WorldWideScience

Sample records for blood-derived mesenchymal stem

  1. Human umbilical cord blood-derived mesenchymal stem cells promote regeneration of crush-injured rat sciatic nerves

    Institute of Scientific and Technical Information of China (English)

    Mi-Ae Sung; Jong-Ho Lee; Hun Jong Jung; Jung-Woo Lee; Jin-Yong Lee; Kang-Mi Pang; Sang Bae Yoo; Mohammad S. Alrashdan; Soung-Min Kim; Jeong Won Jahng

    2012-01-01

    Several studies have demonstrated that human umbilical cord blood-derived mesenchymal stem cells can promote neural regeneration following brain injury. However, the therapeutic effects of human umbilical cord blood-derived mesenchymal stem cells in guiding peripheral nerve regeneration remain poorly understood. This study was designed to investigate the effects of human umbilical cord blood-derived mesenchymal stem cells on neural regeneration using a rat sciatic nerve crush injury model. Human umbilical cord blood-derived mesenchymal stem cells (1 × 106) or a PBS control were injected into the crush-injured segment of the sciatic nerve. Four weeks after cell injection, brain-derived neurotrophic factor and tyrosine kinase receptor B mRNA expression at the lesion site was increased in comparison to control. Furthermore, sciatic function index, Fluoro Gold-labeled neuron counts and axon density were also significantly increased when compared with control. Our results indicate that human umbilical cord blood-derived mesenchymal stem cells promote the functional recovery of crush-injured sciatic nerves.

  2. Human umbilical cord blood-derived mesenchymal stem cells promote vascular growth in vivo.

    Directory of Open Access Journals (Sweden)

    Santiago Roura

    Full Text Available Stem cell therapies are promising strategies to regenerate human injured tissues, including ischemic myocardium. Here, we examined the acquisition of properties associated with vascular growth by human umbilical cord blood-derived mesenchymal stem cells (UCBMSCs, and whether they promoted vascular growth in vivo. UCBMSCs were induced in endothelial cell-specific growth medium (EGM-2 acquiring new cell markers, increased Ac-LDL uptake, and migratory capacity as assessed by qRT-PCR, Western blotting, indirect immunofluorescence, and invasion assays. Angiogenic and vasculogenic potentials could be anticipated by in vitro experiments showing self organization into Matrigel-mediated cell networks, and activation of circulating angiogenic-supportive myeloid cells. In mice, following subcutaneous co-injection with Matrigel, UCBMSCs modified to co-express bioluminescent (luciferases and fluorescent proteins were demonstrated to participate in the formation of new microvasculature connected with the host circulatory system. Response of UCBMSCs to ischemia was explored in a mouse model of acute myocardial infarction (MI. UCBMSCs transplanted using a fibrin patch survived 4 weeks post-implantation and organized into CD31(+network structures above the infarcted myocardium. MI-treated animals showed a reduced infarct scar and a larger vessel-occupied area in comparison with MI-control animals. Taken together, the presented results show that UCBMSCs can be induced in vitro to acquire angiogenic and vasculogenic properties and contribute to vascular growth in vivo.

  3. Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells Contribute to Chondrogenesis in Coculture with Chondrocytes

    Directory of Open Access Journals (Sweden)

    Xingfu Li

    2016-01-01

    Full Text Available Human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs have been shown as the most potential stem cell source for articular cartilage repair. In this study, we aimed to develop a method for long-term coculture of human articular chondrocytes (hACs and hUCB-MSCs at low density in vitro to determine if the low density of hACs could enhance the hUCB-MSC chondrogenic differentiation as well as to determine the optimal ratio of the two cell types. Also, we compared the difference between direct coculture and indirect coculture at low density. Monolayer cultures of hUCB-MSCs and hACs were investigated at different ratios, at direct cell-cell contact groups for 21 days. Compared to direct coculture, hUCB-MSCs and hACs indirect contact culture significantly increased type II collagen (COL2 and decreased type I collagen (COL1 protein expression levels. SRY-box 9 (SOX9 mRNA levels and protein expression were highest in indirect coculture. Overall, these results indicate that low density direct coculture induces fibrocartilage. However, indirect coculture in conditioned chondrocyte cell culture medium can increase expression of chondrogenic markers and induce hUCB-MSCs differentiation into mature chondrocytes. This work demonstrates that it is possible to promote chondrogenesis of hUCB-MSCs in combination with hACs, further supporting the concept of novel coculture strategies for tissue engineering.

  4. Good manufacturing practice-compliant isolation and culture of human umbilical cord blood-derived mesenchymal stem cells

    OpenAIRE

    Van Pham, Phuc; Vu, Ngoc Bich; Pham, Vuong Minh; Truong, Nhung Hai; Pham, Truc Le-Buu; Dang, Loan Thi-Tung; Nguyen, Tam Thanh; Bui, Anh Nguyen-Tu; Phan, Ngoc Kim

    2014-01-01

    Background Mesenchymal stem cells (MSCs) are an attractive source of stem cells for clinical applications. These cells exhibit a multilineage differentiation potential and strong capacity for immune modulation. Thus, MSCs are widely used in cell therapy, tissue engineering, and immunotherapy. Because of important advantages, umbilical cord blood-derived MSCs (UCB-MSCs) have attracted interest for some time. However, the applications of UCB-MSCs are limited by the small number of recoverable U...

  5. The therapeutic potential of human umbilical cord blood-derived mesenchymal stem cells in Alzheimer's disease.

    Science.gov (United States)

    Lee, Hyun Ju; Lee, Jong Kil; Lee, Hyun; Shin, Ji-woong; Carter, Janet E; Sakamoto, Toshiro; Jin, Hee Kyung; Bae, Jae-sung

    2010-08-30

    The neuropathological hallmarks of Alzheimer's disease (AD) include the presence of extracellular amyloid-beta peptide (Abeta) in the form of amyloid plaques in the brain parenchyma and neuronal loss. The mechanism associated with neuronal death by amyloid plaques is unclear but oxidative stress and glial activation has been implicated. Human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) are being scrutinized as a potential therapeutic tool to prevent various neurodegenerative diseases including AD. However, the therapeutic impact of hUCB-MSCs in AD has not yet been reported. Here we undertook in vitro work to examine the potential impact of hUCB-MSCs treatment on neuronal loss using a paradigm of cultured hippocampal neurons treated with Abeta. We confirmed that hUCB-MSCs co-culture reduced the hippocampal apoptosis induced by Abeta treatment. Moreover, in an acute AD mouse model to directly test the efficacy of hUCB-MSCs treatment on AD-related cognitive and neuropathological outcomes, we demonstrated that markers of glial activation, oxidative stress and apoptosis levels were decreased in AD mouse brain. Interestingly, hUCB-MSCs treated AD mice demonstrated cognitive rescue with restoration of learning/memory function. These data suggest that hUCB-MSCs warrant further investigation as a potential therapeutic agent in AD.

  6. Production of good manufacturing practice-grade human umbilical cord blood-derived mesenchymal stem cells for therapeutic use.

    Science.gov (United States)

    Van Pham, Phuc; Phan, Ngoc Kim

    2015-01-01

    Human umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) are multipotent stem cells that can be differentiated into several specific cell types such as adipocytes, osteoblasts, and chondroblasts. They also were demonstrated to trans-differentiate into other cell lineages such as muscle cells and neurons. Thus, they are considered a promising stem cell source for therapeutic use. Here, we describe a method for production of good manufacturing practice-grade human UCB-MSCs for therapeutic use. The obtained UCB-MSCs are free of allogenous or xenogenous proteins. In addition, these MSCs could maintain the MSC phenotype in long-term culture.

  7. Impact of Umbilical Cord Blood-Derived Mesenchymal Stem Cells on Cardiovascular Research

    Directory of Open Access Journals (Sweden)

    Santiago Roura

    2015-01-01

    Full Text Available Over the years, cell therapy has become an exciting opportunity to treat human diseases. Early enthusiasm using adult stem cell sources has been tempered in light of preliminary benefits in patients. Considerable efforts have been dedicated, therefore, to explore alternative cells such as those extracted from umbilical cord blood (UCB. In line, UCB banking has become a popular possibility to preserve potentially life-saving cells that are usually discarded after birth, and the number of UCB banks has grown worldwide. Thus, a brief overview on the categories of UCB banks as well as the properties, challenges, and impact of UCB-derived mesenchymal stem cells (MSCs on the area of cardiovascular research is presented. Taken together, the experience recounted here shows that UCBMSCs are envisioned as attractive therapeutic candidates against human disorders arising and/or progressing with vascular deficit.

  8. Impact of Umbilical Cord Blood-Derived Mesenchymal Stem Cells on Cardiovascular Research

    Science.gov (United States)

    Roura, Santiago; Pujal, Josep Maria; Gálvez-Montón, Carolina; Bayes-Genis, Antoni

    2015-01-01

    Over the years, cell therapy has become an exciting opportunity to treat human diseases. Early enthusiasm using adult stem cell sources has been tempered in light of preliminary benefits in patients. Considerable efforts have been dedicated, therefore, to explore alternative cells such as those extracted from umbilical cord blood (UCB). In line, UCB banking has become a popular possibility to preserve potentially life-saving cells that are usually discarded after birth, and the number of UCB banks has grown worldwide. Thus, a brief overview on the categories of UCB banks as well as the properties, challenges, and impact of UCB-derived mesenchymal stem cells (MSCs) on the area of cardiovascular research is presented. Taken together, the experience recounted here shows that UCBMSCs are envisioned as attractive therapeutic candidates against human disorders arising and/or progressing with vascular deficit. PMID:25861654

  9. Factors inducing human umbilical cord blood-derived mesenchymal stem cells to differentiate into neuron-like cells

    Institute of Scientific and Technical Information of China (English)

    Nawei Zhang; Fengqing Ji

    2006-01-01

    OBJECTIVE:Human umbilical cord blood-derived mesenchymal stem cells (HUCB-derived MSCs)can differentiate into neuron-like cells,which can be used to treat some central nervous system(CNS)diseases.To investigate the factors,which can induce HUCB-derived MSCs to differentiate into neuron-like cells,so as to find effective methods for future clinical application.DATA SOURCES:Using the key terms"human umbilical cord blood"combined with"mesenchymal stem cells,neuron-like cells,neural cells"respectively,the relevant articles in English published during the period from January 1999 to June 2006 were searched from the Medline database.Meanwhile,relevant Chinese articles published from January 1999 to June 2006 were searched Using the same key terms.STUDY SELECTION: All articles associated with the differentiation from human umbilical cord blood into neuron-like cells were selected firstly.Then the full texts were looked up by searchling Ovid medical Journals full-text database and Elsevier Electrical Journals Full-text Database.Articles with full expeiments,enrolled in inducible factors or involved inducible mechanism were retdeved.DATA EXTRACTION:Among 119 collected correlative articles,29 were involved and 90 were excluded.DATA SYNTHESIS:The inducible factors of HUCB-derived MSCs differentiatling into neuron-like cells included renal endothelial growth factors,fibroblasts,β-mercaptoethanol,dimethyl sulfoxide,butyl hydroxyl anisol,brain-derived neurotrophic factor,Danshen,retinoic acid,sodium ferulate and so on,but its mechanism was unclear.CONCLUSION:Human umbilical cord blood-derived MSCs can differentiate into neuron-like cells,with varied inductors.

  10. Differentiation of human menstrual blood-derived endometrial mesenchymal stem cells into oocyte-like cells.

    Science.gov (United States)

    Lai, Dongmei; Guo, Ying; Zhang, Qiuwan; Chen, Yifei; Xiang, Charlie

    2016-11-01

    Human endometrial mesenchymal stem cells (EnSCs) derived from menstrual blood are a unique stem cell source. Evidence suggests that EnSCs exhibit a multi-lineage potential and have attracted extensive attention in regenerative medicine. However, the potential of EnSCs to differentiate into germline cells in vitro remains unclear. In this study, EnSCs were induced to differentiate into germ cells in a differentiation medium supplemented with 20% human follicular fluid. Our results demonstrated that EnSCs derived from human menstrual blood form oocyte-like cells and express germ cell markers. The induced cell aggregates contained not only oocyte-like structures but also cells expressing follicle stimulating hormone receptor and luteotropic hormone receptor, and produced estrogen and progesterone regulated by gonodatropin, suggesting that granulosa-like and theca-like cells were also induced. We further found that granulosa cells promote the development of oocyte-like cells and activate the induction of blastocyst-like structures derived from EnSCs. In conclusion, EnSCs may potentially represent an in vitro system for the investigation of human folliculogenesis.

  11. Distribution of human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) in canines after intracerebroventricular injection.

    Science.gov (United States)

    Park, Sang Eon; Jung, Na-Yeon; Lee, Na Kyung; Lee, Jeongmin; Hyung, Brian; Myeong, Su Hyeon; Kim, Hyeong Seop; Suh, Yeon-Lim; Lee, Jung-Il; Cho, Kyung Rae; Kim, Do Hyung; Choi, Soo Jin; Chang, Jong Wook; Na, Duk L

    2016-11-01

    In this study, we investigated the distribution of human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) administered via intracerebroventricular (ICV) injection in a canine model. Ten beagles (11-13 kg per beagle) each received an injection of 1 × 10(6) cells into the right lateral ventricle and were sacrificed 7 days after administration. Based on immunohistochemical analysis, hUCB-MSCs were observed in the brain parenchyma, especially along the lateral ventricular walls. Detected as far as 3.5 mm from the cortical surface, these cells migrated from the lateral ventricle toward the cortex. We also observed hUCB-MSCs in the hippocampus and the cervical spinal cord. According to real-time polymerase chain reaction results, most of the hUCB-MSCs were found distributed in the brain and the cervical spinal cord but not in the lungs, heart, kidneys, spleen, and liver. ICV administered hUCB-MSCs also enhanced the endogenous neural stem cell population in the subventricular zone. These results highlighted the ICV delivery route as an optimal route to be performed in stem cell-based clinical therapies for neurodegenerative diseases.

  12. Human umbilical cord blood derived mesenchymal stem cells were differentiated into pancreatic endocrine cell by Pdx-1 electrotransfer

    Directory of Open Access Journals (Sweden)

    Phuoc Thi-My Nguyen

    2014-02-01

    Full Text Available Diabetes mellitus type 1 is an autoimmune disease with high incidence in adolescents and young adults. A seductive approach overcomes normally obstacles treatment is cell-replacement therapy to endogenous insulin production. At the present, to get enough pancreatic endocrine cells (PECs in cell transplantation, differentiation of mesenchymal stem cells (MSCs into IPCs is an interesting and promising strategy. This study aimed to orient umbilical cord blood-derived MSCs (UCB-MSCs to PECs by Pdx-1 electrotransfer. UCB-MSCs were isolated from human umbilical cord blood according to published protocol. Pdx-1 was isolated and cloned into a plasmid vector. Optimal voltage of an electrotransfer was investigated to improve the cell viability and gene transfection efficacy. The results showed that 200V of the electrotransfer significantly increased in the efficiency of electrotransfer and survival cells compared with other high voltages (350V and 550V. Pdx-1 successfully transfected UCB-MSCs over-expressed pancreatic related genes as Ngn3, Nkx6.1. These results suggested that Pdx-1 transfected UCB-MSCs were successfully oriented PECs. Different to lentiviral vectors, electrotransfer is a safer method to transfer Pdx-1 to UCB-MSCs and a useful tool in translational research. [Biomed Res Ther 2014; 1(2.000: 50-56

  13. Conditioned Media from Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells Inhibits Melanogenesis by Promoting Proteasomal Degradation of MITF.

    Directory of Open Access Journals (Sweden)

    Eun Sung Kim

    Full Text Available Human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs secrete various beneficial molecules, which have anti-apoptotic activity and cell proliferation. However, the effect of hUCB-MSCs in melanogenesis is largely unclear. In this study, we show that conditioned media (CM derived from hUCB-MSCs inhibit melanogenesis by regulating microphthalmia-associated transcription factor (MITF expression via the ERK signalling pathway. Treatment of hUCB-MSC-CM strongly inhibited the alpha-melanocyte stimulating hormone-induced hyperpigmentation in melanoma cells as well as melanocytes. Treatment of hUCB-MSC-CM induced ERK1/2 activation in melanocytes. In addition, inhibition of ERK1/2 suppressed the anti-pigmentation activity of the hUCB-MSC-CM in melanocytes and in vitro artificial skin models. We also found that the expression of MITF was appreciably diminished while expression of phosphorylated MITF, which leads to its proteasomal degradation, was increased in cells treated with hUCB-MSC-CM. These results suggested that hUCB-MSC-CM significantly suppresses melanin synthesis via MITF degradation by the ERK pathway activation.

  14. Cartilage repair by human umbilical cord blood-derived mesenchymal stem cells with different hydrogels in a rat model.

    Science.gov (United States)

    Park, Yong-Beom; Song, Minjung; Lee, Choong-Hee; Kim, Jin-A; Ha, Chul-Won

    2015-11-01

    This study was carried out to assess the feasibility of human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) in articular cartilage repair and to further determine a suitable delivering hydrogel in a rat model. Critical sized full thickness cartilage defects were created. The hUCB-MSCs and three different hydrogel composites (hydrogel A; 4% hyaluronic acid/30% pluronic (1:1, v/v), hydrogel B; 4% hyaluronic acid, and hydrogel C; 4% hyaluronic acid/30% pluronic/chitosan (1:1:2, v/v)) were implanted into the experimental knee (right knee) and hydrogels without hUCB-MSCs were implanted into the control knee (left knee). Defects were evaluated after 8 weeks. The hUCB-MSCs with hydrogels composites resulted in a better repair as seen by gross and histological evaluation compared with hydrogels without hUCB-MSCs. Among the three different hydrogels, the 4% hyaluronic acid hydrogel composite (hydrogel B) showed the best result in cartilage repair as seen by the histological evaluation compared with the other hydrogel composites (hydrogel A and C). The results of this study suggest that hUCB-MSCs may be a promising cell source in combination with 4% hyaluronic acid hydrogels in the in vivo repair of cartilage defects.

  15. Low immunogenicity of allogeneic human umbilical cord blood-derived mesenchymal stem cells in vitro and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Miyoung; Jeong, Sang Young; Ha, Jueun; Kim, Miyeon; Jin, Hye Jin; Kwon, Soon-Jae [Biomedical Research Institute, MEDIPOST Co., Ltd, Seoul 137-874 (Korea, Republic of); Chang, Jong Wook [Research Institute for Future Medicine Stem Cell and Regenerative Medicine Center, Samsung Medical Center, Seoul 137-710 (Korea, Republic of); Choi, Soo Jin; Oh, Wonil; Yang, Yoon Sun [Biomedical Research Institute, MEDIPOST Co., Ltd, Seoul 137-874 (Korea, Republic of); Kim, Jae-Sung [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul 139-709 (Korea, Republic of); Jeon, Hong Bae, E-mail: jhb@medi-post.co.kr [Biomedical Research Institute, MEDIPOST Co., Ltd, Seoul 137-874 (Korea, Republic of)

    2014-04-18

    Highlights: • hUCB-MSCs maintained low immunogenicity even after immune challenge in vitro. • Humanized NSG mice were established using human UCB CD34+ cells. • Repeated intravenous hUCB-MSC injection into mice did not lead to immune responses and adverse events. • Allogeneic hUCB-MSCs maintained low immunogenicity in vitro and in vivo. - Abstract: Evaluation of the immunogenicity of human mesenchymal stem cells (MSCs) in an allogeneic setting during therapy has been hampered by lack of suitable models due to technical and ethical limitations. Here, we show that allogeneic human umbilical cord blood derived-MSCs (hUCB-MSCs) maintained low immunogenicity even after immune challenge in vitro. To confirm these properties in vivo, a humanized mouse model was established by injecting isolated hUCB-derived CD34+ cells intravenously into immunocompromised NOD/SCID IL2γnull (NSG) mice. After repeated intravenous injection of human peripheral blood mononuclear cells (hPBMCs) or MRC5 cells into these mice, immunological alterations including T cell proliferation and increased IFN-γ, TNF-α, and human IgG levels, were observed. In contrast, hUCB-MSC injection did not elicit these responses. While lymphocyte infiltration in the lung and small intestine and reduced survival rates were observed after hPBMC or MRC5 transplantation, no adverse events were observed following hUCB-MSC introduction. In conclusion, our data suggest that allogeneic hUCB-MSCs have low immunogenicity in vitro and in vivo, and are therefore “immunologically safe” for use in allogeneic clinical applications.

  16. Electrophysiological characterisation of human umbilical cord blood-derived mesenchymal stem cells induced by olfactory ensheathing cell-conditioned medium.

    Science.gov (United States)

    Zeng, Yu; Rong, Mingqiang; Liu, Yunsheng; Liu, Jingfang; Lu, Ming; Tao, Xiaoyu; Li, Zhenyan; Chen, Xin; Yang, Kui; Li, Chuntao; Liu, Zhixiong

    2013-12-01

    Umbilical cord blood-derived marrow stromal cells (UCB-MSCs) with high proliferation capacity and immunomodulatory properties are considered to be a good candidate for cell-based therapies. But until now, little work has been focused on the differentiation of UCB-MSCs. In this work, UCB-MSCs were demonstrated to be negative for CD34 and CD45 expression but positive for CD90 and CD105 expression. The gate values of UCB-MSCs for CD90 and CD105 were 99.3 and 98.6 %, respectively. Two weeks after treatment, the percentage of neuron-like cells differentiated from UCB-MSCs was increased to 84 ± 12 % in the experimental group [treated with olfactory ensheathing cells (OECs)-conditioned medium] and they were neuron-specific enolase positive; few neuron-like cells were found in the control group (without OECs-conditioned medium). Using whole-cell recording, sodium and potassium currents were recorded in UCB-MSCs after differentiation by OECs. Thus, human UCB-MSCs could be differentiated to neural cells by secreted secretion from OECs and exhibited electrophysiological properties similar to mature neurons after 2 weeks post-induction. These results imply that OECs can be used as a new strategy for stem cell differentiation and provide an alternative neurogenesis pathway for generating sufficient numbers of neural cells for cell therapy.

  17. Inhibition by miR-410 facilitates direct retinal pigment epithelium differentiation of umbilical cord blood-derived mesenchymal stem cells

    Science.gov (United States)

    Choi, Soon Won; Kim, Jae-Jun; Seo, Min-Soo; Park, Sang-Bum; Shin, Tae-Hoon; Shin, Ji-Hee; Seo, Yoojin; Kim, Hyung-Sik

    2017-01-01

    Retinal pigment epithelium (RPE) is a major component of the eye. This highly specialized cell type facilitates maintenance of the visual system. Because RPE loss induces an irreversible visual impairment, RPE generation techniques have recently been investigated as a potential therapeutic approach to RPE degeneration. The microRNA-based technique is a new strategy for producing RPE cells from adult stem cell sources. Previously, we identified that antisense microRNA-410 (anti-miR-410) induces RPE differentiation from amniotic epithelial stem cells. In this study, we investigated RPE differentiation from umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) via anti-miR-410 treatment. We identified miR-410 as a RPE-relevant microRNA in UCB-MSCs from among 21 putative human RPE-depleted microRNAs. Inhibition of miR-410 induces overexpression of immature and mature RPE-specific factors, including MITF, LRAT, RPE65, Bestrophin, and EMMPRIN. The RPE-induced cells were able to phagocytize microbeads. Results of our microRNA-based strategy demonstrated proof-of-principle for RPE differentiation in UCB-MSCs by using anti-miR-410 treatment without the use of additional factors or exogenous transduction. PMID:27297412

  18. Differentiating of banked human umbilical cord blood-derived mesenchymal stem cells into insulin-secreting cells.

    Science.gov (United States)

    Phuc, Pham Van; Nhung, Truong Hai; Loan, Dang Thi Tung; Chung, Doan Chinh; Ngoc, Phan Kim

    2011-01-01

    Umbilical cord blood (UCB)-derived mesenchymal stem cells (MSCs) are multipotent cells. They are able to differentiate into functional cells from not only mesoderm but also endoderm. Many researches showed that cells derived from fresh human UCB could transdifferentiate into insulin-secreting cells. In this study, transdifferentiating potential of cryopreserved human UCB-derived MSCs into insulin-secreting cell was investigated. Fresh human UCB was enriched the mononuclear cells by Ficoll-Paque centrifugation. The mononuclear cell population was cryopreserved in cryo-medium containing Iscove's modified Dulbecco's media (IMDM) with 10% DMSO at -196°C for 1 yr. After thawing, mononuclear cells were cultured to isolate MSCs in medium IMDM with 20% FBS supplemented with growth factors. At the fifth passages, MSCs were confirmed by flow cytometry about expression of CD13, CD14, CD34, CD45, CD166, and HLA-DR markers; after that, they were induced to differentiate into adipocytes and osteoblasts. After inducing with specific medium for islet differentiation, there were many clusters of cell like islet at day 14-28. Using real-time reverse transcription polymerase chain reaction (RT-PCR) to analyze the expression of functional genes, the result showed that Nestin, Pdx-1, Ngn3, Ils-1, Pax6, Pax4, Nkx2.2, Nkx6.1, Glut-2, Insulin genes expressed. The results showed that MSCs derived from banked cord blood can differentiate into functional pancreatic islet-like cells in vitro. If human MSCs, especially MSCs from banked cord blood of diabetes patients themselves can be isolated, proliferated, differentiated into functional pancreatic islet-like cells, and transplanted back into them (autologous transplantation), their high-proliferation potency and rejection avoidance will provide one promising therapy for diabetes.

  19. Delivery of the Sox9 gene promotes chondrogenic differentiation of human umbilical cord blood-derived mesenchymal stem cells in an in vitro model

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Z.H. [Department of Otolaryngology - Head and Neck Surgery, The Second Hospital, Xi' an Jiaotong University, Xi' an (China); Li, X.L. [Department of Dermatology, The Second Hospital, Xi' an Jiaotong University, Xi' an (China); He, X.J. [Department of Orthopedics, The Second Hospital, Xi' an Jiaotong University, Xi' an (China); Wu, B.J.; Xu, M. [Department of Otolaryngology - Head and Neck Surgery, The Second Hospital, Xi' an Jiaotong University, Xi' an (China); Chang, H.M. [Department of Otolaryngology - Head and Neck Surgery, Affiliated Hospital of Xi' an Medical University, Xi' an (China); Zhang, X.H. [Department of Otolaryngology - Head and Neck Surgery, The Second Hospital, Xi' an Jiaotong University, Xi' an (China); Xing, Z. [Department of Clinical Dentistry, Faculty of Dentistry, Center for Clinical Dental Research, University of Bergen, Bergen (Norway); Jing, X.H.; Kong, D.M.; Kou, X.H.; Yang, Y.Y. [Department of Otolaryngology - Head and Neck Surgery, The Second Hospital, Xi' an Jiaotong University, Xi' an (China)

    2014-03-18

    SRY-related high-mobility-group box 9 (Sox9) gene is a cartilage-specific transcription factor that plays essential roles in chondrocyte differentiation and cartilage formation. The aim of this study was to investigate the feasibility of genetic delivery of Sox9 to enhance chondrogenic differentiation of human umbilical cord blood-derived mesenchymal stem cells (hUC-MSCs). After they were isolated from human umbilical cord blood within 24 h after delivery of neonates, hUC-MSCs were untreated or transfected with a human Sox9-expressing plasmid or an empty vector. The cells were assessed for morphology and chondrogenic differentiation. The isolated cells with a fibroblast-like morphology in monolayer culture were positive for the MSC markers CD44, CD105, CD73, and CD90, but negative for the differentiation markers CD34, CD45, CD19, CD14, or major histocompatibility complex class II. Sox9 overexpression induced accumulation of sulfated proteoglycans, without altering the cellular morphology. Immunocytochemistry demonstrated that genetic delivery of Sox9 markedly enhanced the expression of aggrecan and type II collagen in hUC-MSCs compared with empty vector-transfected counterparts. Reverse transcription-polymerase chain reaction analysis further confirmed the elevation of aggrecan and type II collagen at the mRNA level in Sox9-transfected cells. Taken together, short-term Sox9 overexpression facilitates chondrogenesis of hUC-MSCs and may thus have potential implications in cartilage tissue engineering.

  20. Human umbilical cord blood-derived mesenchymal stem cells improve neuropathology and cognitive impairment in an Alzheimer's disease mouse model through modulation of neuroinflammation.

    Science.gov (United States)

    Lee, Hyun Ju; Lee, Jong Kil; Lee, Hyun; Carter, Janet E; Chang, Jong Wook; Oh, Wonil; Yang, Yoon Sun; Suh, Jun-Gyo; Lee, Byoung-Hee; Jin, Hee Kyung; Bae, Jae-Sung

    2012-03-01

    Human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSC) have a potential therapeutic role in the treatment of neurological disorders, but their current clinical usage and mechanism of action has yet to be ascertained in Alzheimer's disease (AD). Here we report that hUCB-MSC transplantation into amyloid precursor protein (APP) and presenilin1 (PS1) double-transgenic mice significantly improved spatial learning and memory decline. Furthermore, amyloid-β peptide (Aβ) deposition, β-secretase 1 (BACE-1) levels, and tau hyperphosphorylation were dramatically reduced in hUCB-MSC transplanted APP/PS1 mice. Interestingly, these effects were associated with reversal of disease-associated microglial neuroinflammation, as evidenced by decreased microglia-induced proinflammatory cytokines, elevated alternatively activated microglia, and increased anti-inflammatory cytokines. These findings lead us to suggest that hUCB-MSC produced their sustained neuroprotective effect by inducing a feed-forward loop involving alternative activation of microglial neuroinflammation, thereby ameliorating disease pathophysiology and reversing the cognitive decline associated with Aβ deposition in AD mice.

  1. Immunoregulation and human umbilical cord blood-derived mesenchymal stem cells transplantation%脐血间充质干细胞移植与免疫调节

    Institute of Scientific and Technical Information of China (English)

    焦保良; 王景川; 高炳华; 王新生

    2012-01-01

    BACKGROUND: Research in recent years suggests that the self-renewal and multi-directional differentiation potency of human umbilical cord blood derived mesenchymal stem cells (UCB-MSCs) offer basic condition to cell transplantation treatment. Moreover, their immunoloregulation function enormously expands the direction and limits cell transplantation treatment. OBJECTIVE: To retrospectively analyze the immunoloregulation and human UCB-MSCs transplantation. METHODS: The key word "umbilical cord blood-derived mesenchymal stem cells" was used to search in Pubmed database and CNKI database from January 2008 to June 2011 in English and Chinese using computer. The preliminary screening was made through reading the title and abstract. The articles with unrelated contents, repetitive and Meta analysis were excluded. 30 papers of pertinent literature to be published in the near future or published in the authority magazine were selected to review. RESULTS AND CONCLUSION: Human UCB-MSCs have the similar self-renewal and multi-directional differentiation potency with the bone marrow derived mesenchymal stem cells. Through cell transplantation technique, human UCB-MSCs show powerful potentiality in diabetes mellitus treatment, neural degeneration disease like Alzheimer's disease and Parkinson's disease and injury of nerve retreatment. Meanwhile, human UCB-MSCs have immunoregulatory ettects, they can lower immune reaction through down regulation of T-cells. We also get some advancements on several immunological diseases such as cell therapy of graft versus host disease and lupus nephritis.%背景:近年研究显示,脐血间充质干细胞的自我更新和多向分化潜能为细胞移植治疗提供了基础条件,而其免疫调节功能也极大地拓展了细胞治疗的方向和范围. 目的:就近期脐血间充质干细胞的免疫调节和细胞移植研究进行回顾分析. 摘要进行初筛,排除研究内容与此文无关的文献、重复性研究及Meta分析,

  2. Optimal Route for Human Umbilical Cord Blood-Derived Mesenchymal Stem Cell Transplantation to Protect Against Neonatal Hyperoxic Lung Injury: Gene Expression Profiles and Histopathology.

    Directory of Open Access Journals (Sweden)

    Dong Kyung Sung

    Full Text Available The aim of this study was to determine the optimal route of mesenchymal stem cell (MSC transplantation. To this end, gene expression profiling was performed to compare the effects of intratracheal (i.t. versus intravenous (i.v. MSC administration. Furthermore, the therapeutic efficacy of each route to protect against neonatal hyperoxic lung injury was also determined. Newborn Sprague-Dawley rats were exposed to hyperoxia (90% oxygen from birth for 14 days. Human umbilical cord blood-derived MSCs labeling with PKH26 were transplanted through either the i.t. (5×10(5 or i.v. (2×10(6 route at postnatal day (P 5. At P14, lungs were harvested for histological, biochemical and microarray analyses. Hyperoxic conditions induced an increase in the mean linear intercept and mean alveolar volume (MAV, indicative of impaired alveolarization. The number of ED-1 positive cells was significantly decreased by both i.t. and i.v. transplantations. However, i.t. administration of MSCs resulted in a greater decrease in MAV and ED-1 positive cells compared to i.v. administration. Moreover, the number of TUNEL-positive cells was significantly decreased in the i.t. group, but not in the i.v. group. Although the i.t. group received only one fourth of the number of MSCs that the i.v. group did, a significantly higher number of donor cell-derived red PKH 26 positivity were recovered in the i.t. group. Hyperoxic conditions induced the up regulation of genes associated with the inflammatory response, such as macrophage inflammatory protein-1 α, tumor necrosis factor-α and inter leukin-6; genes associated with cell death, such as p53 and caspases; and genes associated with fibrosis, such as connective tissue growth factor. In contrast, hyperoxic conditions induced the dwon-regulation of vascular endothelial growth factor and hepatocyte growth factor. These hyperoxia-induced changes in gene expression were decreased in the i.t. group, but not in the i.v. group. Thus

  3. Notch signaling: a novel regulating differentiation mechanism of human umbilical cord blood-derived mesenchymal stem cells into insulin-producing cells in vitro

    Institute of Scientific and Technical Information of China (English)

    HU Yan-hua; WU De-quan; GAO Feng; LI Guo-dong; ZHANG Xin-chen

    2010-01-01

    Background Human umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) could be induced to differentiate into insulin producing cells (IPCs) in vitro, which have good application potential in the cell replacement treatment of type-1 diabetes. However, the mechanisms regulating this differentiation have remained largely unknown. Notch signaling is critical in cell differentiation. This study investigated whether Notch signaling could regulate the IPCs differentiation of human UCB-MSCs. Methods Using an interfering Notch signaling protocol in vitro, we studied the role of Notch signaling in differentiation of human UCB-MSCs into IPCs. In a control group the induction took place without interfering Notch signaling. Results Human UCB-MSCs expressed the genes of Notch receptors (Notch 1 and Notch 2) and ligands (Jagged 1 and Deltalike 1). Human UCB-MSCs with over-expressing Notch signaling in differentiation resulted in the down-regulation of insulin gene level, proinsulin protein expression, and insulin-positive cells percentage compared with the control group. These results showed that over-expressing Notch signaling inhibited IPCs differentiation. Conversely, when Notch signaling was attenuated by receptor inhibitor, the induced cells increased on average by 3.06-fold (n=4, P<0.001) in insulin gene level, 2.60-fold (n=3, P <0.02) in proinsulin protein expression, and 1.62-fold (n=6, P <0.001) in the rate of IPCs compared with the control group. Notch signaling inhibition significantly promoted IPCs differentiation with about 40% of human UCB-MSCs that converted to IPCs, but these IPCs were not responsive to glucose challenge very well both in vitro and in vivo. Hence, further research has to be carried out in the future. Conclusions Notch signaling may be an important mechanism regulating IPCs differentiation of human UCB-MSCs in vitro and Notch signaling inhibition may be an efficient way to increase the number of IPCs, which may resolve the shortage of

  4. Mesenchymal stem cells promote a primitive phenotype CD34+c-kit+ in human cord blood-derived hematopoietic stem cells during ex vivo expansion.

    Science.gov (United States)

    Rodríguez-Pardo, Viviana M; Vernot, Jean Paul

    2013-03-01

    The purpose of this study was to evaluate the influence of bone marrow-mesenchymal stem cells (BM-MSC) and exogenously added cytokines on the proliferation, primitive cell subpopulation maintenance (including the c-kit+ marker) and clonogenic capacity of hematopoietic stem cells (HSC). BM-MSC were collected from volunteer donors, isolated and characterized. Umbilical cord blood (UCB) samples were collected from healthy full-term deliveries. UCB-CD34+ cells were cultured in the presence or absence of BM-MSC and/or cytokines for 3 and 7 days. CD34+ cell proliferation was evaluated using the CSFE method and cell phenotype was determined by CD34, c-kit, CD33, CD38, HLA-DR, cyCD22 and cyCD3 detection. Cell clonogenic ability was also assessed. Exogenously added SCF, TPO and FLT3L increased CD34+ cell proliferation in the presence or absence of BM-MSC, but with concomitant cell differentiation. Without any added cytokines, BM-MSC are able to increase the percentage of primitive progenitors as evaluated by c-kit expression and CFU-GEMM increase. Interestingly, this latter effect was dependent on both cell-cell interactions and secreted factors. A 7-day co-culture period will be optimal for obtaining an increased primitive HSC level. Including c-kit as a marker for primitive phenotype evaluation has shown the relevance of BM-MSC and their secreted factors on UCB-HSC stemness function. This effect could be dissociated from that of the addition of exogenous cytokines, which induced cellular differentiation instead.

  5. Preliminary evaluation of intravenous infusion and intrapancreatic injection of human umbilical cord blood-derived mesenchymal stem cells for the treatment of diabetic mice

    OpenAIRE

    Ngoc Kim Phan; Thuy Thanh Duong; Truc Le-Buu Pham; Loan Thi-Tung Dang; Anh Nguyen-Tu Bui; Vuong Minh Pham; Nhat Chau Truong; and Phuc Van Pham

    2014-01-01

    Type 1 diabetes mellitus is characterized by the destruction of pancreatic islet beta cells, which leads to insulin insufficiency, hyperglycemia, and reduced metabolic glucose level. Insulin replacement is the current standard therapy for type 1 diabetes mellitus but has several limitations. Pancreatic islet transplantation can result in the production of exogenous insulin, but its use is limited by immune-rejection and donor availability. Recent studies have shown that mesenchymal stem cells...

  6. Roles of db-cAMP, IBMX and RA in aspects of neural differentiation of cord blood derived mesenchymal-like stem cells.

    Directory of Open Access Journals (Sweden)

    Murni Tio

    Full Text Available Mesenchymal stem cells (MSCs have multilineage differentiation potential which includes cell lineages of the central nervous system; hence MSCs might be useful in the treatment of neurodegenerative diseases such as Parkinson's disease. Although mesenchymal stem cells have been shown to differentiate into the neural lineage, there is still little knowledge about the underlying mechanisms of differentiation particularly towards specialized neurons such as dopaminergic neurons. Here, we show that MSCs derived from human umbilical cord blood (MSC(hUCBs are capable of expressing tyrosine hydroxylase (TH and Nurr1, markers typically associated with DA neurons. We also found differential phosphorylation of TH isoforms indicating the presence of post-translational mechanisms possibly activating and modifying TH in MSC(hUCB. Furthermore, functional dissection of components in the differentiation medium revealed that dibutyryl-cAMP (db-cAMP, 3-isobutyl-1-methylxanthine (IBMX and retinoic acid (RA are involved in the regulation of Nurr1 and Neurofilament-L expression as well as in the differential phosphorylation of TH. We also demonstrate a possible inhibitory role of the protein kinase A signaling pathway in the phosphorylation of specific TH isoforms.

  7. Effect of Single and Double Administration of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells Following Focal Cerebral Ischemia in Rats

    Science.gov (United States)

    Park, Hyung Woo; Kim, Yona; Chang, Jong Wook; Yang, Yoon Sun; Oh, Wonil; Lee, Jae Min; Park, Hye Ran; Kim, Dong Gyu

    2017-01-01

    Stem cell therapies are administered during the acute phase of stroke to preserve the penumbral tissues from ischemic injury. However, the effect of repeated cell therapy during the acute phase remains unclear. In this study, we investigated and compared the functional outcome of single (two days post-injury) and repeated (two and nine days post-injury) treatment with human umbilical cord derived mesenchymal stem cells (hUCB-MSCs) after middle cerebral artery occlusion (MCAO). The rotarod and limb placement tests were utilized to investigate functional outcomes, while infarct volume and tissue damage were measured by immunofluorescent staining for neovascularization, neurogenesis, apoptosis, and inflammation in the penumbral zones. We observed notable motor dysfunction and a significant decrease in infarcted brain volume, as well as increases in neurons and vessels in both single and repeated hUCB-MSC treatments compared to the control group. Interestingly, repeated administration of hUCB-MSCs was not found to elicit additional or synergistic improvements over monotherapy. This study suggests that a clearer understanding of the therapeutic window after stroke will facilitate the development of more efficient treatment protocols in the clinical application of stem cell therapy. PMID:28243167

  8. Mid-trimester fetal blood-derived adherent cells share characteristics similar to mesenchymal stem cells but full-term umbilical cord blood does not

    Institute of Scientific and Technical Information of China (English)

    MinjunYu; ZhifengXiao; LiShen; LingsongLi

    2005-01-01

    Stem cell transplantation is a promising treatment for many conditions.Although stem cells can be isolated from many tissues, blood is the ideal source of these cells due to the ease of collection. Mesenchymal stem cells (MSCs) have been paid increased attention because of their powerful proliferation and pluripotent differentiating ability. But whether MSCs reside in blood (newborn umbilical cord blood and fetal or adult peripheral blood) is also debatable. The present study showed that MSC-like cells could be isolated and expanded from 16-26 weeks fetal blood but were not acquired efficiently from full-term infants' umbilical cord blood (UCB). Adherent cells separated from postnatal UCB were heterogeneous in cell morphology. Their proliferation capacity was limited and they were mainly CD45+, which indicated their haematopoietic derivation. On the contrary, MSC-like cells shared a similar phenotype to bone marrow MSCs. They were CD34- CD45- CD44+ CD71+ CD90+ CD105+. They could be induced to differentiate into osteogenic, adipogenic and neural lineage cells. Single cell clones also showed similar phenotype and differentiation ability. Our results suggest that early fetal blood is rich in MSCs but term UCB is not.

  9. Preliminary evaluation of treatment efficacy of umbilical cord blood-derived mesenchymal stem cell-differentiated cardiac pro-genitor cells in a myocardial injury mouse model

    Directory of Open Access Journals (Sweden)

    Truc Le-Buu Pham

    2015-12-01

    Full Text Available Recently, stem cell therapy has been investigated as a strategy to prevent or reverse damage to heart tissue. Although the results of cell transplantation in animal models and patients with myocardial ischemia are promising, the selection of the appropriate cell type remains an issue that requires consideration. In this study, we aimed to evaluate the effect of cardiac progenitor cell transplantation in a mouse model of myocardial ischemia. The cardiac progenitor cells used for transplantation were differentiated from umbilical cord blood mesenchymal stem cells. Animal models injected with phosphate-buffered saline (PBS and healthy mice were used as controls. Cell grafting was assessed by changes in blood pressure and histological evaluation. After 14 days of transplantation, the results demonstrated that the blood pressure of transplanted mice was stable, similar to healthy mice, whereas it fluctuated in PBS-injected mice. Histological analysis showed that heart tissue had regenerated in transplanted mice, but remained damaged in PBS-injected mice. Furthermore, trichrome staining revealed that the transplanted mice did not generate significant amount of scar tissue compared with PBS-injected control mice. In addition, the cardiac progenitor cells managed to survive and integrate with local cells in cell-injected heart tissue 14 days after transplantation. Most importantly, the transplanted cells did not exhibit tumorigenesis. In conclusion, cardiac progenitor cell transplantation produced a positive effect in a mouse model of myocardial ischemia. [Biomed Res Ther 2015; 2(12.000: 435-445

  10. Human umbilical cord blood-derived mesenchymal stem cells do not differentiate into neural cell types or integrate into the retina after intravitreal grafting in neonatal rats.

    Science.gov (United States)

    Hill, Andrew J; Zwart, Isabel; Tam, Henry H; Chan, Jane; Navarrete, Cristina; Jen, Ling-Sun; Navarrete, Roberto

    2009-04-01

    This study investigated the ability of mesenchymal stem cells (MSCs) derived from full-term human umbilical cord blood to survive, integrate and differentiate after intravitreal grafting to the degenerating neonatal rat retina following intracranial optic tract lesion. MSCs survived for 1 week in the absence of immunosuppression. When host animals were treated with cyclosporin A and dexamethasone to suppress inflammatory and immune responses, donor cells survived for at least 3 weeks, and were able to spread and cover the entire vitreal surface of the host retina. However, MSCs did not significantly integrate into or migrate through the retina. They also maintained their human antigenicity, and no indication of neural differentiation was observed in retinas where retinal ganglion cells either underwent severe degeneration or were lost. These results have provided the first in vivo evidence that MSCs derived from human umbilical cord blood can survive for a significant period of time when the host rat response is suppressed even for a short period. These results, together with the observation of a lack of neuronal differentiation and integration of MSCs after intravitreal grafting, has raised an important question as to the potential use of MSCs for neural repair through the replacement of lost neurons in the mammalian retina and central nervous system.

  11. Identification of cord blood-derived mesenchymal stem/stromal cell populations with distinct growth kinetics, differentiation potentials, and gene expression profiles.

    Science.gov (United States)

    Markov, Vladimir; Kusumi, Kenro; Tadesse, Mahlet G; William, Dilusha A; Hall, Dorian M; Lounev, Vitali; Carlton, Arlene; Leonard, Jay; Cohen, Rick I; Rappaport, Eric F; Saitta, Biagio

    2007-02-01

    Phenotypic heterogeneity has been observed among mesenchymal stem/stromal cell (MSC) populations, but specific genes associated with this variability have not been defined. To study this question, we analyzed two distinct isogenic MSC populations isolated from umbilical cord blood (UCB1 and UCB2). The use of isogenic populations eliminated differences contributed by genetic background. We characterized these UCB MSCs for cell morphology, growth kinetics, immunophenotype, and potential for differentiation. UCB1 displayed faster growth kinetics, higher population doublings, and increased adipogenic lineage differentiation compared to UCB2. However, osteogenic differentiation was stronger for the UCB2 population. To identify MSC-specific genes and developmental genes associated with observed phenotypic differences, we performed expression analysis using Affymetrix microarrays and compared them to bone marrow (BM) MSCs. We compared UCB1, UCB2, and BM and identified distinct gene expression patterns. Selected clusters were analyzed demonstrating that genes of multiple developmental pathways, such as transforming growth factor-beta (TGF-beta) and wnt genes, and markers of early embryonic stages and mesodermal differentiation displayed significant differences among the MSC populations. In undifferentiated UCB1 cells, multiple genes were significantly up-regulated (p < 0.0001): peroxisome proliferation activated receptor gamma (PPARG), which correlated with adipogenic differentiation capacities, hepatocyte growth factor (HGF), and stromal-derived factor 1 (SDF1/CXCL12), which could both potentially contribute to the higher growth kinetics observed in UCB1 cells. Overall, the results confirmed the presence of two distinct isogenic UCB-derived cell populations, identified gene profiles useful to distinguish MSC types with different lineage differentiation potentials, and helped clarify the heterogeneity observed in these cells.

  12. Preliminary evaluation of intravenous infusion and intrapancreatic injection of human umbilical cord blood-derived mesenchymal stem cells for the treatment of diabetic mice

    Directory of Open Access Journals (Sweden)

    Ngoc Kim Phan

    2014-03-01

    Full Text Available Type 1 diabetes mellitus is characterized by the destruction of pancreatic islet beta cells, which leads to insulin insufficiency, hyperglycemia, and reduced metabolic glucose level. Insulin replacement is the current standard therapy for type 1 diabetes mellitus but has several limitations. Pancreatic islet transplantation can result in the production of exogenous insulin, but its use is limited by immune-rejection and donor availability. Recent studies have shown that mesenchymal stem cells (MSCs can transdifferentiate into insulin-producing cells (IPCs, which could be utilized for diabetes mellitus treatment. Previously published reports have demonstrated that MSC or IPC transplantation could produce significant improvement in mouse models of diabetes mellitus. This study was aimed at determining the effects of two different methods of MSC transplantation on the efficacy of diabetes mellitus treatment in mouse models. The MSCs were isolated from umbilical cord blood and were proliferated following a previously published procedure. Diabetes mellitus was induced in mice by streptozotocin (STZ injection. Thirty days after transplantation, the weight of the mice treated by intra-venous infusion and intra-pancreatic injection was found to be 22% and 14% higher than that of the un-treated mice. The blood glucose concentrations in both intra-venous infusion and intra-pancreatic injection groups decreased and remained more stable than those in the control group. Moreover, insulin was detected in the serum of the treated mice, and the pancreas also showed gradual recovery. Based on the results of this preliminary investigation, intra-venous infusion seems more suitable than intra-pancreatic injection for MSC transplantation for diabetes mellitus treatment. [Biomed Res Ther 2014; 1(3.000: 98-105

  13. Extracellular matrix gel is necessary for in vitro cultivation of insulin producing cells from human umbilical cord blood derived mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    GAO Feng; WU De-quan; HU Yan-hua; JIN Guang-xin

    2008-01-01

    Background Pancreatic islet cell transplantation is an effective approach to treat type 1 diabetes. However, this therapy is not widely used because of the severe shortage of transplantable donor islets. This study investigated whether mesenchymal stem cells (MSCs) derived from human umbilical cord blood (UCB) could be transdifferentiated into insulin producing cells in vitro and the role of extracellular matrix (ECM) gel in this procedure.Methods Human UCB samples were collected and MSCs were isolated. MSCs specific marker proteins were analyzed by a flow cytometer. The capacities of osteoblast and adipocyte to differentiate were tested. Differentiation into islet like cell was induced by a 15-day protocol with or without ECM gel. Pancreatic characteristics were evaluated with immunofluorescence, reverse transcription polymerase chain reaction (RT-PCR) and flow cytometry. Insulin content and release in response to glucose stimulation were detected with chemiluminescent immunoassay system.Results Sixteen MSCs were isolated from 42 term human UCB units (38%). Human UCB-MSCs expressed MSCs specific markers and could be induced in vitro into osteoblast and adipocyte. Islet like cell clusters appeared about 9 days after pancreatic differentiation in the inducing system with ECM gel. The insulin positive cells accounted for (25.2±3.4)% of the induced cells. The induced cells expressed islet related genes and hormones, but were not very responsive to glucose challenge. When MSCs were induced without ECM gel, clusters formation and secretion of functional islet proteins could not be observed.Conclusions Human UCB-MSCs can differentiate into islet like cells in vitro and ECM gel plays an important role in pancreatic endocrine cell maturation and formation of three dimensional structures.

  14. Fibroblast growth factor-4 and hepatocyte growth factor induce differentiation of human umbilical cord blood-derived mesenchymal stem cells into hepatocytes

    Institute of Scientific and Technical Information of China (English)

    Xin-Qin Kang; Wei-Jin Zang; Li-Jun Bao; Dong-Ling Li; Tu-Sheng Song; Xiao-Li Xu; Xiao-Jiang Yu

    2005-01-01

    AIM: To investigate the differentiation of human umbilical cord blood (HUCB)-derived mesenchymal stem cells (MSCs) into hepatocytes by induction of fibroblast growth factor-4 (FGF-4) and hepatocyte growth factor (HGF), and to find a new source of cell types for therapies of hepatic diseases.METHODS: vSCs were isolated by combining gradient density centrifugation with plastic adherence. When HUCB-derived MSCs reached 70% confluence, they were cultured in Iscove modified Dulbecco medium (IMDM) supplemented with 10 mL/L FBS, 20 ng/mL HGF and 10 ng/mL FGF-4. The medium was changed every 4 d and stored for albumin, alpha-fetoprotein (AFP) and urea assay. Expression of CK-18 was detected by immunocytochemistry. Glycogen storage in hepatocytes was determined by PAS staining.RESULTS: By combining gradient density centrifugation with plastic adherence, we could isolate MSCs from 25.6% of human umbilical cord blood. When MSCs were cultured with FGF-4 and HGF, approximately 63.6% of cells became small, round and epithelioid on d 28 by morphology. Compared with the control, the level of AFP increased significantly from d 12 to 18.20±1.16 μg/L (t = 2.884, P<0.05) in MSCs cultured with FGF-4 and HGF, and was higher (54.28±3.11 μg/L) on d 28 (t = 13.493, P<0.01). Albumin increased significantly on d 16 (t = 6.68, P<0.01) to 1.02±0.15 μg/mL, and to 3.63±0.30 μg/mL on d 28 (t = 11.748, P<0.01). Urea(4.72±1.03 μmol/L) was detected on d 20 (t = 4.272,P<0.01), and continued to increase to 10.28±1.06 μmol/L on d 28 (t = 9.276, P<0.01). Cells expressed CK-18 on d 16. Glycogen storage was observed on d 24. CONCLUSION: HUCB-derived MSCs can differentiate into hepatocytes by induction of FGF-4 and HGF. HUCBderived MSCs are a new source of cell types for cell transplantation therapy of hepatic diseases.

  15. Neural differentiation of brain-derived neurotrophic factor-expressing human umbilical cord blood-derived mesenchymal stem cells in culture via TrkB-mediated ERK and β-catenin phosphorylation and following transplantation into the developing brain.

    Science.gov (United States)

    Lim, Jung Yeon; Park, Sang In; Kim, Seong Muk; Jun, Jin Ae; Oh, Ji Hyeon; Ryu, Chung Hun; Jeong, Chang Hyun; Park, Sun Hwa; Park, Soon A; Oh, Wonil; Chang, Jong Wook; Jeun, Sin-Soo

    2011-01-01

    The ability of mesenchymal stem cells (MSCs) to differentiate into neural cells makes them potential replacement therapeutic candidates in neurological diseases. Presently, overexpression of brain-derived neurotrophic factor (BDNF), which is crucial in the regulation of neural progenitor cell differentiation and maturation during development, was sufficient to convert the mesodermal cell fate of human umbilical cord blood-derived MSCs (hUCB-MSCs) into a neuronal fate in culture, in the absence of specialized induction chemicals. BDNF overexpressing hUCB-MSCs (MSCs-BDNF) yielded an increased number of neuron-like cells and, surprisingly, increased the expression of neuronal phenotype markers in a time-dependent manner compared with control hUCB-MSCs. In addition, MSCs-BDNF exhibited a decreased labeling for MSCs-related antigens such as CD44, CD73, and CD90, and decreased potential to differentiate into mesodermal lineages. Phosphorylation of the receptor tyrosine kinase B (TrkB), which is a receptor of BDNF, was increased significantly in MSC-BDNF. BDNF overexpression also increased the phosphorylation of β-catenin and extracellular signal-regulated kinases (ERKs). Inhibition of TrkB availability by treatment with the TrkB-specific inhibitor K252a blocked the BDNF-stimulated phosphorylation of β-catenin and ERKs, indicating the involvement of both the β-catenin and ERKs signals in the BDNF-stimulated and TrkB-mediated neural differentiation of hUCB-MSCs. Reduction of β-catenin availability using small interfering RNA-mediated gene silencing inhibited ERKs phosphorylation. However, β-catenin activation was maintained. In addition, inhibition of β-catenin and ERKs expression levels abrogated the BDNF-stimulated upregulation of neuronal phenotype markers. Furthermore, MSC-BDNF survived and migrated more extensively when grafted into the lateral ventricles of neonatal mouse brain, and differentiated significantly into neurons in the olfactory bulb and

  16. Repair of calvarial defects with human umbilical cord blood derived mesenchymal stem cells and demineralized bone matrix in athymic rats%人脐血间充质干细胞修复颅骨缺损的实验研究

    Institute of Scientific and Technical Information of China (English)

    刘广鹏; 李宇琳; 孙剑; 崔磊; 张文杰; 曹谊林

    2010-01-01

    Objective To investigate the feasibility of using human umbilical cord blood derived mesenchymal stem cells (UCB-MSCs) and demineralized bone matrix (DBM) scaffolds to repair critical-sized calvarial defects in athymic rats. Methods Human UCB-MSCs were isolated, expanded and osteogenically induced in vitro. Osteogenic differentiation of UCB-MSCs was evaluated by Alizarin Red staining and measurement of calcium content respectively, and then the cells were seeded onto DBM scaffolds. Bilateral full-thickness defects (5 mm in diameter) of parietal bone were created in an athymic rat model. The defects were either repaired with UCB-MSC/DBM constructs (experimental group) or with DBM scaffolds alone (control group). Animals were harvested at 6 and 12 weeks post-implantation respectively, and defect repair was evaluated with gross observation, micro-CT measurement and histological analysis. Results Micro-CT showed that new bone was formed in the experimental group at 6 weeks post-implantation, while no sign of new bone formation was observed in the control group. At 12 weeks post-transplantation, scaffolds had been degraded almost completely in both sides. It was shown that an average of (78.19±6.45)% of each defect volume had been repaired in experimental side; while in the control side, only limited bone formed at the periphery of the defect. Histological examination revealed that the defect was repaired by trabecular bone tissue in experimental side at 12 weeks, while only fibrous connection was observed in the control group. Conclusions Tissue-engineered bone composed of osteogenically-induced human UCB-MSCs on DBM scaffolds could successfully repair the critical-sized calvarial defects in athymic rat models.%目的 应用人脐血间充质干细胞(umbilical cord blood derived mesenchymal stem cells,UCB-MSCs)复合脱钙骨材料构建组织工程化骨,修复裸大鼠颅骨标准缺损.方法 体外扩增培养、成骨诱导人UCB-MSCs,采用Alizarin Red染色

  17. Platelet-Rich Blood Derivatives for Stem Cell-Based Tissue Engineering and Regeneration

    NARCIS (Netherlands)

    Masoudi, E.A.; Ribas, J.; Kaushik, G.; Leijten, J.C.H.; Khademhosseini, A.

    2016-01-01

    Platelet-rich blood derivatives have been widely used in different fields of medicine and stem cell-based tissue engineering. They represent natural cocktails of autologous growth factors, which could provide an alternative for recombinant protein-based approaches. Platelet-rich blood derivatives, s

  18. Improved isolation protocol for equine cord blood-derived mesenchymal stromal cells

    DEFF Research Database (Denmark)

    Koch, Thomas Gadegaard; Thomsen, Preben Dybdahl; Betts, Dean H.

    2009-01-01

      BACKGROUND AIMS: A robust methodology for the isolation of cord blood-derived multipotent mesenchymal stromal cells (CB-MSCs) from fresh umbilical cord blood has not been reported in any species. The objective of this study was to improve the isolation procedure for equine CB-MSCs. METHODS: Pre-culture...... separation of red and white blood cells was done using either PrepaCyte?-EQ medium or Ficoll-Paque? PREMIUM density medium. Regular FBS and MSC-qualified FBS were compared for their ability to support the establishment of putative primary MSC colonies. RESULTS AND CONCLUSIONS: Our results indicate that Prepa...

  19. Advances in menstrual blood-derived stem cells%宫内膜干细胞研究进展

    Institute of Scientific and Technical Information of China (English)

    张金龙; 张舒琪; 袁立

    2012-01-01

    本文介绍新型间充质干细胞—宫内膜干细胞的来源和特征,简述宫内膜干细胞分离、培养和体外扩增的方法;阐述宫内膜干细胞体外诱导分化心肌细胞和神经细胞的潜能,展望宫内膜干细胞的临床应用价值.%Menstrual blood-derived stem cells (MenSCs) are newly discovered mesenchymal stem cells. They have the potential ability to differentiate into various cell types, including heart and nerve cells. MenSCs provide an alternative source of adult stem cells for research and use in regenerative medicine.

  20. 经血源子宫内膜干细胞复合3D打印PLGA支架体外培养的相容性研究%Cellular Compatibility of Menstrual Blood-derived Mesenchymal Stem Cells in Three-dimensional Printing PLGA Scaffolds

    Institute of Scientific and Technical Information of China (English)

    许世兵; 单乐天; 金红婷; 王萍儿; 童培建; 肖鲁伟

    2015-01-01

    Objective] To investigate the feasibility of using three-dimensional(3D) printing PLGA loaded with menstrual blood-derived mesenchymal stem cells(MenSCs) as scaffolds for bone cartilage tissue engineering. [Methods] Three-dimensional printing PLGA was preprocessed. The five generation MenSCs were utilized. use invert microscope to observe cells biological property. According to 1.0 ×106/mL cells seeded onto PLGA scaffold composite culture, invert microscope, Mico-CT, scanning electron microscope and histopathology were observed.[Results] MSCs grew well, cells were plated to grow, fusiform or spindle row, thin cytoplasmic and nuclear circle centered, with fibroblast morphology. Cells to the fifth generation had long spindle cell monolayer and swirling arrangement. PLGA scaffolds exhibited microscopic interconnected porous structure, loose structure, large pores and mutual traffic, thinner hole wall. MenSCs on PLGA scaffold grew well, mainly in the scaffolds surface and inside growth, the scaffolds aperture had cell matrix organization connection.[Conclusion] MenSCs are ideal seeding cells for bone cartilage tissue engineering. And the PLGA scaffolds by three-dimensional printing with MenSCs may be in vitro construction as bone cartilage formation.%[目的]通过经血源子宫内膜干细胞(menstrual blood-derived mesenchymal stem cells, MenSCs)与3D打印PLGA支架材料的复合培养,探讨构建组织工程化骨软骨的可行性。[方法]预处理3D打印PLGA支架,取第5代MenSCs,倒置显微镜下观察细胞生物学特性,按1.0×106/mL的密度接种到PLGA支架材料上复合培养,通过倒置显微镜、Mico-CT、扫描电镜和组织病理学进行观察,并借此判断MenSCs与3D打印PLGA支架材料复合体外培养的融合性。[结果] MenSCs生长良好,细胞平铺生长,呈梭形或纺锤形,胞质薄,核圆居中,具有成纤维细胞形态。细胞传至第5代,为长梭形细胞单层,呈漩涡状排列

  1. The treatment of neurodegenerative disorders using umbilical cord blood and menstrual blood-derived stem cells.

    Science.gov (United States)

    Sanberg, Paul R; Eve, David J; Willing, Alison E; Garbuzova-Davis, Svitlana; Tan, Jun; Sanberg, Cyndy D; Allickson, Julie G; Cruz, L Eduardo; Borlongan, Cesar V

    2011-01-01

    Stem cell transplantation is a potentially important means of treatment for a number of disorders. Two different stem cell populations of interest are mononuclear umbilical cord blood cells and menstrual blood-derived stem cells. These cells are relatively easy to obtain, appear to be pluripotent, and are immunologically immature. These cells, particularly umbilical cord blood cells, have been studied as either single or multiple injections in a number of animal models of neurodegenerative disorders with some degree of success, including stroke, Alzheimer's disease, amyotrophic lateral sclerosis, and Sanfilippo syndrome type B. Evidence of anti-inflammatory effects and secretion of specific cytokines and growth factors that promote cell survival, rather than cell replacement, have been detected in both transplanted cells.

  2. Human Umbilical Cord Blood-Derived Serum for Culturing the Supportive Feeder Cells of Human Pluripotent Stem Cell Lines

    Directory of Open Access Journals (Sweden)

    Ruttachuk Rungsiwiwut

    2016-01-01

    Full Text Available Although human pluripotent stem cells (hPSCs can proliferate robustly on the feeder-free culture system, genetic instability of hPSCs has been reported in such environment. Alternatively, feeder cells enable hPSCs to maintain their pluripotency. The feeder cells are usually grown in a culture medium containing fetal bovine serum (FBS prior to coculture with hPSCs. The use of FBS might limit the clinical application of hPSCs. Recently, human cord blood-derived serum (hUCS showed a positive effect on culture of mesenchymal stem cells. It is interesting to test whether hUCS can be used for culture of feeder cells of hPSCs. This study was aimed to replace FBS with hUCS for culturing the human foreskin fibroblasts (HFFs prior to feeder cell preparation. The results showed that HFFs cultured in hUCS-containing medium (HFF-hUCS displayed fibroblastic features, high proliferation rates, short population doubling times, and normal karyotypes after prolonged culture. Inactivated HFF-hUCS expressed important genes, including Activin A, FGF2, and TGFβ1, which have been implicated in the maintenance of hPSC pluripotency. Moreover, hPSC lines maintained pluripotency, differentiation capacities, and karyotypic stability after being cocultured for extended period with inactivated HFF-hUCS. Therefore, the results demonstrated the benefit of hUCS for hPSCs culture system.

  3. Human stromal (mesenchymal) stem cells

    DEFF Research Database (Denmark)

    Aldahmash, Abdullah; Zaher, Walid; Al-Nbaheen, May

    2012-01-01

    Human stromal (mesenchymal) stem cells (hMSC) represent a group of non-hematopoietic stem cells present in the bone marrow stroma and the stroma of other organs including subcutaneous adipose tissue, placenta, and muscles. They exhibit the characteristics of somatic stem cells of self......-renewal and multi-lineage differentiation into mesoderm-type of cells, e.g., to osteoblasts, adipocytes, chondrocytes and possibly other cell types including hepatocytes and astrocytes. Due to their ease of culture and multipotentiality, hMSC are increasingly employed as a source for cells suitable for a number...

  4. The Myocardial Detection of Acute Myocardial Infarction rats Transplant into Human Umbilical cord Blood Derived Mesenchymal stem cell%急性心肌梗死大鼠移植入人脐带血间充质干细胞后心肌组织检测

    Institute of Scientific and Technical Information of China (English)

    何志裕; 陆东风

    2015-01-01

    目的探讨经尾静脉脐血间充质干细胞(mesenchymal stem cells,MSCs)移植到急性心肌梗死大鼠体内,观察其是否可以存活及是否向心肌组织分化。方法无菌条件下采集健康育龄产妇正常分娩胎儿脐带血,通过Mesen-cult培养基条件培养,取P2代细胞用流式细胞仪检测细胞表面CD29、CD34、CD45、CD105标志。将36只SD大鼠随机分成MSCs移植组、假手术组和心肌梗死植组各12只,结扎左冠状动脉前降支制备大鼠心肌梗死模型。1周后,经尾静脉注射带DAPI标记的脐血MSCs。4周后行免疫组织化学检测移植细胞存活与分化情况及检测梗死组织中FactorⅧ表达来比较三组微血管密度。结果流式细胞仪检测第2代的脐血MSCs 结果显示, P2代MSCs 不表达或极弱表达CD34,CD45造血细胞标志,稳定地高表达CD29,CD105间充质细胞相关的表面抗原标记。这与骨髓MSCs的表面抗原标志相一致。移植后4周,移植组心肌组织中可以观察到DAPI标记细胞存在,但标记细胞并未表达Troponin-T及con-nexin43,免疫组化染色检测示MSCs移植组心肌微血管密度(MVD)明显高于心梗组和假手术组。结论将脐血单个核细胞接种在mesencult培养基中可以在体外成功的培养出较纯化的脐血MSCs,脐血MSCs的免疫表型符合间充质干细胞特征,脐血MSCs移植能刺激梗死部位血管生成,但未向心肌细胞分化。%Objective To investigate the human umbilical cord blood mesenchymal stem cells was transplanted into the rats of acute myocardial infarction ( AMI) to observe the mesenchymal stem cells whether it can survive and whether to myocardial tissue differentiation .Methods Human umbilical cord blood sam-ples were collected from healthy mothers .ALL samples was culture medium consisted of Mesencult ( a kind of medium special for stem cell cultured),detected the second generation of MSCs'immunophenotypes(CD29, CD44

  5. Human fetal mesenchymal stem cells.

    Science.gov (United States)

    O'Donoghue, Keelin; Chan, Jerry

    2006-09-01

    Stem cells have been isolated at all stages of development from the early developing embryo to the post-reproductive adult organism. However, the fetal environment is unique as it is the only time in ontogeny that there is migration of stem cells in large numbers into different organ compartments. While fetal neural and haemopoietic stem cells (HSC) have been well characterised, only recently have mesenchymal stem cells from the human fetus been isolated and evaluated. Our group have characterised in human fetal blood, liver and bone marrow a population of non-haemopoietic, non-endothelial cells with an immunophenotype similar to adult bone marrow-derived mesenchymal stem cells (MSC). These cells, human fetal mesenchymal stem cells (hfMSC), are true multipotent stem cells with greater self-renewal and differentiation capacity than their adult counterparts. They circulate in first trimester fetal blood and have been found to traffic into the maternal circulation, engrafting in bone marrow, where they remain microchimeric for decades after pregnancy. Though fetal microchimerism has been implicated in the pathogenesis of autoimmune disease, the biological role of hfMSC microchimerism is unknown. Potential downstream applications of hfMSC include their use as a target cell for non-invasive pre-natal diagnosis from maternal blood, and for fetal cellular and gene therapy. Using hfMSC in fetal therapy offers the theoretical advantages of avoidance of immune rejection, increased engraftment, and treatment before disease pathology sets in. Aside from allogeneic hfMSC in utero transplantation, the use of autologous hfMSC has been brought a step forward with the development of early blood sampling techniques, efficient viral transduction and clonal expansion. Work is ongoing to determine hfMSC fate post-transplantation in murine models of genetic disease. In this review we will examine what is known about hfMSC biology, as well as discussing areas for future research. The

  6. Mesenchymal Stem Cells and Tooth Engineering

    Institute of Scientific and Technical Information of China (English)

    Li Peng; Ling Ye; Xue-dong Zhou

    2009-01-01

    Tooth loss compromises human oral health. Although several prosthetic methods, such as artificial denture and dental implants, are clinical therapies to tooth loss problems, they are thought to have safety and usage time issues. Recently, tooth tissue engineering has attracted more and more attention. Stem cell based tissue engineering is thought to be a promising way to replace the missing tooth. Mesenchymal stem cells (MSCs) are multipotent stem cells which can differentiate into a variety of cell types. The potential MSCs for tooth regeneration mainly include stem cells from human exfoliated deciduous teeth (SHEDs), adult dental pulp stem cells (DPSCs), stem cells from the apical part of the papilla (SCAPs), stem cells from the dental follicle (DFSCs), periodontal ligament stem cells (PDLSCs) and bone marrow derived mesenchymal stem cells (BMSCs). This review outlines the recent progress in the mesenchymal stem cells used in tooth regeneration.

  7. Role of Mesenchymal Stem Cells In Tumorigenesis

    Science.gov (United States)

    2009-08-01

    stem cells ( BMDC ), which then acts in a paracrine fashion on the cancer cells to enhance their invasion [7]. Interestingly the group of Karnoub showed...AD_________________ AWARD NUMBER: W81XWH-08-1-0523 TITLE: Role of Mesenchymal Stem Cells in...DATES COVERED 1 Aug 2008 – 31 Jul 2009 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Role of Mesenchymal Stem Cells in Tumorigenesis 5b. GRANT

  8. A Novel Molecular and Functional Stemness Signature Assessing Human Cord Blood-Derived Endothelial Progenitor Cell Immaturity.

    Directory of Open Access Journals (Sweden)

    Oriane Guillevic

    Full Text Available Endothelial Colony Forming Cells (ECFCs, a distinct population of Endothelial Progenitor Cells (EPCs progeny, display phenotypic and functional characteristics of endothelial cells while retaining features of stem/progenitor cells. Cord blood-derived ECFCs (CB-ECFCs have a high clonogenic and proliferative potentials and they can acquire different endothelial phenotypes, this requiring some plasticity. These properties provide angiogenic and vascular repair capabilities to CB-ECFCs for ischemic cell therapies. However, the degree of immaturity retained by EPCs is still confused and poorly defined. Consequently, to better characterize CB-ECFC stemness, we quantified their clonogenic potential and demonstrated that they were reprogrammed into induced pluripotent stem cells (iPSCs more efficiently and rapidly than adult endothelial cells. Moreover, we analyzed the transcriptional profile of a broad gene panel known to be related to stem cells. We showed that, unlike mature endothelial cells, CB-ECFCs expressed genes involved in the maintenance of embryonic stem cell properties such as DNMT3B, GDF3 or SOX2. Thus, these results provide further evidence and tools to appreciate EPC-derived cell stemness. Moreover this novel stem cell transcriptional signature of ECFCs could help better characterizing and ranging EPCs according to their immaturity profile.

  9. Human umbilical cord blood-derived mesenchymal stromal cells display a novel interaction between P-selectin and galectin-1.

    Science.gov (United States)

    Suila, H; Hirvonen, T; Kotovuori, A; Ritamo, I; Kerkelä, E; Anderson, H; Natunen, S; Tuimala, J; Laitinen, S; Nystedt, J; Räbinä, J; Valmu, L

    2014-07-01

    Human multipotent mesenchymal stromal/stem cells (MSCs) have been shown to exert immunomodulatory properties that have great potential in therapies for various inflammatory and autoimmune disorders. However, intravenous delivery of these cells is followed by massive cell entrapment in the lungs and insufficient homing to target tissues or organs. In targeting to tissues, MSCs and other therapeutic cells employ similar mechanisms as leucocytes, including a cascade of rolling and adhesion steps mediated by selectins, integrins and their ligands. However, the mechanisms of MSCs homing are not well understood. We discovered that P-selectin (CD62P) binds to umbilical cord blood (UCB)-derived MSCs independently of the previously known sialyl Lewis x (sLex)-containing ligands such as P-selectin glycoprotein ligand-1 (PSGL-1, CD162). By biochemical assays, we identified galectin-1 as a novel ligand for P-selectin. Galectin-1 has previously been shown to be a key mediator of the immunosuppressive effects of human MSCs. We conclude that this novel interaction is likely to play a major role in the immunomodulatory targeting of human UCB-derived MSCs.

  10. Mesenchymal Stem Cells Reduce Murine Atherosclerosis Development

    NARCIS (Netherlands)

    Frodermann, Vanessa; van Duijn, Janine; van Pel, Melissa; van Santbrink, Peter J.; Bot, Ilze; Kuiper, Johan; de Jager, Saskia C. A.

