraepithelial lymphocytes (IEL.Here we characterized the IEL population prior to and after experimental desiccating stress (DS for 5 or 10 days (DS5, DS10 and evaluated the effect of NK depletion on DS. The frequency of IELs in normal murine conjunctiva was CD3(+CD103(+ (~22%, CD3(+γδ(+ (~9.6%, CD3(+NK(+ (2%, CD3(-NK(+ (~4.4%, CD3(+CD8α (~0.9%, and CD4 (~0.6%. Systemic depletion of NK cells prior and during DS led to a decrease in the frequency of total and activated DCs, a decrease in T helper-17(+ cells in the cervical lymph nodes and generation of less pathogenic CD4(+T cells. B6.nude recipient mice of adoptively transferred CD4(+T cells isolated from NK-depleted DS5 donor mice showed significantly less corneal barrier disruption, lower levels of IL-17A, CCL20 and MMP-3 in the cornea epithelia compared to recipients of control CD4(+T cells.Taken together, these results show that the NK IELs are involved in the acute immune response to desiccation-induced dry eye by activating DC, which in turn coordinate generation of the pathogenic Th-17 response.

  12. Enteroendocrine L Cells Sense LPS after Gut Barrier Injury to Enhance GLP-1 Secretion

    Directory of Open Access Journals (Sweden)

    Lorène J. Lebrun

    2017-10-01

    Full Text Available Summary: Glucagon-like peptide 1 (GLP-1 is a hormone released from enteroendocrine L cells. Although first described as a glucoregulatory incretin hormone, GLP-1 also suppresses inflammation and promotes mucosal integrity. Here, we demonstrate that plasma GLP-1 levels are rapidly increased by lipopolysaccharide (LPS administration in mice via a Toll-like receptor 4 (TLR4-dependent mechanism. Experimental manipulation of gut barrier integrity after dextran sodium sulfate treatment, or via ischemia/reperfusion experiments in mice, triggered a rapid rise in circulating GLP-1. This phenomenon was detected prior to measurable changes in inflammatory status and plasma cytokine and LPS levels. In human subjects, LPS administration also induced GLP-1 secretion. Furthermore, GLP-1 levels were rapidly increased following the induction of ischemia in the human intestine. These findings expand traditional concepts of enteroendocrine L cell biology to encompass the sensing of inflammatory stimuli and compromised mucosal integrity, linking glucagon-like peptide secretion to gut inflammation. : Lebrun et al. demonstrate that enteroendocrine L cells sense lipopolysaccharides (pro-inflammatory bacterial compounds after gut injury and respond by secreting glucagon-like peptide 1. These findings expand concepts of L cell function to include roles as both a nutrient and pathogen sensor, linking glucagon-like peptide secretion to gut inflammation. Keywords: glucagon-like peptide 1, lipopolysaccharides, enteroendocrine cells, TLR4, gut injury, intestinal ischemia, inflammation

  13. Novel Colitis Immunotherapy Targets Bin1 and Improves Colon Cell Barrier Function.

    Science.gov (United States)

    Thomas, Sunil; Mercado, Joanna M; DuHadaway, James; DiGuilio, Kate; Mullin, James M; Prendergast, George C

    2016-02-01

    Ulcerative colitis (UC) is associated with defects in colonic epithelial barriers as well as inflammation of the colon mucosa resulting from the recruitment of lymphocytes and neutrophils in the lamina propria. Patients afflicted with UC are at increased risk of colorectal cancer. Currently, UC management employs general anti-inflammatory strategies associated with a variety of side effects, including heightened risks of infection, in patients where the therapy is variably effective. Thus, second generation drugs that can more effectively and selectively limit UC are desired. Building on genetic evidence that attenuation of the Bin1 (Bridging integrator 1) gene can limit UC pathogenicity in the mouse, we pursued Bin1 targeting as a therapeutic option. Mice were injected with a single dose of Bin1 mAb followed by oral administration of 3 % DSS in water for 7 days. In this study, we offer preclinical proof of concept for a monoclonal antibody (mAb) targeting the Bin1 protein that blunts UC pathogenicity in a mouse model of experimental colitis. Administration of Bin1 mAb reduced colitis morbidity in mice; whereas unprotected mice is characterized by severe lesions throughout the mucosa, rupture of the lymphoid follicle, high-level neutrophil and lymphocyte infiltration into the mucosal and submucosal areas, and loss of surface crypts. In vitro studies in human Caco-2 cells showed that Bin1 antibody altered the expression of tight junction proteins and improved barrier function. Our results suggest that a therapy based on Bin1 monoclonal antibody supporting mucosal barrier function and protecting integrity of the lymphoid follicle could offer a novel strategy to treat UC and possibly limit risks of colorectal cancer.

  14. B-cell identity as a metabolic barrier against malignant transformation.

    Science.gov (United States)

    Chan, Lai N; Müschen, Markus

    2017-09-01

    B-lineage and myeloid leukemia cells are often transformed by the same oncogenes, but have different biological and clinical characteristics. Although B-lineage acute lymphoblastic leukemia (B-ALL) cells are characterized by a state of chronic energy deficit, myeloid leukemia cells show abundant energy reserve. Interestingly, fasting has been demonstrated to inhibit selectively the development of B-ALL but not myeloid leukemia, further suggesting that lineage identity may be linked to divergent metabolic states in hematopoietic malignancies. The B-lymphoid transcription factors IKZF1, EBF1, and PAX5 are essential for early B-cell development and commitment to B-cell identity. However, in >80% of human pre-B-ALL cases, the leukemic clones harbor genetic lesions of these transcription factors. The significance of these defects has only recently been investigated. Here, we discuss the unexpected function of a B-lymphoid transcriptional program as a metabolic barrier against malignant transformation of B-cell precursor cells. The metabolic gatekeeper function of B-lymphoid transcription factors may force silent preleukemic clones carrying potentially oncogenic lesions to remain in a latent state. In addition, this program sets the threshold for responses to glucocorticoids in pre-B-ALL. Finally, the link between the tumor-suppressor and metabolic functions of B-lymphoid transcription factors is matched by observations in clinical trials: obesity and hyperglycemia are associated with poor clinical outcome in patients with pre-B-ALL. Copyright © 2017 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.

  15. Excreted/secreted Trichuris suis products reduce barrier function and suppress inflammatory cytokine production of intestinal epithelial cells

    DEFF Research Database (Denmark)

    Hiemstra, I. H.; Klaver, E. J.; Vrijland, K.

    2014-01-01

    . The intestinal epithelium forms an efficient barrier between the intestinal lumen containing the microbial flora and helminths, and dendritic cells (DCs) present in the lamina propria that determine the TH response. Here, we investigated how excreted/secreted (E/S) products of T. suis affect the barrier function...... of intestinal epithelial cells (IECs) in order to reach the DCs and modulate the immune response. We show that T. suis E/S products reduce the barrier function and the expression of the tight junction proteins EMP-1 and claudin-4 in IEC CMT93/69 monolayers in a glycan-dependent manner. This resulted...... in an increased passage of soluble compounds to the basolateral side that affected DC function. In addition, T. suis E/S suppressed LPS-induced pro-inflammatory cytokine production by CMT93/69 cells, whereas the production of the TH2 response-inducing cytokine thymic stromal lymphopoietin (TSLP) was induced. Our...

  16. Exploring barriers and facilitators to clinical trial enrollment in the context of sickle cell anemia and hydroxyurea.

    Science.gov (United States)

    Lebensburger, Jeffrey D; Sidonio, Robert F; Debaun, Michael R; Safford, Monika M; Howard, Thomas H; Scarinci, Isabel C

    2013-08-01

    Several sickle cell clinical trials have closed due to inability to enroll patients. To limit the early cessation of a proposed clinical trial due to low accrual rates, we sought to better understand barriers and facilitators to enrolling parents of children with sickle cell anemia (SCD) into clinical trials. Focus groups (n = 3) were conducted with parents/guardians (n = 14) who had not previously been recruited for a clinical trial and were not administering hydroxyurea to their children. Three main themes related to barriers to clinical trial enrollment were identified during analysis of focus groups: general barriers to health related research (general mistrust of research studies, emotional and practical concerns), barriers to trial design (randomization), and barriers to hydroxyurea (long term unknown risks, cancer, myelosuppressive effects). Facilitators identified were need for more education, including request for peer education, and improved explanation of clinical trials or study rationale. Engagement of parents/guardians of children with SCD in identifying barriers and facilitators to clinical trial enrollment may be critical to the development of strategies to enhance SCD trial completion. Copyright © 2013 Wiley Periodicals, Inc.

  17. Cholinergic signaling in the gut: a novel mechanism of barrier protection through activation of enteric glia cells.

    Science.gov (United States)

    Cheadle, Gerald A; Costantini, Todd W; Bansal, Vishal; Eliceiri, Brian P; Coimbra, Raul

    2014-08-01

    Enteric glia cells (EGCs) play an important role in maintaining proper intestinal barrier function. We have shown that vagal nerve stimulation (VNS) increases EGC activation, which is associated with better gut barrier integrity. Enteric neurons communicate with EGCs through nicotinic cholinergic signaling, which may represent a pathway by which VNS activates EGCs. This study sought to define further the mechanism by which VNS prevents intestinal barrier failure using an in vitro model. We hypothesized that a nicotinic cholinergic agonist would increase EGC activation, prevent intestinal nuclear factor kappa-B (NF-κB) activation, and result in better intestinal barrier function. Cultured EGCs were exposed to the nicotinic cholinergic agonist nicotine. Expression of glial fibrillary acidic protein (GFAP) was measured by immunoblot to determine changes in EGC activation. Caco-2 cells were grown to confluence and incubated alone or in co-culture with EGCs. Cells were then stimulated with Cytomix for 24 h in the presence or absence of nicotine, and barrier integrity was assessed by permeability to 4-kDa FITC-dextran. Changes in phosphorylated inhibitor of NF-κb (P-IκBα) and phosphorylated NF-κB (P-NF-κB) were assessed by immunoblot. Stimulation with nicotine resulted in EGC activation, as demonstrated by an increase in GFAP expression. Cytomix stimulation increased permeability in Caco-2 cells cultured alone or with EGCs. Treatment of stimulated Caco-2/EGC co-cultures with nicotine reduced permeability similar to control. Nicotine failed to prevent barrier permeability in Caco-2 cells alone. Co-culture of stimulated Caco-2 cells with nicotine-activated EGCs prevented Cytomix-induced increases in P-IκBα and P-NF-κB expression. A pharmacologic nicotinic cholinergic agonist increased EGC activation and improved intestinal epithelial barrier function in an in vitro model of intestinal injury. Nicotine-activated EGCs appear to modulate barrier function by

  18. A 3D-printed microbial cell culture platform with in situ PEGDA hydrogel barriers for differential substrate delivery.

    Science.gov (United States)

    Kadilak, Andrea L; Rehaag, Jessica C; Harrington, Cameron A; Shor, Leslie M

    2017-09-01

    Additive manufacturing, or 3D-printing techniques have recently begun to enable simpler, faster, and cheaper production of millifluidic devices at resolutions approaching 100-200  μ m. At this resolution, cell culture devices can be constructed that more accurately replicate natural environments compared with conventional culturing techniques. A number of microfluidics researchers have begun incorporating additive manufacturing into their work, using 3D-printed devices in a wide array of chemical, fluidic, and even some biological applications. Here, we describe a 3D-printed cell culture platform and demonstrate its use in culturing Pseudomonas putida KT2440 bacteria for 44 h under a differential substrate gradient. Polyethylene glycol diacrylate (PEGDA) hydrogel barriers are patterned in situ within a 3D-printed channel. Transport of the toluidine blue tracer dye through the hydrogel barriers is characterized. Nutrients and oxygen were delivered to cells in the culture region by diffusion through the PEGDA hydrogel barriers from adjacent media or saline perfusion channels. Expression of green fluorescent protein by P. putida KT2440 enabled real time visualization of cell density within the 3D-printed channel, and demonstrated cells were actively expressing protein over the course of the experiment. Cells were observed clustering near hydrogel barrier boundaries where fresh substrate and oxygen were being delivered via diffusive transport, but cells were unable to penetrate the barrier. The device described here provides a versatile and easy to implement platform for cell culture in readily controlled gradient microenvironments. By adjusting device geometry and hydrogel properties, this platform could be further customized for a wide variety of biological applications.

  19. Coexpression analysis identifies nuclear reprogramming barriers of somatic cell nuclear transfer embryos.

    Science.gov (United States)

    Zuo, Yongchun; Su, Guanghua; Cheng, Lei; Liu, Kun; Feng, Yu; Wei, Zhuying; Bai, Chunling; Cao, Guifang; Li, Guangpeng

    2017-09-12

    The success of cloned animal "Dolly Sheep" demonstrated the somatic cell nuclear transfer (SCNT) technique holds huge potentials for mammalian asexual reproduction. However, the extremely poor development of SCNT embryos indicates their molecular mechanism remain largely unexplored. Deciphering the spatiotemporal patterns of gene expression in SCNT embryos is a crucial step toward understanding the mechanisms associated with nuclear reprogramming. In this study, a valuable transcriptome recourse of SCNT embryos was firstly established, which derived from different inter-/intra donor cells. The gene co-expression analysis identified 26 cell-specific modules, and a series of regulatory pathways related to reprogramming barriers were further enriched. Compared to the intra-SCNT embryos, the inter-SCNT embryos underwent only complete partially reprogramming. As master genome trigger genes, the transcripts related to TFIID subunit, RNA polymerase and mediators were incomplete activated in inter-SCNT embryos. The inter-SCNT embryos only wasted the stored maternal mRNA of master regulators, but failed to activate their self-sustained pathway of RNA polymerases. The KDM family of epigenetic regulator also seriously delayed in inter-SCNT embryo reprogramming process. Our study provided new insight into understanding of the mechanisms of nuclear reprogramming.

  20. Quantifying rates of cell migration and cell proliferation in co-culture barrier assays reveals how skin and melanoma cells interact during melanoma spreading and invasion.

    Science.gov (United States)

    Haridas, Parvathi; Penington, Catherine J; McGovern, Jacqui A; McElwain, D L Sean; Simpson, Matthew J

    2017-06-21

    Malignant spreading involves the migration of cancer cells amongst other native cell types. For example, in vivo melanoma invasion involves individual melanoma cells migrating through native skin, which is composed of several distinct subpopulations of cells. Here, we aim to quantify how interactions between melanoma and fibroblast cells affect the collective spreading of a heterogeneous population of these cells in vitro. We perform a suite of circular barrier assays that includes: (i) monoculture assays with fibroblast cells; (ii) monoculture assays with SK-MEL-28 melanoma cells; and (iii) a series of co-culture assays initiated with three different ratios of SK-MEL-28 melanoma cells and fibroblast cells. Using immunostaining, detailed cell density histograms are constructed to illustrate how the two subpopulations of cells are spatially arranged within the spreading heterogeneous population. Calibrating the solution of a continuum partial differential equation to the experimental results from the monoculture assays allows us to estimate the cell diffusivity and the cell proliferation rate for the melanoma and the fibroblast cells, separately. Using the parameter estimates from the monoculture assays, we then make a prediction of the spatial spreading in the co-culture assays. Results show that the parameter estimates obtained from the monoculture assays lead to a reasonably accurate prediction of the spatial arrangement of the two subpopulations in the co-culture assays. Overall, the spatial pattern of spreading of the melanoma cells and the fibroblast cells is very similar in monoculture and co-culture conditions. Therefore, we find no clear evidence of any interactions other than cell-to-cell contact and crowding effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Stepwise DNA Methylation Changes Are Linked to Escape from Defined Proliferation Barriers and Mammary Epithelial Cell Immortalization

    Energy Technology Data Exchange (ETDEWEB)

    Novak, Petr; Jensen, Taylor J.; Garbe, James C.; Stampfer, Martha R.; Futscher, Bernard W.

    2009-04-20

    The timing and progression of DNA methylation changes during carcinogenesis are not completely understood. To develop a timeline of aberrant DNA methylation events during malignant transformation, we analyzed genome-wide DNA methylation patterns in an isogenic human mammary epithelial cell (HMEC) culture model of transformation. To acquire immortality and malignancy, the cultured finite lifespan HMEC must overcome two distinct proliferation barriers. The first barrier, stasis, is mediated by the retinoblastoma protein and can be overcome by loss of p16(INK4A) expression. HMEC that escape stasis and continue to proliferate become genomically unstable before encountering a second more stringent proliferation barrier, telomere dysfunction due to telomere attrition. Rare cells that acquire telomerase expression may escape this barrier, become immortal, and develop further malignant properties. Our analysis of HMEC transitioning from finite lifespan to malignantly transformed showed that aberrant DNA methylation changes occur in a stepwise fashion early in the transformation process. The first aberrant DNA methylation step coincides with overcoming stasis, and results in few to hundreds of changes, depending on how stasis was overcome. A second step coincides with immortalization and results in hundreds of additional DNA methylation changes regardless of the immortalization pathway. A majority of these DNA methylation changes are also found in malignant breast cancer cells. These results show that large-scale epigenetic remodeling occurs in the earliest steps of mammary carcinogenesis, temporally links DNA methylation changes and overcoming cellular proliferation barriers, and provides a bank of potential epigenetic biomarkers that mayprove useful in breast cancer risk assessment.

  2. Sodium caprate transiently opens claudin-5-containing barriers at tight junctions of epithelial and endothelial cells.

    Science.gov (United States)

    Del Vecchio, G; Tscheik, C; Tenz, K; Helms, H C; Winkler, L; Blasig, R; Blasig, I E

    2012-09-04

    Claudin-5 is a tight junction (TJ) protein which limits the diffusion of small hydrophilic molecules. Thus, it represents a potential pharmacological target to improve drug delivery to the tissues protected by claudin-5-dependent barriers. Sodium caprate is known as an absorption enhancer which opens the paracellular space acting on TJ proteins and actin cytoskeleton. Its action on claudin-5 is not understood so far. Epithelial and endothelial systems were used to evaluate the effect of caprate on claudin-5 in TJ-free cells and on claudin-5 fully integrated in TJ. To this aim, confocal microscopy on live and fixed cells and isolated mouse brain capillaries, Western blotting and permeability assays were employed. Caprate reversibly reduced claudin-5 trans-interactions in TJ-free human embryonic kidney-293 cells expressing claudin-5-YFP. It decreased the membranous claudin-5 and the F-actin content in Madin-Darby canine kidney-II cells expressing Flag-claudin-5, thereby increasing the permeability to the small molecule lucifer yellow. Interestingly, zonula occludens protein 1 (ZO-1), which links transmembranous TJ proteins to the actin cytoskeleton, was not affected by caprate treatment. Similarly, endogenous claudin-5 in the membrane of brain endothelia was displaced together with F-actin, whereas ZO-1 remained unaffected. Caprate transiently opens the paracellular space, reducing the intercellular claudin-5/claudin-5 interactions and the polymerized actin at the perijunctional region of endothelial and epithelial cells. In conclusion, the study further elucidates the cellular effects of caprate at the tight junctions.

  3. Skeletal cell differentiation is enhanced by atmospheric dielectric barrier discharge plasma treatment.

    Directory of Open Access Journals (Sweden)

    Marla J Steinbeck

    Full Text Available Enhancing chondrogenic and osteogenic differentiation is of paramount importance in providing effective regenerative therapies and improving the rate of fracture healing. This study investigated the potential of non-thermal atmospheric dielectric barrier discharge plasma (NT-plasma to enhance chondrocyte and osteoblast proliferation and differentiation. Although the exact mechanism by which NT-plasma interacts with cells is undefined, it is known that during treatment the atmosphere is ionized generating extracellular reactive oxygen and nitrogen species (ROS and RNS and an electric field. Appropriate NT-plasma conditions were determined using lactate-dehydrogenase release, flow cytometric live/dead assay, flow cytometric cell cycle analysis, and Western blots to evaluate DNA damage and mitochondrial integrity. We observed that specific NT-plasma conditions were required to prevent cell death, and that loss of pre-osteoblastic cell viability was dependent on intracellular ROS and RNS production. To further investigate the involvement of intracellular ROS, fluorescent intracellular dyes Mitosox (superoxide and dihydrorhodamine (peroxide were used to assess onset and duration after NT-plasma treatment. Both intracellular superoxide and peroxide were found to increase immediately post NT-plasma treatment. These increases were sustained for one hour but returned to control levels by 24 hr. Using the same treatment conditions, osteogenic differentiation by NT-plasma was assessed and compared to peroxide or osteogenic media containing β-glycerolphosphate. Although both NT-plasma and peroxide induced differentiation-specific gene expression, neither was as effective as the osteogenic media. However, treatment of cells with NT-plasma after 24 hr in osteogenic or chondrogenic media significantly enhanced differentiation as compared to differentiation media alone. The results of this study show that NT-plasma can selectively initiate and amplify ROS

  4. Cardiotoxic drugs Herceptin and doxorubicin inhibit cardiac microvascular endothelial cell barrier formation resulting in increased drug permeability

    Directory of Open Access Journals (Sweden)

    Emma L. Wilkinson

    2016-10-01

    Full Text Available Cardiotoxicity induced by anti-cancer therapeutics is a severe, and potentially fatal, adverse reaction of the heart in response to certain drugs. Current in vitro approaches to assess cardiotoxicity have focused on analysing cardiomyocytes. More recently it has become apparent that non-cardiomyocyte cells of the heart can potentially contribute to cardiotoxicity. Herceptin and doxorubicin are known to induce cardiotoxicity in the clinic. The effect of these drugs on the endothelial tight junction barrier was tested by analysing tight junction formation and zona occludens-1 (ZO-1 levels, revealing that Herceptin and doxorubicin are able to induce barrier perturbment and decrease barrier function in human cardiac microvascular endothelial cells (HCMECs leading to increased permeability. Herceptin treatment had no effect on the tight junction barrier function in human dermal and human brain microvascular endothelial cells. HCMECs showed detectable levels of HER2 compared with the other endothelial cells suggesting that Herceptin binding to HER2 in these cells may interfere with tight junction formation. Our data suggests that doxorubicin and Herceptin can affect tight junction formation in the cardiac microvasculature leading to increased drug permeability and adverse effects on the cardiac myocytes.

  5. Initial Attempts of Development and Characterization of an In Vitro Blood Brain Barrier Model Derived from Human Pluripotent Stem Cells

    DEFF Research Database (Denmark)

    Goldeman, Charlotte; Saaby, Lasse; Hall, Vanessa Jane

    observed for several days after seeding by measuring the trans-endothelial electrical resistance (TEER). Initial pilot studies have shown a significant difference between stem cells grown as a mono culture and stem cells grown in co-culture with rat astrocytes. The stem cell line WTSli024-A had...... configurations (mono culture, non-contact co-culture and contact co-culture) with primary rat astrocytes to induce barrier-like properties. Endothelial cell media supplemented with retinoic acid were then applied to the cells to ensure selective expansion of BECs. The different culture configurations were...

  6. Effects of Lactobacillus johnsonii and Lactobacillus reuteri on gut barrier function and heat shock proteins in intestinal porcine epithelial cells.

    Science.gov (United States)

    Liu, Hao-Yu; Roos, Stefan; Jonsson, Hans; Ahl, David; Dicksved, Johan; Lindberg, Jan Erik; Lundh, Torbjörn

    2015-04-01

    Heat shock proteins (HSPs) are a set of highly conserved proteins that can serve as intestinal gate keepers in gut homeostasis. Here, effects of a probiotic, Lactobacillus rhamnosus GG (LGG), and two novel porcine isolates, Lactobacillus johnsonii strain P47-HY and Lactobacillus reuteri strain P43-HUV, on cytoprotective HSP expression and gut barrier function, were investigated in a porcine IPEC-J2 intestinal epithelial cell line model. The IPEC-J2 cells polarized on a permeable filter exhibited villus-like cell phenotype with development of apical microvilli. Western blot analysis detected HSP expression in IPEC-J2 and revealed that L. johnsonii and L. reuteri strains were able to significantly induce HSP27, despite high basal expression in IPEC-J2, whereas LGG did not. For HSP72, only the supernatant of L. reuteri induced the expression, which was comparable to the heat shock treatment, which indicated that HSP72 expression was more stimulus specific. The protective effect of lactobacilli was further studied in IPEC-J2 under an enterotoxigenic Escherichia coli (ETEC) challenge. ETEC caused intestinal barrier destruction, as reflected by loss of cell-cell contact, reduced IPEC-J2 cell viability and transepithelial electrical resistance, and disruption of tight junction protein zonula occludens-1. In contrast, the L. reuteri treatment substantially counteracted these detrimental effects and preserved the barrier function. L. johnsonii and LGG also achieved barrier protection, partly by directly inhibiting ETEC attachment. Together, the results indicate that specific strains of Lactobacillus can enhance gut barrier function through cytoprotective HSP induction and fortify the cell protection against ETEC challenge through tight junction protein modulation and direct interaction with pathogens. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  7. Selective HDAC6 inhibition prevents TNF-α-induced lung endothelial cell barrier disruption and endotoxin-induced pulmonary edema.

    Science.gov (United States)

    Yu, Jinyan; Ma, Zhongsen; Shetty, Sreerama; Ma, Mengshi; Fu, Jian

    2016-07-01

    Lung endothelial damage contributes to the pathogenesis of acute lung injury. New strategies against lung endothelial barrier dysfunction may provide therapeutic benefits against lung vascular injury. Cell-cell junctions and microtubule cytoskeleton are basic components in maintaining endothelial barrier integrity. HDAC6, a deacetylase primarily localized in the cytoplasm, has been reported to modulate nonnuclear protein function through deacetylation. Both α-tubulin and β-catenin are substrates for HDAC6. Here, we examined the effects of tubastatin A, a highly selective HDAC6 inhibitor, on TNF-α induced lung endothelial cell barrier disruption and endotoxin-induced pulmonary edema. Selective HDAC6 inhibition by tubastatin A blocked TNF-α-induced lung endothelial cell hyperpermeability, which was associated with increased α-tubulin acetylation and microtubule stability. Tubastatin A pretreatment inhibited TNF-α-induced endothelial cell contraction and actin stress fiber formation with reduced myosin light chain phosphorylation. Selective HDAC6 inhibition by tubastatin A also induced β-catenin acetylation in human lung endothelial cells, which was associated with increased membrane localization of β-catenin and stabilization of adherens junctions. HDAC6 knockdown by small interfering RNA also prevented TNF-α-induced barrier dysfunction and increased α-tubulin and β-catenin acetylation in endothelial cells. Furthermore, in a mouse model of endotoxemia, tubastatin A was able to prevent endotoxin-induced deacetylation of α-tubulin and β-catenin in lung tissues, which was associated with reduced pulmonary edema. Collectively, our data indicate that selective HDAC6 inhibition by tubastatin A is a potent approach against lung endothelial barrier dysfunction. Copyright © 2016 the American Physiological Society.

  8. Occlusion of retinal capillaries caused by glial cell proliferation in chronic ocular inflammation.

    Science.gov (United States)

    Bianchi, E; Ripandelli, G; Feher, J; Plateroti, A M; Plateroti, R; Kovacs, I; Plateroti, P; Taurone, S; Artico, M

    2015-01-01

    The inner blood-retinal barrier is a gliovascular unit in which glial cells surround capillary endothelial cells and regulate retinal capillaries by paracrine interactions. During chronic ocular inflammation, microvascular complications can give rise to vascular proliferative lesions, which compromise visual acuity. This pathologic remodelling caused by proliferating Müller cells determines occlusion of retinal capillaries. The aim of the present study was to identify qualitative and quantitative alterations in the retinal capillaries in patients with post-traumatic chronic ocular inflammation or post-thrombotic vascular glaucoma. Moreover, we investigated the potential role of vascular endothelial growth factor (VEGF) and pro-inflammatory cytokines in retinal inflammation. Our electron microscopy findings demonstrated that during chronic ocular inflammation, thickening of the basement membrane, loss of pericytes and endothelial cells and proliferation of Müller cells occur with irreversible occlusion of retinal capillaries. Angiogenesis takes place as part of a regenerative reaction that results in fibrosis. We believe that VEGF and pro-inflammatory cytokines may be potential therapeutic targets in the treatment of this disease although further studies are required to confirm these findings.

  9. Application of stem cell-derived retinal pigmented epithelium in retinal degenerative diseases: present and future.

    Science.gov (United States)

    Luo, Mingyue; Chen, Youxin

    2018-01-01

    As a constituent of blood-retinal barrier and retinal outer segment (ROS) scavenger, retinal pigmented epithelium (RPE) is fundamental to normal function of retina. Malfunctioning of RPE contributes to the onset and advance of retinal degenerative diseases. Up to date, RPE replacement therapy is the only possible method to completely reverse retinal degeneration. Transplantation of human RPE stem cell-derived RPE (hRPESC-RPE) has shown some good results in animal models. With promising results in terms of safety and visual improvement, human embryonic stem cell-derived RPE (hESC-RPE) can be expected in clinical settings in the near future. Despite twists and turns, induced pluripotent stem cell-derived RPE (iPSC-RPE) is now being intensely investigated to overcome genetic and epigenetic instability. By far, only one patient has received iPSC-RPE transplant, which is a hallmark of iPSC technology development. During follow-up, no major complications such as immunogenicity or tumorigenesis have been observed. Future trials should keep focusing on the safety of stem cell-derived RPE (SC-RPE) especially in long period, and better understanding of the nature of stem cell and the molecular events in the process to generate SC-RPE is necessary to the prosperity of SC-RPE clinical application.

  10. Transfection of brain capillary endothelial cells in primary culture with defined blood-brain barrier properties.

    Science.gov (United States)

    Burkhart, Annette; Thomsen, Louiza Bohn; Thomsen, Maj Schneider; Lichota, Jacek; Fazakas, Csilla; Krizbai, István; Moos, Torben

    2015-08-07

    Primary brain capillary endothelial cells (BCECs) are a promising tool to study the blood-brain barrier (BBB) in vitro, as they maintain many important characteristics of the BBB in vivo, especially when co-cultured with pericytes and/or astrocytes. A novel strategy for drug delivery to the brain is to transform BCECs into protein factories by genetic modifications leading to secretion of otherwise BBB impermeable proteins into the central nervous system. However, a huge challenge underlying this strategy is to enable transfection of non-mitotic BCECs, taking a non-viral approach. We therefore aimed to study transfection in primary, non-mitotic BCECs cultured with defined BBB properties without disrupting the cells' integrity. Primary cultures of BCECs, pericytes and astrocytes were generated from rat brains and used in three different in vitro BBB experimental arrangements, which were characterised based on a their expression of tight junction proteins and other BBB specific proteins, high trans-endothelial electrical resistance (TEER), and low passive permeability to radiolabeled mannitol. Recombinant gene expression and protein synthesis were examined in primary BCECs. The BCECs were transfected using a commercially available transfection agent Turbofect™ to express the red fluorescent protein HcRed1-C1. The BCECs were transfected at different time points to monitor transfection in relation to mitotic or non-mitotic cells, as indicated by fluorescence-activated cell sorting analysis after 5-and 6-carboxylfluorescein diacetate succinidyl ester incorporation. The cell cultures exhibited important BBB characteristics judged from their expression of BBB specific proteins, high TEER values, and low passive permeability. Among the three in vitro BBB models, co-culturing with BCECs and astrocytes was well suited for the transfection studies. Transfection was independent of cell division and with equal efficacy between the mitotic and non-mitotic BCECs. Importantly

  11. Zika Virus Infects, Activates, and Crosses Brain Microvascular Endothelial Cells, without Barrier Disruption

    Directory of Open Access Journals (Sweden)

    Michelle P. Papa

    2017-12-01

    Full Text Available Zika virus (ZIKV has been associated to central nervous system (CNS harm, and virus was detected in the brain and cerebrospinal fluids of microcephaly and meningoencephalitis cases. However, the mechanism by which the virus reaches the CNS is unclear. Here, we addressed the effects of ZIKV replication in human brain microvascular endothelial cells (HBMECs, as an in vitro model of blood brain barrier (BBB, and evaluated virus extravasation and BBB integrity in an in vivo mouse experimental model. HBMECs were productively infected by African and Brazilian ZIKV strains (ZIKVMR766 and ZIKVPE243, which induce increased production of type I and type III IFN, inflammatory cytokines and chemokines. Infection with ZIKVMR766 promoted earlier cellular death, in comparison to ZIKVPE243, but infection with either strain did not result in enhanced endothelial permeability. Despite the maintenance of endothelial integrity, infectious virus particles crossed the monolayer by endocytosis/exocytosis-dependent replication pathway or by transcytosis. Remarkably, both viruses' strains infected IFNAR deficient mice, with high viral load being detected in the brains, without BBB disruption, which was only detected at later time points after infection. These data suggest that ZIKV infects and activates endothelial cells, and might reach the CNS through basolateral release, transcytosis or transinfection processes. These findings further improve the current knowledge regarding ZIKV dissemination pathways.

  12. DC electric and photoelectric measurements of CdTe thin films in Schottky-barrier cells

    Energy Technology Data Exchange (ETDEWEB)

    Darwish, S

    2004-06-15

    Measurements of the temperature dependence of ohmic and space-charge-limited (SCL) currents on thin films of polycrystalline particles of cadmium telluride in Schottky-junction cells have been carried out in air ambient. These cells showed rectification where p-CdTe material was flanked between an ohmic contact (Au) and a blocking contact (Al). At low voltages, the dark current in the forward direction which corresponds to negative potential at the Al electrode varies exponentially with voltage. At higher voltages, two distinct regions of ohmic and SCL conduction limited by a discrete trapping level are determined. Traps with a density of 3.85x10{sup 22} m{sup -3} located at 0.58 eV above the valence band edge have been observed. The thickness dependence in the square-law region has been found to confirm the d{sup -3} law. Values of conversion efficiency as high as 11.3% and open-circuit voltage of 0.77 V have been evaluated from the photo-measurements of J-V characteristic at input power density of 100 mW cm{sup -2}. Space-charge concentrations and barrier heights have been estimated from the capacitance-voltage (C-V) measurements both in dark and under constant illumination. The linearity of the C{sup -2}-V dependence is associated with a homogenous distribution of the impurities inside the space-charge region.

  13. Zika Virus Infects, Activates, and Crosses Brain Microvascular Endothelial Cells, without Barrier Disruption

    Science.gov (United States)

    Papa, Michelle P.; Meuren, Lana M.; Coelho, Sharton V. A.; Lucas, Carolina G. de Oliveira; Mustafá, Yasmin M.; Lemos Matassoli, Flavio; Silveira, Paola P.; Frost, Paula S.; Pezzuto, Paula; Ribeiro, Milene R.; Tanuri, Amilcar; Nogueira, Mauricio L.; Campanati, Loraine; Bozza, Marcelo T.; Paula Neto, Heitor A.; Pimentel-Coelho, Pedro M.; Figueiredo, Claudia P.; de Aguiar, Renato S.; de Arruda, Luciana B.

    2017-01-01

    Zika virus (ZIKV) has been associated to central nervous system (CNS) harm, and virus was detected in the brain and cerebrospinal fluids of microcephaly and meningoencephalitis cases. However, the mechanism by which the virus reaches the CNS is unclear. Here, we addressed the effects of ZIKV replication in human brain microvascular endothelial cells (HBMECs), as an in vitro model of blood brain barrier (BBB), and evaluated virus extravasation and BBB integrity in an in vivo mouse experimental model. HBMECs were productively infected by African and Brazilian ZIKV strains (ZIKVMR766 and ZIKVPE243), which induce increased production of type I and type III IFN, inflammatory cytokines and chemokines. Infection with ZIKVMR766 promoted earlier cellular death, in comparison to ZIKVPE243, but infection with either strain did not result in enhanced endothelial permeability. Despite the maintenance of endothelial integrity, infectious virus particles crossed the monolayer by endocytosis/exocytosis-dependent replication pathway or by transcytosis. Remarkably, both viruses' strains infected IFNAR deficient mice, with high viral load being detected in the brains, without BBB disruption, which was only detected at later time points after infection. These data suggest that ZIKV infects and activates endothelial cells, and might reach the CNS through basolateral release, transcytosis or transinfection processes. These findings further improve the current knowledge regarding ZIKV dissemination pathways. PMID:29312238

  14. A fish intestinal epithelial barrier model established from the rainbow trout (Oncorhynchus mykiss) cell line, RTgutGC

    OpenAIRE

    Minghetti, Matteo; Drieschner, Carolin; Bramaz, Nadine; Schug, Hannah; Schirmer, Kristin

    2017-01-01

    The intestine of fish is a multifunctional organ: lined by only a single layer of specialized epithelial cells, it has various physiological roles including nutrient absorption and ion regulation. It moreover comprises an important barrier for environmental toxicants, including metals. Thus far, knowledge of the fish intestine is limited largely to in vivo or ex vivo investigations. Recently, however, the first fish intestinal cell line, RTgutGC, was established, originating from a rainbow tr...

  15. Efficient, air-stable colloidal quantum dot solar cells encapsulated using atomic layer deposition of a nanolaminate barrier

    KAUST Repository

    Ip, Alexander H.

    2013-12-23

    Atomic layer deposition was used to encapsulate colloidal quantum dot solar cells. A nanolaminate layer consisting of alternating alumina and zirconia films provided a robust gas permeation barrier which prevented device performance degradation over a period of multiple weeks. Unencapsulated cells stored in ambient and nitrogen environments demonstrated significant performance losses over the same period. The encapsulated cell also exhibited stable performance under constant simulated solar illumination without filtration of harsh ultraviolet photons. This monolithically integrated thin film encapsulation method is promising for roll-to-roll processed high efficiency nanocrystal solar cells. © 2013 AIP Publishing LLC.

  16. Membrane organization determines barrier properties of endothelial cells and short-chain sphingolipid-facilitated doxorubicin influx.

    Science.gov (United States)

    van Hell, A J; Klymchenko, A; Gueth, D M; van Blitterswijk, W J; Koning, G A; Verheij, M

    2014-09-01

    The endothelial lining and its outer lipid membrane are the first major barriers drug molecules encounter upon intravenous administration. Our previous work identified lipid analogs that counteract plasma membrane barrier function for a series of amphiphilic drugs. For example, short-chain sphingolipids (SCS), like N-octanoyl-glucosylceramide, effectively elevated doxorubicin accumulation in tumor cells, both in vitro and in vivo, and in endothelial cells, whereas other (normal) cells remained unaffected. We hypothesize here that local membrane lipid composition and the degree of lipid ordering define SCS efficacy in individual cells. To this end, we study the differential effect of SCS on bovine aortic endothelial cells (BAEC) in its confluent versus proliferative state, as a model system. While their (plasma membrane) lipidome stays remarkably unaltered when BAECs reach confluency, their lipids segregate to form apical and basolateral domains. Using probe NR12S, we reveal that lipids in the apical membrane are more condensed/liquid-ordered. SCS preferentially attenuate the barrier posed by these condensed membranes and facilitate doxorubicin influx in these particular membrane regions. We confirm these findings in MDCK cells and artificial membranes. In conclusion, SCS-facilitated drug traversal acts on condensed membrane domains, elicited by confluency in resting endothelium. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Diffusion chamber system for testing of collagen-based cell migration barriers for separation of ligament enthesis zones in tissue-engineered ACL constructs.

    Science.gov (United States)

    Hahner, J; Hoyer, M; Hillig, S; Schulze-Tanzil, G; Meyer, M; Schröpfer, M; Lohan, A; Garbe, L-A; Heinrich, G; Breier, A

    2015-01-01

    A temporary barrier separating scaffold zones seeded with different cell types prevents faster growing cells from overgrowing co-cultured cells within the same construct. This barrier should allow sufficient nutrient diffusion through the scaffold. The aim of this study was to test the effect of two variants of collagen-based barriers on macromolecule diffusion, viability, and the spreading efficiency of primary ligament cells on embroidered scaffolds. Two collagen barriers, a thread consisting of a twisted film tape and a sponge, were integrated into embroidered poly(lactic-co-caprolactone) and polypropylene scaffolds, which had the dimension of lapine anterior cruciate ligaments (ACL). A diffusion chamber system was designed and established to monitor nutrient diffusion using fluorescein isothiocyanate-labeled dextran of different molecular weights (20, 40, 150, 500 kDa). Vitality of primary lapine ACL cells was tested at days 7 and 14 after seeding using fluorescein diacetate and ethidium bromide staining. Cell spreading on the scaffold surface was measured using histomorphometry. Nuclei staining of the cross-sectioned scaffolds revealed the penetration of ligament cells through both barrier types. The diffusion chamber was suitable to characterize the diffusivity of dextran molecules through embroidered scaffolds with or without integrated collagen barriers. The diffusion coefficients were generally significantly lower in scaffolds with barriers compared to those without barriers. No significant differences between diffusion coefficients of both barrier types were detected. Both barriers were cyto-compatible and prevented most of the ACL cells from crossing the barrier, whereby the collagen thread was easier to handle and allowed a higher rate of cell spreading.

  18. Electroacupuncture activates enteric glial cells and protects the gut barrier in hemorrhaged rats.

    Science.gov (United States)

    Hu, Sen; Zhao, Zeng-Kai; Liu, Rui; Wang, Hai-Bin; Gu, Chun-Yu; Luo, Hong-Min; Wang, Huan; Du, Ming-Hua; Lv, Yi; Shi, Xian

    2015-02-07

    To investigate whether electroacupuncture ST36 activates enteric glial cells, and alleviates gut inflammation and barrier dysfunction following hemorrhagic shock. Sprague-Dawley rats were subjected to approximately 45% total blood loss and randomly divided into seven groups: (1) sham: cannulation, but no hemorrhage; (2) subjected to hemorrhagic shock (HS); (3) electroacupuncture (EA) ST36 after hemorrhage; (4) vagotomy (VGX)/EA: VGX before hemorrhage, then EA ST36; (5) VGX: VGX before hemorrhage; (6) α-bungarotoxin (BGT)/EA: intraperitoneal injection of α-BGT before hemorrhage, then EA ST36; and (7) α-BGT group: α-BGT injection before hemorrhage. Morphological changes in enteric glial cells (EGCs) were observed by immunofluorescence, and glial fibrillary acidic protein (GFAP; a protein marker of enteric glial activation) was evaluated using reverse transcriptase polymerase chain reaction and western blot analysis. Intestinal cytokine levels, gut permeability to 4-kDa fluorescein isothiocyanate (FITC)-dextran, and the expression and distribution of tight junction protein zona occludens (ZO)-1 were also determined. EGCs were distorted following hemorrhage and showed morphological abnormalities. EA ST36 attenuated the morphological changes in EGCs at 6 h, as compared with the VGX, α-BGT and HS groups. EA ST36 increased GFAP expression to a greater degree than in the other groups. EA ST36 decreased intestinal permeability to FITC-dextran (760.5 ± 96.43 ng/mL vs 2466.7 ± 131.60 ng/mL, P < 0.05) and preserved ZO-1 protein expression and localization at 6 h after hemorrhage compared with the HS group. However, abdominal VGX and α-BGT treatment weakened or eliminated the effects of EA ST36. EA ST36 reduced tumor necrosis factor-α levels in intestinal homogenates after blood loss, while vagotomy or intraperitoneal injection of α-BGT before EA ST36 abolished its anti-inflammatory effects. EA ST36 attenuates hemorrhage-induced intestinal inflammatory insult, and

  19. Remodeling of Tight Junctions and Enhancement of Barrier Integrity of the CACO-2 Intestinal Epithelial Cell Layer by Micronutrients

    Science.gov (United States)

    Valenzano, Mary Carmen; DiGuilio, Katherine; Mercado, Joanna; Teter, Mimi; To, Julie; Ferraro, Brendan; Mixson, Brittany; Manley, Isabel; Baker, Valerissa; Moore, Beverley A.; Wertheimer, Joshua; Mullin, James M.

    2015-01-01

    The micronutrients zinc, quercetin, butyrate, indole and berberine were evaluated for their ability to induce remodeling of epithelial tight junctions (TJs) and enhance barrier integrity in the CACO-2 gastrointestinal epithelial cell culture model. All five of these chemically very diverse micronutrients increased transepithelial electrical resistance (Rt) significantly, but only berberine also improved barrier integrity to the non-electrolyte D-mannitol. Increases of Rt as much as 200% of untreated controls were observed. Each of the five micronutrients also induced unique, signature-like changes in TJ protein composition, suggesting multiple pathways (and TJ arrangements) by which TJ barrier function can be enhanced. Decreases in abundance by as much as 90% were observed for claudin-2, and increases of over 300% could be seen for claudins -5 and -7. The exact effects of the micronutrients on barrier integrity and TJ protein composition were found to be highly dependent on the degree of differentiation of the cell layer at the time it was exposed to the micronutrient. The substratum to which the epithelial layer adheres was also found to regulate the response of the cell layer to the micronutrient. The implications of these findings for therapeutically decreasing morbidity in Inflammatory Bowel Disease are discussed. PMID:26226276

  20. Transplantation of islet cells across major histocompatibility barriers after total lymphoid irradiation and infusion of allogeneic bone marrow cells

    International Nuclear Information System (INIS)

    Britt, L.D.; Scharp, D.W.; Lacy, P.E.; Slavin, S.

    1982-01-01

    Diabetic Lewis rats (AgB1/L) were evaluated as recipients of allogeneic Wistar-Furth (AgB2/2) isolated adult islets without the use of standard recipient immunosuppression. One group was treated with fractionated total lymphoid irradiation (TLI) and Wistar-Furth bone marrow cell reconstitution to proven chimerism prior to islet transplantation. This group returned to a prediabetic state following Wistar-Furth islet transplantation without any evidence of rejection for 100 days posttransplant. A second group of Lewis rats received only TLI without bone marrow treatment. They gave a varying result following islet transplantation with one recipient showing evidence of prolonged islet survival. A third chimeric control group did not receive isolated islets and did not alter their diabetic state. A fourth group was not given TLI nor donor bone marrow cells and uniformly rejected their allogeneic islets by 7 days. Thus, allogeneic adult islets will survive across major rat histocompatibility barriers using TLI and donor bone marrow chimerism as the only form of immunosuppression

  1. Initial Attempts of Development and Characterization of an In Vitro Blood Brain Barrier Model Derived from Human Pluripotent Stem Cells

    DEFF Research Database (Denmark)

    Goldeman, Charlotte; Saaby, Lasse; Hall, Vanessa Jane

    The human blood brain barrier has yet to be successfully replicated as an in vitro model. One of the more promising approaches has been to develop an in vitro model derived from human pluripotent stem cells. However, as promising as this model may be, a successful replication of the differentiation...... method on different kinds of pluripotent stem cell lines have yet to be accomplished. We try to approach the promising method as described by Stebbins et al. (2015) to differentiate human pluripotent stem cells into brain like endothelial cells (BECs). Five different human pluripotent stem cell lines...... were screened for the possibility to differentiate into BECs. Tüb1159, Tüb16423, Bioni010-C, WTSli024-A and WTSli002-A stem cell lines were initially seeded on Matrigel cultured with mTESR1 media to confluence, then seeded on Matrigel as a single cell suspension. After two-three days of culture we...

  2. Changes in the biomechanical properties of a single cell induced by nonthermal atmospheric pressure micro-dielectric barrier discharge plasma.

    Science.gov (United States)

    Choi, Hyeongwon; Choi, Eun Ha; Kim, Kyung Sook

    2017-10-01

    Mechanical properties of a single cell are closely related to the fate and functions of the cell. Changes in mechanical properties may cause diseases or cell apoptosis. Selective cytotoxic effects of nonthermal atmospheric pressure micro-dielectric barrier discharge (DBD) plasma have been demonstrated on cancer cells. In this work, changes in the mechanical properties of a single cell induced by nonthermal atmospheric pressure micro-DBD plasma were investigated using atomic force microscopy (AFM). Two cervical cancer cell lines (HeLa and SiHa) and normal human fibroblast cells (HFBs) were exposed to micro-DBD plasma for various exposure times. The elasticity of a single cell was determined by force-distance curve measurement using AFM. Young's modulus was decreased by plasma treatment for all cells. The Young's modulus of plasma-treated HeLa cells was decreased by 75% compared to nontreated HeLa cells. In SiHa cells and HFBs, elasticity was decreased slightly. Chemical changes induced by the plasma treatment, which were observed by Raman spectroscopy, were also significant in HeLa cells compared to SiHa cells and HFBs. These results suggested that the molecular changes induced by micro-DBD plasma were related to cell mechanical changes. © 2017 Wiley Periodicals, Inc.

  3. Temperature-dependent Schottky barrier in high-performance organic solar cells

    Science.gov (United States)

    Li, Hui; He, Dan; Zhou, Qing; Mao, Peng; Cao, Jiamin; Ding, Liming; Wang, Jizheng

    2017-01-01

    Organic solar cells (OSCs) have attracted great attention in the past 30 years, and the power conversion efficiency (PCE) now reaches around 10%, largely owning to the rapid material developments. Meanwhile with the progress in the device performance, more and more interests are turning to understanding the fundamental physics inside the OSCs. In the conventional bulk-heterojunction architecture, only recently it is realized that the blend/cathode Schottky junction serves as the fundamental diode for the photovoltaic function. However, few researches have focused on such junctions, and their physical properties are far from being well-understood. In this paper based on PThBDTP:PC71BM blend, we fabricated OSCs with PCE exceeding 10%, and investigated temperature-dependent behaviors of the junction diodes by various characterization including current-voltage, capacitance-voltage and impedance measurements between 70 to 290 K. We found the Schottky barrier height exhibits large inhomogeneity, which can be described by two sets of Gaussian distributions. PMID:28071700

  4. Glucocorticoid action in human corneal epithelial cells establishes roles for corticosteroids in wound healing and barrier function of the eye.

    Science.gov (United States)

    Kadmiel, Mahita; Janoshazi, Agnes; Xu, Xiaojiang; Cidlowski, John A

    2016-11-01

    Glucocorticoids play diverse roles in almost all physiological systems of the body, including both anti-inflammatory and immunosuppressive roles. Synthetic glucocorticoids are one of the most widely prescribed drugs and are used in the treatment of conditions such as autoimmune diseases, allergies, ocular disorders and certain types of cancers. In the interest of investigating glucocorticoid actions in the cornea of the eye, we established that multiple cell types in mouse corneas express functional glucocorticoid receptor (GR) with corneal epithelial cells having robust expression. To define glucocorticoid actions in a cell type-specific manner, we employed immortalized human corneal epithelial (HCE) cell line to define the glucocorticoid transcriptome and elucidated its functions in corneal epithelial cells. Over 4000 genes were significantly regulated within 6 h of dexamethasone treatment, and genes associated with cell movement, cytoskeletal remodeling and permeability were highly regulated. Real-time in vitro wound healing assays revealed that glucocorticoids delay wound healing by attenuating cell migration. These functional alterations were associated with cytoskeletal remodeling at the wounded edge of a scratch-wounded monolayer. However, glucocorticoid treatment improved the organization of tight-junction proteins and enhanced the epithelial barrier function. Our results demonstrate that glucocorticoids profoundly alter corneal epithelial gene expression and many of these changes likely impact both wound healing and epithelial cell barrier function. Published by Elsevier Ltd.

  5. Initial contact of glioblastoma cells with existing normal brain endothelial cells strengthen the barrier function via fibroblast growth factor 2 secretion: a new in vitro blood-brain barrier model.

    Science.gov (United States)

    Toyoda, Keisuke; Tanaka, Kunihiko; Nakagawa, Shinsuke; Thuy, Dinh Ha Duy; Ujifuku, Kenta; Kamada, Kensaku; Hayashi, Kentaro; Matsuo, Takayuki; Nagata, Izumi; Niwa, Masami

    2013-05-01

    Glioblastoma multiforme (GBM) cells invade along the existing normal capillaries in brain. Normal capillary endothelial cells function as the blood-brain barrier (BBB) that limits permeability of chemicals into the brain. To investigate whether GBM cells modulate the BBB function of normal endothelial cells, we developed a new in vitro BBB model with primary cultures of rat brain endothelial cells (RBECs), pericytes, and astrocytes. Cells were plated on a membrane with 8 μm pores, either as a monolayer or as a BBB model with triple layer culture. The BBB model consisted of RBEC on the luminal side as a bottom, and pericytes and astrocytes on the abluminal side as a top of the chamber. Human GBM cell line, LN-18 cells, or lung cancer cell line, NCI-H1299 cells, placed on either the RBEC monolayer or the BBB model increased the transendothelial electrical resistance (TEER) values against the model, which peaked within 72 h after the tumor cell application. The TEER value gradually returned to baseline with LN-18 cells, whereas the value quickly dropped to the baseline in 24 h with NCI-H1299 cells. NCI-H1299 cells invaded into the RBEC layer through the membrane, but LN-18 cells did not. Fibroblast growth factor 2 (FGF-2) strengthens the endothelial cell BBB function by increased occludin and ZO-1 expression. In our model, LN-18 and NCI-H1299 cells secreted FGF-2, and a neutralization antibody to FGF-2 inhibited LN-18 cells enhanced BBB function. These results suggest that FGF-2 would be a novel therapeutic target for GBM in the perivascular invasive front.

  6. Regulation of Stem Cell Properties of Müller Glia by JAK/STAT and MAPK Signaling in the Mammalian Retina

    Directory of Open Access Journals (Sweden)

    Krista M. Beach

    2017-01-01

    Full Text Available In humans and other mammals, the neural retina does not spontaneously regenerate, and damage to the retina that kills retinal neurons results in permanent blindness. In contrast to embryonic stem cells, induced pluripotent stem cells, and embryonic/fetal retinal stem cells, Müller glia offer an intrinsic cellular source for regenerative strategies in the retina. Müller glia are radial glial cells within the retina that maintain retinal homeostasis, buffer ion flux associated with phototransduction, and form the blood/retinal barrier within the retina proper. In injured or degenerating retinas, Müller glia contribute to gliotic responses and scar formation but also show regenerative capabilities that vary across species. In the mammalian retina, regenerative responses achieved to date remain insufficient for potential clinical applications. Activation of JAK/STAT and MAPK signaling by CNTF, EGF, and FGFs can promote proliferation and modulate the glial/neurogenic switch. However, to achieve clinical relevance, additional intrinsic and extrinsic factors that restrict or promote regenerative responses of Müller glia in the mammalian retina must be identified. This review focuses on Müller glia and Müller glial-derived stem cells in the retina and phylogenetic differences among model vertebrate species and highlights some of the current progress towards understanding the cellular mechanisms regulating their regenerative response.

  7. Cobalt chloride compromises transepithelial barrier properties of CaCo-2 BBe human gastrointestinal epithelial cell layers.

    Science.gov (United States)

    DiGuilio, K M; Valenzano, M C; Rybakovsky, E; Mullin, J M

    2018-01-05

    Elevation of the transcription factor HIF-1 is a prominent mediator of not only processes that accompany hypoxia, but also the tumor microenvironment and tissue regeneration. This study uses mediators of "chemical hypoxia" to ask the question whether HIF-1α elevation in a healthy epithelial cell layer leads to leakiness in its tight junctional seals. Transepithelial electrical resistance and transepithelial diffusion of 14 C-D-mannitol and other radiolabeled probes are used as indicators of transepithelial barrier function of CaCo-2 BBe human gastrointestinal epithelial cell layers cultured on permeable supports. Western immunoblot analyses of integral tight junctional proteins (occludin and claudins) are used as further indicators of barrier function change. Cobalt, an inhibitor of the prolyl hydroxylase enzymes governing HIF-1α breakdown in the cell, induces transepithelial leakiness in CaCo-2 BBe cell layers in a time and concentration-dependent manner. This increased leakiness is accompanied by significant changes in certain specific integral tight junctional (TJ) proteins such as a decreased level of occludin and increased level of claudin-5. Similar results regarding barrier function compromise also occur with other chemical inhibitors of HIF-1α breakdown, namely ciclopiroxolamine (CPX) and dimethyloxalylglycine (DMOG). The increased leak is manifested by both decreased transepithelial electrical resistance (R t ) and increased paracellular diffusion of D-mannitol (J m ). The induced transepithelial leak shows significant size selectivity, consistent with induced effects on TJ permeability. Less-differentiated cell layers were significantly more affected than well-differentiated cell layers regarding induced transepithelial leak. A genetically modified CaCo-2 variant with reduced levels of HIF-1β, showed reduced transepithelial leak in response to cobalt exposure, further indicating that elevation of HIF-1α levels induced by agents of "chemical hypoxia

  8. Efficiency enhancement of solid-state PbS quantum dot-sensitized solar cells with Al2O3 barrier layer

    KAUST Repository

    Brennan, Thomas P.

    2013-01-01

    Atomic layer deposition (ALD) was used to grow both PbS quantum dots and Al2O3 barrier layers in a solid-state quantum dot-sensitized solar cell (QDSSC). Barrier layers grown prior to quantum dots resulted in a near-doubling of device efficiency (0.30% to 0.57%) whereas barrier layers grown after quantum dots did not improve efficiency, indicating the importance of quantum dots in recombination processes. © 2013 The Royal Society of Chemistry.

  9. Breaking the Blood-Brain Barrier With Mannitol to Aid Stem Cell Therapeutics in the Chronic Stroke Brain.

    Science.gov (United States)

    Tajiri, Naoki; Lee, Jea Young; Acosta, Sandra; Sanberg, Paul R; Borlongan, Cesar V

    2016-01-01

    Blood-brain barrier (BBB) permeabilizers, such as mannitol, can facilitate peripherally delivered stem cells to exert therapeutic benefits on the stroke brain. Although this BBB permeation-aided stem cell therapy has been demonstrated in the acute stage of stroke, such BBB permeation in the chronic stage of the disease remains to be examined. Adult Sprague-Dawley rats initially received sham surgery or experimental stroke via the 1-h middle cerebral artery occlusion (MCAo) model. At 1 month after the MCAo surgery, stroke animals were randomly assigned to receive human umbilical cord stem cells only (2 million viable cells), mannitol only (1.1 mol/L mannitol at 4°C), combined human umbilical cord stem cells (200,000 viable cells) and mannitol (1.1 mol/L mannitol at 4°C), and vehicle (phosphate-buffered saline) only. Stroke animals that received human umbilical cord blood cells alone or combined human umbilical cord stem cells and mannitol exhibited significantly improved motor performance and significantly better brain cell survival in the peri-infarct area compared to stroke animals that received vehicle or mannitol alone, with mannitol treatment reducing the stem cell dose necessary to afford functional outcomes. Enhanced neurogenesis in the subventricular zone accompanied the combined treatment of human umbilical cord stem cells and mannitol. We showed that BBB permeation facilitates the therapeutic effects of a low dose of peripherally transplanted stem cells to effectively cause functional improvement and increase neurogenesis in chronic stroke.

  10. Effects of phenol on barrier function of a human intestinal epithelial cell line correlate with altered tight junction protein localization.

