WorldWideScience

Sample records for blood-cerebrospinal fluid barriers

  1. Potential Pathways for CNS Drug Delivery Across the Blood-Cerebrospinal Fluid Barrier

    OpenAIRE

    Strazielle, Nathalie; Ghersi-Egea, Jean-Fran?ois

    2016-01-01

    The blood-brain interfaces restrict the cerebral bioavailability of pharmacological compounds. Various drug delivery strategies have been developed to improve drug penetration into the brain. Most strategies target the microvascular endothelium forming the blood-brain barrier proper. Targeting the blood-cerebrospinal fluid (CSF) barrier formed by the epithelium of the choroid plexuses in addition to the blood-brain barrier may offer added-value for the treatment of central nervous system dise...

  2. Embryonic Blood-Cerebrospinal Fluid Barrier Formation and Function

    Directory of Open Access Journals (Sweden)

    David eBueno

    2014-10-01

    Full Text Available During embryonic development and adult life, brain cavities and ventricles are filled with cerebrospinal fluid (CSF. CSF has attracted interest as an active signaling medium that regulates brain development, homeostasis and disease. CSF is a complex protein-rich fluid containing growth factors and signaling molecules that regulate multiple cell functions in the central nervous system (CNS. The composition and substance concentrations of CSF are tightly controlled. In recent years, it has been demonstrated that embryonic CSF (eCSF has a key function as a fluid pathway for delivering diffusible signals to the developing brain, thus contributing to the proliferation, differentiation and survival of neural progenitor cells, and to the expansion and patterning of the brain. From fetal stages through to adult life, CSF is primarily produced by the choroid plexus. The development and functional activities of the choroid plexus and other blood–brain barrier (BBB systems in adults and fetuses have been extensively analyzed. However, eCSF production and control of its homeostasis in embryos, from the closure of the anterior neuropore when the brain cavities become physiologically sealed, to the formation of the functional fetal choroid plexus, has not been studied in as much depth and remains open to debate. This review brings together the existing literature, some of which is based on experiments conducted by our research group, concerning the formation and function of a temporary embryonic blood–CSF barrier in the context of the crucial roles played by the molecules in eCSF.

  3. Passage of delta sleep-inducing peptide (DSIP) across the blood-cerebrospinal fluid barrier

    International Nuclear Information System (INIS)

    Zlokovic, B.V.; Segal, M.B.; Davson, H.; Jankov, R.M.

    1988-01-01

    Unidirectional flux of 125 I-labeled DSIP at the blood-tissue interface of the blood-cerebrospinal fluid (CSF) barrier was studied in the perfused in situ choroid plexuses of the lateral ventricles of the sheep. Arterio-venous loss of 125 I-radioactivity suggested a low-to-moderate permeability of the choroid epithelium to the intact peptide from the blood side. A saturable mechanism with Michaelis-Menten type kinetics with high affinity and very low capacity (approximate values: Kt = 5.0 +/- 0.4 nM; Vmax = 272 +/- 10 fmol.min-1) was demonstrated at the blood-tissue interface of the choroid plexus. The clearance of DSIP from the ventricles during ventriculo-cisternal perfusion in the rabbit indicated no significant flux of the intact peptide out of the CSF. The results suggest that DSIP crosses the blood-CSF barrier, while the system lacks the specific mechanisms for removal from the CSF found with most, if not all, amino acids and several peptides

  4. Potential Pathways for CNS Drug Delivery Across the Blood-Cerebrospinal Fluid Barrier

    Science.gov (United States)

    Strazielle, Nathalie; Ghersi-Egea, Jean-François

    2016-01-01

    The blood-brain interfaces restrict the cerebral bioavailability of pharmacological compounds. Various drug delivery strategies have been developed to improve drug penetration into the brain. Most strategies target the microvascular endothelium forming the blood-brain barrier proper. Targeting the blood-cerebrospinal fluid (CSF) barrier formed by the epithelium of the choroid plexuses in addition to the blood-brain barrier may offer added-value for the treatment of central nervous system diseases. For instance, targeting the CSF spaces, adjacent tissue, or the choroid plexuses themselves is of interest for the treatment of neuroinflammatory and infectious diseases, cerebral amyloid angiopathy, selected brain tumors, hydrocephalus or neurohumoral dysregulation. Selected CSF-borne materials seem to reach deep cerebral structures by mechanisms that need to be understood in the context of chronic CSF delivery. Drug delivery through both barriers can reduce CSF sink action towards parenchymal drugs. Finally, targeting the choroid plexus-CSF system can be especially relevant in the context of neonatal and pediatric diseases of the central nervous system. Transcytosis appears the most promising mechanism to target in order to improve drug delivery through brain barriers. The choroid plexus epithelium displays strong vesicular trafficking and secretory activities that deserve to be explored in the context of cerebral drug delivery. Folate transport and exosome release into the CSF, plasma protein transport, and various receptor-mediated endocytosis pathways may prove useful mechanisms to exploit for efficient drug delivery into the CSF. This calls for a clear evaluation of transcytosis mechanisms at the blood-CSF barrier, and a thorough evaluation of CSF drug delivery rates. PMID:27464721

  5. Transmigration of polymorphnuclear neutrophils and monocytes through the human blood-cerebrospinal fluid barrier after bacterial infection in vitro.

    Science.gov (United States)

    Steinmann, Ulrike; Borkowski, Julia; Wolburg, Hartwig; Schröppel, Birgit; Findeisen, Peter; Weiss, Christel; Ishikawa, Hiroshi; Schwerk, Christian; Schroten, Horst; Tenenbaum, Tobias

    2013-02-28

    Bacterial invasion through the blood-cerebrospinal fluid barrier (BCSFB) during bacterial meningitis causes secretion of proinflammatory cytokines/chemokines followed by the recruitment of leukocytes into the CNS. In this study, we analyzed the cellular and molecular mechanisms of polymorphonuclear neutrophil (PMN) and monocyte transepithelial transmigration (TM) across the BCSFB after bacterial infection. Using an inverted transwell filter system of human choroid plexus papilloma cells (HIBCPP), we studied leukocyte TM rates, the migration route by immunofluorescence, transmission electron microscopy and focused ion beam/scanning electron microscopy, the secretion of cytokines/chemokines by cytokine bead array and posttranslational modification of the signal regulatory protein (SIRP) α via western blot. PMNs showed a significantly increased TM across HIBCPP after infection with wild-type Neisseria meningitidis (MC58). In contrast, a significantly decreased monocyte transmigration rate after bacterial infection of HIBCPP could be observed. Interestingly, in co-culture experiments with PMNs and monocytes, TM of monocytes was significantly enhanced. Analysis of paracellular permeability and transepithelial electrical resistance confirmed an intact barrier function during leukocyte TM. With the help of the different imaging techniques we could provide evidence for para- as well as for transcellular migrating leukocytes. Further analysis of secreted cytokines/chemokines showed a distinct pattern after stimulation and transmigration of PMNs and monocytes. Moreover, the transmembrane glycoprotein SIRPα was deglycosylated in monocytes, but not in PMNs, after bacterial infection. Our findings demonstrate that PMNs and monoctyes differentially migrate in a human BCSFB model after bacterial infection. Cytokines and chemokines as well as transmembrane proteins such as SIRPα may be involved in this process.

  6. Molecular biology of the blood-brain and the blood-cerebrospinal fluid barriers: similarities and differences

    Directory of Open Access Journals (Sweden)

    Redzic Zoran

    2011-01-01

    Full Text Available Abstract Efficient processing of information by the central nervous system (CNS represents an important evolutionary advantage. Thus, homeostatic mechanisms have developed that provide appropriate circumstances for neuronal signaling, including a highly controlled and stable microenvironment. To provide such a milieu for neurons, extracellular fluids of the CNS are separated from the changeable environment of blood at three major interfaces: at the brain capillaries by the blood-brain barrier (BBB, which is localized at the level of the endothelial cells and separates brain interstitial fluid (ISF from blood; at the epithelial layer of four choroid plexuses, the blood-cerebrospinal fluid (CSF barrier (BCSFB, which separates CSF from the CP ISF, and at the arachnoid barrier. The two barriers that represent the largest interface between blood and brain extracellular fluids, the BBB and the BCSFB, prevent the free paracellular diffusion of polar molecules by complex morphological features, including tight junctions (TJs that interconnect the endothelial and epithelial cells, respectively. The first part of this review focuses on the molecular biology of TJs and adherens junctions in the brain capillary endothelial cells and in the CP epithelial cells. However, normal function of the CNS depends on a constant supply of essential molecules, like glucose and amino acids from the blood, exchange of electrolytes between brain extracellular fluids and blood, as well as on efficient removal of metabolic waste products and excess neurotransmitters from the brain ISF. Therefore, a number of specific transport proteins are expressed in brain capillary endothelial cells and CP epithelial cells that provide transport of nutrients and ions into the CNS and removal of waste products and ions from the CSF. The second part of this review concentrates on the molecular biology of various solute carrier (SLC transport proteins at those two barriers and underlines

  7. Mobile and cordless telephones, serum transthyretin and the blood-cerebrospinal fluid barrier: a cross-sectional study

    Directory of Open Access Journals (Sweden)

    Carlberg Michael

    2009-04-01

    Full Text Available Abstract Background Whether low-intensity radiofrequency radiation damages the blood-brain barrier has long been debated, but little or no consideration has been given to the blood-cerebrospinal fluid barrier. In this cross-sectional study we tested whether long-term and/or short-term use of wireless telephones was associated with changes in the serum transthyretin level, indicating altered transthyretin concentration in the cerebrospinal fluid, possibly reflecting an effect of radiation. Methods One thousand subjects, 500 of each sex aged 18–65 years, were randomly recruited using the population registry. Data on wireless telephone use were assessed by a postal questionnaire and blood samples were analyzed for serum transthyretin concentrations determined by standard immunonephelometric techniques on a BN Prospec® instrument. Results The response rate was 31.4%. Logistic regression of dichotomized TTR serum levels with a cut-point of 0.31 g/l on wireless telephone use yielded increased odds ratios that were statistically not significant. Linear regression of time since first use overall and on the day that blood was withdrawn gave different results for males and females: for men significantly higher serum concentrations of TTR were seen the longer an analogue telephone or a mobile and cordless desktop telephone combined had been used, and in contrast, significantly lower serum levels were seen the longer an UMTS telephone had been used. Adjustment for fractions of use of the different telephone types did not modify the effect for cumulative use or years since first use for mobile telephone and DECT, combined. For women, linear regression gave a significant association for short-term use of mobile and cordless telephones combined, indicating that the sooner blood was withdrawn after the most recent telephone call, the higher the expected transthyretin concentration. Conclusion In this hypothesis-generating descriptive study time since first

  8. Transport characteristics of guanidino compounds at the blood-brain barrier and blood-cerebrospinal fluid barrier: relevance to neural disorders

    Directory of Open Access Journals (Sweden)

    Tachikawa Masanori

    2011-02-01

    Full Text Available Abstract Guanidino compounds (GCs, such as creatine, phosphocreatine, guanidinoacetic acid, creatinine, methylguanidine, guanidinosuccinic acid, γ-guanidinobutyric acid, β-guanidinopropionic acid, guanidinoethane sulfonic acid and α-guanidinoglutaric acid, are present in the mammalian brain. Although creatine and phosphocreatine play important roles in energy homeostasis in the brain, accumulation of GCs may induce epileptic discharges and convulsions. This review focuses on how physiologically important and/or neurotoxic GCs are distributed in the brain under physiological and pathological conditions. Transporters for GCs at the blood-brain barrier (BBB and the blood-cerebrospinal fluid (CSF barrier (BCSFB have emerged as substantial contributors to GCs distribution in the brain. Creatine transporter (CRT/solute carrier (SLC 6A8 expressed at the BBB regulates creatine concentration in the brain, and represents a major pathway for supply of creatine from the circulating blood to the brain. CRT may be a key factor facilitating blood-to-brain guanidinoacetate transport in patients deficient in S-adenosylmethionine:guanidinoacetate N-methyltransferase, the creatine biosynthetic enzyme, resulting in cerebral accumulation of guanidinoacetate. CRT, taurine transporter (TauT/SLC6A6 and organic cation transporter (OCT3/SLC22A3 expressed at the BCSFB are involved in guanidinoacetic acid or creatinine efflux transport from CSF. Interestingly, BBB efflux transport of GCs, including guanidinoacetate and creatinine, is negligible, though the BBB has a variety of efflux transport systems for synthetic precursors of GCs, such as amino acids and neurotransmitters. Instead, the BCSFB functions as a major cerebral clearance system for GCs. In conclusion, transport of GCs at the BBB and BCSFB appears to be the key determinant of the cerebral levels of GCs, and changes in the transport characteristics may cause the abnormal distribution of GCs in the brain seen

  9. Cellular uptake of lead in the blood-cerebrospinal fluid barrier: Novel roles of Connexin 43 hemichannel and its down-regulations via Erk phosphorylation

    Energy Technology Data Exchange (ETDEWEB)

    Song, Han; Zheng, Gang; Liu, Yang; Shen, Xue-Feng; Zhao, Zai-Hua [Department of Occupational and Environmental Health and the Ministry-of-Education' s Key Laboratory of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi' an 710032 (China); Aschner, Michael [Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461 (United States); Luo, Wen-Jing, E-mail: luowenj@fmmu.edu.cn [Department of Occupational and Environmental Health and the Ministry-of-Education' s Key Laboratory of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi' an 710032 (China); Chen, Jing-Yuan, E-mail: jy_chen@fmmu.edu.cn [Department of Occupational and Environmental Health and the Ministry-of-Education' s Key Laboratory of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi' an 710032 (China)

    2016-04-15

    As the structural basis of blood-cerebrospinal fluid barrier (BCB), epithelial cells in the choroid plexus (CP) are targets for lead (Pb). Pb is known to accumulate in the CP; however, the mechanism of Pb uptake in the choroidal epithelial cells remains unknown. Recently, hemichannels of Connexin 43 (Cx43), the most ubiquitously expressed gap junction proteins in the CP, were found to be important pathways for many substances. This study was designed to investigate the roles of Cx43 in Pb uptake in the epithelial cells. Autometallography was used to outline Pb's subcellular location, and the characteristics of Pb transport into CP cells, including concentration- and time-dependence were analyzed by atomic absorption spectroscopy. Knockdown/overexpression of Cx43 with transient siRNA/plasmids transfections before Pb exposure diminished/increased the Pb accumulation. In the Z310 cell-based doxycycline-inducible Cx43 expression cell line (iZCx43), doxycycline induced a significant increase (3-fold) in Pb uptake, corresponding to the increased Cx43 levels. Activation of Cx43 hemichannels by reduced serum conditions caused an increase of Pb concentrations. Cx43-induced Pb uptake was attenuated after blockage of Cx43 hemichannels with its inhibitor, carbenoxolone. Additionally, down-regulation of Cx43 protein levels by Pb exposure paralleled cellular Pb concentrations in the time study. Concomitantly, expressions of phosphor-Src and phosphor-Erk were both significantly increased by Pb. However, inactivation of Erk, not Src pathway, reversed Pb-induced downregulation of Cx43. Taken together, these data establish that Pb can accumulate in the BCB and validate the role of Cx43 hemichannel in Pb uptake and its regulations through Erk phosphorylation. - Highlights: • Pb is sequestrated in choroid plexus both in vivo and in vitro. • Cx43 knockdown/overexpression prevents/increases Pb accumulations. • Cx43 hemichannels are required for Pb uptake. • Pb-induced Erk

  10. Cellular uptake of lead in the blood-cerebrospinal fluid barrier: Novel roles of Connexin 43 hemichannel and its down-regulations via Erk phosphorylation

    International Nuclear Information System (INIS)

    Song, Han; Zheng, Gang; Liu, Yang; Shen, Xue-Feng; Zhao, Zai-Hua; Aschner, Michael; Luo, Wen-Jing; Chen, Jing-Yuan

    2016-01-01

    As the structural basis of blood-cerebrospinal fluid barrier (BCB), epithelial cells in the choroid plexus (CP) are targets for lead (Pb). Pb is known to accumulate in the CP; however, the mechanism of Pb uptake in the choroidal epithelial cells remains unknown. Recently, hemichannels of Connexin 43 (Cx43), the most ubiquitously expressed gap junction proteins in the CP, were found to be important pathways for many substances. This study was designed to investigate the roles of Cx43 in Pb uptake in the epithelial cells. Autometallography was used to outline Pb's subcellular location, and the characteristics of Pb transport into CP cells, including concentration- and time-dependence were analyzed by atomic absorption spectroscopy. Knockdown/overexpression of Cx43 with transient siRNA/plasmids transfections before Pb exposure diminished/increased the Pb accumulation. In the Z310 cell-based doxycycline-inducible Cx43 expression cell line (iZCx43), doxycycline induced a significant increase (3-fold) in Pb uptake, corresponding to the increased Cx43 levels. Activation of Cx43 hemichannels by reduced serum conditions caused an increase of Pb concentrations. Cx43-induced Pb uptake was attenuated after blockage of Cx43 hemichannels with its inhibitor, carbenoxolone. Additionally, down-regulation of Cx43 protein levels by Pb exposure paralleled cellular Pb concentrations in the time study. Concomitantly, expressions of phosphor-Src and phosphor-Erk were both significantly increased by Pb. However, inactivation of Erk, not Src pathway, reversed Pb-induced downregulation of Cx43. Taken together, these data establish that Pb can accumulate in the BCB and validate the role of Cx43 hemichannel in Pb uptake and its regulations through Erk phosphorylation. - Highlights: • Pb is sequestrated in choroid plexus both in vivo and in vitro. • Cx43 knockdown/overexpression prevents/increases Pb accumulations. • Cx43 hemichannels are required for Pb uptake. • Pb-induced Erk

  11. Neisseria meningitidis elicits a pro-inflammatory response involving IκBζ in a human blood-cerebrospinal fluid barrier model.

    Science.gov (United States)

    Borkowski, Julia; Li, Li; Steinmann, Ulrike; Quednau, Natascha; Stump-Guthier, Carolin; Weiss, Christel; Findeisen, Peter; Gretz, Norbert; Ishikawa, Hiroshi; Tenenbaum, Tobias; Schroten, Horst; Schwerk, Christian

    2014-09-13

    The human-specific, Gram-negative bacterium Neisseria meningitidis (Nm) is a leading cause of bacterial meningitis worldwide. The blood-cerebrospinal fluid barrier (BCSFB), which is constituted by the epithelial cells of the choroid plexus (CP), has been suggested as one of the potential entry sites of Nm into the CSF and can contribute to the inflammatory response during infectious diseases of the brain. Toll-like receptors (TLRs) are involved in mediating signal transduction caused by the pathogens. Using a recently established in vitro model of the human BCSFB based on human malignant CP papilloma (HIBCPP) cells we investigated the cellular response of HIBCPP cells challenged with the meningitis-causing Nm strain, MC58, employing transcriptome and RT-PCR analysis, cytokine bead array, and enzyme-linked immunosorbent assay (ELISA). In comparison, we analyzed the answer to the closely related unencapsulated carrier isolate Nm α14. The presence of TLRs in HIBCPP and their role during signal transduction caused by Nm was studied by RT-PCR and the use of specific agonists and mutant bacteria. We observed a stronger transcriptional response after infection with strain MC58, in particular with its capsule-deficient mutant MC58siaD-, which correlated with bacterial invasion levels. Expression evaluation and Gene Set Enrichment Analysis pointed to a NFκB-mediated pro-inflammatory immune response involving up-regulation of the transcription factor IκBζ. Infected cells secreted significant levels of pro-inflammatory chemokines and cytokines, including, among others, IL8, CXCL1-3, and the IκBζ target gene product IL6. The expression profile of pattern recognition receptors in HIBCPP cells and the response to specific agonists indicates that TLR2/TLR6, rather than TLR4 or TLR2/TLR1, is involved in the cellular reaction following Nm infection. Our data show that Nm can initiate a pro-inflammatory response in human CP epithelial cells probably involving TLR2/TLR6

  12. SPARC/osteonectin, an endogenous mechanism for targeting albumin to the blood-cerebrospinal fluid interface during brain development

    DEFF Research Database (Denmark)

    Liddelow, S A; Dziegielewska, K M; Møllgård, K

    2011-01-01

    Specialized populations of choroid plexus epithelial cells have previously been shown to be responsible for the transfer of individual plasma proteins from blood to the cerebrospinal fluid (CSF), contributing to their characteristically high concentrations in CSF of the developing brain. The mech......Specialized populations of choroid plexus epithelial cells have previously been shown to be responsible for the transfer of individual plasma proteins from blood to the cerebrospinal fluid (CSF), contributing to their characteristically high concentrations in CSF of the developing brain....... The mechanism of this protein transfer remains elusive. Using a marsupial, Monodelphis domestica, we demonstrate that the albumin-binding protein SPARC (osteonectin/BM-40/culture-shock protein) is present in a subset of choroid plexus epithelial cells from its first appearance, throughout development...

  13. Na,K-ATPase alpha isoforms at the blood-cerebrospinal fluid-trigeminal nerve and blood-retina interfaces in the rat.

    Science.gov (United States)

    Arakaki, Xianghong; McCleary, Paige; Techy, Matthew; Chiang, Jiarong; Kuo, Linus; Fonteh, Alfred N; Armstrong, Brian; Levy, Dan; Harrington, Michael G

    2013-03-14

    Cerebrospinal fluid (CSF) sodium concentration increases during migraine attacks, and both CSF and vitreous humor sodium increase in the rat migraine model. The Na,K-ATPase is a probable source of these sodium fluxes. Since Na,K-ATPase isoforms have different locations and physiological roles, our objective was to establish which alpha isoforms are present at sites where sodium homeostasis is disrupted. Specific Na,K-ATPase alpha isoforms were identified in rat tissues by immunohistochemistry at the blood-CSF barrier at the choroid plexus, at the blood-CSF-trigeminal barrier at the meninges, at the blood-retina barrier, and at the blood-aqueous barrier at the ciliary body. Calcitonin gene-related peptide (CGRP), occludin, or von Willibrand factor (vWF) were co-localized with Na,K-ATPase to identify trigeminal nociceptor fibers, tight junctions, and capillary endothelial cells respectively. The Na,K-ATPase alpha-2 isoform is located on capillaries and intensely at nociceptive trigeminal nerve fibers at the meningeal blood-CSF-trigeminal barrier. Alpha-1 and -3 are lightly expressed on the trigeminal nerve fibers but not at capillaries. Alpha-2 is expressed at the blood-retina barriers and, with alpha-1, at the ciliary body blood aqueous barrier. Intense apical membrane alpha-1 was associated with moderate cytoplasmic alpha-2 expression at the choroid plexus blood-CSF barrier. Na,K-ATPase alpha isoforms are present at the meningeal, choroid plexus, and retinal barriers. Alpha-2 predominates at the capillary endothelial cells in the meninges and retinal ganglion cell layer.

  14. Outer brain barriers in rat and human development

    DEFF Research Database (Denmark)

    Brøchner, Christian B; Holst, Camilla Bjørnbak; Møllgård, Kjeld

    2015-01-01

    Complex barriers at the brain's surface, particularly in development, are poorly defined. In the adult, arachnoid blood-cerebrospinal fluid (CSF) barrier separates the fenestrated dural vessels from the CSF by means of a cell layer joined by tight junctions. Outer CSF-brain barrier provides...... diffusion restriction between brain and subarachnoid CSF through an initial radial glial end feet layer covered with a pial surface layer. To further characterize these interfaces we examined embryonic rat brains from E10 to P0 and forebrains from human embryos and fetuses (6-21st weeks post...

  15. The distribution of the anti-HIV drug, 2'3'-dideoxycytidine (ddC), across the blood-brain and blood-cerebrospinal fluid barriers and the influence of organic anion transport inhibitors.

    Science.gov (United States)

    Gibbs, J E; Thomas, S A

    2002-02-01

    The brain and CSF distribution of the HIV reverse transcriptase inhibitor, 2'3'-dideoxycytidine (ddC), was investigated by the in situ brain perfusion and isolated incubated choroid plexus methods in the guinea pig. Multiple-time brain perfusions indicated that the distribution of [3H]ddC to the brain and CSF was low and the unidirectional rate constant (K(in)) for the brain uptake of this nucleoside analogue (0.52 +/- 0.10 microL/min/g) was not significantly different to that for the vascular marker, [14C]mannitol (0.44 +/- 0.09 microL/min/g). The influence of unlabelled ddC, six organic anion transport inhibitors and 3'-azido 3'-deoxythymidine (AZT) on the CNS uptake of [3H]ddC was examined in situ and in vitro. ddC, probenecid and 2,4-dichlorophenoxyacetic acid altered the distribution of [3H]ddC into the brain and choroid plexuses, indicating that the limited distribution of [3H]ddC was a result of an organic anion efflux transporter, in addition to the low lipophilicity of this drug (octanol-saline partition coefficient, 0.047 +/- 0.001). The CNS distribution was also sensitive to p-aminohippurate and deltorphin II, but not digoxin, suggesting the involvement of organic anion transporters (OAT1/OAT3-like) and organic anion transporting polypeptides (OATP1/OATPA-like). AZT did not effect the accumulation of [3H]ddC, indicating that when these nucleoside analogues are used in anti-HIV combination therapy, the CNS distribution of ddC is unchanged.

  16. Cerebrospinal fluid aquaporin-4-immunoglobulin G disrupts blood brain barrier

    DEFF Research Database (Denmark)

    Asgari, Nasrin; Berg, Carsten Tue; Mørch, Marlene Thorsen

    2015-01-01

    associated with blood-borne horseradish peroxidase leakage indicating blood-brain barrier breakdown. The cerebrospinal fluid aquaporin-4-immunoglobulin G therefore distributes widely in brain to initiate astrocytopathy and blood-brain barrier breakdown....... was evaluated. A distinct distribution pattern of aquaporin-4-immunoglobulin G deposition was observed in the subarachnoid and subpial spaces where vessels penetrate the brain parenchyma, via a paravascular route with intraparenchymal perivascular deposition. Perivascular astrocyte-destructive lesions were...

  17. Strategies to improve drug delivery across the blood-brain barrier.

    Science.gov (United States)

    de Boer, Albertus G; Gaillard, Pieter J

    2007-01-01

    The blood-brain barrier (BBB), together with the blood-cerebrospinal-fluid barrier, protects and regulates the homeostasis of the brain. However, these barriers also limit the transport of small-molecule and, particularly, biopharmaceutical drugs such as proteins, genes and interference RNA to the brain, thereby limiting the treatment of many brain diseases. As a result, various drug delivery and targeting strategies are currently being developed to enhance the transport and distribution of drugs into the brain. In this review, we discuss briefly the biology and physiology of the BBB as the most important barrier for drug transport to the brain and, in more detail, the possibilities for delivering large-molecule drugs, particularly genes, by receptor-mediated nonviral drug delivery to the (human) brain. In addition, the systemic and intracellular pharmacokinetics of nonviral gene delivery, together with targeted brain imaging, are reviewed briefly.

  18. Fibronectin changes in eosinophilic meningitis with blood-CSF barrier disruption.

    Science.gov (United States)

    Shyu, Ling-Yuh; Hu, Ming-E; Chou, Chun-Hui; Chen, Ke-Min; Chiu, Ping-Sung; Lai, Shih-Chan

    2015-01-01

    Fibronectin, which is present at relatively low levels in healthy central nervous systems (CNS), shows increased levels in meningitis. In this study, fibronectin processing was correlated with the increased permeability of the blood-cerebrospinal fluid (CSF) barrier as well as with the formation of eosinophil infiltrates in angiostrongyliasis meningitis. The immunohistochemistry results show matrix metalloproteinase-9 (MMP-9) is localized in the choroid plexus epithelium. Coimmunoprecipitation demonstrated fibronectin strongly binds MMP-9. Furthermore, treatment with the MMP-9 inhibitor GM6001 significantly inhibited fibronectin processing, reduced the blood-CSF barrier permeability, and decreased the eosinophil counts. The decreased fibronectin processing in CSF implies decreased cellular invasion of the subarachnoid space across the blood-CSF barrier. Therefore, increased fibronectin processing may be associated with barrier disruption and participate in the extravasation and migration of eosinophils into the CNS during experimental parasitic infection. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Fluids and barriers of the CNS: a historical viewpoint

    Directory of Open Access Journals (Sweden)

    Liddelow Shane A

    2011-01-01

    Full Text Available Abstract Tracing the exact origins of modern science can be a difficult but rewarding pursuit. It is possible for the astute reader to follow the background of any subject through the many important surviving texts from the classical and ancient world. While empirical investigations have been described by many since the time of Aristotle and scientific methods have been employed since the Middle Ages, the beginnings of modern science are generally accepted to have originated during the 'scientific revolution' of the 16th and 17th centuries in Europe. The scientific method is so fundamental to modern science that some philosophers consider earlier investigations as 'pre-science'. Notwithstanding this, the insight that can be gained from the study of the beginnings of a subject can prove important in the understanding of work more recently completed. As this journal undergoes an expansion in focus and nomenclature from cerebrospinal fluid (CSF into all barriers of the central nervous system (CNS, this review traces the history of both the blood-CSF and blood-brain barriers from as early as it was possible to find references, to the time when modern concepts were established at the beginning of the 20th century.

  20. News from the editors of Fluids and Barriers of the CNS.

    Science.gov (United States)

    Drewes, Lester R; Jones, Hazel C; Keep, Richard F

    2014-01-01

    This editorial announces a new affiliation between Fluids and Barriers of the CNS (FBCNS) and the International Brain Barriers Society (IBBS) with mutual benefits to the journal and to society members. This is a natural progression from the appointment of two new Co-Editors in Chief: Professor Lester Drewes and Professor Richard Keep in 2013. FBCNS provides a unique and specialist platform for the publication of research in the expanding fields of brain barriers and brain fluid systems in both health and disease.

  1. Performance of intact and partially degraded concrete barriers in limiting fluid flow

    International Nuclear Information System (INIS)

    Walton, J.C.; Seitz, R.R.

    1991-07-01

    Concrete barriers will play a critical role in the long-term isolation of low-level radioactive wastes. Over time the barriers will degrade, and in many cases, the fundamental processes controlling performance of the barriers will be different for intact and degraded conditions. This document examines factors controlling fluid flow through intact and degraded concrete disposal facilities. Simplified models are presented fro predicting build up of fluid above a vault; fluid flow through and around intact vaults, through flaws in coatings/liners applied to a vault, and through cracks in a concrete vault; and the influence of different backfill materials around the outside of the vault. Example calculations are presented to illustrate the parameters and processes that influence fluid flow. 46 refs., 49 figs., 2 tabs

  2. Finite-time barriers to front propagation in two-dimensional fluid flows

    Science.gov (United States)

    Mahoney, John R.; Mitchell, Kevin A.

    2015-08-01

    Recent theoretical and experimental investigations have demonstrated the role of certain invariant manifolds, termed burning invariant manifolds (BIMs), as one-way dynamical barriers to reaction fronts propagating within a flowing fluid. These barriers form one-dimensional curves in a two-dimensional fluid flow. In prior studies, the fluid velocity field was required to be either time-independent or time-periodic. In the present study, we develop an approach to identify prominent one-way barriers based only on fluid velocity data over a finite time interval, which may have arbitrary time-dependence. We call such a barrier a burning Lagrangian coherent structure (bLCS) in analogy to Lagrangian coherent structures (LCSs) commonly used in passive advection. Our approach is based on the variational formulation of LCSs using curves of stationary "Lagrangian shear," introduced by Farazmand et al. [Physica D 278-279, 44 (2014)] in the context of passive advection. We numerically validate our technique by demonstrating that the bLCS closely tracks the BIM for a time-independent, double-vortex channel flow with an opposing "wind."

  3. Silver deposition in the central nervous system and the hematoencephalic barrier studied with the electron microscope.

    Science.gov (United States)

    VAN BREEMEN, V L; CLEMENTE, C D

    1955-03-01

    For the purpose of studying the hematoencephalic barrier as it is concerned with silver circulating in the blood stream, silver nitrate was vitally administered to rats in their drinking water over periods of 6 to 8 months. The cerebrum, cerebellum, medulla, area postrema, and choroid plexus were prepared for light and electron microscopy. Silver deposition was found in the perivascular spaces in the choroid plexus, area postrema, in the medulla surrounding the area postrema, and in minute quantities in the cerebrum, cerebellum, and most of the medulla. Two levels of the hematoencephalic barrier were apparently demonstrated in our investigations. The endothelial linings of the vessels in the cerebrum, cerebellum, and medulla constitute the first threshold of the hematoencephalic barrier (specifically here, blood-brain barrier). The cell membranes adjacent to the perivascular spaces form the second threshold, as follows:-the neuroglial cell membranes in the cerebrum, cerebellum, and medulla (blood-brain barrier); the membranes of the neuroglial cells in the area postrema (blood-brain barrier); and the membranes of the epithelial cells of the choroid plexus (blood-cerebrospinal fluid barrier). This study deals with silver deposition and does not infer that the penetration of ionic silver, if present in the blood stream, would necessarily be limited to the regions described. Bleb-like structures were observed to cover the epithelial cell surfaces in the choroid plexus. They may be cellular projections increasing the cell surface area or they may be secretory droplets.

  4. Evaluation of magnetorheological fluid augmented fabric as a fragment barrier material

    International Nuclear Information System (INIS)

    Son, Kwon Joong; Fahrenthold, Eric P

    2012-01-01

    The augmentation of high strength fabrics with non-Newtonian fluids has been suggested as a means for improving the ballistic performance of fragment barrier materials widely used in fan blade containment, body armor, orbital debris shielding, and other applications. Magnetorheological (MR) fluids have attracted particular interest, in view of their controllability and proven effectiveness in a variety of damping applications. In a basic research investigation of the MR fluid augmented fabric barrier concept, the authors have fabricated MR fluid saturated Kevlar targets and measured the ballistic performance of these targets both with and without an applied magnetic field. The experimental results show that magnetization of the MR fluid does, when considered in isolation, improve the ability of the augmented fabric to absorb impact energy. However, the benefits of plastic and viscous energy dissipation in the magnetized semi-solid are more than offset by the detrimental effects of yarn lubrication associated with the fluid’s hydrocarbon carrier. An analytical model developed to assist in the interpretation of the experimental data suggests that frictional interaction of the yarns is significantly more effective than magnetorheological augmentation of the fabric in distributing projectile loads away from the point of impact. (paper)

  5. Modulation of Mrp1 (ABCc1 and Pgp (ABCb1 by bilirubin at the blood-CSF and blood-brain barriers in the Gunn rat.

    Directory of Open Access Journals (Sweden)

    Silvia Gazzin

    2011-01-01

    Full Text Available Accumulation of unconjugated bilirubin (UCB in the brain causes bilirubin encephalopathy. Pgp (ABCb1 and Mrp1 (ABCc1, highly expressed in the blood-brain barrier (BBB and blood-cerebrospinal fluid barrier (BCSFB respectively, may modulate the accumulation of UCB in brain. We examined the effect of prolonged exposure to elevated concentrations of UCB on expression of the two transporters in homozygous, jaundiced (jj Gunn rats compared to heterozygous, not jaundiced (Jj littermates at different developmental stages (2, 9, 17 and 60 days after birth. BBB Pgp protein expression was low in both jj and Jj pups at 9 days (about 16-27% of adult values, despite the up-regulation in jj animals (2 and 1.3 fold higher than age matched Jj animals at P9 and P17-P60, respectively; Mrp1 protein expression was barely detectable. Conversely, at the BCSFB Mrp1 protein expression was rather high (60-70% of the adult values in both jj and Jj at P2, but was markedly (50% down-regulated in jj pups starting at P9, particularly in the 4(th ventricle choroid plexuses: Pgp was almost undetectable. The Mrp1 protein down regulation was accompanied by a modest up-regulation of mRNA, suggesting a translational rather than a transcriptional inhibition. In vitro exposure of choroid plexus epithelial cells obtained from normal rats to UCB, also resulted in a down-regulation of Mrp1 protein. These data suggest that down-regulation of Mrp1 protein at the BSCFB, resulting from a direct effect of UCB on epithelial cells, may impact the Mrp1-mediated neuroprotective functions of the blood-cerebrospinal fluid barrier and actually potentiate UCB neurotoxicity.

  6. Optimal design of wind barriers using 3D computational fluid dynamics simulations

    Science.gov (United States)

    Fang, H.; Wu, X.; Yang, X.

    2017-12-01

    Desertification is a significant global environmental and ecological problem that requires human-regulated control and management. Wind barriers are commonly used to reduce wind velocity or trap drifting sand in arid or semi-arid areas. Therefore, optimal design of wind barriers becomes critical in Aeolian engineering. In the current study, we perform 3D computational fluid dynamics (CFD) simulations for flow passing through wind barriers with different structural parameters. To validate the simulation results, we first inter-compare the simulated flow field results with those from both wind-tunnel experiments and field measurements. Quantitative analyses of the shelter effect are then conducted based on a series of simulations with different structural parameters (such as wind barrier porosity, row numbers, inter-row spacing and belt schemes). The results show that wind barriers with porosity of 0.35 could provide the longest shelter distance (i.e., where the wind velocity reduction is more than 50%) thus are recommended in engineering designs. To determine the optimal row number and belt scheme, we introduce a cost function that takes both wind-velocity reduction effects and economical expense into account. The calculated cost function show that a 3-row-belt scheme with inter-row spacing of 6h (h as the height of wind barriers) and inter-belt spacing of 12h is the most effective.

  7. Hydration and Fluid Replacement Knowledge, Attitudes, Barriers, and Behaviors of NCAA Division 1 American Football Players.

    Science.gov (United States)

    Judge, Lawrence W; Kumley, Roberta F; Bellar, David M; Pike, Kim L; Pierson, Eric E; Weidner, Thomas; Pearson, David; Friesen, Carol A

    2016-11-01

    Judge, LW, Kumley, RF, Bellar, DM, Pike, KL, Pierson, EE, Weidner, T, Pearson, D, and Friesen, CA. Hydration and fluid replacement knowledge, attitudes, barriers, and behaviors of NCAA Division 1 American football players. J Strength Cond Res 30(11): 2972-2978, 2016-Hydration is an important part of athletic performance, and understanding athletes' hydration knowledge, attitudes, barriers, and behaviors is critical for sport practitioners. The aim of this study was to assess National Collegiate Athletic Association (NCAA) Division 1 (D1) American football players, with regard to hydration and fluid intake before, during, and after exercise, and to apply this assessment to their overall hydration practice. The sample consisted of 100 student-athletes from 2 different NCAA D1 universities, who participated in voluntary summer football conditioning. Participants completed a survey to identify the fluid and hydration knowledge, attitudes and behaviors, demographic data, primary football position, previous nutrition education, and barriers to adequate fluid consumption. The average Hydration Knowledge Score (HKS) for the participants in the present study was 11.8 ± 1.9 (69.4% correct), with scores ranging from 42 to 100% correct. Four key misunderstandings regarding hydration, specifically related to intervals of hydration habits among the study subjects, were revealed. Only 24% of the players reported drinking enough fluids before, during, immediately after, and 2 hours after practice. Generalized linear model analysis predicted the outcome variable HKS (χ = 28.001, p = 0.045), with nutrition education (Wald χ = 8.250, p = 0.041) and position on the football team (χ = 9.361, p = 0.025) being significant predictors. "Backs" (e.g., quarterbacks, running backs, and defensive backs) demonstrated significantly higher hydration knowledge than "Linemen" (p = 0.014). Findings indicated that if changes are not made to increase hydration awareness levels among football teams

  8. Neocortical Transplants in the Mammalian Brain Lack a Blood-Brain Barrier to Macromolecules

    Science.gov (United States)

    Rosenstein, Jeffrey M.

    1987-02-01

    In order to determine whether the blood-brain barrier was present in transplants of central nervous tissue, fetal neocortex, which already possesses blood-brain and blood-cerebrospinal fluid barriers to protein, was grafted into the undamaged fourth ventricle or directly into the neocortex of recipient rats. Horseradish peroxidase or a conjugated human immunoglobulin G-peroxidase molecule was systemically administered into the host. These proteins were detected within the cortical transplants within 2 minutes regardless of the age of the donor or postoperative time. At later times these compounds, which normally do not cross the blood-brain barrier, inundated the grafts and adjacent host brain and also entered the cerebrospinal fluid. Endogenous serum albumin detected immunocytochemically in untreated hosts had a comparable although less extensive distribution. Thus, transplants of fetal central nervous tissue have permanent barrier dysfunction, probably due to microvascular changes, and are not integrated physiologically within the host. Blood-borne compounds, either systemically administered or naturally occurring, which should never contact normal brain tissue, have direct access to these transplants and might affect neuronal function.

  9. Mapping the Fluid Pathways and Permeability Barriers of a Large Gas Hydrate Reservoir

    Science.gov (United States)

    Campbell, A.; Zhang, Y. L.; Sun, L. F.; Saleh, R.; Pun, W.; Bellefleur, G.; Milkereit, B.

    2012-12-01

    An understanding of the relationship between the physical properties of gas hydrate saturated sedimentary basins aids in the detection, exploration and monitoring one of the world's upcoming energy resources. A large gas hydrate reservoir is located in the MacKenzie Delta of the Canadian Arctic and geophysical logs from the Mallik test site are available for the gas hydrate stability zone (GHSZ) between depths of approximately 850 m to 1100 m. The geophysical data sets from two neighboring boreholes at the Mallik test site are analyzed. Commonly used porosity logs, as well as nuclear magnetic resonance, compressional and Stoneley wave velocity dispersion logs are used to map zones of elevated and severely reduced porosity and permeability respectively. The lateral continuity of horizontal permeability barriers can be further understood with the aid of surface seismic modeling studies. In this integrated study, the behavior of compressional and Stoneley wave velocity dispersion and surface seismic modeling studies are used to identify the fluid pathways and permeability barriers of the gas hydrate reservoir. The results are compared with known nuclear magnetic resonance-derived permeability values. The aim of investigating this heterogeneous medium is to map the fluid pathways and the associated permeability barriers throughout the gas hydrate stability zone. This provides a framework for an understanding of the long-term dissociation of gas hydrates along vertical and horizontal pathways, and will improve the knowledge pertaining to the production of such a promising energy source.

  10. The effect of aging on brain barriers and the consequences for Alzheimer's disease development.

    Science.gov (United States)

    Gorlé, Nina; Van Cauwenberghe, Caroline; Libert, Claude; Vandenbroucke, Roosmarijn E

    2016-08-01

    Life expectancy has increased in most developed countries, which has led to an increase in the proportion of elderly people in the world's population. However, this increase in life expectancy is not accompanied by a lengthening of the health span since aging is characterized with progressive deterioration in cellular and organ functions. The brain is particularly vulnerable to disease, and this is reflected in the onset of age-related neurodegenerative diseases such as Alzheimer's disease. Research shows that dysfunction of two barriers in the central nervous system (CNS), the blood-brain barrier (BBB) and the blood-cerebrospinal fluid (CSF) barrier (BCSFB), plays an important role in the progression of these neurodegenerative diseases. The BBB is formed by the endothelial cells of the blood capillaries, whereas the BCSFB is formed by the epithelial cells of the choroid plexus (CP), both of which are affected during aging. Here, we give an overview of how these barriers undergo changes during aging and in Alzheimer's disease, thereby disturbing brain homeostasis. Studying these changes is needed in order to gain a better understanding of the mechanisms of aging at the brain barriers, which might lead to the development of new therapies to lengthen the health span (including mental health) and reduce the chances of developing Alzheimer's disease.

  11. Coupling parameter series expansion for fluid with square-well plus repulsive-square-barrier potential

    Directory of Open Access Journals (Sweden)

    Shiqi Zhou

    2013-10-01

    Full Text Available Monte Carlo simulations in the canonical ensemble are performed for fluid with potential consisting of a square-well plus a square-barrier to obtain thermodynamic properties such as pressure, excess energy, constant volume excess heat capacity, and excess chemical potential, and structural property such as radial distribution function. The simulations cover a wide density range for the fluid phase, several temperatures, and different combinations of the parameters defining the potential. These simulation data have been used to test performances of a coupling parameter series expansion (CPSE recently proposed by one of the authors [S. Zhou, Phys. Rev. E 74, 031119 (2006], and a traditional 2nd-order high temperature series expansion (HTSE based on a macroscopic compressibility approximation (MAC used with confidence since its introduction in 1967. It is found that (i the MCA-based 2nd-order HTSE unexpectedly and depressingly fails for most situations investigated, and the present simulation results can serve well as strict criteria for testing liquid state theories. (ii The CPSE perturbation scheme is shown to be capable of predicting very accurately most of the thermodynamic properties simulated, but the most appropriate level of truncating the CPSE differs and depends on the range of the potential to be calculated; in particular, the shorter the potential range is, the higher the most appropriate truncating level can be, and along with rising of the potential range the performance of the CPSE perturbation scheme will decrease at higher truncating level. (iii The CPSE perturbation scheme can calculate satisfactorily bulk fluid rdf, and such calculations can be done for all fluid states of the whole phase diagram. (iv The CPSE is a convergent series at higher temperatures, but show attribute of asymptotic series at lower temperatures, and as a result, the surest asymptotic value occurs at lower-order truncation.

  12. Influence of the potential well and the potential barrier on the density distribution of confined-model fluids

    CERN Document Server

    Lee, B H; Lee, C H; Seong Baek Seok

    2000-01-01

    A density functional perturbative approximation, which is based on the density functional expansion of the one-particle direct correlation function of model fluids with respect to the bulk density, has been employed to investigate the influence of the potential well and the potential barrier on the density behavior of confined-model fluids. The mean spherical approximation has been used to calculate the two-particle direct correlation function of the model fluids. At lower densities, the density distributions are strongly affected by the barrier height and the well depth of the model potential, the contribution from the short-range repulsive part being especially important. However, the effects of the barrier height and the well depth of the model potential decrease with increasing bulk density. The calculated results also show that in the region where the effect of the wall-fluid interaction is relatively weak, the square-barrier part of the model potential leads to a nonuniformity in the density distributio...

  13. Dielectric barrier discharges used for the conversion of greenhouse gases : modeling the plasma chemistry by fluid simulations

    NARCIS (Netherlands)

    De Bie, C.; Martens, T.; Dijk, van J.; Paulussen, S.; Verheyde, B.; Corthals, S.; Bogaerts, A.

    2011-01-01

    The conversion of methane to value-added chemicals and fuels is considered to be one of the challenges of the 21st century. In this paper we study, by means of fluid modeling, the conversion of methane to higher hydrocarbons or oxygenates by partial oxidation with CO 2 or O 2 in a dielectric barrier

  14. Effect of Fluid Intake on Hydration Status and Skin Barrier Characteristics in Geriatric Patients: An Explorative Study.

    Science.gov (United States)

    Akdeniz, Merve; Boeing, Heiner; Müller-Werdan, Ursula; Aykac, Volkan; Steffen, Annika; Schell, Mareike; Blume-Peytavi, Ulrike; Kottner, Jan

    2018-04-03

    Inadequate fluid intake is assumed to be a trigger of water-loss dehydration, which is a major health risk in aged and geriatric populations. Thus, there is a need to search for easy to use diagnostic tests to identify dehydration. Our overall aim was to investigate whether skin barrier parameters could be used for predicting fluid intake and/or hydration status in geriatric patients. An explorative observational comparative study was conducted in a geriatric hospital including patients aged 65 years and older. We measured 3-day fluid intake, skin barrier parameters, Overall Dry Skin Score, serum osmolality, cognitive and functional health, and medications. Forty patients were included (mean age 78.45 years and 65% women) with a mean fluid intake of 1,747 mL/day. 20% of the patients were dehydrated and 22.5% had an impending dehydration according to serum osmolality. Multivariate analysis suggested that skin surface pH and epidermal hydration at the face were associated with fluid intake. Serum osmolality was associated with epidermal hydration at the leg and skin surface pH at the face. Fluid intake was not correlated with serum osmolality. Diuretics were associated with high serum osmolality. Approximately half of the patients were diagnosed as being dehydrated according to osmolality, which is the current reference standard. However, there was no association with fluid intake, questioning the clinical relevance of this measure. Results indicate that single skin barrier parameters are poor markers for fluid intake or osmolality. Epidermal hydration might play a role but most probably in combination with other tests. © 2018 S. Karger AG, Basel.

  15. You Shall Not Pass – Tight junctions of the Blood Brain Barrier.

    Directory of Open Access Journals (Sweden)

    Hans-Christian eBauer

    2014-12-01

    Full Text Available Tissue barriers restricting the free diffusion of substances between the central nervous system and the systemic circulation are of great medical interest. Excessive leakage of blood-borne molecules into the parenchyma and the concomitant fluctuations in the microenvironment following a transient breakdown of the blood-brain barrier (BBB during ischemic/hypoxic conditions or due to an autoimmune disease are detrimental to the physiology of nervous tissue.On the other hand, the treatment of neurological disorders is often hampered as only minimal amounts of therapeutic agents are able to penetrate a functional BBB or blood cerebrospinal fluid barrier. At the basis of the BBB are, next to an elaborate transporting machinery, intimate cell-cell contacts (tight junctions creating not only a paracellular diffusion constraint but also enabling the vectorial transport across cell monolayers.More recent findings indicate that functional barriers are already established during development, protecting the fetal brain. As an understanding of the biogenesis of TJs might reveal the underlying mechanisms of barrier formation during ontogenic development numerous in vitro systems have been developed to study the assembly and disassembly of TJs. In addition, monitoring the stage-specific expression of TJ proteins during development has brought much insight into the developmental tightening of tissue barriers. Further, over the last two decades a detailed molecular map of tight junctions has emerged.TJs not only represent a cell-cell adhesion structure, but integrate various signaling pathways, thereby directly or indirectly impacting upon processes such as cell proliferation, cytoskeletal rearrangement, and transcriptional control.This review will provide a brief overview on the establishment of the BBB during embryonic development in mammals and a detailed description of the ultrastructure, biogenesis, and molecular composition of epithelial and endothelial

  16. Evidence of compromised blood-spinal cord barrier in early and late symptomatic SOD1 mice modeling ALS.

    Directory of Open Access Journals (Sweden)

    Svitlana Garbuzova-Davis

    2007-11-01

    Full Text Available The blood-brain barrier (BBB, blood-spinal cord barrier (BSCB, and blood-cerebrospinal fluid barrier (BCSFB control cerebral/spinal cord homeostasis by selective transport of molecules and cells from the systemic compartment. In the spinal cord and brain of both ALS patients and animal models, infiltration of T-cell lymphocytes, monocyte-derived macrophages and dendritic cells, and IgG deposits have been observed that may have a critical role in motor neuron damage. Additionally, increased levels of albumin and IgG have been found in the cerebrospinal fluid in ALS patients. These findings suggest altered barrier permeability in ALS. Recently, we showed disruption of the BBB and BSCB in areas of motor neuron degeneration in the brain and spinal cord in G93A SOD1 mice modeling ALS at both early and late stages of disease using electron microscopy. Examination of capillary ultrastructure revealed endothelial cell degeneration, which, along with astrocyte alteration, compromised the BBB and BSCB. However, the effect of these alterations upon barrier function in ALS is still unclear. The aim of this study was to determine the functional competence of the BSCB in G93A mice at different stages of disease.Evans Blue (EB dye was intravenously injected into ALS mice at early or late stage disease. Vascular leakage and the condition of basement membranes, endothelial cells, and astrocytes were investigated in cervical and lumbar spinal cords using immunohistochemistry. Results showed EB leakage in spinal cord microvessels from all G93A mice, indicating dysfunction in endothelia and basement membranes and confirming our previous ultrastructural findings on BSCB disruption. Additionally, downregulation of Glut-1 and CD146 expressions in the endothelial cells of the BSCB were found which may relate to vascular leakage.Results suggest that the BSCB is compromised in areas of motor neuron degeneration in ALS mice at both early and late stages of the disease.

  17. The two-pore domain K+ channel TASK-1 is closely associated with brain barriers and meninges.

    Science.gov (United States)

    Kanjhan, Refik; Pow, David V; Noakes, Peter G; Bellingham, Mark C

    2010-12-01

    Impairment of the blood-brain barrier (BBB), the blood-cerebrospinal fluid (CSF) barrier and brain-CSF barrier has been implicated in neuropathology of several brain disorders, such as amyotrophic lateral sclerosis, cerebral edema, multiple sclerosis, neural inflammation, ischemia and stroke. Two-pore domain weakly inward rectifying K+ channel (TWIK)-related acid-sensitive potassium (TASK)-1 channels (K2p3.1; KCNK3) are among the targets that contribute to the development of these pathologies. For example TASK-1 activity is inhibited by acidification, ischemia, hypoxia and several signaling molecules released under pathologic conditions. We have used immuno-histochemistry to examine the distribution of the TASK-1 protein in structures associated with the BBB, blood-CSF barrier, brain-CSF barrier, and in the meninges of adult rat. Dense TASK-1 immuno-reactivity (TASK-1-IR) was observed in ependymal cells lining the fourth ventricle at the brain-CSF interface, in glial cells that ensheath the walls of blood vessels at the glio-vascular interface, and in the meninges. In these structures, TASK-1-IR often co-localized with glial fibrillary associated protein (GFAP) or vimentin. This study provides anatomical evidence for localization of TASK-1 K+ channels in cells that segregate distinct fluid compartments within and surrounding the brain. We suggest that TASK-1 channels, in coordination with other ion channels (e.g., aquaporins and chloride channels) and transporters (e.g., Na+-K+-ATPase and Na+-K+-2Cl⁻ and by virtue of its heterogeneous distribution, may differentially contribute to the varying levels of K+ vital for cellular function in these compartments. Our findings are likely to be relevant to recently reported roles of TASK-1 in cerebral ischemia, stroke and inflammatory brain disorders.

  18. The role of brain barriers in fluid movement in the CNS: is there a 'glymphatic' system?

    Science.gov (United States)

    Abbott, N Joan; Pizzo, Michelle E; Preston, Jane E; Janigro, Damir; Thorne, Robert G

    2018-03-01

    Brain fluids are rigidly regulated to provide stable environments for neuronal function, e.g., low K + , Ca 2+ , and protein to optimise signalling and minimise neurotoxicity. At the same time, neuronal and astroglial waste must be promptly removed. The interstitial fluid (ISF) of the brain tissue and the cerebrospinal fluid (CSF) bathing the CNS are integral to this homeostasis and the idea of a glia-lymph or 'glymphatic' system for waste clearance from brain has developed over the last 5 years. This links bulk (convective) flow of CSF into brain along the outside of penetrating arteries, glia-mediated convective transport of fluid and solutes through the brain extracellular space (ECS) involving the aquaporin-4 (AQP4) water channel, and finally delivery of fluid to venules for clearance along peri-venous spaces. However, recent evidence favours important amendments to the 'glymphatic' hypothesis, particularly concerning the role of glia and transfer of solutes within the ECS. This review discusses studies which question the role of AQP4 in ISF flow and the lack of evidence for its ability to transport solutes; summarizes attributes of brain ECS that strongly favour the diffusion of small and large molecules without ISF flow; discusses work on hydraulic conductivity and the nature of the extracellular matrix which may impede fluid movement; and reconsiders the roles of the perivascular space (PVS) in CSF-ISF exchange and drainage. We also consider the extent to which CSF-ISF exchange is possible and desirable, the impact of neuropathology on fluid drainage, and why using CSF as a proxy measure of brain components or drug delivery is problematic. We propose that new work and key historical studies both support the concept of a perivascular fluid system, whereby CSF enters the brain via PVS convective flow or dispersion along larger caliber arteries/arterioles, diffusion predominantly regulates CSF/ISF exchange at the level of the neurovascular unit associated with

  19. Cerebrospinal Fluid Enhancement on Fluid Attenuated Inversion Recovery Images After Carotid Artery Stenting with Neuroprotective Balloon Occlusions: Hemodynamic Instability and Blood–Brain Barrier Disruption

    International Nuclear Information System (INIS)

    Ogami, Ryo; Nakahara, Toshinori; Hamasaki, Osamu; Araki, Hayato; Kurisu, Kaoru

    2011-01-01

    Purpose: A rare complication of carotid artery stenting (CAS), prolonged reversible neurological symptoms with delayed cerebrospinal fluid (CSF) space enhancement on fluid attenuated inversion recovery (FLAIR) images, is associated with blood–brain barrier (BBB) disruption. We prospectively identified patients who showed CSF space enhancement on FLAIR images. Methods: Nineteen patients—5 acute-phase and 14 scheduled—underwent 21 CAS procedures. Balloon catheters were navigated across stenoses, angioplasty was performed using a neuroprotective balloon, and stents were placed with after dilation under distal balloon protection. CSF space hyperintensity or obscuration on FLAIR after versus before CAS indicated CSF space enhancement. Correlations with clinical factors were examined. Results: CSF space was enhanced on FLAIR in 12 (57.1%) cases. Postprocedural CSF space enhancement was significantly related to age, stenosis rate, acute-stage procedure, and total occlusion time. All acute-stage CAS patients showed delayed enhancement. Only age was associated with delayed CSF space enhancement in scheduled CAS patients. Conclusions: Ischemic intolerance for severe carotid artery stenosis and temporary neuroprotective balloon occlusion, causing reperfusion injury, seem to be the main factors that underlie BBB disruption with delayed CSF space enhancement shortly after CAS, rather than sudden poststenting hemodynamic change. Our results suggest that factors related to hemodynamic instability or ischemic intolerance seem to be associated with post-CAS BBB vulnerability. Patients at risk for hemodynamic instability or with ischemic intolerance, which decrease BBB integrity, require careful management to prevent intracranial hemorrhagic and other post-CAS complications.