    2015-01-01

    Mesenchymal stem cells (MSCs) have regenerative properties, but recently they were also found to have immunomodulatory capacities. We therefore investigated whether MSCs could reduce atherosclerosis, which is determined by dyslipidaemia and chronic inflammation. We adoptively transferred MSCs into l

  11. Mesenchymal stem cells in regenerative rehabilitation.

    Science.gov (United States)

    Nurkovic, Jasmin; Dolicanin, Zana; Mustafic, Fahrudin; Mujanovic, Rifat; Memic, Mensur; Grbovic, Vesna; Skevin, Aleksandra Jurisic; Nurkovic, Selmina

    2016-06-01

    [Purpose] Regenerative medicine and rehabilitation contribute in many ways to a specific plan of care based on a patient's medical status. The intrinsic self-renewing, multipotent, regenerative, and immunosuppressive properties of mesenchymal stem cells offer great promise in the treatment of numerous autoimmune, degenerative, and graft-versus-host diseases, as well as tissue injuries. As such, mesenchymal stem cells represent a therapeutic fortune in regenerative medicine. The aim of this review is to discuss possibilities, limitations, and future clinical applications of mesenchymal stem cells. [Subjects and Methods] The authors have identified and discussed clinically and scientifically relevant articles from PubMed that have met the inclusion criteria. [Results] Direct treatment of muscle injuries, stroke, damaged peripheral nerves, and cartilage with mesenchymal stem cells has been demonstrated to be effective, with synergies seen between cellular and physical therapies. Over the past few years, several researchers, including us, have shown that there are certain limitations in the use of mesenchymal stem cells. Aging and spontaneous malignant transformation of mesenchymal stem cells significantly affect the functionality of these cells. [Conclusion] Definitive conclusions cannot be made by these studies because limited numbers of patients were included. Studies clarifying these results are expected in the near future.

  12. Isolation of mesenchymal stem cells from equine umbilical cord blood

    Directory of Open Access Journals (Sweden)

    Thomsen Preben D

    2007-05-01

    Full Text Available Abstract Background There are no published studies on stem cells from equine cord blood although commercial storage of equine cord blood for future autologous stem cell transplantations is available. Mesenchymal stem cells (MSC have been isolated from fresh umbilical cord blood of humans collected non-invasively at the time of birth and from sheep cord blood collected invasively by a surgical intrauterine approach. Mesenchymal stem cells isolation percentage from frozen-thawed human cord blood is low and the future isolation percentage of MSCs from cryopreserved equine cord blood is therefore expectedly low. The hypothesis of this study was that equine MSCs could be isolated from fresh whole equine cord blood. Results Cord blood was collected from 7 foals immediately after foaling. The mononuclear cell fraction was isolated by Ficoll density centrifugation and cultured in a DMEM low glucose based media at 38.5°C in humidified atmosphere containing 5% CO2. In 4 out of 7 samples colonies with MSC morphology were observed. Cellular morphology varied between monolayers of elongated spindle-shaped cells to layered cell clusters of cuboidal cells with shorter cytoplasmic extensions. Positive Alizarin Red and von Kossa staining as well as significant calcium deposition and alkaline phosphatase activity confirmed osteogenesis. Histology and positive Safranin O staining of matrix glycosaminoglycans illustrated chondrogenesis. Oil Red O staining of lipid droplets confirmed adipogenesis. Conclusion We here report, for the first time, the isolation of mesenchymal-like stem cells from fresh equine cord blood and their differentiation into osteocytes, chondrocytes and adipocytes. This novel isolation of equine cord blood MSCs and their preliminary in vitro differentiation positions the horse as the ideal pre-clinical animal model for proof-of-principle studies of cord blood derived MSCs.

  13. Umbilical Cord Blood-Derived Stem Cells Improve Heat Tolerance and Hypothalamic Damage in Heat Stressed Mice

    Directory of Open Access Journals (Sweden)

    Ling-Shu Tseng

    2014-01-01

    Full Text Available Heatstroke is characterized by excessive hyperthermia associated with systemic inflammatory responses, which leads to multiple organ failure, in which brain disorders predominate. This definition can be almost fulfilled by a mouse model of heatstroke used in the present study. Unanesthetized mice were exposed to whole body heating (41.2°C for 1 hour and then returned to room temperature (26°C for recovery. Immediately after termination of whole body heating, heated mice displayed excessive hyperthermia (body core temperature ~42.5°C. Four hours after termination of heat stress, heated mice displayed (i systemic inflammation; (ii ischemic, hypoxic, and oxidative damage to the hypothalamus; (iii hypothalamo-pituitary-adrenocortical axis impairment (reflected by plasma levels of both adrenocorticotrophic-hormone and corticosterone; (iv decreased fractional survival; and (v thermoregulatory deficits (e.g., they became hypothermia when they were exposed to room temperature. These heatstroke reactions can be significantly attenuated by human umbilical cord blood-derived CD34+ cells therapy. Our data suggest that human umbilical cord blood-derived stem cells therapy may improve outcomes of heatstroke in mice by reducing systemic inflammation as well as hypothalamo-pituitary-adrenocortical axis impairment.

  14. Mesenchymal stem cells in oral reconstructive surgery

    DEFF Research Database (Denmark)

    Jakobsen, C; Sørensen, J A; Kassem, M

    2013-01-01

    This study evaluated clinical outcomes following intraoperative use of adult mesenchymal stem cells (MSCs) in various oral reconstructive procedures. PubMed was searched without language restrictions from 2000 to 2011 using the search words stem cell, oral surgery, tissue engineering, sinus lift...

  15. Immunological characteristics of mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Cíntia de Vasconcellos Machado

    2013-01-01

    Full Text Available Although bone marrow is the main source, mesenchymal stem cells have already been isolated from various other tissues, such as the liver, pancreas, adipose tissue, peripheral blood and dental pulp. These plastic adherent cells are morphologically similar to fibroblasts and have a high proliferative potential. This special group of cells possesses two essential characteristics: self-renewal and differentiation, with appropriate stimuli, into various cell types. Mesenchymal stem cells are considered immunologically privileged, since they do not express costimulatory molecules, required for complete T cell activation, on their surface. Several studies have shown that these cells exert an immunosuppressive effect on cells from both innate and acquired immunity systems. Mesenchymal stem cells can regulate the immune response in vitro by inhibiting the maturation of dendritic cells, as well as by suppressing the proliferation and function of T and B lymphocytes and natural killer cells. These special properties of mesenchymal stem cells make them a promising strategy in the treatment of immune mediated disorders, such as graft-versus-host disease and autoimmune diseases, as well as in regenerative medicine. The understanding of immune regulation mechanisms of mesenchymal stem cells, and also those involved in the differentiation of these cells in various lineages is primordial for their successful and safe application in different areas of medicine.

  16. Mesenchymal stem cells targeting the GVHD

    Institute of Scientific and Technical Information of China (English)

    WANG Liang; ZHAO Robert ChunHua

    2009-01-01

    Acute graft-versus-host disease (GVHD) occurs after allogeneic hematopoietic stem cell transplant and is a reaction of donor immune cells against host tissues. About 35% -5% of hematopoietic stem cell transplant (HSCT) recipients will develop acute GVHD. It is associated with considerable morbidity and mortality, particularly in patients who do not respond to primary therapy, which usually consists of glucocorticoids(steroids). Most of the available second-line and third-line treatments for sterold-refractory acute GVHD induce severe immunodeficiency, which is commonly accompanied by lethal infectious complications. Mesenchymal stem cells (MSCs) have been shown to mediate immunomodulatory effects. The recently elucidated immunosuppreseive potential of mesenchymal stem cells has set the stage for their clinical testing as cellular immunosuppressants, MSCs have been used in patients with steroid-refractory acute GVHD, and encouraging responses have been obtained in many studies. The utility of MSCs for the treatment of GVHD is becoming clear.

  17. Induction of differentiation by down-regulation of Nanog and Rex-1 in cord blood derived unrestricted somatic stem cells.

    Science.gov (United States)

    Langroudi, Lida; Forouzandeh, Mehdi; Soleimani, Masoud; Atashi, Amir; Golestaneh, Azadeh Fahim

    2013-07-01

    Stem cells with high self-renewal and tissue regeneration potentials are the core components of regenerative medicine. Adult stem cells with many available sources, high repairing ability, and also possessing no ethical issues are popular candidates in the clinical field. In this study we looked upon the effects of two transcription factors Nanog and Rex-1 in self-renewal and differentiation abilities of a subpopulation of cord blood stem cells known as unrestricted somatic stem cells (USSCs). USSCs were expanded and transfected in vitro with siRNAs targeting either Nanog, Rex-1, and in combination. Gene suppressions were achieved at both transcript and proteome level. Differentiations were evaluated by specific Real time PCR and differentiating staining. Nanog knock down revealed a significant increase in osteogenic markers, Osteocalcin and Osteopontin expression as well as a positive Alizarin Red staining, which proposes Osteogenesis. This treatment also became positive for Oil Red staining, implying adipogenic differentiation as well. In contrast, Rex-1 knock down showed an increase in MAP II and Nestin expression, which is a hall mark of neural differentiation. Surprisingly, treatment with both siRNAs did not express any changes in any of the assessed markers. Therefore, our results indicated a bilateral mesenchymal differentiation for Nanog and a neural lineage fate for Rex-1 suppression. Considering that both transcription factors are core activators of self-renewal and also are orchestrating with other factors, our results imply a positive feedback in response to changes in the regulatory network of self-renewal.

  18. Inactivated Mesenchymal Stem Cells Maintain Immunomodulatory Capacity

    NARCIS (Netherlands)

    Luk, Franka; de Witte, Samantha F. H.; Korevaar, Sander S.; Roemeling, Marieke; Franquesa, Marcella; Strini, Tanja; van den Engel, Sandra; Gargesha, Madhusudhana; Roy, Debashish; Dor, Frank J. M. F.; Horwitz, Edwin M.; de Bruin, Ron W. F.; Betjes, Michiel G. H.; Baan, Carla C.; Hoogduijn, Martin J.

    2016-01-01

    Mesenchymal stem cells (MSC) are studied as a cell therapeutic agent for treatment of various immune diseases. However, therapy with living culture-expanded cells comes with safety concerns. Furthermore, development of effective MSC immunotherapy is hampered by lack of knowledge of the mechanisms of

  19. Mesenchymal Stem Cells in Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Olcay Ergurhan Kiroglu

    2015-03-01

    Full Text Available Neurodegenerative diseases are almost incurable, debilitating, and they might be fatal, because of limited neurogenesis in nervous system, presence of inhibitory substances and inhibition of recovery due to development of glial scar. Despite many treatment strategies of neurodegenerative diseases no full cure has been achieved. The successful results for mesenchymal stem cells applications on muscles, heart and liver diseases and the application of these cells to the damaged area in particular, hypoxia, inflammation and apoptosis promise hope of using them for neurodegenerative diseases. Mesenchymal stem cells applications constitute a vascular and neuronal phenotype in Parkinsons disease, Huntingtons disease, Amyotrophic lateral sclerosis and Alzheimers disease. Stem cells release bioactive agents that lead to suppression of local immune system, reduction of free radicals, increase in angiogenesis, inhibition of fibrosis, and apoptosis. In addition, tissue stem cells, increase neuronal healing, stimulate proliferation and differentiation. These findings show that stem cells might be a hope of a cure in the treatment of neurodegenerative diseases and intensive work on this issue should continue.

  20. Human umbilical cord blood-derived stem cells and brain-derived neurotrophic factor protect injured optic nerve:viscoelasticity characterization

    Institute of Scientific and Technical Information of China (English)

    Xue-man Lv; Yan Liu; Fei Wu; Yi Yuan; Min Luo

    2016-01-01

    The optic nerve is a viscoelastic solid-like biomaterial. Its normal stress relaxation and creep properties enable the nerve to resist constant strain and protect it from injury. We hypothesized that stress relaxation and creep properties of the optic nerve change after injury. More-over, human brain-derived neurotrophic factor or umbilical cord blood-derived stem cells may restore these changes to normal. To validate this hypothesis, a rabbit model of optic nerve injury was established using a clamp approach. At 7 days after injury, the vitreous body re-ceived a one-time injection of 50 μg human brain-derived neurotrophic factor or 1 × 106 human umbilical cord blood-derived stem cells. At 30 days after injury, stress relaxation and creep properties of the optic nerve that received treatment had recovered greatly, with patho-logical changes in the injured optic nerve also noticeably improved. These results suggest that human brain-derived neurotrophic factor or umbilical cord blood-derived stem cell intervention promotes viscoelasticity recovery of injured optic nerves, and thereby contributes to nerve recovery.

  1. Mesenchymal stem cells targeting the GVHD

    Institute of Scientific and Technical Information of China (English)

    ZHAO; Robert; ChunHua

    2009-01-01

    Acute graft-versus-host disease(GVHD) occurs after allogeneic hematopoietic stem cell transplant and is a reaction of donor immune cells against host tissues.About 35%-50% of hematopoietic stem cell transplant(HSCT) recipients will develop acute GVHD.It is associated with considerable morbidity and mortality,particularly in patients who do not respond to primary therapy,which usually consists of glucocorticoids(steroids).Most of the available second-line and third-line treatments for steroid-refractory acute GVHD induce severe immunodeficiency,which is commonly accompanied by lethal infectious complications.Mesenchymal stem cells(MSCs) have been shown to mediate immunomodulatory effects.The recently elucidated immunosuppressive potential of mesenchymal stem cells has set the stage for their clinical testing as cellular immunosuppressants,MSCs have been used in patients with steroid-refractory acute GVHD,and encouraging responses have been obtained in many studies.The utility of MSCs for the treatment of GVHD is becoming clear.

  2. Cartilage Engineering from Mesenchymal Stem Cells

    Science.gov (United States)

    Goepfert, C.; Slobodianski, A.; Schilling, A. F.; Adamietz, P.; Pörtner, R.

    Mesenchymal progenitor cells known as multipotent mesenchymal stromal cells or mesenchymal stem cells (MSC) have been isolated from various tissues. Since they are able to differentiate along the mesenchymal lineages of cartilage and bone, they are regarded as promising sources for the treatment of skeletal defects. Tissue regeneration in the adult organism and in vitro engineering of tissues is hypothesized to follow the principles of embryogenesis. The embryonic development of the skeleton has been studied extensively with respect to the regulatory mechanisms governing morphogenesis, differentiation, and tissue formation. Various concepts have been designed for engineering tissues in vitro based on these developmental principles, most of them involving regulatory molecules such as growth factors or cytokines known to be the key regulators in developmental processes. Growth factors most commonly used for in vitro cultivation of cartilage tissue belong to the fibroblast growth factor (FGF) family, the transforming growth factor-beta (TGF-β) super-family, and the insulin-like growth factor (IGF) family. In this chapter, in vivo actions of members of these growth factors described in the literature are compared with in vitro concepts of cartilage engineering making use of these growth factors.

  3. Brain-derived neurotrophic factor induces neuron-like cellular differentiation of mesenchymal stem cells derived from human umbilical cord blood cells in vitro

    Institute of Scientific and Technical Information of China (English)

    Lei Chen; Guozhen Hui; Zhongguo Zhang; Bing Chen; Xiaozhi Liu; Zhenlin Liu; Hongliang Liu; Gang Li; Zhiguo Su; Junfei Wang

    2011-01-01

    Human umbilical cord blood was collected from full-term deliveries scheduled for cesarean section. Mononuclear cells were isolated, amplified and induced as mesenchymal stem cells. Isolated mesenchymal stem cells tested positive for the marker CD29, CD44 and CD105 and negative for typical hematopoietic and endothelial markers. Following treatment with neural induction medium containing brain-derived neurotrophic factor for 7 days, the adherent cells exhibited neuron-like cellular morphology. Immunohistochemical staining and reverse transcription-PCR revealed that the induced mesenchymal stem cells expressed the markers for neuron-specific enolase and neurofilament. The results demonstrated that human umbilical cord blood-derived mesenchymal stem cells can differentiate into neuron-like cells induced by brain-derived neurotrophic factor in vitro.

  4. Isolation of mesenchymal stem cells from equine umbilical cord blood

    OpenAIRE

    Thomsen Preben D; Heerkens Tammy; Koch Thomas G; Betts Dean H

    2007-01-01

    Background: There are no published studies on stem cells from equine cord blood although commercial storage of equine cord blood for future autologous stem cell transplantations is available. Mesenchymal stem cells (MSC) have been isolated from fresh umbilical cord blood of humans collected non-invasively at the time of birth and from sheep cord blood collected invasively by a surgical intrauterine approach. Mesenchymal stem cells isolation percentage from frozen-thawed human cord blood is lo...

  5. The secretome of mesenchymal stem cells: potential implications for neuroregeneration.

    Science.gov (United States)

    Paul, Gesine; Anisimov, Sergey V

    2013-12-01

    Mesenchymal stem cells have shown regenerative properties in many tissues. This feature had originally been ascribed to their multipotency and thus their ability to differentiate into tissue-specific cells. However, many researchers consider the secretome of mesenchymal stem cells the most important player in the observed reparative effects of these cells. In this review, we specifically focus on the potential neuroregenerative effect of mesenchymal stem cells, summarize several possible mechanisms of neuroregeneration and list key factors mediating this effect. We illustrate examples of mesenchymal stem cell treatment in central nervous system disorders including stroke, neurodegenerative disorders (such as Parkinson's disease, Huntington's disease, multiple system atrophy and cerebellar ataxia) and inflammatory disease (such as multiple sclerosis). We specifically highlight studies where mesenchymal stem cells have entered clinical trials.

  6. Viability of mesenchymal stem cells during electrospinning

    Directory of Open Access Journals (Sweden)

    G. Zanatta

    2012-02-01

    Full Text Available Tissue engineering is a technique by which a live tissue can be re-constructed and one of its main goals is to associate cells with biomaterials. Electrospinning is a technique that facilitates the production of nanofibers and is commonly used to develop fibrous scaffolds to be used in tissue engineering. In the present study, a different approach for cell incorporation into fibrous scaffolds was tested. Mesenchymal stem cells were extracted from the wall of the umbilical cord and mononuclear cells from umbilical cord blood. Cells were re-suspended in a 10% polyvinyl alcohol solution and subjected to electrospinning for 30 min under a voltage of 21 kV. Cell viability was assessed before and after the procedure by exclusion of dead cells using trypan blue staining. Fiber diameter was observed by scanning electron microscopy and the presence of cells within the scaffolds was analyzed by confocal laser scanning microscopy. After electrospinning, the viability of mesenchymal stem cells was reduced from 88 to 19.6% and the viability of mononuclear cells from 99 to 8.38%. The loss of viability was possibly due to the high viscosity of the polymer solution, which reduced the access to nutrients associated with electric and mechanical stress during electrospinning. These results suggest that the incorporation of cells during fiber formation by electrospinning is a viable process that needs more investigation in order to find ways to protect cells from damage.

  7. Modeling sarcomagenesis using multipotent mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    Rene Rodriguez; Ruth Rubio; Pablo Menendez

    2012-01-01

    Because of their unique properties,multipotent mesenchymal stem cells (MSCs) represent one of the most promising adult stem cells being used worldwide in a wide array of clinical applications.Overall,compelling evidence supports the long-term safety of ex vivo expanded human MSCs,which do not seem to transform spontaneously.However,experimental data reveal a link between MSCs and cancer,and MSCs have been reported to inhibit or promote tumor growth depending on yet undefined conditions.Interestingly,solid evidence based on transgenic mice and genetic intervention of MSCs has placed these cells as the most likely cell of origin for certain sarcomas.This research area is being increasingly explored to develop accurate MSC-based models of sarcomagenesis,which will be undoubtedly valuable in providing a better understanding about the etiology and pathogenesis of mesenchymal cancer,eventually leading to the development of more specific therapies directed against the sarcoma-initiating cell.Unfortunately,still little is known about the mechanisms underlying MSC transformation and further studies are required to develop bona fide sarcoma models based on human MSCs.Here,we comprehensively review the existing MSC-based models of sarcoma and discuss the most common mechanisms leading to tumoral transformation of MSCs and sarcomagenesis.

  8. Mesenchymal stem cells: cell biology and potential use in therapy

    DEFF Research Database (Denmark)

    Kassem, Moustapha; Kristiansen, Malthe; Abdallah, Basem M

    2004-01-01

    Mesenchymal stem cells are clonogenic, non-haematopoietic stem cells present in the bone marrow and are able to differentiate into multiple mesoderm-type cell lineages e.g. osteoblasts, chondrocytes, endothelial-cells and also non-mesoderm-type lineages e.g. neuronal-like cells. Several methods...... are currently available for isolation of the mesenchymal stem cells based on their physical and immunological characteristics. Because of the ease of their isolation and their extensive differentiation potential, mesenchymal stem cells are among the first stem cell types to be introduced in the clinic. Recent...... studies have demonstrated that the life span of mesenchymal stem cells in vitro can be extended by increasing the levels of telomerase expression in the cells and thus allowing culture of large number of cells needed for therapy. In addition, it has been shown that it is possible to culture the cells...

  9. Response to intravenous allogeneic equine cord-blood-derived mesenchymal stromal cells administered from chilled or frozen state in serum and protein free media

    Directory of Open Access Journals (Sweden)

    Lynn Brandon Williams

    2016-07-01

    Full Text Available Equine Mesenchymal stromal cells (MSC are commonly transported, chilled or frozen, to veterinary clinics. These MSC must remain viable and minimally affected by culture, transport, or injection processes. The safety of two carrier solutions developed for optimal viability and excipient use were evaluated in ponies, with and without allogeneic cord blood-derived (CB MSC. We hypothesized that neither the carrier solutions nor CB-MSC would elicit measurable changes in clinical, hematological, or biochemical parameters. In 9 ponies (study 1 a bolus of HypoThermosol® FRS (HTS-FRS, CryoStor® CS10 (CS10 or saline was injected IV (n=3/treatment. Study 2, following a one week washout period 5x107 pooled allogeneic CB-MSC were administered IV in HTS-FRS following 24h simulated chilled transport. Study 3, following another one week washout period 5x107 pooled allogeneic CB-MSC were administered IV in CS10 immediately after thawing. Nine ponies received CB-MSCs in study 2 and 3 and three ponies received the cell carrier media without cells. CB-MSCs were pooled in equal numbers from five unrelated donors. In all studies ponies were monitored with physical examination, and blood collection for 7 days following injection. CD4 and CD8 lymphocyte populations were also evaluated in each blood sample.In all three studies, physical exam, complete blood cell count, serum biochemistry, and coagulation panel did not deviate from established normal ranges. Proportions of CD4+ and CD8+ lymphocytes increased at 168h post injection in CB-MSC treatment groups regardless of the carrier solution. Decreases in CD4+/CD8+ double positive populations were observed at 24 h and 72 h in CB-MSC treated animals. There was no difference in viability between CB-MSC suspended in HTS-FRS or CS10.HTS-FRS and CS10 used for low volume excipient injection of MSC suspensions was not associated with short-term adverse reactions. HTS-FRS and CS10 both adequately maintain CB-MSC viability

  10. Mesenchymal stem cells: A new diagnostic tool?

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Mesenchymal stem cells (MSCs) are progenitor cellscapable of self-renewal that can differentiate inmultiple tissues and, under specific and standardized culture conditions, expand in vitro with little phenotypicalterations. In recent years, preclinical andclinical studies have focused on MSC analysis andunderstanding the potential use of these cells as atherapy in a wide range of pathologies, and manyapplications have been tested. Clinical trials usingMSCs have been performed (e.g. , for cardiac events,stroke, multiple sclerosis, blood diseases, auto-immunedisorders, ischemia, and articular cartilage and bonepathologies), and for many genetic diseases, thesecells are considered an important resource. Consideringof the biology of MSCs, these cells may also be usefultools for understanding the physiopathology of differentdiseases, and they can be used to develop specificbiomarkers for a broad range of diseases. In thiseditorial, we discuss the literature related to the use ofMSCs for diagnostic applications and we suggest newtechnologies to improve their employment.

  11. Optimizing mesenchymal stem cell-based therapeutics.

    Science.gov (United States)

    Wagner, Joseph; Kean, Thomas; Young, Randell; Dennis, James E; Caplan, Arnold I

    2009-10-01

    Mesenchymal stem cell (MSC)-based therapeutics are showing significant benefit in multiple clinical trials conducted by both academic and commercial organizations, but obstacles remain for their large-scale commercial implementation. Recent studies have attempted to optimize MSC-based therapeutics by either enhancing their potency or increasing their delivery to target tissues. Overexpression of trophic factors or in vitro exposure to potency-enhancing factors are two approaches that are demonstrating success in preclinical animal models. Delivery enhancement strategies involving tissue-specific cytokine pathways or binding sites are also showing promise. Each of these strategies has its own set of distinct advantages and disadvantages when viewed with a mindset of ultimate commercialization and clinical utility.

  12. Mesenchymal Stem Cells: Angels or Demons?

    Directory of Open Access Journals (Sweden)

    Rebecca S. Y. Wong

    2011-01-01

    Full Text Available Mesenchymal stem cells (MSCs have been used in cell-based therapy in various disease conditions such as graft-versus-host and heart diseases, osteogenesis imperfecta, and spinal cord injuries, and the results have been encouraging. However, as MSC therapy gains popularity among practitioners and researchers, there have been reports on the adverse effects of MSCs especially in the context of tumour modulation and malignant transformation. These cells have been found to enhance tumour growth and metastasis in some studies and have been related to anticancer-drug resistance in other instances. In addition, various studies have also reported spontaneous malignant transformation of MSCs. The mechanism of the modulatory behaviour and the tumorigenic potential of MSCs, warrant urgent exploration, and the use of MSCs in patients with cancer awaits further evaluation. However, if MSCs truly play a role in tumour modulation, they can also be potential targets of cancer treatment.

  13. Application of Nanoscaffolds in Mesenchymal Stem Cell-Based Therapy

    OpenAIRE

    Ghoraishizadeh, Saman; Ghorishizadeh, Afsoon; Ghoraishizadeh, Peyman; Daneshvar,Nasibeh; Boroojerdi, Mohadese Hashem

    2014-01-01

    Regenerative medicine is an alternative solution for organ transplantation. Stem cells and nanoscaffolds are two essential components in regenerative medicine. Mesenchymal stem cells (MSCs) are considered as primary adult stem cells with high proliferation capacity, wide differentiation potential, and immunosuppression properties which make them unique for regenerative medicine and cell therapy. Scaffolds are engineered nanofibers that provide suitable microenvironment for cell signalling whi...

  14. Labeling and Imaging Mesenchymal Stem Cells with Quantum Dots

    Science.gov (United States)

    Mesenchymal stem cells (MSCs) are multipotent cells with the potential to differentiate into bone, cartilage, adipose and muscle cells. Adult derived MSCs are being actively investigated because of their potential to be utilized for therapeutic cell-based transplantation. Methods...

  15. Therapeutic Evaluation of Mesenchymal Stem Cells in Chronic Gut Inflammation

    Science.gov (United States)

    2015-09-01

    1 AWARD NUMBER: W81XWH-11-1-0666 TITLE: Therapeutic Evaluation of Mesenchymal Stem Cells in Chronic Gut Inflammation PRINCIPAL INVESTIGATOR...4Aug2015 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER W81XWH-11-1-0666 Therapeutic Evaluation of Mesenchymal Stem Cells in Chronic Gut Inflammation 5b...in a well-characterized mouse model of chronic colonic inflammation . Hypothesis: We propose that ex vivo-generated MSCs suppress chronic gut

  16. Mesenchymal stem cells: characteristics and clinical applications.

    Directory of Open Access Journals (Sweden)

    Sylwia Bobis

    2007-01-01

    Full Text Available Mesenchymal stem cells (MSCs are bone marrow populating cells, different from hematopoietic stem cells, which possess an extensive proliferative potential and ability to differentiate into various cell types, including: osteocytes, adipocytes, chondrocytes, myocytes, cardiomyocytes and neurons. MSCs play a key role in the maintenance of bone marrow homeostasis and regulate the maturation of both hematopoietic and non-hematopoietic cells. The cells are characterized by the expression of numerous surface antigens, but none of them appears to be exclusively expressed on MSCs. Apart from bone marrow, MSCs are located in other tissues, like: adipose tissue, peripheral blood, cord blood, liver and fetal tissues. MSCs have been shown to be powerful tools in gene therapies, and can be effectively transduced with viral vectors containing a therapeutic gene, as well as with cDNA for specific proteins, expression of which is desired in a patient. Due to such characteristics, the number of clinical trials based on the use of MSCs increase. These cells have been successfully employed in graft versus host disease (GvHD treatment, heart regeneration after infarct, cartilage and bone repair, skin wounds healing, neuronal regeneration and many others. Of special importance is their use in the treatment of osteogenesis imperfecta (OI, which appeared to be the only reasonable therapeutic strategy. MSCs seem to represent a future powerful tool in regenerative medicine, therefore they are particularly important in medical research.

  17. Radiation response of mesenchymal stem cells derived from bone marrow and human pluripotent stem cells

    OpenAIRE

    Islam, Mohammad S; Stemig, Melissa E.; Takahashi, Yutaka; Hui, Susanta K.

    2014-01-01

    Mesenchymal stem cells (MSCs) isolated from human pluripotent stem cells are comparable with bone marrow-derived MSCs in their function and immunophenotype. The purpose of this exploratory study was comparative evaluation of the radiation responses of mesenchymal stem cells derived from bone marrow- (BMMSCs) and from human embryonic stem cells (hESMSCs). BMMSCs and hESMSCs were irradiated at 0 Gy (control) to 16 Gy using a linear accelerator commonly used for cancer treatment. Cells were harv...

  18. Isolation of mesenchymal stem cells from equine umbilical cord blood

    DEFF Research Database (Denmark)

    Koch, Thomas Gadegaard; Heerkens, Tammy; Thomsen, Preben Dybdahl

    2007-01-01

    Background: There are no published studies on stem cells from equine cord blood although commercial storage of equine cord blood for future autologous stem cell transplantations is available. Mesenchymal stem cells (MSC) have been isolated from fresh umbilical cord blood of humans collected non......-invasively at the time of birth and from sheep cord blood collected invasively by a surgical intrauterine approach. Mesenchymal stem cells isolation percentage from frozen-thawed human cord blood is low and the future isolation percentage of MSCs from cryopreserved equine cord blood is therefore expectedly low......, for the first time, the isolation of mesenchymal-like stem cells from fresh equine cord blood and their differentiation into osteocytes, chondrocytes and adipocytes. This novel isolation of equine cord blood MSCs and their preliminary in vitro differentiation positions the horse as the ideal pre-clinical animal...

  19. Telomere stability and telomerase in mesenchymal stem cells

    DEFF Research Database (Denmark)

    Serakinci, Nedime; Graakjaer, Jesper; Kølvrå, Steen

    2008-01-01

    Telomeres are repetitive genetic material that cap and thereby protect the ends of chromosomes. Each time a cell divides, telomeres get shorter. Telomere length is mainly maintained by telomerase. This enzyme is present in high concentrations in the embryonic stem cells and in fast growing...... embryonic cells, and declines with age. It is still unclear to what extent there is telomerase in adult stem cells, but since these are the founder cells of cells of all the tissues in the body, understanding the telomere dynamics and expression of telomerase in adult stem cells is very important....... In the present communication we focus on telomere expression and telomere length in stem cells, with a special focus on mesenchymal stem cells. We consider different mechanisms by which stem cells can maintain telomeres and also focus on the dynamics of telomere length in mesenchymal stem cells, both the overall...

  20. Exosomes Derived from Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Bo Yu

    2014-03-01

    Full Text Available The functional mechanisms of mesenchymal stem cells (MSCs have become a research focus in recent years. Accumulating evidence supports the notion that MSCs act in a paracrine manner. Therefore, the biological factors in conditioned medium, including exosomes and soluble factors, derived from MSC cultures are being explored extensively. The results from most investigations show that MSC-conditioned medium or its components mediate some biological functions of MSCs. Several studies have reported that MSC-derived exosomes have functions similar to those of MSCs, such as repairing tissue damage, suppressing inflammatory responses, and modulating the immune system. However, the mechanisms are still not fully understood and the results remain controversial. Compared with cells, exosomes are more stable and reservable, have no risk of aneuploidy, a lower possibility of immune rejection following in vivo allogeneic administration, and may provide an alternative therapy for various diseases. In this review, we summarize the properties and biological functions of MSC-derived exosomes and discuss the related mechanisms.

  1. Mesenchymal stem cells: from experiment to clinic

    Directory of Open Access Journals (Sweden)

    Otto William R

    2011-09-01

    Full Text Available Abstract There is currently much interest in adult mesenchymal stem cells (MSCs and their ability to differentiate into other cell types, and to partake in the anatomy and physiology of remote organs. It is now clear these cells may be purified from several organs in the body besides bone marrow. MSCs take part in wound healing by contributing to myofibroblast and possibly fibroblast populations, and may be involved in epithelial tissue regeneration in certain organs, although this remains more controversial. In this review, we examine the ability of MSCs to modulate liver, kidney, heart and intestinal repair, and we update their opposing qualities of being less immunogenic and therefore tolerated in a transplant situation, yet being able to contribute to xenograft models of human tumour formation in other contexts. However, such observations have not been replicated in the clinic. Recent studies showing the clinical safety of MSC in several pathologies are discussed. The possible opposing powers of MSC need careful understanding and control if their clinical potential is to be realised with long-term safety for patients.

  2. Reversal of type 1 diabetes via islet β cell regeneration following immune modulation by cord blood-derived multipotent stem cells

    Directory of Open Access Journals (Sweden)

    Zhao Yong

    2012-01-01

    Full Text Available Abstract Background Inability to control autoimmunity is the primary barrier to developing a cure for type 1 diabetes (T1D. Evidence that human cord blood-derived multipotent stem cells (CB-SCs can control autoimmune responses by altering regulatory T cells (Tregs and human islet β cell-specific T cell clones offers promise for a new approach to overcome the autoimmunity underlying T1D. Methods We developed a procedure for Stem Cell Educator therapy in which a patient's blood is circulated through a closed-loop system that separates lymphocytes from the whole blood and briefly co-cultures them with adherent CB-SCs before returning them to the patient's circulation. In an open-label, phase1/phase 2 study, patients (n = 15 with T1D received one treatment with the Stem Cell Educator. Median age was 29 years (range: 15 to 41, and median diabetic history was 8 years (range: 1 to 21. Results Stem Cell Educator therapy was well tolerated in all participants with minimal pain from two venipunctures and no adverse events. Stem Cell Educator therapy can markedly improve C-peptide levels, reduce the median glycated hemoglobin A1C (HbA1C values, and decrease the median daily dose of insulin in patients with some residual β cell function (n = 6 and patients with no residual pancreatic islet β cell function (n = 6. Treatment also produced an increase in basal and glucose-stimulated C-peptide levels through 40 weeks. However, participants in the Control Group (n = 3 did not exhibit significant change at any follow-up. Individuals who received Stem Cell Educator therapy exhibited increased expression of co-stimulating molecules (specifically, CD28 and ICOS, increases in the number of CD4+CD25+Foxp3+ Tregs, and restoration of Th1/Th2/Th3 cytokine balance. Conclusions Stem Cell Educator therapy is safe, and in individuals with moderate or severe T1D, a single treatment produces lasting improvement in metabolic control. Initial results indicate Stem Cell

  3. Peripheral blood derived induced pluripotent stem cells (iPSCs from a female with familial hypertrophic cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Samantha Barratt Ross

    2017-04-01

    Full Text Available Induced pluripotent stem cells (iPSCs were generated from peripheral blood mononuclear cells (PBMCs obtained from a 62-year-old female with familial hypertrophic cardiomyopathy (HCM. PBMCs were reprogrammed to a pluripotent state following transfection with non-integrative episomal vectors carrying reprogramming factors OCT4, SOX2, LIN28, KLF4 and L-MYC. iPSCs were shown to express pluripotency markers, possess trilineage differentiation potential, carry rare variants identified in DNA isolated directly from the patient's whole blood, have a normal karyotype and no longer carry episomal vectors for reprogramming. This line is a useful resource for identifying unknown genetic causes of HCM.

  4. [Advances in the mechanism of mesenchymal stem cells in promoting wound healing].

    Science.gov (United States)

    Zhu, Wenjing; Sun, Haobo; Lyu, Guozhong

    2015-12-01

    Mesenchymal stem cells possess the ability of self-renewal and multiple differentiation potential, thus exert immunomodulatory effect during tissue repair. Mesenchymal stem cells can stimulate angiogenesis and promote tissue repair through transdifferentiation and secreting a variety of growth factors and cytokines. This review outlines the advances in the mechanism of mesenchymal stem cells in promoting wound healing, including alleviation of inflammatory response, induction of angiogenesis, and promotion of migration of mesenchymal stem cells to the site of tissue injury.

  5. Mesenchymal stem cell-mediated functional tooth regeneration in swine.

    Directory of Open Access Journals (Sweden)

    Wataru Sonoyama

    Full Text Available Mesenchymal stem cell-mediated tissue regeneration is a promising approach for regenerative medicine for a wide range of applications. Here we report a new population of stem cells isolated from the root apical papilla of human teeth (SCAP, stem cells from apical papilla. Using a minipig model, we transplanted both human SCAP and periodontal ligament stem cells (PDLSCs to generate a root/periodontal complex capable of supporting a porcelain crown, resulting in normal tooth function. This work integrates a stem cell-mediated tissue regeneration strategy, engineered materials for structure, and current dental crown technologies. This hybridized tissue engineering approach led to recovery of tooth strength and appearance.

  6. Mesenchymal stem cell-mediated functional tooth regeneration in swine.

    Science.gov (United States)

    Sonoyama, Wataru; Liu, Yi; Fang, Dianji; Yamaza, Takayoshi; Seo, Byoung-Moo; Zhang, Chunmei; Liu, He; Gronthos, Stan; Wang, Cun-Yu; Wang, Songlin; Shi, Songtao

    2006-12-20

    Mesenchymal stem cell-mediated tissue regeneration is a promising approach for regenerative medicine for a wide range of applications. Here we report a new population of stem cells isolated from the root apical papilla of human teeth (SCAP, stem cells from apical papilla). Using a minipig model, we transplanted both human SCAP and periodontal ligament stem cells (PDLSCs) to generate a root/periodontal complex capable of supporting a porcelain crown, resulting in normal tooth function. This work integrates a stem cell-mediated tissue regeneration strategy, engineered materials for structure, and current dental crown technologies. This hybridized tissue engineering approach led to recovery of tooth strength and appearance.

  7. Tumourigenicity and radiation resistance of mesenchymal stem cells

    DEFF Research Database (Denmark)

    D'Andrea, Filippo Peder; Horsman, Michael Robert; Kassem, Moustapha

    2012-01-01

    Background. Cancer stem cells are believed to be more radiation resistant than differentiated tumour cells of the same origin. It is not known, however, whether normal nontransformed adult stem cells share the same radioresistance as their cancerous counterpart. Material and methods....... Nontumourigenic (TERT4) and tumourigenic (TRET20) cell lines, from an immortalised mesenchymal stem cell line, were grown in culture prior to irradiation and gene expression analysis. Radiation resistance was measured using a clonogenic assay. Differences in gene expression between the two cell lines, both under...... the intercellular matrix. These results also indicate that cancer stem cells are more radiation resistant than stem cells of the same origin....

  8. Quantum dot labeling of mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Cascio Wayne E

    2007-11-01

    Full Text Available Abstract Background Mesenchymal stem cells (MSCs are multipotent cells with the potential to differentiate into bone, cartilage, fat and muscle cells and are being investigated for their utility in cell-based transplantation therapy. Yet, adequate methods to track transplanted MSCs in vivo are limited, precluding functional studies. Quantum Dots (QDs offer an alternative to organic dyes and fluorescent proteins to label and track cells in vitro and in vivo. These nanoparticles are resistant to chemical and metabolic degradation, demonstrating long term photostability. Here, we investigate the cytotoxic effects of in vitro QD labeling on MSC proliferation and differentiation and use as a cell label in a cardiomyocyte co-culture. Results A dose-response to QDs in rat bone marrow MSCs was assessed in Control (no-QDs, Low concentration (LC, 5 nmol/L and High concentration (HC, 20 nmol/L groups. QD yield and retention, MSC survival, proinflammatory cytokines, proliferation and DNA damage were evaluated in MSCs, 24 -120 hrs post QD labeling. In addition, functional integration of QD labeled MSCs in an in vitro cardiomyocyte co-culture was assessed. A dose-dependent effect was measured with increased yield in HC vs. LC labeled MSCs (93 ± 3% vs. 50% ± 15%, p 90% of QD labeled cells were viable in all groups, however, at 120 hrs increased apoptosis was measured in HC vs. Control MSCs (7.2% ± 2.7% vs. 0.5% ± 0.4%, p Conclusion Fluorescent QDs label MSC effectively in an in vitro co-culture model. QDs are easy to use, show a high yield and survival rate with minimal cytotoxic effects. Dose-dependent effects suggest limiting MSC QD exposure.

  9. File list: Pol.Oth.50.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Oth.50.AllAg.Mesenchymal_stem_cells hg19 RNA polymerase Others Mesenchymal stem... cells SRX1027436,SRX1027435,SRX1027434,SRX1027433 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Oth.50.AllAg.Mesenchymal_stem_cells.bed ...

  10. File list: ALL.Oth.50.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Oth.50.AllAg.Mesenchymal_stem_cells hg19 All antigens Others Mesenchymal stem c...ttp://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Oth.50.AllAg.Mesenchymal_stem_cells.bed ...

  11. File list: Oth.Oth.50.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Oth.50.AllAg.Mesenchymal_stem_cells mm9 TFs and others Others Mesenchymal stem ...cells SRX228677,SRX228679,SRX228676,SRX228678 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Oth.50.AllAg.Mesenchymal_stem_cells.bed ...

  12. File list: Unc.Oth.10.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Oth.10.AllAg.Mesenchymal_stem_cells hg19 Unclassified Others Mesenchymal stem c...ells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Oth.10.AllAg.Mesenchymal_stem_cells.bed ...

  13. File list: Unc.Oth.50.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Oth.50.AllAg.Mesenchymal_stem_cells mm9 Unclassified Others Mesenchymal stem ce...lls http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Oth.50.AllAg.Mesenchymal_stem_cells.bed ...

  14. File list: DNS.Oth.10.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Oth.10.AllAg.Mesenchymal_stem_cells mm9 DNase-seq Others Mesenchymal stem cells... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Oth.10.AllAg.Mesenchymal_stem_cells.bed ...

  15. File list: His.Oth.05.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Oth.05.AllAg.Mesenchymal_stem_cells mm9 Histone Others Mesenchymal stem cells S...,SRX318103,SRX228666,SRX228665 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Oth.05.AllAg.Mesenchymal_stem_cells.bed ...

  16. File list: Unc.Oth.05.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Oth.05.AllAg.Mesenchymal_stem_cells hg19 Unclassified Others Mesenchymal stem c...ells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Oth.05.AllAg.Mesenchymal_stem_cells.bed ...

  17. File list: ALL.Oth.05.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Oth.05.AllAg.Mesenchymal_stem_cells mm9 All antigens Others Mesenchymal stem ce...X228662,SRX228660,SRX228665,SRX228678,SRX228661 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Oth.05.AllAg.Mesenchymal_stem_cells.bed ...

  18. File list: Oth.Oth.10.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Oth.10.AllAg.Mesenchymal_stem_cells mm9 TFs and others Others Mesenchymal stem ...cells SRX228677,SRX228676,SRX228679,SRX228678 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Oth.10.AllAg.Mesenchymal_stem_cells.bed ...

  19. File list: ALL.Oth.20.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Oth.20.AllAg.Mesenchymal_stem_cells hg19 All antigens Others Mesenchymal stem c...ttp://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Oth.20.AllAg.Mesenchymal_stem_cells.bed ...

  20. File list: ALL.Oth.10.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Oth.10.AllAg.Mesenchymal_stem_cells hg19 All antigens Others Mesenchymal stem c...ttp://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Oth.10.AllAg.Mesenchymal_stem_cells.bed ...

  1. File list: His.Oth.50.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Oth.50.AllAg.Mesenchymal_stem_cells hg19 Histone Others Mesenchymal stem cells ...76722,SRX376723,SRX1027442 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Oth.50.AllAg.Mesenchymal_stem_cells.bed ...

  2. File list: His.Oth.50.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Oth.50.AllAg.Mesenchymal_stem_cells mm9 Histone Others Mesenchymal stem cells S...,SRX228669,SRX228666,SRX228664 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Oth.50.AllAg.Mesenchymal_stem_cells.bed ...

  3. File list: Oth.Oth.50.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Oth.50.AllAg.Mesenchymal_stem_cells hg19 TFs and others Others Mesenchymal stem...X1027439,SRX1027441,SRX1027449,SRX1027452,SRX1027451,SRX1027440 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Oth.50.AllAg.Mesenchymal_stem_cells.bed ...

  4. File list: Unc.Oth.10.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Oth.10.AllAg.Mesenchymal_stem_cells mm9 Unclassified Others Mesenchymal stem ce...lls http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Oth.10.AllAg.Mesenchymal_stem_cells.bed ...

  5. File list: His.Oth.20.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Oth.20.AllAg.Mesenchymal_stem_cells hg19 Histone Others Mesenchymal stem cells ...027442,SRX376722,SRX376723 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Oth.20.AllAg.Mesenchymal_stem_cells.bed ...

  6. File list: Unc.Oth.05.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Oth.05.AllAg.Mesenchymal_stem_cells mm9 Unclassified Others Mesenchymal stem ce...lls http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Oth.05.AllAg.Mesenchymal_stem_cells.bed ...

  7. File list: Unc.Oth.50.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Oth.50.AllAg.Mesenchymal_stem_cells hg19 Unclassified Others Mesenchymal stem c...ells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Oth.50.AllAg.Mesenchymal_stem_cells.bed ...

  8. File list: Pol.Oth.20.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Oth.20.AllAg.Mesenchymal_stem_cells hg19 RNA polymerase Others Mesenchymal stem... cells SRX1027436,SRX1027435,SRX1027434,SRX1027433 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Oth.20.AllAg.Mesenchymal_stem_cells.bed ...

  9. Identification and expansion of cancer stem cells in tumor tissues and peripheral blood derived from gastric adenocarcinoma patients

    Institute of Scientific and Technical Information of China (English)

    Tie Chen; Xinzu Chen; Fang Wang; Fan Zeng; Hong Xu; Jiankun Hu; Xianming Mo; Kun Yang; Jianhua Yu; Wentong Meng; Dandan Yuan; Feng Bi; Fang Liu; Jie Liu; Bing Dai

    2012-01-01

    Gastric cancer is the fourth most common cancer worldwide,with a high rate of death and low 5-year survival rate.To date,there is a lack of efficient therapeutic protocols for gastric cancer.Recent studies suggest that cancer stem cells (CSCs) are responsible for tumor initiation,invasion,metastasis,and resistance to anticancer therapies.Thus,therapies that target gastric CSCs are attractive.However,CSCs in human gastric adenocarcinoma (GAC)have not been described.Here,we identify CSCs in tumor tissues and peripheral blood from GAC patients.CSCs of human GAC (GCSCs) that are isolated from tumor tissues and peripheral blood of patients carried CD44 and CD54 surface markers,generated tumors that highly resemble the original human tumors when injected into immunodeficient mice,differentiated into gastric epithelial cells in vitro,and self-renewed in vivo and in vitro.Our findings suggest that effective therapeutic protocols must target GCSCs.The capture of GCSCs from the circulation of GAC patients also shows great potential for identification of a critical cell population potentially responsible for tumor metastasis,and provides an effective protocol for early diagnosis and longitudinal monitoring of gastric cancer.

  10. Human mesenchymal stem cells: from basic biology to clinical applications

    DEFF Research Database (Denmark)

    Abdallah, B M; Kassem, M

    2008-01-01

    Mesenchymal stem cells (MSC) are a group of clonogenic cells present among the bone marrow stroma and capable of multilineage differentiation into mesoderm-type cells such as osteoblasts, adipocytes and chondrocytes. Due to their ease of isolation and their differentiation potential, MSC are being...... introduced into clinical medicine in variety of applications and through different ways of administration. Here, we discuss approaches for isolation, characterization and directing differentiation of human mesenchymal stem cells (hMSC). An update of the current clinical use of the cells is also provided....

  11. Mesenchymal Stem Cells Improve Healing of Diabetic Foot Ulcer

    Science.gov (United States)

    Sun, Chenglin

    2017-01-01

    Mesenchymal stem cells (MSCs), an ideal cell source for regenerative therapy with no ethical issues, play an important role in diabetic foot ulcer (DFU). Growing evidence has demonstrated that MSCs transplantation can accelerate wound closure, ameliorate clinical parameters, and avoid amputation. In this review, we clarify the mechanism of preclinical studies, as well as safety and efficacy of clinical trials in the treatment of DFU. Bone marrow-derived mesenchymal stem cells (BM-MSCs), compared with MSCs derived from other tissues, may be a suitable cell type that can provide easy, effective, and cost-efficient transplantation to treat DFU and protect patients from amputation. PMID:28386568

  12. Nanoscale Mechanical Stimulation of Human Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    H Nikukar

    2014-05-01

    We observed significant responses after 1 and 2-week stimulations in cell number, cell shapes and phenotypical markers. Microarray was performed for all groups. Cell count showed normal cell growth with stimulation. However, cell surface area, cell perimeter, and arboration after 1-week stimulation showed significant increases. Immunofluorescent studies have showed significant increase in osteocalcin production after stimulation. Conclusions: Nanoscale mechanical vibration showed significant changes in human mesenchymal stem cell behaviours. Cell morphology changed to become more polygonal and increased expression of the osteoblast markers were noted. These findings with gene regulation changes suggesting nanoscale mechanostimulation has stimulated osteoblastogenesis.  Keywords:  Mesenchymal, Nanoscale, Stem Cells.

  13. Chondrogenic Differentiation of Human Umbilical Cord Blood-Derived Unrestricted Somatic Stem Cells on A 3D Beta-Tricalcium Phosphate-Alginate-Gelatin Scaffold

    Directory of Open Access Journals (Sweden)

    Masoud Soleimani

    2014-03-01

    Full Text Available Objective: Finding cell sources for cartilage tissue engineering is a critical procedure. The purpose of the present experimental study was to test the in vitro efficacy of the beta-tricalcium phosphate-alginate-gelatin (BTAG scaffold to induce chondrogenic differentiation of human umbilical cord blood-derived unrestricted somatic stem cells (USSCs. Materials and Methods: In this experimental study, USSCs were encapsulated in BTAG scaffold and cultured for 3 weeks in chondrogenic medium as chondrogenic group and in Dulbecco’s Modified Eagle’s Medium (DMEM as control group. Chondrogenic differentiation was evaluated by histology, immunofluorescence and RNA analyses for the expression of cartilage extracellular matrix components. The obtain data were analyzed using SPSS version 15. Results: Histological and immunohistochemical staining revealed that collagen II was markedly expressed in the extracellular matrix of the seeded cells on scaffold in presence of chondrogenic media after 21 days. Reverse transcription-polymerase chain reaction (RT-PCR showed a significant increase in expression levels of genes encoded the cartilage-specific markers, aggrecan, type I and II collagen, and bone morphogenetic protein (BMP-6 in chondrogenic group. Conclusion: This study demonstrates that BTAG can be considered as a suitable scaffold for encapsulation and chondrogenesis of USSCs.

  14. Derivation of multipotent mesenchymal precursors from human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    2005-06-01

    Full Text Available BACKGROUND: Human embryonic stem cells provide access to the earliest stages of human development and may serve as a source of specialized cells for regenerative medicine. Thus, it becomes crucial to develop protocols for the directed differentiation of embryonic stem cells into tissue-restricted precursors. METHODS AND FINDINGS: Here, we present culture conditions for the derivation of unlimited numbers of pure mesenchymal precursors from human embryonic stem cells and demonstrate multilineage differentiation into fat, cartilage, bone, and skeletal muscle cells. CONCLUSION: Our findings will help to elucidate the mechanism of mesoderm specification during embryonic stem cell differentiation and provide a platform to efficiently generate specialized human mesenchymal cell types for future clinical applications.

  15. Caspases and p38 MAPK regulate endothelial cell adhesiveness for mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Irina A Potapova

    Full Text Available Mesenchymal stem cells natively circulating or delivered into the blood stream home to sites of injury. The mechanism of mesenchymal stem cell homing to sites of injury is poorly understood. We have shown that the development of apoptosis in endothelial cells stimulates endothelial cell adhesiveness for mesenchymal stem cells. Adhesion of mesenchymal stem cells to apoptotic endothelial cells depends on the activation of endothelial caspases and p38 MAPK. Activation of p38 MAPK in endothelial cells has a primary effect while the activation of caspases potentiates the mesenchymal stem cell adhesion. Overall, our study of the mesenchymal stem cell interaction with endothelial cells indicates that mesenchymal stem cells recognize and specifically adhere to distressed/apoptotic endothelial cells.

  16. Adult Stromal (Skeletal, Mesenchymal) Stem Cells: Advances Towards Clinical Applications

    DEFF Research Database (Denmark)

    Kermani, Abbas Jafari; Harkness, Linda; Zaher, Walid;

    2014-01-01

    Mesenchymal Stem Cells (MSC) are non-hematopoietic adult stromal cells that reside in a perivascular niche in close association with pericytes and endothelial cells and possess self-renewal and multi-lineage differentiation capacity. The origin, unique properties, and therapeutic benefits of MSC ...

  17. Autologous mesenchymal stem cells transplantation in adriamycin-induced cardiomyopathy

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jing; LI Geng-shan; LI Guo-cao; ZHOU Qing; LI Wen-qiang; XU Hong-xin

    2005-01-01

    @@ Recent studies have suggested benefits of mesenchymal stem cells (MSCs) transplantation for the regeneration of cardiac tissue and function improvement of regionally infracted myocardium, but its effects on global heart failure is still little known. This study suggested the capacity of MSCs to transdifferentiate to cardiac cells in a nonischemic cardiomyopathic setting, and the effect of the cells on heart function.

  18. Mesenchymal Stem Cell Transplantation Attenuates Brain Injury After Neonatal Stroke

    NARCIS (Netherlands)

    van Velthoven, Cindy T. J.; Sheldon, R. Ann; Kavelaars, Annemieke; Derugin, Nikita; Vexler, Zinaida S.; Willemen, Hanneke L. D. M.; Maas, Mirjam; Heijnen, Cobi J.; Ferriero, Donna M.

    2013-01-01

    Background and Purpose-Brain injury caused by stroke is a frequent cause of perinatal morbidity and mortality with limited therapeutic options. Mesenchymal stem cells (MSC) have been shown to improve outcome after neonatal hypoxic-ischemic brain injury mainly by secretion of growth factors stimulati

  19. Current view of mesenchymal stem cells biology (brief review

    Directory of Open Access Journals (Sweden)

    Maslova O. A.

    2012-06-01

    Full Text Available Although mesenchymal stem cells (MSC are in a focus of attention, some aspects of their biology are still unclear. This paper is a review of current research on MSC biology. The use of MSC in regenerative medicine is also briefly discussed.

  20. Transition of mesenchymal stem/stromal cells to endothelial cells

    NARCIS (Netherlands)

    M. Crisan (Mihaela)

    2013-01-01

    textabstractMesenchymal stem/stromal cells (MSCs) are heterogeneous. A fraction of these cells constitute multipotent cells that can self-renew and mainly give rise to mesodermal lineage cells such as adipocytes, osteocytes and chondrocytes. The ability of MSCs to differentiate into endothelial cell

  1. Effects of EdU labeling on mesenchymal stem cells

    OpenAIRE

    Ning, Hongxiu; Albersen, Maarten; Lin, Guiting; Lue, Tom F.; Lin, Ching-Shwun

    2013-01-01

    Thymidine analog 5-ethynyl-2-deoxyuridine (EdU) has recently been used for tracking mesenchymal stem cells (MSCs). In the present study, we tested whether EdU was cytotoxic and whether it interfered with differentiation, cytokine secretion and migration of MSCs.

  2. Glial origin of mesenchymal stem cells in a tooth model system

    NARCIS (Netherlands)

    Kaukua, Nina; Shahidi, Maryam Khatibi; Konstantinidou, Chrysoula; Dyachuk, Vyacheslav; Kaucka, Marketa; Furlan, Alessandro; An, Zhengwen; Wang, Longlong; Hultman, Isabell; Ahrlund-Richter, Lars; Blom, Hans; Brismar, Hjalmar; Lopes, Natalia Assaife; Pachnis, Vassilis; Suter, Ueli; Clevers, Hans; Thesleff, Irma; Sharpe, Paul; Ernfors, Patrik; Fried, Kaj; Adameyko, Igor

    2014-01-01

    Mesenchymal stem cells occupy niches in stromal tissues where they provide sources of cells for specialized mesenchymal derivatives during growth and repair. The origins of mesenchymal stem cells have been the subject of considerable discussion, and current consensus holds that perivascular cells fo

  3. Mesenchymal Stem Cells from Wharton's Jelly and Amniotic Fluid.

    Science.gov (United States)

    Joerger-Messerli, Marianne S; Marx, Caterina; Oppliger, Byron; Mueller, Martin; Surbek, Daniel V; Schoeberlein, Andreina

    2016-02-01

    The discovery of mesenchymal stem cells (MSCs) in perinatal sources, such as the amniotic fluid (AF) and the umbilical connective tissue, the so-called Wharton's jelly (WJ), has transformed them into promising stem cell grafts for the application in regenerative medicine. The advantages of AF-MSCs and WJ-MSCs over adult MSCs, such as bone marrow-derived mesenchymal stem cells (BM-MSCs), include their minimally invasive isolation procedure, their more primitive cell character without being tumourigenic, their low immunogenicity and their potential autologous application in congenital disorders and when cryopreserved in adulthood. This chapter gives an overview of the biology of AF-MSCs and WJ-MSCs, and their regenerative potential based on the results of recent preclinical and clinical studies. In the end, open questions concerning the use of WJ-MSCs and AF-MSCs in regenerative medicine will be emphasized.

  4. Labeling of mesenchymal stem cells by bioconjugated quantum dots.

    Science.gov (United States)

    Shah, Bhranti S; Clark, Paul A; Moioli, Eduardo K; Stroscio, Michael A; Mao, Jeremy J

    2007-10-01

    Long-term labeling of stem cells during self-replication and differentiation benefits investigations of development and tissue regeneration. We report the labeling of human mesenchymal stem cells (hMSCs) with RGD-conjugated quantum dots (QDs) during self-replication, and multilineage differentiations into osteogenic, chondrogenic, and adipogenic cells. QD-labeled hMSCs remained viable as unlabeled hMSCs from the same subpopulation. These findings suggest the use of bioconjugated QDs as an effective probe for long-term labeling of stem cells.

  5. Mesenchymal stem cells as therapeutic delivery vehicles targeting tumor stroma

    DEFF Research Database (Denmark)

    Serakinci, Nedime; Christensen, Rikke; Sørensen, Flemming Brandt

    2011-01-01

    The field of stem cell biology continues to evolve by characterization of further types of stem cells and by exploring their therapeutic potential for experimental and clinical applications. Human mesenchymal stem cells (hMSCs) are one of the most promising candidates simply because...... better understanding and in vivo supporting data. The homing ability of hMSCs was investigated by creating a human xenograft model by transplanting an ovarian cancer cell line into immunocompromised mice. Then, genetically engineered hMSC-telo1 cells were injected through the tail vein...

  6. Induction of human umbilical cord blood-derived stem cells with embryonic stem cell phenotypes into insulin producing islet-like structure.

    Science.gov (United States)

    Sun, Bo; Roh, Kyung-Hwan; Lee, Sae-Rom; Lee, Yong-Soon; Kang, Kyung-Sun

    2007-03-23

    Success in islet-transplantation-based therapies for type I diabetes, coupled with a worldwide shortage of transplant-ready islets, has motivated efforts to develop renewable sources of islet-replacement tissue. Embryonic stem cells (ESCs) have been successfully induced into insulin producing islet-like structure in several studies. However, the source of the ESCs has presented ethical and technical concerns. Here, we isolated a population of stem cells from human cord blood (UCB), which expressed embryo stage specific maker, SSEA-4, and the multi-potential stem cell marker, Oct4. Subsequently, we successfully induced them into insulin-producing islet-like structures, which co-express insulin and C-peptide. These findings might have a significant potential to advance human UCB derived stem-cell-based therapeutics for diabetes.

  7. Neural Differentiation of Human Umbilical Cord Mesenchymal Stem Cells by Cerebrospinal Fluid

    Directory of Open Access Journals (Sweden)

    Shirin FARIVAR*

    2015-01-01

    chick embryos. J Exp Zool A Comp Exp Biol 2004 Apr 1;301(4:280-9.Mitchell KE, Weiss ML. Matrix cells from Wharton’s jelly form neurons and glia. Stem Cells 2003;21(1:50-60.Marcus AJ, Woodbury D. Fetal stem cells from extra-embryonic tissues: do not discard. J Cell Mol Med 2008 Jun;12(3:730-42. doi: 10.1111/j.1582- 4934.2008.00221.x. Epub 2008 Jan 11.Miao Z, Jin J, Chen L, Zhu J, Huang W, Zhao J, Quian H, Zhang X. Isolation of mesenchymal stem cells from human placenta: comparison with human bone marrow mesenchymal stem cells. Cell Biol Int 2006 Sep;30(9:681-7. Epub 2006 Apr 22.In ‘tAnker PS, Scherjon SA, Kleijburg-van der Keur C, Noort WA, Claas FHJ, Willemze R, Fibbe WE, Kanhai HHH. Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood 2003;102(4:1548-49.Magatti M, De Munari S, Vertua E, Gibelli L, Wengler GS, Parolini O. Human amnion mesenchyme harbors cells with allogeneic T-cell suppression and stimulation capabilities. Stem Cells 2008 Jan;26(1:182-92. Epub 2007 Sep 27.Kang XQ, Zang WJ, Bao LJ, Li DL, Xu XL, Yu XJ. Differentiating characterization of human umbilical cord blood-derived mesenchymal stem cells in vitro. Cell Biol Int 2006 Jul;30(7:569-75. Epub 2006 Mar 6.Kern S, Eichler H, Stoeve J, Kluter H, Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 2006 May;24(5:1294-301. Epub 2006 Jan 12.Wagner W, Wein F, Seckinger A, Frankhauser M, Wirkner U, Krause U, et al. Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Exp Hematol 2005 Nov;33(11:1402-16.Jackson JS, Golding JP, Chapon C, Jones WA, Bhakoo KK: Homing of stem cells to sites of inflammatory brain injury after intracerebral and intravenous administration: a longitudinal imaging study. Stem Cell Res Ther 2010 Jun 15;1(2:17. doi: 10.1186/scrt17.Romanov YA, Svintsitskaya VA, Smirnov VN. Searching for alternative

  8. The Mesenchymal Stem Cells From The Veterinary Sciences Perspective

    Directory of Open Access Journals (Sweden)

    Nancy B. Riaño G.

    2007-06-01

    Full Text Available The characteristics of a stem cell are determined by being undifferentiated, auto renewable, and because of having the capacity of generating cells for multiple cellular lineages, with the capacity to proliferate indefinitely in cultures. The origin of the stem cells can be embryonic (blastomers and cells of the internal mass of the blastocyst or somatic (pluripotential cells from adult tissues. The source of the somatic stem cells is the bone marrow, in which the hematopoietic stem cells and the mesenchymals (MSCs are found. Diverse studies in animal models have demonstrated that MSCs constitute a potential tool for the establishment of regenerative therapies in injured tissues. This article reviews the properties of the stem cells, their potentials, their advantages and limitations in several animal models.

  9. Osteogenic potential of human umbilical cord-derived mesenchymal stromal cells cultured with umbilical cord blood-derived fibrin: a preliminary study.

    Science.gov (United States)

    Baba, Kyoko; Yamazaki, Yasuharu; Ishiguro, Masashi; Kumazawa, Kenichi; Aoyagi, Kazuya; Ikemoto, Shigehiro; Takeda, Akira; Uchinuma, Eiju

    2013-12-01

    This study examined the potential for osteogenesis via regenerative medicine using autologous tissues (umbilical cord (UC) and umbilical cord blood (UCB)) in nude mice. The study was designed to provide the three elements required for regenerative medicine (cell, scaffold, and growth factor) and autoserum for culture by means of autologous tissues. Mesenchymal stromal cells were obtained from UC (UC-MSCs). Fibrin, platelet-rich-plasma, and autoserum were obtained from UCB as scaffold, growth factor and serum for culture respectively. UC-MSCs were obtained from Wharton jelly and cultured with UCB-derived fibrin (UCB-fibrin) for 3-4 weeks to induce their differentiation into osteoblasts. They were implanted subcutaneously into the dorsum of male nude mice for 6 weeks prior to undergoing assessment. The assessments performed were haematoxylin and eosin, and alizarin red staining, immunohistochemical staining of human mitochondria, scanning electron microscopy, scanning electron microscopy with energy dispersive X-ray spectrometry and real-time reverse transcriptase-polymerase chain reaction to assess the expressions of osteoblast markers. Consequently, the differentiation of UC-MSCs into osteoblasts and the production of hydroxyapatite were verified. This study suggested the possible formation of bone tissue using biomedical materials obtained from UC and UCB.

  10. Human bone-marrow-derived mesenchymal stem cells

    DEFF Research Database (Denmark)

    Kassem, Moustapha; Abdallah, Basem M

    2008-01-01

    Mesenchymal stem cells (MSC) are a group of cells present in bone-marrow stroma and the stroma of various organs with the capacity for mesoderm-like cell differentiation into, for example, osteoblasts, adipocytes, and chondrocytes. MSC are being introduced in the clinic for the treatment of a var......Mesenchymal stem cells (MSC) are a group of cells present in bone-marrow stroma and the stroma of various organs with the capacity for mesoderm-like cell differentiation into, for example, osteoblasts, adipocytes, and chondrocytes. MSC are being introduced in the clinic for the treatment...... of a variety of clinical conditions. The aim of this review is to provide an update regarding the biology of MSC, their identification and culture, and mechanisms controlling their proliferation and differentiation. We also review the current status of their clinical use. Areas in which research is needed...

  11. Concise review: ex vivo expansion of cord blood-derived hematopoietic stem and progenitor cells: basic principles, experimental approaches, and impact in regenerative medicine.

    Science.gov (United States)

    Flores-Guzmán, Patricia; Fernández-Sánchez, Verónica; Mayani, Hector

    2013-11-01

    Hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) play key roles in the production of mature blood cells and in the biology and clinical outcomes of hematopoietic transplants. The numbers of these cells, however, are extremely low, particularly in umbilical cord blood (UCB); thus, ex vivo expansion of human UCB-derived HSCs and HPCs has become a priority in the biomedical field. Expansion of progenitor cells can be achieved by culturing such cells in the presence of different combinations of recombinant stimulatory cytokines; in contrast, expansion of actual HSCs has proved to be more difficult because, in addition to needing recombinant cytokines, HSCs seem to deeply depend on the presence of stromal cells and/or elements that promote the activation of particular self-renewal signaling pathways. Hence, there is still controversy regarding the optimal culture conditions that should be used to achieve this. To date, UCB transplants using ex vivo-expanded cells have already been performed for the treatment of different hematological disorders, and although results are still far from being optimal, the advances are encouraging. Recent studies suggest that HSCs may also give rise to nonhematopoietic cells, such as neural, cardiac, mesenchymal, and muscle cells. Such plasticity and the possibility of producing nonhematopoietic cells at the clinical scale could bring new alternatives for the treatment of neural, metabolic, orthopedic, cardiac, and neoplastic disorders. Once standardized, ex vivo expansion of human HSCs/HPCs will surely have a positive impact in regenerative medicine.

  12. Mesenchymal Stem Cell-Based Therapy for Prostate Cancer

    Science.gov (United States)

    2014-09-01

    Mesenchymal Stem Cell-Based Therapy for Prostate Cancer PRINCIPAL INVESTIGATOR: John Isaacs; Jeffrey Karp ...clinical trials for CRPC. The team is composed of Drs. Jeffrey Karp Co-Director of Regenerative Therapeutics at the Brigham & Women’s Hospital...encapsulating a PSA-activated thapsigargin-based prodrug (G115, Fig. 5) were generated by the Karp lab with the properties outlined in Table 7. These

  13. Glucocorticoids induce autophagy in rat bone marrow mesenchymal stem cells

    DEFF Research Database (Denmark)

    Wang, L.; Fan, J.; Lin, Y. S.;

    2015-01-01

    and their responses to diverse stimuli, however, the role of autophagy in glucocorticoidinduced damage to bone marrow mesenchymal stem cells (BMSCs) remains unclear. The current study confirmed that glucocorticoid administration impaired the proliferation of BMSCs. Transmission electron microscopy......Glucocorticoidinduced osteoporosis (GIOP) is a widespread clinical complication following glucocorticoid therapy. This irreversible damage to boneforming and resorbing cells is essential in the pathogenesis of osteoporosis. Autophagy is a physiological process involved in the regulation of cells...

  14. Human bone marrow-derived mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Lopez M

    2007-01-01

    Full Text Available Mesenchymal stem cells (MSCs have elicited a great clinical interest, particularly in the areas of regenerative medicine and induction of tolerance in allogeneic transplantation. Previous reports demonstrated the feasibility of transplanting MSCs, which generates new prospects in cellular therapy. Recently, injection of MSCs induced remission of steroid-resistant acute graft-versus-host disease (GVHD. This review summarizes the knowledge and possible future clinical uses of MSCs.

  15. Mesenchymal Stem Cell Based Therapy for Prostate Cancer

    Science.gov (United States)

    2015-11-01

    Prostate: From Birth to Death and Potential Applications in Between. Prostate Cancer Foundation Tumor Microenvironment/ Immunology Working Group...Award Number: W81XWH-13-1-0304 TITLE: Mesenchymal Stem Cell-Based Therapy for Prostate Cancer PRINCIPAL INVESTIGATOR: John Isaacs CONTRACTING...Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions

  16. Safety of Mesenchymal Stem Cells for Clinical Application

    Directory of Open Access Journals (Sweden)

    Youwei Wang

    2012-01-01

    Full Text Available Mesenchymal stem cells (MSCs hold great promise as therapeutic agents in regenerative medicine and autoimmune diseases, based on their differentiation abilities and immunosuppressive properties. However, the therapeutic applications raise a series of questions about the safety of culture-expanded MSCs for human use. This paper summarized recent findings about safety issues of MSCs, in particular their genetic stability in long-term in vitro expansion, their cryopreservation, banking, and the role of serum in the preparation of MSCs.

  17. Mesenchymal stem cells in diabetes treatment: progress and perspectives

    Directory of Open Access Journals (Sweden)

    Yu CHENG

    2016-08-01

    Full Text Available Diabetes is a chronic metabolic disorder caused by relative or absolute insulin deficient or reduced sensitivity of target cells to insulin. Mesenchymal stem cells (MSCs are adult stem cells with multiple differentiation potential, self-renewable and immunoregulatory properties. Accumulating evidences from clinic or animal experiments recent years showed that MSCs infusion could ameliorate hyperglycemia in diabetes. The research progress of MSCs in diabetes treatment is summarized and a corresponding perspective is herewith proposed in present paper. DOI: 10.11855/j.issn.0577-7402.2016.07.16

  18. Hydroxyapatite incorporated into collagen gels for mesenchymal stem cell culture.

    Science.gov (United States)

    Laydi, F; Rahouadj, R; Cauchois, G; Stoltz, J-F; de Isla, N

    2013-01-01

    Collagen gels could be used as carriers in tissue engineering to improve cell retention and distribution in the defect. In other respect hydroxyapatite could be added to gels to improve mechanical properties and regulate gel contraction. The aim of this work was to analyze the feasibility to incorporate hydroxyapatite into collagen gels and culture mesenchymal stem cells inside it. Human bone marrow mesenchymal stem cells (hMSC-BM) were used in this study. Gels were prepared by mixing rat tail type I collagen, hydroxyapatite microparticles and MSCs. After polymerization gels were kept in culture while gel contraction and mechanical properties were studied. In parallel, cell viability and morphology were analyzed. Gels became free-floating gels contracted from day 3, only in the presence of cells. A linear rapid contraction phase was observed until day 7, then a very slow contraction phase took place. The incorporation of hydroxyapatite improved gel stability and mechanical properties. Cells were randomly distributed on the gel and a few dead cells were observed all over the experiment. This study shows the feasibility and biocompatibility of hydroxyapatite supplemented collagen gels for the culture of mesenchymal stem cells that could be used as scaffolds for cell delivery in osteoarticular regenerative medicine.

  19. Bone marrow mesenchymal stem cell therapy in ischemic stroke: mechanisms of action and treatment optimization strategies

    Directory of Open Access Journals (Sweden)

    Guihong Li

    2016-01-01

    Full Text Available Animal and clinical studies have confirmed the therapeutic effect of bone marrow mesenchymal stem cells on cerebral ischemia, but their mechanisms of action remain poorly understood. Here, we summarize the transplantation approaches, directional migration, differentiation, replacement, neural circuit reconstruction, angiogenesis, neurotrophic factor secretion, apoptosis, immunomodulation, multiple mechanisms of action, and optimization strategies for bone marrow mesenchymal stem cells in the treatment of ischemic stroke. We also explore the safety of bone marrow mesenchymal stem cell transplantation and conclude that bone marrow mesenchymal stem cell transplantation is an important direction for future treatment of cerebral ischemia. Determining the optimal timing and dose for the transplantation are important directions for future research.

  20. The Impact of Epigenetics on Mesenchymal Stem Cell Biology.

    Science.gov (United States)

    Ozkul, Yusuf; Galderisi, Umberto

    2016-11-01

    Changes in epigenetic marks are known to be important regulatory factors in stem cell fate determination and differentiation. In the past years, the investigation of the epigenetic regulation of stem cell biology has largely focused on embryonic stem cells (ESCs). Contrarily, less is known about the epigenetic control of gene expression during differentiation of adult stem cells (AdSCs). Among AdSCs, mesenchymal stem cells (MSCs) are the most investigated stem cell population because of their enormous potential for therapeutic applications in regenerative medicine and tissue engineering. In this review, we analyze the main studies addressing the epigenetic changes in MSC landscape during in vitro cultivation and replicative senescence, as well as follow osteocyte, chondrocyte, and adipocyte differentiation. In these studies, histone acetylation, DNA methylation, and miRNA expression are among the most investigated phenomena. We describe also epigenetic changes that are associated with in vitro MSC trans-differentiation. Although at the at initial stage, the epigenetics of MSCs promise to have profound implications for stem cell basic and applied research. J. Cell. Physiol. 231: 2393-2401, 2016. © 2016 Wiley Periodicals, Inc.

