WorldWideScience

Sample records for blood viscosity

  1. Blood viscosity: influence of erythrocyte aggregation.

    Science.gov (United States)

    Chien, S; Usami, S; Dellenback, R J; Gregersen, M I; Nanninga, L B; Guest, M M

    1967-08-18

    The addition of purified canine or bovine fibrinogen to suspensions of canine erythocytes in Ringer solution caused an increase in viscosity and the formation of aggregates of erythocytes. Both of these effects became increasingly pronounced as the fibrinogen concentration was raised, and they approached plateaus with 1 gram of fibrinogen per 100 milliliters. An increase in shear rate (or shear stress) reduced both the effect on viscosity and the aggregate size. The data suggest that fibrinogen causes an increase in blood viscosity and a departure from Newtonian behavior by interacting with erythrocytes to form cell aggregates which can be dispersed by shear stress. PMID:17842794

  2. Blood viscosity: influence of erythrocyte deformation.

    Science.gov (United States)

    Chien, S; Usami, S; Dellenback, R J; Gregersen, M I

    1967-08-18

    Suspensions of canine and human erythocytes hardened with acetaldehyde differ from the suspensions of normal erythrocytes with respect to their rheological behavior. Normal erythrocytes can be packed by centrifugation so that the sediment volume is nearly 100 percent cells, but the hardened erythrocytes (RBC's) can be packed only to approximately 60 percent cells. At the same cell percentage the viscosity of the hardened RBC suspension is higher than that of the suspension of normal erythocytes. An increase in shear stress deforms the normal erythocytes and lowers the suspension viscosity, but has no influence on the viscosity of the hardened cell suspension. In blood with high cell percentages, the shear deformation of normal RBC's plays an important role in reducing viscosity and facilitating flow at high shear stresses. PMID:17842793

  3. Whole blood viscosity extrapolation formula: Note on appropriateness of units

    OpenAIRE

    Ezekiel Uba Nwose; Ross Stuart Richards

    2011-01-01

    Background : A series has recently been done on whole blood viscosity. The first on the series proposed extrapolation chart with conventional reference range. Since the publication, two concerns have been received in personal communications. The first expressed concern over the use of serum proteins values in ′g/L′ instead of ′g/dL′ that was contained in the referenced material. The second enquired on suitability of the formula for determination of blood viscosity at low shear rate. Aim : Thi...

  4. Whole blood viscosity extrapolation formula: Note on appropriateness of units

    Directory of Open Access Journals (Sweden)

    Ezekiel Uba Nwose

    2011-01-01

    Full Text Available Background : A series has recently been done on whole blood viscosity. The first on the series proposed extrapolation chart with conventional reference range. Since the publication, two concerns have been received in personal communications. The first expressed concern over the use of serum proteins values in ′g/L′ instead of ′g/dL′ that was contained in the referenced material. The second enquired on suitability of the formula for determination of blood viscosity at low shear rate. Aim : This work sets out to compare different units-converted-modifications of the extrapolation with a view to develop a statement of comparison and suitability of units. Materials and Methods : The values of haematocrit and serum proteins were used in different unit-conversions on the mathematical formula to derive four modifications, which were compared. Five clinical cases that were specifically tested for whole blood viscosity, and had results for haematocrit and serum proteins were evaluated. The appropriateness of modifications for determination of viscosity at low shear rate was reviewed. Results : Except as modified and used in the series, determination of whole blood viscosity at low shear rate using other unit conversions on the formula yields negative values for all five cases. Conclusion : Given that it is unexpected for blood viscosity level to be zero let alone less, it is logical that negative values are invalid. A formula that gives the least invalid results may be most appropriate. Therefore, extrapolation modification used in the series is most appropriate.