  20. Transcriptome analysis of the ependymal barrier during murine neurocysticercosis

    Directory of Open Access Journals (Sweden)

    Mishra Pramod

    2012-06-01

    Full Text Available Abstract Background Central nervous system (CNS barriers play a pivotal role in the protection and homeostasis of the CNS by enabling the exchange of metabolites while restricting the entry of xenobiotics, blood cells and blood-borne macromolecules. While the blood–brain barrier and blood-cerebrospinal fluid barrier (CSF control the interface between the blood and CNS, the ependyma acts as a barrier between the CSF and parenchyma, and regulates hydrocephalic pressure and metabolic toxicity. Neurocysticercosis (NCC is an infection of the CNS caused by the metacestode (larva of Taenia solium and a major cause of acquired epilepsy worldwide. The common clinical manifestations of NCC are seizures, hydrocephalus and symptoms due to increased intracranial pressure. The majority of the associated pathogenesis is attributed to the immune response against the parasite. The properties of the CNS barriers, including the ependyma, are affected during infection, resulting in disrupted homeostasis and infiltration of leukocytes, which correlates with the pathology and disease symptoms of NCC patients. Results In order to characterize the role of the ependymal barrier in the immunopathogenesis of NCC, we isolated ependymal cells using laser capture microdissection from mice infected or mock-infected with the closely related parasite Mesocestoides corti, and analyzed the genes that were differentially expressed using microarray analysis. The expression of 382 genes was altered. Immune response-related genes were verified by real-time RT-PCR. Ingenuity Pathway Analysis (IPA software was used to analyze the biological significance of the differentially expressed genes, and revealed that genes known to participate in innate immune responses, antigen presentation and leukocyte infiltration were affected along with the genes involved in carbohydrate, lipid and small molecule biochemistry. Further, MHC class II molecules and chemokines, including CCL12, were found

  1. Modification in CSF specific gravity in acutely decompensated cirrhosis and acute on chronic liver failure independent of encephalopathy, evidences for an early blood-CSF barrier dysfunction in cirrhosis.

    Science.gov (United States)

    Weiss, Nicolas; Rosselli, Matteo; Mouri, Sarah; Galanaud, Damien; Puybasset, Louis; Agarwal, Banwari; Thabut, Dominique; Jalan, Rajiv

    2017-04-01

    Although hepatic encephalopathy (HE) on the background of acute on chronic liver failure (ACLF) is associated with high mortality rates, it is unknown whether this is due to increased blood-brain barrier permeability. Specific gravity of cerebrospinal fluid measured by CT is able to estimate blood-cerebrospinal fluid-barrier permeability. This study aimed to assess cerebrospinal fluid specific gravity in acutely decompensated cirrhosis and to compare it in patients with or without ACLF and with or without hepatic encephalopathy. We identified all the patients admitted for acute decompensation of cirrhosis who underwent a brain CT-scan. Those patients could present acute decompensation with or without ACLF. The presence of hepatic encephalopathy was noted. They were compared to a group of stable cirrhotic patients and healthy controls. Quantitative brain CT analysis used the Brainview software that gives the weight, the volume and the specific gravity of each determined brain regions. Results are given as median and interquartile ranges and as relative variation compared to the control/baseline group. 36 patients presented an acute decompensation of cirrhosis. Among them, 25 presented with ACLF and 11 without ACLF; 20 presented with hepatic encephalopathy grade ≥ 2. They were compared to 31 stable cirrhosis patients and 61 healthy controls. Cirrhotic patients had increased cerebrospinal fluid specific gravity (CSF-SG) compared to healthy controls (+0.4 %, p encephalopathy did not modify CSF-SG (-0.09 %, p = 0.1757). Specific gravity did not differ between different brain regions according to the presence or absence of either ACLF or HE. In patients with acute decompensation of cirrhosis, and those with ACLF, CSF specific gravity is modified compared to both stable cirrhotic patients and healthy controls. This pattern is observed even in the absence of hepatic encephalopathy suggesting that blood-CSF barrier impairment is manifest even in absence of overt

  2. Coupled processes of fluid flow, solute transport, and geochemical reactions in reactive barriers

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeongkon; Schwartz, Franklin W.; Xu, Tianfu; Choi, Heechul, and Kim, In S.

    2004-01-02

    A complex pattern of coupling between fluid flow and mass transport develops when heterogeneous reactions occur. For instance, dissolution and precipitation reactions can change a porous medium's physical properties, such as pore geometry and thus permeability. These changes influence fluid flow, which in turn impacts the composition of dissolved constituents and the solid phases, and the rate and direction of advective transport. Two-dimensional modeling studies using TOUGHREACT were conducted to investigate the coupling between flow and transport developed as a consequence of differences in density, dissolution precipitation, and medium heterogeneity. The model includes equilibrium reactions for aqueous species, kinetic reactions between the solid phases and aqueous constituents, and full coupling of porosity and permeability changes resulting from precipitation and dissolution reactions in porous media. In addition, a new permeability relationship is implemented in TOUGHREACT to examine the effects of geochemical reactions and density difference on plume migration in porous media. Generally, the evolutions in the concentrations of the aqueous phase are intimately related to the reaction-front dynamics. Plugging of the medium contributed to significant transients in patterns of flow and mass transport.

  3. Impact of volume and surface processes on the pre-ionization of dielectric barrier discharges: advanced diagnostics and fluid modeling

    Science.gov (United States)

    Nemschokmichal, Sebastian; Tschiersch, Robert; Höft, Hans; Wild, Robert; Bogaczyk, Marc; Becker, Markus M.; Loffhagen, Detlef; Stollenwerk, Lars; Kettlitz, Manfred; Brandenburg, Ronny; Meichsner, Jürgen

    2018-05-01

    The phenomenology and breakdown mechanism of dielectric barrier discharges are strongly determined by volume and surface memory effects. In particular, the pre-ionization provided by residual species in the volume or surface charges on the dielectrics influences the breakdown behavior of filamentary and diffuse discharges. This was investigated by advanced diagnostics such as streak camera imaging, laser photodetachment of negative ions and laser photodesorption of electrons from dielectric surfaces in correlation with 1D fluid modeling. The streak camera images show that an increasing number of residual charges in the volume changes the microdischarge breakdown in air-like gas mixtures from a cathode-directed streamer to a simultaneous propagation of cathode- and anode-directed streamers. In contrast, seed electrons are important for the pre-ionization if the density of residual charges in the volume is low. One source of seed electrons are negative ions, whose density exceeds the electron density during the pre-phase of diffuse helium-oxygen barrier discharges as indicated by the laser photodetachment experiments. Electrons desorbed from the cathodic dielectric have an even larger influence. They induce a transition from the glow-like to the Townsend-like discharge mode in nominally pure helium. Apart from analyzing the importance of the pre-ionization for the breakdown mechanism, the opportunities for manipulating the lateral structure and discharge modes are discussed. For this purpose, the intensity and diameter of a diffuse discharge in helium are controlled by an illuminated semiconducting barrier. Contribution to the Topical Issue "Fundamentals of Complex Plasmas", edited by Jürgen Meichsner, Michael Bonitz, Holger Fehske, Alexander Piel.

  4. Self-consistent computation of transport barrier formation by fluid drift turbulence in tokamak geometry

    International Nuclear Information System (INIS)

    Scott, B.; Jenko, F.; Peeters, A.G.; Teo, A.C.Y.

    1999-01-01

    (1) Computations of turbulence from the electromagnetic gyro fluid model are performed in a flux surface geometry representing the actual MHD equilibrium of the ASDEX Upgrade edge flux surfaces. The transition to ideal ballooning seen in simple geometries as the plasma beta rises is suppressed, leaving the transport at quantitatively realistic levels. Computations for core parameters at half-radius geometry show significant contribution due to the finite beta electron dynamics, possibly removing the standard ITG threshold. (2) Strong inward vorticity transport in edge turbulence, resulting from ion diamagnetic flows, may lead to a build up of mean ExB vorticity fast enough to cause an H-mode transition. (3) Friction of mean ion flows against neutrals involves both toroidal and poloidal flow components, leading to a finite radial current due to a given ExB profile even with zero poloidal rotation. (author)

  5. Influence of grid resolution in fluid-model simulation of nanosecond dielectric barrier discharge plasma actuator

    Science.gov (United States)

    Hua, Weizhuo; Fukagata, Koji

    2018-04-01

    Two-dimensional numerical simulation of a surface dielectric barrier discharge (SDBD) plasma actuator, driven by a nanosecond voltage pulse, is conducted. A special focus is laid upon the influence of grid resolution on the computational result. It is found that the computational result is not very sensitive to the streamwise grid spacing, whereas the wall-normal grid spacing has a critical influence. In particular, the computed propagation velocity changes discontinuously around the wall-normal grid spacing about 2 μm due to a qualitative change of discharge structure. The present result suggests that a computational grid finer than that was used in most of previous studies is required to correctly capture the structure and dynamics of streamer: when a positive nanosecond voltage pulse is applied to the upper electrode, a streamer forms in the vicinity of upper electrode and propagates along the dielectric surface with a maximum propagation velocity of 2 × 108 cm/s, and a gap with low electron and ion density (i.e., plasma sheath) exists between the streamer and dielectric surface. Difference between the results obtained using the finer and the coarser grid is discussed in detail in terms of the electron transport at a position near the surface. When the finer grid is used, the low electron density near the surface is caused by the absence of ionization avalanche: in that region, the electrons generated by ionization is compensated by drift-diffusion flux. In contrast, when the coarser grid is used, underestimated drift-diffusion flux cannot compensate the electrons generated by ionization, and it leads to an incorrect increase of electron density.

  6. Amyloid-beta transporter expression at the blood-CSF barrier is age-dependent

    Directory of Open Access Journals (Sweden)

    Pascale Crissey L

    2011-07-01

    Full Text Available Abstract Background Age is the major risk factor for many neurodegenerative diseases, including Alzheimer's disease (AD. There is an accumulation of amyloid-beta peptides (Aβ in both the AD brain and the normal aging brain. Clearance of Aβ from the brain occurs via active transport at the blood-brain barrier (BBB and blood-cerebrospinal fluid barrier (BCSFB. With increasing age, the expression of the Aβ efflux transporters is decreased and the Aβ influx transporter expression is increased at the BBB, adding to the amyloid burden in the brain. Expression of the Aβ transporters at the choroid plexus (CP epithelium as a function of aging was the subject of this study. Methods This project investigated the changes in expression of the Aβ transporters, the low density lipoprotein receptor-related protein-1 (LRP-1, P-glycoprotein (P-gp, LRP-2 (megalin and the receptor for advanced glycation end-products (RAGE at the BCSFB in Brown-Norway/Fischer rats at ages 3, 6, 9, 12, 20, 30 and 36 months, using real time RT-PCR to measure transporter mRNA expression, and immunohistochemistry (IHC to measure transporter protein in isolated rat CP. Results There was an increase in the transcription of the Aβ efflux transporters, LRP-1 and P-gp, no change in RAGE expression and a decrease in LRP-2, the CP epithelium influx transporter, at the BCSFB with aging. Decreased Aβ42 concentration in the CP, as measured by quantitative IHC, was associated with these Aβ transporter alterations. Conclusions Age-dependent alterations in the CP Aβ transporters are associated with a decrease in Aβ42 accumulation in the CP, and are reciprocal to the changes seen in these transporters at the BBB, suggesting a possible compensatory role for the BCSFB in Aβ clearance in aging.

  7. Effects of propranolol and clonidine on brain edema, blood-brain barrier permeability, and endothelial glycocalyx disruption after fluid percussion brain injury in the rat

    DEFF Research Database (Denmark)

    Genét, Gustav Folmer; Bentzer, Peter; Hansen, Morten Bagge

    2018-01-01

    clonidine would decrease brain edema, blood-brain barrier permeability, and glycocalyx disruption at 24 hours after trauma. METHODS: We subjected 53 adult male Sprague-Dawley rats to lateral fluid percussion brain injury and randomized infusion with propranolol (n = 16), propranolol + clonidine (n = 16......), vehicle (n = 16), or sham (n = 5) for 24 hours. Primary outcome was brain water content at 24 hours. Secondary outcomes were blood-brain barrier permeability and plasma levels of syndecan-1 (glycocalyx disruption), cell damage (histone-complexed DNA fragments), epinephrine, norepinephrine, and animal.......555). We found no effect of propranolol and propranolol/clonidine on blood-brain barrier permeability and animal motor scores. Unexpectedly, propranolol and propranolol/clonidine caused an increase in epinephrine and syndecan-1 levels. CONCLUSION: This study does not provide any support for unselective...

  8. Aquaporin-4 facilitator TGN-073 promotes interstitial fluid circulation within the blood-brain barrier: [17O]H2O JJVCPE MRI study.

    Science.gov (United States)

    Huber, Vincent J; Igarashi, Hironaka; Ueki, Satoshi; Kwee, Ingrid L; Nakada, Tsutomu

    2018-06-13

    The blood-brain barrier (BBB), which imposes significant water permeability restriction, effectively isolates the brain from the systemic circulation. Seemingly paradoxical, the abundance of aquaporin-4 (AQP-4) on the inside of the BBB strongly indicates the presence of unique water dynamics essential for brain function. On the basis of the highly specific localization of AQP-4, namely, astrocyte end feet at the glia limitans externa and pericapillary Virchow-Robin space, we hypothesized that the AQP-4 system serves as an interstitial fluid circulator, moving interstitial fluid from the glia limitans externa to pericapillary Virchow-Robin space to ensure proper glymphatic flow draining into the cerebrospinal fluid. The hypothesis was tested directly using the AQP-4 facilitator TGN-073 developed in our laboratory, and [O]H2O JJ vicinal coupling proton exchange MRI, a method capable of tracing water molecules delivered into the blood circulation. The results unambiguously showed that facilitation of AQP-4 by TGN-073 increased turnover of interstitial fluid through the system, resulting in a significant reduction in [O]H2O contents of cortex with normal flux into the cerebrospinal fluid. The study further suggested that in addition to providing the necessary water for proper glymphatic flow, the AQP-4 system produces a water gradient within the interstitial space promoting circulation of interstitial fluid within the BBB.

  9. Antenatal Corticosteroids and Postnatal Fluid Restriction Produce Differential Effects on AQP3 Expression, Water Handling, and Barrier Function in Perinatal Rat Epidermis

    Directory of Open Access Journals (Sweden)

    Johan Agren

    2010-01-01

    Full Text Available Loss of water through the immature skin can lead to hypothermia and dehydration in preterm infants. The water and glycerol channel aquaglyceroporin-3 (AQP3 is abundant in fetal epidermis and might influence epidermal water handling and transepidermal water flux around birth. To investigate the role of AQP3 in immature skin, we measured in vivo transepidermal water transport and AQP3 expression in rat pups exposed to clinically relevant fluid homeostasis perturbations. Preterm (E18 rat pups were studied after antenatal corticosteroid exposure (ANS, and neonatal (P1 rat pups after an 18 h fast. Transepidermal water loss (TEWL and skin hydration were determined, AQP3 mRNA was quantified by RT-PCR, and in-situ hybridization and immunocytochemistry were applied to map AQP3 expression. ANS resulted in an improved skin barrier (lower TEWL and skin hydration, while AQP3 mRNA and protein increased. Fasting led to loss of barrier integrity along with an increase in skin hydration. These alterations were not paralleled by any changes in AQP3. To conclude, antenatal corticosteroids and early postnatal fluid restriction produce differential effects on skin barrier function and epidermal AQP3 expression in the rat. In perinatal rats, AQP3 does not directly determine net water transport through the skin.

  10. Transcytosis in the blood–cerebrospinal fluid barrier of the mouse brain with an engineered receptor/ligand system

    Directory of Open Access Journals (Sweden)

    Héctor R Méndez-Gómez

    Full Text Available Crossing the blood–brain and the blood–cerebrospinal fluid barriers (BCSFB is one of the fundamental challenges in the development of new therapeutic molecules for brain disorders because these barriers prevent entry of most drugs from the blood into the brain. However, some large molecules, like the protein transferrin, cross these barriers using a specific receptor that transports them into the brain. Based on this mechanism, we engineered a receptor/ligand system to overcome the brain barriers by combining the human transferrin receptor with the cohesin domain from Clostridium thermocellum, and we tested the hybrid receptor in the choroid plexus of the mouse brain with a dockerin ligand. By expressing our receptor in choroidal ependymocytes, which are part of the BCSFB, we found that our systemically administrated ligand was able to bind to the receptor and accumulate in ependymocytes, where some of the ligand was transported from the blood side to the brain side.

  11. Coupled modelling (transport-reaction) of the fluid-clay interactions and their feed back on the physical properties of the bentonite engineered clay barrier system

    International Nuclear Information System (INIS)

    Marty, N.

    2006-11-01

    The originality of this work is to process feed back effects of mineralogical and chemical modifications of clays, in storage conditions, on their physical properties and therefore on their transport characteristics (porosity, molecular diffusion, permeability). These feed back effects are modelled using the KIRMAT code (Kinetic of Reaction and MAss Transfer) developed from the kinetic code KINDIS by adding the effect of water renewal in the mineral-solution reactive cells. KIRMAT resolves mass balance equations associated with mass transport together with the geochemical reactions in a 1D approach. After 100 000 years of simulated interaction at 100 C, with the fluid of the Callovo-Oxfordian geological level (COX) and with iron provided by the steel overpack corrosion, the montmorillonite of the clay barrier is only partially transformed (into illite, chlorite, saponite...). Only outer parts of the modelled profile seem to be significantly affected by smectite dissolution processes, mainly at the interface with the geological environment. The modifications of physical properties show a closure of the porosity at the boundaries of the barrier, by creating a decrease of mass transport by molecular diffusion, essentially at the interface with the iron. Permeability laws applied to this system show a decrease of the hydraulic conductivity correlated with the porosity evolution. Near the COX, the swelling pressure of the clays from the barrier decreases. In the major part of the modelled profile, the engineered clay barrier system seems to keep its initial physical properties (porosity, molecular diffusion, permeability, swelling pressure) and functionalities. (author)

  12. Light Absorptive Properties of Articular Cartilage, ECM Molecules, Synovial Fluid, and Photoinitiators as Potential Barriers to Light-Initiated Polymer Scaffolding Procedures.

    Science.gov (United States)

    Finch, Anthony J; Benson, Jamie M; Donnelly, Patrick E; Torzilli, Peter A

    2017-06-01

    Objective Many in vivo procedures to repair chondral defects use ultraviolet (UV)-photoinitiated in situ polymerization within the cartilage matrix. Chemical species that absorb UV light might reduce the effectiveness of these procedures by acting as light absorption barriers. This study evaluated whether any of the individual native biochemical components in cartilage and synovial fluid interfered with the absorption of light by common scaffolding photosensitizers. Materials UV-visible spectroscopy was performed on each major component of cartilage in solution, on bovine synovial fluid, and on four photosensitizers, riboflavin, Irgacure 2959, quinine, and riboflavin-5'-phosphate. Molar extinction and absorption coefficients were calculated at wavelengths of maximum absorbance and 365 nm. Intact articular cartilage was also examined. Results The individual major biochemical components of cartilage, Irgacure 2959, and quinine did not exhibit a significant absorption at 365 nm. Riboflavin and riboflavin-5'-phosphate were more effectual light absorbers at 365 nm, compared with the individual native species. Intact cartilage absorbed a significantly greater amount of UV light in comparison with the native species. Conclusion Our results indicate that none of the individual native species in cartilage will interfere with the absorption of UV light at 365 nm by these commonly used photoinitiators. Intact cartilage slices exhibited significant light absorption at 365 nm, while also having distinct absorbance peaks at wavelengths less than 300 nm. Determining the UV absorptive properties of the biomolecules native to articular cartilage and synovial fluid will aid in optimizing scaffolding procedures to ensure sufficient scaffold polymerization at a minimum UV intensity.

  13. Coupled modelling (transport-reaction) of the fluid-clay interactions and their feed back on the physical properties of the bentonite engineered clay barrier system; Modelisation couplee (transport - reaction) des interactions fluides - argiles et de leurs effets en retour sur les proprietes physiques de barrieres ouvragees en bentonite

    Energy Technology Data Exchange (ETDEWEB)

    Marty, N

    2006-11-15

    The originality of this work is to process feed back effects of mineralogical and chemical modifications of clays, in storage conditions, on their physical properties and therefore on their transport characteristics (porosity, molecular diffusion, permeability). These feed back effects are modelled using the KIRMAT code (Kinetic of Reaction and MAss Transfer) developed from the kinetic code KINDIS by adding the effect of water renewal in the mineral-solution reactive cells. KIRMAT resolves mass balance equations associated with mass transport together with the geochemical reactions in a 1D approach. After 100 000 years of simulated interaction at 100 C, with the fluid of the Callovo-Oxfordian geological level (COX) and with iron provided by the steel overpack corrosion, the montmorillonite of the clay barrier is only partially transformed (into illite, chlorite, saponite...). Only outer parts of the modelled profile seem to be significantly affected by smectite dissolution processes, mainly at the interface with the geological environment. The modifications of physical properties show a closure of the porosity at the boundaries of the barrier, by creating a decrease of mass transport by molecular diffusion, essentially at the interface with the iron. Permeability laws applied to this system show a decrease of the hydraulic conductivity correlated with the porosity evolution. Near the COX, the swelling pressure of the clays from the barrier decreases. In the major part of the modelled profile, the engineered clay barrier system seems to keep its initial physical properties (porosity, molecular diffusion, permeability, swelling pressure) and functionalities. (author)

  14. Infectious Progression of Canine Distemper Virus from Circulating Cerebrospinal Fluid into the Central Nervous System.

    Science.gov (United States)

    Takenaka, Akiko; Sato, Hiroki; Ikeda, Fusako; Yoneda, Misako; Kai, Chieko

    2016-10-15

    many respects, the pathogenesis of CDV infection in animals resembles that of measles virus infection in humans. We successfully generated a recombinant CDV containing the H and P genes from a mouse-adapted neurovirulent strain and expressing EGFP. The recombinant CDV exhibited severe neurovirulence with high mortality, comparable to the parental mouse-adapted strain. The mouse-infectious model could become a useful tool for analyzing CDV infection of the central nervous system subsequent to passing through the blood-cerebrospinal fluid barrier and infectious progression in the target cells in acute disease. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  15. Evidence for low molecular weight, non-transferrin-bound iron in rat brain and cerebrospinal fluid

    DEFF Research Database (Denmark)

    Moos, Torben; Morgan, Evan H.

    1998-01-01

    Neuroscience, blood-brain barrier, choroid plexus, interstitial fluid, transferrin receptor, uptake......Neuroscience, blood-brain barrier, choroid plexus, interstitial fluid, transferrin receptor, uptake...

  16. The 24-hour skin hydration and barrier function effects of a hyaluronic 1%, glycerin 5%, and Centella asiatica stem cells extract moisturizing fluid: an intra-subject, randomized, assessor-blinded study.

    Science.gov (United States)

    Milani, Massimo; Sparavigna, Adele

    2017-01-01

    Moisturizing products are commonly used to improve hydration in skin dryness conditions. However, some topical hydrating products could have negative effects on skin barrier function. In addition, hydrating effects of moisturizers are not commonly evaluated up to 24 hours after a single application. Hyaluronic acid (HA) and glycerin are very well-known substances able to improve skin hydration. Centella asiatica extract (CAE) could exert lenitive, anti-inflammatory and reepithelialization actions. Furthermore, CAE could inhibit hyaluronidase enzyme activity, therefore prolonging the effect of HA. A fluid containing HA 1%, glycerin 5% and stem cells CAE has been recently developed (Jaluronius CS [JCS] fluid). To evaluate and compare the 24-hour effects of JCS fluid on skin hydration and on transepidermal water loss (TEWL) in healthy subjects in comparison with the control site. Twenty healthy women, mean age 40 years, were enrolled in an intra-subject (right vs left), randomized, assessor-blinded, controlled, 1-day trial. The primary end points were the skin hydration and TEWL, evaluated at the volar surface of the forearm and in standardized conditions (temperature- and humidity-controlled room: 23°C and 30% of humidity) using a corneometer and a vapometer device at baseline, 1, 8 and 24 hours after JCS fluid application. Measurements were performed by an operator blinded for the treatments. Skin hydration after 24 hours was significantly higher ( P =0.001; Mann-Whitney U test) in the JCS-treated area in comparison with the control site. JCS induced a significant ( P =0.0001) increase in skin hydration at each evaluation time (+59% after 1 hour, +48% after 8 hours and +29% after 24 hours) in comparison with both baseline ( P =0.0001) and non-treated control site ( P =0.001). TEWL after 24 hours was significantly lower ( P =0.049; Mann-Whitney U test) in the JCS-treated area in comparison with the control site (13±4 arbitrary units [AU] vs 16±6 AU). JCS fluid

  17. Permselectivity of the liver blood-lymph (ascitic fluid) barrier to macromolecules in decompensated cirrhosis: relation to calculated pore-size

    DEFF Research Database (Denmark)

    Henriksen, Jens Henrik Sahl

    1983-01-01

    in plasma and ascitic fluid from 13 cirrhotic patients. As previously substantiated in patients with cirrhosis, the ascitic fluid/plasma concentration ratio (R) of a protein is proportional to the transport rate from blood to lymph (ascitic fluid). Mean Ralb = 0.28 and RIgG = 0.29 were identical......, but significantly higher than, RIgM = 0.18 (P less than 0.01). Ralb was directly correlated to RIgG (r = 0.97, P less than 0.001) and to RIgM (r = 0.78, P less than 0.005). Mean RIgG/Ralb = 1.03, which expresses the relative flux rates between IgG and albumin, was significantly above the ratio between the free...... diffusion coefficients (DIgG/Dalb = 0.64, P less than 0.01). Mean RIgM/Ralb = 0.61 was significantly above DIgM/Dalb = 0.39 (P less than 0.05) and significantly below unity (P less than 0.01). The results are best explained by filtration as the dominant mechanism of the liver blood-lymph (ascitic fluid...

  18. Involvement of P-glycoprotein and multidrug resistance associated protein 1 in the transport of tanshinone IIB, a primary active diterpenoid quinone from the roots of Salvia miltiorrhiza, across the blood-brain barrier.

    Science.gov (United States)

    Zhou, Zhi-Wei; Chen, Xiao; Liang, Jun; Yu, Xi-Yong; Wen, Jing-Yuan; Zhou, Shu-Feng

    2007-08-01

    Tanshinone IIB (TSB) is a major constituent of Salvia miltiorrhiza, which is widely used in treatment of cardiovascular and central nervous system (CNS) diseases such as coronary heart disease and stroke. This study aimed to investigate the role of various drug transporters in the brain penetration of TSB using several in vitro and in vivo mouse and rat models. The uptake and efflux of TSB in rat primary microvascular endothelial cells (RBMVECs) were ATP-dependent and significantly altered in the presence of a P-glycoprotein (P-gp) or multidrug resistance associated protein (Mrp1/2) inhibitor. A polarized transport of TSB was found in RBMVEC monolayers with facilitated efflux from the abluminal to luminal side. Addition of a P-gp inhibitor (e.g. verapamil) in both abluminal and luminal sides attenuated the polarized transport. In an in situ rat brain perfusion model, TSB crossed the blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier at a greater rate than that for sucrose, and the brain penetration was increased in the presence of a P-gp or Mrp1/2 inhibitor. The brain levels of TSB were only about 30% of that in the plasma and it could be increased to up to 72% of plasma levels when verapamil, quinidine, or probenecid was co-administered in rats. The entry of TSB to CNS increased by 67-97% in rats subjected to middle cerebral artery occlusion or treatment with the neurotoxin, quinolinic acid, compared to normal rats. Furthermore, The brain levels of TSB in mdr1a(-/-) and mrp1(-/-) mice were 28- to 2.6-fold higher than those in the wild-type mice. TSB has limited brain penetration through the BBB due to the contribution of P-gp and to a lesser extent of Mrp1 in rodents. Further studies are needed to confirm whether these corresponding transporters in humans are involved in limiting the penetration of TSB across the BBB and the clinical relevance.

  19. Double barrier system for an in situ conversion process

    Science.gov (United States)

    McKinzie, Billy John [Houston, TX; Vinegar, Harold J [Bellaire, TX; Cowan, Kenneth Michael [Sugar land, TX; Deeg, Wolfgang Friedrich Johann [Houston, TX; Wong, Sau-Wai [Rijswijk, NL

    2009-05-05

    A barrier system for a subsurface treatment area is described. The barrier system includes a first barrier formed around at least a portion of the subsurface treatment area. The first barrier is configured to inhibit fluid from exiting or entering the subsurface treatment area. A second barrier is formed around at least a portion of the first barrier. A separation space exists between the first barrier and the second barrier.

  20. Riboflavin transport in the central nervous system. Characterization and effects of drugs.

    OpenAIRE

    Spector, R

    1980-01-01

    The relationship of riboflavin transport to the transport of other substances including drugs in rabbit choroid plexus, the anatomical locus of the blood-cerebrospinal fluid barrier, and brain cells were studied in vivo and in vitro. In vitro, the ability of rabbit choroid plexus to transport riboflavin from the medium (cerebrospinal fluid surface) through the choroid plexus epithelial cells into the extracellular and vascular spaces of the choroid plexus was documented using fluorescence mic...

  1. Fluid Mechanics.

    Science.gov (United States)

    Drazin, Philip

    1987-01-01

    Outlines the contents of Volume II of "Principia" by Sir Isaac Newton. Reviews the contributions of subsequent scientists to the physics of fluid dynamics. Discusses the treatment of fluid mechanics in physics curricula. Highlights a few of the problems of modern research in fluid dynamics. Shows that problems still remain. (CW)

  2. Fluids engineering

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Fluids engineering has played an important role in many applications, from ancient flood control to the design of high-speed compact turbomachinery. New applications of fluids engineering, such as in high-technology materials processing, biotechnology, and advanced combustion systems, have kept up unwaining interest in the subject. More accurate and sophisticated computational and measurement techniques are also constantly being developed and refined. On a more fundamental level, nonlinear dynamics and chaotic behavior of fluid flow are no longer an intellectual curiosity and fluid engineers are increasingly interested in finding practical applications for these emerging sciences. Applications of fluid technology to new areas, as well as the need to improve the design and to enhance the flexibility and reliability of flow-related machines and devices will continue to spur interest in fluids engineering. The objectives of the present seminar were: to exchange current information on arts, science, and technology of fluids engineering; to promote scientific cooperation between the fluids engineering communities of both nations, and to provide an opportunity for the participants and their colleagues to explore possible joint research programs in topics of high priority and mutual interest to both countries. The Seminar provided an excellent forum for reviewing the current state and future needs of fluids engineering for the two nations. With the Seminar ear-marking the first formal scientific exchange between Korea and the United States in the area of fluids engineering, the scope was deliberately left broad and general

  3. Amniotic fluid embolism

    Directory of Open Access Journals (Sweden)

    Kiranpreet Kaur

    2016-01-01

    Full Text Available Amniotic fluid embolism (AFE is one of the catastrophic complications of pregnancy in which amniotic fluid, fetal cells, hair, or other debris enters into the maternal pulmonary circulation, causing cardiovascular collapse. Etiology largely remains unknown, but may occur in healthy women during labour, during cesarean section, after abnormal vaginal delivery, or during the second trimester of pregnancy. It may also occur up to 48 hours post-delivery. It can also occur during abortion, after abdominal trauma, and during amnio-infusion. The pathophysiology of AFE is not completely understood. Possible historical cause is that any breach of the barrier between maternal blood and amniotic fluid forces the entry of amniotic fluid into the systemic circulation and results in a physical obstruction of the pulmonary circulation. The presenting signs and symptoms of AFE involve many organ systems. Clinical signs and symptoms are acute dyspnea, cough, hypotension, cyanosis, fetal bradycardia, encephalopathy, acute pulmonary hypertension, coagulopathy etc. Besides basic investigations lung scan, serum tryptase levels, serum levels of C3 and C4 complements, zinc coproporphyrin, serum sialyl Tn etc are helpful in establishing the diagnosis. Treatment is mainly supportive, but exchange transfusion, extracorporeal membrane oxygenation, and uterine artery embolization have been tried from time to time. The maternal prognosis after amniotic fluid embolism is very poor though infant survival rate is around 70%.

  4. Barrier Systems

    NARCIS (Netherlands)

    Heteren, S. van

    2015-01-01

    Barrier-system dynamics are a function of antecedent topography and substrate lithology, Relative sea-level (RSL) changes, sediment availability and type, climate, vegetation type and cover, and various aero- and hydrodynamic processes during fair-weather conditions and extreme events. Global change

  5. Buffer fluid

    Energy Technology Data Exchange (ETDEWEB)

    Mirzadzhanzade, A Kh; Dedusanko, G Ya; Dinaburg, L S; Markov, Yu M; Rasizade, Ya N; Rozov, V N; Sherstnev, N M

    1979-08-30

    A drilling fluid is suggested for separating the drilling and plugging fluids which contains as the base increased solution of polyacrylamide and additive. In order to increase the viscoelastic properties of the liquid with simultaneous decrease in the periods of its fabrication, the solution contains as an additive dry bentonite clay. In cases of the use of a buffer fluid under conditions of negative temperatures, it is necessary to add to it table salt or ethylene glycol.

  6. Information barriers

    International Nuclear Information System (INIS)

    Fuller, J.L.; Wolford, J.

    2001-01-01

    Full text: An information barrier (IB) consists of procedures and technology that prevent the release of sensitive information during a joint inspection of a sensitive nuclear item, and provides confidence that the measurement system into which it has been integrated functions exactly as designed and constructed. Work in the U.S. on radiation detection system information barriers dates back at least to 1990, even though the terminology is more recent. In January 1999 the Joint DoD-DOE Information Barrier Working Group was formed in the United States to help coordinate technical efforts related to information barrier R and D. This paper presents an overview of the efforts of this group, by its Chairs, as well as recommendations for further information barrier R and D. Progress on the demonstration of monitoring systems containing IBs is also provided. From the U.S. perspective, the basic, top-level functional requirements for the information barrier portion of an integrated radiation signature-information barrier inspection system are twofold: The host must be assured that his classified information is protected from disclosure to the inspecting party; and The inspecting party must be confident that the integrated inspection system measures, processes, and presents the radiation-signature-based measurement conclusion in an accurate and reproducible manner. It is the position of the United States that in the absence of any agreement to share classified nuclear weapons design information in the conduct of an inspection regime, the requirement to protect host country classified warhead design information is paramount and admits no tradeoff versus the confidence provided to the inspecting party in the accuracy and reproducibility of the measurements. The U.S. has reached an internal consensus on several critical design elements that define a general standard for radiation signature information barrier design. These criteria have stood the test of time under intense

  7. Alternative geochemical barrier materials

    International Nuclear Information System (INIS)

    1991-07-01

    Previous investigations of the effects of neutralization and reduction on uranium mill tailings pore fluids by the Technical Support Contractor indicated that arsenic, selenium, and molybdenum continue to remain in solution in all but reducing conditions. These hazardous constituents are present in groundwaters as oxyanions and, therefore, are not expected to be removed by adsorption into clays and most other soil constituents. It was decided to investigate the attenuation capacity of two commonly available crystalline iron oxides, taconite and scoria, and a zeolite, a network aluminosilicate with a cage structure. Columns of the candidate materials were exposed to solutions of individual constituents, including arsenic, molybdenum, selenium, and, uranium, and to the spiked tailings pore fluid from the Bodo Canyon disposal cell near Durango, Colorado. In addition to the single material columns, a homogeneous blend of the three materials and layers of the materials were exposed to spiked tailings pore fluids. The results of these experiments indicate that with the exception of molybdenum, the constituents of concern are attenuated by the taconite; however, they are not sufficiently attenuated to meet the groundwater protection standards applicable to the UMTRA Project. Therefore, the candidate barrier materials did not prove to be useful to the UMTRA Project for the cleanup of groundwaters

  8. Schroedinger fluid

    International Nuclear Information System (INIS)

    Kan, K.K.

    1983-01-01

    The relationship of nuclear internal flow and collective inertia, the difference of this flow from that of a classical fluid, and the approach of this flow to rigid flow in independent-particle model rotation are elucidated by reviewing the theory of Schroedinger fluid and its implications for collective vibration and rotation. (author)

  9. Floating barrier

    Energy Technology Data Exchange (ETDEWEB)

    1968-05-06

    This floating barrier consists of relatively long elements which can be connected to form a practically continuous assembly. Each element consists of an inflatable tube with an apron of certain height, made of impregnated fabric which is resistant to ocean water and also to hydrocarbons. Means for connecting one element to the following one, and means for attaching ballast to the apron are also provided.

  10. Smart parking barrier

    KAUST Repository

    Alharbi, Abdulrazaq M.

    2016-01-01

    positioning of the movable parking barrier, and a parking controller configured to initiate movement of the parking barrier, via the barrier drive. The movable parking barrier can be positioned between a first position that restricts access to the parking

  11. Injectable barriers for waste isolation

    International Nuclear Information System (INIS)

    Persoff, P.; Finsterle, S.; Moridis, G.J.; Apps, J.; Pruess, K.; Muller, S.J.

    1995-03-01

    In this paper the authors report laboratory work and numerical simulation done in support of development and demonstration of injectable barriers formed from either of two fluids: colloidal silica or polysiloxane. Two principal problems addressed here are control of gel time and control of plume emplacement in the vadose zone. Gel time must be controlled so that the viscosity of the barrier fluid remains low long enough to inject the barrier, but increases soon enough to gel the barrier in place. During injection, the viscosity must be low enough to avoid high injection pressures which could uplift or fracture the formation. To test the grout gel time in the soil, the injection pressure was monitored as grouts were injected into sandpacks. When grout is injected into the vadose zone, it slumps under the influence of gravity, and redistributes due to capillary forces as it gels. The authors have developed a new module for the reservoir simulator TOUGH2 to model grout injection into the vadose zone, taking into account the increase of liquid viscosity as a function of gel concentration and time. They have also developed a model to calculate soil properties after complete solidification of the grout. The numerical model has been used to design and analyze laboratory experiments and field pilot tests. The authors present the results of computer simulations of grout injection, redistribution, and solidification

  12. Fluid dynamics

    CERN Document Server

    Bernard, Peter S

    2015-01-01

    This book presents a focused, readable account of the principal physical and mathematical ideas at the heart of fluid dynamics. Graduate students in engineering, applied math, and physics who are taking their first graduate course in fluids will find this book invaluable in providing the background in physics and mathematics necessary to pursue advanced study. The book includes a detailed derivation of the Navier-Stokes and energy equations, followed by many examples of their use in studying the dynamics of fluid flows. Modern tensor analysis is used to simplify the mathematical derivations, thus allowing a clearer view of the physics. Peter Bernard also covers the motivation behind many fundamental concepts such as Bernoulli's equation and the stream function. Many exercises are designed with a view toward using MATLAB or its equivalent to simplify and extend the analysis of fluid motion including developing flow simulations based on techniques described in the book.

  13. Impairment of interrelated iron- and copper homeostatic mechanisms in brain contributes to the pathogenesis of neurodegenerative disorders

    DEFF Research Database (Denmark)

    Skjørringe, Tina; Møller, Lisbeth Birk; Moos, Torben

    2012-01-01

    is strictly regulated, and concordantly protective barriers, i.e., the blood-brain barrier (BBB) and the blood-cerebrospinal fluid (CSF) barrier (BCB) have evolved to separate the brain environment from the circulation. The uptake mechanisms of the two metals interact. Both iron deficiency and overload lead...... involved in iron transport. Iron and copper are mainly taken up at the BBB, but the BCB also plays a vital role in the homeostasis of the two metals, in terms of sequestering, uptake, and efflux of iron and copper from the brain. Inside the brain, iron and copper are taken up by neurons and glia cells...

  14. Fluid Shifts

    Science.gov (United States)

    Stenger, M. B.; Hargens, A. R.; Dulchavsky, S. A.; Arbeille, P.; Danielson, R. W.; Ebert, D. J.; Garcia, K. M.; Johnston, S. L.; Laurie, S. S.; Lee, S. M. C.; hide

    2017-01-01

    Introduction. NASA's Human Research Program is focused on addressing health risks associated with long-duration missions on the International Space Station (ISS) and future exploration-class missions beyond low Earth orbit. Visual acuity changes observed after short-duration missions were largely transient, but now more than 50 percent of ISS astronauts have experienced more profound, chronic changes with objective structural findings such as optic disc edema, globe flattening and choroidal folds. These structural and functional changes are referred to as the visual impairment and intracranial pressure (VIIP) syndrome. Development of VIIP symptoms may be related to elevated intracranial pressure (ICP) secondary to spaceflight-induced cephalad fluid shifts, but this hypothesis has not been tested. The purpose of this study is to characterize fluid distribution and compartmentalization associated with long-duration spaceflight and to determine if a relation exists with vision changes and other elements of the VIIP syndrome. We also seek to determine whether the magnitude of fluid shifts during spaceflight, as well as any VIIP-related effects of those shifts, are predicted by the crewmember's pre-flight status and responses to acute hemodynamic manipulations, specifically posture changes and lower body negative pressure. Methods. We will examine a variety of physiologic variables in 10 long-duration ISS crewmembers using the test conditions and timeline presented in the figure below. Measures include: (1) fluid compartmentalization (total body water by D2O, extracellular fluid by NaBr, intracellular fluid by calculation, plasma volume by CO rebreathe, interstitial fluid by calculation); (2) forehead/eyelids, tibia, and calcaneus tissue thickness (by ultrasound); (3) vascular dimensions by ultrasound (jugular veins, cerebral and carotid arteries, vertebral arteries and veins, portal vein); (4) vascular dynamics by MRI (head/neck blood flow, cerebrospinal fluid

  15. Fluid mechanics

    International Nuclear Information System (INIS)

    Granger, R.A.

    1985-01-01

    This text offers the most comprehensive approach available to fluid mechanics. The author takes great care to insure a physical understanding of concepts grounded in applied mathematics. The presentation of theory is followed by engineering applications, helping students develop problem-solving skills from the perspective of a professional engineer. Extensive use of detailed examples reinforces the understanding of theoretical concepts

  16. Sprache als Barriere (Language as a Barrier)

    Science.gov (United States)

    Mattheier, Klaus

    1974-01-01

    The concept of language barrier has its derivations in the fields of dialectology, sociology and psychology. In contemporary usage however, the concept has two meanings i.e. regional-cultural barrier and socio-cultural barrier. (Text is in German.) (DS)

  17. Fluid dynamics of dilatant fluid

    DEFF Research Database (Denmark)

    Nakanishi, Hiizu; Nagahiro, Shin-ichiro; Mitarai, Namiko

    2012-01-01

    of the state variable, we demonstrate that the model can describe basic features of the dilatant fluid such as the stress-shear rate curve that represents discontinuous severe shear thickening, hysteresis upon changing shear rate, and instantaneous hardening upon external impact. An analysis of the model...

  18. Fluid dynamics

    CERN Document Server

    Ruban, Anatoly I

    This is the first book in a four-part series designed to give a comprehensive and coherent description of Fluid Dynamics, starting with chapters on classical theory suitable for an introductory undergraduate lecture course, and then progressing through more advanced material up to the level of modern research in the field. The present Part 1 consists of four chapters. Chapter 1 begins with a discussion of Continuum Hypothesis, which is followed by an introduction to macroscopic functions, the velocity vector, pressure, density, and enthalpy. We then analyse the forces acting inside a fluid, and deduce the Navier-Stokes equations for incompressible and compressible fluids in Cartesian and curvilinear coordinates. In Chapter 2 we study the properties of a number of flows that are presented by the so-called exact solutions of the Navier-Stokes equations, including the Couette flow between two parallel plates, Hagen-Poiseuille flow through a pipe, and Karman flow above an infinite rotating disk. Chapter 3 is d...

  19. Fluid mechanics

    International Nuclear Information System (INIS)

    Paraschivoiu, I.; Prud'homme, M.; Robillard, L.; Vasseur, P.

    2003-01-01

    This book constitutes at the same time theoretical and practical base relating to the phenomena associated with fluid mechanics. The concept of continuum is at the base of the approach developed in this work. The general advance proceeds of simple balances of forces as into hydrostatic to more complex situations or inertias, the internal stresses and the constraints of Reynolds are taken into account. This advance is not only theoretical but contains many applications in the form of solved problems, each chapter ending in a series of suggested problems. The major part of the applications relates to the incompressible flows

  20. Principles of fluid mechanics

    International Nuclear Information System (INIS)

    Kreider, J.F.

    1985-01-01

    This book is an introduction on fluid mechanics incorporating computer applications. Topics covered are as follows: brief history; what is a fluid; two classes of fluids: liquids and gases; the continuum model of a fluid; methods of analyzing fluid flows; important characteristics of fluids; fundamentals and equations of motion; fluid statics; dimensional analysis and the similarity principle; laminar internal flows; ideal flow; external laminar and channel flows; turbulent flow; compressible flow; fluid flow measurements

  1. Viscosity-Induced Crossing of the Phantom Barrier

    Directory of Open Access Journals (Sweden)

    Iver Brevik

    2015-09-01

    Full Text Available We show explicitly, by using astrophysical data plus reasonable assumptions for the bulk viscosity in the cosmic fluid, how the magnitude of this viscosity may be high enough to drive the fluid from its position in the quintessence region at present time t = 0 across the barrier w = −1 into the phantom region in the late universe. The phantom barrier is accordingly not a sharp mathematical divide, but rather a fuzzy concept. We also calculate the limiting forms of various thermodynamical quantities, including the rate of entropy production, for a dark energy fluid near the future Big Rip singularity.

  2. Disappearing fluid?

    International Nuclear Information System (INIS)

    Graney, K.; Chu, J.; Lin, P.C.

    2002-01-01

    Full text: A 78-year old male in end stage renal failure (ESRF) with a background of NIDDM retinopathy, nephropathy, and undergoing continuous ambulatory peritoneal dialysis (CAPD) presented with anorexia, clinically unwell, decreased mobility and right scrotal swelling. There was no difficulty during CAPD exchange except there was a positive fluid balance Peritoneal dialysates remained clear A CAPD peritoneal study was requested. 100Mbq 99mTc Sulphur Colloid was injected into a standard dialysate bag containing dialysate. Anterior dynamic images were acquired over the abdomen pelvis while the dialysate was infused Static images with anatomical markers were performed 20 mins post infusion, before and after patient ambulation and then after drainage. The study demonstrated communication between the peritoneal cavity and the right scrotal sac. Patient underwent right inguinal herniaplasty with a marlex mesh. A repeat CAPD flow study was performed as follow up and no abnormal connection between the peritoneal cavity and the right scrotal sac was demonstrated post operatively. This case study shows that CAPD flow studies can be undertaken as a simple, minimally invasive method to evaluate abnormal peritoneal fluid flow dynamics in patients undergoing CAPD, and have an impact on dialysis management. Copyright (2002) The Australian and New Zealand Society of Nuclear Medicine Inc

  3. Auxillary Fluid Flowmeter

    DEFF Research Database (Denmark)

    RezaNejad Gatabi, Javad; Forouzbakhsh, Farshid; Ebrahimi Darkhaneh, Hadi

    2010-01-01

    The Auxiliary Fluid Flow meter is proposed to measure the fluid flow of any kind in both pipes and open channels. In this kind of flow measurement, the flow of an auxiliary fluid is measured Instead of direct measurement of the main fluid flow. The auxiliary fluid is injected into the main fluid ...

  4. Markers for blood-brain barrier integrity

    DEFF Research Database (Denmark)

    Saunders, Norman R; Dziegielewska, Katarzyna M; Møllgård, Kjeld

    2015-01-01

    In recent years there has been a resurgence of interest in brain barriers and various roles their intrinsic mechanisms may play in neurological disorders. Such studies require suitable models and markers to demonstrate integrity and functional changes at the interfaces between blood, brain......, and cerebrospinal fluid. Studies of brain barrier mechanisms and measurements of plasma volume using dyes have a long-standing history, dating back to the late nineteenth-century. Their use in blood-brain barrier studies continues in spite of their known serious limitations in in vivo applications. These were well...... known when first introduced, but seem to have been forgotten since. Understanding these limitations is important because Evans blue is still the most commonly used marker of brain barrier integrity and those using it seem oblivious to problems arising from its in vivo application. The introduction...

  5. Smart parking barrier

    KAUST Repository

    Alharbi, Abdulrazaq M.

    2016-05-06

    Various methods and systems are provided for smart parking barriers. In one example, among others, a smart parking barrier system includes a movable parking barrier located at one end of a parking space, a barrier drive configured to control positioning of the movable parking barrier, and a parking controller configured to initiate movement of the parking barrier, via the barrier drive. The movable parking barrier can be positioned between a first position that restricts access to the parking space and a second position that allows access to the parking space. The parking controller can initiate movement of the movable parking barrier in response to a positive identification of an individual allowed to use the parking space. The parking controller can identify the individual through, e.g., a RFID tag, a mobile device (e.g., a remote control, smartphone, tablet, etc.), an access card, biometric information, or other appropriate identifier.

  6. Gyroelastic fluids

    Energy Technology Data Exchange (ETDEWEB)

    Kerbel, G.D.

    1981-01-20

    A study is made of a scale model in three dimensions of a guiding center plasma within the purview of gyroelastic (also known as finite gyroradius-near theta pinch) magnetohydrodynamics. The (nonlinear) system sustains a particular symmetry called isorrhopy which permits the decoupling of fluid modes from drift modes. Isorrhopic equilibria are analyzed within the framework of geometrical optics resulting in (local) dispersion relations and ray constants. A general scheme is developed to evolve an arbitrary linear perturbation of a screwpinch equilibrium as an invertible integral transform (over the complete set of generalized eigenfunctions defined naturally by the equilibrium). Details of the structure of the function space and the associated spectra are elucidated. Features of the (global) dispersion relation owing to the presence of gyroelastic stabilization are revealed. An energy principle is developed to study the stability of the tubular screwpinch.

  7. Gyroelastic fluids

    International Nuclear Information System (INIS)

    Kerbel, G.D.

    1981-01-01

    A study is made of a scale model in three dimensions of a guiding center plasma within the purview of gyroelastic (also known as finite gyroradius-near theta pinch) magnetohydrodynamics. The (nonlinear) system sustains a particular symmetry called isorrhopy which permits the decoupling of fluid modes from drift modes. Isorrhopic equilibria are analyzed within the framework of geometrical optics resulting in (local) dispersion relations and ray constants. A general scheme is developed to evolve an arbitrary linear perturbation of a screwpinch equilibrium as an invertible integral transform (over the complete set of generalized eigenfunctions defined naturally by the equilibrium). Details of the structure of the function space and the associated spectra are elucidated. Features of the (global) dispersion relation owing to the presence of gyroelastic stabilization are revealed. An energy principle is developed to study the stability of the tubular screwpinch

  8. 7 CFR 2902.36 - Concrete and asphalt release fluids.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Concrete and asphalt release fluids. 2902.36 Section... PROCUREMENT Designated Items § 2902.36 Concrete and asphalt release fluids. (a) Definition. Products that are designed to provide a lubricating barrier between the composite surface materials (e.g., concrete or...

  9. Bare and effective fluid description in brane world cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, Norman [Universidad de Santiago, Departamento de Fisica, Facultad de Ciencia, Casilla 307, Santiago (Chile); Lepe, Samuel; Saavedra, Joel [Pontificia Universidad Catolica de Valparaiso, Instituto de Fisica, Casilla 4950, Valparaiso (Chile); Pena, Francisco [Universidad de La Frontera, Departamento de Ciencias Fisicas, Facultad de Ingenieria, Ciencias y Administracion, Avda. Francisco Salazar 01145, Casilla 54-D, Temuco (Chile)

    2010-03-15

    An effective fluid description, for a brane world model in five dimensions, is discussed for both signs of the brane tension. We found several cosmological scenarios where the effective equation differs widely from the bare equation of state. For universes with negative brane tension, with a bare fluid satisfying the strong energy condition, the effective fluid can cross the barrier {omega} {sub eff}=-1. (orig.)

  10. The blood-tendon barrier: identification and characterisation of a novel tissue barrier in tendon blood vessels

    Directory of Open Access Journals (Sweden)

    C Lehner

    2016-05-01

    Full Text Available Tissue barriers function as “gate keepers” between different compartments (usually blood and tissue and are formed by specialised membrane-associated proteins, localising to the apicolateral plasma membrane domain of epithelial and endothelial cells. By sealing the paracellular space, the free diffusion of solutes and molecules across epithelia and endothelia is impeded. Thereby, tissue barriers contribute to the establishment and maintenance of a distinct internal and external environment, which is crucial during organ development and allows maintenance of an organ-specific homeostatic milieu. So far, various epithelial and endothelial tissue barriers have been described, including the blood-brain barrier, the blood-retina barrier, the blood-testis barrier, the blood-placenta barrier, and the cerebrospinal fluid (CSF-brain barrier, which are vital for physiological function and any disturbance of these barriers can result in severe organ damage or even death. Here, we describe the identification of a novel barrier, located in the vascular bed of tendons, which we term the blood-tendon barrier (BTB. By using immunohistochemistry, transmission electron microscopy, and tracer studies we demonstrate the presence of a functional endothelial barrier within tendons restricting the passage of large blood-borne molecules into the surrounding tendon tissue. We further provide in vitro evidence that the BTB potentially contributes to the creation of a distinct internal tissue environment impacting upon the proliferation and differentiation of tendon-resident cells, effects which might be fundamental for the onset of tendon pathologies.

  11. Barrier cell sheath formation

    International Nuclear Information System (INIS)

    Kesner, J.