  1. Mesenchymal stem cells and induced pluripotent stem cells as therapies for multiple sclerosis.

    Science.gov (United States)

    Xiao, Juan; Yang, Rongbing; Biswas, Sangita; Qin, Xin; Zhang, Min; Deng, Wenbin

    2015-04-24

    Multiple sclerosis (MS) is a chronic, autoimmune, inflammatory demyelinating disorder of the central nervous system that leads to permanent neurological deficits. Current MS treatment regimens are insufficient to treat the irreversible neurological disabilities. Tremendous progress in the experimental and clinical applications of cell-based therapies has recognized stem cells as potential candidates for regenerative therapy for many neurodegenerative disorders including MS. Mesenchymal stem cells (MSC) and induced pluripotent stem cell (iPSCs) derived precursor cells can modulate the autoimmune response in the central nervous system (CNS) and promote endogenous remyelination and repair process in animal models. This review highlights studies involving the immunomodulatory and regenerative effects of mesenchymal stem cells and iPSCs derived cells in animal models, and their translation into immunomodulatory and neuroregenerative treatment strategies for MS.

  2. Mesenchymal Stem Cells and Induced Pluripotent Stem Cells as Therapies for Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Juan Xiao

    2015-04-01

    Full Text Available Multiple sclerosis (MS is a chronic, autoimmune, inflammatory demyelinating disorder of the central nervous system that leads to permanent neurological deficits. Current MS treatment regimens are insufficient to treat the irreversible neurological disabilities. Tremendous progress in the experimental and clinical applications of cell-based therapies has recognized stem cells as potential candidates for regenerative therapy for many neurodegenerative disorders including MS. Mesenchymal stem cells (MSC and induced pluripotent stem cell (iPSCs derived precursor cells can modulate the autoimmune response in the central nervous system (CNS and promote endogenous remyelination and repair process in animal models. This review highlights studies involving the immunomodulatory and regenerative effects of mesenchymal stem cells and iPSCs derived cells in animal models, and their translation into immunomodulatory and neuroregenerative treatment strategies for MS.

  3. OCT4A contributes to the stemness and multi-potency of human umbilical cord blood-derived multipotent stem cells (hUCB-MSCs)

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Kwang-Won; Lee, Sae-Rom; Bhandari, Dilli Ram; Roh, Kyoung-Hwan; Park, Sang-Bum; So, Ah-Young; Jung, Ji-Won; Seo, Min-Soo [Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University 151-742, Seoul (Korea, Republic of); Laboratory of Stem Cell and Tumor Biology, Department of Veterinary Public Health, College of Veterinary Medicine, and BK21 Program for Veterinary Science, Seoul National University 151-742, Seoul (Korea, Republic of); Kang, Soo-Kyung [Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University 151-742, Seoul (Korea, Republic of); Laboratory of Biotechnology, College of Veterinary Medicine, and BK21 Program for Veterinary Science, Seoul National University 151-742, Seoul (Korea, Republic of); Lee, Yong-Soon [Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University 151-742, Seoul (Korea, Republic of); Laboratory of Stem Cell and Tumor Biology, Department of Veterinary Public Health, College of Veterinary Medicine, and BK21 Program for Veterinary Science, Seoul National University 151-742, Seoul (Korea, Republic of); Kang, Kyung-Sun, E-mail: kangpub@snu.ac.kr [Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University 151-742, Seoul (Korea, Republic of); Laboratory of Stem Cell and Tumor Biology, Department of Veterinary Public Health, College of Veterinary Medicine, and BK21 Program for Veterinary Science, Seoul National University 151-742, Seoul (Korea, Republic of)

    2009-06-19

    The OCT4A gene, a POU homeodomain transcription factor, has been shown to be expressed in embryonic stem cells (ESC) as well as hUCB-MSCs. In this study, the roles played by OCT4A in hUCB-MSCs were determined by stably inhibiting OCT4A with lenti-viral vector-based small hairpin RNA (shRNA). A decreased rate of cell proliferation was observed in OCT4-inhibited hUCB-MSCs. Down-regulation of CCNA2 expression in OCT4-inhibited hUCB-MSCs was confirmed by RT-PCR and real-time RT-PCR analysis in three genetically independent hUCB-MSC clones. Adipogenic differentiation was also suppressed in OCT4-inhibited hUCB-MSCs. The up-regulation of DTX1 and down-regulation of HDAC1, 2, and 4 expressions may be related to this differentiation deformity. The expression of other transcription factors, including SOX2, REX1 and c-MYC, was also affected by OCT4 inhibition in hUCB-MSCs. In conclusion, these finding suggest that OCT4A performs functionally conserved roles in hUCB-MSCs, making its expression biologically important for ex vivo culture of hUCB-MSCs.

  4. Recent Advances in Hydroxyapatite Scaffolds Containing Mesenchymal Stem Cells.

    Science.gov (United States)

    Michel, John; Penna, Matthew; Kochen, Juan; Cheung, Herman

    2015-01-01

    Modern day tissue engineering and cellular therapies have gravitated toward using stem cells with scaffolds as a dynamic modality to aid in differentiation and tissue regeneration. Mesenchymal stem cells (MSCs) are one of the most studied stem cells used in combination with scaffolds. These cells differentiate along the osteogenic lineage when seeded on hydroxyapatite containing scaffolds and can be used as a therapeutic option to regenerate various tissues. In recent years, the combination of hydroxyapatite and natural or synthetic polymers has been studied extensively. Due to the interest in these scaffolds, this review will cover the wide range of hydroxyapatite containing scaffolds used with MSCs for in vitro and in vivo experiments. Further, in order to maintain a progressive scope of the field this review article will only focus on literature utilizing adult human derived MSCs (hMSCs) published in the last three years.

  5. Recent Advances in Hydroxyapatite Scaffolds Containing Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    John Michel

    2015-01-01

    Full Text Available Modern day tissue engineering and cellular therapies have gravitated toward using stem cells with scaffolds as a dynamic modality to aid in differentiation and tissue regeneration. Mesenchymal stem cells (MSCs are one of the most studied stem cells used in combination with scaffolds. These cells differentiate along the osteogenic lineage when seeded on hydroxyapatite containing scaffolds and can be used as a therapeutic option to regenerate various tissues. In recent years, the combination of hydroxyapatite and natural or synthetic polymers has been studied extensively. Due to the interest in these scaffolds, this review will cover the wide range of hydroxyapatite containing scaffolds used with MSCs for in vitro and in vivo experiments. Further, in order to maintain a progressive scope of the field this review article will only focus on literature utilizing adult human derived MSCs (hMSCs published in the last three years.

  6. Mesenchymal stem cell subpopulations: phenotype, property and therapeutic potential.

    Science.gov (United States)

    Mo, Miaohua; Wang, Shan; Zhou, Ying; Li, Hong; Wu, Yaojiong

    2016-09-01

    Mesenchymal stem cells (MSC) are capable of differentiating into cells of multiple cell lineages and have potent paracrine effects. Due to their easy preparation and low immunogenicity, MSC have emerged as an extremely promising therapeutic agent in regenerative medicine for diverse diseases. However, MSC are heterogeneous with respect to phenotype and function in current isolation and cultivation regimes, which often lead to incomparable experimental results. In addition, there may be specific stem cell subpopulations with definite differentiation capacity toward certain lineages in addition to stem cells with multi-differentiation potential. Recent studies have identified several subsets of MSC which exhibit distinct features and biological activities, and enhanced therapeutic potentials for certain diseases. In this review, we give an overview of these subsets for their phenotypic, biological and functional properties.

  7. Human umbilical cord mesenchymal stem cells: a new era for stem cell therapy.

    Science.gov (United States)

    Ding, Dah-Ching; Chang, Yu-Hsun; Shyu, Woei-Cherng; Lin, Shinn-Zong

    2015-01-01

    The human umbilical cord is a promising source of mesenchymal stem cells (HUCMSCs). Unlike bone marrow stem cells, HUCMSCs have a painless collection procedure and faster self-renewal properties. Different derivation protocols may provide different amounts and populations of stem cells. Stem cell populations have also been reported in other compartments of the umbilical cord, such as the cord lining, perivascular tissue, and Wharton's jelly. HUCMSCs are noncontroversial sources compared to embryonic stem cells. They can differentiate into the three germ layers that promote tissue repair and modulate immune responses and anticancer properties. Thus, they are attractive autologous or allogenic agents for the treatment of malignant and nonmalignant solid and soft cancers. HUCMCs also can be the feeder layer for embryonic stem cells or other pluripotent stem cells. Regarding their therapeutic value, storage banking system and protocols should be established immediately. This review critically evaluates their therapeutic value, challenges, and future directions for their clinical applications.

  8. Strategies to improve homing of mesenchymal stem cells for greater efficacy in stem cell therapy.

    Science.gov (United States)

    Naderi-Meshkin, Hojjat; Bahrami, Ahmad Reza; Bidkhori, Hamid Reza; Mirahmadi, Mahdi; Ahmadiankia, Naghmeh

    2015-01-01

    Stem/progenitor cell-based therapeutic approach in clinical practice has been an elusive dream in medical sciences, and improvement of stem cell homing is one of major challenges in cell therapy programs. Stem/progenitor cells have a homing response to injured tissues/organs, mediated by interactions of chemokine receptors expressed on the cells and chemokines secreted by the injured tissue. For improvement of directed homing of the cells, many techniques have been developed either to engineer stem/progenitor cells with higher amount of chemokine receptors (stem cell-based strategies) or to modulate the target tissues to release higher level of the corresponding chemokines (target tissue-based strategies). This review discusses both of these strategies involved in the improvement of stem cell homing focusing on mesenchymal stem cells as most frequent studied model in cellular therapies.

  9. Derivation of Stromal (Skeletal, Mesenchymal) Stem-like cells from Human Embryonic Stem Cells

    DEFF Research Database (Denmark)

    Mahmood, Amer; Harkness, Linda; Abdallah, Basem

    2012-01-01

    stromal (mesenchymal, skeletal) stem cell (hMSC)-like population, known to be osteoblastic cell precursors and to test their osteoblastic differentiation capacity in ex vivo cultures and in vivo. We cultured hESC in a feeder-free environment using serum replacement and as suspension aggregates (embryoid...

  10. Humoral activity of cord blood-derived stem/progenitor cells: implications for stem cell-based adjuvant therapy of neurodegenerative disorders.

    Directory of Open Access Journals (Sweden)

    Edyta Paczkowska

    Full Text Available BACKGROUND: Stem/progenitor cells (SPCs demonstrate neuro-regenerative potential that is dependent upon their humoral activity by producing various trophic factors regulating cell migration, growth, and differentiation. Herein, we compared the expression of neurotrophins (NTs and their receptors in specific umbilical cord blood (UCB SPC populations, including lineage-negative, CD34(+, and CD133(+ cells, with that in unsorted, nucleated cells (NCs. METHODS AND RESULTS: The expression of NTs and their receptors was detected by QRT-PCR, western blotting, and immunofluorescent staining in UCB-derived SPC populations (i.e., NCs vs. lineage-negative, CD34(+, and CD133(+ cells. To better characterize, global gene expression profiles of SPCs were determined using genome-wide RNA microarray technology. Furthermore, the intracellular production of crucial neuro-regenerative NTs (i.e., BDNF and NT-3 was assessed in NCs and lineage-negative cells after incubation for 24, 48, and 72 h in both serum and serum-free conditions. We discovered significantly higher expression of NTs and NT receptors at both the mRNA and protein level in lineage-negative, CD34(+, and CD133(+ cells than in NCs. Global gene expression analysis revealed considerably higher expression of genes associated with the production and secretion of proteins, migration, proliferation, and differentiation in lineage-negative cells than in CD34(+ or CD133(+ cell populations. Notably, after short-term incubation under serum-free conditions, lineage-negative cells and NCs produced significantly higher amounts of BDNF and NT-3 than under steady-state conditions. Finally, conditioned medium (CM from lineage-negative SPCs exerted a beneficial impact on neural cell survival and proliferation. CONCLUSIONS: Collectively, our findings demonstrate that UCB-derived SPCs highly express NTs and their relevant receptors under steady-state conditions, NT expression is greater under stress-related conditions and

  11. Differentiation of human mesenchymal stem cell spheroids under microgravity conditions

    Directory of Open Access Journals (Sweden)

    Cerwinka Wolfgang H

    2012-06-01

    Full Text Available Abstract To develop and characterize a novel cell culture method for the generation of undifferentiated and differentiated human mesenchymal stem cell 3D structures, we utilized the RWV system with a gelatin-based scaffold. 3 × 106 cells generated homogeneous spheroids and maximum spheroid loading was accomplished after 3 days of culture. Spheroids cultured in undifferentiated spheroids of 3 and 10 days retained expression of CD44, without expression of differentiation markers. Spheroids cultured in adipogenic and osteogenic differentiation media exhibited oil red O staining and von Kossa staining, respectively. Further characterization of osteogenic lineage, showed that 10 day spheroids exhibited stronger calcification than any other experimental group corresponding with significant expression of vitamin D receptor, alkaline phosphatase, and ERp60 . In conclusion this study describes a novel RWV culture method that allowed efficacious engineering of undifferentiated human mesenchymal stem cell spheroids and rapid osteogenic differentiation. The use of gelatin scaffolds holds promise to design implantable stem cell tissue of various sizes and shapes for future regenerative treatment.

  12. Molecular and environmental cues in cardiac differentiation of mesenchymal stem cells

    NARCIS (Netherlands)

    Ramkisoensing, Arti Anushka

    2014-01-01

    In this thesis molecular and environmental cues in cardiac differentiation of mesenchymal stem cells were investigated. The main conclusions were that the cardiac differentiation potential of human mesenchymal stem cells negatively correlates with donor age. This in its own shows a negative relation

  13. Transplantation of placenta-derived mesenchymal stem cell-induced neural stem cells to treat spinal cord injur y

    Institute of Scientific and Technical Information of China (English)

    Zhi Li; Wei Zhao; Wei Liu; Ye Zhou; Jingqiao Jia; Lifeng Yang

    2014-01-01

    Because of their strong proliferative capacity and multi-potency, placenta-derived mesenchymal stem cells have gained interest as a cell source in the ifeld of nerve damage repair. In the present study, human placenta-derived mesenchymal stem cells were induced to differentiate into neural stem cells, which were then transplanted into the spinal cord after local spinal cord injury in rats. The motor functional recovery and pathological changes in the injured spinal cord were observed for 3 successive weeks. The results showed that human placenta-derived mesenchymal stem cells can differentiate into neuron-like cells and that induced neural stem cells contribute to the resto-ration of injured spinal cord without causing transplant rejection. Thus, these cells promote the recovery of motor and sensory functions in a rat model of spinal cord injury. Therefore, human placenta-derived mesenchymal stem cells may be useful as seed cells during the repair of spinal cord injury.

  14. File list: NoD.Oth.05.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Oth.05.AllAg.Mesenchymal_stem_cells mm9 No description Others Mesenchymal stem ...cells SRX694677,SRX694678 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Oth.05.AllAg.Mesenchymal_stem_cells.bed ...

  15. File list: NoD.Oth.20.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Oth.20.AllAg.Mesenchymal_stem_cells hg19 No description Others Mesenchymal stem...RX302072,ERX302066,ERX302075,ERX302074 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Oth.20.AllAg.Mesenchymal_stem_cells.bed ...

  16. File list: InP.Oth.05.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Oth.05.AllAg.Mesenchymal_stem_cells mm9 Input control Others Mesenchymal stem c...ells SRX318104,SRX318102,SRX228663,SRX228662,SRX228660,SRX228661 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Oth.05.AllAg.Mesenchymal_stem_cells.bed ...

  17. File list: NoD.Oth.10.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Oth.10.AllAg.Mesenchymal_stem_cells hg19 No description Others Mesenchymal stem...RX302073,ERX302070,ERX302072,ERX302074 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Oth.10.AllAg.Mesenchymal_stem_cells.bed ...

  18. MET: roles in epithelial-mesenchymal transition and cancer stemness

    Science.gov (United States)

    Jeon, Hye-Min

    2017-01-01

    In a number of cancers, deregulated MET pathway leads to aberrantly activated proliferative and invasive signaling programs that promote malignant transformation, cell motility and migration, angiogenesis, survival in hypoxia, and invasion. A better understanding of oncogenic MET signaling will help us to discover effective therapeutic approaches and to identify which tumors are likely to respond to MET-targeted cancer therapy. In this review, we will summarize the roles of MET signaling in cancer, with particular focus on epithelial-mesenchymal transition (EMT) and cancer stemness. Then, we will provide update on MET targeting agents and discuss the challenges that should be overcome for the development of an effective therapy. PMID:28164090

  19. Mesenchymal stem cells (MSCs) as skeletal therapeutics-an update

    DEFF Research Database (Denmark)

    Saeed, H.; Ahsan, M.; Saleem, Z.

    2016-01-01

    Mesenchymal stem cells hold the promise to treat not only several congenital and acquired bone degenerative diseases but also to repair and regenerate morbid bone tissues. Utilizing MSCs, several lines of evidences advocate promising clinical outcomes in skeletal diseases and skeletal tissue repair....../regeneration. In this context, both, autologous and allogeneic cell transfer options have been utilized. Studies suggest that MSCs are transplanted either alone by mixing with autogenous plasma/serum or by loading onto repair/induction supportive resorb-able scaffolds. Thus, this review is aimed at highlighting a wide range...

  20. Chitosan-collagen porous scaffold and bone marrow mesenchymal stem cell transplantation for ischemic stroke

    Directory of Open Access Journals (Sweden)

    Feng Yan

    2015-01-01

    Full Text Available In this study, we successfully constructed a composite of bone marrow mesenchymal stem cells and a chitosan-collagen scaffold in vitro, transplanted either the composite or bone marrow mesenchymal stem cells alone into the ischemic area in animal models, and compared their effects. At 14 days after co-transplantation of bone marrow mesenchymal stem cells and the hitosan-collagen scaffold, neurological function recovered noticeably. Vascular endothelial growth factor expression and nestin-labeled neural precursor cells were detected in the ischemic area, surrounding tissue, hippocampal dentate gyrus and subventricular zone. Simultaneously, a high level of expression of glial fibrillary acidic protein and a low level of expression of neuron-specific enolase were visible in BrdU-labeled bone marrow mesenchymal stem cells. These findings suggest that transplantation of a composite of bone marrow mesenchymal stem cells and a chitosan-collagen scaffold has a neuroprotective effect following ischemic stroke.

  1. Chitosan-collagen porous scaffold and bone marrow mesenchymal stem cell transplantation for ischemic stroke

    Institute of Scientific and Technical Information of China (English)

    Feng Yan; Wei Yue; Yue-lin Zhang; Guo-chao Mao; Ke Gao; Zhen-xing Zuo; Ya-jing Zhang; Hui Lu

    2015-01-01

    In this study, we successfully constructed a composite of bone marrow mesenchymal stem cells and a chitosan-collagen scaffoldin vitro, transplanted either the composite or bone marrow mesenchymal stem cells alone into the ischemic area in animal models, and compared their effects. At 14 days after co-transplantation of bone marrow mesenchymal stem cells and the hi-tosan-collagen scaffold, neurological function recovered noticeably. Vascular endothelial growth factor expression and nestin-labeled neural precursor cells were detected in the ischemic area, surrounding tissue, hippocampal dentate gyrus and subventricular zone. Simultaneously, a high level of expression of glial ifbrillary acidic protein and a low level of expression of neuron-spe-ciifc enolase were visible in BrdU-labeled bone marrow mesenchymal stem cells. These ifndings suggest that transplantation of a composite of bone marrow mesenchymal stem cells and a chi-tosan-collagen scaffold has a neuroprotective effect following ischemic stroke.

  2. Embryonic stem cells conditioned medium enhances Wharton’s jelly-derived mesenchymal stem cells expansion under hypoxic condition

    OpenAIRE

    Prasajak, Patcharee; Rattananinsruang, Piyaporn; Chotinantakul, Kamonnaree; Dechsukhum, Chavaboon; Leeanansaksiri, Wilairat

    2014-01-01

    Mesenchymal stem cells (MSCs) are accepted as a promising tool for therapeutic purposes. However, low proliferation and early senescence are still main obstacles of MSCs expansion for using as cell-based therapy. Thus, clinical scale of cell expansion is needed to obtain a large number of cells serving for further applications. In this study, we investigated the value of embryonic stem cells conditioned medium (ESCM) for in vitro expansion of Wharton’s jelly-derived mesenchymal stem cells (WJ...

  3. Intra-arterial delivery of mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Mitsuyoshi Watanabe

    2016-01-01

    Full Text Available While treatments have been developed to combat stroke, such as intravenous recombinant tissue plasminogen activator and endovascular recanalization therapies, their ability to decrease the long-term disability that accompanies stroke is limited. Currently, stem cell research focused on mesenchymal stem cells (MSCs. MSCs are multipotent, nonhematopoietic stem cells found in the stromal fraction of the bone marrow, along with the connective tissue of most organs. MSCs are an increasingly appealing cell source due to the relative ease in which they can be retrieved, developed, and handled in vitro. Despite the fact that numerous paths of stem cell transport to the brain in acute ischemic stroke (AIS exist, the intra-arterial (IA route of stem cell transport is most attractive. This is due to its great potential for clinical translation, especially considering the growing clinical application of endovascular treatment for AIS. Here, we evaluate research examining IA delivery of MSCs to the stroke region. The results of the study revealed the maximum tolerated dose and that the optimal time for administration was 24 h, following cerebral ischemia. It is important that future translational studies are performed to establish IA administration of MSCs as a widely used treatment for AIS.

  4. Mesenchymal Stem Cell Therapy in Diabetes Mellitus: Progress and Challenges

    Directory of Open Access Journals (Sweden)

    Nagwa El-Badri

    2013-01-01

    Full Text Available Advanced type 2 diabetes mellitus is associated with significant morbidity and mortality due to cardiovascular, nervous, and renal complications. Attempts to cure diabetes mellitus using islet transplantation have been successful in providing a source for insulin secreting cells. However, limited donors, graft rejection, the need for continued immune suppression, and exhaustion of the donor cell pool prompted the search for a more sustained source of insulin secreting cells. Stem cell therapy is a promising alternative for islet transplantation in type 2 diabetic patients who fail to control hyperglycemia even with insulin injection. Autologous stem cell transplantation may provide the best outcome for those patients, since autologous cells are readily available and do not entail prolonged hospital stays or sustained immunotoxic therapy. Among autologous adult stem cells, mesenchymal stem cells (MSCs therapy has been applied with varying degrees of success in both animal models and in clinical trials. This review will focus on the advantages of MSCs over other types of stem cells and the possible mechanisms by which MSCs transplant restores normoglycemia in type 2 diabetic patients. Sources of MSCs including autologous cells from diabetic patients and the use of various differentiation protocols in relation to best transplant outcome will be discussed.

  5. Composition of Mineral Produced by Dental Mesenchymal Stem Cells.

    Science.gov (United States)

    Volponi, A A; Gentleman, E; Fatscher, R; Pang, Y W Y; Gentleman, M M; Sharpe, P T

    2015-11-01

    Mesenchymal stem cells isolated from different dental tissues have been described to have osteogenic/odontogenic-like differentiation capacity, but little attention has been paid to the biochemical composition of the material that each produces. Here, we used Raman spectroscopy to analyze the mineralized materials produced in vitro by different dental cell populations, and we compared them with the biochemical composition of native dental tissues. We show that different dental stem cell populations produce materials that differ in their mineral and matrix composition and that these differ from those of native dental tissues. In vitro, BCMP (bone chip mass population), SCAP (stem cells from apical papilla), and SHED (stem cells from human-exfoliated deciduous teeth) cells produce a more highly mineralized matrix when compared with that produced by PDL (periodontal ligament), DPA (dental pulp adult), and GF (gingival fibroblast) cells. Principal component analyses of Raman spectra further demonstrated that the crystallinity and carbonate substitution environments in the material produced by each cell type varied, with DPA cells, for example, producing a more carbonate-substituted mineral and with SCAP, SHED, and GF cells creating a less crystalline material when compared with other dental stem cells and native tissues. These variations in mineral composition reveal intrinsic differences in the various cell populations, which may in turn affect their specific clinical applications.

  6. Energy Metabolism in Mesenchymal Stem Cells During Osteogenic Differentiation

    Science.gov (United States)

    Shum, Laura C.; White, Noelle S.; Mills, Bradley N.; de Mesy Bentley, Karen L.

    2016-01-01

    There is emerging interest in stem cell energy metabolism and its effect on differentiation. Bioenergetic changes in differentiating bone marrow mesenchymal stem cells (MSCs) are poorly understood and were the focus of our study. Using bioenergetic profiling and transcriptomics, we have established that MSCs activate the mitochondrial process of oxidative phosphorylation (OxPhos) during osteogenic differentiation, but they maintain levels of glycolysis similar to undifferentiated cells. Consistent with their glycolytic phenotype, undifferentiated MSCs have high levels of hypoxia-inducible factor 1 (HIF-1). Osteogenically induced MSCs downregulate HIF-1 and this downregulation is required for activation of OxPhos. In summary, our work provides important insights on MSC bioenergetics and proposes a HIF-based mechanism of regulation of mitochondrial OxPhos in MSCs. PMID:26487485

  7. Effects of Oxidative Stress on Mesenchymal Stem Cell Biology

    Science.gov (United States)

    2016-01-01

    Mesenchymal stromal/stem cells (MSCs) are multipotent stem cells present in most fetal and adult tissues. Ex vivo culture-expanded MSCs are being investigated for tissue repair and immune modulation, but their full clinical potential is far from realization. Here we review the role of oxidative stress in MSC biology, as their longevity and functions are affected by oxidative stress. In general, increased reactive oxygen species (ROS) inhibit MSC proliferation, increase senescence, enhance adipogenic but reduce osteogenic differentiation, and inhibit MSC immunomodulation. Furthermore, aging, senescence, and oxidative stress reduce their ex vivo expansion, which is critical for their clinical applications. Modulation of sirtuin expression and activity may represent a method to reduce oxidative stress in MSCs. These findings have important implications in the clinical utility of MSCs for degenerative and immunological based conditions. Further study of oxidative stress in MSCs is imperative in order to enhance MSC ex vivo expansion and in vivo engraftment, function, and longevity. PMID:27413419

  8. Bone-Marrow-Derived Mesenchymal Stem Cells for Organ Repair

    Directory of Open Access Journals (Sweden)

    Ming Li

    2013-01-01

    Full Text Available Mesenchymal stem cells (MSCs are prototypical adult stem cells with the capacity for self-renewal and differentiation with a broad tissue distribution. MSCs not only differentiate into types of cells of mesodermal lineage but also into endodermal and ectodermal lineages such as bone, fat, cartilage and cardiomyocytes, endothelial cells, lung epithelial cells, hepatocytes, neurons, and pancreatic islets. MSCs have been identified as an adherent, fibroblast-like population and can be isolated from different adult tissues, including bone marrow (BM, umbilical cord, skeletal muscle, and adipose tissue. MSCs secrete factors, including IL-6, M-CSF, IL-10, HGF, and PGE2, that promote tissue repair, stimulate proliferation and differentiation of endogenous tissue progenitors, and decrease inflammatory and immune reactions. In this paper, we focus on the role of BM-derived MSCs in organ repair.

  9. Mesenchymal stem cells: a new trend for cell therapy

    Institute of Scientific and Technical Information of China (English)

    Xin WEI; Xue YANG; Zhi-peng HAN; Fang-fang QU; Li SHAO; Yu-fang SHI

    2013-01-01

    Mesenchymal stem cells (MSCs),the major stem cells for cell therapy,have been used in the clinic for approximately 10 years.From animal models to clinical trials,MSCs have afforded promise in the treatment of numerous diseases,mainly tissue injury and immune disorders.In this review,we summarize the recent opinions on methods,timing and cell sources for MSC administration in clinical applications,and provide an overview of mechanisms that are significant in MSC-mediated therapies.Although MSCs for cell therapy have been shown to be safe and effective,there are still challenges that need to be tackled before their wide application in the clinic.

  10. Mesenchymal stem cells and chronic renal artery stenosis.

    Science.gov (United States)

    Oliveira-Sales, Elizabeth B; Boim, Mirian A

    2016-01-01

    Renal artery stenosis is the main cause of renovascular hypertension and results in ischemic nephropathy characterized by inflammation, oxidative stress, microvascular loss, and fibrosis with consequent functional failure. Considering the limited number of strategies that effectively control renovascular hypertension and restore renal function, we propose that cell therapy may be a promising option based on the regenerative and immunosuppressive properties of stem cells. This review addresses the effects of mesenchymal stem cells (MSC) in an experimental animal model of renovascular hypertension known as 2 kidney-1 clip (2K-1C). Significant benefits of MSC treatment have been observed on blood pressure and renal structure of the stenotic kidney. The mechanisms involved are discussed.

  11. Mesenchymal Stem Cells and Nano-Bioceramics for Bone Regeneration.

    Science.gov (United States)

    Kankilic, Berna; Köse, Sevil; Korkusuz, Petek; Timuçin, Muharrem; Korkusuz, Feza

    Orthopedic disorders and trauma usually result in bone loss. Bone grafts are widely used to replace this tissue. Bone grafts excluding autografts unfortunately have disadvantages like evoking immune response, contamination and rejection. Autografts are of limited sources and optimum biomaterials that can replace bone have been searched for several decades. Bioceramics, which have the similar inorganic structure of natural bone, are widely used to regenerate bone or coat metallic implants. As people continuously look for a higher life quality, there are developments in technology almost everyday to meet their expectations. Nanotechnology is one of such technologies and it attracts everyone's attention in biomaterial science. Nano scale biomaterials have many advantages like larger surface area and higher biocompatibility and these properties make them more preferable than micro scale. Also, stem cells are used for bone regeneration besides nano-bioceramics due to their differentiation characteristics. This review covers current research on nano-bioceramics and mesenchymal stem cells and their role in bone regeneration.

  12. Therapeutic Implications of Mesenchymal Stem Cells in Liver Injury

    Directory of Open Access Journals (Sweden)

    Maria Ausiliatrice Puglisi

    2011-01-01

    Full Text Available Mesenchymal stem cells (MSCs, represent an attractive tool for the establishment of a successful stem-cell-based therapy of liver diseases. A number of different mechanisms contribute to the therapeutic effects exerted by MSCs, since these cells can differentiate into functional hepatic cells and can also produce a series of growth factors and cytokines able to suppress inflammatory responses, reduce hepatocyte apoptosis, regress liver fibrosis, and enhance hepatocyte functionality. To date, the infusion of MSCs or MSC-conditioned medium has shown encouraging results in the treatment of fulminant hepatic failure and in end-stage liver disease in experimental settings. However, some issues under debate hamper the use of MSCs in clinical trials. This paper summarizes the biological relevance of MSCs and the potential benefits and risks that can result from translating the MSC research to the treatment of liver diseases.

  13. Hepatogenic differentiation of human mesenchymal stem cells from adipose tissue in comparison with bone marrow mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    Raquel Taléns-Visconti; Ana Bonora; Ramiro Jover; Vicente Mirabet; Francisco Carbonell; José Vicente Castell; María José Gómez-Lechón

    2006-01-01

    AIM: To investigate and compare the hepatogenic transdifferentiation of adipose tissue-derived stem cells (ADSC) and bone marrow-derived mesenchymal stem cells (BMSC) in vitro. Transdifferentiation of BMSC into hepatic cells in vivo has been described. Adipose tissue represents an accessible source of ADSC, with similar characteristics to BMSC.METHODS: BMSCs were obtained from patients undergoing total hip arthroplasty and ADSC from human adipose tissue obtained from lipectomy. Cells were grown in medium containing 15% human serum. Cultures were serum deprived for 2 d before cultivating under similar pro-hepatogenic conditions to those of liver development using a 2-step protocol with sequential addition of growth factors, cytokines and hormones. Hepatic differentiation was RT-PCR-assessed and liver-marker genes were immunohistochemically analysed.RESULTS: BMSC and ADSC exhibited a fibroblastic morphology that changed to a polygonal shape when cells differentiated. Expression of stem cell marker Thy1 decreased in differentiated ADSC and BMSC. However, the expression of the hepatic markers, albumin and CYPs increased to a similar extent in differentiated BMSC and ADSC. Hepatic gene activation could be attributed to increased liver-enriched transcription factors (C/EBPβ and HNF4α), as demonstrated by adenoviral expression vectors.CONCLUSION: Mesenchymal stem cells can be induced to hepatogenic transdifferentiation in vitro. ADSCs have a similar hepatogenic differentiation potential to BMSC,but a longer culture period and higher proliferation capacity. Therefore, adipose tissue may be an ideal source of large amounts of autologous stem cells, and may become an alternative for hepatocyte regeneration, liver cell transplantation or preclinical drug testing.

  14. A nanofibrous electrospun patch to maintain human mesenchymal cell stemness.

    Science.gov (United States)

    Pandolfi, L; Furman, N Toledano; Wang, Xin; Lupo, C; Martinez, J O; Mohamed, M; Taraballi, F; Tasciotti, E

    2017-03-01

    Mesenchymal stem cells (MSCs) have been extensively investigated in regenerative medicine because of their crucial role in tissue healing. For these properties, they are widely tested in clinical trials, usually injected in cell suspension or in combination with tridimensional scaffolds. However, scaffolds can largely affect the fates of MSCs, inducing a progressive loss of functionality overtime. The ideal scaffold must delay MSCs differentiation until paracrine signals from the host induce their change. Herein, we proposed a nanostructured electrospun gelatin patch as an appropriate environment where human MSCs (hMSCs) can adhere, proliferate, and maintain their stemness. This patch exhibited characteristics of a non-linear elastic material and withstood degradation up to 4 weeks. As compared to culture and expansion in 2D, hMSCs on the patch showed a similar degree of proliferation and better maintained their progenitor properties, as assessed by their superior differentiation capacity towards typical mesenchymal lineages (i.e. osteogenic and chondrogenic). Furthermore, immunohistochemical analysis and longitudinal non-invasive imaging of inflammatory response revealed no sign of foreign body reaction for 3 weeks. In summary, our results demonstrated that our biocompatible patch favored the maintenance of undifferentiated hMSCs for up to 21 days and is an ideal candidate for tridimensional delivery of hMSCs. The present work reports a nanostructured patch gelatin-based able to maintain in vitro hMSCs stemness features. Moreover, hMSCs were able to differentiate toward osteo- and chondrogenic lineages once induces by differentiative media, confirming the ability of this patch to support stem cells for a potential in vivo application. These attractive properties together with the low inflammatory response in vivo make this patch a promising platform in regenerative medicine.

  15. Development of bone marrow mesenchymal stem cell culture in vitro

    Institute of Scientific and Technical Information of China (English)

    ZHANG Li; PENG Li-pan; WU Nan; LI Le-ping

    2012-01-01

    Objective To review the in vitro development of bone marrow mesenchymal stem cells culture (BM-MSC).Data sources The data cited in this review were mainly obtained from articles listed in Medline and PubMed.The search terms were “bone marrow mesenchymal stem cell" and "cell culture".Study selection Articles regarding the in vitro development of BM-MSCs culture,as well as the challenge of optimizing cell culture environment in two-dimensional (2D) vs.3D.Results Improving the culture conditions increases the proliferation and reduces the differentiation.Optimal values for many culture parameters remain to be identified.Expansion of BM-MSCs under defined conditions remains challenging,including the development of optimal culture conditions for BMSC and large-volume production systems.Conclusions Expansion of BM-MSCs under defined conditions remains challenges,including the development of optimal culture conditions for BMSC and scale-up to large-volume production systems.Optimal values for many culture parameters remain to be identified.

  16. Mesenchymal stem cells: Emerging mechanisms of immunomodulation and therapy

    Institute of Scientific and Technical Information of China (English)

    Justin; D; Glenn; Katharine; A; Whartenby

    2014-01-01

    Mesenchymal stem cells(MSCs) are a pleiotropic population of cells that are self-renewing and capable of differentiating into canonical cells of the mesenchyme, including adipocytes, chondrocytes, and osteocytes. They employ multi-faceted approaches to maintain bone marrow niche homeostasis and promote wound healing during injury. Biomedical research has long sought to exploit their pleiotropic properties as a basis for cell therapy for a variety of diseases and to facilitate hematopoietic stem cell establishment and stromal reconstruction in bone marrow transplantation. Early results demonstrated their usage as safe, and there was little host response to these cells. The discovery of their immunosuppressive functions ushered in a new interest in MSCs as a promising therapeutic tool to suppress inflammation and down-regulate pathogenic immune responses in graft-versus-host and autoimmune diseases such as multiple sclerosis, autoimmune diabetes, and rheumatoid arthritis. MSCs produce a large number of soluble and membrane-bound factors, some of which inhibit immune responses. However, the full range of MSC-mediated immune-modulation remains incompletely understood, as emerging reports also reveal that MSCs can adopt an immunogenic phenotype, stimulate immune cells, and yield seemingly contradictory results in experimental animal models of inflammatory disease. The present review describes the large body of literature that has been accumulated on the fascinating biology of MSCs and their complex effects on immune responses.

  17. Implications of mesenchymal stem cells in regenerative medicine.

    Science.gov (United States)

    Kariminekoo, Saber; Movassaghpour, Aliakbar; Rahimzadeh, Amirbahman; Talebi, Mehdi; Shamsasenjan, Karim; Akbarzadeh, Abolfazl

    2016-05-01

    Mesenchymal stem cells (MSCs) are a population of multipotent progenitors which reside in bone marrow, fat, and some other tissues and can be isolated from various adult and fetal tissues. Self-renewal potential and multipotency are MSC's hallmarks. They have the capacity of proliferation and differentiation into a variety of cell lineages like osteoblasts, condrocytes, adipocytes, fibroblasts, cardiomyocytes. MSCs can be identified by expression of some surface molecules like CD73, CD90, CD105, and lack of hematopoietic specific markers including CD34, CD45, and HLA-DR. They are hopeful tools for regenerative medicine for repairing injured tissues. Many studies have focused on two significant features of MSC therapy: (I) systemically administered MSCs home to sites of ischemia or injury, and (II) MSCs can modulate T-cell-mediated immunological responses. MSCs express chemokine receptors and ligands involved in cells migration and homing process. MSCs induce immunomedulatory effects on the innate (dendritic cells, monocyte, natural killer cells, and neutrophils) and the adaptive immune system cells (T helper-1, cytotoxic T lymphocyte, and B lymphocyte) by secreting soluble factors like TGF-β, IL-10, IDO, PGE-2, sHLA-G5, or by cell-cell interaction. In this review, we discuss the main applications of mesenchymal stem in Regenerative Medicine and known mechanisms of homing and Immunomodulation of MSCs.

  18. Current Perspectives in Mesenchymal Stem Cell Therapies for Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Baldur Kristjánsson

    2014-01-01

    Full Text Available Osteoarthritis (OA is a degenerative joint disease most commonly occurring in the ageing population. It is a slow progressive condition resulting in the destruction of hyaline cartilage followed by pain and reduced activity. Conventional treatments have little effects on the progression of the condition often leaving surgery as the last option. In the last 10 years tissue engineering utilising mesenchymal stem cells has been emerging as an alternative method for treating OA. Mesenchymal stem cells (MSCs are multipotent progenitor cells found in various tissues, most commonly bone marrow and adipose tissue. MSCs are capable of differentiating into osteocytes, adipocytes, and chondrocytes. Autologous MSCs can be easily harvested and applied in treatment, but allogenic cells can also be employed. The early uses of MSCs focused on the implantations of cell rich matrixes during open surgeries, resulting in the formation of hyaline-like durable cartilage. More recently, the focus has completely shifted towards direct intra-articular injections where a great number of cells are suspended and injected into affected joints. In this review the history and early uses of MSCs in cartilage regeneration are reviewed and different approaches in current trends are explained and evaluated.

  19. Induction of mesenchymal stem cell chondrogenesis by polyacrylate substrates.

    Science.gov (United States)

    Glennon-Alty, Laurence; Williams, Rachel; Dixon, Simon; Murray, Patricia

    2013-04-01

    Mesenchymal stem cells (MSCs) can generate chondrocytes in vitro, but typically need to be cultured as aggregates in the presence of transforming growth factor beta (TGF-β), which makes scale-up difficult. Here we investigated if polyacrylate substrates modelled on the functional group composition and distribution of the Arg-Gly-Asp (RGD) integrin-binding site could induce MSCs to undergo chondrogenesis in the absence of exogenous TGF-β. Within a few days of culture on the biomimetic polyacrylates, both mouse and human MSCs, and a mesenchymal-like mouse-kidney-derived stem cell line, began to form multi-layered aggregates and started to express the chondrocyte-specific markers, Sox9, collagen II and aggrecan. Moreover, collagen II tended to be expressed in the centre of the aggregates, similarly to developing limb buds in vivo. Surface analysis of the substrates indicated that those with the highest surface amine content were most effective at promoting MSC chondrogenesis. These results highlight the importance of surface group functionality and the distribution of those groups in the design of substrates to induce MSC chondrogenesis.

  20. Cell therapy of congenital corneal diseases with umbilical mesenchymal stem cells: lumican null mice.

    Directory of Open Access Journals (Sweden)

    Hongshan Liu

    Full Text Available BACKGROUND: Keratoplasty is the most effective treatment for corneal blindness, but suboptimal medical conditions and lack of qualified medical personnel and donated cornea often prevent the performance of corneal transplantation in developing countries. Our study aims to develop alternative treatment regimens for congenital corneal diseases of genetic mutation. METHODOLOGY/PRINCIPAL FINDINGS: Human mesenchymal stem cells isolated from neonatal umbilical cords were transplanted to treat thin and cloudy corneas of lumican null mice. Transplantation of umbilical mesenchymal stem cells significantly improved corneal transparency and increased stromal thickness of lumican null mice, but human umbilical hematopoietic stem cells failed to do the same. Further studies revealed that collagen lamellae were re-organized in corneal stroma of lumican null mice after mesenchymal stem cell transplantation. Transplanted umbilical mesenchymal stem cells survived in the mouse corneal stroma for more than 3 months with little or no graft rejection. In addition, these cells assumed a keratocyte phenotype, e.g., dendritic morphology, quiescence, expression of keratocyte unique keratan sulfated keratocan and lumican, and CD34. Moreover, umbilical mesenchymal stem cell transplantation improved host keratocyte functions, which was verified by enhanced expression of keratocan and aldehyde dehydrogenase class 3A1 in lumican null mice. CONCLUSIONS/SIGNIFICANCE: Umbilical mesenchymal stem cell transplantation is a promising treatment for congenital corneal diseases involving keratocyte dysfunction. Unlike donated corneas, umbilical mesenchymal stem cells are easily isolated, expanded, stored, and can be quickly recovered from liquid nitrogen when a patient is in urgent need.

  1. Gene Profiles in a Smoke-Induced COPD Mouse Lung Model Following Treatment with Mesenchymal Stem Cells.

    Science.gov (United States)

    Kim, You-Sun; Kokturk, Nurdan; Kim, Ji-Young; Lee, Sei Won; Lim, Jaeyun; Choi, Soo Jin; Oh, Wonil; Oh, Yeon-Mok

    2016-10-01

    Mesenchymal stem cells (MSCs) effectively reduce airway inflammation and regenerate the alveolus in cigarette- and elastase-induced chronic obstructive pulmonary disease (COPD) animal models. The effects of stem cells are thought to be paracrine and immune-modulatory because very few stem cells remain in the lung one day after their systemic injection, which has been demonstrated previously. In this report, we analyzed the gene expression profiles to compare mouse lungs with chronic exposure to cigarette smoke with non-exposed lungs. Gene expression profiling was also conducted in a mouse lung tissue with chronic exposure to cigarette smoke following the systemic injection of human cord blood-derived mesenchymal stem cells (hCB-MSCs). Globally, 834 genes were differentially expressed after systemic injection of hCB-MSCs. Seven and 21 genes, respectively, were up-and downregulated on days 1, 4, and 14 after HCB-MSC injection. The Hbb and Hba, genes with oxygen transport and antioxidant functions, were increased on days 1 and 14. A serine protease inhibitor was also increased at a similar time point after injection of hCB-MSCs. Gene Ontology analysis indicated that the levels of genes related to immune responses, metabolic processes, and blood vessel development were altered, indicating host responses after hCB-MSC injection. These gene expression changes suggest that MSCs induce a regeneration mechanism against COPD induced by cigarette smoke. These analyses provide basic data for understanding the regeneration mechanisms promoted by hCB-MSCs in cigarette smoke-induced COPD.

  2. Propofol promotes spinal cord injury repair by bone marrow mesenchymal stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Ya-jing Zhou

    2015-01-01

    Full Text Available Propofol is a neuroprotective anesthetic. Whether propofol can promote spinal cord injury repair by bone marrow mesenchymal stem cells remains poorly understood. We used rats to investigate spinal cord injury repair using bone marrow mesenchymal stem cell transplantation combined with propofol administration via the tail vein. Rat spinal cord injury was clearly alleviated; a large number of newborn non-myelinated and myelinated nerve fibers appeared in the spinal cord, the numbers of CM-Dil-labeled bone marrow mesenchymal stem cells and fluorogold-labeled nerve fibers were increased and hindlimb motor function of spinal cord-injured rats was markedly improved. These improvements were more prominent in rats subjected to bone marrow mesenchymal cell transplantation combined with propofol administration than in rats receiving monotherapy. These results indicate that propofol can enhance the therapeutic effects of bone marrow mesenchymal stem cell transplantation on spinal cord injury in rats.

  3. Propofol promotes spinal cord injury repair by bone marrow mesenchymal stem cell transplantation

    Institute of Scientific and Technical Information of China (English)

    Ya-jing Zhou; Jian-min Liu; Shu-ming Wei; Yun-hao Zhang; Zhen-hua Qu; Shu-bo Chen

    2015-01-01

    Propofol is a neuroprotective anesthetic. Whether propofol can promote spinal cord injury repair by bone marrow mesenchymal stem cells remains poorly understood. We used rats to investigate spinal cord injury repair using bone marrow mesenchymal stem cell transplantation combined with propofol administrationvia the tail vein. Rat spinal cord injury was clearly alleviated; a large number of newborn non-myelinated and myelinated nerve ifbers appeared in the spinal cord, the numbers of CM-Dil-labeled bone marrow mesenchymal stem cells and lfuorogold-labeled nerve ifbers were increased and hindlimb motor function of spinal cord-injured rats was mark-edly improved. These improvements were more prominent in rats subjected to bone marrow mesenchymal cell transplantation combined with propofol administration than in rats receiving monotherapy. These results indicate that propofol can enhance the therapeutic effects of bone marrow mesenchymal stem cell transplantation on spinal cord injury in rats.

  4. Clinical application of mesenchymal stem cells for aseptic bone necrosis

    Directory of Open Access Journals (Sweden)

    Tomoki Aoyama

    2008-11-01

    Full Text Available Since 2007, we had started clinical trial using mesenchymal stem cell (MSCs for the treatment of aseptic bone necrosis as a first clinical trial permitted by Japanese Health, Labour and Welfare Ministry.Aseptic bone necrosis of the femoral head commonly occurs in patients with two to four decades, causing severe musculoskeletal disability. Although its diagnosis is easy with X-ray and MRI, there has been no gold standard invented for treatment of this disease. MSCs represent a stem cell population in adult tissues that can be isolated and expanded in culture, and differentiate into cells with different nature. Combination with β-tri-calcium phosphate and vascularized bone graft, we succeeded to treat bone necrosis of the femoral head.Regenerative medicine using stem cells is hopeful and shed a light on intractable disease. To become widespread, Basic, Translational, Application, and Developmental study is needed.? From an experience of cell therapy using MSCs, we started to research induced pluripotent stem cell (iPS for clinical application.

  5. Dedifferentiation-reprogrammed mesenchymal stem cells with improved therapeutic potential.

    Science.gov (United States)

    Liu, Yang; Jiang, Xiaohua; Zhang, Xiaohu; Chen, Rui; Sun, Tingting; Fok, Kin Lam; Dong, Jianda; Tsang, Lai Ling; Yi, Shaoqiong; Ruan, Yechun; Guo, Jinghui; Yu, Mei Kuen; Tian, Yuemin; Chung, Yiu Wa; Yang, Mo; Xu, Wenming; Chung, Chin Man; Li, Tingyu; Chan, Hsiao Chang

    2011-12-01

    Stem cell transplantation has been shown to improve functional outcome in degenerative and ischemic disorders. However, low in vivo survival and differentiation potential of the transplanted cells limits their overall effectiveness and thus clinical usage. Here we show that, after in vitro induction of neuronal differentiation and dedifferentiation, on withdrawal of extrinsic factors, mesenchymal stem cells (MSCs) derived from bone marrow, which have already committed to neuronal lineage, revert to a primitive cell population (dedifferentiated MSCs) retaining stem cell characteristics but exhibiting a reprogrammed phenotype distinct from their original counterparts. Of therapeutic interest, the dedifferentiated MSCs exhibited enhanced cell survival and higher efficacy in neuronal differentiation compared to unmanipulated MSCs both in vitro and in vivo, with significantly improved cognition function in a neonatal hypoxic-ischemic brain damage rat model. Increased expression of bcl-2 family proteins and microRNA-34a appears to be the important mechanism giving rise to this previously undefined stem cell population that may provide a novel treatment strategy with improved therapeutic efficacy.

  6. Myogenic differentiation of mesenchymal stem cells for muscle regeneration in urinary tract

    Institute of Scientific and Technical Information of China (English)

    YANG Bin; ZHENG Jun-hua; ZHANG Yuan-yuan

    2013-01-01

    Objective This article was to review the current status of adult mesenchymal stem cells transplantation for muscle regeneration in urinary tract and propose the future prospect in this field.Data sources The data used in this review were mainly obtained from articles listed in Medline and PubMed (2000-2013).The search terms were "mesenchymal stem cells","bladder","stress urinary incontinence" and "tissue engineering".Study selection Articles regarding the adult mesenchymal stem cells for tissue engineering of bladder and stress urinary incontinence were selected and reviewed.Results Adult mesenchymal stem cells had been identified and well characterized in human bone marrow,adipose tissue,skeletal muscle and urine,and demonstrated the capability of differentiating into smooth muscle cells and skeletal muscle cells under myogenic differentiation conditions in vitro.Multiple preclinical and clinical studies indicated that adult mesenchymal stem cells could restore and maintain the structure and function of urinary muscle tissues after transplanted,and potentially improve the quality of life in patients.Conclusions Smooth or skeletal myogenic differentiation of mesenchymal stem cells with regenerative medicine technology may provide a novel approach for muscle regeneration and tissue repair in urinary tract.The long-term effect and safety of mesenchymal stem cell transplantation should be further evaluated before this approach becomes widely used in patients.

  7. RNA-Seq Reveals the Angiogenesis Diversity between the Fetal and Adults Bone Mesenchyme Stem Cell.

    Science.gov (United States)

    Zhao, Xin; Han, Yingmin; Liang, Yu; Nie, Chao; Wang, Jian

    2016-01-01

    In this research, we used RNA sequencing (RNA-seq) to analyze 23 single cell samples and 2 bulk cells sample from human adult bone mesenchyme stem cell line and human fetal bone mesenchyme stem cell line. The results from the research demonstrated that there were big differences between two cell lines. Adult bone mesenchyme stem cell lines showed a strong trend on the blood vessel differentiation and cell motion, 48/49 vascular related differential expressed genes showed higher expression in adult bone mesenchyme stem cell lines (Abmsc) than fetal bone mesenchyme stem cell lines (Fbmsc). 96/106 cell motion related genes showed the same tendency. Further analysis showed that genes like ANGPT1, VEGFA, FGF2, PDGFB and PDGFRA showed higher expression in Abmsc. This work showed cell heterogeneity between human adult bone mesenchyme stem cell line and human fetal bone mesenchyme stem cell line. Also the work may give an indication that Abmsc had a better potency than Fbmsc in the future vascular related application.

  8. A Biological Pacemaker Restored by Autologous Transplantation of Bone Marrow Mesenchymal Stem Cells

    Institute of Scientific and Technical Information of China (English)

    REN Xiao-qing; PU Jie-lin; ZHANG Shu; MENG Liang; WANG Fang-zheng

    2008-01-01

    Objective:To restore cardiac autonomic pace function by autologous transplantation and committed differentiation of bone marrow mesenchymal stem cells, and explore the technique for the treatment of sick sinus syndrome. Methods:Mesenchymal stem cells isolated from canine bone marrow were culture-expanded and differentiated in vitro by 5-azacytidine. The models of sick sinus syndrome in canines were established by ablating sinus node with radio-frequency technique. Differentiated mesenchymal stem cells labeled by BrdU were autologously transplanted into sinus node area through direct injection. The effects of autologous transplantation of mesenchymal stem cells on cardiac autonomic pace function in sick sinus syndrome models were evaluated by electrocardiography, pathologic and immunohistochemical staining technique.Results:There was distinct improvement on pace function of sick sinus syndrome animal models while differentiated mesenchymal stem cells were auto-transplanted into sinus node area. Mesenchymal stem cells transplanted in sinus node area were differentiated into similar sinus node cells and endothelial cells in vivo, and established gap junction with native cardiomyocytes. Conclusion:The committed-induced mesenchymal stem cells transplanted into sinus node area can differentiate into analogous sinus node cells and improve pace function in canine sick sinus syndrome models.

  9. Mesenchymal stem cell therapy for osteoarthritis: current perspectives

    Directory of Open Access Journals (Sweden)

    Wyles CC

    2015-08-01

    Full Text Available Cody C Wyles,1 Matthew T Houdek,2 Atta Behfar,3 Rafael J Sierra,21Mayo Medical School, 2Department of Orthopedic Surgery, 3Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USAAbstract: Osteoarthritis (OA is a painful chronic condition with a significant impact on quality of life. The societal burden imposed by OA is increasing in parallel with the aging population; however, no therapies have demonstrated efficacy in preventing the progression of this degenerative joint disease. Current mainstays of therapy include activity modification, conservative pain management strategies, weight loss, and if necessary, replacement of the affected joint. Mesenchymal stem cells (MSCs are a multipotent endogenous population of progenitors capable of differentiation to musculoskeletal tissues. MSCs have a well-documented immunomodulatory role, managing the inflammatory response primarily through paracrine signaling. Given these properties, MSCs have been proposed as a potential regenerative cell therapy source for patients with OA. Research efforts are focused on determining the ideal source for derivation, as MSCs are native to several tissues. Furthermore, optimizing the mode of delivery remains a challenge both for appropriate localization of MSCs and for directed guidance toward stemming the local inflammatory process and initiating a regenerative response. Scaffolds and matrices with growth factor adjuvants may prove critical in this effort. The purpose of this review is to summarize the current state of MSC-based therapeutics for OA and discuss potential barriers that must be overcome for successful implementation of cell-based therapy as a routine treatment strategy in orthopedics.Keywords: mesenchymal stem cell, osteoarthritis, treatment, regenerative medicine, cell therapy

  10. Advances of mesenchymal stem cells derived from bone marrow and dental tissue in craniofacial tissue engineering.

    Science.gov (United States)

    Yang, Maobin; Zhang, Hongming; Gangolli, Riddhi

    2014-05-01

    Bone and dental tissues in craniofacial region work as an important aesthetic and functional unit. Reconstruction of craniofacial tissue defects is highly expected to ensure patients to maintain good quality of life. Tissue engineering and regenerative medicine have been developed in the last two decades, and been advanced with the stem cell technology. Bone marrow derived mesenchymal stem cells are one of the most extensively studied post-natal stem cell population, and are widely utilized in cell-based therapy. Dental tissue derived mesenchymal stem cells are a relatively new stem cell population that isolated from various dental tissues. These cells can undergo multilineage differentiation including osteogenic and odontogenic differentiation, thus provide an alternative source of mesenchymal stem cells for tissue engineering. In this review, we discuss the important issues in mesenchymal stem cell biology including the origin and functions of mesenchymal stem cells, compare the properties of these two types of mesenchymal cells, update recent basic research and clinic applications in this field, and address important future challenges.

  11. Characterization of mesenchymal stem cells derived from equine adipose tissue

    Directory of Open Access Journals (Sweden)

    A.M. Carvalho

    2013-08-01

    Full Text Available Stem cell therapy has shown promising results in tendinitis and osteoarthritis in equine medicine. The purpose of this work was to characterize the adipose-derived mesenchymal stem cells (AdMSCs in horses through (1 the assessment of the capacity of progenitor cells to perform adipogenic, osteogenic and chondrogenic differentiation; and (2 flow cytometry analysis using the stemness related markers: CD44, CD90, CD105 and MHC Class II. Five mixed-breed horses, aged 2-4 years-old were used to collect adipose tissue from the base of the tail. After isolation and culture of AdMSCs, immunophenotypic characterization was performed through flow cytometry. There was a high expression of CD44, CD90 and CD105, and no expression of MHC Class II markers. The tri-lineage differentiation was confirmed by specific staining: adipogenic (Oil Red O, osteogenic (Alizarin Red, and chondrogenic (Alcian Blue. The equine AdMSCs are a promising type of adult progenitor cell for tissue engineering in veterinary medicine.

  12. Guidance of mesenchymal stem cells on fibronectin structured hydrogel films.

    Directory of Open Access Journals (Sweden)

    Annika Kasten

    Full Text Available Designing of implant surfaces using a suitable ligand for cell adhesion to stimulate specific biological responses of stem cells will boost the application of regenerative implants. For example, materials that facilitate rapid and guided migration of stem cells would promote tissue regeneration. When seeded on fibronectin (FN that was homogeneously immmobilized to NCO-sP(EO-stat-PO, which otherwise prevents protein binding and cell adhesion, human mesenchymal stem cells (MSC revealed a faster migration, increased spreading and a more rapid organization of different cellular components for cell adhesion on fibronectin than on a glass surface. To further explore, how a structural organization of FN controls the behavior of MSC, adhesive lines of FN with varying width between 10 µm and 80 µm and spacings between 5 µm and 20 µm that did not allow cell adhesion were generated. In dependance on both line width and gaps, cells formed adjacent cell contacts, were individually organized in lines, or bridged the lines. With decreasing sizes of FN lines, speed and directionality of cell migration increased, which correlated with organization of the actin cytoskeleton, size and shape of the nuclei as well as of focal adhesions. Together, defined FN lines and gaps enabled a fine tuning of the structural organization of cellular components and migration. Microstructured adhesive substrates can mimic the extracellular matrix in vivo and stimulate cellular mechanisms which play a role in tissue regeneration.

  13. Postnatal epithelium and mesenchyme stem/progenitor cells in bioengineered amelogenesis and dentinogenesis.

    Science.gov (United States)

    Jiang, Nan; Zhou, Jian; Chen, Mo; Schiff, Michael D; Lee, Chang H; Kong, Kimi; Embree, Mildred C; Zhou, Yanheng; Mao, Jeremy J

    2014-02-01

    Rodent incisors provide a classic model for studying epithelial-mesenchymal interactions in development. However, postnatal stem/progenitor cells in rodent incisors have not been exploited for tooth regeneration. Here, we characterized postnatal rat incisor epithelium and mesenchyme stem/progenitor cells and found that they formed enamel- and dentin-like tissues in vivo. Epithelium and mesenchyme cells were harvested separately from the apical region of postnatal 4-5 day rat incisors. Epithelial and mesenchymal phenotypes were confirmed by immunocytochemistry, CFU assay and/or multi-lineage differentiation. CK14+, Sox2+ and Lgr5+ epithelium stem cells from the cervical loop enhanced amelogenin and ameloblastin expression upon BMP4 or FGF3 stimulation, signifying their differentiation towards ameloblast-like cells, whereas mesenchyme stem/progenitor cells upon BMP4, BMP7 and Wnt3a treatment robustly expressed Dspp, a hallmark of odontoblastic differentiation. We then control-released microencapsulated BMP4, BMP7 and Wnt3a in transplants of epithelium and mesenchyme stem/progenitor cells in the renal capsule of athymic mice in vivo. Enamel and dentin-like tissues were generated in two integrated layers with specific expression of amelogenin and ameloblastin in the newly formed, de novo enamel-like tissue, and DSP in dentin-like tissue. These findings suggest that postnatal epithelium and mesenchyme stem/progenitor cells can be primed towards bioengineered tooth regeneration.

  14. Runx2 expression: A mesenchymal stem marker for cancer

    Science.gov (United States)

    Valenti, Maria Teresa; Serafini, Paola; Innamorati, Giulio; Gili, Anna; Cheri, Samuele; Bassi, Claudio; Dalle Carbonare, Luca

    2016-01-01

    The transcription factor runt-related transcription factor 2 (Runx2) is a master gene implicated in the osteogenic differentiation of mesenchymal stem cells, and thus serves a determinant function in bone remodelling and skeletal integrity. Various signalling pathways regulate Runx2 abundance, which requires a number of molecules to finely modulate its expression. Furthermore, this gene may be ectopically-expressed in cancer cells. Recent studies have reported the involvement of Runx2 in cell proliferation, epithelial-mesenchymal transition, apoptosis and metastatic processes, suggesting it may represent a useful therapeutic target in cancer treatment. However, studies evaluating this gene as a cancer marker are lacking. In the present study, Runx2 expression was analysed in 11 different cancer cell lines not derived from bone tumour. In addition, the presence of Runx2-related cell-free RNA was examined in the peripheral blood of 41 patients affected by different forms of tumours. The results demonstrated high expression levels of Runx2 in the cancer cell lines and identified the presence of Runx2-related cell-free RNA in the peripheral blood of patients with cancer. As compared with normal individuals, the expression level was increased by 14.2-fold in patients with bone metastases and by 4.01-fold in patients without metastases. The results of the present study therefore opens up the possibility to exploit Runx2 expression as a cancer biomarker allowing the use of minimally invasive approaches for diagnosis and follow-up. PMID:27895787

  15. Mesenchymal stem cell ingrowth and differentiation on coralline hydroxyapatite scaffolds

    DEFF Research Database (Denmark)

    Mygind, Tina; Stiehler, Maik; Baatrup, Anette

    2007-01-01

    Culture of osteogenic cells on a porous scaffold could offer a new solution to bone grafting using autologous human mesenchymal stem cells (hMSC) from the patient. We compared coralline hydroxyapatite scaffolds with pore sizes of 200 and 500 microm for expansion and differentiation of hMSCs. We...... polymerase chain reaction for 10 osteogenic markers. The 500-microm scaffolds had increased proliferation rates and accommodated a higher number of cells (shown by DNA content, scanning electron microscopy and fluorescence microscopy). Thus the porosity of a 3D microporous biomaterial may be used to steer h......MSC in a particular direction. We found that dynamic spinner flask cultivation of hMSC/scaffold constructs resulted in increased proliferation, differentiation and distribution of cells in scaffolds. Therefore, spinner flask cultivation is an easy-to-use inexpensive system for cultivating hMSCs on small...

  16. [Immunomodulatory properties of stem mesenchymal cells in autoimmune diseases].

    Science.gov (United States)

    Sánchez-Berná, Isabel; Santiago-Díaz, Carlos; Jiménez-Alonso, Juan

    2015-01-20

    Autoimmune diseases are a cluster of disorders characterized by a failure of the immune tolerance and a hyperactivation of the immune system that leads to a chronic inflammation state and the damage of several organs. The medications currently used to treat these diseases usually consist of immunosuppressive drugs that have significant systemic toxic effects and are associated with an increased risk of opportunistic infections. Recently, several studies have demonstrated that mesenchymal stem cells have immunomodulatory properties, a feature that make them candidates to be used in the treatment of autoimmune diseases. In the present study, we reviewed the role of this therapy in the treatment of systemic lupus erythematosus, Sjögren's syndrome, systemic sclerosis, Crohn's disease and multiple sclerosis, as well as the potential risks associated with its use.

  17. Importance of mesenchymal stem cells in autologous fat grafting

    DEFF Research Database (Denmark)

    Trojahn Kølle, Stig-Frederik; Oliveri, Roberto S; Glovinski, Peter Viktor

    2012-01-01

    Autologous fat grafting (lipofilling) enables repair and augmentation of soft tissues and is increasingly used both in aesthetic and reconstructive surgery. Autologous fat has several advantages, including biocompatibility, versatility, natural appearance, and low donor site morbidity. The main...... the fat graft with adipose tissue-derived mesenchymal stem cells (ASC) before transplantation. We have reviewed original studies published on fat transplantation enriched with ASC. We found four murine and three human studies that investigated the subject after a sensitive search of publications...... limitation is unpredictable graft resorption, which ranges from 25%-80%, probably as a result of ischaemia and lack of neoangiogenesis. To obviate these disadvantages, several studies have searched for new ways of increasing the viability of the transplanted tissue. One promising approach has been to enrich...

  18. Mesenchymal Stem Cells after Polytrauma: Actor and Target

    Directory of Open Access Journals (Sweden)

    Markus Huber-Lang

    2016-01-01

    Full Text Available Mesenchymal stem cells (MSCs are multipotent cells that are considered indispensable in regeneration processes after tissue trauma. MSCs are recruited to damaged areas via several chemoattractant pathways where they function as “actors” in the healing process by the secretion of manifold pro- and anti-inflammatory, antimicrobial, pro- and anticoagulatory, and trophic/angiogenic factors, but also by proliferation and differentiation into the required cells. On the other hand, MSCs represent “targets” during the pathophysiological conditions after severe trauma, when excessively generated inflammatory mediators, complement activation factors, and damage- and pathogen-associated molecular patterns challenge MSCs and alter their functionality. This in turn leads to complement opsonization, lysis, clearance by macrophages, and reduced migratory and regenerative abilities which culminate in impaired tissue repair. We summarize relevant cellular and signaling mechanisms and provide an up-to-date overview about promising future therapeutic MSC strategies in the context of severe tissue trauma.

  19. Good manufacturing practices production of mesenchymal stem/stromal cells.

    Science.gov (United States)

    Sensebé, Luc; Bourin, Philippe; Tarte, Karin

    2011-01-01

    Because of their multi/pluripotency and immunosuppressive properties mesenchymal stem/stromal cells (MSCs) are important tools for treating immune disorders and for tissue repair. The increasing use of MSCs has led to production processes that need to be in accordance with Good Manufacturing Practice (GMP). In cellular therapy, safety remains one of the main concerns and refers to donor validation, choice of starting material, processes, and the controls used, not only at the batch release level but also during the development of processes. The culture processes should be reproducible, robust, and efficient. Moreover, they should be adapted to closed systems that are easy to use. Implementing controls during the manufacturing of clinical-grade MSCs is essential. The controls should ensure microbiological safety but also avoid potential side effects linked to genomic instability driving transformation and senescence or decrease of cell functions (immunoregulation, differentiation potential). In this rapidly evolving field, a new approach to controls is needed.

  20. Mesenchymal stem cells as a therapeutic tool to treat sepsis

    Institute of Scientific and Technical Information of China (English)

    Eleuterio Lombardo; Tom van der Poll; Olga DelaRosa; Wilfried Dalemans

    2015-01-01

    Sepsis is a clinical syndrome caused by a deregulatedhost response to an infection. Sepsis is the mostfrequent cause of death in hospitalized patients.Although knowledge of the pathogenesis of sepsishas increased substantially during the last decades,attempts to design effective and specific therapiestargeting components of the derailed host responsehave failed. Therefore, there is a dramatic need fornew and mechanistically alternative therapies to treatthis syndrome. Based on their immunomodulatoryproperties, adult mesenchymal stem or stromal cells(MSCs) can be a novel therapeutic tool to treat sepsis.Indeed, MSCs reduce mortality in experimental modelsof sepsis by modulating the deregulated inflammatoryresponse against bacteria through the regulation ofmultiple inflammatory networks, the reprogrammingof macrophages and neutrophils towards a more antiinflammatoryphenotype and the release of antimicrobialpeptides. This report will review the currentknowledge on the effects of MSC treatment in preclinicalexperimental small animal models of sepsis.

  1. Prenatal transplantation of mesenchymal stem cells to treat osteogenesis imperfecta.

    Directory of Open Access Journals (Sweden)

    Jerry KY Chan

    2014-10-01

    Full Text Available Osteogenesis Imperfecta (OI can be a severe disorder that can be diagnosed before birth. Transplantation of mesenchymal stem cells (MSC has the potential to improve the bone structure, growth and fracture healing. In this review we give an introduction to OI and MSC, and the basis for prenatal and postnatal transplantation in OI. We also summarize the two patients with OI who has received prenatal and postnatal transplantation of MSC.The findings suggest that prenatal transplantation of allogeneic MSC in OI is safe. The cell therapy is of likely clinical benefit with improved linear growth, mobility and reduced fracture incidence. Unfortunately, the effect is transient. For this reason postnatal booster infusions using same-donor MSC have been performed with clinical benefit, and without any adverse events.So far there is limited experience in this specific field and proper studies are required to accurately conclude on clinical benefits of MSC transplantation to treat OI.

  2. Circulating mesenchymal stem cells and their clinical implications

    Directory of Open Access Journals (Sweden)

    Liangliang Xu

    2014-01-01

    Full Text Available Circulating mesenchymal stem cells (MSCs is a new cell source for tissue regeneration and tissue engineering. The characteristics of circulating MSCs are similar to those of bone marrow-derived MSCs (BM-MSCs, but they exist at a very low level in healthy individuals. It has been demonstrated that MSCs are able to migrate to the sites of injury and that they have some distinct genetic profiles compared to BM-MSCs. The current review summaries the basic knowledge of circulating MSCs and their potential clinical applications, such as mobilizing the BM-MSCs into circulation for therapy. The application of MSCs to cure a broad spectrum of diseases is promising, such as spinal cord injury, cardiovascular repair, bone and cartilage repair. The current review also discusses the issues of using of allogeneic MSCs for clinical therapy.

  3. Patterns of amino acid metabolism by proliferating human mesenchymal stem cells

    NARCIS (Netherlands)

    Higuera, G.A.; Schop, D.; Spitters, T.W.; Dijkhuizen, R.; Bracke, M.; Bruijn, J.D.; Martens, D.E.; Karperien, M.; Boxtel, van A.J.B.; Blitterswijk, van C.A.

    2012-01-01

    The nutritional requirements of stem cells have not been determined; in particular, the amino acid metabolism of stem cells is largely unknown. In this study, we investigated the amino acid metabolism of human mesenchymal stem cells (hMSCs), with focus on two questions: Which amino acids are consume

  4. Are Sertoli cells a kind of mesenchymal stem cells?

    Science.gov (United States)

    Gong, Daoyuan; Zhang, Chunfu; Li, Tao; Zhang, Jiahui; Zhang, Nannan; Tao, Zehua; Zhu, Wei; Sun, Xiaochun

    2017-01-01

    Objective: Sertoli cells (SCs) are a major component of testis which secrete a variety of cytokines and immunosuppressive factors, providing nutritional support and immune protection for sperm growth and development. The purpose of this study was to investigate the relationship between SCs and bone marrow mesenchymal stem cells (BMSCs) in order to provide a theoretical basis for better application of SCs. Methods: We used the adherence method to isolate Sprague-Dawley rat SCs and BMSCs. Cells surface markers were detected by flow cytometry. The capacity of cells to differentiate was determined by osteogenic and adipogenic induction. Assessment of cell proliferation was performed by MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2-H-tetrazolium bromide] assay. Changes in the nucleus were analyzed by Hoechst nuclear staining. Cell aging was observed with β-galactosidase, which is a biological marker of senescence. RT-PCR was employed to detect the expression of cytokines. Results: From the aforementioned experiments, we found that the surface markers of SCs and BMSCs were almost exactly the same. Proliferation of SCs, as well as osteogenic and adipogenic differentiation, were weaker than in BMSCs. Compared with BMSCs, Hoechst nuclear staining showed that the chromatin of SCs began to aggregate and was slightly larger. β-galactosidase staining showed that SCs were in a slightly aging state. The secretion of cytokines from SCs was slightly less than the secretion from BMSCs. Conclusion: SCs are a kind of mesenchymal stem cells which have begun the process of differentiation. PMID:28386334

  5. NF-Kβ Activation in U266 Cells on Mesenchymal Stem Cells

    Science.gov (United States)

    Zahedi, Sara; Shamsasenjan, Karim; Movassaghpour, Aliakbar; Akbarzadehlaleh, Parvin

    2016-01-01

    Purpose: Mesenchymal Stem Cells (MSCs) are one of the essential members of Bone Marrow (BM) microenvironment and the cells affect normal and malignant cells in BM milieu. One of the most important hematological malignancies is Multiple Myeloma (MM). Numerous studies reported various effects of MSCs on myeloma cells. MSCs initiate various signaling pathways in myeloma cells, particularly NF-kβ. NF-kβ signaling pathway plays pivotal role in the survival, proliferation and resistance of myeloma cells to the anticancer drugs, therefore this pathway can be said to be a vital target for cancer therapy. This study examined the relationship between U266 cells and MSCs. Methods: U266 cells were cultured with Umbilical Cord Blood derived-MSCs (UCB-MSCs) and Conditioned Medium (C.M). Effect of UCB-MSCs and C.M on proliferation rate and CD54 expression of U266 cells were examined with MTT assay and Flowcytometry respectively. Furthermore, expression of CXCL1, PECAM-1, JUNB, CCL2, CD44, CCL4, IL-6, and IL-8 were analyzed by Real Time-PCR (RT-PCR). Moreover, status of p65 protein in NF-kβ pathway assessed by western blotting. Results: Our findings confirm that UCB-MSCs support U266 cells proliferation and they increase CD54 expression. In addition, we demonstrate that UCB-MSCs alter the expression of CCL4, IL-6, IL-8, CXCL1 and the levels of phosphorylated p65 in U266 cells. Conclusion: Our study provides a novel sight to the role of MSCs in the activation of NF-kβ signaling pathway. So, NF-kβ signaling pathway will be targeted in future therapies against MM.