  5. Whole blood viscosity issues VI: Association with blood salicylate level and gastrointestinal bleeding

    Directory of Open Access Journals (Sweden)

    Ezekiel Uba Nwose

    2010-01-01

    Full Text Available Background : This series on whole blood viscosity issues has been trying to elucidate the sensitivity, specificity and usefulness of the laboratory parameter in clinical practice. The postulation has been that since antiplatelet is used in the management of stasis, of which blood viscosity is an index, the latter would be useful laboratory indication and/or contraindication. Aim : The aim of this study was to observe whether blood level of acetylsalicylic acid differs with the level of whole blood viscosity. Patients and Methods : Out of the ten years database, 538 cases that were concomitantly tested for haematocrit, total proteins and blood level of salicylate were selected for this study. A separate nine cases of positive faecal occult blood tests were audited for blood viscosity and reviewed. Results : A statistically significant difference is observed with lower blood viscosity being associated with higher salicylate level in comparison of the former between the highest vs. lowest quartiles (p < 0.002. This observation demonstrates the effect of aspirin in lowering blood stasis. Reviewing the positive faecal occult blood cases indicate that gastrointestinal bleeding is characterized by relative hypoviscosity and that hyperviscosity is not present during bleeding complications. Conclusion : The findings affirm that whole blood viscosity is a valid clinical laboratory parameter for evidence-based contraindication, indication and monitoring of antiplatelet medication. It calls for better appreciation and clinical utility of whole blood viscosity, which (in the absence of viscometer can now be extrapolated from haematocrit and total proteins.

  6. [Blood viscosity and blood factors in non-embolic cerebral infarction].

    Science.gov (United States)

    Fong, C S; Chia, L G

    1990-11-01

    We compared blood viscosity at a high and a low shear rate, hematocrit, as well as levels of fibrinogen, cholesterol, triglyceride and high density lipoprotein-cholesterol between 42 patients with nonembolic cerebral infarction and 39 normal subjects. Blood viscosity, levels of fibrinogen, cholesterol and triglyceride were significantly higher, and high density lipoprotein-cholesterol levels were significantly lower, in patients than in normal persons. Blood viscosity had a positive correlation with hematocrit and fibrinogen, and a negative correlation with high density lipoprotein-cholesterol, but no correlation with cholesterol and triglyceride. PMID:1982124

  7. On-line dynamic measurement of blood viscosity, hematocrit and change of blood volume

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective: To develop an on-line system for the measurement of blood viscosity and hematocrit. The dynamic changes of the macrovascular blood volumes,microvascular blood volumes and the total blood volume were observed by means of calculating from the testing result. Methods: Applying traditional viscosity measurement principle and specific wavelength optic density measurement method, an on-line system for the measurement of blood viscosity and hematocrit was developed, and the A/D multifunctionai board and the testing circuit were designed by ourselves. The system was validated by experiments both in vitro and in vivo. Therapeutic effects of hypertonic saline dextran solution (HSD) and Lactatic Ringer's solution at the early stage after burn-blast combined injury were compared by this method. Results: The results showed that the system has attained the goal of the design. The changes of the blood viscosity and hematocrit could be detected effectively and continuously. The changes of macrovascular, microvascular and total blood volume could be calculated approximately. Conclusions: The system and the method can continuously on-line test the blood viscosity and hematocrit, and reveal the change and distribution of blood volumes more accurately and dearly in the therapy process by estimating changes of the macrovascular, microvascular and total blood volumes, respectively. It has confirmed that HSD treatment could increase blood pressure and attenuate tissue edema by significantly increasing total blood volume,improving macrocirculatory and microcirculatory blood volumes. This study suggested that it could be desirable to develop an experiment technique based on the method mentioned above.

  8. Ultrasonic Measurement of Fluid Viscosity for Blood Characterization

    Science.gov (United States)

    Nitta, Naotaka; Homma, Kazuhiro

    2005-06-01

    Although plaque rupture in arteriosclerosis is affected by not only its strength but also by hemodynamic factors, such as blood pressure and shear stress, in particular, the viscous coefficient which directly controls the magnitude of shear stress might be a risk factor in plaque rupture. Therefore, if the viscous coefficient can be assessed noninvasively, it can be a useful index for prediction of a plaque rupture and assessment of various diseases. In this work, an ultrasonic methodology to estimate the viscous coefficient was investigated by numerical simulation and flow-phantom experiment as the fundamental investigation for noninvasively assessing the viscous characteristics of blood. These results show that the proposed method is useful for estimating the kinematic viscosity coefficient in the viscous evaluation of blood.