    Science.gov (United States)

    McCall, Ingrid C; Betanzos, Abigail; Weber, Dominique A; Nava, Porfirio; Miller, Gary W; Parkos, Charles A

    2009-11-15

    Phenol contamination of soil and water has raised concerns among people living near phenol-producing factories and hazardous waste sites containing the chemical. Phenol, particularly in high concentrations, is an irritating and corrosive substance, making mucosal membranes targets of toxicity in humans. However, few data on the effects of phenol after oral exposure exist. We used an in vitro model employing human intestinal epithelial cells (SK-CO15) cultured on permeable supports to examine effects of phenol on epithelial barrier function. We hypothesized that phenol disrupts epithelial barrier by altering tight junction (TJ) protein expression. The dose-response effect of phenol on epithelial barrier function was determined using transepithelial electrical resistance (TER) and FITC-dextran permeability measurements. We studied phenol-induced changes in cell morphology and expression of several tight junction proteins by immunofluorescence and Western blot analysis. Effects on cell viability were assessed by MTT, Trypan blue, propidium iodide and TUNEL staining. Exposure to phenol resulted in decreased TER and increased paracellular flux of FITC-dextran in a dose-dependent manner. Delocalization of claudin-1 and ZO-1 from TJs to cytosol correlated with the observed increase in permeability after phenol treatment. Additionally, the decrease in TER correlated with changes in the distribution of a membrane raft marker, suggesting phenol-mediated effects on membrane fluidity. Such observations were independent of effects of phenol on cell viability as enhanced permeability occurred at doses of phenol that did not cause cell death. Overall, these findings suggest that phenol may affect transiently the lipid bilayer of the cell membrane, thus destabilizing TJ-containing microdomains.

  11. A fish intestinal epithelial barrier model established from the rainbow trout (Oncorhynchus mykiss) cell line, RTgutGC.

    Science.gov (United States)

    Minghetti, Matteo; Drieschner, Carolin; Bramaz, Nadine; Schug, Hannah; Schirmer, Kristin

    2017-12-01

    The intestine of fish is a multifunctional organ: lined by only a single layer of specialized epithelial cells, it has various physiological roles including nutrient absorption and ion regulation. It moreover comprises an important barrier for environmental toxicants, including metals. Thus far, knowledge of the fish intestine is limited largely to in vivo or ex vivo investigations. Recently, however, the first fish intestinal cell line, RTgutGC, was established, originating from a rainbow trout (Oncorhynchus mykiss). In order to exploit the opportunities arising from RTgutGC cells for exploring fish intestinal physiology and toxicology, we present here the establishment of cells on commercially available permeable membrane supports and evaluate its suitability as a model of polarized intestinal epithelia. Within 3 weeks of culture, RTgutGC cells show epithelial features by forming tight junctions and desmosomes between adjacent cells. Cells develop a transepithelial electrical resistance comparable to in vivo measured values, reflecting the leaky nature of the fish intestine. Immunocytochemistry reveals evidence of polarization, such as basolateral localization of Na + /K + -ATPase (NKA) and apical localization of the tight junction protein ZO-1. NKA mRNA abundance was induced as physiological response toward a saltwater buffer, mimicking the migration of rainbow trout from fresh to seawater. Permeation of fluorescent molecules proved the barrier function of the cells, with permeation coefficients being comparable to those reported in fish. Finally, we demonstrate that cells on permeable supports are more resistant to the toxicity elicited by silver ions than cells grown the conventional way, likely due to improved cellular silver excretion.

  12. Adenosine A1 receptors promote vasa vasorum endothelial cell barrier integrity via Gi and Akt-dependent actin cytoskeleton remodeling.

    Directory of Open Access Journals (Sweden)

    Siddaramappa Nagavedi Umapathy

    Full Text Available In a neonatal model of hypoxic pulmonary hypertension, a dramatic pulmonary artery adventitial thickening, accumulation of inflammatory cells in the adventitial compartment, and angiogenic expansion of the vasa vasorum microcirculatory network are observed. These pathophysiological responses suggest that rapidly proliferating vasa vasorum endothelial cells (VVEC may exhibit increased permeability for circulating blood cells and macromolecules. However, the molecular mechanisms underlying these observations remain unexplored. Some reports implicated extracellular adenosine in the regulation of vascular permeability under hypoxic and inflammatory conditions. Thus, we aimed to determine the role of adenosine in barrier regulation of VVEC isolated from the pulmonary arteries of normoxic (VVEC-Co or chronically hypoxic (VVEC-Hyp neonatal calves.We demonstrate via a transendothelial electrical resistance measurement that exogenous adenosine significantly enhanced the barrier function in VVEC-Co and, to a lesser extent, in VVEC-Hyp. Our data from a quantitative reverse transcription polymerase chain reaction show that both VVEC-Co and VVEC-Hyp express all four adenosine receptors (A1, A2A, A2B, and A3, with the highest expression level of A1 receptors (A1Rs. However, A1R expression was significantly lower in VVEC-Hyp compared to VVEC-Co. By using an A1R-specific agonist/antagonist and siRNA, we demonstrate that A1Rs are mostly responsible for adenosine-induced enhancement in barrier function. Adenosine-induced barrier integrity enhancement was attenuated by pretreatment of VVEC with pertussis toxin and GSK690693 or LY294002, suggesting the involvement of Gi proteins and the PI3K-Akt pathway. Moreover, we reveal a critical role of actin cytoskeleton in VVEC barrier regulation by using specific inhibitors of actin and microtubule polymerization. Further, we show that adenosine pretreatment blocked the tumor necrosis factor alpha (TNF

  13. Adenosine A1 Receptors Promote Vasa Vasorum Endothelial Cell Barrier Integrity via Gi and Akt-Dependent Actin Cytoskeleton Remodeling

    Science.gov (United States)

    Siddaramappa Umapathy, Nagavedi; Kaczmarek, Elzbieta; Fatteh, Nooreen; Burns, Nana; Lucas, Rudolf; Stenmark, Kurt R.; Verin, Alexander D.; Gerasimovskaya, Evgenia V.

    2013-01-01

    Background In a neonatal model of hypoxic pulmonary hypertension, a dramatic pulmonary artery adventitial thickening, accumulation of inflammatory cells in the adventitial compartment, and angiogenic expansion of the vasa vasorum microcirculatory network are observed. These pathophysiological responses suggest that rapidly proliferating vasa vasorum endothelial cells (VVEC) may exhibit increased permeability for circulating blood cells and macromolecules. However, the molecular mechanisms underlying these observations remain unexplored. Some reports implicated extracellular adenosine in the regulation of vascular permeability under hypoxic and inflammatory conditions. Thus, we aimed to determine the role of adenosine in barrier regulation of VVEC isolated from the pulmonary arteries of normoxic (VVEC-Co) or chronically hypoxic (VVEC-Hyp) neonatal calves. Principal Findings We demonstrate via a transendothelial electrical resistance measurement that exogenous adenosine significantly enhanced the barrier function in VVEC-Co and, to a lesser extent, in VVEC-Hyp. Our data from a quantitative reverse transcription polymerase chain reaction show that both VVEC-Co and VVEC-Hyp express all four adenosine receptors (A1, A2A, A2B, and A3), with the highest expression level of A1 receptors (A1Rs). However, A1R expression was significantly lower in VVEC-Hyp compared to VVEC-Co. By using an A1R-specific agonist/antagonist and siRNA, we demonstrate that A1Rs are mostly responsible for adenosine-induced enhancement in barrier function. Adenosine-induced barrier integrity enhancement was attenuated by pretreatment of VVEC with pertussis toxin and GSK690693 or LY294002, suggesting the involvement of Gi proteins and the PI3K-Akt pathway. Moreover, we reveal a critical role of actin cytoskeleton in VVEC barrier regulation by using specific inhibitors of actin and microtubule polymerization. Further, we show that adenosine pretreatment blocked the tumor necrosis factor alpha (TNF

  14. The fibrinolytic system facilitates tumor cell migration across the blood-brain barrier in experimental melanoma brain metastasis

    International Nuclear Information System (INIS)

    Perides, George; Zhuge, Yuzheng; Lin, Tina; Stins, Monique F; Bronson, Roderick T; Wu, Julian K

    2006-01-01

    Patients with metastatic tumors to the brain have a very poor prognosis. Increased metastatic potential has been associated with the fibrinolytic system. We investigated the role of the fibrinolytic enzyme plasmin in tumor cell migration across brain endothelial cells and growth of brain metastases in an experimental metastatic melanoma model. Metastatic tumors to the brain were established by direct injection into the striatum or by intracarotid injection of B16F10 mouse melanoma cells in C57Bl mice. The role of plasminogen in the ability of human melanoma cells to cross a human blood-brain barrier model was studied on a transwell system. Wild type mice treated with the plasmin inhibitor epsilon-aminocaproic acid (EACA) and plg -/- mice developed smaller tumors and survived longer than untreated wild type mice. Tumors metastasized to the brain of wild type mice treated with EACA and plg -/- less efficiently than in untreated wild type mice. No difference was observed in the tumor growth in any of the three groups of mice. Human melanoma cells were able to cross the human blood-brain barrier model in a plasmin dependent manner. Plasmin facilitates the development of tumor metastasis to the brain. Inhibition of the fibrinolytic system could be considered as means to prevent tumor metastasis to the brain

  15. Zika Virus Infects Human Sertoli Cells and Modulates the Integrity of the In Vitro Blood-Testis Barrier Model.

    Science.gov (United States)

    Siemann, David N; Strange, Daniel P; Maharaj, Payal N; Shi, Pei-Yong; Verma, Saguna

    2017-11-15

    Confirmed reports of Zika virus (ZIKV) in human seminal fluid for months after the clearance of viremia suggest the ability of ZIKV to establish persistent infection in the seminiferous tubules, an immune-privileged site in the testis protected by the blood-testis barrier, also called the Sertoli cell (SC) barrier (SCB). However, cellular targets of ZIKV in human testis and mechanisms by which the virus enters seminiferous tubules remain unclear. We demonstrate that primary human SCs were highly susceptible to ZIKV compared to the closely related dengue virus and induced the expression of alpha interferon (IFN-α), key cytokines, and cell adhesion molecules (vascular cell adhesion molecule 1 [VCAM-1] and intracellular adhesion molecule 1 [ICAM-1]). Furthermore, using an in vitro SCB model, we show that ZIKV was released on the adluminal side of the SCB model with a higher efficiency than in the blood-brain barrier model. ZIKV-infected SCs exhibited enhanced adhesion of leukocytes that correlated with decreases in SCB integrity. ZIKV infection did not affect the expression of tight and adherens junction proteins such as ZO-1, claudin, and JAM-A; however, exposure of SCs to inflammatory mediators derived from ZIKV-infected macrophages led to the degradation of the ZO-1 protein, which correlated with increased SCB permeability. Taken together, our data suggest that infection of SCs may be one of the crucial steps by which ZIKV gains access to the site of spermatozoon development and identify SCs as a therapeutic target to clear testicular infections. The SCB model opens up opportunities to assess interactions of SCs with other testicular cells and to test the ability of anti-ZIKV drugs to cross the barrier. IMPORTANCE Recent outbreaks of ZIKV, a neglected mosquito-borne flavivirus, have identified sexual transmission as a new route of disease spread, which has not been reported for other flaviviruses. To be able to sexually transmit for months after the clearance of

  16. Mechanisms and regulation of iron trafficking across the capillary endothelial cells of the blood-brain barrier

    Directory of Open Access Journals (Sweden)

    Ryan C. McCarthy

    2015-07-01

    Full Text Available The transcellular trafficking of iron from the blood into the brain interstitium depends on iron uptake proteins in the apical membrane of brain microvascular capillary endothelial cells and efflux proteins at the basolateral, abluminal membrane. In this review, we discuss the three mechanisms by which these cells take-up iron from the blood and the sole mechanism by which they efflux this iron into the abluminal space. We then focus on the regulation of this efflux pathway by exocrine factors that are released from neighboring astrocytes. Also discussed are the cytokines secreted by capillary cells that regulate the expression of these glial cell signals. Among the interstitial factors that regulate iron efflux into the brain is the amyloid precursor protein. The role of this amyliodogenic species in brain iron metabolism is discussed. Last, we speculate on the potential relationship between iron transport at the blood-brain barrier and neurological disorders associated with iron mismanagement.

  17. Barriers to Combined-Modality Therapy for Limited-Stage Small-Cell Lung Cancer.

    Science.gov (United States)

    Pezzi, Todd A; Schwartz, David L; Mohamed, Abdallah S R; Welsh, James W; Komaki, Ritsuko U; Hahn, Stephen M; Sepesi, Boris; Pezzi, Christopher M; Fuller, Clifton D; Chun, Stephen G

    2018-01-04

    Combined-modality therapy with chemotherapy and radiation therapy plays a crucial role in the upfront treatment of patients with limited-stage small-cell lung cancer (SCLC), but there may be barriers to utilization in the United States. To estimate utilization rates and factors associated with chemotherapy and radiation therapy delivery for limited-stage SCLC using the National Cancer Database. Analysis of initial management of all limited-stage SCLC cases from 2004 through 2013 in the National Cancer Database. Utilization rates of chemotherapy and radiation therapy at time of initial treatment. Multivariable analysis identified independent clinical and socioeconomic factors associated with utilization and overall survival. A total of 70 247 cases met inclusion criteria (55.3% female; median age, 68 y [range, 19-90 y]). Initial treatment was 55.5% chemotherapy and radiation therapy, 20.5% chemotherapy alone, 3.5% radiation therapy alone, and 20.0% neither (0.5% not reported). Median survival was 18.2 (95% CI, 17.9-18.4), 10.5 (95% CI, 10.3-10.7), 8.3 (95% CI, 7.7-8.8), and 3.7 (95% CI, 3.5-3.8) months, respectively. Being uninsured was associated with a lower likelihood of both chemotherapy (odds ratio [OR], 0.65; 95% CI, 0.56-0.75; P therapy (OR, 0.75; 95% CI, 0.67-0.85; P therapy delivery. Lack of health insurance (HR, 1.19; 95% CI, 1.13-1.26; P therapy (HR, 0.62; 95% CI, 0.60-0.63; P therapy or chemotherapy as part of initial treatment for limited-stage SCLC, which, in turn, was associated with poor survival. Lack of radiation therapy delivery was uniquely associated with government insurance coverage, suggesting a need for targeted access improvement in this population. Additional work will be necessary to conclusively define exact population patterns, specific treatment deficiencies, and causative factors leading to heterogeneous care delivery.

  18. Modeling the ischemic blood-brain barrier; the effects of oxygen-glucose deprivation (OGD) on endothelial cells in culture

    DEFF Research Database (Denmark)

    Tornabene, Erica; Helms, Hans Christian Cederberg; Berndt, Philipp

    their passage through the capillary endothelium. An ischemic insult and the subsequent restoration of blood flow, defined as reperfusion, dramatically impair the BBB integrity, resulting in increased BBB permeability, modified transport pathways, edema and tissue damage. A deeper understanding of the permeation......Introduction - The blood-brain barrier (BBB) is a physical, transport and metabolic barrier which plays a key role in preventing uncontrolled exchanges between blood and brain, ensuring an optimal environment for neurons activity. This extent interface is created by the endothelial cells forming...... the wall of brain capillaries. The restrictive nature of the BBB is due to the tight junctions (TJs), which seal the intercellular clefts, limiting the paracellular diffusion, efflux transporters, which extrude xenobiotics, and metabolizing enzymes, which may break down or convert molecules during...

  19. An actin cytoskeletal barrier inhibits lytic granule release from natural killer cells in patients with Chediak-Higashi syndrome.

    Science.gov (United States)

    Gil-Krzewska, Aleksandra; Saeed, Mezida B; Oszmiana, Anna; Fischer, Elizabeth R; Lagrue, Kathryn; Gahl, William A; Introne, Wendy J; Coligan, John E; Davis, Daniel M; Krzewski, Konrad

    2017-12-11

    Chediak-Higashi syndrome (CHS) is a rare disorder caused by biallelic mutations in the lysosomal trafficking regulator gene (LYST), resulting in formation of giant lysosomes or lysosome-related organelles in several cell types. The disease is characterized by immunodeficiency and a fatal hemophagocytic lymphohistiocytosis caused by impaired function of cytotoxic lymphocytes, including natural killer (NK) cells. We sought to determine the underlying biochemical cause of the impaired cytotoxicity of NK cells in patients with CHS. We generated a human cell model of CHS using Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) technology. We used a combination of classical techniques to evaluate lysosomal function and cell activity in the model system and super-resolution microscopy to visualize F-actin and lytic granules in normal and LYST-deficient NK cells. Loss of LYST function in a human NK cell line, NK92mi, resulted in inhibition of NK cell cytotoxicity and reproduced other aspects of the CHS cellular phenotype, including the presence of significantly enlarged lytic granules with defective exocytosis and impaired integrity of endolysosomal compartments. The large granules had an acidic pH and normal activity of lysosomal enzymes and were positive for the proteins essential for lytic granule exocytosis. Visualization of the actin meshwork openings at the immunologic synapse revealed that the cortical actin acts as a barrier for secretion of such large granules at the cell-cell contact site. Decreasing the cortical actin density at the immunologic synapse or decreasing the lytic granule size restored the ability of LYST-deficient NK cells to degranulate and kill target cells. The cortical actin and granule size play significant roles in NK cell cytotoxic function. We present evidence that the periodicity of subsynaptic actin is an important factor limiting the release of large lytic granules from NK cells from patients with CHS and could be a novel

  20. Structure and barrier properties of human embryonic stem cell-derived retinal pigment epithelial cells are affected by extracellular matrix protein coating.

    Science.gov (United States)

    Sorkio, Anni; Hongisto, Heidi; Kaarniranta, Kai; Uusitalo, Hannu; Juuti-Uusitalo, Kati; Skottman, Heli

    2014-02-01

    Extracellular matrix (ECM) interactions play a vital role in cell morphology, migration, proliferation, and differentiation of cells. We investigated the role of ECM proteins on the structure and function of human embryonic stem cell-derived retinal pigment epithelial (hESC-RPE) cells during their differentiation and maturation from hESCs into RPE cells in adherent differentiation cultures on several human ECM proteins found in native human Bruch's membrane, namely, collagen I, collagen IV, laminin, fibronectin, and vitronectin, as well as on commercial substrates of xeno-free CELLstart™ and Matrigel™. Cell pigmentation, expression of RPE-specific proteins, fine structure, as well as the production of basal lamina by hESC-RPE on different protein coatings were evaluated after 140 days of differentiation. The integrity of hESC-RPE epithelium and barrier properties on different coatings were investigated by measuring transepithelial resistance. All coatings supported the differentiation of hESC-RPE cells as demonstrated by early onset of cell pigmentation and further maturation to RPE monolayers after enrichment. Mature RPE phenotype was verified by RPE-specific gene and protein expression, correct epithelial polarization, and phagocytic activity. Significant differences were found in the degree of RPE cell pigmentation and tightness of epithelial barrier between different coatings. Further, the thickness of self-assembled basal lamina and secretion of the key ECM proteins found in the basement membrane of the native RPE varied between hESC-RPE cultured on compared protein coatings. In conclusion, this study shows that the cell culture substrate has a major effect on the structure and basal lamina production during the differentiation and maturation of hESC-RPE potentially influencing the success of cell integrations and survival after cell transplantation.

  1. The astrocyte/meningeal cell interface is a barrier to neurite outgrowth which can be overcome by manipulation of inhibitory molecules or axonal signalling pathways

    NARCIS (Netherlands)

    Shearer, Morven C; Niclou, Simone P; Brown, David; Asher, Richard A; Holtmaat, Anthony J D G; Levine, Joel M; Verhaagen, J.; Fawcett, James W

    2003-01-01

    Invading meningeal cells form a barrier to axon regeneration after damage to the spinal cord and other parts of the CNS, axons stopping at the interface between meningeal cells and astrocytes. Axon behavior was examined using an in vitro model of astrocyte/meningeal cell interfaces, created by

  2. Use of current-voltage diagrams in locating peak energy barriers in cell membranes.

    Science.gov (United States)

    Ginsburg, S; Noble, D

    1976-11-22

    The current-voltage relations obtained by integrating the Nernst-Planck equations for a variety of energy profiles are obtained. A simple and approximate method for comparing these relations is described. The method is based on using a linearized transform of current-voltage relations for an Eyring single barrier model. A parameter, gamma, related to the location of the single barrier in the Eyring model, and to the shape of the barrier in other models, is readily obtained from the slopes of the linearized relations. It is then a simple matter to determine whether a given current-voltage relation allows discrimination between any particular energy profiles. The results show that the equivalent Eyring model does not always place the peak energy barrier in the same position as other models and that quite large errors in the assignment of position may be made if such a model is used. The results are also used to test the ability of some experimental current-voltage diagrams to discriminate between various energy profiles.

  3. Oxygen- and water-induced degradation of an inverted polymer solar cell: the barrier effect

    DEFF Research Database (Denmark)

    Vesterager Madsen, Morten; Norrman, Kion; Krebs, Frederik C

    2011-01-01

    The work focuses on the degradation of performance induced by both water and oxygen in an inverted geometry organic photovoltaic device with emphasis on the accumulated barrier effect of the layers comprising the layer stack. By studying the exchange of oxygen in the zinc oxide (ZnO) layer...

  4. Dielectric and diffusion barrier multilayer for Cu(In,Ga)Se{sub 2} solar cells integration on stainless steel sheet

    Energy Technology Data Exchange (ETDEWEB)

    Amouzou, Dodji, E-mail: dodji.amouzou@fundp.ac.be [Research Centre in Physics of Matter and Radiation (PMR), University of Namur (FUNDP), Rue de Bruxelles, 61, 5000 Namur (Belgium); Guaino, Philippe; Fourdrinier, Lionel; Richir, Jean-Baptiste; Maseri, Fabrizio [CRM-Group, Boulevard de Colonster, B 57, 4000 Liège (Belgium); Sporken, Robert [Research Centre in Physics of Matter and Radiation (PMR), University of Namur (FUNDP), Rue de Bruxelles, 61, 5000 Namur (Belgium)

    2013-09-02

    For the fabrication of monolithically integrated flexible Cu(In, Ga)Se{sub 2}, CIGS modules on stainless steel, individual photovoltaic cells must be insulated from metal substrates by a barrier layer that can sustain high thermal treatments. In this work, a combination of sol–gel (organosilane-sol) and sputtered SiAlxOy forming thin diffusion barrier layers (TDBL) was prepared on stainless steel substrates. The deposition of organosilane-sol dielectric layers on the commercial stainless steel (maximal roughness, Rz = 500 nm and Root Mean Square roughness, RMS = 56 nm) induces a planarization of the surface (RMS = 16.4 nm, Rz = 176 nm). The DC leakage current through the dielectric layers was measured for the metal-insulator-metal (MIM) junctions that act as capacitors. This method allowed us to assess the quality of our TDBL insulating layer and its lateral uniformity. Indeed, evaluating a ratio of the number of valid MIM capacitors to the number of tested MIM capacitors, a yield of ∼ 95% and 50% has been reached respectively with non-annealed and annealed samples based on sol–gel double layers. A yield of 100% was achieved for sol–gel double layers reinforced with a sputtered SiAlxOy coating and a third sol–gel monolayer. Since this yield is obtained on several samples, it can be extrapolated to any substrate size. Furthermore, according to Glow Discharge Optical Emission Spectroscopy and Time of Flight Secondary Ion Mass Spectroscopy measurements, these barrier layers exhibit excellent barrier properties against the diffusion of undesired atoms which could otherwise spoil the electronic and optical properties of CIGS photovoltaic cells. - Highlights: • We functionalize steel for monolithically integrated Cu(In,Ga)Se{sub 2} solar cells • Thin dielectric and diffusion barrier layers (TDDBL) prepared on steel • Reliability and breakdown voltage of dielectric layers have been studied. • Investigation of thermal treatment effect on dielectric

  5. West Nile virus infection modulates human brain microvascular endothelial cells tight junction proteins and cell adhesion molecules: Transmigration across the in vitro blood-brain barrier.

    Science.gov (United States)

    Verma, Saguna; Lo, Yeung; Chapagain, Moti; Lum, Stephanie; Kumar, Mukesh; Gurjav, Ulziijargal; Luo, Haiyan; Nakatsuka, Austin; Nerurkar, Vivek R

    2009-03-15

    Neurological complications such as inflammation, failure of the blood-brain barrier (BBB), and neuronal death contribute to the mortality and morbidity associated with WNV-induced meningitis. Compromised BBB indicates the ability of the virus to gain entry into the CNS via the BBB, however, the underlying mechanisms, and the specific cell types associated with WNV-CNS trafficking are not well understood. Brain microvascular endothelial cells, the main component of the BBB, represent a barrier to virus dissemination into the CNS and could play key role in WNV spread via hematogenous route. To investigate WNV entry into the CNS, we infected primary human brain microvascular endothelial (HBMVE) cells with the neurovirulent strain of WNV (NY99) and examined WNV replication kinetics together with the changes in the expressions of key tight junction proteins (TJP) and cell adhesion molecules (CAM). WNV infection of HBMVE cells was productive as analyzed by plaque assay and qRT-PCR, and did not induce cytopathic effect. Increased mRNA and protein expressions of TJP (claudin-1) and CAM (vascular cell adhesion molecule and E-selectin) were observed at days 2 and 3 after infection, respectively, which coincided with the peak in WNV replication. Further, using an in vitro BBB model comprised of HBMVE cells, we demonstrate that cell-free WNV can cross the BBB, without compromising the BBB integrity. These data suggest that infection of HBMVE cells can facilitate entry of cell-free virus into the CNS without disturbing the BBB, and increased CAM may assist in the trafficking of WNV-infected immune cells into the CNS, via 'Trojan horse' mechanism, thereby contributing to WNV dissemination in the CNS and associated pathology.

  6. Influence of the oxygen electrode and inter-diffusion barrier on the degradation of solid oxide electrolysis cells

    DEFF Research Database (Denmark)

    Hjalmarsson, Per; Sun, Xiufu; Liu, Yi-Lin

    2013-01-01

    -diffusion barrier sandwiched between the YSZ electrolyte and an LSCF:CGO oxygen electrode. Impedance Spectroscopy was used during the tests to diagnose the change in electrochemical response of the different components of the SOECs. The results showed a significantly lower degradation rate for the cell with an LSCF......Two Solid Oxide Electrolysis Cells (SOECs) with different oxygen electrodes have been tested in galvanostatic tests carried out at −1.5 Acm−2 and 800 °C converting 60% of a 50:50% mixture of H2O and CO2 (co-electrolysis). One of the cells had an LSM:YSZ oxygen electrode. The other had an CGO inter...

  7. Inhibition of p38 mitogen-activated protein kinase attenuates butyrate-induced intestinal barrier impairment in a Caco-2 cell monolayer model.

    Science.gov (United States)

    Huang, Xiao-Zhong; Li, Zhong-Rong; Zhu, Li-Bin; Huang, Hui-Ya; Hou, Long-Long; Lin, Jing

    2014-08-01

    Butyrate is well known to induce apoptosis in differentiating intestinal epithelial cells. The present study was designed to examine the role of p38 mitogen-activated protein kinase (MAPK) in butyrate-induced intestinal barrier impairment. The intestinal barrier was determined by measuring the transepithelial electrical resistance (TER) in a Caco-2 cell monolayer model. The permeability was determined by measuring transepithelial passage of fluorescein isothiocyanate-conjugated inulin (inulin-FITC). The morphology of the monolayers was examined with scanning electron microscopy. The apoptosis status was determined by annexin V-FITC labeling and flow cytometry. The activity of p38 MAPK was determined by the phosphorylation status of p38 with Western blotting. Butyrate at 5 mM increases the apoptosis rate of Caco-2 cells and induces impairment of intestinal barrier functions as determined by decreased TER and increased inulin-FITC permeability. Butyrate treatment activates p38 MAPK in a concentration- and time-dependent manner. SB203580, a specific p38 inhibitor, inhibits butyrate-induced Caco-2 cell apoptosis. Treatment of SB203580 significantly attenuates the butyrate-induced impairment of barrier functions in the Caco-2 cell monolayer model. p38 MAPK can be activated by butyrate and is involved in the butyrate-induced apoptosis and impairment of intestinal barrier function. Inhibition of p38 MAPK can significantly attenuate butyrate-induced intestinal barrier dysfunction.

  8. An In Vitro Model of the Blood-brain Barrier Using Impedance Spectroscopy: A Focus on T Cell-endothelial Cell Interaction.

    Science.gov (United States)

    Kuzmanov, Ivan; Herrmann, Alexander M; Galla, Hans-Joachim; Meuth, Sven G; Wiendl, Heinz; Klotz, Luisa

    2016-12-08

    Breakdown of the blood-brain barrier (BBB) is a critical step in the development of autoimmune diseases such as multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE). This process is characterized by the transmigration of activated T cells across brain endothelial cells (ECs), the main constituents of the BBB. However, the consequences on brain EC function upon interaction with such T cells are largely unknown. Here we describe an assay that allows for the evaluation of primary mouse brain microvascular EC (MBMEC) function and barrier integrity during the interaction with T cells over time. The assay makes use of impedance cell spectroscopy, a powerful tool for studying EC monolayer integrity and permeability, by measuring changes in transendothelial electrical resistance (TEER) and cell layer capacitance (Ccl). In direct contact with ECs, stimulated but not naïve T cells are capable of inducing EC monolayer dysfunction, as visualized by a decrease in TEER and an increase in Ccl. The assay records changes in EC monolayer integrity in a continuous and automated fashion. It is sensitive enough to distinguish between different strengths of stimuli and levels of T cell activation and it enables the investigation of the consequences of a targeted modulation of T cell-EC interaction using a wide range of substances such as antibodies, pharmacological reagents and cytokines. The technique can also be used as a quality control for EC integrity in in vitro T-cell transmigration assays. These applications make it a versatile tool for studying BBB properties under physiological and pathophysiological conditions.

  9. Target or barrier? The cell wall of early- and later- diverging plants vs cadmium toxicity: differences in the response mechanisms

    Directory of Open Access Journals (Sweden)

    Luigi eParrotta

    2015-03-01

    Full Text Available Increasing industrialization and urbanization result in emission of pollutants in the environment including toxic heavy metals, as cadmium and lead. Among the different heavy metals contaminating the environment, cadmium raises great concern, as it is ecotoxic and as such can heavily impact ecosystems. The cell wall is the first structure of plant cells to come in contact with heavy metals. Its composition, characterized by proteins, polysaccharides and in some instances lignin and other phenolic compounds, confers the ability to bind non-covalently and/or covalently heavy metals via functional groups. A strong body of evidence in the literature has shown the role of the cell wall in heavy metal response: it sequesters heavy metals, but at the same time its synthesis and composition can be severely affected. The present review analyzes the dual property of plant cell walls, i.e. barrier and target of heavy metals, by taking Cd toxicity as example. Following a summary of the known physiological and biochemical responses of plants to Cd, the review compares the wall-related mechanisms in early- and later-diverging land plants, by considering the diversity in cell wall composition. By doing so, common as well as unique response mechanisms to metal/cadmium toxicity are identified among plant phyla and discussed. After discussing the role of hyperaccumulators’ cell walls as a particular case, the review concludes by considering important aspects for plant engineering.

  10. Silica-sol-based spin-coating barrier layer against phosphorous diffusion for crystalline silicon solar cells.

    Science.gov (United States)

    Uzum, Abdullah; Fukatsu, Ken; Kanda, Hiroyuki; Kimura, Yutaka; Tanimoto, Kenji; Yoshinaga, Seiya; Jiang, Yunjian; Ishikawa, Yasuaki; Uraoka, Yukiharu; Ito, Seigo

    2014-01-01

    The phosphorus barrier layers at the doping procedure of silicon wafers were fabricated using a spin-coating method with a mixture of silica-sol and tetramethylammonium hydroxide, which can be formed at the rear surface prior to the front phosphorus spin-on-demand (SOD) diffusion and directly annealed simultaneously with the front phosphorus layer. The optimization of coating thickness was obtained by changing the applied spin-coating speed; from 2,000 to 8,000 rpm. The CZ-Si p-type silicon solar cells were fabricated with/without using the rear silica-sol layer after taking the sheet resistance measurements, SIMS analysis, and SEM measurements of the silica-sol material evaluations into consideration. For the fabrication of solar cells, a spin-coating phosphorus source was used to form the n(+) emitter and was then diffused at 930°C for 35 min. The out-gas diffusion of phosphorus could be completely prevented by spin-coated silica-sol film placed on the rear side of the wafers coated prior to the diffusion process. A roughly 2% improvement in the conversion efficiency was observed when silica-sol was utilized during the phosphorus diffusion step. These results can suggest that the silica-sol material can be an attractive candidate for low-cost and easily applicable spin-coating barrier for any masking purpose involving phosphorus diffusion.

  11. Silica-sol-based spin-coating barrier layer against phosphorous diffusion for crystalline silicon solar cells

    Science.gov (United States)

    Uzum, Abdullah; Fukatsu, Ken; Kanda, Hiroyuki; Kimura, Yutaka; Tanimoto, Kenji; Yoshinaga, Seiya; Jiang, Yunjian; Ishikawa, Yasuaki; Uraoka, Yukiharu; Ito, Seigo

    2014-12-01

    The phosphorus barrier layers at the doping procedure of silicon wafers were fabricated using a spin-coating method with a mixture of silica-sol and tetramethylammonium hydroxide, which can be formed at the rear surface prior to the front phosphorus spin-on-demand (SOD) diffusion and directly annealed simultaneously with the front phosphorus layer. The optimization of coating thickness was obtained by changing the applied spin-coating speed; from 2,000 to 8,000 rpm. The CZ-Si p-type silicon solar cells were fabricated with/without using the rear silica-sol layer after taking the sheet resistance measurements, SIMS analysis, and SEM measurements of the silica-sol material evaluations into consideration. For the fabrication of solar cells, a spin-coating phosphorus source was used to form the n+ emitter and was then diffused at 930°C for 35 min. The out-gas diffusion of phosphorus could be completely prevented by spin-coated silica-sol film placed on the rear side of the wafers coated prior to the diffusion process. A roughly 2% improvement in the conversion efficiency was observed when silica-sol was utilized during the phosphorus diffusion step. These results can suggest that the silica-sol material can be an attractive candidate for low-cost and easily applicable spin-coating barrier for any masking purpose involving phosphorus diffusion.

  12. Cell Phones in the Classroom: Teachers' Perspectives of Inclusion, Benefits, and Barriers

    Science.gov (United States)

    Thomas, Kevin M.; O'Bannon, Blanche W.; Bolton, Natalie

    2013-01-01

    Historically viewed as a disruption by teachers, cell phones have been banned from 69% of classrooms (Common Sense Media, 2009). The increased ubiquity and instructional features of cell phones have prompted some teachers to re-evaluate the ban and consider the benefits associated with allowing cell phones in the classroom. This study surveyed 79…

  13. Study of Nickel Silicide as a Copper Diffusion Barrier in Monocrystalline Silicon Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Kale, Abhijit; Beese, Emily; Saenz, Theresa; Warren, Emily; Nemeth, William; Young, David; Marshall, Alexander; Florent, Karine; Kurinec, Santosh K.; Agarwal, Sumit; Stradins, Pauls

    2016-11-21

    NiSi as a conductive diffusion barrier to silicon has been studied. We demonstrate that the NiSi films formed using the single step annealing process are as good as the two step process using XRD and Raman. Quality of NiSi films formed using e-beam Ni and electroless Ni process has been compared. Incomplete surface coverage and presence of constituents other than Ni are the main challenges with electroless Ni. We also demonstrate that Cu reduces the thermal stability of NiSi films. The detection of Cu has proven to be difficult due to temperature limitations.

  14. Surface Characteristics of Nanoparticles Determine Their Intracellular Fate in and Processing by Human Blood-Brain Barrier Endothelial Cells In Vitro

    NARCIS (Netherlands)

    Georgieva, Julia V.; Kalicharan, Dharamdajal; Couraud, Pierre-Olivier; Romero, Ignacio A.; Weksler, Babette; Hoekstra, Dick; Zuhorn, Inge S.

    A polarized layer of endothelial cells that comprises the blood-brain barrier (BBB) precludes access of systemically administered medicines to brain tissue. Consequently, there is a need for drug delivery vehicles that mediate transendothelial transport of such medicines. Endothelial cells use a

  15. Impairment of intestinal barrier and secretory function as well as egg excretion during intestinal schistosomiasis occur independently of mouse mast cell protease-1.

    NARCIS (Netherlands)

    Rychter, J.|info:eu-repo/dai/nl/304810584; van Nassauw, L.; Brown, J.K.; van Marck, E.; Knight, P.A.; Miller, H.R.P.; Kroese, A.|info:eu-repo/dai/nl/068352247; Timmermans, J.P.

    2010-01-01

    Deposition of Schistosoma mansoni eggs in the intestinal mucosa is associated with recruitment of mucosal mast cells (MMC) expressing mouse mast cell protease-1 (mMCP-1). We investigated the involvement of mMCP-1 in intestinal barrier disruption and egg excretion by examining BALB/c mice lacking

  16. A new cell line-based coculture model of the human air-blood barrier to evaluate the interaction with aerosolized drug carriers

    OpenAIRE

    Kletting, Stephanie

    2016-01-01

    Besides reducing animal testing, in vitro models allow for the pre-screening of new drug candidates in terms of safety and efficacy before they enter clinical trials. To date, models mimicking the deep lung show limitations such as cellular origin or lack of appropriate barrier properties. Therefore, the focus of this work was on the establishment of a robust and reproducible cell line-based coculture model that reflects the two major barrier structures present in the alveolar region, namely ...

  17. Navigating barriers: the challenge of directed secretion at the natural killer cell lytic immunological synapse.

    Science.gov (United States)

    Sanborn, Keri B; Orange, Jordan S

    2010-05-01

    Natural killer (NK) cells have an inherent ability to recognize and destroy a wide array of cells rendered abnormal by stress or disease. NK cells can kill a targeted cell by forming a tight interface-the lytic immunological synapse. This represents a dynamic molecular arrangement that over time progresses through a series of steps to ultimately deliver the contents of specialized organelles known as lytic granules. In order to mediate cytotoxicity, the NK cell faces the challenge of mobilizing the lytic granules, polarizing them to the targeted cell, facilitating their approximation to the NK cell membrane, and releasing their contents. This review is focused upon the final steps in accessing function through the lytic immunological synapse.

  18. Activation of the blood-brain barrier by SIV (simian immunodeficiency virus) requires cell-associated virus and is not restricted to endothelial cell activation.

    Science.gov (United States)

    MacLean, A G; Rasmussen, T A; Bieniemy, D; Lackner, A A

    2004-11-01

    The primary cell infected during acute HIV neuropathogenesis is the monocyte-derived macrophage. We have demonstrated that there is activation of the BBB (blood-brain barrier) during acute viral infection and at terminal AIDS. However, it has never been determined if there is a requirement for the virus to be carried through the BBB or how these Trojan horses would be induced to cross the BBB. We added SIVmac251-infected (SIV is simian immunodeficiency virus) mononuclear cells (and their supernatants) to the luminal or abluminal compartment of our BBB model. There was activation of both sides of the BBB model, only if viral-infected cells were added to the luminal compartment, as opposed to the addition of cell-free supernatants. This suggests that cell-associated virus is essential for the activation of the BBB. This, in turn, would be expected to lead to further infiltration of cells capable of viral infection. VCAM-1 (vascular cell adhesion molecule 1) staining revealed, for the first time, that there is an absolute requirement for virally infected cells, and not just the presence of virus for the activation of the BBB.

  19. Hypoxia-ischemia and retinal ganglion cell damage

    Directory of Open Access Journals (Sweden)

    Charanjit Kaur

    2008-08-01

    Full Text Available Charanjit Kaur1, Wallace S Foulds2, Eng-Ang Ling11Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; 2Singapore Eye Research Institute, SingaporeAbstract: Retinal hypoxia is the potentially blinding mechanism underlying a number of sight-threatening disorders including central retinal artery occlusion, ischemic central retinal vein thrombosis, complications of diabetic eye disease and some types of glaucoma. Hypoxia is implicated in loss of retinal ganglion cells (RGCs occurring in such conditions. RGC death occurs by apoptosis or necrosis. Hypoxia-ischemia induces the expression of hypoxia inducible factor-1α and its target genes such as vascular endothelial growth factor (VEGF and nitric oxide synthase (NOS. Increased production of VEGF results in disruption of the blood retinal barrier leading to retinal edema. Enhanced expression of NOS results in increased production of nitric oxide which may be toxic to the cells resulting in their death. Excess glutamate release in hypoxic-ischemic conditions causes excitotoxic damage to the RGCs through activation of ionotropic and metabotropic glutamate receptors. Activation of glutamate receptors is thought to initiate damage in the retina by a cascade of biochemical effects such as neuronal NOS activation and increase in intracellular Ca2+ which has been described as a major contributing factor to RGC loss. Excess production of proinflammatory cytokines also mediates cell damage. Besides the above, free-radicals generated in hypoxic-ischemic conditions result in RGC loss because of an imbalance between antioxidant- and oxidant-generating systems. Although many advances have been made in understanding the mediators and mechanisms of injury, strategies to improve the damage are lacking. Measures to prevent neuronal injury have to be developed.Keywords: retinal hypoxia, retinal ganglion cells, glutamate receptors, neuronal injury, retina

  20. A Triple Culture Model of the Blood-Brain Barrier Using Porcine Brain Endothelial cells, Astrocytes and Pericytes.

    Science.gov (United States)

    Thomsen, Louiza Bohn; Burkhart, Annette; Moos, Torben

    2015-01-01

    In vitro blood-brain barrier (BBB) models based on primary brain endothelial cells (BECs) cultured as monoculture or in co-culture with primary astrocytes and pericytes are useful for studying many properties of the BBB. The BECs retain their expression of tight junction proteins and efflux transporters leading to high trans-endothelial electric resistance (TEER) and low passive paracellular permeability. The BECs, astrocytes and pericytes are often isolated from small rodents. Larger species as cows and pigs however, reveal a higher yield, are readily available and have a closer resemblance to humans, which make them favorable high-throughput sources for cellular isolation. The aim of the present study has been to determine if the preferable combination of purely porcine cells isolated from the 6 months old domestic pigs, i.e. porcine brain endothelial cells (PBECs) in co-culture with porcine astrocytes and pericytes, would compare with PBECs co-cultured with astrocytes and pericytes isolated from newborn rats with respect to TEER value and low passive permeability. The astrocytes and pericytes were grown both as contact and non-contact co-cultures as well as in triple culture to examine their effects on the PBECs for barrier formation as revealed by TEER, passive permeability, and expression patterns of tight junction proteins, efflux transporters and the transferrin receptor. This syngenic porcine in vitro BBB model is comparable to triple cultures using PBECs, rat astrocytes and rat pericytes with respect to TEER formation, low passive permeability, and expression of hallmark proteins signifying the brain endothelium (tight junction proteins claudin 5 and occludin, the efflux transporters P-glycoprotein (PgP) and breast cancer related protein (BCRP), and the transferrin receptor).

  1. Patient housing barriers to hematopoietic cell transplantation: results from a mixed-methods study of transplant center social workers.

    Science.gov (United States)

    Preussler, Jaime M; Mau, Lih-Wen; Majhail, Navneet S; Bevans, Margaret; Clancy, Emilie; Messner, Carolyn; Parran, Leslie; Pederson, Kate A; Ferguson, Stacy Stickney; Walters, Kent; Murphy, Elizabeth A; Denzen, Ellen M

    2016-03-01

    Hematopoietic cell transplantation (HCT) is performed in select centers in the United States (U.S.), and patients are often required to temporarily relocate to receive care. The purpose of this study was to identify housing barriers impacting access to HCT and potential solutions. A mixed-methods primary study of HCT social workers was conducted to learn about patient housing challenges and solutions in place that help address those barriers. Three telephone focus groups were conducted with adult and pediatric transplant social workers (n = 15). Focus group results informed the design of a national survey. The online survey was e-mailed to a primary social worker contact at 133 adult and pediatric transplant centers in the U.S. Transplant centers were classified based on the patient population cared for by the social worker. The survey response rate was 49%. Among adult programs (n = 45), 93% of centers had patients that had to relocate closer to the transplant center to proceed with HCT. The most common type of housing option offered was discounted hotel rates. Among pediatric programs (n = 20), 90% of centers had patients that had to relocate closer to the transplant center to proceed with HCT. Ronald McDonald House was the most common option available. This study is the first to explore housing challenges faced by patients undergoing HCT in the U.S. from the perspective of social workers and to highlight solutions that centers use. Transplant centers will benefit from this knowledge by learning about options for addressing housing barriers for their patients.

  2. The redox mechanism for vascular barrier dysfunction associated with metabolic disorders: Glutathionylation of Rac1 in endothelial cells.

    Science.gov (United States)

    Han, Jingyan; Weisbrod, Robert M; Shao, Di; Watanabe, Yosuke; Yin, Xiaoyan; Bachschmid, Markus M; Seta, Francesca; Janssen-Heininger, Yvonne M W; Matsui, Reiko; Zang, Mengwei; Hamburg, Naomi M; Cohen, Richard A

    2016-10-01

    Oxidative stress is implicated in increased vascular permeability associated with metabolic disorders, but the underlying redox mechanism is poorly defined. S-glutathionylation, a stable adduct of glutathione with protein sulfhydryl, is a reversible oxidative modification of protein and is emerging as an important redox signaling paradigm in cardiovascular physiopathology. The present study determines the role of protein S-glutathionylation in metabolic stress-induced endothelial cell permeability. In endothelial cells isolated from patients with type-2 diabetes mellitus, protein S-glutathionylation level was increased. This change was also observed in aortic endothelium in ApoE deficient (ApoE -/- ) mice fed on Western diet. Metabolic stress-induced protein S-glutathionylation in human aortic endothelial cells (HAEC) was positively correlated with elevated endothelial cell permeability, as reflected by disassembly of cell-cell adherens junctions and cortical actin structures. These impairments were reversed by adenoviral overexpression of a specific de-glutathionylation enzyme, glutaredoxin-1 in cultured HAECs. Consistently, transgenic overexpression of human Glrx-1 in ApoE -/- mice fed the Western diet attenuated endothelial protein S-glutathionylation, actin cytoskeletal disorganization, and vascular permeability in the aorta. Mechanistically, glutathionylation and inactivation of Rac1, a small RhoGPase, were associated with endothelial hyperpermeability caused by metabolic stress. Glutathionylation of Rac1 on cysteine 81 and 157 located adjacent to guanine nucleotide binding site was required for the metabolic stress to inhibit Rac1 activity and promote endothelial hyperpermeability. Glutathionylation and inactivation of Rac1 in endothelial cells represent a novel redox mechanism of vascular barrier dysfunction associated with metabolic disorders. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Human Oral Isolate Lactobacillus fermentum AGR1487 Reduces Intestinal Barrier Integrity by Increasing the Turnover of Microtubules in Caco-2 Cells

    Science.gov (United States)

    Anderson, Rachel C.; Young, Wayne; Clerens, Stefan; Cookson, Adrian L.; McCann, Mark J.; Armstrong, Kelly M.; Roy, Nicole C.

    2013-01-01

    Lactobacillus fermentum is found in fermented foods and thought to be harmless. In vivo and clinical studies indicate that some L. fermentum strains have beneficial properties, particularly for gastrointestinal health. However, L. fermentum AGR1487 decreases trans-epithelial electrical resistance (TEER), a measure of intestinal barrier integrity. The hypothesis was that L. fermentum AGR1487 decreases the expression of intestinal cell tight junction genes and proteins, thereby reducing barrier integrity. Transcriptomic and proteomic analyses of Caco-2 cells (model of human intestinal epithelial cells) treated with L. fermentum AGR1487 were used to obtain a global view of the effect of the bacterium on intestinal epithelial cells. Specific functional characteristics by which L. fermentum AGR1487 reduces intestinal barrier integrity were examined using confocal microscopy, cell cycle progression and adherence bioassays. The effects of TEER-enhancing L. fermentum AGR1485 were investigated for comparison. L. fermentum AGR1487 did not alter the expression of Caco-2 cell tight junction genes (compared to L. fermentum AGR1485) and tight junction proteins were not able to be detected. However, L. fermentum AGR1487 increased the expression levels of seven tubulin genes and the abundance of three microtubule-associated proteins, which have been linked to tight junction disassembly. Additionally, Caco-2 cells treated with L. fermentum AGR1487 did not have defined and uniform borders of zona occludens 2 around each cell, unlike control or AGR1485 treated cells. L. fermentum AGR1487 cells were required for the negative effect on barrier integrity (bacterial supernatant did not cause a decrease in TEER), suggesting that a physical interaction may be necessary. Increased adherence of L. fermentum AGR1487 to Caco-2 cells (compared to L. fermentum AGR1485) was likely to facilitate this cell-to-cell interaction. These findings illustrate that bacterial strains of the same species can

  4. A retinoic acid-enhanced, multicellular human blood-brain barrier model derived from stem cell sources

    Science.gov (United States)

    Lippmann, Ethan S.; Al-Ahmad, Abraham; Azarin, Samira M.; Palecek, Sean P.; Shusta, Eric V.

    2014-02-01

    Blood-brain barrier (BBB) models are often used to investigate BBB function and screen brain-penetrating therapeutics, but it has been difficult to construct a human model that possesses an optimal BBB phenotype and is readily scalable. To address this challenge, we developed a human in vitro BBB model comprising brain microvascular endothelial cells (BMECs), pericytes, astrocytes and neurons derived from renewable cell sources. First, retinoic acid (RA) was used to substantially enhance BBB phenotypes in human pluripotent stem cell (hPSC)-derived BMECs, particularly through adherens junction, tight junction, and multidrug resistance protein regulation. RA-treated hPSC-derived BMECs were subsequently co-cultured with primary human brain pericytes and human astrocytes and neurons derived from human neural progenitor cells (NPCs) to yield a fully human BBB model that possessed significant tightness as measured by transendothelial electrical resistance (~5,000 Ωxcm2). Overall, this scalable human BBB model may enable a wide range of neuroscience studies.

  5. Ginger Extract Suppresses Inflammatory Response and Maintains Barrier Function in Human Colonic Epithelial Caco-2 Cells Exposed to Inflammatory Mediators.

    Science.gov (United States)

    Kim, Yunyoung; Kim, Dong-Min; Kim, Ji Yeon

    2017-05-01

    The beneficial effects of ginger in the management of gastrointestinal disturbances have been reported. In this study, the anti-inflammatory potential of ginger extract was assessed in a cellular model of gut inflammation. In addition, the effects of ginger extract and its major active compounds on intestinal barrier function were evaluated. The response of Caco-2 cells following exposure to a mixture of inflammatory mediators [interleukin [IL]-1β, 25 ng/mL; lipopolysaccharides [LPS], 10 ng/mL; tumor necrosis factor [TNF]-α, 50 ng/mL; and interferon [INF]-γ, 50 ng/mL] were assessed by measuring the levels of secreted IL-6 and IL-8. In addition, the mRNA levels of cyclooxygenase-2 and inducible nitric oxide synthase were measured. Moreover, the degree of nuclear factor (NF)-κB inhibition was examined, and the intestinal barrier function was determined by measuring the transepithelial electrical resistance (TEER) and fluorescein isothiocyanate (FITC)-dextran transfer. It was observed that ginger extract and its constituents improved inflammatory responses by decreasing the levels of nitrite, PGE2, IL-6, and IL-8 via NF-κB inhibition. The ginger extract also increased the TEER and decreased the transfer of FITC-dextran from the apical side of the epithelium to the basolateral side. Taken together, these results show that ginger extract may be developed as a functional food for the maintenance of gastrointestinal health. © 2017 Institute of Food Technologists®.

  6. DNA-damage-induced differentiation of leukaemic cells as an anti-cancer barrier.

    Science.gov (United States)

    Santos, Margarida A; Faryabi, Robert B; Ergen, Aysegul V; Day, Amanda M; Malhowski, Amy; Canela, Andres; Onozawa, Masahiro; Lee, Ji-Eun; Callen, Elsa; Gutierrez-Martinez, Paula; Chen, Hua-Tang; Wong, Nancy; Finkel, Nadia; Deshpande, Aniruddha; Sharrow, Susan; Rossi, Derrick J; Ito, Keisuke; Ge, Kai; Aplan, Peter D; Armstrong, Scott A; Nussenzweig, André

    2014-10-02

    Self-renewal is the hallmark feature both of normal stem cells and cancer stem cells. Since the regenerative capacity of normal haematopoietic stem cells is limited by the accumulation of reactive oxygen species and DNA double-strand breaks, we speculated that DNA damage might also constrain leukaemic self-renewal and malignant haematopoiesis. Here we show that the histone methyl-transferase MLL4, a suppressor of B-cell lymphoma, is required for stem-cell activity and an aggressive form of acute myeloid leukaemia harbouring the MLL-AF9 oncogene. Deletion of MLL4 enhances myelopoiesis and myeloid differentiation of leukaemic blasts, which protects mice from death related to acute myeloid leukaemia. MLL4 exerts its function by regulating transcriptional programs associated with the antioxidant response. Addition of reactive oxygen species scavengers or ectopic expression of FOXO3 protects MLL4(-/-) MLL-AF9 cells from DNA damage and inhibits myeloid maturation. Similar to MLL4 deficiency, loss of ATM or BRCA1 sensitizes transformed cells to differentiation, suggesting that myeloid differentiation is promoted by loss of genome integrity. Indeed, we show that restriction-enzyme-induced double-strand breaks are sufficient to induce differentiation of MLL-AF9 blasts, which requires cyclin-dependent kinase inhibitor p21(Cip1) (Cdkn1a) activity. In summary, we have uncovered an unexpected tumour-promoting role of genome guardians in enforcing the oncogene-induced differentiation blockade in acute myeloid leukaemia.

  7. VEGF-A165 potently induces human blood-nerve barrier endothelial cell proliferation, angiogenesis, and wound healing in vitro.

    Science.gov (United States)

    Reddy, Chetan Lakshmana; Yosef, Nejla; Ubogu, Eroboghene E

    2013-08-01

    Several mitogens such as vascular endothelial growth factor (VEGF) have been implicated in mammalian vascular proliferation and repair. However, the molecular mediators of human blood-nerve barrier (BNB) development and specialization are unknown. Primary human endoneurial endothelial cells (pHEndECs) were expanded in vitro and specific mitogen receptors detected by western blot. pHEndECs were cultured with basal medium containing different mitogen concentrations with or without heparin. Non-radioactive cell proliferation, Matrigel(™)-induced angiogenesis and sterile micropipette injury wound healing assays were performed. Proliferation rates, number and total length of induced microvessels, and rate of endothelial cell monolayer wound healing were determined and compared to basal conditions. VEGF-A165 in the presence of heparin, was the most potent inducer of pHEndEC proliferation, angiogenesis, and wound healing in vitro. 1.31 nM VEGF-A165 induced ~110 % increase in cell proliferation relative to basal conditions (∼51 % without heparin). 2.62 pM VEGF-A165 induced a three-fold increase in mean number of microvessels and 3.9-fold increase in total capillary length/field relative to basal conditions. In addition, 0.26 nM VEGF-A165 induced ∼1.3-fold increased average rate of endothelial wound healing 4-18 h after endothelial monolayer injury, mediated by increased cell migration. VEGF-A165 was the only mitogen capable of complete wound closure, occurring within 30 h following injury via increased cell proliferation. This study demonstrates that VEGF-A165, in the presence of heparin, is a potent inducer of pHEndEC proliferation, angiogenesis, and wound healing in vitro. VEGF-A165 may be an important mitogen necessary for human BNB development and recovery in response to peripheral nerve injury.

  8. Endothelial Activation and Blood-Brain Barrier Disruption in Neurotoxicity after Adoptive Immunotherapy with CD19 CAR-T Cells.

    Science.gov (United States)

    Gust, Juliane; Hay, Kevin A; Hanafi, Laïla-Aïcha; Li, Daniel; Myerson, David; Gonzalez-Cuyar, Luis F; Yeung, Cecilia; Liles, W Conrad; Wurfel, Mark; Lopez, Jose A; Chen, Junmei; Chung, Dominic; Harju-Baker, Susanna; Özpolat, Tahsin; Fink, Kathleen R; Riddell, Stanley R; Maloney, David G; Turtle, Cameron J

    2017-12-01

    Lymphodepletion chemotherapy followed by infusion of CD19-targeted chimeric antigen receptor-modified T (CAR-T) cells can be complicated by neurologic adverse events (AE) in patients with refractory B-cell malignancies. In 133 adults treated with CD19 CAR-T cells, we found that acute lymphoblastic leukemia, high CD19 + cells in bone marrow, high CAR-T cell dose, cytokine release syndrome, and preexisting neurologic comorbidities were associated with increased risk of neurologic AEs. Patients with severe neurotoxicity demonstrated evidence of endothelial activation, including disseminated intravascular coagulation, capillary leak, and increased blood-brain barrier (BBB) permeability. The permeable BBB failed to protect the cerebrospinal fluid from high concentrations of systemic cytokines, including IFNγ, which induced brain vascular pericyte stress and their secretion of endothelium-activating cytokines. Endothelial activation and multifocal vascular disruption were found in the brain of a patient with fatal neurotoxicity. Biomarkers of endothelial activation were higher before treatment in patients who subsequently developed grade ≥4 neurotoxicity. Significance: We provide a detailed clinical, radiologic, and pathologic characterization of neurotoxicity after CD19 CAR-T cells, and identify risk factors for neurotoxicity. We show endothelial dysfunction and increased BBB permeability in neurotoxicity and find that patients with evidence of endothelial activation before lymphodepletion may be at increased risk of neurotoxicity. Cancer Discov; 7(12); 1404-19. ©2017 AACR. See related commentary by Mackall and Miklos, p. 1371 This article is highlighted in the In This Issue feature, p. 1355 . ©2017 American Association for Cancer Research.

  9. All solution processing of ITO-free organic solar cell modules directly on barrier foil

    DEFF Research Database (Denmark)

    Angmo, Dechan; Hösel, Markus; Krebs, Frederik C

    2012-01-01

    In this study, we demonstrate fully solution processed semi-transparent silver electrodes on flexible substrates having a sheet resistance as low as 5Ω/□ and transmittance of ∼30% at 550nm. We demonstrate the use of this electrode as a substitute for ITO in an inverted organic solar cell (OSC...... and processing cost and is a cost-effective alternative to ITO for low-cost organic solar cells....

  10. ALD grown bilayer junction of ZnO:Al and tunnel oxide barrier for SIS solar cell.

    Science.gov (United States)

    Bethge, O; Nobile, M; Abermann, S; Glaser, M; Bertagnolli, E

    2013-10-01

    Various metal oxides are probed as extrinsic thin tunnel barriers in Semiconductor Insulator Semiconductor solar cells. Namely Al 2 O 3 , ZrO 2 , Y 2 O 3 , and La 2 O 3 thin films are in between n-type ZnO:Al (AZO) and p-type Si substrates by means of Atomic Layer Deposition. Low reverse dark current-density as low as 3×10 -7  A/cm 2 , a fill factor up to 71.3%, and open-circuit voltage as high as 527 mV are obtained, achieving conversion efficiency of 8% for the rare earth oxide La 2 O 3 . ZrO 2 and notably Al 2 O 3 show drawbacks in performance suggesting an adverse reactivity with AZO as also indicated by X-ray Photoelectron Spectroscopy.

  11. ALD grown bilayer junction of ZnO:Al and tunnel oxide barrier for SIS solar cell ?

    OpenAIRE

    Bethge, O.; Nobile, M.; Abermann, S.; Glaser, M.; Bertagnolli, E.

    2013-01-01

    Various metal oxides are probed as extrinsic thin tunnel barriers in Semiconductor Insulator Semiconductor solar cells. Namely Al2O3, ZrO2, Y2O3, and La2O3 thin films are in between n-type ZnO:Al (AZO) and p-type Si substrates by means of Atomic Layer Deposition. Low reverse dark current?density as low as 3?10?7?A/cm2, a fill factor up to 71.3%, and open-circuit voltage as high as 527?mV are obtained, achieving conversion efficiency of 8% for the rare earth oxide La2O3. ZrO2 and notably Al2O3...