    1980-04-01

    The solution for electrostatic potential within a simply modeled tandem mirror thermal barrier is seen to exhibit a sheath at each edge of the cell. The formation of the sheath requires ion collisionality and the analysis assmes that the collisional trapping rate into the barrier is considerably slower than the barrier pump rate

  12. Barriers to fusion

    International Nuclear Information System (INIS)

    Berriman, A.C.; Butt, R.D.; Dasgupta, M.; Hinde, D.J.; Morton, C.R.; Newton, J.O.

    1999-01-01

    The fusion barrier is formed by the combination of the repulsive Coulomb and attractive nuclear forces. Recent research at the Australian National University has shown that when heavy nuclei collide, instead of a single fusion barrier, there is a set of fusion barriers. These arise due to intrinsic properties of the interacting nuclei such deformation, rotations and vibrations. Thus the range of barrier energies depends on the properties of both nuclei. The transfer of matter between nuclei, forming a neck, can also affect the fusion process. High precision data have been used to determine fusion barrier distributions for many nuclear reactions, leading to new insights into the fusion process

  13. Extremal surface barriers

    International Nuclear Information System (INIS)

    Engelhardt, Netta; Wall, Aron C.

    2014-01-01

    We present a generic condition for Lorentzian manifolds to have a barrier that limits the reach of boundary-anchored extremal surfaces of arbitrary dimension. We show that any surface with nonpositive extrinsic curvature is a barrier, in the sense that extremal surfaces cannot be continuously deformed past it. Furthermore, the outermost barrier surface has nonnegative extrinsic curvature. Under certain conditions, we show that the existence of trapped surfaces implies a barrier, and conversely. In the context of AdS/CFT, these barriers imply that it is impossible to reconstruct the entire bulk using extremal surfaces. We comment on the implications for the firewall controversy

  14. Safety- barrier diagrams

    DEFF Research Database (Denmark)

    Duijm, Nijs Jan

    2008-01-01

    Safety-barrier diagrams and the related so-called 'bow-tie' diagrams have become popular methods in risk analysis. This paper describes the syntax and principles for constructing consistent and valid safety-barrier diagrams. The relation of safety-barrier diagrams to other methods such as fault...... trees and Bayesian networks is discussed. A simple method for quantification of safety-barrier diagrams is proposed. It is concluded that safety-barrier diagrams provide a useful framework for an electronic data structure that integrates information from risk analysis with operational safety management....

  15. Safety-barrier diagrams

    DEFF Research Database (Denmark)

    Duijm, Nijs Jan

    2007-01-01

    Safety-barrier diagrams and the related so-called "bow-tie" diagrams have become popular methods in risk analysis. This paper describes the syntax and principles for constructing consistent and valid safety-barrier diagrams. The relation with other methods such as fault trees and Bayesian networks...... are discussed. A simple method for quantification of safety-barrier diagrams is proposed, including situations where safety barriers depend on shared common elements. It is concluded that safety-barrier diagrams provide a useful framework for an electronic data structure that integrates information from risk...... analysis with operational safety management....

  16. Synovial fluid analysis

    Science.gov (United States)

    Joint fluid analysis; Joint fluid aspiration ... El-Gabalawy HS. Synovial fluid analysis, synovial biopsy, and synovial pathology. In: Firestein GS, Budd RC, Gabriel SE, McInnes IB, O'Dell JR, eds. Kelly's Textbook of ...

  17. Self lubricating fluid bearings

    International Nuclear Information System (INIS)

    Kapich, D.D.

    1980-01-01

    The invention concerns self lubricating fluid bearings, which are used in a shaft sealed system extending two regions. These regions contain fluids, which have to be isolated. A first seal is fluid tight for the first region between the carter shaft and the shaft. The second seal is fluid tight between the carter and the shaft, it communicates with the second region. The first fluid region is the environment surrounding the shaft carter. The second fluid region is a part of a nuclear reactor which contains the cooling fluid. The shaft is conceived to drive a reactor circulating and cooling fluid [fr

  18. Modern fluid dynamics

    CERN Document Server

    Kleinstreuer, Clement

    2018-01-01

    Modern Fluid Dynamics, Second Edition provides up-to-date coverage of intermediate and advanced fluids topics. The text emphasizes fundamentals and applications, supported by worked examples and case studies. Scale analysis, non-Newtonian fluid flow, surface coating, convection heat transfer, lubrication, fluid-particle dynamics, microfluidics, entropy generation, and fluid-structure interactions are among the topics covered. Part A presents fluids principles, and prepares readers for the applications of fluid dynamics covered in Part B, which includes computer simulations and project writing. A review of the engineering math needed for fluid dynamics is included in an appendix.

  19. CAPILLARY BARRIERS IN UNSATURATED FRACTURED ROCKS OF YUCCA MOUNTAIN, NEVADA

    International Nuclear Information System (INIS)

    Wu, Y.S.; Zhang, W.; Pan, L.; Hinds, J.; Bodvarsson, G.

    2000-01-01

    This work presents modeling studies investigating the effects of capillary barriers on fluid-flow and tracer-transport processes in the unsaturated zone of Yucca Mountain, Nevada, a potential site for storing high-level radioactive waste. These studies are designed to identify factors controlling the formation of capillary barriers and to estimate their effects on the extent of possible large-scale lateral flow in unsaturated fracture rocks. The modeling approach is based on a continuum formulation of coupled multiphase fluid and tracer transport through fractured porous rock. Flow processes in fractured porous rock are described using a dual-continuum concept. In addition, approximate analytical solutions are developed and used for assessing capillary-barrier effects in fractured rocks. This study indicates that under the current hydrogeologic conceptualization of Yucca Mountain, strong capillary-barrier effects exist for significantly diverting moisture flow

  20. Multilayer moisture barrier

    Science.gov (United States)

    Pankow, Joel W; Jorgensen, Gary J; Terwilliger, Kent M; Glick, Stephen H; Isomaki, Nora; Harkonen, Kari; Turkulainen, Tommy

    2015-04-21

    A moisture barrier, device or product having a moisture barrier or a method of fabricating a moisture barrier having at least a polymer layer, and interfacial layer, and a barrier layer. The polymer layer may be fabricated from any suitable polymer including, but not limited to, fluoropolymers such as polyethylene terephthalate (PET) or polyethylene naphthalate (PEN), or ethylene-tetrafluoroethylene (ETFE). The interfacial layer may be formed by atomic layer deposition (ALD). In embodiments featuring an ALD interfacial layer, the deposited interfacial substance may be, but is not limited to, Al.sub.2O.sub.3, AlSiO.sub.x, TiO.sub.2, and an Al.sub.2O.sub.3/TiO.sub.2 laminate. The barrier layer associated with the interfacial layer may be deposited by plasma enhanced chemical vapor deposition (PECVD). The barrier layer may be a SiO.sub.xN.sub.y film.

  1. Fluid mechanics in fluids at rest.

    Science.gov (United States)

    Brenner, Howard

    2012-07-01

    Using readily available experimental thermophoretic particle-velocity data it is shown, contrary to current teachings, that for the case of compressible flows independent dye- and particle-tracer velocity measurements of the local fluid velocity at a point in a flowing fluid do not generally result in the same fluid velocity measure. Rather, tracer-velocity equality holds only for incompressible flows. For compressible fluids, each type of tracer is shown to monitor a fundamentally different fluid velocity, with (i) a dye (or any other such molecular-tagging scheme) measuring the fluid's mass velocity v appearing in the continuity equation and (ii) a small, physicochemically and thermally inert, macroscopic (i.e., non-Brownian), solid particle measuring the fluid's volume velocity v(v). The term "compressibility" as used here includes not only pressure effects on density, but also temperature effects thereon. (For example, owing to a liquid's generally nonzero isobaric coefficient of thermal expansion, nonisothermal liquid flows are to be regarded as compressible despite the general perception of liquids as being incompressible.) Recognition of the fact that two independent fluid velocities, mass- and volume-based, are formally required to model continuum fluid behavior impacts on the foundations of contemporary (monovelocity) fluid mechanics. Included therein are the Navier-Stokes-Fourier equations, which are now seen to apply only to incompressible fluids (a fact well-known, empirically, to experimental gas kineticists). The findings of a difference in tracer velocities heralds the introduction into fluid mechanics of a general bipartite theory of fluid mechanics, bivelocity hydrodynamics [Brenner, Int. J. Eng. Sci. 54, 67 (2012)], differing from conventional hydrodynamics in situations entailing compressible flows and reducing to conventional hydrodynamics when the flow is incompressible, while being applicable to both liquids and gases.

  2. Reduced abrasion drilling fluid

    NARCIS (Netherlands)

    2010-01-01

    A reduced abrasion drilling fluid system and method of drilling a borehole by circulating the reduced abrasion drilling fluid through the borehole is disclosed. The reduced abrasion drilling fluid comprises a drilling fluid, a first additive and a weighting agent, wherein the weighting agent has a

  3. Reduced abrasion drilling fluid

    NARCIS (Netherlands)

    2012-01-01

    A reduced abrasion drilling fluid system and method of drilling a borehole by circulating the reduced abrasion drilling fluid through the borehole is disclosed. The reduced abrasion drilling fluid comprises a drilling fluid, a first additive and a weighting agent, wherein the weighting agent has a

  4. Process fluid cooling system

    International Nuclear Information System (INIS)

    Farquhar, N.G.; Schwab, J.A.

    1977-01-01

    A system of heat exchangers is disclosed for cooling process fluids. The system is particularly applicable to cooling steam generator blowdown fluid in a nuclear plant prior to chemical purification of the fluid in which it minimizes the potential of boiling of the plant cooling water which cools the blowdown fluid

  5. Development of an UPLC-MS/MS method for quantification of Avitinib (AC0010) and its five metabolites in human cerebrospinal fluid: Application to a study of the blood-brain barrier penetration rate of non-small cell lung cancer patients.

    Science.gov (United States)

    Wang, Weicong; Zheng, Xin; Wang, Hanping; Wang, Lu; Jiang, Ji; Hu, Pei

    2017-05-30

    Avitinib (AC0010) is a mutant-selective epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKI), designed to be a targeted therapeutic agent for non-small cell lung cancer (NSCLC) patients harboring EGFR active and T790M resistant mutations. A rapid and sensitive ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed and validated for the determination of Avitinib and its five metabolites (M1, M2, M4, M7, MII-6) in human cerebrospinal fluid (CSF). The samples were purified by protein precipitation and separated on a BEH C 18 column (2.1×50mm, 1.7μm). Electrospray ionization (ESI) in positive ion mode and multiple reaction monitoring (MRM) were used to monitor the ion transitions at m/z 488/257, 474/403, 504/487, 434/377, 490/405, 476/391. The results indicated that the method had excellent sensitivity and specificity. The linear range covered from 0.05 to 50ng/mL for Avitinib, M1, M4, M7, and MII-6, and from 0.01 to 10ng/mL for M2. Intra-day and inter-day precisions (in terms of% RSD) were all <15% and the accuracies (in terms of% RE) were within the range of ±15%. The lower limit of quantification (LLOQ), matrix effect, extraction recovery, stability and dilution integrity were also validated and satisfied with the criteria of validation. Finally, the method was successfully applied to a blood-brain barrier (BBB) penetration rate research of NSCLC patients after an oral administration of Avitinib. Copyright © 2017. Published by Elsevier B.V.

  6. Barrier penetration database

    International Nuclear Information System (INIS)

    Fainberg, A.; Bieber, A.M. Jr.

    1978-11-01

    This document is intended to supply the NRC and nuclear power plant licensees with basic data on the times required to penetrate forcibly the types of barriers commonly found in nuclear plants. These times are necessary for design and evaluation of the physical protection system required under 10CFR73.55. Each barrier listed is described in detail. Minor variations in basic barrier construction that result in the same penetration time, are also described

  7. Transport barriers in plasmas

    International Nuclear Information System (INIS)

    Caldas, I L; Szezech, J D Jr; Kroetz, T; Marcus, F A; Roberto, M; Viana, R L; Lopes, S R

    2012-01-01

    We discuss the creation of transport barriers in magnetically confined plasmas with non monotonic equilibrium radial profiles. These barriers reduce the transport in the shearless region (i.e., where the twist condition does not hold). For the chaotic motion of particles in an equilibrium electric field with a nonmonotonic radial profile, perturbed by electrostatic waves, we show that a nontwist transport barrier can be created in the plasma by modifying the electric field radial profile. We also show non twist barriers in chaotic magnetic field line transport in the plasma near to the tokamak wall with resonant modes due to electric currents in external coils.

  8. Understanding transport barriers through modelling

    International Nuclear Information System (INIS)

    Rozhansky, V

    2004-01-01

    Models of radial electric field formation are discussed and compared with the results of numerical simulations from fluid transport codes and Monte Carlo codes. A comparison of the fluid and Monte Carlo codes is presented. A conclusion is arrived at that all the simulations do not predict any bifurcation of the electric field, i.e. no bifurcation of poloidal rotation from low to high Mach number values is obtained. In most of the simulations, the radial electric field is close to the neoclassical electric field. The deviation from neoclassical electric field at the separatrix due to the existence of a transitional viscous layer is discussed. Scalings for the shear of the poloidal rotation are checked versus simulation results. It is demonstrated that assuming the critical shear to be of the order of 10 5 s -1 , it is possible to obtain a L-H transition power scaling close to that observed in the experiment. The dependence of the threshold on the magnetic field direction, pellet injection, aspect ratio and other factors are discussed on the basis of existing simulations. Transport codes where transport coefficients depend on the turbulence level and scenario simulations of L-H transition are analysed. However, the details of gyrofluid and gyrokinetic modelling should be discussed elsewhere. Simulations of internal transport barrier (ITB) formation are discussed as well as factors responsible for ITB formation

  9. Barrier properties of cultured retinal pigment epithelium.

    Science.gov (United States)

    Rizzolo, Lawrence J

    2014-09-01

    The principal function of an epithelium is to form a dynamic barrier that regulates movement between body compartments. Each epithelium is specialized with barrier functions that are specific for the tissues it serves. The apical surface commonly faces a lumen, but the retinal pigment epithelium (RPE) appears to be unique by a facing solid tissue, the sensory retina. Nonetheless, there exists a thin (subretinal) space that can become fluid filled during pathology. RPE separates the subretinal space from the blood supply of the outer retina, thereby forming the outer blood-retinal barrier. The intricate interaction between the RPE and sensory retina presents challenges for learning how accurately culture models reflect native behavior. The challenge is heightened by findings that detail the variation of RPE barrier proteins both among species and at different stages of the life cycle. Among the striking differences is the expression of claudin family members. Claudins are the tight junction proteins that regulate ion diffusion across the spaces that lie between the cells of a monolayer. Claudin expression by RPE varies with species and life-stage, which implies functional differences among commonly used animal models. Investigators have turned to transcriptomics to supplement functional studies when comparing native and cultured tissue. The most detailed studies of the outer blood-retinal barrier have focused on human RPE with transcriptome and functional studies reported for human fetal, adult, and stem-cell derived RPE. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Converse Barrier Certificate Theorems

    DEFF Research Database (Denmark)

    Wisniewski, Rafael; Sloth, Christoffer

    2016-01-01

    This paper shows that a barrier certificate exists for any safe dynamical system. Specifically, we prove converse barrier certificate theorems for a class of structurally stable dynamical systems. Other authors have developed a related result by assuming that the dynamical system has neither...

  11. Skin barrier function

    DEFF Research Database (Denmark)

    2016-01-01

    Renowned experts present the latest knowledge Although a very fragile structure, the skin barrier is probably one of the most important organs of the body. Inward/out it is responsible for body integrity and outward/in for keeping microbes, chemicals, and allergens from penetrating the skin. Since...... the role of barrier integrity in atopic dermatitis and the relationship to filaggrin mutations was discovered a decade ago, research focus has been on the skin barrier, and numerous new publications have become available. This book is an interdisciplinary update offering a wide range of information...... on the subject. It covers new basic research on skin markers, including results on filaggrin and on methods for the assessment of the barrier function. Biological variation and aspects of skin barrier function restoration are discussed as well. Further sections are dedicated to clinical implications of skin...

  12. Barriers to the future

    Energy Technology Data Exchange (ETDEWEB)

    Massey, C T

    1986-09-01

    Opportunities for the British coal industry seem vast yet there are still barriers to progress. Seven areas are identified and discussed: mining mobility (for example, longwall mining systems are rigid and inflexible compared with American stall and pillar working); mine structure (many mines are more suitable to pit ponies than to large pieces of equipment); financial barriers (Government requires the industry to break even in 1987/88); personnel barriers (less specialization, better use of skills); safety barriers (increased use of remote control, ergonomics and robotics to protect workers); microelectronic management (nationalization has cushioned management from the market place; there is a need for a more multidisciplinary approach to the industry); and legal barriers (most legislation in the past has been in response to accidents; legislation external to the industry but affecting it is more fundamental).

  13. FOREWORD Fluid Mechanics and Fluid Power (FMFP)

    Indian Academy of Sciences (India)

    This section of the Special Issue carries selected articles from the Fluid Mechanics and Fluid. Power Conference held during 12–14 December 2013 at the National Institute of Technology,. Hamirpur (HP). The section includes three review articles and nine original research articles. These were selected on the basis of their ...

  14. Permeability of the blood-brain barrier predicts conversion from optic neuritis to multiple sclerosis

    DEFF Research Database (Denmark)

    Cramer, Stig P; Modvig, Signe; Simonsen, Helle Juhl

    2015-01-01

    in the permeability of the blood-brain barrier in normal-appearing white matter of patients with multiple sclerosis and here, for the first time, we present a study on the capability of blood-brain barrier permeability in predicting conversion from optic neuritis to multiple sclerosis and a direct comparison...... with cerebrospinal fluid markers of inflammation, cellular trafficking and blood-brain barrier breakdown. To this end, we applied dynamic contrast-enhanced magnetic resonance imaging at 3 T to measure blood-brain barrier permeability in 39 patients with monosymptomatic optic neuritis, all referred for imaging...... fluid as well as levels of CXCL10 and MMP9 in the cerebrospinal fluid. These findings suggest that blood-brain barrier permeability, as measured by magnetic resonance imaging, may provide novel pathological information as a marker of neuroinflammation related to multiple sclerosis, to some extent...

  15. Vehicle barrier systems

    International Nuclear Information System (INIS)

    Sena, P.A.

    1986-01-01

    The ground vehicle is one of the most effective tools available to an adversary force. Vehicles can be used to penetrate many types of perimeter barriers, transport equipment and personnel rapidly over long distances, and deliver large amounts of explosives directly to facilities in suicide missions. The function of a vehicle barrier system is to detain or disable a defined threat vehicle at a selected distance from a protected facility. Numerous facilities are installing, or planning to install, vehicle barrier systems and many of these facilities are requesting guidance to do so adequately. Therefore, vehicle barriers are being evaluated to determine their stopping capabilities so that systems can be designed that are both balanced and capable of providing a desired degree of protection. Equally important, many of the considerations that should be taken into account when establishing a vehicle barrier system have been identified. These considerations which pertain to site preparation, barrier selection, system integration and operation, and vehicle/barrier interaction, are discussed in this paper

  16. Lectures on fluid mechanics

    CERN Document Server

    Shinbrot, Marvin

    2012-01-01

    Readable and user-friendly, this high-level introduction explores the derivation of the equations of fluid motion from statistical mechanics, classical theory, and a portion of the modern mathematical theory of viscous, incompressible fluids. 1973 edition.

  17. Synovial Fluid Analysis

    Science.gov (United States)

    ... Plasma Free Metanephrines Platelet Count Platelet Function Tests Pleural Fluid Analysis PML-RARA Porphyrin Tests Potassium Prealbumin ... is being tested? Synovial fluid is a thick liquid that acts as a lubricant for the body's ...

  18. Electric fluid pump

    Science.gov (United States)

    Van Dam, Jeremy Daniel; Turnquist, Norman Arnold; Raminosoa, Tsarafidy; Shah, Manoj Ramprasad; Shen, Xiaochun

    2015-09-29

    An electric machine is presented. The electric machine includes a hollow rotor; and a stator disposed within the hollow rotor, the stator defining a flow channel. The hollow rotor includes a first end portion defining a fluid inlet, a second end portion defining a fluid outlet; the fluid inlet, the fluid outlet, and the flow channel of the stator being configured to allow passage of a fluid from the fluid inlet to the fluid outlet via the flow channel; and wherein the hollow rotor is characterized by a largest cross-sectional area of hollow rotor, and wherein the flow channel is characterized by a smallest cross-sectional area of the flow channel, wherein the smallest cross-sectional area of the flow channel is at least about 25% of the largest cross-sectional area of the hollow rotor. An electric fluid pump and a power generation system are also presented.

  19. Cerebrospinal fluid culture

    Science.gov (United States)

    ... Alternative Names Culture - CSF; Spinal fluid culture; CSF culture Images Pneumococci organism References Karcher DS, McPherson RA. Cerebrospinal, synovial, serous body fluids, and alternative specimens. In: McPherson RA, Pincus ...

  20. Cerebrospinal fluid leak (image)

    Science.gov (United States)

    ... brain and spinal cord by acting like a liquid cushion. The fluid allows the organs to be buoyant protecting them from blows or other trauma. Inside the skull the cerebrospinal fluid is contained by the dura which covers ...

  1. Converse Barrier Certificate Theorem

    DEFF Research Database (Denmark)

    Wisniewski, Rafael; Sloth, Christoffer

    2013-01-01

    This paper presents a converse barrier certificate theorem for a generic dynamical system.We show that a barrier certificate exists for any safe dynamical system defined on a compact manifold. Other authors have developed a related result, by assuming that the dynamical system has no singular...... points in the considered subset of the state space. In this paper, we redefine the standard notion of safety to comply with generic dynamical systems with multiple singularities. Afterwards, we prove the converse barrier certificate theorem and illustrate the differences between ours and previous work...

  2. Computational Fluid Dynamics

    International Nuclear Information System (INIS)

    Myeong, Hyeon Guk

    1999-06-01

    This book deals with computational fluid dynamics with basic and history of numerical fluid dynamics, introduction of finite volume method using one-dimensional heat conduction equation, solution of two-dimensional heat conduction equation, solution of Navier-Stokes equation, fluid with heat transport, turbulent flow and turbulent model, Navier-Stokes solution by generalized coordinate system such as coordinate conversion, conversion of basic equation, program and example of calculation, application of abnormal problem and high speed solution of numerical fluid dynamics.

  3. Potential solver for sloshing-ion thermal barriers

    International Nuclear Information System (INIS)

    Boghosian, B.M.; Campbell, R.B.; Gilmore, J.M.

    1981-01-01

    The quasineutrality equations at points (a) and (b) in a sloshing-ion thermal barrier are derived and an algorithm for their solution is given. The solution technique is sufficiently reliable and efficient to be used in a fluid code where it must be invoked at each time step. Circumstances under which the equations admit multiple solutions are noted and discussed

  4. Fluid Statics and Archimedes

    Indian Academy of Sciences (India)

    librium of a vertical slice fluid (Figure Id) of height H and again using the fact .... same fluid having the same shape and same volume as the body. This fluid volume .... example, can be caused by the heating of air near the ground by the sun ...

  5. Fullerol ionic fluids

    KAUST Repository

    Fernandes, Nikhil; Dallas, Panagiotis; Rodriguez, Robert; Bourlinos, Athanasios B.; Georgakilas, Vasilios; Giannelis, Emmanuel P.

    2010-01-01

    ®). The ionic fluid was compared to a control synthesized by mixing the partially protonated form (sodium form) of the fullerols with the same oligomeric amine in the same ratio as in the ionic fluids (20 wt% fullerol). In the fullerol fluid the ionic bonding

  6. Information barriers and authentication

    International Nuclear Information System (INIS)

    MacArthur, D.W.; Wolford, J.K.

    2001-01-01

    Acceptance of nuclear materials into a monitoring regime is complicated if the materials are in classified shapes or have classified composition. An attribute measurement system with an information barrier can be emplo,yed to generate an unclassified display from classified measurements. This information barrier must meet two criteria: (1) classified information cannot be released to the monitoring party, and (2) the monitoring party must be convinced that the unclassified output accurately represents the classified input. Criterion 1 is critical to the host country to protect the classified information. Criterion 2 is critical to the monitoring party and is often termed the 'authentication problem.' Thus, the necessity for authentication of a measurement system with an information barrier stems directly from the description of a useful information barrier. Authentication issues must be continually addressed during the entire development lifecycle of the measurement system as opposed to being applied only after the system is built.

  7. Barrier Infrared Detector (BIRD)

    Data.gov (United States)

    National Aeronautics and Space Administration — A recent breakthrough in MWIR detector design, has resulted in a high operating temperature (HOT) barrier infrared detector (BIRD) that is capable of spectral...

  8. Protective barrier development: Overview

    International Nuclear Information System (INIS)

    Wing, N.R.; Gee, G.W.

    1990-01-01

    Protective barrier and warning marker systems are being developed to isolate wastes disposed of near the earth's surface at the Hanford Site. The barrier is designed to function in an arid to semiarid climate, to limit infiltration and percolation of water through the waste zone to near-zero, to be maintenance free, and to last up to 10,000 yr. Natural materials (e.g., fine soil, sand, gravel, riprap, clay, asphalt) have been selected to optimize barrier performance and longevity and to create an integrated structure with redundant features. These materials isolate wastes by limiting water drainage; reducing the likelihood of plant, animal, and human intrusion; controlling emission of noxious gases; and minimizing erosion. Westinghouse Hanford Company and Pacific Northwest Laboratory efforts to assess the performance of various barrier and marker designs will be discussed

  9. Engineered barriers: current status

    International Nuclear Information System (INIS)

    Atkinson, A.; Marsh, G.P.

    1988-01-01

    This report summarises the current state of research relevant to assessing the performance of engineered barriers made of steel and concrete in radioactive waste repositories. The objective of these barriers is to contain the radionuclides within them by providing both physical and chemical impediment to their release. The physical barriers are of most value for highly soluble isotopes with relatively short half-lives (eg 137 Cs), since they can provide containment until a large fraction of the activity has decayed. In addition they can facilitate retrievability for some period after disposal. The chemical barriers operate by beneficial conditioning of the near field groundwater and providing sites for sorption of radionuclides. Both of these reduce the aqueous concentration of radionuclides in the near field. (author)

  10. Principles of computational fluid dynamics

    CERN Document Server

    Wesseling, Pieter

    2001-01-01

    The book is aimed at graduate students, researchers, engineers and physicists involved in flow computations. An up-to-date account is given of the present state-of-the-art of numerical methods employed in computational fluid dynamics. The underlying numerical principles are treated with a fair amount of detail, using elementary mathematical analysis. Attention is given to difficulties arising from geometric complexity of the flow domain and of nonuniform structured boundary-fitted grids. Uniform accuracy and efficiency for singular perturbation problems is studied, pointing the way to accurate computation of flows at high Reynolds number. Much attention is given to stability analysis, and useful stability conditions are provided, some of them new, for many numerical schemes used in practice. Unified methods for compressible and incompressible flows are discussed. Numerical analysis of the shallow-water equations is included. The theory of hyperbolic conservation laws is treated. Godunov's order barrier and ho...

  11. Skin barrier composition

    International Nuclear Information System (INIS)

    Osburn, F.G.

    1985-01-01

    A skin barrier composition comprises a mixture of a copolymer resin of ethylene and vinyl acetate (EVA), and a water-insoluble dry tack-providing elastomer such as polyisobutylene. The composition after mixing and molding, is subjected to ionizing irradiation to form cross-linked polymer networks of the EVA. The compositions have exceptional properties for use as barrier sheets, rings, or strips in ostomy, wound drainage, and incontinence devices. (author)

  12. Skin barrier composition

    Energy Technology Data Exchange (ETDEWEB)

    Osburn, F G

    1985-06-12

    A skin barrier composition comprises a mixture of a copolymer resin of ethylene and vinyl acetate (EVA), and a water-insoluble dry tack-providing elastomer such as polyisobutylene. The composition after mixing and molding, is subjected to ionizing irradiation to form cross-linked polymer networks of the EVA. The compositions have exceptional properties for use as barrier sheets, rings, or strips in ostomy, wound drainage, and incontinence devices.

  13. Fluid and particle mechanics

    CERN Document Server

    Michell, S J

    2013-01-01

    Fluid and Particle Mechanics provides information pertinent to hydraulics or fluid mechanics. This book discusses the properties and behavior of liquids and gases in motion and at rest. Organized into nine chapters, this book begins with an overview of the science of fluid mechanics that is subdivided accordingly into two main branches, namely, fluid statics and fluid dynamics. This text then examines the flowmeter devices used for the measurement of flow of liquids and gases. Other chapters consider the principle of resistance in open channel flow, which is based on improper application of th

  14. Fluid inclusion geothermometry

    Science.gov (United States)

    Cunningham, C.G.

    1977-01-01

    Fluid inclusions trapped within crystals either during growth or at a later time provide many clues to the histories of rocks and ores. Estimates of fluid-inclusion homogenization temperature and density can be obtained using a petrographic microscope with thin sections, and they can be refined using heating and freezing stages. Fluid inclusion studies, used in conjunction with paragenetic studies, can provide direct data on the time and space variations of parameters such as temperature, pressure, density, and composition of fluids in geologic environments. Changes in these parameters directly affect the fugacity, composition, and pH of fluids, thus directly influencing localization of ore metals. ?? 1977 Ferdinand Enke Verlag Stuttgart.

  15. Fluid Mechanics and Fluid Power (FMFP)

    Indian Academy of Sciences (India)

    Amitabh Bhattacharya

    of renewable energy (e.g., via wind, hydrokinetic generators), creating low-cost healthcare ... multiphase flow, turbulence, bio-fluid dynamics, atmospheric flows, microfluidic flows, and ... study the challenging problem of entry of solids in water.

  16. Finite-time barriers to reaction front propagation

    Science.gov (United States)

    Locke, Rory; Mahoney, John; Mitchell, Kevin

    2015-11-01

    Front propagation in advection-reaction-diffusion systems gives rise to rich geometric patterns. It has been shown for time-independent and time-periodic fluid flows that invariant manifolds, termed burning invariant manifolds (BIMs), serve as one-sided dynamical barriers to the propagation of reaction front. More recently, theoretical work has suggested that one-sided barriers, termed burning Lagrangian Coherent structures (bLCSs), exist for fluid velocity data prescribed over a finite time interval, with no assumption on the time-dependence of the flow. In this presentation, we use a time-varying fluid ``wind'' in a double-vortex channel flow to demonstrate that bLCSs form the (locally) most attracting or repelling fronts.

  17. Fuzzy barrier distributions

    International Nuclear Information System (INIS)

    Piasecki, E.

    2009-01-01

    Heavy-ion collisions often produce a fusion barrier distribution with structures displaying a fingerprint of couplings to highly collective excitations [1]. Basically the same distribution can be obtained from large-angle quasi-elastic scattering, though here the role of the many weak direct-reaction channels is unclear. For 2 0N e + 9 0Z r we have observed the barrier structures expected for the highly deformed neon projectile, but for 2 0N e + 9 2Z r we find completely smooth distribution (see Fig.1). We find that transfer channels in these systems are of similar strength but single particle excitations are significantly stronger in the latter case. They apparently reduce the 'resolving power' of the quasi-elastic channel, what leads to smeared out, or 'fuzzy' barrier distribution. This is the first case when such a phenomenon has been observed.(author)

  18. Health Barriers to Learning

    Directory of Open Access Journals (Sweden)

    Delaney Gracy

    2014-01-01

    Full Text Available This article summarizes the results from a 2013 online survey with 408 principals and assistant principals in New York City public elementary and middle schools. The survey assessed three primary areas: health issues in the school, health issues perceived as barriers to learning for affected students, and resources needed to address these barriers. Eighteen of the 22 health conditions listed in the survey were considered a moderate or serious issue within their schools by at least 10% of respondents. All 22 of the health issues were perceived as a barrier to learning by between 12% and 87% of the respondents. Representatives from schools that serve a higher percentage of low-income students reported significantly higher levels of concern about the extent of health issues and their impact on learning. Respondents most often said they need linkages with organizations that can provide additional services and resources at the school, especially for mental health.

  19. Fullerol ionic fluids

    Science.gov (United States)

    Fernandes, Nikhil; Dallas, Panagiotis; Rodriguez, Robert; Bourlinos, Athanasios B.; Georgakilas, Vasilios; Giannelis, Emmanuel P.

    2010-09-01

    We report for the first time an ionic fluid based on hydroxylated fullerenes (fullerols). The ionic fluid was synthesized by neutralizing the fully protonated fullerol with an amine terminated polyethylene/polypropylene oxide oligomer (Jeffamine®). The ionic fluid was compared to a control synthesized by mixing the partially protonated form (sodium form) of the fullerols with the same oligomeric amine in the same ratio as in the ionic fluids (20 wt% fullerol). In the fullerol fluid the ionic bonding significantly perturbs the thermal transitions and melting/crystallization behavior of the amine. In contrast, both the normalized heat of fusion and crystallization of the amine in the control are similar to those of the neat amine consistent with a physical mixture of the fullerols/amine with minimal interactions. In addition to differences in thermal behavior, the fullerol ionic fluid exhibits a complex viscoelastic behavior intermediate between the neat Jeffamine® (liquid-like) and the control (solid-like).

  20. Fiber optic fluid detector

    Science.gov (United States)

    Angel, S.M.

    1987-02-27

    Particular gases or liquids are detected with a fiber optic element having a cladding or coating of a material which absorbs the fluid or fluids and which exhibits a change of an optical property, such as index of refraction, light transmissiveness or fluoresence emission, for example, in response to absorption of the fluid. The fluid is sensed by directing light into the fiber optic element and detecting changes in the light, such as exit angle changes for example, that result from the changed optical property of the coating material. The fluid detector may be used for such purposes as sensing toxic or explosive gases in the atmosphere, measuring ground water contamination or monitoring fluid flows in industrial processes, among other uses. 10 figs.

  1. Fiber optic fluid detector

    Science.gov (United States)

    Angel, S. Michael

    1989-01-01

    Particular gases or liquids are detected with a fiber optic element (11, 11a to 11j) having a cladding or coating of a material (23, 23a to 23j) which absorbs the fluid or fluids and which exhibits a change of an optical property, such as index of refraction, light transmissiveness or fluoresence emission, for example, in response to absorption of the fluid. The fluid is sensed by directing light into the fiber optic element and detecting changes in the light, such as exit angle changes for example, that result from the changed optical property of the coating material. The fluid detector (24, 24a to 24j) may be used for such purposes as sensing toxic or explosive gases in the atmosphere, measuring ground water contamination or monitoring fluid flows in industrial processes, among other uses.

  2. Metalworking and machining fluids

    Science.gov (United States)

    Erdemir, Ali; Sykora, Frank; Dorbeck, Mark

    2010-10-12

    Improved boron-based metal working and machining fluids. Boric acid and boron-based additives that, when mixed with certain carrier fluids, such as water, cellulose and/or cellulose derivatives, polyhydric alcohol, polyalkylene glycol, polyvinyl alcohol, starch, dextrin, in solid and/or solvated forms result in improved metalworking and machining of metallic work pieces. Fluids manufactured with boric acid or boron-based additives effectively reduce friction, prevent galling and severe wear problems on cutting and forming tools.

  3. Disposing of fluid wastes

    International Nuclear Information System (INIS)

    Bradley, J.S.

    1984-01-01

    Toxic liquid waste, eg liquid radioactive waste, is disposed of by locating a sub-surface stratum which, before removal of any fluid, has a fluid pressure in the pores thereof which is less than the hydrostatic pressure which is normal for a stratum at that depth in the chosen area, and then feeding the toxic liquid into the stratum at a rate such that the fluid pressure in the stratum never exceeds the said normal hydrostatic pressure. (author)

  4. Fluid dynamics transactions

    CERN Document Server

    Fiszdon, W

    1965-01-01

    Fluid Dynamics Transactions, Volume 2 compiles 46 papers on fluid dynamics, a subdiscipline of fluid mechanics that deals with fluid flow. The topics discussed in this book include developments in interference theory for aeronautical applications; diffusion from sources in a turbulent boundary layer; unsteady motion of a finite wing span in a compressible medium; and wall pressure covariance and comparison with experiment. The certain classes of non-stationary axially symmetric flows in magneto-gas-dynamics; description of the phenomenon of secondary flows in curved channels by means of co

  5. Electrorheological fluids and methods

    Science.gov (United States)

    Green, Peter F.; McIntyre, Ernest C.

    2015-06-02

    Electrorheological fluids and methods include changes in liquid-like materials that can flow like milk and subsequently form solid-like structures under applied electric fields; e.g., about 1 kV/mm. Such fluids can be used in various ways as smart suspensions, including uses in automotive, defense, and civil engineering applications. Electrorheological fluids and methods include one or more polar molecule substituted polyhedral silsesquioxanes (e.g., sulfonated polyhedral silsesquioxanes) and one or more oils (e.g., silicone oil), where the fluid can be subjected to an electric field.

  6. Plasmas and fluids

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Plasma and fluid physics includes the fields of fusion research and space investigation. This book discusses the most important advances in these areas over the past decade and recommends a stronger commitment to basic research in plasma and fluid physics. The book recommends that plasma and fluid physics be included in physics curriculums because of their increasing importance in energy and defense. The book also lists recent accomplishments in the fields of general plasma physics, fusion plasma confinement and heating, space and astrophysical plasmas, and fluid physics and lists research opportunities in these areas. A funding summary explains how research monies are allocated and suggests ways to improve their effectiveness

  7. Theoretical Fluid Dynamics

    CERN Document Server

    Shivamoggi, Bhimsen K

    1998-01-01

    "Although there are many texts and monographs on fluid dynamics, I do not know of any which is as comprehensive as the present book. It surveys nearly the entire field of classical fluid dynamics in an advanced, compact, and clear manner, and discusses the various conceptual and analytical models of fluid flow." - Foundations of Physics on the first edition. Theoretical Fluid Dynamics functions equally well as a graduate-level text and a professional reference. Steering a middle course between the empiricism of engineering and the abstractions of pure mathematics, the author focuses

  8. Investigation of a natural geochemical barrier

    International Nuclear Information System (INIS)

    1991-02-01

    Groundwater data from lysimeters and monitor wells in the vicinity of the Bowman, North Dakota, Uranium Mill Tailings Remedial Action (UMTRA) Project site indicated that there is a mechanism in the subsurface which cleans up downward-percolating fluids. It was hypothesized that clays and organic materials in the sediments sequestered hazardous constituents from infiltrating fluids. A program was designed to collect sediment cores from various locations on and around the site and to analyze the sediments to determine whether there has been a build up of hazardous constituents in any specific type of sedimentary material. Materials that concentrate the hazardous constituents would be potential candidates to be used in constructed geochemical barriers. The water quality of the groundwater contained within the sedimentary section indicates that there is a transport of contaminants down through the sediments and that these contaminants are removed from solution by the iron-bearing minerals in the organic-rich lignite beds. The data gathered during the course of this investigation indicate that the lignite ashing operations have added very little of the hazardous constituents of concern--arsenic, chromium, molybdenum, selenium, or uranium--to the sediments beneath the UMTRA Project site. At both locations, the hazardous constituents are concentrated in the upper most lignite bed. These data offer a natural analog for laboratory tests in which sphagnum peat was used to sequester hazardous constituents. Constructed geochemical barriers are a viable mechanism for the clean-up of the majority of hazardous constituents from uranium mill tailings in groundwater

  9. Space Station fluid management logistics

    Science.gov (United States)

    Dominick, Sam M.

    1990-01-01

    Viewgraphs and discussion on space station fluid management logistics are presented. Topics covered include: fluid management logistics - issues for Space Station Freedom evolution; current fluid logistics approach; evolution of Space Station Freedom fluid resupply; launch vehicle evolution; ELV logistics system approach; logistics carrier configuration; expendable fluid/propellant carrier description; fluid carrier design concept; logistics carrier orbital operations; carrier operations at space station; summary/status of orbital fluid transfer techniques; Soviet progress tanker system; and Soviet propellant resupply system observations.

  10. Pediatric Acute Respiratory Distress Syndrome: Fluid Management in the PICU.

    Science.gov (United States)

    Ingelse, Sarah A; Wösten-van Asperen, Roelie M; Lemson, Joris; Daams, Joost G; Bem, Reinout A; van Woensel, Job B

    2016-01-01

    The administration of an appropriate volume of intravenous fluids, while avoiding fluid overload, is a major challenge in the pediatric intensive care unit. Despite our efforts, fluid overload is a very common clinical observation in critically ill children, in particular in those with pediatric acute respiratory distress syndrome (PARDS). Patients with ARDS have widespread damage of the alveolar-capillary barrier, potentially making them vulnerable to fluid overload with the development of pulmonary edema leading to prolonged course of disease. Indeed, studies in adults with ARDS have shown that an increased cumulative fluid balance is associated with adverse outcome. However, age-related differences in the development and consequences of fluid overload in ARDS may exist due to disparities in immunologic response and body water distribution. This systematic review summarizes the current literature on fluid imbalance and management in PARDS, with special emphasis on potential differences with adult patients. It discusses the adverse effects associated with fluid overload and the corresponding possible pathophysiological mechanisms of its development. Our intent is to provide an incentive to develop age-specific fluid management protocols to improve PARDS outcomes.

  11. Pediatric acute respiratory distress syndrome: fluid management in the PICU

    Directory of Open Access Journals (Sweden)

    Sarah A Ingelse

    2016-03-01

    Full Text Available The administration of an appropriate volume of intravenous fluids, while avoiding fluid overload, is a major challenge in the pediatric intensive care unit. Despite our efforts, fluid overload is a very common clinical observation in critically ill children, in particular in those with pediatric acute respiratory distress syndrome (PARDS. Patients with ARDS have widespread damage of the alveolar capillary barrier, potentially making them vulnerable to fluid overload with the development of pulmonary edema leading to prolonged course of disease. Indeed, studies in adults with ARDS have shown that an increased cumulative fluid balance is associated with adverse outcome. However, age-related differences in the development and consequences of fluid overload in ARDS may exist due to disparities in immunologic response and body water distribution. This systematic review summarizes the current literature on fluid imbalance and management in PARDS, with special emphasis on potential differences with adult patients. It discusses the adverse effects associated with fluid overload and the corresponding possible pathophysiological mechanisms of its development. Our intent is to provide an incentive to develop age-specific fluid management protocols to improve PARDS outcomes.

  12. Clusterin Seals the Ocular Surface Barrier in Mouse Dry Eye.

    Science.gov (United States)

    Bauskar, Aditi; Mack, Wendy J; Mauris, Jerome; Argüeso, Pablo; Heur, Martin; Nagel, Barbara A; Kolar, Grant R; Gleave, Martin E; Nakamura, Takahiro; Kinoshita, Shigeru; Moradian-Oldak, Janet; Panjwani, Noorjahan; Pflugfelder, Stephen C; Wilson, Mark R; Fini, M Elizabeth; Jeong, Shinwu

    2015-01-01

    Dry eye is a common disorder caused by inadequate hydration of the ocular surface that results in disruption of barrier function. The homeostatic protein clusterin (CLU) is prominent at fluid-tissue interfaces throughout the body. CLU levels are reduced at the ocular surface in human inflammatory disorders that manifest as severe dry eye, as well as in a preclinical mouse model for desiccating stress that mimics dry eye. Using this mouse model, we show here that CLU prevents and ameliorates ocular surface barrier disruption by a remarkable sealing mechanism dependent on attainment of a critical all-or-none concentration. When the CLU level drops below the critical all-or-none threshold, the barrier becomes vulnerable to desiccating stress. CLU binds selectively to the ocular surface subjected to desiccating stress in vivo, and in vitro to the galectin LGALS3, a key barrier component. Positioned in this way, CLU not only physically seals the ocular surface barrier, but it also protects the barrier cells and prevents further damage to barrier structure. These findings define a fundamentally new mechanism for ocular surface protection and suggest CLU as a biotherapeutic for dry eye.

  13. Clusterin Seals the Ocular Surface Barrier in Mouse Dry Eye.

    Directory of Open Access Journals (Sweden)

    Aditi Bauskar

    Full Text Available Dry eye is a common disorder caused by inadequate hydration of the ocular surface that results in disruption of barrier function. The homeostatic protein clusterin (CLU is prominent at fluid-tissue interfaces throughout the body. CLU levels are reduced at the ocular surface in human inflammatory disorders that manifest as severe dry eye, as well as in a preclinical mouse model for desiccating stress that mimics dry eye. Using this mouse model, we show here that CLU prevents and ameliorates ocular surface barrier disruption by a remarkable sealing mechanism dependent on attainment of a critical all-or-none concentration. When the CLU level drops below the critical all-or-none threshold, the barrier becomes vulnerable to desiccating stress. CLU binds selectively to the ocular surface subjected to desiccating stress in vivo, and in vitro to the galectin LGALS3, a key barrier component. Positioned in this way, CLU not only physically seals the ocular surface barrier, but it also protects the barrier cells and prevents further damage to barrier structure. These findings define a fundamentally new mechanism for ocular surface protection and suggest CLU as a biotherapeutic for dry eye.

  14. A computational model for doctoring fluid films in gravure printing

    Energy Technology Data Exchange (ETDEWEB)

    Hariprasad, Daniel S., E-mail: dshari@unm.edu [Center for Micro-Engineered Materials, University of New Mexico, Albuquerque, New Mexico 87131-0001 (United States); Grau, Gerd [Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, California 94720-1770 (United States); Schunk, P. Randall [Center for Micro-Engineered Materials, University of New Mexico, Albuquerque, New Mexico 87131-0001 (United States); Advanced Materials Laboratory, Sandia National Laboratories, Albuquerque, New Mexico 87185-0826 (United States); Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, New Mexico 87131-0001 (United States); Tjiptowidjojo, Kristianto [Center for Micro-Engineered Materials, University of New Mexico, Albuquerque, New Mexico 87131-0001 (United States); Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, New Mexico 87131-0001 (United States)

    2016-04-07

    The wiping, or doctoring, process in gravure printing presents a fundamental barrier to resolving the micron-sized features desired in printed electronics applications. This barrier starts with the residual fluid film left behind after wiping, and its importance grows as feature sizes are reduced, especially as the feature size approaches the thickness of the residual fluid film. In this work, various mechanical complexities are considered in a computational model developed to predict the residual fluid film thickness. Lubrication models alone are inadequate, and deformation of the doctor blade body together with elastohydrodynamic lubrication must be considered to make the model predictive of experimental trends. Moreover, model results demonstrate that the particular form of the wetted region of the blade has a significant impact on the model's ability to reproduce experimental measurements.

  15. Barrier Data Base user's guide

    International Nuclear Information System (INIS)

    Worrell, R.B.; Gould, D.J.; Wall, D.W.

    1977-06-01

    A special purpose data base for physical security barriers has been developed. In addition to barriers, the entities accommodated by the Barrier Data Base (BDB) include threats and references. A threat is established as a configuration of people and equipment which has been employed to penetrate (or attempt to penetrate) a barrier. References are used to cite publications pertinent to the barriers and threats in the data base. Utilization and maintenance of the Barrier Data Base is achieved with LIST, QUERY, ENTER, DELETE, and CHANGE commands which are used to manipulate the data base entities

  16. Compressible generalized Newtonian fluids

    Czech Academy of Sciences Publication Activity Database

    Málek, Josef; Rajagopal, K.R.

    2010-01-01

    Roč. 61, č. 6 (2010), s. 1097-1110 ISSN 0044-2275 Institutional research plan: CEZ:AV0Z20760514 Keywords : power law fluid * uniform temperature * compressible fluid Subject RIV: BJ - Thermodynamics Impact factor: 1.290, year: 2010

  17. Pleural fluid smear

    Science.gov (United States)

    ... into the space around the lungs, called the pleural space. As fluid drains into a collection bottle, you may cough a bit. This is because your lung re-expands to fill the space where fluid had been. This sensation lasts for a few hours after the test.

  18. Peritoneal fluid culture

    Science.gov (United States)

    Culture - peritoneal fluid ... sent to the laboratory for Gram stain and culture. The sample is checked to see if bacteria ... The peritoneal fluid culture may be negative, even if you have ... diagnosis of peritonitis is based on other factors, in addition ...

  19. Tumor interstitial fluid

    DEFF Research Database (Denmark)

    Gromov, Pavel; Gromova, Irina; Olsen, Charlotta J.

    2013-01-01

    Tumor interstitial fluid (TIF) is a proximal fluid that, in addition to the set of blood soluble phase-borne proteins, holds a subset of aberrantly externalized components, mainly proteins, released by tumor cells and tumor microenvironment through various mechanisms, which include classical...

  20. Fluid control valves

    International Nuclear Information System (INIS)

    Rankin, J.

    1980-01-01

    A fluid control valve is described in which it is not necessary to insert a hand or a tool into the housing to remove the valve seat. Such a valve is particularly suitable for the control of radioactive fluids since maintenance by remote control is possible. (UK)

  1. Time Independent Fluids

    Science.gov (United States)

    Collyer, A. A.

    1973-01-01

    Discusses theories underlying Newtonian and non-Newtonian fluids by explaining flow curves exhibited by plastic, shear-thining, and shear-thickening fluids and Bingham plastic materials. Indicates that the exact mechanism governing shear-thickening behaviors is a problem of further study. (CC)

  2. Relativistic thermodynamics of fluids

    International Nuclear Information System (INIS)

    Souriau, J.-M.

    1977-05-01

    The relativistic covariant definition of a statistical equilibrium, applied to a perfect gas, involves a 'temperature four-vector', whose direction is the mean velocity of the fluid, and whose length is the reciprocal temperature. The hypothesis of this 'temperature four-vector' being a relevant variable for the description of the dissipative motions of a simple fluid is discussed. The kinematics is defined by using a vector field and measuring the number of molecules. Such a dissipative fluid is subject to motions involving null entropy generation; the 'temperature four-vector' is then a Killing vector; the equations of motion can be completely integrated. Perfect fluids can be studied by this way and the classical results of Lichnerowicz are obtained. In weakly dissipative motions two viscosity coefficient appear together with the heat conductibility coefficient. Two other coefficients perharps measurable on real fluids. Phase transitions and shock waves are described with using the model [fr

  3. Barrier Coatings for Refractory Metals and Superalloys

    International Nuclear Information System (INIS)

    SM Sabol; BT Randall; JD Edington; CJ Larkin; BJ Close

    2006-01-01

    In the closed working fluid loop of the proposed Prometheus space nuclear power plant (SNPP), there is the potential for reaction of core and plant structural materials with gas phase impurities and gas phase transport of interstitial elements between superalloy and refractory metal alloy components during service. Primary concerns are surface oxidation, interstitial embrittlement of refractory metals and decarburization of superalloys. In parallel with kinetic investigations, this letter evaluates the ability of potential coatings to prevent or impede communication between reactor and plant components. Key coating requirements are identified and current technology coating materials are reviewed relative to these requirements. Candidate coatings are identified for future evaluation based on current knowledge of design parameters and anticipated environment. Coatings were identified for superalloys and refractory metals to provide diffusion barriers to interstitial transport and act as reactive barriers to potential oxidation. Due to their high stability at low oxygen potential, alumina formers are most promising for oxidation protection given the anticipated coolant gas chemistry. A sublayer of iridium is recommended to provide inherent diffusion resistance to interstitials. Based on specific base metal selection, a thin film substrate--coating interdiffusion barrier layer may be necessary to meet mission life

  4. Barrier Coatings for Refractory Metals and Superalloys

    Energy Technology Data Exchange (ETDEWEB)

    SM Sabol; BT Randall; JD Edington; CJ Larkin; BJ Close

    2006-02-23

    In the closed working fluid loop of the proposed Prometheus space nuclear power plant (SNPP), there is the potential for reaction of core and plant structural materials with gas phase impurities and gas phase transport of interstitial elements between superalloy and refractory metal alloy components during service. Primary concerns are surface oxidation, interstitial embrittlement of refractory metals and decarburization of superalloys. In parallel with kinetic investigations, this letter evaluates the ability of potential coatings to prevent or impede communication between reactor and plant components. Key coating requirements are identified and current technology coating materials are reviewed relative to these requirements. Candidate coatings are identified for future evaluation based on current knowledge of design parameters and anticipated environment. Coatings were identified for superalloys and refractory metals to provide diffusion barriers to interstitial transport and act as reactive barriers to potential oxidation. Due to their high stability at low oxygen potential, alumina formers are most promising for oxidation protection given the anticipated coolant gas chemistry. A sublayer of iridium is recommended to provide inherent diffusion resistance to interstitials. Based on specific base metal selection, a thin film substrate--coating interdiffusion barrier layer may be necessary to meet mission life.

  5. Geophysical characterization of subsurface barriers

    International Nuclear Information System (INIS)

    Borns, D.J.

    1995-08-01

    An option for controlling contaminant migration from plumes and buried waste sites is to construct a subsurface barrier of a low-permeability material. The successful application of subsurface barriers requires processes to verify the emplacement and effectiveness of barrier and to monitor the performance of a barrier after emplacement. Non destructive and remote sensing techniques, such as geophysical methods, are possible technologies to address these needs. The changes in mechanical, hydrologic and chemical properties associated with the emplacement of an engineered barrier will affect geophysical properties such a seismic velocity, electrical conductivity, and dielectric constant. Also, the barrier, once emplaced and interacting with the in situ geologic system, may affect the paths along which electrical current flows in the subsurface. These changes in properties and processes facilitate the detection and monitoring of the barrier. The approaches to characterizing and monitoring engineered barriers can be divided between (1) methods that directly image the barrier using the contrasts in physical properties between the barrier and the host soil or rock and (2) methods that reflect flow processes around or through the barrier. For example, seismic methods that delineate the changes in density and stiffness associated with the barrier represents a direct imaging method. Electrical self potential methods and flow probes based on heat flow methods represent techniques that can delineate the flow path or flow processes around and through a barrier

  6. [The blood-brain barrier and drug delivery in the central nervous system].

    Science.gov (United States)

    Loch-Neckel, Gecioni; Koepp, Janice

    2010-08-01

    To provide an updated view of the difficulties due to barriers and strategies used to allow the release of drugs in the central nervous system. The difficulty for the treatment of many diseases of the central nervous system, through the use of intra-venous drugs, is due to the presence of barriers that prevent the release of the same: the blood-brain barrier, blood-cerebro-spinal fluid barrier and the blood-arachnoid barrier. The blood-brain barrier is the main barrier for the transport of drugs in the brain that also acts as a immunologic and metabolic barrier. The endothelial cells of the blood-brain barrier are connected to a junction complex through the interaction of transmembrane proteins that protrude from de inside to the outside, forming a connection between the endothelial cells. The transport of substances to the brain depends on the mechanisms of transport present in the barrier and the diffusion of these compounds also depends on the physicochemical characteristics of the molecule. Some diseases alter the permeability of the blood-brain barrier and thus the passage of drugs. Strategies such as the use of methods for drug delivery in the brain have been investigated. Further details regarding the mechanisms of transport across the blood-brain barrier and the changes in neuropathology would provide important information about the etiology of diseases and lead to better therapeutic strategies.

  7. Chaotic correlations in barrier billiards with arbitrary barriers

    International Nuclear Information System (INIS)

    Osbaldestin, A H; Adamson, L N C

    2013-01-01

    We study autocorrelation functions in symmetric barrier billiards for golden mean trajectories with arbitrary barriers. Renormalization analysis reveals the presence of a chaotic invariant set and thus that, for a typical barrier, there are chaotic correlations. The chaotic renormalization set is the analogue of the so-called orchid that arises in a generalized Harper equation. (paper)

  8. Design of engineered sorbent barriers

    International Nuclear Information System (INIS)

    Jones, E.O.; Freeman, H.D.