  6. Regenerative Effects of Mesenchymal Stem Cells: Contribution of Muse Cells, a Novel Pluripotent Stem Cell Type that Resides in Mesenchymal Cells

    OpenAIRE

    Mari Dezawa; Taeko Shigemoto; Fumitaka Ogura; Shohei Wakao; Yasumasa Kuroda

    2012-01-01

    Mesenchymal stem cells (MSCs) are easily accessible and safe for regenerative medicine. MSCs exert trophic, immunomodulatory, anti-apoptotic, and tissue regeneration effects in a variety of tissues and organs, but their entity remains an enigma. Because MSCs are generally harvested from mesenchymal tissues, such as bone marrow, adipose tissue, or umbilical cord as adherent cells, MSCs comprise crude cell populations and are heterogeneous. The specific cells responsible for each effect have no...

  7. Myogenic-induced mesenchymal stem cells are capable of modulating the immune response by regulatory T cells

    Directory of Open Access Journals (Sweden)

    Sunyoung Joo

    2014-02-01

    Full Text Available Cell therapy for patients who have intractable muscle disorders may require highly regenerative cells from young, healthy allogeneic donors. Mesenchymal stem cells are currently under clinical investigation because they are known to induce muscle regeneration and believed to be immune privileged, thus making them suitable for allogeneic applications. However, it is unclear whether allogeneic and myogenic-induced mesenchymal stem cells retain their immunomodulatory characteristics. Therefore, our aim was to evaluate the effects of mesenchymal stem cell differentiation on the immune characteristics of cells in vitro. We investigated the immunologic properties of mesenchymal stem cells after myogenic induction. Mesenchymal stem cells were obtained from C57BL/6 mice and the C3H/10T1/2 murine mesenchymal stem cell line. Two different 5-aza-2′-deoxycytidine doses (0.5 and 3 µM were evaluated for their effects on mesenchymal stem cell skeletal myogenic differentiation potential, immune antigen expression, and mixed lymphocytic reactions. Using a mixed lymphocytic reaction, we determined the optimal splenocyte proliferation inhibition dose. The induction of regulatory T cells was markedly increased by the addition of 3 µM 5-aza-2′-deoxycytidine–treated mesenchymal stem cells. Myogenic-induced mesenchymal stem cells do not elicit alloreactive lymphocyte proliferative responses and are able to modulate immune responses. These findings support the hypothesis that myogenic-induced mesenchymal stem cells may be transplantable across allogeneic barriers.

  8. Genetic Engineering of Mesenchymal Stem Cells and Its Application in Human Disease Therapy

    OpenAIRE

    Hodgkinson, Conrad P; Gomez, José A.; Mirotsou, Maria; Dzau, Victor J.

    2010-01-01

    Hodgkinson and colleagues review the current status of knowledge with respect to the genetic modifications being explored as a means to improve mesenchymal stem cell therapy for human diseases, with a particular focus on cardiovascular diseases.

  9. Acetylcholine secretion by motor neuron-like cells from umbilical cord mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    Xueyuan Liu; Dehua Li; Dong Jiang; Yan Fang

    2013-01-01

    Umbilical cord mesenchymal stem cel s were isolated by a double enzyme digestion method. The third passage of umbilical cord mesenchymal stem cel s was induced with heparin and/or basic fi-broblast growth factor. Results confirmed that cel morphology did not change after induction with basic fibroblast growth factor alone. However, neuronal morphology was visible, and microtu-bule-associated protein-2 expression and acetylcholine levels increased fol owing induction with heparin alone or heparin combined with basic fibroblast growth factor. Hb9 and choline acetyl-transferase expression was high fol owing inductive with heparin combined with basic fibroblast growth factor. Results indicate that the inductive effect of basic fibroblast growth factor alone was not obvious. Heparin combined with basic fibroblast growth factor noticeably promoted the differen-tiation of umbilical cord mesenchymal stem cel s into motor neuron-like cel s. Simultaneously, um-bilical cord mesenchymal stem cel s could secrete acetylcholine.

  10. Citalopram increases the differentiation efifcacy of bone marrow mesenchymal stem cells into neuronal-like cells

    Institute of Scientific and Technical Information of China (English)

    Javad Verdi; Seyed Abdolreza Mortazavi-Tabatabaei; Shiva Sharif; Hadi Verdi; Alireza Shoae-Hassani

    2014-01-01

    Several studies have demonstrated that selective serotonin reuptake inhibitor antidepressants can promote neuronal cell proliferation and enhance neuroplasticity both in vitro and in vivo. It is hypothesized that citalopram, a selective serotonin reuptake inhibitor, can promote the neuronal differentiation of adult bone marrow mesenchymal stem cells. Citalopram strongly enhanced neuronal characteristics of the cells derived from bone marrow mesenchymal stem cells. The rate of cell death was decreased in citalopram-treated bone marrow mesenchymal stem cells than in control cells in neurobasal medium. In addition, the cumulative population doubling level of the citalopram-treated cells was signiifcantly increased compared to that of control cells. Also BrdU incorporation was elevated in citalopram-treated cells. These ifndings suggest that citalopram can improve the neuronal-like cell differentiation of bone marrow mesenchymal stem cells by increasing cell proliferation and survival while maintaining their neuronal characteristics.

  11. Tumour-Derived Interleukin-1 Beta Induces Pro-inflammatory Response in Human Mesenchymal Stem Cells

    DEFF Research Database (Denmark)

    Alajez, Nehad M; Al-toub, Mashael; Almusa, Abdulaziz

    Problem Studying cancer tumors microenvironment may reveal a novel role in driving cancer progression and metastasis. The biological interaction between stromal (mesenchymal) stem cells (MSCs) and cancer cells remains incompletely understood. Herein, we investigated the effects of tumor cells’ se...

  12. Intravenous transplantation of bone marrow mesenchymal stem cells promotes neural regeneration after traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    Fatemeh Anbari; Mohammad Ali Khalili; Ahmad Reza Bahrami; Arezoo Khoradmehr; Fatemeh Sadeghian; Farzaneh Fesahat; Ali Nabi

    2014-01-01

    To investigate the supplement of lost nerve cells in rats with traumatic brain injury by intrave-nous administration of allogenic bone marrow mesenchymal stem cells, this study established a Wistar rat model of traumatic brain injury by weight drop impact acceleration method and ad-ministered 3 × 106 rat bone marrow mesenchymal stem cells via the lateral tail vein. At 14 days after cell transplantation, bone marrow mesenchymal stem cells differentiated into neurons and astrocytes in injured rat cerebral cortex and rat neurological function was improved significant-ly. These findings suggest that intravenously administered bone marrow mesenchymal stem cells can promote nerve cell regeneration in injured cerebral cortex, which supplement the lost nerve cells.

  13. Evaluation of Proliferation and Development of Mesenchymal Stem Cell on Nanoporous PLLA Membrane Scaffold

    Directory of Open Access Journals (Sweden)

    MH Porghara

    2015-08-01

    Conclusion: Due to the biodegradable and non-toxic properties of nano PLLA membrane, it could increase the adhesion and proliferation of mesenchymal stem cells and these effects will exacerbated over time.

  14. Imaging gene expression in human mesenchymal stem cells: from small to large animals

    DEFF Research Database (Denmark)

    Willmann, Jürgen K; Paulmurugan, Ramasamy; Rodriguez-Porcel, Martin;

    2009-01-01

    To evaluate the feasibility of reporter gene imaging in implanted human mesenchymal stem cells (MSCs) in porcine myocardium by using clinical positron emission tomography (PET)-computed tomography (CT) scanning....

  15. Study on phenotypic and cytogenetic characteristics of bone marrow mesenchymal stem cells in myelodysplastic syndromes

    Institute of Scientific and Technical Information of China (English)

    宋陆茜

    2013-01-01

    Objective To investigate phenotype,cell differentiation and cytogenetic properties of bone marrow(BM) mesenchymal stem cells(MSC)separated from the myelodysplastic syndrome(MDS) patients,and to analyze cytogenetic

  16. The Role of Mesenchymal Stem Cells in Promoting Ovarian Cancer Growth and Spread

    Science.gov (United States)

    2014-12-01

    home to tissue injury. Monocyte polarization into the classically activated pro- inflam - matory macrophages (M1) occurs early on in tissue repair, whereas...AWARD NUMBER: W81XWH-12-1-0438 TITLE: The Role of Mesenchymal Stem Cells in Promoting Ovarian Cancer Growth and Spread PRINCIPAL INVESTIGATOR...SUBTITLE The Role of Mesenchymal Stem Cells in Promoting Ovarian Cancer Growth and Spread 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-12-1-0438 5c

  17. Human amnion mesenchymal stem cells promote proliferation and osteogenic differentiation in human bone marrow mesenchymal stem cells.

    Science.gov (United States)

    Wang, Yuli; Yin, Ying; Jiang, Fei; Chen, Ning

    2015-02-01

    Human amnion mesenchymal stem cells (HAMSCs) can be obtained from human amniotic membrane, a highly abundant and readily available tissue. HAMSC sources present fewer ethical issues, have low immunogenicity, anti-inflammatory properties, considerable advantageous characteristics, and are considered an attractive potential treatment material in the field of regenerative medicine. We used a co-culture system to determine whether HAMSCs could promote osteogenesis in human bone marrow mesenchymal stem cells (HBMSCs). We isolated HAMSCs from discarded amnion samples and collected them using pancreatin/collagenase digestion. We cultured HAMSCs and HBMSCSs in basal medium. Activity of alkaline phosphatase (ALP), an early osteogenesis marker, was increased in the co-culture system compared to the control single cultures, which we also confirmed by ALP staining. We used immunofluorescence testing to investigate the effects of co-culturing with HAMSCs on HBMSC proliferation, which revealed that the co-culturing enhanced EdU expression in HBMSCs. Western blotting and quantitative real-time PCR indicated that co-culturing promoted osteogenesis in HBMSCs. Furthermore, Alizarin red S staining revealed that extracellular matrix calcium levels in mineralized nodule formation produced by the co-cultures were higher than that in the controls. Using the same co-culture system, we further observed the effects of HAMSCs on osteogenic differentiation in primary osteoblasts by Western blotting, which better addressed the mechanism for HAMSCs in bone regeneration. The results showed HAMSCs are osteogenic and not only play a role in promoting HBMSC proliferation and osteogenic differentiation but also in osteoblasts, laying the foundation for new regenerative medicine methods.

  18. Eccentric exercise facilitates mesenchymal stem cell appearance in skeletal muscle.

    Directory of Open Access Journals (Sweden)

    M Carmen Valero

    Full Text Available Eccentric, or lengthening, contractions result in injury and subsequently stimulate the activation and proliferation of satellite stem cells which are important for skeletal muscle regeneration. The discovery of alternative myogenic progenitors in skeletal muscle raises the question as to whether stem cells other than satellite cells accumulate in muscle in response to exercise and contribute to post-exercise repair and/or growth. In this study, stem cell antigen-1 (Sca-1 positive, non-hematopoetic (CD45⁻ cells were evaluated in wild type (WT and α7 integrin transgenic (α7Tg mouse muscle, which is resistant to injury yet liable to strain, 24 hr following a single bout of eccentric exercise. Sca-1⁺CD45⁻ stem cells were increased 2-fold in WT muscle post-exercise. The α7 integrin regulated the presence of Sca-1⁺ cells, with expansion occurring in α7Tg muscle and minimal cells present in muscle lacking the α7 integrin. Sca-1⁺CD45⁻ cells isolated from α7Tg muscle following exercise were characterized as mesenchymal-like stem cells (mMSCs, predominantly pericytes. In vitro multiaxial strain upregulated mMSC stem cells markers in the presence of laminin, but not gelatin, identifying a potential mechanistic basis for the accumulation of these cells in muscle following exercise. Transplantation of DiI-labeled mMSCs into WT muscle increased Pax7⁺ cells and facilitated formation of eMHC⁺DiI⁻ fibers. This study provides the first demonstration that mMSCs rapidly appear in skeletal muscle in an α7 integrin dependent manner post-exercise, revealing an early event that may be necessary for effective repair and/or growth following exercise. The results from this study also support a role for the α7 integrin and/or mMSCs in molecular- and cellular-based therapeutic strategies that can effectively combat disuse muscle atrophy.

  19. Clinical Applications of Mesenchymal Stem Cells in Chronic Diseases

    Directory of Open Access Journals (Sweden)

    Andrea Farini

    2014-01-01

    Full Text Available Extraordinary progress in understanding several key features of stem cells has been made in the last ten years, including definition of the niche, and identification of signals regulating mobilization and homing as well as partial understanding of the mechanisms controlling self-renewal, commitment, and differentiation. This progress produced invaluable tools for the development of rational cell therapy protocols that have yielded positive results in preclinical models of genetic and acquired diseases and, in several cases, have entered clinical experimentation with positive outcome. Adult mesenchymal stem cells (MSCs are nonhematopoietic cells with multilineage potential to differentiate into various tissues of mesodermal origin. They can be isolated from bone marrow and other tissues and have the capacity to extensively proliferate in vitro. Moreover, MSCs have also been shown to produce anti-inflammatory molecules which can modulate humoral and cellular immune responses. Considering their regenerative potential and immunoregulatory effect, MSC therapy is a promising tool in the treatment of degenerative, inflammatory, and autoimmune diseases. It is obvious that much work remains to be done to increase our knowledge of the mechanisms regulating development, homeostasis, and tissue repair and thus to provide new tools to implement the efficacy of cell therapy trials.

  20. Genetic Engineering of Mesenchymal Stem Cells for Regenerative Medicine.

    Science.gov (United States)

    Nowakowski, Adam; Walczak, Piotr; Janowski, Miroslaw; Lukomska, Barbara

    2015-10-01

    Mesenchymal stem cells (MSCs), which can be obtained from various organs and easily propagated in vitro, are one of the most extensively used types of stem cells and have been shown to be efficacious in a broad set of diseases. The unique and highly desirable properties of MSCs include high migratory capacities toward injured areas, immunomodulatory features, and the natural ability to differentiate into connective tissue phenotypes. These phenotypes include bone and cartilage, and these properties predispose MSCs to be therapeutically useful. In addition, MSCs elicit their therapeutic effects by paracrine actions, in which the metabolism of target tissues is modulated. Genetic engineering methods can greatly amplify these properties and broaden the therapeutic capabilities of MSCs, including transdifferentiation toward diverse cell lineages. However, cell engineering can also affect safety and increase the cost of therapy based on MSCs; thus, the advantages and disadvantages of these procedures should be discussed. In this review, the latest applications of genetic engineering methods for MSCs with regenerative medicine purposes are presented.

  1. Proteomic Applications in the Study of Human Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Jesús Mateos

    2014-02-01

    Full Text Available Mesenchymal stem cells (MSCs are undifferentiated cells with an unlimited capacity for self-renewal and able to differentiate towards specific lineages under appropriate conditions. MSCs are, a priori, a good target for cell therapy and clinical trials as an alternative to embryonic stem cells, avoiding ethical problems and the chance for malignant transformation in the host. However, regarding MSCs, several biological implications must be solved before their application in cell therapy, such as safe ex vivo expansion and manipulation to obtain an extensive cell quantity amplification number for use in the host without risk accumulation of genetic and epigenetic abnormalities. Cell surface markers for direct characterization of MSCs remain unknown, and the precise molecular mechanisms whereby growth factors stimulate their differentiation are still missing. In the last decade, quantitative proteomics has emerged as a promising set of techniques to address these questions, the answers to which will determine whether MSCs retain their potential for use in cell therapy. Proteomics provides tools to globally analyze cellular activity at the protein level. This proteomic profiling allows the elucidation of connections between broad cellular pathways and molecules that were previously impossible to determine using only traditional biochemical analysis. However; thus far, the results obtained must be orthogonally validated with other approaches. This review will focus on how these techniques have been applied in the evaluation of MSCs for their future applications in safe therapies.

  2. Proteomic Applications in the Study of Human Mesenchymal Stem Cells

    Science.gov (United States)

    Mateos, Jesús; Fernández Pernas, Pablo; Fafián Labora, Juan; Blanco, Francisco; Arufe, María del Carmen

    2014-01-01

    Mesenchymal stem cells (MSCs) are undifferentiated cells with an unlimited capacity for self-renewal and able to differentiate towards specific lineages under appropriate conditions. MSCs are, a priori, a good target for cell therapy and clinical trials as an alternative to embryonic stem cells, avoiding ethical problems and the chance for malignant transformation in the host. However, regarding MSCs, several biological implications must be solved before their application in cell therapy, such as safe ex vivo expansion and manipulation to obtain an extensive cell quantity amplification number for use in the host without risk accumulation of genetic and epigenetic abnormalities. Cell surface markers for direct characterization of MSCs remain unknown, and the precise molecular mechanisms whereby growth factors stimulate their differentiation are still missing. In the last decade, quantitative proteomics has emerged as a promising set of techniques to address these questions, the answers to which will determine whether MSCs retain their potential for use in cell therapy. Proteomics provides tools to globally analyze cellular activity at the protein level. This proteomic profiling allows the elucidation of connections between broad cellular pathways and molecules that were previously impossible to determine using only traditional biochemical analysis. However; thus far, the results obtained must be orthogonally validated with other approaches. This review will focus on how these techniques have been applied in the evaluation of MSCs for their future applications in safe therapies.

  3. Impairment of mesenchymal stem cells derived from oral leukoplakia.

    Science.gov (United States)

    Zhang, Zhihui; Song, Jiangyuan; Han, Ying; Mu, Dongdong; Su, Sha; Ji, Xiaoli; Liu, Hongwei

    2015-01-01

    Oral leukoplakia is one of the common precancerous lesions in oral mucosa. To compare the biological characteristics and regenerative capacities of mesenchymal stem cells (MSCs) from oral leukoplakia (epithelial hyperplasia and dysplasia) and normal oral mucosa, MSCs were isolated by enzyme digestion. Then these cells were identified by the expression of MSC related markers, STRO-1, CD105 and CD90, with the absent for the hematopoietic stem cell marker CD34 by flow cytometric detection. The self-renewal ability of MSCs from oral leukoplakia was enhanced, while the multipotent differentiation was descended, compared with MSCs from normal oral mucosa. Fibrin gel was used as a carrier for MSCs transplanted into immunocompromised mice to detect their regenerative capacity. The regenerative capacities of MSCs from oral leukoplakia became impaired partly. Collagen IV (Col IV) and matrix metalloproteinases-9 (MMP-9) were selected to analyze the potential mechanism for the functional changes of MSCs from oral leukoplakia by immunochemical and western blot analysis. The expression of Col IV was decreased and that of MMP-9 was increased by MSCs with the progression of oral leukoplakia, especially in MSCs from epithelial dysplasia. The imbalance between regenerative and metabolic self-regulatory functions of MSCs from oral leukoplakia may be related to the progression of this premalignant disorder.

  4. Geometric cues for directing the differentiation of mesenchymal stem cells

    Science.gov (United States)

    Kilian, Kristopher A.; Bugarija, Branimir; Lahn, Bruce T.; Mrksich, Milan

    2010-01-01

    Significant efforts have been directed to understanding the factors that influence the lineage commitment of stem cells. This paper demonstrates that cell shape, independent of soluble factors, has a strong influence on the differentiation of human mesenchymal stem cells (MSCs) from bone marrow. When exposed to competing soluble differentiation signals, cells cultured in rectangles with increasing aspect ratio and in shapes with pentagonal symmetry but with different subcellular curvature—and with each occupying the same area—display different adipogenesis and osteogenesis profiles. The results reveal that geometric features that increase actomyosin contractility promote osteogenesis and are consistent with in vivo characteristics of the microenvironment of the differentiated cells. Cytoskeletal-disrupting pharmacological agents modulate shape-based trends in lineage commitment verifying the critical role of focal adhesion and myosin-generated contractility during differentiation. Microarray analysis and pathway inhibition studies suggest that contractile cells promote osteogenesis by enhancing c-Jun N-terminal kinase (JNK) and extracellular related kinase (ERK1/2) activation in conjunction with elevated wingless-type (Wnt) signaling. Taken together, this work points to the role that geometric shape cues can play in orchestrating the mechanochemical signals and paracrine/autocrine factors that can direct MSCs to appropriate fates. PMID:20194780

  5. Mesenchymal stromal cells and hematopoietic stem cell transplantation.

    Science.gov (United States)

    Bernardo, Maria Ester; Fibbe, Willem E

    2015-12-01

    Mesenchymal stromal cells (MSCs) comprise a heterogeneous population of multipotent cells that can be isolated from various human tissues and culture-expanded ex vivo for clinical use. Due to their immunoregulatory properties and their ability to secrete growth factors, MSCs play a key role in the regulation of hematopoiesis and in the modulation of immune responses against allo- and autoantigens. In light of these properties, MSCs have been employed in clinical trials in the context of hematopoietic stem cell transplantation (HSCT) to facilitate engraftment of hematopoietic stem cells (HSCs) and to prevent graft failure, as well as to treat steroid-resistant acute graft-versus-host disease (GvHD). The available clinical evidence derived from these studies indicates that MSC administration is safe. Moreover, promising preliminary results in terms of efficacy have been reported in some clinical trials, especially in the treatment of acute GvHD. In this review we critically discuss recent advances in MSC therapy by reporting on the most relevant studies in the field of HSCT.

  6. Mesenchymal stem cell therapy for osteoarthritis: current perspectives.

    Science.gov (United States)

    Wyles, Cody C; Houdek, Matthew T; Behfar, Atta; Sierra, Rafael J

    2015-01-01

    Osteoarthritis (OA) is a painful chronic condition with a significant impact on quality of life. The societal burden imposed by OA is increasing in parallel with the aging population; however, no therapies have demonstrated efficacy in preventing the progression of this degenerative joint disease. Current mainstays of therapy include activity modification, conservative pain management strategies, weight loss, and if necessary, replacement of the affected joint. Mesenchymal stem cells (MSCs) are a multipotent endogenous population of progenitors capable of differentiation to musculoskeletal tissues. MSCs have a well-documented immunomodulatory role, managing the inflammatory response primarily through paracrine signaling. Given these properties, MSCs have been proposed as a potential regenerative cell therapy source for patients with OA. Research efforts are focused on determining the ideal source for derivation, as MSCs are native to several tissues. Furthermore, optimizing the mode of delivery remains a challenge both for appropriate localization of MSCs and for directed guidance toward stemming the local inflammatory process and initiating a regenerative response. Scaffolds and matrices with growth factor adjuvants may prove critical in this effort. The purpose of this review is to summarize the current state of MSC-based therapeutics for OA and discuss potential barriers that must be overcome for successful implementation of cell-based therapy as a routine treatment strategy in orthopedics.

  7. Mesenchymal stem cells support hepatocyte function in engineered liver grafts.

    Science.gov (United States)

    Kadota, Yoshie; Yagi, Hiroshi; Inomata, Kenta; Matsubara, Kentaro; Hibi, Taizo; Abe, Yuta; Kitago, Minoru; Shinoda, Masahiro; Obara, Hideaki; Itano, Osamu; Kitagawa, Yuko

    2014-01-01

    Recent studies suggest that organ decellularization is a promising approach to facilitate the clinical application of regenerative therapy by providing a platform for organ engineering. This unique strategy uses native matrices to act as a reservoir for the functional cells which may show therapeutic potential when implanted into the body. Appropriate cell sources for artificial livers have been debated for some time. The desired cell type in artificial livers is primary hepatocytes, but in addition, other supportive cells may facilitate this stem cell technology. In this context, the use of mesenchymal stem cells (MSC) is an option meeting the criteria for therapeutic organ engineering. Ideally, supportive cells are required to (1) reduce the hepatic cell mass needed in an engineered liver by enhancing hepatocyte function, (2) modulate hepatic regeneration in a paracrine fashion or by direct contact, and (3) enhance the preservability of parenchymal cells during storage. Here, we describe enhanced hepatic function achieved using a strategy of sequential infusion of cells and illustrate the advantages of co-cultivating bone marrow-derived MSCs with primary hepatocytes in the engineered whole-liver scaffold. These co-recellularized liver scaffolds colonized by MSCs and hepatocytes were transplanted into live animals. After blood flow was established, we show that expression of adhesion molecules and proangiogenic factors was upregulated in the graft.

  8. Mesenchymal Stem Cells Derived from Dental Pulp: A Review

    Directory of Open Access Journals (Sweden)

    Edgar Ledesma-Martínez

    2016-01-01

    Full Text Available The mesenchymal stem cells of dental pulp (DPSCs were isolated and characterized for the first time more than a decade ago as highly clonogenic cells that were able to generate densely calcified colonies. Now, DPSCs are considered to have potential as stem cell source for orthopedic and oral maxillofacial reconstruction, and it has been suggested that they may have applications beyond the scope of the stomatognathic system. To date, most studies have shown that, regardless of their origin in third molars, incisors, or exfoliated deciduous teeth, DPSCs can generate mineralized tissue, an extracellular matrix and structures type dentin, periodontal ligament, and dental pulp, as well as other structures. Different groups worldwide have designed and evaluated new efficient protocols for the isolation, expansion, and maintenance of clinically safe human DPSCs in sufficient numbers for various therapeutics protocols and have discussed the most appropriate route of administration, the possible contraindications to their clinical use, and the parameters to be considered for monitoring their clinical efficacy and proper biological source. At present, DPSC-based therapy is promising but because most of the available evidence was obtained using nonhuman xenotransplants, it is not a mature technology.

  9. Cardiac differentiation and electrophysiology characteristics of bone marrow mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    LIU Bo-wu; AI Shi-yi; L(U) An-lin; HOU Jing; HUANG Wei; LI Yao; HOU Zhao-lei; HOU Hong; DA Jing; YANG Na

    2012-01-01

    Objective To review the progress of cardiac differentiation and electrophysiological characteristics of bone marrow mesenchymal stem cells.Data sources The databases of PubMed,Springer Link,Science Direct and CNKI were retrieved for papers published from January 2000 to January 2012 with the key words of “bone marrow mesenchymal stem cells,cardiac or heart,electrophysiology or electrophysiological characteristics”.Study selection The articles concerned cardiac differentiation and electrophysiological characteristics of bone marrow mesenchymal stem cells were collected.After excluding papers that study purposes are not coincident with this review or contents duplicated,56 papers were internalized at last.Results For the treatment of myocardial infarction and myocardiac disease,the therapeutic effects of transplantation of bone marrow mesenchymal stem cells which have the ability to develop into functional myocardial cells by lots of methods have been proved by many researches.But the arrhythmogenic effect on ventricles affer transplantation of bone marrow mesenchymal stem cells derived myocardial cells is still controversial in animal models.Certainly,the low differentiation efficiency and heterogeneous development of electricial function could be the most important risk for proarrhythmia.Conclusion Many studies of cardiac differentiation of bone marrow mesenchymal stem cells have paid attention to improve the cardiac differentiation rate,and the electrophysiology characteristics of the differentiated cells should be concerned for the risk for proarrhythmia as well.

  10. Mesenchymal Stem Cell Therapy for the Treatment of Vocal Fold Scarring

    DEFF Research Database (Denmark)

    Wingstrand, Vibe Lindeblad; Grønhøj Larsen, Christian; Jensen, David H;

    2016-01-01

    OBJECTIVES: Therapy with mesenchymal stem cells exhibits potential for the development of novel interventions for many diseases and injuries. The use of mesenchymal stem cells in regenerative therapy for vocal fold scarring exhibited promising results to reduce stiffness and enhance the biomechan......OBJECTIVES: Therapy with mesenchymal stem cells exhibits potential for the development of novel interventions for many diseases and injuries. The use of mesenchymal stem cells in regenerative therapy for vocal fold scarring exhibited promising results to reduce stiffness and enhance...... the biomechanical properties of injured vocal folds. This study evaluated the biomechanical effects of mesenchymal stem cell therapy for the treatment of vocal fold scarring. DATA SOURCES: PubMed, Embase, the Cochrane Library and Google Scholar were searched. METHODS: Controlled studies that assessed...... the biomechanical effects of mesenchymal stem cell therapy for the treatment of vocal fold scarring were included. Primary outcomes were viscoelastic properties and mucosal wave amplitude. RESULTS: Seven preclinical animal studies (n = 152 single vocal folds) were eligible for inclusion. Evaluation of viscoelastic...

  11. The hematopoietic growth factor "erythropoietin" enhances the therapeutic effect of mesenchymal stem cells in Alzheimer's disease.

    Science.gov (United States)

    Khairallah, M I; Kassem, L A; Yassin, N A; El Din, M A Gamal; Zekri, M; Attia, M

    2014-01-01

    Alzheimer's disease is a neurodegenerative disorder clinically characterized by cognitive dysfunction and by deposition of amyloid plaques, neurofibrillary tangles in the brain. The study investigated the therapeutic effect of combined mesenchymal stem cells and erythropoietin on Alzheimer's disease. Five groups of mice were used: control group, Alzheimer's disease was induced in four groups by a single intraperitoneal injection of 0.8 mg kg(-1) lipopolysaccharide and divided as follows: Alzheimer's disease group, mesenchymal stem cells treated group by injecting mesenchymal stem cells into the tail vein (2 x 10(6) cells), erythropoietin treated group (40 microg kg(-1) b.wt.) injected intraperitoneally 3 times/week for 5 weeks and mesenchymal stem cells and erythropoietin treated group. Locomotor activity and memory were tested using open field and Y-maze. Histological, histochemical, immunohistochemical studies, morphometric measurements were examined in brain sections of all groups. Choline transferase activity, brain derived neurotrophic factor expression and mitochondrial swellings were assessed in cerebral specimens. Lipopolysaccharide decreased locomotor activity, memory, choline transferase activity and brain derived neurotrophic factor. It increased mitochondrial swelling, apoptotic index and amyloid deposition. Combined mesenchymal stem cells and erythropoietin markedly improved all these parameters. This study proved the effective role of mesenchymal stem cells in relieving Alzheimer's disease symptoms and manifestations; it highlighted the important role of erythropoietin in the treatment of Alzheimer's disease.

  12. Use of FK506 and bone marrow mesenchymal stem cells for rat hind limb allografts

    Institute of Scientific and Technical Information of China (English)

    Youxin Song; Zhujun Wang; Zhixue Wang; Hong Zhang; Xiaohui Li; Bin Chen

    2012-01-01

    Dark Agouti rat donor hind limbs were orthotopically transplanted into Lewis rat recipients to verify the effects of bone marrow mesenchymal stem cells on neural regeneration and functional recovery of allotransplanted limbs in the microenvironment of immunotolerance. bone marrow mesenchymal stem cells were intramuscularly (gluteus maximus) injected with FK506 (tacrolimus) daily, and were transplanted to the injured nerves. Results indicated that the allograft group not receiving therapy showed severe rejection, with transplanted limbs detaching at 10 days after transplantation with complete necrosis. The number of myelinated axons and Schwann cells in the FK506 and FK506 + bone marrow mesenchymal stem cells groups were significantly increased. We observed a lesser degree of gastrocnemius muscle degeneration, and increased polymorphic fibers along with other pathological changes in the FK506 + bone marrow mesenchymal stem cells group. The FK506 + bone marrow mesenchymal stem cells group showed significantly better recovery than the autograft and FK506 groups. The results demonstrated that FK506 improved the immune microenvironment. FK506 combined with bone marrow mesenchymal stem cells significantly promoted sciatic nerve regeneration, and improved sensory recovery and motor function in hind limb allotransplant.

  13. The endometrium as a source of mesenchymal stem cells for regenerative medicine.

    Science.gov (United States)

    Mutlu, Levent; Hufnagel, Demetra; Taylor, Hugh S

    2015-06-01

    Stem cell therapies have opened new frontiers in medicine with the possibility of regenerating lost or damaged cells. Embryonic stem cells, induced pluripotent stem cells, hematopoietic stem cells, and mesenchymal stem cells have been used to derive mature cell types for tissue regeneration and repair. However, the endometrium has emerged as an attractive, novel source of adult stem cells that are easily accessed and demonstrate remarkable differentiation capacity. In this review, we summarize our current understanding of endometrial stem cells and their therapeutic potential in regenerative medicine.

  14. Clinical Trials With Mesenchymal Stem Cells: An Update.

    Science.gov (United States)

    Squillaro, Tiziana; Peluso, Gianfranco; Galderisi, Umberto

    2016-01-01

    In the last year, the promising features of mesenchymal stem cells (MSCs), including their regenerative properties and ability to differentiate into diverse cell lineages, have generated great interest among researchers whose work has offered intriguing perspectives on cell-based therapies for various diseases. Currently the most commonly used adult stem cells in regenerative medicine, MSCs, can be isolated from several tissues, exhibit a strong capacity for replication in vitro, and can differentiate into osteoblasts, chondrocytes, and adipocytes. However, heterogeneous procedures for isolating and cultivating MSCs among laboratories have prompted the International Society for Cellular Therapy (ISCT) to issue criteria for identifying unique populations of these cells. Consequently, the isolation of MSCs according to ISCT criteria has produced heterogeneous, nonclonal cultures of stromal cells containing stem cells with different multipotent properties, committed progenitors, and differentiated cells. Though the nature and functions of MSCs remain unclear, nonclonal stromal cultures obtained from bone marrow and other tissues currently serve as sources of putative MSCs for therapeutic purposes, and several findings underscore their effectiveness in treating different diseases. To date, 493 MSC-based clinical trials, either complete or ongoing, appear in the database of the US National Institutes of Health. In the present article, we provide a comprehensive review of MSC-based clinical trials conducted worldwide that scrutinizes biological properties of MSCs, elucidates recent clinical findings and clinical trial phases of investigation, highlights therapeutic effects of MSCs, and identifies principal criticisms of the use of these cells. In particular, we analyze clinical trials using MSCs for representative diseases, including hematological disease, graft-versus-host disease, organ transplantation, diabetes, inflammatory diseases, and diseases in the liver, kidney

  15. Glial cell derived neurotrophic factor induces spermatogonial stem cell marker genes in chicken mesenchymal stem cells.

    Science.gov (United States)

    Boozarpour, Sohrab; Matin, Maryam M; Momeni-Moghaddam, Madjid; Dehghani, Hesam; Mahdavi-Shahri, Naser; Sisakhtnezhad, Sajjad; Heirani-Tabasi, Asieh; Irfan-Maqsood, Muhammad; Bahrami, Ahmad Reza

    2016-06-01

    Mesenchymal stem cells (MSCs) are known with the potential of multi-lineage differentiation. Advances in differentiation technology have also resulted in the conversion of MSCs to other kinds of stem cells. MSCs are considered as a suitable source of cells for biotechnology purposes because they are abundant, easily accessible and well characterized cells. Nowadays small molecules are introduced as novel and efficient factors to differentiate stem cells. In this work, we examined the potential of glial cell derived neurotrophic factor (GDNF) for differentiating chicken MSCs toward spermatogonial stem cells. MSCs were isolated and characterized from chicken and cultured under treatment with all-trans retinoic acid (RA) or glial cell derived neurotrophic factor. Expression analysis of specific genes after 7days of RA treatment, as examined by RT-PCR, proved positive for some germ cell markers such as CVH, STRA8, PLZF and some genes involved in spermatogonial stem cell maintenance like BCL6b and c-KIT. On the other hand, GDNF could additionally induce expression of POU5F1, and NANOG as well as other genes which were induced after RA treatment. These data illustrated that GDNF is relatively more effective in diverting chicken MSCs towards Spermatogonial stem cell -like cells in chickens and suggests GDNF as a new agent to obtain transgenic poultry, nevertheless, exploitability of these cells should be verified by more experiments.

  16. Therapeutic application of mesenchymal stem cell-derived exosomes: A promising cell-free therapeutic strategy in regenerative medicine.

    Science.gov (United States)

    Motavaf, M; Pakravan, K; Babashah, S; Malekvandfard, F; Masoumi, M; Sadeghizadeh, M

    2016-06-30

    Mesenchymal stem cells have emerged as promising therapeutic candidates in regenerative medicine. The mechanisms underlying mesenchymal stem cells regenerative properties were initially attributed to their engraftment in injured tissues and their subsequent transdifferentiation to repair and replace damaged cells. However, studies in animal models and patients indicated that the low number of transplanted mesenchymal stem cells localize to the target tissue and transdifferentiate to appropriate cell lineage. Instead the regenerative potential of mesenchymal stem cells has been found - at least in part - to be mediated via their paracrine actions. Recently, a secreted group of vesicles, called "exosome" has been identified as major mediator of mesenchymal stem cells therapeutic efficacy. In this review, we will summarize the current literature on administration of exosomes released by mesenchymal stem cells in regenerative medicine and suggest how they could help to improve tissue regeneration following injury.

  17. Function of mesenchymal stem cells following loading of gold nanotracers

    Directory of Open Access Journals (Sweden)

    et al

    2011-02-01

    Full Text Available Laura M Ricles1, Seung Yun Nam1,2, Konstantin Sokolov3,1, Stanislav Y Emelianov1,3, Laura J Suggs11Department of Biomedical Engineering, 2Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, USA; 3Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USABackground: Stem cells can differentiate into multiple cell types, and therefore can be used for cellular therapies, including tissue repair. However, the participation of stem cells in tissue repair and neovascularization is not well understood. Therefore, implementing a noninvasive, long-term imaging technique to track stem cells in vivo is needed to obtain a better understanding of the wound healing response. Generally, we are interested in developing an imaging approach to track mesenchymal stem cells (MSCs in vivo after delivery via a polyethylene glycol modified fibrin matrix (PEGylated fibrin matrix using MSCs loaded with gold nanoparticles as nanotracers. The objective of the current study was to assess the effects of loading MSCs with gold nanoparticles on cellular function.Methods: In this study, we utilized various gold nanoparticle formulations by varying size and surface coatings and assessed the efficiency of cell labeling using darkfield microscopy. We hypothesized that loading cells with gold nanotracers would not significantly alter cell function due to the inert and biocompatible characteristics of gold. The effect of nanoparticle loading on cell viability and cytotoxicity was analyzed using a LIVE/DEAD stain and an MTT assay. The ability of MSCs to differentiate into adipocytes and osteocytes after nanoparticle loading was also examined. In addition, nanoparticle loading and retention over time was assessed using inductively coupled plasma mass spectrometry (ICP-MS.Conclusion: Our results demonstrate that loading MSCs with gold nanotracers does not alter cell function and, based on the ICP

  18. Immortalized mesenchymal stem cells: an alternative to primary mesenchymal stem cells in neuronal differentiation and neuroregeneration associated studies

    Directory of Open Access Journals (Sweden)

    Gong Min

    2011-11-01

    Full Text Available Abstract Background Mesenchymal stem cells (MSCs can be induced to differentiate into neuronal cells under appropriate cellular conditions and transplanted in brain injury and neurodegenerative diseases animal models for neuroregeneration studies. In contrast to the embryonic stem cells (ESCs, MSCs are easily subject to aging and senescence because of their finite ability of self-renewal. MSCs senescence seriously affected theirs application prospects as a promising tool for cell-based regenerative medicine and tissue engineering. In the present study, we established a reversible immortalized mesenchymal stem cells (IMSCs line by using SSR#69 retrovirus expressing simian virus 40 large T (SV40T antigen as an alternative to primary MSCs. Methods The retroviral vector SSR#69 expressing simian virus 40 large T (SV40T antigen was used to construct IMSCs. IMSCs were identified by flow cytometry to detect cell surface makers. To investigate proliferation and differentiation potential of IMSCs, cell growth curve determination and mesodermal trilineage differentiation tests were performed. Neuronal differentiation characteristics of IMSCs were detected in vitro. Before IMSCs transplantation, we excluded its tumorigenicity in nude mice firstly. The Morris water maze tests and shuttle box tests were performed five weeks after HIBD models received cells transplantation therapy. Results In this study, reversible IMSCs were constructed successfully and had the similar morphology and cell surface makers as primary MSCs. IMSCs possessed better ability of proliferation and anti-senescence compared with primary MSCs, while maintained multilineage differentiation capacity. Neural-like cells derived from IMSCs had similar expressions of neural-specific genes, protein expression patterns and resting membrane potential (RMP compared with their counterparts derived from primary MSCs. There was no bump formation in nude mice subcutaneously injected with IMSCs. IMSCs

  19. Paracrine proangiopoietic effects of human umbilical cord blood-derived purified CD133+ cells--implications for stem cell therapies in regenerative medicine.

    Science.gov (United States)

    Ratajczak, Janina; Kucia, Magda; Mierzejewska, Kasia; Marlicz, Wojciech; Pietrzkowski, Zbigniew; Wojakowski, Wojciech; Greco, Nicholas J; Tendera, Michal; Ratajczak, Mariusz Z

    2013-02-01

    CD133+ cells purified from hematopoietic tissues are enriched mostly for hematopoietic stem/progenitor cells, but also contain some endothelial progenitor cells and very small embryonic-like stem cells. CD133+ cells, which are akin to CD34+ cells, are a potential source of stem cells in regenerative medicine. However, the lack of convincing donor-derived chimerism in the damaged organs of patients treated with these cells suggests that the improvement in function involves mechanisms other than a direct contribution to the damaged tissues. We hypothesized that CD133+ cells secrete several paracrine factors that play a major role in the positive effects observed after treatment and tested supernatants derived from these cells for the presence of such factors. We observed that CD133+ cells and CD133+ cell-derived microvesicles (MVs) express mRNAs for several antiapoptotic and proangiopoietic factors, including kit ligand, insulin growth factor-1, vascular endothelial growth factor, basic fibroblast growth factor, and interleukin-8. These factors were also detected in a CD133+ cell-derived conditioned medium (CM). More important, the CD133+ cell-derived CM and MVs chemoattracted endothelial cells and display proangiopoietic activity both in vitro and in vivo assays. This observation should be taken into consideration when evaluating clinical outcomes from purified CD133+ cell therapies in regenerative medicine.

  20. Transcriptional Dynamics of Immortalized Human Mesenchymal Stem Cells during Transformation.

    Directory of Open Access Journals (Sweden)

    Masao Takeuchi

    Full Text Available Comprehensive analysis of alterations in gene expression along with neoplastic transformation in human cells provides valuable information about the molecular mechanisms underlying transformation. To further address these questions, we performed whole transcriptome analysis to the human mesenchymal stem cell line, UE6E7T-3, which was immortalized with hTERT and human papillomavirus type 16 E6/E7 genes, in association with progress of transformation in these cells. At early stages of culture, UE6E7T-3 cells preferentially lost one copy of chromosome 13, as previously described; in addition, tumor suppressor genes, DNA repair genes, and apoptosis-activating genes were overexpressed. After the loss of chromosome 13, additional aneuploidy and genetic alterations that drove progressive transformation, were observed. At this stage, the cell line expressed oncogenes as well as genes related to anti-apoptotic functions, cell-cycle progression, and chromosome instability (CIN; these pro-tumorigenic changes were concomitant with a decrease in tumor suppressor gene expression. At later stages after prolong culture, the cells exhibited chromosome translocations, acquired anchorage-independent growth and tumorigenicity in nude mice, (sarcoma and exhibited increased expression of genes encoding growth factor and DNA repair genes, and decreased expression of adhesion genes. In particular, glypican-5 (GPC5, which encodes a cell-surface proteoglycan that might be a biomarker for sarcoma, was expressed at high levels in association with transformation. Patched (Ptc1, the cell surface receptor for hedgehog (Hh signaling, was also significantly overexpressed and co-localized with GPC5. Knockdown of GPC5 expression decreased cell proliferation, suggesting that it plays a key role in growth in U3-DT cells (transformants derived from UE6E7T-3 cells through the Hh signaling pathway. Thus, the UE6E7T-3 cell culture model is a useful tool for assessing the functional

  1. Células-tronco mesenquimais Mesenchymal stem cell

    Directory of Open Access Journals (Sweden)

    Betânia Souza Monteiro

    2010-02-01

    Full Text Available Dentre todas as células-tronco estudadas até o presente momento, as mesenquimais (MSC destacam-se por sua elevada plasticidade, podendo originar tecidos mesodermais e não mesodermais. Além disso, possuem características imunomoduladoras e imunossupressoras que ampliam as possibilidades de utilização terapêutica. As MSC secretam uma grande variedade de citocinas pró e anti-inflamatórias e fatores de crescimento e, por meio dessas moléculas bioativas, proporcionam a modulação da resposta inflamatória, o restabelecimento do suprimento vascular e a reparação adequada do tecido, contribuindo para a homeostasia tissular e imunológica sob condições fisiológicas. Também podem induzir as demais células presentes no nicho tecidual a secretarem outros fatores solúveis que estimulam a diferenciação dessas células indiferenciadas, favorecendo o processo de reparação. A terapia celular com MSC é uma alternativa terapêutica promissora, porém a compreensão da biologia dessas células ainda é uma ciência em formação. Este artigo tem por objetivo realizar uma breve revisão sobre as células mesenquimais indiferenciadas.Of all the stem cells studied so far, the mesenchymal stem cells (MSC stand out for their high plasticity and capacity of generating mesodermal and non-mesodermal tissues. In addition, immunomodulatory and immunosuppressive features that expand possibilities for therapeutic use are present in these cells. A variety of pro and anti-inflammatory cytokines and growth factors are secrete for MSC and provide a modulation of inflammatory response, re-establishment of vascular supply and adequate repair of the tissue, contributing to tissue homeostasis under physiologic conditions. Therefore, they can induce secretion of soluble factors that stimulate their differentiation by other cells present at the niche's tissue, promoting the repair process. Cell therapy using MSC is a promises therapeutic alternative, but

  2. Bone marrow mesenchymal stem cell therapy in ischemic stroke:mechanisms of action and treatment optimization strategies

    Institute of Scientific and Technical Information of China (English)

    Guihong Li; Fengbo Yu; Ting Lei; Haijun Gao; Peiwen Li; Yuxue Sun; Haiyan Huang; Qingchun Mu

    2016-01-01

    Animal and clinical studies have conifrmed the therapeutic effect of bone marrow mesenchymal stem cells on cerebral ischemia, but their mechanisms of action remain poorly understood. Here, we summarize the transplantation approaches, directional migration, differentiation, replacement, neural circuit reconstruction, angiogenesis, neurotrophic factor secretion, apoptosis, immunomodulation, multiple mechanisms of action, and optimization strategies for bone marrow mesenchymal stem cells in the treatment of ischemic stroke. We also explore the safety of bone marrow mesenchymal stem cell transplantation and conclude that bone marrow mesenchymal stem cell transplantation is an important direction for future treatment of cerebral ischemia. Determining the optimal timing and dose for the transplantation are important directions for future research.

  3. 12 hours after cerebral ischemia is the optimal time for bone marrow mesenchymal stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Seyed Mojtaba Hosseini

    2015-01-01

    Full Text Available Cell therapy using stem cell transplantation against cerebral ischemia has been reported. However, it remains controversial regarding the optimal time for cell transplantation and the transplantation route. Rat models of cerebral ischemia were established by occlusion of the middle cerebral artery. At 1, 12 hours, 1, 3, 5 and 7 days after cerebral ischemia, bone marrow mesenchymal stem cells were injected via the tail vein. At 28 days after cerebral ischemia, rat neurological function was evaluated using a 6-point grading scale and the pathological change of ischemic cerebral tissue was observed by hematoxylin-eosin staining. Under the fluorescence microscope, the migration of bone marrow mesenchymal stem cells was examined by PKH labeling. Caspase-3 activity was measured using spectrophotometry. The optimal neurological function recovery, lowest degree of ischemic cerebral damage, greatest number of bone marrow mesenchymal stem cells migrating to peri-ischemic area, and lowest caspase-3 activity in the ischemic cerebral tissue were observed in rats that underwent bone marrow mesenchymal stem cell transplantation at 12 hours after cerebral ischemia. These findings suggest that 12 hours after cerebral ischemia is the optimal time for tail vein injection of bone marrow mesenchymal stem cell transplantation against cerebral ischemia, and the strongest neuroprotective effect of this cell therapy appears at this time.

  4. Visual bone marrow mesenchymal stem cell transplantation in the repair of spinal cord injury

    Directory of Open Access Journals (Sweden)

    Rui-ping Zhang

    2015-01-01

    Full Text Available An important factor in improving functional recovery from spinal cord injury using stem cells is maximizing the number of transplanted cells at the lesion site. Here, we established a contusion model of spinal cord injury by dropping a weight onto the spinal cord at T 7-8 . Superparamagnetic iron oxide-labeled bone marrow mesenchymal stem cells were transplanted into the injured spinal cord via the subarachnoid space. An outer magnetic field was used to successfully guide the labeled cells to the lesion site. Prussian blue staining showed that more bone marrow mesenchymal stem cells reached the lesion site in these rats than in those without magnetic guidance or superparamagnetic iron oxide labeling, and immunofluorescence revealed a greater number of complete axons at the lesion site. Moreover, the Basso, Beattie and Bresnahan (BBB locomotor rating scale scores were the highest in rats with superparamagnetic labeling and magnetic guidance. Our data confirm that superparamagnetic iron oxide nanoparticles effectively label bone marrow mesenchymal stem cells and impart sufficient magnetism to respond to the external magnetic field guides. More importantly, superparamagnetic iron oxide-labeled bone marrow mesenchymal stem cells can be dynamically and non-invasively tracked in vivo using magnetic resonance imaging. Superparamagnetic iron oxide labeling of bone marrow mesenchymal stem cells coupled with magnetic guidance offers a promising avenue for the clinical treatment of spinal cord injury.

  5. 12 hours after cerebral ischemia is the optimal time for bone marrow mesenchymal stem cell transplantation

    Institute of Scientific and Technical Information of China (English)

    Seyed Mojtaba Hosseini; Mohammad Farahmandnia; Zahra Razi; Somayeh Delavarifar; Benafsheh Shakibajahromi

    2015-01-01

    Cell therapy using stem cell transplantation against cerebral ischemia has been reported. However, it remains controversial regarding the optimal time for cell transplantation and the transplantation route. Rat models of cerebral ischemia were established by occlusion of the middle cerebral artery. At 1, 12 hours, 1, 3, 5 and 7 days after cerebral ischemia, bone marrow mesenchymal stem cells were injected via the tail vein. At 28 days after cerebral ischemia, rat neurological function was evaluated using a 6-point grading scale and the pathological change of ischemic cerebral tissue was observed by hematoxylin-eosin staining. Under the lfuorescence microscope, the migration of bone marrow mesenchymal stem cells was examined by PKH labeling. Caspase-3 activity was measured using spectrophotometry. The optimal neurological function recovery, lowest degree of ischemic cerebral damage, greatest number of bone marrow mesenchymal stem cells migrating to peri-ischemic area, and lowest caspase-3 activity in the ischemic cerebral tissue were observed in rats that underwent bone marrow mesenchymal stem cell transplantation at 12 hours after cerebral ischemia. These ifndings suggest that 12 hours after cerebral ischemia is the optimal time for tail vein injection of bone marrow mesenchymal stem cell transplantation against cerebral ischemia, and the strongest neuroprotective effect of this cell therapy appears at this time.

  6. visual bone marrow mesenchymal stem cell transplantation in the repair of spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Rui-ping Zhang; Cheng Xu; Yin Liu; Jian-ding Li; Jun Xie

    2015-01-01

    An important factor in improving functional recovery from spinal cord injury using stem cells is maximizing the number of transplanted cells at the lesion site. Here, we established a contusion model of spinal cord injury by dropping a weight onto the spinal cord at T7–8. Superparamagnet-ic iron oxide-labeled bone marrow mesenchymal stem cells were transplanted into the injured spinal cordvia the subarachnoid space. An outer magnetic ifeld was used to successfully guide the labeled cells to the lesion site. Prussian blue staining showed that more bone marrow mesen-chymal stem cells reached the lesion site in these rats than in those without magnetic guidance or superparamagnetic iron oxide labeling, and immunolfuorescence revealed a greater number of complete axons at the lesion site. Moreover, the Basso, Beattie and Bresnahan (BBB) locomotor rating scale scores were the highest in rats with superparamagnetic labeling and magnetic guid-ance. Our data conifrm that superparamagnetic iron oxide nanoparticles effectively label bone marrow mesenchymal stem cells and impart sufficient magnetism to respond to the external magnetic ifeld guides. More importantly, superparamagnetic iron oxide-labeled bone marrow mesenchymal stem cells can be dynamically and non-invasively trackedin vivo using magnetic resonance imaging. Superparamagnetic iron oxide labeling of bone marrow mesenchymal stem cells coupled with magnetic guidance offers a promising avenue for the clinical treatment of spinal cord injury.

  7. Titanium phosphate glass microcarriers induce enhanced osteogenic cell proliferation and human mesenchymal stem cell protein expression

    Directory of Open Access Journals (Sweden)

    Nilay J Lakhkar

    2015-11-01

    Full Text Available In this study, we have developed 50- to 100-µm-sized titanium phosphate glass microcarriers (denoted as Ti5 that show enhanced proliferation of human mesenchymal stem cells and MG63 osteosarcoma cells, as well as enhanced human mesenchymal stem cell expression of bone differentiation markers, in comparison with commercially available glass microspheres at all time points. We also demonstrate that these microcarriers provide superior human mesenchymal stem cell proliferation with conventional Dulbecco’s Modified Eagle medium than with a specially developed commercial stem cell medium. The microcarrier proliferative capacity is revealed by a 24-fold increase in MG63 cell numbers in spinner flask bioreactor studies performed over a 7-day period, versus only a 6-fold increase in control microspheres under the same conditions; the corresponding values of Ti5 and control microspheres under static culture are 8-fold and 7-fold, respectively. The capability of guided osteogenic differentiation is confirmed by ELISAs for bone morphogenetic protein-2 and osteopontin, which reveal significantly greater expression of these markers, especially osteopontin, by human mesenchymal stem cells on the Ti5 microspheres than on the control. Scanning electron microscopy and confocal laser scanning microscopy images reveal favorable MG63 and human mesenchymal stem cell adhesion on the Ti5 microsphere surfaces. Thus, the results demonstrate the suitability of the developed microspheres for use as microcarriers in bone tissue engineering applications.

  8. Calcium phosphate thin films enhance the response of human mesenchymal stem cells to nanostructured titanium surfaces

    Directory of Open Access Journals (Sweden)

    Mura M McCafferty

    2014-05-01

    Full Text Available The development of biomaterial surfaces possessing the topographical cues that can promote mesenchymal stem cell recruitment and, in particular, those capable of subsequently directing osteogenic differentiation is of increasing importance for the advancement of tissue engineering. While it is accepted that it is the interaction with specific nanoscale topography that induces mesenchymal stem cell differentiation, the potential for an attendant bioactive chemistry working in tandem with such nanoscale features to enhance this effect has not been considered to any great extent. This article presents a study of mesenchymal stem cell response to conformal bioactive calcium phosphate thin films sputter deposited onto a polycrystalline titanium nanostructured surface with proven capability to directly induce osteogenic differentiation in human bone marrow–derived mesenchymal stem cells. The sputter deposited surfaces supported high levels of human bone marrow–derived mesenchymal stem cell adherence and proliferation, as determined by DNA quantification. Furthermore, they were also found to be capable of directly promoting significant levels of osteogenic differentiation. Specifically, alkaline phosphatase activity, gene expression and immunocytochemical localisation of key osteogenic markers revealed that the nanostructured titanium surfaces and the bioactive calcium phosphate coatings could direct the differentiation towards an osteogenic lineage. Moreover, the addition of the calcium phosphate chemistry to the topographical profile of the titanium was found to induce increased human bone marrow–derived mesenchymal stem cell differentiation compared to that observed for either the titanium or calcium phosphate coating without an underlying nanostructure. Hence, the results presented here highlight that a clear benefit can be achieved from a surface engineering strategy that combines a defined surface topography with an attendant, conformal

  9. Platelet lysates produced from expired platelet concentrates support growth and osteogenic differentiation of mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Sandra Mjoll Jonsdottir-Buch

    Full Text Available BACKGROUND: Mesenchymal stem cells are promising candidates in regenerative cell therapy. Conventional culture methods involve the use of animal substances, specifically fetal bovine serum as growth supplement. Since the use of animal-derived products is undesirable for human applications, platelet lysates produced from human platelets are an attractive alternative. This is especially true if platelet lysates from already approved transfusion units at blood banks can be utilized. The purpose of this study was to produce human platelet lysates from expired, blood bank-approved platelet concentrates and evaluate their use as growth supplement in the culture of mesenchymal stem cells. METHODOLOGY/PRINCIPAL FINDINGS: In this study, bone marrow-derived mesenchymal stem cells were cultured with one of three culture supplements; fetal bovine serum, lysates from freshly prepared human platelet concentrates, or lysates from expired human platelet concentrates. The effects of these platelet-derived culture supplements on basic mesenchymal stem cell characteristics were evaluated. All cultures maintained the typical mesenchymal stem cell surface marker expression, trilineage differentiation potential, and the ability to suppress in vitro immune responses. However, mesenchymal stem cells supplemented with platelet lysates proliferated faster than traditionally cultured cells and increased the expression of the osteogenic marker gene RUNX-2; yet no difference between the use of fresh and expired platelet concentrates was observed. CONCLUSION/SIGNIFICANCE: Our findings suggest that human platelet lysates produced from expired platelet concentrates can be used as an alternative to fetal bovine serum for mesenchymal stem cell culture to the same extent as lysates from fresh platelets.

  10. Epigenetic dysregulation in mesenchymal stem cell aging and spontaneous differentiation.

    Directory of Open Access Journals (Sweden)

    Zhilong Li

    Full Text Available BACKGROUND: Mesenchymal stem cells (MSCs hold great promise for the treatment of difficult diseases. As MSCs represent a rare cell population, ex vivo expansion of MSCs is indispensable to obtain sufficient amounts of cells for therapies and tissue engineering. However, spontaneous differentiation and aging of MSCs occur during expansion and the molecular mechanisms involved have been poorly understood. METHODOLOGY/PRINCIPAL FINDINGS: Human MSCs in early and late passages were examined for their expression of genes involved in osteogenesis to determine their spontaneous differentiation towards osteoblasts in vitro, and of genes involved in self-renewal and proliferation for multipotent differentiation potential. In parallel, promoter DNA methylation and hostone H3 acetylation levels were determined. We found that MSCs underwent aging and spontaneous osteogenic differentiation upon regular culture expansion, with progressive downregulation of TERT and upregulation of osteogenic genes such as Runx2 and ALP. Meanwhile, the expression of genes associated with stem cell self-renewal such as Oct4 and Sox2 declined markedly. Notably, the altered expression of these genes were closely associated with epigenetic dysregulation of histone H3 acetylation in K9 and K14, but not with methylation of CpG islands in the promoter regions of most of these genes. bFGF promoted MSC proliferation and suppressed its spontaneous osteogenic differentiation, with corresponding changes in histone H3 acetylation in TERT, Oct4, Sox2, Runx2 and ALP genes. CONCLUSIONS/SIGNIFICANCE: Our results indicate that histone H3 acetylation, which can be modulated by extrinsic signals, plays a key role in regulating MSC aging and differentiation.

  11. Mesenchymal stem cell conditioning promotes rat oligodendroglial cell maturation.

    Directory of Open Access Journals (Sweden)

    Janusz Joachim Jadasz

    Full Text Available Oligodendroglial progenitor/precursor cells (OPCs represent the main cellular source for the generation of new myelinating oligodendrocytes in the adult central nervous system (CNS. In demyelinating diseases such as multiple sclerosis (MS myelin repair activities based on recruitment, activation and differentiation of resident OPCs can be observed. However, the overall degree of successful remyelination is limited and the existence of an MS-derived anti-oligodendrogenic milieu prevents OPCs from contributing to myelin repair. It is therefore of considerable interest to understand oligodendroglial homeostasis and maturation processes in order to enable the development of remyelination therapies. Mesenchymal stem cells (MSC have been shown to exert positive immunomodulatory effects, reduce demyelination, increase neuroprotection and to promote adult neural stem cell differentiation towards the oligodendroglial lineage. We here addressed whether MSC secreted factors can boost the OPC's oligodendrogenic capacity in a myelin non-permissive environment. To this end, we analyzed cellular morphologies, expression and regulation of key factors involved in oligodendroglial fate and maturation of primary rat cells upon incubation with MSC-conditioned medium. This demonstrated that MSC-derived soluble factors promote and accelerate oligodendroglial differentiation, even under astrocytic endorsing conditions. Accelerated maturation resulted in elevated levels of myelin expression, reduced glial fibrillary acidic protein expression and was accompanied by downregulation of prominent inhibitory differentiation factors such as Id2 and Id4. We thus conclude that apart from their suggested application as potential anti-inflammatory and immunomodulatory MS treatment, these cells might also be exploited to support endogenous myelin repair activities.

  12. IFNγ and B7-H1 in the immunology of mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ Mesenchymal stem cells (MSCs) are found in multiple organs in the fetus,cord blood and adult tissues [1]. However, in adults, the bone marrow is the major source of these stem cells. MSCs surround the blood vessels of bone marrow and are also in contact with the trabeculae [2].

  13. Mesenchymal Stem Cells in the Treatment of Traumatic Brain Injury

    Science.gov (United States)

    Hasan, Anwarul; Deeb, George; Rahal, Rahaf; Atwi, Khairallah; Mondello, Stefania; Marei, Hany Elsayed; Gali, Amr; Sleiman, Eliana

    2017-01-01

    Traumatic brain injury (TBI) is characterized by a disruption in the normal function of the brain due to an injury following a trauma, which can potentially cause severe physical, cognitive, and emotional impairment. The primary insult to the brain initiates secondary injury cascades consisting of multiple complex biochemical responses of the brain that significantly influence the overall severity of the brain damage and clinical sequelae. The use of mesenchymal stem cells (MSCs) offers huge potential for application in the treatment of TBI. MSCs have immunosuppressive properties that reduce inflammation in injured tissue. As such, they could be used to modulate the secondary mechanisms of injury and halt the progression of the secondary insult in the brain after injury. Particularly, MSCs are capable of secreting growth factors that facilitate the regrowth of neurons in the brain. The relative abundance of harvest sources of MSCs also makes them particularly appealing. Recently, numerous studies have investigated the effects of infusion of MSCs into animal models of TBI. The results have shown significant improvement in the motor function of the damaged brain tissues. In this review, we summarize the recent advances in the application of MSCs in the treatment of TBI. The review starts with a brief introduction of the pathophysiology of TBI, followed by the biology of MSCs, and the application of MSCs in TBI treatment. The challenges associated with the application of MSCs in the treatment of TBI and strategies to address those challenges in the future have also been discussed.

  14. Immunomodulatory effect of Mesenchymal Stem Cells on B cells

    Directory of Open Access Journals (Sweden)

    Marcella eFranquesa

    2012-07-01

    Full Text Available The research on T cell immunosuppression therapies has attracted most of the attention in clinical transplantation. However, B cells and humoral immune responses are increasingly acknowledged as crucial mediators of chronic allograft rejection. Indeed, humoral immune responses can lead to renal allograft rejection even in patients whose cell-mediated immune responses are well controlled. On the other hand, newly studied B cell subsets with regulatory effects have been linked to tolerance achievement in transplantation. Better understanding of the regulatory and effector B cell responses may therefore lead to new therapeutic approaches.Mesenchymal Stem Cells (MSC are arising as a potent therapeutic tool in transplantation due to their regenerative and immunomodulatory properties. The research on MSCs has mainly focused on their effects on T cells and although data regarding the modulatory effects of MSCs on alloantigen-specific humoral response in humans is scarce, it has been demonstrated that MSCs significantly affect B cell functioning. In the present review we will analyze and discuss the results in this field.

  15. Allogeneic Mesenchymal Stem Cell Treatment Induces Specific Alloantibodies in Horses

    Directory of Open Access Journals (Sweden)

    Sean D. Owens

    2016-01-01

    Full Text Available Background. It is unknown whether horses that receive allogeneic mesenchymal stem cells (MSCs injections develop specific humoral immune response. Our goal was to develop and validate a flow cytometric MSC crossmatch procedure and to determine if horses that received allogeneic MSCs in a clinical setting developed measurable antibodies following MSC administration. Methods. Serum was collected from a total of 19 horses enrolled in 3 different research projects. Horses in the 3 studies all received unmatched allogeneic MSCs. Bone marrow (BM or adipose tissue derived MSCs (ad-MSCs were administered via intravenous, intra-arterial, intratendon, or intraocular routes. Anti-MSCs and anti-bovine serum albumin antibodies were detected via flow cytometry and ELISA, respectively. Results. Overall, anti-MSC antibodies were detected in 37% of the horses. The majority of horses (89% were positive for anti-bovine serum albumin (BSA antibodies prior to and after MSC injection. Finally, there was no correlation between the amount of anti-BSA antibody and the development of anti-MSC antibodies. Conclusion. Anti allo-MSC antibody development was common; however, the significance of these antibodies is unknown. There was no correlation between either the presence or absence of antibodies and the percent antibody binding to MSCs and any adverse reaction to a MSC injection.

  16. Mesenchymal stem cells: potential in treatment of neurodegenerative diseases.

    Science.gov (United States)

    Tanna, Tanmay; Sachan, Vatsal

    2014-01-01

    Mesenchymal Stem Cells or Marrow Stromal Cells (MSCs) have long been viewed as a potent tool for regenerative cell therapy. MSCs are easily accessible from both healthy donor and patient tissue and expandable in vitro on a therapeutic scale without posing significant ethical or procedural problems. MSC based therapies have proven to be effective in preclinical studies for graft versus host disease, stroke, myocardial infarction, pulmonary fibrosis, autoimmune disorders and many other conditions and are currently undergoing clinical trials at a number of centers all over the world. MSCs are also being extensively researched as a therapeutic tool against neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic Lateral Sclerosis (ALS), Huntington's disease (HD) and Multiple Sclerosis (MS). MSCs have been discussed with regard to two aspects in the context of neurodegenerative diseases: their ability to transdifferentiate into neural cells under specific conditions and their neuroprotective and immunomodulatory effects. When transplanted into the brain, MSCs produce neurotrophic and growth factors that protect and induce regeneration of damaged tissue. Additionally, MSCs have also been explored as gene delivery vehicles, for example being genetically engineered to over express glial-derived or brain-derived neurotrophic factor in the brain. Clinical trials involving MSCs are currently underway for MS, ALS, traumatic brain injuries, spinal cord injuries and stroke. In the present review, we explore the potential that MSCs hold with regard to the aforementioned neurodegenerative diseases and the current scenario with reference to the same.

  17. Mesenchymal stem cells for the treatment of neurodegenerative disease.

    Science.gov (United States)

    Joyce, Nanette; Annett, Geralyn; Wirthlin, Louisa; Olson, Scott; Bauer, Gerhard; Nolta, Jan A

    2010-11-01

    Mesenchymal stem cells/marrow stromal cells (MSCs) present a promising tool for cell therapy, and are currently being tested in US FDA-approved clinical trials for myocardial infarction, stroke, meniscus injury, limb ischemia, graft-versus-host disease and autoimmune disorders. They have been extensively tested and proven effective in preclinical studies for these and many other disorders. There is currently a great deal of interest in the use of MSCs to treat neurodegenerative diseases, in particular for those that are fatal and difficult to treat, such as Huntington's disease and amyotrophic lateral sclerosis. Proposed regenerative approaches to neurological diseases using MSCs include cell therapies in which cells are delivered via intracerebral or intrathecal injection. Upon transplantation into the brain, MSCs promote endogenous neuronal growth, decrease apoptosis, reduce levels of free radicals, encourage synaptic connection from damaged neurons and regulate inflammation, primarily through paracrine actions. MSCs transplanted into the brain have been demonstrated to promote functional recovery by producing trophic factors that induce survival and regeneration of host neurons. Therapies will capitalize on the innate trophic support from MSCs or on augmented growth factor support, such as delivering brain-derived neurotrophic factor or glial-derived neurotrophic factor into the brain to support injured neurons, using genetically engineered MSCs as the delivery vehicles. Clinical trials for MSC injection into the CNS to treat traumatic brain injury and stroke are currently ongoing. The current data in support of applying MSC-based cellular therapies to the treatment of neurodegenerative disorders are discussed.

  18. Expression of Neural Markers by Undifferentiated Rat Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Dana Foudah

    2012-01-01

    Full Text Available The spontaneous expression of neural markers by mesenchymal stem cells (MSCs has been considered to be a demonstration of MSCs’ predisposition to differentiate towards neural lineages. In view of their application in cell therapy for neurodegenerative diseases, it is very important to deepen the knowledge about this distinctive biological property of MSCs. In this study, we evaluated the expression of neuronal and glial markers in undifferentiated rat MSCs (rMSCs at different culture passages (from early to late. rMSCs spontaneously expressed neural markers depending on culture passage, and they were coexpressed or not with the neural progenitor marker nestin. In contrast, the number of rMSCs expressing mesengenic differentiation markers was very low or even completely absent. Moreover, rMSCs at late culture passages were not senescent cells and maintained the MSC immunophenotype. However, their differentiation capabilities were altered. In conclusion, our results support the concept of MSCs as multidifferentiated cells and suggest the existence of immature and mature neurally fated rMSC subpopulations. A possible correlation between specific MSC subpopulations and specific neural lineages could optimize the use of MSCs in cell transplantation therapy for the treatment of neurological diseases.

  19. Novel supplier of mesenchymal stem cell: subacromial bursa.

    Science.gov (United States)

    Lhee, S-H; Jo, Y H; Kim, B Y; Nam, B M; Nemeno, J G; Lee, S; Yang, W; Lee, J I

    2013-10-01

    Mesenchymal stem cells (MSCs) are multipotent stromal elements that can differentiate into a variety of cell types. MSCs are good sources of therapeutic cells for degenerative diseases. For these reason, many researchers have focused on searching for other sources of MSCs. To obtain MSCs for clinical use requires surgery of the donor that therefore can induce donor morbidity, since the common sources at present are bone marrow and adipose tissues. In this study, we investigated the existence of MSCs in postoperative discarded tissues. Subacromial bursal tissues were obtained from the shoulders of 3 injured patients. The cells from the bursa tissues were isolated through treatment with collagenase. The isolated cells were then seeded and expanded by serial passaging under normal culture system. To evaluate MSC characteristics of the cells, their MSC markers were confirmed by mRNA and protein expression. Multipotent ability was assessed using differentiation media and immunohistochemistry. Cells from the bursa expressed MSCs markers-CD29, CD73, CD90, and PDGFRB (platelet-derived growth factor receptor-beta). Moreover, as to their multipotency, bursal cells differentiated into adipocytes (fat cells), osteocytes (bone cells), and chondrocytes (cartilage cells). In summary, we showed that MSCs could be generated from the subacromial bursa, which is medical waste after surgery.

  20. mTOR and the differentiation of mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    Xinxin Xiang; Jing Zhao; Geyang Xu; Yin Li; Weizhen Zhang

    2011-01-01

    The mammalian target of rapamycin (mTOR), an evolutionarily conserved serine-threonine protein kinase,belongs to the phosphoinositide 3-kinase (PI3K)-related kinase family, which contains a lipid kinase-like domain within their C-terminal region. Recent studies have revealed that mTOR as a critical intracellular molecule can sense the extracellular energy status and regulate the cell growth and proliferation in a variety of cells and tissues. This review summarizes our current understanding about the effects of mTOR on cell differentiation and tissue development, with an emphasis on the lineage determination of mesenchymal stem cells, mTOR can promote adipogenesis in white adipocytes, brown adipocytes, and muscle satellite cells, while rapamycin inhibits the adipogenic function of mTOR. mTOR signaling may function to affect osteoblast proliferation and differentiation, however, rapamycin has been reported to either inhibit or promote osteogenesis. Although the precise mechanism remains unclear, mTOR is indispensable for myogenesis. Depending on the cell type, rapamycin has been reported to inhibit, promote, or have no effect on myogenesis.

  1. Mesenchymal stem cell mechanobiology and emerging experimental platforms.

    Science.gov (United States)

    MacQueen, Luke; Sun, Yu; Simmons, Craig A

    2013-07-06

    Experimental control over progenitor cell lineage specification can be achieved by modulating properties of the cell's microenvironment. These include physical properties of the cell adhesion substrate, such as rigidity, topography and deformation owing to dynamic mechanical forces. Multipotent mesenchymal stem cells (MSCs) generate contractile forces to sense and remodel their extracellular microenvironments and thereby obtain information that directs broad aspects of MSC function, including lineage specification. Various physical factors are important regulators of MSC function, but improved understanding of MSC mechanobiology requires novel experimental platforms. Engineers are bridging this gap by developing tools to control mechanical factors with improved precision and throughput, thereby enabling biological investigation of mechanics-driven MSC function. In this review, we introduce MSC mechanobiology and review emerging cell culture platforms that enable new insights into mechanobiological control of MSCs. Our main goals are to provide engineers and microtechnology developers with an up-to-date description of MSC mechanobiology that is relevant to the design of experimental platforms and to introduce biologists to these emerging platforms.

  2. Human Mesenchymal Stem Cell Morphology and Migration on Microtextured Titanium

    Science.gov (United States)

    Banik, Brittany L.; Riley, Thomas R.; Platt, Christina J.; Brown, Justin L.