  12. An improved in vitro blood-brain barrier model: rat brain endothelial cells co-cultured with astrocytes.

    Science.gov (United States)

    Abbott, N Joan; Dolman, Diana E M; Drndarski, Svetlana; Fredriksson, Sarah M

    2012-01-01

    In vitro blood-brain barrier (BBB) models using primary cultured brain endothelial cells are important for establishing cellular and molecular mechanisms of BBB function. Co-culturing with BBB-associated cells especially astrocytes to mimic more closely the in vivo condition leads to upregulation of the BBB phenotype in the brain endothelial cells. Rat brain endothelial cells (RBECs) are a valuable tool allowing ready comparison with in vivo studies in rodents; however, it has been difficult to obtain pure brain endothelial cells, and few models achieve a transendothelial electrical resistance (TEER, measure of tight junction efficacy) of >200 Ω cm(2), i.e. the models are still relatively leaky. Here, we describe methods for preparing high purity RBECs and neonatal rat astrocytes, and a co-culture method that generates a robust, stable BBB model that can achieve TEER >600 Ω cm(2). The method is based on >20 years experience with RBEC culture, together with recent improvements to kill contaminating cells and encourage BBB differentiation.Astrocytes are isolated by mechanical dissection and cell straining and are frozen for later co-culture. RBECs are isolated from 3-month-old rat cortices. The brains are cleaned of meninges and white matter and enzymatically and mechanically dissociated. Thereafter, the tissue homogenate is centrifuged in bovine serum albumin to separate vessel fragments from other cells that stick to the myelin plug. The vessel fragments undergo a second enzyme digestion to separate pericytes from vessels and break down vessels into shorter segments, after which a Percoll gradient is used to separate capillaries from venules, arterioles, and single cells. To kill remaining contaminating cells such as pericytes, the capillary fragments are plated in puromycin-containing medium and RBECs grown to 50-60% confluence. They are then passaged onto filters for co-culture with astrocytes grown in the bottom of the wells. The whole procedure takes ∼2

  13. Oral and fecal Campylobacter concisus strains perturb barrier function by apoptosis induction in HT-29/B6 intestinal epithelial cells.

    Directory of Open Access Journals (Sweden)

    Hans Linde Nielsen

    Full Text Available Campylobacter concisus infections of the gastrointestinal tract can be accompanied by diarrhea and inflammation, whereas colonization of the human oral cavity might have a commensal nature. We focus on the pathophysiology of C. concisus and the effects of different clinical oral and fecal C. concisus strains on human HT-29/B6 colon cells. Six oral and eight fecal strains of C. concisus were isolated. Mucus-producing HT-29/B6 epithelial monolayers were infected with the C. concisus strains. Transepithelial electrical resistance (R(t and tracer fluxes of different molecule size were measured in Ussing chambers. Tight junction (TJ protein expression was determined by Western blotting, and subcellular TJ distribution was analyzed by confocal laser-scanning microscopy. Apoptosis induction was examined by TUNEL-staining and Western blot of caspase-3 activation. All strains invaded confluent HT-29/B6 cells and impaired epithelial barrier function, characterized by a time- and dose-dependent decrease in R(t either after infection from the apical side but even more from the basolateral compartment. TJ protein expression changes were sparse, only in apoptotic areas of infected monolayers TJ proteins were redistributed. Solely the barrier-forming TJ protein claudin-5 showed a reduced expression level to 66±8% (P<0.05, by expression regulation from the gene. Concomitantly, Lactate dehydrogenase release was elevated to 3.1±0.3% versus 0.7±0.1% in control (P<0.001, suggesting cytotoxic effects. Furthermore, oral and fecal C. concisus strains elevated apoptotic events to 5-fold. C. concisus-infected monolayers revealed an increased permeability for 332 Da fluorescein (1.74±0.13 vs. 0.56±0.17 10(-6 cm/s in control, P<0.05 but showed no difference in permeability for 4 kDa FITC-dextran (FD-4. The same was true in camptothecin-exposed monolayers, where camptothecin was used for apoptosis induction.In conclusion, epithelial barrier dysfunction by oral and

  14. Effect of Hops Derived Prenylated Phenols on TNF-α Induced Barrier Dysfunction in Intestinal Epithelial Cells.

    Science.gov (United States)

    Luescher, Sandro; Urmann, Corinna; Butterweck, Veronika

    2017-04-28

    For the prenylated hops phenols 6- and 8-prenylnaringenin (1 and 2), xanthohumol (3), and isoxanthohumol (4), a variety of biological activities has been described. In the current study, a transwell based in vitro model using the human intestinal epithelial cell line Caco-2 was developed to assess potential beneficial effects of compounds 1-4 on TNF-α-induced impairment of tight junction (TJ) permeability. Transepithelial electrical resistance (TEER) was measured using the latest cellZScope online monitoring device. TNF-α treatment (25 ng/mL) induced a significant decrease in TEER values (204.71 ± 4.57 at 72 h) compared to that in control values (245.94 ± 1.68 at 72 h). To determine preventive effects on TNF-α-induced impairment of TJ permeability, 1-4 were added to the apical compartment of Caco-2 monolayers 1 h before TNF-α treatment; afterward, TNF-α was added to the basolateral compartment to induce TJ dysfunction and incubated for a further 72 h. Using this setting, only 1 and 2 prevented epithelial disruption induced by TNF-α. To evaluate restorative effects of 1-4, TNF-α was added to the basolateral compartment of Caco-2 cell monolayers. After 48 h of incubation, 1-4 were added to the apical side, and TEER values were monitored online for a further 72 h. Under these experimental conditions, only 2 restored TNF-α induced barrier dysfunction.

  15. DNA-AuNP networks on cell membranes as a protective barrier to inhibit viral attachment, entry and budding.

    Science.gov (United States)

    Li, Chun Mei; Zheng, Lin Ling; Yang, Xiao Xi; Wan, Xiao Yan; Wu, Wen Bi; Zhen, Shu Jun; Li, Yuan Fang; Luo, Ling Fei; Huang, Cheng Zhi

    2016-01-01

    Viral infections have caused numerous diseases and deaths worldwide. Due to the emergence of new viruses and frequent virus variation, conventional antiviral strategies that directly target viral or cellular proteins are limited because of the specificity, drug resistance and rapid clearance from the human body. Therefore, developing safe and potent antiviral agents with activity against viral infection at multiple points in the viral life cycle remains a major challenge. In this report, we propose a new modality to inhibit viral infection by fabricating DNA conjugated gold nanoparticle (DNA-AuNP) networks on cell membranes as a protective barrier. The DNA-AuNPs networks were found, via a plaque formation assay and viral titers, to have potent antiviral ability and protect host cells from human respiratory syncytial virus (RSV). Confocal immunofluorescence image analysis showed 80 ± 3.8% of viral attachment, 91.1 ± 0.9% of viral entry and 87.9 ± 2.8% of viral budding were inhibited by the DNA-AuNP networks, which were further confirmed by real-time fluorescence imaging of the RSV infection process. The antiviral activity of the networks may be attributed to steric effects, the disruption of membrane glycoproteins and limited fusion of cell membrane bilayers, all of which play important roles in viral infection. Therefore, our results suggest that the DNA-AuNP networks have not only prophylactic effects to inhibit virus attachment and entry, but also therapeutic effects to inhibit viral budding and cell-to-cell spread. More importantly, this proof-of-principle study provides a pathway for the development of a universal, broad-spectrum antiviral therapy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Electrochemical reduction of CO2 and H2O into fuels: Cell types and kinetic barriers

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg

    2013-01-01

    .e. ceramics that can take up H2O and become proton conducting. Electrodes may be similar to those used for SOEC. It may be operated between 500 – 700 °C. Molten carbonate electrolyser cell (MCEC) has molten Li2CO3 electrolyte, Ti-Al-metal alloy as cathode (CO evolution) and graphite as anode (O2 evolution...... of production rate/cost. Production rate is determined mainly by electrode kinetics. Therefore, parallel to improving the electrodes of these electrolyser cells, other cell types, which have faster electrode kinetics, can electrolyse CO2 and have potential lower investment costs, are being researched......), and may be operated above 800 °C. A short review of the various types is presented, and the limitations of the kinetics are described. The pros and cons of high temperature and pressure as measures to increase the electrode kinetics are discussed. Naturally, the reaction rates increase with temperature...

  17. Sodium caprate transiently opens claudin-5-containing barriers at tight junctions of epithelial and endothelial cells

    DEFF Research Database (Denmark)

    Del Vecchio, Giovanna; Tscheik, Christian; Tenz, Kareen

    2012-01-01

    opens the paracellular space acting on TJ proteins and actin cytoskeleton. Its action on claudin-5 is not understood so far. Epithelial and endothelial systems were used to evaluate the effect of caprate on claudin-5 in TJ-free cells and on claudin-5 fully integrated in TJ. To this aim, confocal......-actin content in Madin–Darby canine kidney-II cells expressing Flag-claudin-5, thereby increasing the permeability to the small molecule lucifer yellow. Interestingly, zonula occludens protein 1 (ZO-1), which links transmembranous TJ proteins to the actin cytoskeleton, was not affected by caprate treatment...... of endothelial and epithelial cells. In conclusion, the study further elucidates the cellular effects of caprate at the tight junctions....

  18. Proinflammatory cytokines tumor necrosis factor-α and interferon-γ modulate epithelial barrier function in Madin-Darby canine kidney cells through mitogen activated protein kinase signaling

    Directory of Open Access Journals (Sweden)

    Dudowicz Kara A

    2006-02-01

    Full Text Available Abstract Background The tight junction is a dynamic structure that is regulated by a number of cellular signaling processes. Occludin, claudin-1, claudin-2 and claudin-3 are integral membrane proteins found in the tight junction of MDCK cells. These proteins are restricted to this region of the membrane by a complex array of intracellular proteins which are tethered to the cytoskeleton. Alteration of these tight junction protein complexes during pathological events leads to impaired epithelial barrier function that perturbs water and electrolyte homeostasis. We examined MDCK cell barrier function in response to challenge by the proinflammatory cytokines tumor necrosis factor-α (TNFα and interferon-γ (IFNγ. Results Exposure of MDCK cells to TNFα/IFNγ resulted in a marked sustained elevation of transepithelial electrical resistance (TER as well as elevated paracellular permeability. We demonstrate that the combination of TNFα/IFNγ at doses used in this study do not significantly induce MDCK cell apoptosis. We observed significant alterations in occludin, claudin-1 and claudin-2 protein expression, junctional localization and substantial cytoskeletal reorganization. Pharmacological inhibition of ERK1/2 and p38 signaling blocked the deleterious effects of the proinflammatory cytokines on barrier function. Conclusion These data strongly suggest that downstream effectors of MAP kinase signaling pathways mediate the TNFα/IFNγ-induced junctional reorganization that modulates MDCK cell barrier function.

  19. Fetally derived CCL3 is not essential for the migration of maternal cells across the blood-placental barrier in the mouse.

    Science.gov (United States)

    Unno, Akihiro; Suzuki, Kazuhiko; Kitoh, Katsuya; Takashima, Yasuhiro

    2010-11-01

    In mammals with a hemochorial placenta (e.g., primates and rodents), the maternal and fetal bloodstreams are separated by the blood-placenta barrier. However, a few maternal cells in the general circulation pass through the barrier during normal pregnancy. So far, the transfer mechanism has not been investigated. In this study, we established a chemokine (C-C motif) ligand 3 (CCL3)-deficient mouse model to examine the effect of fetus-derived chemokine(s) on the migration of maternal cells through the blood-placenta barrier. Using this model, we obtained CCL3-positive and -negative littermates from a mother expressing both CCL3 and green fluorescent protein (GFP). The numbers of GFP positive maternal cells in the lung, liver, spleen and heart of CCL3-positive and -negative fetuses were compared. A few GFP-positive cells were detected in the lung and liver of both types of fetus. These results indicate that maternal cells can migrate through the blood-placenta barrier even in the absence of fetal CCL3.

  20. Experimental model for research on the blood-ocular barrier

    International Nuclear Information System (INIS)

    Kim, Hak Jin; Jea, Seung Youn; Park, Jae Sung; Jung, Yeon Joo; Kim, Yong Woo; Park, Byung Rae

    2006-01-01

    The eyeball has 2 blood-ocular barriers, i.e, the blood-retinal and blood-aqueous barriers. The purpose of this study was to evaluate if triolein emulsion could disrupt the barriers, and we wanted to suggest as an experimental model for future blood-ocular barrier studies. The triolein emulsion was made of 0.1 ml triolein and 20 ml normal saline, and this was infused into the carotid artery of ten cats (the experimental group). As a control group, only normal saline was infused in another ten cats. Precontrast and postcontrast T1-weighted MR images were obtained at 30 minutes and 3 hours after embolization in both groups. The signal intensities were evaluate qualitatively and quantitatively in the anterior and posterior chambers and also in the vitreus fluid. Statistical analysis was performed by employing the Kruskal Wallist test, Dunn's Multiple Comparison test and the wilcoxon signed rank test. In the control group, no contrast enhancement was demonstrated in the anterior or posterior chamber or in the vitreus fluid of the ipsilateral or contralateral eyeball on the 30 minutes MR images. The anterior chambers of the ipsilateral and contralateral eyeballs revealed delayed contrast enhancement on the 3 hour MR images. In the experimental group, the 30 minute-postembolization MR images were not different from those of the control group. The 30 minute-postembolization MR images demonstrated delayed contrast enhancement in the anterior chamber of the ipsilateral and contralateral eyeballs and in the posterior chamber of the ipsilateral eyeball. The delayed contrast enhancement of the posterior chamber of the ipsilateral eyeball was statistically significant (ρ < 0.05). The present study demonstrated significant contrast enhancement in the posterior chamber with infusion of the triolein emulsion, and this can serve as a model for blood-aqueous barrier studies

  1. Development of microfluidic cell culture devices towards an in vitro human intestinal barrier model

    DEFF Research Database (Denmark)

    Tan, Hsih-Yin

    Existing in vitro models of the human intestine such as the established epithelial cell line, Caco-2, cultured on porous membranes have been extensively used for assessing and predicting permeability and absorption of oral drugs in the pharmaceutical industries. However, such in vitro human intes...

  2. Mast cells trigger epithelial barrier dysfunction, bacterial translocation and postoperative ileus in a mouse model

    NARCIS (Netherlands)

    Snoek, S. A.; Dhawan, S.; van Bree, S. H.; Cailotto, C.; van Diest, S. A.; Duarte, J. M.; Stanisor, O. I.; Hilbers, F. W.; Nijhuis, L.; Koeman, A.; van den Wijngaard, R. M.; Zuurbier, C. J.; Boeckxstaens, G. E.; de Jonge, W. J.

    2012-01-01

    Background Abdominal surgery involving bowel manipulation commonly results in inflammation of the bowel wall, which leads to impaired intestinal motility and postoperative ileus (POI). Mast cells have shown to play a key role in the pathogenesis of POI in mouse models and human studies. We studied

  3. EB1 regulates tubulin and actin cytoskeletal networks at the sertoli cell blood-testis barrier in male rats: an in vitro study.

    Science.gov (United States)

    Tang, Elizabeth I; Mok, Ka-Wai; Lee, Will M; Cheng, C Yan

    2015-02-01

    During spermatogenesis, developing germ cells are transported across the seminiferous epithelium. Studies propose that because microtubules (MTs) serve as the tracks for transporting cell organelles, they may also serve a similar function in the transport of developing germ cells. Polarized MTs may provide the tracks along which polarized actin microfilaments, which act as vehicles to transport cargo, such as preleptotene spermatocytes through the blood-testis barrier (BTB) and spermatids across the epithelium. Yet the molecular mechanism(s) underlying these events remain unknown. Using an established in vitro Sertoli cell system to study BTB function, we demonstrated herein that a MT regulatory protein end-binding protein 1 (EB1) regulates the MT- and also the actin-based cytoskeleton of the Sertoli cell BTB in the rat. EB1 serves as a coordinator between the two cytoskeletons by regulating MT polymerization and actin filament bundling to modulate germ cell transport at the Sertoli cell BTB. A knockdown of EB1 by RNA interference was found to perturb the tight junction (TJ)-permeability barrier, as evidenced by mislocalization of junctional proteins critical for barrier function to facilitate spermatocyte transport, which was likely achieved by two coordinated events. First, EB1 knockdown resulted in changes in MT polymerization, thereby perturbing MT organization in Sertoli cells in which polarized MT no longer stretched properly across the cell cytosol to serve as the tracks. Second, EB1 knockdown perturbed actin organization via its effects on the branched actin polymerization-inducing protein called Arp3 (actin-related protein 3), perturbing microfilament bundling capability based on a biochemical assay, thereby causing microfilament truncation and misorganization, disrupting the function of the vehicle. This reduced actin microfilament bundling capability thus perturbed TJ-protein distribution and localization at the BTB, destabilizing the TJ barrier, leading

  4. Overcoming the Practical Barriers to Spinal Cord Cell Transplantation for ALS

    Science.gov (United States)

    2012-10-01

    derived neural aggregate cells, we will establish and validate the autologous engraftment of minipig iPSC-derived astrocytes. GENERATION OF FETAL...progenitors from embryonic minipigs. In our first attempt, a pregnant sow was aborted at day 50 of gestation . Following the still birth of the embryos...general anesthesia. At this point, the back and head of each animal is shaved. Depth of anesthesia is monitored by the veterinary staff. Absence of

  5. Sirt1 Protects Endothelial Cells against LPS-Induced Barrier Dysfunction

    Science.gov (United States)

    Guo, Xiaohua; Liu, Yanan; He, Jing; Wang, Ruiting

    2017-01-01

    Sepsis is a threatening health problem and characterized by microvascular dysfunction. In this study, we verified that LPS caused the downregulation of Sirt1 and the hyperpermeability of endothelial cells. Inhibition of Sirt1 with ex527 or Sirt1 siRNA displayed a higher permeability, while activation of Sirt1 with SRT1720 reversed the LPS-induced hyperpermeability, formation of fiber stress, and disruption of VE-cadherin distribution. In pulmonary microvascular vein endothelial cells isolated from wild-type mice, Sirt1 was attenuated upon LPS, while Sirt1 was preserved in a receptor of advanced glycation end product-knockout mice. The RAGE antibody could also diminish the downregulation and ubiquitination of Sirt1 in LPS-exposed human umbilical vein endothelial cells. An LPS-induced decrease in Sirt1 activity was attenuated by the RAGE antibody and TLR4 inhibitor. In vivo study also demonstrated the attenuating role of Sirt1 and RAGE knockout in LPS-induced increases in dextran leakage of mesenteric venules. Furthermore, activation of Sirt1 prevented LPS-induced decreases in the activity and expression of superoxide dismutase 2, as well as the increases in NADPH oxidase 4 and reactive oxygen species, while inhibition of Sirt1 aggravated the SOD2 decline. It also demonstrated that Sirt1-deacetylated p53 is required for p53 inactivation, which reversed the downregulation of β-catenin caused by LPS. PMID:29209448

  6. Tumor necrosis factor alpha increases epithelial barrier permeability by disrupting tight junctions in Caco-2 cells.

    Science.gov (United States)

    Cui, W; Li, L X; Sun, C M; Wen, Y; Zhou, Y; Dong, Y L; Liu, P

    2010-04-01

    The objectives of this study were to determine the effect of tumor necrosis factor alpha (TNF-alpha) on intestinal epithelial cell permeability and the expression of tight junction proteins. Caco-2 cells were plated onto Transwell microporous filters and treated with TNF-alpha (10 or 100 ng/mL) for 0, 4, 8, 16, or 24 h. The transepithelial electrical resistance and the mucosal-to-serosal flux rates of the established paracellular marker Lucifer yellow were measured in filter-grown monolayers of Caco-2 intestinal cells. The localization and expression of the tight junction protein occludin were detected by immunofluorescence and Western blot analysis, respectively. SYBR-Green-based real-time PCR was used to measure the expression of occludin mRNA. TNF-alpha treatment produced concentration- and time-dependent decreases in Caco-2 transepithelial resistance and increases in transepithelial permeability to the paracellular marker Lucifer yellow. Western blot results indicated that TNF-alpha decreased the expression of phosphorylated occludin in detergent-insoluble fractions but did not affect the expression of non-phosphorylated occludin protein. Real-time RT-PCR data showed that TNF-alpha did not affect the expression of occludin mRNA. Taken together, our data demonstrate that TNF-alpha increases Caco-2 monolayer permeability, decreases occludin protein expression and disturbs intercellular junctions.

  7. Tumor necrosis factor alpha increases epithelial barrier permeability by disrupting tight junctions in Caco-2 cells

    Directory of Open Access Journals (Sweden)

    W. Cui

    2010-04-01

    Full Text Available The objectives of this study were to determine the effect of tumor necrosis factor alpha (TNF-α on intestinal epithelial cell permeability and the expression of tight junction proteins. Caco-2 cells were plated onto Transwell® microporous filters and treated with TNF-α (10 or 100 ng/mL for 0, 4, 8, 16, or 24 h. The transepithelial electrical resistance and the mucosal-to-serosal flux rates of the established paracellular marker Lucifer yellow were measured in filter-grown monolayers of Caco-2 intestinal cells. The localization and expression of the tight junction protein occludin were detected by immunofluorescence and Western blot analysis, respectively. SYBR-Green-based real-time PCR was used to measure the expression of occludin mRNA. TNF-α treatment produced concentration- and time-dependent decreases in Caco-2 transepithelial resistance and increases in transepithelial permeability to the paracellular marker Lucifer yellow. Western blot results indicated that TNF-α decreased the expression of phosphorylated occludin in detergent-insoluble fractions but did not affect the expression of non-phosphorylated occludin protein. Real-time RT-PCR data showed that TNF-α did not affect the expression of occludin mRNA. Taken together, our data demonstrate that TNF-α increases Caco-2 monolayer permeability, decreases occludin protein expression and disturbs intercellular junctions.

  8. Butyrate Enhances the Intestinal Barrier by Facilitating Tight Junction Assembly via Activation of AMP-Activated Protein Kinase in Caco-2 Cell Monolayers12

    Science.gov (United States)

    Peng, Luying; Li, Zhong-Rong; Green, Robert S.; Holzman, Ian R.; Lin, Jing

    2009-01-01

    Butyrate, one of the SCFA, promotes the development of the intestinal barrier. However, the molecular mechanisms underlying the butyrate regulation of the intestinal barrier are unknown. To test the hypothesis that the effect of butyrate on the intestinal barrier is mediated by the regulation of the assembly of tight junctions involving the activation of the AMP-activated protein kinase (AMPK), we determined the effect of butyrate on the intestinal barrier by measuring the transepithelial electrical resistance (TER) and inulin permeability in a Caco-2 cell monolayer model. We further used a calcium switch assay to study the assembly of epithelial tight junctions and determined the effect of butyrate on the assembly of epithelial tight junctions and AMPK activity. We demonstrated that the butyrate treatment increased AMPK activity and accelerated the assembly of tight junctions as shown by the reorganization of tight junction proteins, as well as the development of TER. AMPK activity was also upregulated by butyrate during calcium switch-induced tight junction assembly. Compound C, a specific AMPK inhibitor, inhibited the butyrate-induced activation of AMPK. The facilitating effect of butyrate on the increases in TER in standard culture media, as well as after calcium switch, was abolished by compound C. We conclude that butyrate enhances the intestinal barrier by regulating the assembly of tight junctions. This dynamic process is mediated by the activation of AMPK. These results suggest an intriguing link between SCFA and the intracellular energy sensor for the development of the intestinal barrier. PMID:19625695

  9. Toll-Like Receptor 2 Activation by beta 2 -> 1-Fructans Protects Barrier Function of T84 Human Intestinal Epithelial Cells in a Chain Length-Dependent Manner

    NARCIS (Netherlands)

    Vogt, Leonie M.; Meyer, Diederick; Pullens, Gerdie; Faas, Marijke M.; Venema, Koen; Ramasamy, Uttara; Schols, Henk A.; de Vos, Paul

    Dietary fiber intake is associated with lower incidence and mortality from disease, but the underlying mechanisms of these protective effects are unclear. We hypothesized that beta 2 -> 1-fructan dietary fibers confer protection on intestinal epithelial cell barrier function via Toll-like receptor 2

  10. Answer to comments on “Fabrication and photovoltaic conversion enhancement of graphene/n-Si Schottky barrier solar cells by electrophoretic deposition”

    Science.gov (United States)

    Chen, Leifeng; He, Hong

    2017-04-01

    Here, we reply to comments by Valentic et al. on our paper published in Electrochimica Acta (2014, 130: 279). They commented that Au nanoparticles played the dominant role on the whole cell's performances in our improved graphene/Si solar cell. We argued that our devices are Au-doped graphene/n-Si Schottky barrier devices, not Au nanoparticles (film)/n-Si Schottky barrier devices. During the doping process, most of the Au nanopatricles covered the surfaces of the graphene. Schottky barriers between doped graphene and n-Si dominate the total cells properties. Through doping, by adjusting and tailoring the Fermi level of the graphene, the Fermi level of n-Si can be shifted down in the graphene/Si Schottky barrier cell. They also argued that the instability of our devices were related to variation in series resistance reduced at the beginning due to slightly lowered Fermi level and increased at the end by the self-compensation by deep in-diffusion of Au nanoparticles. But for our fabricated devices, we know that an oxide layer covered the Si surface, which makes it difficult for the Au ions to diffuse into the Si layer, due to the continuous growth of SiO{}2 layer on the Si surface which resulted in series resistance decreasing at first and increasing in the end.

  11. Breakdown of Epithelial Barrier Integrity and Overdrive Activation of Alveolar Epithelial Cells in the Pathogenesis of Acute Respiratory Distress Syndrome and Lung Fibrosis

    Directory of Open Access Journals (Sweden)

    Shigehisa Yanagi

    2015-01-01

    Full Text Available Individual alveolar epithelial cells (AECs collaboratively form a tight barrier between atmosphere and fluid-filled tissue to enable normal gas exchange. The tight junctions of AECs provide intercellular sealing and are integral to the maintenance of the AEC barrier integrity. Disruption and failure of reconstitution of AEC barrier result in catastrophic consequences, leading to alveolar flooding and subsequent devastating fibrotic scarring. Recent evidences reveal that many of the fibrotic lung diseases involve AECs both as a frequent target of injury and as a driver of ongoing pathological processes. Aberrantly activated AECs express most of the growth factors and chemokines responsible for the proliferation, migration, and activation of fibroblasts. Current evidences suggest that AECs may acquire overdrive activation in the initial step of fibrosis by several mechanisms, including abnormal recapitulation of the developmental pathway, defects of the molecules essential for epithelial integrity, and acceleration of aging-related properties. Among these initial triggering events, epithelial Pten, a multiple phosphatase that negatively regulates the PI3K/Akt pathway and is crucial for lung development, is essential for the prevention of alveolar flooding and lung fibrosis through the regulation of AEC barrier integrity after injury. Reestablishment of AEC barrier integrity also involves the deployment of specialized stem/progenitor cells.

  12. Hydroxyurea for the Treatment of Sickle Cell Disease: Efficacy, Barriers, Toxicity, and Management in Children

    Science.gov (United States)

    Strouse, John J.; Heeney, Matthew M.

    2012-01-01

    Hydroxyurea is the only approved medication in the United States for the treatment of sickle cell anemia (HbSS) and is widely used in children despite an indication limited to adults. We review the evidence of efficacy and safety in children with reference to pivotal adult studies. This evidence and expert opinion form the basis for recommended guidelines for the use of hydroxyurea in children including indications, dosing, therapeutic and safety monitoring, and interventions to improve adherence. However, there are substantial gaps in our knowledge to be addressed by on-going and planned studies in children. PMID:22517797

  13. Donor T cells primed on leukemia lysate-pulsed recipient APCs mediate strong graft-versus-leukemia effects across MHC barriers in full chimeras

    OpenAIRE

    Ghosh, Arnab; Koestner, Wolfgang; Hapke, Martin; Schlaphoff, Verena; Länger, Florian; Baumann, Rolf; Koenecke, Christian; Cornberg, Markus; Welte, Karl; Blazar, Bruce R.; Sauer, Martin G.

    2009-01-01

    Antigen-presenting cells (APCs) of host origin drive graft-versus-leukemia (GVL) effects but can also trigger life-threatening graft-versus-host disease (GVHD) after hematopoietic cell transplantation (HCT) across major histocompatibility complex (MHC) barriers. We show that in vitro priming of donor lymphocytes can circumvent the need of recipient-derived APCs in vivo for mediating robust GVL effects and significantly diminishes the risk of severe GVHD. In vitro, generated and expanded T cel...

  14. Acrolein Disrupts Tight Junction Proteins and Causes Endoplasmic Reticulum Stress-Mediated Epithelial Cell Death Leading to Intestinal Barrier Dysfunction and Permeability.

    Science.gov (United States)

    Chen, Wei-Yang; Wang, Min; Zhang, Jingwen; Barve, Shirish S; McClain, Craig J; Joshi-Barve, Swati

    2017-12-01

    Increasing evidence suggests that environmental and dietary factors can affect intestinal epithelial integrity leading to gut permeability and bacterial translocation. Intestinal barrier dysfunction is a pathogenic process associated with many chronic disorders. Acrolein is an environmental and dietary pollutant and a lipid-derived endogenous metabolite. The impact of acrolein on the intestine has not been investigated before and is evaluated in this study, both in vitro and in vivo. Our data demonstrate that oral acrolein exposure in mice caused damage to the intestinal epithelial barrier, resulting in increased permeability and subsequently translocation of bacterial endotoxin-lipopolysaccharide into the blood. Similar results were seen in vitro using established Caco-2 cell monolayers wherein acrolein decreased barrier function and increased permeability. Acrolein also caused the down-regulation and/or redistribution of three representative tight junction proteins (ie, zonula occludens-1, Occludin, Claudin-1) that critically regulate epithelial paracellular permeability. In addition, acrolein induced endoplasmic reticulum stress-mediated death of epithelial cells, which is an important mechanism contributing to intestinal barrier damage/dysfunction, and gut permeability. Overall, we demonstrate that exposure to acrolein affects the intestinal epithelium by decrease/redistribution of tight junction proteins and endoplasmic reticulum stress-mediated epithelial cell death, thereby resulting in loss of barrier integrity and function. Our findings highlight the adverse consequences of environmental and dietary pollutants on intestinal barrier integrity/function with relevance to gut permeability and the development of disease. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  15. Monolayers of IEC-18 cells as an in vitro model for screening the passive transcellular and paracellular transport across the intestinal barrier: Comparison of active and passive transport with the human colon carcinoma Caco-2 cell line

    NARCIS (Netherlands)

    Versantvoort, C.H.M.; Ondrewater, R.C.A.; Duizer, E.; Sandt, J.J.M. van de; Gilde, A.J.; Groten, J.P.

    2002-01-01

    Purpose: previous studies have shown that the rat small intestinal cell line IEC-18 provides a size-selective barrier for paracellularly transported hydrophilic macromolecules. In order to determine the utility of IEC-18 cells as an in vitro model to screen the passive paracellular and transcellular

  16. Improved Method for the Establishment of an In Vitro Blood-Brain Barrier Model Based on Porcine Brain Endothelial Cells.

    Science.gov (United States)

    Nielsen, Simone S E; Siupka, Piotr; Georgian, Ana; Preston, Jane E; Tóth, Andrea E; Yusof, Siti R; Abbott, N Joan; Nielsen, Morten S

    2017-09-24

    The aim of this protocol presents an optimized procedure for the purification and cultivation of pBECs and to establish in vitro blood-brain barrier (BBB) models based on pBECs in mono-culture (MC), MC with astrocyte-conditioned medium (ACM), and non-contact co-culture (NCC) with astrocytes of porcine or rat origin. pBECs were isolated and cultured from fragments of capillaries from the brain cortices of domestic pigs 5-6 months old. These fragments were purified by careful removal of meninges, isolation and homogenization of grey matter, filtration, enzymatic digestion, and centrifugation. To further eliminate contaminating cells, the capillary fragments were cultured with puromycin-containing medium. When 60-95% confluent, pBECs growing from the capillary fragments were passaged to permeable membrane filter inserts and established in the models. To increase barrier tightness and BBB characteristic phenotype of pBECs, the cells were treated with the following differentiation factors: membrane permeant 8-CPT-cAMP (here abbreviated cAMP), hydrocortisone, and a phosphodiesterase inhibitor, RO-20-1724 (RO). The procedure was carried out over a period of 9-11 days, and when establishing the NCC model, the astrocytes were cultured 2-8 weeks in advance. Adherence to the described procedures in the protocol has allowed the establishment of endothelial layers with highly restricted paracellular permeability, with the NCC model showing an average transendothelial electrical resistance (TEER) of 1249 ± 80 Ω cm 2 , and paracellular permeability (Papp) for Lucifer Yellow of 0.90 10 -6 ± 0.13 10 -6 cm sec -1 (mean ± SEM, n=55). Further evaluation of this pBEC phenotype showed good expression of the tight junctional proteins claudin 5, ZO-1, occludin and adherens junction protein p120 catenin. The model presented can be used for a range of studies of the BBB in health and disease and, with the highly restrictive paracellular permeability, this model is suitable for studies

  17. Reduction of methanol crossover by thin cracked metal barriers at the interface between membrane and electrode in direct methanol fuel cells

    Science.gov (United States)

    Kim, Sungjun; Jang, Segeun; Kim, Sang Moon; Ahn, Chi-Yeong; Hwang, Wonchan; Cho, Yong-Hun; Sung, Yung-Eun; Choi, Mansoo

    2017-09-01

    This work reports the successful reduction in methanol crossover by creating a thin cracked metal barrier at the interface between a Nafion® membrane and an electrode in direct methanol fuel cells (DMFCs). The cracks are generated by simple mechanical stretching of a metal deposited Nafion® membrane as a result of the elastic mismatch between the two attached surfaces. The cracked metal barriers with varying strains (∼0.5 and ∼1.0) are investigated and successfully incorporated into the DMFC. Remarkably, the membrane electrode assembly with the thin metal crack exhibits comparable ohmic resistance as well as reduction of methanol crossover, which enhanced the device performance.

  18. Limitations of the hCMEC/D3 cell line as a model for Aβ clearance by the human blood-brain barrier.

    Science.gov (United States)

    Biemans, Elisanne A L M; Jäkel, Lieke; de Waal, Robert M W; Kuiperij, H Bea; Verbeek, Marcel M

    2017-07-01

    Alzheimer's disease and cerebral amyloid angiopathy are characterized by accumulation of amyloid-β (Aβ) at the cerebrovasculature due to decreased clearance at the blood-brain barrier (BBB). However, the exact mechanism of Aβ clearance across this barrier has not been fully elucidated. The hCMEC/D3 cell line has been characterized as a valid model for the BBB. In this study we evaluated the use of this model to study Aβ clearance across the BBB, with an emphasis on brain-to-blood directional permeability. Barrier integrity of hCMEC/D3 monolayers was confirmed for large molecules in both the apical to basolateral and the reverse direction. However, permeability for smaller molecules was substantially higher, especially in basolateral to apical direction, and barrier formation for Aβ was completely absent in this direction. In addition, hCMEC/D3 cells failed to develop a high TEER, possibly caused by incomplete formation of tight junctions. We conclude that the hCMEC/D3 model has several limitations to study the cerebral clearance of Aβ. Therefore, the model needs further characterization before this cell system can be generally applied as a model to study cerebral Aβ clearance. © 2016 The Authors Journal of Neuroscience Research Published by Wiley Periodicals, Inc. © 2016 The Authors Journal of Neuroscience Research Published by Wiley Periodicals, Inc.

  19. Huntington’s Disease iPSC-Derived Brain Microvascular Endothelial Cells Reveal WNT-Mediated Angiogenic and Blood-Brain Barrier Deficits

    Directory of Open Access Journals (Sweden)

    Ryan G. Lim

    2017-05-01

    Full Text Available Brain microvascular endothelial cells (BMECs are an essential component of the blood-brain barrier (BBB that shields the brain against toxins and immune cells. While BBB dysfunction exists in neurological disorders, including Huntington’s disease (HD, it is not known if BMECs themselves are functionally compromised to promote BBB dysfunction. Further, the underlying mechanisms of BBB dysfunction remain elusive given limitations with mouse models and post-mortem tissue to identify primary deficits. We undertook a transcriptome and functional analysis of human induced pluripotent stem cell (iPSC-derived BMECs (iBMEC from HD patients or unaffected controls. We demonstrate that HD iBMECs have intrinsic abnormalities in angiogenesis and barrier properties, as well as in signaling pathways governing these processes. Thus, our findings provide an iPSC-derived BBB model for a neurodegenerative disease and demonstrate autonomous neurovascular deficits that may underlie HD pathology with implications for therapeutics and drug delivery.

  20. Sphingosine 1 Phosphate at the Blood Brain Barrier: Can the Modulation of S1P Receptor 1 Influence the Response of Endothelial Cells and Astrocytes to Inflammatory Stimuli?

    Directory of Open Access Journals (Sweden)

    Simona F Spampinato

    Full Text Available The ability of the Blood Brain Barrier (BBB to maintain proper barrier functions, keeping an optimal environment for central nervous system (CNS activity and regulating leukocytes' access, can be affected in CNS diseases. Endothelial cells and astrocytes are the principal BBB cellular constituents and their interaction is essential to maintain its function. Both endothelial cells and astrocytes express the receptors for the bioactive sphingolipid S1P. Fingolimod, an immune modulatory drug whose structure is similar to S1P, has been approved for treatment in multiple sclerosis (MS: fingolimod reduces the rate of MS relapses by preventing leukocyte egress from the lymph nodes. Here, we examined the ability of S1P and fingolimod to act on the BBB, using an in vitro co-culture model that allowed us to investigate the effects of S1P on endothelial cells, astrocytes, and interactions between the two. Acting selectively on endothelial cells, S1P receptor signaling reduced cell death induced by inflammatory cytokines. When acting on astrocytes, fingolimod treatment induced the release of a factor, granulocyte macrophage colony-stimulating factor (GM-CSF that reduced the effects of cytokines on endothelium. In an in vitro BBB model incorporating shear stress, S1P receptor modulation reduced leukocyte migration across the endothelial barrier, indicating a novel mechanism that might contribute to fingolimod efficacy in MS treatment.

  1. Graphite oxide incorporated crosslinked polyvinyl alcohol and sulfonated styrene nanocomposite membrane as separating barrier in single chambered microbial fuel cell

    Science.gov (United States)

    Rudra, Ruchira; Kumar, Vikash; Pramanik, Nilkamal; Kundu, Patit Paban

    2017-02-01

    Different membranes with varied molar concentrations of graphite oxide (GO), 'in situ' polymerized sulfonated polystyrene (SS) and glutaraldehyde (GA) cross linked polyvinyl alcohol (PVA), have been analyzed as an effective and low cost nanocomposite barrier in single chambered microbial fuel cells (MFCs). The synthesized composite membranes, namely GO0.2, GO0.4 and GO0.6 exhibited comparatively better results with reduced water uptake (WU) and swelling ratios (SR) over the native PVA. The variation in properties is illustrated with membrane analyses, where GO0.4 showed an increased proton conductivity (PC) and ion exchange capacity (IEC) of 0.128 S cm-1 and 0.33 meq g-1 amongst all of the used membranes. In comparison, reduced oxygen diffusivity with lower water uptake showed a two-fold decrease in GO0.4 over pure PVA membrane (∼2.09 × 10-4 cm s-1). A maximum power density of 193.6 mW m-2 (773.33 mW m-3) with a current density of 803.33 mA m-2 were observed with GO0.4 fitted MFC, where ∼81.89% of chemical oxygen demand (COD) was removed using mixed firmicutes, as biocatalyst, in 25 days operation. In effect, the efficacy of GO incorporated crosslinked PVA and SS nanocomposite membrane has been evaluated as a polymer electrolyte membrane for harnessing bio-energy from single chambered MFCs.

  2. Vorinostat Modulates the Imbalance of T Cell Subsets, Suppresses Macrophage Activity, and Ameliorates Experimental Autoimmune Uveoretinitis.

    Science.gov (United States)

    Fang, Sijie; Meng, Xiangda; Zhang, Zhuhong; Wang, Yang; Liu, Yuanyuan; You, Caiyun; Yan, Hua

    2016-03-01

    The purpose of the study was to investigate the anti-inflammatory efficiency of vorinostat, a histone deacetylase inhibitor, in experimental autoimmune uveitis (EAU). EAU was induced in female C57BL/6J mice immunized with interphotoreceptor retinoid-binding protein peptide. Vorinostat or the control treatment, phosphate-buffered saline, was administrated orally from 3 days before immunization until euthanasia at day 21 after immunization. The clinical and histopathological scores of mice were graded, and the integrity of the blood-retinal barrier was examined by Evans blue staining. T helper cell subsets were measured by flow cytometry, and the macrophage functions were evaluated with immunohistochemistry staining and immunofluorescence assays. The mRNA levels of tight junction proteins were measured by qRT-PCR. The expression levels of intraocular cytokines and transcription factors were examined by western blotting. Vorinostat relieved both clinical and histopathological manifestations of EAU in our mouse model, and the BRB integrity was maintained in vorinostat-treated mice, which had less vasculature leakage and higher mRNA and protein expressions of tight junction proteins than controls. Moreover, vorinostat repressed Th1 and Th17 cells and increased Th0 and Treg cells. Additionally, the INF-γ and IL-17A expression levels were significantly decreased, while the IL-10 level was increased by vorinostat treatment. Furthermore, due to the reduced TNF-α level, the macrophage activity was considerably inhibited in EAU mice. Finally, transcription factors, including STAT1, STAT3, and p65, were greatly suppressed by vorinostat treatment. Our data suggest that vorinostat might be a potential anti-inflammatory agent in the management of uveitis and other autoimmune inflammatory diseases.

  3. c-Yes regulates cell adhesion at the apical ectoplasmic specialization-blood-testis barrier axis via its effects on protein recruitment and distribution

    Science.gov (United States)

    Xiao, Xiang; Mruk, Dolores D.

    2013-01-01

    During spermatogenesis, extensive restructuring takes place at the cell-cell interface since developing germ cells migrate progressively from the basal to the adluminal compartment of the seminiferous epithelium. Since germ cells per se are not motile cells, their movement relies almost exclusively on the Sertoli cell. Nonetheless, extensive exchanges in signaling take place between these cells in the seminiferous epithelium. c-Yes, a nonreceptor protein tyrosine kinase belonging to the Src family kinases (SFKs) and a crucial signaling protein, was recently shown to be upregulated at the Sertoli cell-cell interface at the blood-testis barrier (BTB) at stages VIII–IX of the seminiferous epithelial cycle of spermatogenesis. It was also highly expressed at the Sertoli cell-spermatid interface known as apical ectoplasmic specialization (apical ES) at stage V to early stage VIII of the epithelial cycle during spermiogenesis. Herein, it was shown that the knockdown of c-Yes by RNAi in vitro and in vivo affected both Sertoli cell adhesion at the BTB and spermatid adhesion at the apical ES, causing a disruption of the Sertoli cell tight junction-permeability barrier function, germ cell loss from the seminiferous epithelium, and also a loss of spermatid polarity. These effects were shown to be mediated by changes in distribution and/or localization of adhesion proteins at the BTB (e.g., occludin, N-cadherin) and at the apical ES (e.g., nectin-3) and possibly the result of changes in the underlying actin filaments at the BTB and the apical ES. These findings implicate that c-Yes is a likely target of male contraceptive research. PMID:23169788

  4. Effect of Al 2 O 3 Recombination Barrier Layers Deposited by Atomic Layer Deposition in Solid-State CdS Quantum Dot-Sensitized Solar Cells

    KAUST Repository

    Roelofs, Katherine E.

    2013-03-21

    Despite the promise of quantum dots (QDs) as a light-absorbing material to replace the dye in dye-sensitized solar cells, quantum dot-sensitized solar cell (QDSSC) efficiencies remain low, due in part to high rates of recombination. In this article, we demonstrate that ultrathin recombination barrier layers of Al2O3 deposited by atomic layer deposition can improve the performance of cadmium sulfide (CdS) quantum dot-sensitized solar cells with spiro-OMeTAD as the solid-state hole transport material. We explored depositing the Al2O3 barrier layers either before or after the QDs, resulting in TiO2/Al2O3/QD and TiO 2/QD/Al2O3 configurations. The effects of barrier layer configuration and thickness were tracked through current-voltage measurements of device performance and transient photovoltage measurements of electron lifetimes. The Al2O3 layers were found to suppress dark current and increase electron lifetimes with increasing Al 2O3 thickness in both configurations. For thin barrier layers, gains in open-circuit voltage and concomitant increases in efficiency were observed, although at greater thicknesses, losses in photocurrent caused net decreases in efficiency. A close comparison of the electron lifetimes in TiO2 in the TiO2/Al2O3/QD and TiO2/QD/Al2O3 configurations suggests that electron transfer from TiO2 to spiro-OMeTAD is a major source of recombination in ss-QDSSCs, though recombination of TiO2 electrons with oxidized QDs can also limit electron lifetimes, particularly if the regeneration of oxidized QDs is hindered by a too-thick coating of the barrier layer. © 2013 American Chemical Society.

  5. Non-Saccharomyces yeasts protect against epithelial cell barrier disruption induced by Salmonella enterica subsp. enterica serovar Typhimurium

    DEFF Research Database (Denmark)

    Smith, Ida Mosbech; Baker, A; Arneborg, Nils

    2015-01-01

    UNLABELLED: The human gastrointestinal epithelium makes up the largest barrier separating the body from the external environment. Whereas invasive pathogens cause epithelial barrier disruption, probiotic micro-organisms modulate tight junction regulation and improve epithelial barrier function....... In addition, probiotic strains may be able to reduce epithelial barrier disruption caused by pathogenic species. The aim of this study was to explore non-Saccharomyces yeast modulation of epithelial cell barrier function in vitro. Benchmarking against established probiotic strains, we evaluated the ability...... distinct patterns of non-Saccharomyces yeast modulation of epithelial cell barrier function. While the established probiotic yeast Saccharomyces boulardii increased TER across a Caco-2 monolayer by 30%, Kluyveromyces marxianus exhibited significantly stronger properties of TER enhancement (50% TER increase...

  6. A hematopoietic contribution to microhemorrhage formation during antiviral CD8 T cell-initiated blood-brain barrier disruption

    Directory of Open Access Journals (Sweden)

    Johnson Holly L

    2012-03-01

    Full Text Available Abstract Background The extent to which susceptibility to brain hemorrhage is derived from blood-derived factors or stromal tissue remains largely unknown. We have developed an inducible model of CD8 T cell-initiated blood-brain barrier (BBB disruption using a variation of the Theiler's murine encephalomyelitis virus (TMEV model of multiple sclerosis. This peptide-induced fatal syndrome (PIFS model results in severe central nervous system (CNS vascular permeability and death in the C57BL/6 mouse strain, but not in the 129 SvIm mouse strain, despite the two strains' having indistinguishable CD8 T-cell responses. Therefore, we hypothesize that hematopoietic factors contribute to susceptibility to brain hemorrhage, CNS vascular permeability and death following induction of PIFS. Methods PIFS was induced by intravenous injection of VP2121-130 peptide at 7 days post-TMEV infection. We then investigated brain inflammation, astrocyte activation, vascular permeability, functional deficit and microhemorrhage formation using T2*-weighted magnetic resonance imaging (MRI in C57BL/6 and 129 SvIm mice. To investigate the contribution of hematopoietic cells in this model, hemorrhage-resistant 129 SvIm mice were reconstituted with C57BL/6 or autologous 129 SvIm bone marrow. Gadolinium-enhanced, T1-weighted MRI was used to visualize the extent of CNS vascular permeability after bone marrow transfer. Results C57BL/6 and 129 SvIm mice had similar inflammation in the CNS during acute infection. After administration of VP2121-130 peptide, however, C57BL/6 mice had increased astrocyte activation, CNS vascular permeability, microhemorrhage formation and functional deficits compared to 129 SvIm mice. The 129 SvIm mice reconstituted with C57BL/6 but not autologous bone marrow had increased microhemorrhage formation as measured by T2*-weighted MRI, exhibited a profound increase in CNS vascular permeability as measured by three-dimensional volumetric analysis of

  7. Intrathecal transplantation of bone marrow stromal cells attenuates blood-spinal cord barrier disruption induced by spinal cord ischemia-reperfusion injury in rabbits.

    Science.gov (United States)

    Fang, Bo; Wang, He; Sun, Xue-Jun; Li, Xiao-Qian; Ai, Chun-Yu; Tan, Wen-Fei; White, Paul F; Ma, Hong

    2013-10-01

    Intrathecal administration of bone marrow stromal cells has been found to produce beneficial effects on ischemia-reperfusion injury to the spinal cord. The blood-spinal cord barrier is critical to maintain spinal cord homeostasis and neurologic function. However, the effects of bone marrow stromal cells on the blood-spinal cord barrier after spinal cord ischemia-reperfusion injury are not well understood. This study investigated the effects and possible mechanisms of bone marrow stromal cells on blood-spinal cord barrier disruption induced by spinal cord ischemia-reperfusion injury. This was a prospective animal study conducted at the Central Laboratory of the First Affiliated Hospital, China Medical University. The study used 81 Japanese white rabbits (weight, 1.8-2.6 kg). Spinal cord ischemia-reperfusion injury was induced in rabbits by infrarenal aortic occlusion for 30 minutes. Two days before the injury was induced, bone marrow stromal cells (1 × 10(8) in 0.2-mL phosphate-buffered saline) were transplanted by intrathecal injection. Hind-limb motor function was assessed using Tarlov criteria, and motor neurons in the ventral gray matter were counted by histologic examination. The permeability of the blood-spinal cord barrier was examined using Evans blue (EB) and lanthanum nitrate as vascular tracers. The expression and localization of tight junction protein occludin were assessed by Western blot, real-time polymerase chain reaction, and immunofluorescence analysis. Matrix metalloproteinase-9 (MMP-9) and tumor necrosis factor-α (TNF-α) expression were also measured. Intrathecal transplantation of bone marrow stromal cells minimized the neuromotor dysfunction and histopathologic deficits (P spinal cord ischemia-reperfusion injury. In addition, bone marrow stromal cells treatment suppressed spinal cord ischemia-reperfusion injury-induced decreases in occludin (P bone marrow stromal cells reduced the excessive expression of MMP-9 and TNF-α (P bone marrow

  8. Na+/K+-ATPase α1 identified as an abundant protein in the blood-labyrinth barrier that plays an essential role in the barrier integrity.

    Directory of Open Access Journals (Sweden)

    Yue Yang

    2011-01-01

    Full Text Available The endothelial-blood/tissue barrier is critical for maintaining tissue homeostasis. The ear harbors a unique endothelial-blood/tissue barrier which we term "blood-labyrinth-barrier". This barrier is critical for maintaining inner ear homeostasis. Disruption of the blood-labyrinth-barrier is closely associated with a number of hearing disorders. Many proteins of the blood-brain-barrier and blood-retinal-barrier have been identified, leading to significant advances in understanding their tissue specific functions. In contrast, capillaries in the ear are small in volume and anatomically complex. This presents a challenge for protein analysis studies, which has resulted in limited knowledge of the molecular and functional components of the blood-labyrinth-barrier. In this study, we developed a novel method for isolation of the stria vascularis capillary from CBA/CaJ mouse cochlea and provided the first database of protein components in the blood-labyrinth barrier as well as evidence that the interaction of Na(+/K(+-ATPase α1 (ATP1A1 with protein kinase C eta (PKCη and occludin is one of the mechanisms of loud sound-induced vascular permeability increase.Using a mass-spectrometry, shotgun-proteomics approach combined with a novel "sandwich-dissociation" method, more than 600 proteins from isolated stria vascularis capillaries were identified from adult CBA/CaJ mouse cochlea. The ion transporter ATP1A1 was the most abundant protein in the blood-labyrinth barrier. Pharmacological inhibition of ATP1A1 activity resulted in hyperphosphorylation of tight junction proteins such as occludin which increased the blood-labyrinth-barrier permeability. PKCη directly interacted with ATP1A1 and was an essential mediator of ATP1A1-initiated occludin phosphorylation. Moreover, this identified signaling pathway was involved in the breakdown of the blood-labyrinth-barrier resulting from loud sound trauma.The results presented here provide a novel method for

  9. Vascular expression of endothelial antigen PAL-E indicates absence of blood-ocular barriers in the normal eye.

    Science.gov (United States)

    Schlingemann, R O; Hofman, P; Anderson, L; Troost, D; van der Gaag, R

    1997-01-01

    The endothelium-specific antigen PAL-E is expressed in capillaries and veins throughout the body with the exception of the brain, where the antigen is absent from anatomical sites with a patent blood-brain barrier. In this study we determined vascular endothelial staining for PAL-E in the normal eye in relation to the ocular blood-tissue barriers. Immunohistochemical staining of frozen tissue sections of eyes from 22 cornea donors and a number of normal animal autopsy eyes was performed for the PAL-E antigen and the blood-brain barrier marker glucose transporter 1. In normal human and animal eyes, endothelial PAL-E staining was absent from the microvasculature in iris, ciliary muscle, optic nerve and retina. In a few normal human eyes, some weakly stained capillaries were observed in the retina and nerve fiber layer, mostly in the peripapillary area. Marked staining of capillaries and venules with PAL-E was observed in the conjunctiva, episclera, sclera, ciliary processes, choriocapillaris and optic nerve head. In general, the endothelial antigen PAL-E is absent from microvessels involved in the blood-ocular and the blood-retinal barriers. PAL-E may therefore be a useful marker to identify pathological breakdown of blood-ocular barriers.

  10. Localization of cellular retinol-binding protein and retinol-binding protein in cells comprising the blood-brain barrier of rat and human

    International Nuclear Information System (INIS)

    MacDonald, P.N.; Ong, D.E.; Bok, D.

    1990-01-01

    Brain is not generally recognized as an organ that requires vitamin A, perhaps because no obvious histologic lesions have been observed in severely vitamin A-deficient animals. However, brain tissue does contain cellular vitamin A-binding proteins and a nuclear receptor protein for retinoic acid. In the present study, immunohistochemical techniques were used to determine the cell-specific location of cellular retinol-binding protein in human and rat brain tissue. Cellular retinol-binding protein was localized specifically within the cuboidal epithelial cells of the choroid plexus, two primary sites of the mammalian blood-brain barrier. In addition, autoradiographic procedures demonstrated binding sites for serum retinol-binding protein in the choroidal epithelium. These observations suggest that a significant movement of retinol across the blood-brain barrier may occur

  11. The pH-sensing receptor OGR1 improves barrier function of epithelial cells and inhibits migration in an acidic environment.

    Science.gov (United States)

    de Vallière, Cheryl; Vidal, Solange; Clay, Ieuan; Jurisic, Giorgia; Tcymbarevich, Irina; Lang, Silvia; Ludwig, Marie-Gabrielle; Okoniewski, Michal; Eloranta, Jyrki J; Kullak-Ublick, Gerd A; Wagner, Carsten A; Rogler, Gerhard; Seuwen, Klaus

    2015-09-15

    The pH-sensing receptor ovarian cancer G protein-coupled receptor 1 (OGR1; GPR68) is expressed in the gut. Inflammatory bowel disease is typically associated with a decrease in local pH, which may lead to altered epithelial barrier function and subsequent gastrointestinal repair involving epithelial cell adhesion and migration. As the mechanisms underlying the response to pH changes are not well understood, we have investigated OGR1-mediated, pH-dependent signaling pathways in intestinal epithelial cells. Caco-2 cells stably overexpressing OGR1 were created and validated as tools to study OGR1 signaling. Barrier function, migration, and proliferation were measured using electric cell-substrate impedance-sensing technology. Localization of the tight junction proteins zonula occludens protein 1 and occludin and the rearrangement of cytoskeletal actin were examined by confocal microscopy. Paracellular permeability and protein and gene expression analysis using DNA microarrays were performed on filter-grown Caco-2 monolayers. We report that an acidic pH shift from pH 7.8 to 6.6 improved barrier function and stimulated reorganization of filamentous actin with prominent basal stress fiber formation. Cell migration and proliferation during in vitro wound healing were inhibited. Gene expression analysis revealed significant upregulation of genes related to cytoskeleton remodeling, cell adhesion, and growth factor signaling. We conclude that acidic extracellular pH can have a signaling function and impact the physiology of intestinal epithelial cells. The deconstruction of OGR1-dependent signaling may aid our understanding of mucosal inflammation mechanisms. Copyright © 2015 the American Physiological Society.

  12. Cultured cells of the blood-brain barrier from apolipoprotein B-100 transgenic mice: effects of oxidized low-density lipoprotein treatment.

    Science.gov (United States)

    Lénárt, Nikolett; Walter, Fruzsina R; Bocsik, Alexandra; Sántha, Petra; Tóth, Melinda E; Harazin, András; Tóth, Andrea E; Vizler, Csaba; Török, Zsolt; Pilbat, Ana-Maria; Vígh, László; Puskás, László G; Sántha, Miklós; Deli, Mária A

    2015-07-17

    The apolipoprotein B-100 (ApoB-100) transgenic mouse line is a model of human atherosclerosis. Latest findings suggest the importance of ApoB-100 in the development of neurodegenerative diseases and microvascular/perivascular localization of ApoB-100 protein was demonstrated in the cerebral cortex of ApoB-100 transgenic mice. The aim of the study was to characterize cultured brain endothelial cells, pericytes and glial cells from wild-type and ApoB-100 transgenic mice and to study the effect of oxidized low-density lipoprotein (oxLDL) on these cells. Morphology of cells isolated from brains of wild type and ApoB-100 transgenic mice was characterized by immunohistochemistry and the intensity of immunolabeling was quantified by image analysis. Toxicity of oxLDL treatment was monitored by real-time impedance measurement and lactate dehydrogenase release. Reactive oxygen species and nitric oxide production, barrier permeability in triple co-culture blood-brain barrier model and membrane fluidity were also determined after low-density lipoprotein (LDL) or oxLDL treatment. The presence of ApoB-100 was confirmed in brain endothelial cells, while no morphological change was observed between wild type and transgenic cells. Oxidized but not native LDL exerted dose-dependent toxicity in all three cell types, induced barrier dysfunction and increased reactive oxygen species (ROS) production in both genotypes. A partial protection from oxLDL toxicity was seen in brain endothelial and glial cells from ApoB-100 transgenic mice. Increased membrane rigidity was measured in brain endothelial cells from ApoB-100 transgenic mice and in LDL or oxLDL treated wild type cells. The morphological and functional properties of cultured brain endothelial cells, pericytes and glial cells from ApoB-100 transgenic mice were characterized and compared to wild type cells for the first time. The membrane fluidity changes in ApoB-100 transgenic cells related to brain microvasculature indicate

  13. Lipoteichoic acid from Staphylococcus aureus induces lung endothelial cell barrier dysfunction: role of reactive oxygen and nitrogen species.