    1988-08-01

    A sorbent barrier uses sorbent material such as activated carbon or natural zeolites to prevent the migration of radionuclides from a low-level waste site to the aquifer. The sorbent barrier retards the movement of radioactive contaminants, thereby providing time for the radionuclides to decay. Sorbent barriers can be a simple, effective, and inexpensive method for reducing the migration of radionuclides to the environment. Designing a sorbent barrier consists of using soil and sorbent material properties and site conditions as input to a model which will determine the necessary sorbent barrier thickness to meet contaminant limits. The paper will cover the following areas: techniques for measuring sorption properties of barrier materials and underlying soils, use of a radionuclide transport model to determine the required barrier thickness and performance under a variety of site conditions, and cost estimates for applying the barrier. 8 refs., 6 figs., 1 tab

  9. Design of engineered sorbent barriers

    International Nuclear Information System (INIS)

    Jones, E.O.; Freeman, H.D.

    1988-01-01

    A sorbent barrier uses sorbent material such as activated carbon or natural zeolites to prevent the migration of radionuclides from a low-level waste site to the aquifer. The sorbent barrier retards the movement of radioactive contaminants, thereby providing time for the radionuclides to decay. Sorbent barriers can be a simple, effective, and inexpensive method for reducing the migration of radionuclides to the environment. Designing a sorbent barrier consists of using soil and sorbent material properties and site conditions as input to a model which will determine the necessary sorbent barrier thickness to meet contaminant limits. The paper covers the following areas: techniques for measuring sorption properties of barrier materials and underlying soils, use of a radionuclide transport model to determine the required barrier thickness and performance under a variety of site conditions, and cost estimates for applying the barrier

  10. Fluid sampling tool

    Science.gov (United States)

    Garcia, A.R.; Johnston, R.G.; Martinez, R.K.

    1999-05-25

    A fluid sampling tool is described for sampling fluid from a container. The tool has a fluid collecting portion which is drilled into the container wall, thereby affixing it to the wall. The tool may have a fluid extracting section which withdraws fluid collected by the fluid collecting section. The fluid collecting section has a fluted shank with an end configured to drill a hole into a container wall. The shank has a threaded portion for tapping the borehole. The shank is threadably engaged to a cylindrical housing having an inner axial passageway sealed at one end by a septum. A flexible member having a cylindrical portion and a bulbous portion is provided. The housing can be slid into an inner axial passageway in the cylindrical portion and sealed to the flexible member. The bulbous portion has an outer lip defining an opening. The housing is clamped into the chuck of a drill, the lip of the bulbous section is pressed against a container wall until the shank touches the wall, and the user operates the drill. Wall shavings (kerf) are confined in a chamber formed in the bulbous section as it folds when the shank advances inside the container. After sufficient advancement of the shank, an o-ring makes a seal with the container wall. 6 figs.

  11. Fluid mechanics. Vol. 2

    International Nuclear Information System (INIS)

    Truckenbrodt, E.

    1980-01-01

    The second volume contains the chapter 4 to 6. Whereas chapter 1 deals with the introduction into the mechanics of fluids and chapter 2 with the fundamental laws of fluid and thermal fluid dynamics, in chapter 3 elementary flow phenomena in fluids with constant density are treated. Chapter 4 directly continues chapter 3 and describes elementary flow phenomena in fluids with varying density. Fluid statics again is treated as a special case. If compared with the first edition the treatment of unsteady laminar flow and of pipe flow for a fluid with varying density were subject to a substantial extension. In chapter 5 rotation-free and rotating potential flows are presented together. By this means it is achieved to explain the behaviour of the multidimensional fictionless flow in closed form. A subchapter describes some related problems of potential theory like the flow along a free streamline and seepage flow through a porous medium. The boundary layer flows in chapter 6 are concerned with the flow and temperature boundary layer in laminar and turbulent flows at a fired wall. In it differential and integral methods are applied of subchapter reports on boundary layer flows without a fixed boundary, occurring e.g. in an open jet and in a wake flow. The problems of intermittence and of the Coanda effect are briefly mentioned. (orig./MH)

  12. Fluid sampling tool

    Science.gov (United States)

    Garcia, Anthony R.; Johnston, Roger G.; Martinez, Ronald K.

    1999-05-25

    A fluid sampling tool for sampling fluid from a container. The tool has a fluid collecting portion which is drilled into the container wall, thereby affixing it to the wall. The tool may have a fluid extracting section which withdraws fluid collected by the fluid collecting section. The fluid collecting section has a fluted shank with an end configured to drill a hole into a container wall. The shank has a threaded portion for tapping the borehole. The shank is threadably engaged to a cylindrical housing having an inner axial passageway sealed at one end by a septum. A flexible member having a cylindrical portion and a bulbous portion is provided. The housing can be slid into an inner axial passageway in the cylindrical portion and sealed to the flexible member. The bulbous portion has an outer lip defining an opening. The housing is clamped into the chuck of a drill, the lip of the bulbous section is pressed against a container wall until the shank touches the wall, and the user operates the drill. Wall shavings (kerf) are confined in a chamber formed in the bulbous section as it folds when the shank advances inside the container. After sufficient advancement of the shank, an o-ring makes a seal with the container wall.

  13. FRACTURING FLUID CHARACTERIZATION FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    Subhash Shah

    2000-08-01

    Hydraulic fracturing technology has been successfully applied for well stimulation of low and high permeability reservoirs for numerous years. Treatment optimization and improved economics have always been the key to the success and it is more so when the reservoirs under consideration are marginal. Fluids are widely used for the stimulation of wells. The Fracturing Fluid Characterization Facility (FFCF) has been established to provide the accurate prediction of the behavior of complex fracturing fluids under downhole conditions. The primary focus of the facility is to provide valuable insight into the various mechanisms that govern the flow of fracturing fluids and slurries through hydraulically created fractures. During the time between September 30, 1992, and March 31, 2000, the research efforts were devoted to the areas of fluid rheology, proppant transport, proppant flowback, dynamic fluid loss, perforation pressure losses, and frictional pressure losses. In this regard, a unique above-the-ground fracture simulator was designed and constructed at the FFCF, labeled ''The High Pressure Simulator'' (HPS). The FFCF is now available to industry for characterizing and understanding the behavior of complex fluid systems. To better reflect and encompass the broad spectrum of the petroleum industry, the FFCF now operates under a new name of ''The Well Construction Technology Center'' (WCTC). This report documents the summary of the activities performed during 1992-2000 at the FFCF.

  14. Shottky-barrier formation

    International Nuclear Information System (INIS)

    Guines, F.; Sanchez-Dehesa, J.; Flores, F.

    1983-01-01

    In this paper a realistic selfconsistent calculation of an abrupt metal-semiconductor junction is presented by means of a tight-binding approach. A specific Si-Ag junction has been considered, and the charge neutrality level as well as the barrier height have been determined in good agreement with experiments. For a generaljunction it is shown that the interface properties depend essentially on the characteristics of the first metal layer and its interaction with the semiconductor. (Author) [pt

  15. Energy barrier to decoherence

    International Nuclear Information System (INIS)

    Mizel, Ari; Mitchell, M. W.; Cohen, Marvin L.

    2001-01-01

    We propose a ground-state approach to realizing quantum computers. This scheme is time-independent and inherently defends against decoherence by possessing an energy barrier to excitation. We prove that our time-independent qubits can perform the same algorithms as their time-dependent counterparts. Advantages and disadvantages of the time-independent approach are described. A model involving quantum dots is provided for illustration

  16. Thermodynamics of Fluid Polyamorphism

    Directory of Open Access Journals (Sweden)

    Mikhail A. Anisimov

    2018-01-01

    Full Text Available Fluid polyamorphism is the existence of different condensed amorphous states in a single-component fluid. It is either found or predicted, usually at extreme conditions, for a broad group of very different substances, including helium, carbon, silicon, phosphorous, sulfur, tellurium, cerium, hydrogen, and tin tetraiodide. This phenomenon is also hypothesized for metastable and deeply supercooled water, presumably located a few degrees below the experimental limit of homogeneous ice formation. We present a generic phenomenological approach to describe polyamorphism in a single-component fluid, which is completely independent of the molecular origin of the phenomenon. We show that fluid polyamorphism may occur either in the presence or in the absence of fluid phase separation depending on the symmetry of the order parameter. In the latter case, it is associated with a second-order transition, such as in liquid helium or liquid sulfur. To specify the phenomenology, we consider a fluid with thermodynamic equilibrium between two distinct interconvertible states or molecular structures. A fundamental signature of this concept is the identification of the equilibrium fraction of molecules involved in each of these alternative states. However, the existence of the alternative structures may result in polyamorphic fluid phase separation only if mixing of these structures is not ideal. The two-state thermodynamics unifies all the debated scenarios of fluid polyamorphism in different areas of condensed-matter physics, with or without phase separation, and even goes beyond the phenomenon of polyamorphism by generically describing the anomalous properties of fluids exhibiting interconversion of alternative molecular states.

  17. Performance of engineered barriers

    International Nuclear Information System (INIS)

    Rajaram, V.; Dean, P.V.; McLellan, S.A.

    1997-01-01

    Engineered barriers, both vertical and horizontal, have been used to isolate hazardous wastes from contact, precipitation, surface water and groundwater. The primary objective of this study was to determine the performance of subsurface barriers installed throughout the U.S. over the past 20 years to contain hazardous wastes. Evaluation of Resource Conservation and Recovery Act (RCRA) Subtitle C or equivalent caps was a secondary objective. A nationwide search was launched to select hazardous waste sites at which vertical barrier walls and/or caps had been used as the containment method. None of the sites selected had an engineered floor. From an initial list of 130 sites, 34 sites were selected on the basis of availability of monitoring data for detailed analysis of actual field performance. This paper will briefly discuss preliminary findings regarding the design, construction quality assurance/construction quality control (CQA/CQC), and monitoring at the 34 sites. In addition, the short-term performance of these sites (less than 5 years) is presented since very little long-term performance data was available

  18. Fluctuations in Schottky barrier heights

    International Nuclear Information System (INIS)

    Mahan, G.D.

    1984-01-01

    A double Schottky barrier is often formed at the grain boundary in polycrystalline semiconductors. The barrier height is shown to fluctuate in value due to the random nature of the impurity positions. The magnitude of the fluctuations is 0.1 eV, and the fluctuations cause the barrier height measured by capacitance to differ from the one measured by electrical conductivity

  19. Fluid Dynamics for Physicists

    Science.gov (United States)

    Faber, T. E.

    1995-08-01

    This textbook provides an accessible and comprehensive account of fluid dynamics that emphasizes fundamental physical principles and stresses connections with other branches of physics. Beginning with a basic introduction, the book goes on to cover many topics not typically treated in texts, such as compressible flow and shock waves, sound attenuation and bulk viscosity, solitary waves and ship waves, thermal convection, instabilities, turbulence, and the behavior of anisotropic, non-Newtonian and quantum fluids. Undergraduate or graduate students in physics or engineering who are taking courses in fluid dynamics will find this book invaluable.

  20. Thermal Fluid Engineering

    International Nuclear Information System (INIS)

    Jang, Byeong Ju

    1984-01-01

    This book is made up of 5 chapters. They are fluid mechanics, fluid machines, Industrial thermodynamics, steam boiler and steam turbine. It introduces hydrostatics, basic theory of fluid movement and law of momentum. It also deals with centrifugal pump, axial flow pump, general hydraulic turbine, and all phenomena happening in the pump. It covers the law of thermodynamics, perfect gas, properties of steam, and flow of gas and steam and water tube boiler. Lastly it explains basic format, theory, loss and performance as well as principle part of steam turbine.

  1. Glutamate Transporters in the Blood-Brain Barrier

    DEFF Research Database (Denmark)

    Helms, Hans Christian Cederberg; Nielsen, Carsten Uhd; Waagepetersen, Helle S

    2017-01-01

    concentration of L-glutamate causes excitotoxicity. A tight control of the brain interstitial fluid L-glutamate levels is therefore imperative, in order to maintain optimal neurotransmission and to avoid such excitotoxicity. The blood-brain barrier, i.e., the endothelial lining of the brain capillaries...... cells. The mechanisms underlying transendothelial L-glutamate transport are however still not well understood. The present chapter summarizes the current knowledge on blood-brain barrier L-glutamate transporters and the suggested pathways for the brain-to-blood L-glutamate efflux......., regulates the exchange of nutrients, gases, and metabolic waste products between plasma and brain interstitial fluid. It has been suggested that brain capillary endothelial cells could play an important role in L-glutamate homeostasis by mediating brain-to-blood L-glutamate efflux. Both in vitro and in vivo...

  2. Windshield washer fluid

    Science.gov (United States)

    ... tests Chest x-ray CT (computerized tomography, or advanced imaging) scan EKG (electrocardiogram, or heart tracing) Fluids ... Stanton BF, St. Geme JW, Schor NF, eds. Nelson Textbook of Pediatrics . 20th ed. Philadelphia, PA: Elsevier; ...

  3. COUPLED CHEMOTAXIS FLUID MODEL

    KAUST Repository

    LORZ, ALEXANDER

    2010-01-01

    We consider a model system for the collective behavior of oxygen-driven swimming bacteria in an aquatic fluid. In certain parameter regimes, such suspensions of bacteria feature large-scale convection patterns as a result of the hydrodynamic

  4. Phoresis in fluids.

    Science.gov (United States)

    Brenner, Howard

    2011-12-01

    This paper presents a unified theory of phoretic phenomena in single-component fluids. Simple formulas are given for the phoretic velocities of small inert force-free non-Brownian particles migrating through otherwise quiescent single-component gases and liquids and animated by a gradient in the fluid's temperature (thermophoresis), pressure (barophoresis), density (pycnophoresis), or any combination thereof. The ansatz builds upon a recent paper [Phys. Rev. E 84, 046309 (2011)] concerned with slip of the fluid's mass velocity at solid surfaces--that is, with phenomena arising from violations of the classical no-slip fluid-mechanical boundary condition. Experimental and other data are cited in support of the phoretic model developed herein.

  5. Peritoneal Fluid Analysis

    Science.gov (United States)

    ... Get Tested? To help diagnose the cause of peritonitis, an inflammation of the membrane lining the abdomen, ... fever and your healthcare practitioner suspects you have peritonitis or ascites Sample Required? A peritoneal fluid sample ...

  6. Fluid flow control system

    International Nuclear Information System (INIS)

    Rion, Jacky.

    1982-01-01

    Fluid flow control system featuring a series of grids placed perpendicular to the fluid flow direction, characterized by the fact that it is formed of a stack of identical and continuous grids, each of which consists of identical meshes forming a flat lattice. The said meshes are offset from one grid to the next. This system applies in particular to flow control of the coolant flowing at the foot of an assembly of a liquid metal cooled nuclear reactor [fr

  7. Amniotic fluid inflammatory cytokines

    DEFF Research Database (Denmark)

    Abdallah, Morsi; Larsen, Nanna; Grove, Jakob

    2013-01-01

    The aim of the study was to analyze cytokine profiles in amniotic fluid (AF) samples of children developing autism spectrum disorders (ASD) and controls, adjusting for maternal autoimmune disorders and maternal infections during pregnancy.......The aim of the study was to analyze cytokine profiles in amniotic fluid (AF) samples of children developing autism spectrum disorders (ASD) and controls, adjusting for maternal autoimmune disorders and maternal infections during pregnancy....

  8. [Diagnosis: synovial fluid analysis].

    Science.gov (United States)

    Gallo Vallejo, Francisco Javier; Giner Ruiz, Vicente

    2014-01-01

    Synovial fluid analysis in rheumatological diseases allows a more accurate diagnosis in some entities, mainly infectious and microcrystalline arthritis. Examination of synovial fluid in patients with osteoarthritis is useful if a differential diagnosis will be performed with other processes and to distinguish between inflammatory and non-inflammatory forms. Joint aspiration is a diagnostic and sometimes therapeutic procedure that is available to primary care physicians. Copyright © 2014 Elsevier España, S.L. All rights reserved.

  9. Immunotherapy With Magentorheologic Fluids

    Science.gov (United States)

    2011-08-01

    anti-tumor effects are weakened by removal of the tumor antigen pool (i.e. surgery) or use of cytoreductive and immunosuppressive therapies (i.e...particles were injected as magneto -rheological fluid (MRF) into an orthotopic primary breast cancer and followed by application of a magnetic field to...SUBJECT TERMS MRF: Magneto -rehological fluid iron particles, IT: immunotherapy, necrotic death, DCs: dendritic cells, cytokines, chemokines

  10. Supercritical fluid chromatography

    Science.gov (United States)

    Vigdergauz, M. S.; Lobachev, A. L.; Lobacheva, I. V.; Platonov, I. A.

    1992-03-01

    The characteristic features of supercritical fluid chromatography (SCFC) are examined and there is a brief historical note concerning the development of the method. Information concerning the use of supercritical fluid chromatography in the analysis of objects of different nature is presented in the form of a table. The roles of the mobile and stationary phases in the separation process and the characteristic features of the apparatus and of the use of the method in physicochemical research are discussed. The bibliography includes 364 references.

  11. Seismic Barrier Protection of Critical Infrastructure from Earthquakes

    Science.gov (United States)

    2017-05-01

    We observe that such barrier structures reduce seismic wave powers by 10 – 40 dB that would otherwise reach the foundation location. Moreover, the... structure composed of opposing boreholes or trenches to mitigate seismic waves from diffracting and traveling in the vertical plane. Computational...seismic wave propagation models suggest that air or fluid filled subsurface V- shaped muffler structures are critical to the redirection and self

  12. Fullerol ionic fluids

    KAUST Repository

    Fernandes, Nikhil

    2010-01-01

    We report for the first time an ionic fluid based on hydroxylated fullerenes (fullerols). The ionic fluid was synthesized by neutralizing the fully protonated fullerol with an amine terminated polyethylene/polypropylene oxide oligomer (Jeffamine®). The ionic fluid was compared to a control synthesized by mixing the partially protonated form (sodium form) of the fullerols with the same oligomeric amine in the same ratio as in the ionic fluids (20 wt% fullerol). In the fullerol fluid the ionic bonding significantly perturbs the thermal transitions and melting/crystallization behavior of the amine. In contrast, both the normalized heat of fusion and crystallization of the amine in the control are similar to those of the neat amine consistent with a physical mixture of the fullerols/amine with minimal interactions. In addition to differences in thermal behavior, the fullerol ionic fluid exhibits a complex viscoelastic behavior intermediate between the neat Jeffamine® (liquid-like) and the control (solid-like). © 2010 The Royal Society of Chemistry.

  13. Thermostating highly confined fluids.

    Science.gov (United States)

    Bernardi, Stefano; Todd, B D; Searles, Debra J

    2010-06-28

    In this work we show how different use of thermostating devices and modeling of walls influence the mechanical and dynamical properties of confined nanofluids. We consider a two dimensional fluid undergoing Couette flow using nonequilibrium molecular dynamics simulations. Because the system is highly inhomogeneous, the density shows strong fluctuations across the channel. We compare the dynamics produced by applying a thermostating device directly to the fluid with that obtained when the wall is thermostated, considering also the effects of using rigid walls. This comparison involves an analysis of the chaoticity of the fluid and evaluation of mechanical properties across the channel. We look at two thermostating devices with either rigid or vibrating atomic walls and compare them with a system only thermostated by conduction through vibrating atomic walls. Sensitive changes are observed in the xy component of the pressure tensor, streaming velocity, and density across the pore and the Lyapunov localization of the fluid. We also find that the fluid slip can be significantly reduced by rigid walls. Our results suggest caution in interpreting the results of systems in which fluid atoms are thermostated and/or wall atoms are constrained to be rigid, such as, for example, water inside carbon nanotubes.

  14. Current Approaches and Clinician Attitudes to the Use of Cerebrospinal Fluid Biomarkers in Diagnostic Evaluation of Dementia in Europe

    DEFF Research Database (Denmark)

    Miller, Anne-Marie; Balasa, Mircea; Blennow, Kaj

    2017-01-01

    BACKGROUND: BIOMARKAPD seeks to diminish the barriers associated with the clinical use of cerebrospinal fluid (CSF) biomarker analysis by reducing variation in CSF laboratory methodologies and generating consensus recommendations on their clinical interpretation and application for dementia diagn...

  15. Hanford Permanent Isolation Barrier Program: Asphalt technology development

    International Nuclear Information System (INIS)

    Freeman, H.D.; Romine, R.A.

    1994-11-01

    An important component of the Hanford Permanent Isolation Barrier is the use of a two-layer composite asphalt system, which provides backup water diversion capabilities if the primary capillary barrier fails to meet infiltration goals. Because of asphalt's potential to perform to specification over the 1000-year design life criterion, a composite asphalt barrier (HMAC/fluid-applied polymer-modified asphalt) is being considered as an alternative to the bentonite clay/high density poly(ethylene) barriers for the low-permeability component of the Hanford Permanent Isolation Barrier. The feasibility of using asphalt as a long-term barrier is currently being studied. Information that must be known is the ability of asphalt to retain desirable physical properties over a period of 1000 years. This paper presents the approach for performing accelerated aging tests and evaluating the performance of samples under accelerated conditions. The results of these tests will be compared with asphalt artifact analogs and the results of modeling the degradation of the selected asphalt composite to make life-cycle predictions

  16. Barrier mechanisms in the Drosophila blood-brain barrier

    Directory of Open Access Journals (Sweden)

    Samantha Jane Hindle

    2014-12-01

    Full Text Available The invertebrate blood-brain barrier field is growing at a rapid pace and, in recent years, studies have shown a physiologic and molecular complexity that has begun to rival its vertebrate counterpart. Novel mechanisms of paracellular barrier maintenance through GPCR signaling were the first demonstrations of the complex adaptive mechanisms of barrier physiology. Building upon this work, the integrity of the invertebrate blood-brain barrier has recently been shown to require coordinated function of all layers of the compound barrier structure, analogous to signaling between the layers of the vertebrate neurovascular unit. These findings strengthen the notion that many blood-brain barrier mechanisms are conserved between vertebrates and invertebrates, and suggest that novel findings in invertebrate model organisms will have a significant impact on the understanding of vertebrate BBB functions. In this vein, important roles in coordinating localized and systemic signaling to dictate organism development and growth are beginning to show how the blood-brain barrier can govern whole animal physiologies. This includes novel functions of blood-brain barrier gap junctions in orchestrating synchronized neuroblast proliferation, and of blood-brain barrier secreted antagonists of insulin receptor signaling. These advancements and others are pushing the field forward in exciting new directions. In this review, we provide a synopsis of invertebrate blood-brain barrier anatomy and physiology, with a focus on insights from the past 5 years, and highlight important areas for future study.

  17. Barriers to accessing urethroplasty.

    Science.gov (United States)

    Consolo, Michael J; Syed, Kirin K; Robison, Christopher; McFadden, Jacob; Shalowitz, David I; Brown, Gordon A; Sussman, David O; Figler, Bradley D

    2016-01-01

    Urethroplasty is an effective treatment for men with anterior urethral strictures, but is utilized less frequently than ineffective treatments such as internal urethrotomy. We sought to identify provider-level barriers to urethroplasty. An anonymous online survey was emailed to all Mid-Atlantic American Urological Association members. Six scenarios in which urethroplasty was the most appropriate treatment were presented. Primary outcome was recommendation for urethroplasty in ≥ three clinical scenarios. Other factors measured include practice zip code, urethroplasty training, and proximity to a urethroplasty surgeon. Multivariate logistic regression identified factors associated with increased likelihood of urethroplasty recommendation. Of 670 members emailed, 109 (16%) completed the survey. Final analysis included 88 respondents. Mean years in practice was 17.2. Most respondents received formal training in urethroplasty: 43 (49%) in residency, 5 (6%) in fellowship, and 10 (11%) in both; 48 respondents (55%) had a urethroplasty surgeon in their practice, whereas 18 (20%) had a urethroplasty surgeon within 45 minutes of his or her primary practice location. The only covariate that was associated with an increased likelihood of recommending urethroplasty in ≥ three scenarios was formal urethroplasty training. Most members (68%) reported no barriers to referring patients for urethroplasty; the most common barriers cited were long distance to urethroplasty surgeon (n 5 13, 15%) and concern about complications (n 5 8, 9%). Urethroplasty continues to be underutilized in men with anterior urethral strictures, potentially due to lack of knowledge dissemination and access to a urethroplasty surgeon. Appropriate urethroplasty utilization may increase with greater exposure to urethroplasty in training.

  18. Principles of computational fluid dynamics

    International Nuclear Information System (INIS)

    Wesseling, P.

    2001-01-01

    The book is aimed at graduate students, researchers, engineers and physicists involved in flow computations. An up-to-date account is given of the present state- of-the-art of numerical methods employed in computational fluid dynamics. The underlying numerical principles are treated with a fair amount of detail, using elementary mathematical analysis. Attention is given to difficulties arising from geometric complexity of the flow domain and of nonuniform structured boundary-fitted grids. Uniform accuracy and efficiency for singular perturbation problems is studied, pointing the way to accurate computation of flows at high Reynolds number. Much attention is given to stability analysis, and useful stability conditions are provided, some of them new, for many numerical schemes used in practice. Unified methods for compressible and incompressible flows are discussed. Numerical analysis of the shallow-water equations is included. The theory of hyperbolic conservation laws is treated. Godunov's order barrier and how to overcome it by means of slope-limited schemes is discussed. An introduction is given to efficient iterative solution methods, using Krylov subspace and multigrid acceleration. Many pointers are given to recent literature, to help the reader to quickly reach the current research frontier. (orig.)

  19. Racial Trade Barriers?

    DEFF Research Database (Denmark)

    Bjerre, Jacob Halvas

    . This paper analyzes the racial policies pursued in the foreign trade and argues that we need to recognize Aryanization as a world-wide policy in order to fully understand its character and possible consequences. I focus on the pre-war period and analyze the case of Denmark from three different perspectives......: perpetrators, victims and bystanders. The analysis will show that race, economy and foreign trade were combined in an attempt to raise racial trade barriers. This forced the question of German racial policies on the Danish government, Danish-Jewish businesses, and German companies involved in foreign trade...

  20. Support or Barrier?

    DEFF Research Database (Denmark)

    Sanden, Guro Refsum; Lønsmann, Dorte

    This study offers a critical look at how corporate-level language management influences front-line language practices among employees in three multinational corporations (MNCs) headquartered in Scandinavia. Based on interview and document data, we examine, firstly, what front-line practices...... employees use to cross language boundaries in their everyday work, and, secondly, how these practices relate to top-down language management in the case companies. Our findings show that employees are often dependent on ad hoc and informal solutions in cross- language situations, which leads us...... to a discussion of how a company’s language policy may be seen as both support and a barrier....

  1. Viscous Flow with Large Fluid-Fluid Interface Displacement

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Koblitz; Hassager, Ole; Saasen, Arild

    1998-01-01

    The arbitrary Lagrange-Euler (ALE) kinematic description has been implemented in a 3D transient finite element program to simulate multiple fluid flows with fluid-fluid interface or surface displacements. The description of fluid interfaces includes variable interfacial tension, and the formulation...... is useful in the simulation of low and intermediate Reynolds number viscous flow. The displacement of two immiscible Newtonian fluids in a vertical (concentric and eccentric) annulus and a (vertical and inclined)tube is simulated....

  2. Two-phase cooling fluids; Les fluides frigoporteurs diphasiques

    Energy Technology Data Exchange (ETDEWEB)

    Lallemand, A. [Institut National des Sciences Appliquees (INSA), 69 - Lyon (France)

    1997-12-31

    In the framework of the diminution of heat transfer fluid consumption, the concept of indirect refrigerating circuits, using cooling intermediate fluids, is reviewed and the fluids that are currently used in these systems are described. Two-phase cooling fluids advantages over single-phase fluids are presented with their thermophysical characteristics: solid fraction, two-phase mixture enthalpy, thermal and rheological properties, determination of heat and mass transfer characteristics, and cold storage through ice slurry

  3. Fluid and hybrid models for streamers

    Science.gov (United States)

    Bonaventura, Zdeněk

    2016-09-01

    Streamers are contracted ionizing waves with self-generated field enhancement that propagate into a low-ionized medium exposed to high electric field leaving filamentary trails of plasma behind. The widely used model to study streamer dynamics is based on drift-diffusion equations for electrons and ions, assuming local field approximation, coupled with Poisson's equation. For problems where presence of energetic electrons become important a fluid approach needs to be extended by a particle model, accompanied also with Monte Carlo Collision technique, that takes care of motion of these electrons. A combined fluid-particle approach is used to study an influence of surface emission processes on a fast-pulsed dielectric barrier discharge in air at atmospheric pressure. It is found that fluid-only model predicts substantially faster reignition dynamics compared to coupled fluid-particle model. Furthermore, a hybrid model can be created in which the population of electrons is divided in the energy space into two distinct groups: (1) low energy `bulk' electrons that are treated with fluid model, and (2) high energy `beam' electrons, followed as particles. The hybrid model is then capable not only to deal with streamer discharges in laboratory conditions, but also allows us to study electron acceleration in streamer zone of lighting leaders. There, the production of fast electrons from streamers is investigated, since these (runaway) electrons act as seeds for the relativistic runaway electron avalanche (RREA) mechanism, important for high-energy atmospheric physics phenomena. Results suggest that high energy electrons effect the streamer propagation, namely the velocity, the peak electric field, and thus also the production rate of runaway electrons. This work has been supported by the Czech Science Foundation research project 15-04023S.

  4. Stability of barrier buckets with zero RF-barrier separations

    Energy Technology Data Exchange (ETDEWEB)

    Ng, K.Y.; /Fermilab

    2005-03-01

    A barrier bucket with very small separation between the rf barriers (relative to the barrier widths) or even zero separation has its synchrotron tune decreasing rather slowly from a large value towards the boundary of the bucket. As a result, large area at the bucket edges can become unstable under the modulation of rf voltage and/or rf phase. In addition, chaotic regions may form near the bucket center and extend outward under increasing modulation. Application is made to those barrier buckets used in the process of momentum mining at the Fermilab Recycler Ring.

  5. Boiler using combustible fluid

    Science.gov (United States)

    Baumgartner, H.; Meier, J.G.

    1974-07-03

    A fluid fuel boiler is described comprising a combustion chamber, a cover on the combustion chamber having an opening for introducing a combustion-supporting gaseous fluid through said openings, means to impart rotation to the gaseous fluid about an axis of the combustion chamber, a burner for introducing a fluid fuel into the chamber mixed with the gaseous fluid for combustion thereof, the cover having a generally frustro-conical configuration diverging from the opening toward the interior of the chamber at an angle of between 15/sup 0/ and 55/sup 0/; means defining said combustion chamber having means defining a plurality of axial hot gas flow paths from a downstream portion of the combustion chamber to flow hot gases into an upstream portion of the combustion chamber, and means for diverting some of the hot gas flow along paths in a direction circumferentially of the combustion chamber, with the latter paths being immersed in the water flow path thereby to improve heat transfer and terminating in a gas outlet, the combustion chamber comprising at least one modular element, joined axially to the frustro-conical cover and coaxial therewith. The modular element comprises an inner ring and means of defining the circumferential, radial, and spiral flow paths of the hot gases.

  6. Performing a local barrier operation

    Science.gov (United States)

    Archer, Charles J; Blocksome, Michael A; Ratterman, Joseph D; Smith, Brian E

    2014-03-04

    Performing a local barrier operation with parallel tasks executing on a compute node including, for each task: retrieving a present value of a counter; calculating, in dependence upon the present value of the counter and a total number of tasks performing the local barrier operation, a base value, the base value representing the counter's value prior to any task joining the local barrier; calculating, in dependence upon the base value and the total number of tasks performing the local barrier operation, a target value of the counter, the target value representing the counter's value when all tasks have joined the local barrier; joining the local barrier, including atomically incrementing the value of the counter; and repetitively, until the present value of the counter is no less than the target value of the counter: retrieving the present value of the counter and determining whether the present value equals the target value.

  7. Fluid structure coupling algorithm

    International Nuclear Information System (INIS)

    McMaster, W.H.; Gong, E.Y.; Landram, C.S.; Quinones, D.F.

    1980-01-01

    A fluid-structure-interaction algorithm has been developed and incorporated into the two-dimensional code PELE-IC. This code combines an Eulerian incompressible fluid algorithm with a Lagrangian finite element shell algorithm and incorporates the treatment of complex free surfaces. The fluid structure and coupling algorithms have been verified by the calculation of solved problems from the literature and from air and steam blowdown experiments. The code has been used to calculate loads and structural response from air blowdown and the oscillatory condensation of steam bubbles in water suppression pools typical of boiling water reactors. The techniques developed have been extended to three dimensions and implemented in the computer code PELE-3D

  8. Rheology of Active Fluids

    Science.gov (United States)

    Saintillan, David

    2018-01-01

    An active fluid denotes a viscous suspension of particles, cells, or macromolecules able to convert chemical energy into mechanical work by generating stresses on the microscale. By virtue of this internal energy conversion, these systems display unusual macroscopic rheological signatures, including a curious transition to an apparent superfluid-like state where internal activity exactly compensates viscous dissipation. These behaviors are unlike those of classical complex fluids and result from the coupling of particle configurations with both externally applied flows and internally generated fluid disturbances. Focusing on the well-studied example of a suspension of microswimmers, this review summarizes recent experiments, models, and simulations in this area and highlights the critical role played by the rheological response of these active materials in a multitude of phenomena, from the enhanced transport of passive suspended objects to the emergence of spontaneous flows and collective motion.

  9. Hazardous fluid leak detector

    Science.gov (United States)

    Gray, Harold E.; McLaurin, Felder M.; Ortiz, Monico; Huth, William A.

    1996-01-01

    A device or system for monitoring for the presence of leaks from a hazardous fluid is disclosed which uses two electrodes immersed in deionized water. A gas is passed through an enclosed space in which a hazardous fluid is contained. Any fumes, vapors, etc. escaping from the containment of the hazardous fluid in the enclosed space are entrained in the gas passing through the enclosed space and transported to a closed vessel containing deionized water and two electrodes partially immersed in the deionized water. The electrodes are connected in series with a power source and a signal, whereby when a sufficient number of ions enter the water from the gas being bubbled through it (indicative of a leak), the water will begin to conduct, thereby allowing current to flow through the water from one electrode to the other electrode to complete the circuit and activate the signal.

  10. Clusters in simple fluids

    International Nuclear Information System (INIS)

    Sator, N.

    2003-01-01

    This article concerns the correspondence between thermodynamics and the morphology of simple fluids in terms of clusters. Definitions of clusters providing a geometric interpretation of the liquid-gas phase transition are reviewed with an eye to establishing their physical relevance. The author emphasizes their main features and basic hypotheses, and shows how these definitions lead to a recent approach based on self-bound clusters. Although theoretical, this tutorial review is also addressed to readers interested in experimental aspects of clustering in simple fluids

  11. Mechanics of fluid flow

    CERN Document Server

    Basniev, Kaplan S; Chilingar, George V 0

    2012-01-01

    The mechanics of fluid flow is a fundamental engineering discipline explaining both natural phenomena and human-induced processes, and a thorough understanding of it is central to the operations of the oil and gas industry.  This book, written by some of the world's best-known and respected petroleum engineers, covers the concepts, theories, and applications of the mechanics of fluid flow for the veteran engineer working in the field and the student, alike.  It is a must-have for any engineer working in the oil and gas industry.

  12. Supercritical fluid analytical methods

    International Nuclear Information System (INIS)

    Smith, R.D.; Kalinoski, H.T.; Wright, B.W.; Udseth, H.R.

    1988-01-01

    Supercritical fluids are providing the basis for new and improved methods across a range of analytical technologies. New methods are being developed to allow the detection and measurement of compounds that are incompatible with conventional analytical methodologies. Characterization of process and effluent streams for synfuel plants requires instruments capable of detecting and measuring high-molecular-weight compounds, polar compounds, or other materials that are generally difficult to analyze. The purpose of this program is to develop and apply new supercritical fluid techniques for extraction, separation, and analysis. These new technologies will be applied to previously intractable synfuel process materials and to complex mixtures resulting from their interaction with environmental and biological systems

  13. Barrier rf systems in synchrotrons

    International Nuclear Information System (INIS)

    Bhat, Chandra M.

    2004-01-01

    Recently, many interesting applications of the barrier RF system in hadron synchrotrons have been realized. A remarkable example of this is the development of longitudinal momentum mining and implementation at the Fermilab Recycler for extraction of low emittance pbars for the Tevatron shots. At Fermilab, we have barrier RF systems in four different rings. In the case of Recycler Ring, all of the rf manipulations are carried out using a barrier RF system. Here, the author reviews various uses of barrier rf systems in particle accelerators including some new schemes for producing intense proton beam and possible new applications

  14. Tunnel superpenetrability of potential barriers

    International Nuclear Information System (INIS)

    Zakhariev, B N.

    1982-01-01

    The transmission of two particles through the same barrier is considered. The limiting cases are compared when the particles are joined together in a single particle with double mass-energy and potential and when they pass the barrier independently. As an intermediate case a pair of particles bound in a quasideuteron of a finite size is considered. It is shown that long-range collective correlations of particles (of the superfluidity type and others) simplify very much for them passing through high potential barriers. This happens due to the transfer of the additional energy from the particles outside the barriers to those inside it

  15. Barriers for recess physical activity

    DEFF Research Database (Denmark)

    Pawlowski, Charlotte Skau; Tjørnhøj-Thomsen, Tine; Schipperijn, Jasper

    2014-01-01

    BACKGROUND: Many children, in particular girls, do not reach the recommended amount of daily physical activity. School recess provides an opportunity for both boys and girls to be physically active, but barriers to recess physical activity are not well understood. This study explores gender...... differences in children's perceptions of barriers to recess physical activity. Based on the socio-ecological model four types of environmental barriers were distinguished: natural, social, physical and organizational environment. METHODS: Data were collected through 17 focus groups (at 17 different schools...... this study, we recommend promoting recess physical activity through a combination of actions, addressing barriers within the natural, social, physical and organizational environment....

  16. Linguistic Barriers and Bridges

    DEFF Research Database (Denmark)

    Thuesen, Frederik

    2016-01-01

    The influence of language on social capital in low-skill and ethnically diverse workplaces has thus far received very limited attention within the sociology of work. As the ethnically diverse workplace is an important social space for the construction of social relations bridging different social...... groups, the sociology of work needs to develop a better understanding of the way in which linguistic diversity influences the formation of social capital, i.e. resources such as the trust and reciprocity inherent in social relations in such workplaces. Drawing on theories about intergroup contact...... and intercultural communication, this article analyses interviews with 31 employees from two highly ethnically diverse Danish workplaces. The article shows how linguistic barriers such as different levels of majority language competence and their consequent misunderstandings breed mistrust and hostility, whilst...

  17. Countermeasures and barriers

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, Johannes [Oersted - DTU, Automation, Kgs. Lyngby (Denmark)

    2005-10-01

    In 1973 Haddon proposed ten strategies for reducing and avoiding damages based on a model of potential harmful energy transfer (Haddon, 1973). The strategies apply to a large variety of unwanted phenomena. Haddon's pioneering work on countermeasures has had a major influence on later thinking about safety. Considering its impact it is remarkable that the literature offers almost no discussions related to the theoretical foundations of Haddon's countermeasure strategies. The present report addresses a number of theoretical issues related to Haddon's countermeasure strategies, which are: 1) A reformulation and formalization of Haddon's countermeasure strategies. 2) An identification and description of some of the problems associated with the term 'barrier'. 3) Suggestions for a more precise terminology based on the causal structure of countermeasures. 4) Extending the scope of countermeasures to include sign-based countermeasures. (au)

  18. Countermeasures and barriers

    International Nuclear Information System (INIS)

    Petersen, Johannes

    2005-10-01

    In 1973 Haddon proposed ten strategies for reducing and avoiding damages based on a model of potential harmful energy transfer (Haddon, 1973). The strategies apply to a large variety of unwanted phenomena. Haddon's pioneering work on countermeasures has had a major influence on later thinking about safety. Considering its impact it is remarkable that the literature offers almost no discussions related to the theoretical foundations of Haddon's countermeasure strategies. The present report addresses a number of theoretical issues related to Haddon's countermeasure strategies, which are: 1) A reformulation and formalization of Haddon's countermeasure strategies. 2) An identification and description of some of the problems associated with the term 'barrier'. 3) Suggestions for a more precise terminology based on the causal structure of countermeasures. 4) Extending the scope of countermeasures to include sign-based countermeasures. (au)

  19. Biocompatible Peritoneal Dialysis Fluids: Clinical Outcomes

    Directory of Open Access Journals (Sweden)

    Yeoungjee Cho

    2012-01-01

    Full Text Available Peritoneal dialysis (PD is a preferred home dialysis modality and has a number of added advantages including improved initial patient survival and cost effectiveness over haemodialysis. Despite these benefits, uptake of PD remains relatively low, especially in developed countries. Wider implementation of PD is compromised by higher technique failure from infections (e.g., PD peritonitis and ultrafiltration failure. These are inevitable consequences of peritoneal injury, which is thought to result primarily from continuous exposure to PD fluids that are characterised by their “unphysiologic” composition. In order to overcome these barriers, a number of more biocompatible PD fluids, with neutral pH, low glucose degradation product content, and bicarbonate buffer have been manufactured over the past two decades. Several preclinical studies have demonstrated their benefit in terms of improvement in host cell defence, peritoneal membrane integrity, and cytokine profile. This paper aims to review randomised controlled trials assessing the use of biocompatible PD fluids and their effect on clinical outcomes.

  20. Thames barrier (flood protection barriers on the Thames)

    International Nuclear Information System (INIS)

    Ilkovic, J.

    2005-01-01

    In this paper the flood protection barriers on the Thames are presented. The flood protection system on the Thames in 1984 was commissioned. During two decades this barrier was used 54 times against to the high water and 34 times against storm-sewage. There is installed buttress type hydroelectric power plant

  1. Analysis and development of numerical methodologies for simulation of flow control with dielectric barrier discharge actuators

    OpenAIRE

    Abdollahzadehsangroudi, Mohammadmahdi

    2014-01-01

    The aim of this thesis is to investigate and develop different numerical methodologies for modeling the Dielectric Barrier discharge (DBD) plasma actuators for flow control purposes. Two different modeling approaches were considered; one based on Plasma-fluid model and the other based on a phenomenological model. A three component Plasma fluid model based on the transport equations of charged particles was implemented in this thesis in OpenFOAM, using several techniques to redu...

  2. Incompressible ionized fluid mixtures

    Czech Academy of Sciences Publication Activity Database

    Roubíček, Tomáš

    2006-01-01

    Roč. 17, č. 7 (2006), s. 493-509 ISSN 0935-1175 Institutional research plan: CEZ:AV0Z10750506 Keywords : chemically reacting fluids * Navier-Stokes * Nernst-Planck * Possion equation s * heat equation s Subject RIV: BA - General Mathematics Impact factor: 0.954, year: 2006

  3. Relativistic viscoelastic fluid mechanics

    International Nuclear Information System (INIS)

    Fukuma, Masafumi; Sakatani, Yuho

    2011-01-01

    A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.

  4. Relativistic viscoelastic fluid mechanics.

    Science.gov (United States)

    Fukuma, Masafumi; Sakatani, Yuho

    2011-08-01

    A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.

  5. Cryogenic Fluid Management Facility

    Science.gov (United States)

    Eberhardt, R. N.; Bailey, W. J.

    1985-01-01

    The Cryogenic Fluid Management Facility is a reusable test bed which is designed to be carried within the Shuttle cargo bay to investigate the systems and technologies associated with the efficient management of cryogens in space. Cryogenic fluid management consists of the systems and technologies for: (1) liquid storage and supply, including capillary acquisition/expulsion systems which provide single-phase liquid to the user system, (2) both passive and active thermal control systems, and (3) fluid transfer/resupply systems, including transfer lines and receiver tanks. The facility contains a storage and supply tank, a transfer line and a receiver tank, configured to provide low-g verification of fluid and thermal models of cryogenic storage and transfer processes. The facility will provide design data and criteria for future subcritical cryogenic storage and transfer system applications, such as Space Station life support, attitude control, power and fuel depot supply, resupply tankers, external tank (ET) propellant scavenging, and ground-based and space-based orbit transfer vehicles (OTV).

  6. Fluids in metamorphic rocks

    NARCIS (Netherlands)

    Touret, J.L.R.

    2001-01-01

    Basic principles for the study of fluid inclusions in metamorphic rocks are reviewed and illustrated. A major problem relates to the number of inclusions, possibly formed on a wide range of P-T conditions, having also suffered, in most cases, extensive changes after initial trapping. The

  7. Removal of unwanted fluid

    Science.gov (United States)

    Subudhi, Sudhakar; Sreenivas, K. R.; Arakeri, Jaywant H.

    2013-01-01

    This work is concerned with the removal of unwanted fluid through the source-sink pair. The source consists of fluid issuing out of a nozzle in the form of a jet and the sink is a pipe that is kept some distance from the source pipe. Of concern is the percentage of source fluid sucked through the sink. The experiments have been carried in a large glass water tank. The source nozzle diameter is 6 mm and the sink pipe diameter is either 10 or 20 mm. The horizontal and vertical separations and angles between these source and sink pipes are adjustable. The flow was visualized using KMnO4 dye, planer laser induced fluorescence and particle streak photographs. To obtain the effectiveness (that is percentage of source fluid entering the sink pipe), titration method is used. The velocity profiles with and without the sink were obtained using particle image velocimetry. The sink flow rate to obtain a certain effectiveness increase dramatically with lateral separation. The sink diameter and the angle between source and the sink axes don't influence effectiveness as much as the lateral separation.

  8. Continuous feedback fluid queues

    NARCIS (Netherlands)

    Scheinhardt, Willem R.W.; van Foreest, N.D.; Mandjes, M.R.H.

    2003-01-01

    We investigate a fluid buffer which is modulated by a stochastic background process, while the momentary behavior of the background process depends on the current buffer level in a continuous way. Loosely speaking the feedback is such that the background process behaves `as a Markov process' with

  9. The barrier to ice nucleation in monatomic water

    Science.gov (United States)

    Prestipino, Santi

    2018-03-01

    Crystallization from a supercooled liquid initially proceeds via the formation of a small solid embryo (nucleus), which requires surmounting an activation barrier. This phenomenon is most easily studied by numerical simulation, using specialized biased-sampling techniques to overcome the limitations imposed by the rarity of nucleation events. Here, I focus on the barrier to homogeneous ice nucleation in supercooled water, as represented by the monatomic-water model, which in the bulk exhibits a complex interplay between different ice structures. I consider various protocols to identify solidlike particles on a computer, which perform well enough for the Lennard-Jones model, and compare their respective impact on the shape and height of the nucleation barrier. It turns out that the effect is stronger on the nucleus size than on the barrier height. As a by-product of the analysis, I determine the structure of the nucleation cluster, finding that the relative amount of ice phases in the cluster heavily depends on the method used for classifying solidlike particles. Moreover, the phase which is most favored during the earlier stages of crystallization may happen, depending on the nucleation coordinate adopted, to be different from the stable polymorph. Therefore, the quality of a reaction coordinate cannot be assessed simply on the basis of the barrier height obtained. I explain how this outcome is possible and why it just points out the shortcoming of collective variables appropriate to simple fluids in providing a robust method of particle classification for monatomic water.

  10. A method of providing a barrier in a fracture-containing system

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to a method of providing a barrier in a fracture-containing system, comprising: i) Providing a treatment fluid comprising: a) a base fluid; b) an elastomeric material, wherein said elastomeric material comprises at least one polymer capable of crosslinking into an el......The present invention relates to a method of providing a barrier in a fracture-containing system, comprising: i) Providing a treatment fluid comprising: a) a base fluid; b) an elastomeric material, wherein said elastomeric material comprises at least one polymer capable of crosslinking...... into an elastomer, and c) at least one crosslinking agent; ii) Placing the treatment fluid in a fracture-containing system; iii) Allowing the elastomeric material to crosslink with itself to form a barrier in said fracture-containing system; wherein the elastomeric material and/or the crosslinking agent...... are of neutral buoyancy with regard to the base fluid. The invention is contemplated to having utility not only in the oil-drilling industry but also in the plugging of fractures in sewer drains, pipelines etc....

  11. Energy barriers in patterned media

    NARCIS (Netherlands)

    de Vries, Jeroen

    2013-01-01

    Due to the fact that thermal activation aids in overcoming the energy barrier, the required field for reversal varies from instance to instance for the same island. This thermally induced switching field distribution can be used to determine the difference in energy barrier of magneticallyweak and

  12. Simulating complex noise barrier reflections

    NARCIS (Netherlands)

    Eerden, F.J.M. van der; Lutgendorf, D.; Roo, F. de

    2011-01-01

    Within the EU FP7 QUIESST project, QUIeting the Environment for a Sustainable Surface Transport, a test method is being developed for the reflectivity of noise barriers. The method needs to account for a complex shape of barriers and the use of various types of absorbing materials. The performance

  13. BARRIERS OF STRATEGIC ALLIANCES ORGANIZATION

    Directory of Open Access Journals (Sweden)

    Vladislav M. Sannikov

    2014-01-01

    Full Text Available General barriers of organization of different types of strategic alliances have beenconsidered in the article. There are several recommendations for overcoming themin cases of international alliances, and in case of work in one state. The article also identified goals and tasks of single coordination center of alliance to overcome organization barriers.

  14. Experimental model for research on the blood-ocular barrier

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hak Jin; Jea, Seung Youn; Park, Jae Sung; Jung, Yeon Joo [Pusan National University, Pusan (Korea, Republic of); Kim, Yong Woo [Inje University, Kimhae (Korea, Republic of); Park, Byung Rae [Catholic University, Seoul (Korea, Republic of)

    2006-03-15

    The eyeball has 2 blood-ocular barriers, i.e, the blood-retinal and blood-aqueous barriers. The purpose of this study was to evaluate if triolein emulsion could disrupt the barriers, and we wanted to suggest as an experimental model for future blood-ocular barrier studies. The triolein emulsion was made of 0.1 ml triolein and 20 ml normal saline, and this was infused into the carotid artery of ten cats (the experimental group). As a control group, only normal saline was infused in another ten cats. Precontrast and postcontrast T1-weighted MR images were obtained at 30 minutes and 3 hours after embolization in both groups. The signal intensities were evaluate qualitatively and quantitatively in the anterior and posterior chambers and also in the vitreus fluid. Statistical analysis was performed by employing the Kruskal Wallist test, Dunn's Multiple Comparison test and the wilcoxon signed rank test. In the control group, no contrast enhancement was demonstrated in the anterior or posterior chamber or in the vitreus fluid of the ipsilateral or contralateral eyeball on the 30 minutes MR images. The anterior chambers of the ipsilateral and contralateral eyeballs revealed delayed contrast enhancement on the 3 hour MR images. In the experimental group, the 30 minute-postembolization MR images were not different from those of the control group. The 30 minute-postembolization MR images demonstrated delayed contrast enhancement in the anterior chamber of the ipsilateral and contralateral eyeballs and in the posterior chamber of the ipsilateral eyeball. The delayed contrast enhancement of the posterior chamber of the ipsilateral eyeball was statistically significant ({rho} < 0.05). The present study demonstrated significant contrast enhancement in the posterior chamber with infusion of the triolein emulsion, and this can serve as a model for blood-aqueous barrier studies.

  15. Experimental model for research on the blood-ocular barrier

    International Nuclear Information System (INIS)

    Kim, Hak Jin; Jea, Seung Youn; Park, Jae Sung; Jung, Yeon Joo; Kim, Yong Woo; Park, Byung Rae

    2006-01-01

    The eyeball has 2 blood-ocular barriers, i.e, the blood-retinal and blood-aqueous barriers. The purpose of this study was to evaluate if triolein emulsion could disrupt the barriers, and we wanted to suggest as an experimental model for future blood-ocular barrier studies. The triolein emulsion was made of 0.1 ml triolein and 20 ml normal saline, and this was infused into the carotid artery of ten cats (the experimental group). As a control group, only normal saline was infused in another ten cats. Precontrast and postcontrast T1-weighted MR images were obtained at 30 minutes and 3 hours after embolization in both groups. The signal intensities were evaluate qualitatively and quantitatively in the anterior and posterior chambers and also in the vitreus fluid. Statistical analysis was performed by employing the Kruskal Wallist test, Dunn's Multiple Comparison test and the wilcoxon signed rank test. In the control group, no contrast enhancement was demonstrated in the anterior or posterior chamber or in the vitreus fluid of the ipsilateral or contralateral eyeball on the 30 minutes MR images. The anterior chambers of the ipsilateral and contralateral eyeballs revealed delayed contrast enhancement on the 3 hour MR images. In the experimental group, the 30 minute-postembolization MR images were not different from those of the control group. The 30 minute-postembolization MR images demonstrated delayed contrast enhancement in the anterior chamber of the ipsilateral and contralateral eyeballs and in the posterior chamber of the ipsilateral eyeball. The delayed contrast enhancement of the posterior chamber of the ipsilateral eyeball was statistically significant (ρ < 0.05). The present study demonstrated significant contrast enhancement in the posterior chamber with infusion of the triolein emulsion, and this can serve as a model for blood-aqueous barrier studies

  16. Editorial Special Issue on Fluid Mechanics and Fluid Power (FMFP ...

    Indian Academy of Sciences (India)

    This special issue of Sadhana contains selected papers from two conferences related to fluid mechanics held in India recently, Fluid Mechanics and Fluid Power conference at NIT, Hamirpur, and an International Union of Theoretical ... A simple, well thought out, flow visualization experiment or a computation can sometimes ...

  17. Tunnelling without barriers

    International Nuclear Information System (INIS)

    Lee, K.

    1987-01-01

    The evolution in flat and curved space-time of quantum fields in theories with relative flat potential and its consequences are considered. It is shown that bubble nucleation, a quantum mechanical tunnelling process, may occur in flat space-time, having a bounce solution, even if V(phi) has no barrier. It is shown that bubble nucleation can also occur in curved space-time even though there is no bounce solution in the standard formalism for the bubble nucleation rate in curved space-time. Additionally, bubbles can nucleate during the slow rolling period on the potential in flat and curved space-time, in this case also there is no bounce solution. It is known in the new inflationary scenario that energy density perturbations caused by quantum fluctuations of the scalar field can satisfy the presently observed bounds on density perturbations. Bubble nucleation during the slow rolling period also gives rise to density perturbations. For a model potential density perturbations by bubbles are calculated at the horizon reentering. By applying the bound from the almost isotropic microwave black body radiation on these density perturbations, a constraint on the model potential is obtained. Finally, some further implications on the galaxy formation and applications in more realistic potential are discussed

  18. Development of engineered barrier

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Kwan Sik; Cho, Won Jin; Lee, Jae Owan; Kim, Seung Soo; Kang, Mu Ja

    1999-03-01

    Engineered barrier development was carried out into the three research fields : waste form, disposal container, and buffer. The waste form field dealt with long-term leaching tests with borosilicate waste glasses surrounded by compacted bentonite. The leach rate decreased with increasing time, and was higher for the waste specimen rich in U and Na. In the container field, preliminary concepts of disposal containers were recommended by conducting structural analysis, thermal analysis, and shielding analysis, and major properties of stainless steel, copper, and titanium as a container material were surveyed. The sensitization degrees of SUS 316 and316L were lower than those of SUS 304 and 304L, respectively. The crevice corrosion of sensitized stainless steel was sensitive to the content of salt. Researches into the buffer included establishment of its performance criteria followed by investigating major properties of buffer using potential material in Korea. Experiments were made for measuring hydraulic conductivities, swelling properties, mechanical properties, thermal conductivities, pore-water chemistry properties, and adsorption properties was also investigated. (author)

  19. Omnidirectional ventilated acoustic barrier

    Science.gov (United States)

    Zhang, Hai-long; Zhu, Yi-fan; Liang, Bin; Yang, Jing; Yang, Jun; Cheng, Jian-chun

    2017-11-01

    As an important problem in acoustics, sound insulation finds applications in a great variety of situations. In the existing schemes, however, there has always been a trade-off between the thinness of sound-insulating devices and their ventilating capabilities, limiting their potentials in the control of low-frequency sound in high ventilation environments. Here, we design and experimentally implement an omnidirectional acoustic barrier with a planar profile, subwavelength thickness ( 0.18 λ ), yet high ventilation. The proposed mechanism is based on the interference between the resonant scattering of discrete states and the background scattering of continuous states which induces a Fano-like asymmetric transmission profile. Benefitting from the binary-structured design of the coiled unit and hollow pipe, it maximally simplifies the design and fabrication while ensuring the ventilation for all the non-resonant units with open tubes. The simulated and measured results agree well, showing the effectiveness of our proposed mechanism to block low frequency sound coming from various directions while allowing 63% of the air flow to pass. We anticipate our design to open routes to design sound insulators and to enable applications in traditionally unattainable cases such as those calling for noise reduction and cooling simultaneously.