    2016-01-01

    The implant used in spinal fusion procedures is an essential component to achieving successful arthrodesis. At the cellular level, the implant impacts healing and fusion through a series of steps: first, mesenchymal stem cells (MSCs) need to adhere and proliferate to cover the implant; second, the MSCs must differentiate into osteoblasts; third, the osteoid matrix produced by the osteoblasts needs to generate new bone tissue, thoroughly integrating the implant with the vertebrate above and below. Previous research has demonstrated that microtextured titanium is advantageous over smooth titanium and PEEK implants for both promoting osteogenic differentiation and integrating with host bone tissue; however, no investigation to date has examined the early morphology and migration of MSCs on these surfaces. This study details cell spreading and morphology changes over 24 h, rate and directionality of migration 6–18 h post-seeding, differentiation markers at 10 days, and the long-term morphology of MSCs at 7 days, on microtextured, acid-etched titanium (endoskeleton), smooth titanium, and smooth PEEK surfaces. The results demonstrate that in all metrics, the two titanium surfaces outperformed the PEEK surface. Furthermore, the rough acid-etched titanium surface presented the most favorable overall results, demonstrating the random migration needed to efficiently cover a surface in addition to morphologies consistent with osteoblasts and preosteoblasts. PMID:27243001

  3. Epac Activation Regulates Human Mesenchymal Stem Cells Migration and Adhesion.

    Science.gov (United States)

    Yu, Jiao-Le; Deng, Ruixia; Chung, Sookja K; Chan, Godfrey Chi-Fung

    2016-04-01

    How to enhance the homing of human mesenchymal stem cells (hMSCs) to the target tissues remains a clinical challenge nowadays. To overcome this barrier, the mechanism responsible for the hMSCs migration and engraftment has to be defined. Currently, the exact mechanism involved in migration and adhesion of hMSCs remains unknown. Exchange protein directly activated by cAMP (Epac), a novel protein discovered in cAMP signaling pathway, may have a potential role in regulating cells adhesion and migration by triggering the downstream Rap family signaling cascades. However, the exact role of Epac in cells homing is elusive. Our study evaluated the role of Epac in the homing of hMSCs. We confirmed that hMSCs expressed functional Epac and its activation enhanced the migration and adhesion of hMSCs significantly. The Epac activation was further found to be contributed directly to the chemotactic responses induced by stromal cell derived factor-1 (SDF-1) which is a known chemokine in regulating hMSCs homing. These findings suggested Epac is connected to the SDF-1 signaling cascades. In conclusion, our study revealed that Epac plays a role in hMSCs homing by promoting adhesion and migration. Appropriate manipulation of Epac may enhance the homing of hMSCs and facilitate their future clinical applications.

  4. Mesenchymal Stem Cells Subpopulations: Application for Orthopedic Regenerative Medicine

    Directory of Open Access Journals (Sweden)

    Vanessa Pérez-Silos

    2016-01-01

    Full Text Available Research on mesenchymal stem cells (MSCs continues to progress rapidly. Nevertheless, the field faces several challenges, such as inherent cell heterogeneity and the absence of unique MSCs markers. Due to MSCs’ ability to differentiate into multiple tissues, these cells represent a promising tool for new cell-based therapies. However, for tissue engineering applications, it is critical to start with a well-defined cell population. Additionally, evidence that MSCs subpopulations may also feature distinct characteristics and regeneration potential has arisen. In this report, we present an overview of the identification of MSCs based on the expression of several surface markers and their current tissue sources. We review the use of MSCs subpopulations in recent years and the main methodologies that have addressed their isolation, and we emphasize the most-used surface markers for selection, isolation, and characterization. Next, we discuss the osteogenic and chondrogenic differentiation from MSCs subpopulations. We conclude that MSCs subpopulation selection is not a minor concern because each subpopulation has particular potential for promoting the differentiation into osteoblasts and chondrocytes. The accurate selection of the subpopulation advances possibilities suitable for preclinical and clinical studies and determines the safest and most efficacious regeneration process.

  5. Mesenchymal stem cells for treatment of aortic aneurysms

    Institute of Scientific and Technical Information of China (English)

    Aika; Yamawaki-Ogata; Ryotaro; Hashizume; Xian-Ming; Fu; Akihiko; Usui; Yuji; Narita

    2014-01-01

    An aortic aneurysm(AA) is a silent but life-threatening disease that involves rupture. It occurs mainly in aging and severe atherosclerotic damage of the aortic wall. Even though surgical intervention is effective to prevent rupture, surgery for the thoracic and thoraco-abdom-inal aorta is an invasive procedure with high mortality and morbidity. Therefore, an alternative strategy for treatment of AA is required. Recently, the molecular pathology of AA has been clarified. AA is caused by an imbalance between the synthesis and degradation of extracellular matrices in the aortic wall. Chronic inflam-mation enhances the degradation of matrices directly and indirectly, making control of the chronic inflamma-tion crucial for aneurysmal development. Meanwhile, mesenchymal stem cells(MSCs) are known to be ob-tained from an adult population and to differentiate into various types of cells. In addition, MSCs have not only the potential anti-inflammatory and immunosuppres-sive properties but also can be recruited into damagedtissue. MSCs have been widely used as a source for celltherapy to treat various diseases involving graft-versus-host disease, stroke, myocardial infarction, and chronicinflammatory disease such as Crohn’s disease clinically.Therefore, administration of MSCs might be availableto treat AA using anti-inflammatory and immnosup-pressive properties. This review provides a summary ofseveral studies on "Cell Therapy for Aortic Aneurysm"including our recent data, and we also discuss the pos-sibility of this kind of treatment.

  6. Mesenchymal stem cell ingrowth and differentiation on coralline hydroxyapatite scaffolds.

    Science.gov (United States)

    Mygind, Tina; Stiehler, Maik; Baatrup, Anette; Li, Haisheng; Zou, Xuenong; Flyvbjerg, Allan; Kassem, Moustapha; Bünger, Cody

    2007-02-01

    Culture of osteogenic cells on a porous scaffold could offer a new solution to bone grafting using autologous human mesenchymal stem cells (hMSC) from the patient. We compared coralline hydroxyapatite scaffolds with pore sizes of 200 and 500 microm for expansion and differentiation of hMSCs. We cultivated the hMSC statically or in spinner flasks for 1, 7, 14 and 21 days and found that the 200-microm pore scaffolds exhibited a faster rate of osteogenic differentiation than did the 500-microm pore scaffolds as shown by an alkaline phosphatase activity assay and real-time reverse transcriptase polymerase chain reaction for 10 osteogenic markers. The 500-microm scaffolds had increased proliferation rates and accommodated a higher number of cells (shown by DNA content, scanning electron microscopy and fluorescence microscopy). Thus the porosity of a 3D microporous biomaterial may be used to steer hMSC in a particular direction. We found that dynamic spinner flask cultivation of hMSC/scaffold constructs resulted in increased proliferation, differentiation and distribution of cells in scaffolds. Therefore, spinner flask cultivation is an easy-to-use inexpensive system for cultivating hMSCs on small to intermediate size 3D scaffolds.

  7. Insight into Reepithelialization: How Do Mesenchymal Stem Cells Perform?

    Directory of Open Access Journals (Sweden)

    Deyun Chen

    2016-01-01

    Full Text Available Wound reepithelialization is a cooperative multifactorial process dominated by keratinocyte migration, proliferation, and differentiation that restores the intact epidermal barrier to prevent infection and excessive moisture loss. However, in wounds that exhibit impaired wound healing, such as chronic nonhealing wounds or hypertrophic scars, the reepithelialization process has failed. Thus, it is necessary to explore a suitable way to mitigate these abnormalities to promote reepithelialization and achieve wound healing. Mesenchymal stem cells (MSCs have the capacity for self-renewal as well as potential multipotency. These cells play important roles in many biological processes, including anti-inflammation, cell migration, proliferation, and differentiation, and signal pathway activation or inhibition. The mechanism of the involvement of MSCs in reepithelialization is still not fully understood. An abundance of evidence has shown that MSCs participate in reepithelialization by inhibiting excessive inflammatory responses, secreting important factors, differentiating into multiple skin cell types, and recruiting other host cells. This review describes the evidence for the roles that MSCs appear to play in the reepithelialization process.

  8. Mesenchymal stem cell seeding promotes reendothelialization of the endovascular stent.

    Science.gov (United States)

    Wu, Xue; Wang, Guixue; Tang, Chaojun; Zhang, Dechuan; Li, Zhenggong; Du, Dingyuan; Zhang, Zhengcai

    2011-09-01

    This study is designed to make a novel cell seeding stent and to evaluate reendothelialization and anti-restenosis after the stent implantation. In comparison with cell seeding stents utilized in previous studies, Mesenchymal stem cells (MSCs) have advantages on promoting of issue repair. Thus it was employed to improve the reendothelialization effects of endovascular stent in present work. MSCs were isolated by density gradient centrifugation and determined as CD29(+) CD44(+) CD34(-) cells by immunofluorescence and immunocytochemistry; gluten and polylysine coated stents were prepared by ultrasonic atomization spray, and MSCs seeded stents were made through rotation culture according to the optimized conditions that were determined in previous studies. The results from animal experiments, in which male New Zealand white rabbits were used, show that the reendothelialization of MSCs coated stents can be completed within one month; in comparison with 316L stainless steel stents (316L SS stents) and gluten and polylysine coated stents, the intimal hyperplasia and in-stent restenosis are significantly inhibited by MSCs coated stents. Endovascular stent seeded with MSCs promotes reendothelialization and inhibits the intimal hyperplasia and in-stent restenosis compared with the 316L SS stents and the gluten and polylysine coated stents.

  9. Chondrogenic differentiation of mesenchymal stem cells: challenges and unfulfilled expectations.

    Science.gov (United States)

    Somoza, Rodrigo A; Welter, Jean F; Correa, Diego; Caplan, Arnold I

    2014-12-01

    Articular cartilage repair and regeneration provides a substantial challenge in Regenerative Medicine because of the high degree of morphological and mechanical complexity intrinsic to hyaline cartilage due, in part, to its extracellular matrix. Cartilage remains one of the most difficult tissues to heal; even state-of-the-art regenerative medicine technology cannot yet provide authentic cartilage resurfacing. Mesenchymal stem cells (MSCs) were once believed to be the panacea for cartilage repair and regeneration, but despite years of research, they have not fulfilled these expectations. It has been observed that MSCs have an intrinsic differentiation program reminiscent of endochondral bone formation, which they follow after exposure to specific reagents as a part of current differentiation protocols. Efforts have been made to avoid the resulting hypertrophic fate of MSCs; however, so far, none of these has recreated a fully functional articular hyaline cartilage without chondrocytes exhibiting a hypertrophic phenotype. We reviewed the current literature in an attempt to understand why MSCs have failed to regenerate articular cartilage. The challenges that must be overcome before MSC-based tissue engineering can become a front-line technology for successful articular cartilage regeneration are highlighted.

  10. Mesenchymal stem cells and cancer: friends or enemies?

    Science.gov (United States)

    Hong, In-Sun; Lee, Hwa-Yong; Kang, Kyung-Sun

    2014-10-01

    There is increasing evidence that mesenchymal stem cells (MSCs) have the ability to migrate and engraft into tumor sites and exert stimulatory effects on cancer cell growth, invasion and even metastasis through direct and/or indirect interaction with tumor cells. However, these pro-tumorigenic effects of MSCs are still being discovered and may even involve opposing effects. MSCs can be friends or enemies of cancer cells: they may stimulate tumor development by regulating immune surveillance, growth, and angiogenesis. On the other hand, they may inhibit tumor growth by inhibiting survival signaling such as Wnt and Akt pathway. MSCs have also been proposed as an attractive candidate for the delivery of anti-tumor agents, owing to their ability to home into tumor sites and to secrete cytokines. Detailed information about the mutual interactions between tumor cells and MSCs will undoubtedly lead to safer and more effective clinical therapy for tumors. In this article, we summarize a number of findings to provide current information on the potential roles of MSCs in tumor development; we then discuss the therapeutic potential of engineered MSCs to reveal any meaningful clinical applications.

  11. Mesenchymal Stem Cells Subpopulations: Application for Orthopedic Regenerative Medicine

    Science.gov (United States)

    Camacho-Morales, Alberto

    2016-01-01

    Research on mesenchymal stem cells (MSCs) continues to progress rapidly. Nevertheless, the field faces several challenges, such as inherent cell heterogeneity and the absence of unique MSCs markers. Due to MSCs' ability to differentiate into multiple tissues, these cells represent a promising tool for new cell-based therapies. However, for tissue engineering applications, it is critical to start with a well-defined cell population. Additionally, evidence that MSCs subpopulations may also feature distinct characteristics and regeneration potential has arisen. In this report, we present an overview of the identification of MSCs based on the expression of several surface markers and their current tissue sources. We review the use of MSCs subpopulations in recent years and the main methodologies that have addressed their isolation, and we emphasize the most-used surface markers for selection, isolation, and characterization. Next, we discuss the osteogenic and chondrogenic differentiation from MSCs subpopulations. We conclude that MSCs subpopulation selection is not a minor concern because each subpopulation has particular potential for promoting the differentiation into osteoblasts and chondrocytes. The accurate selection of the subpopulation advances possibilities suitable for preclinical and clinical studies and determines the safest and most efficacious regeneration process. PMID:27725838

  12. Clopidogrel Enhances Mesenchymal Stem Cell Proliferation Following Periodontitis.

    Science.gov (United States)

    Coimbra, L S; Steffens, J P; Alsadun, S; Albiero, M L; Rossa, C; Pignolo, R J; Spolidorio, L C; Graves, D T

    2015-12-01

    Bone formation is dependent on the differentiation of osteoblasts from mesenchymal stem cells (MSCs). In addition to serving as progenitors, MSCs reduce inflammation and produce factors that stimulate tissue formation. Upon injury, MSCs migrate to the periodontium, where they contribute to regeneration. We examined the effect of clopidogrel and aspirin on MSCs following induction of periodontitis in rats by placement of ligatures. We showed that after the removal of ligatures, which induces resolution of periodontal inflammation, clopidogrel had a significant effect on reducing the inflammatory infiltrate. It also increased the number of osteoblasts and MSCs. Mechanistically, the latter was linked to increased proliferation of MSCs in vivo and in vitro. When given prior to inducing periodontitis, clopidogrel had little effect on MSC or osteoblasts numbers. Applying aspirin before or after induction of periodontitis did not have a significant effect on the parameters measured. These results suggest that clopidogrel may have a positive effect on MSCs in conditions where a reparative process has been initiated.

  13. Mesenchymal Stem Cells Respond to Hypoxia by Increasing Diacylglycerols.

    Science.gov (United States)

    Lakatos, Kinga; Kalomoiris, Stefanos; Merkely, Béla; Nolta, Jan A; Fierro, Fernando A

    2016-02-01

    Mesenchymal stem cells (MSC) are currently being tested clinically for a plethora of conditions, with most approaches relying on the secretion of paracrine signals by MSC to modulate the immune system, promote wound healing, and induce angiogenesis. Hypoxia has been shown to affect MSC proliferation, differentiation, survival and secretory profile. Here, we investigate changes in the lipid composition of human bone marrow-derived MSC after exposure to hypoxia. Using mass spectrometry, we compared the lipid profiles of MSC derived from five different donors, cultured for two days in either normoxia (control) or hypoxia (1% oxygen). Hypoxia induced a significant increase of total triglycerides, fatty acids and diacylglycerols (DG). Remarkably, reduction of DG levels using the phosphatidylcholine-specific phospholipase C inhibitor D609 inhibited the secretion of VEGF and Angiopoietin-2, but increased the secretion of interleukin-8, without affecting significantly their respective mRNA levels. Functionally, incubation of MSC in hypoxia with D609 inhibited the potential of the cells to promote migration of human endothelial cells in a wound/scratch assay. Hence, we show that hypoxia induces in MSC an increase of DG that may affect the angiogenic potential of these cells.

  14. The Role of Mesenchymal Stem Cell in Cancer Development

    Directory of Open Access Journals (Sweden)

    Hiroshi eYagi

    2013-11-01

    Full Text Available The role of mesenchymal stem cells (MSCs in cancer development is still controversial. MSCs may promote tumor progression through immune modulation, but other tumor suppressive effects of MSCs have also been described. The discrepancy between these results may arise from issues related to different tissue sources, individual donor variability, and injection timing of MSCs. The expression of critical receptors such as Toll-like receptor (TLR is variable at each time point of treatment, which may also determine the effects of MSCs on tumor progression. However, factors released from malignant cells, as well as surrounding tissues and the vasculature, are still regarded as a black box. Thus, it is still difficult to clarify the specific role of MSCs in cancer development. Whether MSCs support or suppress tumor progression is currently unclear, but it is clear that systemically administered MSCs can be recruited and migrate toward tumors. These findings are important because they can be used as a basis for initiating studies to explore the incorporation of engineered MSCs as novel anti-tumor carriers, for the development of tumor-targeted therapies.

  15. Intra-articular Implantation of Mesenchymal Stem Cells, Part 2

    Science.gov (United States)

    Kraeutler, Matthew J.; Mitchell, Justin J.; Chahla, Jorge; McCarty, Eric C.; Pascual-Garrido, Cecilia

    2017-01-01

    Knee osteoarthritis (OA) after partial or total meniscectomy is a prevalent issue that patients must face. Various methods of replacing meniscal tissue have been studied to avoid this progression, including meniscal allograft transplantation, meniscal scaffolds, and synthetic meniscus replacement. Studies have shown that meniscal scaffolds may improve symptoms but have not been shown to prevent progression of OA. Recently, mesenchymal stem cells (MSCs) have been proposed as a possible biological therapy for meniscal regeneration. Several animal studies and 1 human study have evaluated the effect of transplanting MSCs into the knee joint after partial meniscectomy. The purpose of this review was to assess the outcomes of intra-articular transplantation of MSCs on meniscal regeneration in animals and humans after partial meniscectomy. Limited results from animal studies suggest that there is some potential for intra-articular injection of MSCs for the regeneration of meniscal tissue. However, further studies are necessary to determine the quality of regenerated meniscal tissue through histological and biomechanical testing. PMID:28203596

  16. Oxidative stress induces senescence in human mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Brandl, Anita [Department of Anesthesiology, University Medical Center Regensburg, Franz-Josef-Strauss-Allee 11, 93042 Regensburg (Germany); Meyer, Matthias; Bechmann, Volker [Department of Trauma Surgery, University Medical Center Regensburg, Franz-Josef-Strauss-Allee 11, 93042 Regensburg (Germany); Nerlich, Michael [Department of Anesthesiology, University Medical Center Regensburg, Franz-Josef-Strauss-Allee 11, 93042 Regensburg (Germany); Angele, Peter, E-mail: Peter.Angele@klinik.uni-regensburg.de [Department of Trauma Surgery, University Medical Center Regensburg, Franz-Josef-Strauss-Allee 11, 93042 Regensburg (Germany)

    2011-07-01

    Mesenchymal stem cells (MSCs) contribute to tissue repair in vivo and form an attractive cell source for tissue engineering. Their regenerative potential is impaired by cellular senescence. The effects of oxidative stress on MSCs are still unknown. Our studies were to investigate into the proliferation potential, cytological features and the telomere linked stress response system of MSCs, subject to acute or prolonged oxidant challenge with hydrogen peroxide. Telomere length was measured using the telomere restriction fragment assay, gene expression was determined by rtPCR. Sub-lethal doses of oxidative stress reduced proliferation rates and induced senescent-morphological features and senescence-associated {beta}-galactosidase positivity. Prolonged low dose treatment with hydrogen peroxide had no effects on cell proliferation or morphology. Sub-lethal and prolonged low doses of oxidative stress considerably accelerated telomere attrition. Following acute oxidant insult p21 was up-regulated prior to returning to initial levels. TRF1 was significantly reduced, TRF2 showed a slight up-regulation. SIRT1 and XRCC5 were up-regulated after oxidant insult and expression levels increased in aging cells. Compared to fibroblasts and chondrocytes, MSCs showed an increased tolerance to oxidative stress regarding proliferation, telomere biology and gene expression with an impaired stress tolerance in aged cells.

  17. Hydrophilic polyurethane matrix promotes chondrogenesis of mesenchymal stem cells.

    Science.gov (United States)

    Nalluri, Sandeep M; Krishnan, G Rajesh; Cheah, Calvin; Arzumand, Ayesha; Yuan, Yuan; Richardson, Caley A; Yang, Shuying; Sarkar, Debanjan

    2015-09-01

    Segmental polyurethanes exhibit biphasic morphology and can control cell fate by providing distinct matrix guided signals to increase the chondrogenic potential of mesenchymal stem cells (MSCs). Polyethylene glycol (PEG) based hydrophilic polyurethanes can deliver differential signals to MSCs through their matrix phases where hard segments are cell-interactive domains and PEG based soft segments are minimally interactive with cells. These coordinated communications can modulate cell-matrix interactions to control cell shape and size for chondrogenesis. Biphasic character and hydrophilicity of polyurethanes with gel like architecture provide a synthetic matrix conducive for chondrogenesis of MSCs, as evidenced by deposition of cartilage-associated extracellular matrix. Compared to monophasic hydrogels, presence of cell interactive domains in hydrophilic polyurethanes gels can balance cell-cell and cell-matrix interactions. These results demonstrate the correlation between lineage commitment and the changes in cell shape, cell-matrix interaction, and cell-cell adhesion during chondrogenic differentiation which is regulated by polyurethane phase morphology, and thus, represent hydrophilic polyurethanes as promising synthetic matrices for cartilage regeneration.

  18. The Role of Wharton’s Jelly Mesenchymal Stem Cells in Skin Reconstruction

    Directory of Open Access Journals (Sweden)

    Rostamzadeh

    2015-06-01

    Full Text Available Context Stem cell therapy, especially in the segment of mesenchymal stem cells (MSCs, is one of the most promising areas of regenerative medicine. Evidence Acquisition According to research conducted by various researchers, Wharton’s Jelly mesenchymal stem cells (WJMSCs have several advantages compared to others sources, in regenerative medicine: WJMSCs are more primary cells; WJMSCs can be easily isolated and without invasive procedures; WJMSCs have no ethical problems; WJMSCs are more cost effective than other sources of MSCs. Also, WJMSCs were demonstrated to express stem cell mesenchymal markers. Results Similar to bone marrow MSCs, WJMSCs express major histocompatibility complex (MHC class I molecules. Conclusions Although the aforementioned challenges must still be addressed, the potential of WJMSCs in skin regenerative clinical treatments is promising.

  19. Epigenetic remodeling of chromatin architecture: exploring tumor differentiation therapies in mesenchymal stem cells and sarcomas.

    Science.gov (United States)

    Siddiqi, Sara; Mills, Joslyn; Matushansky, Igor

    2010-03-01

    Sarcomas are the mesenchymal-derived malignant tumors of connective tissues (e.g., fat, bone, and cartilage) presumed to arise from aberrant development or differentiation of mesenchymal stem cells (MSCs). Appropriate control of stem cell maintenance versus differentiation allows for normal connective tissue development. Current theories suggest that loss of this control--through accumulation of genetic lesions in MSCs at various points in the differentiation process--leads to development of sarcomas, including undifferentiated, high grade sarcoma tumors. The initiation of stem cell differentiation is highly associated with alteration of gene expression, which depends on chromatin remodeling. Epigenetic chromatin modifying agents have been shown to induce cancer cell differentiation and are currently being used clinically to treat cancer. This review will focus on the importance of epigenetic chromatin remodeling in the context of mesenchymal stem cells, sarcoma tumorigenesis and differentiation therapy.

  20. Mesenchymal stem cells as a therapeutic tool in tissue and organ regeneration

    Directory of Open Access Journals (Sweden)

    Anna Bajek

    2011-01-01

    Full Text Available Tissue engineering is an interdisciplinary field that offers new opportunities for regeneration of diseased and damaged tissue with the use of many different cell types,including adult stem cells. In tissue engineering and regenerative medicine the most popular are mesenchymal stem cells (MSCs isolated from bone marrow. Bone marrow mesenchymal stem cells are a potential source of progenitor cells for osteoblasts, chondroblasts, adipocytes, skeletal muscles and cardiomyocytes. It has also been shown that these cells can differentiate into ecto- and endodermal cells, e.g. neuronal cells, glial cells, keratinocytes and hepatocytes. The availability of autologous MSCs, their proliferative potential and multilineage differentiation capacity make them an excellent tool for tissue engineering and regenerative medicine. The aim of this publication is to present characteristic and biological properties of mesenchymal stem cells isolated from bone marrow.

  1. Mesenchymal stem cells in the dental tissues: perspectives for tissue regeneration.

    Science.gov (United States)

    Estrela, Carlos; Alencar, Ana Helena Gonçalves de; Kitten, Gregory Thomas; Vencio, Eneida Franco; Gava, Elisandra

    2011-01-01

    In recent years, stem cell research has grown exponentially owing to the recognition that stem cell-based therapies have the potential to improve the life of patients with conditions that range from Alzheimer's disease to cardiac ischemia and regenerative medicine, like bone or tooth loss. Based on their ability to rescue and/or repair injured tissue and partially restore organ function, multiple types of stem/progenitor cells have been speculated. Growing evidence demonstrates that stem cells are primarily found in niches and that certain tissues contain more stem cells than others. Among these tissues, the dental tissues are considered a rich source of mesenchymal stem cells that are suitable for tissue engineering applications. It is known that these stem cells have the potential to differentiate into several cell types, including odontoblasts, neural progenitors, osteoblasts, chondrocytes, and adipocytes. In dentistry, stem cell biology and tissue engineering are of great interest since may provide an innovative for generation of clinical material and/or tissue regeneration. Mesenchymal stem cells were demonstrated in dental tissues, including dental pulp, periodontal ligament, dental papilla, and dental follicle. These stem cells can be isolated and grown under defined tissue culture conditions, and are potential cells for use in tissue engineering, including, dental tissue, nerves and bone regeneration. More recently, another source of stem cell has been successfully generated from human somatic cells into a pluripotent stage, the induced pluripotent stem cells (iPS cells), allowing creation of patient- and disease-specific stem cells. Collectively, the multipotency, high proliferation rates, and accessibility make the dental stem cell an attractive source of mesenchymal stem cells for tissue regeneration. This review describes new findings in the field of dental stem cell research and on their potential use in the tissue regeneration.

  2. Molecular signatures of the primitive prostate stem cell niche reveal novel mesenchymal-epithelial signaling pathways.

    Directory of Open Access Journals (Sweden)

    Roy Blum

    Full Text Available BACKGROUND: Signals between stem cells and stroma are important in establishing the stem cell niche. However, very little is known about the regulation of any mammalian stem cell niche as pure isolates of stem cells and their adjacent mesenchyme are not readily available. The prostate offers a unique model to study signals between stem cells and their adjacent stroma as in the embryonic prostate stem cell niche, the urogenital sinus mesenchyme is easily separated from the epithelial stem cells. Here we investigate the distinctive molecular signals of these two stem cell compartments in a mammalian system. METHODOLOGY/PRINCIPAL FINDINGS: We isolated fetal murine urogenital sinus epithelium and urogenital sinus mesenchyme and determined their differentially expressed genes. To distinguish transcripts that are shared by other developing epithelial/mesenchymal compartments from those that pertain to the prostate stem cell niche, we also determined the global gene expression of epidermis and dermis of the same embryos. Our analysis indicates that several of the key transcriptional components that are predicted to be active in the embryonic prostate stem cell niche regulate processes such as self-renewal (e.g., E2f and Ap2, lipid metabolism (e.g., Srebp1 and cell migration (e.g., Areb6 and Rreb1. Several of the enriched promoter binding motifs are shared between the prostate epithelial/mesenchymal compartments and their epidermis/dermis counterparts, indicating their likely relevance in epithelial/mesenchymal signaling in primitive cellular compartments. Based on differential gene expression we also defined ligand-receptor interactions that may be part of the molecular interplay of the embryonic prostate stem cell niche. CONCLUSIONS/SIGNIFICANCE: We provide a comprehensive description of the transcriptional program of the major regulators that are likely to control the cellular interactions in the embryonic prostatic stem cell niche, many of which may

  3. GMP-grade human fetal liver-derived mesenchymal stem cells for clinical transplantation.

    Science.gov (United States)

    Larijani, Bagher; Aghayan, Hamid-Reza; Goodarzi, Parisa; Arjmand, Babak

    2015-01-01

    Stem cell therapy seems a promising avenue in regenerative medicine. Within various stem cells, mesenchymal stem cells have progressively used for cellular therapy. Because of the age-related decreasing in the frequency and differentiating capacity of adult MSCs, fetal tissues such as fetal liver, lung, pancreas, spleen, etc. have been introduced as an alternative source of MSCs for cellular therapy. On the other hand, using stem cells as advanced therapy medicinal products, must be performed in compliance with cGMP as a quality assurance system to ensure the safety, quality, and identity of cell products during translation from the basic stem cell sciences into clinical cell transplantation. In this chapter the authors have demonstrated the manufacturing of GMP-grade human fetal liver-derived mesenchymal stem cells.

  4. Mesenchymal stem cell like (MSCl) cells generated from human embryonic stem cells support pluripotent cell growth

    Energy Technology Data Exchange (ETDEWEB)

    Varga, Nora [Membrane Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest (Hungary); Vereb, Zoltan; Rajnavoelgyi, Eva [Department of Immunology, Medical and Health Science Centre, University of Debrecen, Debrecen (Hungary); Nemet, Katalin; Uher, Ferenc; Sarkadi, Balazs [Membrane Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest (Hungary); Apati, Agota, E-mail: apati@kkk.org.hu [Membrane Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest (Hungary)

    2011-10-28

    Highlights: Black-Right-Pointing-Pointer MSC like cells were derived from hESC by a simple and reproducible method. Black-Right-Pointing-Pointer Differentiation and immunosuppressive features of MSCl cells were similar to bmMSC. Black-Right-Pointing-Pointer MSCl cells as feeder cells support the undifferentiated growth of hESC. -- Abstract: Mesenchymal stem cell like (MSCl) cells were generated from human embryonic stem cells (hESC) through embryoid body formation, and isolated by adherence to plastic surface. MSCl cell lines could be propagated without changes in morphological or functional characteristics for more than 15 passages. These cells, as well as their fluorescent protein expressing stable derivatives, efficiently supported the growth of undifferentiated human embryonic stem cells as feeder cells. The MSCl cells did not express the embryonic (Oct4, Nanog, ABCG2, PODXL, or SSEA4), or hematopoietic (CD34, CD45, CD14, CD133, HLA-DR) stem cell markers, while were positive for the characteristic cell surface markers of MSCs (CD44, CD73, CD90, CD105). MSCl cells could be differentiated toward osteogenic, chondrogenic or adipogenic directions and exhibited significant inhibition of mitogen-activated lymphocyte proliferation, and thus presented immunosuppressive features. We suggest that cultured MSCl cells can properly model human MSCs and be applied as efficient feeders in hESC cultures.

  5. The Three-Dimensional Collagen Scaffold Improves the Stemness of Rat Bone Marrow Mesenchymal Stem Cells

    Institute of Scientific and Technical Information of China (English)

    Sufang Han; Yannan Zhao; Zhifeng Xiao; Jin Han; Bing Chen; Lei Chen; Jianwu Dai

    2012-01-01

    Mesenchymal stem cells (MSCs) show the great promise for the treatment of a variety of diseases because of their self-renewal and multipotential abilities.MSCs are generally cultured on two-dimensional (2D) substrate in vitro.There are indications that they may simultaneously lose their stemness and multipotentiality as the result of prolonged 2D culture.In this study,we used three-dimensional (3D) collagen scaffolds as rat MSCs carrier and compared the properties of MSCs on 3D collagen scaffolds with monolayer cultured MSCs.The results demonstrated that collagen scaffolds were suitable for rat MSCs adherence and proliferation.More importantly,compared to MSCs under 2D culture,3D MSCs significantly maintained higher expression levels of stemness genes (Oct4,Sox2,Rex-1 and Nanog),yielded high frequencies of colony-forming units-fibroblastic (CFU-F) and showed enhanced osteogenic and adipogenic differentiation efficiency upon induction.Thus,3D collagen scaffolds may be beneficial for expanding rat MSCs while maintaining the stem cell properties in vitro.

  6. Tenogenically induced allogeneic mesenchymal stem cells for the treatment of proximal suspensory ligament desmitis in a horse

    Directory of Open Access Journals (Sweden)

    Aurelie eVandenberghe

    2015-10-01

    Full Text Available Suspensory ligament injuries are a common injury in sport horses, especially in competing dressage horses. Because of the poor healing of chronic recalcitrant tendon injuries, this represents a major problem in the rehabilitation of sport horses and often compromises the return to the initial performance level. Stem cells are considered as a novel treatment for different pathologies in horses and humans. Autologous mesenchymal stem cells (MSCs are well known for their use in the treatment of tendinopathies, however, recent studies report a safe use of allogeneic MSCs for different orthopaedic applications in horses. Moreover, it has been reported that predifferentiation of MSCs prior to injection might result in improved clinical outcomes. For all these reasons, the present case report describes the use of allogeneic tenogenically induced peripheral blood-derived MSCs for the treatment of a proximal suspensory ligament injury. During conservative management for 4 months, the horse demonstrated no improvement of a right front lameness with a Grade 2/5 on the AAEP scale and a clear hypo-echoic area detectable in 30% of the cross sectional area. From 4 weeks after treatment, the lameness reduced to an AAEP Grade 1/5 and a clear filling of the lesion could be noticed on ultrasound. At 12 weeks (T4 after the first injection, a second intralesional injection with allogeneic tenogenically induced MSCs and PRP was given and at 4 weeks after the second injection (T5, the horse trotted sound under all circumstances with a close to total fiber alignment. The horse went back to previous performance level at 32 weeks after the first regenerative therapy and is currently still doing so (i.e. 20 weeks later or 1 year after the first stem cell treatment.In conclusion, the present case report demonstrated a positive evolution of proximal suspensory ligament desmitis after treatment with allogeneic tenogenically induced MSCs.

  7. Dorsal root ganglion neurons promote proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    Pei-xun Zhang; Xiao-rui Jiang; Lei Wang; Fang-min Chen; Lin Xu; Fei Huang

    2015-01-01

    Preliminary animal experiments have conifrmed that sensory nerve ifbers promote osteoblast differentiation, but motor nerve ifbers have no promotion effect. Whether sensory neurons pro-mote the proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells remains unclear. No results at the cellular level have been reported. In this study, dorsal root ganglion neurons (sensory neurons) from Sprague-Dawley fetal rats were co-cultured with bone marrow mesenchymal stem cells transfected with green lfuorescent protein 3 weeks after osteo-genic differentiationin vitro, while osteoblasts derived from bone marrow mesenchymal stem cells served as the control group. The rat dorsal root ganglion neurons promoted the prolifera-tion of bone marrow mesenchymal stem cell-derived osteoblasts at 3 and 5 days of co-culture, as observed by lfuorescence microscopy. The levels of mRNAs for osteogenic differentiation-re-lated factors (including alkaline phosphatase, osteocalcin, osteopontin and bone morphogenetic protein 2) in the co-culture group were higher than those in the control group, as detected by real-time quantitative PCR. Our ifndings indicate that dorsal root ganglion neurons promote the proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells, which pro-vides a theoretical basis forin vitro experiments aimed at constructing tissue-engineered bone.

  8. Mesenchymal stem cells derived from adipose tissue are not affected by renal disease.

    Science.gov (United States)

    Roemeling-van Rhijn, Marieke; Reinders, Marlies E J; de Klein, Annelies; Douben, Hannie; Korevaar, Sander S; Mensah, Fane K F; Dor, Frank J M F; IJzermans, Jan N M; Betjes, Michiel G H; Baan, Carla C; Weimar, Willem; Hoogduijn, Martin J

    2012-10-01

    Mesenchymal stem cells are a potential therapeutic agent in renal disease and kidney transplantation. Autologous cell use in kidney transplantation is preferred to avoid anti-HLA reactivity; however, the influence of renal disease on mesenchymal stem cells is unknown. To investigate the feasibility of autologous cell therapy in patients with renal disease, we isolated these cells from subcutaneous adipose tissue of healthy controls and patients with renal disease and compared them phenotypically and functionally. The mesenchymal stem cells from both groups showed similar morphology and differentiation capacity, and were both over 90% positive for CD73, CD105, and CD166, and negative for CD31 and CD45. They demonstrated comparable population doubling times, rates of apoptosis, and were both capable of inhibiting allo-antigen- and anti-CD3/CD28-activated peripheral blood mononuclear cell proliferation. In response to immune activation they both increased the expression of pro-inflammatory and anti-inflammatory factors. These mesenchymal stem cells were genetically stable after extensive expansion and, importantly, were not affected by uremic serum. Thus, mesenchymal stem cells of patients with renal disease have similar characteristics and functionality as those from healthy controls. Hence, our results indicate the feasibility of their use in autologous cell therapy in patients with renal disease.

  9. Regenerative Effects of Mesenchymal Stem Cells: Contribution of Muse Cells, a Novel Pluripotent Stem Cell Type that Resides in Mesenchymal Cells.

    Science.gov (United States)

    Wakao, Shohei; Kuroda, Yasumasa; Ogura, Fumitaka; Shigemoto, Taeko; Dezawa, Mari

    2012-11-08

    Mesenchymal stem cells (MSCs) are easily accessible and safe for regenerative medicine. MSCs exert trophic, immunomodulatory, anti-apoptotic, and tissue regeneration effects in a variety of tissues and organs, but their entity remains an enigma. Because MSCs are generally harvested from mesenchymal tissues, such as bone marrow, adipose tissue, or umbilical cord as adherent cells, MSCs comprise crude cell populations and are heterogeneous. The specific cells responsible for each effect have not been clarified. The most interesting property of MSCs is that, despite being adult stem cells that belong to the mesenchymal tissue lineage, they are able to differentiate into a broad spectrum of cells beyond the boundary of mesodermal lineage cells into ectodermal or endodermal lineages, and repair tissues. The broad spectrum of differentiation ability and tissue-repairing effects of MSCs might be mediated in part by the presence of a novel pluripotent stem cell type recently found in adult human mesenchymal tissues, termed multilineage-differentiating stress enduring (Muse) cells. Here we review recently updated studies of the regenerative effects of MSCs and discuss their potential in regenerative medicine.

  10. Regenerative Effects of Mesenchymal Stem Cells: Contribution of Muse Cells, a Novel Pluripotent Stem Cell Type that Resides in Mesenchymal Cells

    Directory of Open Access Journals (Sweden)

    Mari Dezawa

    2012-11-01

    Full Text Available Mesenchymal stem cells (MSCs are easily accessible and safe for regenerative medicine. MSCs exert trophic, immunomodulatory, anti-apoptotic, and tissue regeneration effects in a variety of tissues and organs, but their entity remains an enigma. Because MSCs are generally harvested from mesenchymal tissues, such as bone marrow, adipose tissue, or umbilical cord as adherent cells, MSCs comprise crude cell populations and are heterogeneous. The specific cells responsible for each effect have not been clarified. The most interesting property of MSCs is that, despite being adult stem cells that belong to the mesenchymal tissue lineage, they are able to differentiate into a broad spectrum of cells beyond the boundary of mesodermal lineage cells into ectodermal or endodermal lineages, and repair tissues. The broad spectrum of differentiation ability and tissue-repairing effects of MSCs might be mediated in part by the presence of a novel pluripotent stem cell type recently found in adult human mesenchymal tissues, termed multilineage-differentiating stress enduring (Muse cells. Here we review recently updated studies of the regenerative effects of MSCs and discuss their potential in regenerative medicine.

  11. Mesenchymal Stem Cell-Induced DDR2 Mediates Stromal-Breast Cancer Interactions and Metastasis Growth

    OpenAIRE

    Gonzalez, Maria E.; Martin, Emily E.; Talha Anwar; Caroline Arellano-Garcia; Natasha Medhora; Arjun Lama; Yu-Chih Chen; Kevin S. Tanager; Euisik Yoon; Kidwell, Kelley M.; Chunxi Ge; Franceschi, Renny T.; Celina G. Kleer

    2017-01-01

    Increased collagen deposition by breast cancer (BC)-associated mesenchymal stem/multipotent stromal cells (MSC) promotes metastasis, but the mechanisms are unknown. Here, we report that the collagen receptor discoidin domain receptor 2 (DDR2) is essential for stromal-BC communication. In human BC metastasis, DDR2 is concordantly upregulated in metastatic cancer and multipotent mesenchymal stromal cells. In MSCs isolated from human BC metastasis, DDR2 maintains a fibroblastic phenotype with co...

  12. Distribution and differentiation of mesenchymal stem cells in tumor tissue

    Institute of Scientific and Technical Information of China (English)

    ZHAO Hai-feng; CHEN Jun; XU Zhi-shun; ZHANG Ke-qin

    2009-01-01

    Background Tumor has an ability to become enriched in mesenchymal stem cells (MSCs) and of guiding MSCs to migrate to tumor tissue. But there are lack of relevant reports on the distribution and differentiation of MSCs in tumor tissue and the effect on tumor growth after MSCs engrafted in tumor tissue. In this study, we observed the distribution of bone marrow MSCs in tumor tissue and the possibility of MSCs differentiating into myofibroblast under the induction of local tumor microenvironment.Methods Twenty-four New Zealand rabbits were randomly classified into the control group and the test group. MSCs were isolated and cultured for each animal, vx-2 tumor tissue was transplanted under the bladder mucosa of each animal. One week after the transplantation, the self F2 passage MSCs marked by 4',6-diamidino-2-phenylindole were transplanted into tumor tissue in the test group while only Dulbecco's modified Eagle's medium-low glucose was infused into the control group. Ultrasonography was performed for each animal 1,2, 3 and 4 week(s) after the vx-2 tumor mass was transplanted. The maximum bladder tumor diameter of each animal was recorded and the mean value of each group was calculated. One animal from each group was sacrificed in the third week and the remaining animals in the fourth week to observe the tumor development. Another animal treated the same as the test group was sacrificed to observe the distribution of MSCs in tumor tissue one week after self MSCs transplantation. Immunofluorescence was used to trace MSCs in tumor tissue. The double labeling immunofluorescence for α-smooth muscle actin (α-SMA) and vimentin was performed to identify whether the MSCs can differentiate into myofibroblast.Results The ultrasonography showed no tumor mass one week after the vx-2 tumor mass transplantation. The mean maximum tumor diameter of the control group and test group was (0.70±0.14) cm and (0.78±0.14) cm, respectively, and there was no significant difference (t=1

  13. Mesenchymal stem cell-derived molecules reverse fulminant hepatic failure.

    Directory of Open Access Journals (Sweden)

    Biju Parekkadan

    Full Text Available Modulation of the immune system may be a viable alternative in the treatment of fulminant hepatic failure (FHF and can potentially eliminate the need for donor hepatocytes for cellular therapies. Multipotent bone marrow-derived mesenchymal stem cells (MSCs have been shown to inhibit the function of various immune cells by undefined paracrine mediators in vitro. Yet, the therapeutic potential of MSC-derived molecules has not been tested in immunological conditions in vivo. Herein, we report that the administration of MSC-derived molecules in two clinically relevant forms-intravenous bolus of conditioned medium (MSC-CM or extracorporeal perfusion with a bioreactor containing MSCs (MSC-EB-can provide a significant survival benefit in rats undergoing FHF. We observed a cell mass-dependent reduction in mortality that was abolished at high cell numbers indicating a therapeutic window. Histopathological analysis of liver tissue after MSC-CM treatment showed dramatic reduction of panlobular leukocytic infiltrates, hepatocellular death and bile duct duplication. Furthermore, we demonstrate using computed tomography of adoptively transferred leukocytes that MSC-CM functionally diverts immune cells from the injured organ indicating that altered leukocyte migration by MSC-CM therapy may account for the absence of immune cells in liver tissue. Preliminary analysis of the MSC secretome using a protein array screen revealed a large fraction of chemotactic cytokines, or chemokines. When MSC-CM was fractionated based on heparin binding affinity, a known ligand for all chemokines, only the heparin-bound eluent reversed FHF indicating that the active components of MSC-CM reside in this fraction. These data provide the first experimental evidence of the medicinal use of MSC-derived molecules in the treatment of an inflammatory condition and support the role of chemokines and altered leukocyte migration as a novel therapeutic modality for FHF.

  14. Allogeneic Mesenchymal Stem Cell Transplantation in Dogs With Keratoconjunctivitis Sicca

    Science.gov (United States)

    Bittencourt, Maura K. W.; Barros, Michele A.; Martins, João Flávio P.; Vasconcellos, Jose Paulo C.; Morais, Bruna P.; Pompeia, Celine; Bittencourt, Matheus Domingues; Evangelho, Karine dos Santos; Kerkis, Irina; Wenceslau, Cristiane V.

    2016-01-01

    Keratoconjunctivitis sicca (KCS) is a dysfunction in tear production associated with clinical signs, which include conjunctival hyperemia, ocular discharge, discomfort, pain, and, eventually, corneal vascularization and pigmentation. Immunosuppressive drugs are routinely administrated for long periods to treat KCS but with side effects and limited results. Evaluation of the clinical benefits of intralacrimal transplantation of allogeneic mesenchymal stem cells (MSCs) in dogs with mild–moderate and severe KCS was done. A total of 24 eyes with KCS from 15 dogs of different breeds were enrolled in the present study. A single transplantation of MSCs (1 × 106) directly into lacrimal glands (dorsal and third eyelid) was performed. The Schirmer tear tests (STTs) and ocular surface improvements were used to assess short- and long-term effects of these cells. The STTs were carried out on day 0 (before MSCs transplantation) and on days 7, 14, 21, and 28, as well as 6 and 12 months after MSC transplantation. Our data demonstrate that allogeneic MSC transplantation in KCS dogs is safe since no adverse effects were observed immediately after transplantation and in short- and long-term follow-ups. A statistically significant increase in the STT and ocular surface improvements was found in all eyes studied. In all the eyes with mild–moderate KCS, STT values reverted to those of healthy eyes, while in eyes with severe KCS, although complete reversion was not found, there was improvement in tear production and in other clinical signs. Our study shows that a single dose of a low number of MSCs can be used to treat KCS in dogs. In contrast to immunosuppressive drug use, MSC transplantation has an effect over a long period (up to 12 months), even after a single administration, and does not require daily drug administration. PMID:28003932

  15. Defining human mesenchymal stem cell efficacy in vivo

    Directory of Open Access Journals (Sweden)

    Lennon Donald P

    2010-10-01

    Full Text Available Abstract Allogeneic human mesenchymal stem cells (hMSCs can suppress graft versus host disease (GvHD and have profound anti-inflammatory and regenerative capacity in stroke, infarct, spinal cord injury, meniscus regeneration, tendinitis, acute renal failure, and heart disease in human and animal models of disease. There is significant clinical hMSC variability in efficacy and the ultimate response in vivo. The challenge in hMSC based therapy is defining the efficacy of hMSC in vivo. Models which may provide insight into hMSC bioactivity in vivo would provide a means to distinguish hMSCs for clinical utility. hMSC function has been described as both regenerative and trophic through the production of bioactive factors. The regenerative component involves the multi-potentiality of hMSC progenitor differentiation. The secreted factors generated by the hMSCs are milieu and injury specific providing unique niches for responses in vivo. These bioactive factors are anti-scarring, angiogenic, anti-apoptotic as well as regenerative. Further, from an immunological standpoint, hMSC's can avoid host immune response, providing xenographic applications. To study the in vivo immuno-regulatory effectiveness of hMSCs, we used the ovalbumin challenge model of acute asthma. This is a quick 3 week in vivo pulmonary inflammation model with readily accessible ways of measuring effectiveness of hMSCs. Our data show that there is a direct correlation between the traditional ceramic cube score to hMSCs attenuation of cellular recruitment due to ovalbumin challenge. The results from these studies verify the in vivo immuno-modulator effectiveness of hMSCs and support the potential use of the ovalbumin model as an in vivo model of hMSC potency and efficacy. Our data also support future directions toward exploring hMSCs as an alternative therapeutic for the treatment of airway inflammation associated with asthma.

  16. Isolation of Mesenchymal Stem Cells from Human Deciduous Teeth Pulp

    Science.gov (United States)

    Tsai, Aileen I.; Hong, Hsiang-Hsi; Fu, Jen-Fen; Chang, Chih-Chun; Wang, I-Kuan; Huang, Wen-Hung; Weng, Cheng-Hao; Hsu, Ching-Wei

    2017-01-01

    This study aimed to identify predictors of success rate of mesenchymal stem cell (MSC) isolation from human deciduous teeth pulp. A total of 161 deciduous teeth were extracted at the dental clinic of Chang Gung Memorial Hospital. The MSCs were isolated from dental pulps using a standard protocol. In total, 128 colonies of MSCs were obtained and the success rate was 79.5%. Compared to teeth not yielding MSCs successfully, those successfully yielding MSCs were found to have less severe dental caries (no/mild-to-moderate/severe: 63.3/24.2/12.5% versus 12.5/42.4/42.4%, P < 0.001) and less frequent pulpitis (no/yes: 95.3/4.7% versus 51.5/48.5%, P < 0.001). In a multivariate regression model, it was confirmed that the absence of dental caries (OR = 4.741, 95% CI = 1.564–14.371, P = 0.006) and pulpitis (OR = 9.111, 95% CI = 2.921–28.420, P < 0.001) was significant determinants of the successful procurement of MSCs. MSCs derived from pulps with pulpitis expressed longer colony doubling time than pulps without pulpitis. Furthermore, there were higher expressions of proinflammatory cytokines, interleukin- (IL-) 6 and monocyte chemoattractant protein- (MCP-) 1, P < 0.01, and innate immune response [toll-like receptor 1 (TLR1) and TLR8, P < 0.05; TLR2, TLR3, and TLR6, P < 0.01] in the inflamed than noninflamed pulps. Therefore, a carious deciduous tooth or tooth with pulpitis was relatively unsuitable for MSC processing and isolation. PMID:28377925

  17. Human dental pulp mesenchymal stem cells isolation and osteoblast differentiation

    Directory of Open Access Journals (Sweden)

    Moustafa Alkhalil

    2015-02-01

    Full Text Available Aim This study was focused on the isolation and characterization of mesenchymal stem cells (MSCs from human dental pulp (DPSC. Methods The study was performed in the Department for Oral and Cranio-Maxillo- Facial Surgey Hamad Medical Corporation, Doha, Qatar and Weill Cornell Medical Colleague Doha, Qatar, in period 2010-2011. Dental pulp was extracted from premolars and third molars of 19 healthy patients. The pulp was digested in a solution of 3 mg/mL collagenase type I and 4 mg/mL dispase for 1 hour at 37C. After filtration, cells were cultured in Dulbecco’s Modified Eagle Medium (DMEM Low Glucoses with 20% Fetal Bovine Serum (FBS, 2mM L-glutamine and antibiotics (100 U/mL penicillin, 100 ug/mL streptomycin at 37 °C under 5% CO2. Cultures were treated with osteoinductive medium for differentiation MSC in to the osteoblast cell line. Staining with Alizarin red were used for the detection of the osteoblast production and calcification new formed tissue. Results On the total of three out of 19 patients it was possible to isolate DPMSCs after 2 to 3 weeks: in one patient it was not possible to expand MSCs because of infection, and in other two patients positive Alizarin red staining reaction showed osteogenic differentiation capability and strong mineralization in vitro. Conclusion The main advantage of using DPSC is absence of morbidity. MSCs could be isolated noninvasively from teeth, routinely extracted in the clinic and discarded as medical waste. Standardization of clinical and laboratory protocols for DPMSCs isolation and team work coordination could lead to significantly improved result.

  18. Secretion of immunoregulatory cytokines by mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    Dobroslav; Kyurkchiev; Ivan; Bochev; Ekaterina; Ivanova-Todorova; Milena; Mourdjeva; Tsvetelina; Oreshkova; Kalina; Belemezova; Stanimir; Kyurkchiev

    2014-01-01

    According to the minimal criteria of the International Society of Cellular Therapy, mesenchymal stem cells(MSCs) are a population of undifferentiated cells defined by their ability to adhere to plastic surfaces when cultured under standard conditions, express a certain panel of phenotypic markers and can differentiate into osteogenic, chondrogenic and adipogenic lineages when cultured in specific inducing media. In parallel with their major role as undifferentiated cell reserves, MSCs have immunomodulatory functions which are exerted by direct cell-to-cell contacts, secretion of cytokines and/or by a combination of both mechanisms. There are no convincing data about a principal difference in the profile of cytokines secreted by MSCs isolated from different tissue sources, although some papers report some quantitative but not qualitative differences in cytokine secretion. The present review focuses on the basic cytokines secreted by MSCs as described in the literature by which the MSCs exert immunodulatory effects. It should be pointed out that MSCs themselves are objects of cytokine regulation. Hypothetical mechanisms by which the MSCs exert their immunoregulatory effects are also discussed in this review. These mechanisms may either influence the target immune cells directly or indirectly by affecting the activities of predominantly dendritic cells. Chemokines are also discussed as participants in this process by recruiting cells of the immune systems and thus making them targets of immunosuppression. This review aims to present and discuss the published data and the personal experience of the authors regarding cytokines secreted by MSCs and their effects on the cells of the immune system.

  19. Mesenchymal stem cells cultured on magnetic nanowire substrates

    Science.gov (United States)

    Perez, Jose E.; Ravasi, Timothy; Kosel, Jürgen

    2017-02-01

    Stem cells have been shown to respond to extracellular mechanical stimuli by regulating their fate through the activation of specific signaling pathways. In this work, an array of iron nanowires (NWs) aligned perpendicularly to the surface was fabricated by pulsed electrodepositon in porous alumina templates followed by a partial removal of the alumina to reveal 2-3 μm of the NWs. This resulted in alumina substrates with densely arranged NWs of 33 nm in diameter separated by 100 nm. The substrates were characterized by scanning electron microscopy (SEM) energy dispersive x-ray analysis and vibrating sample magnetometer. The NW array was then used as a platform for the culture of human mesenchymal stem cells (hMSCs). The cells were stained for the cell nucleus and actin filaments, as well as immuno-stained for the focal adhesion protein vinculin, and then observed by fluorescence microscopy in order to characterize their spreading behavior. Calcein AM/ethidium homodimer-1 staining allowed the determination of cell viability. The interface between the cells and the NWs was studied using SEM. Results showed that hMSCs underwent a re-organization of actin filaments that translated into a change from an elongated to a spherical cell shape. Actin filaments and vinculin accumulated in bundles, suggesting the attachment and formation of focal adhesion points of the cells on the NWs. Though the overall number of cells attached on the NWs was lower compared to the control, the attached cells maintained a high viability (>90%) for up to 6 d. Analysis of the interface between the NWs and the cells confirmed the re-organization of F-actin and revealed the adhesion points of the cells on the NWs. Additionally, a net of filopodia surrounded each cell, suggesting the probing of the array to find additional adhesion points. The cells maintained their round shape for up to 6 d of culture. Overall, the NW array is a promising nanostructured platform for studying and influencing h

  20. Mesenchymal stem cells cultured on magnetic nanowire substrates

    KAUST Repository

    Perez, Jose E

    2016-12-28

    Stem cells have been shown to respond to extracellular mechanical stimuli by regulating their fate through the activation of specific signaling pathways. In this work, an array of iron nanowires (NWs) aligned perpendicularly to the surface was fabricated by pulsed electrodepositon in porous alumina templates followed by a partial removal of the alumina to reveal 2-3 μm of the NWs. This resulted in alumina substrates with densely arranged NWs of 33 nm in diameter separated by 100 nm. The substrates were characterized by scanning electron microscopy (SEM) energy dispersive x-ray analysis and vibrating sample magnetometer. The NW array was then used as a platform for the culture of human mesenchymal stem cells (hMSCs). The cells were stained for the cell nucleus and actin filaments, as well as immuno-stained for the focal adhesion protein vinculin, and then observed by fluorescence microscopy in order to characterize their spreading behavior. Calcein AM/ethidium homodimer-1 staining allowed the determination of cell viability. The interface between the cells and the NWs was studied using SEM. Results showed that hMSCs underwent a re-organization of actin filaments that translated into a change from an elongated to a spherical cell shape. Actin filaments and vinculin accumulated in bundles, suggesting the attachment and formation of focal adhesion points of the cells on the NWs. Though the overall number of cells attached on the NWs was lower compared to the control, the attached cells maintained a high viability (>90%) for up to 6 d. Analysis of the interface between the NWs and the cells confirmed the re-organization of F-actin and revealed the adhesion points of the cells on the NWs. Additionally, a net of filopodia surrounded each cell, suggesting the probing of the array to find additional adhesion points. The cells maintained their round shape for up to 6 d of culture. Overall, the NW array is a promising nanostructured platform for studying and influencing h

  1. Migration capacity of human umbilical cord mesenchymal stem cells towards glioma in vivo*

    Institute of Scientific and Technical Information of China (English)

    Cungang Fan; Dongliang Wang; Qingjun Zhang; Jingru Zhou

    2013-01-01

    High-grade glioma is the most common malignant primary brain tumor in adults. The poor prognosis of glioma, combined with a resistance to currently available treatments, necessitates the ment of more effective tumor-selective therapies. Stem cel-based therapies are emerging as novel cel-based delivery vehicle for therapeutic agents. In the present study, we successful y isolated human umbilical cord mesenchymal stem cel s by explant culture. The human umbilical cord senchymal stem cel s were adherent to plastic surfaces, expressed specific surface phenotypes of mesenchymal stem cel s as demonstrated by flow cytometry, and possessed multi-differentiation potentials in permissive induction media in vitro. Furthermore, human umbilical cord mesenchymal stem cel s demonstrated excel ent glioma-specific targeting capacity in established rat glioma models after intratumoral injection or contralateral ventricular administration in vivo. The excellent glioma-specific targeting ability and extensive intratumoral distribution of human umbilical cord mesenchymal stem cel s indicate that they may serve as a novel cel ular vehicle for delivering the-rapeutic molecules in glioma therapy.

  2. Umbilical cord mesenchymal stem cell transplantation for the treatment of Duchenne muscular dystrophy

    Institute of Scientific and Technical Information of China (English)

    Xiaofeng Yang; Yanxiang Wu; Xinping Liu; Yifeng Xu; Naiwu Lü; Yibin Zhang; Hongmei Wang; Xin Lü; Jiping Cui; Jinxu Zhou; Hong Shan

    2011-01-01

    Due to their relative abundance, stable biological properties and excellent reproductive activity,umbilical cord mesenchymal stem cells have previously been utilized for the treatment of Duchenne muscular dystrophy, which is a muscular atrophy disease. Three patients who were clinically and pathologically diagnosed with Duchenne muscular dystrophy were transplanted with umbilical cord mesenchymal stem cells by intravenous infusion, in combination with multi-point intramuscular injection. They were followed up for 12 months after cell transplantation. Results showed that clinical symptoms significantly improved, daily living activity and muscle strength were enhanced,the sero-enzyme, electromyogram, and MRI scans showed improvement, and dystrophin was expressed in the muscle cell membrane. Hematoxylin-eosin staining of a muscle biopsy revealed that muscle fibers were well arranged, fibrous degeneration was alleviated, and fat infiltration was improved. These pieces of evidence suggest that umbilical cord mesenchymal stem cell transplantation can be considered as a new regimen for Duchenne muscular dystrophy.

  3. Gene expression profiles of human bone marrow derived mesenchymal stem cells and tendon cells

    Institute of Scientific and Technical Information of China (English)

    胡庆柳; 朴英杰; 邹飞

    2003-01-01

    Objective To study the gene expression profiles of human bone marrow derived mesenchymal stem cells and tendon cells.Methods Total RNA extracted from human bone marrow derived mesenchymal stem cells and tendon cells underwent reverse transcription, and the products were labeled with α-32P dCTP. The cDNA probes of total RNA were hybridized to cDNA microarray with 1176 genes, and then the signals were analyzed by AtlasImage analysis software Version 1.01a.Results Fifteen genes associated with cell proliferation and signal transduction were up-regulated, and one gene that takes part in cell-to-cell adhesion was down-regulated in tendon cells.Conclusion The 15 up-regulated and one down-regulated genes may be beneficial to the orientational differentiation of mesenchymal stem cells into tendon cells.

  4. Genetic engineering of mesenchymal stem cells and its application in human disease therapy.

    Science.gov (United States)

    Hodgkinson, Conrad P; Gomez, José A; Mirotsou, Maria; Dzau, Victor J

    2010-11-01

    The use of stem cells for tissue regeneration and repair is advancing both at the bench and bedside. Stem cells isolated from bone marrow are currently being tested for their therapeutic potential in a variety of clinical conditions including cardiovascular injury, kidney failure, cancer, and neurological and bone disorders. Despite the advantages, stem cell therapy is still limited by low survival, engraftment, and homing to damage area as well as inefficiencies in differentiating into fully functional tissues. Genetic engineering of mesenchymal stem cells is being explored as a means to circumvent some of these problems. This review presents the current understanding of the use of genetically engineered mesenchymal stem cells in human disease therapy with emphasis on genetic modifications aimed to improve survival, homing, angiogenesis, and heart function after myocardial infarction. Advancements in other disease areas are also discussed.

  5. Notch signaling: targeting cancer stem cells and epithelial-to-mesenchymal transition

    Directory of Open Access Journals (Sweden)

    Espinoza I

    2013-09-01

    Full Text Available Ingrid Espinoza,1,2 Radhika Pochampally,1,2 Fei Xing,1 Kounosuke Watabe,1,3 Lucio Miele1,4 1Cancer Institute, 2Department of Biochemistry, 3Department of Microbiology, 4Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA Abstract: Notch signaling is an evolutionarily conserved pathway involved in cell fate control during development, stem cell self-renewal, and postnatal tissue differentiation. Roles for Notch in carcinogenesis, the biology of cancer stem cells, tumor angiogenesis, and epithelial-to-mesenchymal transition (EMT have been reported. This review describes the role of Notch in the “stemness” program in cancer cells and in metastases, together with a brief update on the Notch inhibitors currently under investigation in oncology. These agents may be useful in targeting cancer stem cells and to reverse the EMT process. Keywords: Notch signaling, EMT, cancer stem cells, mesenchymal stem cells, metastases, Notch inhibitors

  6. Plasticity between Epithelial and Mesenchymal States Unlinks EMT from Metastasis-Enhancing Stem Cell Capacity

    Directory of Open Access Journals (Sweden)

    Evelyne Beerling

    2016-03-01

    Full Text Available Forced overexpression and/or downregulation of proteins regulating epithelial-to-mesenchymal transition (EMT has been reported to alter metastasis by changing migration and stem cell capacity of tumor cells. However, these manipulations artificially keep cells in fixed states, while in vivo cells may adapt transient and reversible states. Here, we have tested the existence and role of epithelial-mesenchymal plasticity in metastasis of mammary tumors without artificially modifying EMT regulators. In these tumors, we found by intravital microscopy that the motile tumor cells have undergone EMT, while their epithelial counterparts were not migratory. Moreover, we found that epithelial-mesenchymal plasticity renders any EMT-induced stemness differences, as reported previously, irrelevant for metastatic outgrowth, because mesenchymal cells that arrive at secondary sites convert to the epithelial state within one or two divisions, thereby obtaining the same stem cell potential as their arrived epithelial counterparts. We conclude that epithelial-mesenchymal plasticity supports migration but additionally eliminates stemness-enhanced metastatic outgrowth differences.

  7. Spontaneous transformation of adult mesenchymal stem cells from cynomolgus macaques in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Zhenhua [Cell Therapy Center, Xuanwu Hospital, Capital Medical University, Beijing (China); Key Laboratory of Neurodegeneration, Ministry of Education, Beijing (China); Department of Anatomy, Anhui Medical University, Hefei, 230032 (China); Wang, Jiayin; Zhu, Wanwan; Guan, Yunqian; Zou, Chunlin [Cell Therapy Center, Xuanwu Hospital, Capital Medical University, Beijing (China); Key Laboratory of Neurodegeneration, Ministry of Education, Beijing (China); Chen, Zhiguo, E-mail: chenzhiguo@gmail.com [Cell Therapy Center, Xuanwu Hospital, Capital Medical University, Beijing (China); Key Laboratory of Neurodegeneration, Ministry of Education, Beijing (China); Stanford Institute for Stem Cell Biology and Regenerative Medicine and Department of Neurosurgery, Stanford, CA (United States); Zhang, Y. Alex, E-mail: yaz@bjsap.org [Cell Therapy Center, Xuanwu Hospital, Capital Medical University, Beijing (China); Key Laboratory of Neurodegeneration, Ministry of Education, Beijing (China)

    2011-12-10

    Mesenchymal stem cells (MSCs) have shown potential clinical utility in cell therapy and tissue engineering, due to their ability to proliferate as well as to differentiate into multiple lineages, including osteogenic, adipogenic, and chondrogenic specifications. Therefore, it is crucial to assess the safety of MSCs while extensive expansion ex vivo is a prerequisite to obtain the cell numbers for cell transplantation. Here we show that MSCs derived from adult cynomolgus monkey can undergo spontaneous transformation following in vitro culture. In comparison with MSCs, the spontaneously transformed mesenchymal cells (TMCs) display significantly different growth pattern and morphology, reminiscent of the characteristics of tumor cells. Importantly, TMCs are highly tumorigenic, causing subcutaneous tumors when injected into NOD/SCID mice. Moreover, no multiple differentiation potential of TMCs is observed in vitro or in vivo, suggesting that spontaneously transformed adult stem cells may not necessarily turn into cancer stem cells. These data indicate a direct transformation of cynomolgus monkey MSCs into tumor cells following long-term expansion in vitro. The spontaneous transformation of the cultured cynomolgus monkey MSCs may have important implications for ongoing clinical trials and for models of oncogenesis, thus warranting a more strict assessment of MSCs prior to cell therapy. -- Highlights: Black-Right-Pointing-Pointer Spontaneous transformation of cynomolgus monkey MSCs in vitro. Black-Right-Pointing-Pointer Transformed mesenchymal cells lack multipotency. Black-Right-Pointing-Pointer Transformed mesenchymal cells are highly tumorigenic. Black-Right-Pointing-Pointer Transformed mesenchymal cells do not have the characteristics of cancer stem cells.

  8. Towards Personalized Regenerative Cell Therapy: Mesenchymal Stem Cells Derived from Human Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Lin, Lin; Bolund, Lars; Luo, Yonglun

    2016-01-01

    Mesenchymal stem cells (MSCs) are adult stem cells with the capacity of self-renewal and multilineage differentiation, and can be isolated from several adult tissues. However, isolating MSCs from adult tissues for cell therapy is hampered by the invasive procedure, the rarity of the cells and their attenuated proliferation capacity when cultivated and expanded in vitro. Human MSCs derived from induced pluripotent stem cells (iPSC-MSCs) have now evolved as a promising alternative cell source for MSCs and regenerative medicine. Several groups, including ours, have reported successful derivation of functional iPSC-MSCs and applied these cells in MSC-based therapeutic testing. Still, the current experience and understanding of iPSC-MSCs with respect to production methods, safety and efficacy are primitive. In this review, we highlight the methodological progress in iPSC-MSC research, describing the importance of choosing the right sources of iPSCs, iPSC reprogramming methods, iPSC culture systems, embryoid body intermediates, pathway inhibitors, basal medium, serum, growth factors and culture surface coating. We also highlight some progress in the application of iPSC-MSCs in direct cell therapy, tissue engineering and gene therapy.

  9. Stem cells for hepatic regeneration: the role of adipose tissue derived mesenchymal stem cells.

    Science.gov (United States)

    Ishikawa, Tetsuya; Banas, Agnieszka; Hagiwara, Keitaro; Iwaguro, Hideki; Ochiya, Takahiro

    2010-06-01

    Severe hepatic dysfunctions including hepatic cirrhosis and hepatocarcinoma are life-threatening conditions for which effective medical treatments are needed. With the only effective treatment to date being orthotropic liver transplantation, alternative approaches are needed because of the limited number of donors and the possibility of immune-rejection. One alternative is regenerative medicine, which holds promise for the development of a cell-based therapy enabling hepatic regeneration through transplantation of adipose tissue-derived mesenchymal stem cells (AT-MSCs) or hepatocyte-like cells generated from AT-MSCs. When compared with embryonic stem (ES) cells and induced pluripotent stem (iPS) cells, the use of AT-MSCs as regenerative cells would be advantageous in regard to ethical and safety issues since AT-MSCs are somatic cells and have the potential to be used without in vitro culture. These autologous cells are immuno-compatible and exhibit controlled differentiation and multi-functional abilities and do not undergo post-transplantation rejection or unwanted differentiation such as formation of teratomas. AT-MSC-based therapies may provide a novel approach for hepatic regeneration and hepatocyte differentiation and thereby support hepatic function in diseased individuals.

  10. Transplantation of autologous bone marrow-derived mesenchymal stem cells for traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    Jindou Jiang; Xingyao Bu; Meng Liu; Peixun Cheng

    2012-01-01

    Results from the present study demonstrated that transplantation of autologous bone marrow-derived mesenchymal stem cells into the lesion site in rat brain significantly ameliorated brain tissue pathological changes and brain edema, attenuated glial cell proliferation, and increased brain-derived neurotrophic factor expression. In addition, the number of cells double-labeled for 5-bromodeoxyuridine/glial fibrillary acidic protein and cells expressing nestin increased. Finally, blood vessels were newly generated, and the rats exhibited improved motor and cognitive functions. These results suggested that transplantation of autologous bone marrow-derived mesenchymal stem cells promoted brain remodeling and improved neurological functions following traumatic brain injury.

  11. Biological conduits combining bone marrow mesenchymal stem cells and extracellular matrix to treat long-segment sciatic nerve defects

    Directory of Open Access Journals (Sweden)

    Yang Wang

    2015-01-01

    Full Text Available The transplantation of polylactic glycolic acid conduits combining bone marrow mesenchymal stem cells and extracellular matrix gel for the repair of sciatic nerve injury is effective in some respects, but few data comparing the biomechanical factors related to the sciatic nerve are available. In the present study, rabbit models of 10-mm sciatic nerve defects were prepared. The rabbit models were repaired with autologous nerve, a polylactic glycolic acid conduit + bone marrow mesenchymal stem cells, or a polylactic glycolic acid conduit + bone marrow mesenchymal stem cells + extracellular matrix gel. After 24 weeks, mechanical testing was performed to determine the stress relaxation and creep parameters. Following sciatic nerve injury, the magnitudes of the stress decrease and strain increase at 7,200 seconds were largest in the polylactic glycolic acid conduit + bone marrow mesenchymal stem cells + extracellular matrix gel group, followed by the polylactic glycolic acid conduit + bone marrow mesenchymal stem cells group, and then the autologous nerve group. Hematoxylin-eosin staining demonstrated that compared with the polylactic glycolic acid conduit + bone marrow mesenchymal stem cells group and the autologous nerve group, a more complete sciatic nerve regeneration was found, including good myelination, regularly arranged nerve fibers, and a completely degraded and resorbed conduit, in the polylactic glycolic acid conduit + bone marrow mesenchymal stem cells + extracellular matrix gel group. These results indicate that bridging 10-mm sciatic nerve defects with a polylactic glycolic acid conduit + bone marrow mesenchymal stem cells + extracellular matrix gel construct increases the stress relaxation under a constant strain, reducing anastomotic tension. Large elongations under a constant physiological load can limit the anastomotic opening and shift, which is beneficial for the regeneration and functional reconstruction of sciatic nerve. Better

  12. Isolation and characterization of exosome from human embryonic stem cell-derived c-myc-immortalized mesenchymal stem cells

    NARCIS (Netherlands)

    Lai, Ruenn Chai; Yeo, Ronne Wee Yeh; Padmanabhan, Jayanthi; Choo, Andre; De Kleijn, Dominique P V; Lim, Sai Kiang

    2016-01-01

    Mesenchymal stem cells (MSC) are currently the cell type of choice in many cell therapy trials. The number of therapeutic applications for MSCs registered as product IND submissions with the FDA and initiation of registered clinical trials has increased substantially in recent years, in particular b

  13. Expression of heregulin and ErbB receptors in mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    GUI Chun; WANG Jian-an; HE Ai-na; CHEN Tie-long; LIU Xian-bao; LUO Rong-hua; JIANG Jun

    2008-01-01

    Background Mesenchymal stem cells are a promising cell type for cell transplantation in myocardial infarction.Type Ⅰ neuregulins-1,also known as heregulin,can promote the survival of cardiomyocytes and stimulate angiogenesis.The purpose of this study was to investigate the expression of heregulin and ErbB receptors in mesenchymaI stem cells,then further detect the secretion of heregulin and the changes in expression of heregulin and ErbB receptors under conditions of serum deprivation and hypoxia.Methods Mesenchymal stem cells lsolated frOm bone marrow of 180 g male Sprague-Dawley rats were cultured.Passage 3 cells were detected experimentally by regular reverse transcriptase-polymerase chain reaction(RT-PCR),quantitative real time PCR and Western blotting.Results Heregulin and ErbB receptors were expressed in mesenchymal stem cells,and all three ErbB receptors mRNA expressions were significantly down-regulated by serum deprivation and hypoxia,but serum deprivation and hypoxia significantly increased the protein expression of heregulin.Serum deprivation and hypoxia more than 12 hours could induce the secretion of heregulin.Conclusions Mesenchymal stem cells can express all three ErbB receptors and heregulin.Serum deprivation and hypoxia decrease the mRNA expression of ErbB receptors,increase the expression of heregulin,and activate the secretion of heregulin.

  14. Notch signaling: targeting cancer stem cells and epithelial-to-mesenchymal transition.

    Science.gov (United States)

    Espinoza, Ingrid; Pochampally, Radhika; Xing, Fei; Watabe, Kounosuke; Miele, Lucio

    2013-09-06

    Notch signaling is an evolutionarily conserved pathway involved in cell fate control during development, stem cell self-renewal, and postnatal tissue differentiation. Roles for Notch in carcinogenesis, the biology of cancer stem cells, tumor angiogenesis, and epithelial-to-mesenchymal transition (EMT) have been reported. This review describes the role of Notch in the "stemness" program in cancer cells and in metastases, together with a brief update on the Notch inhibitors currently under investigation in oncology. These agents may be useful in targeting cancer stem cells and to reverse the EMT process.

  15. Mesenchymal and embryonic characteristics of stem cells obtained from mouse dental pulp

    DEFF Research Database (Denmark)

    Guimarães, Elisalva Teixeira; Cruz, Gabriela Silva; de Jesus, Alan Araújo

    2011-01-01

    OBJECTIVE: Several studies have demonstrated that human dental pulp is a source of mesenchymal stem cells. To better understand the biological properties of these cells we isolated and characterized stem cells from the dental pulp of EGFP transgenic mice. METHODS: The pulp tissue was gently...... is an important source of adult stem cells and encourage studies on therapeutic potential of mDPSC in experimental disease models....... separated from the roots of teeth extracted from C57BL/6 mice, and cultured under appropriate conditions. Flow cytometry, RT-PCR, light microscopy (staining for alkaline phosphatase) and immunofluorescence were used to investigate the expression of stem cell markers. The presence of chromosomal...