    Science.gov (United States)

    Pai, Amy Barton; Patel, Heena; Prokopienko, Alexander J; Alsaffar, Hiba; Gertzberg, Nancy; Neumann, Paul; Punjabi, Anjoli; Johnson, Arnold

    2012-01-01

    Tunneled central venous catheters (TCVCs) are used for dialysis access in 82% of new hemodialysis patients and are rapidly colonized with Gram-positive organism (e.g. Staphylococcus aureus) biofilm, a source of recurrent infections and chronic inflammation. Lipoteichoic acid (LTA), a cell wall ribitol polymer from Gram-positive organisms, mediates inflammation through the Toll-like receptor 2 (TLR2). The effect of LTA on lung endothelial permeability is not known. We tested the hypothesis that LTA from Staphylococcus aureus induces alterations in the permeability of pulmonary microvessel endothelial monolayers (PMEM) that result from activation of TLR2 and are mediated by reactive oxygen/nitrogen species (RONS). The permeability of PMEM was assessed by the clearance rate of Evans blue-labeled albumin, the activation of the TLR2 pathway was assessed by Western blot, and the generation of RONS was measured by the fluorescence of oxidized dihydroethidium and a dichlorofluorescein derivative. Treatment with LTA or the TLR2 agonist Pam((3))CSK((4)) induced significant increases in albumin permeability, IκBα phosphorylation, IRAK1 degradation, RONS generation, and endothelial nitric oxide synthase (eNOS) activation (as measured by the p-eNOS(ser1177):p-eNOS(thr495) ratio). The effects on permeability and RONS were effectively prevented by co-administration of the superoxide scavenger Tiron, the peroxynitrite scavenger Urate, or the eNOS inhibitor L-NAME and these effects as well as eNOS activation were reduced or prevented by pretreatment with an IRAK1/4 inhibitor. The results indicate that the activation of TLR2 and the generation of ROS/RNS mediates LTA-induced barrier dysfunction in PMEM.

  14. Potential Interplay between Hyperosmolarity and Inflammation on Retinal Pigmented Epithelium in Pathogenesis of Diabetic Retinopathy

    Directory of Open Access Journals (Sweden)

    François Willermain

    2018-04-01

    Full Text Available Diabetic retinopathy is a frequent eyesight threatening complication of type 1 and type 2 diabetes. Under physiological conditions, the inner and the outer blood-retinal barriers protect the retina by regulating ion, protein, and water flux into and out of the retina. During diabetic retinopathy, many factors, including inflammation, contribute to the rupture of the inner and/or the outer blood-retinal barrier. This rupture leads the development of macular edema, a foremost cause of sight loss among diabetic patients. Under these conditions, it has been speculated that retinal pigmented epithelial cells, that constitute the outer blood-retinal barrier, may be subjected to hyperosmolar stress resulting from different mechanisms. Herein, we review the possible origins and consequences of hyperosmolar stress on retinal pigmented epithelial cells during diabetic retinopathy, with a special focus on the intimate interplay between inflammation and hyperosmolar stress, as well as the current and forthcoming new pharmacotherapies for the treatment of such condition.

  15. Optimization of micro-fabricated porous membranes for intestinal epithelial cell culture and in vitro modeling of the human intestinal barrier

    Science.gov (United States)

    Nair Gourikutty Sajay, Bhuvanendran; Yin, Chiam Su; Ramadan, Qasem

    2017-12-01

    In vitro modeling of organs could provide a controlled platform for studying physiological events and has great potential in the field of pharmaceutical development. Here, we describe the characterization of in vitro modeling of the human intestinal barrier mimicked using silicon porous membranes as a substrate. To mimic an intestinal in vivo setup as closely as possible, a porous substrate is required in a dynamic environment for the cells to grow rather than a static setup with an impermeable surface such as a petri dish. In this study, we focus on the detailed characterization of Caco-2 cells cultured on a silicon membrane with different pore sizes as well as the effect of dynamic fluid flow on the model. The porous silicon membrane together with continuous perfusion of liquid applying shear stress on the cells enhances the differentiation of polarized cells by providing access to the both their basal and apical surfaces. Membranes with pore sizes of 0.5-3 µm were used and a shear stress of ~0.03 dyne cm-2 was created by applying a low flow rate of 20 nl s-1. By providing these optimized conditions, cells were able to differentiate with columnar morphology, which developed microvilli structures on their apical side and tight junctions between adjacent cells like those in a healthy human intestinal barrier. In this setup, it is possible to study the important cellular functions of the intestine such as transport, absorption and secretion, and thus this model has great potential in drug screening.

  16. The role of the intestinal microvasculature in inflammatory bowel disease: studies with a modified Caco-2 model including endothelial cells resembling the intestinal barrier in vitro

    Science.gov (United States)

    Kasper, Jennifer Y; Hermanns, Maria Iris; Cavelius, Christian; Kraegeloh, Annette; Jung, Thomas; Danzebrink, Rolf; Unger, Ronald E; Kirkpatrick, Charles James

    2016-01-01

    The microvascular endothelium of the gut barrier plays a crucial role during inflammation in inflammatory bowel disease. We have modified a commonly used intestinal cell model based on the Caco-2 cells by adding microvascular endothelial cells (ISO-HAS-1). Transwell filters were used with intestinal barrier-forming Caco-2 cells on top and the ISO-HAS-1 on the bottom of the filter. The goal was to determine whether this coculture mimics the in vivo situation more closely, and whether the model is suitable to evaluate interactions of, for example, prospective nanosized drug vehicles or contrast agents with this coculture in a physiological and inflamed state as it would occur in inflammatory bowel disease. We monitored the inflammatory responsiveness of the cells (release of IL-8, soluble intercellular adhesion molecule 1, and soluble E-selectin) after exposure to inflammatory stimuli (lipopolysaccharide, TNF-α, INF-γ, IL1-β) and a nanoparticle (Ba/Gd: coprecipitated BaSO4 and Gd(OH)3), generally used as contrast agents. The barrier integrity of the coculture was evaluated via the determination of transepithelial electrical resistance and the apparent permeability coefficient (Papp) of NaFITC. The behavior of the coculture Caco-1/ISO-HAS-1 was compared to the respective monocultures Caco-2 and ISO-HAS-1. Based on transepithelial electrical resistance, the epithelial barrier integrity of the coculture remained stable during incubation with all stimuli, whereas the Papp decreased after exposure to the cytokine mixture (TNF-α, INF-γ, IL1-β, and Ba/Gd). Both the endothelial and epithelial monocultures showed a high inflammatory response in both the upper and lower transwell-compartments. However, in the coculture, inflammatory mediators were only detected on the epithelial side and not on the endothelial side. Thus in the coculture, based on the Papp, the epithelial barrier appears to prevent a potential inflammatory overreaction in the underlying endothelial cells

  17. Effects of the neuroprotective drugs somatostatin and brimonidine on retinal cell models of diabetic retinopathy.

    Science.gov (United States)

    Beltramo, Elena; Lopatina, Tatiana; Mazzeo, Aurora; Arroba, Ana I; Valverde, Angela M; Hernández, Cristina; Simó, Rafael; Porta, Massimo

    2016-12-01

    Diabetic retinopathy is considered a microvascular disease, but recent evidence has underlined early involvement of the neuroretina with interactions between microvascular and neural alterations. Topical administration of somatostatin (SST), a neuroprotective molecule with antiangiogenic properties, prevents diabetes-induced retinal neurodegeneration in animals. The α 2 -adrenergic receptor agonist brimonidine (BRM) decreases vitreoretinal vascular endothelial growth factor and inhibits blood-retinal barrier breakdown in diabetic rats. However, SST and BRM effects on microvascular cells have not yet been studied. We investigated the behaviour of these drugs on the crosstalk between microvasculature and neuroretina. Expression of SST receptors 1-5 in human retinal pericytes (HRP) was checked. We subsequently evaluated the effects of diabetic-like conditions (high glucose and/or hypoxia) with/without SST/BRM on HRP survival. Endothelial cells (EC) and photoreceptors were maintained in the above conditions and their conditioned media (CM) used to culture HRP. Vice versa, HRP-CM was used on EC and photoreceptors. Survival parameters were assessed. HRP express the SST receptor 1 (SSTR1). Glucose fluctuations mimicking those occurring in diabetic subjects are more damaging for pericytes and photoreceptors than stable high glucose and hypoxic conditions. SST/BRM added to HRP in diabetic-like conditions decrease EC apoptosis. However, neither SST nor BRM changed the response of pericytes and neuroretina-vascular crosstalk under diabetic-like conditions. Retinal pericytes express SSTR1, indicating that they can be a target for SST. Exposure to SST/BRM had no adverse effects, direct or mediated by the neuroretina, suggesting that these molecules could be safely evaluated for the treatment of ocular diseases.

  18. The effect of acetaminophen on the expression of BCRP in trophoblast cells impairs the placental barrier to bile acids during maternal cholestasis

    Energy Technology Data Exchange (ETDEWEB)

    Blazquez, Alba G., E-mail: albamgb@usal.es [Laboratory of Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca (Spain); CIBERehd, Instituto de Salud Carlos III, Madrid (Spain); Briz, Oscar, E-mail: obriz@usal.es [Laboratory of Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca (Spain); CIBERehd, Instituto de Salud Carlos III, Madrid (Spain); Gonzalez-Sanchez, Ester, E-mail: u60343@usal.es [Laboratory of Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca (Spain); Perez, Maria J., E-mail: mjperez@usal.es [Laboratory of Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca (Spain); University Hospital of Salamanca, IECSCYL-IBSAL, Salamanca (Spain); CIBERehd, Instituto de Salud Carlos III, Madrid (Spain); Ghanem, Carolina I., E-mail: cghanem@ffyb.uba.ar [Instituto de Investigaciones Farmacologicas, Facultad de Farmacia y Bioquimica, CONICET, Universidad de Buenos Aires, Buenos Aires (Argentina); Marin, Jose J.G., E-mail: jjgmarin@usal.es [Laboratory of Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca (Spain); CIBERehd, Instituto de Salud Carlos III, Madrid (Spain)

    2014-05-15

    Acetaminophen is used as first-choice drug for pain relief during pregnancy. Here we have investigated the effect of acetaminophen at subtoxic doses on the expression of ABC export pumps in trophoblast cells and its functional repercussion on the placental barrier during maternal cholestasis. The incubation of human choriocarcinoma cells (JAr, JEG-3 and BeWo) with acetaminophen for 48 h resulted in no significant changes in the expression and/or activity of MDR1 and MRPs. In contrast, in JEG-3 cells, BCRP mRNA, protein, and transport activity were reduced. In rat placenta, collected at term, acetaminophen administration for the last three days of pregnancy resulted in enhanced mRNA, but not protein, levels of Mrp1 and Bcrp. In fact, a decrease in Bcrp protein was found. Using in situ perfused rat placenta, a reduction in the Bcrp-dependent fetal-to-maternal bile acid transport after treating the dams with acetaminophen was found. Complete biliary obstruction in pregnant rats induced a significant bile acid accumulation in fetal serum and tissues, which was further enhanced when the mothers were treated with acetaminophen. This drug induced increased ROS production in JEG-3 cells and decreased the total glutathione content in rat placenta. Moreover, the NRF2 pathway was activated in JEG-3 cells as shown by an increase in nuclear NRF2 levels and an up-regulation of NRF2 target genes, NQO1 and HMOX-1, which was not observed in rat placenta. In conclusion, acetaminophen induces in placenta oxidative stress and a down-regulation of BCRP/Bcrp, which may impair the placental barrier to bile acids during maternal cholestasis. - Highlights: • Acetaminophen induces changes in placental BCRP expression in vitro. • This drug reduces the ability of placental cells to export BCRP substrates. • Acetaminophen induces changes in Bcrp expression in rat placenta. • Placental barrier to bile acids is impaired in rats treated with this drug.

  19. The effect of acetaminophen on the expression of BCRP in trophoblast cells impairs the placental barrier to bile acids during maternal cholestasis

    International Nuclear Information System (INIS)

    Blazquez, Alba G.; Briz, Oscar; Gonzalez-Sanchez, Ester; Perez, Maria J.; Ghanem, Carolina I.; Marin, Jose J.G.

    2014-01-01

    Acetaminophen is used as first-choice drug for pain relief during pregnancy. Here we have investigated the effect of acetaminophen at subtoxic doses on the expression of ABC export pumps in trophoblast cells and its functional repercussion on the placental barrier during maternal cholestasis. The incubation of human choriocarcinoma cells (JAr, JEG-3 and BeWo) with acetaminophen for 48 h resulted in no significant changes in the expression and/or activity of MDR1 and MRPs. In contrast, in JEG-3 cells, BCRP mRNA, protein, and transport activity were reduced. In rat placenta, collected at term, acetaminophen administration for the last three days of pregnancy resulted in enhanced mRNA, but not protein, levels of Mrp1 and Bcrp. In fact, a decrease in Bcrp protein was found. Using in situ perfused rat placenta, a reduction in the Bcrp-dependent fetal-to-maternal bile acid transport after treating the dams with acetaminophen was found. Complete biliary obstruction in pregnant rats induced a significant bile acid accumulation in fetal serum and tissues, which was further enhanced when the mothers were treated with acetaminophen. This drug induced increased ROS production in JEG-3 cells and decreased the total glutathione content in rat placenta. Moreover, the NRF2 pathway was activated in JEG-3 cells as shown by an increase in nuclear NRF2 levels and an up-regulation of NRF2 target genes, NQO1 and HMOX-1, which was not observed in rat placenta. In conclusion, acetaminophen induces in placenta oxidative stress and a down-regulation of BCRP/Bcrp, which may impair the placental barrier to bile acids during maternal cholestasis. - Highlights: • Acetaminophen induces changes in placental BCRP expression in vitro. • This drug reduces the ability of placental cells to export BCRP substrates. • Acetaminophen induces changes in Bcrp expression in rat placenta. • Placental barrier to bile acids is impaired in rats treated with this drug

  20. Comparison of immortalized bEnd5 and primary mouse brain microvascular endothelial cells as in vitro blood–brain barrier models for the study of T cell extravasation

    Science.gov (United States)

    Steiner, Oliver; Coisne, Caroline; Engelhardt, Britta; Lyck, Ruth

    2011-01-01

    Important insights into the molecular mechanism of T cell extravasation across the blood–brain barrier (BBB) have already been obtained using immortalized mouse brain endothelioma cell lines (bEnd). However, compared with bEnd, primary brain endothelial cells have been shown to establish better barrier characteristics, including complex tight junctions and low permeability. In this study, we asked whether bEnd5 and primary mouse brain microvascular endothelial cells (pMBMECs) were equally suited as in vitro models with which to study the cellular and molecular mechanisms of T cell extravasation across the BBB. We found that both in vitro BBB models equally supported both T cell adhesion under static and physiologic flow conditions, and T cell crawling on the endothelial surface against the direction of flow. In contrast, distances of T cell crawling on pMBMECs were strikingly longer than on bEnd5, whereas diapedesis of T cells across pMBMECs was dramatically reduced compared with bEnd5. Thus, both in vitro BBB models are suited to study T cell adhesion. However, because pMBMECs better reflect endothelial BBB specialization in vivo, we propose that more reliable information about the cellular and molecular mechanisms of T cell diapedesis across the BBB can be attained using pMBMECs. PMID:20606687

  1. Differential effect of ethanol and hydrogen peroxide on barrier function and prostaglandin E2 release in differentiated Caco-2 cells: selective prevention by growth factors.

    Science.gov (United States)

    Catalioto, Rose-Marie; Festa, Carla; Triolo, Antonio; Altamura, Maria; Maggi, Carlo Alberto; Giuliani, Sandro

    2009-02-01

    The present study investigates the effects of ethanol and hydrogen peroxide (H(2)O(2)) on the barrier function and prostaglandin E(2) (PGE(2)) release in differentiated Caco-2 cells. Epithelial barrier integrity was estimated by measuring transepithelial electrical resistance (TEER), the transport of reference compounds and lactate dehydrogenase leakage, the PGE(2) release by enzyme immunoassay. Ethanol and H(2)O(2) decreased TEER and increased the transport of lucifer yellow without affecting that of propranolol and phenylalanine. Only the effects of ethanol were accompanied by PGE(2) production and were reversible without causing long-term cytotoxicity. The cyclooxygenase-2 inhibitor, NS-398, prevented the effect of ethanol on both PGE(2) release and TEER, while inhibition of both cyclooxygenase-2 and tyrosine kinase drastically compromised cell viability and TEER recovery. Hepatocyte growth factor, keratinocyte growth factor or insulin prevented the effect of ethanol on cell permeability, but not on PGE(2) release. Their combination prevented the effect of H(2)O(2). In conclusion, ethanol and H(2)O(2) increased paracellular permeability in differentiated Caco-2 cells without affecting transcellular and active transport. Cyclooxygenase-2 stimulated PGE(2) release mediated the reversible effect of ethanol on tight junctions and, meanwhile, contributed to cell survival. Growth factors, normally present in the intestine, exerted a selective protective effect toward paracellular permeability increase induced by irritants.

  2. Development of Screen-Printed Texture-Barrier Paste for Single-Side Texturization of Interdigitated Back-Contact Silicon Solar Cell Applications

    Directory of Open Access Journals (Sweden)

    Chi-Cheng Chen

    2013-10-01

    Full Text Available Continuous cost reduction of silicon-based solar cells is needed to lower the process time and increase efficiency. To achieve lower costs, screen-printed texture-barrier (SPTB paste was first developed for single-side texturization (ST of the interdigitated back-contact (IBC for silicon-based solar cell applications. The SPTB paste was screen-printed on silicon substrates. The SPTB paste was synthesized from intermixed silicate glass (75 wt %, a resin binder (ethyl cellulose ethoce: 20 wt %, and a dispersing agent (fatty acid: 5 wt %. The silicate glass is a necessity for contact formation during firing. A resin binder and a dispersing agent determine the rheology of the SPTB paste. In this work, by modulating various parameters, including post SPTB firing, alkali texturing, and removal of the SPTB, the ST of IBC silicon solar cells was achieved. Since the advantages of the SPTB paste include low toxicity and prompt formation of the texture-barrier, SPTB is potentially suited for simple fabrication at low-cost for solar cell applications. The cost of the SPTB is around $100/kg which is lower than the SiH4/NH3 gas ambient used in plasma-enhanced chemical vapor deposition (PECVD. Thus, the expensive Si3N4 film deposited by PECVD using SiH4 and NH3 gas ambient for silicon solar cells can be replaced by this SPTB.

  3. Development of Screen-Printed Texture-Barrier Paste for Single-Side Texturization of Interdigitated Back-Contact Silicon Solar Cell Applications.

    Science.gov (United States)

    Chiu, Yu-Shun; Cheng, Chin-Lung; Whang, Thou-Jen; Chen, Chi-Cheng

    2013-10-17

    Continuous cost reduction of silicon-based solar cells is needed to lower the process time and increase efficiency. To achieve lower costs, screen-printed texture-barrier (SPTB) paste was first developed for single-side texturization (ST) of the interdigitated back-contact (IBC) for silicon-based solar cell applications. The SPTB paste was screen-printed on silicon substrates. The SPTB paste was synthesized from intermixed silicate glass (75 wt %), a resin binder (ethyl cellulose ethoce: 20 wt %), and a dispersing agent (fatty acid: 5 wt %). The silicate glass is a necessity for contact formation during firing. A resin binder and a dispersing agent determine the rheology of the SPTB paste. In this work, by modulating various parameters, including post SPTB firing, alkali texturing, and removal of the SPTB, the ST of IBC silicon solar cells was achieved. Since the advantages of the SPTB paste include low toxicity and prompt formation of the texture-barrier, SPTB is potentially suited for simple fabrication at low-cost for solar cell applications. The cost of the SPTB is around $100/kg which is lower than the SiH₄/NH₃ gas ambient used in plasma-enhanced chemical vapor deposition (PECVD). Thus, the expensive Si₃N₄ film deposited by PECVD using SiH₄ and NH₃ gas ambient for silicon solar cells can be replaced by this SPTB.

  4. Intestinal barrier dysfunction develops at the onset of experimental autoimmune encephalomyelitis, and can be induced by adoptive transfer of auto-reactive T cells.

    Directory of Open Access Journals (Sweden)

    Mehrnaz Nouri

    Full Text Available Multiple sclerosis (MS is a chronic inflammatory demyelinating disease of the central nervous system with a pathogenesis involving a dysfunctional blood-brain barrier and myelin-specific, autoreactive T cells. Although the commensal microbiota seems to affect its pathogenesis, regulation of the interactions between luminal antigens and mucosal immune elements remains unclear. Herein, we investigated whether the intestinal mucosal barrier is also targeted in this disease. Experimental autoimmune encephalomyelitis (EAE, the prototypic animal model of MS, was induced either by active immunization or by adoptive transfer of autoreactive T cells isolated from these mice. We show increased intestinal permeability, overexpression of the tight junction protein zonulin and alterations in intestinal morphology (increased crypt depth and thickness of the submucosa and muscularis layers. These intestinal manifestations were seen at 7 days (i.e., preceding the onset of neurological symptoms and at 14 days (i.e., at the stage of paralysis after immunization. We also demonstrate an increased infiltration of proinflammatory Th1/Th17 cells and a reduced regulatory T cell number in the gut lamina propria, Peyer's patches and mesenteric lymph nodes. Adoptive transfer to healthy mice of encephalitogenic T cells, isolated from EAE-diseased animals, led to intestinal changes similar to those resulting from the immunization procedure. Our findings show that disruption of intestinal homeostasis is an early and immune-mediated event in EAE. We propose that this intestinal dysfunction may act to support disease progression, and thus represent a potential therapeutic target in MS. In particular, an increased understanding of the regulation of tight junctions at the blood-brain barrier and in the intestinal wall may be crucial for design of future innovative therapies.

  5. Intestinal Barrier Dysfunction Develops at the Onset of Experimental Autoimmune Encephalomyelitis, and Can Be Induced by Adoptive Transfer of Auto-Reactive T Cells

    Science.gov (United States)

    Nouri, Mehrnaz; Bredberg, Anders; Weström, Björn; Lavasani, Shahram

    2014-01-01

    Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system with a pathogenesis involving a dysfunctional blood-brain barrier and myelin-specific, autoreactive T cells. Although the commensal microbiota seems to affect its pathogenesis, regulation of the interactions between luminal antigens and mucosal immune elements remains unclear. Herein, we investigated whether the intestinal mucosal barrier is also targeted in this disease. Experimental autoimmune encephalomyelitis (EAE), the prototypic animal model of MS, was induced either by active immunization or by adoptive transfer of autoreactive T cells isolated from these mice. We show increased intestinal permeability, overexpression of the tight junction protein zonulin and alterations in intestinal morphology (increased crypt depth and thickness of the submucosa and muscularis layers). These intestinal manifestations were seen at 7 days (i.e., preceding the onset of neurological symptoms) and at 14 days (i.e., at the stage of paralysis) after immunization. We also demonstrate an increased infiltration of proinflammatory Th1/Th17 cells and a reduced regulatory T cell number in the gut lamina propria, Peyer's patches and mesenteric lymph nodes. Adoptive transfer to healthy mice of encephalitogenic T cells, isolated from EAE-diseased animals, led to intestinal changes similar to those resulting from the immunization procedure. Our findings show that disruption of intestinal homeostasis is an early and immune-mediated event in EAE. We propose that this intestinal dysfunction may act to support disease progression, and thus represent a potential therapeutic target in MS. In particular, an increased understanding of the regulation of tight junctions at the blood-brain barrier and in the intestinal wall may be crucial for design of future innovative therapies. PMID:25184418

  6. Investigation of barrier cell and auxilliary heating in a tandem mirror. Annual progress report, October 1, 1979-September 30, 1980

    International Nuclear Information System (INIS)

    Kesner, J.; Emmert, G.A.; Howard, J.E.

    1980-06-01

    A number of areas relating to RF heating and thermal barrier formation in a tandem mirror have been investigated. The possibility of creating axisymmetric confinement through the use of sloshing-ions has been investigated. We have also suggested the complimentary concept of sloshing-electrons. Self-consistent thermal barrier formation has been studied and ion drift orbits in non-axisymmetric barriers are being investigated. The study of dynamic stabilization of the DCLC by RF fields has been extended to ω near 2 ω/sub ci/; significant stabilization is found. Fast and slow wave heating have been extensively studied using single particle theory. A new theory of relativistic ECH is under development

  7. Bone marrow transplantation across major histocompatibility barriers in mice: II. T cell requirement for engraftment in total lymphoid irradiation-conditioned recipients

    Energy Technology Data Exchange (ETDEWEB)

    Vallera, D.A.; Soderling, C.C.B.; Carlson, G.J.; Kersey, J.H.

    1982-03-01

    Studies were undertaken to examine the role of T lymphocytes in engraftment of bone marrow (BM) in animals conditioned with total lymphoid irradiation (TLI) prior to transplantation across major histocompatability barriers.Donor BM (added as a source of lymphohematopoietic stem cells) and spleen cells (added as a source of graft-versus-host disease (GVHD)-causing cells) were pretreated in vitro with monoclonal anti-Thy-1.2 plus complement (C). T cell-depleted grafts were then given to allogeneic mice conditioned with 900 rad of single dose TLI plus cyclophosphamide (CY). These mice did not engraft. Even in the absence of added spleen cells, elimination of the small T cell population from donor BM grafts prevented engraftment compared with animals that received the same conditioning regimen and untreated donor cells. These control animals demonstrated uniform evidence of engraftment about 1 month after transplantation. Similar findings were reported when recipients were conditioned with fractionated 17 x 100-rad TLI. In TLI plus CY-conditioned recipients, it was also observed that increasing the donation of treated bone marrow cells still did not result in significant engraftment. In contrast to TLI conditioning, when Thy-1.2 plus C-treated donor cells were given to recipients conditioned with total body irradiation (TBI), a high percentage of engraftment was demonstrated by an H-2 microcytotoxicity assay. Plausible mechanisms for these findings are discussed. (JMT)

  8. Bone marrow transplantation across major histocompatibility barriers in mice: II. T cell requirement for engraftment in total lymphoid irradiation-conditioned recipients

    International Nuclear Information System (INIS)

    Vallera, D.A.; Soderling, C.C.B.; Carlson, G.J.; Kersey, J.H.

    1982-01-01

    Studies were undertaken to examine the role of T lymphocytes in engraftment of bone marrow (BM) in animals conditioned with total lymphoid irradiation (TLI) prior to transplantation across major histocompatability barriers.Donor BM (added as a source of lymphohematopoietic stem cells) and spleen cells (added as a source of graft-versus-host disease (GVHD)-causing cells) were pretreated in vitro with monoclonal anti-Thy-1.2 plus complement (C). T cell-depleted grafts were then given to allogeneic mice conditioned with 900 rad of single dose TLI plus cyclophosphamide (CY). These mice did not engraft. Even in the absence of added spleen cells, elimination of the small T cell population from donor BM grafts prevented engraftment compared with animals that received the same conditioning regimen and untreated donor cells. These control animals demonstrated uniform evidence of engraftment about 1 month after transplantation. Similar findings were reported when recipients were conditioned with fractionated 17 x 100-rad TLI. In TLI plus CY-conditioned recipients, it was also observed that increasing the donation of treated bone marrow cells still did not result in significant engraftment. In contrast to TLI conditioning, when Thy-1.2 plus C-treated donor cells were given to recipients conditioned with total body irradiation (TBI), a high percentage of engraftment was demonstrated by an H-2 microcytotoxicity assay. Plausible mechanisms for these findings are discussed

  9. In Vitro Modeling of Blood-Brain Barrier with Human iPSC-Derived Endothelial Cells, Pericytes, Neurons, and Astrocytes via Notch Signaling

    Directory of Open Access Journals (Sweden)

    Kohei Yamamizu

    2017-03-01

    Full Text Available The blood-brain barrier (BBB is composed of four cell populations, brain endothelial cells (BECs, pericytes, neurons, and astrocytes. Its role is to precisely regulate the microenvironment of the brain through selective substance crossing. Here we generated an in vitro model of the BBB by differentiating human induced pluripotent stem cells (hiPSCs into all four populations. When the four hiPSC-derived populations were co-cultured, endothelial cells (ECs were endowed with features consistent with BECs, including a high expression of nutrient transporters (CAT3, MFSD2A and efflux transporters (ABCA1, BCRP, PGP, MRP5, and strong barrier function based on tight junctions. Neuron-derived Dll1, which activates Notch signaling in ECs, was essential for the BEC specification. We performed in vitro BBB permeability tests and assessed ten clinical drugs by nanoLC-MS/MS, finding a good correlation with the BBB permeability reported in previous cases. This technology should be useful for research on human BBB physiology, pathology, and drug development.

  10. Zinc enhances intestinal epithelial barrier function through the PI3K/AKT/mTOR signaling pathway in Caco-2 cells.

    Science.gov (United States)

    Shao, Yuxin; Wolf, Patricia G; Guo, Shuangshuang; Guo, Yuming; Gaskins, H Rex; Zhang, Bingkun

    2017-05-01

    Zinc plays an important role in maintaining intestinal barrier function as well as modulating cellular signaling recognition and protein kinase activities. The phosphatidylinositol 3-kinase (PI3K) cascade has been demonstrated to affect intercellular integrity and tight junction (TJ) proteins. The current study investigated the hypothesis that zinc regulates intestinal intercellular junction integrity through the PI3K/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway. A transwell model of Caco-2 cell was incubated with 0, 50 and 100 μM of zinc at various time points. Transepithelial electrical resistance (TEER), paracellular permeability, TJ proteins, cell proliferation, differentiation and cell damage were measured. Compared with controls, 50 and 100 μM of zinc increased cell growth at 6, 12 and 24 h and the expression of proliferating cell nuclear antigen at 24 h. Zinc (100 μM) significantly elevated TEER at 6-24 h and reduced TJ permeability at 24 h, accompanied by the up-regulation of alkaline phosphatase (AP) activity and zonula occludens (ZO)-1 expression. In addition, zinc (100 μM) affected the PI3K/AKT/mTOR pathway by stimulating phosphorylation of AKT and the downstream target mTOR. Inhibition of PI3K signaling by LY294002 counteracted zinc promotion, as shown by a decrease in AP activity, TEER, the abundance of ZO-1 and phosphorylation of AKT and mTOR. Additionally, TJ permeability and the expression of caspase-3 and LC3II (markers of cell damage) were increased by addition of PI3K inhibitor. In conclusion, the activation of PI3K/AKT/mTOR signaling by zinc is involved in improving intestinal barrier function by enhancing cell differentiation and expression of TJ protein ZO-1. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Impact of copper oxide nanomaterials on differentiated and undifferentiated Caco-2 intestinal epithelial cells; assessment of cytotoxicity, barrier integrity, cytokine production and nanomaterial penetration.

    Science.gov (United States)

    Ude, Victor C; Brown, David M; Viale, Luca; Kanase, Nilesh; Stone, Vicki; Johnston, Helinor J

    2017-08-23

    Copper oxide nanomaterials (CuO NMs) are exploited in a diverse array of products including antimicrobials, inks, cosmetics, textiles and food contact materials. There is therefore a need to assess the toxicity of CuO NMs to the gastrointestinal (GI) tract since exposure could occur via direct oral ingestion, mucocillary clearance (following inhalation) or hand to mouth contact. Undifferentiated Caco-2 intestinal cells were exposed to CuO NMs (10 nm) at concentrations ranging from 0.37 to 78.13 μg/cm 2 Cu (equivalent to 1.95 to 250 μg/ml) and cell viability assessed 24 h post exposure using the alamar blue assay. The benchmark dose (BMD 20), determined using PROAST software, was identified as 4.44 μg/cm 2 for CuO NMs, and 4.25 μg/cm 2 for copper sulphate (CuSO 4 ), which informed the selection of concentrations for further studies. The differentiation status of cells and the impact of CuO NMs and CuSO 4 on the integrity of the differentiated Caco-2 cell monolayer were assessed by measurement of trans-epithelial electrical resistance (TEER), staining for Zonula occludens-1 (ZO-1) and imaging of cell morphology using scanning electron microscopy (SEM). The impact of CuO NMs and CuSO 4 on the viability of differentiated cells was performed via assessment of cell number (DAPI staining), and visualisation of cell morphology (light microscopy). Interleukin-8 (IL-8) production by undifferentiated and differentiated Caco-2 cells following exposure to CuO NMs and CuSO 4 was determined using an ELISA. The copper concentration in the cell lysate, apical and basolateral compartments were measured with Inductive Coupled Plasma Optical Emission Spectrometry (ICP-OES) and used to calculate the apparent permeability coefficient (P app ); a measure of barrier permeability to CuO NMs. For all experiments, CuSO 4 was used as an ionic control. CuO NMs and CuSO 4 caused a concentration dependent decrease in cell viability in undifferentiated cells. CuO NMs and CuSO 4

  12. Enhanced tumor cell killing following BNCT with hyperosmotic mannitol-induced blood-brain barrier disruption and intracarotid injection of boronophenylalanine

    International Nuclear Information System (INIS)

    Hsieh, C.H.; Hwang, J.J.; Chen, F.D.; Liu, R.S.; Liu, H.M.; Hsueh, Y.W.; Kai, J.J.

    2006-01-01

    The delivery of boronophenylalanine (BPA) by means of intracarotid injection combined with opening the blood-brain barrier (BBB) have been shown significantly enhanced the tumor boron concentration and the survival time of glioma-bearing rats. However, no direct evidence demonstrates whether this treatment protocol can enhance the cell killing of tumor cells or infiltrating tumor cells and the magnitude of enhanced cell killing. The purpose of the present study was to determine if the tumor cell killing of boron neutron capture therapy could be enhanced by hyperosmotic mannitol-induced BBB disruption using BPA-Fr as the capture agent. F98 glioma-bearing rats were injected intravenously or intracarotidly with BPA at doses of 500 mg/kg body weight (b.w.) and with or without mannitol-induced hyperosmotic BBB disruption. The rats were irradiated with an epithermal neutron beam at the reactor of National Tsing-Hua University (THOR). After neutron beam irradiation, the rats were euthanized and the ipsilateral brains containing intracerebral F98 glioma were removed to perform in vivo/in vitro soft agar clonogenic assay. The results demonstrate BNCT with optimizing the delivery of BPA by means of intracarotid injection combined with opening the BBB by infusing a hyperosmotic solution of mannitol significantly enhanced the cell killing of tumor cells and infiltrating tumor cells, the tumor boron concentration and the boron ratio of tumor to normal brain tissues. (author)

  13. Lactobacillus rhamnosus GG supernatant promotes intestinal barrier function, balances Treg and TH17 cells and ameliorates hepatic injury in a mouse model of chronic-binge alcohol feeding.

    Science.gov (United States)

    Chen, Rui-Cong; Xu, Lan-Man; Du, Shan-Jie; Huang, Si-Si; Wu, He; Dong, Jia-Jia; Huang, Jian-Rong; Wang, Xiao-Dong; Feng, Wen-Ke; Chen, Yong-Ping

    2016-01-22

    Impaired intestinal barrier function plays a critical role in alcohol-induced hepatic injury, and the subsequent excessive absorbed endotoxin and bacterial translocation activate the immune response that aggravates the liver injury. Lactobacillus rhamnosus GG supernatant (LGG-s) has been suggested to improve intestinal barrier function and alleviate the liver injury induced by chronic and binge alcohol consumption, but the underlying mechanisms are still not clear. In this study, chronic-binge alcohol fed model was used to determine the effects of LGG-s on the prevention of alcoholic liver disease in C57BL/6 mice and investigate underlying mechanisms. Mice were fed Lieber-DeCarli diet containing 5% alcohol for 10 days, and one dose of alcohol was gavaged on Day 11. In one group, LGG-s was supplemented along with alcohol. Control mice were fed isocaloric diet. Nine hours later the mice were sacrificed for analysis. Chronic-binge alcohol exposure induced an elevation in liver enzymes, steatosis and morphology changes, while LGG-s supplementation attenuated these changes. Treatment with LGG-s significantly improved intestinal barrier function reflected by increased mRNA expression of tight junction (TJ) proteins and villus-crypt histology in ileum, and decreased Escherichia coli (E. coli) protein level in liver. Importantly, flow cytometry analysis showed that alcohol reduced Treg cell population while increased TH17 cell population as well as IL-17 secretion, which was reversed by LGG-s administration. In conclusion, our findings indicate that LGG-s is effective in preventing chronic-binge alcohol exposure-induced liver injury and shed a light on the importance of the balance of Treg and TH17 cells in the role of LGG-s application. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. Primary angle closure glaucoma (PACG) susceptibility gene PLEKHA7 encodes a novel Rac1/Cdc42 GAP that modulates cell migration and blood-aqueous barrier function.

    Science.gov (United States)

    Lee, Mei-Chin; Shei, William; Chan, Anita S; Chua, Boon-Tin; Goh, Shuang-Ru; Chong, Yaan-Fun; Hilmy, Maryam H; Nongpiur, Monisha E; Baskaran, Mani; Khor, Chiea-Chuen; Aung, Tin; Hunziker, Walter; Vithana, Eranga N

    2017-10-15

    PLEKHA7, a gene recently associated with primary angle closure glaucoma (PACG), encodes an apical junctional protein expressed in components of the blood aqueous barrier (BAB). We found that PLEKHA7 is down-regulated in lens epithelial cells and in iris tissue of PACG patients. PLEKHA7 expression also correlated with the C risk allele of the sentinel SNP rs11024102 with the risk allele carrier groups having significantly reduced PLEKHA7 levels compared to non-risk allele carriers. Silencing of PLEKHA7 in human immortalized non-pigmented ciliary epithelium (h-iNPCE) and primary trabecular meshwork cells, which are intimately linked to BAB and aqueous humor outflow respectively, affected actin cytoskeleton organization. PLEKHA7 specifically interacts with GTP-bound Rac1 and Cdc42, but not RhoA, and the activation status of the two small GTPases is linked to PLEKHA7 expression levels. PLEKHA7 stimulates Rac1 and Cdc42 GTP hydrolysis, without affecting nucleotide exchange, identifying PLEKHA7 as a novel Rac1/Cdc42 GAP. Consistent with the regulatory role of Rac1 and Cdc42 in maintaining the tight junction permeability, silencing of PLEKHA7 compromises the paracellular barrier between h-iNPCE cells. Thus, downregulation of PLEKHA7 in PACG may affect BAB integrity and aqueous humor outflow via its Rac1/Cdc42 GAP activity, thereby contributing to disease etiology. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Electron Barrier Formation at the Organic-Back Contact Interface is the First Step in Thermal Degradation of Polymer Solar Cells

    KAUST Repository

    Sachs-Quintana, I. T.

    2014-03-24

    Long-term stability of polymer solar cells is determined by many factors, one of which is thermal stability. Although many thermal stability studies occur far beyond the operating temperature of a solar cell which is almost always less than 65 °C, thermal degradation is studied at temperatures that the solar cell would encounter in real-world operating conditions. At these temperatures, movement of the polymer and fullerenes, along with adhesion of the polymer to the back contact, creates a barrier for electron extraction. The polymer barrier can be removed and the performance can be restored by peeling off the electrode and depositing a new one. X-ray photoelectron spectroscopy measurements reveal a larger amount of polymer adhered to electrodes peeled from aged devices than electrodes peeled from fresh devices. The degradation caused by hole-transporting polymer adhering to the electrode can be suppressed by using an inverted device where instead of electrons, holes are extracted at the back metal electrode. The problem can be ultimately eliminated by choosing a polymer with a high glass transition temperature. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Noninvasive penetration of 5 nm hyaluronic acid molecules across the epidermal barrier (in vitro) and its interaction with human skin cells.

    Science.gov (United States)

    Nashchekina, Yu A; Raydan, M

    2018-02-01

    Hyaluronic acid represents one of the major components of the extracellular environment. The main challenge remains in the ability to deliver these molecules noninvasively across the skin barrier, which can be overcome by the reduction in size to an extent that allows these molecules to pass across the skin barrier. The aim of this study was to measure the penetration and bioavailability of low molecular weight hyaluronic acid to cross an epidermal barrier model. Determining the quantity of hyaluronic acid in the test solutions was carried with method of photocolorimetry analysis. Investigation of the interaction of cells with LMWHA was studied with a confocal microscope. The study showed that LMWHA is able to cross the epidermis. Most effective penetration level is during the first 6 hours reaching 75%, and then the concentration started to decline and reached the equilibrium state within the following 2 hours. Confocal laser microscopy demonstrated different distribution and behavior of these molecules among the keratinocytes and fibroblasts. Reducing the size of hyaluronic acid to 5 nm enhance their transport across the epidermal layer. The concentration of hyaluronic acid molecules was higher on the fibroblast surface in comparison to their extracellular environment. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Reduction of microhemorrhages in the spinal cord of symptomatic ALS mice after intravenous human bone marrow stem cell transplantation accompanies repair of the blood-spinal cord barrier

    Science.gov (United States)

    Eve, David J.; Steiner, George; Mahendrasah, Ajay; Sanberg, Paul R.; Kurien, Crupa; Thomson, Avery; Borlongan, Cesar V.; Garbuzova-Davis, Svitlana

    2018-01-01

    Blood-spinal cord barrier (BSCB) alterations, including capillary rupture, have been demonstrated in animal models of amyotrophic lateral sclerosis (ALS) and ALS patients. To date, treatment to restore BSCB in ALS is underexplored. Here, we evaluated whether intravenous transplantation of human bone marrow CD34+ (hBM34+) cells into symptomatic ALS mice leads to restoration of capillary integrity in the spinal cord as determined by detection of microhemorrhages. Three different doses of hBM34+ cells (5 × 104, 5 × 105 or 1 × 106) or media were intravenously injected into symptomatic G93A SOD1 mice at 13 weeks of age. Microhemorrhages were determined in the cervical and lumbar spinal cords of mice at 4 weeks post-treatment, as revealed by Perls’ Prussian blue staining for ferric iron. Numerous microhemorrhages were observed in the gray and white matter of the spinal cords in media-treated mice, with a greater number of capillary ruptures within the ventral horn of both segments. In cell-treated mice, microhemorrhage numbers in the cervical and lumbar spinal cords were inversely related to administered cell doses. In particular, the pervasive microvascular ruptures determined in the spinal cords in late symptomatic ALS mice were significantly decreased by the highest cell dose, suggestive of BSCB repair by grafted hBM34+ cells. The study results provide translational outcomes supporting transplantation of hBM34+ cells at an optimal dose as a potential therapeutic strategy for BSCB repair in ALS patients. PMID:29535831

  18. Walker 256 tumour cells increase substance P immunoreactivity locally and modify the properties of the blood-brain barrier during extravasation and brain invasion.

    Science.gov (United States)

    Lewis, Kate M; Harford-Wright, Elizabeth; Vink, Robert; Nimmo, Alan J; Ghabriel, Mounir N

    2013-01-01

    It is not yet known how tumour cells traverse the blood-brain barrier (BBB) to form brain metastases. Substance P (SP) release is a key component of neurogenic inflammation which has been recently shown to increase the permeability of the BBB following CNS insults, making it a possible candidate as a mediator of tumour cell extravasation into the brain. This study investigated the properties of the BBB in the early stages of tumour cell invasion into the brain, and the possible involvement of SP. Male Wistar rats were injected with Walker 256 breast carcinoma cells via the internal carotid artery and euthanised at 1, 3, 6 and 9 days post tumour inoculation. Culture medium-injected animals served as controls at 1 and 9 days. Evidence of tumour cell extravasation across the BBB was first observed at 3 days post-inoculation, which corresponded with significantly increased albumin (p p p p < 0.001). The increased SP immunoreactivity and altered BBB properties at 3 days post-inoculation that coincided with early tumour invasion may be indicative of a mechanism for tumour cell extravasation into the brain. Thus, extravasation of tumour cells into the brain to form cerebral metastases may be a SP-mediated process.

  19. Bone marrow transplantation across major histocompatibility barriers in mice. II. T cell requirement for engraftment in total lymphoid irradiation-conditioned recipients

    International Nuclear Information System (INIS)

    Vallera, D.A.; Soderling, C.C.; Carlson, G.J.; Kersey, J.H.

    1982-01-01

    Studies were undertaken to examine the role of T lymphocytes in engraftment of bone marrow (BM) in animals conditioned with total lymphoid irradiation (TLI) prior to transplantation across major histocompatibility barriers. Donor BM (added as a source of lymphohematopoietic stem cells) and spleen cells (added as a source of graft-versus-host disease (GVHD)-causing cells) were pretreated in vitro with monoclonal anti-Thy-1.2 plus complement (C). T cell-depleted grafts were then give to allogeneic mice conditioned with 900 rad of single dose TLI plus cyclophosphamide (CY). These mice did not engraft. Even in the absence of added spleen cells, elimination of the small T cell population from donor BM grafts prevented engraftment compared with animals that received the same conditioning regimen and untreated donor cells. These control animals demonstrated uniform evidence of engraftment about 1 month after transplantation. Similar findings were reported when recipients were conditioned with fractionated 17 x 200-rad TLI. In TLI plus CY-conditional recipients, we have also observed that increasing the donation of treated bone marrow cells still did not result in significant engraftment. Furthermore, graft failure in mice receiving normal dosages of anti-Thy-1.2 plus C-treated donor cells was not a strain-restricted phenomenon. Moreover, removal of bone marrow T cells with monoclonal anti-Lyt-1 plus complement also resulted in graft failure in TLI-conditioned recipients. In contrast to TLI conditioning, when Thy-1.2 plus C-treated donor cells were given to recipients conditioned with total body irradiation (TBI), a high percentage of engraftment was demonstrated by an H-2 microcytotoxicity assay. Plausible mechanisms for there findings are discussed

  20. Bone marrow transplantation across major histocompatibility barriers in mice. II. T cell requirement for engraftment in total lymphoid irradiation-conditioned recipients

    Energy Technology Data Exchange (ETDEWEB)

    Vallera, D.A.; Soderling, C.C.; Carlson, G.J.; Kersey, J.H.

    1982-03-01

    Studies were undertaken to examine the role of T lymphocytes in engraftment of bone marrow (BM) in animals conditioned with total lymphoid irradiation (TLI) prior to transplantation across major histocompatibility barriers. Donor BM (added as a source of lymphohematopoietic stem cells) and spleen cells (added as a source of graft-versus-host disease (GVHD)-causing cells) were pretreated in vitro with monoclonal anti-Thy-1.2 plus complement (C). T cell-depleted grafts were then give to allogeneic mice conditioned with 900 rad of single dose TLI plus cyclophosphamide (CY). These mice did not engraft. Even in the absence of added spleen cells, elimination of the small T cell population from donor BM grafts prevented engraftment compared with animals that received the same conditioning regimen and untreated donor cells. These control animals demonstrated uniform evidence of engraftment about 1 month after transplantation. Similar findings were reported when recipients were conditioned with fractionated 17 x 200-rad TLI. In TLI plus CY-conditional recipients, we have also observed that increasing the donation of treated bone marrow cells still did not result in significant engraftment. Furthermore, graft failure in mice receiving normal dosages of anti-Thy-1.2 plus C-treated donor cells was not a strain-restricted phenomenon. Moreover, removal of bone marrow T cells with monoclonal anti-Lyt-1 plus complement also resulted in graft failure in TLI-conditioned recipients. In contrast to TLI conditioning, when Thy-1.2 plus C-treated donor cells were given to recipients conditioned with total body irradiation (TBI), a high percentage of engraftment was demonstrated by an H-2 microcytotoxicity assay. Plausible mechanisms for there findings are discussed.

  1. Barrier Systems

    NARCIS (Netherlands)

    Heteren, S. van

    2015-01-01

    Barrier-system dynamics are a function of antecedent topography and substrate lithology, Relative sea-level (RSL) changes, sediment availability and type, climate, vegetation type and cover, and various aero- and hydrodynamic processes during fair-weather conditions and extreme events. Global change

  2. Tick-borne encephalitis virus infects human brain microvascular endothelial cells without compromising blood-brain barrier integrity

    Czech Academy of Sciences Publication Activity Database

    Palus, Martin; Vancová, Marie; Širmarová, J.; Elsterová, Jana; Perner, Jan; Růžek, Daniel

    2017-01-01

    Roč. 507, JUL (2017), s. 110-122 ISSN 0042-6822 R&D Projects: GA MZd(CZ) NV16-34238A; GA MŠk(CZ) LM2015062; GA TA ČR(CZ) TE01020118 Institutional support: RVO:60077344 Keywords : tick-borne encephalitis * tick-borne encephalitis virus * blood-brain barrier * neuroinfection Subject RIV: EE - Microbiology, Virology OBOR OECD: Virology Impact factor: 3.353, year: 2016

  3. TPL2 (Therapeutic Targeting Tumor Progression Locus-2)/ATF4 (Activating Transcription Factor-4)/SDF1α (Chemokine Stromal Cell-Derived Factor-α) Axis Suppresses Diabetic Retinopathy.

    Science.gov (United States)

    Lai, De-Wei; Lin, Keng-Hung; Sheu, Wayne Huey-Herng; Lee, Maw-Rong; Chen, Chung-Yu; Lee, Wen-Jane; Hung, Yi-Wen; Shen, Chin-Chang; Chung, Tsung-Ju; Liu, Shing-Hwa; Sheu, Meei-Ling

    2017-09-01

    Diabetic retinopathy is characterized by vasopermeability, vascular leakage, inflammation, blood-retinal barrier breakdown, capillary degeneration, and neovascularization. However, the mechanisms underlying the association between diabetes mellitus and progression retinopathy remain unclear. TPL2 (tumor progression locus 2), a serine-threonine protein kinase, exerts a pathological effect on vascular angiogenesis. This study investigated the role of N ε -(carboxymethyl)lysine, a major advanced glycation end products, and the involved TPL2-related molecular signals in diabetic retinopathy using models of in vitro and in vivo and human samples. Serum N ε -(carboxymethyl)lysine levels and TPL2 kinase activity were significantly increased in clinical patients and experimental animals with diabetic retinopathy. Intravitreal administration of pharmacological blocker or neutralizing antibody inhibited TPL2 and effectively suppressed the pathological characteristics of retinopathy in streptozotocin-induced diabetic animal models. Intravitreal VEGF (vascular endothelial growth factor) neutralization also suppressed the diabetic retinopathy in diabetic animal models. Mechanistic studies in primary human umbilical vein endothelial cells and primary retinal microvascular endothelial cells from streptozotocin-diabetic rats, db/db mice, and samples from patients with diabetic retinopathy revealed a positive parallel correlation between N ε -(carboxymethyl)lysine and the TPL2/chemokine SDF1α (stromal cell-derived factor-α) axis that is dependent on endoplasmic reticulum stress-related molecules, especially ATF4 (activating transcription factor-4). This study demonstrates that inhibiting the N ε -(carboxymethyl)lysine-induced TPL2/ATF4/SDF1α axis can effectively prevent diabetes mellitus-mediated retinal microvascular dysfunction. This signaling axis may include the therapeutic potential for other diseases involving pathological neovascularization or macular edema. © 2017

  4. Effects of cognate, non-cognate and synthetic CXCR4 and ACKR3 ligands on human lung endothelial cell barrier function.

    Directory of Open Access Journals (Sweden)

    You-Hong Cheng

    Full Text Available Recent evidence suggests that chemokine CXCL12, the cognate agonist of chemokine receptors CXCR4 and ACKR3, reduces thrombin-mediated impairment of endothelial barrier function. A detailed characterization of the effects of CXCL12 on thrombin-mediated human lung endothelial hyperpermeability is lacking and structure-function correlations are not available. Furthermore, effects of other CXCR4/ACKR3 ligands on lung endothelial barrier function are unknown. Thus, we tested the effects of a panel of CXCR4/ACKR3 ligands (CXCL12, CXCL11, ubiquitin, AMD3100, TC14012 and compared the CXCR4/ACKR3 activities of CXCL12 variants (CXCL12α/β, CXCL12(3-68, CXCL121, CXCL122, CXCL12-S-S4V, CXCL12-R47E, CXCL12-K27A/R41A/R47A with their effects on human lung endothelial barrier function in permeability assays. CXCL12α enhanced human primary pulmonary artery endothelial cell (hPPAEC barrier function, whereas CXCL11, ubiquitin, AMD3100 and TC14012 were ineffective. Pre-treatment of hPPAEC with CXCL12α and ubiquitin reduced thrombin-mediated hyperpermeability. CXCL12α-treatment of hPPAEC after thrombin exposure reduced barrier function impairment by 70% (EC50 0.05-0.5nM, which could be antagonized with AMD3100; ubiquitin (0.03-3μM was ineffective. In a human lung microvascular endothelial cell line (HULEC5a, CXCL12α and ubiquitin post-treatment attenuated thrombin-induced hyperpermeability to a similar degree. CXCL12(3-68 was inefficient to activate CXCR4 in Presto-Tango β-arrestin2 recruitment assays; CXCL12-S-S4V, CXCL12-R47E and CXCL12-K27A/R41A/R47A showed significantly reduced potencies to activate CXCR4. While the potencies of all proteins in ACKR3 Presto-Tango assays were comparable, the efficacy of CXCL12(3-68 to activate ACKR3 was significantly reduced. The potencies to attenuate thrombin-mediated hPPAEC barrier function impairment were: CXCL12α/β, CXCL121, CXCL12-K27A/R41A/R47A > CXCL12-S-S4V, CXCL12-R47E > CXCL122 > CXCL12(3-68. Our findings

  5. Zinc Supplementation, via GPR39, Upregulates PKCζ to Protect Intestinal Barrier Integrity in Caco-2 Cells Challenged by Salmonella enterica Serovar Typhimurium.

    Science.gov (United States)

    Shao, Yu-Xin; Lei, Zhao; Wolf, Patricia G; Gao, Yan; Guo, Yu-Ming; Zhang, Bing-Kun

    2017-07-01

    Background: Zinc has been shown to improve intestinal barrier function against Salmonella enterica serovar Typhimurium ( S. typhimurium ) infection, but the mechanisms involved in this process remain undefined. Objective: We aimed to explore the roles of G protein-coupled receptor (GPR)39 and protein kinase Cζ (PKCζ) in the regulation by zinc of intestinal barrier function. Methods: A Transwell Caco-2 monolayer was pretreated with 0, 50, or 100 μM Zn and then incubated with S. typhimurium for 0-6 h. Afterward, cells silenced by the small interfering RNA for GPR39 or PKCζ were pretreated with 100 μM Zn and incubated with S. typhimurium for 3 h. Finally, transepithelial electrical resistance (TEER), permeability, tight junction (TJ) proteins, and signaling molecules GPR39 and PKCζ were measured. Results: Compared with controls, S. typhimurium decreased TEER by 62.3-96.2% at 4-6 h ( P 0.1). Silencing GPR39 decreased ( P zinc-activated PKCζ and blocked ( P zinc on epithelial integrity. Furthermore, silencing PKCζ counteracted the protective effect of zinc on epithelial integrity but did not inhibit GPR39 ( P = 0.138). Conclusion: We demonstrated that zinc upregulates PKCζ by activating GPR39 to enhance the abundance of ZO-1, thereby improving epithelial integrity in S. typhimurium- infected Caco-2 cells. © 2017 American Society for Nutrition.

  6. In vitro and in vivo modeling of lipid bioaccessibility and digestion from almond muffins: The importance of the cell-wall barrier mechanism.

    Science.gov (United States)

    Grassby, Terri; Mandalari, Giuseppina; Grundy, Myriam M-L; Edwards, Cathrina H; Bisignano, Carlo; Trombetta, Domenico; Smeriglio, Antonella; Chessa, Simona; Ray, Shuvra; Sanderson, Jeremy; Berry, Sarah E; Ellis, Peter R; Waldron, Keith W

    2017-10-01

    This study compares in vitro and in vivo models of lipid digestion from almond particles within a complex food matrix (muffins) investigating whether the cell-wall barrier regulates the bioaccessibility of nutrients within this matrix. Muffins containing small (AF) or large (AP) particles of almond were digested in triplicate using an in vitro dynamic gastric model (DGM, 1 h) followed by a static duodenal digestion (8 h). AF muffins had 97.1 ± 1.7% of their lipid digested, whereas AP muffins had 57.6 ± 1.1% digested. In vivo digestion of these muffins by an ileostomy volunteer (0-10 h) gave similar results with 96.5% and 56.5% lipid digested, respectively. The AF muffins produced a higher postprandial triacylglycerol iAUC response (by 61%) than the AP muffins. Microstructural analysis showed that some lipid remained encapsulated within the plant tissue throughout digestion. The cell-wall barrier mechanism is the main factor in regulating lipid bioaccessibility from almond particles.

  7. Altered permeability barrier structure in cholesteatoma matrix

    DEFF Research Database (Denmark)

    Svane-Knudsen, Viggo; Halkier-Sørensen, Lars; Rasmussen, Gurli

    2002-01-01

    lipid structures filling the intercellular spaces mainly control the barrier function. The barrier in cholesteatoma epithelium is several times thicker than in unaffected skin but presents distinctive features of a defective barrier as seen in other scaling skin diseases. The intercellular spaces appear...... frequently occur. The corneocytes are shed in clusters, not as single cells. Further, lipid droplets and intracellular membranous material are occasionally seen. In spite of these clear signs of barrier dysfunction, it is unknown whether the thickness of the barrier compensates for the defect in barrier...

  8. Establishment of a Human Blood-Brain Barrier Co-culture Model Mimicking the Neurovascular Unit Using Induced Pluri- and Multipotent Stem Cells.

    Science.gov (United States)

    Appelt-Menzel, Antje; Cubukova, Alevtina; Günther, Katharina; Edenhofer, Frank; Piontek, Jörg; Krause, Gerd; Stüber, Tanja; Walles, Heike; Neuhaus, Winfried; Metzger, Marco

    2017-04-11

    In vitro models of the human blood-brain barrier (BBB) are highly desirable for drug development. This study aims to analyze a set of ten different BBB culture models based on primary cells, human induced pluripotent stem cells (hiPSCs), and multipotent fetal neural stem cells (fNSCs). We systematically investigated the impact of astrocytes, pericytes, and NSCs on hiPSC-derived BBB endothelial cell function and gene expression. The quadruple culture models, based on these four cell types, achieved BBB characteristics including transendothelial electrical resistance (TEER) up to 2,500 Ω cm 2 and distinct upregulation of typical BBB genes. A complex in vivo-like tight junction (TJ) network was detected by freeze-fracture and transmission electron microscopy. Treatment with claudin-specific TJ modulators caused TEER decrease, confirming the relevant role of claudin subtypes for paracellular tightness. Drug permeability tests with reference substances were performed and confirmed the suitability of the models for drug transport studies. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  9. Reduction of microhemorrhages in the spinal cord of symptomatic ALS mice after intravenous human bone marrow stem cell transplantation accompanies repair of the blood-spinal cord barrier.

    Science.gov (United States)

    Eve, David J; Steiner, George; Mahendrasah, Ajay; Sanberg, Paul R; Kurien, Crupa; Thomson, Avery; Borlongan, Cesar V; Garbuzova-Davis, Svitlana

    2018-02-13

    Blood-spinal cord barrier (BSCB) alterations, including capillary rupture, have been demonstrated in animal models of amyotrophic lateral sclerosis (ALS) and ALS patients. To date, treatment to restore BSCB in ALS is underexplored. Here, we evaluated whether intravenous transplantation of human bone marrow CD34 + (hBM34 + ) cells into symptomatic ALS mice leads to restoration of capillary integrity in the spinal cord as determined by detection of microhemorrhages. Three different doses of hBM34 + cells (5 × 10 4 , 5 × 10 5 or 1 × 10 6 ) or media were intravenously injected into symptomatic G93A SOD1 mice at 13 weeks of age. Microhemorrhages were determined in the cervical and lumbar spinal cords of mice at 4 weeks post-treatment, as revealed by Perls' Prussian blue staining for ferric iron. Numerous microhemorrhages were observed in the gray and white matter of the spinal cords in media-treated mice, with a greater number of capillary ruptures within the ventral horn of both segments. In cell-treated mice, microhemorrhage numbers in the cervical and lumbar spinal cords were inversely related to administered cell doses. In particular, the pervasive microvascular ruptures determined in the spinal cords in late symptomatic ALS mice were significantly decreased by the highest cell dose, suggestive of BSCB repair by grafted hBM34 + cells. The study results provide translational outcomes supporting transplantation of hBM34 + cells at an optimal dose as a potential therapeutic strategy for BSCB repair in ALS patients.