  20. Mobilitet, barrierer & muligheder

    DEFF Research Database (Denmark)

    Petersen, Mimi

    2011-01-01

    stereotypering. På den ene side peger udsagn fra de unge drenge på en oplevelse af at blive kriminaliseret i kraft af deres køn (det maskuline kombineret med at have en anden hudfarve). Og de unge piger oplever, at de udover at blive kategoriseret som ”indvandrere” også bliver kategoriseret som passive, umyndige...... som en vej ud af irakiske Kurdistan, men ikke tilbage til Danmark. Drengene fra familier med bedre økonomiske ressourcer giver udtryk for, ønske om at rejse til andre lande. På grund af begrænsede sproglige kompetencer oplever hovedparten af de unge (både i Danmark og i irakiske Kurdistan) barrierer i...... har planer for at flytte fra Kurdistan. De har dansk statsborgerskab, men de vil ikke tilbage til Danmark. I de fortællinger, som afhandlingen bygger på, er det tydeligt at samspillet mellem flere sociale dimensioner, spiller ind på de unges selvforståelse, tilhørsforhold, erfaringer og deres valg af...

  1. Development of engineered barrier

    International Nuclear Information System (INIS)

    Chun, Kwan Sik; Cho, Won Jin; Lee, Jae Owan; Kim, Seung Soo; Kang, Mu Ja

    1999-03-01

    Engineered barrier development was carried out into the three research fields : waste form, disposal container, and buffer. The waste form field dealt with long-term leaching tests with borosilicate waste glasses surrounded by compacted bentonite. The leach rate decreased with increasing time, and was higher for the waste specimen rich in U and Na. In the container field, preliminary concepts of disposal containers were recommended by conducting structural analysis, thermal analysis, and shielding analysis, and major properties of stainless steel, copper, and titanium as a container material were surveyed. The sensitization degrees of SUS 316 and 316L were lower than those of SUS 304 and 304L, respectively. The crevice corrosion of sensitized stainless steel was sensitive to the content of salt. Researches into the buffer included establishment of its performance criteria followed by investigating major properties of buffer using potential material in Korea. Experiments were made for measuring hydraulic conductivities, swelling properties, mechanical properties, thermal conductivities, pore-water chemistry properties, and adsorption properties was also investigated. (author)

  2. Large-scale field testing on flexible shallow landslide barriers

    Science.gov (United States)

    Bugnion, Louis; Volkwein, Axel; Wendeler, Corinna; Roth, Andrea

    2010-05-01

    the thickness of the failure layer and the width of the possible failure are essential for the required barrier design parameter height and width. First results of the calculated drag coefficients of dynamic impact pressure measurements showed that the dynamic coefficient cw is much lower than 1.0 which is contradictory to most of existing dimensioning property protection guidelines. It appears to us that special adaptation to the system like smaller mesh sizes and special ground-barrier interface compared to normal rock-fall barriers and channelised debris flow barriers are necessary to improve the retention behavior of shallow landslide barriers. Detailed analysis of the friction coefficient in relationship with pore water pressure measurements gives interesting insights into the dynamic of fluid-solid mixed flows. Impact pressures dependencies on flow features are analyzed and discussed with respect to existing models and guidelines for shallow landslides.

  3. Microgravity Fluids for Biology, Workshop

    Science.gov (United States)

    Griffin, DeVon; Kohl, Fred; Massa, Gioia D.; Motil, Brian; Parsons-Wingerter, Patricia; Quincy, Charles; Sato, Kevin; Singh, Bhim; Smith, Jeffrey D.; Wheeler, Raymond M.

    2013-01-01

    Microgravity Fluids for Biology represents an intersection of biology and fluid physics that present exciting research challenges to the Space Life and Physical Sciences Division. Solving and managing the transport processes and fluid mechanics in physiological and biological systems and processes are essential for future space exploration and colonization of space by humans. Adequate understanding of the underlying fluid physics and transport mechanisms will provide new, necessary insights and technologies for analyzing and designing biological systems critical to NASAs mission. To enable this mission, the fluid physics discipline needs to work to enhance the understanding of the influence of gravity on the scales and types of fluids (i.e., non-Newtonian) important to biology and life sciences. In turn, biomimetic, bio-inspired and synthetic biology applications based on physiology and biology can enrich the fluid mechanics and transport phenomena capabilities of the microgravity fluid physics community.

  4. Compressible Fluid Suspension Performance Testing

    National Research Council Canada - National Science Library

    Hoogterp, Francis

    2003-01-01

    ... compressible fluid suspension system that was designed and installed on the vehicle by DTI. The purpose of the tests was to evaluate the possible performance benefits of the compressible fluid suspension system...

  5. Advances and new insights in the neuropathogenesis of dengue infection

    Directory of Open Access Journals (Sweden)

    Marzia Puccioni-Sohler

    2015-08-01

    Full Text Available Dengue virus (DENV infects approximately 390 million persons every year in more than 100 countries. Reports of neurological complications are more frequently. The objective of this narrative review is to bring up the advances in the dengue neuropathogenesis. DENV can access the nervous system through blood-brain barrier disturbance mediated by cytokine. The blood-cerebrospinal fluid (CSF barrier seems to be also involved, considering the presence of the virus in the CSF of patients with neurological manifestations. As for neurotropism, several studies showed the presence of RNA and viral antigens in brain tissue and CSF in humans. In murine model, different virus mutations were associated to neurovirulence. Despite the advances in the dengue neuropathogenesis, it is still necessary to determine a more appropriate animal model and increase the number of cases of autopsy. The detection of neurovirulence markers may contribute to establish a prognosis, the disease control and vaccine development.

  6. On Hall current fluid

    International Nuclear Information System (INIS)

    Shen, M.C.; Ebel, D.

    1987-01-01

    In this paper some new results concerning magnetohydrodynamic (MHD) equations with the Hall current (HC) term in the Ohm's law are presented. For the cylindrical pinch of a compressible HC fluid, it is found that for large time and long wave length the solution to the governing equations exhibits the behavior of solitons as in the case of an ideal MHD model. In some special cases, the HC model appears to be better posed. An open question is whether a simple toroidal equilibrium of an HC fluid with resistivity and viscosity exists. The answer to this question is affirmative if the prescribed velocity on the boundary has a small norm. Furthermore, the equilibrium is also linearly and nonlinearly stable

  7. COUPLED CHEMOTAXIS FLUID MODEL

    KAUST Repository

    LORZ, ALEXANDER

    2010-06-01

    We consider a model system for the collective behavior of oxygen-driven swimming bacteria in an aquatic fluid. In certain parameter regimes, such suspensions of bacteria feature large-scale convection patterns as a result of the hydrodynamic interaction between bacteria. The presented model consist of a parabolicparabolic chemotaxis system for the oxygen concentration and the bacteria density coupled to an incompressible Stokes equation for the fluid driven by a gravitational force of the heavier bacteria. We show local existence of weak solutions in a bounded domain in d, d = 2, 3 with no-flux boundary condition and in 2 in the case of inhomogeneous Dirichlet conditions for the oxygen. © 2010 World Scientific Publishing Company.

  8. Fluid dynamics an introduction

    CERN Document Server

    Rieutord, Michel

    2015-01-01

    This book is dedicated to readers who want to learn fluid dynamics from the beginning. It assumes a basic level of mathematics knowledge that would correspond to that of most second-year undergraduate physics students and examines fluid dynamics from a physicist’s perspective. As such, the examples used primarily come from our environment on Earth and, where possible, from astrophysics. The text is arranged in a progressive and educational format, aimed at leading readers from the simplest basics to more complex matters like turbulence and magnetohydrodynamics. Exercises at the end of each chapter help readers to test their understanding of the subject (solutions are provided at the end of the book), and a special chapter is devoted to introducing selected aspects of mathematics that beginners may not be familiar with, so as to make the book self-contained.

  9. Electrorheologic fluids; Fluidos electroreologicos

    Energy Technology Data Exchange (ETDEWEB)

    Rejon G, Leonardo; Lopez G, Francisco; Montoya T, Gerardo [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico); Manero B, Octavio [Instituto de Investigaciones en Materiales, UNAM.(Mexico)

    2003-07-01

    The present article has as an objective to offer a review of the research work made in the Instituto de Investigaciones Electricas (IIE) on the study of the electrorheologic fluids whose flow properties can abruptly change in the presence of an electric field when this is induced by a direct current. The electrorheologic fluids have their main application in the manufacture of self-controlling damping systems. [Spanish] El presente articulo tiene por objetivo ofrecer una resena de los trabajos de investigacion realizados en el Instituto de Investigaciones Electricas (IIE) sobre el estudio de los fluidos electroreologicos cuyas propiedades de flujo pueden cambiar abruptamente en presencia de un campo electrico cuando este es inducido por una corriente directa. Los fluidos electroreologicos tienen su principal aplicacion en la fabricacion de sistemas de amortiguamiento autocontrolables.

  10. Active chiral fluids.

    Science.gov (United States)

    Fürthauer, S; Strempel, M; Grill, S W; Jülicher, F

    2012-09-01

    Active processes in biological systems often exhibit chiral asymmetries. Examples are the chirality of cytoskeletal filaments which interact with motor proteins, the chirality of the beat of cilia and flagella as well as the helical trajectories of many biological microswimmers. Here, we derive constitutive material equations for active fluids which account for the effects of active chiral processes. We identify active contributions to the antisymmetric part of the stress as well as active angular momentum fluxes. We discuss four types of elementary chiral motors and their effects on a surrounding fluid. We show that large-scale chiral flows can result from the collective behavior of such motors even in cases where isolated motors do not create a hydrodynamic far field.

  11. Personalised fluid resuscitation in the ICU: still a fluid concept?

    Science.gov (United States)

    van Haren, Frank

    2017-12-28

    The administration of intravenous fluid to critically ill patients is one of the most common, but also one of the most fiercely debated, interventions in intensive care medicine. Even though many thousands of patients have been enrolled in large trials of alternative fluid strategies, consensus remains elusive and practice is widely variable. Critically ill patients are significantly heterogeneous, making a one size fits all approach unlikely to be successful.New data from basic, animal, and clinical research suggest that fluid resuscitation could be associated with significant harm. There are several important limitations and concerns regarding fluid bolus therapy as it is currently being used in clinical practice. These include, but are not limited to: the lack of an agreed definition; limited and short-lived physiological effects; no evidence of an effect on relevant patient outcomes; and the potential to contribute to fluid overload, specifically when fluid responsiveness is not assessed and when targets and safety limits are not used.Fluid administration in critically ill patients requires clinicians to integrate abnormal physiological parameters into a clinical decision-making model that also incorporates the likely diagnosis and the likely risk or benefit in the specific patient's context. Personalised fluid resuscitation requires careful attention to the mnemonic CIT TAIT: context, indication, targets, timing, amount of fluid, infusion strategy, and type of fluid.The research agenda should focus on experimental and clinical studies to: improve our understanding of the physiological effects of fluid infusion, e.g. on the glycocalyx; evaluate new types of fluids; evaluate novel fluid minimisation protocols; study the effects of a no-fluid strategy for selected patients and scenarios; and compare fluid therapy with other interventions. The adaptive platform trial design may provide us with the tools to evaluate these types of interventions in the intrinsically

  12. A Multicenter, Randomized Controlled Trial of Cerebrospinal Fluid Drainage in Acute Spinal Cord Injury

    Science.gov (United States)

    2017-10-01

    barriers to recruitment and potential solutions . 15. SUBJECT TERMS acute spinal cord injury, cerebrospinal fluid drainage, mean arterial pressure...form.  University of Arizona has received approvals for English and Spanish consent forms.  Develop & Validate eCRF o The Electronic Data...take place in Q4 2018 with the aim of discussing barriers to recruitment and potential solutions . The result of this meeting may be a protocol

  13. Fluid resuscitation following a burn injury: implications of a mathematical model of microvascular exchange.

    Science.gov (United States)

    Bert, J; Gyenge, C; Bowen, B; Reed, R; Lund, T

    1997-03-01

    A validated mathematical model of microvascular exchange in thermally injured humans has been used to predict the consequences of different forms of resuscitation and potential modes of action of pharmaceuticals on the distribution and transport of fluid and macromolecules in the body. Specially, for 10 and/or 50 per cent burn surface area injuries, predictions are presented for no resuscitation, resuscitation with the Parkland formula (a high fluid and low protein formulation) and resuscitation with the Evans formula (a low fluid and high protein formulation). As expected, Parkland formula resuscitation leads to interstitial accumulation of excess fluid, while use of the Evans formula leads to interstitial accumulation of excessive amounts of proteins. The hypothetical effects of pharmaceuticals on the transport barrier properties of the microvascular barrier and on the highly negative tissue pressure generated postburn in the injured tissue were also investigated. Simulations predict a relatively greater amelioration of the acute postburn edema through modulation of the postburn tissue pressure effects.

  14. Nuclear reactor core support incorporating also a cooling fluid flow system

    International Nuclear Information System (INIS)

    Pennell, W.E.

    1975-01-01

    A description is given of a core bearing plate with several modular intake units having cooling fluid intake openings on their lower extensions, and on their upper ends located above the bearing plate, at least one fuel assembly which is thus in communication with the area under the bearing plate through the modular intake unit. The means for introducing the cooling fluid into the reactor vessel area are located under the bearing plate. The lower ends of the modular intake have ribs arranged essentially on a plane and join together with openings provided between the seals, in such a manner that the ribs form a barrier. The cooling fluid intake openings are located above this barrier, so that the cooling fluid is compelled to cross it before penetrating into the modular intake units [fr

  15. Alveolar epithelial fluid transport capacity in reperfusion lung injury after lung transplantation.

    Science.gov (United States)

    Ware, L B; Golden, J A; Finkbeiner, W E; Matthay, M A

    1999-03-01

    Reperfusion lung injury is an important cause of morbidity and mortality after orthotopic lung transplantation. The purpose of this study was to investigate the function of the alveolar epithelium in the setting of reperfusion lung injury. Simultaneous samples of pulmonary edema fluid and plasma were collected from eight patients with severe post-transplantation reperfusion edema. The edema fluid to plasma protein ratio was measured, an indicator of alveolar-capillary barrier permeability. The initial edema fluid to plasma protein ratio was > 0.75 in six of eight patients, confirming the presence of increased permeability of the alveolar-capillary barrier. Graft ischemic time was positively correlated with the degree of permeability (r = 0.77, p mean +/- SD). Alveolar fluid clearance was calculated from serial samples in six patients. Intact alveolar fluid clearance correlated with less histologic injury, rapid resolution of hypoxemia, and more rapid resolution of radiographic infiltrates. The two patients with no net alveolar fluid clearance had persistent hypoxemia and more severe histologic injury. This study provides the first direct evidence that increased permeability to protein is the usual cause of reperfusion edema after lung transplantation, with longer ischemic times associated with greater permeability to protein in the transplanted lung. The high rates of alveolar fluid clearance indicate that the fluid transport capacity of the alveolar epithelium may be well preserved in the allograft despite reperfusion lung injury. The ability to reabsorb fluid from the alveolar space was a marker of less severe reperfusion injury, whereas the degree of alveolar-capillary barrier permeability to protein was not. Measurement of alveolar fluid clearance may be useful to assess the severity of reperfusion lung injury and to predict outcome when pulmonary edema develops after lung transplantation.

  16. Handbook of hydraulic fluid technology

    CERN Document Server

    Totten, George E

    2011-01-01

    ""The Handbook of Hydraulic Fluid Technology"" serves as the foremost resource for designing hydraulic systems and for selecting hydraulic fluids used in engineering applications. Featuring new illustrations, data tables, as well as practical examples, this second edition is updated with essential information on the latest hydraulic fluids and testing methods. The detailed text facilitates unparalleled understanding of the total hydraulic system, including important hardware, fluid properties, and hydraulic lubricants. Written by worldwide experts, the book also offers a rigorous overview of h

  17. Recording fluid currents by holography

    Science.gov (United States)

    Heflinger, L. O.; Wuerker, R. F.

    1980-01-01

    Convection in fluids can be studied with aid of holographic apparatus that reveals three-dimensional motion of liquid. Apparatus eliminates images of fixed particles such as dust on windows and lenses, which might mask behavior of moving fluid particles. Holographic apparatus was developed for experiments on fluid convection cells under zero gravity. Principle is adaptable to study of fluid processes-for example, electrochemical plating and combustion in automotive engines.

  18. The mixing of fluids

    International Nuclear Information System (INIS)

    Ottino, J.M.

    1989-01-01

    What do the eruption of Krakatau, the manufacture of puff pastry and the brightness of stars have in common? Each involves some aspect of mixing. Mixing also plays a critical role in modern technology. Chemical engineers rely on mixing to ensure that substances react properly, to produce polymer blends that exhibit unique properties and to disperse drag-reducing agents in pipelines. Yet in spite of its of its ubiquity in nature and industry, mixing is only imperfectly under-stood. Indeed, investigators cannot even settle on a common terminology: mixing is often referred to as stirring by oceanographers and geophysicists, as blending by polymer engineers and as agitation by process engineers. Regardless of what the process is called, there is little doubt that it is exceedingly complex and is found in a great variety of systems. In constructing a theory of fluid mixing, for example, one has to take into account fluids that can be miscible or partially miscible and reactive or inert, and flows that are slow and orderly or very fast and turbulent. It is therefore not surprising that no single theory can explain all aspect of mixing in fluids and that straightforward computations usually fail to capture all the important details. Still, both physical experiments and computer simulations can provide insight into the mixing process. Over the past several years the authors and his colleague have taken both approaches in an effort to increase understanding of various aspect of the process-particularly of mixing involving slow flows and viscous fluids such as oils

  19. Abdominal cerebrospinal fluid pseudocyst

    International Nuclear Information System (INIS)

    Pathi, Ramon; Sage, Michael; Slavotinek, John; Hanieh, Ahmad

    2004-01-01

    A case of an abdominal cerebrospinal fluid (CSF) pseudocyst in a patient with a ventriculoperitoneal shunt is reported to illustrate this known but rare complication. In the setting of a VP shunt, the frequency of abdominal CSF pseudocyst formation is approximately 3.2%, often being precipitated by a recent inflammatory or infective process or recent surgery. Larger pseudocysts tend to be sterile, whereas smaller pseudocysts are more often infected. Ultrasound and CTeach have characteristic findings Copyright (2004) Blackwell Publishing Asia Pty Ltd

  20. Fluid conductivity sensor

    International Nuclear Information System (INIS)

    Miller, F. M.

    1985-01-01

    Apparatus for sensing the electrical conductivity of fluid which can be used to detonate an electro explosive device for operating a release mechanism for uncoupling a parachute canopy from its load upon landing in water. An operating network connected to an ignition capacitor and to a conductivity sensing circuit and connected in controlling relation to a semiconductor switch has a voltage independent portion which controls the time at which the semiconductor switch is closed to define a discharge path to detonate the electro explosive device independent of the rate of voltage rise on the ignition capacitor. The operating network also has a voltage dependent portion which when a voltage of predetermined magnitude is developed on the conductivity sensing circuit in response to fluid not having the predetermined condition of conductivity, the voltage dependent portion closes the semiconductor switch to define the discharge path when the energy level is insufficient to detonate the electro explosive device. A regulated current source is connected in relation to the conductivity sensing circuit and to the electrodes thereof in a manner placing the circuit voltage across the electrodes when the conductivity of the fluid is below a predetermined magnitude so that the sensing circuit does not respond thereto and placing the circuit voltage across the sensing circuit when the conductivity of the fluid is greater than a predetermined magnitude. The apparatus is operated from a battery, and the electrodes are of dissimilar metals so selected and connected relative to the polarity portions of the circuit to maximize utilization of the battery output voltage

  1. Measuring fluid pressure

    International Nuclear Information System (INIS)

    Lee, A.S.

    1978-01-01

    A method and apparatus are described for measuring the pressure of a fluid having characteristics that make it unsuitable for connection directly to a pressure gauge. The method is particularly suitable for the periodic measurement of the pressure of a supply of liquid Na to Na-lubricated bearings of pumps for pumping Na from a reservoir to the bearing via a filter, the reservoir being contained in a closed vessel containing an inert blanket gas, such as Ar, above the Na. (UK)

  2. Perspectives in Fluid Dynamics

    Science.gov (United States)

    Batchelor, G. K.; Moffatt, H. K.; Worster, M. G.

    2002-12-01

    With applications ranging from modelling the environment to automotive design and physiology to astrophysics, conventional textbooks cannot hope to give students much information on what topics in fluid dynamics are currently being researched, or how to choose between them. This book rectifies matters. It consists of eleven chapters that introduce and review different branches of the subject for graduate-level courses, or for specialists seeking introductions to other areas. Hb ISBN (2001): 0-521-78061-6

  3. Fluid circulation control device

    International Nuclear Information System (INIS)

    Benard, Henri; Henocque, Jean.

    1982-01-01

    Horizontal fluid circulation control device, of the type having a pivoting flap. This device is intended for being fitted in the pipes of hydraulic installation, particularly in a bleed and venting system of a nuclear power station shifting radioactive or contaminated liquids. The characteristic of this device is the cut-out at the top of the flap to allow the air contained in the pipes to flow freely [fr

  4. Problems in fluid flow

    International Nuclear Information System (INIS)

    Brasch, D.J.

    1986-01-01

    Chemical and mineral engineering students require texts which give guidance to problem solving to complement their main theoretical texts. This book has a broad coverage of the fluid flow problems which these students may encounter. The fundamental concepts and the application of the behaviour of liquids and gases in unit operation are dealt with. The book is intended to give numerical practice; development of theory is undertaken only when elaboration of treatments available in theoretical texts is absolutely necessary

  5. Tritium/hydrogen barrier development

    International Nuclear Information System (INIS)

    Hollenberg, G.W.; Simonen, E.P.; Kalinen, G.; Terlain, A.

    1994-06-01

    A review of hydrogen permeation barriers that can be applied to structural metals used in fusion power plants is presented. Both implanted and chemically available hydrogen isotopes must be controlled in fusion plants. The need for permeation barriers appears strongest in Li17-Pb blanket designs, although barriers also appear necessary for other blanket and coolant systems. Barriers that provide greater than a 1000 fold reduction in the permeation of structural metals are desired. In laboratory experiments, aluminide and titanium ceramic coatings provide permeation reduction factors, PRFS, from 1000 to over 100,000 with a wide range of scatter. The rate-controlling mechanism for hydrogen permeation through these barriers may be related to the number and type of defects in the barriers. Although these barriers appear robust and resistant to liquid metal corrosion, irradiation tests which simulate blanket environments result in very low PRFs in comparison to laboratory experiments, i.e., <150. It is anticipated from fundamental research activities that the REID enhancement of hydrogen diffusion in oxides may contribute to the lower permeation reduction factors during in-reactor experiments

  6. Enershield : energy saving air barriers

    Energy Technology Data Exchange (ETDEWEB)

    Hallihan, D. [Enershield Industries Ltd., Edmonton, AB (Canada)

    2008-07-01

    Enershield Industries is a leader in air barrier technology and provides solution for the Canadian climate. This presentation described the advantages of air barriers and the impact of rising energy costs. An air barrier is used to separate areas of differing environments and makes existing building systems more efficient. This presentation discussed how an air barrier works. It also identified how Enershield Industries calculates energy savings. It described air barrier applications and those who use barrier technology. These include the commercial and industrial sector as well as the personnel and retail sector. Barrier technology can be used for cold storage; vehicle and equipment washes; food processing; and environmental separation. Features and benefits such as the ability to create seal, acoustic insulation, and long term durability were also discussed. Last, the presentation addressed model selection and design criteria issues. Design criteria that were presented included a discussion of acoustic installation, articulating nozzles, scroll cased fans, and structural frame. Other design criteria presented were galvanized frames, telescopic sliders, and off the shelf parts. It was concluded that the ability to reduce energy consumption and enhance employee/client comfort is beneficial to the employer as well as to the employee. figs.

  7. Geophysical fluid dynamics

    CERN Document Server

    Pedlosky, Joseph

    1982-01-01

    The content of this book is based, largely, on the core curriculum in geophys­ ical fluid dynamics which land my colleagues in the Department of Geophysical Sciences at The University of Chicago have taught for the past decade. Our purpose in developing a core curriculum was to provide to advanced undergraduates and entering graduate students a coherent and systematic introduction to the theory of geophysical fluid dynamics. The curriculum and the outline of this book were devised to form a sequence of courses of roughly one and a half academic years (five academic quarters) in length. The goal of the sequence is to help the student rapidly advance to the point where independent study and research are practical expectations. It quickly became apparent that several topics (e. g. , some aspects of potential theory) usually thought of as forming the foundations of a fluid-dynamics curriculum were merely classical rather than essential and could be, however sadly, dispensed with for our purposes. At the same tim...

  8. Astrophysical fluid dynamics

    Science.gov (United States)

    Ogilvie, Gordon I.

    2016-06-01

    > These lecture notes and example problems are based on a course given at the University of Cambridge in Part III of the Mathematical Tripos. Fluid dynamics is involved in a very wide range of astrophysical phenomena, such as the formation and internal dynamics of stars and giant planets, the workings of jets and accretion discs around stars and black holes and the dynamics of the expanding Universe. Effects that can be important in astrophysical fluids include compressibility, self-gravitation and the dynamical influence of the magnetic field that is `frozen in' to a highly conducting plasma. The basic models introduced and applied in this course are Newtonian gas dynamics and magnetohydrodynamics (MHD) for an ideal compressible fluid. The mathematical structure of the governing equations and the associated conservation laws are explored in some detail because of their importance for both analytical and numerical methods of solution, as well as for physical interpretation. Linear and nonlinear waves, including shocks and other discontinuities, are discussed. The spherical blast wave resulting from a supernova, and involving a strong shock, is a classic problem that can be solved analytically. Steady solutions with spherical or axial symmetry reveal the physics of winds and jets from stars and discs. The linearized equations determine the oscillation modes of astrophysical bodies, as well as their stability and their response to tidal forcing.

  9. Downhole Fluid Analyzer Development

    Energy Technology Data Exchange (ETDEWEB)

    Bill Turner

    2006-11-28

    A novel fiber optic downhole fluid analyzer has been developed for operation in production wells. This device will allow real-time determination of the oil, gas and water fractions of fluids from different zones in a multizone or multilateral completion environment. The device uses near infrared spectroscopy and induced fluorescence measurement to unambiguously determine the oil, water and gas concentrations at all but the highest water cuts. The only downhole components of the system are the fiber optic cable and windows. All of the active components--light sources, sensors, detection electronics and software--will be located at the surface, and will be able to operate multiple downhole probes. Laboratory testing has demonstrated that the sensor can accurately determine oil, water and gas fractions with a less than 5 percent standard error. Once installed in an intelligent completion, this sensor will give the operating company timely information about the fluids arising from various zones or multilaterals in a complex completion pattern, allowing informed decisions to be made on controlling production. The research and development tasks are discussed along with a market analysis.

  10. Microfluidics with fluid walls.

    Science.gov (United States)

    Walsh, Edmond J; Feuerborn, Alexander; Wheeler, James H R; Tan, Ann Na; Durham, William M; Foster, Kevin R; Cook, Peter R

    2017-10-10

    Microfluidics has great potential, but the complexity of fabricating and operating devices has limited its use. Here we describe a method - Freestyle Fluidics - that overcomes many key limitations. In this method, liquids are confined by fluid (not solid) walls. Aqueous circuits with any 2D shape are printed in seconds on plastic or glass Petri dishes; then, interfacial forces pin liquids to substrates, and overlaying an immiscible liquid prevents evaporation. Confining fluid walls are pliant and resilient; they self-heal when liquids are pipetted through them. We drive flow through a wide range of circuits passively by manipulating surface tension and hydrostatic pressure, and actively using external pumps. Finally, we validate the technology with two challenging applications - triggering an inflammatory response in human cells and chemotaxis in bacterial biofilms. This approach provides a powerful and versatile alternative to traditional microfluidics.The complexity of fabricating and operating microfluidic devices limits their use. Walsh et al. describe a method in which circuits are printed as quickly and simply as writing with a pen, and liquids in them are confined by fluid instead of solid walls.

  11. Geophysical fluid dynamics

    CERN Document Server

    Pedlosky, Joseph

    1979-01-01

    The content of this book is based, largely, on the core curriculum in geophys­ ical fluid dynamics which I and my colleagues in the Department of Geophysical Sciences at The University of Chicago have taught for the past decade. Our purpose in developing a core curriculum was to provide to advanced undergraduates and entering graduate students a coherent and systematic introduction to the theory of geophysical fluid dynamics. The curriculum and the outline of this book were devised to form a sequence of courses of roughly one and a half academic years (five academic quarters) in length. The goal of the sequence is to help the student rapidly advance to the point where independent study and research are practical expectations. It quickly became apparent that several topics (e. g. , some aspects of potential theory) usually thought of as forming the foundations of a fluid-dynamics curriculum were merely classical rather than essential and could be, however sadly, dispensed with for our purposes. At the same ti...

  12. Dynamics of radiating fluids

    International Nuclear Information System (INIS)

    Mihalas, D.; Weaver, R.

    1982-01-01

    The purpose of this paper is to give an overview of the role of radiation in the transport of energy and momentum in a combined matter-radiation fluid. The transport equation for a moving radiating fluid is presented in both a fully Eulerian and a fully Lagrangian formulation, along with conservation equations describing the dynamics of the fluid. Special attention is paid to the problem of deriving equations that are mutually consistent in each frame, and between frames, to 0(v/c). A detailed analysis is made to show that in situations of broad interest, terms that are formally of 0(v/c) actually dominate the solution, demonstrating that it is essential (1) to pay scrupulous attention to the question of the frame dependence in formulating the equations, and (2) to solve the equations to 0(v/c) in quite general circumstances. These points are illustrated in the context of the nonequilibrium radiation diffusion limit, and a sketch of how the Lagrangian equations are to be solved is presented

  13. Penetration through the Skin Barrier

    DEFF Research Database (Denmark)

    Nielsen, Jesper Bo; Benfeldt, Eva; Holmgaard, Rikke

    2016-01-01

    The skin is a strong and flexible organ with barrier properties essential for maintaining homeostasis and thereby human life. Characterizing this barrier is the ability to prevent some chemicals from crossing the barrier while allowing others, including medicinal products, to pass at varying rates......-through diffusion cells) as well as in vivo methods (microdialysis and microperfusion). Then follows a discussion with examples of how different characteristics of the skin (age, site and integrity) and of the penetrants (size, solubility, ionization, logPow and vehicles) affect the kinetics of percutaneous...

  14. Vehicle barrier with access delay

    Science.gov (United States)

    Swahlan, David J; Wilke, Jason

    2013-09-03

    An access delay vehicle barrier for stopping unauthorized entry into secure areas by a vehicle ramming attack includes access delay features for preventing and/or delaying an adversary from defeating or compromising the barrier. A horizontally deployed barrier member can include an exterior steel casing, an interior steel reinforcing member and access delay members disposed within the casing and between the casing and the interior reinforcing member. Access delay members can include wooden structural lumber, concrete and/or polymeric members that in combination with the exterior casing and interior reinforcing member act cooperatively to impair an adversarial attach by thermal, mechanical and/or explosive tools.

  15. Big Data as Information Barrier

    Directory of Open Access Journals (Sweden)

    Victor Ya. Tsvetkov

    2014-07-01

    Full Text Available The article covers analysis of ‘Big Data’ which has been discussed over last 10 years. The reasons and factors for the issue are revealed. It has proved that the factors creating ‘Big Data’ issue has existed for quite a long time, and from time to time, would cause the informational barriers. Such barriers were successfully overcome through the science and technologies. The conducted analysis refers the “Big Data” issue to a form of informative barrier. This issue may be solved correctly and encourages development of scientific and calculating methods.

  16. Fluid transport due to nonlinear fluid-structure interaction

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard

    1997-01-01

    This work considers nonlinear fluid-structure interaction for a vibrating pipe containing fluid. Transverse pipe vibrations will force the fluid to move relative to the pipe creating unidirectional fluid flow towards the pipe end. The fluid flow induced affects the damping and the stiffness...... of the pipe. The behavior of the system in response to lateral resonant base excitation is analysed numerically and by the use of a perturbation method (multiple scales). Exciting the pipe in the fundamental mode of vibration seems to be most effective for transferring energy from the shaker to the fluid......, whereas higher modes of vibration can be used to transport fluid with pipe vibrations of smaller amplitude. The effect of the nonlinear geometrical terms is analysed and these terms are shown to affect the response for higher modes of vibration. Experimental investigations show good agreement...

  17. Multi-parameter monitoring system for hydraulic fluids; Multi-Parameter Monitoring System fuer Hydraulische Fluessigkeiten

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Sumit; Legner, Wolfgang; Hackner, Angelika; Mueller, Gerhard [EADS Innovation Works, Muenchen (Germany). Bereich Sensors, Electronics and Systems Integration; Baumbach, Volker [Airbus Operations GmbH, Bremen (Germany). Bereich Hydraulic Performance and Integrity

    2011-07-01

    A miniaturised sensor system for aviation hydraulic fluids is presented. The system consists of an optochemical sensor and a particle sensor. The optochemical sensor detects the form of the O-H absorption feature around 3500 cm{sup -1} to reveal the water and acid contamination in the fluid. The particle sensor uses a light barrier principle to derive its particle contamination number. (orig.)

  18. Supercritical fluid reverse micelle separation

    Science.gov (United States)

    Fulton, J.L.; Smith, R.D.

    1993-11-30

    A method of separating solute material from a polar fluid in a first polar fluid phase is provided. The method comprises combining a polar fluid, a second fluid that is a gas at standard temperature and pressure and has a critical density, and a surfactant. The solute material is dissolved in the polar fluid to define the first polar fluid phase. The combined polar and second fluids, surfactant, and solute material dissolved in the polar fluid is maintained under near critical or supercritical temperature and pressure conditions such that the density of the second fluid exceeds the critical density thereof. In this way, a reverse micelle system defining a reverse micelle solvent is formed which comprises a continuous phase in the second fluid and a plurality of reverse micelles dispersed in the continuous phase. The solute material is dissolved in the polar fluid and is in chemical equilibrium with the reverse micelles. The first polar fluid phase and the continuous phase are immiscible. The reverse micelles each comprise a dynamic aggregate of surfactant molecules surrounding a core of the polar fluid. The reverse micelle solvent has a polar fluid-to-surfactant molar ratio W, which can vary over a range having a maximum ratio W[sub o] that determines the maximum size of the reverse micelles. The maximum ratio W[sub o] of the reverse micelle solvent is then varied, and the solute material from the first polar fluid phase is transported into the reverse micelles in the continuous phase at an extraction efficiency determined by the critical or supercritical conditions. 27 figures.

  19. GEOCHEMISTRY OF SUBSURFACE REACTIVE BARRIERS FOR REMEDIATION OF CONTAMINATED GROUND WATER

    Science.gov (United States)

    Reactive barriers that couple subsurface fluid flow with a passive chemical treatment zone are emerging, cost effective approaches for in-situ remediation of contaminated groundwater. Factors such as the build-up of surface precipitates, bio-fouling, and changes in subsurface tr...

  20. Period multiplication and chaotic phenomena in atmospheric dielectric-barrier glow discharges

    International Nuclear Information System (INIS)

    Wang, Y. H.; Zhang, Y. T.; Wang, D. Z.; Kong, M. G.

    2007-01-01

    In this letter, evidence of temporal plasma nonlinearity in which atmospheric dielectric-barrier discharges undergo period multiplication and chaos using a one-dimensional fluid model is reported. Under the conditions conducive for chaotic states, several frequency windows are identified in which period multiplication and secondary bifurcations are observed. Such time-domain nonlinearity is important for controlling instabilities in atmospheric glow discharges

  1. Disruption of the leptomeningeal blood barrier in neuromyelitis optica spectrum disorder

    DEFF Research Database (Denmark)

    Asgari, Nasrin; Flanagan, Eoin P.; Fujihara, Kazuo

    2017-01-01

    with leptomeningeal enhancement (LME) were collected from 5 centers. External neuroradiologists, blinded to the clinical details, evaluated MRIs. Results: LME was demonstrated on postcontrast T1-weighted and fluid-attenuated inversion recovery images as a sign of leptomeningeal blood-barrier disruption and transient...

  2. Heat transfer fluids containing nanoparticles

    Science.gov (United States)

    Singh, Dileep; Routbort, Jules; Routbort, A.J.; Yu, Wenhua; Timofeeva, Elena; Smith, David S.; France, David M.

    2016-05-17

    A nanofluid of a base heat transfer fluid and a plurality of ceramic nanoparticles suspended throughout the base heat transfer fluid applicable to commercial and industrial heat transfer applications. The nanofluid is stable, non-reactive and exhibits enhanced heat transfer properties relative to the base heat transfer fluid, with only minimal increases in pumping power required relative to the base heat transfer fluid. In a particular embodiment, the plurality of ceramic nanoparticles comprise silicon carbide and the base heat transfer fluid comprises water and water and ethylene glycol mixtures.

  3. Hazards of organic working fluids

    International Nuclear Information System (INIS)

    Silberstein, S.

    1977-08-01

    We present several brief reviews on working fluids proposed for use in organic Rankine and bi-phase bottoming cycles. There are several general problems with many organic working fluids: flammability, toxicity, and a tendency to leak through seals. Besides, two of the proposed working fluids are to be used at temperatures above the manufacturer's maximum recommended temperature, and one is to be used in a way different from its customary usage. It may, in some cases, be more profitable to first seek alternative working fluids before committing large amounts of time and money to research projects on unsafe working fluids

  4. Fusion barrier characteristics of actinides

    Science.gov (United States)

    Manjunatha, H. C.; Sridhar, K. N.

    2018-03-01

    We have studied fusion barrier characteristics of actinide compound nuclei with atomic number range 89 ≤ Z ≤ 103 for all projectile target combinations. After the calculation of fusion barrier heights and positions, we have searched for their parameterization. We have achieved the empirical formula for fusion barrier heights (VB), positions (RB), curvature of the inverted parabola (ħω) of actinide compound nuclei with atomic number range 89 ≤ Z ≤ 103 for all projectile target combinations (6 projectile target combinations. The values produced by the present formula are also compared with experiments. The present pocket formula produces fusion barrier characteristics of actinides with the simple inputs of mass number (A) and atomic number (Z) of projectile-targets.

  5. Transport barrier in Helical system

    International Nuclear Information System (INIS)

    Ida, Katsumi

    1998-01-01

    Experiments on the transport barrier in Helical plasmas are reviewed. There are two mechanisms of transport improvement, that results in the formation of the transport barrier. One is the improvement of neoclassical transport by reducing the ripple loss with radial electric field, which exist only in helical plasma. The other is the improvement of anomalous transport due to the suppression of fluctuations associated with a radial electric field shear both in tokamak and helical plasma. The formation of the transport barrier can be triggered by the radial electric field shear associated with the transition of the radial electric field (L/H transition or ion-electron root transition) or the peaked density or the optimization of magnetic field shear. The mechanisms of transport barrier formation are also discussed. (author). 60 refs

  6. Coastal Structures and Barriers 2012

    Data.gov (United States)

    California Natural Resource Agency — This dataset is a compilation of the UCSC Sand Retention Structures, MC Barriers, and USACE Coastal Structures. UCSC Sand Retention Structures originate from a...

  7. Engineered barriers: current status 1989

    International Nuclear Information System (INIS)

    Atkinson, A.; Marsh, G.B.

    1989-06-01

    This report summarises the current state of research relevant to assessing the performance of engineered barriers made of steel and concrete in radioactive waste repositories. The objective of these barriers is to contain substantially the radionuclides within them by providing both physical and chemical impediment to their release. The physical barriers are of most value for highly soluble isotopes with relatively short half-lives (eg 137 Cs), since they can provide a measure of containment until a large fraction of the activity has decayed. In addition they can facilitate retrievability for some period after disposal. The chemical barriers operate by beneficial conditioning of the near field groundwater and providing sites for sorption of radionuclides. Both of these reduce the aqueous concentration of radionuclides in the near field. (author)

  8. Numerical simulation of flood barriers

    Science.gov (United States)

    Srb, Pavel; Petrů, Michal; Kulhavý, Petr

    This paper deals with testing and numerical simulating of flood barriers. The Czech Republic has been hit by several very devastating floods in past years. These floods caused several dozens of causalities and property damage reached billions of Euros. The development of flood measures is very important, especially for the reduction the number of casualties and the amount of property damage. The aim of flood control measures is the detention of water outside populated areas and drainage of water from populated areas as soon as possible. For new flood barrier design it is very important to know its behaviour in case of a real flood. During the development of the barrier several standardized tests have to be carried out. Based on the results from these tests numerical simulation was compiled using Abaqus software and some analyses were carried out. Based on these numerical simulations it will be possible to predict the behaviour of barriers and thus improve their design.

  9. Magnetic power piston fluid compressor

    Science.gov (United States)

    Gasser, Max G. (Inventor)

    1994-01-01

    A compressor with no moving parts in the traditional sense having a housing having an inlet end allowing a low pressure fluid to enter and an outlet end allowing a high pressure fluid to exit is described. Within the compressor housing is at least one compression stage to increase the pressure of the fluid within the housing. The compression stage has a quantity of magnetic powder within the housing, is supported by a screen that allows passage of the fluid, and a coil for selectively providing a magnetic field across the magnetic powder such that when the magnetic field is not present the individual particles of the powder are separated allowing the fluid to flow through the powder and when the magnetic field is present the individual particles of the powder pack together causing the powder mass to expand preventing the fluid from flowing through the powder and causing a pressure pulse to compress the fluid.

  10. Material Barriers to Diffusive Mixing

    Science.gov (United States)

    Haller, George; Karrasch, Daniel

    2017-11-01

    Transport barriers, as zero-flux surfaces, are ill-defined in purely advective mixing in which the flux of any passive scalar is zero through all material surfaces. For this reason, Lagrangian Coherent Structures (LCSs) have been argued to play the role of mixing barriers as most repelling, attracting or shearing material lines. These three kinematic concepts, however, can also be defined in different ways, both within rigorous mathematical treatments and within the realm of heuristic diagnostics. This has lead to a an ever-growing number of different LCS methods, each generally identifying different objects as transport barriers. In this talk, we examine which of these methods have actual relevance for diffusive transport barriers. The latter barriers are arguably the practically relevant inhibitors in the mixing of physically relevant tracers, such as temperature, salinity, vorticity or potential vorticity. We demonstrate the role of the most effective diffusion barriers in analytical examples and observational data. Supported in part by the DFG Priority Program on Turbulent Superstructures.

  11. Economic alternatives for containment barriers

    International Nuclear Information System (INIS)

    Nicholson, P.J.; Jasperse, B.H.; Fisher, M.J.

    1997-01-01

    Fixation, barriers, and containment of existing landfills and other disposal areas are often performed by insitu auger type soil mixing and jet grouting. Cement or other chemical reagents are mixed with soil to form both vertical and horizontal barriers. Immobilization of contaminants can be economically achieved by mixing soil and the contaminants with reagents that solidify or stabilize the contaminated area. Developed in Japan, and relatively new to the United States, the first large scale application was for a vertical barrier at the Jackson Lake Dam project in 1986. This technology has grown in both the civil and environmental field since. The paper describes current United States practice for Deep Soil Mixing (over 12 meters in depth), and Shallow Soil Mixing for vertical barriers and stabilization/solidification, and Jet Grouting for horizontal and vertical barriers. Creating very low permeability barriers at depth with minimal surface return often makes these techniques economical when compared to slurry trenches. The paper will discuss equipment, materials, soil and strength parameters, and quality control

  12. Air barrier systems: Construction applications

    Energy Technology Data Exchange (ETDEWEB)

    Perrault, J.C

    1989-01-01

    An examination is presented of how ordinary building materials can be used in an innovative manner to design, detail, and construct effective air barrier systems for common types of walls. For residential construction, the air drywall approach uses the interior gypsum board as the main component of the wall air barrier system. Joints between the gypsum board and adjacent materials or assemblies are sealed by gaskets. In commercial construction, two different techniques are employed for using gypsum board as air barrier material: the accessible drywall and non-accessible drywall approaches. The former is similar to the air drywall approach except that high performance sealants are used instead of gaskets. In the latter approach, exterior drywall sheathing is the main component of the air barrier system; joints between boards are taped and joints between boards and other components are sealed using elastomeric membrane strips. For various types of commercial and institutional buildings, metal air barrier systems are widely used and include pre-engineered curtain walls or sheet metal walls. Masonry wall systems are regarded as still the most durable, fireproof, and soundproof wall type available but an effective air barrier system has typically been difficult to implement. Factory-made elastomeric membranes offer the potential to provide airtightness to masonry walls. These membranes are applied on the entire masonry wall surface and are used to make airtight connections with other building components. Two types of product are available: thermofusible and peel-and-stick membranes. 5 figs.

  13. Cleaning fluid emulsions

    Energy Technology Data Exchange (ETDEWEB)

    Prikryl, J; Kotyza, R; Krulikovsky, J; Mjartan, V; Valisova, I

    1981-09-15

    Composition of cleaning fluid emulsion are presented for drilling small diameter wells in clay soils, at high drill bit rotation velocity. The emulsions have lubricating properties and the abilty to improve stability of the drilled soil. The given fluids have a high fatty acid content with 12-24 carbon atoms in a single molecule, with a predominance of resinous acids 1-5% in mass, and having been emulsified in water or clay suspension without additives, or in a clay suspension with high-molecular polymer additives (glycobate cellulose compounds and/or polysaccharides, and/or their derivatives) in an amount of 0.1-3% per mass; thinning agents - huminite or lignite compounds in the amount of 0.01 to 0.5% in mass; weighting material - barite or lime 0.01 to 50% per mass; medium stabilizers - organic poly-electrolyte with polyacrylate in the amount of 0.05 to 2% in mass, or alkaline chloride/alkaline-ground metals 1-10% per mass. A cleaning emulsion fluid was prepared in the laboratory according to the given method. Add 3 kg tall oil to a solution of 1 kg K/sub 2/CO/sub 3/ per 100 l of water. Dynamic viscosity was equal to 1.4 x 10-/sup 3/ Pa/s. When drilling in compacted clay soils, when the emulsions require improved stability, it is necessary to add the maximum amount of tall oil whose molecules are absorbed by the clay soil and increase its durability.

  14. Essential Computational Fluid Dynamics

    CERN Document Server

    Zikanov, Oleg

    2011-01-01

    This book serves as a complete and self-contained introduction to the principles of Computational Fluid Dynamic (CFD) analysis. It is deliberately short (at approximately 300 pages) and can be used as a text for the first part of the course of applied CFD followed by a software tutorial. The main objectives of this non-traditional format are: 1) To introduce and explain, using simple examples where possible, the principles and methods of CFD analysis and to demystify the `black box’ of a CFD software tool, and 2) To provide a basic understanding of how CFD problems are set and

  15. Transport Coefficients of Fluids

    CERN Document Server

    Eu, Byung Chan

    2006-01-01

    Until recently the formal statistical mechanical approach offered no practicable method for computing the transport coefficients of liquids, and so most practitioners had to resort to empirical fitting formulas. This has now changed, as demonstrated in this innovative monograph. The author presents and applies new methods based on statistical mechanics for calculating the transport coefficients of simple and complex liquids over wide ranges of density and temperature. These molecular theories enable the transport coefficients to be calculated in terms of equilibrium thermodynamic properties, and the results are shown to account satisfactorily for experimental observations, including even the non-Newtonian behavior of fluids far from equilibrium.

  16. Electrochemistry in supercritical fluids

    Science.gov (United States)

    Branch, Jack A.; Bartlett, Philip N.

    2015-01-01

    A wide range of supercritical fluids (SCFs) have been studied as solvents for electrochemistry with carbon dioxide and hydrofluorocarbons (HFCs) being the most extensively studied. Recent advances have shown that it is possible to get well-resolved voltammetry in SCFs by suitable choice of the conditions and the electrolyte. In this review, we discuss the voltammetry obtained in these systems, studies of the double-layer capacitance, work on the electrodeposition of metals into high aspect ratio nanopores and the use of metallocenes as redox probes and standards in both supercritical carbon dioxide–acetonitrile and supercritical HFCs. PMID:26574527

  17. Mathematical modelling of blood-brain barrier failure and edema

    Science.gov (United States)

    Waters, Sarah; Lang, Georgina; Vella, Dominic; Goriely, Alain

    2015-11-01

    Injuries such as traumatic brain injury and stroke can result in increased blood-brain barrier permeability. This increase may lead to water accumulation in the brain tissue resulting in vasogenic edema. Although the initial injury may be localised, the resulting edema causes mechanical damage and compression of the vasculature beyond the original injury site. We employ a biphasic mixture model to investigate the consequences of blood-brain barrier permeability changes within a region of brain tissue and the onset of vasogenic edema. We find that such localised changes can indeed result in brain tissue swelling and that the type of damage that results (stress damage or strain damage) depends on the ability of the brain to clear edema fluid.

  18. Acoustic concentration of particles in fluid flow

    Science.gov (United States)

    Ward, Michael D.; Kaduchak, Gregory

    2010-11-23

    An apparatus for acoustic concentration of particles in a fluid flow includes a substantially acoustically transparent membrane and a vibration generator that define a fluid flow path therebetween. The fluid flow path is in fluid communication with a fluid source and a fluid outlet and the vibration generator is disposed adjacent the fluid flow path and is capable of producing an acoustic field in the fluid flow path. The acoustic field produces at least one pressure minima in the fluid flow path at a predetermined location within the fluid flow path and forces predetermined particles in the fluid flow path to the at least one pressure minima.

  19. Acoustic concentration of particles in fluid flow

    Science.gov (United States)

    Ward, Michael W.; Kaduchak, Gregory

    2017-08-15

    Disclosed herein is a acoustic concentration of particles in a fluid flow that includes a substantially acoustically transparent membrane and a vibration generator that define a fluid flow path therebetween. The fluid flow path is in fluid communication with a fluid source and a fluid outlet and the vibration generator is disposed adjacent the fluid flow path and is capable of producing an acoustic field in the fluid flow path. The acoustic field produces at least one pressure minima in the fluid flow path at a predetermined location within the fluid flow path and forces predetermined particles in the fluid flow path to the at least one pressure minima.

  20. Chemical gel barriers as low-cost alternative to containment and in situ cleanup of hazardous wastes to protect groundwater

    International Nuclear Information System (INIS)

    1997-01-01

    Chemical gel barriers are being considered as a low-cost alternative for containment and in situ cleanup of hazardous wastes to protect groundwater. Most of the available gels in petroleum application are non-reactive and relative impermeable, providing a physical barriers for all fluids and contaminants. However, other potential systems can be envisioned. These systems could include gels that are chemically reactive and impermeable such that most phase are captured by the barriers but the contaminants could diffuse through the barriers. Another system that is chemically reactive and permeable could have potential applications in selectivity capturing contaminants while allowing water to pass through the barriers. This study focused on chemically reactive and permeable gel barriers. The gels used in experiment are DuPont LUDOX SM colloidal silica gel and Pfizer FLOPAAM 1330S hydrolyzed polyacrylamide (HPAM) gel

  1. Current approaches to enhance CNS delivery of drugs across the brain barriers

    Directory of Open Access Journals (Sweden)

    Lu CT

    2014-05-01

    Full Text Available Cui-Tao Lu,1 Ying-Zheng Zhao,2,3 Ho Lun Wong,4 Jun Cai,5 Lei Peng,2 Xin-Qiao Tian1 1The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, People’s Republic of China; 2Hainan Medical College, Haikou City, Hainan Province, People’s Republic of China; 3College of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang Province, People’s Republic of China; 4School of Pharmacy, Temple University, Philadelphia, PA, USA; 5Departments of Pediatrics and Anatomical Sciences and Neurobiology, University of Louisville School of Medicine Louisville, KY, USA Abstract: Although many agents have therapeutic potentials for central nervous system (CNS diseases, few of these agents have been clinically used because of the brain barriers. As the protective barrier of the CNS, the blood–brain barrier and the blood–cerebrospinal fluid barrier maintain the brain microenvironment, neuronal activity, and proper functioning of the CNS. Different strategies for efficient CNS delivery have been studied. This article reviews the current approaches to open or facilitate penetration across these barriers for enhanced drug delivery to the CNS. These approaches are summarized into three broad categories: noninvasive, invasive, and miscellaneous techniques. The progresses made using these approaches are reviewed, and the associated mechanisms and problems are discussed. Keywords: drug delivery system, blood–brain barrier (BBB, central nervous system, brain-targeted therapy, cerebrospinal fluid (CSF

  2. Deep Learning Fluid Mechanics

    Science.gov (United States)

    Barati Farimani, Amir; Gomes, Joseph; Pande, Vijay

    2017-11-01

    We have developed a new data-driven model paradigm for the rapid inference and solution of the constitutive equations of fluid mechanic by deep learning models. Using generative adversarial networks (GAN), we train models for the direct generation of solutions to steady state heat conduction and incompressible fluid flow without knowledge of the underlying governing equations. Rather than using artificial neural networks to approximate the solution of the constitutive equations, GANs can directly generate the solutions to these equations conditional upon an arbitrary set of boundary conditions. Both models predict temperature, velocity and pressure fields with great test accuracy (>99.5%). The application of our framework for inferring and generating the solutions of partial differential equations can be applied to any physical phenomena and can be used to learn directly from experiments where the underlying physical model is complex or unknown. We also have shown that our framework can be used to couple multiple physics simultaneously, making it amenable to tackle multi-physics problems.

  3. A Fluid Mechanics Hypercourse

    Science.gov (United States)

    Fay, James A.; Sonwalkar, Nishikant

    1996-05-01

    This CD-ROM is designed to accompany James Fay's Introduction to Fluid Mechanics. An enhanced hypermedia version of the textbook, it offers a number of ways to explore the fluid mechanics domain. These include a complete hypertext version of the original book, physical-experiment video clips, excerpts from external references, audio annotations, colored graphics, review questions, and progressive hints for solving problems. Throughout, the authors provide expert guidance in navigating the typed links so that students do not get lost in the learning process. System requirements: Macintosh with 68030 or greater processor and with at least 16 Mb of RAM. Operating System 6.0.4 or later for 680x0 processor and System 7.1.2 or later for Power-PC. CD-ROM drive with 256- color capability. Preferred display 14 inches or above (SuperVGA with 1 megabyte of VRAM). Additional system font software: Computer Modern postscript fonts (CM/PS Screen Fonts, CMBSY10, and CMTT10) and Adobe Type Manager (ATM 3.0 or later). James A. Fay is Professor Emeritus and Senior Lecturer in the Department of Mechanical Engineering at MIT.