  16. Autism Spectrum Disorders: Is Mesenchymal Stem Cell Personalized Therapy the Future?

    Directory of Open Access Journals (Sweden)

    Dario Siniscalco

    2012-01-01

    Full Text Available Autism and autism spectrum disorders (ASDs are heterogeneous neurodevelopmental disorders. They are enigmatic conditions that have their origins in the interaction of genes and environmental factors. ASDs are characterized by dysfunctions in social interaction and communication skills, in addition to repetitive and stereotypic verbal and nonverbal behaviours. Immune dysfunction has been confirmed with autistic children. There are no defined mechanisms of pathogenesis or curative therapy presently available. Indeed, ASDs are still untreatable. Available treatments for autism can be divided into behavioural, nutritional, and medical approaches, although no defined standard approach exists. Nowadays, stem cell therapy represents the great promise for the future of molecular medicine. Among the stem cell population, mesenchymal stem cells (MSCs show probably best potential good results in medical research. Due to the particular immune and neural dysregulation observed in ASDs, mesenchymal stem cell transplantation could offer a unique tool to provide better resolution for this disease.

  17. Comparative analysis of mesenchymal stem cells from adult mouse adipose, muscle, and fetal muscle.

    Science.gov (United States)

    Lei, Hulong; Yu, Bing; Huang, Zhiqing; Yang, Xuerong; Liu, Zehui; Mao, Xiangbing; Tian, Gang; He, Jun; Han, Guoquan; Chen, Hong; Mao, Qian; Chen, Daiwen

    2013-02-01

    Recently, increasing evidence supports that adult stem cells are the part of a natural system for tissue growth and repair. This study focused on the differences of mesenchymal stem cells from adult adipose (ADSCs), skeletal muscle (MDSCs) and fetal muscle (FMSCs) in biological characteristics, which is the key to cell therapy success. Stem cell antigen 1 (Sca-1) expression of MDSCs and FMSCs at passage 3 was two times more than that at passage 1 (P cells (P fetal muscle expressed higher OCN and OPN than ADSCs after 28 days osteogenic induction (P cell source and developmental stage had great impacts on biological properties of mesenchymal stem cells, and proper consideration of all the issues is necessary.

  18. Secreted microvesicular miR-31 inhibits osteogenic differentiation of mesenchymal stem cells

    DEFF Research Database (Denmark)

    Weilner, Sylvia; Schraml, Elisabeth; Wieser, Matthias

    2016-01-01

    Damage to cells and tissues is one of the driving forces of aging and age-related diseases. Various repair systems are in place to counteract this functional decline. In particular, the property of adult stem cells to self-renew and differentiate is essential for tissue homeostasis and regeneration....... However, their functionality declines with age (Rando, 2006). One organ that is notably affected by the reduced differentiation capacity of stem cells with age is the skeleton. Here, we found that circulating microvesicles impact on the osteogenic differentiation capacity of mesenchymal stem cells....... As a potential source of its secretion, we identified senescent endothelial cells, which are known to increase during aging in vivo (Erusalimsky, 2009). Endothelial miR-31 is secreted within senescent cell-derived microvesicles and taken up by mesenchymal stem cells where it inhibits osteogenic differentiation...

  19. Exosome: A Novel and Safer Therapeutic Refinement of Mesenchymal Stem Cell

    OpenAIRE

    Yeo, Ronne Wee Yeh; Lai, Ruenn Chai; Tan, Kok Hian; Lim, Sai Kiang

    2013-01-01

    Mesenchymal stem cell (MSC) has just been approved as the first “off-the-shelf” stem cell pharmaceutical drug with an anticipation of more approvals following completion of numerous rigorous clinical trials. Despite this progress, the rationale for MSC therapeutic efficacy remains tenuous and is increasingly rationalized on a secretion rather than differentiation mechanism. Recent studies identifying exosome as the secreted agent mediating MSC therapeutic efficacy coul...

  20. The clinical application of mesenchymal stromal cells in hematopoietic stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Ke Zhao

    2016-05-01

    Full Text Available Abstract Mesenchymal stromal cells (MSCs are multipotent stem cells well known for repairing tissue, supporting hematopoiesis, and modulating immune and inflammation response. These outstanding properties make MSCs as an attractive candidate for cellular therapy in immune-based disorders, especially hematopoietic stem cell transplantation (HSCT. In this review, we outline the progress of MSCs in preventing and treating engraftment failure (EF, graft-versus-host disease (GVHD following HSCT and critically discuss unsolved issues in clinical applications.

  1. The effects of topical mesenchymal stem cell transplantation in canine experimental cutaneous wounds

    OpenAIRE

    Kim, Ju-Won; Lee, Jong-Hwan; Lyoo, Young S.; JUNG, Dong-In; Park, Hee-Myung

    2013-01-01

    Background Adult stem cells have been widely investigated in bioengineering approaches for tissue repair therapy. We evaluated the clinical value and safety of the application of cultured bone marrow-derived allogenic mesenchymal stem cells (MSCs) for treating skin wounds in a canine model. Hypothesis Topical allogenic MSC transplantation can accelerate the closure of experimental full-thickness cutaneous wounds and attenuate local inflammation. Animals Adult healthy beagle dogs (n = 10; 3–6 ...

  2. Advances in mesenchymal stem cell-based strategies for cartilage repair and regeneration.

    Science.gov (United States)

    Toh, Wei Seong; Foldager, Casper Bindzus; Pei, Ming; Hui, James Hoi Po

    2014-10-01

    Significant research efforts have been undertaken in the last decade in the development of stem cell-based therapies for cartilage repair. Among the various stem cell sources, mesenchymal stem cells (MSCs) demonstrate great promise and clinical efficacy in cartilage regeneration. With a deeper understanding of stem cell biology, new therapeutics and new bioengineering approaches have emerged and showed potential for further developments. Of note, there has been a paradigm shift in applying MSCs for tissue regeneration from the use of stem cells for transplantation to the use of stem cell-derived matrix and secretome components as therapeutic tools and agents for cartilage regeneration. In this review, we will discuss the emerging role of MSCs in cartilage regeneration and the most recent advances in development of stem cell-based therapeutics for cartilage regeneration.

  3. Mesenchymal Stem Cell-Induced DDR2 Mediates Stromal-Breast Cancer Interactions and Metastasis Growth

    Directory of Open Access Journals (Sweden)

    Maria E. Gonzalez

    2017-01-01

    Full Text Available Increased collagen deposition by breast cancer (BC-associated mesenchymal stem/multipotent stromal cells (MSC promotes metastasis, but the mechanisms are unknown. Here, we report that the collagen receptor discoidin domain receptor 2 (DDR2 is essential for stromal-BC communication. In human BC metastasis, DDR2 is concordantly upregulated in metastatic cancer and multipotent mesenchymal stromal cells. In MSCs isolated from human BC metastasis, DDR2 maintains a fibroblastic phenotype with collagen deposition and induces pathological activation of DDR2 signaling in BC cells. Loss of DDR2 in MSCs impairs their ability to promote DDR2 phosphorylation in BC cells, as well as BC cell alignment, migration, and metastasis. Female ddr2-deficient mice homozygous for the slie mutation show inefficient spontaneous BC metastasis. These results point to a role for mesenchymal stem cell DDR2 in metastasis and suggest a therapeutic approach for metastatic BC.

  4. Mesenchymal Stem Cell-Induced DDR2 Mediates Stromal-Breast Cancer Interactions and Metastasis Growth.

    Science.gov (United States)

    Gonzalez, Maria E; Martin, Emily E; Anwar, Talha; Arellano-Garcia, Caroline; Medhora, Natasha; Lama, Arjun; Chen, Yu-Chih; Tanager, Kevin S; Yoon, Euisik; Kidwell, Kelley M; Ge, Chunxi; Franceschi, Renny T; Kleer, Celina G

    2017-01-31

    Increased collagen deposition by breast cancer (BC)-associated mesenchymal stem/multipotent stromal cells (MSC) promotes metastasis, but the mechanisms are unknown. Here, we report that the collagen receptor discoidin domain receptor 2 (DDR2) is essential for stromal-BC communication. In human BC metastasis, DDR2 is concordantly upregulated in metastatic cancer and multipotent mesenchymal stromal cells. In MSCs isolated from human BC metastasis, DDR2 maintains a fibroblastic phenotype with collagen deposition and induces pathological activation of DDR2 signaling in BC cells. Loss of DDR2 in MSCs impairs their ability to promote DDR2 phosphorylation in BC cells, as well as BC cell alignment, migration, and metastasis. Female ddr2-deficient mice homozygous for the slie mutation show inefficient spontaneous BC metastasis. These results point to a role for mesenchymal stem cell DDR2 in metastasis and suggest a therapeutic approach for metastatic BC.

  5. In vitro mesenchymal stem cell response to a CO{sub 2} laser modified polymeric material

    Energy Technology Data Exchange (ETDEWEB)

    Waugh, D.G., E-mail: d.waugh@chester.ac.uk [Laser Engineering and Manufacturing Research Centre, Faculty of Science and Engineering, University of Chester, Chester CH1 4BJ (United Kingdom); Hussain, I. [School of Life Sciences, Brayford Pool, University of Lincoln, Lincoln LN6 7TS (United Kingdom); Lawrence, J.; Smith, G.C. [Laser Engineering and Manufacturing Research Centre, Faculty of Science and Engineering, University of Chester, Chester CH1 4BJ (United Kingdom); Cosgrove, D. [School of Life Sciences, Brayford Pool, University of Lincoln, Lincoln LN6 7TS (United Kingdom); Toccaceli, C. [Laser Engineering and Manufacturing Research Centre, Faculty of Science and Engineering, University of Chester, Chester CH1 4BJ (United Kingdom)

    2016-10-01

    With an ageing world population it is becoming significantly apparent that there is a need to produce implants and platforms to manipulate stem cell growth on a pharmaceutical scale. This is needed to meet the socio-economic demands of many countries worldwide. This paper details one of the first ever studies in to the manipulation of stem cell growth on CO{sub 2} laser surface treated nylon 6,6 highlighting its potential as an inexpensive platform to manipulate stem cell growth on a pharmaceutical scale. Through CO{sub 2} laser surface treatment discrete changes to the surfaces were made. That is, the surface roughness of the nylon 6,6 was increased by up to 4.3 μm, the contact angle was modulated by up to 5° and the surface oxygen content increased by up to 1 atom %. Following mesenchymal stem cell growth on the laser treated samples, it was identified that CO{sub 2} laser surface treatment gave rise to an enhanced response with an increase in viable cell count of up to 60,000 cells/ml when compared to the as-received sample. The effect of surface parameters modified by the CO{sub 2} laser surface treatment on the mesenchymal stem cell response is also discussed along with potential trends that could be identified to govern the mesenchymal stem cell response.

  6. In vitro mesenchymal stem cell response to a CO2 laser modified polymeric material.

    Science.gov (United States)

    Waugh, D G; Hussain, I; Lawrence, J; Smith, G C; Cosgrove, D; Toccaceli, C

    2016-10-01

    With an ageing world population it is becoming significantly apparent that there is a need to produce implants and platforms to manipulate stem cell growth on a pharmaceutical scale. This is needed to meet the socio-economic demands of many countries worldwide. This paper details one of the first ever studies in to the manipulation of stem cell growth on CO2 laser surface treated nylon 6,6 highlighting its potential as an inexpensive platform to manipulate stem cell growth on a pharmaceutical scale. Through CO2 laser surface treatment discrete changes to the surfaces were made. That is, the surface roughness of the nylon 6,6 was increased by up to 4.3μm, the contact angle was modulated by up to 5° and the surface oxygen content increased by up to 1atom %. Following mesenchymal stem cell growth on the laser treated samples, it was identified that CO2 laser surface treatment gave rise to an enhanced response with an increase in viable cell count of up to 60,000cells/ml when compared to the as-received sample. The effect of surface parameters modified by the CO2 laser surface treatment on the mesenchymal stem cell response is also discussed along with potential trends that could be identified to govern the mesenchymal stem cell response.

  7. Sox10 Regulates Stem/Progenitor and Mesenchymal Cell States in Mammary Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Christopher Dravis

    2015-09-01

    Full Text Available To discover mechanisms that mediate plasticity in mammary cells, we characterized signaling networks that are present in the mammary stem cells responsible for fetal and adult mammary development. These analyses identified a signaling axis between FGF signaling and the transcription factor Sox10. Here, we show that Sox10 is specifically expressed in mammary cells exhibiting the highest levels of stem/progenitor activity. This includes fetal and adult mammary cells in vivo and mammary organoids in vitro. Sox10 is functionally relevant, as its deletion reduces stem/progenitor competence whereas its overexpression increases stem/progenitor activity. Intriguingly, we also show that Sox10 overexpression causes mammary cells to undergo a mesenchymal transition. Consistent with these findings, Sox10 is preferentially expressed in stem- and mesenchymal-like breast cancers. These results demonstrate a signaling mechanism through which stem and mesenchymal states are acquired in mammary cells and suggest therapeutic avenues in breast cancers for which targeted therapies are currently unavailable.

  8. Mesenchymal stem cells maintain TGF-beta-mediated chondrogenic phenotype in alginate bead culture

    DEFF Research Database (Denmark)

    Mehlhorn, A T; Schmal, H; Kaiser, S

    2006-01-01

    This article addresses the stability of chondrogenic phenotype and the transdifferentiation potential of bone marrow-derived mesenchymal stem cells (MSCs) at distinct stages of differentiation. Differentiated MSCs were expected to maintain cartilage-like gene expression pattern in the absence of ...

  9. MicroRNA-138 regulates osteogenic differentiation of human stromal (mesenchymal) stem cells in vivo

    DEFF Research Database (Denmark)

    Eskildsen, Tilde; Taipaleenmäki, H.; Stenvang, Jan;

    2011-01-01

    Elucidating the molecular mechanisms that regulate human stromal (mesenchymal) stem cell (hMSC) differentiation into osteogenic lineage is important for the development of anabolic therapies for treatment of osteoporosis. MicroRNAs (miRNAs) are short, noncoding RNAs that act as key regulators...

  10. Enhanced adipogenic differentiation of bovine bone marrow-derived mesenchymal stem cells

    Science.gov (United States)

    Until now, the isolation and characterization of bovine bone marrow-derived mesenchymal stem cells (bBM-MSCs) have not been established, which prompted us to optimize the differentiation protocol for bBM-MSCs. In this study, bBM-MSCs were freshly isolated from three 6-month-old cattle and used for p...

  11. Oxymatrine could promote mesenchymal stem cell therapy in hepatic fibrosis rats:an experimental research

    Institute of Scientific and Technical Information of China (English)

    柴宁莉

    2013-01-01

    Objective To investigate whether oxymatrine (OM) could promote mesenchymal stem cell (MSC) therapy in CCl4-induced hepatic fibrosis (HF) in rats and to initially explore its mechanisms.Methods Totally 50 male SD rats were randomly divided into five groups,i.e.,nor-

  12. Human bone marrow mesenchymal stem cell transplantation attenuates axonal injur y in stroke rats

    Institute of Scientific and Technical Information of China (English)

    Yi Xu; Shiwei Du; Xinguang Yu; Xiao Han; Jincai Hou; Hao Guo

    2014-01-01

    Previous studies have shown that transplantation of human bone marrow mesenchymal stem cells promotes neural functional recovery after stroke, but the neurorestorative mechanisms remain largely unknown. We hypothesized that functional recovery of myelinated axons may be one of underlying mechanisms. In this study, an ischemia/reperfusion rat model was established using the middle cerebral artery occlusion method. Rats were used to test the hypothesis that in-travenous transplantation of human bone marrow mesenchymal stem cells through the femoral vein could exert neuroprotective effects against cerebral ischemia via a mechanism associated with the ability to attenuate axonal injury. The results of behavioral tests, infarction volume analysis and immunohistochemistry showed that cerebral ischemia caused severe damage to the myelin sheath and axons. After rats were intravenously transplanted with human bone marrow mesenchymal stem cells, the levels of axon and myelin sheath-related proteins, including mi-crotubule-associated protein 2, myelin basic protein, and growth-associated protein 43, were elevated, infarct volume was decreased and neural function was improved in cerebral ischemic rats. These ifndings suggest that intravenously transplanted human bone marrow mesenchymal stem cells promote neural function. Possible mechanisms underlying these beneifcial effects in-clude resistance to demyelination after cerebral ischemia, prevention of axonal degeneration, and promotion of axonal regeneration.

  13. Mesenchymal Stem Cell Therapy for Protection and Repair of Injured Vital Organs

    NARCIS (Netherlands)

    van Poll, D.; Parekkadan, B.; Rinkes, I. H. M. Borel; Tilles, A. W.; Yarmush, M. L.

    2008-01-01

    Recently there has been a paradigm shift in what is considered to be the therapeutic promise of mesenchymal stem cells (MSCs) in diseases of vital organs. Originally, research focused on MSCs as a source of regenerative cells by differentiation of transplanted cells into lost cell types. It is now c

  14. Inflammatory conditions affect gene expression and function of human adipose tissue-derived mesenchymal stem cells

    NARCIS (Netherlands)

    M.J. Crop (Meindert); C.C. Baan (Carla); S.S. Korevaar (Sander); J.N.M. IJzermans (Jan); M. Pescatori (Mario); A. Stubbs (Andrew); W.F.J. van IJcken (Wilfred); M.H. Dahlke (Marc); E. Eggenhofer (Elke); W. Weimar (Willem); M.J. Hoogduijn (Martin)

    2010-01-01

    textabstractThere is emerging interest in the application of mesenchymal stem cells (MSC) for the prevention and treatment of autoimmune diseases, graft-versus-host disease and allograft rejection. It is, however, unknown how inflammatory conditions affect phenotype and function of MSC. Adipose tiss

  15. Epigenetic rejuvenation of mesenchymal stromal cells derived from induced pluripotent stem cells

    NARCIS (Netherlands)

    Frobel, Joana; Hemeda, Hatim; Lenz, Michael; Abagnale, Giulio; Joussen, Sylvia; Denecke, Bernd; Sarić, Tomo; Zenke, Martin; Wagner, Wolfgang

    2014-01-01

    Standardization of mesenchymal stromal cells (MSCs) remains a major obstacle in regenerative medicine. Starting material and culture expansion affect cell preparations and render comparison between studies difficult. In contrast, induced pluripotent stem cells (iPSCs) assimilate toward a ground stat

  16. 2012478 Biological characteristics of bone marrow mesenchymal stem cells and JAK2 mutation in myeloproliferative neoplasms

    Institute of Scientific and Technical Information of China (English)

    田竑

    2012-01-01

    Objective To study the biological characteristics of bone marrow mesenchymal stem cells(BMSCs) and detect JAK2 mutation in BMSCs from myeloproliferative neoplasms(MPN) patients. Methods JAK2 V617F mutation and exon 12 mutation in 70 MPN patients’ blood or bone marrow samples were detected.

  17. The effect of marrow mesenchymal stem cell transplantation on pulmonary fibrosis in rats

    Institute of Scientific and Technical Information of China (English)

    黄坤

    2012-01-01

    Objective To study the possible mechanisms of marrow mesenchymal stem cells(MSC) in therapy of bleomycin(BLM)-induced pulmonary fibrosis in rats. Methods Fifty-four female Wistar rats were randomly divided into a control group,a BLM group and a MSC group. The control group receivel intratracheal normal

  18. Intranasal mesenchymal stem cell treatment for neonatal brain damage : long-term cognitive and sensorimotor improvement

    NARCIS (Netherlands)

    Donega, Vanessa; van Velthoven, Cindy T J; Nijboer, Cora H; van Bel, Frank; Kas, Martien J H; Kavelaars, Annemieke; Heijnen, Cobi J

    2013-01-01

    Mesenchymal stem cell (MSC) administration via the intranasal route could become an effective therapy to treat neonatal hypoxic-ischemic (HI) brain damage. We analyzed long-term effects of intranasal MSC treatment on lesion size, sensorimotor and cognitive behavior, and determined the therapeutic wi

  19. Recent advances in mesenchymal stem cell immunomodulation: the role of microvesicles.

    Science.gov (United States)

    Fierabracci, Alessandra; Del Fattore, Andrea; Luciano, Rosa; Muraca, Marta; Teti, Anna; Muraca, Maurizio

    2015-01-01

    Mesenchymal stem cells are the most widely used cell phenotype for therapeutic applications, the main reasons being their well-established abilities to promote regeneration of injured tissues and to modulate immune responses. Efficacy was reported in the treatment of several animal models of inflammatory and autoimmune diseases and, in clinical settings, for the management of disorders such as GVHD, systemic lupus erythematosus, multiple sclerosis, and inflammatory bowel disease. The effects of mesenchymal stem cells are believed to be largely mediated by paracrine signals, and several secreted molecules have been identified as contributors to the net biological effect. Recently, it has been recognized that bioactive molecules can be shuttled from cell to cell packed in microvesicles, tiny portions of cytoplasm surrounded by a membrane. Coding and noncoding RNAs are also carried in such microvesicles, transferring relevant biological activity to target cells. Several reports indicate that the regenerative effect of mesenchymal stem cells can be reproduced by microvesicles isolated from their culture medium. More recent evidence suggests that the immunomodulatory effects of mesenchymal stem cells are also at least partially mediated by secreted microvesicles. These findings allow better understanding of the mechanisms involved in cell-to-cell interaction and may have interesting implications for the development of novel therapeutic tools in place of the parent cells.

  20. Morphology, proliferation, and osteogenic differentiation of mesenchymal stem cells cultured on titanium, tantalum, and chromium surfaces

    DEFF Research Database (Denmark)

    Stiehler, Maik; Lind, M.; Mygind, Tina;

    2007-01-01

    the interactions between human mesenchymal stem cells (MSCs) and smooth surfaces of titanium (Ti), tantalum (Ta), and chromium (Cr). Mean cellular area was quantified using fluorescence microscopy (4 h). Cellular proliferation was assessed by (3)H-thymidine incorporation and methylene blue cell counting assays (4...

  1. Expansion of mesenchymal stem cells using a microcarrier-based cultivation system: growth and metabolism

    NARCIS (Netherlands)

    Schop, D.; Janssen, F.W.; Borgart, E.; Bruijn, de J.D.; Dijkhuizen-Radersma, van R.

    2008-01-01

    For the continuous and fast expansion of mesenchymal stem cells (MSCs), microcarriers have gained increasing interest. The aim of this study was to evaluate the growth and metabolism profiles of MSCs, expanded in a microcarrier-based cultivation system. We investigated various cultivation conditions

  2. Tumour microenvironment and radiation response in sarcomas originating from tumourigenic human mesenchymal stem cells

    DEFF Research Database (Denmark)

    D'Andrea, Filippo Peder; Safwat, Akmal Ahmed; Burns, Jorge S.;

    2012-01-01

    Background: Resistance to radiation therapy remains a serious impediment to cancer therapy. We previously reported heterogeneity for clonogenic survival when testing in vitro radiation resistance among single cell derived clones from a human mesenchymal cancer stem cell model (hMSC). Here we aimed...

  3. 3D tissue formation : the kinetics of human mesenchymal stem cells

    NARCIS (Netherlands)

    Higuera Sierra, Gustavo Andrés

    2010-01-01

    The main thesis in this book proposes that physical phenomena underlies the formation of three-dimensional (3D) tissue. In this thesis, tissue regeneration with mesenchymal stem cells was studied through the law of conservation of mass. MSCs proliferation and 3D tissue formation were explored from 2

  4. Impact of Mesenchymal Stem Cell secreted PAI-1 on colon cancer cell migration and proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Hogan, Niamh M. [Discipline of Surgery, School of Medicine, National University of Ireland, Galway (Ireland); Joyce, Myles R. [Department of Colorectal Surgery, University College Hospital, Galway (Ireland); Murphy, J. Mary; Barry, Frank P.; O’Brien, Timothy [Regenerative Medicine Institute, National University of Ireland, Galway (Ireland); Kerin, Michael J. [Discipline of Surgery, School of Medicine, National University of Ireland, Galway (Ireland); Dwyer, Roisin M., E-mail: roisin.dwyer@nuigalway.ie [Discipline of Surgery, School of Medicine, National University of Ireland, Galway (Ireland)

    2013-06-14

    Highlights: •MSCs were directly co-cultured with colorectal cancer (CRC) cells on 3D scaffolds. •MSCs influence CRC protein/gene expression, proliferation and migration. •We report a significant functional role of MSC-secreted PAI-1 in colon cancer. -- Abstract: Mesenchymal Stem Cells are known to engraft and integrate into the architecture of colorectal tumours, with little known regarding their fate following engraftment. This study aimed to investigate mediators of Mesenchymal Stem Cell (MSC) and colon cancer cell (CCC) interactions. Mesenchymal Stem Cells and colon cancer cells (HT29 and HCT-116) were cultured individually or in co-culture on 3-dimensional scaffolds. Conditioned media containing all secreted factors was harvested at day 1, 3 and 7. Chemokine secretion and expression were analyzed by Chemi-array, ELISA (Macrophage migration inhibitory factor (MIF), plasminogen activator inhibitor type 1 (PAI-1)) and RQ-PCR. Colon cancer cell migration and proliferation in response to recombinant PAI-1, MSCs and MSCs + antibody to PAI-1 was analyzed using Transwell inserts and an MTS proliferation assay respectively. Chemi-array revealed secretion of a wide range of factors by each cell population, including PAI-1and MIF. ELISA analysis revealed Mesenchymal Stem Cells to secrete the highest levels of PAI-1 (MSC mean 10.6 ng/mL, CCC mean 1.01 ng/mL), while colon cancer cells were the principal source of MIF. MSC-secreted PAI-1 stimulated significant migration of both CCC lines, with an antibody to the chemokine shown to block this effect (67–88% blocking,). A cell-line dependant effect on CCC proliferation was shown for Mesenchymal Stem Cell-secreted PAI-1 with HCT-116 cells showing decreased proliferation at all concentrations, and HT29 cells showing increased proliferation in the presence of higher PAI-1 levels. This is the first study to identify PAI-1 as an important mediator of Mesenchymal Stem Cell/colon cancer cell interactions and highlights the

  5. Preclinical Evaluation of the Immunomodulatory Properties of Cardiac Adipose Tissue Progenitor Cells Using Umbilical Cord Blood Mesenchymal Stem Cells: A Direct Comparative Study

    Directory of Open Access Journals (Sweden)

    Isaac Perea-Gil

    2015-01-01

    Full Text Available Cell-based strategies to regenerate injured myocardial tissue have emerged over the past decade, but the optimum cell type is still under scrutiny. In this context, human adult epicardial fat surrounding the heart has been characterized as a reservoir of mesenchymal-like progenitor cells (cardiac ATDPCs with potential clinical benefits. However, additional data on the possibility that these cells could trigger a deleterious immune response following implantation are needed. Thus, in the presented study, we took advantage of the well-established low immunogenicity of umbilical cord blood-derived mesenchymal stem cells (UCBMSCs to comparatively assess the immunomodulatory properties of cardiac ATDPCs in an in vitro allostimulatory assay using allogeneic mature monocyte-derived dendritic cells (MDDCs. Similar to UCBMSCs, increasing amounts of seeded cardiac ATDPCs suppressed the alloproliferation of T cells in a dose-dependent manner. Secretion of proinflammatory cytokines (IL6, TNFα, and IFNγ was also specifically modulated by the different numbers of cardiac ATDPCs cocultured. In summary, we show that cardiac ATDPCs abrogate T cell alloproliferation upon stimulation with allogeneic mature MDDCs, suggesting that they could further regulate a possible harmful immune response in vivo. Additionally, UCBMSCs can be considered as valuable tools to preclinically predict the immunogenicity of prospective regenerative cells.

  6. Preclinical Evaluation of the Immunomodulatory Properties of Cardiac Adipose Tissue Progenitor Cells Using Umbilical Cord Blood Mesenchymal Stem Cells: A Direct Comparative Study

    Science.gov (United States)

    Perea-Gil, Isaac; Monguió-Tortajada, Marta; Gálvez-Montón, Carolina; Bayes-Genis, Antoni; Borràs, Francesc E.; Roura, Santiago

    2015-01-01

    Cell-based strategies to regenerate injured myocardial tissue have emerged over the past decade, but the optimum cell type is still under scrutiny. In this context, human adult epicardial fat surrounding the heart has been characterized as a reservoir of mesenchymal-like progenitor cells (cardiac ATDPCs) with potential clinical benefits. However, additional data on the possibility that these cells could trigger a deleterious immune response following implantation are needed. Thus, in the presented study, we took advantage of the well-established low immunogenicity of umbilical cord blood-derived mesenchymal stem cells (UCBMSCs) to comparatively assess the immunomodulatory properties of cardiac ATDPCs in an in vitro allostimulatory assay using allogeneic mature monocyte-derived dendritic cells (MDDCs). Similar to UCBMSCs, increasing amounts of seeded cardiac ATDPCs suppressed the alloproliferation of T cells in a dose-dependent manner. Secretion of proinflammatory cytokines (IL6, TNFα, and IFNγ) was also specifically modulated by the different numbers of cardiac ATDPCs cocultured. In summary, we show that cardiac ATDPCs abrogate T cell alloproliferation upon stimulation with allogeneic mature MDDCs, suggesting that they could further regulate a possible harmful immune response in vivo. Additionally, UCBMSCs can be considered as valuable tools to preclinically predict the immunogenicity of prospective regenerative cells. PMID:25861626

  7. Lipopolysaccharide-activated microglial-induced neuroglial cell differentiation in bone marrow mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    Xiaoguang Luo; Chunlin Ge; Yan Ren; Hongmei Yu; Zhe Wu; Qiushuang Wang; Chaodong Zhang

    2008-01-01

    BACKGROUND: Microglia are very sensitive to environmental changes, often becoming activated by pathological conditions. Activated microglia can exert a dual role in injury and repair in various diseases of the central nervous system, including cerebral ischemia, Parkinson's disease, and Alzheimer's disease. OBJECTIVE: An immortal microglial cell line, BV2, was treated with varying concentrations of lipopolysaccharide (LPS) to induce a pathological situation. Supernatant was harvested and incubated with bone marrow mesenchymal stem cells and, concomitantly, bone marrow mesenchymal stem cell differentiation was observed. DESIGN: A controlled observation, in vitro experiment. SETTING: Department of Neurology, First Affiliated Hospital of China Medical University. MATERIALS: Five male 2-3-week-old Sprague Dawley rats were purchased from Animal Laboratory Center of China Medical University and included in this study. The protocol was performed in accordance with ethical guidelines for the use and care of animals. The microglial cell line BV2 was produced by Cell Research Institute of Chinese Academy of Sciences. LPS was produced by Sigma Company, USA. METHODS: This study was performed in the Central Laboratory of China Medical University from September 2006 to March 2007. Rat femoral and tibial bone marrow was collected for separation and primary culture of bone marrow mesenchymal stem cells. Bone marrow mesenchymal stem cell cultures were divided into 5 groups: control group, non-activated group, as well as low-, medium-, and high-dose LPS groups. In the control group, bone marrow mesenchymal stem cells were cultured with Dulbecco's modified Eagle's medium (DMEM) supplemented with fetal bovine serum (volume fraction 0.1). In the non-activated group, bone marrow mesenchymal stem cells were incubated with non-activated BV2 supernatant. In the low-, medium-, and high-dose LPS groups, bone marrow mesenchymal stem cells were incubated with LPS (0.01, 0.1 and 1

  8. Serum-Free Media and the Immunoregulatory Properties of Mesenchymal Stem Cells In Vivo and In Vitro

    Directory of Open Access Journals (Sweden)

    Mei Wu

    2014-02-01

    Full Text Available Background: Mesenchymal stem cells are capable of self-renewal and multi-lineage differentiation. They are used extensively to treat several diseases. Traditionally, mesenchymal stem cells are cultured in serum-containing media, typically supplemented with fetal bovine serum (FBS. However, the variability of FBS is likely to skew experimental results. Although serum-free media used to expand mesenchymal stem cells has facilitated remarkable achievements, immunomodulation of these cells in under serum-free conditions is poorly understood. We hypothesized that mesenchymal stem cells expanded in serum-free media will retain powerful immunoregulatory functions in vitro and in vivo. Design and Methods: Immunosuppressive activity and the immunomodulatory cytokines produced by mesenchymal stem cells in serum-free media were characterized in vitro. Immunomodulation by serum-free mesenchymal stem cell expansion in monocrotaline-induced pulmonary hypertension was explored in vivo. Results: Similar to cells in serum-containing media, mesenchymal stem cells expanded in serum-free media inhibited proliferation and apoptosis of CD4+T cells. They also exhibited strong immunosuppressive activities and secreted high levels of immunomodulatory cytokines such as PGE2, IDO1, COX2, IL-6, and IL-1β, but not HGF. On the other hand, growth of mesenchymal stem cells in serum-free media attenuated pulmonary vascular remodeling and inhibited mRNA expression of proinflammatory cytokines TNF-α, IFN-γ, IL-6, IL-1β, and IL-18. Conclusions: Mesenchymal stem cells in serum-free media maintained powerful immunomodulatory function in vitro and in vivo; serum-free media may replace serum-containing media for basic research and clinical applications.

  9. Hypoxia and Stem Cell-Based Engineering of Mesenchymal Tissues

    OpenAIRE

    Ma, Teng; Grayson, Warren L.; Fröhlich, Mirjam; Vunjak-Novakovic, Gordana

    2009-01-01

    Stem cells have the ability for prolonged self-renewal and differentiation into mature cells of various lineages, which makes them important cell sources for tissue engineering applications. Their remarkable ability to replenish and differentiate in vivo is regulated by both intrinsic and extrinsic cellular mechanisms. The anatomical location where the stem cells reside, known as the “stem cell niche or microenvironment,” provides signals conducive to the maintenance of definitive stem cell p...

  10. Platelet-rich fibrin-induced bone marrow mesenchymal stem cell differentiation into osteoblast-like cells and neural cells

    Institute of Scientific and Technical Information of China (English)

    Qi Li; Yajun Geng; Lei Lu; Tingting Yang; Mingrui Zhang; Yanmin Zhou

    2011-01-01

    Bone marrow mesenchymal stem cells were allowed to develop for 14 days in a platelet-rich fibrin environment. Results demonstrated that platelet-rich fibrin significantly promoted bone marrow mesenchymal stem cell proliferation. In addition, there was a dose-dependent increase in Runt-related transcription factor-2 and bone morphogenetic protein-2 mRNA expression, as well as neuron-specific enolase and glial acidic protein. Results showed that platelet-rich fibrin promoted bone marrow mesenchymal stem cell proliferation and differentiation of osteoblastlike cells and neural cells in a dose-dependent manner.

  11. Tumorigenic heterogeneity in cancer stem cells evolved from long-term cultures of telomerase-immortalized human mesenchymal stem cells

    DEFF Research Database (Denmark)

    Burns, Jorge S; Abdallah, Basem M; Guldberg, Per

    2005-01-01

    Long-term cultures of telomerase-transduced adult human mesenchymal stem cells (hMSC) may evolve spontaneous genetic changes leading to tumorigenicity in immunodeficient mice (e.g., hMSC-TERT20). We wished to clarify whether this unusual phenotype reflected a rare but dominant subpopulation...... or if the stem cell origin allowed most cells to behave as cancer stem cells. Cultures of the hMSC-TERT20 strain at population doubling 440 were highly clonogenic (94%). From 110 single-cell clones expanded by 20 population doublings, 6 underwent detailed comparison. Like the parental population, each clone had...... tumorigenicity correlated with good viability plus capillary morphogenesis on serum starvation and high cyclin D1 expression. Thus, hMSC-TERT20 clones represent cancer stem cells with hierarchical tumorigenicity, providing new models to explore the stem cell hypothesis for cancer....

  12. Overexpression of microRNA-124 promotes the neuronal differentiation of bone marrow-derived mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    Defeng Zou; Yi Chen; Yaxin Han; Chen Lv; Guanjun Tu

    2014-01-01

    microRNAs (miRNAs) play an important regulatory role in the self-renewal and differentiation of stem cells. In this study, we examined the effects of miRNA-124 (miR-124) overexpression in bone marrow-derived mesenchymal stem cells. In particular, we focused on the effect of overexpression on the differentiation of bone marrow-derived mesenchymal stem cells into neurons. First, we used GeneChip technology to analyze the expression of miRNAs inbone marrow-derived mesen-chymal stem cells, neural stem cells and neurons. miR-124 expression was substantially reduced inbone marrow-derived mesenchymal stem cells compared with the other cell types. We con-structed a lentiviral vector overexpressing miR-124 and transfected it intobone marrow-derived mesenchymal stem cells. Intracellular expression levels of the neuronal early markersβ-III tu-bulin and microtubule-associated protein-2 were signiifcantly increased, and apoptosis induced by oxygen and glucose deprivation was reduced in transfected cells. After miR-124-transfected bone marrow-derived mesenchymal stem cells were transplanted into the injured rat spinal cord, a large number of cells positive for the neuronal marker neurofilament-200 were observed in the transplanted region. The Basso-Beattie-Bresnahan locomotion scores showed that the motor function of the hind limb of rats with spinal cord injury was substantially improved. These re-sults suggest that miR-124 plays an important role in the differentiation ofbone marrow-derived mesenchymal stem cells into neurons. Our ifndings should facilitate the development of novel strategies for enhancing the therapeutic efifcacy ofbone marrow-derived mesenchymal stem cell transplantation for spinal cord injury.

  13. Mesenchymal stem cells and their subpopulation, pluripotent muse cells, in basic research and regenerative medicine.

    Science.gov (United States)

    Kuroda, Yasumasa; Dezawa, Mari

    2014-01-01

    Mesenchymal stem cells (MSCs) have gained a great deal of attention for regenerative medicine because they can be obtained from easy accessible mesenchymal tissues, such as bone marrow, adipose tissue, and the umbilical cord, and have trophic and immunosuppressive effects to protect tissues. The most outstanding property of MSCs is their potential for differentiation into cells of all three germ layers. MSCs belong to the mesodermal lineage, but they are known to cross boundaries from mesodermal to ectodermal and endodermal lineages, and differentiate into a variety of cell types both in vitro and in vivo. Such behavior is exceptional for tissue stem cells. As observed with hematopoietic and neural stem cells, tissue stem cells usually generate cells that belong to the tissue in which they reside, and do not show triploblastic differentiation. However, the scientific basis for the broad multipotent differentiation of MSCs still remains an enigma. This review summarizes the properties of MSCs from representative mesenchymal tissues, including bone marrow, adipose tissue, and the umbilical cord, to demonstrate their similarities and differences. Finally, we introduce a novel type of pluripotent stem cell, multilineage-differentiating stress-enduring (Muse) cells, a small subpopulation of MSCs, which can explain the broad spectrum of differentiation ability in MSCs.

  14. Canine articular cartilage regeneration using mesenchymal stem cells seeded on platelet rich fibrin

    Science.gov (United States)

    Shams Asenjan, K.; Dehdilani, N.; Parsa, H.

    2017-01-01

    Objectives Mesenchymal stem cells have the ability to differentiate into various cell types, and thus have emerged as promising alternatives to chondrocytes in cell-based cartilage repair methods. The aim of this experimental study was to investigate the effect of bone marrow derived mesenchymal stem cells combined with platelet rich fibrin on osteochondral defect repair and articular cartilage regeneration in a canine model. Methods Osteochondral defects were created on the medial femoral condyles of 12 adult male mixed breed dogs. They were either treated with stem cells seeded on platelet rich fibrin or left empty. Macroscopic and histological evaluation of the repair tissue was conducted after four, 16 and 24 weeks using the International Cartilage Repair Society macroscopic and the O’Driscoll histological grading systems. Results were reported as mean and standard deviation (sd) and compared at different time points between the two groups using the Mann-Whitney U test, with a value regeneration. It is postulated that platelet rich fibrin creates a suitable environment for proliferation and differentiation of stem cells by releasing endogenous growth factors resulting in creation of a hyaline-like reparative tissue. Cite this article: D. Kazemi, K. Shams Asenjan, N. Dehdilani, H. Parsa. Canine articular cartilage regeneration using mesenchymal stem cells seeded on platelet rich fibrin: Macroscopic and histological assessments. Bone Joint Res 2017;6:98–107. DOI: 10.1302/2046-3758.62.BJR-2016-0188.R1. PMID:28235767

  15. Human umbilical cord mesenchymal stem cells and the treatment of spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    CAO Fu-jiang; FENG Shi-qing

    2009-01-01

    Objective To review the recent studies about human umbilical cord mesenchymal stem cells (hUCMSCs) and advances in the treatment of spinal cord injury, Data sources Published articles (1983-2007) about hUCMSCs and spinal cord injury were selected using Medline. Study selection Articles selected were relevant to development of mesenchymal stem cells (MSCs) for transplantation in spinal cord injury therapy. Of 258 originally identifiied arises 51 were selected that specifically addressed the stated purpose. Results Recent work has revealed that hUCMSCs share most of the characteristics with MSCs derived from bone marrow and are more appropriate to transplantation for cell based therapies. Conclusions Human umbilical cord could be regarded as a source of MSCs for experimental and clinical needs. In addition, as a peculiar source of stem cells, hUCMSCs may play an important role in the treatment of spinal cord injury.

  16. The potential for resident lung mesenchymal stem cells to promote functional tissue regeneration: understanding microenvironmental cues.

    Science.gov (United States)

    Foronjy, Robert F; Majka, Susan M

    2012-12-01

    Tissue resident mesenchymal stem cells (MSCs) are important regulators of tissue repair or regeneration, fibrosis, inflammation, angiogenesis and tumor formation. Bone marrow derived mesenchymal stem cells (BM-MSCs) and endothelial progenitor cells (EPC) are currently being considered and tested in clinical trials as a potential therapy in patients with such inflammatory lung diseases including, but not limited to, chronic lung disease, pulmonary arterial hypertension (PAH), pulmonary fibrosis (PF), chronic obstructive pulmonary disease (COPD)/emphysema and asthma. However, our current understanding of tissue resident lung MSCs remains limited. This review addresses how environmental cues impact on the phenotype and function of this endogenous stem cell pool. In addition, it examines how these local factors influence the efficacy of cell-based treatments for lung diseases.

  17. Isolation, Culturing, Characterization and Aging of Adipose Tissue-derived Mesenchymal Stem Cells: A Brief Overview

    Directory of Open Access Journals (Sweden)

    Ezzatollah Fathi

    2016-01-01

    Full Text Available ABSTRACT The aim of this review was to describe the current state-of-the-art regarding isolation, characterization and aging of adipose tissue-derived mesenchymal stem cells (ADSCs. Mesenchymal stem cells (MSCs have recently received widespread attention because of their potential use in tissue-engineering applications. Various studies have indicated that MSCs with a fibroblast-like morphology migrate to the sites of injury and help to regenerate damaged tissue. Over the past few years, it has been recognized that fat is not only an energy supply, but also a rich source of multipotent stem cells that can be easily harvested, isolated and selected as compared with other tissues. ADSCs are particularly interesting because of their rapid proliferation and multidirectional differentiation potential.

  18. The Potential for Resident Lung Mesenchymal Stem Cells to Promote Functional Tissue Regeneration: Understanding Microenvironmental Cues

    Directory of Open Access Journals (Sweden)

    Susan M. Majka

    2012-10-01

    Full Text Available Tissue resident mesenchymal stem cells (MSCs are important regulators of tissue repair or regeneration, fibrosis, inflammation, angiogenesis and tumor formation. Bone marrow derived mesenchymal stem cells (BM-MSCs and endothelial progenitor cells (EPC are currently being considered and tested in clinical trials as a potential therapy in patients with such inflammatory lung diseases including, but not limited to, chronic lung disease, pulmonary arterial hypertension (PAH, pulmonary fibrosis (PF, chronic obstructive pulmonary disease (COPD/emphysema and asthma. However, our current understanding of tissue resident lung MSCs remains limited. This review addresses how environmental cues impact on the phenotype and function of this endogenous stem cell pool. In addition, it examines how these local factors influence the efficacy of cell-based treatments for lung diseases.

  19. Amelioration of experimental autoimmune encephalomyelitis through transplantation of placental derived mesenchymal stem cells

    Science.gov (United States)

    Jiang, Hong; Zhang, Yuanyuan; Tian, Kewei; Wang, Beibei; Han, Shu

    2017-01-01

    Placental derived mesenchymal stem cells (PMSCs) have been suggested as a possible source of cells to treat multiple sclerosis (MS) due to their immunomodulatory functions, lack of ethical concerns, and potential to differentiate into neurons and oligodendrocytes. To investigate whether PMSCs share similar characteristics with embryonic mesenchymal stem cells (EMSCs), and if transplanted PMSCs have the ability to integrate and replace degenerated neural cells, we transplanted rat PMSCs and EMSCs into the central nervous system (CNS) of Lewis rats with experimental autoimmune encephalomyelitis (EAE), an animal model of MS. Our findings demonstrated that transplanted PMSCs, similar to EMSCs, were effective in decreasing infiltrating inflammatory cells, preserving axons, and ameliorating demyelination, thereby improving the neurological functions of animals. Moreover, both PMSCs and EMSCs had the ability to migrate into inflamed tissues and express neural–glial lineage markers. These findings suggest that PMSCs may replace EMSCs as a source of cells in MS stem cell therapy. PMID:28186117

  20. MicroRNAs as Regulators of Adipogenic Differentiation of Mesenchymal Stem Cells

    DEFF Research Database (Denmark)

    Hamam, Dana; Ali, Dalia; Kassem, Moustapha

    2015-01-01

    MicroRNAs (miRNAs) constitute complex regulatory network, fine tuning the expression of a myriad of genes involved in different biological and physiological processes, including stem cell differentiation. Mesenchymal stem cells (MSCs) are multipotent stem cells present in the bone marrow stroma......, and the stroma of many other tissues, and can give rise to a number of mesoderm-type cells including adipocytes and osteoblasts, which form medullary fat and bone tissues, respectively. The role of bone marrow fat in bone mass homeostasis is an area of intensive investigation with the aim of developing novel...

  1. β-Catenin Does Not Confer Tumorigenicity When Introduced into Partially Transformed Human Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Sajida Piperdi

    2012-01-01

    Full Text Available Although osteosarcoma is the most common primary malignant bone tumor in children and adolescents, its cell of origin and the genetic alterations are unclear. Previous studies have shown that serially introducing hTERT, SV40 large TAg, and H-Ras transforms human mesenchymal stem cells into two distinct sarcomas cell populations, but they do not form osteoid. In this study, β-catenin was introduced into mesenchymal stem cells already containing hTERT and SV40 large TAg to analyze if this resulted in a model which more closely recapitulated osteosarcoma. Results. Regardless of the level of induced β-catenin expression in the stable transfectants, there were no marked differences induced in their phenotype or invasion and migration capacity. Perhaps more importantly, none of them formed tumors when injected into immunocompromised mice. Moreover, the resulting transformed cells could be induced to osteogenic and chondrogenic differentiation but not to adipogenic differentiation. Conclusions. β-catenin, although fostering osteogenic differentiation, does not induce the malignant features and tumorigenicity conveyed by oncogenic H-RAS when introduced into partly transformed mesenchymal stem cells. This may have implications for the role of β-catenin in osteosarcoma pathogenesis. It also may suggest that adipogenesis is an earlier branch point than osteogenesis and chondrogenesis in normal mesenchymal differentiation.

  2. Expression of Odontogenic Genes in Human Bone Marrow Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Seyedeh Sara Bagheri

    2013-01-01

    Full Text Available Objective: Tooth loss is a common problem and since current tooth replacement methods cannot counter balance with biological tooth structures, regenerating natural tooth structures has become an ideal goal. A challenging problem in tooth regeneration is to find a proper clinically feasible cell to seed.This study was designed to investigate the odontogenic potential of human bone marrow mesenchymal stem cells (HBMSCs for seeding in tooth regeneration.Materials and Methods: In this experimental study, three pregnant Sprague Dawley (SD rats were used at the eleventh embryonic day and rat fetuses were removed surgically using semilunar flap under general anesthesia. The primary mandible was cut using a stereomicroscope. The epithelial and mesenchymal components were separated and the dissected oral epithelium was cultured for 3 days. We used flow cytometry analysis to confirm presence of mesenchymal stem cells and not hematopoietic cells and to demonstrate the presence of oral epithelium. Bone marrow mesenchymal stem cells (BMSCs and cultured oral epithelium were then co-cultured for 14 days. BMSCs cultured alone were used as controls. Expression of two odontogenic genes Pax9 and DMP1 was assessed using quantitative reverse transcription- polymerase chain reaction (RT-PCR.Results: Expression of two odontogenic genes, Pax9 and DMP1, were detected in BMSCs co-cultured with oral epithelium but not in the control group.Conclusion: Expression of Pax9 and DMP1 by human BMSCs in the proximity of odontogenic epithelium indicates odontogenic potential of these cells.

  3. Molecular Mechanisms Involved in Mesenchymal Stem Cell Migration to the Site of Acute Myocardial Infarction

    Directory of Open Access Journals (Sweden)

    Katarina Kollar

    2009-01-01

    Full Text Available Mesenchymal stem cells or multipotent mesenchymal stromal cells (both referred to as MSC have been shown in some studies to have a beneficial effect on myocardial recovery after infarct. Current strategies for MSC delivery to heart involve intravenous, intraarterial, and intramuscular delivery. Different routes of MSC delivery and a lack of knowledge of the mechanisms that MSC utilise to migrate in vivo has most likely led to the marked variations in results that have been found. This review aims to summarise the current knowledge of MSC migratory mechanisms and looks to future methods of MSC manipulation prior to delivery in order to enhance MSC migration and engraftment.

  4. Induced Pluripotent Stem Cell-derived Mesenchymal Stem Cell Seeding on Biofunctionalized Calcium Phosphate Cements

    Institute of Scientific and Technical Information of China (English)

    WahWah TheinHan; Jun Liu; Minghui Tang; Wenchuan Chen; Linzhao Cheng; Hockin H. K. Xu

    2013-01-01

    Induced pluripotent stem cells (iPSCs) have great potential due to their proliferation and differentiation capability. The objectives of this study were to generate iPSC-derived mesenchymal stem cells (iPSC-MSCs), and investigate iPSC-MSC proliferation and osteogenic differentiation on calcium phosphate cement (CPC) containing biofunctional agents for the first time. Human iPSCs were derived from marrow CD34+ cells which were reprogrammed by a single episomal vector. iPSCs were cultured to form embryoid bodies (EBs), and MSCs migrated out of EBs. Five biofunctional agents were incorporated into CPC:RGD (Arg-Gly-Asp) peptides, fibronectin (Fn), fibronectin-like engineered polymer protein (FEPP), extracellular matrix Geltrex, and platelet concentrate. iPSC-MSCs were seeded on five biofunctionalized CPCs:CPC-RGD, CPC-Fn, CPC-FEPP, CPC-Geltrex, and CPC-Platelets. iPSC-MSCs on biofunctional CPCs had enhanced proliferation, actin fiber expression, osteogenic differentiation and mineralization, compared to control. Cell proliferation was greatly increased on biofunctional CPCs. iPSC-MSCs underwent osteogenic differentiation with increased alkaline phosphatase, Runx2 and collagen-I expressions. Mineral synthesis by iPSC-MSCs on CPC-Platelets was 3-fold that of CPC control. In conclusion, iPSCs showed high potential for bone engineering. iPSC-MSCs on biofunctionalized CPCs had cell proliferation and bone mineralization that were much better than traditional CPC. iPSC-MSC-CPC constructs are promising to promote bone regeneration in craniofacial/orthopedic repairs.

  5. Ophthalmic use of blood-derived products.

    Science.gov (United States)

    Nugent, Ryan B; Lee, Graham A

    2015-01-01

    There is a wide spectrum of blood-derived products that have been used in many different medical and surgical specialties with success. Blood-derived products for clinical use can be extracted from autologous or allogeneic specimens of blood, but recombinant products are also commonly used. A number of blood derivatives have been used for a wide range of ocular conditions, from the ocular surface to the retina. With stringent preparation guidelines, the potential risk of transmission of blood-borne diseases is minimized. We review blood-derived products and how they are improving the management of ocular disease.

  6. Effect of F68 on cryopreservation of mesenchymal stem cells derived from human tooth germ.

    Science.gov (United States)

    Doğan, Ayşegül; Yalvaç, Mehmet Emir; Yılmaz, Aysu; Rizvanov, Albert; Sahin, Fikrettin

    2013-12-01

    The use of stem-cell-based therapies in regenerative medicine and in the treatment of disorders such as Parkinson, Alzheimer's disease, diabetes, spinal cord injuries, and cancer has been shown to be promising. Among all stem cells, mesenchymal stem cells (MSCs) were reported to have anti-apoptotic, immunomodulatory, and angiogenic effects which are attributed to the restorative capacity of these cells. Human tooth germ stem cells (HTGSCs) having mesenchymal stem cell characteristics have been proven to exert high proliferation and differentiation capacity. Unlike bone-marrow-derived MSCs, HTGSCs can be easily isolated, expanded, and cryopreserved, which makes them an alternative stem cell source. Regardless of their sources, the stem cells are exposed to physical and chemical stresses during cryopreservation, hindering their therapeutic capacity. Amelioration of the side effects of cryopreservation on MSCs seems to be a priority in order to maximize the therapeutic efficacy of these cells. In this study, we tested the effect of Pluronic 188 (F68) on HTGSCs during long-term cryopreservation and repeated freezing and defrosting cycles. Our data revealed that F68 has a protective role on survival and differentiation of HTGSCs in long-term cryopreservation.

  7. Epithelial and mesenchymal stem cells from the umbilical cord lining membrane.

    Science.gov (United States)

    Lim, Ivor J; Phan, Toan Thang

    2014-01-01

    Intense scientific research over the past two decades has yielded much knowledge about embryonic stem cells, mesenchymal stem cells from bone marrow, as well as epithelial stem cells from the skin and cornea. However, the billions of dollars spent in this research have not overcome the fundamental difficulties intrinsic to these stem cell strains related to ethics (embryonic stem cells), as well as to technical issues such as accessibility, ease of cell selection and cultivation, and expansion/mass production, while maintaining consistency of cell stemness (all of the stem cell strains already mentioned). Overcoming these technical hurdles has made stem cell technology expensive and any potential translational products unaffordable for most patients. Commercialization efforts have been rendered unfeasible by this high cost. Advanced biomedical research is on the rise in Asia, and new innovations have started to overcome these challenges. The Nobel Prize-winning Japanese development of iPSCs has effectively introduced a possible replacement for embryonic stem cells. For non-embryonic stem cells, cord lining stem cells (CLSCs) have overcome the preexisting difficulties inherent to mesenchymal stem cells from the bone marrow as well as epithelial stem cells from the skin and cornea, offering a realistic, practical, and affordable alternative for tissue repair and regeneration. This novel CLSC technology was developed in Singapore in 2004 and has 22 international patents granted to date, including those from the US and UK. CLSCs are derived from the umbilical cord outer lining membrane (usually regarded as medical waste) and is therefore free from ethical dilemmas related to its collection. The large quantity of umbilical cord lining membrane that can be collected translates to billions of stem cells that can be grown in primary stem cell culture and therefore very rapid and inexpensive cell cultivation and expansion for clinical translational therapies. Both

  8. Direct cell fate conversion of human somatic stem cells into cone and rod photoreceptor-like cells by inhibition of microRNA-203

    OpenAIRE

    Choi, Soon Won; Shin, Ji-Hee; Kim, Jae-Jun; Shin, Tae-Hoon; Seo, Yoojin; Kim, Hyung-Sik; Kang, Kyung-Sun

    2016-01-01

    Stem cell-based photoreceptor differentiation strategies have been the recent focus of therapies for retinal degenerative diseases. Previous studies utilized embryonic stem (ES) cells and neural retina differentiation cocktails, including DKK1 and Noggin. Here, we show a novel microRNA-mediated strategy of retina differentiation from somatic stem cells, which are potential allogeneic cell sources. Human amniotic epithelial stem cells (AESCs) and umbilical cord blood-derived mesenchymal stem c...

  9. Human Amnion-Derived Mesenchymal Stem Cells Promote Osteogenic Differentiation in Human Bone Marrow Mesenchymal Stem Cells by Influencing the ERK1/2 Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Yuli Wang

    2016-01-01

    Full Text Available Human amnion-derived mesenchymal stem cells (HAMSCs are considered to be an important resource in the field of tissue engineering because of their anti-inflammatory properties and fewer ethical issues associated with their use compared with other sources of stem cells. HAMSCs can be obtained from human amniotic membranes, a readily available and abundant tissue. However, the potential of HAMSCs as seed cells for treating bone deficiency is unknown. In this study, HAMSCs were used to promote proliferation and osteoblastic differentiation in human bone marrow mesenchymal stem cells (HBMSCs in a Transwell coculture system. Proliferation levels were investigated by flow cytometry and immunofluorescence staining of 5-ethynyl-2′-deoxyuridine (EdU. Osteoblastic differentiation and mineralization were evaluated in chromogenic alkaline phosphatase (ALP activity substrate assays, Alizarin red S staining, and RT-PCR analysis of early HBMSCs osteogenic marker expression. We demonstrated that HAMSCs stimulated increased alkaline phosphatase (ALP activity, mRNA expression of osteogenic marker genes, and mineralized matrix deposition. Moreover, the effect of HAMSCs was significantly inhibited by U0126, a highly selective inhibitor of extracellular signaling-regulated kinase 1/2 (ERK1/2 signaling. We demonstrate that HAMSCs promote osteogenic differentiation in HBMSCs by influencing the ERK1/2 signaling pathway. These observations confirm the potential of HAMSCs as a seed cell for the treatment of bone deficiency.

  10. An experimental study of preventing and treating acute radioactive enteritis with human umbilical cord mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    Rui Wang; Wei Yuan; Qiang Zhao; Peng Song; Ji Yue; Shi-De Lin; Ting-Bao Zhao

    2013-01-01

    Objective:To test the curative effect of human umbilical cord-derived mesenchymal stem cells on rat acute radioactive enteritis and thus to provide clinical therapeutic basis for radiation sickness.Methods:Human umbilical cord-derived mesenchymal stem cells were cultivatedin vitro and the model of acute radioactive enteritis of rats was established.Then, the umbilical cord mesenchymal stem cells were injected into the rats via tail vein.Visual and histopathological changes of the experimental rats were observed.Results:After the injection, the rats in the prevention group and treatment group had remarkably better survival status than those in the control group.The histological observations revealed that the former also had better intestinal mucosa structure, more regenerative cells and stronger proliferation activity than the latter.Conclusions:Human umbilical cord-derived mesenchymal stem cells have a definite therapeutic effect on acute radioactive enteritis in rats.

  11. Gelatin-Based Hydrogels Promote Chondrogenic Differentiation of Human Adipose Tissue-Derived Mesenchymal Stem Cells In Vitro

    Directory of Open Access Journals (Sweden)

    Achim Salamon

    2014-02-01

    Full Text Available Due to the weak regeneration potential of cartilage, there is a high clinical incidence of articular joint disease, leading to a strong demand for cartilaginous tissue surrogates. The aim of this study was to evaluate a gelatin-based hydrogel for its suitability to support chondrogenic differentiation of human mesenchymal stem cells. Gelatin-based hydrogels are biodegradable, show high biocompatibility, and offer possibilities to introduce functional groups and/or ligands. In order to prove their chondrogenesis-supporting potential, a hydrogel film was developed and compared with standard cell culture polystyrene regarding the differentiation behavior of human mesenchymal stem cells. Cellular basis for this study were human adipose tissue-derived mesenchymal stem cells, which exhibit differentiation potential along the adipogenic, osteogenic and chondrogenic lineage. The results obtained show a promotive effect of gelatin-based hydrogels on chondrogenic differentiation of mesenchymal stem cells in vitro and therefore encourage subsequent in vivo studies.

  12. Transplantation of neurotrophin-3-transfected bone marrow mesenchymal stem cells for the repair of spinal cord injur y

    Institute of Scientific and Technical Information of China (English)

    Yuzhen Dong; Libin Yang; Lin Yang; Hongxing Zhao; Chao Zhang; Dapeng Wu

    2014-01-01

    Bone marrow mesenchymal stem cell transplantation has been shown to be therapeutic in the repair of spinal cord injury. However, the low survival rate of transplanted bone marrow mesen-chymal stem cells in vivo remains a problem. Neurotrophin-3 promotes motor neuron survival and it is hypothesized that its transfection can enhance the therapeutic effect. We show that in vitro transfection of neurotrophin-3 gene increases the number of bone marrow mesenchymal stem cells in the region of spinal cord injury. These results indicate that neurotrophin-3 can promote the survival of bone marrow mesenchymal stem cells transplanted into the region of spinal cord injury and potentially enhance the therapeutic effect in the repair of spinal cord injury.

  13. Expression of collagen type I and II, aggrecan and SOX9 genes in mesenchymal stem cells on different bioscaffolds

    Directory of Open Access Journals (Sweden)

    Mahdieh Ghiasi

    2015-06-01

    Conclusion: The use of natural fibrin glue scaffold can be considered as a suitable environment for proliferation and differentiation of adipose-derived mesenchymal stem cells in cartilage tissue engineering.

  14. Comparison of viability of adipose-derived Mesenchymal stem cells on agarose and fibrin glue scaffolds

    Directory of Open Access Journals (Sweden)

    Farzaneh Tafvizi

    2015-06-01

    Full Text Available Background & aim: Utilizing tissue engineering techniques and designing similar structures of the damaged tissues require the use of tools such as scaffolds, cells, and bioactive molecules in vitro. Meanwhile, appropriate cell cultures with the ability to divide and differentiate on the natural scaffolds lacking features like immunogenicity and tumorgenesis is particularly important. Adipose tissue has attracted researchers’ attention due to its abundance of mesenchymal stem cells and its availability through a liposuction. The purpose of the present study was to investigate the reproducibility and viability of the adipose-derived stem cells on natural scaffolds of fibrin glue and agarose. Methods: In the present experimental study, the isolation and identification of the mesenchymal stem cells was performed on tissue obtained from liposuction. The tissues were extensively washed with PBS and were digested with collagenase I, then the mesenchymal stem cells were isolated. The cells were cultured in RPMI medium supplemented with antibiotic. Subsequently, the expression of cell surface markers including CD34, CD44, CD90, and CD105 were analyzed by flow cytometry to confirm the mesenchymal cells. After preparing fibrin glue and agarose scaffolds, the viability and proliferation of the adipose tissue-derived mesenchymal stem cells were examined at the period of 24, 48, and 72 hours by MTT and ELISA assays. The obtained results were analyzed by SPSS ver.19. Results: The results of adipose tissue-derived mesenchymal stem cells culture on the fibrin glue and agarose scaffolds indicated that cell viability on fibrin glue and agarose scaffold were 68.22% and 89.75% in 24 hrs, 64.04% and 66.97% in 48 hours, 222.87% and 1089.68% in 72 hours respectively. Significant proliferation and viability cells on a synthesized agarose scaffold were seen compared to the fibrin glue scaffold after 72 hrs. The viability of the cells significantly increased on the

  15. Isolation and Characterization of Multipotent Mesenchymal Stem Cells Adhering to Adipocytes in Canine Bone Marrow.

    Science.gov (United States)

    Lin, Hsing-Yi; Fujita, Naoki; Endo, Kentaro; Morita, Maresuke; Takeda, Tae; Nakagawa, Takayuki; Nishimura, Ryohei

    2017-03-15

    The ceiling culture method has been used to isolate mature adipocytes from adipose tissue that can be dedifferentiated into fibroblastic cells, also known as dedifferentiated fat (DFAT) cells that self-renew and are multipotent, with much higher homogeneity and colony-forming efficiency than those of adipose tissue-derived mesenchymal stem cells. We cultured adipocytes from canine bone marrow using this technique, with the expectation of obtaining DFAT cells. However, contrary to our expectations, continuous monitoring of ceiling cultures by time-lapse microscopy revealed many small cells adhering to adipocytes that proliferated rapidly into cells with a fibroblastic morphology and without any dedifferentiation from adipocytes. We named these cells bone marrow peri-adipocyte cells (BM-PACs) and demonstrated the multipotent properties of BM-PACs compared to that of conventionally cultured canine bone marrow mesenchymal stem cells (BMMSCs). BM-PACs showed significantly greater clonogenicity and proliferation ability than BMMSCs. An in vitro trilineage differentiation assay revealed that BM-PACs possess adipogenic, osteogenic, and chondrogenic capacities superior to those of BMMSCs. Flow cytometric analysis revealed that the expression of CD73, which plays an important role in cell growth and differentiation, was significantly higher in BM-PACs than in BMMSCs. These results indicate that canine BM-PACs have stem cell characteristics that are superior to those of BMMSCs, and that these mesenchymal stem cells (MSCs) appear to be a feasible source for cell-based therapies in dogs.

  16. Self-renewal of embryonic-stem-cell-derived progenitors by organ-matched mesenchyme.

    Science.gov (United States)

    Sneddon, Julie B; Borowiak, Malgorzata; Melton, Douglas A

    2012-11-29

    One goal of regenerative medicine, to use stem cells to replace cells lost by injury or disease, depends on producing an excess of the relevant cell for study or transplantation. To this end, the stepwise differentiation of stem cells into specialized derivatives has been successful for some cell types, but a major problem remains the inefficient conversion of cells from one stage of differentiation to the next. If specialized cells are to be produced in large numbers it will be necessary to expand progenitor cells, without differentiation, at some steps of the process. Using the pancreatic lineage as a model for embryonic-stem-cell differentiation, we demonstrate that this is a solvable problem. Co-culture with organ-matched mesenchyme permits proliferation and self-renewal of progenitors, without differentiation, and enables an expansion of more than a million-fold for human endodermal cells with full retention of their developmental potential. This effect is specific both to the mesenchymal cell and to the progenitor being amplified. Progenitors that have been serially expanded on mesenchyme give rise to glucose-sensing, insulin-secreting cells when transplanted in vivo. Theoretically, the identification of stage-specific renewal signals can be incorporated into any scheme for the efficient production of large numbers of differentiated cells from stem cells and may therefore have wide application in regenerative biology.

  17. Human Adipose-Derived Mesenchymal Stem Cells Cryopreservation and Thawing Decrease α4-Integrin Expression

    Directory of Open Access Journals (Sweden)

    Ana Carolina Irioda

    2016-01-01

    Full Text Available Aim. The effects of cryopreservation on adipose tissue-derived mesenchymal stem cells are not clearly documented, as there is a growing body of evidence about the importance of adipose-derived mesenchymal stem cells for regenerative therapies. The aim of this study was to analyze human adipose tissue-derived mesenchymal stem cells phenotypic expression (CD34, CD45, CD73, CD90, CD105, and CD49d, colony forming unit ability, viability, and differentiation potential before and after cryopreservation. Materials and Methods. 12 samples of the adipose tissue were collected from a healthy donor using the liposuction technique. The cell isolation was performed by enzymatic digestion and then the cells were cultured up to passage 2. Before and after cryopreservation the immunophenotype, cellular viability analysis by flow cytometer, colony forming units ability, differentiation potential into adipocytes and osteoblasts as demonstrated by Oil Red O and Alizarin Red staining, respectively. Results. The immunophenotypic markers expression was largely preserved, and their multipotency was maintained. However, after cryopreservation, the cells decreased α4-integrin expression (CD49d, cell viability, and number of colony forming units. Conclusions. These findings suggest that ADMSC transplanted after cryopreservation might compromise the retention of transplanted cells in the host tissue. Therefore, further studies are warranted to standardize protocols related to cryopreservation to attain full benefits of stem cell therapy.

  18. Detonation nanodiamond complexes with cancer stem cells inhibitors or paracrine products of mesenchymal stem cells as new potential medications

    Science.gov (United States)

    Konoplyannikov, A. G.; Alekseenskiy, A. E.; Zlotin, S. G.; Smirnov, B. B.; Kalsina, S. Sh.; Lepehina, L. A.; Semenkova, I. V.; Agaeva, E. V.; Baboyan, S. B.; Rjumshina, E. A.; Nosachenko, V. V.; Konoplyannikov, M. A.

    2015-09-01

    Combined use of complexes of the most active chemotherapeutic drugs and detonation nanodiamonds (DND) is a new trend in cancer therapy, which is probably related to selective chemotherapeutic drug delivery by DND to the zone of so-called cancer stem cells (CSC). Stable DND complexes of 4-5 nm size with salinomycin—a strong CSC inhibitor—have been obtained (as a suspension). It has been demonstrated that a complex administration considerably increases the drug antitumor effect on the transplantable tumor of LLC mice. A similar effect has been observed in CSC models in vivo, obtained by exposure of stem cells of normal mice tissues to a carcinogen 1,2-dimethylhydrazine. It has also been found out, that administration of DND complexes with the conditioned medium from mesenchymal stem cells (MSC) cultures to mice results in a considerable stimulation of stem cell pools in normal mice tissues, which can be used in regenerative medicine.

  19. Tenogenically Induced Allogeneic Mesenchymal Stem Cells for the Treatment of Proximal Suspensory Ligament Desmitis in a Horse.

    Science.gov (United States)

    Vandenberghe, Aurélie; Broeckx, Sarah Y; Beerts, Charlotte; Seys, Bert; Zimmerman, Marieke; Verweire, Ineke; Suls, Marc; Spaas, Jan H

    2015-01-01

    Suspensory ligament injuries are a common injury in sport horses, especially in competing dressage horses. Because of the poor healing of chronic recalcitrant tendon injuries, this represents a major problem in the rehabilitation of sport horses and often compromises the return to the initial performance level. Stem cells are considered as a novel treatment for different pathologies in horses and humans. Autologous mesenchymal stem cells (MSCs) are well known for their use in the treatment of tendinopathies; however, recent studies report a safe use of allogeneic MSCs for different orthopedic applications in horses. Moreover, it has been reported that pre-differentiation of MSCs prior to injection might result in improved clinical outcomes. For all these reasons, the present case report describes the use of allogeneic tenogenically induced peripheral blood-derived MSCs for the treatment of a proximal suspensory ligament injury. During conservative management for 4 months, the horse demonstrated no improvement of a right front lameness with a Grade 2/5 on the American Association of Equine Practitioners (AAEP) scale and a clear hypo-echoic area detectable in 30% of the cross sectional area. From 4 weeks after treatment, the lameness reduced to an AAEP Grade 1/5 and a clear filling of the lesion could be noticed on ultrasound. At 12 weeks (T 4) after the first injection, a second intralesional injection with allogeneic tenogenically induced MSCs and platelet-rich plasma was given and at 4 weeks after the second injection (T 5), the horse trotted sound under all circumstances with a close to total fiber alignment. The horse went back to previous performance level at 32 weeks after the first regenerative therapy and is currently still doing so (i.e., 20 weeks later or 1 year after the first stem cell treatment). In conclusion, the present case report demonstrated a positive evolution of proximal suspensory ligament desmitis after treatment with allogeneic

  20. REX-1 expression and p38 MAPK activation status can determine proliferation/differentiation fates in human mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Dilli Ram Bhandari

    Full Text Available BACKGROUND: REX1/ZFP42 is a well-known embryonic stem cell (ESC marker. However, the role of REX1, itself, is relatively unknown because the function of REX1 has only been reported in the differentiation of ESCs via STAT signaling pathways. Human mesenchymal stem cells (hMSCs isolated from young tissues and cancer cells express REX1. METHODOLOGY/PRINCIPAL FINDING: Human umbilical cord blood-derived MSCs (hUCB-MSCs and adipose tissue-derived MSCs (hAD-MSCs strongly express REX1 and have a lower activation status of p38 MAPK, but bone marrow-derived MSCs (hBM-MSCs have weak REX1 expression and higher activation of p38 MAPK. These results indicated that REX1 expression in hMSCs was positively correlated with proliferation rates but inversely correlated with the phosphorylation of p38 MAPK. In hUCB-MSCs, the roles of REX1 and p38 MAPK were investigated, and a knockdown study was performed using a lentiviral vector-based small hairpin RNA (shRNA. After REX1 knockdown, decreased cell proliferation was observed. In REX1 knocked-down hUCB-MSCs, the osteogenic differentiation ability deteriorated, but the adipogenic potential increased or was similar to that observed in the controls. The phosphorylation of p38 MAPK in hUCB-MSCs significantly increased after REX1 knockdown. After p38 MAPK inhibitor treatment, the cell growth in REX1 knocked-down hUCB-MSCs almost recovered, and the suppressed expression levels of CDK2 and CCND1 were also restored. The expression of MKK3, an upstream regulator of p38 MAPK, significantly increased in REX1 knocked-down hUCB-MSCs. The direct binding of REX1 to the MKK3 gene was confirmed by a chromatin immunoprecipitation (ChIP assay. CONCLUSIONS/SIGNIFICANCE: These findings showed that REX1 regulates the proliferation/differentiation of hMSCs through the suppression of p38 MAPK signaling via the direct suppression of MKK3. Therefore, p38 MAPK and REX-1 status can determine the cell fate of adult stem cells (ASCs. These

  1. Stem cells of the suture mesenchyme in craniofacial bone development, repair and regeneration.

    Science.gov (United States)

    Maruyama, Takamitsu; Jeong, Jaeim; Sheu, Tzong-Jen; Hsu, Wei

    2016-02-01

    The suture mesenchyme serves as a growth centre for calvarial morphogenesis and has been postulated to act as the niche for skeletal stem cells. Aberrant gene regulation causes suture dysmorphogenesis resulting in craniosynostosis, one of the most common craniofacial deformities. Owing to various limitations, especially the lack of suture stem cell isolation, reconstruction of large craniofacial bone defects remains highly challenging. Here we provide the first evidence for an Axin2-expressing stem cell population with long-term self-renewing, clonal expanding and differentiating abilities during calvarial development and homeostastic maintenance. These cells, which reside in the suture midline, contribute directly to injury repair and skeletal regeneration in a cell autonomous fashion. Our findings demonstrate their true identity as skeletal stem cells with innate capacities to replace the damaged skeleton in cell-based therapy, and permit further elucidation of the stem cell-mediated craniofacial skeletogenesis, leading to revealing the complex nature of congenital disease and regenerative medicine.