  9. A blood-oxygenation-dependent increase in blood viscosity due to a static magnetic field.

    Science.gov (United States)

    Yamamoto, Toru; Nagayama, Yuki; Tamura, Mamoru

    2004-07-21

    As the magnetic field of widely used MR scanners is one of the strongest magnetic fields to which people are exposed, the biological influence of the static magnetic field of MR scanners is of great concern. One magnetic interaction in biological subjects is the magnetic torque on the magnetic moment induced by biomagnetic substances. The red blood cell is a major biomagnetic substance, and the blood flow may be influenced by the magnetic field. However, the underlying mechanisms have been poorly understood. To examine the mechanisms of the magnetic influence on blood viscosity, we measured the time for blood to fall through a glass capillary inside and outside a 1.5 T MR scanner. Our in vitro results showed that the blood viscosity significantly increased in a 1.5 T MR scanner, and also clarified the mechanism of the interaction between red blood cells and the external magnetic field. Notably, the blood viscosity increased depending on blood oxygenation and the shear rate of the blood flow. Thus, our findings suggest that even a 1.5 T magnetic field may modulate blood flow.

  10. Blood pressure and blood viscosity are not correlated in normal healthy subjects

    Directory of Open Access Journals (Sweden)

    Salazar Vázquez BY

    2011-12-01

    Full Text Available Beatriz Y Salazar Vázquez1,21Departamento de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Hospital General de México, México D.F., México; 2Department of Bioengineering, University of California, San Diego, CA, USA Abstract: The relationship between blood viscosity, hematocrit (Hct, and mean arterial blood pressure (MAP was studied in a healthy population of 91 men and 66 women with an average age of 30.6 ± 8.0 years, from the city of Victoria de Durango (1800 m elevation. In women and men, Hct values were 42.4% ± 2.9% and 47.2% ± 2.3%, blood viscosities were 4.5 ± 0.7 and 6.1 ± 1.0 cP, and MAP was 83.0 ± 6.8 and 88.0 ± 6.1 mmHg, respectively. The correlation between blood viscosity and Hct was linear and positive (r2 = 0.48 and identical to that of previous studies reported in the literature when men and women are taken as a single group. Separating the data by gender yielded positive, linear correlations (r2 = 0.18 and 0.10, respectively with identical slopes, however blood viscosity for men was 1.2 cP greater than in women (P = 0.02. MAP and blood viscosity (and Hct were not statistically associated when men and women were analyzed separately and were weakly positively correlated (r2 = 0.08, P < 0.02 when treated as a group. The present results suggest that studies that show a positive correlation between MAP and blood viscosity (and Hct do not differentiate data according to gender, or involve populations that do not compensate for increased blood viscosity and potentially increased shear stress.Keywords: blood pressure, blood viscosity, hematocrit, gender, endothelial dysfunction

  11. Apparent viscosity of human blood in a high static magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Haik, Yousef E-mail: haik@eng.fsu.edu; Pai, Vinay; Chen Chingjen

    2001-07-01

    This study investigates the apparent additive viscosity due to magnetic effects on the human blood. Experimental results show that blood flow rate under gravity decreases by 30% when subjected to a high magnetic field of 10 T. The decrease in the flow rate is due to an increase in the apparent viscosity of the blood due to the magnetic field. A correlation describing the viscosity of blood under these conditions is introduced which depends on the Langevin function and parameters.

  12. Application of the Carreau viscosity model to the oscillatory flow in blood vessels

    Science.gov (United States)

    Tabakova, Sonia; Kutev, Nikolay; Radev, Stefan

    2015-11-01

    When studying the oscillatory flow in different types of blood vessels it is very important to know what type of the blood viscosity model has to be used. In general the blood viscosity is defined as a shear-thinning liquid, for which there exist different shear-dependent models, for example the Carreau model, which represents the viscosity as a non-linear function of the shear-rate. In some cases, however, the blood viscosity could be regarded as constant, i.e., the blood is treated as Newtonian fluid. The aim of the present work is to show theoretically and numerically some approximate limits of the Newtonian model application, when the blood vessel is assumed as a 2D straight tube. The obtained results are in agreement with other authors' numerical results based on similar blood viscosity models.