  10. Impaired function of the blood-testis barrier during aging is preceded by a decline in cell adhesion proteins and GTPases.

    Directory of Open Access Journals (Sweden)

    Catriona Paul

    Full Text Available With increasing age comes many changes in the testis, including germ cell loss. Cell junctions in the testis tether both seminiferous epithelial and germ cells together and assist in the formation of the blood-testis barrier (BTB, which limits transport of biomolecules, ions and electrolytes from the basal to the adluminal compartment and protects post-meiotic germ cells. We hypothesize that as male rats age the proteins involved in forming the junctions decrease and that this alters the ability of the BTB to protect the germ cells. Pachytene spermatocytes were isolated from Brown Norway rat testes at 4 (young and 18 (aged months of age using STA-PUT velocity sedimentation technique. RNA was extracted and gene expression was assessed using Affymetrix rat 230 2.0 whole rat genome microarrays. Microarray data were confirmed by q-RT-PCR and protein expression by Western blotting. Of the genes that were significantly decreased by at least 1.5 fold, 70 were involved in cell adhesion; of these, at least 20 are known to be specifically involved in junction dynamics within the seminiferous epithelium. The mRNA and protein levels of Jam2, Ocln, cdh2 (N-cadherin, ctnna (α-catenin, and cldn11 (involved in adherens junctions, among others, were decreased by approximately 50% in aged spermatocytes. In addition, the GTPases Rac1 and cdc42, involved in the recruitment of cadherins to the adherens junctions, were similarly decreased. It is therefore not surprising that with lower expression of these proteins that the BTB becomes diminished with age. We saw, using a FITC tracer, a gradual collapse of the BTB between 18 and 24 months. This provides the opportunity for harmful substances and immune cells to cross the BTB and cause the disruption of spermatogenesis that is observed with increasing age.

  11. Validation of In Vitro Cell-Based Human Blood-Brain Barrier Model Using Clinical Positron Emission Tomography Radioligands To Predict In Vivo Human Brain Penetration

    International Nuclear Information System (INIS)

    Mabondzo, A.; Guyot, A.C.; Bottlaender, M.; Deverre, J.R.; Tsaouin, K.; Balimane, P.V.

    2010-01-01

    We have evaluated a novel in vitro cell-based human blood-brain barrier (BBB) model that could predict in vivo human brain penetration for compounds with different BBB permeabilities using the clinical positron emission tomography (PET) data. Comparison studies were also performed to demonstrate that the in vitro cell-based human BBB model resulted in better predictivity over the traditional permeability model in discovery organizations, Caco-2 cells. We evaluated the in vivo BBB permeability of [ 18 F] and [ 11 C]-compounds in humans by PET imaging. The in vivo plasma-brain exchange parameters used for comparison were determined in humans by PET using a kinetic analysis of the radiotracer binding. For each radiotracer, the parameters were determined by fitting the brain kinetics of the radiotracer using a two-tissue compartment model of the ligand-receptor interaction. Bidirectional transport studies with the same compounds as in in vivo studies were carried out using the in vitro cell-based human BBB model as well as Caco-2 cells. The in vitro cell-based human BBB model has important features of the BBB in vivo and is suitable for discriminating between CNS and non-CNS marketed drugs. A very good correlation (r 2 =0.90; P≤0.001) was demonstrated between in vitro BBB permeability and in vivo permeability coefficient. In contrast, a poor correlation (r 2 = 0.17) was obtained between Caco-2 data and in vivo human brain penetration. This study highlights the potential of this in vitro cell-based human BBB model in drug discovery and shows that it can be an extremely effective screening tool for CNS programs. (authors)

  12. Alternating magnetic field-induced hyperthermia increases iron oxide nanoparticle cell association/uptake and flux in blood-brain barrier models.

    Science.gov (United States)

    Dan, Mo; Bae, Younsoo; Pittman, Thomas A; Yokel, Robert A

    2015-05-01

    Superparamagnetic iron oxide nanoparticles (IONPs) are being investigated for brain cancer therapy because alternating magnetic field (AMF) activates them to produce hyperthermia. For central nervous system applications, brain entry of diagnostic and therapeutic agents is usually essential. We hypothesized that AMF-induced hyperthermia significantly increases IONP blood-brain barrier (BBB) association/uptake and flux. Cross-linked nanoassemblies loaded with IONPs (CNA-IONPs) and conventional citrate-coated IONPs (citrate-IONPs) were synthesized and characterized in house. CNA-IONP and citrate-IONP BBB cell association/uptake and flux were studied using two BBB Transwell(®) models (bEnd.3 and MDCKII cells) after conventional and AMF-induced hyperthermia exposure. AMF-induced hyperthermia for 0.5 h did not alter CNA-IONP size but accelerated citrate-IONP agglomeration. AMF-induced hyperthermia for 0.5 h enhanced CNA-IONP and citrate-IONP BBB cell association/uptake. It also enhanced the flux of CNA-IONPs across the two in vitro BBB models compared to conventional hyperthermia and normothermia, in the absence of cell death. Citrate-IONP flux was not observed under these conditions. AMF-induced hyperthermia also significantly enhanced paracellular pathway flux. The mechanism appears to involve more than the increased temperature surrounding the CNA-IONPs. Hyperthermia induced by AMF activation of CNA-IONPs has potential to increase the BBB permeability of therapeutics for the diagnosis and therapy of various brain diseases.

  13. Effective treatment of glioblastoma requires crossing the blood–brain barrier and targeting tumors including cancer stem cells: The promise of nanomedicine

    Science.gov (United States)

    Kim, Sang-Soo; Harford, Joe B.; Pirollo, Kathleen F.; Chang, Esther H.

    2015-01-01

    Glioblastoma multiforme (GBM) is the most aggressive and lethal type of brain tumor. Both therapeutic resistance and restricted permeation of drugs across the blood–brain barrier (BBB) play a major role in the poor prognosis of GBM patients. Accumulated evidence suggests that in many human cancers, including GBM, therapeutic resistance can be attributed to a small fraction of cancer cells known as cancer stem cells (CSCs). CSCs have been shown to have stem cell-like properties that enable them to evade traditional cytotoxic therapies, and so new CSC-directed anti-cancer therapies are needed. Nanoparticles have been designed to selectively deliver payloads to relevant target cells in the body, and there is considerable interest in the use of nanoparticles for CSC-directed anti-cancer therapies. Recent advances in the field of nanomedicine offer new possibilities for overcoming CSC-mediated therapeutic resistance and thus significantly improving management of GBM. In this review, we will examine the current nanomedicine approaches for targeting CSCs and their therapeutic implications. The inhibitory effect of various nanoparticle-based drug delivery system towards CSCs in GBM tumors is the primary focus of this review. PMID:26116770

  14. Donor T cells primed on leukemia lysate-pulsed recipient APCs mediate strong graft-versus-leukemia effects across MHC barriers in full chimeras.

    Science.gov (United States)

    Ghosh, Arnab; Koestner, Wolfgang; Hapke, Martin; Schlaphoff, Verena; Länger, Florian; Baumann, Rolf; Koenecke, Christian; Cornberg, Markus; Welte, Karl; Blazar, Bruce R; Sauer, Martin G

    2009-04-30

    Antigen-presenting cells (APCs) of host origin drive graft-versus-leukemia (GVL) effects but can also trigger life-threatening graft-versus-host disease (GVHD) after hematopoietic cell transplantation (HCT) across major histocompatibility complex (MHC) barriers. We show that in vitro priming of donor lymphocytes can circumvent the need of recipient-derived APCs in vivo for mediating robust GVL effects and significantly diminishes the risk of severe GVHD. In vitro, generated and expanded T cells (ETCs) mediate anti-leukemia effects only when primed on recipient-derived APCs. Loading of APCs in vitro with leukemia cell lysate, chimerism status of the recipient, and timing of adoptive transfer after HCT are important factors determining the outcome. Delayed transfer of ETCs resulted in strong GVL effects in leukemia-bearing full chimera (FC) and mixed chimera (MC) recipients, which were comparable with the GVL/GVHD rates observed after the transfer of naive donor lymphocyte infusion (DLI). Upon early transfer, GVL effects were more pronounced with ETCs but at the expense of significant GVHD. The degree of GVHD was most severe in MCs after transfer of ETCs that had been in vitro primed either on nonpulsed recipient-derived APCs or with donor-derived APCs.

  15. Effective treatment of glioblastoma requires crossing the blood-brain barrier and targeting tumors including cancer stem cells: The promise of nanomedicine.

    Science.gov (United States)

    Kim, Sang-Soo; Harford, Joe B; Pirollo, Kathleen F; Chang, Esther H

    2015-12-18

    Glioblastoma multiforme (GBM) is the most aggressive and lethal type of brain tumor. Both therapeutic resistance and restricted permeation of drugs across the blood-brain barrier (BBB) play a major role in the poor prognosis of GBM patients. Accumulated evidence suggests that in many human cancers, including GBM, therapeutic resistance can be attributed to a small fraction of cancer cells known as cancer stem cells (CSCs). CSCs have been shown to have stem cell-like properties that enable them to evade traditional cytotoxic therapies, and so new CSC-directed anti-cancer therapies are needed. Nanoparticles have been designed to selectively deliver payloads to relevant target cells in the body, and there is considerable interest in the use of nanoparticles for CSC-directed anti-cancer therapies. Recent advances in the field of nanomedicine offer new possibilities for overcoming CSC-mediated therapeutic resistance and thus significantly improving management of GBM. In this review, we will examine the current nanomedicine approaches for targeting CSCs and their therapeutic implications. The inhibitory effect of various nanoparticle-based drug delivery system towards CSCs in GBM tumors is the primary focus of this review. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Evidence for a post-entry barrier to R5 HIV-1 infection of CD4 memory T cells

    NARCIS (Netherlands)

    Vyakarnam, A.; Eyeson, J.; teo, I.; Zuckerman, M.; Babaahmady, K.; Schuitemaker, H.; Shaunak, S.; Rostron, T.; Rowland-Jones, S.; Simmons, G.; Clapham, P.

    2001-01-01

    BACKGROUND: HIV-1 strains R5 and X4 can infect CD4 memory T cells in vivo. Anti-CD3/28 stimulation induces beta-chemokines and CCR5 down-regulation and renders these cells resistant to R5 HIV-1 infection. Here we describe an additional cellular mechanism that blocks productive R5 HIV-1 infection of

  17. Highly efficient betanin dye based ZnO and ZnO/Au Schottky barrier solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Thankappan, Aparna, E-mail: aparna.subhash@gmail.com [International School of Photonics (ISP), Cochin University of Science and Technology, Kochi (India); Inter University Centre for Nanomaterials and Devices (IUCND), Cochin University of Science and Technology, Kochi (India); Divya, S.; Augustine, Anju K.; Girijavallaban, C.P.; Radhakrishnan, P.; Thomas, Sheenu; Nampoori, V.P.N. [International School of Photonics (ISP), Cochin University of Science and Technology, Kochi (India)

    2015-05-29

    Performance of dye sensitized solar cells based on betanin natural dye from red beets with various nanostructured photoanodes on transparent conducting glass has been investigated. In four different electrolyte systems cell efficiency of 2.99% and overall photon to current conversion efficiency of 20% were achieved using ZnO nanosheet electrode with iodide based electrolyte in acetonitrile solution. To enhance solar harvesting in organic solar cells, uniform sized metal nanoparticles (gold (Au) of ~ 8 nm) synthesized via microwave irradiation method were incorporated into the device consisting of ZnO. Enhanced power conversion efficiency of 1.71% was achieved with ZnO/Au nanocomposite compared to the 0.868% efficiency of the bare ZnO nanosheet cell with ferrocene based electrolyte. - Highlights: • The influence of electrolytes has been studied. • Cell efficiency of 2.99% was achieved by ZnO. • Enhancement of efficiency with incorporation of Au nano.

  18. A novel method to achieve selective emitter for silicon solar cell using low cost pattern-able a-Si thin films as the semi-transparent phosphorus diffusion barrier

    International Nuclear Information System (INIS)

    Chen, Da Ming; Liang, Zong Cun; Zhuang, Lin; Lin, Yang Huan; Shen, Hui

    2012-01-01

    Highlights: ► a-Si thin films as semitransparent phosphorus diffusion barriers for solar cell. ► a-Si thin films on silicon wafers were patterned by the alkaline solution. ► Selective emitter was formed with patterned a-Si as diffusion barrier for solar cell. -- Abstract: Selective emitter for silicon solar cell was realized by employing a-Si thin films as the semi-transparent diffusion barrier. The a-Si thin films with various thicknesses (∼10–40 nm) were deposited by the electron-beam evaporation technique. Emitters with sheet resistances from 37 to 145 Ω/□ were obtained via POCl 3 diffusion process. The thickness of the a-Si diffusion barrier was optimized to be 15 nm for selective emitter in our work. Homemade mask which can dissolve in ethanol was screen-printed on a-Si film to make pattern. The a-Si film was then patterned in KOH solution to form finger-like design. Selective emitter was obtainable with one-step diffusion with patterned a-Si film on. Combinations of sheet resistances for the high-/low-level doped regions of 39.8/112.1, 36.2/88.8, 35.4/73.9 were obtained. These combinations are suitable for screen-printed solar cells. This preparation method of selective emitter based on a-Si diffusion barrier is a promising approach for low cost industrial manufacturing.

  19. A Retrospective Analysis of Bloodstream Infections in Pediatric Allogeneic Stem Cell Transplant Recipients: The Role of Central Venous Catheters and Mucosal Barrier Injury.

    Science.gov (United States)

    Balian, Chelsea; Garcia, Michelle; Ward, Jessica

    2018-03-01

    Bloodstream infections (BSIs) are a leading cause of morbidity and mortality in children undergoing hematopoietic stem cell transplant (HSCT). Indwelling central venous catheters (CVCs) increase risk for BSIs, yet mucosal barrier injury-associated laboratory-confirmed bloodstream infection (MBI-LCBI) may also occur due to translocation of pathogenic organisms from the gastrointestinal tract into the bloodstream. The purpose of this study was to determine the association between stool organisms and BSIs in children with CVCs who underwent HSCT. We performed a retrospective analysis of 78 children who received allogeneic HSCT over 3 years (2012-2014). Surveillance stool cultures were analyzed pre- and post-HSCT to assess correlations between organisms isolated from stool and CVC cultures. Twenty-four of 78 children experienced 31 BSIs. Fifteen (48%) of these isolates were identified in stool within 30 days of the positive blood culture, and 11 (36%) isolates met criteria for MBI-LCBI. Mucosal barrier injury leads to translocation of pathogenic organisms into the bloodstream and accounts for a significant number of BSIs in children undergoing HSCT. Nursing assessment of mucosal changes during HSCT and interventions to preserve intact mucosa are essential to prevent MBI-LCBI.

  20. Highly efficient ZnO/Au Schottky barrier dye-sensitized solar cells: Role of gold nanoparticles on the charge-transfer process

    Directory of Open Access Journals (Sweden)

    Tanujjal Bora

    2011-10-01

    Full Text Available Zinc oxide (ZnO nanorods decorated with gold (Au nanoparticles have been synthesized and used to fabricate dye-sensitized solar cells (DSSC. The picosecond-resolved, time-correlated single-photon-count (TCSPC spectroscopy technique was used to explore the charge-transfer mechanism in the ZnO/Au-nanocomposite DSSC. Due to the formation of the Schottky barrier at the ZnO/Au interface and the higher optical absorptions of the ZnO/Au photoelectrodes arising from the surface plasmon absorption of the Au nanoparticles, enhanced power-conversion efficiency (PCE of 6.49% for small-area (0.1 cm2 ZnO/Au-nanocomposite DSSC was achieved compared to the 5.34% efficiency of the bare ZnO nanorod DSSC. The TCSPC studies revealed similar dynamics for the charge transfer from dye molecules to ZnO both in the presence and absence of Au nanoparticles. A slower fluorescence decay associated with the electron recombination process, observed in the presence of Au nanoparticles, confirmed the blocking of the electron transfer from ZnO back to the dye or electrolyte by the Schottky barrier formed at the ZnO/Au interface. For large area DSSC (1 cm2, ~130% enhancement in PCE (from 0.50% to 1.16% was achieved after incorporation of the Au nanoparticles into the ZnO nanorods.

  1. Polarization Energies at Organic–Organic Interfaces: Impact on the Charge Separation Barrier at Donor–Acceptor Interfaces in Organic Solar Cells

    KAUST Repository

    Ryno, Sean

    2016-05-31

    We probe the energetic landscape at a model pentacene/fullerene-C60 interface to investigate the interactions between positive and negative charges, which are critical to the processes of charge separation and recombination in organic solar cells. Using a polarizable force field, we find that polarization energy, i.e. the stabilization a charge feels due to its environment, is larger at the interface than in the bulk for both a positive and a negative charge. The combination of the charge being more stabilized at the interface and the Coulomb attraction between the charges, results in a barrier to charge separation at the pentacene-C60 interface that can be in excess of 0.7 eV for static configurations of the donor and acceptor locations. However, the impact of molecular motions, i.e., the dynamics, at the interface at room temperature results in a distribution of polarization energies and in charge separation barriers that can be significantly reduced. The dynamic nature of the interface is thus critical, with the polarization energy distributions indicating that sites along the interface shift in time between favorable and unfavorable configurations for charge separation.

  2. GEC Student Award for Excellence Finalist: Interaction of Non-Thermal Dielectric Barrier Discharge Plasma with DNA inside Cells

    Science.gov (United States)

    Kalghatgi, Sameer; Kelly, Crystal; Fridman, Gregory; Clifford-Azizkhan, Jane; Fridman, Alexander; Friedman, Gary

    2008-10-01

    Direct non-thermal plasma is now being widely considered for various medical applications, viz; cancer treatment, coagulation, wound healing. However, the understanding of the interaction between non-thermal plasma and cells is lacking. Here we study the possibility that effects of the plasma treatment can penetrate though cellular membranes without destroying them. One of the most important of such effects to investigate would be DNA double strand breaks (DSB's) since these are some of the important events in a cell's life cycle. We measured DNA DSB's in mammalian cells using immunofluorescence and western blots. Hydrogen peroxide treatment was used as a positive control since it is known to induce massive DNA double strand breaks. The results indicate that short (5 seconds) direct plasma treatment at low power (0.2 W/cm^2) does produce DNA DSB's in mammalian cells. This means that somehow plasma penetrates inside the cells. Several questions arise about what is the mechanism of penetration and do the cells repair the DNA DSB's. We show that the cells do repair the DNA DSB's produced by short exposure of low power plasma. Although the detailed mechanisms are being investigated we confirmed that reactive oxygen species mediate interaction between plasma and DNA.

  3. Immuno-localization of type-IV collagen in the blood-gas barrier and the epithelial-epithelial cell connections of the avian lung.

    Science.gov (United States)

    Jimoh, S A; Maina, J N

    2013-02-23

    The terminal respiratory units of the gas exchange tissue of the avian lung, the air capillaries (ACs) and the blood capillaries (BCs), are small and rigid: the basis of this mechanical feature has been highly contentious. Because the strength of the blood-gas barrier (BGB) of the mammalian lung has been attributed to the presence of type-IV collagen (T-IVc), localization of T-IVc in the basement membranes (BM) of the BGB and the epithelial-epithelial cell connections (E-ECCs) of the exchange tissue of the lung of the avian (chicken) lung was performed in order to determine whether it may likewise contribute to the strength of the BGB. T-IVc was localized in both the BM and the E-ECCs. As part of an integrated fibroskeletal scaffold on the lung, T-IVc may directly contribute to the strengths of the ACs and the BCs.

  4. Immuno-localization of type-IV collagen in the blood-gas barrier and the epithelial–epithelial cell connections of the avian lung

    Science.gov (United States)

    Jimoh, S. A.; Maina, J. N.

    2013-01-01

    The terminal respiratory units of the gas exchange tissue of the avian lung, the air capillaries (ACs) and the blood capillaries (BCs), are small and rigid: the basis of this mechanical feature has been highly contentious. Because the strength of the blood-gas barrier (BGB) of the mammalian lung has been attributed to the presence of type-IV collagen (T-IVc), localization of T-IVc in the basement membranes (BM) of the BGB and the epithelial–epithelial cell connections (E-ECCs) of the exchange tissue of the lung of the avian (chicken) lung was performed in order to determine whether it may likewise contribute to the strength of the BGB. T-IVc was localized in both the BM and the E-ECCs. As part of an integrated fibroskeletal scaffold on the lung, T-IVc may directly contribute to the strengths of the ACs and the BCs. PMID:23193049

  5. Higher Molecular Weight Polyethylene Glycol Increases Cell Proliferation While Improving Barrier Function in an In Vitro Colon Cancer Model

    Directory of Open Access Journals (Sweden)

    Shruthi Bharadwaj

    2011-01-01

    Full Text Available Polyethylene glycol (PEG has been previously shown to protect against enteric pathogens and prevent colon cancer invasion. To determine if PEG could indeed protect against previously observed pro-invasive effects of commensal E. coli and EPEC, Caco-2 cells grown in an in vitro model of colon cancer were infected with strains of human commensal E. coli or EPEC and treated with 10% PEG 3350, PEG 8000, and PEG 20,000, respectively. At 24 hours after infection, MMP-1 and MMP-13 activities, cell cluster thickness, depth of invasion, and proliferation were determined using standard molecular biology techniques and advanced imaging. We found that higher molecular weight PEG, especially PEG 8000 and 20,000, regardless of bacterial infection, increased proliferation and depth of invasion although a decrease in cellular density and MMP-1 activity was also noted. Maximum proliferation and depth of invasion of Caco-2 cells was observed in scaffolds treated with a combination of commensal E. coli strain, HS4 and PEG 8000. In conclusion, we found that PEG 8000 increased cell proliferation and led to the preservation of cell density in cells treated with commensal bacteria. This is important, because the preservation of a proliferative response in colon cancer results in a more chemo-responsive tumor.

  6. Penetration through the Skin Barrier

    DEFF Research Database (Denmark)

    Nielsen, Jesper Bo; Benfeldt, Eva; Holmgaard, Rikke

    2016-01-01

    -through diffusion cells) as well as in vivo methods (microdialysis and microperfusion). Then follows a discussion with examples of how different characteristics of the skin (age, site and integrity) and of the penetrants (size, solubility, ionization, logPow and vehicles) affect the kinetics of percutaneous......The skin is a strong and flexible organ with barrier properties essential for maintaining homeostasis and thereby human life. Characterizing this barrier is the ability to prevent some chemicals from crossing the barrier while allowing others, including medicinal products, to pass at varying rates...

  7. Acute and chronic exposure to high levels of glucose modulates tight junction-associated epithelial barrier function in a renal tubular cell line.

    Science.gov (United States)

    Mongelli-Sabino, B M; Canuto, L P; Collares-Buzato, C B

    2017-11-01

    Type 2 diabetes mellitus (T2DM) is one of the most prevalent diseases worldwide. Diabetic nephropathy (DN) is a complication of diabetes and the mechanisms underlying onset and progression of this disease are not fully understood. It has been shown that hyperglycemia is an independent factor to predict the development of DN in individuals with T2DM, however, a link between high plasma glucose levels and renal tubular injuries in DN remains unknown. In this study, we investigated the effect of high levels of glucose (i.e. 180 or 360mg/dL) for up to 24h (acute) or over 72h (chronic) upon tight junction (TJ)-mediated epithelial barrier integrity of the kidney tubular cell line, MDCK. High levels of glucose (180 and 360mg/dL) induced a decrease in transepithelial electrical resistance associated with an increase in TJ cation selectivity at 24h or in TJ permeability to a paracellular marker, Lucifer Yellow, at 72h-exposure when compared to control group (exposed to 100mg/dL glucose). Immunofluorescence analyses showed that glucose treatment induced a significant decrease in the tight junctional content of claudins-1 and -3 as well as a significant increase in claudin-2 (particularly at 24h-exposure) and a time-dependent change in occludin/ZO-1 junctional content. The analyses of total cell content of these junctional proteins by Western blot did not reveal significant changes, except in claudin-2 expression. Our data suggest that high levels of glucose induce time-dependence changes in TJ structure in MDCK monolayers, suggesting a possible link between hyperglycemia-induced tubular epithelial barrier disruption and diabetic nephropathy. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Oxidative and pro-inflammatory impact of regular and denicotinized cigarettes on blood brain barrier endothelial cells: is smoking reduced or nicotine-free products really safe?

    Science.gov (United States)

    Naik, Pooja; Fofaria, Neel; Prasad, Shikha; Sajja, Ravi K; Weksler, Babette; Couraud, Pierre-Olivier; Romero, Ignacio A; Cucullo, Luca

    2014-04-23

    Both active and passive tobacco smoke (TS) potentially impair the vascular endothelial function in a causative and dose-dependent manner, largely related to the content of reactive oxygen species (ROS), nicotine, and pro-inflammatory activity. Together these factors can compromise the restrictive properties of the blood-brain barrier (BBB) and trigger the pathogenesis/progression of several neurological disorders including silent cerebral infarction, stroke, multiple sclerosis and Alzheimer's disease. Based on these premises, we analyzed and assessed the toxic impact of smoke extract from a range of tobacco products (with varying levels of nicotine) on brain microvascular endothelial cell line (hCMEC/D3), a well characterized human BBB model. Initial profiling of TS showed a significant release of reactive oxygen (ROS) and reactive nitrogen species (RNS) in full flavor, nicotine-free (NF, "reduced-exposure" brand) and ultralow nicotine products. This release correlated with increased oxidative cell damage. In parallel, membrane expression of endothelial tight junction proteins ZO-1 and occludin were significantly down-regulated suggesting the impairment of barrier function. Expression of VE-cadherin and claudin-5 were also increased by the ultralow or nicotine free tobacco smoke extract. TS extract from these cigarettes also induced an inflammatory response in BBB ECs as demonstrated by increased IL-6 and MMP-2 levels and up-regulation of vascular adhesion molecules, such as VCAM-1 and PECAM-1. In summary, our results indicate that NF and ultralow nicotine cigarettes are potentially more harmful to the BBB endothelium than regular tobacco products. In addition, this study demonstrates that the TS-induced toxicity at BBB ECs is strongly correlated to the TAR and NO levels in the cigarettes rather than the nicotine content.

  9. Dynamic genome wide expression profiling of Drosophila head development reveals a novel role of Hunchback in retinal glia cell development and blood-brain barrier integrity.

    Directory of Open Access Journals (Sweden)

    Montserrat Torres-Oliva

    2018-01-01

    Full Text Available Drosophila melanogaster head development represents a valuable process to study the developmental control of various organs, such as the antennae, the dorsal ocelli and the compound eyes from a common precursor, the eye-antennal imaginal disc. While the gene regulatory network underlying compound eye development has been extensively studied, the key transcription factors regulating the formation of other head structures from the same imaginal disc are largely unknown. We obtained the developmental transcriptome of the eye-antennal discs covering late patterning processes at the late 2nd larval instar stage to the onset and progression of differentiation at the end of larval development. We revealed the expression profiles of all genes expressed during eye-antennal disc development and we determined temporally co-expressed genes by hierarchical clustering. Since co-expressed genes may be regulated by common transcriptional regulators, we combined our transcriptome dataset with publicly available ChIP-seq data to identify central transcription factors that co-regulate genes during head development. Besides the identification of already known and well-described transcription factors, we show that the transcription factor Hunchback (Hb regulates a significant number of genes that are expressed during late differentiation stages. We confirm that hb is expressed in two polyploid subperineurial glia cells (carpet cells and a thorough functional analysis shows that loss of Hb function results in a loss of carpet cells in the eye-antennal disc. Additionally, we provide for the first time functional data indicating that carpet cells are an integral part of the blood-brain barrier. Eventually, we combined our expression data with a de novo Hb motif search to reveal stage specific putative target genes of which we find a significant number indeed expressed in carpet cells.

  10. Dynamic genome wide expression profiling of Drosophila head development reveals a novel role of Hunchback in retinal glia cell development and blood-brain barrier integrity

    Science.gov (United States)

    Torres-Oliva, Montserrat; Schneider, Julia; Wiegleb, Gordon

    2018-01-01

    Drosophila melanogaster head development represents a valuable process to study the developmental control of various organs, such as the antennae, the dorsal ocelli and the compound eyes from a common precursor, the eye-antennal imaginal disc. While the gene regulatory network underlying compound eye development has been extensively studied, the key transcription factors regulating the formation of other head structures from the same imaginal disc are largely unknown. We obtained the developmental transcriptome of the eye-antennal discs covering late patterning processes at the late 2nd larval instar stage to the onset and progression of differentiation at the end of larval development. We revealed the expression profiles of all genes expressed during eye-antennal disc development and we determined temporally co-expressed genes by hierarchical clustering. Since co-expressed genes may be regulated by common transcriptional regulators, we combined our transcriptome dataset with publicly available ChIP-seq data to identify central transcription factors that co-regulate genes during head development. Besides the identification of already known and well-described transcription factors, we show that the transcription factor Hunchback (Hb) regulates a significant number of genes that are expressed during late differentiation stages. We confirm that hb is expressed in two polyploid subperineurial glia cells (carpet cells) and a thorough functional analysis shows that loss of Hb function results in a loss of carpet cells in the eye-antennal disc. Additionally, we provide for the first time functional data indicating that carpet cells are an integral part of the blood-brain barrier. Eventually, we combined our expression data with a de novo Hb motif search to reveal stage specific putative target genes of which we find a significant number indeed expressed in carpet cells. PMID:29360820

  11. Treatment of poly(ethylene terephthalate) foils by atmospheric pressure air dielectric barrier discharge and its influence on cell growth

    Czech Academy of Sciences Publication Activity Database

    Kuzminova, A.; Vandrovcová, Marta; Shelemin, A.; Kylián, O.; Choukourov, A.; Hanuš, J.; Bačáková, Lucie; Slavínská, D.; Biederman, H.

    2015-01-01

    Roč. 357, part A (2015), s. 689-695 ISSN 0169-4332 R&D Projects: GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:67985823 Keywords : plasma treatment * DBD plasma * cells growth Subject RIV: JJ - Other Materials Impact factor: 3.150, year: 2015

  12. Interleukin 7 from maternal milk crosses the intestinal barrier and modulates T-cell development in offspring.

    Directory of Open Access Journals (Sweden)

    Richard Aspinall

    Full Text Available Breastfeeding protects against illnesses and death in hazardous environments, an effect partly mediated by improved immune function. One hypothesis suggests that factors within milk supplement the inadequate immune response of the offspring, but this has not been able to account for a series of observations showing that factors within maternally derived milk may supplement the development of the immune system through a direct effect on the primary lymphoid organs. In a previous human study we reported evidence suggesting a link between IL-7 in breast milk and the thymic output of infants. Here we report evidence in mice of direct action of maternally-derived IL-7 on T cell development in the offspring.We have used recombinant IL-7 labelled with a fluorescent dye to trace the movement in live mice of IL-7 from the stomach across the gut and into the lymphoid tissues. To validate the functional ability of maternally derived IL-7 we cross fostered IL-7 knock-out mice onto normal wild type mothers. Subsets of thymocytes and populations of peripheral T cells were significantly higher than those found in knock-out mice receiving milk from IL-7 knock-out mothers.Our study provides direct evidence that interleukin 7, a factor which is critical in the development of T lymphocytes, when maternally derived can transfer across the intestine of the offspring, increase T cell production in the thymus and support the survival of T cells in the peripheral secondary lymphoid tissue.

  13. Rapid transport of CCL11 across the blood-brain barrier: regional variation and importance of blood cells.

    Science.gov (United States)

    Erickson, Michelle A; Morofuji, Yoichi; Owen, Joshua B; Banks, William A

    2014-06-01

    Increased blood levels of the eotaxin chemokine C-C motif ligand 11 (CCL11) in aging were recently shown to negatively regulate adult hippocampal neurogenesis. How circulating CCL11 could affect the central nervous system (CNS) is not clear, but one possibility is that it can cross the blood-brain barrier (BBB). Here, we show that CCL11 undergoes bidirectional transport across the BBB. Transport of CCL11 from blood into whole brain (influx) showed biphasic kinetics, with a slow phase preceding a rapid phase of uptake. We found that the slow phase was explained by binding of CCL11 to cellular components in blood, whereas the rapid uptake phase was mediated by direct interactions with the BBB. CCL11, even at high doses, did not cause BBB disruption. All brain regions except striatum showed a delayed rapid-uptake phase. Striatum had only an early rapid-uptake phase, which was the fastest of any brain region. We also observed a slow but saturable transport system for CCL11 from brain to blood. C-C motif ligand 3 (CCR3), an important receptor for CCL11, did not facilitate CCL11 transport across the BBB, although high concentrations of a CCR3 inhibitor increased brain uptake without causing BBB disruption. Our results indicate that CCL11 in the circulation can access many regions of the brain outside of the neurogenic niche via transport across the BBB. This suggests that blood-borne CCL11 may have important physiologic functions in the CNS and implicates the BBB as an important regulator of physiologic versus pathologic effects of this chemokine.

  14. Proton conducting membranes prepared by incorporation of organophosphorus acids into alcohol barrier polymers for direct methanol fuel cells

    Science.gov (United States)

    Jiang, Zhongyi; Zheng, Xiaohong; Wu, Hong; Pan, Fusheng

    A novel type of DMFC membrane was developed via incorporation of organophosphorus acids (OPAs) into alcohol barrier materials (polyvinyl alcohol/chitosan, PVA/CS) to simultaneously acquire high proton conductivity and low methanol permeability. Three kinds of OPAs including amino trimethylene phosphonic acid (ATMP), ethylene diamine tetra(methylene phosphonic acid) (EDTMP) and hexamethylene diamine tetra(methylene phosphonic acid) (HDTMP), with different molecular structure and phosphonic acid groups content were added into PVA/CS blends and served the dual functions as proton conductor as well as crosslinker. The as-prepared OPA-doped PVA/CS membranes exhibited remarkably enhanced proton conducting ability, 2-4 times higher than that of the pristine PVA/CS membrane, comparable with that for Nafion ®117 membrane (5.04 × 10 -2 S cm -1). The highest proton conductivities 3.58 × 10 -2, 3.51 × 10 -2 and 2.61 × 10 -2 S cm -1 for ATMP-, EDTMP- and HDTMP-doped membranes, respectively were all achieved at highest initial OPA doping content (23.1 wt.%) at room temperature. The EDTMP-doped PVA/CS membrane with an acid content of 13.9 wt.% showed the lowest methanol permeability of 2.32 × 10 -7 cm 2 s -1 which was 16 times lower than that of Nafion ®117 membrane. In addition, the thermal stability and oxidative durability were both significantly improved by the incorporation of OPAs in comparison with pristine PVA/CS membranes.

  15. Proton conducting membranes prepared by incorporation of organophosphorus acids into alcohol barrier polymers for direct methanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Zhongyi; Zheng, Xiaohong; Wu, Hong; Pan, Fusheng [Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China)

    2008-10-15

    A novel type of DMFC membrane was developed via incorporation of organophosphorus acids (OPAs) into alcohol barrier materials (polyvinyl alcohol/chitosan, PVA/CS) to simultaneously acquire high proton conductivity and low methanol permeability. Three kinds of OPAs including amino trimethylene phosphonic acid (ATMP), ethylene diamine tetra(methylene phosphonic acid) (EDTMP) and hexamethylene diamine tetra(methylene phosphonic acid) (HDTMP), with different molecular structure and phosphonic acid groups content were added into PVA/CS blends and served the dual functions as proton conductor as well as crosslinker. The as-prepared OPA-doped PVA/CS membranes exhibited remarkably enhanced proton conducting ability, 2-4 times higher than that of the pristine PVA/CS membrane, comparable with that for Nafion {sup registered} 117 membrane (5.04 x 10{sup -2} S cm{sup -1}). The highest proton conductivities 3.58 x 10{sup -2}, 3.51 x 10{sup -2} and 2.61 x 10{sup -2} S cm{sup -1} for ATMP-, EDTMP- and HDTMP-doped membranes, respectively were all achieved at highest initial OPA doping content (23.1 wt.%) at room temperature. The EDTMP-doped PVA/CS membrane with an acid content of 13.9 wt.% showed the lowest methanol permeability of 2.32 x 10{sup -7} cm{sup 2} s{sup -1} which was 16 times lower than that of Nafion {sup registered} 117 membrane. In addition, the thermal stability and oxidative durability were both significantly improved by the incorporation of OPAs in comparison with pristine PVA/CS membranes. (author)

  16. Alternating Magnetic Field-Induced Hyperthermia Increases Iron Oxide Nanoparticle Cell Association/Uptake and Flux in Blood– Brain Barrier Models

    Science.gov (United States)

    Dan, Mo; Bae, Younsoo; Pittman, Thomas A.

    2016-01-01

    Purpose Superparamagnetic iron oxide nanoparticles (IONPs) are being investigated for brain cancer therapy because alternating magnetic field (AMF) activates them to produce hyperthermia. For central nervous system applications, brain entry of diagnostic and therapeutic agents is usually essential. We hypothesized that AMF-induced hyperthermia significantly increases IONP blood–brain barrier (BBB) association/uptake and flux. Methods Cross-linked nanoassemblies loaded with IONPs (CNA-IONPs) and conventional citrate-coated IONPs (citrate-IONPs) were synthesized and characterized in house. CNA-IONP and citrate-IONP BBB cell association/uptake and flux were studied using two BBB Transwell® models (bEnd.3 and MDCKII cells) after conventional and AMF-induced hyperthermia exposure. Results AMF-induced hyperthermia for 0.5 h did not alter CNA-IONP size but accelerated citrate-IONP agglomeration. AMF-induced hyperthermia for 0.5 h enhanced CNA-IONP and citrate-IONP BBB cell association/uptake. It also enhanced the flux of CNA-IONPs across the two in vitro BBB models compared to conventional hyperthermia and normothermia, in the absence of cell death. Citrate-IONP flux was not observed under these conditions. AMF-induced hyperthermia also significantly enhanced paracellular pathway flux. The mechanism appears to involve more than the increased temperature surrounding the CNA-IONPs. Conclusions Hyperthermia induced by AMF activation of CNA-IONPs has potential to increase the BBB permeability of therapeutics for the diagnosis and therapy of various brain diseases. PMID:25377069

  17. Circulating brain microvascular endothelial cells (cBMECs as potential biomarkers of the blood-brain barrier disorders caused by microbial and non-microbial factors.

    Directory of Open Access Journals (Sweden)

    Sheng-He Huang

    Full Text Available Despite aggressive research, central nervous system (CNS disorders, including blood-brain barrier (BBB injury caused by microbial infection, stroke, abused drugs [e.g., methamphetamine (METH and nicotine], and other pathogenic insults, remain the world's leading cause of disabilities. In our previous work, we found that dysfunction of brain microvascular endothelial cells (BMECs, which are a major component of the BBB, could be caused by nicotine, meningitic pathogens and microbial factors, including HIV-1 virulence factors gp41 and gp120. One of the most challenging issues in this area is that there are no available cell-based biomarkers in peripheral blood for BBB disorders caused by microbial and non-microbial insults. To identify such cellular biomarkers for BBB injuries, our studies have shown that mice treated with nicotine, METH and gp120 resulted in increased blood levels of CD146+(endothelial marker/S100B+ (brain marker circulating BMECs (cBMECs and CD133+[progenitor cell (PC marker]/CD146+ endothelial PCs (EPCs, along with enhanced Evans blue and albumin extravasation into the brain. Nicotine and gp120 were able to significantly increase the serum levels of ubiquitin C-terminal hydrolase 1 (UCHL1 (a new BBB marker as well as S100B in mice, which are correlated with the changes in cBMECs and EPCs. Nicotine- and meningitic E. coli K1-induced enhancement of cBMEC levels, leukocyte migration across the BBB and albumin extravasation into the brain were significantly reduced in alpha7 nAChR knockout mice, suggesting that this inflammatory regulator plays an important role in CNS inflammation and BBB disorders caused by microbial and non-microbial factors. These results demonstrated that cBMECs as well as EPCs may be used as potential cell-based biomarkers for indexing of BBB injury.

  18. Impact of commercial cigarette smoke condensate on brain tissue co-cultured with astrocytes and blood-brain barrier endothelial cells.

    Science.gov (United States)

    Lee, Seon-Bong; Kim, Ju-Hyeong; Cho, Myung-Haing; Choe, Eun-Sang; Kim, Kwang-Sik; Shim, Soon-Mi

    2017-01-01

    The purpose of the current study was to investigate the effect of two commercial cigarette smoke condensates (CCSC) on oxidative stress and cell cytotoxicity in human brain (T98G) or astrocytes (U-373 MG) in the presence of human brain microvascular endothelial cells (HBMEC). Cell viability of mono-culture of T98G or U-373 MG was markedly decreased in a concentration-dependent manner, and T98G was more susceptible than U-373 MG to CCSC exposure. Cytotoxicity was less prominent when T98G was co-cultured with HBMEC than when T98G was co-cultured with U-373 MG. Significant reduction in trans-epithelial electric resistance (TEER), a biomarker of cellular integrity was noted in HBMEC co-cultured with T98G (HBMEC-T98G co-culture) and U-373 MG co-cultured with T98G (U-373 MG-T98G co-culture) after 24 or 48 hr CCSC exposure, respectively. TEER value of U-373 MG co-cultured with T98G (79-84%) was higher than HBMEC co-cultured with T98G (62-63%) within 120-hr incubation with CCSC. Reactive oxygen species (ROS) generated by CCSC in mono-culture of T98G and U-373 MG reached highest levels at 4 and 16 mg/ml, respectively. ROS production by T98G fell when co-cultured with HBMEC or U-373MG. These findings suggest that adverse consequences of CCSC treatment on brain cells may be protected by blood-brain barrier or astrocytes, but with chronic exposure toxicity may be worsened due to destruction of cellular integrity.

  19. Adaptive Redox Response of Mesenchymal Stromal Cells to Stimulation with Lipopolysaccharide Inflammagen: Mechanisms of Remodeling of Tissue Barriers in Sepsis

    Science.gov (United States)

    2013-03-08

    ATPhG pathway is considered to be an evolutionarily developed pro-survival mechanism, which removes and processes damaged and misfolded proteins ...oxygenase 1 (HO1), and autophagy; and (iii) activation of autophagy in the LPS-challenged MSCs was to enable remodeling of the damaged cellular...obtained cell lysates were kept frozen at -80 oC until further analyses. The LPS-induced gene and protein expressions were determined by qRT-PCR

  20. Visualization of barriers and obstacles to molecular diffusion in live cells by spatial pair-cross-correlation in two dimensions.

    Science.gov (United States)

    Malacrida, Leonel; Hedde, Per Niklas; Ranjit, Suman; Cardarelli, Francesco; Gratton, Enrico

    2018-01-01

    Despite recent advances in optical super-resolution, we lack a method that can visualize the path followed by diffusing molecules in the cytoplasm or in the nucleus of cells. Fluorescence correlation spectroscopy (FCS) provides molecular dynamics at the single molecule level by averaging the behavior of many molecules over time at a single spot, thus achieving very good statistics but at only one point in the cell. Earlier image-based methods including raster-scan and spatiotemporal image correlation need spatial averaging over relatively large areas, thus compromising spatial resolution. Here, we use spatial pair-cross-correlation in two dimensions (2D-pCF) to obtain relatively high resolution images of molecular diffusion dynamics and transport in live cells. The 2D-pCF method measures the time for a particle to go from one location to another by cross-correlating the intensity fluctuations at specific points in an image. Hence, a visual map of the average path followed by molecules is created.

  1. Research Article Flavocoxid Protects Against Cadmium-Induced Disruption of the Blood-Testis Barrier and Improves Testicular Damage and Germ Cell Impairment in Mice.

    Science.gov (United States)

    Minutoli, Letteria; Micali, Antonio; Pisani, Antonina; Puzzolo, Domenico; Bitto, Alessandra; Rinaldi, Mariagrazia; Pizzino, Gabriele; Irrera, Natasha; Galfo, Federica; Arena, Salvatore; Pallio, Giovanni; Mecchio, Anna; Germanà, Antonino; Bruschetta, Daniele; Laurà, Rosaria; Magno, Carlo; Marini, Herbert; Squadrito, Francesco; Altavilla, Domenica

    2015-11-01

    Cadmium (Cd) causes male infertility. There is the need to identify safe treatments counteracting this toxicity. Flavocoxid is a flavonoid that induces a balanced inhibition of cyclooxygenase (COX)-1 and COX-2 peroxidase moieties and of 5-lipoxygenase (LOX) and has efficacy in the male genitourinary system. We investigated flavocoxid effects on Cd-induced testicular toxicity in mice. Swiss mice were divided into 4 groups: 2 control groups received 0.9% NaCl (vehicle; 1 ml/kg/day) or flavocoxid (20 mg/kg/day ip); 2 groups were challenged with cadmium chloride (CdCl2; 2 mg/kg/day ip) and administered with vehicle or flavocoxid. The treatment lasted for 1 or 2 weeks. The testes were processed for biochemical and morphological studies. CdCl2 increased phosphorylated extracellular signal-regulated kinase (p-ERK) 1/2, tumor necrosis factor (TNF)-α, COX-2, 5-LOX, malondialdehyde (MDA), B-cell-lymphoma (Bcl)-2-associated X protein (Bax), follicle-stimulating hormone (FSH), luteinizing hormone (LH), transforming growth factor (TGF) -β3, decreased Bcl-2, testosterone, inhibin-B, occludin, N-Cadherin, induced structural damages in the testis and disrupted the blood-testis barrier. Many TUNEL-positive germ cells and changes in claudin-11, occludin, and N-cadherin localization were present. Flavocoxid administration reduced, in a time-dependent way, p-ERK 1/2, TNF-α, COX-2, 5-LOX, MDA, Bax, FSH, LH, TGF-β3, augmented Bcl-2, testosterone, inhibin B, occludin, N-Cadherin, and improved the structural organization of the testis and the blood-testis barrier. Few TUNEL-positive germ cells were present and a morphological retrieval of the intercellular junctions was observed. In conclusion, flavocoxid has a protective anti-inflammatory, antioxidant, and antiapoptotic function against Cd-induced toxicity in mice testis. We suggest that flavocoxid may play a relevant positive role against environmental levels of Cd, otherwise deleterious to gametogenesis and tubular integrity.

  2. Dendritic cell CNS recruitment correlates with disease severity in EAE via CCL2 chemotaxis at the blood–brain barrier through paracellular transmigration and ERK activation

    Directory of Open Access Journals (Sweden)

    Sagar Divya

    2012-10-01

    Full Text Available Abstract Background Transmigration of circulating dendritic cells (DCs into the central nervous system (CNS across the blood–brain barrier (BBB has not thus far been investigated. An increase in immune cell infiltration across the BBB, uncontrolled activation and antigen presentation are influenced by chemokines. Chemokine ligand 2 (CCL2 is a potent chemoattractant known to be secreted by the BBB but has not been implicated in the recruitment of DCs specifically at the BBB. Methods Experimental autoimmune encephalomyelitis (EAE was induced in C57BL/6 mice by injection of MOG35–55 peptide and pertussis toxin intraperitoneally. Animals with increasing degree of EAE score were sacrificed and subjected to near-infrared and fluorescence imaging analysis to detect and localize the accumulation of CD11c+-labeled DCs with respect to CCL2 expression. To further characterize the direct effect of CCL2 in DC trafficking at the BBB, we utilized an in vitro BBB model consisting of human brain microvascular endothelial cells to compare migratory patterns of monocyte-derived dendritic cells, CD4+ and CD8+ T cells. Further, this model was used to image transmigration using fluorescence microcopy and to assess specific molecular signaling pathways involved in transmigration. Results Near-infrared imaging of DC transmigration correlated with the severity of inflammation during EAE. Ex vivo histology confirmed the presence of CCL2 in EAE lesions, with DCs emerging from perivascular spaces. DCs exhibited more efficient transmigration than T cells in BBB model studies. These observations correlated with transwell imaging, which indicated a paracellular versus transcellular pattern of migration by DCs and T cells. Moreover, at the molecular level, CCL2 seems to facilitate DC transmigration in an ERK1/2-dependent manner. Conclusion CNS recruitment of DCs correlates with disease severity in EAE via CCL2 chemotaxis and paracellular transmigration across the BBB

  3. Cell-based in vitro blood-brain barrier model can rapidly evaluate nanoparticles' brain permeability in association with particle size and surface modification.

    Science.gov (United States)

    Hanada, Sanshiro; Fujioka, Kouki; Inoue, Yuriko; Kanaya, Fumihide; Manome, Yoshinobu; Yamamoto, Kenji

    2014-01-24

    The possibility of nanoparticle (NP) uptake to the human central nervous system is a major concern. Recent reports showed that in animal models, nanoparticles (NPs) passed through the blood-brain barrier (BBB). For the safe use of NPs, it is imperative to evaluate the permeability of NPs through the BBB. Here we used a commercially available in vitro BBB model to evaluate the permeability of NPs for a rapid, easy and reproducible assay. The model is reconstructed by culturing both primary rat brain endothelial cells and pericytes to support the tight junctions of endothelial cells. We used the permeability coefficient (P(app)) to determine the permeability of NPs. The size dependency results, using fluorescent silica NPs (30, 100, and 400 nm), revealed that the Papp for the 30 nm NPs was higher than those of the larger silica. The surface charge dependency results using Qdots® (amino-, carboxyl-, and PEGylated-Qdots), showed that more amino-Qdots passed through the model than the other Qdots. Usage of serum-containing buffer in the model resulted in an overall reduction of permeability. In conclusion, although additional developments are desired to elucidate the NPs transportation, we showed that the BBB model could be useful as a tool to test the permeability of nanoparticles.

  4. TNAP and EHD1 are over-expressed in bovine brain capillary endothelial cells after the re-induction of blood-brain barrier properties.

    Directory of Open Access Journals (Sweden)

    Barbara Deracinois

    Full Text Available Although the physiological properties of the blood-brain barrier (BBB are relatively well known, the phenotype of the component brain capillary endothelial cells (BCECs has yet to be described in detail. Likewise, the molecular mechanisms that govern the establishment and maintenance of the BBB are largely unknown. Proteomics can be used to assess quantitative changes in protein levels and identify proteins involved in the molecular pathways responsible for cellular differentiation. Using the well-established in vitro BBB model developed in our laboratory, we performed a differential nano-LC MALDI-TOF/TOF-MS study of Triton X-100-soluble protein species from bovine BCECs displaying either limited BBB functions or BBB functions re-induced by glial cells. Due to the heterogeneity of the crude extract, we increased identification yields by applying a repeatable, reproducible fractionation process based on the proteins' relative hydrophobicity. We present proteomic and biochemical evidence to show that tissue non-specific alkaline phosphatase (TNAP and Eps15 homology domain-containing protein 1(EDH1 are over-expressed by bovine BCECs after the re-induction of BBB properties. We discuss the impact of these findings on current knowledge of endothelial and BBB permeability.

  5. Assessment of the Blood-Brain Barrier Permeability of Potential Neuroprotective Aurones in Parallel Artificial Membrane Permeability Assay and Porcine Brain Endothelial Cell Models.

    Science.gov (United States)

    Liew, Kok-Fui; Hanapi, Nur Aziah; Chan, Kit-Lam; Yusof, Siti R; Lee, Chong-Yew

    2017-02-01

    Previously, several aurone derivatives were identified with promising neuroprotective activities. In developing these compounds to target the central nervous system (CNS), an assessment of their blood-brain barrier (BBB) permeability was performed using in vitro BBB models: parallel artificial membrane permeability assay-BBB which measures passive permeability and primary porcine brain endothelial cell model which enables determination of the involvement of active transport mechanism. Parallel artificial membrane permeability assay-BBB identified most compounds with high passive permeability, with 3 aurones having exceptional P e values highlighting the importance of basic amine moieties and optimal lipophilicity for good passive permeability. Bidirectional permeability assays with porcine brain endothelial cell showed a significant net influx permeation of the aurones indicating a facilitated uptake mechanism in contrast to donepezil, a CNS drug included in the evaluation which only displayed passive permeation. From pH-dependent permeability assay coupled with data analysis using pCEL-X software, intrinsic transcellular permeability (P o ) of a representative aurone 4-3 was determined, considering factors such as the aqueous boundary layer that may hinder accurate in vitro to in vivo correlation. The P o  value determined supported the in vivo feasibility of the aurone as a CNS-active compound. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  6. Structural Elucidation of the Cell-Penetrating Penetratin Peptide in Model Membranes at the Atomic Level: Probing Hydrophobic Interactions in the Blood-Brain Barrier.

    Science.gov (United States)

    Bera, Swapna; Kar, Rajiv K; Mondal, Susanta; Pahan, Kalipada; Bhunia, Anirban

    2016-09-06

    Cell-penetrating peptides (CPPs) have shown promise in nonpermeable therapeutic drug delivery, because of their ability to transport a variety of cargo molecules across the cell membranes and their noncytotoxicity. Drosophila antennapedia homeodomain-derived CPP penetratin (RQIKIWFQNRRMKWKK), being rich in positively charged residues, has been increasingly used as a potential drug carrier for various purposes. Penetratin can breach the tight endothelial network known as the blood-brain barrier (BBB), permitting treatment of several neurodegenerative maladies, including Alzheimer's disease, Parkinson's disease, and Huntington's disease. However, a detailed structural understanding of penetratin and its mechanism of action is lacking. This study defines structural features of the penetratin-derived peptide, DK17 (DRQIKIWFQNRRMKWKK), in several model membranes and describes a membrane-induced conformational transition of the DK17 peptide in these environments. A series of biophysical experiments, including high-resolution nuclear magnetic resonance spectroscopy, provides the three-dimensional structure of DK17 in different membranes mimicking the BBB or total brain lipid extract. Molecular dynamics simulations support the experimental results showing preferential binding of DK17 to particular lipids at atomic resolution. The peptide conserves the structure of the subdomain spanning residues Ile6-Arg11, despite considerable conformational variation in different membrane models. In vivo data suggest that the wild type, not a mutated sequence, enters the central nervous system. Together, these data highlight important structural and functional attributes of DK17 that could be utilized in drug delivery for neurodegenerative disorders.

  7. Diffuse and persistent blood-spinal cord barrier disruption after contusive spinal cord injury rapidly recovers following intravenous infusion of bone marrow mesenchymal stem cells.

    Science.gov (United States)

    Matsushita, Takashi; Lankford, Karen L; Arroyo, Edgardo J; Sasaki, Masanori; Neyazi, Milad; Radtke, Christine; Kocsis, Jeffery D

    2015-05-01

    Intravenous infusion of mesenchymal stem cells (MSCs) has been shown to reduce the severity of experimental spinal cord injury (SCI), but mechanisms are not fully understood. One important consequence of SCI is damage to the microvasculature and disruption of the blood spinal cord barrier (BSCB). In the present study we induced a contusive SCI at T9 in the rat and studied the effects of intravenous MSC infusion on BSCB permeability, microvascular architecture and locomotor recovery over a 10week period. Intravenously delivered MSCs could not be identified in the spinal cord, but distributed primarily to the lungs where they survived for a couple of days. Spatial and temporal changes in BSCB integrity were assessed by intravenous infusions of Evans blue (EvB) with in vivo and ex vivo optical imaging and spectrophotometric quantitation of EvB leakage into the parenchyma. SCI resulted in prolonged BSCB leakage that was most severe at the impact site but disseminated extensively rostral and caudal to the lesion over 6weeks. Contused spinal cords also showed an increase in vessel size, reduced vessel number, dissociation of pericytes from microvessels and decreases in von Willebrand factor (vWF) and endothelial barrier antigen (EBA) expression. In MSC-treated rats, BSCB leakage was reduced, vWF expression was increased and locomotor function improved beginning 1 week post-MSC infusion, i.e., 2weeks post-SCI. These results suggest that intravenously delivered MSCs have important effects on reducing BSCB leakage which could contribute to their therapeutic efficacy. Copyright © 2015. Published by Elsevier Inc.

  8. TiO 2 Conduction Band Modulation with In 2 O 3 Recombination Barrier Layers in Solid-State Dye-Sensitized Solar Cells

    KAUST Repository

    Brennan, Thomas P.

    2013-11-21

    Atomic layer deposition (ALD) was used to grow subnanometer indium oxide recombination barriers in a solid-state dye-sensitized solar cell (DSSC) based on the spiro-OMeTAD hole-transport material (HTM) and the WN1 donor-π-acceptor organic dye. While optimal device performance was achieved after 3-10 ALD cycles, 15 ALD cycles (∼2 Å of In2O 3) was observed to be optimal for increasing open-circuit voltage (VOC) with an average improvement of over 100 mV, including one device with an extremely high VOC of 1.00 V. An unexpected phenomenon was observed after 15 ALD cycles: the increasing VOC trend reversed, and after 30 ALD cycles VOC dropped by over 100 mV relative to control devices without any In2O3. To explore possible causes of the nonmonotonic behavior resulting from In2O3 barrier layers, we conducted several device measurements, including transient photovoltage experiments and capacitance measurements, as well as density functional theory (DFT) studies. Our results suggest that the VOC gains observed in the first 20 ALD cycles are due to both a surface dipole that pulls up the TiO2 conduction band and recombination suppression. After 30 ALD cycles, however, both effects are reversed: the surface dipole of the In2O3 layer reverses direction, lowering the TiO 2 conduction band, and mid-bandgap states introduced by In 2O3 accelerate recombination, leading to a reduced V OC. © 2013 American Chemical Society.

  9. Early alterations of Hedgehog signaling pathway in vascular endothelial cells after peripheral nerve injury elicit blood-nerve barrier disruption, nerve inflammation, and neuropathic pain development.

    Science.gov (United States)

    Moreau, Nathan; Mauborgne, Annie; Bourgoin, Sylvie; Couraud, Pierre-Olivier; Romero, Ignacio A; Weksler, Babette B; Villanueva, Luis; Pohl, Michel; Boucher, Yves

    2016-04-01

    Changes in the nerve's microenvironment and local inflammation resulting from peripheral nerve injury participate in nerve sensitization and neuropathic pain development. Taking part in these early changes, disruption of the blood-nerve barrier (BNB) allows for infiltration of immunocytes and promotes the neuroinflammation. However, molecular mechanisms engaged in vascular endothelial cells (VEC) dysfunction and BNB alterations remain unclear. In vivo, BNB permeability was assessed following chronic constriction injury (CCI) of the rat sciatic nerve (ScN) and differential expression of markers of VEC functional state, inflammation, and intracellular signaling was followed from 3 hours to 2 months postinjury. Several mechanisms potentially involved in functional alterations of VEC were evaluated in vitro using human VEC (hCMEC/D3), then confronted to in vivo physiopathological conditions. CCI of the ScN led to a rapid disruption of endoneurial vascular barrier that was correlated to a decreased production of endothelial tight-junction proteins and an early and sustained alteration of Hedgehog (Hh) signaling pathway. In vitro, activation of Toll-like receptor 4 in VEC downregulated the components of Hh pathway and altered the endothelial functional state. Inhibition of Hh signaling in the ScN of naive rats mimicked the biochemical and functional alterations observed after CCI and was, on its own, sufficient to evoke local neuroinflammation and sustained mechanical allodynia. Alteration of the Hh signaling pathway in VEC associated with peripheral nerve injury, is involved in BNB disruption and local inflammation, and could thus participate in the early changes leading to the peripheral nerve sensitization and, ultimately, neuropathic pain development.