  2. Mesenchymal stem cells from the oral cavity and their potential value in tissue engineering.

    Science.gov (United States)

    Sanz, Antonio R; Carrión, Flavio S; Chaparro, Alejandra P

    2015-02-01

    Periodontal disease is one of the most common conditions affecting humans, and current treatment strategies, which focus on the removal and long-term control of dental plaque, are generally successful in eliminating active disease and promoting tissue repair. However, regeneration of the supporting structures of the tooth remains an elusive goal and a challenge. The formation of new bone and cementum with supportive periodontal ligament is the ultimate objective, but current regeneration therapies are incapable of achieving this in a predictable way. The regeneration of periodontal tissue requires a combination of fundamental events, such as appropriate level and sequencing of regulatory signals, the presence of progenitor cells, an extracellular matrix or carrier and an adequate blood supply. Based on tissue-engineering concepts, the regeneration process may be modulated by manipulating the signaling pathways of regulatory molecules, the extracellular matrix or scaffold, or the cellular components. The identification of mesenchymal stem cells from bone marrow started a new era in regenerative medicine. Tissue engineering using mesenchymal stem cells became a therapeutic option with several advantages, including high-quality regeneration of damaged tissues without the formation of fibrous tissue, minimal donor-site morbidity compared with autografts and a low risk of autoimmune rejection and disease transmission. The aim of this review was to describe the main sources of mesenchymal stem cells from tissues in the oral cavity and the potential of these cells in regenerative therapy. Special attention is paid to gingival tissue-derived mesenchymal stem cells because they represent the most accessible source of stem cells in the human mouth.

  3. Acellular spinal cord scaffold seeded with mesenchymal stem cells promotes long-distance axon regeneration and functional recovery in spinal cord injured rats.

    Science.gov (United States)

    Liu, Jia; Chen, Jian; Liu, Bin; Yang, Cuilan; Xie, Denghui; Zheng, Xiaochen; Xu, Song; Chen, Tianyu; Wang, Liang; Zhang, Zhongmin; Bai, Xiaochun; Jin, Dadi

    2013-02-15

    The stem cell-based experimental therapies are partially successful for the recovery of spinal cord injury (SCI). Recently, acellular spinal cord (ASC) scaffolds which mimic native extracellular matrix (ECM) have been successfully prepared. This study aimed at investigating whether the spinal cord lesion gap could be bridged by implantation of bionic-designed ASC scaffold alone and seeded with human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) respectively, and their effects on functional improvement. A laterally hemisected SCI lesion was performed in adult Sprague-Dawley (SD) rats (n=36) and ASC scaffolds seeded with or without hUCB-MSCs were implanted into the lesion immediately. All rats were behaviorally tested using the Basso-Beattie-Bresnahan (BBB) test once a week for 8weeks. Behavioral analysis showed that there was significant locomotor recovery improvement in combined treatment group (ASC scaffold and ASC scaffold+hUCB-MSCs) as compared with the SCI only group (pspinal cord cavity and promote long-distance axon regeneration and functional recovery in SCI rats.

  4. The Use of Autologous Mesenchymal Stem Cells for Cell Therapy of Patients with Amyotrophic Lateral Sclerosis in Belarus.

    Science.gov (United States)

    Rushkevich, Yu N; Kosmacheva, S M; Zabrodets, G V; Ignatenko, S I; Goncharova, N V; Severin, I N; Likhachev, S A; Potapnev, M P

    2015-08-01

    We studied a new method of treatment of amyotrophic lateral sclerosis with autologous mesenchymal stem cells. Autologous mesenchymal stem cells were injected intravenously (intact cells) or via lumbar puncture (cells committed to neuronal differentiation). Evaluation of the results of cell therapy after 12-month follow-up revealed slowing down of the disease progression in 10 patients in comparison with the control group consisting of 15 patients. The cell therapy was safe for the patients.

  5. 660 nm red light-enhanced bone marrow mesenchymal stem cell transplantation for hypoxic-ischemic brain damage treatment

    Institute of Scientific and Technical Information of China (English)

    Xianchao Li; Wensheng Hou; Xiaoying Wu; Wei Jiang; Haiyan Chen; Nong Xiao; Ping Zhou

    2014-01-01

    Bone marrow mesenchymal stem cell transplantation is an effective treatment for neonatal hy-poxic-ischemic brain damage. However, the in vivo transplantation effects are poor and their survival, colonization and differentiation efifciencies are relatively low. Red or near-infrared light from 600-1,000 nm promotes cellular migration and prevents apoptosis. Thus, we hypothesized that the combination of red light with bone marrow mesenchymal stem cell transplantation would be effective for the treatment of hypoxic-ischemic brain damage. In this study, the migra-tion and colonization of cultured bone marrow mesenchymal stem cells on primary neurons after oxygen-glucose deprivation were detected using Transwell assay. The results showed that, after a 40-hour irradiation under red light-emitting diodes at 660 nm and 60 mW/cm2, an increasing number of green lfuorescence-labeled bone marrow mesenchymal stem cells migrated towards hypoxic-ischemic damaged primary neurons. Meanwhile, neonatal rats with hypoxic-ischemic brain damage were given an intraperitoneal injection of 1 × 106 bone marrow mesenchymal stem cells, followed by irradiation under red light-emitting diodes at 660 nm and 60 mW/cm2 for 7 successive days. Shuttle box test results showed that, after phototherapy and bone marrow mesenchymal stem cell transplantation, the active avoidance response rate of hypoxic-ischemic brain damage rats was significantly increased, which was higher than that after bone marrow mesenchymal stem cell transplantation alone. Experimental ifndings indicate that 660 nm red light emitting diode irradiation promotes the migration of bone marrow mesenchymal stem cells, thereby enhancing the contribution of cell transplantation in the treatment of hypox-ic-ischemic brain damage.

  6. Autologous adipose tissue-derived mesenchymal stem cells are involved in rat liver regeneration following repeat partial hepatectomy

    OpenAIRE

    Liu, Tao; MU, HONG; Shen, Zhongyang; SONG, ZHUOLUN; Chen, Xiaobo; Wang, Yuliang

    2016-01-01

    Adipose tissue-derived mesenchymal stem cells (ADSCs) have been considered to be attractive and readily available adult mesenchymal stem cells, and they are becoming increasingly popular for use in regenerative cell therapy, as they are readily accessible through minimally invasive techniques. The present study investigated whether autologous ADSC transplantation promoted liver regeneration following a repeat partial hepatectomy in rats. The rats were divided into three groups as follows: 70%...

  7. 660 nm red light-enhanced bone marrow mesenchymal stem cell transplantation for hypoxic-ischemic brain damage treatment.

    Science.gov (United States)

    Li, Xianchao; Hou, Wensheng; Wu, Xiaoying; Jiang, Wei; Chen, Haiyan; Xiao, Nong; Zhou, Ping

    2014-02-01

    Bone marrow mesenchymal stem cell transplantation is an effective treatment for neonatal hypoxic-ischemic brain damage. However, the in vivo transplantation effects are poor and their survival, colonization and differentiation efficiencies are relatively low. Red or near-infrared light from 600-1,000 nm promotes cellular migration and prevents apoptosis. Thus, we hypothesized that the combination of red light with bone marrow mesenchymal stem cell transplantation would be effective for the treatment of hypoxic-ischemic brain damage. In this study, the migration and colonization of cultured bone marrow mesenchymal stem cells on primary neurons after oxygen-glucose deprivation were detected using Transwell assay. The results showed that, after a 40-hour irradiation under red light-emitting diodes at 660 nm and 60 mW/cm(2), an increasing number of green fluorescence-labeled bone marrow mesenchymal stem cells migrated towards hypoxic-ischemic damaged primary neurons. Meanwhile, neonatal rats with hypoxic-ischemic brain damage were given an intraperitoneal injection of 1 × 10(6) bone marrow mesenchymal stem cells, followed by irradiation under red light-emitting diodes at 660 nm and 60 mW/cm(2) for 7 successive days. Shuttle box test results showed that, after phototherapy and bone marrow mesenchymal stem cell transplantation, the active avoidance response rate of hypoxic-ischemic brain damage rats was significantly increased, which was higher than that after bone marrow mesenchymal stem cell transplantation alone. Experimental findings indicate that 660 nm red light emitting diode irradiation promotes the migration of bone marrow mesenchymal stem cells, thereby enhancing the contribution of cell transplantation in the treatment of hypoxic-ischemic brain damage.

  8. Therapeutic effect of bone marrow mesenchymal stem cells on cold stress induced changes in the hippocampus of rats

    Institute of Scientific and Technical Information of China (English)

    Saravana Kumar Sampath Kumar; Saraswathi Perumal; Vijayaraghavan Rajagopalan

    2014-01-01

    The present study aims to evaluate the effect of bone marrow mesenchymal stem cells on cold stress induced neuronal changes in hippocampal CA1 region of Wistar rats. Bone marrow mes-enchymal stem cells were isolated from a 6-week-old Wistar rat. Bone marrow from adult femora and tibia was collected and mesenchymal stem cells were cultured in minimal essential medium containing 10% heat-inactivated fetal bovine serum and were sub-cultured. Passage 3 cells were analyzed by lfow cytometry for positive expression of CD44 and CD90 and negative expression of CD45. Once CD44 and CD90 positive expression was achieved, the cells were cultured again to 90% conlfuence for later experiments. Twenty-four rats aged 8 weeks old were randomly and evenly divided into normal control, cold water swim stress (cold stress), cold stress + PBS (intra-venous infusion), and cold stress + bone marrow mesenchymal stem cells (1 × 106; intravenous infusion) groups. The total period of study was 60 days which included 1 month stress period followed by 1 month treatment. Behavioral functional test was performed during the entire study period. After treatment, rats were sacriifced for histological studies. Treatment with bone marrow mesenchymal stem cells signiifcantly increased the number of neuronal cells in hippocampal CA1 region. Adult bone marrow mesenchymal stem cells injected by intravenous administration show potential therapeutic effects in cognitive decline associated with stress-related lesions.

  9. Reconstruction of the adenosine system by bone marrow-derived mesenchymal stem cell transplantation

    Institute of Scientific and Technical Information of China (English)

    Huicong Kang; Qi Hu; Xiaoyan Liu; Yinhe Liu; Feng Xu; Xiang Li; Suiqiang Zhu

    2012-01-01

    In the present study, we transplanted bone marrow-derived mesenchymal stem cells into the CA3 area of the hippocampus of chronic epilepsy rats kindled by lithium chloride-pilocarpine. Immunofluorescence and western blotting revealed an increase in adenosine A1 receptor expression and a decrease in adenosine A2a receptor expression in the brain tissues of epileptic rats 3 months after transplantation. Moreover, the imbalance in the A1 adenosine receptor/A2a adenosine receptor ratio was improved. Electroencephalograms showed that frequency and amplitude of spikes in the hippocampus and frontal lobe were reduced. These results suggested that mesenchymal stem cell transplantation can reconstruct the normal function of the adenosine system in the brain and greatly improve epileptiform discharges.

  10. Carriers in mesenchymal stem cell osteoblast mineralization-State-of-the-art

    DEFF Research Database (Denmark)

    Dahl, Morten; Jørgensen, Niklas Rye; Hørberg, Mette

    2014-01-01

    PURPOSE: Tissue engineering is a new way to regenerate bone tissue, where osteogenic capable cells combine with an appropriate scaffolding material. Our aim was in a Medline Search to evaluate osteoblast mineralization in vitro and in vivo including gene expressing combining mesenchymal stem cells...... (MSCs) and five different carriers, titanium, collagen, calcium carbonate, calcium phosphate and polylactic acid-polyglycolic acid copolymer for purpose of a meta-or a descriptive analysis. MATERIALS AND METHODS: The search included the following MeSH words in different combinations-mesenchymal stem...... cells, alkaline phosphatase, bone regeneration, tissue engineering, drug carriers, tissue scaffolds, titanium, collagen, calcium carbonate, calcium phosphates and polylactic acid-polyglycolic acid copolymer. RESULTS: Two out of 80 articles included numerical values and as control, carriers and cells...

  11. Bone marrow-derived mesenchymal stem cells increase dopamine synthesis in the injured striatum

    Institute of Scientific and Technical Information of China (English)

    Yue Huang; Cheng Chang; Jiewen Zhang; Xiaoqun Gao

    2012-01-01

    Previous studies showed that tyrosine hydroxylase or neurturin gene-modified cells transplanted into rats with Parkinson's disease significantly improved behavior and increased striatal dopamine content. In the present study, we transplanted tyrosine hydroxylase and neurturin gene-modified bone marrow-derived mesenchymal stem cells into the damaged striatum of Parkinson's disease model rats. Several weeks after cell transplantation, in addition to an improvement of motor function, tyrosine hydroxylase and neurturin proteins were up-regulated in the injured striatum, and importantly, levels of dopamine and its metabolite 3,4-dihydroxyphenylacetic acid increased significantly. Furthermore, the density of the D2 dopamine receptor in the postsynaptic membranes of dopaminergic neurons was decreased. These results indicate that transplantation of tyrosine hydroxylase and neurturin gene-modified bone marrow-derived mesenchymal stem cells increases dopamine synthesis and significantly improves the behavior of rats with Parkinson's disease.

  12. Hydrogel-Based Nanocomposites and Mesenchymal Stem Cells: A Promising Synergistic Strategy for Neurodegenerative Disorders Therapy

    Directory of Open Access Journals (Sweden)

    Diego Albani

    2013-01-01

    Full Text Available Hydrogel-based materials are widely employed in the biomedical field. With regard to central nervous system (CNS neurodegenerative disorders, the design of injectable nanocomposite hydrogels for in situ drug or cell release represents an interesting and minimally invasive solution that might play a key role in the development of successful treatments. In particular, biocompatible and biodegradable hydrogels can be designed as specific injectable tools and loaded with nanoparticles (NPs, to improve and to tailor their viscoelastic properties upon injection and release profile. An intriguing application is hydrogel loading with mesenchymal stem cells (MSCs that are a very promising therapeutic tool for neurodegenerative or traumatic disorders of the CNS. This multidisciplinary review will focus on the basic concepts to design acellular and cell-loaded materials with specific and tunable rheological and functional properties. The use of hydrogel-based nanocomposites and mesenchymal stem cells as a synergistic strategy for nervous tissue applications will be then discussed.

  13. Osteogenic commitment of mesenchymal stem cells in apatite nanorod-aligned ceramics.

    Science.gov (United States)

    Chen, Ying; Sun, Zhihui; Li, Yanyan; Hong, Youliang

    2014-12-24

    It is significant to process the clinically used biomaterials into a scaffold with specific nanotopographies, which can act as physical cues to regulate the osteogenic commitment of mesenchymal stem cells. In this study, hydroxyapatite (HAP) was considered as the processed objective and a facile, hydrothermal method was developed to grow the vertically oriented HAP nanorods in porous HAP ceramics. Experiments demonstrated that the formation of the HAP nanorods in porous ceramics was decided by a novel epitaxial growth mechanism and length of nanorods could be well-controlled by the growth time. Cell experiments demonstrated that such novel stereotopographical cues could regulate bone marrow mesenchymal stem cells to differentiate into the osteogenic lineage, thereby displaying that the porous ceramics with the HAP nanorods-aligned stereotopographies have a good prospect for applications in regenerative medicine of hard tissues.

  14. Sr-substituted bone cements direct mesenchymal stem cells, osteoblasts and osteoclasts fate

    Science.gov (United States)

    Panseri, Silvia; Dapporto, Massimiliano; Tampieri, Anna; Sprio, Simone

    2017-01-01

    Strontium-substituted apatitic bone cements enriched with sodium alginate were developed as a potential modulator of bone cells fate. The biological impact of the bone cement were investigated in vitro through the study of the effect of the nanostructured apatitic composition and the doping of strontium on mesenchymal stem cells, pre-osteoblasts and osteoclasts behaviours. Up to 14 days of culture the bone cells viability, proliferation, morphology and gene expression profiles were evaluated. The results showed that different concentrations of strontium were able to evoke a cell-specific response, in fact an inductive effect on mesenchymal stem cells differentiation and pre-osteoblasts proliferation and an inhibitory effect on osteoclasts activity were observed. Moreover, the apatitic structure of the cements provided a biomimetic environment suitable for bone cells growth. Therefore, the combination of biological features of this bone cement makes it as promising biomaterials for tissue regeneration. PMID:28196118

  15. In vitro evaluation of three different biomaterials as scaffolds for canine mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Oduvaldo Câmara Marques Pereira-Junior

    2013-05-01

    Full Text Available PURPOSE: To evaluate in vitro ability the of three different biomaterials - purified hydroxyapatite, demineralized bone matrix and castor oil-based polyurethane - as biocompatible 3D scaffolds for canine bone marrow mesenchymal stem cell (MSC intending bone tissue engineering. METHODS: MSCs were isolated from canine bone marrow, characterized and cultivated for seven days with the biomaterials. Cell proliferation and adhesion to the biomaterial surface were evaluated by scanning electron microscopy while differentiation into osteogenic lineage was evaluated by Alizarin Red staining and Sp7/Osterix surface antibody marker. RESULTS: The biomaterials allowed cellular growth, attachment and proliferation. Osteogenic differentiation occurred in the presence of hydroxyapatite, and matrix deposition commenced in the presence of the castor oil-based polyurethane. CONCLUSION: All the tested biomaterials may be used as mesenchymal stem cell scaffolds in cell-based orthopedic reconstructive therapy.

  16. Cultivation and differentiation change nuclear localization of chromosome centromeres in human mesenchymal stem cells.

    Science.gov (United States)

    Voldgorn, Yana I; Adilgereeva, Elmira P; Nekrasov, Evgeny D; Lavrov, Alexander V

    2015-01-01

    Chromosome arrangement in the interphase nucleus is not accidental. Strong evidences support that nuclear localization is an important mechanism of epigenetic regulation of gene expression. The purpose of this research was to identify differences in the localization of centromeres of chromosomes 6, 12, 18 and X in human mesenchymal stem cells depending on differentiation and cultivating time. We analyzed centromere positions in more than 4000 nuclei in 19 mesenchymal stem cell cultures before and after prolonged cultivation and after differentiation into osteogenic and adipogenic directions. We found a centromere reposition of HSAX at late passages and after differentiation in osteogenic direction as well as of HSA12 and HSA18 after adipogenic differentiation. The observed changes of the nuclear structure are new nuclear characteristics of the studied cells which may reflect regulatory changes of gene expression during the studied processes.

  17. Cultivation and differentiation change nuclear localization of chromosome centromeres in human mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Yana I Voldgorn

    Full Text Available Chromosome arrangement in the interphase nucleus is not accidental. Strong evidences support that nuclear localization is an important mechanism of epigenetic regulation of gene expression. The purpose of this research was to identify differences in the localization of centromeres of chromosomes 6, 12, 18 and X in human mesenchymal stem cells depending on differentiation and cultivating time. We analyzed centromere positions in more than 4000 nuclei in 19 mesenchymal stem cell cultures before and after prolonged cultivation and after differentiation into osteogenic and adipogenic directions. We found a centromere reposition of HSAX at late passages and after differentiation in osteogenic direction as well as of HSA12 and HSA18 after adipogenic differentiation. The observed changes of the nuclear structure are new nuclear characteristics of the studied cells which may reflect regulatory changes of gene expression during the studied processes.

  18. Cell-based delivery of glucagon-like peptide-1 using encapsulated mesenchymal stem cells

    DEFF Research Database (Denmark)

    Wallrapp, Christine; Thoenes, Eric; Thürmer, Frank

    2013-01-01

    Glucagon-like peptide-1 (GLP-1) CellBeads are cell-based implants for the sustained local delivery of bioactive factors. They consist of GLP-1 secreting mesenchymal stem cells encapsulated in a spherically shaped immuno-isolating alginate matrix. A highly standardized and reproducible encapsulation...... and quality control is performed in compliance with good manufacturing practice and fulfils all regulatory requirements for human clinical use. GLP-1 CellBeads combine the neuro- and cardioprotective properties of both GLP-1 and mesenchymal stem cells. First promising results were obtained from preclinical...... method is described for the manufacturing of homogeneous CellBeads. Viability and sustained secretion was shown for the recombinant GLP-1 and the cell endogenous bioactive factors like vascular endothelial growth factor, neurotrophin 3 (NT-3) and glial cell line-derived neurotrophic factor. Manufacturing...

  19. Endocrine disrupting chemicals affect the adipogenic differentiation of mesenchymal stem cells in distinct ontogenetic windows

    Energy Technology Data Exchange (ETDEWEB)

    Biemann, Ronald, E-mail: ronald.biemann@medizin.uni-halle.de [Department of Anatomy and Cell Biology, Martin Luther University, Faculty of Medicine, Halle (Germany); Navarrete Santos, Anne [Department of Anatomy and Cell Biology, Martin Luther University, Faculty of Medicine, Halle (Germany); Navarrete Santos, Alexander [Department of Cardiothoracic Surgery, Martin Luther University, Faculty of Medicine, Halle (Germany); Riemann, Dagmar [Department of Immunology, Martin Luther University, Faculty of Medicine, Halle (Germany); Knelangen, Julia [Department of Anatomy and Cell Biology, Martin Luther University, Faculty of Medicine, Halle (Germany); Blueher, Matthias [Department of Medicine, University of Leipzig, Leipzig (Germany); Koch, Holger [Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Ruhr-University Bochum, Bochum (Germany); Fischer, Bernd [Department of Anatomy and Cell Biology, Martin Luther University, Faculty of Medicine, Halle (Germany)

    2012-01-13

    Highlights: Black-Right-Pointing-Pointer Endocrine disrupting chemicals affect adipogenesis in mesenchymal stem cells (MSC). Black-Right-Pointing-Pointer The adipogenic impact depends strongly on the window of exposure. Black-Right-Pointing-Pointer Bisphenol A reduces the potential of MSC to differentiate into adipocytes. Black-Right-Pointing-Pointer DEHP and TBT trigger the adipogenic differentiation of mesenchymal stem cells. Black-Right-Pointing-Pointer BPA, DEHP and TBT did not affect adipogenesis in embryonic stem cells. -- Abstract: Endocrine disrupting chemicals (EDC) like bisphenol A (BPA), bis(2-ethylhexyl)phthalate (DEHP) and tributyltin (TBT) are ubiquitously present in the environment and in human tissues. They bind to nuclear hormone receptors and affect cellular and developmental processes. In this study, we show that BPA, DEHP and TBT affect the adipogenic differentiation of murine mesenchymal stem cells (MSC, C3H/10T1/2) in a concentration-, stage- and compound-specific manner. C3H/10T1/2 cells and embryonic stem cells (CGR8) were exposed to BPA, DEHP or TBT at different stages of cell determination and differentiation (undifferentiated growth, adipogenic induction and terminal adipogenic differentiation). The final amount of differentiated adipocytes, cellular triglyceride content and mRNA expression of adipogenic marker genes (adiponectin, FABP4, PPAR{gamma}2, LPL) were quantified and compared with corresponding unexposed cells. BPA (10 {mu}M) decreased subsequent adipogenic differentiation of MSC, when cells were exposed during undifferentiated growth. In contrast, DEHP (100 {mu}M) during the hormonal induction period, and TBT (100 nM) in all investigated stages, enhanced adipogenesis. Importantly, exposure of undifferentiated murine embryonic stem cells did not show any effect of the investigated EDC on subsequent adipogenic differentiation.

  20. Establishment and Molecular Characterization of Mesenchymal Stem Cell Lines Derived From Human Visceral & Subcutaneous Adipose Tissues

    Directory of Open Access Journals (Sweden)

    Jyoti Prakash Sutar

    2010-01-01

    Full Text Available Mesenchymal stem cells (MSCs, are multipotent stem cells that can differentiate into osteoblasts, chondrocytes, myocytes and adipocytes. We utilized adipose tissue as our primary source, since it is a rich source of MSCs as well as it can be harvested using a minimally invasive surgical procedure. Both visceral and subcutaneous adipose tissue (VSAT, SCAT respectively samples were cultured using growth medium without using any substratum for their attachment. We observed growth of mesenchymal like cells within 15 days of culturing. In spite of the absence of any substratum, the cells adhered to the bottom of the petri dish, and spread out within 2 hours. Presently VSAT cells have reached at passage 10 whereas; SCAT cells have reached at passage 14. Morphologically MSCs obtained from visceral adipose tissue were larger in shape than subcutaneous adipose tissue. We checked these cells for presence or absence of specific stem cell molecular markers. We found that VSAT and SCAT cells confirmed their MSC phenotype by expression of specific MSC markers CD 105 and CD13 and absence of CD34 and CD 45 markers which are specific for haematopoietic stem cells. These cells also expressed SOX2 gene confirming their ability of self-renewal as well as expressed OCT4, LIF and NANOG for their properties for pluripotency & plasticity. Overall, it was shown that adipose tissue is a good source of mesenchymal stem cells. It was also shown that MSCs, isolated from adipose tissue are multipotent stem cells that can differentiate into osteoblasts, chondrocytes, cardiomyocytes, adipocytes and liver cells which may open a new era for cell based regenerative therapies for bone, cardiac and liver disorders.

  1. In Vivo Osteoinductive Effect and In Vitro Isolation and Cultivation Bone Marrow Mesenchymal Stem Cells

    OpenAIRE

    Redžić, Amira; Smajilagić, Amer; Aljičević, Mufida; Berberović, Ljubomir

    2010-01-01

    Bone marrow contains cell type termed Mesenchymal Stem Cells (MSC), first recognized in bone marrow by a German pathologist, Julius Cohnheim in 1867. That MSCs have potential to differentiate in vitro in to the various cells lines as osteoblast, chondroblast, myoblast and adipoblast cells lines. Aims of our study were to show in vivo capacity of bone marrow MSC to produce bone in surgically created non critical size mandible defects New Zeeland Rabbits, and then in second part of study to iso...

  2. MRI of magnetically labeled mesenchymal stem cells in hepatic failure model

    Institute of Scientific and Technical Information of China (English)

    Kyu; Ri; Son; Se; Young; Chung; Hyo-Cheol; Kim; Hoe; Suk; Kim; Seung; Hong; Choi; Jeong; Min; Lee; Woo; Kyung; Moon

    2010-01-01

    AIM:To track intravascularly transplanted mesenchymal stem cells (MSCs) labeled with superparamagnetic iron oxide (SPIO) by using magnetic resonance imaging (MRI) in an experimental rabbit model of hepatic failure.METHODS:Human MSCs labeled with FDA-approved SPIO particles (Feridex) were transplanted via the mes-enteric vein into rabbits (n=16) with carbon tetrachloride-induced hepatic failure.Magnetic resonance (MR) examinations were performed with a 3.0 T clinical scanner immediately before and 2 h and 1,...

  3. Effects of Multiwalled Carbon Nanotube Reinforced Collagen Scaffolds on the Osteogenic Differentiation of Mesenchymal Stem Cells

    OpenAIRE

    Rena Baktur; Sang-Hee Yoon; Soonjo Kwon

    2013-01-01

    With recent advances in nanotechnology, carbon nanotubes (CNTs) have been extensively studied as substrates for cell culture, drug delivery systems, and medical implant materials. However, surprisingly little is known about the effect of CNTs on collective cellular processes (e.g., adhesion, proliferation, and differentiation). This leads to the need for quantitative characterization of the proliferation, differentiation, and mineralization of mesenchymal stem cells (MSCs) on multiwalled CNT-...

  4. Insulin but Not Glucagon Gene is Silenced in Human Pancreas-Derived Mesenchymal Stem Cells

    OpenAIRE

    2009-01-01

    We previously characterized human islet-derived precursor cells (hIPCs) as a specific type of mesenchymal stem cell capable of differentiating to insulin (INS)- and glucagon (GCG)-expressing cells. However, during proliferative expansion, INS transcript becomes undetectable and then cannot be induced, a phenomenon consistent with silencing of the INS gene. We explored this possibility by determining whether ectopic expression of transcription factors known to induce transcription of this gene...

  5. Human Umbilical Cord Mesenchymal Stem Cells: A New Therapeutic Option for Tooth Regeneration

    OpenAIRE

    Yuanwei Chen; Yongchun Yu; Lin Chen; Lanfeng Ye; Junhui Cui; Quan Sun; Kaide Li; Zhiyong Li; Lei Liu

    2015-01-01

    Tooth regeneration is considered to be an optimistic approach to replace current treatments for tooth loss. It is important to determine the most suitable seed cells for tooth regeneration. Recently, human umbilical cord mesenchymal stem cells (hUCMSCs) have been regarded as a promising candidate for tissue regeneration. However, it has not been reported whether hUCMSCs can be employed in tooth regeneration. Here, we report that hUCMSCs can be induced into odontoblast-like cells in vitro and ...

  6. Genetic and epigenetic effect of estrogen on mesenchymal stem cell maintenance and differentiation

    OpenAIRE

    2013-01-01

    Ankara : The Department of Molecular Biology and Genetics and the Graduate School of Engineering and Science of Bilkent Univ., 2013. Thesis (Ph. D.) -- Bilkent University, 2013. Includes bibliographical references leaves 126-143. Mesenchymal stem cells (MSCs) have the potential to differentiate into multiple cell types and immune privileged characteristics. These features make MSCs a hope in tissue engineering and cell based treatment applications. Tremendous amount of stud...

  7. miR-335 orchestrates cell proliferation, migration and differentiation in human mesenchymal stem cells

    OpenAIRE

    Gonzalez, Manuel A.; Tomé, María; López-Romero, Pedro; Albo, Carmen; Sepúlveda, Juan Carlos; Fernández-Gutierrez, Benjamin; Dopazo, Ana; Bernad, Antonio

    2010-01-01

    Abstract In spite of the extensive potential of human mesenchymal stem cells (hMSCs) in cell therapy, little is known about the molecular mechanisms that regulate their therapeutic properties. We aimed to identify microRNAs (miRNAs) involved in controlling the transition between the resting and reparative phenotypes of hMSCs, hypothesizing that these miRNAs must be present in the undifferentiated cells and downregulated to allow initiation of distinct activation/differentiation pro...

  8. Effect of hypoxia on porphyrin metabolism in bone marrow mesenchymal stem cells.

    Science.gov (United States)

    Poleshko, A G; Lobanok, E S; Volotovskii, I D

    2014-05-01

    Under hypoxic conditions, aminolevulinic acid-induced accumulation of porphyrin pigments and increase in heme content was observed in bone marrow mesenchymal stem cells. The expression of transferrin receptor CD71 responsible for Fe(2+) transport into the cell was also enhanced. Blockade of porphyrin-transporting protein ABCG2 with fumitremorgin C under conditions of normoxia and hypoxia induced accumulation of porphyrin pigments; in hypoxia, these changes were more pronounced.

  9. Expressions of Collagen I and III in Mesenchymal Stem Cells Co-cultured with Ligament Fibroblasts

    Institute of Scientific and Technical Information of China (English)

    Said; SLIMANI

    2005-01-01

    1 IntroductionThe poor or failed healing of some tendons and ligaments leads to the requirement of surgical replacement of grafts. Tissue engineering offers the appealing potential to improve the reconstruction of tissues presenting acceptable biological and mechanical properties. Mesenchymal stem cells (MSCs) have been shown to differentiate into several cells. The implantation of MSCs into damaged rabbit Achilles tendons significantly improved the structural properties of the neo-tissues, which suggests t...

  10. Congenic Mesenchymal Stem Cell Therapy Reverses Hyperglycemia in Experimental Type 1 Diabetes

    OpenAIRE

    2010-01-01

    OBJECTIVE A number of clinical trials are underway to test whether mesenchymal stem cells (MSCs) are effective in treating various diseases, including type 1 diabetes. Although this cell therapy holds great promise, the optimal source of MSCs has yet to be determined with respect to major histocompatibility complex matching. Here, we examine this question by testing the ability of congenic MSCs, obtained from the NOR mouse strain, to reverse recent-onset type 1 diabetes in NOD mice, as well a...

  11. Mesenchymal stem cell interaction with ultra smooth nanostructured diamond for wear resistant orthopaedic implants

    OpenAIRE

    Clem, William C.; Chowdhury, Shafiul; Catledge, Shane A.; Weimer, Jeffrey J.; Shaikh, Faheem M; Hennessy, Kristin M; Konovalov, Valery V.; Hill, Michael R; Waterfeld, Alfred; Bellis, Susan L.; Vohra, Yogesh K.

    2008-01-01

    Ultra smooth nanostructured diamond (USND) can be applied to greatly increase the wear resistance of orthopaedic implants over conventional designs. Herein we describe surface modification techniques and cytocompatibility studies performed on this new material. We report that hydrogen (H) -terminated USND surfaces supported robust mesenchymal stem cell (MSC) adhesion and survival, while oxygen (O) and fluorine (F) -terminated surfaces resisted cell adhesion, indicating that USND can be modifi...

  12. Therapeutic Efficacy of Fresh, Autologous Mesenchymal Stem Cells for Severe Refractory Gingivostomatitis in Cats

    OpenAIRE

    Arzi, Boaz; Mills-Ko, Emily; Frank J.M. Verstraete; Kol, Amir; Walker, Naomi J.; Badgley, Megan R.; Fazel, Nasim; William J. Murphy; Vapniarsky, Natalia; Borjesson, Dori L.

    2015-01-01

    Mesenchymal stem cells (MSCs) are a promising therapy for immune-mediated and inflammatory disorders, because of their potent immunomodulatory properties. In this study, we investigated the use of fresh, autologous, adipose-derived MSCs (ASCs) for feline chronic gingivostomatitis (FCGS), a chronic, debilitating, idiopathic, oral mucosal inflammatory disease. Nine cats with refractory FCGS were enrolled in this pilot study. Each cat received 2 intravenous injections of 20 million autologous AS...

  13. Platelet Lysates Produced from Expired Platelet Concentrates Support Growth and Osteogenic Differentiation of Mesenchymal Stem Cells

    OpenAIRE

    Sandra Mjoll Jonsdottir-Buch; Ramona Lieder; Olafur Eysteinn Sigurjonsson

    2013-01-01

    BACKGROUND: Mesenchymal stem cells are promising candidates in regenerative cell therapy. Conventional culture methods involve the use of animal substances, specifically fetal bovine serum as growth supplement. Since the use of animal-derived products is undesirable for human applications, platelet lysates produced from human platelets are an attractive alternative. This is especially true if platelet lysates from already approved transfusion units at blood banks can be utilized. The purpose ...

  14. Allogeneic guinea pig mesenchymal stem cells ameliorate neurological changes in experimental colitis

    OpenAIRE

    Stavely, Rhian; Robinson, Ainsley M.; Miller, Sarah; Boyd, Richard; Sakkal, Samy; Nurgali, Kulmira

    2015-01-01

    Background The use of mesenchymal stem cells (MSCs) to treat inflammatory bowel disease (IBD) is of great interest because of their immunomodulatory properties. Damage to the enteric nervous system (ENS) is implicated in IBD pathophysiology and disease progression. The most commonly used model to study inflammation-induced changes to the ENS is 2,4,6-trinitrobenzene-sulfonate acid (TNBS)-induced colitis in guinea pigs; however, no studies using guinea pig MSCs in colitis have been performed. ...

  15. Multipotent mesenchymal stem cells with immunosuppressive activity can be easily isolated from dental pulp

    DEFF Research Database (Denmark)

    Pierdomenico, Laura; Bonsi, Laura; Calvitti, Mario

    2005-01-01

    BACKGROUND: Bone marrow mesenchymal stem cells (MSCs) are currently being investigated in preclinical and clinical settings because of their multipotent differentiative capacity or, alternatively, their immunosuppressive function. The aim of this study was to evaluate dental pulp (DP) as a potent...... characteristics of DP-MSCs may prompt future studies aimed at using these cells in the treatment or prevention of T-cell alloreactivity in hematopoietic or solid organ allogeneic transplantation....

  16. Chemical engineering of mesenchymal stem cells to induce a cell rolling response.

    Science.gov (United States)

    Sarkar, Debanjan; Vemula, Praveen Kumar; Teo, Grace S L; Spelke, Dawn; Karnik, Rohit; Wee, Le Y; Karp, Jeffrey M

    2008-11-19

    Covalently conjugated sialyl Lewis X (SLeX) on the mesenchymal stem cell (MSC) surface through a biotin-streptavidin bridge imparts leukocyte-like rolling characteristics without altering the cell phenotype and the multilineage differentiation potential. We demonstrate that the conjugation of SLeX on the MSC surface is stable, versatile, and induces a robust rolling response on P-selectin coated substrates. These results indicate the potential to increase the targeting efficiency of any cell type to specific tissue.

  17. Mechanical unloading of bone in microgravity reduces mesenchymal and hematopoietic stem cell-mediated tissue regeneration

    Directory of Open Access Journals (Sweden)

    E.A. Blaber

    2014-09-01

    Full Text Available Mechanical loading of mammalian tissues is a potent promoter of tissue growth and regeneration, whilst unloading in microgravity can cause reduced tissue regeneration, possibly through effects on stem cell tissue progenitors. To test the specific hypothesis that mechanical unloading alters differentiation of bone marrow mesenchymal and hematopoietic stem cell lineages, we studied cellular and molecular aspects of how bone marrow in the mouse proximal femur responds to unloading in microgravity. Trabecular and cortical endosteal bone surfaces in the femoral head underwent significant bone resorption in microgravity, enlarging the marrow cavity. Cells isolated from the femoral head marrow compartment showed significant down-regulation of gene expression markers for early mesenchymal and hematopoietic differentiation, including FUT1(−6.72, CSF2(−3.30, CD90(−3.33, PTPRC(−2.79, and GDF15(−2.45, but not stem cell markers, such as SOX2. At the cellular level, in situ histological analysis revealed decreased megakaryocyte numbers whilst erythrocytes were increased 2.33 fold. Furthermore, erythrocytes displayed elevated fucosylation and clustering adjacent to sinuses forming the marrow–blood barrier, possibly providing a mechanistic basis for explaining spaceflight anemia. Culture of isolated bone marrow cells immediately after microgravity exposure increased the marrow progenitor's potential for mesenchymal differentiation into in-vitro mineralized bone nodules, and hematopoietic differentiation into osteoclasts, suggesting an accumulation of undifferentiated progenitors during exposure to microgravity. These results support the idea that mechanical unloading of mammalian tissues in microgravity is a strong inhibitor of tissue growth and regeneration mechanisms, acting at the level of early mesenchymal and hematopoietic stem cell differentiation.

  18. Regeneration of articular cartilage by adipose tissue derived mesenchymal stem cells: perspectives from stem cell biology and molecular medicine.

    Science.gov (United States)

    Wu, Ling; Cai, Xiaoxiao; Zhang, Shu; Karperien, Marcel; Lin, Yunfeng

    2013-05-01

    Adipose-derived stem cells (ASCs) have been discovered for more than a decade. Due to the large numbers of cells that can be harvested with relatively little donor morbidity, they are considered to be an attractive alternative to bone marrow derived mesenchymal stem cells. Consequently, isolation and differentiation of ASCs draw great attention in the research of tissue engineering and regenerative medicine. Cartilage defects cause big therapeutic problems because of their low self-repair capacity. Application of ASCs in cartilage regeneration gives hope to treat cartilage defects with autologous stem cells. In recent years, a lot of studies have been performed to test the possibility of using ASCs to re-construct damaged cartilage tissue. In this article, we have reviewed the most up-to-date articles utilizing ASCs for cartilage regeneration in basic and translational research. Our topic covers differentiation of adipose tissue derived mesenchymal stem cells into chondrocytes, increased cartilage formation by co-culture of ASCs with chondrocytes and enhancing chondrogenic differentiation of ASCs by gene manipulation.

  19. Effects of pH and thermally sensitive hybrid gels on osteogenic differentiation of mesenchymal stem cells.

    Science.gov (United States)

    Dai, Zhuojun; Shu, Yinglan; Wan, Chao; Wu, Chi

    2015-04-01

    Osteoblastic differentiation of mesenchymal stem cells from bone marrow is an essential step for bone formation. The osteogenesis is normally induced by chemical mediators. Recent laboratory studies have revealed that mechanical properties of an extracellular matrix, typically hydrogels with different modules, also affect the fate of stem cells. The question is how to adjust their mechanical properties inside the body in biomedical applications. In this study, we designed/used a novel extracellular matrix, namely, a hybrid gel made of billions of injectable small thermally and pH-sensitive poly(N-isopropylacrylamide-co-acrylic acid) microgels whose swelling at the body pH and temperature physically jammed them and mesenchymal stem cells together, which enabled us to in situ apply an adjustable mechanical stress on those embedded stem cells. By treating the cell layer with the microgels, we found that an earlier incorporation of the microgels significantly increases the alkaline phosphatase activity, while a later addition of the microgels after the primary calcium deposition enhances the extracellular matrix mineralization in the mesenchymal stem cells cultures accompanied by up-regulation of osteogenic marker genes expression, presumably due to the calcium fixation by the carboxyl groups inside the microgels and the physical contact between the microgels and mesenchymal stem cells layers. These microgels provide an extracellular matrix microenvironment to affect the fate and biological behavior of mesenchymal stem cells, facilitating their potential applications in regenerative therapies.

  20. Isolation and Characterisation of Mesenchymal Stem Cells from Different Regions of the Human Umbilical Cord

    Directory of Open Access Journals (Sweden)

    Claire Mennan

    2013-01-01

    Full Text Available Umbilical cords as a source of stem cells are of increasing interest for cell therapies as they present little ethical consideration and are reported to contain immune privileged cells which may be suitable for allogeneic based therapies. Mesenchymal stem cells (MSCs sourced from several different cord regions, including artery, vein, cord lining, and Wharton’s jelly, are described in the literature. However, no one study has yet isolated and characterised MSCs from all regions of the same cord to determine the most suitable cells for cell based therapeutics.

  1. Isolation and Characterisation of Mesenchymal Stem Cells from Different Regions of the Human Umbilical Cord

    Science.gov (United States)

    Wright, Karina; Bhattacharjee, Atanu; Balain, Birender; Richardson, James; Roberts, Sally

    2013-01-01

    Umbilical cords as a source of stem cells are of increasing interest for cell therapies as they present little ethical consideration and are reported to contain immune privileged cells which may be suitable for allogeneic based therapies. Mesenchymal stem cells (MSCs) sourced from several different cord regions, including artery, vein, cord lining, and Wharton's jelly, are described in the literature. However, no one study has yet isolated and characterised MSCs from all regions of the same cord to determine the most suitable cells for cell based therapeutics. PMID:23984420

  2. How to Improve the Survival of Transplanted Mesenchymal Stem Cell in Ischemic Heart?

    Directory of Open Access Journals (Sweden)

    Liangpeng Li

    2016-01-01

    Full Text Available Mesenchymal stem cell (MSC is an intensely studied stem cell type applied for cardiac repair. For decades, the preclinical researches on animal model and clinical trials have suggested that MSC transplantation exerts therapeutic effect on ischemic heart disease. However, there remain major limitations to be overcome, one of which is the very low survival rate after transplantation in heart tissue. Various strategies have been tried to improve the MSC survival, and many of them showed promising results. In this review, we analyzed the studies in recent years to summarize the methods, effects, and mechanisms of the new strategies to address this question.

  3. Sheep, wolf, or werewolf: cancer stem cells and the epithelial-to-mesenchymal transition.

    Science.gov (United States)

    Chang, Jeffrey T; Mani, Sendurai A

    2013-11-28

    Multiple cancers contain subpopulations that exhibit characteristics of cancer stem cells (CSCs), the ability to self-renew and seed heterogeneous tumors. Recent evidence suggests two potentially overlapping models for these phenotypes: one where stem cells arise from multipotent progenitor cells, and another where they are created via an epithelial to mesenchymal transition. Unraveling this issue is critical, as it underlies phenomena such as metastasis and therapeutic resistance. Therefore, there is intense interest in understanding these two types of CSSs, how they differ from differentiated cancer cells, the mechanisms that drive their phenotypes, and how that knowledge can be incorporated into therapeutics.

  4. Telomerase promoter reprogramming and interaction with general transcription factors in the human mesenchymal stem cell

    DEFF Research Database (Denmark)

    Serakinci, Nedime; Hoare, Stacey F.; Kassem, Moustapha

    2006-01-01

    The human adult mesenchymal stem cell (hMSC) does not express telomerase and has been shown to be the target for neoplastic transformation after transduction with hTERT. These findings lend support to the stem cell hypothesis of cancer development but by supplying hTERT, the molecular events...... and that modifications of the chromatin environment lead to reactivation of telomerase gene expression. It is shown that repression of hTERT expression in hMSCs is due to promoter-specific histone hypoacetylation coupled with low Pol II and TFIIB trafficking. This repression is overcome by treatment with Trichostatin...

  5. Influence of age on rat bone-marrow mesenchymal stem cells potential.

    Science.gov (United States)

    Fafián-Labora, J; Fernández-Pernas, P; Fuentes, I; De Toro, J; Oreiro, N; Sangiao-Alvarellos, S; Mateos, J; Arufe, M C

    2015-11-19

    Mesenchymal stem cells promising role in cell-based therapies and tissue engineering appears to be limited due to a decline of their regenerative potential with increasing donor age. Six age groups from bone marrow mesenchymal stem cells of Wistar rats were studied (newborn, infant, young, pre-pubertal, pubertal and adult). Quantitative proteomic assay was performance by iTRAQ using an 8-plex iTRAQ labeling and the proteins differentially expressed were grouped in pluripotency, proliferative and metabolism processes. Proliferation makers, CD117 and Ki67 were measure by flow cytometry assay. Real time polymerase chain reaction analysis of pluripotency markers Rex1, Oct4, Sox2 and Nanog were done. Biological differentiation was realized using specific mediums for 14 days to induce osteogenesis, adipogenesis or chondrogenesis and immunostain analysis of differentiated cell resulting were done. Enzimoimmunoassay analysis of several enzymes as L-lactate dehydrogenase and glucose-6-phosphate isomerase were also done to validate iTRAQ data. Taking together these results indicate for the first time that mesenchymal stem cells have significant differences in their proliferative, pluripotency and metabolism profiles and those differences are age depending.

  6. ISOLATION AND INDUCTION OF DIFFERENTIATION OF SEINE ADIPOSE-DERIVED MESENCHYMAL STEM CELLS

    Institute of Scientific and Technical Information of China (English)

    MA Yueying; YUAN Shuolong; ZHANG yue; XU liangwei; GUO Weiwei; ZHAO Lidong; ZHAI suoqiang; YANG Shiming

    2014-01-01

    Objectives To establish a method for high yield mesenchymal stem cells collection, as well as a culture method for iden-tifying mesenchymal stem cells from the swine adipose-derived mesenchymal stem cell (ADMSC). Methods Swine AD-MSCs were isolated from fat tissue with collagenase, followed by induction of differentiation to osteogenic, adipogenic and chondrogrnic cells. The survival curve of the ADMSC at the 37ºC and 38ºC were measured using WST-1Cell Proliferation As-say Reagent. Result ADMSCs isolated with collagenase from swine neck fat tissue generated a stable uniform appearance af-ter the second generation. The passage period was five days. ADMSC could differentiate into osteogenic, adipogenic or chon-drogrnic cells under different culture conditions. The highest growth rate was achieved at 38ºC in this study. Conclusion Swine ADMSCs have the potential to differentiate into osteogenic, adipogenic or chondrogrnic cells, and they may be appropriate for transplantation for both research and clinical purpose.

  7. Transplanted bone marrow mesenchymal stem cells improve memory in rat models of Alzheimer's disease.

    Science.gov (United States)

    Babaei, Parvin; Soltani Tehrani, Bahram; Alizadeh, Arsalan

    2012-01-01

    The present study aims to evaluate the effect of bone marrow mesenchymal stem cells (MSCs) grafts on cognition deficit in chemically and age-induced Alzheimer's models of rats. In the first experiments aged animals (30 months) were tested in Morris water maze (MWM) and divided into two groups: impaired memory and unimpaired memory. Impaired groups were divided into two groups and cannulated bilaterally at the CA1 of the hippocampus for delivery of mesenchymal stem cells (500 × 10(3)/μL) and PBS (phosphate buffer saline). In the second experiment, Ibotenic acid (Ibo) was injected bilaterally into the nucleus basalis magnocellularis (NBM) of young rats (3 months) and animals were tested in MWM. Then, animals with memory impairment received the following treatments: MSCs (500 × 10(3)/μL) and PBS. Two months after the treatments, cognitive recovery was assessed by MWM in relearning paradigm in both experiments. Results showed that MSCs treatment significantly increased learning ability and memory in both age- and Ibo-induced memory impairment. Adult bone marrow mesenchymal stem cells show promise in treating cognitive decline associated with aging and NBM lesions.

  8. Transplanted Bone Marrow Mesenchymal Stem Cells Improve Memory in Rat Models of Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Parvin Babaei

    2012-01-01

    Full Text Available The present study aims to evaluate the effect of bone marrow mesenchymal stem cells (MSCs grafts on cognition deficit in chemically and age-induced Alzheimer's models of rats. In the first experiments aged animals (30 months were tested in Morris water maze (MWM and divided into two groups: impaired memory and unimpaired memory. Impaired groups were divided into two groups and cannulated bilaterally at the CA1 of the hippocampus for delivery of mesenchymal stem cells (500×103/ and PBS (phosphate buffer saline. In the second experiment, Ibotenic acid (Ibo was injected bilaterally into the nucleus basalis magnocellularis (NBM of young rats (3 months and animals were tested in MWM. Then, animals with memory impairment received the following treatments: MSCs (500×103/ and PBS. Two months after the treatments, cognitive recovery was assessed by MWM in relearning paradigm in both experiments. Results showed that MSCs treatment significantly increased learning ability and memory in both age- and Ibo-induced memory impairment. Adult bone marrow mesenchymal stem cells show promise in treating cognitive decline associated with aging and NBM lesions.

  9. Chondroitinase ABC plus bone marrow mesenchymal stem cells for repair of spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Chun Zhang; Xijing He; Haopeng Li; Guoyu Wang

    2013-01-01

    As chondroitinase ABC can improve the hostile microenvironment and cell transplantation is proven to be effective after spinal cord injury, we hypothesized that their combination would be a more effective treatment option. At 5 days after T8 spinal cord crush injury, rats were injected with bone marrow mesenchymal stem cell suspension or chondroitinase ABC 1 mm from the edge of spinal cord damage zone. Chondroitinase ABC was first injected, and bone marrow mesenchymal stem cell suspension was injected on the next day in the combination group. At 14 days, the mean Basso, Beattie and Bresnahan score of the rats in the combination group was higher than other groups. Hematoxylin-eosin staining showed that the necrotic area was significantly reduced in the combination group compared with other groups. Glial fibrillary acidic protein-chondroitin sulfate proteoglycan double staining showed that the damage zone of astrocytic scars was significantly reduced without the cavity in the combination group. Glial fibrillary acidic protein/growth associated protein-43 double immunostaining revealed that positive fibers traversed the damage zone in the combination group. These results suggest that the combination of chondroitinase ABC and bone marrow mesenchymal stem cell transplantation contributes to the repair of spinal cord injury.

  10. Potential advantages of acute kidney injury management by mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    Francesca; Bianchi; Elisa; Sala; Chiara; Donadei; Irene; Capelli; Gaetano; La; Manna

    2014-01-01

    Mesenchymal stem cells are currently considered as a promising tool for therapeutic application in acute kidney injury(AKI) management. AKI is characterized by acute tubular injury with rapid loss of renal function. After AKI, inflammation, oxidative stress and excessive deposition of extracellular matrix are the molecular events that ultimately cause the end-stage renal disease. Despite numerous improvement of supportive therapy, the mortality and morbidity among patients remain high. Therefore, exploring novel therapeutic options to treat AKI is mandatory. Numerous evidence in animal models has demonstrated the capability of mesenchymal stem cells(MSCs) to restore kidney function after induced kidney injury. After infusion, MSCs engraft in the injured tissue and release soluble factors and microvesicles that promote cell survival and tissue repairing. Indeed, the main mechanism of action of MSCs in tissue regeneration is the paracrine/endocrine secretion of bioactive molecules. MSCs can be isolated from several tissues, including bone marrow, adipose tissue, and blood cord; pre-treatment procedures to improve MSCs homing and their paracrine function have been also described. This review will focus on the application of cell therapy in AKI and it will summarize preclinical studies in animal models and clinical trials currently ongoing about the use of mesenchymal stem cells after AKI.

  11. Clinical Grade Human Adipose Tissue-Derived Mesenchymal Stem Cell Banking

    Directory of Open Access Journals (Sweden)

    Bagher Larijani

    2015-10-01

    Full Text Available In this study, our aim was to produce a generation of GMP-grade adipose tissue-derived mesenchymal stem cells for clinical applications. According to our results, we fulfill to establish consistent and also reproducible current good manufacturing practice (cGMP compliant adipose tissue-derived mesenchymal stem cells from five female donors. The isolated cells were cultured in DMEM supplemented with 10% fetal bovine serum and characterized by standard methods. Moreover, karyotyping was performed to evaluate chromosomal stability. Mean of donors’ age was 47.6 ± 8.29 year, mean of cell viability was 95.6 ± 1.51%, and cell count was between 9×106 and 14×106 per microliter with the mean of 12.2×106 ± 2863564.21 per microliter. The main aim of this project was demonstrating the feasibility of cGMP-compliant and clinical grade adipose tissue-derived mesenchymal stem cells preparation and banking for clinical cell transplantation trials.

  12. Neuromuscular Regeneration: Perspective on the Application of Mesenchymal Stem Cells and Their Secretion Products

    Directory of Open Access Journals (Sweden)

    Ana Rita Caseiro

    2016-01-01

    Full Text Available Mesenchymal stem cells are posing as a promising character in the most recent therapeutic strategies and, since their discovery, extensive knowledge on their features and functions has been gained. In recent years, innovative sources have been disclosed in alternative to the bone marrow, conveying their associated ethical concerns and ease of harvest, such as the umbilical cord tissue and the dental pulp. These are also amenable of cryopreservation and thawing for desired purposes, in benefit of the donor itself or other patients in pressing need. These sources present promising possibilities in becoming useful cell sources for therapeutic applications in the forthcoming years. Effective and potential applications of these cellular-based strategies for the regeneration of peripheral nerve are overviewed, documenting recent advances and identified issues for this research area in the near future. Finally, besides the differentiation capacities attributed to mesenchymal stem cells, advances in the recognition of their effective mode of action in the regenerative theatre have led to a new area of interest: the mesenchymal stem cells’ secretome. The paracrine modulatory pathway appears to be a major mechanism by which these are beneficial to nerve regeneration and comprehension on the specific growth factors, cytokine, and extracellular molecules secretion profiles is therefore of great interest.

  13. Effect of Human Adipose Tissue Mesenchymal Stem Cells on the Regeneration of Ovine Articular Cartilage.

    Science.gov (United States)

    Zorzi, Alessandro R; Amstalden, Eliane M I; Plepis, Ana Maria G; Martins, Virginia C A; Ferretti, Mario; Antonioli, Eliane; Duarte, Adriana S S; Luzo, Angela C M; Miranda, João B

    2015-11-09

    Cell therapy is a promising approach to improve cartilage healing. Adipose tissue is an abundant and readily accessible cell source. Previous studies have demonstrated good cartilage repair results with adipose tissue mesenchymal stem cells in small animal experiments. This study aimed to examine these cells in a large animal model. Thirty knees of adult sheep were randomly allocated to three treatment groups: CELLS (scaffold seeded with human adipose tissue mesenchymal stem cells), SCAFFOLD (scaffold without cells), or EMPTY (untreated lesions). A partial thickness defect was created in the medial femoral condyle. After six months, the knees were examined according to an adaptation of the International Cartilage Repair Society (ICRS 1) score, in addition to a new Partial Thickness Model scale and the ICRS macroscopic score. All of the animals completed the follow-up period. The CELLS group presented with the highest ICRS 1 score (8.3 ± 3.1), followed by the SCAFFOLD group (5.6 ± 2.2) and the EMPTY group (5.2 ± 2.4) (p = 0.033). Other scores were not significantly different. These results suggest that human adipose tissue mesenchymal stem cells promoted satisfactory cartilage repair in the ovine model.

  14. Neuromuscular Regeneration: Perspective on the Application of Mesenchymal Stem Cells and Their Secretion Products.

    Science.gov (United States)

    Caseiro, Ana Rita; Pereira, Tiago; Ivanova, Galya; Luís, Ana Lúcia; Maurício, Ana Colette

    2016-01-01

    Mesenchymal stem cells are posing as a promising character in the most recent therapeutic strategies and, since their discovery, extensive knowledge on their features and functions has been gained. In recent years, innovative sources have been disclosed in alternative to the bone marrow, conveying their associated ethical concerns and ease of harvest, such as the umbilical cord tissue and the dental pulp. These are also amenable of cryopreservation and thawing for desired purposes, in benefit of the donor itself or other patients in pressing need. These sources present promising possibilities in becoming useful cell sources for therapeutic applications in the forthcoming years. Effective and potential applications of these cellular-based strategies for the regeneration of peripheral nerve are overviewed, documenting recent advances and identified issues for this research area in the near future. Finally, besides the differentiation capacities attributed to mesenchymal stem cells, advances in the recognition of their effective mode of action in the regenerative theatre have led to a new area of interest: the mesenchymal stem cells' secretome. The paracrine modulatory pathway appears to be a major mechanism by which these are beneficial to nerve regeneration and comprehension on the specific growth factors, cytokine, and extracellular molecules secretion profiles is therefore of great interest.

  15. Comparison Between Transepicardial Cell Transplantations: Autologous Undifferentiated Versus Differentiated Marrow Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Farid Azmoudeh Ardalan

    2007-06-01

    Full Text Available Background: Marrow-derived mesenchymal stem cells (MSCs have been heralded as a source of great promise for the regeneration of the infarcted heart. There are no clear data as to whether or not in vitro differentiation of MSCs into major myocardial cells can increase the beneficial effects of MSCs. The aim of this study was to address this issue.Methods: To induce MSCs to transdifferentiate into cardiomyocytes and endothelial cells, 5-Azacytidine and vascular endothelial growth factor (VEGF were used, respectively. Myocardial infarction in rabbits was generated by ligating the left anterior descending coronary artery. The animals were divided into three experimental groups: I control group, II undifferentiated mesenchymal stem cell transplantation group, and III differentiated mesenchymal stem cell transplantation group. The three groups received peri-infarct injections of culture media, autologous undifferentiated MSCs, and autologous differentiated MSCs, respectively. Echocardiography and pathology were performed in order to search for improvement in the cardiac function and reduction in the infarct size. Results: Improvements in the left ventricular function and reductions in the infarcted area were observed in both cell transplanted groups (Groups II and III to the same degree. Conclusions: There is no need for prior differentiation induction of marrow-derived MSCs before transplantation, and peri-infarct implantation of MSCs can effectively reduce the size of the infarct and improve the cardiac function.

  16. Biological conduits combining bone marrow mesenchymal stem cells and extracellular matrix to treat long-segment sciatic nerve defects

    Institute of Scientific and Technical Information of China (English)

    Yang Wang; Zheng-wei Li; Min Luo; Ya-jun Li; Ke-qiang Zhang

    2015-01-01

    The transplantation of polylactic glycolic acid conduits combining bone marrow mesenchymal stem cells and extracellular matrix gel for the repair of sciatic nerve injury is effective in some re-spects, but few data comparing the biomechanical factors related to the sciatic nerve are available. In the present study, rabbit models of 10-mm sciatic nerve defects were prepared. The rabbit models were repaired with autologous nerve, a polylactic glycolic acid conduit+bone marrow mesenchymal stem cells, or a polylactic glycolic acid conduit+bone marrow mesenchymal stem cells+extracellular matrix gel. After 24 weeks, mechanical testing was performed to determine the stress relaxation and creep parameters. Following sciatic nerve injury, the magnitudes of the stress decrease and strain increase at 7,200 seconds were largest in the polylactic glycolic acid conduit+bone marrow mesenchymal stem cells+extracellular matrix gel group, followed by the polylactic glycolic acid conduit+bone marrow mesenchymal stem cells group, and then the autologous nerve group. Hematoxylin-eosin staining demonstrated that compared with the poly-lactic glycolic acid conduit+bone marrow mesenchymal stem cells group and the autologous nerve group, a more complete sciatic nerve regeneration was found, including good myelination, regularly arranged nerve ifbers, and a completely degraded and resorbed conduit, in the polylac-tic glycolic acid conduit+bone marrow mesenchymal stem cells+extracellular matrix gel group. These results indicate that bridging 10-mm sciatic nerve defects with a polylactic glycolic acid conduit+bone marrow mesenchymal stem cells+extracellular matrix gel construct increases the stress relaxation under a constant strain, reducing anastomotic tension. Large elongations under a constant physiological load can limit the anastomotic opening and shift, which is ben-eifcial for the regeneration and functional reconstruction of sciatic nerve. Better regeneration was found with the

  17. Mesenchymal Stem Cells as a Potent Cell Source for Bone Regeneration

    Directory of Open Access Journals (Sweden)

    Elham Zomorodian

    2012-01-01

    Full Text Available While small bone defects heal spontaneously, large bone defects need surgical intervention for bone transplantation. Autologous bone grafts are the best and safest strategy for bone repair. An alternative method is to use allogenic bone graft. Both methods have limitations, particularly when bone defects are of a critical size. In these cases, bone constructs created by tissue engineering technologies are of utmost importance. Cells are one main component in the manufacture of bone construct. A few cell types, including embryonic stem cells (ESCs, adult osteoblast, and adult stem cells, can be used for this purpose. Mesenchymal stem cells (MSCs, as adult stem cells, possess characteristics that make them good candidate for bone repair. This paper discusses different aspects of MSCs that render them an appropriate cell type for clinical use to promote bone regeneration.

  18. Intrinsic and extrinsic mechanical properties related to the differentiation of mesenchymal stem cells.

    Science.gov (United States)

    Lee, Jin-Ho; Park, Hun-Kuk; Kim, Kyung Sook

    2016-05-06

    Diverse intrinsic and extrinsic mechanical factors have a strong influence on the regulation of stem cell fate. In this work, we examined recent literature on the effects of mechanical environments on stem cells, especially on differentiation of mesenchymal stem cells (MSCs). We provide a brief review of intrinsic mechanical properties of single MSC and examined the correlation between the intrinsic mechanical property of MSC and the differentiation ability. The effects of extrinsic mechanical factors relevant to the differentiation of MSCs were considered separately. The effect of nanostructure and elasticity of the matrix on the differentiation of MSCs were summarized. Finally, we consider how the extrinsic mechanical properties transfer to MSCs and then how the effects on the intrinsic mechanical properties affect stem cell differentiation.

  19. Adipose Derived Mesenchymal Stem Cells In Wound Healing: A Clinical Review

    Directory of Open Access Journals (Sweden)

    Gunalp Uzun

    2014-08-01

    Full Text Available The aim of this article is to review clinical studies on the use of adipose derived mesenchymal stem cells in the treatment of chronic wounds. A search on PubMed was performed on April 30th, 2014 to identify the relevant clinical studies. We reviewed 13 articles that reported the use adipose derived stem cells in the treatment of different types of wounds. Adipose derived stem cells have the potential to be used in the treatment of chronic wounds. However, standard methods for isolation, storage and application of these cells are needed. New materials to transfer these stem cells to injured tissues should be investigated. [Dis Mol Med 2014; 2(4.000: 57-64

  20. Could Metabolic Syndrome, Lipodystrophy, and Aging Be Mesenchymal Stem Cell Exhaustion Syndromes?

    Directory of Open Access Journals (Sweden)

    Eduardo Mansilla

    2011-01-01

    Full Text Available One of the most important and complex diseases of modern society is metabolic syndrome. This syndrome has not been completely understood, and therefore an effective treatment is not available yet. We propose a possible stem cell mechanism involved in the development of metabolic syndrome. This way of thinking lets us consider also other significant pathologies that could have similar etiopathogenic pathways, like lipodystrophic syndromes, progeria, and aging. All these clinical situations could be the consequence of a progressive and persistent stem cell exhaustion syndrome (SCES. The main outcome of this SCES would be an irreversible loss of the effective regenerative mesenchymal stem cells (MSCs pools. In this way, the normal repairing capacities of the organism could become inefficient. Our point of view could open the possibility for a new strategy of treatment in metabolic syndrome, lipodystrophic syndromes, progeria, and even aging: stem cell therapies.

  1. Regulated genes in mesenchymal stem cells and gastriccancer

    Institute of Scientific and Technical Information of China (English)

    Shihori Tanabe; Kazuhiko Aoyagi; Hiroshi Yokozaki; Hiroki Sasaki

    2015-01-01

    AIM To investigate the genes regulated in mesenchymalstem cells (MSCs) and diffuse-type gastric cancer (GC),gene expression was analyzed.METHODS: Gene expression of MSCs and diffuse-typeGC cells were analyzed by microarray. Genes relatedto stem cells, cancer and the epithelial-mesenchymaltransition (EMT) were extracted from human genelists using Gene Ontology and reference information.Gene panels were generated, and messenger RNAgene expression in MSCs and diffuse-type GC cells wasanalyzed. Cluster analysis was performed using the NCSSsoftware.RESULTS: The gene expression of regulator of G-proteinsignaling 1 (RGS1) was up-regulated in diffuse-type GCcells compared with MSCs. A panel of stem-cell relatedgenes and genes involved in cancer or the EMT wereexamined. Stem-cell related genes, such as growtharrest-specific 6, musashi RNA-binding protein 2 andhairy and enhancer of split 1 (Drosophila), NOTCHfamily genes and Notch ligands, such as delta-like 1(Drosophila) and Jagged 2, were regulated.CONCLUSION: Expression of RGS1 is up-regulated,and genes related to stem cells and NOTCH signalingare altered in diffuse-type GC compared with MSCs.

  2. Mesenchymal stem cells-based therapy as a potential treatment in neurodegenerative disorders: is the escape from senescence an answer?

    Science.gov (United States)

    Castorina, Alessandro; Szychlinska, Marta Anna; Marzagalli, Rubina; Musumeci, Giuseppe

    2015-06-01

    Aging is the most prominent risk factor contributing to the development of neurodegenerative disorders. In the United States, over 35 million of elderly people suffer from age-related diseases. Aging impairs the self-repair ability of neuronal cells, which undergo progressive deterioration. Once initiated, this process hampers the already limited regenerative power of the central nervous system, making the search for new therapeutic strategies particularly difficult in elderly affected patients. So far, mesenchymal stem cells have proven to be a viable option to ameliorate certain aspects of neurodegeneration, as they possess high proliferative rate and differentiate in vitro into multiple lineages. However, accumulating data have demonstrated that during long-term culture, mesenchymal stem cells undergo spontaneous transformation. Transformed mesenchymal stem cells show typical features of senescence, including the progressive shortening of telomers, which results in cell loss and, as a consequence, hampered regenerative potential. These evidences, in line with those observed in mesenchymal stem cells isolated from old donors, suggest that senescence may represent a limit to mesenchymal stem cells exploitation in therapy, prompting scholars to either find alternative sources of pluripotent cells or to arrest the age-related transformation. In the present review, we summarize findings from recent literature, and critically discuss some of the major hurdles encountered in the search of appropriate sources of mesenchymal stem cells, as well as benefits arising from their use in neurodegenerative diseases. Finally, we provide some insights that may aid in the development of strategies to arrest or, at least, delay the aging of mesenchymal stem cells to improve their therapeutic potential.

  3. Mesenchymal stem cells-based therapy as a potential treatment in neurodegenerative disorders: is the escape from senescence an answer?

    Directory of Open Access Journals (Sweden)

    Alessandro Castorina

    2015-01-01

    Full Text Available Aging is the most prominent risk factor contributing to the development of neurodegenerative disorders. In the United States, over 35 million of elderly people suffer from age-related diseases. Aging impairs the self-repair ability of neuronal cells, which undergo progressive deterioration.Once initiated, this process hampers the already limited regenerative power of the central nervous system, making the search for new therapeutic strategies particularly difficult in elderly affected patients. So far, mesenchymal stem cells have proven to be a viable option to ameliorate certain aspects of neurodegeneration, as they possess high proliferative rate and differentiate in vitro into multiple lineages. However, accumulating data have demonstrated that during long-term culture, mesenchymal stem cells undergo spontaneous transformation. Transformed mesenchymal stem cells show typical features of senescence, including the progressive shortening of telomers, which results in cell loss and, as a consequence, hampered regenerative potential. These evidences, in line with those observed in mesenchymal stem cells isolated from old donors, suggest that senescence may represent a limit to mesenchymal stem cells exploitation in therapy, prompting scholars to either find alternative sources of pluripotent cells or to arrest the age-related transformation. In the present review, we summarize findings from recent literature, and critically discuss some of the major hurdles encountered in the search of appropriate sources of mesenchymal stem cells, as well as benefits arising from their use in neurodegenerative diseases. Finally, we provide some insights that may aid in the development of strategies to arrest or, at least, delay the aging of mesenchymal stem cells to improve their therapeutic potential.

  4. Differential bone-forming capacity of osteogenic cells from either embryonic stem cells or bone marrow-derived mesenchymal stem cells

    NARCIS (Netherlands)

    Both, Sanne K.; Apeldoorn, van Aart A.; Jukes, Jojanneke M.; Englund, Mikael C.O.; Hyllner, Johan; Blitterswijk, van Clemens A.; Boer, de Jan

    2011-01-01

    For more than a decade, human mesenchymal stem cells (hMSCs) have been used in bone tissue-engineering research. More recently some of the focus in this field has shifted towards the use of embryonic stem cells. While it is well known that hMSCs are able to form bone when implanted subcutaneously in

  5. The Effect of Bone Marrow Mesenchymal Stem Cells on Vitamin D3 Induced Monocytic Differentiation of U937 Cells

    OpenAIRE

    Molaeipour, Zahra; Shamsasanjan, karim; Movassaghpour, Ali Akbari; Akbarzadehlaleh, Parvin; Sabaghi, Fatemeh; Saleh, Mahshid

    2016-01-01

    Purpose: Mesenchymal stem cells (MSCs) are key components of the hematopoietic stem cells (HSCs) niche. They control the process of hematopoiesis by secreting regulatory cytokines, growth factors and expression of important cell adhesion molecules for cell-tocell interactions. In this research, we have investigated the effect of bone marrow derived MSCs on monocytic differentiation of U937 cells line.

  6. Influence of oxygen in the cultivation of human mesenchymal stem cells in simulated microgravity: an explorative study

    NARCIS (Netherlands)

    S. Versari; J. Klein-Nulend; J. van Loon; S. Bradamante

    2013-01-01

    Previous studies indicated that human Adipose Tissue-derived Mesenchymal Stem Cells (AT-MSCs) cultured in simulated microgravity (sim-μg) in standard laboratory incubators alter their proliferation and differentiation. Recent studies on the stem cell (SC) niches and the influence of oxygen on SC pro

  7. Ultrastructural and immunocytochemical analysis of multilineage differentiated human dental pulp- and umbilical cord-derived mesenchymal stem cells

    NARCIS (Netherlands)

    Struys, T.; Moreels, M.; Martens, W.; Donders, R.; Wolfs, E.; Lambrichts, I.

    2011-01-01

    Mesenchymal stem cells (MSCs) are one of the most promising stem cell types due to their availability and relatively simple requirements for in vitro expansion and genetic manipulation. Besides the well-characterized MSCs derived from bone marrow, there is growing evidence suggesting that dental pul

  8. Mesenchymal stem cell-based gene therapy for erectile dysfunction.

    Science.gov (United States)

    Kim, J H; Lee, H J; Song, Y S

    2016-05-01

    Despite the overwhelming success of PDE5 inhibitor (PDE5I), the demand for novel pharmacotherapeutic and surgical options for ED continues to rise owing to the increased proportion of elderly individuals in the population, in addition to the growing percentage of ED patients who do not respond to PDE5I. Surgical treatment of ED is associated with many complications, thus warranting the need for nonsurgical therapies. Moreover, none of the above-mentioned treatments essentially corrects, cures or prevents ED. Although gene therapy is a promising option, many challenges and obstacles such as local inflammatory response and random transgene expression, in addition to other safety issues, limit its use at the clinical level. The use of stem cell therapy alone also has many shortcomings. To overcome these inadequacies, many scientists and clinicians are investigating new gene and stem cell therapies.

  9. Comparative studies of different cryopreservation methods for mesenchymal stem cells derived from human fetal liver.

    Science.gov (United States)

    Todorov, Plamen; Hristova, Elena; Konakchieva, Rossitza; Michova, Antoaneta; Dimitrov, Josif

    2010-03-29

    Fetal stem cells possess some intriguing characteristics, which delineate them as promising cellular therapeutics. They are less immunogenic, at lower stage of differentiation and have higher potential for repopulation and migration. Furthermore, the fetal stem cells secrete a set of cytokines and growth factors, which stimulate the regeneration of the recipient tissue. The present study indicated that the adhesive fraction of human fetal liver cells possessed the morphological characteristics of mesenchymal stem cells, as well as potential to differentiate into adipocyte and osteoblast lineages. The immunophenotypic analysis showed that the cells expressed CD13, CD73, CD90 and CD105 (typical for mesenchymal stem cells) and lacked the haematopoietic lineage markers CD34 and CD45. Addressing the issue of the low-temperature storage of the human fetal liver cells, four different methods for cryopreservation were assessed: conventional slow freezing, program freezing and two vitrification protocols. The obtained results demonstrated that the cells were cryotolerant and maintained their properties and differentiation potential after thawing. Program freezing showed to be the most efficient method for cryopreservation of the investigated cells.