  13. Measurement of human blood viscosity by an electromagnetic spinning sphere viscometer.

    Science.gov (United States)

    Furukawa, Koji; Abumiya, Takeo; Sakai, Keiji; Hirano, Miki; Osanai, Toshiya; Shichinohe, Hideo; Nakayama, Naoki; Kazumata, Ken; Aida, Toshimitsu; Houkin, Kiyohiro

    2016-08-01

    We herein applied an electromagnetic spinning sphere (EMS) viscometer to the measurement of human blood viscosity for the first time. We collected blood samples from 100 healthy outpatient volunteers in order to analyse viscosity dependence on blood cell parameters and on the shear rate with a simple approximation formula [ηi (γ)\\, = Ai γ(- pi) + η0]. Viscosity dependence on blood cell parameters was relatively high at a high shear rate, but became lower as the shear rate decreased. The approximation formula with appropriate parameters of Ai and pi nearly faithfully reproduced actual blood rheological behaviour with a standard deviation of 1.5%. The distributions of Ai and pi values were broad, suggesting that the pattern of viscosity dependence on the shear rate varied with individual differences. The results obtained using the EMS viscometer suggest that blood viscosity values are individual-specific and actual individual measurements are important for understanding rheological conditions.

  14. Measurement of human blood viscosity by an electromagnetic spinning sphere viscometer.

    Science.gov (United States)

    Furukawa, Koji; Abumiya, Takeo; Sakai, Keiji; Hirano, Miki; Osanai, Toshiya; Shichinohe, Hideo; Nakayama, Naoki; Kazumata, Ken; Aida, Toshimitsu; Houkin, Kiyohiro

    2016-08-01

    We herein applied an electromagnetic spinning sphere (EMS) viscometer to the measurement of human blood viscosity for the first time. We collected blood samples from 100 healthy outpatient volunteers in order to analyse viscosity dependence on blood cell parameters and on the shear rate with a simple approximation formula [ηi (γ)\\, = Ai γ(- pi) + η0]. Viscosity dependence on blood cell parameters was relatively high at a high shear rate, but became lower as the shear rate decreased. The approximation formula with appropriate parameters of Ai and pi nearly faithfully reproduced actual blood rheological behaviour with a standard deviation of 1.5%. The distributions of Ai and pi values were broad, suggesting that the pattern of viscosity dependence on the shear rate varied with individual differences. The results obtained using the EMS viscometer suggest that blood viscosity values are individual-specific and actual individual measurements are important for understanding rheological conditions. PMID:27167739

  15. The equation for prediction of blood viscosity from biochemical laboratory data

    Science.gov (United States)

    Sahin, B.; Yigitarslan, S.

    2015-03-01

    In most cases, the viscosity of blood is measured after adulteration with heparin or EDTA. The aim of the present research was to derive an equation that can be used for determination of viscosity from biochemical data. Blood samples taken from seven healthy people were analyzed in biochemical laboratory and their viscosities were measured by adding EDTA as anticoagulant. Ten parameters of biochemical laboratory including blood cells (erythrocytes, leukocytes, thrombocytes) and their functional products that directly affect the blood viscosity were chosen. Several equations relating viscosity to those parameters were derived by using a computer program. According to the regression analysis of the functions derived, the viscosity equation was obtained. This equation can be used for determination of blood viscosity from classical laboratory analysis. The advantages of using the derived equation are elimination of anticoagulant addition and elimination of Fahraeus_Lindquist effect. After proving that the equation is acceptable for numerous people, apparent viscosity changes can be followed during any disease and successfulness of anticoagulant drugs can be investigated.