  4. Solitary waves in fluids

    CERN Document Server

    Grimshaw, RHJ

    2007-01-01

    After the initial observation by John Scott Russell of a solitary wave in a canal, his insightful laboratory experiments and the subsequent theoretical work of Boussinesq, Rayleigh and Korteweg and de Vries, interest in solitary waves in fluids lapsed until the mid 1960's with the seminal paper of Zabusky and Kruskal describing the discovery of the soliton. This was followed by the rapid development of the theory of solitons and integrable systems. At the same time came the realization that solitary waves occur naturally in many physical systems, and play a fundamental role in many circumstances. The aim of this text is to describe the role that soliton theory plays in fluids in several contexts. After an historical introduction, the book is divided five chapters covering the basic theory of the Korteweg-de Vries equation, and the subsequent application to free-surface solitary waves in water to internal solitary waves in the coastal ocean and the atmospheric boundary layer, solitary waves in rotating flows, ...

  5. Two Ancient Gene Families Are Critical for Maintenance of the Mammalian Skin Barrier in Postnatal Life.

    Science.gov (United States)

    Cangkrama, Michael; Darido, Charbel; Georgy, Smitha R; Partridge, Darren; Auden, Alana; Srivastava, Seema; Wilanowski, Tomasz; Jane, Stephen M

    2016-07-01

    The skin barrier is critical for mammalian survival in the terrestrial environment, affording protection against fluid loss, microbes, toxins, and UV exposure. Many genes indispensable for barrier formation in the embryo have been identified, but loss of these genes in adult mice does not induce barrier regression. We describe a complex regulatory network centered on two ancient gene families, the grainyhead-like (Grhl) transcription factors and the protein cross-linking enzymes (tissue transglutaminases [Tgms]), which are essential for skin permeability barrier maintenance in adult mice. Embryonic deletion of Grhl3 induces loss of Tgm1 expression, which disrupts the cornified envelope, thus preventing permeability barrier formation leading to neonatal death. However, gene deletion of Grhl3 in adult mice does not disrupt the preformed barrier, with cornified envelope integrity maintained by Grhl1 and Tgm5, which are up-regulated in response to postnatal loss of Grhl3. Concomitant deletion of both Grhl factors in adult mice induced loss of Tgm1 and Tgm5 expression, perturbation of the cornified envelope, and complete permeability barrier regression that was incompatible with life. These findings define the molecular safeguards for barrier function that accompany the transition from intrauterine to terrestrial life. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Implementation of a Non-Metallic Barrier in an Electric Motor

    Science.gov (United States)

    M?Sadoques, George; Carra, Michael; Beringer, Woody

    2012-01-01

    Electric motors that run in pure oxygen must be sealed, or "canned," for safety reasons to prevent the oxygen from entering into the electrical portion of the motor. The current canning process involves designing a metallic barrier around the rotor to provide the separation. This metallic barrier reduces the motor efficiency as speed is increased. In higher-speed electric motors, efficiency is greatly improved if a very thin, nonmetallic barrier can be utilized. The barrier thickness needs to be approximately 0.025-in. (.0.6-mm) thick and can be made of a brittle material such as glass. The motors, however, designed for space applications are typically subject to high-vibration environments. A fragile, non-metallic barrier can be utilized in a motor assembly if held in place by a set of standard rubber O-ring seals. The O-rings provide the necessary sealing to keep oxygen away from the electrical portion of the motor and also isolate the fragile barrier from the harsh motor vibration environment. The compliance of the rubber O-rings gently constrains the fragile barrier and isolates it from the harsh external motor environment. The use of a non-metallic barrier greatly improves motor performance, especially at higher speeds, while isolating the electronics from the working fluid with an inert liner.

  7. Changes in the blood-nerve barrier after sciatic nerve cold injury: indications supporting early treatment

    Directory of Open Access Journals (Sweden)

    Hao Li

    2015-01-01

    Full Text Available Severe edema in the endoneurium can occur after non-freezing cold injury to the peripheral nerve, which suggests damage to the blood-nerve barrier. To determine the effects of cold injury on the blood-nerve barrier, the sciatic nerve on one side of Wistar rats was treated with low temperatures (3-5°C for 2 hours. The contralateral sciatic nerve was used as a control. We assessed changes in the nerves using Evans blue as a fluid tracer and morphological methods. Excess fluid was found in the endoneurium 1 day after cold injury, though the tight junctions between cells remained closed. From 3 to 5 days after the cold injury, the fluid was still present, but the tight junctions were open. Less tracer leakage was found from 3 to 5 days after the cold injury compared with 1 day after injury. The cold injury resulted in a breakdown of the blood-nerve barrier function, which caused endoneurial edema. However, during the early period, the breakdown of the blood-nerve barrier did not include the opening of tight junctions, but was due to other factors. Excessive fluid volume produced a large increase in the endoneurial fluid pressure, prevented liquid penetration into the endoneurium from the microvasculature. These results suggest that drug treatment to patients with cold injuries should be administered during the early period after injury because it may be more difficult for the drug to reach the injury site through the microcirculation after the tissue fluid pressure becomes elevated.

  8. Modeling Fluid Flow in Faulted Basins

    Directory of Open Access Journals (Sweden)

    Faille I.

    2014-07-01

    Full Text Available This paper presents a basin simulator designed to better take faults into account, either as conduits or as barriers to fluid flow. It computes hydrocarbon generation, fluid flow and heat transfer on the 4D (space and time geometry obtained by 3D volume restoration. Contrary to classical basin simulators, this calculator does not require a structured mesh based on vertical pillars nor a multi-block structure associated to the fault network. The mesh follows the sediments during the evolution of the basin. It deforms continuously with respect to time to account for sedimentation, erosion, compaction and kinematic displacements. The simulation domain is structured in layers, in order to handle properly the corresponding heterogeneities and to follow the sedimentation processes (thickening of the layers. In each layer, the mesh is unstructured: it may include several types of cells such as tetrahedra, hexahedra, pyramid, prism, etc. However, a mesh composed mainly of hexahedra is preferred as they are well suited to the layered structure of the basin. Faults are handled as internal boundaries across which the mesh is non-matching. Different models are proposed for fault behavior such as impervious fault, flow across fault or conductive fault. The calculator is based on a cell centered Finite Volume discretisation, which ensures conservation of physical quantities (mass of fluid, heat at a discrete level and which accounts properly for heterogeneities. The numerical scheme handles the non matching meshes and guaranties appropriate connection of cells across faults. Results on a synthetic basin demonstrate the capabilities of this new simulator.

  9. Selective localization of IgG from cerebrospinal fluid to brain parenchyma

    DEFF Research Database (Denmark)

    Mørch, Marlene Thorsen; Forsberg Sørensen, Sofie; Khorooshi, Reza M. H.

    2018-01-01

    the cerebrospinal fluid and induce subpial and periventricular NMO-like lesions and blood-brain barrier breakdown, in a complement-dependent manner. To investigate how IgG trafficking from cerebrospinal fluid to brain parenchyma can be influenced by injury. IgG from healthy donors was intrathecally injected...... into the cerebrospinal fluid via cisterna magna at 1, 2, 4, or 7 days after a distal stereotactic sterile needle insertion to the striatum. Antibody deposition, detected by staining for human IgG, peaked 1 day after the intrathecal injection and was selectively seen close to the needle insertion. When NMO...

  10. Diabetes and diet : managing dietary barriers

    NARCIS (Netherlands)

    Friele, R.D.

    1989-01-01

    This thesis reports on the barriers diabetic patients experience with their diet, and the ways they cope with these barriers. A dietary barrier is a hinderance to a person's well-being, induced by being advised a diet. First inventories were made of possible dietary barriers and ways of

  11. 24 CFR 574.645 - Coastal barriers.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 3 2010-04-01 2010-04-01 false Coastal barriers. 574.645 Section....645 Coastal barriers. In accordance with the Coastal Barrier Resources Act, 16 U.S.C. 3501, no financial assistance under this part may be made available within the Coastal Barrier Resources System. ...

  12. Fluid mechanics fundamentals and applications

    CERN Document Server

    Cengel, Yunus

    2013-01-01

    Cengel and Cimbala's Fluid Mechanics Fundamentals and Applications, communicates directly with tomorrow's engineers in a simple yet precise manner. The text covers the basic principles and equations of fluid mechanics in the context of numerous and diverse real-world engineering examples. The text helps students develop an intuitive understanding of fluid mechanics by emphasizing the physics, using figures, numerous photographs and visual aids to reinforce the physics. The highly visual approach enhances the learning of Fluid mechanics by students. This text distinguishes itself from others by the way the material is presented - in a progressive order from simple to more difficult, building each chapter upon foundations laid down in previous chapters. In this way, even the traditionally challenging aspects of fluid mechanics can be learned effectively. McGraw-Hill is also proud to offer ConnectPlus powered by Maple with the third edition of Cengel/Cimbabla, Fluid Mechanics. This innovative and powerful new sy...

  13. Ecotoxicological testing of performance fluids

    International Nuclear Information System (INIS)

    Kallqvist, T.

    1990-05-01

    The report deals with a project comprising the testing of drilling fluids concerning ecotoxicology, biological degradation, and toxicity. Two types of drilling fluids were tested for toxic effects on marine algae and biological degradability. A fluid based on mineral oil was readily degradable (98% DOC removal in 28 days) while an ether based oil degraded more slowly (56% DOC removal in 28 days). The toxicity of both fluids was tested after emulsification of the oils in water and separating the oil and water phase after equilibration. The EC 50 values obtained with this approach were 8.15 g/l for the oil based fluid and 116 g/l for the ether fluid. 9 figs., 8 tabs

  14. Fluids in crustal deformation: Fluid flow, fluid-rock interactions, rheology, melting and resources

    Science.gov (United States)

    Lacombe, Olivier; Rolland, Yann

    2016-11-01

    Fluids exert a first-order control on the structural, petrological and rheological evolution of the continental crust. Fluids interact with rocks from the earliest stages of sedimentation and diagenesis in basins until these rocks are deformed and/or buried and metamorphosed in orogens, then possibly exhumed. Fluid-rock interactions lead to the evolution of rock physical properties and rock strength. Fractures and faults are preferred pathways for fluids, and in turn physical and chemical interactions between fluid flow and tectonic structures, such as fault zones, strongly influence the mechanical behaviour of the crust at different space and time scales. Fluid (over)pressure is associated with a variety of geological phenomena, such as seismic cycle in various P-T conditions, hydrofracturing (including formation of sub-horizontal, bedding-parallel veins), fault (re)activation or gravitational sliding of rocks, among others. Fluid (over)pressure is a governing factor for the evolution of permeability and porosity of rocks and controls the generation, maturation and migration of economic fluids like hydrocarbons or ore forming hydrothermal fluids, and is therefore a key parameter in reservoir studies and basin modeling. Fluids may also help the crust partially melt, and in turn the resulting melt may dramatically change the rheology of the crust.

  15. Supercritical fluids processing: emerging opportunities

    International Nuclear Information System (INIS)

    Kovaly, K.A.

    1985-01-01

    This publication on the emerging opportunities of supercritical fluids processing reveals the latest research findings and development trends in this field. These findings and development trends are highlighted, and the results of applications of technology to the business of supercritical fluids are reported. Applications of supercritical fluids to chemical intermediates, environmental applications, chemical reactions, food and biochemistry processing, and fuels processing are discussed in some detail

  16. Expression of human immunodeficiency virus in cerebrospinal fluid of children with progressive encephalopathy

    NARCIS (Netherlands)

    Epstein, L. G.; Goudsmit, J.; Paul, D. A.; Morrison, S. H.; Connor, E. M.; Oleske, J. M.; Holland, B.

    1987-01-01

    The retrovirus that causes acquired immune deficiency syndrome (AIDS) is now designated the human immunodeficiency virus (HIV). The cerebrospinal fluid (CSF) of 27 children with HIV infection was assayed for intra-blood-brain barrier (IBBB) synthesis of HIV-specific antibodies and for the presence

  17. The fluid dynamics of climate

    CERN Document Server

    Palazzi, Elisa; Fraedrich, Klaus

    2016-01-01

    This volume provides an overview of the fluid aspects of the climate system, focusing on basic aspects as well as recent research developments. It will bring together contributions from diverse fields of the physical, mathematical and engineering sciences. The volume will be useful to doctorate students, postdocs and researchers working on different aspects of atmospheric, oceanic and environmental fluid dynamics. It will also be of interest to researchers interested in quantitatively understanding how fluid dynamics can be applied to the climate system, and to climate scientists willing to gain a deeper insight into the fluid mechanics underlying climate processes.

  18. CISM Course on Rotating Fluids

    CERN Document Server

    1992-01-01

    The volume presents a comprehensive overview of rotation effects on fluid behavior, emphasizing non-linear processes. The subject is introduced by giving a range of examples of rotating fluids encountered in geophysics and engineering. This is then followed by a discussion of the relevant scales and parameters of rotating flow, and an introduction to geostrophic balance and vorticity concepts. There are few books on rotating fluids and this volume is, therefore, a welcome addition. It is the first volume which contains a unified view of turbulence in rotating fluids, instability and vortex dynamics. Some aspects of wave motions covered here are not found elsewhere.

  19. Cerebral spinal fluid (CSF) collection

    Science.gov (United States)

    ... Ventricular puncture; Lumbar puncture; Cisternal puncture; Cerebrospinal fluid culture ... the meaning of your specific test results. The examples above show the common measurements for results for ...

  20. Cerebrospinal fluid cisternography

    International Nuclear Information System (INIS)

    Sandler, M.P.; Price, A.C.; Partain, C.L.; James, A.E.; Runge, V.M.

    1988-01-01

    The evaluation of CSF dynamics has been discussed utilizing nuclear medicine, computed tomography, and magnetic resonance imaging. Cerebrospinal fluid leaks are readily diagnosed by both CT and nuclear scintigraphy. The major advantage of CT is the exact anatomic localization of the site of CSF leakage. Contrast toxicity, as well as complex and costly technology, often limit the wide applicability of CT in the diagnosis of CSF leaks. Nuclear scintigraphy, on the other hand, offers nonexact localization of CSF leaks, but is often more readily available than Ct. Magnetic resonance resolution is presently insufficient for diagnosis of CSF leaks. The anatomic diagnosis of hydrocephalus is more readily established with CT and MRI as compared to nuclear scintigraphy. However, none of the imaging modalities discussed are clearly superior in differentiating communicating from obstructive hydrocephalus. Nuclear scintigraphy remains the imaging modality of choice in the quantitative evaluation of CSF shunts and their patency

  1. Spin and Madelung fluid

    International Nuclear Information System (INIS)

    Salesi, G.

    1995-07-01

    Starting from the Pauli current the decomposition of the non-relativistic local velocity has been obtained in two parts (in the ordinary tensorial language): one parallel and the other orthogonal to the impulse. The former is recognized to be the classical part, that is, the center-of-mass (CM) velocity, and the latter the quantum one, that is, the velocity of the motion in the CM frame (namely, the internal spin motion or Zitterbewegung). Inserting this complete, composite expression of the velocity into the kinetic energy term of the classical non-relativistic (i.e. Newtonian) Lagrangian, the author straightforwardly get the appearance of the so called quantum potential associates as it is known, to the Madelung fluid. In such a way, the quantum mechanical behaviour of particles appears to be strictly correlated to the existence of spin and Zitterbewegung

  2. Conservative fluid management prevents age-associated ventilator induced mortality.

    Science.gov (United States)

    Herbert, Joseph A; Valentine, Michael S; Saravanan, Nivi; Schneck, Matthew B; Pidaparti, Ramana; Fowler, Alpha A; Reynolds, Angela M; Heise, Rebecca L

    2016-08-01

    Approximately 800 thousand patients require mechanical ventilation in the United States annually with an in-hospital mortality rate of over 30%. The majority of patients requiring mechanical ventilation are over the age of 65 and advanced age is known to increase the severity of ventilator-induced lung injury (VILI) and in-hospital mortality rates. However, the mechanisms which predispose aging ventilator patients to increased mortality rates are not fully understood. Ventilation with conservative fluid management decreases mortality rates in acute respiratory distress patients, but to date there has been no investigation of the effect of conservative fluid management on VILI and ventilator associated mortality rates. We hypothesized that age-associated increases in susceptibility and incidence of pulmonary edema strongly promote age-related increases in ventilator associated mortality. 2month old and 20month old male C57BL6 mice were mechanically ventilated with either high tidal volume (HVT) or low tidal volume (LVT) for up to 4h with either liberal or conservative fluid support. During ventilation, lung compliance, total lung capacity, and hysteresis curves were quantified. Following ventilation, bronchoalveolar lavage fluid was analyzed for total protein content and inflammatory cell infiltration. Wet to dry ratios were used to directly measure edema in excised lungs. Lung histology was performed to quantify alveolar barrier damage/destruction. Age matched non-ventilated mice were used as controls. At 4h, both advanced age and HVT ventilation significantly increased markers of inflammation and injury, degraded pulmonary mechanics, and decreased survival rates. Conservative fluid support significantly diminished pulmonary edema and improved pulmonary mechanics by 1h in advanced age HVT subjects. In 4h ventilations, conservative fluid support significantly diminished pulmonary edema, improved lung mechanics, and resulted in significantly lower mortality rates in

  3. Programmer's description of the Barrier Data Base

    International Nuclear Information System (INIS)

    Wall, D.W.; Jones, R.E.; Worrell, R.B.

    1976-12-01

    The Barrier Data Base is a body of information concerning different kinds of barriers that are used in safeguarding nuclear materials and installations. The two programs written for creating, updating, and manipulating the Barrier Data Base are discussed. The BARRIER program is used to add, delete, modify, display, or search for specific data in the data base. A utility program named NUMBER is used to compress and renumber the barrier and threat tables

  4. Skin Barrier Function and Allergens

    DEFF Research Database (Denmark)

    Engebretsen, Kristiane Aasen; Thyssen, Jacob Pontoppidan

    2016-01-01

    The skin is an important barrier protecting us from mechanical insults, microorganisms, chemicals and allergens, but, importantly, also reducing water loss. A common hallmark for many dermatoses is a compromised skin barrier function, and one could suspect an elevated risk of contact sensitization...... and skin barrier status. Psoriasis has traditionally been regarded a Th1-dominated disease, but the discovery of Th17 cells and IL-17 provides new and interesting information regarding the pathogenesis of the disease. Research suggests an inverse relationship between psoriasis and CA, possibly due......) and Th2 (AD) have been proposed as an explanation. Finally, there is convincing evidence that exposure to irritants increases the risk of CS, and patients with ICD are, therefore, at great risk of developing CA. Skin irritation leads to the release of IL-1 and TNF-α, which affects the function of antigen...

  5. Improved Fluid Perturbation Theory: Equation of state for Fluid Xenon

    OpenAIRE

    Li, Qiong; Liu, Hai-Feng; Zhang, Gong-Mu; Zhao, Yan-Hong; Tian, Ming-Feng; Song, Hai-Feng

    2016-01-01

    The traditional fluid perturbation theory is improved by taking electronic excitations and ionizations into account, in the framework of average ion spheres. It is applied to calculate the equation of state for fluid Xenon, which turns out in good agreement with the available shock data.

  6. Editorial Special Issue on Fluid Mechanics and Fluid Power (FMFP ...

    Indian Academy of Sciences (India)

    a shark is more efficient than a propeller; the notoriously complicated and nonlinear Navier–. Stokes equations governing fluid motion provide fertile ground for research to both applied and pure mathematicians. There is the phenomenon of turbulence in fluid flows. A statement in 1932, attributed to Horace Lamb, author of ...

  7. statistical fluid theory for associating fluids containing alternating ...

    Indian Academy of Sciences (India)

    Statistical associating fluid theory of homonuclear dimerized chain fluids and homonuclear ... The proposed models account for the appropriate .... where gHNM(1,1) is the expression for the contact value of the correlation func- tion of two ...

  8. Thermophysical properties of supercritical fluids and fluid mixtures

    International Nuclear Information System (INIS)

    Sengers, J.V.

    1989-08-01

    The purpose of the research is to extend the theory of critical phenomena in fluids and fluid mixtures to obtain scientifically based equations that include the crossover from the asymptotic singular behavior of the thermophysical properties close to the critical point to the regular behavior of these properties far away from the critical point

  9. Barrier mechanisms in the Drosophila blood-brain barrier.

    Science.gov (United States)

    Hindle, Samantha J; Bainton, Roland J

    2014-01-01

    The invertebrate blood-brain barrier (BBB) field is growing at a rapid pace and, in recent years, studies have shown a physiologic and molecular complexity that has begun to rival its vertebrate counterpart. Novel mechanisms of paracellular barrier maintenance through G-protein coupled receptor signaling were the first demonstrations of the complex adaptive mechanisms of barrier physiology. Building upon this work, the integrity of the invertebrate BBB has recently been shown to require coordinated function of all layers of the compound barrier structure, analogous to signaling between the layers of the vertebrate neurovascular unit. These findings strengthen the notion that many BBB mechanisms are conserved between vertebrates and invertebrates, and suggest that novel findings in invertebrate model organisms will have a significant impact on the understanding of vertebrate BBB functions. In this vein, important roles in coordinating localized and systemic signaling to dictate organism development and growth are beginning to show how the BBB can govern whole animal physiologies. This includes novel functions of BBB gap junctions in orchestrating synchronized neuroblast proliferation, and of BBB secreted antagonists of insulin receptor signaling. These advancements and others are pushing the field forward in exciting new directions. In this review, we provide a synopsis of invertebrate BBB anatomy and physiology, with a focus on insights from the past 5 years, and highlight important areas for future study.

  10. Communication barriers in the family

    Directory of Open Access Journals (Sweden)

    BARBARA KOC-KOZŁOWIEC

    2017-10-01

    Full Text Available The art of communication – listening and speaking – is a major life skill, with a thorough influence on every human life. Remaining silent while the interlocutor speaks is not all that there is to the act of listening to messages. True listening is based on an intention to get involved in understanding of the other person, enjoying his or her presence, learning something from the conversation, giving assistance, or comforting the interlocutor. In the article the author describes obstacles (barriers, which render true listening impossible. These barriers have been identified by a group of young adults.

  11. Enhanced tunneling through nonstationary barriers

    International Nuclear Information System (INIS)

    Palomares-Baez, J. P.; Rodriguez-Lopez, J. L.; Ivlev, B.

    2007-01-01

    Quantum tunneling through a nonstationary barrier is studied analytically and by a direct numerical solution of Schroedinger equation. Both methods are in agreement and say that the main features of the phenomenon can be described in terms of classical trajectories which are solutions of Newton's equation in complex time. The probability of tunneling is governed by analytical properties of a time-dependent perturbation and the classical trajectory in the plane of complex time. Some preliminary numerical calculations of Euclidean resonance (an easy penetration through a classical nonstationary barrier due to an underbarrier interference) are presented

  12. Hanford protoype surface barrier status report: FY 1994

    International Nuclear Information System (INIS)

    Gee, G.W.; Freeman, H.D.; Walters, W.H. Jr.; Ligotke, M.W.; Campbell, M.D.; Ward, A.L.; Link, S.O.; Smith, S.K.; Gilmore, B.G.; Romine, R.A.

    1994-12-01

    A full-scale prototype surface barrier has been constructed at the 200 BP-1 Operable Unit in the 200 East Area of the Hanford Site. The prototype barrier has been built to evaluate design, construction, and performance features of a surface barrier that may be used for in-place disposal of wastes at the Hanford Site. The design basis and construction of the prototype have been documented. A testing and monitoring plan has been published outlining specific tests planned for the prototype. The current report describes initial testing activities conducted in FY 1994 and outlines activities for testing and monitoring at the prototype barrier in the future. Asphalt permeability was tested during construction of the prototype in April and May 1994. Cores taken from the asphalt concrete layer were tested in the laboratory and found to have hydraulic conductivities below 1E-09 cm/s. Field measurements of hydraulic conductivity taken on the asphalt concrete using a specially-designed falling head permeameter were more than ten times higher than those from core tests. The higher values are attributed to transient flow through the permeameter seal. In spite of this difficulty, the more rapid field measurements (1-day tests in the field compared to 3 months in the laboratory) gave values as low as IE-09 cm/s and averaged about IE-08 cm/s. Samples of fluid-applied asphalt material, used as a sealant on the asphalt concrete layer, were. tested in the laboratory and found to have hydraulic conductivities below IE-10 cm/s. Measurements of hydraulic conductivity taken on an adjacent asphalt test pad using a sealed double-ring infiltrometer (SDRI) were initiated in September 1994 and are expected to be completed in November 1994. Construction of the prototype surface barrier was completed in August 1994

  13. Systems study on engineered barriers: barrier performance analysis

    International Nuclear Information System (INIS)

    Stula, R.T.; Albert, T.E.; Kirstein, B.E.; Lester, D.H.

    1980-09-01

    A performance assessment model for multiple barrier packages containing unreprocessed spent fuel has been modified and applied to several package designs. The objective of the study was to develop information to be used in programmatic decision making concerning engineered barrier package design and development. The assessment model, BARIER, was developed in previous tasks of the System Study on Engineered Barriers (SSEB). The new version discussed in this report contains a refined and expanded corrosion rate data base which includes pitting, crack growth, and graphitization as well as bulk corrosion. Corrosion rates for oxic and anoxic conditions at each of the two temperature ranges are supplied. Other improvements include a rigorous treatment of radionuclide release after package failure which includes resistance of damaged barriers and backfill, refined temperature calculations that account for convection and radiation, a subroutine to calculate nuclear gamma radiation field at each barrier surface, refined stress calculations with reduced conservatism and various coding improvements to improve running time and core usage. This report also contains discussion of alternative scenarios to the assumed flooded repository as well as the impact of water exclusion backfills. The model was used to assess post repository closure performance for several designs which were all variation of basic designs from the Spent Unreprocessed Fuel (SURF) program. Many designs were found to delay the onset of leaching by at least a few hundreds of years in all geologic media. Long delay times for radionuclide release were found for packages with a few inches of sorption backfill. Release of uranium, plutonium, and americium was assessed

  14. Systems study on engineered barriers: barrier performance analysis

    Energy Technology Data Exchange (ETDEWEB)

    Stula, R.T.; Albert, T.E.; Kirstein, B.E.; Lester, D.H.

    1980-09-01

    A performance assessment model for multiple barrier packages containing unreprocessed spent fuel has been modified and applied to several package designs. The objective of the study was to develop information to be used in programmatic decision making concerning engineered barrier package design and development. The assessment model, BARIER, was developed in previous tasks of the System Study on Engineered Barriers (SSEB). The new version discussed in this report contains a refined and expanded corrosion rate data base which includes pitting, crack growth, and graphitization as well as bulk corrosion. Corrosion rates for oxic and anoxic conditions at each of the two temperature ranges are supplied. Other improvements include a rigorous treatment of radionuclide release after package failure which includes resistance of damaged barriers and backfill, refined temperature calculations that account for convection and radiation, a subroutine to calculate nuclear gamma radiation field at each barrier surface, refined stress calculations with reduced conservatism and various coding improvements to improve running time and core usage. This report also contains discussion of alternative scenarios to the assumed flooded repository as well as the impact of water exclusion backfills. The model was used to assess post repository closure performance for several designs which were all variation of basic designs from the Spent Unreprocessed Fuel (SURF) program. Many designs were found to delay the onset of leaching by at least a few hundreds of years in all geologic media. Long delay times for radionuclide release were found for packages with a few inches of sorption backfill. Release of uranium, plutonium, and americium was assessed.

  15. Fluid Creep and Over-resuscitation.

    Science.gov (United States)

    Saffle, Jeffrey R

    2016-10-01

    Fluid creep is the term applied to a burn resuscitation, which requires more fluid than predicted by standard formulas. Fluid creep is common today and is linked to several serious edema-related complications. Increased fluid requirements may accompany the appropriate resuscitation of massive injuries but dangerous fluid creep is also caused by overly permissive fluid infusion and the lack of colloid supplementation. Several strategies for recognizing and treating fluid creep are presented. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Materials processing using supercritical fluids

    Directory of Open Access Journals (Sweden)

    Orlović Aleksandar M.

    2005-01-01

    Full Text Available One of the most interesting areas of supercritical fluids applications is the processing of novel materials. These new materials are designed to meet specific requirements and to make possible new applications in Pharmaceuticals design, heterogeneous catalysis, micro- and nano-particles with unique structures, special insulating materials, super capacitors and other special technical materials. Two distinct possibilities to apply supercritical fluids in processing of materials: synthesis of materials in supercritical fluid environment and/or further processing of already obtained materials with the help of supercritical fluids. By adjusting synthesis parameters the properties of supercritical fluids can be significantly altered which further results in the materials with different structures. Unique materials can be also obtained by conducting synthesis in quite specific environments like reversed micelles. This paper is mainly devoted to processing of previously synthesized materials which are further processed using supercritical fluids. Several new methods have been developed to produce micro- and nano-particles with the use of supercritical fluids. The following methods: rapid expansion of supercritical solutions (RESS supercritical anti-solvent (SAS, materials synthesis under supercritical conditions and encapsulation and coating using supercritical fluids were recently developed.

  17. Fluid simulation for computer graphics

    CERN Document Server

    Bridson, Robert

    2008-01-01

    Animating fluids like water, smoke, and fire using physics-based simulation is increasingly important in visual effects, in particular in movies, like The Day After Tomorrow, and in computer games. This book provides a practical introduction to fluid simulation for graphics. The focus is on animating fully three-dimensional incompressible flow, from understanding the math and the algorithms to the actual implementation.

  18. Fluid jet electric discharge source

    Science.gov (United States)

    Bender, Howard A [Ripon, CA

    2006-04-25

    A fluid jet or filament source and a pair of coaxial high voltage electrodes, in combination, comprise an electrical discharge system to produce radiation and, in particular, EUV radiation. The fluid jet source is composed of at least two serially connected reservoirs, a first reservoir into which a fluid, that can be either a liquid or a gas, can be fed at some pressure higher than atmospheric and a second reservoir maintained at a lower pressure than the first. The fluid is allowed to expand through an aperture into a high vacuum region between a pair of coaxial electrodes. This second expansion produces a narrow well-directed fluid jet whose size is dependent on the size and configuration of the apertures and the pressure used in the reservoir. At some time during the flow of the fluid filament, a high voltage pulse is applied to the electrodes to excite the fluid to form a plasma which provides the desired radiation; the wavelength of the radiation being determined by the composition of the fluid.

  19. Introduction to mathematical fluid dynamics

    CERN Document Server

    Meyer, Richard E

    2010-01-01

    An introduction to the behavior of liquids and gases, this volume provides excellent coverage of kinematics, momentum principle, Newtonian fluid, rotating fluids, compressibility, and more. It is geared toward advanced undergraduate and graduate students of mathematics and general science, and it requires a background in calculus and vector analysis. 1971 edition.

  20. Supercritical fluids in ionic liquids

    NARCIS (Netherlands)

    Kroon, M.C.; Peters, C.J.; Plechkova, N.V.; Seddon, K.R.

    2014-01-01

    Ionic liquids and supercritical fluids are both alternative environmentally benign solvents, but their properties are very different. Ionic liquids are non-volatile but often considered highly polar compounds, whereas supercritical fluids are non-polar but highly volatile compounds. The combination

  1. Horizontal insulating barriers as a way to protect groundwater

    Science.gov (United States)

    Cicha-Szot, Renata; Labus, Krzysztof; Falkowicz, Sławomir; Madetko, Norbert

    2018-06-01

    Trenchless Technology of Forming Horizontal Insulating Barriers (TFHB) can be considered a method of groundwater protection against inflow of pollutants. In TFHB technology, the working fluid (sodium silicate solution) and the gelling agent (CO2) are injected separately, using one tool, to different zones of the aquifer profile. Carbon dioxide injected into the saturation zone rises due to buoyancy forces and reaches the silicate which was injected at the water table level. This initiates the process of silicate gelation, resulting in the formation of an insulating barrier. For technological purposes, the gelation time must be controlled, and the resulting gel must have certain mechanical properties. In order to apply THFB in real conditions it was necessary to identify important technological and technical parameters, as well as to define interactions between the injected fluid and the aquifer rocks. Geochemical modelling (equilibrium, reaction path and reactive transport) was used to identify potential geochemical effects of the application of TFHB in sandy aquifers. Certain petrophysical parameters and mineralogical assemblages of aquifers were addressed, taking into account both low and strongly mineralized groundwater. The simulations revealed that TFHB does not have a negative impact on the chemistry of rock-water systems described in this work.

  2. Barriers against psychosocial communication: oncologists' perceptions.

    Science.gov (United States)

    Fagerlind, Hanna; Kettis, Åsa; Glimelius, Bengt; Ring, Lena

    2013-10-20

    To explore oncologists' psychosocial attitudes and beliefs and their perceptions regarding barriers against psychosocial communication. A questionnaire was distributed to oncologists in Sweden (n = 537). Questions covered demography, the Physician Psychosocial Beliefs Scale (PPBS), and barriers against psychosocial communication. Stepwise multiple regression was used to determine what factors contribute the most to the PPBS score and the total number of barriers and barriers affecting clinical practice, respectively. Spearman rank-order correlation was used to determine correlation between PPBS score and number of barriers. Questionnaire response rate was 64%. Mean PPBS value was 85.5 (range, 49 to 123; SD, 13.0). Most oncologists (93%) perceived one or more barriers in communicating psychosocial aspects with patients. On average, five different communication barriers were perceived, of which most were perceived to affect clinical practice. These barriers included insufficient consultation time, lack of resources for taking care of problems discovered, and lack of methods to evaluate patients' psychosocial health in clinical practice. There was a positive correlation (rs = 0.490; P barriers (ie, less psychosocially oriented oncologists perceived more barriers). Oncologists with supplementary education with a psychosocial focus perceived fewer barriers/barriers affecting clinical practice (P barriers affecting psychosocial communication in clinical practice. Interventions aiming to improve psychosocial communication must therefore be multifaceted and individualized to clinics and individual oncologists. It is important to minimize barriers to facilitate optimal care and treatment of patients with cancer.

  3. Structure information from fusion barriers

    Indian Academy of Sciences (India)

    Pb, using the coupled reaction channel (CRC) method and correct structure information, have been analysed. The barrier distributions derived from these excitation functions including many of the significant channels are featureless, although these channels have considerable effects on the fusion excitation function.

  4. Communication Barriers in Distance Education

    Science.gov (United States)

    Isman, Aytekin; Dabaj, Fahme; Altinay, Fahriye; Altinay, Zehra

    2003-01-01

    Communication is a key concept as being the major tool for people in order to satisfy their needs. It is an activity which refers as process and effective communication requires qualified communication with the elimination of communication barriers. As it is known, distance education is a new trend by following contemporary facilities and tools…

  5. Functional barriers: Properties and evaluation

    NARCIS (Netherlands)

    Feigenbaum, A.; Dole, P.; Aucejo, S.; Dainelli, D.; Cruz Garcia, C. de la; Hankemeier, T.; N'Gono, Y.; Papaspyrides, C.D.; Paseiro, P.; Pastorelli, S.; Pavlidou, S.; Pennarun, P.Y.; Saillard, P.; Vidal, L.; Vitrac, O.; Voulzatis, Y.

    2005-01-01

    Functional barriers are multilayer structures deemed to prevent migration of some chemicals released by food-contact materials into food. In the area of plastics packaging, different migration behaviours of mono- and multilayer structures are assessed in terms of lag time and of their influence of

  6. Overcoming Barriers: Women in Superintendency

    Science.gov (United States)

    Miller, Claire M.

    2009-01-01

    Women currently represent the largest number of teachers in the United States but remain underrepresented in the superintendent position. This suggests that the superintendency has been influenced by patriarchy. If women are to break through the barriers that prevent them from attaining a superintendency, we will need to understand the social…

  7. Seasonal breaching of coastal barriers

    NARCIS (Netherlands)

    Tuan, Thieu Quang

    2007-01-01

    Natural or unintended breaching can be catastrophic, causing loss of human lives and damage to infrastructures, buildings and natural habitats. Quantitative understand-ing of coastal barrier breaching is therefore of great importance to vulnerability as-sessment of protection works as well as to

  8. Fluid diversion in oil recovery

    International Nuclear Information System (INIS)

    Nimir, Hassan B.

    1999-01-01

    In any oil recovery process, large scale heterogeneities, such as fractures, channels, or high-permeability streaks, can cause early break through of injected fluid which will reduce oil recovery efficiency. In waterflooding, enhanced oil recovery, and acidizing operations, this problem is particularly acute because of the cost of the injected fluid. On the other hand coping with excess water production is always a challenging task for field operators. The cost of handling and disposing produced water can significantly shorten the economic production life of an oil well. The hydrostatic pressure created by high fluid levels in a well (water coning) is also detrimental to oil production. In this paper, the concept of fluid diversion is explained. Different methods that are suggested to divert the fluid into the oil-bearing-zones are briefly discussed, to show their advantages and disadvantages. Methods of reducing water production in production well are also discussed. (Author)

  9. Revisiting the Landau fluid closure.

    Science.gov (United States)

    Hunana, P.; Zank, G. P.; Webb, G. M.; Adhikari, L.

    2017-12-01

    Advanced fluid models that are much closer to the full kinetic description than the usual magnetohydrodynamic description are a very useful tool for studying astrophysical plasmas and for interpreting solar wind observational data. The development of advanced fluid models that contain certain kinetic effects is complicated and has attracted much attention over the past years. Here we focus on fluid models that incorporate the simplest possible forms of Landau damping, derived from linear kinetic theory expanded about a leading-order (gyrotropic) bi-Maxwellian distribution function f_0, under the approximation that the perturbed distribution function f_1 is gyrotropic as well. Specifically, we focus on various Pade approximants to the usual plasma response function (and to the plasma dispersion function) and examine possibilities that lead to a closure of the linear kinetic hierarchy of fluid moments. We present re-examination of the simplest Landau fluid closures.

  10. Fluid migration studies in salt

    International Nuclear Information System (INIS)

    Shefelbine, H.C.; Raines, G.E.

    1980-01-01

    This discussion will be limited to the migration of water trapped in the rock salt under the influence of the heat field produced by nuclear waste. This is of concern because hypotheticl scenarios have been advanced in which this fluid movement allows radionuclides to escape to the biosphere. While portions of these scenarios are supported by observation, none of the complete scenarios has been demonstrated. The objectives of the present fluid migration studies are two-fold: 1. determine the character of the trapped fluid in terms of quantity, habitat and chemical constituents; and 2. define the mechanisms that cause the fluid to migrate toward heat sources. Based on the observations to date, fluid migration will not have a major impact on repository integrity. However, the above objectives will be pursued until the impacts, if any, can be quantified

  11. Performance Testing of Cutting Fluids

    DEFF Research Database (Denmark)

    Belluco, Walter

    The importance of cutting fluid performance testing has increased with documentation requirements of new cutting fluid formulations based on more sustainable products, as well as cutting with minimum quantity of lubrication and dry cutting. Two sub-problems have to be solved: i) which machining...... tests feature repeatability, reproducibility and sensitivity to cutting fluids, and ii) to what extent results of one test ensure relevance to a wider set of machining situations. The present work is aimed at assessing the range of validity of the different testing methods, investigating correlation...... within the whole range of operations, materials, cutting fluids, operating conditions, etc. Cutting fluid performance was evaluated in turning, drilling, reaming and tapping, and with respect to tool life, cutting forces, chip formation and product quality (dimensional accuracy and surface integrity...

  12. Barrier island facies models and recognition criteria

    Science.gov (United States)

    Mulhern, J.; Johnson, C. L.

    2017-12-01

    Barrier island outcrops record transgressive shoreline motion at geologic timescales, providing integral clues to understanding how coastlines respond to rising sea levels. However, barrier island deposits are difficult to recognize. While significant progress has been made in understanding the modern coastal morphodynamics, this insight is not fully leveraged in existing barrier island facies models. Excellent outcrop exposures of the paralic Upper Cretaceous Straight Cliffs Formation of southern Utah provide an opportunity to revise facies models and recognition criteria for barrier island deposits. Preserved barrier islands are composed of three main architectural elements (shorefaces, tidal inlets, and tidal channels) which occur independently or in combination to create larger-scale barrier island deposits. Barrier island shorefaces record progradation, while barrier island tidal inlets record lateral migration, and barrier island tidal channels record aggradation within the tidal inlet. Four facies associations are used to describe and characterize these barrier island architectural elements. Barrier islands occur in association with backarrier fill and internally contain lower and upper shoreface, high-energy upper shoreface, and tidal channel facies. Barrier islands bound lagoons or estuaries, and are distinguished from other shoreface deposits by their internal facies and geometry, association with backbarrier facies, and position within transgressive successions. Tidal processes, in particular tidal inlet migration and reworking of the upper shoreface, also distinguish barrier island deposits. Existing barrier island models highlight the short term heterogeneous and dynamic nature of barrier island systems, yet overlook processes tied to geologic time scales, such as multi-directional motion, erosion, and reworking, and their expressions in preserved barrier island strata. This study uses characteristic outcrop expressions of barrier island successions to

  13. Heating production fluids in a wellbore

    Science.gov (United States)

    Orrego, Yamila; Jankowski, Todd A.

    2016-07-12

    A method for heating a production fluid in a wellbore. The method can include heating, using a packer fluid, a working fluid flowing through a first medium disposed in a first section of the wellbore, where the first medium transfers heat from the packer fluid to the working fluid. The method can also include circulating the working fluid into a second section of the wellbore through a second medium, where the second medium transfers heat from the working fluid to the production fluid. The method can further include returning the working fluid to the first section of the wellbore through the first medium.

  14. Tracing Geothermal Fluids

    Energy Technology Data Exchange (ETDEWEB)

    Michael C. Adams; Greg Nash

    2004-03-01

    Geothermal water must be injected back into the reservoir after it has been used for power production. Injection is critical in maximizing the power production and lifetime of the reservoir. To use injectate effectively the direction and velocity of the injected water must be known or inferred. This information can be obtained by using chemical tracers to track the subsurface flow paths of the injected fluid. Tracers are chemical compounds that are added to the water as it is injected back into the reservoir. The hot production water is monitored for the presence of this tracer using the most sensitive analytic methods that are economically feasible. The amount and concentration pattern of the tracer revealed by this monitoring can be used to evaluate how effective the injection strategy is. However, the tracers must have properties that suite the environment that they will be used in. This requires careful consideration and testing of the tracer properties. In previous and parallel investigations we have developed tracers that are suitable from tracing liquid water. In this investigation, we developed tracers that can be used for steam and mixed water/steam environments. This work will improve the efficiency of injection management in geothermal fields, lowering the cost of energy production and increasing the power output of these systems.

  15. A cutting fluid

    Energy Technology Data Exchange (ETDEWEB)

    Kajdas, C.; Dominiak, M.; Kozinski, R.; Misterkiewicz, B.; Polowniak, J.; Szczepaniak, S.

    1982-06-30

    The cutting fluid (SOZh) contains 0.5 to 10 percent vegetable or animal fats, selectively sulfurized in the presence of a catalyst (Kt): 0.1 to 10 percent chlorinated C2O to C3O paraffins, which contain 10 to 50 percent Chlorine in a molecule, and 0.001 to 0.5 percent dialkyldithiocarbamic or alkylen-bis-(dithiocarbamic) acids or their salts or derivatives of the form (R(R')NC(S)SRn'', (CH2)n(NHC(S)S)2R'' or R(R')NC(S)SnC(S)(R)R', where R and R' are alkyl or cycloalkyl of the C1 to C6 fractions, R'' is Hydrogen, a metal, or aliphatic or heterocyclic amine, n = 2 to 6 and 0.001 to 0.3 percent of heterocyclic mercaptanes or disulfides of the cited formula, where A is Nitrogen or Sulfur, and up to 100 percent petroleum oil with a kinematic viscosity of 5 to 50 square millimeters per second at 323K.

  16. Multidomain multiphase fluid mechanics

    International Nuclear Information System (INIS)

    Sha, W.T.; Soo, S.L.

    1976-10-01

    A set of multiphase field equations--conversion of mass, momentum and energy--based on multiphase mechanics is developed. Multiphase mechanics applies to mixtures of phases which are separated by interfaces and are mutually exclusive. Based on the multiphase mechanics formulation, additional terms appear in the field equations when the physical size of the dispersed phase (bubble or droplet) is many times larger than the inter-molecular spacing. These terms are the inertial coupling due to virtual mass and the additional viscous coupling due to unsteadiness of the flow field. The multiphase formulation given here takes into account the discreteness of particles of dispersed phases and, at the same time, the necessity of the distributive representation of field variables via space-time averaging when handling a large number of particles. The provision for multidomain transition further permits us to treat dispersed phases which are large compared to the characteristic dimension of the flow system via interdomain relations. The multidomain multiphase approach provides a framework for us to model the various flow regimes. Because some of the transport parameters associated with the system equations are not well known at the present time, an idealized two-domain two-phase solution approach is proposed as a first step. Finally, comparisons are made between the field equations formulated based on the multidomain-multiphase fluid mechanics and the pertinent existing models, and their relative significances are discussed. The desirability of consistent approximation and simplifications possible for dilute suspensions are discussed

  17. Computational fluid dynamic applications

    Energy Technology Data Exchange (ETDEWEB)

    Chang, S.-L.; Lottes, S. A.; Zhou, C. Q.

    2000-04-03

    The rapid advancement of computational capability including speed and memory size has prompted the wide use of computational fluid dynamics (CFD) codes to simulate complex flow systems. CFD simulations are used to study the operating problems encountered in system, to evaluate the impacts of operation/design parameters on the performance of a system, and to investigate novel design concepts. CFD codes are generally developed based on the conservation laws of mass, momentum, and energy that govern the characteristics of a flow. The governing equations are simplified and discretized for a selected computational grid system. Numerical methods are selected to simplify and calculate approximate flow properties. For turbulent, reacting, and multiphase flow systems the complex processes relating to these aspects of the flow, i.e., turbulent diffusion, combustion kinetics, interfacial drag and heat and mass transfer, etc., are described in mathematical models, based on a combination of fundamental physics and empirical data, that are incorporated into the code. CFD simulation has been applied to a large variety of practical and industrial scale flow systems.

  18. Dissolution Dynamic Nuclear Polarization capability study with fluid path

    DEFF Research Database (Denmark)

    Malinowski, Ronja Maja; Lipsø, Hans Kasper Wigh; Lerche, Mathilde Hauge

    2016-01-01

    Signal enhancement by hyperpolarization is a way of overcoming the low sensitivity in magnetic resonance; MRI in particular. One of the most well-known methods, dissolution Dynamic Nuclear Polarization, has been used clinically in cancer patients. One way of ensuring a low bioburden of the hyperp......Signal enhancement by hyperpolarization is a way of overcoming the low sensitivity in magnetic resonance; MRI in particular. One of the most well-known methods, dissolution Dynamic Nuclear Polarization, has been used clinically in cancer patients. One way of ensuring a low bioburden...... of the hyperpolarized product is by use of a closed fluid path that constitutes a barrier to contamination. The fluid path can be filled with the pharmaceuticals, i.e. imaging agent and solvents, in a clean room, and then stored or immediately used at the polarizer. In this study, we present a method of filling...

  19. Acoustic impact on the laminated plates placed between barriers

    Science.gov (United States)

    Paimushin, V. N.; Gazizullin, R. K.; Fedotenkov, G. V.

    2016-11-01

    On the basis of previously derived equations, analytical solutions are established on the forced vibrations of two-layer and three-layers rectangular plates hinged in an opening of absolutely rigid walls during the transmission of monoharmonic sound waves. It is assumed that the partition wall is situated between two absolutely rigid barriers, one of them by harmonic oscillation with a given displacements amplitude on the plate forms the incident sound wave, and the other is stationary and has a coating of deformable energy absorbing material with high damping properties. The behavior of acoustic environments in the spaces between the deformable plate and the barriers described by classical wave equation based on the ideal compressible fluid model. To describe the process of dynamic deformation of the energy absorbing coating of fixed barrier, two-dimensional equations of motion based on the use of models transversely soft layer are derived with a linear approximation of the displacement field in the thickness direction of the coating and taking into account the damping properties of the material and the hysteresis model for it. The influence of the physical and mechanical properties of the concerned mechanical system and the frequency of the incident sound wave on the parameters of its insulation properties of the plate, as well as on the parameters of the stress-strain state of the plate has been analyzed.

  20. Barriers to improvements in energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, A.K.N.

    1991-10-01

    To promote energy-efficiency improvements, actions may be required at one or more levels -- from the lowest level of the consumer (residential, commercial, industrial, etc.) through the highest level of the global agencies. But barriers to the implementation of energy-efficiency improvements exist or can arise at all these levels. Taking up each one of these barriers in turn, the paper discusses specific measures that can contribute to overcoming the barriers. However, a one-barrier-one-measure approach must be avoided. Single barriers may in fact involve several sub-barriers. Also, combinations of measures are much more effective in overcoming barriers. In particular, combinations of measures that simultaneously overcome several barriers are most successful. The paper discusses the typology of barriers, explores their origin and suggests measures that by themselves or in combination with other measures, will overcome these barriers. Since most of the barriers dealt with can be found in the barriers'' literature, any originality in the paper lies in its systematic organization, synoptic view and holistic treatment of this issue. This paper is intended to initiate a comprehensive treatment of barriers, their origins and the measures that contribute to overcoming them. Hopefully, such a treatment will facilitate the implementation of energy-efficiency improvements involving a wide diversity of ever-changing energy end uses and consumer preferences.

  1. Barriers to improvements in energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, A.K.N.

    1991-10-01

    To promote energy-efficiency improvements, actions may be required at one or more levels -- from the lowest level of the consumer (residential, commercial, industrial, etc.) through the highest level of the global agencies. But barriers to the implementation of energy-efficiency improvements exist or can arise at all these levels. Taking up each one of these barriers in turn, the paper discusses specific measures that can contribute to overcoming the barriers. However, a one-barrier-one-measure approach must be avoided. Single barriers may in fact involve several sub-barriers. Also, combinations of measures are much more effective in overcoming barriers. In particular, combinations of measures that simultaneously overcome several barriers are most successful. The paper discusses the typology of barriers, explores their origin and suggests measures that by themselves or in combination with other measures, will overcome these barriers. Since most of the barriers dealt with can be found in the ``barriers`` literature, any originality in the paper lies in its systematic organization, synoptic view and holistic treatment of this issue. This paper is intended to initiate a comprehensive treatment of barriers, their origins and the measures that contribute to overcoming them. Hopefully, such a treatment will facilitate the implementation of energy-efficiency improvements involving a wide diversity of ever-changing energy end uses and consumer preferences.

  2. Noncommutative geometry and fluid dynamics

    International Nuclear Information System (INIS)

    Das, Praloy; Ghosh, Subir

    2016-01-01

    In the present paper we have developed a Non-Commutative (NC) generalization of perfect fluid model from first principles, in a Hamiltonian framework. The noncommutativity is introduced at the Lagrangian (particle) coordinate space brackets and the induced NC fluid bracket algebra for the Eulerian (fluid) field variables is derived. Together with a Hamiltonian this NC algebra generates the generalized fluid dynamics that satisfies exact local conservation laws for mass and energy, thereby maintaining mass and energy conservation. However, nontrivial NC correction terms appear in the charge and energy fluxes. Other non-relativistic spacetime symmetries of the NC fluid are also discussed in detail. This constitutes the study of kinematics and dynamics of NC fluid. In the second part we construct an extension of the Friedmann-Robertson-Walker (FRW) cosmological model based on the NC fluid dynamics presented here. We outline the way in which NC effects generate cosmological perturbations bringing about anisotropy and inhomogeneity in the model. We also derive a NC extended Friedmann equation. (orig.)

  3. Noncommutative geometry and fluid dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Das, Praloy; Ghosh, Subir [Indian Statistical Institute, Physics and Applied Mathematics Unit, Kolkata (India)

    2016-11-15

    In the present paper we have developed a Non-Commutative (NC) generalization of perfect fluid model from first principles, in a Hamiltonian framework. The noncommutativity is introduced at the Lagrangian (particle) coordinate space brackets and the induced NC fluid bracket algebra for the Eulerian (fluid) field variables is derived. Together with a Hamiltonian this NC algebra generates the generalized fluid dynamics that satisfies exact local conservation laws for mass and energy, thereby maintaining mass and energy conservation. However, nontrivial NC correction terms appear in the charge and energy fluxes. Other non-relativistic spacetime symmetries of the NC fluid are also discussed in detail. This constitutes the study of kinematics and dynamics of NC fluid. In the second part we construct an extension of the Friedmann-Robertson-Walker (FRW) cosmological model based on the NC fluid dynamics presented here. We outline the way in which NC effects generate cosmological perturbations bringing about anisotropy and inhomogeneity in the model. We also derive a NC extended Friedmann equation. (orig.)

  4. Quantum field theory of fluids.

    Science.gov (United States)

    Gripaios, Ben; Sutherland, Dave

    2015-02-20

    The quantum theory of fields is largely based on studying perturbations around noninteracting, or free, field theories, which correspond to a collection of quantum-mechanical harmonic oscillators. The quantum theory of an ordinary fluid is "freer", in the sense that the noninteracting theory also contains an infinite collection of quantum-mechanical free particles, corresponding to vortex modes. By computing a variety of correlation functions at tree and loop level, we give evidence that a quantum perfect fluid can be consistently formulated as a low-energy, effective field theory. We speculate that the quantum behavior is radically different from both classical fluids and quantum fields.

  5. Wave Interactions and Fluid Flows

    Science.gov (United States)

    Craik, Alex D. D.

    1988-07-01

    This up-to-date and comprehensive account of theory and experiment on wave-interaction phenomena covers fluids both at rest and in their shear flows. It includes, on the one hand, water waves, internal waves, and their evolution, interaction, and associated wave-driven means flow and, on the other hand, phenomena on nonlinear hydrodynamic stability, especially those leading to the onset of turbulence. This study provide a particularly valuable bridge between these two similar, yet different, classes of phenomena. It will be of value to oceanographers, meteorologists, and those working in fluid mechanics, atmospheric and planetary physics, plasma physics, aeronautics, and geophysical and astrophysical fluid dynamics.

  6. Fluid intelligence: A brief history.

    Science.gov (United States)

    Kent, Phillip

    2017-01-01

    The concept of fluid and crystallized intelligence was introduced to the psychological community approximately 75 years ago by Raymond B. Cattell, and it continues to be an area of active research and controversy. The purpose of this paper is to provide a brief overview of the origin of the concept, early efforts to define intelligence and uses of intelligence tests to address pressing social issues, and the ongoing controversies associated with fluid intelligence and the structure of intelligence. The putative neuropsychological underpinnings and neurological substrates of fluid intelligence are discussed.

  7. Advances in Environmental Fluid Mechanics

    CERN Document Server

    Mihailovic, Dragutin T

    2010-01-01

    Environmental fluid mechanics (EFM) is the scientific study of transport, dispersion and transformation processes in natural fluid flows on our planet Earth, from the microscale to the planetary scale. This book brings together scientists and engineers working in research institutions, universities and academia, who engage in the study of theoretical, modeling, measuring and software aspects in environmental fluid mechanics. It provides a forum for the participants, and exchanges new ideas and expertise through the presentations of up-to-date and recent overall achievements in this field.

  8. Molecular thermodynamics of nonideal fluids

    CERN Document Server

    Lee, Lloyd L

    2013-01-01

    Molecular Thermodynamics of Nonideal Fluids serves as an introductory presentation for engineers to the concepts and principles behind and the advances in molecular thermodynamics of nonideal fluids. The book covers related topics such as the laws of thermodynamics; entropy; its ensembles; the different properties of the ideal gas; and the structure of liquids. Also covered in the book are topics such as integral equation theories; theories for polar fluids; solution thermodynamics; and molecular dynamics. The text is recommended for engineers who would like to be familiarized with the concept

  9. Spinning fluids in general relativity

    Science.gov (United States)

    Ray, J. R.; Smalley, L. L.