  10. Effects of salinomycin on human bone marrow-derived mesenchymal stem cells in vitro.

    Science.gov (United States)

    Scherzed, A; Hackenberg, S; Froelich, K; Rak, K; Technau, A; Radeloff, A; Nöth, U; Koehler, C; Hagen, R; Kleinsasser, N

    2013-04-26

    Various hypotheses on the origin of cancer stem cells (CSCs) exist, including that CSCs develop from transformed human bone marrow mesenchymal stem cells (hBMSC). Since the polyether antibiotic salinomycin selectively kills CSCs, the present study aims to elucidate the effects of salinomycin on normal hBMSC. The immunophenotype of hBMSC after salinomycin exposure was observed by flow cytometry. The multi-differentiation capacity of hBMSC was evaluated by Oil Red O and van Kossa staining. Cytotoxic effects of salinomycin were monitored by the [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] (MTT) assay. Furthermore, spheroid formation and migration capacity were assessed. There were no differences in the immunophenotype and multi-differentiation capacity of hBMSC induced by salinomycin treatment. Cytotoxic effects were observed at concentrations of 30 μM and above. Neither the migration capability nor the ability to form spheroids was affected. Essential functional properties of hBMSC were unaffected by salinomycin. However, dose-dependent cytotoxicity effects could be observed. Overall, low dose salinomycin showed no negative effects on hBMSC. Since mesenchymal stem cells from various sources respond differently, further in vitro studies are needed to clarify the effect of salinomycin on tissue-specific stem cells.

  11. Mesenchymal stem cell adhesion but not plasticity is affected by high substrate stiffness

    Directory of Open Access Journals (Sweden)

    Janice Kal Van Tam, Koichiro Uto, Mitsuhiro Ebara, Stefania Pagliari, Giancarlo Forte and Takao Aoyagi

    2012-01-01

    Full Text Available The acknowledged ability of synthetic materials to induce cell-specific responses regardless of biological supplies provides tissue engineers with the opportunity to find the appropriate materials and conditions to prepare tissue-targeted scaffolds. Stem and mature cells have been shown to acquire distinct morphologies in vitro and to modify their phenotype when grown on synthetic materials with tunable mechanical properties. The stiffness of the substrate used for cell culture is likely to provide cells with mechanical cues mimicking given physiological or pathological conditions, thus affecting the biological properties of cells. The sensitivity of cells to substrate composition and mechanical properties resides in multiprotein complexes called focal adhesions, whose dynamic modification leads to cytoskeleton remodeling and changes in gene expression. In this study, the remodeling of focal adhesions in human mesenchymal stem cells in response to substrate stiffness was followed in the first phases of cell–matrix interaction, using poly-ε-caprolactone planar films with similar chemical composition and different elasticity. As compared to mature dermal fibroblasts, mesenchymal stem cells showed a specific response to substrate stiffness, in terms of adhesion, as a result of differential focal adhesion assembly, while their multipotency as a bulk was not significantly affected by matrix compliance. Given the sensitivity of stem cells to matrix mechanics, the mechanobiology of such cells requires further investigations before preparing tissue-specific scaffolds.

  12. VEGF-expressing human umbilical cord mesenchymal stem cells, an improved therapy strategy for Parkinson's disease.

    Science.gov (United States)

    Xiong, N; Zhang, Z; Huang, J; Chen, C; Zhang, Z; Jia, M; Xiong, J; Liu, X; Wang, F; Cao, X; Liang, Z; Sun, S; Lin, Z; Wang, T

    2011-04-01

    The umbilical cord provides a rich source of primitive mesenchymal stem cells (human umbilical cord mesenchymal stem cells (HUMSCs)), which have the potential for transplantation-based treatments of Parkinson's Disease (PD). Our pervious study indicated that adenovirus-associated virus-mediated intrastriatal delivery of human vascular endothelial growth factor 165 (VEGF 165) conferred molecular protection to the dopaminergic system. As both VEGF and HUMSCs displayed limited neuroprotection, in this study we investigated whether HUMSCs combined with VEGF expression could offer enhanced neuroprotection. HUMSCs were modified by adenovirus-mediated VEGF gene transfer, and subsequently transplanted into rotenone-lesioned striatum of hemiparkinsonian rats. As a result, HUMSCs differentiated into dopaminergic neuron-like cells on the basis of neuron-specific enolase (NSE) (neuronal marker), glial fibrillary acidic protein (GFAP) (astrocyte marker), nestin (neural stem cell marker) and tyrosine hydroxylase (TH) (dopaminergic marker) expression. Further, VEGF expression significantly enhanced the dopaminergic differentiation of HUMSCs in vivo. HUMSC transplantation ameliorated apomorphine-evoked rotations and reduced the loss of dopaminergic neurons in the lesioned substantia nigra (SNc), which was enhanced significantly by VEGF expression in HUMSCs. These findings present the suitability of HUMSC as a vector for gene therapy and suggest that stem cell engineering with VEGF may improve the transplantation strategy for the treatment of PD.

  13. Human embryonic stem cell derived mesenchymal progenitors express cardiac markers but do not form contractile cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Christophe M Raynaud

    Full Text Available Mesenchymal progenitors or stromal cells have shown promise as a therapeutic strategy for a range of diseases including heart failure. In this context, we explored the growth and differentiation potential of mesenchymal progenitors (MPs derived in vitro from human embryonic stem cells (hESCs. Similar to MPs isolated from bone marrow, hESC derived MPs (hESC-MPs efficiently differentiated into archetypical mesenchymal derivatives such as chondrocytes and adipocytes. Upon treatment with 5-Azacytidine or TGF-β1, hESC-MPs modified their morphology and up-regulated expression of key cardiac transcription factors such as NKX2-5, MEF2C, HAND2 and MYOCD. Nevertheless, NKX2-5+ hESC-MP derivatives did not form contractile cardiomyocytes, raising questions concerning the suitability of these cells as a platform for cardiomyocyte replacement therapy. Gene profiling experiments revealed that, although hESC-MP derived cells expressed a suite of cardiac related genes, they lacked the complete repertoire of genes associated with bona fide cardiomyocytes. Our results suggest that whilst agents such as TGF-β1 and 5-Azacytidine can induce expression of cardiac related genes, but treated cells retain a mesenchymal like phenotype.

  14. Mesenchymal stem cells as an appropriate feeder layer for prolonged in vitro culture of human induced pluripotent stem cells.

    Science.gov (United States)

    Havasi, Parvaneh; Nabioni, Mohammad; Soleimani, Masoud; Bakhshandeh, Behnaz; Parivar, Kazem

    2013-04-01

    Feeder layers have been applied extensively to support the growth and stemness potential of stem cells for in vitro cultures. Mouse embryonic fibroblast and mouse fibroblast cell line (SNL) are common feeder cells for human induced pluripotent stem cells (hiPSCs) culture. Because of some problems in the use of these animal feeders and in order to simplify the therapeutic application of hiPSCs, we tested human adult bone marrow mesenchymal stem cells (hMSCs) as a potent feeder system. This method benefits from prevention of possible contamination of animal origin feeder systems. hiPSCs transferred onto mitotically inactivated hMSCs and passaged every 5 days. Prior to this culture, MSCs were characterized by flow cytometry of their surface markers and evaluation of their osteogenic and adipogenic differentiation potentials. The morphology, expressions of some specific pluripotency markers such as SSEA-3, NANOG and TRA-1-60, alkaline phosphates activity, formation embryoid bodies and their differentiation potentials of iPSCs on SNL and MSC feeder layers were evaluated. To investigate the prolonged maintenance of pluripotency, the quantitative transcriptions of some pluripotency markers including OCT4, SOX2, NANOG and REX1 were compared in the iPS clones on SNL or MSC feeders. Human iPSCs cultured on human MSCs feeder were slightly thinner and flatter than ones on the other feeder system. Interestingly MSCs supported the prolonged in vitro proliferation of hiPSCs along with maintenance of their pluripotency. Altogether our results suggest human mesenchymal stem cells as an appropriate feeder layer for human iPSCs culture for clinical applications and cell therapy.

  15. Guiding osteogenesis of mesenchymal stem cells using carbon-based nanomaterials

    Science.gov (United States)

    Kang, Ee-Seul; Kim, Da-Seul; Suhito, Intan Rosalina; Choo, Sung-Sik; Kim, Seung-Jae; Song, Inbeom; Kim, Tae-Hyung

    2017-01-01

    In the field of regenerative medicine, stem cells are highly promising due to their innate ability to generate multiple types of cells that could replace/repair damaged parts of human organs and tissues. It has been reported that both in vitro and in vivo function/survival of stem cells could significantly be improved by utilizing functional materials such as biodegradable polymers, metal composites, nanopatterns and nanohybrid particles. Of various biocompatible materials available for use in stem cell-based therapy and research, carbon-based materials—including fullerenes graphene/graphene oxide and carbon nanotubes—have been found to possess unique physicochemical characteristics that contribute to the effective guidance of stem cell differentiation into specific lineages. In this review, we discuss a number of previous reports that investigated the use of carbon-based materials to control stem cell behavior, with a particular focus on their immense potential to guide the osteogenesis of mesenchymal stem cells (MSCs). We hope that this review will provide information on the full potential of using various carbon-based materials in stem cell-mediated regenerative therapy, particularly for bone regeneration and repair.

  16. Effect of fatty acids on human bone marrow mesenchymal stem cell energy metabolism and survival.

    Science.gov (United States)

    Fillmore, Natasha; Huqi, Alda; Jaswal, Jagdip S; Mori, Jun; Paulin, Roxane; Haromy, Alois; Onay-Besikci, Arzu; Ionescu, Lavinia; Thébaud, Bernard; Michelakis, Evangelos; Lopaschuk, Gary D

    2015-01-01

    Successful stem cell therapy requires the optimal proliferation, engraftment, and differentiation of stem cells into the desired cell lineage of tissues. However, stem cell therapy clinical trials to date have had limited success, suggesting that a better understanding of stem cell biology is needed. This includes a better understanding of stem cell energy metabolism because of the importance of energy metabolism in stem cell proliferation and differentiation. We report here the first direct evidence that human bone marrow mesenchymal stem cell (BMMSC) energy metabolism is highly glycolytic with low rates of mitochondrial oxidative metabolism. The contribution of glycolysis to ATP production is greater than 97% in undifferentiated BMMSCs, while glucose and fatty acid oxidation combined only contribute 3% of ATP production. We also assessed the effect of physiological levels of fatty acids on human BMMSC survival and energy metabolism. We found that the saturated fatty acid palmitate induces BMMSC apoptosis and decreases proliferation, an effect prevented by the unsaturated fatty acid oleate. Interestingly, chronic exposure of human BMMSCs to physiological levels of palmitate (for 24 hr) reduces palmitate oxidation rates. This decrease in palmitate oxidation is prevented by chronic exposure of the BMMSCs to oleate. These results suggest that reducing saturated fatty acid oxidation can decrease human BMMSC proliferation and cause cell death. These results also suggest that saturated fatty acids may be involved in the long-term impairment of BMMSC survival in vivo.

  17. Hepatic Stellate Cells Support Hematopoiesis and are Liver-Resident Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Claus Kordes

    2013-02-01

    Full Text Available Background/Aims: Hematopoiesis can occur in the liver, when the bone marrow fails to provide an adequate environment for hematopoietic stem cells. Hepatic stellate cells possess characteristics of stem/progenitor cells, but their contribution to hematopoiesis is not known thus far. Methods: Isolated hepatic stellate cells from rats were characterized with respect to molecular markers of bone marrow mesenchymal stem cells (MSC and treated with adipocyte or osteocyte differentiation media. Stellate cells of rats were further co-cultured with murine stem cell antigen-1+ hematopoietic stem cells selected by magnetic cell sorting. The expression of murine hematopoietic stem cell markers was analyzed by mouse specific quantitative PCR during co-culture. Hepatic stellate cells from eGFP+ rats were transplanted into lethally irradiated wild type rats. Results: Desmin-expressing stellate cells were associated with hematopoietic sites in the fetal rat liver. Hepatic stellate cells expressed MSC markers and were able to differentiate into adipocytes and osteocytes in vitro. Stellate cells supported hematopoietic stem/progenitor cells during co-culture similar to bone marrow MSC, but failed to differentiate into blood cell lineages after transplantation. Conclusion: Hepatic stellate cells are liver-resident MSC and can fulfill typical functions of bone marrow MSC such as the differentiation into adipocytes or osteocytes and support of hematopoiesis.

  18. Solid lipid nanoparticles regulate functional assortment of mouse mesenchymal stem cells.

    Science.gov (United States)

    Chabra, S; Ranjan, M; Bhandari, R; Kaur, T; Aggrawal, M; Puri, V; Mahajan, N; Kaur, I P; Puri, S; Sobti, R C

    2011-01-01

    A rapid decline in self-renewability, viability and function, of isolated stem cells are major hurdles in developing cell based therapies. There has been an increasing interest towards identifying a support material for maintaining stem cell features of the isolated cells. Pioneering observations of the present paper, demonstrate functionally diverse potential of Solid Lipid Nanoparticles (SLNs) in deciding the fate & behavior of mouse mesenchymal stem cell. The evidences are provided to show the dual nature of the SLNs for being a scaffold for the stem cell attachment, to retain stemness, and as reagent for inducing stem cell differentiation. Scanning electron microscopic examinations together with expression analysis were used to conform to such observations. Results of the study thus suggest that Solid lipid nanoparticles can be used as a good support material when functionalized to achieve adhesive properties and as a molecular paradigm for studying the adipocytic differentiation. We envisage a new role of SLNs towards regulating stem cell character by orchestrating the structural alignment during preparation of Solid lipid nanoparticles.

  19. Cross-talk between cancer and mesenchymal stem cells through extracellular vesicles carrying nucleic acids.

    Directory of Open Access Journals (Sweden)

    Tatiana eLopatina

    2016-05-01

    Full Text Available Extracellular vesicles (EVs are considered to be a novel complex mechanism of cell communication within the tumor microenvironment. EVs may act as vehicles for transcription factors and nucleic acids inducing epigenetic changes in recipient cells. Since tumor EVs may be present in patient biological fluids, it is important to investigate their function and molecular mechanisms of action. It has been shown that tumor cells release EVs, which are capable in regulating cell apoptosis, proliferation, invasion, epithelial-mesenchymal transition, as well as, to suppress activity of immune cells, to enhance angiogenesis, and to prepare a favorable microenvironment for metastasis. On the other hand EVs derived from stromal cells, such as mesenchymal stem cells, may influence the phenotype of tumor cells through reciprocal crosstalk greatly influenced by the transcription factors and nucleic acids they carry. In particular, non-coding RNAs (ncRNA, including microRNAs and long ncRNA RNAs, have recently been identified as the main candidates for the phenotypic changes induced in the recipient cells by EVs. Non-coding RNAs, which are important regulators of mRNA and protein expression, can function either as tumor suppressors or as oncogenes, depending on their targets. Herein, we have attempted to revise actual evidence reported in the literature on the role of EVs in tumor biology with particular regards to the crosstalk of ncRNAs between cancer cells and mesenchymal stem cells.

  20. Synergistic actions of hematopoietic and mesenchymal stem/progenitor cells in vascularizing bioengineered tissues.

    Directory of Open Access Journals (Sweden)

    Eduardo K Moioli

    Full Text Available Poor angiogenesis is a major road block for tissue repair. The regeneration of virtually all tissues is limited by angiogenesis, given the diffusion of nutrients, oxygen, and waste products is limited to a few hundred micrometers. We postulated that co-transplantation of hematopoietic and mesenchymal stem/progenitor cells improves angiogenesis of tissue repair and hence the outcome of regeneration. In this study, we tested this hypothesis by using bone as a model whose regeneration is impaired unless it is vascularized. Hematopoietic stem/progenitor cells (HSCs and mesenchymal stem/progenitor cells (MSCs were isolated from each of three healthy human bone marrow samples and reconstituted in a porous scaffold. MSCs were seeded in micropores of 3D calcium phosphate (CP scaffolds, followed by infusion of gel-suspended CD34(+ hematopoietic cells. Co-transplantation of CD34(+ HSCs and CD34(- MSCs in microporous CP scaffolds subcutaneously in the dorsum of immunocompromised mice yielded vascularized tissue. The average vascular number of co-transplanted CD34(+ and MSC scaffolds was substantially greater than MSC transplantation alone. Human osteocalcin was expressed in the micropores of CP scaffolds and was significantly increased upon co-transplantation of MSCs and CD34(+ cells. Human nuclear staining revealed the engraftment of transplanted human cells in vascular endothelium upon co-transplantation of MSCs and CD34(+ cells. Based on additional in vitro results of endothelial differentiation of CD34(+ cells by vascular endothelial growth factor (VEGF, we adsorbed VEGF with co-transplanted CD34(+ and MSCs in the microporous CP scaffolds in vivo, and discovered that vascular number and diameter further increased, likely owing to the promotion of endothelial differentiation of CD34(+ cells by VEGF. Together, co-transplantation of hematopoietic and mesenchymal stem/progenitor cells may improve the regeneration of vascular dependent tissues such as bone

  1. Trehalose preincubation increases mesenchymal (CD271+ stem cells post-cryopreservation viability

    Directory of Open Access Journals (Sweden)

    Indra Kusuma

    2016-10-01

    Full Text Available Background: Dimethyl sulfoxide (Me2SO is a common cryoprotective agent widely used in cell preservation system. Me2SO is currently known to cause epigenetic changes which are  critical in stem cells development and cellular differentiation. Therefore, it is imperative to develop cryopreservation techniques that protect cellular functions and avert Me2SO adverse effect. Trehalose was able to protect organism in extreme condition such as dehydration and cold. This study aimed to verify the protective effect of trehalose preincubation procedure in cryopreservation.Methods: The study was conducted using experimental design. Thawed mesenchymal (CD271+ stem cells from YARSI biorepository were used for the experiment. Trehalose preincubation was performed for 1 hour, internalized trehalose was confirmed by FTIR-ATR measurement. Three groups consisted of (1 cryopreserved without trehalose preincubation, (2 cryopreserved with trehalose preincubation, and (3 did not undergo cryopreservation were evaluated after 24 hours in LN2 for viability in culture. The absorbance from each group was measured at 450 nm. The analysis performed using paired student t test.Results: Viability of thawed mesenchymal (CD271+ stem cells that undergo trehalose preincubation prior cryopreservation was significantly higher (p<0.05 compared to group without trehalose preincubation. Higher viability observed between group with trehalose preincubation compared with controlled group suggests protection to trypsinization. Mesenchymal (CD271+ stem cells incubated for 1 hour in 100 mM trehalose supplemented medium  results in 15%  trehalose loading efficiency.Conclusion: These findings confirm the protective effect of trehalose preincubation in cryopreservation. Future research should be directed to elucidate the trehalose internalization mechanism and eventually the protective mechanism of trehalose in mammalian cell cryopreservation.

  2. Optimization and Comparison of the PolyFect Gene Delivery Method in Three Different Kinds of Mesenchymal Stem Cell Types

    Directory of Open Access Journals (Sweden)

    Pezhman Fard-Esfahani

    2010-01-01

    Full Text Available Objective: The aim of this study was optimization of the PolyFect gene delivery methodof pcDNA3.1 expression vector transfected with the mouse pdx-1 gene in three differentkinds of mesenchymal stem cells and Hepa cells as well as comparison of transfectionefficiency leading to expression of the mentioned gene in the cell types used.Materials and Methods: Rat bone marrow-derived mesenchymal stem cells, C57 mousebone marrow-derived mesenchymal stem cells, human synovium derived mesenchymalstem cells and Hepa cells were used in this study. After culturing of the mentioned cells,mouse pdx-1 gene were transfected into them using the Qiagen PolyFect kit. 72 hourslater, the cells were treated with anti-mouse Pdx-1 antibody and immunocytochemicallyanalyzed using a fluorescent inverted microscope. Transfection conditions were optimizedin each of these cells by changing different lipofection parameters such as DNAconcentration, PolyFect reagent concentration and cell density.Results: The results demonstrated that for transfection of these cells, the best concentrationsof DNA and PolyFect reagent are 400 ng/μL and 6000 ng/μL respectively. For maximumtransfection efficiency, the best cell density in 12-well plates was 105 cells in Hepacells, 1.3×105 cells in rat bone marrow-derived mesenchymal stem cells, 1.5×105 cells inhuman synovium-derived mesenchymal stem cells and 105 cells in C57 mouse bone marrow-derived mesenchymal stem cells. Under the mentioned optimized conditions, the maximumefficiency of transfection was determined to be 50% for Hepa cells, 40% for rat bonemarrow-derived mesenchymal stem cells, 21% for human synovium-derived mesenchymalstem cells and 10% for C57 mouse bone marrow-derived mesenchymal stem cells.Conclusion: These findings implicate that the most important factor extremely influencingtransfection efficiency in mesenchymal stem cells is the cell derivation origin. Resultsof this study can be used in basic and clinical studies

  3. Differentiation and tumorigenicity of neural stem cells from human cord blood mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    Jing Xiang; Changming Wang; Jingzhou Wang

    2009-01-01

    BACKGROUND:Mesenchymal stem cells (MSCs) are capable of differentiating into a variety of tissues and exhibit low immunogenicity.OBJECTIVE:To investigate isolation and in vitro cultivation methods of human cord blood MSCs,to observe expression of neural stem cell (NSC) marker mRNA under induction,and to detect tumorigenicity in animals.DESIGN,TIME AND SETTING:A cell biological,in vitro trial and a randomized,controlled,in vivo experiment were performed at the Department of Neurology,Daping Hospital at the Third Military Medical University of Chinese PLA from August 2006 to May 2008.MATERIALS:Umbilical cord blood was collected from full-term-delivery fetus at the Department of Gynecology and Obstetrics of DapJng Hospital,China.Eighteen BALB/C nu/nu nude mice were randomly assigned to three groups:back subcutaneous,cervical subcutaneous,and control,with 6 mice in each group.METHODS:Monocytes were isolated from heparinized human cord blood samples by density gradient centrifugation and then adherent cultivated in vitro to obtain MSC clones.After the cord blood MSCs were cultured for 7 days with nerve growth factor and retinoic acid to induce differentiation into NSCs,the cells (adjusted density of 1×10~7/mL) were prepared into cell suspension.In the back subcutaneous and cervical subcutaneous groups,nude mice were hypodermically injected with a 0.5-mL cell suspension into the back and cervical regions,respectively.In the control group,nude mice received a subcutaneous injection of 0.5 mL physiological saline into the back or cervical regions,respectively.MAIN OUTCOME MEASURES:Cellular morphology was observed by inverted microscopy,cultured cord blood MSCs were examined by flow cytometry,expression of nestin and musashi-1 mRNA was detected by reverse-transcriptase polymerase chain reaction prior to and after induction,and tumorigenicity following cord blood MSC transplantation was assayed by hematoxylin-eosin staining.RESULTS:Following adherent cultivation

  4. Comparative Analysis of Human Mesenchymal Stem Cells from Bone Marrow, Adipose Tissue, and Umbilical Cord Blood as Sources of Cell Therapy

    Directory of Open Access Journals (Sweden)

    Yoon Sun Yang

    2013-09-01

    Full Text Available Various source-derived mesenchymal stem cells (MSCs have been considered for cell therapeutics in incurable diseases. To characterize MSCs from different sources, we compared human bone marrow (BM, adipose tissue (AT, and umbilical cord blood-derived MSCs (UCB-MSCs for surface antigen expression, differentiation ability, proliferation capacity, clonality, tolerance for aging, and paracrine activity. Although MSCs from different tissues have similar levels of surface antigen expression, immunosuppressive activity, and differentiation ability, UCB-MSCs had the highest rate of cell proliferation and clonality, and significantly lower expression of p53, p21, and p16, well known markers of senescence. Since paracrine action is the main action of MSCs, we examined the anti-inflammatory activity of each MSC under lipopolysaccharide (LPS-induced inflammation. Co-culture of UCB-MSCs with LPS-treated rat alveolar macrophage, reduced expression of inflammatory cytokines including interleukin-1α (IL-1α, IL-6, and IL-8 via angiopoietin-1 (Ang-1. Using recombinant Ang-1 as potential soluble paracrine factor or its small interference RNA (siRNA, we found that Ang-1 secretion was responsible for this beneficial effect in part by preventing inflammation. Our results demonstrate that primitive UCB-MSCs have biological advantages in comparison to adult sources, making UCB-MSCs a useful model for clinical applications of cell therapy.

  5. No Identical “Mesenchymal Stem Cells” at Different Times and Sites: Human Committed Progenitors of Distinct Origin and Differentiation Potential Are Incorporated as Adventitial Cells in Microvessels

    Directory of Open Access Journals (Sweden)

    Benedetto Sacchetti

    2016-06-01

    Full Text Available A widely shared view reads that mesenchymal stem/stromal cells (“MSCs” are ubiquitous in human connective tissues, can be defined by a common in vitro phenotype, share a skeletogenic potential as assessed by in vitro differentiation assays, and coincide with ubiquitous pericytes. Using stringent in vivo differentiation assays and transcriptome analysis, we show that human cell populations from different anatomical sources, regarded as “MSCs” based on these criteria and assumptions, actually differ widely in their transcriptomic signature and in vivo differentiation potential. In contrast, they share the capacity to guide the assembly of functional microvessels in vivo, regardless of their anatomical source, or in situ identity as perivascular or circulating cells. This analysis reveals that muscle pericytes, which are not spontaneously osteochondrogenic as previously claimed, may indeed coincide with an ectopic perivascular subset of committed myogenic cells similar to satellite cells. Cord blood-derived stromal cells, on the other hand, display the unique capacity to form cartilage in vivo spontaneously, in addition to an assayable osteogenic capacity. These data suggest the need to revise current misconceptions on the origin and function of so-called “MSCs,” with important applicative implications. The data also support the view that rather than a uniform class of “MSCs,” different mesoderm derivatives include distinct classes of tissue-specific committed progenitors, possibly of different developmental origin.

  6. Research progress of SDF-1/CXCR-4 pathway in mesenchymal stem cell homing after myocardial infarction

    Directory of Open Access Journals (Sweden)

    Qiang MA

    2016-06-01

    Full Text Available Mesenchymal stem cells (MSCs, for their potential of differentiation into cardiomyocytes and easy acquisition, have been used in repair of myocardium tissue and improvement of heart functions after myocardial infarction. However, a vexed problem is the low homing rate of MSCs no matter what delivery methods (including intravenous, intracoronary or endocardial delivery are used. SDF-1/CXCR-4 signal pathway plays an important role in variety of stem cell homing, and has been employed to enhance the function of SDF-1/CXCR-4 signal pathway for improving the efficiency of stem cell homing. The present paper has reviewed the methods used recent years to enhance the function of SDF-1/CXCR-4 signal pathway and the mechanism of the signal pathway in MSCs homing. DOI: 10.11855/j.issn.0577-7402.2016.05.14

  7. Isolation and Culture of Rabbit Marrow-derived Mesenchymal Stem Cells

    Institute of Scientific and Technical Information of China (English)

    Ai-Ming ZHANG; Lin CAI

    2005-01-01

    @@ 1 Introduction Repair of tissues like bone, cartilage, muscle,etc., is a tough problem in clinical treatment. The recent research show that there are plenty of mesenchymal stem cells (MSCs) in myeloid tissue besides hemopoietic stem cells(HSCs). Just as the pluripotential hemopoietic stem cell can give bone marrow tissue excellent hemopoietic ability and maintain the metabolism of, MSCs can give potential repair ability to bone, cartilage tissue injury[1] . But compared with the HSCs, the content of MSCs in myeloid tissue are not abundant. We separated and purified the MSCs from myeloid tissue through in vitro cell culture,and studied the proliferation and growth characteristics under in vitro culture conditions, providing experimental foundations for further research on repair epiphyseal plate cartilage defect through MSCs tissue engineering.

  8. An update of human mesenchymal stem cell biology and their clinical uses

    DEFF Research Database (Denmark)

    Zaher, Walid; Harkness, Linda; Kermani, Abbas Jafari

    2014-01-01

    and in vivo. Consequently, stromal (mesenchymal) stem cells (MSCs) are being introduced into many clinical trials due to their ease of isolation and efficacy in treating a number of disease conditions in animal preclinical disease models. The aim of this review is to revise MSC biology, their potential......In the past decade, an increasing urge to develop new and novel methods for the treatment of degenerative diseases where there is currently no effective therapy has lead to the emerging of the cell therapy or cellular therapeutics approach for the management of those conditions where organ...... functions are restored through transplantation of healthy and functional cells. Stem cells, because of their nature, are currently considered among the most suitable cell types for cell therapy. There are an increasing number of studies that have tested the stromal stem cell functionality both in vitro...

  9. Differentiation of adult human bone marrow mesenchymal stem cells into Schwann-like cells in vitro

    Institute of Scientific and Technical Information of China (English)

    YANG Li-ye; ZHENG Jia-kun; WANG Chao-yang; LI Wen-yu

    2005-01-01

    Objective: To investigate the differentiative capability of adult human bone marrow mesenchymal stem cells (BMSCs) into Schwann-like cells. Methods: Bone marrows were aspirated from healthy donors and mononuclear cells were separated by Percoll lymphocytes separation liquid (1.073 g/ml) with centrifugation, cells were cultured in DMEM/F12 (1:1) medium containing 10% fetal bovine serum (FBS), 20 ng/ml epidermal growth factor (EGF) and 20 ng/ml basic fibroblast growth factor (bFGF). Cells of passage 1 were identified with immunocytochemistry. Conclusions: Bone marrow contains the stem cells with the ability of differentiating into Schwann-like cells, which may represent an alternative stem cell sources for neural transplantation.

  10. Potential use of mesenchymal stem cells in human meniscal repair: current insights

    Science.gov (United States)

    Pak, Jaewoo; Lee, Jung Hun; Park, Kwang Seung; Jeon, Jeong Ho; Lee, Sang Hee

    2017-01-01

    The menisci of the human knee play an important role in maintaining normal functions to provide stability and nutrition to the articular cartilage, and to absorb shock. Once injured, these important structures have very limited natural healing potential. Unfortunately, the traditional arthroscopic meniscectomy performed on these damaged menisci may predispose the joint toward early development of osteoarthritis. Although a very limited number of studies are available, mesenchymal stem cells (MSCs) have been investigated as an alternative therapeutic modality to repair human knee meniscal tears. This review summarizes the results of published applications of MSCs in human patients, which showed that the patients who received MSCs (autologous adipose tissue-derived stem cells or culture-expanded bone marrow-derived stem cells) presented symptomatic improvements, along with magnetic resonance imaging evidences of the meniscal repair. PMID:28356779

  11. Adipose-derived mesenchymal stem cell transplantation promotes adult neurogenesis in the brains of Alzheimer’s disease mice

    Institute of Scientific and Technical Information of China (English)

    Yufang Yan; Tuo Ma; Kai Gong; Qiang Ao; Xiufang Zhang; Yandao Gong

    2014-01-01

    In the present study, we transplanted adipose-derived mesenchymal stem cells into the hippo-campi of APP/PS1 transgenic Alzheimer’s disease model mice. Immunofluorescence staining revealed that the number of newly generated (BrdU+) cells in the subgranular zone of the dentate gyrus in the hippocampus was signiifcantly higher in Alzheimer’s disease mice after adipose-de-rived mesenchymal stem cell transplantation, and there was also a significant increase in the number of BrdU+/DCX+neuroblasts in these animals. Adipose-derived mesenchymal stem cell transplantation enhanced neurogenic activity in the subventricular zone as well. Furthermore, adipose-derived mesenchymal stem cell transplantation reduced oxidative stress and alleviated cognitive impairment in the mice. Based on these ifndings, we propose that adipose-derived mes-enchymal stem cell transplantation enhances endogenous neurogenesis in both the subgranular and subventricular zones in APP/PS1 transgenic Alzheimer’s disease mice, thereby facilitating functional recovery.

  12. Neuronal-like cell differentiation of non-adherent bone marrow cell-derived mesenchymal stem cells*

    Institute of Scientific and Technical Information of China (English)

    Yuxin Wu; Jinghan Zhang; Xiaoming Ben

    2013-01-01

    Non-adherent bone marrow cel-derived mesenchymal stem cel s from C57BL/6J mice were sepa-rated and cultured using the “pour-off” method. Non-adherent bone marrow cel-derived mesen-chymal stem cel s developed colony-forming unit-fibroblasts, and could be expanded by supple-mentation with epidermal growth factor. Immunocytochemistry showed that the non-adherent bone marrow cel-derived mesenchymal stem cel s exposed to basic fibroblast growth factor/epidermal growth factor/nerve growth factor expressed the neuron specific markers, neurofilament-200 and NeuN, in vitro. Non-adherent bone marrow cel-derived mesenchymal stem cel s fromβ-galactosidase transgenic mice were also transplanted into focal ischemic brain (right corpus striatum) of C57BL/6J mice. At 8 weeks, cel s positive for LacZ andβ-galactosidase staining were observed in the ischemic tissues, and cel s co-labeled with both β-galactosidase and NeuN were seen by double immunohistochemical staining. These findings suggest that the non-adherent bone marrow cel-derived mesenchymal stem cel s could differentiate into neuronal-like cel s in vitro and in vivo.

  13. Liver-specific gene expression in mesenchymal stem cells is induced by liver cells

    Institute of Scientific and Technical Information of China (English)

    Claudia Lange; Philipp Bassler; Michael V. Lioznov; Helge Bruns; Dietrich Kluth; Axel R. Zander; Henning C. Fiegel

    2005-01-01

    AIM: The origin of putative liver cells from distinct bone marrow stem cells, e.g. hematopoietic stem cells or multipotent adult progenitor cells was found in recent in vitro studies. Cell culture experiments revealed a key role of growth factors for the induction of liver-specific genes in stem cell cultures. We investigated the potential of rat mesenchymal stem cells (MSC) from bone marrow to differentiate into hepatocytic cells in vitro. Furthermore,we assessed the influence of cocultured liver cells on induction of liver-specific gene expression.METHODS: Mesenchymal stem cells were marked with green fluorescent protein (GFP) by retroviral gene transduction. Clonal marked MSC were either cultured under liver stimulating conditions using fibronectin-coated culture dishes and medium supplemented with SCF, HGF,EGF, and FGF-4 alone, or in presence of freshly isolated rat liver cells. Cells in cocultures were harvested and GFP+ or GFP- cells were separated using fluorescence activated cell sorting. RT-PCR analysis for the stem cell marker Thy1 and the hepatocytic markers CK-18, albumin, CK-19,and AFP was performed in the different cell populations.RESULTS: Under the specified culture conditions, rat MSC cocultured with liver cells expressed albumin-, CK-18,CK-19, and AFP-RNA over 3 weeks, whereas MSC cultured alone did not show liver specific gene expression.CONCLUSION: The results indicate that (1) rat MSC from bone marrow can differentiate towards hepatocytic lineage in vitro, and (2) that the microenvironment plays a decisive role for the induction of hepatic differentiation of rMSC.

  14. Microenvironmental considerations in the application of human mesenchymal stem cells in regenerative therapies

    Directory of Open Access Journals (Sweden)

    Steven J Greco

    2008-10-01

    Full Text Available Steven J Greco1, Pranela Rameshwar21Graduate School of Biomedical Sciences; 2Department of Medicine, Division of Hematology/Oncology, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, NJ, USAAbstract: The therapeutic utilization of stem cells has been ongoing for several decades, principally in the form of bone marrow (BM transplants to treat various hematological disorders and other immune-related diseases. More recently, stem cells have been examined as a potential therapy for a multitude of other diseases and disorders, many of which are currently untreatable. One consideration that poses a formidable task for the successful clinical application of stem cells in new disease models is the impact of the host tissue microenvironment on the desired therapeutic outcome. In vitro, stem cells exist in surroundings directly controllable by the researcher to produce the desired cellular behavior. In vivo, the transplanted cells are exposed to a dynamic host microenvironment laden with soluble mediators and immunoreactive cells. In this review, we focus on the possible contribution by microenvironmental factors, and how these influences can be overcome in therapies utilizing mesenchymal stem cells (MSCs, such as for graft versus host disease, multiple sclerosis and ischemia among others. Specifically, we examine three ubiquitous microenvironmental factors, IL-1α/β, TNFα, and SDF-1α, and consider how inhibitors and receptor antagonists to these molecules could be applied to increase the efficacy of MSC therapies while minimizing unforeseen harm to the patient.Keywords: cytokine, microenvironment, mesenchymal stem cells, bone marrow

  15. Characteristics of human amniotic fluid mesenchymal stem cells and their tropism to human ovarian cancer.

    Directory of Open Access Journals (Sweden)

    Liru Li

    Full Text Available The mesenchymal stem cells (MSCs derived from amniotic fluid (AF have become an attractive stem cells source for cell-based therapy because they can be harvested at low cost and avoid ethical disputes. In human research, stem cells derived from AF gradually became a hot research direction for disease treatment, specifically for their plasticity, their reduced immunogenicity and their tumor tropism regardless of the tumor size, location and source. Our work aimed to obtain and characterize human amniotic fluid mesenchymal stem cells (AFMSCs and detect their ovarian cancer tropsim in nude mice model. Ten milliliters of twenty independent amniotic fluid samples were collected from 16-20 week pregnant women who underwent amniocentesis for fetal genetic determination in routine prenatal diagnosis in the first affiliated hospital of Harbin medical university. We successfully isolated the AFMSCs from thirteen of twenty amniotic fluid samples. AFMSCs presented a fibroblastic-like morphology during the culture. Flow cytometry analyses showed that the cells were positive for specific stem cell markers CD73,CD90, CD105, CD166 and HLA-ABC (MHC class I, but negative for CD 45,CD40, CD34, CD14 and HLA-DR (MHC class II. RT-PCR results showed that the AFMSCs expressed stem cell marker OCT4. AFMSCs could differentiate into bone cells, fat cells and chondrocytes under certain conditions. AFMSCs had the high motility to migrate to ovarian cancer site but didn't have the tumorigenicity. This study enhances the possibility of AFMSCs as drug carrier in human cell-based therapy. Meanwhile, the research emphasis in the future can also put in targeting therapy of ovarian cancer.

  16. Hepatic differentiation of embryonic stem cells by murine fetal liver mesenchymal cells.

    Science.gov (United States)

    Ishii, Takamichi; Yasuchika, Kentaro; Ikai, Iwao

    2013-01-01

    Hepatocytes derived from embryonic stem cells (ESCs) are a potential cell source for regenerative medicine. However, it has been technically difficult to differentiate ESCs into mature hepatocytes because the definitive growth factors and molecular mechanisms governing hepatocyte differentiation have not yet been well defined. The CD45(-)CD49f(+/-)Thy1(+)gp38(+) mesenchymal cells that reside in murine fetal livers induce hepatic progenitor cells to differentiate into mature hepatocytes by direct cell-cell contact. Utilizing these cells, we employ a two-step procedure for hepatic maturation of ESCs: first, ESCs are differentiated into endodermal cells or hepatic progenitor cells, and second, ESC-derived endodermal cells are matured into functional hepatocytes by coculture with murine fetal liver mesenchymal cells. The ESC-derived hepatocyte-like cells possess hepatic functions, including ammonia removal activity, albumin secretion ability, glycogen synthesis and storage, and cytochrome P450 enzymatic activity.

  17. Comparison of different culture conditions for human mesenchymal stromal cells for clinical stem cell therapy

    DEFF Research Database (Denmark)

    Haack-Sorensen, M.; Friis, T.; Bindslev, L.

    2008-01-01

    used for MSC cultivation in animal studies simulating clinical stem cell therapy. MATERIAL AND METHODS: Human mononuclear cells (MNCs) were isolated from BM aspirates by density gradient centrifugation and cultivated in a GMP-accepted medium (EMEA medium) or in one of four other media. RESULTS: FACS...... compliant medium for MSC cultivation, expansion and differentiation. The expanded and differentiated MSCs can be used in autologous mesenchymal stromal cell therapy in patients with ischaemic heart disease Udgivelsesdato: 2008......OBJECTIVE: Mesenchymal stromal cells (MSCs) from adult bone marrow (BM) are considered potential candidates for therapeutic neovascularization in cardiovascular disease. When implementing results from animal trials in clinical treatment, it is essential to isolate and expand the MSCs under...

  18. Human embryonic stem cell-derived mesenchymal stem cells as cellular delivery vehicles for prodrug gene therapy of glioblastoma.

    Science.gov (United States)

    Bak, Xiao Ying; Lam, Dang Hoang; Yang, Jingye; Ye, Kai; Wei, Esther Lee Xing; Lim, Sai Kiang; Wang, Shu

    2011-11-01

    Mesenchymal stem cells (MSCs) possess tumor-tropic properties and consequently have been used to deliver therapeutic agents for cancer treatment. Their potential in cancer therapy highlights the need for a consistent and renewable source for the production of uniform human MSCs suitable for clinical applications. In this study, we seek to investigate whether human embryonic stem cells can be used as a cell source to fulfill this goal. We generated MSC-like cells from two human embryonic stem cell lines, HuES9 and H1, and observed that MSC-like cells derived from human embryonic stem cells were able to migrate into human glioma intracranial xenografts after being injected into the cerebral hemisphere contralateral to the tumor inoculation site. We engineered these cells with baculoviral and lentiviral vectors, respectively, for transient and stable expression of the herpes simplex virus thymidine kinase gene. In tumor-bearing mice the engineered MSC-like cells were capable of inhibiting tumor growth and prolonging survival in the presence of ganciclovir after they were injected either directly into the xenografts or into the opposite hemisphere. Our findings suggest that human embryonic stem cell-derived MSCs may be a viable and attractive alternative for large-scale derivation of targeting vehicles for cancer therapy.

  19. Vanillin attenuates negative effects of ultraviolet A on the stemness of human adipose tissue-derived mesenchymal stem cells.

    Science.gov (United States)

    Lee, Sang Yeol; Park, See-Hyoung; Kim, Mi Ok; Lim, Inhwan; Kang, Mingyeong; Oh, Sae Woong; Jung, Kwangseon; Jo, Dong Gyu; Cho, Il-Hoon; Lee, Jongsung

    2016-10-01

    Ultraviolet A (UVA) irradiation induces various changes in cell biology. The objective of this study was to determine the effect of vanillin on UVA irradiation-induced damages in the stemness properties of human adipose tissue-derived mesenchymal stem cells (hAMSCs). UVA-antagonizing mechanisms of vanillin were also examined. The results revealed that vanillin attenuated UVA-induced reduction of the proliferative potential and stemness of hAMSCs evidenced by increased proliferative activity in BrdU incorporation assay and upregulation of stemness-related genes (OCT4, NANOG and SOX2) in response to vanillin treatment. UVA-induced reduction in mRNA level of hypoxia-inducible factor (HIF)-1α was significantly recovered by vanillin. In addition, the antagonizing effect of vanillin on UVA was found to be mediated by reduced production of PGE2 through inhibiting JNK and p38 MAPK. Taken together, these findings showed that vanillin could improve the reduced stemness of hAMSCs induced by UVA. The effect of vanillin is mediated by upregulating HIF-1α via inhibiting PGE2-cAMP signaling. Therefore, vanillin might be used as an antagonizing agent to mitigate the effects of UVA.

  20. Bone marrow-derived mesenchymal stem cells migrate to healthy and damaged salivary glands following stem cell infusion

    Institute of Scientific and Technical Information of China (English)

    Silke Schwarz; Ralf Huss; Michaela Schulz-Siegmund; Breda Vogel; Sven Brandau; Stephan Lang; Nicole Rotter

    2014-01-01

    Xerostomia is a severe side effect of radiation therapy in head and neck cancer patients. To date, no satisfactory treatment option has been established. Because mesenchymal stem cells (MSCs) have been identified as a potential treatment modality, we aimed to evaluate stem cell distribution following intravenous and intraglandular injections using a surgical model of salivary gland damage and to analyse the effects of MSC injections on the recruitment of immune cells. The submandibular gland ducts of rats were surgically ligated. Syngeneic adult MSCs were isolated, immortalised by simian virus 40 (SV40) large T antigen and characterized by flow cytometry. MSCs were injected intravenously and intraglandularly. After 1, 3 and 7 days, the organs of interest were analysed for stem cell recruitment. Inflammation was analysed by immunohistochemical staining. We were able to demonstrate that, after intravenous injection, MSCs were recruited to normal and damaged submandibular glands on days 1, 3 and 7. Unexpectedly, stem cells were recruited to ligated and non-ligated glands in a comparable manner. After intraglandular injection of MSCs into ligated glands, the presence of MSCs, leucocytes and macrophages was enhanced, compared to intravenous injection of stem cells. Our data suggest that injected MSCs were retained within the inflamed glands, could become activated and subsequently recruited leucocytes to the sites of tissue damage.

  1. Mesenchymal stem cell tracking in the intervertebral disc

    Institute of Scientific and Technical Information of China (English)

    Charles Handley; Tony Goldschlager; David Oehme; Peter Ghosh; Graham Jenkin

    2015-01-01

    Low back pain is a common clinical problem, whichleads to significant social, economic and public healthcosts. Intervertebral disc (IVD) degeneration is acceptedas a common cause of low back pain. Initially, thisis characterized by a loss of proteoglycans from thenucleus pulposus resulting in loss of tissue hydrationand hydrostatic pressure. Conservative management,including analgesia and physiotherapy often fails andsurgical treatment, such as spinal fusion, is required. Stemcells offer an exciting possible regenerative approachto IVD disease. Preclinical research has demonstratedpromising biochemical, histological and radiological resultsin restoring degenerate IVDs. Cell tracking provides anopportunity to develop an in-depth understanding ofstem cell survival, differentiation and migration, enablingoptimization of stem cell treatment. Magnetic ResonanceImaging (MRI) is a non-invasive, non-ionizing imagingmodality with high spatial resolution, ideally suited for stemcell tracking. Furthermore, novel MRI sequences have thepotential to quantitatively assess IVD disease, providingan improved method to review response to biologicaltreatment. Superparamagnetic iron oxide nanoparticleshave been extensively researched for the purpose of celltracking. These particles are biocompatible, non-toxicand act as excellent MRI contrast agents. This review willexplore recent advances and issues in stem cell trackingand molecular imaging in relation to the IVD.

  2. Human gingiva-derived mesenchymal stem cells are superior to bone marrow-derived mesenchymal stem cells for cell therapy in regenerative medicine

    Energy Technology Data Exchange (ETDEWEB)

    Tomar, Geetanjali B.; Srivastava, Rupesh K.; Gupta, Navita; Barhanpurkar, Amruta P.; Pote, Satish T. [National Center for Cell Science, University of Pune Campus, Pune 411 007 (India); Jhaveri, Hiral M. [Department of Periodontics and Oral Implantology, Dr. D.Y. Patil Dental College and Hospital, Pune (India); Mishra, Gyan C. [National Center for Cell Science, University of Pune Campus, Pune 411 007 (India); Wani, Mohan R., E-mail: mohanwani@nccs.res.in [National Center for Cell Science, University of Pune Campus, Pune 411 007 (India)

    2010-03-12

    Mesenchymal stem cells (MSCs) are capable of self-renewal and differentiation into multiple cell lineages. Presently, bone marrow is considered as a prime source of MSCs; however, there are some drawbacks and limitations in use of these MSCs for cell therapy. In this study, we demonstrate that human gingival tissue-derived MSCs have several advantages over bone marrow-derived MSCs. Gingival MSCs are easy to isolate, homogenous and proliferate faster than bone marrow MSCs without any growth factor. Importantly, gingival MSCs display stable morphology and do not loose MSC characteristic at higher passages. In addition, gingival MSCs maintain normal karyotype and telomerase activity in long-term cultures, and are not tumorigenic. Thus, we reveal that human gingiva is a better source of MSCs than bone marrow, and large number of functionally competent clinical grade MSCs can be generated in short duration for cell therapy in regenerative medicine and tissue engineering.

  3. Recruited brain tumor-derived mesenchymal stem cells contribute to brain tumor progression.

    Science.gov (United States)

    Behnan, Jinan; Isakson, Pauline; Joel, Mrinal; Cilio, Corrado; Langmoen, Iver A; Vik-Mo, Einar O; Badn, Wiaam

    2014-05-01

    The identity of the cells that contribute to brain tumor structure and progression remains unclear. Mesenchymal stem cells (MSCs) have recently been isolated from normal mouse brain. Here, we report the infiltration of MSC-like cells into the GL261 murine glioma model. These brain tumor-derived mesenchymal stem cells (BT-MSCs) are defined with the phenotype (Lin-Sca-1+CD9+CD44+CD166+/-) and have multipotent differentiation capacity. We show that the infiltration of BT-MSCs correlates to tumor progression; furthermore, BT-MSCs increased the proliferation rate of GL261 cells in vitro. For the first time, we report that the majority of GL261 cells expressed mesenchymal phenotype under both adherent and sphere culture conditions in vitro and that the non-MSC population is nontumorigenic in vivo. Although the GL261 cell line expressed mesenchymal phenotype markers in vitro, most BT-MSCs are recruited cells from host origin in both wild-type GL261 inoculated into green fluorescent protein (GFP)-transgenic mice and GL261-GFP cells inoculated into wild-type mice. We show the expression of chemokine receptors CXCR4 and CXCR6 on different recruited cell populations. In vivo, the GL261 cells change marker profile and acquire a phenotype that is more similar to cells growing in sphere culture conditions. Finally, we identify a BT-MSC population in human glioblastoma that is CD44+CD9+CD166+ both in freshly isolated and culture-expanded cells. Our data indicate that cells with MSC-like phenotype infiltrate into the tumor stroma and play an important role in tumor cell growth in vitro and in vivo. Thus, we suggest that targeting BT-MSCs could be a possible strategy for treating glioblastoma patients.

  4. 间充质干细胞促进创面愈合机制的研究进展%Advances in the mechanism of mesenchymal stem cells in promoting wound healing

    Institute of Scientific and Technical Information of China (English)

    朱文静; 孙浩博; 吕国忠

    2015-01-01

    Mesenchymal stem cells possess the ability of self-renewal and multiple differentiation potential, thus exert immunomodulatory effect during tissue repair.Mesenchymal stem cells can stimulate angiogenesis and promote tissue repair through transdifferentiation and secreting a variety of growth factors and cytokines.This review outlines the advances in the mechanism of mesenchymal stem cells in promoting wound healing, including alleviation of inflammatory response, induction of angiogenesis, and promotion of migration of mesenchymal stem cells to the site of tissue injury.

  5. Neural and mesenchymal stem cells in animal models of Huntington's disease: past experiences and future challenges.

    Science.gov (United States)

    Kerkis, Irina; Haddad, Monica Santoro; Valverde, Cristiane Wenceslau; Glosman, Sabina

    2015-12-14

    Huntington's disease (HD) is an inherited disease that causes progressive nerve cell degeneration. It is triggered by a mutation in the HTT gene that strongly influences functional abilities and usually results in movement, cognitive and psychiatric disorders. HD is incurable, although treatments are available to help manage symptoms and to delay the physical, mental and behavioral declines associated with the condition. Stem cells are the essential building blocks of life, and play a crucial role in the genesis and development of all higher organisms. Ablative surgical procedures and fetal tissue cell transplantation, which are still experimental, demonstrate low rates of recovery in HD patients. Due to neuronal cell death caused by accumulation of the mutated huntingtin (mHTT) protein, it is unlikely that such brain damage can be treated solely by drug-based therapies. Stem cell-based therapies are important in order to reconstruct damaged brain areas in HD patients. These therapies have a dual role: stem cell paracrine action, stimulating local cell survival, and brain tissue regeneration through the production of new neurons from the intrinsic and likely from donor stem cells. This review summarizes current knowledge on neural stem/progenitor cell and mesenchymal stem cell transplantation, which has been carried out in several animal models of HD, discussing cell distribution, survival and differentiation after transplantation, as well as functional recovery and anatomic improvements associated with these approaches. We also discuss the usefulness of this information for future preclinical and clinical studies in HD.

  6. Epicardial Origin of Resident Mesenchymal Stem Cells in the Adult Mammalian Heart

    Directory of Open Access Journals (Sweden)

    Naisana S. Asli

    2014-04-01

    Full Text Available The discovery of stem and progenitor cells in the adult mammalian heart has added a vital dimension to the field of cardiac regeneration. Cardiac-resident stem cells are likely sequestered as reserve cells within myocardial niches during the course of embryonic cardiogenesis, although they may also be recruited from external sources, such as bone marrow. As we begin to understand the nature of cardiac-resident stem and progenitor cells using a variety of approaches, it is evident that they possess an identity embedded within their gene regulatory networks that favours cardiovascular lineage potential. In addition to contributing lineage descendants, cardiac stem cells may also be stress sensors, offering trophic cues to other cell types, including cardiomyocytes and vasculature cells, and likely other stem cells and immune cells, during adaptation and repair. This presents numerous possibilities for endogenous cardiac stem and progenitor cells to be used in cell therapies or as targets in heart rejuvenation. In this review, we focus on the epicardium as an endogenous source of multi-potential mesenchymal progenitor cells in development and as a latent source of such progenitors in the adult. We track the origin and plasticity of the epicardium in embryos and adults in both homeostasis and disease. In this context, we ask whether directed activation of epicardium-derived progenitor cells might have therapeutic application.

  7. Functional tooth restoration by allogeneic mesenchymal stem cell-based bio-root regeneration in swine.

    Science.gov (United States)

    Wei, Fulan; Song, Tieli; Ding, Gang; Xu, Junji; Liu, Yi; Liu, Dayong; Fan, Zhipeng; Zhang, Chunmei; Shi, Songtao; Wang, Songlin

    2013-06-15

    Our previous proof-of-concept study showed the feasibility of regenerating the dental stem cell-based bioengineered tooth root (bio-root) structure in a large animal model. Here, we used allogeneic dental mesenchymal stem cells to regenerate bio-root, and then installed a crown on the bio-root to restore tooth function. A root shape hydroxyapatite tricalcium phosphate scaffold containing dental pulp stem cells was covered by a Vc-induced periodontal ligament stem cell sheet and implanted into a newly generated jaw bone implant socket. Six months after implantation, a prefabricated porcelain crown was cemented to the implant and subjected to tooth function. Clinical, radiological, histological, ultrastructural, systemic immunological evaluations and mechanical properties were analyzed for dynamic changes in the bio-root structure. The regenerated bio-root exhibited characteristics of a normal tooth after 6 months of use, including dentinal tubule-like and functional periodontal ligament-like structures. No immunological response to the bio-roots was observed. We developed a standard stem cell procedure for bio-root regeneration to restore adult tooth function. This study is the first to successfully regenerate a functional bio-root structure for artificial crown restoration by using allogeneic dental stem cells and Vc-induced cell sheet, and assess the recipient immune response in a preclinical model.

  8. Identification of Mesenchymal Stem Cell Marker STRO-1 in Oral Reactive Lesions by Immunofluorescence Method

    Directory of Open Access Journals (Sweden)

    Ali Dehghani Nazhvani

    2015-09-01

    Full Text Available Statement of the Problem: Stem cells are considered as new implement for tissue regeneration. Several niches in adult human body are colonized by multipotent stem cells but access to these potential reservoirs is often limited. Although human dental pulp stem cells isolated from healthy teeth have been extensively characterized, it is still unknown whether stem cells also exist in reactive lesions of oral cavity such as pyogenic granuloma and peripheral ossifying fibroma which are deliberated as inflammatory proliferation of different cell families. Purpose: The aim of this study was to explore for clues to see whether pyogenic granuloma or peripheral ossifying fibroma contain dental mesenchymal stem cell (DMSC. Materials and Method: Four pyogenic granuloma and four peripheral ossifying fibroma specimens were collected by excisional biopsy and preserved in PBS-EDTA at -86 °C. Then we cut them in 5µm diameter using Cryostat. Having been rinsed with PBS, the samples were stained with a primary mouse anti-human STRO-1 monoclonal IgM antibody. Afterward, a secondary goat anti-mouse IgM-FITC antibody was applied to detect STRO-1+ cells as probable stem cells by immunofluorescence technique. Results: Immunofluorescence microscopy revealed presence of STRO-1+ cells in these lesions, particularly localized on perivascular zone. The negative control group was not glowing. Conclusion: Based on these results, it was found that reactive lesions of pyogenic granuloma and peripheral ossifying fibroma have STRO-1 positive cells, which raises the possibility that these cells may be DMSCs.

  9. Chondrogenic potential of human mesenchymal stem cells and expression of Slug transcription factor.

    Science.gov (United States)

    Brini, Anna T; Niada, Stefania; Lambertini, Elisabetta; Torreggiani, Elena; Arrigoni, Elena; Lisignoli, Gina; Piva, Roberta

    2015-06-01

    The scientific literature rarely reports experimental failures or inconsistent outcomes in the induction of cell differentiation; however, researchers commonly experience poor or unsuccessful responses to differentiating agents when culturing stem cells. One way of investigating the underlying reasons for such responses is to look at the basal expression levels of specific genes in multipotent stem cells before the induction of differentiation. In addition to shedding light on the complex properties of stem cells and the molecular modulation of differentiation pathways, this strategy can also lead to the development of important time- and money-saving tools that aid the efficient selection of cellular specimens--in this case, stem cells that are more prone to differentiate towards specific lineages and are therefore more suitable for cell-based therapeutic protocols in regenerative medicine. To address this latter aspect, this study focused on understanding the reasons why some human mesenchymal stem cell (hMSC) samples are less efficient at differentiating towards chondrogenesis. This study shows that analysis of the basal expression levels of Slug, a negative regulator of chondrogenesis in hMSC, provides a rapid and simple tool for distinguishing stem cell samples with the potential to form a cartilage-like matrix, and that are therefore suitable for cartilage tissue engineering. It is shown that high basal levels of Slug prevent the chondrogenic differentiation of hMSCs, even in the presence of transforming growth factor-β and elevated levels of Sox9.

  10. Epigenetic Regulation of Mesenchymal Stem Cells: A Focus on Osteogenic and Adipogenic Differentiation

    Directory of Open Access Journals (Sweden)

    Chad M. Teven

    2011-01-01

    Full Text Available Stem cells are characterized by their capability to self-renew and terminally differentiate into multiple cell types. Somatic or adult stem cells have a finite self-renewal capacity and are lineage-restricted. The use of adult stem cells for therapeutic purposes has been a topic of recent interest given the ethical considerations associated with embryonic stem (ES cells. Mesenchymal stem cells (MSCs are adult stem cells that can differentiate into osteogenic, adipogenic, chondrogenic, or myogenic lineages. Owing to their ease of isolation and unique characteristics, MSCs have been widely regarded as potential candidates for tissue engineering and repair. While various signaling molecules important to MSC differentiation have been identified, our complete understanding of this process is lacking. Recent investigations focused on the role of epigenetic regulation in lineage-specific differentiation of MSCs have shown that unique patterns of DNA methylation and histone modifications play an important role in the induction of MSC differentiation toward specific lineages. Nevertheless, MSC epigenetic profiles reflect a more restricted differentiation potential as compared to ES cells. Here we review the effect of epigenetic modifications on MSC multipotency and differentiation, with a focus on osteogenic and adipogenic differentiation. We also highlight clinical applications of MSC epigenetics and nuclear reprogramming.

  11. Role of epithelial-mesenchymal transition in the enrichment of colorectal cancer stem cells

    Directory of Open Access Journals (Sweden)

    Jia-ping CHENG

    2016-10-01

    Full Text Available Objective  To explore whether the enrichment of cancer stem cells (CSCs in colorectal cancer by suspension culture method is involved with epithelial-mesenchymal transition (EMT. Methods  3D microspheres were cultured by suspension culture method to human colorectal cancer SW620 cells. The 3D microspheres and SW620 cells were used as the research objects. To clarify whether 3D microspheres were enriched with CSCs, we made tumorigenicity experiments in NOD/SCID mice, soft agar cloning experiments, and detected the expression levels of cancer stem cells markers CD44 and Ep-CAM by flow cytometry or by Western blotting. The protein expression levels of EMT markers such as E-cadherin, N-cadherin and vimentin were detected by Western blotting. Results  Compared with the parental SW620 cells, colony formation in vitro (P<0.01 and tumorigenicity in NOD/SCID mice were significantly enhanced, the percentage of CD44-positive cells and Ep-CAM protein expression levels was significantly increased (P<0.01 in 3D microspheres. The protein expression level of epithelial marker E-cadherin was obviously increased (P<0.01, while the protein expression levels of mesenchymal markers N-cadherin and vimentin were significantly decreased (P<0.01. Conclusions  Colorectal cancer stem cells can be enriched by suspension culture method, and the process may be related to EMT. DOI: 10.11855/j.issn.0577-7402.2016.09.03

  12. Application of Cell Penetrating Peptide in Magnetic Resonance Imaging of Bone Marrow Mesenchymal Stem Cells

    Institute of Scientific and Technical Information of China (English)

    Min LIU; You-Min GUO; Jun-Le YANG; Peng WANG; Lin-Yu ZHAO; Nian SHEN; Si-Cen WANG; Xiao-Juan GUO; Qi-Fei WU

    2006-01-01

    Tracking the distribution and differentiation of stem cells by high-resolution imaging techniques would have significant clinical and research implications. In this study, a model cell-penetrating peptide was used to carry gadolinium particles for magnetic resonance imaging (MRI) of mesenchymal stem cells (MSCs).MSCs were isolated from rat bone marrow and identified by osteogenic differentiation in vitro. The cellpenetrating peptide labeled with fluorescein-5-isothiocyanate (FITC) and gadolinium was synthesized by a solid-phase peptide synthesis method. Fluorescein imaging analysis confirmed that this new peptide could internalize into the cytoplasm and nucleus at room temperature, 4℃ and 37℃. Gadolinium were efficiently internalized into mesenchymal stem cells by the peptide in a time or concentration-dependent manner,resulting in intercellular shortening of longitudinal relaxation enhancements, which were obviously detected by 1.5 Tesla Magnetic Resonance Imaging. Cytotoxicity assay and flow cytometric analysis showed that the intercellular contrast medium incorporation did not affect cell viability at the tested concentrations. The in vitro experiment results suggested that the new constructed peptides could be a vector for tracking MSCs.

  13. Nukbone® promotes proliferation and osteoblastic differentiation of mesenchymal stem cells from human amniotic membrane

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez-Fuentes, Nayeli; Rodríguez-Hernández, Ana G. [Depto. Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510 (Mexico); Enríquez-Jiménez, Juana [Depto. Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), México City 14000 (Mexico); Alcántara-Quintana, Luz E. [Subd. de Investigación, Centro Nacional de la Transfusión Sanguínea, Secretaria de Salud, Mexico City 07370 (Mexico); Fuentes-Mera, Lizeth [Depto. Biología Molecular e Histocompatibilidad, Hospital General “Dr. Manuel Gea González”, México City 4800 (Mexico); Piña-Barba, María C. [Depto. Materiales Metálicos y Cerámicos, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México (UNAM), México City 04510 (Mexico); Zepeda-Rodríguez, Armando [Depto. Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), México City 04510 (Mexico); and others

    2013-05-10

    Highlights: •Nukbone showed to be a good scaffold for adhesion, proliferation and differentiation of stem cells. •Nukbone induced osteoblastic differentiation of human mesenchymal stem cells. •Results showed that Nukbone offer an excellent option for bone tissue regeneration due to properties. -- Abstract: Bovine bone matrix Nukbone® (NKB) is an osseous tissue-engineering biomaterial that retains its mineral and organic phases and its natural bone topography and has been used as a xenoimplant for bone regeneration in clinics. There are not studies regarding its influence of the NKB in the behavior of cells during the repairing processes. The aim of this research is to demonstrate that NKB has an osteoinductive effect in human mesenchymal stem cells from amniotic membrane (AM-hMSCs). Results indicated that NKB favors the AM-hMSCs adhesion and proliferation up to 7 days in culture as shown by the scanning electron microscopy and proliferation measures using an alamarBlue assay. Furthermore, as demonstrated by reverse transcriptase polymerase chain reaction, it was detected that two gene expression markers of osteoblastic differentiation: the core binding factor and osteocalcin were higher for AM-hMSCs co-cultured with NKB in comparison with cultivated cells in absence of the biomaterial. As the results indicate, NKB possess the capability for inducing successfully the osteoblastic differentiation of AM-hMSC, so that, NKB is an excellent xenoimplant option for repairing bone tissue defects.

  14. Muse cells, newly found non-tumorigenic pluripotent stem cells, reside in human mesenchymal tissues.

    Science.gov (United States)

    Wakao, Shohei; Akashi, Hideo; Kushida, Yoshihiro; Dezawa, Mari

    2014-01-01

    Mesenchymal stem cells (MSCs) have been presumed to include a subpopulation of pluripotent-like cells as they differentiate not only into the same mesodermal-lineage cells but also into ectodermal- and endodermal-lineage cells and exert tissue regenerative effects in a wide variety of tissues. A novel type of pluripotent stem cell, Multilineage-differentiating stress enduring (Muse) cells, was recently discovered in mesenchymal tissues such as the bone marrow, adipose tissue, dermis and connective tissue of organs, as well as in cultured fibroblasts and bone marrow-MSCs. Muse cells are able to differentiate into all three germ layers from a single cell and to self-renew, and yet exhibit non-tumorigenic and low telomerase activities. They can migrate to and target damaged sites in vivo, spontaneously differentiate into cells compatible with the targeted tissue, and contribute to tissue repair. Thus, Muse cells may account for the wide variety of differentiation abilities and tissue repair effects that have been observed in MSCs. Muse cells are unique in that they are pluripotent stem cells that belong in the living body, and are thus assumed to play an important role in 'regenerative homeostasis' in vivo.

  15. Potential differentiation ability of gingiva originated human mesenchymal stem cell in the presence of tacrolimus

    Science.gov (United States)

    Ha, Dong-Ho; Pathak, Shiva; Yong, Chul Soon; Kim, Jong Oh; Jeong, Jee-Heon; Park, Jun-Beom

    2016-01-01

    The aim of the present study is to evaluate the potential differentiation ability of gingiva originated human mesenchymal stem cell in the presence of tacrolimus. Tacrolimus-loaded poly(lactic-co-glycolic acid) microspheres were prepared using electrospraying technique. In vitro release study of tacrolimus-loaded poly(lactic-co-glycolic acid) microspheres was performed in phosphate-buffered saline (pH 7.4). Gingiva-derived stem cells were isolated and incubated with tacrolimus or tacrolimus-loaded microspheres. Release study of the microspheres revealed prolonged release profiles of tacrolimus without any significant initial burst release. The microsphere itself did not affect the morphology of the mesenchymal stem cells, and cell morphology was retained after incubation with microspheres loaded with tacrolimus at 1 μg/mL to 10 μg/mL. Cultures grown in the presence of microspheres loaded with tacrolimus at 1 μg/mL showed the highest mineralization. Alkaline phosphatase activity increased with an increase in incubation time. The highest expression of pSmad1/5 was achieved in the group receiving tacrolimus 0.1 μg/mL every third day, and the highest expression of osteocalcin was achieved in the group receiving 1 μg/mL every third day. Biodegradable poly(lactic-co-glycolic acid)-based microspheres loaded with tacrolimus promoted mineralization. Microspheres loaded with tacrolimus may be applied for increased osteoblastic differentiation. PMID:27721434

  16. Osteogenic differentiation of human mesenchymal stem cells promotes mineralization within a biodegradable peptide hydrogel

    Directory of Open Access Journals (Sweden)

    Luis A Castillo Diaz

    2016-07-01

    Full Text Available An attractive strategy for the regeneration of tissues has been the use of extracellular matrix analogous biomaterials. Peptide-based fibrillar hydrogels have been shown to mimic the structure of extracellular matrix offering cells a niche to undertake their physiological functions. In this study, the capability of an ionic-complementary peptide FEFEFKFK (F, E, and K are phenylalanine, glutamic acid, and lysine, respectively hydrogel to host human mesenchymal stem cells in three dimensions and induce their osteogenic differentiation is demonstrated. Assays showed sustained cell viability and proliferation throughout the hydrogel over 12 days of culture and these human mesenchymal stem cells differentiated into osteoblasts simply upon addition of osteogenic stimulation. Differentiated osteoblasts synthesized key bone proteins, including collagen-1 (Col-1, osteocalcin, and alkaline phosphatase. Moreover, mineralization occurred within the hydrogel. The peptide hydrogel is a naturally biodegradable material as shown by oscillatory rheology and reversed-phase high-performance liquid chromatography, where both viscoelastic properties and the degradation of the hydrogel were monitored over time, respectively. These findings demonstrate that a biodegradable octapeptide hydrogel can host and induce the differentiation of stem cells and has the potential for the regeneration of hard tissues such as alveolar bone.

  17. The molecular signature of therapeutic mesenchymal stem cells exposes the architecture of the hematopoietic stem cell niche synapse

    Directory of Open Access Journals (Sweden)

    Mancardi Gianluigi

    2007-03-01

    Full Text Available Abstract Background The hematopoietic stem cells (HSCs niche of the bone marrow is comprised of HSCs, osteoblasts, endothelial cells and a stromal component of non-hematopoietic multipotent cells of mesenchymal origin named "mesenchymal stem cells" (MSCs. Results Here we studied the global transcriptional profile of murine MSCs with immuno-therapeutic potential and compared it with that of 486 publicly available microarray datasets from 12 other mouse tissues or cell types. Principal component analysis and hierarchical clustering identified a unique pattern of gene expression capable of distinctively classifying MSCs from other tissues and cells. We then performed an analysis aimed to identify absolute and relative abundance of transcripts in all cell types. We found that the set of transcripts uniquely expressed by MSCs is enriched in transcription factors and components of the Wnt signaling pathway. The analysis of differentially expressed genes also identified a set of genes specifically involved in the HSC niche and is complemented by functional studies that confirm the findings. Interestingly, some of these genes play a role in the maintenance of HSCs in a quiescent state supporting their survival and preventing them from proliferating and differentiating. We also show that MSCs modulate T cell functions in vitro and, upon in vivo administration, ameliorate experimental autoimmune encephalomyelitis (EAE. Conclusion Altogether, these findings provide novel and important insights on the mechanisms of T cell function regulation by MSCs and help to cement the rationale for their application in the treatment of autoimmune diseases.

  18. A novel rat fibrosarcoma cell line from transformed bone marrow-derived mesenchymal stem cells with maintained in vitro and in vivo stemness properties.

    Science.gov (United States)

    Wang, Meng-Yu; Nestvold, Janne; Rekdal, Øystein; Kvalheim, Gunnar; Fodstad, Øystein

    2017-02-09

    Increasing evidence suggests a possible relationship between mesenchymal stem cells (MSCs) and sarcoma. MSCs are hypothesized to be the cells initiating sarcomagenesis, and cancer stem cells (CSCs) sharing features of MSCs have been identified in sarcomas. Here, we report on the characteristics of a bone marrow-derived rat mesenchymal stem cell line that spontaneously transformed in long-term culture. The rat transformed mesenchymal stem cells (rTMSCs) produced soft-tissue fibrosarcomas in immunocompromised mice and immunocompetent rats. In vitro, the rTMSCs displayed increased proliferation capacity compared to the untransformed cell line. The transformed MSCs maintained the mesenchymal phenotype by expression of the stem cell marker CD 90 and the lack of hematopoietic and endothelial markers. Cytogenetic analysis detected trisomy 6 in the rTMSCs. Side population (SP) isolation and tumorsphere cultivation of the transformed cells confirmed the presence of CSCs among the rTMSCs. Importantly, the rTMSCs retained their differentiation capacity towards osteogenic and adipogenic lineages. This transformed MSC-based cell line may be valuable in examining the balance in a mixed cell population between cancer stem cell properties and the ability to differentiate to specific non-transformed cell populations. Moreover, it may also be a useful tool to evaluate the efficacy of novel targeted immunotherapies in vivo.

  19. Plasmid-encapsulated polyethylene glycol-grafted polyethylenimine nanoparticles for gene delivery into rat mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Chen X

    2011-04-01

    Full Text Available Xiao-Ai Chen1,5*, Li-Jun Zhang2*, Zhi-Jie He3, Wei-Wei Wang4, Bo Xu1, Qian Zhong1, Xin-Tao Shuai4, Li-Qun Yang4, Yu-Bin Deng11Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; 2Futian Affiliated Hospital, Guangdong Medical College, Shenzhen, China; 3Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; 4Institute of Polymer Science, School of Chemistry and Chemical Engineering, BME Center, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou, China; 5Yunnan Cancer Hospital, The Third Affiliated Hospital, Kunming Medical College, Kunming, China*Both authors contributed equally to this workBackground: Mesenchymal stem cell transplantation is a promising method in regenerative medicine. Gene-modified mesenchymal stem cells possess superior characteristics of specific tissue differentiation, resistance to apoptosis, and directional migration. Viral vectors have the disadvantages of potential immunogenicity, carcinogenicity, and complicated synthetic procedures. Polyethylene glycol-grafted polyethylenimine (PEG-PEI holds promise in gene delivery because of easy preparation and potentially targeting modification.Methods: A PEG8k-PEI25k graft copolymer was synthesized. Agarose gel retardation assay and dynamic light scattering were used to determine the properties of the nanoparticles. MTT reduction, wound and healing, and differentiation assays were used to test the cytobiological characteristics of rat mesenchymal stem cells, fluorescence microscopy and flow cytometry were used to determine transfection efficiency, and atomic force microscopy was used to evaluate the interaction between PEG-PEI/plasmid nanoparticles and mesenchymal stem cells.Results: After incubation with the copolymer, the bionomics of mesenchymal stem cells showed no significant change. The mesenchymal stem cells still maintained high viability, resettled the

  20. Micro-Computed Tomography Detection of Gold Nanoparticle-Labelled Mesenchymal Stem Cells in the Rat Subretinal Layer

    Directory of Open Access Journals (Sweden)

    Pooi Ling Mok

    2017-02-01

    Full Text Available Mesenchymal stem cells are widely used in many pre-clinical and clinical settings. Despite advances in molecular technology; the migration and homing activities of these cells in in vivo systems are not well understood. Labelling mesenchymal stem cells with gold nanoparticles has no cytotoxic effect and may offer suitable indications for stem cell tracking. Here, we report a simple protocol to label mesenchymal stem cells using 80 nm gold nanoparticles. Once the cells and particles were incubated together for 24 h, the labelled products were injected into the rat subretinal layer. Micro-computed tomography was then conducted on the 15th and 30th day post-injection to track the movement of these cells, as visualized by an area of hyperdensity from the coronal section images of the rat head. In addition, we confirmed the cellular uptake of the gold nanoparticles by the mesenchymal stem cells using transmission electron microscopy. As opposed to other methods, the current protocol provides a simple, less labour-intensive and more efficient labelling mechanism for real-time cell tracking. Finally, we discuss the potential manipulations of gold nanoparticles in stem cells for cell replacement and cancer therapy in ocular disorders or diseases.