  16. Effects of a carbohydrate-electrolyte beverage on blood viscosity after dehydration in healthy adults

    Institute of Scientific and Technical Information of China (English)

    CHANG Cui-qing; CHEN Yan-bo; CHEN Zhi-min; ZHANG Lan-tao

    2010-01-01

    Background The consumption of carbohydrate-electrolyte beverages (CEs) has been known to be more effective than plain water for recovery from dehydration. This phenomenon suggests that the ingestion of CEs after dehydration is better than water for maintaining body fluid and plasma volume, and for the recovery from hemoconcentration and high blood viscosity as well. High blood viscosity causes infarction and other cardiovascular events. In this study, CE was compared with water and tea for the ability to reduce increased blood viscosity after dehydration.Methods A crossover random control study was conducted to assess the effectiveness of three beverages for rehydration and decreasing of blood viscosity. Following exercise-induced dehydration of 2.2% of body weight in a permanent warm environment, 10 male subjects rested in a thermoneutral environment for 3 hours (rehydration period,REP). The subjects ingested test beverages equal to their body weight loss during the first 20 minutes in REP. Blood and urine samples were obtained throughout the experiments to assess the rehydration effect.rate was significantly greater for CE ((77.0+3.9)%) than water ((61.2±3.4)%) and tea ((60.5±3.7)%) for 3 hours of rest in REP.Conclusions The recovery from high blood viscosity induced by dehydration was higher with CE consumption than with water or tea. These results suggest that CE is useful for normalizing increased blood viscosity due to exercise-induced dehydration.

  17. Evaluation of oxidative stress and whole blood viscosity for clinical laboratory testing of smoking toxicity

    Directory of Open Access Journals (Sweden)

    Ezekiel U. Nwose

    2016-06-01

    Full Text Available Background: There are no clearly established clinical biochemical markers for cigarette smoking despite the knowledge that cigarette smoking is a risk factor for various diseases, especially cardiovascular complications of respiratory pathologies. However, there are reports of significant increases in blood viscosity and oxidative stress among smokers. The main objective of the study was to ascertain the association of toxicity from cigarette smoking on whole blood viscosity in our data. Methods: This study analysed the archived clinical data of 20 cigarette smokers and 20 apparently healthy individuals. Results: The data show that on average, oxidative stress levels are relatively the same between groups, while whole blood viscosity is statistically significantly lower in non-smokers compared to smokers. Conclusions: This report suggests that oxidative stress induced whole blood hyper-viscosity could be a valid biomarker for laboratory testing of smoking toxicity among cigarette smokers. [Int J Res Med Sci 2016; 4(6.000: 2332-2336

  18. Blood Viscosity and Hematocrit as Risk Factors for Type 2 Diabetes Mellitus

    OpenAIRE

    Tamariz, Leonardo J; Young, J. Hunter; Pankow, James S; Yeh, Hsin-Chieh; Schmidt, Maria Ines; Astor, Brad; Frederick L. Brancati

    2008-01-01

    Several lines of evidence support the notion that elevated blood viscosity may predispose to insulin resistance and type 2 diabetes mellitus by limiting delivery of glucose, insulin, and oxygen to metabolically active tissues. To test this hypothesis, the authors analyzed longitudinal data on 12,881 initially nondiabetic adults, aged 45–64 years, who were participants in the Atherosclerosis Risk in Communities (ARIC) Study (1987–1998). Whole blood viscosity was estimated by using a validated ...

  19. Dynamic Behavior Analysis of the Glomerulo-Tubular Balance Mediated by the Efferent Blood Viscosity

    Science.gov (United States)

    Espinel, Andrea; Rivadeneira, Pablo S.; Costanza, Vicente; Amorena, Carlos

    In this paper, a mathematical model of the dynamics of a single-nephron function relating glomerulo-tubular balance, tubule-glomerular feedback, and peritubular blood viscosity is developed. Based upon experimental data, the model shows that complex behaviors of the nephron can be modulated by changes in the efferent arteriole blood viscosity. The main hypothesis is that the reabsorbed mass flow is modulated by the hematocrit of the efferent arteriole, in addition to the Starling forces. From a mathematical perspective, these behaviors can be explained by a bifurcation diagram analysis where the efferent blood viscosity is taken as the bifurcation parameter. This analytical description allows to predict changes in proximal convoluted tubule reabsorption, following changes in peritubular capillary viscosity generated by periodic changes in the glomerular filtration rate. Thus, the model links the tubule-glomerular feedback with the glomerular tubular balance.