    1982-01-01

    General relativity field equations are employed to examine a continuous medium with internal spin. A variational principle formerly applied in the special relativity case is extended to the general relativity case, using a tetrad to express the spin density and the four-velocity of the fluid. An energy-momentum tensor is subsequently defined for a spinning fluid. The equations of motion of the fluid are suggested to be useful in analytical studies of galaxies, for anisotropic Bianchi universes, and for turbulent eddies.

  10. Prototype Hanford Surface Barrier: Design basis document

    International Nuclear Information System (INIS)

    Myers, D.R.; Duranceau, D.A.

    1994-11-01

    The Hanford Site Surface Barrier Development Program (BDP) was organized in 1985 to develop the technology needed to provide a long-term surface barrier capability for the Hanford Site and other arid sites. This document provides the basis of the prototype barrier. Engineers and scientists have momentarily frozen evolving barrier designs and incorporated the latest findings from BDP tasks. The design and construction of the prototype barrier has required that all of the various components of the barrier be brought together into an integrated system. This integration is particularly important because some of the components of the protective barreir have been developed independently of other barreir components. This document serves as the baseline by which future modifications or other barrier designs can be compared. Also, this document contains the minutes of meeting convened during the definitive design process in which critical decisions affecting the prototype barrier's design were made and the construction drawings

  11. Highway renewable energy : photovoltaic noise barriers

    Science.gov (United States)

    2017-07-01

    Highway photovoltaic noise barriers (PVNBs) represent the combination of noise barrier systems and photovoltaic systems in order to mitigate traffic noise while simultaneously producing renewable energy. First deployed in Switzerland in 1989, PVNBs a...

  12. Physical Environmental Barriers to School Attendance among ...

    African Journals Online (AJOL)

    environment were the major barriers to school attendance. Conclusion: To ... Key words: Parents/caregivers, children with disabilities, barriers. Introduction .... It is not safe to walk ... feeling, learning, behaviour, and fits or convulsions. [19] The ...

  13. Superconfinement tailors fluid flow at microscales.

    KAUST Repository

    Setu, Siti Aminah; Dullens, Roel P A; Herná ndez-Machado, Aurora; Pagonabarraga, Ignacio; Aarts, Dirk G A L; Ledesma-Aguilar, Rodrigo

    2015-01-01

    Understanding fluid dynamics under extreme confinement, where device and intrinsic fluid length scales become comparable, is essential to successfully develop the coming generations of fluidic devices. Here we report measurements of advancing fluid

  14. Extension of Generalized Fluid System Simulation Program's Fluid Property Database

    Science.gov (United States)

    Patel, Kishan

    2011-01-01

    This internship focused on the development of additional capabilities for the General Fluid Systems Simulation Program (GFSSP). GFSSP is a thermo-fluid code used to evaluate system performance by a finite volume-based network analysis method. The program was developed primarily to analyze the complex internal flow of propulsion systems and is capable of solving many problems related to thermodynamics and fluid mechanics. GFSSP is integrated with thermodynamic programs that provide fluid properties for sub-cooled, superheated, and saturation states. For fluids that are not included in the thermodynamic property program, look-up property tables can be provided. The look-up property tables of the current release version can only handle sub-cooled and superheated states. The primary purpose of the internship was to extend the look-up tables to handle saturated states. This involves a) generation of a property table using REFPROP, a thermodynamic property program that is widely used, and b) modifications of the Fortran source code to read in an additional property table containing saturation data for both saturated liquid and saturated vapor states. Also, a method was implemented to calculate the thermodynamic properties of user-fluids within the saturation region, given values of pressure and enthalpy. These additions required new code to be written, and older code had to be adjusted to accommodate the new capabilities. Ultimately, the changes will lead to the incorporation of this new capability in future versions of GFSSP. This paper describes the development and validation of the new capability.

  15. Standardization of Thermo-Fluid Modeling in Modelica.Fluid

    Energy Technology Data Exchange (ETDEWEB)

    Franke, Rudiger; Casella, Francesco; Sielemann, Michael; Proelss, Katrin; Otter, Martin; Wetter, Michael

    2009-09-01

    This article discusses the Modelica.Fluid library that has been included in the Modelica Standard Library 3.1. Modelica.Fluid provides interfaces and basic components for the device-oriented modeling of onedimensional thermo-fluid flow in networks containing vessels, pipes, fluid machines, valves and fittings. A unique feature of Modelica.Fluid is that the component equations and the media models as well as pressure loss and heat transfer correlations are decoupled from each other. All components are implemented such that they can be used for media from the Modelica.Media library. This means that an incompressible or compressible medium, a single or a multiple substance medium with one or more phases might be used with one and the same model as long as the modeling assumptions made hold. Furthermore, trace substances are supported. Modeling assumptions can be configured globally in an outer System object. This covers in particular the initialization, uni- or bi-directional flow, and dynamic or steady-state formulation of mass, energy, and momentum balance. All assumptions can be locally refined for every component. While Modelica.Fluid contains a reasonable set of component models, the goal of the library is not to provide a comprehensive set of models, but rather to provide interfaces and best practices for the treatment of issues such as connector design and implementation of energy, mass and momentum balances. Applications from various domains are presented.

  16. Measurement of human blood brain barrier integrity using 11C-inulin and positron emission tomography

    International Nuclear Information System (INIS)

    Hara, Toshihiko; Iio, Masaaki; Tsukiyama, Takashi

    1988-01-01

    Positron emission tomography (PET) using 11 C-inulin was demonstrated to be applicable to the clinical measurement of blood brain barrier permeability and cerebral interstitial fluid volume. Kinetic data were analyzed by application of a two compartment model, in which blood plasma and interstitial fluid spaces constitute the compartments. The blood activity contribution was subtracted from the PET count with the aid of the 11 CO inhalation technique. The values we estimated in a human brain were in agreement with the reported values obtained for animal brains by the use of 14 C-inulin. (orig.)

  17. Security barriers with automated reconnaissance

    Science.gov (United States)

    McLaughlin, James O; Baird, Adam D; Tullis, Barclay J; Nolte, Roger Allen

    2015-04-07

    An intrusion delaying barrier includes primary and secondary physical structures and can be instrumented with multiple sensors incorporated into an electronic monitoring and alarm system. Such an instrumented intrusion delaying barrier may be used as a perimeter intrusion defense and assessment system (PIDAS). Problems with not providing effective delay to breaches by intentional intruders and/or terrorists who would otherwise evade detection are solved by attaching the secondary structures to the primary structure, and attaching at least some of the sensors to the secondary structures. By having multiple sensors of various types physically interconnected serves to enable sensors on different parts of the overall structure to respond to common disturbances and thereby provide effective corroboration that a disturbance is not merely a nuisance or false alarm. Use of a machine learning network such as a neural network exploits such corroboration.

  18. Application of polycrystalline diffusion barriers

    International Nuclear Information System (INIS)

    Tsymbal, V.A.; Kolupaev, I.N.

    2010-01-01

    Degradation of contacts of the electronic equipment at the raised temperatures is connected with active diffusion redistribution of components contact - metalized systems (CMS) and phase production on interphase borders. One of systems diffusion barriers (DB) are polycrystalline silicide a film, in particular silicides of the titan. Reception disilicide the titan (TiSi 2 ) which on the parameters is demanded for conditions of microelectronics from known silicides of system Ti-Si, is possible as a result of direct reaction of a film of the titan and a substrate of silicon, and at sedimentation of layer Ti-Si demanded stoichiometric structure. Simultaneously there is specific problem polycrystalline diffusion a barrier (PDB): the polycrystalline provides structural balance and metastability film disilicide, but leaves in it borders of grains - easy local ways of diffusion. In clause the analysis diffusion permeability polycrystalline and polyphase DB is made and recommendations for practical methods of increase of blocking properties PDB are made.

  19. Sea sand for reactive barriers

    International Nuclear Information System (INIS)

    Garcia R, G.; Ordonez R, E.; Ordonez R, En.

    2002-01-01

    Some phosphates have the property to suck in radioactive metals in solution, what it is taken in advance to make reactive barriers which are placed in the nuclear waste repositories. In an effort for contributing to the study of this type of materials, it has been obtained the zirconium silicate (ZrSiO 4 ) and the alpha zirconium hydrogen phosphate (Zr(HPO 4 ) 2H 2 O) starting from sea sand in an easy and economic way. (Author)

  20. Fission barriers of light nuclei

    International Nuclear Information System (INIS)

    Grotowski, K.; Planeta, R.; Blann, M.; Komoto, T.

    1989-01-01

    Experimental fission excitation functions for compound nuclei /sup 52/Fe, /sup 49/Cr, /sup 46/V, and /sup 44/Ti formed in heavy-ion reactions are analyzed in the Hauser-Feshbach/Bohr-Wheeler formalism using fission barriers based on the rotating liquid drop model of Cohen et al. and on the rotating finite range model of Sierk. We conclude that the rotating finite range approach gives better reproduction of experimental fission yields, consistent with results found for heavier systems

  1. Zirconium-barrier cladding attributes

    International Nuclear Information System (INIS)

    Rosenbaum, H.S.; Rand, R.A.; Tucker, R.P.; Cheng, B.; Adamson, R.B.; Davies, J.H.; Armijo, J.S.; Wisner, S.B.

    1987-01-01

    This metallurgical study of Zr-barrier fuel cladding evaluates the importance of three salient attributes: (1) metallurgical bond between the zirconium liner and the Zircaloy substrate, (2) liner thickness (roughly 10% of the total cladding wall), and (3) softness (purity). The effect that each of these attributes has on the pellet-cladding interaction (PCI) resistance of the Zr-barrier fuel was studied by a combination of analytical model calculations and laboratory experiments using an expanding mandrel technique. Each of the attributes is shown to contribute to PCI resistance. The effect of the zirconium liner on fuel behavior during off-normal events in which steam comes in contact with the zirconium surface was studied experimentally. Simulations of loss-of-coolant accident (LOCA) showed that the behavior of Zr-barrier cladding is virtually indistinguishable from that of conventional Zircaloy cladding. If steam contacts the zirconium liner surface through a cladding perforation and the fuel rod is operated under normal power conditions, the zirconium liner is oxidized more rapidly than is Zircaloy, but the oxidation rate returns to the rate of Zircaloy oxidation when the oxide phase reaches the zirconium-Zircaloy metallurgical bond

  2. Filamentary and diffuse barrier discharges

    International Nuclear Information System (INIS)

    Kogelschatz, U.

    2001-01-01

    Barrier discharges, sometimes also referred to as dielectric-barrier discharges or silent discharges, are characterized by the presence of at least one insulating layer in contact with the discharge between two planar or cylindrical electrodes connected to an ac power supply. The main advantage of this type of electrical discharge is, that non-equilibrium plasma conditions in atmospheric-pressure gases can be established in an economic and reliable way. This has led to a number of important applications including industrial ozone generation, surface modification of polymers, plasma chemical vapor deposition, excitation of CO 2 lasers, excimer lamps and, most recently, large-area flat plasma display panels. Depending on the application, the width of the discharge gap can range from less than 0.1 mm to about 100 mm and the applied frequency from below line frequency to several gigahertz. Typical materials used for the insulating layer (dielectric barrier) are glass, quartz, ceramics but also thin enamel or polymer layers

  3. Perceptions regarding strategic and structural entry barriers

    NARCIS (Netherlands)

    Lutz, C.H.M.; Kemp, R.G.M.; Dijkstra, S.G.

    2010-01-01

    This article uses factor analysis to identify the underlying dimensions of strategic and structural entry barriers. We find that, in the perception of firms, both types of barriers are important and that the effectiveness of strategic barriers depends on attributes of the market structure. Based on

  4. Perceptions regarding strategic and structural entry barriers

    NARCIS (Netherlands)

    Lutz, Clemens H. M.; Kemp, Ron G. M.; Dijkstra, S. Gerhard

    This article uses factor analysis to identify the underlying dimensions of strategic and structural entry barriers. We find that, in the perception of firms, both types of barriers are important and that the effectiveness of strategic barriers depends on attributes of the market structure. Based on

  5. Faculty Perceptions about Barriers to Active Learning

    Science.gov (United States)

    Michael, Joel

    2007-01-01

    Faculty may perceive many barriers to active learning in their classrooms. Four groups of participants in a faculty development workshop were asked to list their perceived barriers to active learning. Many of the problems identified were present on more than one list. The barriers fall into three categories: student characteristics, issues…

  6. Barriers to Mammography among Inadequately Screened Women

    Science.gov (United States)

    Stoll, Carolyn R. T.; Roberts, Summer; Cheng, Meng-Ru; Crayton, Eloise V.; Jackson, Sherrill; Politi, Mary C.

    2015-01-01

    Mammography use has increased over the past 20 years, yet more than 30% of women remain inadequately screened. Structural barriers can deter individuals from screening, however, cognitive, emotional, and communication barriers may also prevent mammography use. This study sought to identify the impact of number and type of barriers on mammography…

  7. Market barriers to welfare product innovations

    NARCIS (Netherlands)

    Binnekamp, M.H.A.; Ingenbleek, P.T.M.

    2006-01-01

    New products that are based on higher animal welfare standards encounter several barriers on the road to market acceptance. The authors focus on the Dutch poultry sector and distinguish between retailer and consumer barriers. Retailer barriers include the powerful position of retailers, the price

  8. Article Including Environmental Barrier Coating System

    Science.gov (United States)

    Lee, Kang N. (Inventor)

    2015-01-01

    An enhanced environmental barrier coating for a silicon containing substrate. The enhanced barrier coating may include a bond coat doped with at least one of an alkali metal oxide and an alkali earth metal oxide. The enhanced barrier coating may include a composite mullite bond coat including BSAS and another distinct second phase oxide applied over said surface.

  9. Converse Theorems for Safety and Barrier Certificates

    OpenAIRE

    Ratschan, Stefan

    2017-01-01

    An important tool for proving safety of dynamical systems is the notion of a barrier certificate. In this paper we prove that every robustly safe ordinary differential equation has a barrier certificate. Moreover, we show a construction of such a barrier certificate based on a set of states that is reachable in finite time.

  10. The Variety of Fluid Dynamics.

    Science.gov (United States)

    Barnes, Francis; And Others

    1980-01-01

    Discusses three research topics which are concerned with eminently practical problems and deal at the same time with fundamental fluid dynamical problems. These research topics come from the general areas of chemical and biological engineering, geophysics, and pure mathematics. (HM)

  11. Fluid Mechanics Can Be Fun.

    Science.gov (United States)

    Blanks, Robert F.

    1979-01-01

    A humanistic approach to teaching fluid mechanics is described which minimizes lecturing, increases professor-student interaction, uses group and individual problem solving sessions, and allows for student response. (BB)

  12. Electrokinetic effects and fluid permeability

    International Nuclear Information System (INIS)

    Berryman, J.G.

    2003-01-01

    Fluid permeability of porous media depends mainly on connectivity of the pore space and two physical parameters: porosity and a pertinent length-scale parameter. Electrical imaging methods typically establish connectivity and directly measure electrical conductivity, which can then often be related to porosity by Archie's law. When electrical phase measurements are made in addition to the amplitude measurements, information about the pertinent length scale can then be obtained. Since fluid permeability controls the ability to flush unwanted fluid contaminants from the subsurface, inexpensive maps of permeability could improve planning strategies for remediation efforts. Detailed knowledge of fluid permeability is also important for oil field exploitation, where knowledge of permeability distribution in three dimensions is a common requirement for petroleum reservoir simulation and analysis, as well as for estimates on the economics of recovery

  13. Thermodynamic properties of cryogenic fluids

    CERN Document Server

    Leachman, Jacob; Lemmon, Eric; Penoncello, Steven

    2017-01-01

    This update to a classic reference text provides practising engineers and scientists with accurate thermophysical property data for cryogenic fluids. The equations for fifteen important cryogenic fluids are presented in a basic format, accompanied by pressure-enthalpy and temperature-entropy charts and tables of thermodynamic properties. It begins with a chapter introducing the thermodynamic relations and functional forms for equations of state, and goes on to describe the requirements for thermodynamic property formulations, needed for the complete definition of the thermodynamic properties of a fluid. The core of the book comprises extensive data tables and charts for the most commonly-encountered cryogenic fluids. This new edition sees significant updates to the data presented for air, argon, carbon monoxide, deuterium, ethane, helium, hydrogen, krypton, nitrogen and xenon. The book supports and complements NIST’s REFPROP - an interactive database and tool for the calculation of thermodynamic propertie...

  14. Mixed Fluid Conditions: Capillary Phenomena

    KAUST Repository

    Santamarina, Carlos; Sun, Zhonghao

    2017-01-01

    Mixed fluid phenomena in porous media have profound implications on soil-atmosphere interaction, energy geotechnology, environmental engineering and infrastructure design. Surface tension varies with pressure, temperature, solute concentration

  15. Heart failure - fluids and diuretics

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000112.htm Heart failure - fluids and diuretics To use the sharing features ... to Expect at Home When you have heart failure, your heart does not pump out enough blood. This causes ...

  16. Growth kinetics in multicomponent fluids

    International Nuclear Information System (INIS)

    Chen, S.; Lookman, T.

    1995-01-01

    The hydrodynamic effects on the late-stage kinetics in spinodal decomposition of multicomponent fluids are examined using a lattice Boltzmann scheme with stochastic fluctuations in the fluid and at the interface. In two dimensions, the three- and four-component immiscible fluid mixture (with a 1024 2 lattice) behaves like an off-critical binary fluid with an estimated domain growth of t 0.4 +/= 0.03 rather than t 1/3 as previously estimated, showing the significant influence of hydrodynamics. In three dimensions (with a 256 3 lattice), we estimate the growth as t 0.96 +/= 0.05 for both critical and off-critical quenches, in agreement with phenomenological theory

  17. Mesoscopic model for binary fluids

    Science.gov (United States)

    Echeverria, C.; Tucci, K.; Alvarez-Llamoza, O.; Orozco-Guillén, E. E.; Morales, M.; Cosenza, M. G.

    2017-10-01

    We propose a model for studying binary fluids based on the mesoscopic molecular simulation technique known as multiparticle collision, where the space and state variables are continuous, and time is discrete. We include a repulsion rule to simulate segregation processes that does not require calculation of the interaction forces between particles, so binary fluids can be described on a mesoscopic scale. The model is conceptually simple and computationally efficient; it maintains Galilean invariance and conserves the mass and energy in the system at the micro- and macro-scale, whereas momentum is conserved globally. For a wide range of temperatures and densities, the model yields results in good agreement with the known properties of binary fluids, such as the density profile, interface width, phase separation, and phase growth. We also apply the model to the study of binary fluids in crowded environments with consistent results.

  18. Inverted emulsion drilling fluid

    Energy Technology Data Exchange (ETDEWEB)

    Ana, I; Astanei, E; Mireanu, G; Orosz, M; Popescu, F; Vasile, I

    1979-07-28

    The subject of the invention is the method of obtaining inverted drilling fluid which is required during stripping of a productive bed and ending of a well where difficulties develop during drilling of the argillaceous rock. Example: in a reservoir with capacity 30 m/sup 3/, 10 m/sup 3/ of diesel fuel are added. A total of 1000 kg of emulsifier are added to the diesel fuel consisting of: 85 mass% of a mixture of sodium and potassium salts of fatty acids, residues of fatty acids or naphthene acids with high molecular weight taken in proportion of 10:90; 5 mass% of a mixture of polymers with hydrophilic-hydrophobic properties obtained by mixing 75 mass% of polyethylene oxide with molecular weight 10,000 and 25 mass% of propylene oxide with molecular weight 15,000, and 10 mass% of salt on alkaline earth metal (preferably calcium chloride). The mixture is mixed into complete dissolving. Then 1200 kg of filtering accelerator are added obtained from concentrated sulfuric acid serving for sulfur oxidation, asphalt substance with softening temperature 85-104/sup 0/C and fatty acids C/sub 10/-C/sub 20/ taken in a proportion of 23.70 and 7 mass% The mixture obtained in this manner is neutralized by adding calcium hydroxide and equal quantities of alumina and activated bentonite clay in a concentration of 1-10 mass%, more preferably 5 mass% in relation to the initial mixture. The obtained mass is mixed until complete dispersion, after which 200 kg of organophilic clay are added obtained from bentonite of the type montmorillonite of sodium by processing with derivate obtained from amine of the type of the quaternary base of ammonium salt, and agent of hydrophobization of the type of fatty alcohols, fatty acids, nonion surfactants of the block-polymer type. After complete dispersion of the organophilic clay, 100 kg of stabilizer of emulsion of the surfactant type was added with molecular weight of 250010,000, more preferably 5000, in concentration of 0.1-5.0 mass%, more

  19. Variable flexure-based fluid filter

    Science.gov (United States)

    Brown, Steve B.; Colston, Jr., Billy W.; Marshall, Graham; Wolcott, Duane

    2007-03-13

    An apparatus and method for filtering particles from a fluid comprises a fluid inlet, a fluid outlet, a variable size passage between the fluid inlet and the fluid outlet, and means for adjusting the size of the variable size passage for filtering the particles from the fluid. An inlet fluid flow stream is introduced to a fixture with a variable size passage. The size of the variable size passage is set so that the fluid passes through the variable size passage but the particles do not pass through the variable size passage.

  20. Diagnostics of pre-breakdown light emission in a helium coplanar barrier discharge: the presence of neutral bremsstrahlung

    Czech Academy of Sciences Publication Activity Database

    Navrátil, Z.; Morávek, T.; Ráhel’, J.; Čech, J.; Lalinský, Ondřej; Trunec, D.

    2017-01-01

    Roč. 26, č. 5 (2017), s. 1-10, č. článku 055025. ISSN 0963-0252 Institutional support: RVO:68081731 Keywords : dielectric barrier discharge * helium * single photon counting * bremsstrahlung * electric field * backward discharge * surface charge Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 3.302, year: 2016

  1. Cosmology with moving bimetric fluids

    Energy Technology Data Exchange (ETDEWEB)

    García-García, Carlos; Maroto, Antonio L.; Martín-Moruno, Prado, E-mail: cargar08@ucm.es, E-mail: maroto@ucm.es, E-mail: pradomm@ucm.es [Departamento de Física Teórica I, Universidad Complutense de Madrid, E-28040 Madrid (Spain)

    2016-12-01

    We study cosmological implications of bigravity and massive gravity solutions with non-simultaneously diagonal metrics by considering the generalized Gordon and Kerr-Schild ansatzes. The scenario that we obtain is equivalent to that of General Relativity with additional non-comoving perfect fluids. We show that the most general ghost-free bimetric theory generates three kinds of effective fluids whose equations of state are fixed by a function of the ansatz. Different choices of such function allow to reproduce the behaviour of different dark fluids. In particular, the Gordon ansatz is suitable for the description of various kinds of slowly-moving fluids, whereas the Kerr-Schild one is shown to describe a null dark energy component. The motion of those dark fluids with respect to the CMB is shown to generate, in turn, a relative motion of baryonic matter with respect to radition which contributes to the CMB anisotropies. CMB dipole observations are able to set stringent limits on the dark sector described by the effective bimetric fluid.

  2. Fluid element in SAP IV

    International Nuclear Information System (INIS)

    Yilmaz, C.; Akkas, N.

    1979-01-01

    In previous studies a fluid element is incorporated in the widely used general purpose finite element program SAPIV. This type of problem is of interest in the design of nuclear components involving geometric complexities and nonlinearities. The elasticity matrix of a general-purpose finite element program is modified in such a way that it becomes possible to idealize fluid as a structural finite element with zero shear modulus and a given bulk modules. Using the modified version of SAPIV, several solid-fluid interactions problems are solved. The numerical solutions are compared with the available analytical solutions. They are shown to be in reasonable aggrement. It is also shown that by solving an exterior-fluid interaction problem, the pressure wave propagation in the acoustic medium can be solved with the same approach. In this study, two of the problem not studied in the previous work will be presented. These problems are namely the effects of the link elements used at solid-fluid interfaces and of the concentrated loads on the response of the fluid medium. Truss elements are used as the link elements. After these investigations, it is decided that general purpose finite element programs with slight modifications can be used in the safety analysis of nuclear reactor plants. By this procedure it is possible to handle two-dimensional plane strain and tridimensional axisymmetric problems of this type. (orig.)

  3. Thermophysical properties of supercritical fluids and fluid mixtures

    International Nuclear Information System (INIS)

    Sengers, J.V.

    1991-07-01

    This research is concerned with the development of a quantitative scientific description of the thermodynamic and transport properties of supercritical and subcritical fluids and fluid mixtures. It is known that the thermophysical properties of fluids and fluid mixtures asymptotically close to the critical point satisfy scaling laws with universal critical exponents and universal scaling functions. However, the range of validity of these asymptotic scaling laws is quite small. As a consequence, the impact of the modern theory of critical phenomena on chemical engineering has been limited. On the other hand, an a priori estimate of the range of temperatures and densities, where critical fluctuations become significant, can be made on the basis of the so-called Ginzburg criterion. A recent analysis of this criterion suggests that this range is actually quite large and for a fluid like carbon dioxide can easily extend to 100 degrees or so above the critical temperature. Hence, the use of traditional engineering equations like cubic equations is not scientifically justified in a very wide range of temperatures and densities around the critical point. We have therefore embarked on a scientific approach to deal with the global effects of critical fluctuations on the thermophysical properties of fluids and fluid mixtures. For this purpose it is not sufficient to consider the asymptotic critical fluctuations but we need to deal also with the nonasymptotic critical fluctuations. The goal is to develop scientifically based questions that account for the crossover of the thermophysical properties from their asymptotic singular behavior in the near vicinity of the critical point to their regular behavior very far away from the critical point

  4. Insertable fluid flow passage bridgepiece and method

    Science.gov (United States)

    Jones, Daniel O.

    2000-01-01

    A fluid flow passage bridgepiece for insertion into an open-face fluid flow channel of a fluid flow plate is provided. The bridgepiece provides a sealed passage from a columnar fluid flow manifold to the flow channel, thereby preventing undesirable leakage into and out of the columnar fluid flow manifold. When deployed in the various fluid flow plates that are used in a Proton Exchange Membrane (PEM) fuel cell, bridgepieces of this invention prevent mixing of reactant gases, leakage of coolant or humidification water, and occlusion of the fluid flow channel by gasket material. The invention also provides a fluid flow plate assembly including an insertable bridgepiece, a fluid flow plate adapted for use with an insertable bridgepiece, and a method of manufacturing a fluid flow plate with an insertable fluid flow passage bridgepiece.

  5. Cryogenic Barrier Demonstration Project. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, L.A.; Yarmak, E.; Long, E.L.

    2000-03-01

    A long-term frozen soil barrier was implemented at the HRE (Homogeneous Reactor Experiment) Pond facility at the Oak Ridge National Laboratory in 1997. This was performed to verify the technical feasibility and costs of deploying a frozen barrier at a radiologically contaminated site. Work began in September 1996 and progressed through to December 1999. The frozen barrier has been operational since November 1997. Verification of the barrier integrity was performed independently by the EPA's SITE Program. This project showed frozen barriers offer a proven technology to retain below grade hazardous substances at relatively low costs with minimal effect on the environment.

  6. Language barriers and patient safety risks in hospital care. A mixed methods study.

    Science.gov (United States)

    van Rosse, Floor; de Bruijne, Martine; Suurmond, Jeanine; Essink-Bot, Marie-Louise; Wagner, Cordula

    2016-02-01

    A language barrier has been shown to be a threat for quality of hospital care. International studies highlighted a lack of adequate noticing, reporting, and bridging of a language barrier. However, studies on the link between language proficiency and patient safety are scarce, especially in Europe. The present study investigates patient safety risks due to language barriers during hospitalization, and the way language barriers are detected, reported, and bridged in Dutch hospital care. We combined quantitative and qualitative methods in a sample of 576 ethnic minority patients who were hospitalized on 30 wards within four urban hospitals. The nursing and medical records of 17 hospital admissions of patients with language barriers were qualitatively analyzed, and complemented by 12 in-depth interviews with care providers and patients and/or their relatives to identify patient safety risks during hospitalization. The medical records of all 576 patients were screened for language barrier reports. The results were compared to patients' self-reported Dutch language proficiency. The policies of wards regarding bridging language barriers were compared with the reported use of interpreters in the medical records. Situations in hospital care where a language barrier threatened patient safety included daily nursing tasks (i.e. medication administration, pain management, fluid balance management) and patient-physician interaction concerning diagnosis, risk communication and acute situations. In 30% of the patients that reported a low Dutch proficiency, no language barrier was documented in the patient record. Relatives of patients often functioned as interpreter for them and professional interpreters were hardly used. The present study showed a wide variety of risky situations in hospital care for patients with language barriers. These risks can be reduced by adequately bridging the language barrier, which, in the first place, demands adequate detecting and reporting of a

  7. Development of a Physiologically-Based Pharmacokinetic Model of the Rat Central Nervous System

    Directory of Open Access Journals (Sweden)

    Raj K. Singh Badhan

    2014-03-01

    Full Text Available Central nervous system (CNS drug disposition is dictated by a drug’s physicochemical properties and its ability to permeate physiological barriers. The blood–brain barrier (BBB, blood-cerebrospinal fluid barrier and centrally located drug transporter proteins influence drug disposition within the central nervous system. Attainment of adequate brain-to-plasma and cerebrospinal fluid-to-plasma partitioning is important in determining the efficacy of centrally acting therapeutics. We have developed a physiologically-based pharmacokinetic model of the rat CNS which incorporates brain interstitial fluid (ISF, choroidal epithelial and total cerebrospinal fluid (CSF compartments and accurately predicts CNS pharmacokinetics. The model yielded reasonable predictions of unbound brain-to-plasma partition ratio (Kpuu,brain and CSF:plasma ratio (CSF:Plasmau using a series of in vitro permeability and unbound fraction parameters. When using in vitro permeability data obtained from L-mdr1a cells to estimate rat in vivo permeability, the model successfully predicted, to within 4-fold, Kpuu,brain and CSF:Plasmau for 81.5% of compounds simulated. The model presented allows for simultaneous simulation and analysis of both brain biophase and CSF to accurately predict CNS pharmacokinetics from preclinical drug parameters routinely available during discovery and development pathways.

  8. Chemical barriers for controlling groundwater contamination

    International Nuclear Information System (INIS)

    Morrison, S.J.; Spangler, R.R.

    1993-01-01

    Chemical barriers are being explored as a low-cost means of controlling groundwater contamination. The barrier can intercept a contaminant plume and prevent migration by transferring contaminants from the groundwater to immobile solids. A chemical barrier can be emplaced in a landfill liner or in an aquifer cutoff wall or can be injected into a contaminant plume. Chemical barriers can be classified as either precipitation barriers or sorption barriers depending upon the dominant mode of contaminant extraction. In a precipitation barrier, contaminants are bound in the structures of newly formed phases; whereas, in a sorption barrier, contaminants attach to the surfaces of preexisting solids by adsorption or some other surface mechanism. Sorption of contaminants is pH dependent. A precipitation barrier can control the pH of the system, but alkaline groundwater may dominate the pH in a sorption barrier. A comparison is made of the characteristics of precipitation and sorption barriers. Experimental data on the extraction of uranium and molybdenum from simulated groundwater are used to demonstrate these concepts. 10 refs., 9 figs., 1 tab

  9. Using the cerebrospinal fluid to understand ingestive behavior.

    Science.gov (United States)

    Woods, Stephen C; May, Aaron A; Liu, Min; Tso, Patrick; Begg, Denovan P

    2017-09-01

    The cerebrospinal fluid (CSF) offers a window into the workings of the brain and blood-brain barrier (BBB). Molecules that enter into the central nervous system (CNS) by passive diffusion or receptor-mediated transport through the choroid plexus often appear in the CSF prior to acting within the brain. Other molecules enter the CNS by passing through the BBB into the brain's interstitial fluid prior to appearing in the CSF. This pattern is also often observed for molecules synthesized by neurons or glia within the CNS. The CSF is therefore an important conduit for the entry and clearance of molecules into/from the CNS and thereby constitutes an important window onto brain activity and barrier function. Assessing the CSF basally, under experimental conditions, or in the context of challenges or metabolic diseases can provide powerful insights about brain function. Here, we review important findings made by our labs, as influenced by the late Randall Sakai, by interrogating the CSF. Copyright © 2016. Published by Elsevier Inc.

  10. Turbine lubrication fluid varnish mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Farooq, Khalid [Pall Corporation, Port Washington, NY (United States)

    2010-04-15

    Varnish deposits on internal surfaces in turbine lube systems result in a number of adverse operational issues, especially the restriction and sticking of the moving parts of servo- or directional control valves, resulting in their malfunction. The lubrication fluid has limited solvency for the varnish-forming material, hence a typical turbine will have the majority of this material as deposits and a relatively small portion as suspension in the fluid phase, in quasi-equilibrium with the deposits. The lube system needs to be cleaned by removing the suspended varnish-forming material from the fluid phase, which allows the deposits to re-entrain into the fluid phase, until the majority of the transferable deposits are removed and the fluid carries no significant amount of the material to have any adverse effect. The methods used for the removal of varnish from turbine lube systems include chemical cleaning/flushing, electrostatic charge induced agglomeration/retention, and the adsorption of the varnish suspended in the oil on an adsorbent medium. The paper discusses an absorption-based removal method that utilizes a fibrous medium that has pronounced affinity for the removal and retention of the varnish-forming material from the fluid as well as the deposits from surfaces that are in quasi-equilibrium with the varnish precursors in the fluid. The filtration medium is a composite, made with cellulose bonded by specially formulated, temperature-cured resins. The absorptive medium exhibits high structural and chemical integrity and has been thoroughly tested on operating turbines, showing reduction in varnish levels from the critical range to below normal range in a relatively short time. The experience with the utilization of the absorptive medium in laboratory tests and in two operating turbines is presented. (orig.)

  11. Fluid Mechanics An Introduction to the Theory of Fluid Flows

    CERN Document Server

    Durst, Franz

    2008-01-01

    Advancements of fluid flow measuring techniques and of computational methods have led to new ways to treat laminar and turbulent flows. These methods are extensively used these days in research and engineering practise. This also requires new ways to teach the subject to students at higher educational institutions in an introductory manner. The book provides the knowledge to students in engineering and natural science needed to enter fluid mechanics applications in various fields. Analytical treatments are provided, based on the Navier-Stokes equations. Introductions are also given into numerical and experimental methods applied to flows. The main benefit the reader will derive from the book is a sound introduction into all aspects of fluid mechanics covering all relevant subfields.

  12. Fluid Behavior and Fluid-Solid Interactions in Nanoporous Media

    Science.gov (United States)

    Xu, H.

    2015-12-01

    Although shale oil/gas production in the US has increased exponentially, the low energy recovery is a daunting problem needed to be solved for its sustainability and continued growth, especially in light of the recent oil/gas price decline. This is apparently related to the small porosity (a few to a few hundred nm) and low permeability (10-16-10-20 m2) of tight shale formations. The fundamental question lies in the anomalous behavior of fluids in nanopores due to confinement effects, which, however, remains poorly understood. In this study, we combined experimental characterization and observations, particularly using small-angle neutron scattering (SANS), with pore-scale modeling using lattice Boltzmann method (LBM), to examine the fluid behavior and fluid-solid interactions in nanopores at reservoir conditions. Experimentally, we characterized the compositions and microstructures of a shale sample from Wolfcamp, Texas, using a variety of analytical techniques. Our analyses reveal that the shale sample is made of organic-matter (OM)-lean and OM-rich layers that exhibit different chemical and mineral compositions, and microstructural characteristics. Using the hydrostatic pressure system and gas-mixing setup we developed, in-situ SANS measurements were conducted at pressures up to 20 kpsi on shale samples imbibed with water or water-methane solutions. The obtained results indicate that capillary effect plays a significant role in fluid-nanopore interactions and the associated changes in nanopore structures vary with pore size and pressure. Computationally, we performed LBM modeling to simulate the flow behavior of methane in kerogen nanoporous structure. The correction factor, which is the ratio of apparent permeability to intrinsic permeability, was calculated. Our results show that the correction factor is always greater than one (non-continuum/non-Darcy effects) and increases with decreasing nanopore size, intrinsic permeability and pressure. Hence, the

  13. Schizophrenia: breaking down the barriers.

    Science.gov (United States)

    Haghighat, R

    1997-01-01

    This paper reviews the key issues presented during the Fourth International Conference on Schizophrenia, which was held in October 1996 in Vancouver, Canada. The main emphasis was placed on the problem of stigma, loneliness and work as well as on the necessity to further elucidate the physiopathology of schizophrenia. Some of the barriers discussed are unlikely to disappear from human societies in the short term with any possible cure for schizophrenia as they are part of any major long-term illness, of which there is a long and ever increasing list.

  14. Fission barriers of superheavy nuclei

    International Nuclear Information System (INIS)

    Burvenich, T.

    2001-01-01

    Full text: Self consistent microscopic mean-field models are powerful tools for the description of nuclear structure phenomena in the region of known elements, where they have reached a good quality. Especially the Skyrme-Hartree-Fock (SHF) method and the Relativistic Mean-Field (RMF) model will be considered in the discussion of the properties of these models. When it comes to extrapolation to the region of superheavy elements, though there is agreement concerning the global trends, these model exhibit significant differences in their predictions concerning fission barrier heights and structures. (Author)

  15. Pitch-catch only ultrasonic fluid densitometer

    Science.gov (United States)

    Greenwood, M.S.; Harris, R.V.

    1999-03-23

    The present invention is an ultrasonic fluid densitometer that uses a material wedge and pitch-catch only ultrasonic transducers for transmitting and receiving ultrasonic signals internally reflected within the material wedge. Density of a fluid is determined by immersing the wedge into the fluid and measuring reflection of ultrasound at the wedge-fluid interface. 6 figs.

  16. Mediated Intercultural Communication Barrier in No Drama Zone! Group

    OpenAIRE

    Lizal, Valentino

    2015-01-01

    This research study aimed to describe the mediated intercultural communication barriers in the No Drama Zone! group. This study is a qualitative descriptive type of research, with case study method. By doing in depth interview and observation, researcher found two barriers that generates other barriers in the group's mediated intercultural communication. The two big barriers were: language and physical barriers. Language barriers in this group generated two barriers, emotional barrier and pe...

  17. The role of confined collagen geometry in decreasing nucleation energy barriers to intrafibrillar mineralization.

    Science.gov (United States)

    Kim, Doyoon; Lee, Byeongdu; Thomopoulos, Stavros; Jun, Young-Shin

    2018-03-06

    Mineralization of collagen is critical for the mechanical functions of bones and teeth. Calcium phosphate nucleation in collagenous structures follows distinctly different patterns in highly confined gap regions (nanoscale confinement) than in less confined extrafibrillar spaces (microscale confinement). Although the mechanism(s) driving these differences are still largely unknown, differences in the free energy for nucleation may explain these two mineralization behaviors. Here, we report on experimentally obtained nucleation energy barriers to intra- and extrafibrillar mineralization, using in situ X-ray scattering observations and classical nucleation theory. Polyaspartic acid, an extrafibrillar nucleation inhibitor, increases interfacial energies between nuclei and mineralization fluids. In contrast, the confined gap spaces inside collagen fibrils lower the energy barrier by reducing the reactive surface area of nuclei, decreasing the surface energy penalty. The confined gap geometry, therefore, guides the two-dimensional morphology and structure of bioapatite and changes the nucleation pathway by reducing the total energy barrier.

  18. Undefined role of mucus as a barrier in ocular drug delivery.

    Science.gov (United States)

    Ruponen, Marika; Urtti, Arto

    2015-10-01

    Mucus layer covers the ocular surface, and soluble mucins are also present in the tear fluid. After topical ocular drug administration, the drugs and formulations may interact with mucus layer that may act as a barrier in ocular drug delivery. In this mini-review, we illustrate the mucin composition of the ocular surface and discuss the influence of mucus layer on ocular drug absorption. Based on the current knowledge the role of mucus barrier in drug delivery is still undefined. Furthermore, interactions with mucus may prolong the retention of drug formulations on the ocular surface. Mucus may decrease or increase ocular bioavailability depending on the magnitude of its role as barrier or retention site, respectively. Mechanistic studies are needed to clarify the role of mucin in ocular drug delivery. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Fluid observers and tilting cosmology

    International Nuclear Information System (INIS)

    Coley, A A; Hervik, S; Lim, W C

    2006-01-01

    We study perfect fluid cosmological models with a constant equation of state parameter γ in which there are two naturally defined timelike congruences, a geometrically defined geodesic congruence and a non-geodesic fluid congruence. We establish an appropriate set of boost formulae relating the physical variables, and consequently the observed quantities, in the two frames. We study expanding spatially homogeneous tilted perfect fluid models, with an emphasis on future evolution with extreme tilt. We show that for ultra-radiative equations of state (i.e. γ > 4/3), generically the tilt becomes extreme at late times and the fluid observers will reach infinite expansion within a finite proper time and experience a singularity similar to that of the big rip. In addition, we show that for sub-radiative equations of state (i.e. γ < 4/3), the tilt can become extreme at late times and give rise to an effective quintessential equation of state. To establish the connection with phantom cosmology and quintessence, we calculate the effective equation of state in the models under consideration and we determine the future asymptotic behaviour of the tilting models in the fluid frame variables using the boost formulae. We also discuss spatially inhomogeneous models and tilting spatially homogeneous models with a cosmological constant

  20. Anthropometric changes and fluid shifts

    Science.gov (United States)

    Thornton, W. E.; Hoffler, G. W.; Rummel, J. A.

    1974-01-01

    Several observations of body size, shape, posture, and configuration were made to document changes resulting from direct effects of weightlessness during the Skylab 4 mission. After the crewmen were placed in orbit, a number of anatomical and anthropometric changes occurred including a straightening of the thoracolumbar spine, a general decrease in truncal girth, and an increase in height. By the time of the earliest in-flight measurement on mission day 3, all crewmen had lost more than two liters of extravascular fluid from the calf and thigh. The puffy facies, the bird legs effect, the engorgement of upper body veins, and the reduced volume of lower body veins were all documented with photographs. Center-of-mass measurements confirmed a fluid shift cephalad. This shift remained throughout the mission until recovery, when a sharp reversal occurred; a major portion of the reversal was completed in a few hours. The anatomical changes are of considerable scientific interest and of import to the human factors design engineer, but the shifts of blood and extravascular fluid are of more consequence. It is hypothesized that the driving force for the fluid shift is the intrinsic and unopposed lower limb elasticity that forces venous blood and then other fluid cephalad.

  1. Subsurface barrier verification technologies, informal report

    International Nuclear Information System (INIS)

    Heiser, J.H.

    1994-06-01

    One of the more promising remediation options available to the DOE waste management community is subsurface barriers. Some of the uses of subsurface barriers include surrounding and/or containing buried waste, as secondary confinement of underground storage tanks, to direct or contain subsurface contaminant plumes and to restrict remediation methods, such as vacuum extraction, to a limited area. To be most effective the barriers should be continuous and depending on use, have few or no breaches. A breach may be formed through numerous pathways including: discontinuous grout application, from joints between panels and from cracking due to grout curing or wet-dry cycling. The ability to verify barrier integrity is valuable to the DOE, EPA, and commercial sector and will be required to gain full public acceptance of subsurface barriers as either primary or secondary confinement at waste sites. It is recognized that no suitable method exists for the verification of an emplaced barrier's integrity. The large size and deep placement of subsurface barriers makes detection of leaks challenging. This becomes magnified if the permissible leakage from the site is low. Detection of small cracks (fractions of an inch) at depths of 100 feet or more has not been possible using existing surface geophysical techniques. Compounding the problem of locating flaws in a barrier is the fact that no placement technology can guarantee the completeness or integrity of the emplaced barrier. This report summarizes several commonly used or promising technologies that have been or may be applied to in-situ barrier continuity verification

  2. Overcoming Barriers in Unhealthy Settings

    Directory of Open Access Journals (Sweden)

    Michael K. Lemke

    2016-03-01

    Full Text Available We investigated the phenomenon of sustained health-supportive behaviors among long-haul commercial truck drivers, who belong to an occupational segment with extreme health disparities. With a focus on setting-level factors, this study sought to discover ways in which individuals exhibit resiliency while immersed in endemically obesogenic environments, as well as understand setting-level barriers to engaging in health-supportive behaviors. Using a transcendental phenomenological research design, 12 long-haul truck drivers who met screening criteria were selected using purposeful maximum sampling. Seven broad themes were identified: access to health resources, barriers to health behaviors, recommended alternative settings, constituents of health behavior, motivation for health behaviors, attitude toward health behaviors, and trucking culture. We suggest applying ecological theories of health behavior and settings approaches to improve driver health. We also propose the Integrative and Dynamic Healthy Commercial Driving (IDHCD paradigm, grounded in complexity science, as a new theoretical framework for improving driver health outcomes.

  3. Barriers to medical error reporting

    Directory of Open Access Journals (Sweden)

    Jalal Poorolajal

    2015-01-01

    Full Text Available Background: This study was conducted to explore the prevalence of medical error underreporting and associated barriers. Methods: This cross-sectional study was performed from September to December 2012. Five hospitals, affiliated with Hamadan University of Medical Sciences, in Hamedan,Iran were investigated. A self-administered questionnaire was used for data collection. Participants consisted of physicians, nurses, midwives, residents, interns, and staffs of radiology and laboratory departments. Results: Overall, 50.26% of subjects had committed but not reported medical errors. The main reasons mentioned for underreporting were lack of effective medical error reporting system (60.0%, lack of proper reporting form (51.8%, lack of peer supporting a person who has committed an error (56.0%, and lack of personal attention to the importance of medical errors (62.9%. The rate of committing medical errors was higher in men (71.4%, age of 50-40 years (67.6%, less-experienced personnel (58.7%, educational level of MSc (87.5%, and staff of radiology department (88.9%. Conclusions: This study outlined the main barriers to reporting medical errors and associated factors that may be helpful for healthcare organizations in improving medical error reporting as an essential component for patient safety enhancement.

  4. Selective-placement burial of drilling fluids: 2. Effects on buffalograss and fourwing saltbrush

    International Nuclear Information System (INIS)

    McFarland, M.L.; Hartmann, S.; Ueckert, D.N.; Hons, F.M.

    1992-01-01

    Surface disposal of spent drilling fluids used in petroleum and natural gas exploration causes surface soil contamination that severely inhibits secondary plant succession and artificial revegetation efforts. Selective-placement burial was evaluated at two locations in western Texas for on-site disposal of drilling fluids in arid and semiarid regions. Establishment, yield, and chemical composition of fourwing saltbrush [Atriplex canescens (Pursh Nutt.)] and buffalograss [Buchloe dactyloides (Nutt.) Engelm.] transplants on undisturbed soils and on plots with spent drilling fluids and cuttings buried 30, 90 (with and without a 30-cm coarse limestone capillary barrier) and 150 cm were compared. Survival of both species was 97 to 100% 17 months after planting on plots with buried drilling wastes. Canopy cover and aboveground biomass of fourwing saltbrush were greater over buried drilling wastes than on untreated plots, whereas canopy cover and aboveground biomass of buffalograss were not affected by the treatments. Significant increases in Na, M, and Mg concentrations in buffalograss after 17 months on plots with drilling fluids buried 30 cm deep at one location indicated plant uptake of some drilling fluid constituents. Elevated Zn concentrations in fourwing saltbush indicated that a portion of the Zn in the drilling fluids was available for plant uptake, while no evidence of plant accumulation of Ba, Cr, Cu, or Ni from drilling fluids was detected

  5. Ultrasonic techniques for fluids characterization

    CERN Document Server

    Povey, Malcolm J W

    1997-01-01

    This book is a comprehensive and practical guide to the use of ultrasonic techniques for the characterization of fluids. Focusing on ultrasonic velocimetry, the author covers the basic topics and techniques necessaryfor successful ultrasound measurements on emulsions, dispersions, multiphase media, and viscoelastic/viscoplastic materials. Advanced techniques such as scattering, particle sizing, and automation are also presented. As a handbook for industrial and scientific use, Ultrasonic Techniques for Fluids Characterization is an indispensable guide to chemists and chemical engineers using ultrasound for research or process monitoring in the chemical, food processing, pharmaceutical, cosmetic, biotechnology,and fuels industries. Key Features * Appeals to anyone using ultrasound to study fluids * Provides the first detailed description of the ultrasound profiling technique for dispersions * Describes new techniques for measuring phase transitions and nucleation, such as water/ice and oil/fat * Presents the l...

  6. Spinodal decomposition in fluid mixtures

    International Nuclear Information System (INIS)

    Kawasaki, Kyozi; Koga, Tsuyoshi

    1993-01-01

    We study the late stage dynamics of spinodal decomposition in binary fluids by the computer simulation of the time-dependent Ginzburg-Landau equation. We obtain a temporary linear growth law of the characteristic length of domains in the late stage. This growth law has been observed in many real experiments of binary fluids and indicates that the domain growth proceeds by the flow caused by the surface tension of interfaces. We also find that the dynamical scaling law is satisfied in this hydrodynamic domain growth region. By comparing the scaling functions for fluids with that for the case without hydrodynamic effects, we find that the scaling functions for the two systems are different. (author)

  7. Fluid Mechanics and Homeland Security

    Science.gov (United States)

    Settles, Gary S.

    2006-01-01

    Homeland security involves many applications of fluid mechanics and offers many opportunities for research and development. This review explores a wide selection of fluids topics in counterterrorism and suggests future directions. Broad topics range from preparedness and deterrence of impending terrorist attacks to detection, response, and recovery. Specific topics include aircraft hardening, blast mitigation, sensors and sampling, explosive detection, microfluidics and labs-on-a-chip, chemical plume dispersal in urban settings, and building ventilation. Also discussed are vapor plumes and standoff detection, nonlethal weapons, airborne disease spread, personal protective equipment, and decontamination. Involvement in these applications requires fluid dynamicists to think across the traditional boundaries of the field and to work with related disciplines, especially chemistry, biology, aerosol science, and atmospheric science.

  8. Fluid-structure-coupling algorithm

    International Nuclear Information System (INIS)

    McMaster, W.H.; Gong, E.Y.; Landram, C.S.; Quinones, D.F.

    1980-01-01

    A fluid-structure-interaction algorithm has been developed and incorporated into the two dimensional code PELE-IC. This code combines an Eulerian incompressible fluid algorithm with a Lagrangian finite element shell algorithm and incorporates the treatment of complex free surfaces. The fluid structure, and coupling algorithms have been verified by the calculation of solved problems from the literature and from air and steam blowdown experiments. The code has been used to calculate loads and structural response from air blowdown and the oscillatory condensation of steam bubbles in water suppression pools typical of boiling water reactors. The techniques developed here have been extended to three dimensions and implemented in the computer code PELE-3D

  9. Rotational superradiance in fluid laboratories

    CERN Document Server

    Cardoso, Vitor; Richartz, Mauricio; Weinfurtner, Silke

    2016-01-01

    Rotational superradiance has been predicted theoretically decades ago, and is the chief responsible for a number of important effects and phenomenology in black hole physics. However, rotational superradiance has never been observed experimentally. Here, with the aim of probing superradiance in the lab, we investigate the behaviour of sound and surface waves in fluids resting in a circular basin at the center of which a rotating cylinder is placed. We show that with a suitable choice for the material of the cylinder, surface and sound waves are amplified. By confining the superradiant modes near the rotating cylinder, an instability sets in. Our findings are experimentally testable in existing fluid laboratories and hence offer experimental exploration and comparison of dynamical instabilities arising from rapidly rotating boundary layers in astrophysical as well as in fluid dynamical systems.

  10. Coulombic Fluids Bulk and Interfaces

    CERN Document Server

    Freyland, Werner

    2011-01-01

    Ionic liquids have attracted considerable interest in recent years. In this book the bulk and interfacial physico-chemical characteristics of various fluid systems dominated by Coulomb interactions are treated which includes molten salts, ionic liquids as well as metal-molten salt mixtures and expanded fluid metals. Of particular interest is the comparison of the different systems. Topics in the bulk phase concern the microscopic structure, the phase behaviour and critical phenomena, and the metal-nonmetal transition. Interfacial phenomena include wetting transitions, electrowetting, surface freezing, and the electrified ionic liquid/ electrode interface. With regard to the latter 2D and 3D electrochemical phase formation of metals and semi-conductors on the nanometer scale is described for a number of selected examples. The basic concepts and various experimental methods are introduced making the book suitable for both graduate students and researchers interested in Coulombic fluids.

  11. Edge Fracture in Complex Fluids.

    Science.gov (United States)

    Hemingway, Ewan J; Kusumaatmaja, Halim; Fielding, Suzanne M

    2017-07-14

    We study theoretically the edge fracture instability in sheared complex fluids, by means of linear stability analysis and direct nonlinear simulations. We derive an exact analytical expression for the onset of edge fracture in terms of the shear-rate derivative of the fluid's second normal stress difference, the shear-rate derivative of the shear stress, the jump in shear stress across the interface between the fluid and the outside medium (usually air), the surface tension of that interface, and the rheometer gap size. We provide a full mechanistic understanding of the edge fracture instability, carefully validated against our simulations. These findings, which are robust with respect to choice of rheological constitutive model, also suggest a possible route to mitigating edge fracture, potentially allowing experimentalists to achieve and accurately measure flows stronger than hitherto possible.

  12. Estimating Energy Consumption of Mobile Fluid Power in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Lynch, Lauren [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zigler, Bradley T. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    This report estimates the market size and energy consumption of mobile off-road applications utilizing hydraulic fluid power, and summarizes technology gaps and implementation barriers. Mobile fluid power is the use of hydraulic fluids under pressure to transmit power in mobile equipment applications. The mobile off-road fluid power sector includes various uses of hydraulic fluid power equipment with fundamentally diverse end-use application and operational requirements, such as a skid steer loader, a wheel loader or an agriculture tractor. The agriculture and construction segments dominate the mobile off-road fluid power market in component unit sales volume. An estimated range of energy consumed by the mobile off-road fluid power sector is 0.36 - 1.8 quads per year, which was 1.3 percent - 6.5 percent of the total energy consumed in 2016 by the transportation sector. Opportunities for efficiency improvements within the fluid power system result from needs to level and reduce the peak system load requirements and develop new technologies to reduce fluid power system level losses, both of which may be facilitated by characterizing duty cycles to define standardized performance test methods. There are currently no commonly accepted standardized test methods for evaluating equipment level efficiency over a duty cycle. The off-road transportation sector currently meets criteria emissions requirements, and there are no efficiency regulations requiring original equipment manufacturers (OEM) to invest in new architecture development to improve the fuel economy of mobile off-road fluid power systems. In addition, the end-user efficiency interests are outweighed by low equipment purchase or lease price concerns, required payback periods, and reliability and durability requirements of new architecture. Current economics, low market volumes with high product diversity, and regulation compliance challenge OEM investment in commercialization of new architecture development.

  13. Magnetic Materials: Novel Monitors of Long-Term Evolution of Engineered Barrier Systems

    Directory of Open Access Journals (Sweden)

    Simon L. Harley

    2016-12-01

    Full Text Available Most safety cases for the deep geological disposal of radioactive waste are reliant on the swelling of bentonite in the engineered barrier system as it saturates with groundwater. Assurance of safety therefore requires effective monitoring of bentonite saturation. The time- and fluid-dependent corrosion of synthetic magnets embedded in bentonite is demonstrated here to provide a novel and passive means of monitoring saturation. Experiments have been conducted at 70 °C in which neo magnets, AlNiCo magnets, and ferrite magnets have been reacted with saline (NaCl, KCl, CaCl2 solutions and alkaline fluids (NaOH, KOH, Ca(OH2 solutions; pH = 12 in the presence of bentonite. Nd-Fe-B magnets undergo extensive corrosion that results in a dramatic change from ferromagnetic to superparamagnetic behaviour concomitant with bentonite saturation. AlNiCo magnets in saline solutions show corrosion but only limited decreases in their magnetic intensities, and ferrite magnets are essentially unreactive on the experimental timescales, retaining their initial magnetic properties. For all magnets the impact of their corrosion on bentonite swelling is negligible; alteration of bentonite is essentially governed by the applied fluid composition. In principle, synthetic magnet arrays can, with further development, be designed and embedded in bentonite to monitor its fluid saturation without compromising the integrity of the engineered barrier system itself.