  10. Reactivation of Endogenous Genes and Epigenetic Remodeling Are Barriers for Generating Transgene-Free Induced Pluripotent Stem Cells in Pig.

    Science.gov (United States)

    Choi, Kwang-Hwan; Park, Jin-Kyu; Son, Dongchan; Hwang, Jae Yeon; Lee, Dong-Kyung; Ka, Hakhyun; Park, Joonghoon; Lee, Chang-Kyu

    2016-01-01

    Cellular reprogramming of committed cells into a pluripotent state can be induced by ectopic expression of genes such as OCT4, SOX2, KLF4, and MYC. Reprogrammed cells can be maintained by activating endogenous pluripotent networks without transgene expression. Although various research groups have attempted to generate pig induced pluripotent stem cells (iPSCs), authentic iPSCs have not be obtained, instead showing dependence on transgene expression. In this study, iPSCs were derived from porcine fetal fibroblasts via drug-inducible vectors carrying human transcription factors (OCT4, SOX2, KLF4, and MYC). Therefore, this study investigated characteristics of iPSCs and reprogramming mechanisms in pig. The iPSCs were stably maintained over an extended period with potential in vitro differentiation into three germ layers. In addition, the pluripotent state of iPSCs was regulated by modulating culture conditions. They showed naive- or primed-like pluripotent states in LIF or bFGF supplemented culture conditions, respectively. However, iPSCs could not be maintained without ectopic expression of transgenes. The cultured iPSCs expressed endogenous transcription factors such as OCT4 and SOX2, but not NANOG (a known gateway to complete reprogramming). Endogenous genes related to mesenchymal-to-epithelial transition (DPPA2, CDH1, EPCAM, and OCLN) were not sufficiently reactivated, as measured by qPCR. DNA methylation analysis for promoters of OCT4, NANOG, and XIST showed that epigenetic reprogramming did not occur in female iPSCs. Based on our results, expression of exogenous genes could not sufficiently activate the essential endogenous genes and remodel the epigenetic milieu to achieve faithful pluripotency in pig. Accordingly, investigating iPSCs could help us improve and develop reprogramming methods by understanding reprogramming mechanisms in pig.

  11. Corticotropin-releasing hormone and mast cells in the regulation of mucosal barrier function in the human colon.

    Science.gov (United States)

    Wallon, Conny; Söderholm, Johan D

    2009-05-01

    Corticotropin-releasing hormone (CRH) is an important neuro-endocrine mediator of the stress response. Local effects of CRH in the intestinal mucosa have become evident in recent years. We showed that CRH activates CRH receptor subtypes R1 and R2 on subepithelial mast cells, thereby inducing increased transcellular uptake of protein antigens in human colonic biopsies in Ussing chambers. Ongoing studies also implicate local cholinergic signaling in regulation of macromolecular permeability in the human colon. Since increased uptake of antigenic molecules is associated with mucosal inflammation, our findings may have implications for understanding stress-related intestinal disorders.

  12. Inflammation Modulates RLIP76/RALBP1 Electrophile-Glutathione Conjugate Transporter and Housekeeping Genes in Human Blood-Brain Barrier Endothelial Cells.

    Directory of Open Access Journals (Sweden)

    Barbara Bennani-Baiti

    Full Text Available Endothelial cells are often present at inflammation sites. This is the case of endothelial cells of the blood-brain barrier (BBB of patients afflicted with neurodegenerative disorders such as Alzheimer's, Parkinson's, or multiple sclerosis, as well as in cases of bacterial meningitis, trauma, or tumor-associated ischemia. Inflammation is a known modulator of gene expression through the activation of transcription factors, mostly NF-κB. RLIP76 (a.k.a. RALBP1, an ATP-dependent transporter of electrophile-glutathione conjugates, modulates BBB permeability through the regulation of tight junction function, cell adhesion, and exocytosis. Genes and pathways regulated by RLIP76 are transcriptional targets of tumor necrosis factor alpha (TNF-α pro-inflammatory molecule, suggesting that RLIP76 may also be an inflammation target. To assess the effects of TNF-α on RLIP76, we faced the problem of choosing reference genes impervious to TNF-α. Since such genes were not known in human BBB endothelial cells, we subjected these to TNF-α, and measured by quantitative RT-PCR the expression of housekeeping genes commonly used as reference genes. We find most to be modulated, and analysis of several inflammation datasets as well as a metaanalysis of more than 5000 human tissue samples encompassing more than 300 cell types and diseases show that no single housekeeping gene may be used as a reference gene. Using three different algorithms, however, we uncovered a reference geneset impervious to TNF-α, and show for the first time that RLIP76 expression is induced by TNF-α and follows the induction kinetics of inflammation markers, suggesting that inflammation can influence RLIP76 expression at the BBB. We also show that MRP1 (a.k.a. ABCC1, another electrophile-glutathione transporter, is not modulated in the same cells and conditions, indicating that RLIP76 regulation by TNF-α is not a general property of glutathione transporters. The reference geneset

  13. Interleukin 6-Mediated Endothelial Barrier Disturbances Can Be Attenuated by Blockade of the IL6 Receptor Expressed in Brain Microvascular Endothelial Cells.

    Science.gov (United States)

    Blecharz-Lang, Kinga G; Wagner, Josephin; Fries, Alexa; Nieminen-Kelhä, Melina; Rösner, Jörg; Schneider, Ulf C; Vajkoczy, Peter

    2018-02-10

    Compromised blood-brain barrier (BBB) by dysregulation of cellular junctions is a hallmark of many cerebrovascular disorders due to the pro-inflammatory cytokines action. Interleukin 6 (IL6) is implicated in inflammatory processes and in secondary brain injury after subarachnoid hemorrhage (SAH) but its role in the maintenance of cerebral endothelium still requires a precise elucidation. Although IL6 has been shown to exert pro-inflammatory action on brain microvascular endothelial cells (ECs), the expression of one of the IL6 receptors, the IL6R is controversially discussed. In attempt to reach more clarity in this issue, we present here an evident baseline expression of the IL6R in BBB endothelium in vivo and in an in vitro model of the BBB, the cEND cell line. A significantly increased expression of IL6R and its ligand was observed in BBB capillaries 2 days after experimental SAH in mice. In vitro, we saw IL6 administration resulting in an intracellular and extracellular elevation of IL6 protein, which was accompanied by a reduced expression of tight and adherens junctions, claudin-5, occludin, and vascular-endothelial (VE-) cadherin. By functional assays, we could demonstrate IL6-incubated brain ECs to lose their endothelial integrity that can be attenuated by inhibiting the IL6R. Blockade of the IL6R by a neutralizing antibody has reconstituted the intercellular junction expression to the control level and caused a restoration of the transendothelial electrical resistance of the cEND cell monolayer. Our findings add depth to the current understanding of the involvement of the endothelial IL6R in the loss of EC integrity implicating potential therapy options.

  14. Correlation of Ultrastructural Changes of Endothelial Cells and Astrocytes Occurring during Blood Brain Barrier Damage after Traumatic Brain Injury with Biochemical Markers of Blood Brain Barrier Leakage and Inflammatory Response

    Czech Academy of Sciences Publication Activity Database

    Vajtr, D.; Benada, Oldřich; Kukačka, J.; Průša, R.; Houšťava, L.; Toupalík, P.; Kizek, R.

    2009-01-01

    Roč. 58, č. 2 (2009), s. 263-268 ISSN 0862-8408 Institutional research plan: CEZ:AV0Z50200510 Keywords : Blood brain barrier * Expansive contusion * Metalloproteinases Subject RIV: EE - Microbiology, Virology Impact factor: 1.430, year: 2009

  15. Mast Cell Tryptase Reduces Junctional Adhesion Molecule-A (JAM-A) Expression in Intestinal Epithelial Cells: Implications for the Mechanisms of Barrier Dysfunction in Irritable Bowel Syndrome.

    LENUS (Irish Health Repository)

    Wilcz-Villega, Ewa M

    2013-07-01

    The objective of this study was to investigate how mast cell tryptase may influence intestinal permeability and tight junction (TJ) proteins in vitro and explore translation to irritable bowel syndrome (IBS).

  16. Long distance relationships : the secret for fuel cell success? fuel cell developers and integrators form trans-oceanic partnerships to crash through cultural barriers

    International Nuclear Information System (INIS)

    Horwitz, J.

    2009-01-01

    The varieties of viable fuel cell applications and widely varying regional market conditions have created global partnerships among entities with complementary attributes. Although it may appear that domestic liaisons among culturally similar players spawned from industry clusters should provide the clearest route to success in this industry, it is the intercontinental groupings which are demonstrating the most potential. This paper discussed the global fuel cell challenge and the vertical integration of multi-national partnerships. The paper also discussed the current global stationary market in perspective. Fuel cells require unique maintenance, support, and refueling including operator instruction and a new supply infrastructure. The paper addressed the fact that fuel cells represent a disruptive technology. A telecom backup status report was also presented. Other topics that were discussed included developing markets as well as specific examples of global organizations such as Canadian Ballard and Danish Dantherm Power and their fuel cell application solutions. It was concluded that after an inconsistent history, fuel cells have finally achieved viability in the real world. However, there is significant cultural resistance to their implementation in the United States. 4 figs

  17. Energy Systems Based on Polyacetylene: Rechargeable Batteries and Schottky Barrier Solar Cells. Final Report, March 1, 1981-February 29, 1984

    Science.gov (United States)

    MacDiarmid, A. G.

    1984-02-01

    The chief thrust of the research has been directed towards the evaluation of polyacetylene (CH){sub x}, the prototype conducting polymer as an electrode- active material in novel, rechargeable batteries employing nonaqueous electrolytes. The p-doped material, [(CH{sup +y})A{sub y}{sup -}]{sub x}, (where A{sup -} is an anion) in conjunction with a Li anode, shows excellent discharge characteristics, e.g., very little change in discharge voltage with change in discharge current and a high power density. Its energy density is also good but it shows poor shelf life. When (CH){sub x} is used as a cathode (Li anode), which results in the formation of the n-doped polymer, [Li{sub y} {sup +}(CH/sup -y/)]{sub x}, during discharge, good discharge plateaus and power densities are obtained together with excellent shelf life and good recyclability. The energy density is, however only moderate. Cells employing an [M{sub y}{sup +}(CH/sup -y/)]{sub x} (where M = Li, Na) anode and a TiS{sub 2} cathode show very good discharge and recycling characteristics but their energy density is poor.

  18. Skin Barrier Function and Allergens

    DEFF Research Database (Denmark)

    Engebretsen, Kristiane Aasen; Thyssen, Jacob Pontoppidan

    2016-01-01

    and skin barrier status. Psoriasis has traditionally been regarded a Th1-dominated disease, but the discovery of Th17 cells and IL-17 provides new and interesting information regarding the pathogenesis of the disease. Research suggests an inverse relationship between psoriasis and CA, possibly due......The skin is an important barrier protecting us from mechanical insults, microorganisms, chemicals and allergens, but, importantly, also reducing water loss. A common hallmark for many dermatoses is a compromised skin barrier function, and one could suspect an elevated risk of contact sensitization...... to increased levels of Th17 cells and its associated cytokines. As for AD, a positive association to CS has been established in epidemiological studies, but is still unresolved. Experimental studies show, however, an inverse relationship between AD and CS. The opposing and antagonistic influences of Th1 (CS...

  19. Mesenchymal stem cell transplantation attenuates blood brain barrier damage and neuroinflammation and protects dopaminergic neurons against MPTP toxicity in the substantia nigra in a model of Parkinson's disease.

    Science.gov (United States)

    Chao, Yin Xia; He, Bei Ping; Tay, Samuel Sam Wah

    2009-11-30

    Immunomodulatory effects of transplanted mesenchymal stem cells (MSCs) in the treatment of Parkinson's disease were studied in the MPTP-induced mouse model. MPTP treatment induced a significant loss of dopaminergic neurons, decreased expressions of claudin 1, claudin 5 and occludin in the substantia nigra compacta (SNc), and functional damage of the blood brain barrier (BBB). Our study further discovered that infiltration of MBLs into the brain to bind with microglia was detected in the SNc of MPTP-treated mice, suggesting that the BBB compromise and MBL infiltration might be involved in the pathogenesis of MPTP-induced PD. In addition, MPTP treatment also increased the expression of mannose-binding lectins (MBLs) in the liver tissue. Intravenous transplantation of MSCs into MPTP-treated mice led to recovery of BBB integrity, suppression of MBL infiltration at SNc and MBL expression in the liver, suppression of microglial activation and prevention of dopaminergic neuron death. No transplanted MSCs were observed to differentiate into dopaminergic neurons, while the MSCs migrated into the SNc and released TGF-beta1 there. Therefore, intravenous transplantation of MSCs which protect dopaminergic neurons from MPTP toxicity may be engaged in anyone or a combination of these mechanisms: repair of the BBB, reduction of MBL in the brain, inhibition of microglial cytotoxicity, and direct protection of dopaminergic neurons.

  20. Understanding the role of silica nanospheres with their light scattering and energy barrier properties in enhancing the photovoltaic performance of ZnO based solar cells.

    Science.gov (United States)

    Banik, Avishek; Ansari, Mohammad Shaad; Sahu, Tushar Kanta; Qureshi, Mohammad

    2016-10-12

    The present study discusses the design and development of a dye sensitized solar cell (DSSC) using a hybrid composite of ZnO nanoparticles (ZnO NP) and silica nanospheres (SiO 2 NS). A ≈22% enhancement in the overall power conversion efficiency (PCE, η) was observed for the device fabricated with a binary hybrid composite of 1 wt% SiO 2 NS and ZnO NP compared to the pristine ZnO NP device. A systematic investigation revealed the dual function of the silica nanospheres in enhancing the device efficacy compared to the bare ZnO NP based device. Sub-micron sized SiO 2 NS can boost the light harvesting efficiency of the photoanode by optical confinement, resulting in increased propagation length of the incident light by multiple internal reflections, which was confirmed by UV-Vis diffused reflectance spectroscopy. Electrochemical impedance spectroscopic (EIS) analysis showed a reduced recombination of photo-generated electrons to the I - /I 3 - redox shuttle in the case of the composite photoanode. The higher recombination resistance (R ct ) in the case of a 1 wt% composite indicates that the SiO 2 NS serves as a partial energy barrier layer to retard the interfacial recombination (back transfer) of photo-generated electrons at the working electrode/electrolyte interface, increasing the device efficiency.

  1. Caveolin1 Is Required for Th1 Cell Infiltration, but Not Tight Junction Remodeling, at the Blood-Brain Barrier in Autoimmune Neuroinflammation

    Directory of Open Access Journals (Sweden)

    Sarah E. Lutz

    2017-11-01

    Full Text Available Lymphocytes cross vascular boundaries via either disrupted tight junctions (TJs or caveolae to induce tissue inflammation. In the CNS, Th17 lymphocytes cross the blood-brain barrier (BBB before Th1 cells; yet this differential crossing is poorly understood. We have used intravital two-photon imaging of the spinal cord in wild-type and caveolae-deficient mice with fluorescently labeled endothelial tight junctions to determine how tight junction remodeling and caveolae regulate CNS entry of lymphocytes during the experimental autoimmune encephalomyelitis (EAE model for multiple sclerosis. We find that dynamic tight junction remodeling occurs early in EAE but does not depend upon caveolar transport. Moreover, Th1, but not Th17, lymphocytes are significantly reduced in the inflamed CNS of mice lacking caveolae. Therefore, tight junction remodeling facilitates Th17 migration across the BBB, whereas caveolae promote Th1 entry into the CNS. Moreover, therapies that target both tight junction degradation and caveolar transcytosis may limit lymphocyte infiltration during inflammation.

  2. DC-pulse atmospheric-pressure plasma jet and dielectric barrier discharge surface treatments on fluorine-doped tin oxide for perovskite solar cell application

    Science.gov (United States)

    Tsai, Jui-Hsuan; Cheng, I.-Chun; Hsu, Cheng-Che; Chen, Jian-Zhang

    2018-01-01

    Nitrogen DC-pulse atmospheric-pressure plasma jet (APPJ) and nitrogen dielectric barrier discharge (DBD) were applied to pre-treat fluorine-doped tin oxide (FTO) glass substrates for perovskite solar cells (PSCs). Nitrogen DC-pulse APPJ treatment (substrate temperature: ~400 °C) for 10 s can effectively increase the wettability, whereas nitrogen DBD treatment (maximum substrate temperature: ~140 °C) achieved limited improvement in wettability even with increased treatment time of 60 s. XPS results indicate that 10 s APPJ, 60 s DBD, and 15 min UV-ozone treatment of FTO glass substrates can decontaminate the surface. A PSC fabricated on APPJ-treated FTO showed the highest power conversion efficiency (PCE) of 14.90%; by contrast, a PSC with nitrogen DBD-treated FTO shows slightly lower PCE of 12.57% which was comparable to that of a PSC on FTO treated by a 15 min UV-ozone process. Both nitrogen DC-pulse APPJ and nitrogen DBD can decontaminate FTO substrates and can be applied for the substrate cleaning step of PSC.

  3. The Blood-Brain Barrier Permeability of Six Indole Alkaloids from Uncariae Ramulus Cum Uncis in the MDCK-pHaMDR Cell Monolayer Model

    Directory of Open Access Journals (Sweden)

    Yi-Nan Zhang

    2017-11-01

    Full Text Available Uncariae Ramulus Cum Uncis (URCU is a widely used traditional Chinese medicine, and is reported to have various central nervous system effects. Alkaloids have been demonstrated to be the predominant pharmacological active components of URCU. In order to evaluate the blood-brain barrier (BBB permeability and transport mechanism of six typical indole alkaloids from URCU, the MDCK-pHaMDR cell monolayer model was used as an in vitro surrogate model for BBB. The samples were analyzed by high-performance liquid chromatography, and the apparent permeability coefficients (Papp were calculated. Among the six alkaloids, isorhynchophylline (2, isocorynoxeine (4, hirsutine (5 and hirsuteine (6 showed high permeability, with Papp values at 10−5 cm/s level in bidirectional transport. For rhynchophylline (1 and corynoxeine (3, they showed moderate permeability, with Papp values from the apical (AP side to the basolateral (BL side at 10−6 cm/s level and efflux ratio (Papp BL→AP/Papp AP→BL above 2. The time- and concentration-dependency experiments indicated that the main mechanism for 2, 4, 5 and 6 through BBB was passive diffusion. The efflux mechanism involved in the transports of compounds 1 and 3 could be reduced significantly by verapamil, and molecular docking screening also showed that 1 and 3 had strong bindings to P-glycoprotein. This study provides useful information for predicting the BBB permeability for 1–6, as well as better understanding of their central nervous system pharmacological activities.

  4. Blood-brain barrier permeability and neuroprotective effects of three main alkaloids from the fruits of Euodia rutaecarpa with MDCK-pHaMDR cell monolayer and PC12 cell line.

    Science.gov (United States)

    Zhang, Yi-Nan; Yang, Yan-Fang; Yang, Xiu-Wei

    2018-02-01

    The fruits of Euodia rutaecarpa (Euodiae Fructus, EF), the widely used traditional Chinese medicine, have various central nervous system effects. Alkaloids following as evodiamine (EDM), rutaecarpine (RCP) and dehydroevodiamine (DEDM) are the major substances in EF. The MDCK-pHaMDR cell monolayer model was utilized as a blood-brain barrier (BBB) surrogate model to study their BBB permeability. The transport samples were analyzed by high performance liquid chromatography and the apparent permeability coefficients (P app ) were calculated. EDM and RCP showed high permeability through BBB by passive diffusion, while DEDM showed moderate permeability with efflux mechanism related to P-glycoprotein (P-gp). EDM and RCP could also reduce the efflux of DEDM probably by inhibiting P-gp. The neuroprotective effects of the three alkaloids were then studied on the PC12 cell line injured by 1-methyl-4-phenylpyridinium ion (MPP + ) or hydrogen peroxide (H 2 O 2 ). EDM could significantly reduce MPP + or H 2 O 2 -induced cell injury dose-dependently. RCP could increase the cell viability in MPP + treated group while DEDM showed a protective effect against H 2 O 2 injury. This study predicted the permeability of EDM, RCP and DEDM through BBB and discovered the neuroprotective substance basis of EF as a potential encephalopathy drug. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  5. Gliovascular and cytokine interactions modulate brain endothelial barrier in vitro.

    Science.gov (United States)

    Chaitanya, Ganta V; Cromer, Walter E; Wells, Shannon R; Jennings, Merilyn H; Couraud, P Olivier; Romero, Ignacio A; Weksler, Babette; Erdreich-Epstein, Anat; Mathis, J Michael; Minagar, Alireza; Alexander, J Steven

    2011-11-23

    The glio-vascular unit (G-unit) plays a prominent role in maintaining homeostasis of the blood-brain barrier (BBB) and disturbances in cells forming this unit may seriously dysregulate BBB. The direct and indirect effects of cytokines on cellular components of the BBB are not yet unclear. The present study compares the effects of cytokines and cytokine-treated astrocytes on brain endothelial barrier. 3-dimensional transwell co-cultures of brain endothelium and related-barrier forming cells with astrocytes were used to investigate gliovascular barrier responses to cytokines during pathological stresses. Gliovascular barrier was measured using trans-endothelial electrical resistance (TEER), a sensitive index of in vitro barrier integrity. We found that neither TNF-α, IL-1β or IFN-γ directly reduced barrier in human or mouse brain endothelial cells or ECV-304 barrier (independent of cell viability/metabolism), but found that astrocyte exposure to cytokines in co-culture significantly reduced endothelial (and ECV-304) barrier. These results indicate that the barrier established by human and mouse brain endothelial cells (and other cells) may respond positively to cytokines alone, but that during pathological conditions, cytokines dysregulate the barrier forming cells indirectly through astrocyte activation involving reorganization of junctions, matrix, focal adhesion or release of barrier modulating factors (e.g. oxidants, MMPs). © 2011 Chaitanya et al; licensee BioMed Central Ltd.

  6. Short-Chain Fatty Acids Activate AMP-Activated Protein Kinase and Ameliorate Ethanol-Induced Intestinal Barrier Dysfunction in Caco-2 Cell Monolayers

    NARCIS (Netherlands)

    Eamin, E.E.; Masclee, A.A.; Dekker, J.; Pieters, H.J.; Jonkers, D.M.

    2013-01-01

    Short-chain fatty acids (SCFAs) have been shown to promote intestinal barrier function, but their protective effects against ethanol-induced intestinal injury and underlying mechanisms remain essentially unknown. The aim of the study was to analyze the influence of SCFAs on ethanol-induced barrier

  7. Cell-Penetrating CaCO3 Nanocrystals for Improved Transport of NVP-BEZ235 across Membrane Barrier in T-Cell Lymphoma

    Directory of Open Access Journals (Sweden)

    Viviana Vergaro

    2018-01-01

    Full Text Available Owing to their nano-sized porous structure, CaCO3 nanocrystals (CaCO3NCs hold the promise to be utilized as desired materials for encapsulating molecules which demonstrate wide promise in drug delivery. We evaluate the possibility to encapsulate and release NVP-BEZ235, a novel and potent dual PI3K/mTOR inhibitor that is currently in phase I/II clinical trials for advanced solid tumors, from the CaCO3NCs. Its chemical nature shows some intrinsic limitations which induce to administer high doses leading to toxicity; to overcome these problems, here we proposed a strategy to enhance its intracellular penetration and its biological activity. Pristine CaCO3 NCs biocompatibility, cell interactions and internalization in in vitro experiments on T-cell lymphoma line, were studied. Confocal microscopy was used to monitor NCs-cell interactions and cellular uptake. We have further investigated the interaction nature and release mechanism of drug loaded/released within/from the NCs using an alternative approach based on liquid chromatography coupled to mass spectrometry. Our approach provides a good loading efficiency, therefore this drug delivery system was validated for biological activity in T-cell lymphoma: the anti-proliferative test and western blot results are very interesting because the proposed nano-formulation has an efficiency higher than free drug at the same nominal concentration.

  8. Cell-Penetrating CaCO3 Nanocrystals for Improved Transport of NVP-BEZ235 across Membrane Barrier in T-Cell Lymphoma

    Science.gov (United States)

    Civallero, Monica; Citti, Cinzia; Cosenza, Maria; Baldassarre, Francesca; Cannazza, Giuseppe; Pozzi, Samantha; Sacchi, Stefano

    2018-01-01

    Owing to their nano-sized porous structure, CaCO3 nanocrystals (CaCO3NCs) hold the promise to be utilized as desired materials for encapsulating molecules which demonstrate wide promise in drug delivery. We evaluate the possibility to encapsulate and release NVP-BEZ235, a novel and potent dual PI3K/mTOR inhibitor that is currently in phase I/II clinical trials for advanced solid tumors, from the CaCO3NCs. Its chemical nature shows some intrinsic limitations which induce to administer high doses leading to toxicity; to overcome these problems, here we proposed a strategy to enhance its intracellular penetration and its biological activity. Pristine CaCO3 NCs biocompatibility, cell interactions and internalization in in vitro experiments on T-cell lymphoma line, were studied. Confocal microscopy was used to monitor NCs-cell interactions and cellular uptake. We have further investigated the interaction nature and release mechanism of drug loaded/released within/from the NCs using an alternative approach based on liquid chromatography coupled to mass spectrometry. Our approach provides a good loading efficiency, therefore this drug delivery system was validated for biological activity in T-cell lymphoma: the anti-proliferative test and western blot results are very interesting because the proposed nano-formulation has an efficiency higher than free drug at the same nominal concentration. PMID:29370086

  9. Brain pericytes among cells constituting the blood-brain barrier are highly sensitive to tumor necrosis factor-α, releasing matrix metalloproteinase-9 and migrating in vitro

    Directory of Open Access Journals (Sweden)

    Miyaji Haruki

    2011-08-01

    Full Text Available Abstract Background Increased matrix metalloproteinase (MMP-9 in the plasma and brain is associated with blood-brain barrier (BBB disruption through proteolytic activity in neuroinflammatory diseases. MMP-9 is present in the brain microvasculature and its vicinity, where brain microvascular endothelial cells (BMECs, pericytes and astrocytes constitute the BBB. Little is known about the cellular source and role of MMP-9 at the BBB. Here, we examined the ability of pericytes to release MMP-9 and migrate in response to inflammatory mediators in comparison with BMECs and astrocytes, using primary cultures isolated from rat brains. Methods The culture supernatants were collected from primary cultures of rat brain endothelial cells, pericytes, or astrocytes. MMP-9 activities and levels in the supernatants were measured by gelatin zymography and western blot, respectively. The involvement of signaling molecules including mitogen-activated protein kinases (MAPKs and phosphoinositide-3-kinase (PI3K/Akt in the mediation of tumor necrosis factor (TNF-α-induced MMP-9 release was examined using specific inhibitors. The functional activity of MMP-9 was evaluated by a cell migration assay. Results Zymographic and western blot analyses demonstrated that TNF-α stimulated pericytes to release MMP-9, and this release was much higher than from BMECs or astrocytes. Other inflammatory mediators [interleukin (IL-1β, interferon-γ, IL-6 and lipopolysaccharide] failed to induce MMP-9 release from pericytes. TNF-α-induced MMP-9 release from pericytes was found to be mediated by MAPKs and PI3K. Scratch wound healing assay showed that in contrast to BMECs and astrocytes the extent of pericyte migration was significantly increased by TNF-α. This pericyte migration was inhibited by anti-MMP-9 antibody. Conclusion These findings suggest that pericytes are most sensitive to TNF-α in terms of MMP-9 release, and are the major source of MMP-9 at the BBB. This pericyte

  10. A defect in epithelial barrier integrity is not required for a systemic response to bacterial antigens or intestinal injury in T cell receptor-alpha gene-deficient mice.

    Science.gov (United States)

    Sydora, Beate C; Tavernini, Michele M; Doyle, Jason; Fedorak, Richard N

    2006-08-01

    Genetically induced disruption of the intestinal epithelial barrier leads to development of intestinal inflammation. In the interleukin-10 gene-deficient inflammatory bowel disease (IBD) mouse model, for instance, a primary defect in intestinal epithelial integrity occurs before the development of enterocolitis. In humans, a causal role for epithelial barrier disruption is still controversial. Although studies with first-degree relatives of IBD patients suggests an underlying role of impaired barrier function, a primary epithelial barrier defect in IBD patients has not been confirmed. The purpose of this article is to examine whether a primary epithelial barrier disruption is a prerequisite for the development of intestinal inflammation or whether intestinal inflammation can develop in the absence of epithelial disruption. We examined the intestinal epithelial integrity of the T cell receptor (TCR)-alpha gene-deficient mouse model of IBD. In vivo colonic permeability, determined by mannitol transmural flux, was assessed in 6-week-, 12-week-, and 25-week-old TCR-alpha gene-deficient and wild-type control mice using a single-pass perfusion technique. Mice were scored for intestinal histological injury and intestinal cytokine levels measured in organ cultures. Systemic responses to bacterial antigens were determined through 48-h spleen cell cultures stimulated with sonicate derived from endogenous bacterial strains. In contrast with previous findings in the interleukin-10 gene-deficient IBD model, TCR-alpha gene-deficient mice did not demonstrate evidence of primary intestinal epithelial barrier disruption at any age, despite developing a moderate to severe colitis within 12 weeks. A rise in intestinal interferon (IFN)-gamma levels preceded the onset of mucosal inflammation and then correlated closely with the degree of intestinal inflammation and injury. Spleen cells from TCR-alpha gene-deficient mice released IFN-gamma in response to stimulation with endogenous

  11. Characterisation of an in vitro blood-brain barrier model based on primary porcine capillary endothelial cells in monoculture or co-culture with primary rat or porcine astrocytes and pericytes

    DEFF Research Database (Denmark)

    Thomsen, Louiza Bohn; Larsen, Annette Burkhart; Moos, Torben

    to in vivo such as efflux transporters, tight junction proteins, and high transendothelial electric resistance (TEER). Primary BCECs are isolated from a variety of mammals such as rats, mice, cattle and pigs. Often bovine and porcine BCECs are cultured in monoculture or in co-culture with rat astrocytes......In vitro blood-brain barrier (BBB) models based on primary brain capillary endothelial cells (BCECs) in monoculture or in co-culture with primary astrocytes and pericytes are often applied for studying physiology of the BBB. Primary BCECs retain many morphological and biochemical properties similar...... obtained from neonatal rats which have been shown to strengthen the barrier properties of the BCECs. In this study, brain endothelial cells (PBECs), astrocytes and pericytes are isolated from pig brains donated by the local abattoir. The brains are from 6 month old domestic pigs. The availability and high...

  12. Comparison of brain capillary endothelial cell-based and epithelial (MDCK-MDR1, Caco-2, and VB-Caco-2) cell-based surrogate blood-brain barrier penetration models.

    Science.gov (United States)

    Hellinger, Eva; Veszelka, Szilvia; Tóth, Andrea E; Walter, Fruzsina; Kittel, Agnes; Bakk, Mónika Laura; Tihanyi, Károly; Háda, Viktor; Nakagawa, Shinsuke; Duy, Thuy Dinh Ha; Niwa, Masami; Deli, Mária A; Vastag, Monika

    2012-10-01

    An accurate means of predicting blood-brain barrier (BBB) penetration and blood-brain partitioning of NCEs (new chemical entities) would fulfill a major need in pharmaceutical research. Currently, an industry-standard BBB drug penetration model is not available. Primary brain capillary endothelial cells, optionally co-cultured with astrocytes and/or pericytes, are the most valued models of BBB. For routine use, establishing and maintaining a co-culture system is too costly and labor intensive. Alternatively, non-cerebral cell lines such as MDCK-MDR1 are used, and most recently, the suitability of native and modified Caco-2 for predicting brain penetration has also come under investigation. This study provides comparative data on the morphology and functionality of the high integrity brain capillary endothelial BBB model (EPA: triple culture of brain capillary endothelial cells with pericytes and astrocytes) and the epithelial cell-based (native Caco-2, high P-glycoprotein expressing vinblastine-treated VB-Caco-2 and MDCK-MDR1) surrogate BBB models. Using a panel of 10 compounds VB-Caco-2 and MDCK-MDR1 cell lines show restrictive paracellular pathway and BBB-like selective passive permeability that makes them comparable to the rat brain BBB model, which gave correlation with the highest r(2) value with in vivo permeability data. In bidirectional assay, the VB-Caco-2 and the MDCK-MDR1 models identified more P-glycoprotein drug substrates than the rat brain BBB model. While the complexity and predictive value of the BBB model is the highest, for the screening of NCEs to determine whether they are efflux substrates or not, the VB-Caco-2 and the MDCK-MDR1 models may provide a simple and inexpensive tool. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. West Nile virus-induced cell adhesion molecules on human brain microvascular endothelial cells regulate leukocyte adhesion and modulate permeability of the in vitro blood-brain barrier model.

    Directory of Open Access Journals (Sweden)

    Kelsey Roe

    Full Text Available Characterizing the mechanisms by which West Nile virus (WNV causes blood-brain barrier (BBB disruption, leukocyte infiltration into the brain and neuroinflammation is important to understand the pathogenesis of WNV encephalitis. Here, we examined the role of endothelial cell adhesion molecules (CAMs in mediating the adhesion and transendothelial migration of leukocytes across human brain microvascular endothelial cells (HBMVE. Infection with WNV (NY99 strain significantly induced ICAM-1, VCAM-1, and E-selectin in human endothelial cells and infected mice brain, although the levels of their ligands on leukocytes (VLA-4, LFA-1and MAC-1 did not alter. The permeability of the in vitro BBB model increased dramatically following the transmigration of monocytes and lymphocytes across the models infected with WNV, which was reversed in the presence of a cocktail of blocking antibodies against ICAM-1, VCAM-1, and E-selectin. Further, WNV infection of HBMVE significantly increased leukocyte adhesion to the HBMVE monolayer and transmigration across the infected BBB model. The blockade of these CAMs reduced the adhesion and transmigration of leukocytes across the infected BBB model. Further, comparison of infection with highly neuroinvasive NY99 and non-lethal (Eg101 strain of WNV demonstrated similar level of virus replication and fold-increase of CAMs in HBMVE cells suggesting that the non-neuropathogenic response of Eg101 is not because of its inability to infect HBMVE cells. Collectively, these results suggest that increased expression of specific CAMs is a pathological event associated with WNV infection and may contribute to leukocyte infiltration and BBB disruption in vivo. Our data further implicate that strategies to block CAMs to reduce BBB disruption may limit neuroinflammation and virus-CNS entry via 'Trojan horse' route, and improve WNV disease outcome.

  14. West Nile virus-induced cell adhesion molecules on human brain microvascular endothelial cells regulate leukocyte adhesion and modulate permeability of the in vitro blood-brain barrier model.

    Science.gov (United States)

    Roe, Kelsey; Orillo, Beverly; Verma, Saguna

    2014-01-01

    Characterizing the mechanisms by which West Nile virus (WNV) causes blood-brain barrier (BBB) disruption, leukocyte infiltration into the brain and neuroinflammation is important to understand the pathogenesis of WNV encephalitis. Here, we examined the role of endothelial cell adhesion molecules (CAMs) in mediating the adhesion and transendothelial migration of leukocytes across human brain microvascular endothelial cells (HBMVE). Infection with WNV (NY99 strain) significantly induced ICAM-1, VCAM-1, and E-selectin in human endothelial cells and infected mice brain, although the levels of their ligands on leukocytes (VLA-4, LFA-1and MAC-1) did not alter. The permeability of the in vitro BBB model increased dramatically following the transmigration of monocytes and lymphocytes across the models infected with WNV, which was reversed in the presence of a cocktail of blocking antibodies against ICAM-1, VCAM-1, and E-selectin. Further, WNV infection of HBMVE significantly increased leukocyte adhesion to the HBMVE monolayer and transmigration across the infected BBB model. The blockade of these CAMs reduced the adhesion and transmigration of leukocytes across the infected BBB model. Further, comparison of infection with highly neuroinvasive NY99 and non-lethal (Eg101) strain of WNV demonstrated similar level of virus replication and fold-increase of CAMs in HBMVE cells suggesting that the non-neuropathogenic response of Eg101 is not because of its inability to infect HBMVE cells. Collectively, these results suggest that increased expression of specific CAMs is a pathological event associated with WNV infection and may contribute to leukocyte infiltration and BBB disruption in vivo. Our data further implicate that strategies to block CAMs to reduce BBB disruption may limit neuroinflammation and virus-CNS entry via 'Trojan horse' route, and improve WNV disease outcome.

  15. Smart parking barrier

    KAUST Repository

    Alharbi, Abdulrazaq M.

    2016-05-06

    Various methods and systems are provided for smart parking barriers. In one example, among others, a smart parking barrier system includes a movable parking barrier located at one end of a parking space, a barrier drive configured to control positioning of the movable parking barrier, and a parking controller configured to initiate movement of the parking barrier, via the barrier drive. The movable parking barrier can be positioned between a first position that restricts access to the parking space and a second position that allows access to the parking space. The parking controller can initiate movement of the movable parking barrier in response to a positive identification of an individual allowed to use the parking space. The parking controller can identify the individual through, e.g., a RFID tag, a mobile device (e.g., a remote control, smartphone, tablet, etc.), an access card, biometric information, or other appropriate identifier.

  16. Prevention of Escherichia coli K1 Penetration of the Blood-Brain Barrier by Counteracting the Host Cell Receptor and Signaling Molecule Involved in E. coli Invasion of Human Brain Microvascular Endothelial Cells▿

    OpenAIRE

    Zhu, Longkun; Pearce, Donna; Kim, Kwang Sik

    2010-01-01

    Escherichia coli meningitis is an important cause of mortality and morbidity, and a key contributing factor is our incomplete understanding of the pathogenesis of E. coli meningitis. We have shown that E. coli penetration into the brain requires E. coli invasion of human brain microvascular endothelial cells (HBMEC), which constitute the blood-brain barrier. E. coli invasion of HBMEC involves its interaction with HBMEC receptors, such as E. coli cytotoxic necrotizing factor 1 (CNF1) interacti...

  17. Combining Bone Marrow Stromal Cells with Green Tea Polyphenols Attenuates the Blood-Spinal Cord Barrier Permeability in Rats with Compression Spinal Cord Injury.

    Science.gov (United States)

    Yu, De-shui; Liu, Li-bo; Cao, Yang; Wang, Yan-song; Bi, Yun-long; Wei, Zi-Jian; Tong, Song-ming; Lv, Gang; Mei, Xi-fan

    2015-06-01

    This study was performed to investigate the effect of bone marrow stromal cells (BMSCs) combined with green tea polyphenols (GTPs) on the blood-spinal cord barrier (BSCB) permeability after spinal cord injury (SCI) in the rat model. In the model of SCI rats, we found that the water content and the BSCB permeability were decreased by BMSCs and GTPs treatment, and their combination had a synergistic effect. Further, the motor function of rats was also greatly improved by BMSCs and GTPs administration. After treated by the combination of BMSCs and GTPs, SCI rats showed the up-regulated expression of tight junction (TJ) associated proteins claudin-5, occludin and ZO-1 by Western blot, which was more remarkable than that in the single treatment. The increased expression levels of claudin-5, occludin, and ZO-1 were the most obvious in the spinal cord microvessels using immunohistochemistry assay. This led to the conclusion that the combination of BMSCs and GTPs could decrease the BSCB permeability by up-regulating protein expression levels of claudin-5, occludin, and ZO-1. In addition, after BMSCs and GTPs administration, the results of Western blot and enzyme-linked immunosorbent assay (ELISA) revealed a significant decrease in protein expression level and the activation of nuclear factor-кB (NF-кB) p65. Our results indicated that combination of BMSCs and GTPs could improve motor function after SCI, which might be correlated with improvements in BSCB integrity, and that NF-кB might be involved in the modulating process.

  18. Cultured bovine brain capillary endothelial cells (BBCEC) - a blood-brain barrier model for studying the binding and internalization of insulin and insulin-like growth factor 1

    International Nuclear Information System (INIS)

    Keller, B.T.; Borchardt, R.T.

    1987-01-01

    Cultured bovine brain capillary endothelial cells (BBCEC) have previously been reported by their laboratory as a working model for studying nutrient and drug transport and metabolism at the blood-brain barrier. In the present study, they have utilized this culture system to investigate the binding and internalization of [ 125 I]-labelled insulin (INS) and insulin-like growth factor 1(IGF-1) by BBCEC. After 2 hrs at 23 0 C, the specific binding of INS and IGF-1 was 1.6% and 13.6%, respectively. At 37 0 C, the maximum specific binding was 0.9% for INS and 5.8% for IGF-1. Using an acid-wash technique to assess peptide internalization, it was observed that, at 37 0 C, approximately 60% of the bound INS rapidly became resistant to acid treatment, a value which was constant over 2 hr. With IGF-1, a similar proportion of the bound material, 62%, became resistant by 30 min, but subsequently decreased to 45% by 2 hr. Scatchard analysis of competitive binding studies indicated the presence of two binding sites for each protein, having K/sub d/'s of 0.82 nM and 19.2 nM for INS and 0.39 nM and 3.66 nM for IGF-1. Little change in the amount of INS binding was observed over a four-day interval as the cultures became a confluent monolayer. The present report of binding and internalization of these proteins suggests that the BBCEC may utilize a receptor-mediated process to internalize and/or transport (transcytosis) INS and IGF-1 from the circulation

  19. The Blood-Brain Barrier Permeability of Lignans and Malabaricones from the Seeds of Myristica fragrans in the MDCK-pHaMDR Cell Monolayer Model

    Directory of Open Access Journals (Sweden)

    Ni Wu

    2016-01-01

    Full Text Available The blood-brain barrier (BBB permeability of twelve lignans and three phenolic malabaricones from the seeds of Myristica fragrans (nutmeg were studied with the MDCK-pHaMDR cell monolayer model. The samples were measured by high-performance liquid chromatography and the apparent permeability coefficients (Papp were calculated. Among the fifteen test compounds, benzonfuran-type, dibenzylbutane-type and arylnaphthalene-type lignans showed poor to moderate permeabilities with Papp values at 10−8–10−6 cm/s; those of 8-O-4′-neolignan and tetrahydrofuran-lignan were at 10−6–10−5 cm/s, meaning that their permeabilities are moderate to high; the permeabilities of malabaricones were poor as their Papp values were at 10−8–10−7 cm/s. To 5-methoxy-dehydrodiisoeugenol (2, erythro-2-(4-allyl-2,6-dimethoxyphenoxy-1-(3,4-dimethoxyphenyl-propan-1-ol acetate (6, verrucosin (8, and nectandrin B (9, an efflux way was involved and the main transporter for 6, 8 and 9 was demonstrated to be P-glycoprotein. The time and concentration dependency experiments indicated the main transport mechanism for neolignans dehydrodiisoeugenol (1, myrislignan (7 and 8 was passive diffusion. This study summarized the relationship between the BBB permeability and structure parameters of the test compounds, which could be used to preliminarily predict the transport of a compound through BBB. The results provide a significant molecular basis for better understanding the potential central nervous system effects of nutmeg.

  20. Quantifying water flow within aquatic ecosystems using load cell sensors: a profile of currents experienced by coral reef organisms around Lizard Island, Great Barrier Reef, Australia.

    Science.gov (United States)

    Johansen, Jacob L

    2014-01-01

    Current velocity in aquatic environments has major implications for the diversity, abundance and ecology of aquatic organisms, but quantifying these currents has proven difficult. This study utilises a simple and inexpensive instrument (reef system around Lizard Island (Great Barrier Reef, Australia) at a spatial and temporal scale relevant to the ecology of individual benthos and fish. The instrument uses load-cell sensors to provide a correlation between sensor output and ambient current velocity of 99%. Each instrument is able to continuously record current velocities to >500 cms⁻¹ and wave frequency to >100 Hz over several weeks. Sensor data are registered and processed at 16 MHz and 10 bit resolution, with a measuring precision of 0.06±0.04%, and accuracy of 0.51±0.65% (mean ±S.D.). Each instrument is also pressure rated to 120 m and shear stresses ≤20 kNm⁻² allowing deployment in harsh environments. The instrument was deployed across 27 coral reef sites covering the crest (3 m), mid-slope (6 m) and deep-slope (9 m depth) of habitats directly exposed, oblique or sheltered from prevailing winds. Measurements demonstrate that currents over the reef slope and crest varies immensely depending on depth and exposure: currents differ up to 9-fold within habitats only separated by 3 m depth and 15-fold between exposed, oblique and sheltered habitats. Comparisons to ambient weather conditions reveal that currents around Lizard Island are largely wind driven. Zero to 22.5 knot winds correspond directly to currents of 0 to >82 cms⁻¹, while tidal currents rarely exceed 5.5 cms⁻¹. Rather, current velocity increases exponentially as a function of wave height (0 to 1.6 m) and frequency (0.54 to 0.20 Hz), emphasizing the enormous effect of wind and waves on organisms in these shallow coral reef habitats.

  1. A large-scale electrophoresis- and chromatography-based determination of gene expression profiles in bovine brain capillary endothelial cells after the re-induction of blood-brain barrier properties

    Directory of Open Access Journals (Sweden)

    Duban-Deweer Sophie

    2010-11-01

    Full Text Available Abstract Background Brain capillary endothelial cells (BCECs form the physiological basis of the blood-brain barrier (BBB. The barrier function is (at least in part due to well-known proteins such as transporters, tight junctions and metabolic barrier proteins (e.g. monoamine oxidase, gamma glutamyltranspeptidase and P-glycoprotein. Our previous 2-dimensional gel proteome analysis had identified a large number of proteins and revealed the major role of dynamic cytoskeletal remodelling in the differentiation of bovine BCECs. The aim of the present study was to elaborate a reference proteome of Triton X-100-soluble species from bovine BCECs cultured in the well-established in vitro BBB model developed in our laboratory. Results A total of 215 protein spots (corresponding to 130 distinct proteins were identified by 2-dimensional gel electrophoresis, whereas over 350 proteins were identified by a shotgun approach. We classified around 430 distinct proteins expressed by bovine BCECs. Our large-scale gene expression analysis enabled the correction of mistakes referenced into protein databases (e.g. bovine vinculin and constitutes valuable evidence for predictions based on genome annotation. Conclusions Elaboration of a reference proteome constitutes the first step in creating a gene expression database dedicated to capillary endothelial cells displaying BBB characteristics. It improves of our knowledge of the BBB and the key proteins in cell structures, cytoskeleton organization, metabolism, detoxification and drug resistance. Moreover, our results emphasize the need for both appropriate experimental design and correct interpretation of proteome datasets.

  2. Investigation of enzyme-sensitive lipid nanoparticles for delivery of siRNA to blood–brain barrier and glioma cells

    Directory of Open Access Journals (Sweden)

    Bruun J

    2015-09-01

    Full Text Available Jonas Bruun,1 Trine B Larsen,1 Rasmus I Jølck,1 Rasmus Eliasen,1 René Holm,2 Torben Gjetting,1 Thomas L Andresen11Department of Micro- and Nanotechnology, Center for Nanomedicine and Theranostics, Technical University of Denmark, DTU Nanotech, Lyngby, Denmark; 2H Lundbeck A/S, Biologics and Pharmaceutical Science, Valby, DenmarkAbstract: Clinical applications of siRNA for treating disorders in the central nervous system require development of systemic stable, safe, and effective delivery vehicles that are able to cross the impermeable blood–brain barrier (BBB. Engineering nanocarriers with low cellular interaction during systemic circulation, but with high uptake in targeted cells, is a great challenge and is further complicated by the BBB. As a first step in obtaining such a delivery system, this study aims at designing a lipid nanoparticle (LNP able to efficiently encapsulate siRNA by a combination of titratable cationic lipids. The targeted delivery is obtained through the design of a two-stage system where the first step is conjugation of angiopep to the surface of the LNP for targeting the low-density lipoprotein receptor-related protein-1 expressed on the BBB. Second, the positively charged LNPs are masked with a negatively charged PEGylated (poly(ethylene glycol cleavable lipopeptide, which contains a recognition sequence for matrix metalloproteinases (MMPs, a class of enzymes often expressed in the tumor microenvironment and inflammatory BBB conditions. Proteolytic cleavage induces PEG release, including the release of four glutamic acid residues, providing a charge switch that triggers a shift of the LNP charge from weakly negative to positive, thus favoring cellular endocytosis and release of siRNA for high silencing efficiency. This work describes the development of this two-stage nanocarrier-system and evaluates the performance in brain endothelial and glioblastoma cells with respect to uptake and gene silencing efficiency. The

  3. Free standing TiO2 nanotube array electrodes with an ultra-thin Al2O3 barrier layer and TiCl4 surface modification for highly efficient dye sensitized solar cells

    Science.gov (United States)

    Gao, Xianfeng; Guan, Dongsheng; Huo, Jingwan; Chen, Junhong; Yuan, Chris

    2013-10-01

    Dye sensitized solar cells were fabricated with free standing TiO2 nanotube (TNT) array films, which were prepared by template assisted atomic layer deposition (ALD) with precise wall thickness control. Efforts to improve the photovoltaic performance were made by using Al2O3 barrier layer coating in conjunction with TiCl4 surface modification. An Al2O3 thin layer was deposited on the TNT electrode by ALD to serve as the charge recombination barrier, but it suffers from the drawback of decreasing the photoelectron injection from dye into TiO2 when the barrier layer became too thick. With the TiCl4 treatment in combination with optimal thickness coating, this problem could be avoided. The co-surface treated electrode presents superior surface property with low recombination rate and good electron transport property. A high conversion efficiency of 8.62% is obtained, which is about 1.8 times that of the device without surface modifications.Dye sensitized solar cells were fabricated with free standing TiO2 nanotube (TNT) array films, which were prepared by template assisted atomic layer deposition (ALD) with precise wall thickness control. Efforts to improve the photovoltaic performance were made by using Al2O3 barrier layer coating in conjunction with TiCl4 surface modification. An Al2O3 thin layer was deposited on the TNT electrode by ALD to serve as the charge recombination barrier, but it suffers from the drawback of decreasing the photoelectron injection from dye into TiO2 when the barrier layer became too thick. With the TiCl4 treatment in combination with optimal thickness coating, this problem could be avoided. The co-surface treated electrode presents superior surface property with low recombination rate and good electron transport property. A high conversion efficiency of 8.62% is obtained, which is about 1.8 times that of the device without surface modifications. Electronic supplementary information (ESI) available: UV-Vis spectra of desorbed N719 dyes from

  4. Safety-barrier diagrams

    DEFF Research Database (Denmark)

    Duijm, Nijs Jan

    2007-01-01

    are discussed. A simple method for quantification of safety-barrier diagrams is proposed, including situations where safety barriers depend on shared common elements. It is concluded that safety-barrier diagrams provide a useful framework for an electronic data structure that integrates information from risk...

  5. Hexavalent chromium at low concentration alters Sertoli cell barrier and connexin 43 gap junction but not claudin-11 and N-cadherin in the rat seminiferous tubule culture model

    Energy Technology Data Exchange (ETDEWEB)

    Carette, Diane [INSERM U 1065, Team 5 “Physiopathology of Germ Cell Control: Genomic and Non Genomic Mechanisms” C3M, University of Nice Sophia Antipolis, Nice (France); UMR S775, University Paris Descartes, 45 rue des Saints Pères, 75006, Paris (France); Perrard, Marie-Hélène, E-mail: marie-helene.durand@ens-lyon.fr [Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon I, CNRS, INRA, Ecole Normale Supérieure de Lyon, Lyon (France); Prisant, Nadia [University of Versailles/St Quentin-en-Yvelines (France); UMR S775, University Paris Descartes, 45 rue des Saints Pères, 75006, Paris (France); Gilleron, Jérome; Pointis, Georges [INSERM U 1065, Team 5 “Physiopathology of Germ Cell Control: Genomic and Non Genomic Mechanisms” C3M, University of Nice Sophia Antipolis, Nice (France); Segretain, Dominique [University of Versailles/St Quentin-en-Yvelines (France); UMR S775, University Paris Descartes, 45 rue des Saints Pères, 75006, Paris (France); Durand, Philippe [Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon I, CNRS, INRA, Ecole Normale Supérieure de Lyon, Lyon (France); Kallistem SAS Ecole Normale Supérieure de Lyon, Lyon (France)

    2013-04-01

    Exposure to toxic metals, specifically those belonging to the nonessential group leads to human health defects and among them reprotoxic effects. The mechanisms by which these metals produce their negative effects on spermatogenesis have not been fully elucidated. By using the Durand's validated seminiferous tubule culture model, which mimics the in vivo situation, we recently reported that concentrations of hexavalent chromium, reported in the literature to be closed to that found in the blood circulation of men, increase the number of germ cell cytogenetic abnormalities. Since this metal is also known to affect cellular junctions, we investigated, in the present study, its potential influence on the Sertoli cell barrier and on junctional proteins present at this level such as connexin 43, claudin-11 and N-cadherin. Cultured seminiferous tubules in bicameral chambers expressed the three junctional proteins and ZO-1 for at least 12 days. Exposure to low concentrations of chromium (10 μg/l) increased the trans-epithelial resistance without major changes of claudin-11 and N-cadherin expressions but strongly delocalized the gap junction protein connexin 43 from the membrane to the cytoplasm of Sertoli cells. The possibility that the hexavalent chromium-induced alteration of connexin 43 indirectly mediates the effect of the toxic metal on the blood–testis barrier dynamic is postulated. - Highlights: ► Influence of Cr(VI) on the Sertoli cell barrier and on junctional proteins ► Use of cultured seminiferous tubules in bicameral chambers ► Low concentrations of Cr(VI) (10 μg/l) altered the trans-epithelial resistance. ► Cr(VI) did not alter claudin-11 and N-cadherin. ► Cr(VI) delocalized connexin 43 from the membrane to the cytoplasm of Sertoli cells.

  6. The importance of dye chemistry and TiCl4 surface treatment in the behavior of Al2O3 recombination barrier layers deposited by atomic layer deposition in solid-state dye-sensitized solar cells.

    Science.gov (United States)

    Brennan, Thomas P; Bakke, Jonathan R; Ding, I-Kang; Hardin, Brian E; Nguyen, William H; Mondal, Rajib; Bailie, Colin D; Margulis, George Y; Hoke, Eric T; Sellinger, Alan; McGehee, Michael D; Bent, Stacey F

    2012-09-21

    Atomic layer deposition (ALD) was used to fabricate Al(2)O(3) recombination barriers in solid-state dye-sensitized solar cells (ss-DSSCs) employing an organic hole transport material (HTM) for the first time. Al(2)O(3) recombination barriers of varying thickness were incorporated into efficient ss-DSSCs utilizing the Z907 dye adsorbed onto a 2 μm-thick nanoporous TiO(2) active layer and the HTM spiro-OMeTAD. The impact of Al(2)O(3) barriers was also studied in devices employing different dyes, with increased active layer thicknesses, and with substrates that did not undergo the TiCl(4) surface treatment. In all instances, electron lifetimes (as determined by transient photovoltage measurements) increased and dark current was suppressed after Al(2)O(3) deposition. However, only when the TiCl(4) treatment was eliminated did device efficiency increase; in all other instances efficiency decreased due to a drop in short-circuit current. These results are attributed in the former case to the similar effects of Al(2)O(3) ALD and the TiCl(4) surface treatment whereas the insulating properties of Al(2)O(3) hinder charge injection and lead to current loss in TiCl(4)-treated devices. The impact of Al(2)O(3) barrier layers was unaffected by doubling the active layer thickness or using an alternative ruthenium dye, but a metal-free donor-π-acceptor dye exhibited a much smaller decrease in current due to its higher excited state energy. We develop a model employing prior research on Al(2)O(3) growth and dye kinetics that successfully predicts the reduction in device current as a function of ALD cycles and is extendable to different dye-barrier systems.

  7. The importance of dye chemistry and TiCl4 surface treatment in the behavior of Al2O3 recombination barrier layers deposited by atomic layer deposition in solid-state dye-sensitized solar cells

    KAUST Repository

    Brennan, Thomas P.

    2012-01-01

    Atomic layer deposition (ALD) was used to fabricate Al 2O 3 recombination barriers in solid-state dye-sensitized solar cells (ss-DSSCs) employing an organic hole transport material (HTM) for the first time. Al 2O 3 recombination barriers of varying thickness were incorporated into efficient ss-DSSCs utilizing the Z907 dye adsorbed onto a 2 μm-thick nanoporous TiO 2 active layer and the HTM spiro-OMeTAD. The impact of Al 2O 3 barriers was also studied in devices employing different dyes, with increased active layer thicknesses, and with substrates that did not undergo the TiCl 4 surface treatment. In all instances, electron lifetimes (as determined by transient photovoltage measurements) increased and dark current was suppressed after Al 2O 3 deposition. However, only when the TiCl 4 treatment was eliminated did device efficiency increase; in all other instances efficiency decreased due to a drop in short-circuit current. These results are attributed in the former case to the similar effects of Al 2O 3 ALD and the TiCl 4 surface treatment whereas the insulating properties of Al 2O 3 hinder charge injection and lead to current loss in TiCl 4-treated devices. The impact of Al 2O 3 barrier layers was unaffected by doubling the active layer thickness or using an alternative ruthenium dye, but a metal-free donor-π-acceptor dye exhibited a much smaller decrease in current due to its higher excited state energy. We develop a model employing prior research on Al 2O 3 growth and dye kinetics that successfully predicts the reduction in device current as a function of ALD cycles and is extendable to different dye-barrier systems. © This journal is the Owner Societies 2012.

  8. Skin barrier function

    DEFF Research Database (Denmark)

    2016-01-01

    barrier integrity, factors influencing the penetration of the skin, influence of wet work, and guidance for prevention and saving the barrier. Distinguished researchers have contributed to this book, providing a comprehensive and thorough overview of the skin barrier function. Researchers in the field...... on the subject. It covers new basic research on skin markers, including results on filaggrin and on methods for the assessment of the barrier function. Biological variation and aspects of skin barrier function restoration are discussed as well. Further sections are dedicated to clinical implications of skin...

  9. Safety- barrier diagrams

    DEFF Research Database (Denmark)

    Duijm, Nijs Jan

    2008-01-01

    trees and Bayesian networks is discussed. A simple method for quantification of safety-barrier diagrams is proposed. It is concluded that safety-barrier diagrams provide a useful framework for an electronic data structure that integrates information from risk analysis with operational safety management.......Safety-barrier diagrams and the related so-called 'bow-tie' diagrams have become popular methods in risk analysis. This paper describes the syntax and principles for constructing consistent and valid safety-barrier diagrams. The relation of safety-barrier diagrams to other methods such as fault...

  10. Blood-brain barrier permeability imaging using perfusion computed tomography

    Directory of Open Access Journals (Sweden)

    Avsenik Jernej

    2015-06-01

    Full Text Available Background. The blood-brain barrier represents the selective diffusion barrier at the level of the cerebral microvascular endothelium. Other functions of blood-brain barrier include transport, signaling and osmoregulation. Endothelial cells interact with surrounding astrocytes, pericytes and neurons. These interactions are crucial to the development, structural integrity and function of the cerebral microvascular endothelium. Dysfunctional blood-brain barrier has been associated with pathologies such as acute stroke, tumors, inflammatory and neurodegenerative diseases.