  20. Sensorless Viscosity Measurement in a Magnetically-Levitated Rotary Blood Pump.

    Science.gov (United States)

    Hijikata, Wataru; Rao, Jun; Abe, Shodai; Takatani, Setsuo; Shinshi, Tadahiko

    2015-07-01

    Controlling the flow rate in an implantable rotary blood pump based on the physiological demand made by the body is important. Even though various methods to estimate the flow rate without using a flow meter have been proposed, no adequate method for measuring the blood viscosity, which is necessary for an accurate estimate of the flow rate, without using additional sensors or mechanisms in a noninvasive way, has yet been realized. We have developed a sensorless method for measuring viscosity in magnetically levitated rotary blood pumps, which requires no additional sensors or mechanisms. By applying vibrational excitation to the impeller using a magnetic bearing, we measured the viscosity of the working fluid by measuring the phase difference between the current in the magnetic bearing and the displacement of the impeller. The measured viscosity showed a high correlation (R(2)  > 0.992) with respect to a reference viscosity. The mean absolute deviation of the measured viscosity was 0.12 mPa·s for several working fluids with viscosities ranging from 1.18 to 5.12 mPa·s. The proposed sensorless measurement method has the possibility of being utilized for estimating flow rate. PMID:25920684

  1. Mathematical Modelling of Blood Flow through a Tapered Overlapping Stenosed Artery with Variable Viscosity

    OpenAIRE

    Shit, G. C.; Roy, M.; Sinha, A

    2014-01-01

    This paper presents a theoretical study of blood flow through a tapered and overlapping stenosed artery under the action of an externally applied magnetic field. The fluid (blood) medium is assumed to be porous in nature. The variable viscosity of blood depending on hematocrit (percentage volume of erythrocytes) is taken into account in order to improve resemblance to the real situation. The governing equation for laminar, incompressible and Newtonian fluid subject to the boundary conditions ...

  2. Mathematical modelling of blood flow through a tapered overlapping stenosed artery with variable viscosity

    OpenAIRE

    Shit, G. C.; Roy, M.; Sinha, A

    2012-01-01

    This paper presents a theoretical study of blood flow through a tapered and overlapping stenosed artery under the action of an externally applied magnetic field. The fluid (blood) medium is assumed to be porous in nature. The variable viscosity of blood depending on hematocrit (percentage volume of erythrocytes) is taken into account in order to improve resemblance to the real situation. The governing equation for laminar, incompressible and Newtonian fluid subject to the boundary conditions ...

  3. Fluid friction and wall viscosity of the 1D blood flow model.

    Science.gov (United States)

    Wang, Xiao-Fei; Nishi, Shohei; Matsukawa, Mami; Ghigo, Arthur; Lagrée, Pierre-Yves; Fullana, Jose-Maria

    2016-02-29

    We study the behavior of the pulse waves of water into a flexible tube for application to blood flow simulations. In pulse waves both fluid friction and wall viscosity are damping factors, and difficult to evaluate separately. In this paper, the coefficients of fluid friction and wall viscosity are estimated by fitting a nonlinear 1D flow model to experimental data. In the experimental setup, a distensible tube is connected to a piston pump at one end and closed at another end. The pressure and wall displacements are measured simultaneously. A good agreement between model predictions and experiments was achieved. For amplitude decrease, the effect of wall viscosity on the pulse wave has been shown as important as that of fluid viscosity. PMID:26862041

  4. Fluid friction and wall viscosity of the 1D blood flow model

    CERN Document Server

    Wang, Xiao-Fei; Matsukawa, Mami; Ghigo, Arthur; Lagrée, Pierre-Yves; Fullana, Jose-Maria

    2015-01-01

    We study the behavior of the pulse waves of water into a flexible tube for application to blood flow simulations. In pulse waves both fluid friction and wall viscosity are damping factors, and difficult to evaluate separately. In this paper, the coefficients of fluid friction and wall viscosity are estimated by fitting a nonlinear 1D flow model to experimental data. In the experimental setup, a distensible tube is connected to a piston pump at one end and closed at another end. The pressure and wall displacements are measured simultaneously. A good agreement between model predictions and experiments was achieved. For amplitude decrease, the effect of wall viscosity on the pulse wave has been shown as important as that of fluid viscosity.