  14. Resolving the mystery of transport within internal transport barriers

    Energy Technology Data Exchange (ETDEWEB)

    Staebler, G. M.; Belli, E. A.; Candy, J.; Waltz, R. E.; Greenfield, C. M.; Lao, L. L.; Smith, S. P. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Kinsey, J. E. [CompX, P.O. Box 2672, Del Mar, California 92014-5672 (United States); Grierson, B. A. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543-0451 (United States); Chrystal, C. [University of California-San Diego, 9500 Gilman Dr., La Jolla, California 92093-0417 (United States)

    2014-05-15

    The Trapped Gyro-Landau Fluid (TGLF) quasi-linear model [G. M. Staebler, et al., Phys. Plasmas 12, 102508 (2005)], which is calibrated to nonlinear gyrokinetic turbulence simulations, is now able to predict the electron density, electron and ion temperatures, and ion toroidal rotation simultaneously for internal transport barrier (ITB) discharges. This is a strong validation of gyrokinetic theory of ITBs, requiring multiple instabilities responsible for transport in different channels at different scales. The mystery of transport inside the ITB is that momentum and particle transport is far above the predicted neoclassical levels in apparent contradiction with the expectation from the theory of suppression of turbulence by E×B velocity shear. The success of TGLF in predicting ITB transport is due to the inclusion of ion gyro-radius scale modes that become dominant at high E×B velocity shear and to improvements to TGLF that allow momentum transport from gyrokinetic turbulence to be faithfully modeled.

  15. Self-consistent computation of transport barrier formation by fluid drift turbulence in tokamak geometry

    International Nuclear Information System (INIS)

    Scott, B.; Jenko, F.; Peeters, A.; Teo, A.C-Y.

    2001-01-01

    (1) Computations of turbulence from the electromagnetic gyrofluid model are performed in a flux surface geometry representing the actual MHD equilibrium of the ASDEX Upgrade edge flux surfaces. The transition to ideal ballooning seen in simple geometries as the plasma beta rises is suppressed, leaving the transport at quantitatively realistic levels. Computations for core parameters at half-radius geometry show significant contribution due to the finite beta electron dynamics, possibly removing the standard ITG threshold. (2) Strong inward vorticity transport in edge turbulence, resulting from ion diamagnetic flows, may lead to a build up of mean ExB vorticity fast enough to cause an H-mode transition. (3) Friction of mean ion flows against neutrals involves both toroidal and poloidal flow components, leading to a finite radial current due to a given ExB profile even with zero poloidal rotation. (author)

  16. Fluid-solid contact vessel having fluid distributors therein

    Science.gov (United States)

    Jones, Jr., John B.

    1980-09-09

    Rectangularly-shaped fluid distributors for large diameter, vertical vessels include reinforcers for high heat operation, vertical sides with gas distributing orifices and overhanging, sloped roofs. Devices are provided for cleaning the orifices from a buildup of solid deposits resulting from the reactions in the vessel.

  17. Nonlinear rheology of complex fluid-fluid interfaces

    NARCIS (Netherlands)

    Sagis, L.M.C.; Fischer, P.

    2014-01-01

    Fluid–fluid interfaces stabilized by proteins, protein aggregates, polymers, or colloidal particles, tend to have a complex microstructure. Their response to an applied deformation is often highly nonlinear, even at small deformation (rates). The nonlinearity of the response is a result of changes

  18. Blood epididymal barrier to [3H]-inulin in intact and vasectomized hamsters

    International Nuclear Information System (INIS)

    Turner, T.T.; D'Addario, D.A.; Howards, S.S.

    1981-01-01

    The net transport of [ 3 H]-inulin into the fluids of the hamster seminiferous and caput, corpus, and cauda epididymal tubules was examined in both intact animals and those vasectomized 10 months previously. Mean isotope concentrations in reproductive tract tubule fluids did not exceeded 10 per cent of blood plasma isotope concentrations during the experiment. There were no significant differences in net transport of [ 3 H]-inulin into any of the tubule fluids sampled. Ten months after vasectomy, the seminiferous tubule, and all regions of the epididymal tubule retain the capacity to exclude [ 3 H]-insulin. Thus in the hamster 10 months after vasectomy, the blood testis and blood epididymal barriers to inulin are intact

  19. CT findings of a unicameral calcaneal bone cyst containing a fluid-fluid level.

    Science.gov (United States)

    Gallagher, Thomas A; Lim-Dunham, Jennifer E; Vade, Aruna

    2007-03-01

    Calcaneal unicameral bone cysts often contain fluid, but rarely contain fluid-fluid levels. We present a case focusing on the CT findings of a large calcaneal bone cyst with a fluid-fluid level and a review of the literature.

  20. Relativistic fluid theories - Self organization

    International Nuclear Information System (INIS)

    Mahajan, S.M.; Hazeltine, R.D.; Yoshida, Z.

    2003-01-01

    Developments in two distinct but related subjects are reviewed: 1) Formulation and investigation of closed fluid theories which transcend the limitations of standard magnetohydrodynamics (MHD), in particular, theories which are valid in the long mean free path limit and in which pressure anisotropy, heat flow, and arbitrarily strong sheared flows are treated consistently, and 2) Exploitation of the two-fluid theories to derive new plasma configurations in which the flow-field is a co-determinant of the overall dynamics; some of these states belong to the category of self-organized relaxed states. Physical processes which may provide a route to self-organization and complexity are also explored. (author)

  1. Microbial Metabolism in Serpentinite Fluids

    Science.gov (United States)

    Crespo-Medina, M.; Brazelton, W. J.; Twing, K. I.; Kubo, M.; Hoehler, T. M.; Schrenk, M. O.

    2013-12-01

    Serpentinization is the process in which ultramafic rocks, characteristic of the upper mantle, react with water liberating mantle carbon and reducing power to potenially support chemosynthetic microbial communities. These communities may be important mediators of carbon and energy exchange between the deep Earth and the surface biosphere. Our work focuses on the Coast Range Ophiolite Microbial Observatory (CROMO) in Northern California where subsurface fluids are accessible through a series of wells. Preliminary analyses indicate that the highly basic fluids (pH 9-12) have low microbial diversity, but there is limited knowledge about the metabolic capabilities of these communties. Metagenomic data from similar serpentine environments [1] have identified Betaproteobacteria belonging to the order Burkholderiales and Gram-positive bacteria from the order Clostridiales as key components of the serpentine microbiome. In an effort to better characterize the microbial community, metabolism, and geochemistry at CROMO, fluids from two representative wells (N08B and CSWold) were sampled during recent field campaigns. Geochemical characterization of the fluids includes measurements of dissolved gases (H2, CO, CH4), dissolved inorganic and organic carbon, volatile fatty acids, and nutrients. The wells selected can be differentiated in that N08B had higher pH (10-11), lower dissolved oxygen, and cell counts ranging from 105-106 cells mL-1 of fluid, with an abundance of the betaproteobacterium Hydrogenophaga. In contrast, fluids from CSWold have slightly lower pH (9-9.5), DO, and conductivity, as well as higher TDN and TDP. CSWold fluid is also characterized for having lower cell counts (~103 cells mL-1) and an abundance of Dethiobacter, a taxon within the phylum Clostridiales. Microcosm experiments were conducted with the purpose of monitoring carbon fixation, methanotrophy and metabolism of small organic compounds, such as acetate and formate, while tracing changes in fluid

  2. Capillary waves of compressible fluids

    International Nuclear Information System (INIS)

    Falk, Kerstin; Mecke, Klaus

    2011-01-01

    The interplay of thermal noise and molecular forces is responsible for surprising features of liquids on sub-micrometer lengths-in particular at interfaces. Not only does the surface tension depend on the size of an applied distortion and nanoscopic thin liquid films dewet faster than would be expected from hydrodynamics, but also the dispersion relation of capillary waves differ at the nanoscale from the familiar macroscopic behavior. Starting with the stochastic Navier-Stokes equation we study the coupling of capillary waves to acoustic surface waves which is possible in compressible fluids. We find propagating 'acoustic-capillary waves' at nanometer wavelengths where in incompressible fluids capillary waves are overdamped.

  3. Analysis of giant electrorheological fluids.

    Science.gov (United States)

    Seo, Youngwook P; Seo, Yongsok

    2013-07-15

    The yield stress dependence on electric field strength for giant electrorheological (GER) fluids over the full range of electric fields was examined using Seo's scaling function which incorporated both the polarization and the conductivity models. If a proper scaling was applied to the yield stress data to collapse them onto a single curve, the Seo's scaling function could correctly fit the yield stress behavior of GER suspensions, even at very high electric field strengths. The model predictions were also compared with recently proposed Choi et al.'s model to allow a consideration of the universal framework of ER fluids. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Fluid behavior in microgravity environment

    Science.gov (United States)

    Hung, R. J.; Lee, C. C.; Tsao, Y. D.

    1990-01-01

    The instability of liquid and gas interface can be induced by the presence of longitudinal and lateral accelerations, vehicle vibration, and rotational fields of spacecraft in a microgravity environment. In a spacecraft design, the requirements of settled propellant are different for tank pressurization, engine restart, venting, or propellent transfer. In this paper, the dynamical behavior of liquid propellant, fluid reorientation, and propellent resettling have been carried out through the execution of a CRAY X-MP super computer to simulate fluid management in a microgravity environment. Characteristics of slosh waves excited by the restoring force field of gravity jitters have also been investigated.

  5. Interfacial instabilities in vibrated fluids

    Science.gov (United States)

    Porter, Jeff; Laverón-Simavilla, Ana; Tinao Perez-Miravete, Ignacio; Fernandez Fraile, Jose Javier

    2016-07-01

    Vibrations induce a range of different interfacial phenomena in fluid systems depending on the frequency and orientation of the forcing. With gravity, (large) interfaces are approximately flat and there is a qualitative difference between vertical and horizontal forcing. Sufficient vertical forcing produces subharmonic standing waves (Faraday waves) that extend over the whole interface. Horizontal forcing can excite both localized and extended interfacial phenomena. The vibrating solid boundaries act as wavemakers to excite traveling waves (or sloshing modes at low frequencies) but they also drive evanescent bulk modes whose oscillatory pressure gradient can parametrically excite subharmonic surface waves like cross-waves. Depending on the magnitude of the damping and the aspect ratio of the container, these locally generated surfaces waves may interact in the interior resulting in temporal modulation and other complex dynamics. In the case where the interface separates two fluids of different density in, for example, a rectangular container, the mass transfer due to vertical motion near the endwalls requires a counterflow in the interior region that can lead to a Kelvin-Helmholtz type instability and a ``frozen wave" pattern. In microgravity, the dominance of surface forces favors non-flat equilibrium configurations and the distinction between vertical and horizontal applied forcing can be lost. Hysteresis and multiplicity of solutions are more common, especially in non-wetting systems where disconnected (partial) volumes of fluid can be established. Furthermore, the vibrational field contributes a dynamic pressure term that competes with surface tension to select the (time averaged) shape of the surface. These new (quasi-static) surface configurations, known as vibroequilibria, can differ substantially from the hydrostatic state. There is a tendency for the interface to orient perpendicular to the vibrational axis and, in some cases, a bulge or cavity is induced

  6. Fluid mechanics problems and solutions

    CERN Document Server

    Spurk, Joseph H

    1997-01-01

    his collection of over 200 detailed worked exercises adds to and complements the textbook Fluid Mechanics by the same author, and illustrates the teaching material through examples. In the exercises the fundamental concepts of Fluid Mechanics are applied to obtaining the solution of diverse concrete problems, and in doing this the student's skill in the mathematical modeling of practical problems is developed. In addition, 30 challenging questions without detailed solutions have been included, and while lecturers will find these questions suitable for examinations and tests, the student himself can use them to check his understanding of the subject.

  7. Piezooptic behavior of certain fluids

    International Nuclear Information System (INIS)

    Weiss, J.D.

    1985-01-01

    In this paper we present an analysis of pressure--volume data for certain optical fluids, which characterizes them by two parameters: their bulk moduli and the pressure derivative of their bulk moduli, both evaluated at zero pressure. We then relate their refractive-index changes to density and pressure using this analysis and the Lorentz-Lorenz equation with a density-dependent polarizability. An example of the use of such fluids in a fiber-optic pressure gauge being developed at Sandia is also discussed

  8. Richards Barrier LA Reference Design Feature Evaluation

    International Nuclear Information System (INIS)

    N.E. Kramer

    1999-01-01

    The Richards Barrier is one of the design features of the repository to be considered for the License Application (LA), Richards was a soil scientist who first described the diversion of moisture between two materials with different hydrologic properties. In this report, a Richards Barrier is a special type of backfill with a fine-grained material (such as sand) overlaying a coarse-grained material (such as gravel). Water that enters an emplacement drift will first encounter the fine-grained material and be transported around the coarse-grained material covering the waste package, thus protecting the waste package from contact with most of the groundwater. The objective of this report is to discuss the benefits and liabilities to the repository by the inclusion of a Richards Barrier type backfill in emplacement drifts. The Richards Barrier can act as a barrier to water flow, can reduce the waste package material dissolution rate, limit mobilization of the radionuclides, and can provide structural protection for the waste package. The scope of this report is to: (1) Analyze the behavior of barrier materials following the intrusion of groundwater for influxes of 1 to 300 mm per year. The report will demonstrate diversion of groundwater intrusions into the barrier over an extended time period when seismic activity and consolidation may cause the potential for liquefaction and settlement of the Richards Barrier. (2) Review the thermal effects of the Richards Barrier on material behavior. (3) Analyze the effect of rockfall on the performance of the Richards Barrier and the depth of the barrier required to protect waste packages under the barrier. (4) Review radiological and heating conditions on placement of multiple layers of the barrier. Subsurface Nuclear Safety personnel will perform calculations to determine the radiation reduction-time relationship and shielding capacity of the barrier. (5) Evaluate the effects of ventilation on cooling of emplacement drifts and

  9. Measuring solvent barrier properties of paper

    International Nuclear Information System (INIS)

    Bollström, Roger; Saarinen, Jarkko J; Toivakka, Martti; Räty, Jukka

    2012-01-01

    New methods for measuring barrier properties against solvents, acids and bases on dispersion coated paper were developed and investigated. Usability, reliability and repeatability were compared both between the new methods and with the standardized method for measuring barrier properties against water vapor. Barrier properties could be measured with all methods and the results obtained by the different methods were in correlation with each other. A qualitative method based on a trace color provided an indicative result, whereas further developed methods also took into account the durability. The effective barrier lifetime could be measured by measuring the conductivity through the substrate as a function of time, or by utilizing a glass prism where the change in refractive index caused by penetrated liquid was monitored, also as a function of time. Barrier properties against water and humidity were also measured and were found not to be predictors for barrier properties against either solvents, or acids or bases, which supports the need to develop new methods

  10. Barrier experiment: Shock initiation under complex loading

    Energy Technology Data Exchange (ETDEWEB)

    Menikoff, Ralph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-01-12

    The barrier experiments are a variant of the gap test; a detonation wave in a donor HE impacts a barrier and drives a shock wave into an acceptor HE. The question we ask is: What is the trade-off between the barrier material and threshold barrier thickness to prevent the acceptor from detonating. This can be viewed from the perspective of shock initiation of the acceptor subject to a complex pressure drive condition. Here we consider key factors which affect whether or not the acceptor undergoes a shock-to-detonation transition. These include the following: shock impedance matches for the donor detonation wave into the barrier and then the barrier shock into the acceptor, the pressure gradient behind the donor detonation wave, and the curvature of detonation front in the donor. Numerical simulations are used to illustrate how these factors affect the reaction in the acceptor.

  11. Breaking the Barriers to the Circular Economy

    OpenAIRE

    Kirchherr, J.W.; Hekkert, M.P.; Bour, Ruben; Huijbrechtse-Truijens, Anne; Kostense-Smit, Erica; Muller, Jennifer

    2017-01-01

    The Copernicus Institute of Sustainable Development, Utrecht University, the Netherlands and Deloitte have jointly carried out research on barriers to the Circular Economy (CE) in the European Union. For this research, a survey with 153 businesses, 55 government officials and expert interviews with forty-seven thought leaders on the circular economy from businesses, governments, academia and NGOs have been carried out. Two types of barriers emerged as main barriers Firstly, there are the cult...

  12. Immiscibility of Fluid Phases at Magmatic-hydrothermal Transition: Formation of Various PGE-sulfide Mineralization for Layered Basic Intrusions

    Science.gov (United States)

    Zhitova, L.; Borisenko, A.; Morgunov, K.; Zhukova, I.

    2007-12-01

    Fluid inclusions in quartz of the Merensky Reef (Bushveld Complex, South Africa) and the Chineisky Pluton (Transbaikal Region, Russia) were studied using cryometry, microthermometry, Raman-spectroscopy, LA ICP- MS, scanning electronic microscopy, gas-chromatography and isotopic methods. This allowed us to document some examples of fluid phase separation resulting in formation of different types of PGE-sulfide mineralization for layered basic intrusions. The results obtained show at least three generations of fluid separated from boiling residual alumosilicate intercumulus liquid of the Merensky Reef. The earliest fluid phase composed of homogenous high-dense methane and nitrogen gas mixture was identified in primary gas and co-existing anomalous fluid inclusions from symplectitic quartz. The next generation, heterophase fluid, composed of brines containing a free low-dense (mostly of carbon dioxide) gas phase, was observed in primary multiphase and coexisting gas-rich inclusions of miarolitic quartz crystals. The latest generation was also a heterophase fluid (low salinity water-salt solution and free low-dense methane gas phase) found in primary water-salt and syngenetic gas inclusions from peripheral zones of miarolitic quartz crystals. For the Chineisky Pluton reduced endocontact magmatogene fluids changed to oxidized low salinity hydrothermal fluids in exocontact zone. This resulted in formation of sulfide-PGE enrichment marginal zones of intrusion. The results obtained give us a possibility to suggest that: 1) Fluid phase separation is a typical feature of magmatogene fluids for layered basic intrusions. 2) Reduced fluids can extract and transport substantial PGE and sulfide concentrations. 3) Oxidation of reduced fluids is one of the most important geochemical barriers causing abundant PGE minerals and sulfides precipitation. This in turn results in both formation of PGE reefs or enriched contact zones of layered basic intrusions. This work was supported by

  13. Barriers for realisation of energy savings in buildings; Barrierer for realisering af energibesparelser i bygninger

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, O.M.

    2004-07-01

    Many years' efforts within the energy labelling area have shown large saving potentials in heating and use of electricity in buildings. At the same time it has been proved that these saving potentials, even when economically advantageous, only are cashed to a limited extent. The reason to this is ascribed to barriers that meet the individual building owner who wants to start saving energy. Most barriers are known and a lot of these have been sought overcome for some time. The questions are how many barriers still exist, have new barriers arisen and the character of these barriers. On this background the objective of this survey has been to concretize and study the barriers, which are blocking reasonable energy savings. Focus has especially been on barriers for realisation of heating savings, but through a general evaluation of energy savings of barriers other forms of energy saving methods have been taken into consideration. Special interest has been directed towards houses, typically one family houses, which are affected by the Energy Labelling Scheme. The concept barriers include all kinds of barriers, also barriers that not are acknowledged as barriers by the individual house owner, or that on closer inspection turn out to be something else than actual barriers. This note suggests an alternative inertia model, in order to create an idea of the inertness characteristic of the many house owners who understand the message but fail to act on it. (BA)

  14. High Performance Multi Barrier Thermionic Devices

    National Research Council Canada - National Science Library

    Vashaee, Daryoosh; Shakouri, Ali

    2003-01-01

    Thermoelectric transport perpendicular to layers in multiple barrier superlattice structures is investigated theoretically in two limiting cases of no lateral momentum scattering and strong scattering...

  15. Water and contaminant movement: migration barriers

    International Nuclear Information System (INIS)

    Lane, L.J.; Nyhan, J.W.

    1984-11-01

    Migration barriers are used in shallow land burial facilities to slow or stop the movement of water and contaminants and are discussed here as a single component embedded in a complex environmental system. Analytical solutions to solute transport equations are used to approximate the behavior of migration barriers and to derive design criteria for control of subsurface water and contaminant migration. Various types of migration barriers are compared and design recommendations are made for shallow land burial trench caps and liners. Needed improvements and suggested field experiments for future designs of migration barriers are then discussed relative to the management of low-level radioactive wastes

  16. Barriers Approach to Innovation in Academic Libraries

    Directory of Open Access Journals (Sweden)

    Fu-Hsuan Chuang

    2016-11-01

    Full Text Available Innovation in academic libraries is not a brand new issue. Academic libraries can benefit from successful innovation, since innovation is a key contributor to gaining and sustaining competitive advantage for survival. Building on two case studies, 28 participants from leadership teams to practitioners are involved, the qualitative findings identified the specific two types of barriers that academic libraries face by applying a barriers approach to innovation, that’s, environmental and organizational barriers. Especially, seven dimensions of two types of barriers to innovation are found.

  17. Barriers to healthcare for transgender individuals.

    Science.gov (United States)

    Safer, Joshua D; Coleman, Eli; Feldman, Jamie; Garofalo, Robert; Hembree, Wylie; Radix, Asa; Sevelius, Jae

    2016-04-01

    Transgender persons suffer significant health disparities and may require medical intervention as part of their care. The purpose of this manuscript is to briefly review the literature characterizing barriers to healthcare for transgender individuals and to propose research priorities to understand mechanisms of those barriers and interventions to overcome them. Current research emphasizes sexual minorities' self-report of barriers, rather than using direct methods. The biggest barrier to healthcare reported by transgender individuals is lack of access because of lack of providers who are sufficiently knowledgeable on the topic. Other barriers include: financial barriers, discrimination, lack of cultural competence by providers, health systems barriers, and socioeconomic barriers. National research priorities should include rigorous determination of the capacity of the US healthcare system to provide adequate care for transgender individuals. Studies should determine knowledge and biases of the medical workforce across the spectrum of medical training with regard to transgender medical care; adequacy of sufficient providers for the care required, larger social structural barriers, and status of a framework to pay for appropriate care. As well, studies should propose and validate potential solutions to address identified gaps.

  18. Antimicrobial Peptides, Infections and the Skin Barrier

    DEFF Research Database (Denmark)

    Clausen, Maja Lisa; Agner, Tove

    2016-01-01

    The skin serves as a strong barrier protecting us from invading pathogens and harmful organisms. An important part of this barrier comes from antimicrobial peptides (AMPs), which are small peptides expressed abundantly in the skin. AMPs are produced in the deeper layers of the epidermis and trans......The skin serves as a strong barrier protecting us from invading pathogens and harmful organisms. An important part of this barrier comes from antimicrobial peptides (AMPs), which are small peptides expressed abundantly in the skin. AMPs are produced in the deeper layers of the epidermis...

  19. Radon barrier: Method of testing airtightness

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn; Buch-Hansen, Thomas Cornelius

    2017-01-01

    The test method NBI 167/02 Radon membrane: Test of airtightness can be used for determining the airtightness of a radon barrier as a system solution. The test determines the air infiltration through the radon barrier for a number of levels of air pressure differences. The airflow through versus...... of the barrier with the low air pressure, through a well-defined opening, as a modification of the test method in general. Results, obtained using the improved test method, are shown for a number of radon barriers tested....

  20. Religious culture as a barrier?

    DEFF Research Database (Denmark)

    Agergaard, Sine

    2016-01-01

    Political interventions, media coverage and research often refer to the underrepresentation of ethnic minorities, particularly girls and women, participating in physical activity and organised sports. In both public and academic debates, reference is made to the religious culture as a particular...... barrier to participation in sports among Muslim girls and women. This article aims to provide a counter-narrative by focusing on young Muslim girls who simultaneously practice their religion and sports. The main research question was: How do young Danish Muslim girls align participation in sports...... religion as hegemonic, embodied and dynamic cultural phenomena, the analysis points to the diversity through which Muslim girls and women participate and engage in sports. Finally, the article discusses the extent to which counter-narratives may contribute to changing perspectives on so-called hard...

  1. Modeling of Thermal Barrier Coatings

    Science.gov (United States)

    Ferguson, B. L.; Petrus, G. J.; Krauss, T. M.

    1992-01-01

    The project examined the effectiveness of studying the creep behavior of thermal barrier coating system through the use of a general purpose, large strain finite element program, NIKE2D. Constitutive models implemented in this code were applied to simulate thermal-elastic and creep behavior. Four separate ceramic-bond coat interface geometries were examined in combination with a variety of constitutive models and material properties. The reason for focusing attention on the ceramic-bond coat interface is that prior studies have shown that cracking occurs in the ceramic near interface features which act as stress concentration points. The model conditions examined include: (1) two bond coat coefficient of thermal expansion curves; (2) the creep coefficient and creep exponent of the bond coat for steady state creep; (3) the interface geometry; and (4) the material model employed to represent the bond coat, ceramic, and superalloy base.

  2. The Challenge of Fluid Flow

    Indian Academy of Sciences (India)

    makes fluid flows so rich, so complex - some times so highly ordered ..... to other frequencies, which again can grow in amplitude before they also eventually decay again. On the ..... think of it as a slice of flow issuing towards this sheet of paper.

  3. Free Falling in Stratified Fluids

    Science.gov (United States)

    Lam, Try; Vincent, Lionel; Kanso, Eva

    2017-11-01

    Leaves falling in air and discs falling in water are examples of unsteady descents due to complex interaction between gravitational and aerodynamic forces. Understanding these descent modes is relevant to many branches of engineering and science such as estimating the behavior of re-entry space vehicles to studying biomechanics of seed dispersion. For regularly shaped objects falling in homogenous fluids, the motion is relatively well understood. However, less is known about how density stratification of the fluid medium affects the falling behavior. Here, we experimentally investigate the descent of discs in both pure water and in stable linearly stratified fluids for Froude numbers Fr 1 and Reynolds numbers Re between 1000 -2000. We found that stable stratification (1) enhances the radial dispersion of the disc at landing, (2) increases the descent time, (3) decreases the inclination (or nutation) angle, and (4) decreases the fluttering amplitude while falling. We conclude by commenting on how the corresponding information can be used as a predictive model for objects free falling in stratified fluids.

  4. Computational Fluid Dynamics in Ventilation

    DEFF Research Database (Denmark)

    Nielsen, Peter V.; Allard, Francis; Awbi, Hazim B.

    2008-01-01

    Computational Fluid Dynamics in Ventilation Design is a new title in the is a new title in the REHVA guidebook series. The guidebook is written for people who need to use and discuss results based on CFD predictions, and it gives insight into the subject for those who are not used to work with CFD...

  5. Fluid mechanics of heart valves.

    Science.gov (United States)

    Yoganathan, Ajit P; He, Zhaoming; Casey Jones, S

    2004-01-01

    Valvular heart disease is a life-threatening disease that afflicts millions of people worldwide and leads to approximately 250,000 valve repairs and/or replacements each year. Malfunction of a native valve impairs its efficient fluid mechanic/hemodynamic performance. Artificial heart valves have been used since 1960 to replace diseased native valves and have saved millions of lives. Unfortunately, despite four decades of use, these devices are less than ideal and lead to many complications. Many of these complications/problems are directly related to the fluid mechanics associated with the various mechanical and bioprosthetic valve designs. This review focuses on the state-of-the-art experimental and computational fluid mechanics of native and prosthetic heart valves in current clinical use. The fluid dynamic performance characteristics of caged-ball, tilting-disc, bileaflet mechanical valves and porcine and pericardial stented and nonstented bioprostheic valves are reviewed. Other issues related to heart valve performance, such as biomaterials, solid mechanics, tissue mechanics, and durability, are not addressed in this review.

  6. Intraoperative fluid therapy in neonates

    African Journals Online (AJOL)

    Differences from adults and children in physiology and anatomy of neonates inform our ... is based on energy expenditure indexed to bodyweight.2 Energy ... fragile and poorly keratinised.5 ... neonates means that very conservative fluid regimes in neonates ..... I make an estimation of insensible loss from the skin, viscera,.

  7. Protein profiling of cerebrospinal fluid

    DEFF Research Database (Denmark)

    Simonsen, Anja H

    2012-01-01

    The cerebrospinal fluid (CSF) perfuses the brain and spinal cord. CSF contains proteins and peptides important for brain physiology and potentially also relevant for brain pathology. Hence, CSF is the perfect source to search for new biomarkers to improve diagnosis of neurological diseases as well...

  8. Fundamentals of Geophysical Fluid Dynamics

    Science.gov (United States)

    McWilliams, James C.

    2006-07-01

    Earth's atmosphere and oceans exhibit complex patterns of fluid motion over a vast range of space and time scales. These patterns combine to establish the climate in response to solar radiation that is inhomogeneously absorbed by the materials comprising air, water, and land. Spontaneous, energetic variability arises from instabilities in the planetary-scale circulations, appearing in many different forms such as waves, jets, vortices, boundary layers, and turbulence. Geophysical fluid dynamics (GFD) is the science of all these types of fluid motion. This textbook is a concise and accessible introduction to GFD for intermediate to advanced students of the physics, chemistry, and/or biology of Earth's fluid environment. The book was developed from the author's many years of teaching a first-year graduate course at the University of California, Los Angeles. Readers are expected to be familiar with physics and mathematics at the level of general dynamics (mechanics) and partial differential equations. Covers the essential GFD required for atmospheric science and oceanography courses Mathematically rigorous, concise coverage of basic theory and applications to both oceans and atmospheres Author is a world expert; this book is based on the course he has taught for many years Exercises are included, with solutions available to instructors from solutions@cambridge.org

  9. Fluid Mechanics of Fish Swimming

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 14; Issue 1. Fluid Mechanics of Fish Swimming - Lift-based Propulsion. Jaywant H Arakeri. General Article Volume 14 Issue 1 January 2009 pp 32-46. Fulltext. Click here to view fulltext PDF. Permanent link:

  10. Essential Fluid Dynamics for Scientists

    Science.gov (United States)

    Braithwaite, Jonathan

    2017-12-01

    The book is an introduction to the subject of fluid mechanics, essential for students and researchers in many branches of science. It illustrates its fundamental principles with a variety of examples drawn mainly from astrophysics and geophysics as well as from everyday experience. Prior familiarity with basic thermodynamics and vector calculus is assumed.

  11. Fluid Power, Rate Training Manual.

    Science.gov (United States)

    Bureau of Naval Personnel, Washington, DC.

    Fundamentals of hydraulics and pneumatics are presented in this manual, prepared for regular navy and naval reserve personnel who are seeking advancement to Petty Officer Third Class. The history of applications of compressed fluids is described in connection with physical principles. Selection of types of liquids and gases is discussed with a…

  12. Geometrical approach to fluid models

    International Nuclear Information System (INIS)

    Kuvshinov, B.N.; Schep, T.J.

    1997-01-01

    Differential geometry based upon the Cartan calculus of differential forms is applied to investigate invariant properties of equations that describe the motion of continuous media. The main feature of this approach is that physical quantities are treated as geometrical objects. The geometrical notion of invariance is introduced in terms of Lie derivatives and a general procedure for the construction of local and integral fluid invariants is presented. The solutions of the equations for invariant fields can be written in terms of Lagrange variables. A generalization of the Hamiltonian formalism for finite-dimensional systems to continuous media is proposed. Analogously to finite-dimensional systems, Hamiltonian fluids are introduced as systems that annihilate an exact two-form. It is shown that Euler and ideal, charged fluids satisfy this local definition of a Hamiltonian structure. A new class of scalar invariants of Hamiltonian fluids is constructed that generalizes the invariants that are related with gauge transformations and with symmetries (Noether). copyright 1997 American Institute of Physics

  13. Fluid queues and regular variation

    NARCIS (Netherlands)

    Boxma, O.J.

    1996-01-01

    This paper considers a fluid queueing system, fed by N independent sources that alternate between silence and activity periods. We assume that the distribution of the activity periods of one or more sources is a regularly varying function of index ¿. We show that its fat tail gives rise to an even

  14. Fluid queues and regular variation

    NARCIS (Netherlands)

    O.J. Boxma (Onno)

    1996-01-01

    textabstractThis paper considers a fluid queueing system, fed by $N$ independent sources that alternate between silence and activity periods. We assume that the distribution of the activity periods of one or more sources is a regularly varying function of index $zeta$. We show that its fat tail

  15. Installations having pressurised fluid circuits

    International Nuclear Information System (INIS)

    Rigg, S.; Grant, J.

    1977-01-01

    Reference is made to nuclear installations having pressurised coolant flow circuits. Breaches in such circuits may quickly result in much damage to the plant. Devices such as non-return valves, orifice plates, and automatically operated shut-off valves have been provided to prevent or reduce fluid flow through a breached pipe line, but such devices have several disadvantages; they may present large restrictions to normal flow of coolant, and may depend on the operation of ancillary equipment, with consequent delay in bringing them into operation in an emergency. Other expedients that have been adopted to prevent or reduce reverse flow through an upstream breach comprise various forms of hydraulic counter flow brakes. The arrangement described has at least one variable fluid brake comprising a fluidic device connected into a duct in the pressurised circuit, the device having an inlet, an outlet, a vortex chamber between the inlet and outlet, a control jet for introducing fluid into the vortex chamber, connections communicating the inlet and the outlet into one part of the circuit and the control jet into another region at a complementary pressure so that, in the event of a breach in the circuit in one region, fluid passes from the other region to enter the vortex chamber to stimulate pressure to create a flow restricting vortex in the chamber that reduces flow through the breach. The system finds particular application to stream generating pressure tube reactors, such as the steam generating heavy water reactor at UKAEA, Winfrith. (U.K.)

  16. Mixed Fluid Conditions: Capillary Phenomena

    KAUST Repository

    Santamarina, Carlos

    2017-07-06

    Mixed fluid phenomena in porous media have profound implications on soil-atmosphere interaction, energy geotechnology, environmental engineering and infrastructure design. Surface tension varies with pressure, temperature, solute concentration, and surfactant concentration; on the other hand, the contact angle responds to interfacial tensions, surface topography, invasion velocity, and chemical interactions. Interfaces are not isolated but interact through the fluid pressure and respond to external fields. Jumps, snap-offs and percolating wetting liquids along edges and crevices are ubiquitous in real, non-cylindrical porous networks. Pore- and macroscale instabilities together with pore structure variability-and-correlation favor fluid trapping and hinder recovery efficiency. The saturation-pressure characteristic curve is affected by the saturation-history, flow-rate, the mechanical response of the porous medium, and time-dependent reactive and diffusive processes; in addition, there are salient differences between unsaturation by internal gas nucleation and gas invasion. Capillary forces add to other skeletal forces in the porous medium and can generate open-mode discontinuities when the capillary entry pressure is high relative to the effective stress. Time emerges as an important variable in mixed-fluid conditions and common quasi-static analyses may fail to capture the system response.

  17. Dissecting spontaneous cerebrospinal fluid collection.

    Science.gov (United States)

    Champagne, Pierre-Olivier; Decarie, Jean-Claude; Crevier, Louis; Weil, Alexander G

    2018-04-01

    Hydrocephalus is a common condition in the pediatric population known to have many causes and presentation patterns. We report from the analysis of 2 cases the existence of a new complication of pediatric hydrocephalus. Naming this entity "dissecting intraparenchymal cerebrospinal fluid collection", we advance a hypothesis regarding its pathophysiology and discuss its clinical implications and management. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Evaluation of synthetic zeolite as engineering passive permeable reactive barrier

    International Nuclear Information System (INIS)

    Ibrahim, O.A.A.

    2011-01-01

    models were used to describe the pollutant transport within the permeable reactive barrier. Based on the obtained results, the following can be concluded: 1. Synthetic zeolite X proposed as a reactive barrier material was successfully prepared and completely characterized using XRD, FTIR, EDX, and SEM techniques. 2. Sorption studies indicated the feasibility of using the prepared zeolite X as a reactive barrier material due to its high capacity, chemical stability and selectivity for the concerned heavy metals (Zn 2+ and Cd 2+ ions). 3. Transport properties of both zinc and cadmium ions through zeolite X packed column have been determined. The hydrodynamic dispersion coefficients needed for describe the migration of Zn 2+ and Cd 2+ ions were determined. 4. Retardation coefficients using linear and nonlinear isotherm models were utilized to determine the capability of the synthesized zeolite X to impede the movement of zinc and cadmium ions carried by the fluid. 5. Transport of contaminants in groundwater systems, which is based on the integration of advection dispersion equation using specific boundary conditions, provides a number of analytical solutions. Some of these solutions have been derived for one dimensional pulse contaminant input or a continuous input.

  19. Scientific investigation plan for initial engineered barrier system field tests

    International Nuclear Information System (INIS)

    Wunan Lin.

    1993-02-01

    The purpose of this Scientific Investigation Plan (SIP) is to describe tests known as Initial Engineered Barrier System Field Tests (IEBSFT) and identified by Work Breakdown Structure as WBS 1.2.2.2.4. The IEBSFT are precursors to the Engineered Barrier System Field Test (EBSFT), WBS 1.2.2.2.4, to be conducted in the Exploratory Study Facility (ESF) at Yucca Mountain. The EBSFT and IEBSFT are designed to provide information on the interaction between waste packages (simulated by heated containers) and the surrounding rock mass, its vadose water, and infiltrated water. Heater assemblies will be installed in drifts or boreholes openings and heated to measure moisture movement during heat-up and subsequent cool-down of the rock mass. In some of the tests, infiltration of water into the heated rock mass will be studied. Throughout the heating and cooling cycle, instruments installed in the rock will monitor such parameters as temperature, moisture content, concentration of some chemical species, and stress and strain. Rock permeability measurements, rock and fluid (water and gas) sampling, and fracture pattern measurements will also be made before and after the test

  20. Sustainable Hydraulic Barrier Design Technologies for Effective Infrastructure Engineering

    Directory of Open Access Journals (Sweden)

    Chitral Wijeyesekera Devapriya

    2017-01-01

    Full Text Available Migration of liquids lead to embarrassing post construction scenarios such as that of leaks from roofs, potable water leaking from water tanks/ reservoirs, rising damp in walls with groundwater seeping into basement structures, leakage of water from ornamental lakes and ponds or leachate leakage into the environment from MSW landfill sites. Such failures demand immediate and expensive maintenance. A stringent control on structural and waterproof stability is deemed necessary for long term service life of structures and in particular underground and near surface structures. On a micro scale and over a longer time scale, the phenomenon of rising dampness occurs in older buildings with the groundwater rising up through walls, floors and masonry via capillary action. Even slower rates of contaminant fluid migration occur through landfill base liners. In this paper a variety of hydraulic barrier technologies is critically discussed against a backdrop of relevant case studies. The choice of an appropriate hydraulic barrier technology for a given scenario will depend also on the sustainability, financial affordability and subjective aesthetics.

  1. Mantle hydration and Cl-rich fluids in the subduction forearc

    Science.gov (United States)

    Reynard, Bruno

    2016-12-01

    In the forearc region, aqueous fluids are released from the subducting slab at a rate depending on its thermal state. Escaping fluids tend to rise vertically unless they meet permeability barriers such as the deformed plate interface or the Moho of the overriding plate. Channeling of fluids along the plate interface and Moho may result in fluid overpressure in the oceanic crust, precipitation of quartz from fluids, and low Poisson ratio areas associated with tremors. Above the subducting plate, the forearc mantle wedge is the place of intense reactions between dehydration fluids from the subducting slab and ultramafic rocks leading to extensive serpentinization. The plate interface is mechanically decoupled, most likely in relation to serpentinization, thereby isolating the forearc mantle wedge from convection as a cold, potentially serpentinized and buoyant, body. Geophysical studies are unique probes to the interactions between fluids and rocks in the forearc mantle, and experimental constrains on rock properties allow inferring fluid migration and fluid-rock reactions from geophysical data. Seismic velocities reveal a high degree of serpentinization of the forearc mantle in hot subduction zones, and little serpentinization in the coldest subduction zones because the warmer the subduction zone, the higher the amount of water released by dehydration of hydrothermally altered oceanic lithosphere. Interpretation of seismic data from petrophysical constrain is limited by complex effects due to anisotropy that needs to be assessed both in the analysis and interpretation of seismic data. Electrical conductivity increases with increasing fluid content and temperature of the subduction. However, the forearc mantle of Northern Cascadia, the hottest subduction zone where extensive serpentinization was first demonstrated, shows only modest electrical conductivity. Electrical conductivity may vary not only with the thermal state of the subduction zone, but also with time for

  2. Heat Transfer in Complex Fluids

    Energy Technology Data Exchange (ETDEWEB)

    Mehrdad Massoudi

    2012-01-01

    Amongst the most important constitutive relations in Mechanics, when characterizing the behavior of complex materials, one can identify the stress tensor T, the heat flux vector q (related to heat conduction) and the radiant heating (related to the radiation term in the energy equation). Of course, the expression 'complex materials' is not new. In fact, at least since the publication of the paper by Rivlin & Ericksen (1955), who discussed fluids of complexity (Truesdell & Noll, 1992), to the recently published books (Deshpande et al., 2010), the term complex fluids refers in general to fluid-like materials whose response, namely the stress tensor, is 'non-linear' in some fashion. This non-linearity can manifest itself in variety of forms such as memory effects, yield stress, creep or relaxation, normal-stress differences, etc. The emphasis in this chapter, while focusing on the constitutive modeling of complex fluids, is on granular materials (such as coal) and non-linear fluids (such as coal-slurries). One of the main areas of interest in energy related processes, such as power plants, atomization, alternative fuels, etc., is the use of slurries, specifically coal-water or coal-oil slurries, as the primary fuel. Some studies indicate that the viscosity of coal-water mixtures depends not only on the volume fraction of solids, and the mean size and the size distribution of the coal, but also on the shear rate, since the slurry behaves as shear-rate dependent fluid. There are also studies which indicate that preheating the fuel results in better performance, and as a result of such heating, the viscosity changes. Constitutive modeling of these non-linear fluids, commonly referred to as non-Newtonian fluids, has received much attention. Most of the naturally occurring and synthetic fluids are non-linear fluids, for example, polymer melts, suspensions, blood, coal-water slurries, drilling fluids, mud, etc. It should be noted that sometimes these

  3. Instrumentation, measurements, and experiments in fluids

    CERN Document Server

    Rathakrishnan, E

    2007-01-01

    NEED AND OBJECTIVE OF EXPERIMENTAL STUDY Some Fluid Mechanics MeasurementsMeasurement SystemsSome of the Important Quantities Associated with FluidFlow MeasurementsFUNDAMENTALS OF FLUID MECHANICSProperties of FluidsThermodynamic PropertiesSurface TensionAnalysis of Fluid FlowBasic and Subsidiary Laws for Continuous MediaKinematics of Fluid FlowStreamlinesPotential FlowViscous FlowsGas DynamicsWIND TUNNELSLow-Speed Wind TunnelsPower Losses in a Wind TunnelHigh-Speed Wind TunnelsHypersonic TunnelsInstrume

  4. Permeability Barrier Generation in the Martian Lithosphere

    Science.gov (United States)

    Schools, Joe; Montési, Laurent

    2015-11-01

    Permeability barriers develop when a magma produced in the interior of a planet rises into the cooler lithosphere and crystallizes more rapidly than the lithosphere can deform (Sparks and Parmentier, 1991). Crystallization products may then clog the porous network in which melt is propagating, reducing the permeability to almost zero, i.e., forming a permeability barrier. Subsequent melts cannot cross the barrier. Permeability barriers have been useful to explain variations in crustal thickness at mid-ocean ridges on Earth (Magde et al., 1997; Hebert and Montési, 2011; Montési et al., 2011). We explore here under what conditions permeability barriers may form on Mars.We use the MELTS thermodynamic calculator (Ghiorso and Sack, 1995; Ghiorso et al., 2002; Asimow et al., 2004) in conjunction with estimated Martian mantle compositions (Morgan and Anders, 1979; Wänke and Dreibus, 1994; Lodders and Fegley, 1997; Sanloup et al., 1999; Taylor 2013) to model the formation of permeability barriers in the lithosphere of Mars. In order to represent potential past and present conditions of Mars, we vary the lithospheric thickness, mantle potential temperature (heat flux), oxygen fugacity, and water content.Our results show that permeability layers can develop in the thermal boundary layer of the simulated Martian lithosphere if the mantle potential temperature is higher than ~1500°C. The various Martian mantle compositions yield barriers in the same locations, under matching variable conditions. There is no significant difference in barrier location over the range of accepted Martian oxygen fugacity values. Water content is the most significant influence on barrier development as it reduces the temperature of crystallization, allowing melt to rise further into the lithosphere. Our lower temperature and thicker lithosphere model runs, which are likely the most similar to modern Mars, show no permeability barrier generation. Losing the possibility of having a permeability

  5. Use of element model to evaluate transmissibility reduction due to barriers

    Energy Technology Data Exchange (ETDEWEB)

    Svanes, T.; South, D.; Dronen, O.M. [Statoil, Bergen (Norway)

    1997-08-01

    Water breakthrough has been observed a year earlier than expected in the productive Oseberg Formation in the Veslefrikk Field. Production data revealed extensive water override, whereas the opposite situation was expected based on a homogeneous and coarse flow simulation model. A new model was developed to include geological heterogeneities using a simple upscaling method. The Oseberg Fm. consists of an upper homogeneous unit (zone 2) and a lower unit containing thin barriers of shale and calcite cemented sandstone (zone 1). The barrier content varies laterally. When barriers are distributed in a complex 3D pattern, they reduce the upscaled horizontal transmissibility more than what is obtained by multiplying the sand permeability by the net-to-gross ratio (N/G). However, the transmissibility reduction strongly depends on the spatial distribution of barriers and their geometry. Therefore, a fine scale element model was used to derive the average transmissibility reduction as a function of N/G for alternative geological descriptions of the barriers. A geo-statistical method called General Marked Point Process was used to generate the fine scale descriptions. This work has resulted in a simple upscaling routine for horizontal transmissibility, which represents an effective bridge between geological evaluation of uncertainties and fluid flow simulation. The method combines geo-statistical and deterministic modelling in an elegant manner, recognising that most often these methods complement one another.

  6. On the efficiency of a fluid-fluid centrifugal separation

    International Nuclear Information System (INIS)

    Apazidis, N.

    1984-05-01

    Efficiency of a separation process of two immiscible incompressible fluids of different densities occuring under the influence of a combined centrifugal and gravitational force field is investigated. The analysis is based on the set of equations for a rotating two-phase flow of a mixture as presented by Greenspan (1983). The geometry of the separation process is considered and the total flow of the separated phases evaluated. (author)

  7. Fundamental Issues of Nano-fluid Behavior

    International Nuclear Information System (INIS)

    Williams, Wesley C.

    2006-01-01

    This paper will elucidate some of the behaviors of nano-fluids other than the abnormal conductivity enhancement, which are of importance to the experimental and engineering use of nano-fluids. Nano-fluid is the common name of any sol colloid involving nano-scale (less than 100 nm) sized particles dispersed within a base fluid. It has been shown previously that the dispersion of nano-particulate metallic oxides into water can increase thermal conductivity up to 30-40% over that of the base fluid and anomalously more than the mere weighed average of the colloid. There is a great potential for the use of nano-fluids as a way to enhance fluid/thermal energy transfer systems. Due to the recentness of nano-fluid science, there are still many issues which have not been fully investigated. This paper should act as a primer for the basic understanding of nano-fluid behavior. Particle size and colloid stability are of key importance to the functionality of nano-fluids. The pH and concentration/loading of nano-fluids can alter the size of the nano-particles and also the stability of the fluids. It will be shown through experiment and colloid theory the importance of these parameters. Furthermore, most of the existing literature uses volume percentage as the measure of particle loading, which can often be misleading. There will be discussion of this and other misleading ideas in nano-fluid science. (author)

  8. L-H transition dynamics in fluid turbulence simulations with neoclassical force balance

    Energy Technology Data Exchange (ETDEWEB)

    Chôné, L. [Aix–Marseille Université, CNRS, PIIM UMR 7345, 13397 Marseille Cedex 20 (France); CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Beyer, P.; Fuhr, G.; Benkadda, S. [Aix–Marseille Université, CNRS, PIIM UMR 7345, 13397 Marseille Cedex 20 (France); Sarazin, Y.; Bourdelle, C. [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France)

    2014-07-15

    Spontaneous transport barrier generation at the edge of a magnetically confined plasma is reproduced in flux-driven three-dimensional fluid simulations of electrostatic turbulence. Here, the role on the radial electric field of collisional friction between trapped and passing particles is shown to be the key ingredient. Especially, accounting for the self-consistent and precise dependence of the friction term on the actual plasma temperature allows for the triggering of a transport barrier, provided that the input power exceeds some threshold. In addition, the barrier is found to experience quasi-periodic relaxation events, reminiscent of edge localised modes. These results put forward a possible key player, namely, neoclassical physics via radial force balance, for the low- to high-confinement regime transition observed in most of controlled fusion devices.

  9. Identifying barriers to emergency care services.

    Science.gov (United States)

    Cannoodt, Luk; Mock, Charles; Bucagu, Maurice

    2012-01-01

    This paper aims to present a review of published evidence of barriers to emergency care, with attention towards both financial and other barriers. With the keywords (financial) accessibility, barriers and emergency care services, citations in PubMed were searched and further selected in the context of the objective of this article. Forty articles, published over a period of 15 years, showed evidence of significant barriers to emergency care. These barriers often tend to persist, despite the fact that the evidence was published many years ago. Several publications stressed the importance of the financial barriers in foregoing or delaying potentially life-saving emergency services, both in poor and rich countries. Other publications report non-financial barriers that prevent patients in need of emergency care (pre-hospital and in-patient care) from seeking care, from arriving in the proper emergency department without undue delay or from receiving proper treatment when they do arrive in these departments. It is clear that timely access to life-saving and disability-preventing emergency care is problematic in many settings. Yet, low-cost measures can likely be taken to significantly reduce these barriers. It is time to make an inventory of these measures and to implement the most cost-effective ones worldwide. Copyright © 2011 John Wiley & Sons, Ltd.

  10. Contaminant containment using polymer gel barriers

    NARCIS (Netherlands)

    Darwish, M.I.M.; Rowe, R.K.; Maarel, van der J.R.C.; Pel, L.; Huinink, H.P.; Zitha, P.L.J.

    2004-01-01

    Polymer gels are well known in the oil industry, but their potential for use as barriers to contaminant transport has not previously received significant study. As a first step, this paper examines the potential for a polyelectrolyte gel to serve as a barrier to the migration of sodium chloride. Two

  11. Storm impacts on small barrier islands

    DEFF Research Database (Denmark)

    Kroon, Aart; Fruergaard, Mikkel

    The shorelines of the Baltic Sea and the inner coastal waters in Denmark consist of many barrier islands. These sandy barrier islands were mainly formed in the Holocene and are still very dynamic. The present day changes in the morphology are dominantly governed by storm waves and associated high...

  12. Engineered Barrier Test Facility status report, 1984

    International Nuclear Information System (INIS)

    Phillips, S.J.; Adams, M.R.; Gilbert, T.W.; Meinhardt, C.C.; Mitchell, R.M.; Waugh, W.J.

    1985-02-01

    This report provides a general summary of activities completed to date at the Hanford Engineered Barrier Test Facility. This facility is used to test and compare construction practices and performance of alternative designs of engineered barrier cover systems. These cover systems are being evaluated for potential use for isolation and confinement of buried waste disposal structures

  13. Nurses' barriers to learning: an integrative review.

    Science.gov (United States)

    Santos, Marion C

    2012-07-01

    This integrative review of the literature describes nurses' barriers to learning. Five major themes emerged: time constraints, financial constraints, workplace culture, access/relevance, and competency in accessing electronic evidence-based practice literature. The nurse educator must address these barriers for the staff to achieve learning and competency.

  14. Barriers to Adult Learning: Bridging the Gap

    Science.gov (United States)

    Falasca, Marina

    2011-01-01

    A fundamental aspect of adult education is engaging adults in becoming lifelong learners. More often than not, this requires removing barriers to learning, especially those relating to the actual organisational or institutional learning process. This article explores some of the main barriers to adult learning discussed in the literature and…

  15. Barriers to adherence in cystic fibrosis

    DEFF Research Database (Denmark)

    Bregnballe, Vibeke; Schiøtz, Peter Oluf

    2012-01-01

    Danish patients with cystic fibrosis aged 14 to 25 years and their parents. Conclusions: The present study showed that the majority of adolescents with CF and their parents experienced barriers to treatment adherence. Patients and parents agreed that the three most common barriers encountered lack...

  16. Barrier Engineered Quantum Dot Infrared Photodetectors

    Science.gov (United States)

    2015-06-01

    251108. 6. Barve, Ajit V., Saumya Sengupta, Jun Oh Kim, John Montoya , Brianna Klein, Mohammad Ali Shirazi, Marziyeh Zamiri et al., "Barrier selection... H . Kim, Z-B. Tian, and Sanjay Krishna. "Barrier Engineered Infrared Photodetectors Based on Type-II InAs/GaSb Strained Layer Superlattices." (2013

  17. Photovoltaic noise barriers; Stille um die Laermschutzwand

    Energy Technology Data Exchange (ETDEWEB)

    Roepcke, I.

    2007-11-30

    Photovoltaic noise barriers are uncommon. There were some demonstration project, but interest died down - in spite of the fact that the EEG specifies the same level of reimbursement for PV noise barriers as for PlV roofs. Recently, efforts have been made to revive the market. (orig.)

  18. K-Basin isolation barrier seal

    International Nuclear Information System (INIS)

    Ruff, E.S.

    1994-10-01

    This report documents various aspects of the design, analysis, procurement, and fabrication of the hydraulic seal on the isolation barriers to be installed in the 100-K Area spent nuclear fuel basin. The isolation barrier is used to keep water in the basin in the event of an earthquake

  19. Israel's Security Barrier: Effects On Operational Factors

    National Research Council Canada - National Science Library

    2004-01-01

    .... The route of the barrier is tinder intense discussion at this time and if implemented as planned by the Sharon government will negatively affect the factors of space and force. The barrier must be constructed along the correct route in order to maximize operational factors.

  20. Fusion barriers in heavy ion collisions

    International Nuclear Information System (INIS)

    Zhu Long; Su Jun; Xie Wenjie; Guo Chenchen; Zhang Donghong; Zhang Fengshou

    2014-01-01

    Study of fusion barrier is very important for people to better understand fusion reactions. In this paper the Improved Isospin-dependent Quantum Molecular Dynamics (ImIQMD) model is introduced firstly. Then the shell correction effects, energy dependence, isospin effects and orientation effects of fusion barrier are studied. The fusion barriers for the fusion reactions "4"0Ca + "4"0Ca, "4"8Ca + "2"0"8Pb, "4"8Ca + "2"0"4Pb and "1"6O + "1"5"4Sm are extracted. The negative shell correction energies lower potential barriers of a certain reaction. A complex phenomenon of energy dependence is observed. It is also found that incident energy dependence of the barrier radius and barrier height shows opposite behaviors. The Coulomb potential shows weak energy dependence when distance of two colliding nuclei is lower than the touching distance. The isospin effects of the potential barrier are investigated. The orientation effects of the potential barrier are also discussed for the system "1"6O + "1"5"4Sm. (authors)