  11. Safety-barrier diagrams

    DEFF Research Database (Denmark)

    Duijm, Nijs Jan

    2007-01-01

    Safety-barrier diagrams and the related so-called "bow-tie" diagrams have become popular methods in risk analysis. This paper describes the syntax and principles for constructing consistent and valid safety-barrier diagrams. The relation with other methods such as fault trees and Bayesian network...... analysis with operational safety management.......Safety-barrier diagrams and the related so-called "bow-tie" diagrams have become popular methods in risk analysis. This paper describes the syntax and principles for constructing consistent and valid safety-barrier diagrams. The relation with other methods such as fault trees and Bayesian networks...... are discussed. A simple method for quantification of safety-barrier diagrams is proposed, including situations where safety barriers depend on shared common elements. It is concluded that safety-barrier diagrams provide a useful framework for an electronic data structure that integrates information from risk...

  12. Toward guided tissue and bone regeneration: morphology, attachment, proliferation, and migration of cells cultured on collagen barrier membranes. A systematic review.

    NARCIS (Netherlands)

    Behring, J.; Junker, R.; Walboomers, X.F.; Chessnut, B.; Jansen, J.A.

    2008-01-01

    Collagen barrier membranes are frequently used in both guided tissue regeneration (GTR) and guided bone regeneration (GBR). Collagen used for these devices is available from different species and is often processed to alter the properties of the final product. This is necessary because unprocessed

  13. Overcoming natural replication barriers: differential helicase requirements.

    Science.gov (United States)

    Anand, Ranjith P; Shah, Kartik A; Niu, Hengyao; Sung, Patrick; Mirkin, Sergei M; Freudenreich, Catherine H

    2012-02-01

    DNA sequences that form secondary structures or bind protein complexes are known barriers to replication and potential inducers of genome instability. In order to determine which helicases facilitate DNA replication across these barriers, we analyzed fork progression through them in wild-type and mutant yeast cells, using 2-dimensional gel-electrophoretic analysis of the replication intermediates. We show that the Srs2 protein facilitates replication of hairpin-forming CGG/CCG repeats and prevents chromosome fragility at the repeat, whereas it does not affect replication of G-quadruplex forming sequences or a protein-bound repeat. Srs2 helicase activity is required for hairpin unwinding and fork progression. Also, the PCNA binding domain of Srs2 is required for its in vivo role of replication through hairpins. In contrast, the absence of Sgs1 or Pif1 helicases did not inhibit replication through structural barriers, though Pif1 did facilitate replication of a telomeric protein barrier. Interestingly, replication through a protein barrier but not a DNA structure barrier was modulated by nucleotide pool levels, illuminating a different mechanism by which cells can regulate fork progression through protein-mediated stall sites. Our analyses reveal fundamental differences in the replication of DNA structural versus protein barriers, with Srs2 helicase activity exclusively required for fork progression through hairpin structures.

  14. Multilayer moisture barrier

    Science.gov (United States)

    Pankow, Joel W; Jorgensen, Gary J; Terwilliger, Kent M; Glick, Stephen H; Isomaki, Nora; Harkonen, Kari; Turkulainen, Tommy

    2015-04-21

    A moisture barrier, device or product having a moisture barrier or a method of fabricating a moisture barrier having at least a polymer layer, and interfacial layer, and a barrier layer. The polymer layer may be fabricated from any suitable polymer including, but not limited to, fluoropolymers such as polyethylene terephthalate (PET) or polyethylene naphthalate (PEN), or ethylene-tetrafluoroethylene (ETFE). The interfacial layer may be formed by atomic layer deposition (ALD). In embodiments featuring an ALD interfacial layer, the deposited interfacial substance may be, but is not limited to, Al.sub.2O.sub.3, AlSiO.sub.x, TiO.sub.2, and an Al.sub.2O.sub.3/TiO.sub.2 laminate. The barrier layer associated with the interfacial layer may be deposited by plasma enhanced chemical vapor deposition (PECVD). The barrier layer may be a SiO.sub.xN.sub.y film.

  15. Antimicrobial Peptides, Infections and the Skin Barrier

    DEFF Research Database (Denmark)

    Clausen, Maja Lisa; Agner, Tove

    2016-01-01

    immune responses. AMPs play an essential part in maintaining an optimal and functional skin barrier - not only by direct killing of pathogens, but also by balancing immune responses and interfering in wound healing, cell differentiation, reepithelialization and their synergistic interplay with the skin......The skin serves as a strong barrier protecting us from invading pathogens and harmful organisms. An important part of this barrier comes from antimicrobial peptides (AMPs), which are small peptides expressed abundantly in the skin. AMPs are produced in the deeper layers of the epidermis...

  16. "Targeted disruption of the epithelial-barrier by Helicobacter pylori"

    Directory of Open Access Journals (Sweden)

    Wroblewski Lydia E

    2011-11-01

    Full Text Available Abstract Helicobacter pylori colonizes the human gastric epithelium and induces chronic gastritis, which can lead to gastric cancer. Through cell-cell contacts the gastric epithelium forms a barrier to protect underlying tissue from pathogenic bacteria; however, H. pylori have evolved numerous strategies to perturb the integrity of the gastric barrier. In this review, we summarize recent research into the mechanisms through which H. pylori disrupts intercellular junctions and disrupts the gastric epithelial barrier.

  17. Thermal barriers for compartments

    Science.gov (United States)

    Kreutzer, Cory J.; Lustbader, Jason A.

    2017-10-17

    An aspect of the present disclosure is a thermal barrier that includes a core layer having a first surface, a second surface, and a first edge, and a first outer layer that includes a third surface and a second edge, where the third surface substantially contacts the first surface, the core layer is configured to minimize conductive heat transfer through the barrier, and the first outer layer is configured to maximize reflection of light away from the barrier.

  18. Tunnel barrier schottky

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Rongming; Cao, Yu; Li, Zijian; Williams, Adam J.

    2018-02-20

    A diode includes: a semiconductor substrate; a cathode metal layer contacting a bottom of the substrate; a semiconductor drift layer on the substrate; a graded aluminum gallium nitride (AlGaN) semiconductor barrier layer on the drift layer and having a larger bandgap than the drift layer, the barrier layer having a top surface and a bottom surface between the drift layer and the top surface, the barrier layer having an increasing aluminum composition from the bottom surface to the top surface; and an anode metal layer directly contacting the top surface of the barrier layer.

  19. Real-time monitoring of trans-epithelial electrical resistance in cultured intestinal epithelial cells: the barrier protection of water-soluble dietary fiber.

    Science.gov (United States)

    Majima, Atsushi; Handa, Osamu; Naito, Yuji; Suyama, Yosuke; Onozawa, Yuriko; Higashimura, Yasuki; Mizushima, Katsura; Morita, Mayuko; Uehara, Yukiko; Horie, Hideki; Iida, Takaya; Fukui, Akifumu; Dohi, Osamu; Okayama, Tetsuya; Yoshida, Naohisa; Kamada, Kazuhiro; Katada, Kazuhiro; Uchiyama, Kazuhiko; Ishikawa, Takeshi; Takagi, Tomohisa; Konishi, Hideyuki; Yasukawa, Zenta; Tokunaga, Makoto; Okubo, Tsutomu; Itoh, Yoshito

    2017-03-01

    In this study we aimed to verify a real-time trans-epithelial electrical resistance (TEER) monitoring system in a Caco-2 monolayer and to investigate the therapeutic effect of partially hydrolyzed guar gum (PHGG), a dietary fiber, against interferon (IFN)-γ-induced intestinal barrier dysfunction using this monitoring system. We measured TEER using a real-time monitoring system and evaluated epithelial paracellular permeability using fluorescein isothiocyanate-conjugated dextran (4 kDa; FD4) in Caco-2 monolayers treated with IFN-γ for 48 h. The expression and distribution of tight junction (TJ)-associated proteins, ZO-1 and occludin, were analyzed by Western blot and immunocytochemistry, respectively. In some experiments PHGG was added prior to IFN-γ treatment in order to investigate its protective effect on barrier function. IFN-γ treatment significantly decreased TEER and increased FD4 flux across Caco-2 monolayers, indicating a great influence of IFN-γ on the intestinal epithelial paracellular permeability. In contrast, the pretreatment of PHGG significantly reduced the IFN-γ-induced increment of FD4 flux without affecting TEER. Neither IFN-γ nor PHGG treatment affected the expressions of TJ-associated proteins, while immunocytochemistry showed that IFN-γ-induced redistribution of occludin was clearly restored by PHGG. Real-time TEER monitoring enabled us to evaluate the dynamic changes of intestinal epithelial barrier function. PHGG may have a protective effect against IFN-γ-induced barrier dysfunction by attenuating the paracellular hyperpermeability; thus, its promotion as a functional food is anticipated. © 2017 Chinese Medical Association Shanghai Branch, Chinese Society of Gastroenterology, Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine and John Wiley & Sons Australia, Ltd.

  20. Investigation of auxiliary heating in tandem mirrors and tokamaks and barrier cell pumping. Annual progress report, October 1, 1980 to December 31, 1981

    International Nuclear Information System (INIS)

    Emmert, G.A.; Scharer, J.

    1981-06-01

    The research has focussed on physics questions concerned with ECRH heating in tandem mirror plugs, pumping of tandem mirror thermal barriers by drift orbits, ICRH heating in tokamaks, and bundle divertors. We have concluded that drift-orbit pumping of thermal barriers is not feasible because the azimuthal E Vector X B Vector drift limits the excursion of trapped ions from a flux surface. We have developed a three-dimensional weakly relativistic (T/sub e/ less than or equal to 50 keV) ray tracing and absorption code for electron cyclotron heating in tandem mirror plugs and barriers. Cases run for TMX, MFTF-B and reactors at T/sub e/ > 10 keV show that strong absorption per pass is present and a careful choice of wave frequency and launch angle is required to ensure wave penetration and absorption in the plasma core. In the area of ion cyclotron frequency range heating in tokamaks, a three-dimensional hot plasma ray tracing theory and code has been developed to handle rays launched from any poloidal angle in the tokamak cross section. Wave heating in the central strong absorption zones is currently being investigated using a full wave solution for the various heating regimes

  1. Alternative geochemical barrier materials

    International Nuclear Information System (INIS)

    1991-07-01

    Previous investigations of the effects of neutralization and reduction on uranium mill tailings pore fluids by the Technical Support Contractor indicated that arsenic, selenium, and molybdenum continue to remain in solution in all but reducing conditions. These hazardous constituents are present in groundwaters as oxyanions and, therefore, are not expected to be removed by adsorption into clays and most other soil constituents. It was decided to investigate the attenuation capacity of two commonly available crystalline iron oxides, taconite and scoria, and a zeolite, a network aluminosilicate with a cage structure. Columns of the candidate materials were exposed to solutions of individual constituents, including arsenic, molybdenum, selenium, and, uranium, and to the spiked tailings pore fluid from the Bodo Canyon disposal cell near Durango, Colorado. In addition to the single material columns, a homogeneous blend of the three materials and layers of the materials were exposed to spiked tailings pore fluids. The results of these experiments indicate that with the exception of molybdenum, the constituents of concern are attenuated by the taconite; however, they are not sufficiently attenuated to meet the groundwater protection standards applicable to the UMTRA Project. Therefore, the candidate barrier materials did not prove to be useful to the UMTRA Project for the cleanup of groundwaters

  2. Protein kinase C-α signals P115RhoGEF phosphorylation and RhoA activation in TNF-α-induced mouse brain microvascular endothelial cell barrier dysfunction

    Directory of Open Access Journals (Sweden)

    Deng Xiaolu

    2011-04-01

    Full Text Available Abstract Background Tumor necrosis factor-α (TNF-α, a proinflammatory cytokine, is capable of activating the small GTPase RhoA, which in turn contributes to endothelial barrier dysfunction. However, the underlying signaling mechanisms remained undefined. Therefore, we aimed to determine the role of protein kinase C (PKC isozymes in the mechanism of RhoA activation and in signaling TNF-α-induced mouse brain microvascular endothelial cell (BMEC barrier dysfunction. Methods Bend.3 cells, an immortalized mouse brain endothelial cell line, were exposed to TNF-α (10 ng/mL. RhoA activity was assessed by pull down assay. PKC-α activity was measured using enzyme assasy. BMEC barrier function was measured by transendothelial electrical resistance (TER. p115RhoGEF phosphorylation was detected by autoradiography followed by western blotting. F-actin organization was observed by rhodamine-phalloidin staining. Both pharmacological inhibitors and knockdown approaches were employed to investigate the role of PKC and p115RhoGEF in TNF-α-induced RhoA activation and BMEC permeability. Results We observed that TNF-α induces a rapid phosphorylation of p115RhoGEF, activation of PKC and RhoA in BMECs. Inhibition of conventional PKC by Gö6976 mitigated the TNF-α-induced p115RhoGEF phosphorylation and RhoA activation. Subsequently, we found that these events are regulated by PKC-α rather than PKC-β by using shRNA. In addition, P115-shRNA and n19RhoA (dominant negative mutant of RhoA transfections had no effect on mediating TNF-α-induced PKC-α activation. These data suggest that PKC-α but not PKC-β acts as an upstream regulator of p115RhoGEF phosphorylation and RhoA activation in response to TNF-α. Moreover, depletion of PKC-α, of p115RhoGEF, and inhibition of RhoA activation also prevented TNF-α-induced stress fiber formation and a decrease in TER. Conclusions Taken together, our results show that PKC-α phosphorylation of p115RhoGEF mediates TNF

  3. Transforming Education: Overcoming Barriers.

    Science.gov (United States)

    David, Jane L.; Goren, Paul D.

    Barriers to progress in educational reform exist inside and outside the education system. Some arise where new practices encounter traditional expectations and boundaries, but others go much deeper than education, such as poverty, racism, local political conflicts, and human resistance to change. The following five categories of barriers are…

  4. Catalytic thermal barrier coatings

    Science.gov (United States)

    Kulkarni, Anand A.; Campbell, Christian X.; Subramanian, Ramesh

    2009-06-02

    A catalyst element (30) for high temperature applications such as a gas turbine engine. The catalyst element includes a metal substrate such as a tube (32) having a layer of ceramic thermal barrier coating material (34) disposed on the substrate for thermally insulating the metal substrate from a high temperature fuel/air mixture. The ceramic thermal barrier coating material is formed of a crystal structure populated with base elements but with selected sites of the crystal structure being populated by substitute ions selected to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a higher rate than would the base compound without the ionic substitutions. Precious metal crystallites may be disposed within the crystal structure to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a lower light-off temperature than would the ceramic thermal barrier coating material without the precious metal crystallites.

  5. Vehicle barrier systems

    International Nuclear Information System (INIS)

    Sena, P.A.

    1986-01-01

    The ground vehicle is one of the most effective tools available to an adversary force. Vehicles can be used to penetrate many types of perimeter barriers, transport equipment and personnel rapidly over long distances, and deliver large amounts of explosives directly to facilities in suicide missions. The function of a vehicle barrier system is to detain or disable a defined threat vehicle at a selected distance from a protected facility. Numerous facilities are installing, or planning to install, vehicle barrier systems and many of these facilities are requesting guidance to do so adequately. Therefore, vehicle barriers are being evaluated to determine their stopping capabilities so that systems can be designed that are both balanced and capable of providing a desired degree of protection. Equally important, many of the considerations that should be taken into account when establishing a vehicle barrier system have been identified. These considerations which pertain to site preparation, barrier selection, system integration and operation, and vehicle/barrier interaction, are discussed in this paper

  6. Intestinal barrier integrity and inflammatory bowel disease

    DEFF Research Database (Denmark)

    Holmberg, Fredrik Eric Olof; Pedersen, Jannie; Jørgensen, Peter

    2017-01-01

    of antimicrobial peptides. Inflammatory bowel disease is associated with life-long morbidity for affected patients, and both the incidence and prevalence is increasing globally, resulting in substantial economic strain for society. Mucosal healing and re-establishment of barrier integrity is associated......, novel treatment strategies to accomplish mucosal healing and to re-establish normal barrier integrity in inflammatory bowel disease are warranted, and luminal stem cell-based approaches might have an intriguing potential. Transplantation of in vitro expanded intestinal epithelial stem cells derived...

  7. Devices for overcoming biological barriers: the use of physical forces to disrupt the barriers.

    Science.gov (United States)

    Mitragotri, Samir

    2013-01-01

    Overcoming biological barriers including skin, mucosal membranes, blood brain barrier as well as cell and nuclear membrane constitutes a key hurdle in the field of drug delivery. While these barriers serve the natural protective function in the body, they limit delivery of drugs into the body. A variety of methods have been developed to overcome these barriers including formulations, targeting peptides and device-based technologies. This review focuses on the use of physical methods including acoustic devices, electric devices, high-pressure devices, microneedles and optical devices for disrupting various barriers in the body including skin and other membranes. A summary of the working principles of these devices and their ability to enhance drug delivery is presented. Copyright © 2012. Published by Elsevier B.V.

  8. Recycler barrier RF buckets

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, C.M.; /Fermilab

    2011-03-01

    The Recycler Ring at Fermilab uses a barrier rf systems for all of its rf manipulations. In this paper, I will give an overview of historical perspective on barrier rf system, the longitudinal beam dynamics issues, aspects of rf linearization to produce long flat bunches and methods used for emittance measurements of the beam in the RR barrier rf buckets. Current rf manipulation schemes used for antiproton beam stacking and longitudinal momentum mining of the RR beam for the Tevatron collider operation are explained along with their importance in spectacular success of the Tevatron luminosity performance.

  9. Converse Barrier Certificate Theorem

    DEFF Research Database (Denmark)

    Wisniewski, Rafael; Sloth, Christoffer

    2013-01-01

    This paper presents a converse barrier certificate theorem for a generic dynamical system.We show that a barrier certificate exists for any safe dynamical system defined on a compact manifold. Other authors have developed a related result, by assuming that the dynamical system has no singular...... points in the considered subset of the state space. In this paper, we redefine the standard notion of safety to comply with generic dynamical systems with multiple singularities. Afterwards, we prove the converse barrier certificate theorem and illustrate the differences between ours and previous work...

  10. Converse Barrier Certificate Theorems

    DEFF Research Database (Denmark)

    Wisniewski, Rafael; Sloth, Christoffer

    2016-01-01

    This paper shows that a barrier certificate exists for any safe dynamical system. Specifically, we prove converse barrier certificate theorems for a class of structurally stable dynamical systems. Other authors have developed a related result by assuming that the dynamical system has neither...... singular points nor closed orbits. In this paper, we redefine the standard notion of safety to comply with dynamical systems with multiple singular elements. Hereafter, we prove the converse barrier certificate theorems and highlight the differences between our results and previous work by a number...

  11. Optimistic barrier synchronization

    Science.gov (United States)

    Nicol, David M.

    1992-01-01

    Barrier synchronization is fundamental operation in parallel computation. In many contexts, at the point a processor enters a barrier it knows that it has already processed all the work required of it prior to synchronization. The alternative case, when a processor cannot enter a barrier with the assurance that it has already performed all the necessary pre-synchronization computation, is treated. The problem arises when the number of pre-sychronization messages to be received by a processor is unkown, for example, in a parallel discrete simulation or any other computation that is largely driven by an unpredictable exchange of messages. We describe an optimistic O(log sup 2 P) barrier algorithm for such problems, study its performance on a large-scale parallel system, and consider extensions to general associative reductions as well as associative parallel prefix computations.

  12. Barrier Infrared Detector (BIRD)

    Data.gov (United States)

    National Aeronautics and Space Administration — A recent breakthrough in MWIR detector design, has resulted in a high operating temperature (HOT) barrier infrared detector (BIRD) that is capable of spectral...

  13. Protective barrier development: Overview

    International Nuclear Information System (INIS)

    Wing, N.R.; Gee, G.W.

    1990-01-01

    Protective barrier and warning marker systems are being developed to isolate wastes disposed of near the earth's surface at the Hanford Site. The barrier is designed to function in an arid to semiarid climate, to limit infiltration and percolation of water through the waste zone to near-zero, to be maintenance free, and to last up to 10,000 yr. Natural materials (e.g., fine soil, sand, gravel, riprap, clay, asphalt) have been selected to optimize barrier performance and longevity and to create an integrated structure with redundant features. These materials isolate wastes by limiting water drainage; reducing the likelihood of plant, animal, and human intrusion; controlling emission of noxious gases; and minimizing erosion. Westinghouse Hanford Company and Pacific Northwest Laboratory efforts to assess the performance of various barrier and marker designs will be discussed

  14. Immortalization of normal human mammary epithelial cells in two steps by direct targeting of senescence barriers does not require gross genomic alterations

    Czech Academy of Sciences Publication Activity Database

    Garbe, J.C.; Vrba, Lukáš; Sputova, K.; Fuchs, L.; Novák, Petr; Brothman, A.R.; Jackson, M.; Chin, K.; LaBarge, M.A.; Watts, G.; Futscher, B. W.; Stampfer, M.R.

    2014-01-01

    Roč. 13, č. 21 (2014), s. 3423-3435 ISSN 1538-4101 Institutional support: RVO:60077344 Keywords : genomic instability * human mammary epithelial cells * telomerase Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Cell biology Impact factor: 4.565, year: 2014

  15. The meninges as barriers and facilitators for the movement of fluid, cells and pathogens related to the rodent and human CNS

    DEFF Research Database (Denmark)

    Weller, Roy O.; Sharp, Matthew M.; Christodoulides, Myron

    2018-01-01

    but also allows attachment of bacteria such as Neisseria meningitidis and of tumour cells as CSF metastases. Single layers of leptomeningeal cells extend into the brain closely associated with the walls of arteries so that there are no perivascular spaces around arteries in the cerebral cortex...

  16. Expression and deposition of basement membrane proteins by brain capillary endothelial cells in a primary murine model of the blood-brain barrier

    DEFF Research Database (Denmark)

    Thomsen, Maj Schneider; Birkelund, Svend; Larsen, Annette Burkhart

    2016-01-01

    of the present study was to create four different in vitro constructs of the murine BBB to characterise if the expression and secretion of basement membrane proteins by the murine brain capillary endothelial cells (mBCECs) was affected by co-culturing with pericytes, mixed glial cells, or both. Primary m...... membrane, and astrocyte endfeet. To study the interaction of the different cells of the BBB, construction of in vitro BBB models is valuable. However, the modulation and contribution of the cells of the BBB to the synthesis of basement membrane proteins in vitro is not fully elaborated. Thus, the aim......, and immunofluorescent labelling were used. The mBCECs were found to express major basement membrane proteins in vitro and increased expression of laminin α5 and collagen IV α1 was correlated to the addition of BBB inducing factors (hydrocortisone, Ro20-1724, pCPT-cAMP). Co-culturing of the mBCECs with pericytes, mixed...

  17. Non-histone nuclear protein HMGN2 differently regulates the urothelium barrier function by altering expression of antimicrobial peptides and tight junction protein genes in UPEC J96-infected bladder epithelial cell monolayer.

    Science.gov (United States)

    Tian, Hanwen; Miao, Junming; Zhang, Fumei; Xiong, Feng; Zhu, Feimei; Li, Jinyu; Wang, Xiaoying; Chen, Shanzhe; Chen, Junli; Huang, Ning; Wang, Yi

    2018-01-01

    The urinary tract is vulnerable to frequent challenges from environmental microflora. Uropathogenic Escherichia coli (UPEC) makes a major contribution to urinary tract infection (UTI). Previous studies have characterized positive roles of non-histone nuclear protein HMGN2 in lung epithelial innate immune response. In the study presented here, we found HMGN2 expression was up-regulated in UPEC J96-infected urothelium. Surprisingly, over-expression of HMGN2 promoted disruption of BECs 5637 cells' intercellular junctions by down-regulating tight junction (TJs) components' expression and physical structure under J96 infection. Further investigation showed that BECs 5637 monolayer, in which HMGN2 was over-expressed, had significantly increased permeability to J96. Our study systemically explored the regulatory roles of HMGN2 in BECs barrier function during UPEC infection and suggested different modulations of intracellular and paracellular routes through which UPEC invades the bladder epithelium.

  18. Dietary Yeast Cell Wall Extract Alters the Proteome of the Skin Mucous Barrier in Atlantic Salmon (Salmo salar: Increased Abundance and Expression of a Calreticulin-Like Protein.

    Directory of Open Access Journals (Sweden)

    Giulia Micallef

    Full Text Available In order to improve fish health and reduce use of chemotherapeutants in aquaculture production, the immunomodulatory effect of various nutritional ingredients has been explored. In salmon, there is evidence that functional feeds can reduce the abundance of sea lice. This study aimed to determine if there were consistent changes in the skin mucus proteome that could serve as a biomarker for dietary yeast cell wall extract. The effect of dietary yeast cell wall extract on the skin mucus proteome of Atlantic salmon was examined using two-dimensional gel electrophoresis. Forty-nine spots showed a statistically significant change in their normalised volumes between the control and yeast cell wall diets. Thirteen spots were successfully identified by peptide fragment fingerprinting and LC-MS/MS and these belonged to a variety of functions and pathways. To assess the validity of the results from the proteome approach, the gene expression of a selection of these proteins was studied in skin mRNA from two different independent feeding trials using yeast cell wall extracts. A calreticulin-like protein increased in abundance at both the protein and transcript level in response to dietary yeast cell wall extract. The calreticulin-like protein was identified as a possible biomarker for yeast-derived functional feeds since it showed the most consistent change in expression in both the mucus proteome and skin transcriptome. The discovery of such a biomarker is expected to quicken the pace of research in the application of yeast cell wall extracts.

  19. Malaria-Associated l-Arginine Deficiency Induces Mast Cell-Associated Disruption to Intestinal Barrier Defenses against Nontyphoidal Salmonella Bacteremia

    Science.gov (United States)

    Chau, Jennifer Y.; Tiffany, Caitlin M.; Nimishakavi, Shilpa; Lawrence, Jessica A.; Pakpour, Nazzy; Mooney, Jason P.; Lokken, Kristen L.; Caughey, George H.; Tsolis, Renee M.

    2013-01-01

    Coinfection with malaria and nontyphoidal Salmonella serotypes (NTS) can cause life-threatening bacteremia in humans. Coinfection with malaria is a recognized risk factor for invasive NTS, suggesting that malaria impairs intestinal barrier function. Here, we investigated mechanisms and strategies for prevention of coinfection pathology in a mouse model. Our findings reveal that malarial-parasite-infected mice, like humans, develop l-arginine deficiency, which is associated with intestinal mastocytosis, elevated levels of histamine, and enhanced intestinal permeability. Prevention or reversal of l-arginine deficiency blunts mastocytosis in ileal villi as well as bacterial translocation, measured as numbers of mesenteric lymph node CFU of noninvasive Escherichia coli Nissle and Salmonella enterica serotype Typhimurium, the latter of which is naturally invasive in mice. Dietary supplementation of malarial-parasite-infected mice with l-arginine or l-citrulline reduced levels of ileal transcripts encoding interleukin-4 (IL-4), a key mediator of intestinal mastocytosis and macromolecular permeability. Supplementation with l-citrulline also enhanced epithelial adherens and tight junctions in the ilea of coinfected mice. These data suggest that increasing l-arginine bioavailability via oral supplementation can ameliorate malaria-induced intestinal pathology, providing a basis for testing nutritional interventions to reduce malaria-associated mortality in humans. PMID:23690397

  20. Intestinal Barrier and Behavior.

    Science.gov (United States)

    Julio-Pieper, M; Bravo, J A

    2016-01-01

    The intestinal barrier function contributes to gut homeostasis by modulating absorption of water, electrolytes, and nutrients from the lumen into the circulation while restricting the passage of noxious luminal substances and microorganisms. Chronic conditions such as rheumatoid arthritis, inflammatory bowel disease, and celiac disease are associated to intestinal barrier dysfunction. Here, the hypothesis is that a leaky intestinal wall allowing for indiscriminate passage of intraluminal compounds to the vascular compartment could in turn lead to systemic inflammation. An increasing number of studies are now investigating the association between gut permeability and CNS disorders, under the premise that translocation of intestinal luminal contents could affect CNS function, either directly or indirectly. Still, it is unknown whether disruption of intestinal barrier is a causative agent or a consequence in these situations. Here, we discuss the latest evidence pointing to an association between increased gut permeability and disrupted behavioral responses. © 2016 Elsevier Inc. All rights reserved.

  1. Skin barrier in rosacea*

    Science.gov (United States)

    Addor, Flavia Alvim Sant'Anna

    2016-01-01

    Recent studies about the cutaneous barrier demonstrated consistent evidence that the stratum corneum is a metabolically active structure and also has adaptive functions, may play a regulatory role in the inflammatory response with activation of keratinocytes, angiogenesis and fibroplasia, whose intensity depends primarily on the intensity the stimulus. There are few studies investigating the abnormalities of the skin barrier in rosacea, but the existing data already show that there are changes resulting from inflammation, which can generate a vicious circle caused a prolongation of flare-ups and worsening of symptoms. This article aims to gather the most relevant literature data about the characteristics and effects of the state of the skin barrier in rosacea. PMID:26982780

  2. Health Barriers to Learning

    Directory of Open Access Journals (Sweden)

    Delaney Gracy

    2014-01-01

    Full Text Available This article summarizes the results from a 2013 online survey with 408 principals and assistant principals in New York City public elementary and middle schools. The survey assessed three primary areas: health issues in the school, health issues perceived as barriers to learning for affected students, and resources needed to address these barriers. Eighteen of the 22 health conditions listed in the survey were considered a moderate or serious issue within their schools by at least 10% of respondents. All 22 of the health issues were perceived as a barrier to learning by between 12% and 87% of the respondents. Representatives from schools that serve a higher percentage of low-income students reported significantly higher levels of concern about the extent of health issues and their impact on learning. Respondents most often said they need linkages with organizations that can provide additional services and resources at the school, especially for mental health.

  3. Crossing the Salt Barrier

    Indian Academy of Sciences (India)

    Fry. RIVER. To cross the salt barrier is, therefore, an obligatory part of every amphihaline fish cycle. Figure 2a. Life Cycle of. Salmon. Adult salmon migrate from sea towards the river. After reaching their hatching ground, the eggs are laid in the gravel. The spawned fishes are called kelts. Alevin is a stage from hatching to fry.

  4. Great Barrier Reef

    Science.gov (United States)

    2002-01-01

    A better than average view of the Great Barrier Reef was captured by SeaWiFS on a recent overpass. There is sunglint northeast of the reef and there appears to be some sort of filamentous bloom in the Capricorn Channel.

  5. The inner CSF-brain barrier

    DEFF Research Database (Denmark)

    Whish, Sophie; Dziegielewska, Katarzyna M; Møllgård, Kjeld

    2015-01-01

    consisting of neuroepithelial cells and later radial glial cells, is characterized by "strap" junctions, which limit the exchange of different sized molecules between cerebrospinal fluid and the brain parenchyma. Here we provide a systematic study of permeability properties of this inner cerebrospinal fluid-brain...... barrier during mouse development from embryonic day, E17 until adult. Results show that at fetal stages exchange across this barrier is restricted to the smallest molecules (286Da) and the diffusional restraint is progressively removed as the brain develops. By postnatal day P20, molecules the size......In the adult the interface between the cerebrospinal fluid and the brain is lined by the ependymal cells, which are joined by gap junctions. These intercellular connections do not provide a diffusional restrain between the two compartments. However, during development this interface, initially...

  6. Glycomacropeptide Reduces Intestinal Epithelial Cell Barrier Dysfunction and Adhesion of Entero-Hemorrhagic and Entero-Pathogenic Escherichia coli in Vitro

    Directory of Open Access Journals (Sweden)

    Shane Feeney

    2017-10-01

    Full Text Available In recent years, the potential of glycosylated food components to positively influence health has received considerable attention. Milk is a rich source of biologically active glycoconjugates which are associated with antimicrobial, immunomodulatory, anti-adhesion, anti-inflammatory and prebiotic properties. Glycomacropeptide (GMP is the C-terminal portion of kappa-casein that is released from whey during cheese-making by the action of chymosin. Many of the biological properties associated with GMP, such as anti-adhesion, have been linked with the carbohydrate portion of the protein. In this study, we investigated the ability of GMP to inhibit the adhesion of a variety of pathogenic Escherichia coli strains to HT-29 and Caco-2 intestinal cell lines, given the importance of E. coli in causing bacterial gastroenteritis. GMP significantly reduced pathogen adhesion, albeit with a high degree of species specificity toward enteropathogenic E. coli (EPEC strains O125:H32 and O111:H2 and enterohemorrhagic E. coli (EHEC strain 12900 O157:H7. The anti-adhesive effect resulted from the interaction of GMP with the E. coli cells and was also dependent on GMP concentration. Pre-incubation of intestinal Caco-2 cells with GMP reduced pathogen translocation as represented by a decrease in transepithelial electrical resistance (TEER. Thus, GMP is an effective in-vitro inhibitor of adhesion and epithelial injury caused by E. coli and may have potential as a biofunctional ingredient in foods to improve gastrointestinal health.

  7. Epidermal Growth Factor and Intestinal Barrier Function

    Directory of Open Access Journals (Sweden)

    Xiaopeng Tang

    2016-01-01

    Full Text Available Epidermal growth factor (EGF is a 53-amino acid peptide that plays an important role in regulating cell growth, survival, migration, apoptosis, proliferation, and differentiation. In addition, EGF has been established to be an effective intestinal regulator helping to protect intestinal barrier integrity, which was essential for the absorption of nutrients and health in humans and animals. Several researches have demonstrated that EGF via binding to the EGF receptor and subsequent activation of Ras/MAPK, PI3K/AKT, PLC-γ/PKC, and STATS signal pathways regulates intestinal barrier function. In this review, the relationship between epidermal growth factor and intestinal development and intestinal barrier is described, to provide a better understanding of the effects of EGF on intestine development and health.

  8. Mucus as a Barrier to Drug Delivery

    DEFF Research Database (Denmark)

    Bøgh, Marie; Nielsen, Hanne Mørck

    2015-01-01

    -established as essential tools in drug research and development, but traditionally, mucus-containing models have only rarely been applied. However, a number of mucus-containing in vitro models have recently been described in the literature and their properties and applications will be reviewed and discussed. Finally...... barrier to drug delivery. Current knowledge of mucus characteristics and barrier properties, as achieved by state-of-the-art methodologies, is the topic of this MiniReview emphasizing the gastrointestinal mucus and an overall focus on oral drug delivery. Cell culture-based in vitro models are well......, studies of peptide and protein drug diffusion in and through mucus and studies of mucus-penetrating nanoparticles are included to illustrate the mucus as a potentially important barrier to obtain sufficient bioavailability of orally administered drugs, and thus an important parameter to address...

  9. Trends and barriers to lateral gene transfer in prokaryotes.

    Science.gov (United States)

    Popa, Ovidiu; Dagan, Tal

    2011-10-01

    Gene acquisition by lateral gene transfer (LGT) is an important mechanism for natural variation among prokaryotes. Laboratory experiments show that protein-coding genes can be laterally transferred extremely fast among microbial cells, inherited to most of their descendants, and adapt to a new regulatory regime within a short time. Recent advance in the phylogenetic analysis of microbial genomes using networks approach reveals a substantial impact of LGT during microbial genome evolution. Phylogenomic networks of LGT among prokaryotes reconstructed from completely sequenced genomes uncover barriers to LGT in multiple levels. Here we discuss the kinds of barriers to gene acquisition in nature including physical barriers for gene transfer between cells, genomic barriers for the integration of acquired DNA, and functional barriers for the acquisition of new genes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Sound trapping and dredging barriers.

    Science.gov (United States)

    Wang, Xu; Wang, Xiaonan; Yu, Wuzhou; Jiang, Zaixiu; Mao, Dongxing

    2017-06-01

    When sound barriers are installed on both sides of a noise source, degradation in performance is observed. Barriers having negative-phase-gradient surfaces successfully eliminate this drawback by trapping sound energy in between the barriers. In contrast, barriers can also be designed to "dredge" the energy flux out. An extended model considering higher-order diffractions, which resulted from the interplay of the induced surface wave and barrier surface periodicity, is presented. It is found that the sound dredging barriers provide a remarkable enhancement over the trapping ones, and hence have the potential to be widely used in noise control engineering.

  11. Synergistic protective effects of escin and low‑dose glucocorticoids against vascular endothelial growth factor‑induced blood‑retinal barrier breakdown in retinal pigment epithelial and umbilical vein endothelial cells.

    Science.gov (United States)

    Zhang, Fenglan; Man, Xuejing; Yu, Huajun; Liu, Limei; Li, Yuanbin

    2015-02-01

    Previous studies have shown that escin possesses glucocorticoid (GC)‑like anti‑edematous and anti‑inflammatory effects. The present study was designed to investigate whether escin exhibits synergistic protective effects against blood‑retinal barrier (BRB) breakdown when combined with GC in an in vitro monolayer BRB model, based on retinal pigment epithelial (RPE) cells and human umbilical vein endothelial cells (HUVECs). The results showed that low concentrations of escin and triamcinolone acetonide (TA) administered separately did not affect BRB trans‑endothelial (epithelium) resistance (TEER). However, when administered together, escin and TA significantly inhibited reduced BRB TEER following treatment with vascular endothelial growth factor (VEGF). Furthermore, low‑concentrations of escin and TA administered together significantly increased the expression levels of occludin and ZO‑1. This demonstrates that escin and GC have synergistic protective effects against BRB breakdown, and the molecular mechanisms may be related to the upregulation of occludin and ZO‑1 expression. The combination of escin with GC indicates a potential beneficial strategy for the treatment of breakdown of the BRB.

  12. Geophysical characterization of subsurface barriers

    International Nuclear Information System (INIS)

    Borns, D.J.

    1995-08-01

    An option for controlling contaminant migration from plumes and buried waste sites is to construct a subsurface barrier of a low-permeability material. The successful application of subsurface barriers requires processes to verify the emplacement and effectiveness of barrier and to monitor the performance of a barrier after emplacement. Non destructive and remote sensing techniques, such as geophysical methods, are possible technologies to address these needs. The changes in mechanical, hydrologic and chemical properties associated with the emplacement of an engineered barrier will affect geophysical properties such a seismic velocity, electrical conductivity, and dielectric constant. Also, the barrier, once emplaced and interacting with the in situ geologic system, may affect the paths along which electrical current flows in the subsurface. These changes in properties and processes facilitate the detection and monitoring of the barrier. The approaches to characterizing and monitoring engineered barriers can be divided between (1) methods that directly image the barrier using the contrasts in physical properties between the barrier and the host soil or rock and (2) methods that reflect flow processes around or through the barrier. For example, seismic methods that delineate the changes in density and stiffness associated with the barrier represents a direct imaging method. Electrical self potential methods and flow probes based on heat flow methods represent techniques that can delineate the flow path or flow processes around and through a barrier

  13. Breakdown of the Blood-Brain Barrier during Tick-Borne Encephalitis in Mice Is Not Dependent on CD8(+) T-Cells

    Czech Academy of Sciences Publication Activity Database

    Růžek, Daniel; Salát, Jiří; Singh, S. K.; Kopecký, Jan

    2011-01-01

    Roč. 6, č. 5 (2011), e20472 E-ISSN 1932-6203 R&D Projects: GA ČR GPP302/10/P438; GA ČR GAP502/11/2116; GA MŠk(CZ) LC06009 Institutional research plan: CEZ:AV0Z60220518 Keywords : CENTRAL - NERVOUS - SYSTEM * WEST-NILE-VIRUS * MICROVASCULAR ENDOTHELIAL-CELLS * TIGHT JUNCTION PROTEINS * MULTIPLE-SCLEROSIS * INFLAMMATORY RESPONSE * PERMEABILITY CHANGES Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.092, year: 2011

  14. Apoplastic Diffusion Barriers in Arabidopsis

    Science.gov (United States)

    Schreiber, Lukas; Franke, Rochus Benni; Geldner, Niko; Reina-Pinto, José J.; Kunst, Ljerka

    2013-01-01

    During the development of Arabidopsis and other land plants, diffusion barriers are formed in the apoplast of specialized tissues within a variety of plant organs. While the cuticle of the epidermis is the primary diffusion barrier in the shoot, the Casparian strips and suberin lamellae of the endodermis and the periderm represent the diffusion barriers in the root. Different classes of molecules contribute to the formation of extracellular diffusion barriers in an organ- and tissue-specific manner. Cutin and wax are the major components of the cuticle, lignin forms the early Casparian strip, and suberin is deposited in the stage II endodermis and the periderm. The current status of our understanding of the relationships between the chemical structure, ultrastructure and physiological functions of plant diffusion barriers is discussed. Specific aspects of the synthesis of diffusion barrier components and protocols that can be used for the assessment of barrier function and important barrier properties are also presented. PMID:24465172

  15. Effects of dietary clays on performance and intestinal mucus barrier of broiler chicks challenged with Salmonella enterica serovar Typhimurium and on goblet cell function in vitro.

    Science.gov (United States)

    Almeida, J A S; Ponnuraj, N P; Lee, J J; Utterback, P; Gaskins, H R; Dilger, R N; Pettigrew, J E

    2014-04-01

    In vivo and in vitro experiments were conducted to test for beneficial effects of dietary clays on broiler chicks challenged with Salmonella enterica serovar Typhimurium and to explore potential mechanisms. First, two hundred forty 1-d-old male broilers (initial BW: 41.6 ± 0.4 g) were allotted in a 2 × 4 factorial arrangement in a randomized complete block design. There were 2 infection treatments (with or without Salmonella) and 4 diets: basal (BAS), 0.3% smectite A (SMA), 0.3% smectite B, and 0.3% zeolite. The Salmonella reduced (P clay largely restored it (challenge × diet interaction, P clays (P clays restored the growth depression caused by Salmonella, and changes in goblet cell function may contribute to the benefits of one of the clays, specifically SMA.

  16. Importance of the Reorganization Energy Barrier in Computational Design of Porphyrin-Based Solar Cells with Cobalt-Based Redox Mediators

    DEFF Research Database (Denmark)

    Ørnsø, Kristian Baruël; Jónsson, Elvar Örn; Jacobsen, Karsten Wedel

    2015-01-01

    The shift from iodide-based redox mediators in dye-sensitized solar cells toward octahedral cobalt complexes has led to a significant increase in the efficiency. However, due to the nature of this type of complexes the driving force required for the regeneration of the dye is very high......, and this limits the achievable efficiency. Here we show that the large driving force is a direct consequence of the large reorganization energy of the dye regeneration reaction. The reorganization energies for charge transfer between a simple zinc porphyrin dye and two popular cobalt-based redox mediators...... is calculated using ab initio molecular dynamics with explicit solvent. These results are then combined with a Marcus-based extrapolation scheme to obtain the reorganization energies of more than 5000 porphyrin-based dyes. We propose a scheme for scoring the performance of the porphyrin dyes, which is able...

  17. Targeted liposomes for drug delivery across the blood-brain barrier

    NARCIS (Netherlands)

    van Rooy, I.

    2011-01-01

    Our brain is protected by the blood-brain barrier (BBB). This barrier is formed by specialized endothelial cells of the brain vasculature and prevents toxic substances from entering the brain. The downside of this barrier is that many drugs that have been developed to cure brain diseases cannot

  18. Performance of engineered barriers

    International Nuclear Information System (INIS)

    Rajaram, V.; Dean, P.V.; McLellan, S.A.

    1997-01-01

    Engineered barriers, both vertical and horizontal, have been used to isolate hazardous wastes from contact, precipitation, surface water and groundwater. The primary objective of this study was to determine the performance of subsurface barriers installed throughout the U.S. over the past 20 years to contain hazardous wastes. Evaluation of Resource Conservation and Recovery Act (RCRA) Subtitle C or equivalent caps was a secondary objective. A nationwide search was launched to select hazardous waste sites at which vertical barrier walls and/or caps had been used as the containment method. None of the sites selected had an engineered floor. From an initial list of 130 sites, 34 sites were selected on the basis of availability of monitoring data for detailed analysis of actual field performance. This paper will briefly discuss preliminary findings regarding the design, construction quality assurance/construction quality control (CQA/CQC), and monitoring at the 34 sites. In addition, the short-term performance of these sites (less than 5 years) is presented since very little long-term performance data was available

  19. Transport of monocarboxylic acids at the blood-brain barrier: Studies with monolayers of primary cultured bovine brain capillary endothelial cells

    International Nuclear Information System (INIS)

    Terasaki, T.; Takakuwa, S.; Moritani, S.; Tsuji, A.

    1991-01-01

    The kinetics and mechanism of the transport of monocarboxylic acids (MCAs) were studied by using primary cultured bovine brain capillary endothelial cells. Concentration-dependent uptake of acetic acid was observed, and the kinetic parameters were estimated as follows: the Michaelis constant, Kt, was 3.41 ± 1.87 mM, the maximum uptake rate, Jmax, was 144.7 ± 55.7 nmol/mg of protein/min and the nonsaturable first-order rate constant, Kd, was 6.66 ± 1.98 microliters/mg of protein/min. At medium pH below 7.0, the uptake rate of [3H]acetic acid increased markedly with decreasing medium pH, whereas pH-independent uptake was observed in the presence of 10 mM acetic acid. An energy requirement for [3H]acetic acid uptake was also demonstrated, because metabolic inhibitors (2,4-dinitrophenol and rotenone) reduced significantly the uptake rate (P less than .05). Carbonylcyanide-p-trifluoro-methoxyphenylhydrazone, a protonophore, inhibited significantly the uptake of [3H]acetic acid at medium pH of 5.0 and 6.0, whereas 4,4'-diisothiocyanostilben-2,2'-disulfonic acid did not. Several MCAs inhibited significantly the uptake rate of [3H]acetic acid, whereas di- and tricarboxylic acids did not. The uptake of [3H]acetic acid was competitively inhibited by salicylic acid, with an inhibition constant, Ki, of 3.60 mM, suggesting a common transport system between acetic acid and salicylic acid. Moreover, at the medium pH of 7.4, salicylic acid and valproic acid inhibited significantly the uptake of [3H]acetic acid, demonstrating that the transport of MCA drugs could also be ascribed to the MCA transport system at the physiologic pH

  20. Barrier mechanisms in the Drosophila blood-brain barrier

    Directory of Open Access Journals (Sweden)

    Samantha Jane Hindle

    2014-12-01

    Full Text Available The invertebrate blood-brain barrier field is growing at a rapid pace and, in recent years, studies have shown a physiologic and molecular complexity that has begun to rival its vertebrate counterpart. Novel mechanisms of paracellular barrier maintenance through GPCR signaling were the first demonstrations of the complex adaptive mechanisms of barrier physiology. Building upon this work, the integrity of the invertebrate blood-brain barrier has recently been shown to require coordinated function of all layers of the compound barrier structure, analogous to signaling between the layers of the vertebrate neurovascular unit. These findings strengthen the notion that many blood-brain barrier mechanisms are conserved between vertebrates and invertebrates, and suggest that novel findings in invertebrate model organisms will have a significant impact on the understanding of vertebrate BBB functions. In this vein, important roles in coordinating localized and systemic signaling to dictate organism development and growth are beginning to show how the blood-brain barrier can govern whole animal physiologies. This includes novel functions of blood-brain barrier gap junctions in orchestrating synchronized neuroblast proliferation, and of blood-brain barrier secreted antagonists of insulin receptor signaling. These advancements and others are pushing the field forward in exciting new directions. In this review, we provide a synopsis of invertebrate blood-brain barrier anatomy and physiology, with a focus on insights from the past 5 years, and highlight important areas for future study.

  1. Role of SiNx Barrier Layer on the Performances of Polyimide Ga2O3-doped ZnO p-i-n Hydrogenated Amorphous Silicon Thin Film Solar Cells

    Directory of Open Access Journals (Sweden)

    Fang-Hsing Wang

    2014-02-01

    Full Text Available In this study, silicon nitride (SiNx thin films were deposited on polyimide (PI substrates as barrier layers by a plasma enhanced chemical vapor deposition (PECVD system. The gallium-doped zinc oxide (GZO thin films were deposited on PI and SiNx/PI substrates at room temperature (RT, 100 and 200 °C by radio frequency (RF magnetron sputtering. The thicknesses of the GZO and SiNx thin films were controlled at around 160 ± 12 nm and 150 ± 10 nm, respectively. The optimal deposition parameters for the SiNx thin films were a working pressure of 800 × 10−3 Torr, a deposition power of 20 W, a deposition temperature of 200 °C, and gas flowing rates of SiH4 = 20 sccm and NH3 = 210 sccm, respectively. For the GZO/PI and GZO-SiNx/PI structures we had found that the GZO thin films deposited at 100 and 200 °C had higher crystallinity, higher electron mobility, larger carrier concentration, smaller resistivity, and higher optical transmittance ratio. For that, the GZO thin films deposited at 100 and 200 °C on PI and SiNx/PI substrates with thickness of ~1000 nm were used to fabricate p-i-n hydrogenated amorphous silicon (α-Si thin film solar cells. 0.5% HCl solution was used to etch the surfaces of the GZO/PI and GZO-SiNx/PI substrates. Finally, PECVD system was used to deposit α-Si thin film onto the etched surfaces of the GZO/PI and GZO-SiNx/PI substrates to fabricate α-Si thin film solar cells, and the solar cells’ properties were also investigated. We had found that substrates to get the optimally solar cells’ efficiency were 200 °C-deposited GZO-SiNx/PI.

  2. Structural failures of the blood–gas barrier and the epithelial–epithelial cell connections in the different vascular regions of the lung of the domestic fowl, Gallus gallus variant domesticus, at rest and during exercise

    Science.gov (United States)

    Maina, John N.; Jimoh, Sikiru A.

    2013-01-01

    Summary Structural failure of blood–gas barrier (BGB) and epithelial–epithelial cell connections (EECCs) in different vascular regions of the exchange tissue of the lung was studied in rested and exercised chickens. The number of red blood cells (nRBCs) was counted and protein concentration (PC) measured after lavaging the respiratory system, and blood was sampled to determine the blood lactate levels (BLLs). The numbers of complete BGB breaks (nBGBBs) and those of the EECCs (nEECCBs) were counted in the different vascular territories of the lung. The nRBCs and the PCs increased with increasing exercise intensities but the rate of increase decreased at higher workloads. From rest to the fastest experimental treadmill speed of 2.95 m.sec−1, BLLs increased 4-fold. In all cases, the nEECCBs exceeded those of the BGB, showing that structurally the BGB is relatively weaker than the EECC. The increase in the number of breaks with increasing exercise can be attributed to increase in the pulmonary capillary blood pressure (PCBP) from faster heart rates and higher cardiac outputs, while the leveling out of the measurements made at higher workloads may have arisen from hemodynamic changes that initially ensued from exudation of blood plasma and then flow of blood into the air capillaries on failure of the BGB. The relative differences in the nBGBBs and the nEECCBs in the different vascular regions of the lung were ascribed to diameters of the branches and their points of origin and angles of bifurcation from the pulmonary artery. Presence of RBCs in the air capillaries of the lungs of rested chickens showed that failure of the BGB commonly occurs even in healthy and unstressed birds. Rapid repair and/or defense responses, which were observed, may explain how birds cope with mechanical injuries of the BGB. PMID:23519074

  3. Structural failures of the blood-gas barrier and the epithelial-epithelial cell connections in the different vascular regions of the lung of the domestic fowl, Gallus gallus variant domesticus, at rest and during exercise.

    Science.gov (United States)

    Maina, John N; Jimoh, Sikiru A

    2013-03-15

    Structural failure of blood-gas barrier (BGB) and epithelial-epithelial cell connections (EECCs) in different vascular regions of the exchange tissue of the lung was studied in rested and exercised chickens. The number of red blood cells (nRBCs) was counted and protein concentration (PC) measured after lavaging the respiratory system, and blood was sampled to determine the blood lactate levels (BLLs). The numbers of complete BGB breaks (nBGBBs) and those of the EECCs (nEECCBs) were counted in the different vascular territories of the lung. The nRBCs and the PCs increased with increasing exercise intensities but the rate of increase decreased at higher workloads. From rest to the fastest experimental treadmill speed of 2.95 m.sec(-1), BLLs increased 4-fold. In all cases, the nEECCBs exceeded those of the BGB, showing that structurally the BGB is relatively weaker than the EECC. The increase in the number of breaks with increasing exercise can be attributed to increase in the pulmonary capillary blood pressure (PCBP) from faster heart rates and higher cardiac outputs, while the leveling out of the measurements made at higher workloads may have arisen from hemodynamic changes that initially ensued from exudation of blood plasma and then flow of blood into the air capillaries on failure of the BGB. The relative differences in the nBGBBs and the nEECCBs in the different vascular regions of the lung were ascribed to diameters of the branches and their points of origin and angles of bifurcation from the pulmonary artery. Presence of RBCs in the air capillaries of the lungs of rested chickens showed that failure of the BGB commonly occurs even in healthy and unstressed birds. Rapid repair and/or defense responses, which were observed, may explain how birds cope with mechanical injuries of the BGB.

  4. Structural failures of the blood–gas barrier and the epithelial–epithelial cell connections in the different vascular regions of the lung of the domestic fowl, Gallus gallus variant domesticus, at rest and during exercise

    Directory of Open Access Journals (Sweden)

    John N. Maina

    2013-01-01

    Structural failure of blood–gas barrier (BGB and epithelial–epithelial cell connections (EECCs in different vascular regions of the exchange tissue of the lung was studied in rested and exercised chickens. The number of red blood cells (nRBCs was counted and protein concentration (PC measured after lavaging the respiratory system, and blood was sampled to determine the blood lactate levels (BLLs. The numbers of complete BGB breaks (nBGBBs and those of the EECCs (nEECCBs were counted in the different vascular territories of the lung. The nRBCs and the PCs increased with increasing exercise intensities but the rate of increase decreased at higher workloads. From rest to the fastest experimental treadmill speed of 2.95 m.sec−1, BLLs increased 4-fold. In all cases, the nEECCBs exceeded those of the BGB, showing that structurally the BGB is relatively weaker than the EECC. The increase in the number of breaks with increasing exercise can be attributed to increase in the pulmonary capillary blood pressure (PCBP from faster heart rates and higher cardiac outputs, while the leveling out of the measurements made at higher workloads may have arisen from hemodynamic changes that initially ensued from exudation of blood plasma and then flow of blood into the air capillaries on failure of the BGB. The relative differences in the nBGBBs and the nEECCBs in the different vascular regions of the lung were ascribed to diameters of the branches and their points of origin and angles of bifurcation from the pulmonary artery. Presence of RBCs in the air capillaries of the lungs of rested chickens showed that failure of the BGB commonly occurs even in healthy and unstressed birds. Rapid repair and/or defense responses, which were observed, may explain how birds cope with mechanical injuries of the BGB.

  5. Linguistic Barriers and Bridges

    DEFF Research Database (Denmark)

    Thuesen, Frederik

    2016-01-01

    The influence of language on social capital in low-skill and ethnically diverse workplaces has thus far received very limited attention within the sociology of work. As the ethnically diverse workplace is an important social space for the construction of social relations bridging different social...... and intercultural communication, this article analyses interviews with 31 employees from two highly ethnically diverse Danish workplaces. The article shows how linguistic barriers such as different levels of majority language competence and their consequent misunderstandings breed mistrust and hostility, whilst...... communication related to collaboration and ‘small talk’ may provide linguistic bridges to social capital formation....

  6. [Barrier methods of contraception].

    Science.gov (United States)

    Goldsmith, A; Edelman, D A

    1982-01-01

    Vaginal methods of contraception were the earliest types used and some references to them date back to antiquity. Most of the vaginal contraceptive agents identified by the ancient Greeks, Indians, Japanese, and Chinese have been found in modern laboratory tests to have spermicidal properties, but it is doubtful that the methods were fully reliable or were used by many people. During the 19th century the condom, vaginal spermicides, and diaphragm became available. The development of nonoxynol-9 and other nonirritating but effective spermicidal agents improved vaginal contraceptives greatly by the 1950s, but starting in the 1960s newer methods began to replace the vaginal methods. Interest in barrier methods has been reawakened somewhat by concern about the health effects of hormonal methods. At present all barrier methods leave something to be desired. Failure rates of 3-30% for barrier methods in general have been estimated, but the higher rates are believed due to incorrect or inconsistent use. Theoretical failure rates of condoms and diaphragms have been estimated at 3/100 women-years, but in actual use failure rates may reach 15 for condoms and 13 for diaphragms used with spermicides. Use-effectiveness rates are greatly influenced by motivation. For a variety of reasons, the acceptability of barrier methods is low, especially in developing countries. New developments in spermicidal agents include sperm inhibitors, which impede the fertilizing capacity of sperm rather than attempting a spermicidal effect; a number of such agents have been studied and have proven more effective in animal tests than conventional spermicides. Neosampoon, a new spermicidal foam, has attracted an increasing number of users, especially in developing countries. A new condom, made of thin polymers and containing a standard dose of nonoxynol-9, has been designed to dissolve in the vaginal fluid. Further studies are needed of its acceptability, efficacy, and side effects before it becomes

  7. Support or Barrier?

    DEFF Research Database (Denmark)

    Sanden, Guro Refsum; Lønsmann, Dorte

    employees use to cross language boundaries in their everyday work, and, secondly, how these practices relate to top-down language management in the case companies. Our findings show that employees are often dependent on ad hoc and informal solutions in cross- language situations, which leads us......This study offers a critical look at how corporate-level language management influences front-line language practices among employees in three multinational corporations (MNCs) headquartered in Scandinavia. Based on interview and document data, we examine, firstly, what front-line practices...... to a discussion of how a company’s language policy may be seen as both support and a barrier....

  8. Kiwifruit, mucins, and the gut barrier.

    Science.gov (United States)

    Moughan, Paul J; Rutherfurd, Shane M; Balan, Prabhu

    2013-01-01

    Kiwifruit has long been regarded in China, where it originated from, for its health properties and particularly in relation to digestion and general gut health. There are a number of physical and chemical properties of the fruit, including its dietary fiber content, the presence of raphides, its high water holding capacity and actinidin content, that suggest that kiwifruit may be effective in influencing gut mucin production and thus enhancing the integrity of the gut barrier. The mucous layer, which comprises mucins and other materials, overlying the mucosal epithelium, is an important component of the gut barrier. The gut barrier plays a crucial role in separating the host from the often noxious external environment. The mucous layer, which covers the entire gastrointestinal tract (GIT), is the front line of innate host defense. There have been few direct studies of the effect of kiwifruit ingestion on mucin production in the GIT, and findings that are available using animal models are somewhat inconsistent. Taking results for digesta mucin content, number of goblet cells, and mucin gene expression, together, it would seem that green kiwifruit and possibly gold kiwifruit do influence gut mucin production, and the kiwifruit as part of a balanced diet may help to maintain the mucous layer and gut barrier. More corroborative experimental evidence is needed, and studies need to be undertaken in humans. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Neuron-Glial Interactions in Blood-Brain Barrier Formation

    OpenAIRE

    Banerjee, Swati; Bhat, Manzoor A.

    2007-01-01

    The blood brain barrier (BBB) evolved to preserve the microenvironment of the highly excitable neuronal cells to allow for action potential generation and propagation. Intricate molecular interactions between two main cell types, the neurons and the glial cells, form the underlying basis of the critical functioning of the nervous system across species. In invertebrates, interactions between neurons and glial cells are central in establishing a functional BBB. However, in vertebrates, the BBB ...