  5. Whole blood viscosity assessment issues IV: Prevalence in acute phase inflammation

    Directory of Open Access Journals (Sweden)

    Ezekiel Uba Nwose

    2010-08-01

    Full Text Available Background: Hyperviscosity syndrome has been suggested as not simply an acute reaction. Yet, erythrocyte sedimentation rate is associated with whole blood viscosity and it is an indirect acute phase inflammation marker. Aims: This work investigates the prevalence of hyperviscosity in acute phase inflammation. Materials and Methods: Archived clinical pathology data for the period of 1999 to 2008 were utilized. 40,632-cases tested for C-reactive protein and/or erythrocyte sedimentation rate from five alternate years, which were concomitantly tested for haematocrit and total proteins, were extracted. The prevalence of abnormal viscosity associated with positive results of C-reactive protein and erythrocyte sedimentation rate were evaluated. Results: Hyperviscosity is infrequently associated with positive C-reactive protein (2.9% and erythrocyte sedimentation rate (2.7% sub-populations, and are not statistically different from their respective negative sub-populations. Normoviscosity is significantly more prevalent in the positive sub-populations (p < 0.01. Further analyses indicate that prevalence of acute phase inflammation is statistically significantly less in hyperviscosity compared to normoviscosity sub-population (p < 0.00001. Actual blood viscosity level increases with level of inflammation though. Conclusion: The study demonstrates that although blood viscosity level may increase with inflammation, hyperviscosity is not frequent in, or sensitive to acute phase inflammation. It portends that whole blood viscosity is not unspecific as acute phase inflammation markers. It calls for clinicians to consider utilizing whole blood viscosity in disease conditions where stasis is implicated, in which it is specific and valuable. It would also benefit to establish whether hyperviscosity is a chronic phase inflammation marker.

  6. Pulsatile flow of blood and heat transfer with variable viscosity under magnetic and vibration environment

    International Nuclear Information System (INIS)

    Unsteady flow of blood and heat transfer characteristics in the neighborhood of an overlapping constricted artery have been investigated in the presence of magnetic field and whole body vibration. The laminar flow of blood is taken to be incompressible and Newtonian fluid with variable viscosity depending upon temperature with an aim to provide resemblance to the real situation in the physiological system. The unsteady flow mechanism in the constricted artery is subjected to a pulsatile pressure gradient arising from systematic functioning of the heart and from the periodic body acceleration. The numerical computation has been performed using finite difference method by developing Crank–Nicolson scheme. The results show that the volumetric flow rate, skin-friction and the rate of heat transfer at the wall are significantly altered in the downstream of the constricted region. The axial velocity profile, temperature and flow rate increases with increase in temperature dependent viscosity, while the opposite trend is observed in the case of skin-friction and flow impedance. - Highlights: • We have investigated the pulsatile MHD flow of blood and heat transfer in arteries. • The influence of periodic body acceleration has been taken into account. • The temperature dependent viscosity of blood is considered. • The variable viscosity has an increasing effect on blood flow and heat transfer. • The overall temperature distribution enhances in the presence of magnetic field

  7. Pulsatile flow of blood and heat transfer with variable viscosity under magnetic and vibration environment

    Energy Technology Data Exchange (ETDEWEB)

    Shit, G.C., E-mail: gopal_iitkgp@yahoo.co.in; Majee, Sreeparna

    2015-08-15

    Unsteady flow of blood and heat transfer characteristics in the neighborhood of an overlapping constricted artery have been investigated in the presence of magnetic field and whole body vibration. The laminar flow of blood is taken to be incompressible and Newtonian fluid with variable viscosity depending upon temperature with an aim to provide resemblance to the real situation in the physiological system. The unsteady flow mechanism in the constricted artery is subjected to a pulsatile pressure gradient arising from systematic functioning of the heart and from the periodic body acceleration. The numerical computation has been performed using finite difference method by developing Crank–Nicolson scheme. The results show that the volumetric flow rate, skin-friction and the rate of heat transfer at the wall are significantly altered in the downstream of the constricted region. The axial velocity profile, temperature and flow rate increases with increase in temperature dependent viscosity, while the opposite trend is observed in the case of skin-friction and flow impedance. - Highlights: • We have investigated the pulsatile MHD flow of blood and heat transfer in arteries. • The influence of periodic body acceleration has been taken into account. • The temperature dependent viscosity of blood is considered. • The variable viscosity has an increasing effect on blood flow and heat transfer. • The overall temperature distribution enhances in the presence of magnetic field.