  10. The intestinal barrier function and its involvement in digestive disease.

    Science.gov (United States)

    Salvo Romero, Eloísa; Alonso Cotoner, Carmen; Pardo Camacho, Cristina; Casado Bedmar, Maite; Vicario, María

    2015-11-01

    The gastrointestinal mucosal surface is lined with epithelial cells representing an effective barrier made up with intercellular junctions that separate the inner and the outer environments, and block the passage of potentially harmful substances. However, epithelial cells are also responsible for the absorption of nutrients and electrolytes, hence a semipermeable barrier is required that selectively allows a number of substances in while keeping others out. To this end, the intestine developed the "intestinal barrier function", a defensive system involving various elements, both intra- and extracellular, that work in a coordinated way to impede the passage of antigens, toxins, and microbial byproducts, and simultaneously preserves the correct development of the epithelial barrier, the immune system, and the acquisition of tolerance against dietary antigens and the intestinal microbiota. Disturbances in the mechanisms of the barrier function favor the development of exaggerated immune responses; while exact implications remain unknown, changes in intestinal barrier function have been associated with the development of inflammatory conditions in the gastrointestinal tract. This review details de various elements of the intestinal barrier function, and the key molecular and cellular changes described for gastrointestinal diseases associated with dysfunction in this defensive mechanism.

  11. Performing a local barrier operation

    Science.gov (United States)

    Archer, Charles J; Blocksome, Michael A; Ratterman, Joseph D; Smith, Brian E

    2014-03-04

    Performing a local barrier operation with parallel tasks executing on a compute node including, for each task: retrieving a present value of a counter; calculating, in dependence upon the present value of the counter and a total number of tasks performing the local barrier operation, a base value, the base value representing the counter's value prior to any task joining the local barrier; calculating, in dependence upon the base value and the total number of tasks performing the local barrier operation, a target value of the counter, the target value representing the counter's value when all tasks have joined the local barrier; joining the local barrier, including atomically incrementing the value of the counter; and repetitively, until the present value of the counter is no less than the target value of the counter: retrieving the present value of the counter and determining whether the present value equals the target value.

  12. Exposure, Uptake, and Barriers

    Science.gov (United States)

    Baeza-Squiban, Armelle; Lanone, Sophie

    The nanotechnologies market is booming, e.g., in the food industry (powder additives, etc.) and in medical applications (drug delivery, prosthetics, diagnostic imaging, etc.), but also in other industrial sectors, such as sports, construction, cosmetics, and so on. In this context, with an exponential increase in the number of current and future applications, it is particularly important to evaluate the problem of unintentional (i.e., non-medical) exposure to manufactured nanoparticles (so excluding nanoparticles found naturally in the environment). In this chapter, we begin by discussing the various parameters that must be taken into account in any serious assessment of exposure to man-made nanoparticles. We then list the potential routes by which nanoparticles might enter into the organism, and outline the mechanisms whereby they could get past the different biological barriers. Finally, we describe the biodistribution of nanoparticles in the organism and the way they are eliminated.

  13. Countermeasures and barriers

    International Nuclear Information System (INIS)

    Petersen, Johannes

    2005-10-01

    In 1973 Haddon proposed ten strategies for reducing and avoiding damages based on a model of potential harmful energy transfer (Haddon, 1973). The strategies apply to a large variety of unwanted phenomena. Haddon's pioneering work on countermeasures has had a major influence on later thinking about safety. Considering its impact it is remarkable that the literature offers almost no discussions related to the theoretical foundations of Haddon's countermeasure strategies. The present report addresses a number of theoretical issues related to Haddon's countermeasure strategies, which are: 1) A reformulation and formalization of Haddon's countermeasure strategies. 2) An identification and description of some of the problems associated with the term 'barrier'. 3) Suggestions for a more precise terminology based on the causal structure of countermeasures. 4) Extending the scope of countermeasures to include sign-based countermeasures. (au)

  14. Countermeasures and barriers

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, Johannes [Oersted - DTU, Automation, Kgs. Lyngby (Denmark)

    2005-10-01

    In 1973 Haddon proposed ten strategies for reducing and avoiding damages based on a model of potential harmful energy transfer (Haddon, 1973). The strategies apply to a large variety of unwanted phenomena. Haddon's pioneering work on countermeasures has had a major influence on later thinking about safety. Considering its impact it is remarkable that the literature offers almost no discussions related to the theoretical foundations of Haddon's countermeasure strategies. The present report addresses a number of theoretical issues related to Haddon's countermeasure strategies, which are: 1) A reformulation and formalization of Haddon's countermeasure strategies. 2) An identification and description of some of the problems associated with the term 'barrier'. 3) Suggestions for a more precise terminology based on the causal structure of countermeasures. 4) Extending the scope of countermeasures to include sign-based countermeasures. (au)

  15. The 24-hour skin hydration and barrier function effects of a hyaluronic 1%, glycerin 5%, and Centella asiatica stem cells extract moisturizing fluid: an intra-subject, randomized, assessor-blinded study

    Directory of Open Access Journals (Sweden)

    Milani M

    2017-08-01

    Full Text Available Massimo Milani,1 Adele Sparavigna2 1Difa Cooper, Caronno Pertusella, Varese, 2Dermatologic Institute Dermig Milan, Milan, Italy Introduction: Moisturizing products are commonly used to improve hydration in skin dryness conditions. However, some topical hydrating products could have negative effects on skin barrier function. In addition, hydrating effects of moisturizers are not commonly evaluated up to 24 hours after a single application. Hyaluronic acid (HA and glycerin are very well-known substances able to improve skin hydration. Centella asiatica extract (CAE could exert lenitive, anti-inflammatory and reepithelialization actions. Furthermore, CAE could inhibit hyaluronidase enzyme activity, therefore prolonging the effect of HA. A fluid containing HA 1%, glycerin 5% and stem cells CAE has been recently developed (Jaluronius CS [JCS] fluid. Study aim: To evaluate and compare the 24-hour effects of JCS fluid on skin hydration and on transepidermal water loss (TEWL in healthy subjects in comparison with the control site. Subjects and methods: Twenty healthy women, mean age 40 years, were enrolled in an intra-subject (right vs left, randomized, assessor-blinded, controlled, 1-day trial. The primary end points were the skin hydration and TEWL, evaluated at the volar surface of the forearm and in standardized conditions (temperature- and humidity-controlled room: 23°C and 30% of humidity using a corneometer and a vapometer device at baseline, 1, 8 and 24 hours after JCS fluid application. Measurements were performed by an operator blinded for the treatments. Results: Skin hydration after 24 hours was significantly higher (P=0.001; Mann–Whitney U test in the JCS-treated area in comparison with the control site. JCS induced a significant (P=0.0001 increase in skin hydration at each evaluation time (+59% after 1 hour, +48% after 8 hours and +29% after 24 hours in comparison with both baseline (P=0.0001 and non-treated control site (P=0

  16. Thames barrier (flood protection barriers on the Thames)

    International Nuclear Information System (INIS)

    Ilkovic, J.

    2005-01-01

    In this paper the flood protection barriers on the Thames are presented. The flood protection system on the Thames in 1984 was commissioned. During two decades this barrier was used 54 times against to the high water and 34 times against storm-sewage. There is installed buttress type hydroelectric power plant

  17. Guided bone regeneration : the influence of barrier membranes on bone grafts and bone defects

    NARCIS (Netherlands)

    Gielkens, Pepijn Frans Marie

    2008-01-01

    Guided bone regeneration (GBR) can be described as the use of a barrier membrane to provide a space available for new bone formation in a bony defect. The barrier membrane protects the defect from in-growth of soft tissue cells and allows bone progenitor cells to develop bone within a blood clot

  18. Elucidation of Transport Mechanism of Paeoniflorin and the Influence of Ligustilide, Senkyunolide I and Senkyunolide A on Paeoniflorin Transport through Mdck-Mdr1 Cells as Blood-Brain Barrier in Vitro Model.

    Science.gov (United States)

    Hu, Peng-Yi; Liu, Dan; Zheng, Qin; Wu, Qing; Tang, Yu; Yang, Ming

    2016-03-02

    The objectives of the present investigation were to: (1) elucidate the transport mechanism of paeoniflorin (PF) across MDCK-MDR1 monolayers; and (2) evaluate the effect of ligustilide (LIG), senkyunolide I (SENI) and senkyunolide A (SENA) on the transport of PF through blood-brain barrier so as to explore the enhancement mechanism. Transport studies of PF were performed in both directions, from apical to basolateral side (A→B) and from basolateral to apical sides (B→A). Drug concentrations were analyzed by LC-MS/MS. PF showed relatively poor absorption in MDCK-MDR1 cells, apparent permeability coefficients (Papp) ranging from 0.587 × 10(-6) to 0.705 × 10(-6) cm/s. In vitro experiments showed that the transport of PF in both directions was concentration dependent and not saturable. The B→A/A→B permeability ER of PF was more than 2 in the MDCK-MDR1 cells, which indicated that the transport mechanism of PF might be passive diffusion as the dominating process with the active transportation mediated mechanism involved. The increased Papp of PF in A→B direction by EDTA-Na₂ suggested that PF was absorbed via the paracellular route. The P-gp inhibitor verapamil could significantly increase the transport of PF in A→B direction, and ER decreased from 2.210 to 0.690, which indicated that PF was P-gp substance. The transport of PF in A→B direction significantly increased when co-administrated with increasing concentrations of LIG, SENI and SENA. An increased cellular accumulation of Rho 123 and Western blot analysis indicated that LIG, SENI and SENA had increased the transport of PF in the BBB models attribute to down-regulate P-gp expression. A decrease in transepithelial electrical resistance (TEER) during the permeation experiment can be explained by the modulation and opening of the tight junctions caused by the permeation enhancer LIG, SENI and SENA.

  19. There are many barriers to species' migrations

    Directory of Open Access Journals (Sweden)

    Kenneth J Feeley

    2014-06-01

    Full Text Available Temperature-change trajectories are being used to identify the geographic barriers and thermal ‘cul-de-sacs’ that will limit the ability of many species to track climate change by migrating. We argue that there are many other potential barriers to species’ migrations. These include stable ecotones, discordant shifts in climatic variables, human land use, and species’ limited dispersal abilities. To illustrate our argument, for each 0.5° latitude/longitude grid cell of the Earth’s land surface, we mapped and tallied the number of cells for which future (2060–2080 climate represents an analog of the focal cell’s current climate. We compared results when only considering temperature with those for which both temperature and total annual precipitation were considered in concert. We also compared results when accounting for only geographic barriers (no cross-continental migration with those involving both geographic and potential ecological barriers (no cross-biome migration. As expected, the number of future climate analogs available to each pixel decreased markedly with each added layer of complexity (e.g. the proportion of the Earth’s land surface without any available future climate analogs increased from 3% to more than 36% with the inclusion of precipitation and ecological boundaries. While including additional variables can increase model complexity and uncertainty, we must strive to incorporate the factors that we know will limit species’ ranges and migrations if we hope to predict the effects of climate change at a high-enough degree of accuracy to guide management decisions.

  20. Informal export barriers and poverty

    OpenAIRE

    Porto, Guido G.

    2004-01-01

    The author investigates the poverty impacts of informal export barriers like transport costs, cumbersome customs practices, costly regulations, and bribes. He models these informal barriers as export taxes that distort the efficient allocation of resources. In low-income agricultural economies, this distortion lowers wages and household agricultural income, thereby leading to higher pover...

  1. Barriers to Women in Science

    Science.gov (United States)

    Butler, Rosemary

    2013-01-01

    The Presiding Officer of the National Assembly for Wales, Rosemary Butler AM, has put the issue of barriers to women in public life at the top of the political agenda in Wales. She has held sessions with women across Wales to find out what those barriers are and how they can be tackled. On International Women's Day in February, she invited…

  2. Seismic waves and seismic barriers

    Science.gov (United States)

    Kuznetsov, S. V.

    2011-05-01

    The basic idea of seismic barrier is to protect an area occupied by a building or a group of buildings from seismic waves. Depending on nature of seismic waves that are most probable in a specific region, different kinds of seismic barriers are suggested. For example, vertical barriers resembling a wall in a soil can protect from Rayleigh and bulk waves. The FEM simulation reveals that to be effective, such a barrier should be (i) composed of layers with contrast physical properties allowing "trapping" of the wave energy inside some of the layers, and (ii) depth of the barrier should be comparable or greater than the considered seismic wave length. Another type of seismic barrier represents a relatively thin surface layer that prevents some types of surface seismic waves from propagating. The ideas for these barriers are based on one Chadwick's result concerning non-propagation condition for Rayleigh waves in a clamped half-space, and Love's theorem that describes condition of non-existence for Love waves. The numerical simulations reveal that to be effective the length of the horizontal barriers should be comparable to the typical wavelength.

  3. Structure information from fusion barriers

    Indian Academy of Sciences (India)

    It is shown that the analysis of fusion barrier distributions is not always an unambiguous test or a 'fingerprint' of the structure information of the colliding nuclei. Examples are presented with same fusion barrier distributions for nuclei having different structures. The fusion excitation functions for 16O+208Pb, using the coupled ...

  4. BARRIERS OF STRATEGIC ALLIANCES ORGANIZATION

    Directory of Open Access Journals (Sweden)

    Vladislav M. Sannikov

    2014-01-01

    Full Text Available General barriers of organization of different types of strategic alliances have beenconsidered in the article. There are several recommendations for overcoming themin cases of international alliances, and in case of work in one state. The article also identified goals and tasks of single coordination center of alliance to overcome organization barriers.

  5. Organizational Barriers to Transition: Summary.

    Science.gov (United States)

    Haynes, John; Justice, Thomas I., Ed.

    This study sought to identify the barriers that negatively impact the ability of disabled youth to successfully make a transition from school into employment and a quality adult life, and sought to specifically define organizational disincentives to successful transition. Current research is reviewed relating to organizational barriers to…

  6. Epistemological barriers to radical behaviorism.

    Science.gov (United States)

    O'Donohue, W T; Callaghan, G M; Ruckstuhl, L E

    1998-01-01

    The historian and philosopher of science Gaston Bachelard proposed the concept of epistemological barriers to describe the intellectual challenges encountered by scientists in their work. In order to embrace novel ways of approaching a problem in science, scientists must overcome barriers or obstacles posed by their prior views. For example, Einsteinian physics presents scientists with claims that space is curved and that time and space are on the same continuum. We utilize Bachelard's concept of epistemological barriers to describe the differences between the intellectual journeys students pursuing advanced studies face when attempting to accept cognitive psychology or radical behaviorism. We contend that the folk psychological beliefs that students typically hold when entering these studies pose less challenge to cognitive psychology than to radical behaviorism. We also suggest that these barriers may also partly be involved in the problematic exegesis that has plagued radical behaviorism. In close, we offer some suggestions for dealing with these epistemological barriers.

  7. Epistemological barriers to radical behaviorism

    Science.gov (United States)

    O'Donohue, William T.; Callaghan, Glenn M.; Ruckstuhl, L. E.

    1998-01-01

    The historian and philosopher of science Gaston Bachelard proposed the concept of epistemological barriers to describe the intellectual challenges encountered by scientists in their work. In order to embrace novel ways of approaching a problem in science, scientists must overcome barriers or obstacles posed by their prior views. For example, Einsteinian physics presents scientists with claims that space is curved and that time and space are on the same continuum. We utilize Bachelard's concept of epistemological barriers to describe the differences between the intellectual journeys students pursuing advanced studies face when attempting to accept cognitive psychology or radical behaviorism. We contend that the folk psychological beliefs that students typically hold when entering these studies pose less challenge to cognitive psychology than to radical behaviorism. We also suggest that these barriers may also partly be involved in the problematic exegesis that has plagued radical behaviorism. In close, we offer some suggestions for dealing with these epistemological barriers. PMID:22478314

  8. Barriers for recess physical activity

    DEFF Research Database (Denmark)

    Pawlowski, Charlotte Skau; Tjørnhøj-Thomsen, Tine; Schipperijn, Jasper

    2014-01-01

    . This was verified by a thematic analysis of transcripts from the open discussions and go-along interviews. RESULTS: The most frequently identified barriers for both boys and girls were weather, conflicts, lack of space, lack of play facilities and a newly-found barrier, use of electronic devices. While boys......BACKGROUND: Many children, in particular girls, do not reach the recommended amount of daily physical activity. School recess provides an opportunity for both boys and girls to be physically active, but barriers to recess physical activity are not well understood. This study explores gender...... differences in children's perceptions of barriers to recess physical activity. Based on the socio-ecological model four types of environmental barriers were distinguished: natural, social, physical and organizational environment. METHODS: Data were collected through 17 focus groups (at 17 different schools...

  9. Stem cell heterogeneity revealed

    DEFF Research Database (Denmark)

    Andersen, Marianne S; Jensen, Kim B

    2016-01-01

    The skin forms a protective, water-impermeable barrier consisting of heavily crosslinked epithelial cells. However, the specific role of stem cells in sustaining this barrier remains a contentious issue. A detailed analysis of the interfollicular epidermis now proposes a model for how a composite...... of cells with different properties are involved in its maintenance....

  10. Hanford Protective Barriers Program asphalt barrier studies -- FY 1988

    International Nuclear Information System (INIS)

    Freeman, H.D.; Gee, G.W.

    1989-05-01

    The Hanford Protective Barrier (HPB) Program is evaluating alternative barriers to provide a means of meeting stringent water infiltration requirements. One type of alternative barrier being considered is an asphalt-based layer, 1.3 to 15 cm thick, which has been shown to be very effective as a barrier for radon gas and, hence, should be equally effective as a barrier for the larger molecules of water. Fiscal Year 1988 studies focused on the selection and formulation of the most promising asphalt materials for further testing in small-tube lysimeters. Results of laboratory-scale formulation and hydraulic conductivity tests led to the selection of a rubberized asphalt material and an admixture of 24 wt% asphalt emulsion and concrete sand as the two barriers for lysimeter testing. Eight lysimeters, four each containing the two asphalt treatments, were installed in the Small Tube Lysimeter Facility on the Hanford Site. The lysimeter tests allow the performance of these barrier formulations to be evaluated under more natural environmental conditions

  11. Development of engineered barrier

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Kwan Sik; Cho, Won Jin; Lee, Jae Owan; Kim, Seung Soo; Kang, Mu Ja

    1999-03-01

    Engineered barrier development was carried out into the three research fields : waste form, disposal container, and buffer. The waste form field dealt with long-term leaching tests with borosilicate waste glasses surrounded by compacted bentonite. The leach rate decreased with increasing time, and was higher for the waste specimen rich in U and Na. In the container field, preliminary concepts of disposal containers were recommended by conducting structural analysis, thermal analysis, and shielding analysis, and major properties of stainless steel, copper, and titanium as a container material were surveyed. The sensitization degrees of SUS 316 and316L were lower than those of SUS 304 and 304L, respectively. The crevice corrosion of sensitized stainless steel was sensitive to the content of salt. Researches into the buffer included establishment of its performance criteria followed by investigating major properties of buffer using potential material in Korea. Experiments were made for measuring hydraulic conductivities, swelling properties, mechanical properties, thermal conductivities, pore-water chemistry properties, and adsorption properties was also investigated. (author)

  12. Omnidirectional ventilated acoustic barrier

    Science.gov (United States)

    Zhang, Hai-long; Zhu, Yi-fan; Liang, Bin; Yang, Jing; Yang, Jun; Cheng, Jian-chun

    2017-11-01

    As an important problem in acoustics, sound insulation finds applications in a great variety of situations. In the existing schemes, however, there has always been a trade-off between the thinness of sound-insulating devices and their ventilating capabilities, limiting their potentials in the control of low-frequency sound in high ventilation environments. Here, we design and experimentally implement an omnidirectional acoustic barrier with a planar profile, subwavelength thickness ( 0.18 λ ), yet high ventilation. The proposed mechanism is based on the interference between the resonant scattering of discrete states and the background scattering of continuous states which induces a Fano-like asymmetric transmission profile. Benefitting from the binary-structured design of the coiled unit and hollow pipe, it maximally simplifies the design and fabrication while ensuring the ventilation for all the non-resonant units with open tubes. The simulated and measured results agree well, showing the effectiveness of our proposed mechanism to block low frequency sound coming from various directions while allowing 63% of the air flow to pass. We anticipate our design to open routes to design sound insulators and to enable applications in traditionally unattainable cases such as those calling for noise reduction and cooling simultaneously.

  13. Clusterin Seals the Ocular Surface Barrier in Mouse Dry Eye.

    Directory of Open Access Journals (Sweden)

    Aditi Bauskar

    Full Text Available Dry eye is a common disorder caused by inadequate hydration of the ocular surface that results in disruption of barrier function. The homeostatic protein clusterin (CLU is prominent at fluid-tissue interfaces throughout the body. CLU levels are reduced at the ocular surface in human inflammatory disorders that manifest as severe dry eye, as well as in a preclinical mouse model for desiccating stress that mimics dry eye. Using this mouse model, we show here that CLU prevents and ameliorates ocular surface barrier disruption by a remarkable sealing mechanism dependent on attainment of a critical all-or-none concentration. When the CLU level drops below the critical all-or-none threshold, the barrier becomes vulnerable to desiccating stress. CLU binds selectively to the ocular surface subjected to desiccating stress in vivo, and in vitro to the galectin LGALS3, a key barrier component. Positioned in this way, CLU not only physically seals the ocular surface barrier, but it also protects the barrier cells and prevents further damage to barrier structure. These findings define a fundamentally new mechanism for ocular surface protection and suggest CLU as a biotherapeutic for dry eye.

  14. Clusterin Seals the Ocular Surface Barrier in Mouse Dry Eye.

    Science.gov (United States)

    Bauskar, Aditi; Mack, Wendy J; Mauris, Jerome; Argüeso, Pablo; Heur, Martin; Nagel, Barbara A; Kolar, Grant R; Gleave, Martin E; Nakamura, Takahiro; Kinoshita, Shigeru; Moradian-Oldak, Janet; Panjwani, Noorjahan; Pflugfelder, Stephen C; Wilson, Mark R; Fini, M Elizabeth; Jeong, Shinwu

    2015-01-01

    Dry eye is a common disorder caused by inadequate hydration of the ocular surface that results in disruption of barrier function. The homeostatic protein clusterin (CLU) is prominent at fluid-tissue interfaces throughout the body. CLU levels are reduced at the ocular surface in human inflammatory disorders that manifest as severe dry eye, as well as in a preclinical mouse model for desiccating stress that mimics dry eye. Using this mouse model, we show here that CLU prevents and ameliorates ocular surface barrier disruption by a remarkable sealing mechanism dependent on attainment of a critical all-or-none concentration. When the CLU level drops below the critical all-or-none threshold, the barrier becomes vulnerable to desiccating stress. CLU binds selectively to the ocular surface subjected to desiccating stress in vivo, and in vitro to the galectin LGALS3, a key barrier component. Positioned in this way, CLU not only physically seals the ocular surface barrier, but it also protects the barrier cells and prevents further damage to barrier structure. These findings define a fundamentally new mechanism for ocular surface protection and suggest CLU as a biotherapeutic for dry eye.

  15. Clusterin Seals the Ocular Surface Barrier in Mouse Dry Eye

    Science.gov (United States)

    Bauskar, Aditi; Mack, Wendy J.; Mauris, Jerome; Argüeso, Pablo; Heur, Martin; Nagel, Barbara A.; Kolar, Grant R.; Gleave, Martin E.; Nakamura, Takahiro; Kinoshita, Shigeru; Moradian-Oldak, Janet; Panjwani, Noorjahan; Pflugfelder, Stephen C.; Wilson, Mark R.; Fini, M. Elizabeth; Jeong, Shinwu

    2015-01-01

    Dry eye is a common disorder caused by inadequate hydration of the ocular surface that results in disruption of barrier function. The homeostatic protein clusterin (CLU) is prominent at fluid-tissue interfaces throughout the body. CLU levels are reduced at the ocular surface in human inflammatory disorders that manifest as severe dry eye, as well as in a preclinical mouse model for desiccating stress that mimics dry eye. Using this mouse model, we show here that CLU prevents and ameliorates ocular surface barrier disruption by a remarkable sealing mechanism dependent on attainment of a critical all-or-none concentration. When the CLU level drops below the critical all-or-none threshold, the barrier becomes vulnerable to desiccating stress. CLU binds selectively to the ocular surface subjected to desiccating stress in vivo, and in vitro to the galectin LGALS3, a key barrier component. Positioned in this way, CLU not only physically seals the ocular surface barrier, but it also protects the barrier cells and prevents further damage to barrier structure. These findings define a fundamentally new mechanism for ocular surface protection and suggest CLU as a biotherapeutic for dry eye. PMID:26402857

  16. Controlling ferrofluid permeability across the blood-brain barrier model

    Science.gov (United States)

    Shi, Di; Sun, Linlin; Mi, Gujie; Sheikh, Lubna; Bhattacharya, Soumya; Nayar, Suprabha; Webster, Thomas J.

    2014-02-01

    In the present study, an in vitro blood-brain barrier model was developed using murine brain endothelioma cells (b.End3 cells). Confirmation of the blood-brain barrier model was completed by examining the permeability of FITC-Dextran at increasing exposure times up to 96 h in serum-free medium and comparing such values with values from the literature. After such confirmation, the permeability of five novel ferrofluid (FF) nanoparticle samples, GGB (ferrofluids synthesized using glycine, glutamic acid and BSA), GGC (glycine, glutamic acid and collagen), GGP (glycine, glutamic acid and PVA), BPC (BSA, PEG and collagen) and CPB (collagen, PVA and BSA), was determined using this blood-brain barrier model. All of the five FF samples were characterized by zeta potential to determine their charge as well as TEM and dynamic light scattering for determining their hydrodynamic diameter. Results showed that FF coated with collagen passed more easily through the blood-brain barrier than FF coated with glycine and glutamic acid based on an increase of 4.5% in permeability. Through such experiments, diverse magnetic nanomaterials (such as FF) were identified for: (1) MRI use since they were less permeable to penetrate the blood-brain barrier to avoid neural tissue toxicity (e.g. GGB) or (2) brain drug delivery since they were more permeable to the blood-brain barrier (e.g. CPB).

  17. Compound design guidelines for evading the efflux and permeation barriers of Escherichia coli with the oxazolidinone class of antibacterials: Test case for a general approach to improving whole cell Gram-negative activity.

    Science.gov (United States)

    Spaulding, Andrew; Takrouri, Khuloud; Mahalingam, Pornachandran; Cleary, Dillon C; Cooper, Harold D; Zucchi, Paola; Tear, Westley; Koleva, Bilyana; Beuning, Penny J; Hirsch, Elizabeth B; Aggen, James B

    2017-12-01

    Previously we reported the results from an effort to improve Gram-negative antibacterial activity in the oxazolidinone class of antibiotics via a systematic medicinal chemistry campaign focused entirely on C-ring modifications. In that series we set about testing if the efflux and permeation barriers intrinsic to the outer membrane of Escherichia coli could be rationally overcome by designing analogs to reside in specific property limits associated with Gram-negative activity: i) low MW (tested against a diagnostic MIC panel of Escherichia coli and Staphylococcus aureus strains to determine the impact of combining structural modifications in overcoming the OM barriers and in bridging the potency gap between the species. The results demonstrated that distributing the charge-carrying moieties across two rings was also beneficial for avoidance of the outer membrane barriers. Importantly, analysis of the structure-permeation relationship (SPR) obtained from this and the prior study indicated that in addition to MW, polarity, and zwitterionic character, having ≤4 rotatable bonds is also associated with evasion of the OM barriers. These combined results provide the medicinal chemist with a framework and strategy for overcoming the OM barriers in GNB in antibacterial drug discovery efforts. Copyright © 2017. Published by Elsevier Ltd.

  18. Outer brain barriers in rat and human development

    DEFF Research Database (Denmark)

    Brøchner, Christian B; Holst, Camilla Bjørnbak; Møllgård, Kjeld

    2015-01-01

    Complex barriers at the brain's surface, particularly in development, are poorly defined. In the adult, arachnoid blood-cerebrospinal fluid (CSF) barrier separates the fenestrated dural vessels from the CSF by means of a cell layer joined by tight junctions. Outer CSF-brain barrier provides...... diffusion restriction between brain and subarachnoid CSF through an initial radial glial end feet layer covered with a pial surface layer. To further characterize these interfaces we examined embryonic rat brains from E10 to P0 and forebrains from human embryos and fetuses (6-21st weeks post......-conception) and adults using immunohistochemistry and confocal microscopy. Antibodies against claudin-11, BLBP, collagen 1, SSEA-4, MAP2, YKL-40, and its receptor IL-13Rα2 and EAAT1 were used to describe morphological characteristics and functional aspects of the outer brain barriers. Claudin-11 was a reliable marker...

  19. Trends in drug delivery through tissue barriers containing tight junctions.

    Science.gov (United States)

    Tscheik, Christian; Blasig, Ingolf E; Winkler, Lars

    2013-04-01

    A limitation in the uptake of many drugs is the restricted permeation through tissue barriers. There are two general ways to cross barriers formed by cell layers: by transcytosis or by diffusion through the intercellular space. In the latter, tight junctions (TJs) play the decisive role in the regulation of the barrier permeability. Thus, transient modulation of TJs is a potent strategy to improve drug delivery. There have been extensive studies on surfactant-like absorption enhancers. One of the most effective enhancers found is sodium caprate. However, this modulates TJs in an unspecific fashion. A novel approach would be the specific modulation of TJ-associated marvel proteins and claudins, which are the main structural components of the TJs. Recent studies have identified synthetic peptidomimetics and RNA interference techniques to downregulate the expression of targeted TJ proteins. This review summarizes current progress and discusses the impact on TJs' barrier function.

  20. The barrier within: endothelial transport of hormones.

    Science.gov (United States)

    Kolka, Cathryn M; Bergman, Richard N

    2012-08-01

    Hormones are involved in a plethora of processes including development and growth, metabolism, mood, and immune responses. These essential functions are dependent on the ability of the hormone to access its target tissue. In the case of endocrine hormones that are transported through the blood, this often means that the endothelium must be crossed. Many studies have shown that the concentrations of hormones and nutrients in blood can be very different from those surrounding the cells on the tissue side of the blood vessel endothelium, suggesting that transport across this barrier can be rate limiting for hormone action. This transport can be regulated by altering the surface area of the blood vessel available for diffusion through to the underlying tissue or by the permeability of the endothelium. Many hormones are known to directly or indirectly affect the endothelial barrier, thus affecting their own distribution to their target tissues. Dysfunction of the endothelial barrier is found in many diseases, particularly those associated with the metabolic syndrome. The interrelatedness of hormones may help to explain why the cluster of diseases in the metabolic syndrome occur together so frequently and suggests that treating the endothelium may ameliorate defects in more than one disease. Here, we review the structure and function of the endothelium, its contribution to the function of hormones, and its involvement in disease.

  1. The Barrier Within: Endothelial Transport of Hormones

    Science.gov (United States)

    Kolka, Cathryn M.; Bergman, Richard N.

    2015-01-01

    Hormones are involved in a plethora of processes including development and growth, metabolism, mood, and immune responses. These essential functions are dependent on the ability of the hormone to access its target tissue. In the case of endocrine hormones that are transported through the blood, this often means that the endothelium must be crossed. Many studies have shown that the concentrations of hormones and nutrients in blood can be very different from those surrounding the cells on the tissue side of the blood vessel endothelium, suggesting that transport across this barrier can be rate limiting for hormone action. This transport can be regulated by altering the surface area of the blood vessel available for diffusion through to the underlying tissue or by the permeability of the endothelium. Many hormones are known to directly or indirectly affect the endothelial barrier, thus affecting their own distribution to their target tissues. Dysfunction of the endothelial barrier is found in many diseases, particularly those associated with the metabolic syndrome. The interrelatedness of hormones may help to explain why the cluster of diseases in the metabolic syndrome occur together so frequently and suggests that treating the endothelium may ameliorate defects in more than one disease. Here, we review the structure and function of the endothelium, its contribution to the function of hormones, and its involvement in disease. PMID:22875454

  2. Fusion barrier characteristics of actinides

    Science.gov (United States)

    Manjunatha, H. C.; Sridhar, K. N.

    2018-03-01

    We have studied fusion barrier characteristics of actinide compound nuclei with atomic number range 89 ≤ Z ≤ 103 for all projectile target combinations. After the calculation of fusion barrier heights and positions, we have searched for their parameterization. We have achieved the empirical formula for fusion barrier heights (VB), positions (RB), curvature of the inverted parabola (ħω) of actinide compound nuclei with atomic number range 89 ≤ Z ≤ 103 for all projectile target combinations (6 actinides with the simple inputs of mass number (A) and atomic number (Z) of projectile-targets.

  3. Vehicle barrier with access delay

    Science.gov (United States)

    Swahlan, David J; Wilke, Jason

    2013-09-03

    An access delay vehicle barrier for stopping unauthorized entry into secure areas by a vehicle ramming attack includes access delay features for preventing and/or delaying an adversary from defeating or compromising the barrier. A horizontally deployed barrier member can include an exterior steel casing, an interior steel reinforcing member and access delay members disposed within the casing and between the casing and the interior reinforcing member. Access delay members can include wooden structural lumber, concrete and/or polymeric members that in combination with the exterior casing and interior reinforcing member act cooperatively to impair an adversarial attach by thermal, mechanical and/or explosive tools.

  4. A LOOK AT CULTURAL BARRIERS

    Directory of Open Access Journals (Sweden)

    Carmen A. VRÂNCEANU

    2015-06-01

    Full Text Available Nowadays the global market allows each individual to work in foreign countries. This fact is a great opportunity for business development, but also puts into light the problem of cultural barriers. Ineffective cross-cultural communication and collaboration can harm employees, customers, and other stakeholders. A company with employees from different cultures must acknowledge and understand these barriers in order to overcome them and to obtain the desired performance. The present study aims to expose the cultural barriers encountered by foreigners in a multinational company from Romania.

  5. On the repair of the dentine barrier.

    Science.gov (United States)

    Fransson, Helena

    2012-01-01

    tissue in a clinical study. A greater amount of hard tissue was formed after application of the gel compared to the control. Characterization of the tissue concluded it to be dentine, based on its content of type 1 collagen and dentine sialoprotein, although it was not formed as a continuous bridge covering the pulp wound. Beneath a deep caries lesion an important part of the barrier function is the odontoblasts' response to bacteria with the formation of new dentine. A cell model with odontoblasts was used to study the effects of clinical isolates from a deep carious lesion on their viability and production of type 1 collagen, the major component of the dentine in the early stages of its formation. There were bacteria that negatively affected the viability of the odontoblast-like cells and different bacteria varied in their effects on type 1 collagen production, suggesting that some bacteria may have a direct influence on the odontoblasts' ability to form dentine. In summary; Emdogain Gel initiated dentine formation, though not in a form that could constitute a barrier and there are indications that bacteria may differentially affect the odontoblasts' ability to repair the dentine barrier.

  6. Pathogenesis of the permeability barrier abnormality in epidermolytic hyperkeratosis.

    Science.gov (United States)

    Schmuth, M; Yosipovitch, G; Williams, M L; Weber, F; Hintner, H; Ortiz-Urda, S; Rappersberger, K; Crumrine, D; Feingold, K R; Elias, P M

    2001-10-01

    Epidermolytic hyperkeratosis is a dominantly inherited ichthyosis, frequently associated with mutations in keratin 1 or 10 that result in disruption of the keratin filament cytoskeleton leading to keratinocyte fragility. In addition to blistering and a severe disorder of cornification, patients typically display an abnormality in permeability barrier function. The nature and pathogenesis of the barrier abnormality in epidermolytic hyperkeratosis are unknown, however. We assessed here, first, baseline transepidermal water loss and barrier recovery kinetics in patients with epidermolytic hyperkeratosis. Whereas baseline transepidermal water loss rates were elevated by approximately 3-fold, recovery rates were faster in epidermolytic hyperkeratosis than in age-matched controls. Electron microscopy showed no defect in either the cornified envelope or the adjacent cornified-bound lipid envelope, i.e., a corneocyte scaffold abnormality does not explain the barrier abnormality. Using the water-soluble tracer, colloidal lanthanum, there was no evidence of tracer accumulation in corneocytes, despite the fragility of nucleated keratinocytes. Instead, tracer, which was excluded in normal skin, moved through the extracellular stratum corneum domains. Increasing intercellular permeability correlated with decreased quantities and defective organization of extracellular lamellar bilayers. The decreased lamellar material, in turn, could be attributed to incompletely secreted lamellar bodies within granular cells, demonstrable not only by several morphologic findings, but also by decreased delivery of a lamellar body content marker, acid lipase, to the stratum corneum interstices. Yet, after acute barrier disruption a rapid release of preformed lamellar body contents was observed together with increased organelle contents in the extracellular spaces, accounting for the accelerated recovery kinetics in epidermolytic hyperkeratosis. Accelerated recovery, in turn, correlated with a

  7. Homeostasis of the gut barrier and potential biomarkers

    Science.gov (United States)

    Brummer, Robert J.; Derrien, Muriel; MacDonald, Thomas T.; Troost, Freddy; Cani, Patrice D.; Theodorou, Vassilia; Dekker, Jan; Méheust, Agnes; de Vos, Willem M.; Mercenier, Annick; Nauta, Arjen; Garcia-Rodenas, Clara L.

    2017-01-01

    The gut barrier plays a crucial role by spatially compartmentalizing bacteria to the lumen through the production of secreted mucus and is fortified by the production of secretory IgA (sIgA) and antimicrobial peptides and proteins. With the exception of sIgA, expression of these protective barrier factors is largely controlled by innate immune recognition of microbial molecular ligands. Several specialized adaptations and checkpoints are operating in the mucosa to scale the immune response according to the threat and prevent overreaction to the trillions of symbionts inhabiting the human intestine. A healthy microbiota plays a key role influencing epithelial barrier functions through the production of short-chain fatty acids (SCFAs) and interactions with innate pattern recognition receptors in the mucosa, driving the steady-state expression of mucus and antimicrobial factors. However, perturbation of gut barrier homeostasis can lead to increased inflammatory signaling, increased epithelial permeability, and dysbiosis of the microbiota, which are recognized to play a role in the pathophysiology of a variety of gastrointestinal disorders. Additionally, gut-brain signaling may be affected by prolonged mucosal immune activation, leading to increased afferent sensory signaling and abdominal symptoms. In turn, neuronal mechanisms can affect the intestinal barrier partly by activation of the hypothalamus-pituitary-adrenal axis and both mast cell-dependent and mast cell-independent mechanisms. The modulation of gut barrier function through nutritional interventions, including strategies to manipulate the microbiota, is considered a relevant target for novel therapeutic and preventive treatments against a range of diseases. Several biomarkers have been used to measure gut permeability and loss of barrier integrity in intestinal diseases, but there remains a need to explore their use in assessing the effect of nutritional factors on gut barrier function. Future studies

  8. Time as a trade barrier

    Science.gov (United States)

    2001-07-01

    International trade occurs in physical space and moving goods requires time. This paper examines the importance of time as a trade barrier, estimates the magnitude of time costs, and relates these to patterns of trade and the international organizati...

  9. Coastal Structures and Barriers 2012

    Data.gov (United States)

    California Department of Resources — This dataset is a compilation of the UCSC Sand Retention Structures, MC Barriers, and USACE Coastal Structures. UCSC Sand Retention Structures originate from a...

  10. Coastal Structures and Barriers 2012

    Data.gov (United States)

    California Natural Resource Agency — This dataset is a compilation of the UCSC Sand Retention Structures, MC Barriers, and USACE Coastal Structures. UCSC Sand Retention Structures originate from a...

  11. Low Conductivity Thermal Barrier Coatings

    Science.gov (United States)

    Zhu, Dong-Ming

    2005-01-01

    Thermal barrier coatings will be more aggressively designed to protect gas turbine engine hot-section components in order to meet future engine higher fuel efficiency and lower emission goals. In this presentation, thermal barrier coating development considerations and requirements will be discussed. An experimental approach is established to monitor in real time the thermal conductivity of the coating systems subjected to high-heat-flux, steady-state and cyclic temperature gradients. Advanced low conductivity thermal barrier coatings have also been developed using a multi-component defect clustering approach, and shown to have improved thermal stability. The durability and erosion resistance of low conductivity thermal barrier coatings have been improved utilizing advanced coating architecture design, composition optimization, in conjunction with more sophisticated modeling and design tools.

  12. Engineered barriers: current status 1989

    International Nuclear Information System (INIS)

    Atkinson, A.; Marsh, G.B.

    1989-06-01

    This report summarises the current state of research relevant to assessing the performance of engineered barriers made of steel and concrete in radioactive waste repositories. The objective of these barriers is to contain substantially the radionuclides within them by providing both physical and chemical impediment to their release. The physical barriers are of most value for highly soluble isotopes with relatively short half-lives (eg 137 Cs), since they can provide a measure of containment until a large fraction of the activity has decayed. In addition they can facilitate retrievability for some period after disposal. The chemical barriers operate by beneficial conditioning of the near field groundwater and providing sites for sorption of radionuclides. Both of these reduce the aqueous concentration of radionuclides in the near field. (author)

  13. Great Barrier Reef, Queensland, Australia

    Science.gov (United States)

    1990-01-01

    This detailed view of the Great Barrier Reef, Queensland, Australia (19.5S, 149.5E) shows several small patch reefs within the overall reef system. The Great Barrier Reef, largest in the world, comprises thousands of individual reefs of great variety and are closely monitored by marine ecologists. These reefs are about 6000 years old and sit on top of much older reefs. The most rapid coral growth occurs on the landward side of the reefs.

  14. Patient advocacy: barriers and facilitators

    OpenAIRE

    Nikravesh Mansoure; Ahmadi Fazlollah; Oskouie Fatemeh; Negarandeh Reza; Hallberg Ingalill

    2006-01-01

    Abstract Background During the two recent decades, advocacy has been a topic of much debate in the nursing profession. Although advocacy has embraced a crucial role for nurses, its extent is often limited in practice. While a variety of studies have been generated all over the world, barriers and facilitators in the patient advocacy have not been completely identified. This article presents the findings of a study exploring the barriers and facilitators influencing the role of advocacy among ...

  15. Barriers to Cyber Information Sharing

    Science.gov (United States)

    2014-12-01

    finding out relationships or no relationships. It is more equivalent with this study’s epistemology and methodology than free-mapping or pure...and industry remain educated on and sensitive to methods that can mitigate this concern and ensure antitrust compliance.151 4. Technology...legal scholars. One way to overcome the legal barriers is through education and clarity about the laws that are currently barriers such as anti-trust

  16. Air barrier systems: Construction applications

    Energy Technology Data Exchange (ETDEWEB)

    Perrault, J.C

    1989-01-01

    An examination is presented of how ordinary building materials can be used in an innovative manner to design, detail, and construct effective air barrier systems for common types of walls. For residential construction, the air drywall approach uses the interior gypsum board as the main component of the wall air barrier system. Joints between the gypsum board and adjacent materials or assemblies are sealed by gaskets. In commercial construction, two different techniques are employed for using gypsum board as air barrier material: the accessible drywall and non-accessible drywall approaches. The former is similar to the air drywall approach except that high performance sealants are used instead of gaskets. In the latter approach, exterior drywall sheathing is the main component of the air barrier system; joints between boards are taped and joints between boards and other components are sealed using elastomeric membrane strips. For various types of commercial and institutional buildings, metal air barrier systems are widely used and include pre-engineered curtain walls or sheet metal walls. Masonry wall systems are regarded as still the most durable, fireproof, and soundproof wall type available but an effective air barrier system has typically been difficult to implement. Factory-made elastomeric membranes offer the potential to provide airtightness to masonry walls. These membranes are applied on the entire masonry wall surface and are used to make airtight connections with other building components. Two types of product are available: thermofusible and peel-and-stick membranes. 5 figs.

  17. Economic alternatives for containment barriers

    International Nuclear Information System (INIS)

    Nicholson, P.J.; Jasperse, B.H.; Fisher, M.J.

    1997-01-01

    Fixation, barriers, and containment of existing landfills and other disposal areas are often performed by insitu auger type soil mixing and jet grouting. Cement or other chemical reagents are mixed with soil to form both vertical and horizontal barriers. Immobilization of contaminants can be economically achieved by mixing soil and the contaminants with reagents that solidify or stabilize the contaminated area. Developed in Japan, and relatively new to the United States, the first large scale application was for a vertical barrier at the Jackson Lake Dam project in 1986. This technology has grown in both the civil and environmental field since. The paper describes current United States practice for Deep Soil Mixing (over 12 meters in depth), and Shallow Soil Mixing for vertical barriers and stabilization/solidification, and Jet Grouting for horizontal and vertical barriers. Creating very low permeability barriers at depth with minimal surface return often makes these techniques economical when compared to slurry trenches. The paper will discuss equipment, materials, soil and strength parameters, and quality control

  18. Type 3 innate lymphoid cells maintain intestinal epithelial stem cells after tissue damage

    NARCIS (Netherlands)

    P. Aparicio-Domingo (Patricia); M. Romera-Hernandez (Monica); J.J. Karrich (Julien J.); F.H.J. Cornelissen (Ferry); N. Papazian (Natalie); D.J. Lindenbergh-Kortleve (Dicky); J.A. Butler (James A.); L. Boon (Louis); M. Coles (Mark); J.N. Samsom (Janneke); T. Cupedo (Tom)

    2015-01-01

    textabstractDisruption of the intestinal epithelial barrier allows bacterial translocation and predisposes to destructive inflammation. To ensure proper barrier composition, crypt-residing stem cells continuously proliferate and replenish all intestinal epithelial cells within days. As a consequence

  19. Sustained Protein Kinase D Activation Mediates Respiratory Syncytial Virus-Induced Airway Barrier Disruption

    OpenAIRE

    Rezaee, Fariba; DeSando, Samantha A.; Ivanov, Andrei I.; Chapman, Timothy J.; Knowlden, Sara A.; Beck, Lisa A.; Georas, Steve N.

    2013-01-01

    Understanding the regulation of airway epithelial barrier function is a new frontier in asthma and respiratory viral infections. Despite recent progress, little is known about how respiratory syncytial virus (RSV) acts at mucosal sites, and very little is known about its ability to influence airway epithelial barrier function. Here, we studied the effect of RSV infection on the airway epithelial barrier using model epithelia. 16HBE14o- bronchial epithelial cells were grown on Transwell insert...

  20. Phenotypic and genetic aspects of epithelial barrier function in asthmatic patients

    OpenAIRE

    Loxham, Matthew; Davies, Donna E.

    2017-01-01

    The bronchial epithelium is continuously exposed to a multitude of noxious challenges in inhaled air. Cellular contact with most damaging agents is reduced by the action of the mucociliary apparatus and by formation of a physical barrier that controls passage of ions and macromolecules. In conjunction with these defensive barrier functions, immunomodulatory cross-talk between the bronchial epithelium and tissue-resident immune cells controls the tissue microenvironment and barrier homeostasis...

  1. Mechanisms of lung endothelial barrier disruption induced by cigarette smoke: role of oxidative stress and ceramides.

    Science.gov (United States)

    Schweitzer, Kelly S; Hatoum, Hadi; Brown, Mary Beth; Gupta, Mehak; Justice, Matthew J; Beteck, Besem; Van Demark, Mary; Gu, Yuan; Presson, Robert G; Hubbard, Walter C; Petrache, Irina

    2011-12-01

    The epithelial and endothelial cells lining the alveolus form a barrier essential for the preservation of the lung respiratory function, which is, however, vulnerable to excessive oxidative, inflammatory, and apoptotic insults. Whereas profound breaches in this barrier function cause pulmonary edema, more subtle changes may contribute to inflammation. The mechanisms by which cigarette smoke (CS) exposure induce lung inflammation are not fully understood, but an early alteration in the epithelial barrier function has been documented. We sought to investigate the occurrence and mechanisms by which soluble components of mainstream CS disrupt the lung endothelial cell barrier function. Using cultured primary rat microvascular cell monolayers, we report that CS induces endothelial cell barrier disruption in a dose- and time-dependent manner of similar magnitude to that of the epithelial cell barrier. CS exposure triggered a mechanism of neutral sphingomyelinase-mediated ceramide upregulation and p38 MAPK and JNK activation that were oxidative stress dependent and that, along with Rho kinase activation, mediated the endothelial barrier dysfunction. The morphological changes in endothelial cell monolayers induced by CS included actin cytoskeletal rearrangement, junctional protein zonula occludens-1 loss, and intercellular gap formation, which were abolished by the glutathione modulator N-acetylcysteine and ameliorated by neutral sphingomyelinase inhibition. The direct application of ceramide recapitulated the effects of CS, by disrupting both endothelial and epithelial cells barrier, by a mechanism that was redox and apoptosis independent and required Rho kinase activation. Furthermore, ceramide induced dose-dependent alterations of alveolar microcirculatory barrier in vivo, measured by two-photon excitation microscopy in the intact rat. In conclusion, soluble components of CS have direct endothelial barrier-disruptive effects that could be ameliorated by glutathione

  2. Immune responses at brain barriers and implications for brain development and neurological function in later life

    Directory of Open Access Journals (Sweden)

    Helen B. Stolp

    2013-08-01

    Full Text Available For a long time the brain has been considered an immune-privileged site due to a muted inflammatory response and the presence of protective brain barriers. It is now recognised that neuroinflammation may play an important role in almost all neurological disorders and that the brain barriers may be contributing through either normal immune signalling, or disruption of their basic physiological mechanisms. The distinction between normal function and dysfunction at the barriers is difficult to dissect, partly due to a lack of understanding of normal barrier function and partly because of physiological changes that occur as part of normal development and ageing. Brain barriers consist of a number of interacting structural and physiological elements including tight junctions between adjacent barrier cells and an array of influx and efflux transporters. Despite these protective mechanisms, the capacity for immune-surveillance of the brain is maintained, and there is evidence of inflammatory signalling at the brain barriers that may be an important part of the body’s response to damage or infection. This signalling system appears to change both with normal ageing, and during disease. Changes may affect diapedesis of immune cells and active molecular transfer, or cause rearrangement of the tight junctions and an increase in passive permeability across barrier interfaces. Here we review the many elements that contribute to brain barrier functions and how they respond to inflammation, particularly during development and aging. The implications of inflammation–induced barrier dysfunction for brain development and subsequent neurological function are also discussed.

  3. The Blood-Brain Barrier: An Engineering Perspective

    Directory of Open Access Journals (Sweden)

    Andrew eWong

    2013-08-01

    Full Text Available It has been more than 100 years since Paul Ehrlich reported that various water-soluble dyes injected into the circulation did not enter the brain. Since Ehrlich’s first experiments, only a small number of molecules, such as alcohol and caffeine have been found to cross the blood-brain barrier, and it remains the major roadblock to treatment of many central nervous system diseases. At the same time, many central nervous system diseases are associated with disruption of the blood-brain barrier that can lead to changes in permeability, modulation of immune cell transport, and trafficking of pathogens into the brain. Therefore advances in our understanding of the structure and function of the blood-brain barrier are key to advances in treatment of a wide range of central nervous system diseases. Over the past 10 years it has become recognized that the blood-brain barrier is a complex dynamic system that involves biomechanical and biochemical signaling between the vascular system and the brain. Here we reconstruct the structure, function, and transport properties of the blood-brain barrier from an engineering perspective. New insight into the physics of the blood-brain barrier could ultimately lead to clinical advances in the treatment of central nervous system diseases.

  4. Erythropoietin protects the retinal pigment epithelial barrier against ...

    African Journals Online (AJOL)

    zhanghongmei

    2011-05-09

    May 9, 2011 ... by EPO pre-treatment. EPO treatment also induced lower MDA levels and higher SOD activity in H2O2 treated RPE cells. So, it is concluded that, non-lethal concentrations of H2O2 could damage RPE barrier and destroy its integrity. EPO showed the protective effects on H2O2-induced hyperpermeability by.

  5. Diabetes and diet : managing dietary barriers

    NARCIS (Netherlands)

    Friele, R.D.

    1989-01-01

    This thesis reports on the barriers diabetic patients experience with their diet, and the ways they cope with these barriers. A dietary barrier is a hinderance to a person's well-being, induced by being advised a diet. First inventories were made of possible dietary barriers and ways of

  6. In-situ formed Ce0.8Gd0.2O1.9 barrier layers on yttria stabilized zirconia backbones by infiltration - A promising path to high performing oxygen electrodes of solid oxide cell

    DEFF Research Database (Denmark)

    Ovtar, Simona; Chen, Ming; Samson, Alfred Junio

    2017-01-01

    Oxygen electrodes for solid oxide cells were prepared by a consecutive infiltration of a gadolinium doped ceria (Ce0.8Gd0.2O1.9, CGO) barrier layer and a lanthanum cobalt nickelate (La0.95Co0.4Ni0.6O3, LCN) electro catalyst layer into a porous yttrium doped zirconia (YSZ) backbone. The influences...... of the following parameters on the microstructure of the formed CGO barrier layer and on the electrochemical performance of the cells were studied: i) surfactants and wetting agents, ii) ceria/gadolinia coverage, iii) calcination profiles and iv) exposure temperature during testing. The infiltration process...... performance and only a small increase of the cell-resistance with increasing exposure temperatures during testing were obtained. A complete and homogenous covering of the YSZ backbone with Ce0.8Gd0.2O1.9 was found to be necessary to maintain high performance also at higher exposure temperatures (> 800 °C)....

  7. Physics parameter calculations for a Tandem Mirror Reactor with thermal barriers

    International Nuclear Information System (INIS)

    Boghosian, B.M.; Lappa, D.A.; Logan, B.G.

    1979-01-01

    Thermal barriers are localized reductions in potential between the plugs and the central cell, which effectively insulate trapped plug electrons from the central cell electrons. By then applying electron heating in the plug, it is possible to obtain trapped electron temperatures that are much greater than those of the central cell electrons. This, in turn, effects an increase in the plug potential and central cell confinement with a concomitant decrease in plug density and injection power. Ions trapped in the barrier by collisions are removed by the injection of neutral beams directed inside the barrier cell loss cone; these beam neutrals convert trapped barrier ions to neutrals by charge exchange permitting their escape. We describe a zero-dimensional physics model for this type of reactor, and present some preliminary results for Q

  8. Molecular make-up of the glomerular filtration barrier.

    Science.gov (United States)

    Patrakka, Jaakko; Tryggvason, Karl

    2010-05-21

    The glomerular filtration barrier is composed of glomerular endothelial cells, the glomerulus basement membrane and the podocyte cell layer. The filtration barrier is a target of injury in several systemic and renal diseases, and this often leads to progressive renal disease and kidney failure. Therefore, it is essential to understand the molecular biology of the glomerulus. During the last two decades, a lot of new information about molecular components of the glomerulus filtration barrier has been generated. Many of the key discoveries have been obtained through studies on the genetic background of inherited glomerular diseases. These studies have emphasized the role of podocytes in the filtration barrier function. During the last decade, the use of knockout mouse technology has become more available and given important new insights into the functional significance of glomerular components. Large-scale approaches, such as microarray profiling, have also given data about molecules involved in the biology and pathology of the glomerulus. In the coming decade, the use of global expression profiling platforms, transgenic mouse lines, and other in vivo gene delivery methods will rapidly expand our understanding of biology and pathology of the glomerular filtration barrier, and hopefully expose novel target molecules for therapy in progressive renal diseases. 2010 Elsevier Inc. All rights reserved.

  9. Systematic Identification of Barriers to Human iPSC Generation

    OpenAIRE

    Qin, Han; Diaz, Aaron; Blouin, Laure; Lebbink, Robert Jan; Patena, Weronika; Tanbun, Priscilia; LeProust, Emily M.; McManus, Michael T.; Song, Jun S.; Ramalho-Santos, Miguel

    2014-01-01

    Reprogramming of somatic cells to induced pluripotent stem cells (iPSCs) holds enormous promise for regenerative medicine, but the underlying mechanisms remain poorly understood. We report a systematic dissection of human cellular reprogramming by combining a genome-wide RNAi screen, innovative computational methods, extensive single-hit validation and mechanistic dissection of relevant pathways and networks. We identify novel reprogramming barriers, including genes involved in transcription,...

  10. Long-term reliable physically unclonable function based on oxide tunnel barrier breakdown on two-transistors two-magnetic-tunnel-junctions cell-based embedded spin transfer torque magnetoresistive random access memory

    Science.gov (United States)

    Takaya, Satoshi; Tanamoto, Tetsufumi; Noguchi, Hiroki; Ikegami, Kazutaka; Abe, Keiko; Fujita, Shinobu

    2017-04-01

    Among the diverse applications of spintronics, security for internet-of-things (IoT) devices is one of the most important. A physically unclonable function (PUF) with a spin device (spin transfer torque magnetoresistive random access memory, STT-MRAM) is presented. Oxide tunnel barrier breakdown is used to realize long-term stability for PUFs. A secure PUF has been confirmed by evaluating the Hamming distance of a 32-bit STT-MRAM-PUF fabricated using 65 nm CMOS technology.

  11. Barrier mechanisms in the Drosophila blood-brain barrier.

    Science.gov (United States)

    Hindle, Samantha J; Bainton, Roland J

    2014-01-01

    The invertebrate blood-brain barrier (BBB) field is growing at a rapid pace and, in recent years, studies have shown a physiologic and molecular complexity that has begun to rival its vertebrate counterpart. Novel mechanisms of paracellular barrier maintenance through G-protein coupled receptor signaling were the first demonstrations of the complex adaptive mechanisms of barrier physiology. Building upon this work, the integrity of the invertebrate BBB has recently been shown to require coordinated function of all layers of the compound barrier structure, analogous to signaling between the layers of the vertebrate neurovascular unit. These findings strengthen the notion that many BBB mechanisms are conserved between vertebrates and invertebrates, and suggest that novel findings in invertebrate model organisms will have a significant impact on the understanding of vertebrate BBB functions. In this vein, important roles in coordinating localized and systemic signaling to dictate organism development and growth are beginning to show how the BBB can govern whole animal physiologies. This includes novel functions of BBB gap junctions in orchestrating synchronized neuroblast proliferation, and of BBB secreted antagonists of insulin receptor signaling. These advancements and others are pushing the field forward in exciting new directions. In this review, we provide a synopsis of invertebrate BBB anatomy and physiology, with a focus on insights from the past 5 years, and highlight important areas for future study.

  12. Communication barriers in the family

    Directory of Open Access Journals (Sweden)

    BARBARA KOC-KOZŁOWIEC

    2017-10-01

    Full Text Available The art of communication – listening and speaking – is a major life skill, with a thorough influence on every human life. Remaining silent while the interlocutor speaks is not all that there is to the act of listening to messages. True listening is based on an intention to get involved in understanding of the other person, enjoying his or her presence, learning something from the conversation, giving assistance, or comforting the interlocutor. In the article the author describes obstacles (barriers, which render true listening impossible. These barriers have been identified by a group of young adults.

  13. Fuel cell system with interconnect

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhien; Goettler, Richard

    2016-12-20

    The present invention includes an integrated planar, series connected fuel cell system having electrochemical cells electrically connected via interconnects, wherein the anodes of the electrochemical cells are protected against Ni loss and migration via an engineered porous anode barrier layer.

  14. Microstability of TMX-U during initial thermal barrier operation

    International Nuclear Information System (INIS)

    Casper, T.A.; Berzins, L.V.; Ellis, R.F.; James, R.A.; Lasnier, C.

    1984-03-01

    During the initial thermal barrier experiments on the Tandem Mirror Experiment-Upgrade (TMX-U), we successfully demonstrated the principle of improved axial tandem mirror confinement achieved by establishment of both the thermal barrier and the ion confining potential peak. During this operation, we created both hot (100-keV) mirror-confined electron and hot (8-keV) mirror-confined ion