  8. Is viscosity important in the production of blood-brain barrier disruption by intracarotid contrast media

    Energy Technology Data Exchange (ETDEWEB)

    Wilcox, J.; Sage, M.R.

    1984-11-01

    A canine model was used to investigate the effects of intracarotid methylglucamine iothalamate (280 mgI/ml) at different viscosities on the normal blood-brain barrier. To alter viscosity, without changing physicochemical parameters, injections were made at either 23/sup 0/C or 37/sup 0/C. The degree of blood-brain barrier damage was assessed using Evans' Blue dye as a visual marker and by contrast enhancement measured by a computed tomographic (CT) scanner. It was found that methylglucamine iothalamate caused more blood-brain barrier damage at 23/sup 0/C than at 37/sup 0/C (p<0.1). Control studies at each temperature using intracarotid injections of physiological saline showed no temperature effect (p>0.1). The implications of these findings are discussed.

  9. Effects of oxygenation and the stress hormones adrenaline and cortisol on the viscosity of blood from the trout oncorhynchus mykiss

    DEFF Research Database (Denmark)

    Sørensen, Bodil; Weber, Roy

    1995-01-01

    Although the concentrations of the stress hormones adrenaline and cortisol in rainbow trout (Oncorhynchus mykiss) blood increase upon hypoxic exposure, the combined effects of these hormones and O2 lack upon fish blood rheology have not been investigated. Deoxygenated blood taken by caudal puncture...... exhibited lower viscosities than oxygenated samples at low shear rates, whereas the opposite was true at high shear rates. However, blood from cannulated trout had similar viscosities in its deoxygenated and oxygenated states. In the deoxygenated state, addition of adrenaline lowered viscosity at low shear...... rates and increased it at high shear rates, resembling the effects of deoxygenation observed in blood taken by venepuncture. In oxygenated blood on the contrary, no marked adrenaline effects were observed. In deoxygenated blood, addition of cortisol lowered viscosity at all measured shear rates compared...

  10. Reduction of low-density lipoprotein cholesterol, plasma viscosity, and whole blood viscosity by the application of pulsed corona discharges and filtration

    Science.gov (United States)

    Jung, Jin M.; Fridman, Alexander; Cho, Daniel J.; Cho, Young I.

    2013-03-01

    The present study investigated the feasibility of applying pulsed corona discharges to blood plasma to reduce the viscosity of blood plasma and whole blood. Blood plasma was separated from blood cells, treated with corona discharges, and filtered before it was re-mixed with blood cells. Plasma viscosity (PV), whole blood viscosity (WBV), and low-density lipoprotein (LDL)-c concentration were measured before and after the corona treatment and filtration. Both PV and WBV increased in the case of the corona treatment only, whereas both of them decreased in the case of the corona treatment plus filtration. In particular, the LDL-c decreased in the case of the corona treatment plus filtration by 31.5% from the baseline value. The effect of the corona treatment on the reduction of the WBV was significant at low shear rates, but not at high shear rates, suggesting that the precipitation of the molecules in blood plasma by the corona treatment and subsequent removal may suppress the aggregation of erythrocytes and improve rheological properties of blood.

  11. Reduction of low-density lipoprotein cholesterol, plasma viscosity, and whole blood viscosity by the application of pulsed corona discharges and filtration.

    Science.gov (United States)

    Jung, Jin M; Fridman, Alexander; Cho, Daniel J; Cho, Young I

    2013-03-01

    The present study investigated the feasibility of applying pulsed corona discharges to blood plasma to reduce the viscosity of blood plasma and whole blood. Blood plasma was separated from blood cells, treated with corona discharges, and filtered before it was re-mixed with blood cells. Plasma viscosity (PV), whole blood viscosity (WBV), and low-density lipoprotein (LDL)-c concentration were measured before and after the corona treatment and filtration. Both PV and WBV increased in the case of the corona treatment only, whereas both of them decreased in the case of the corona treatment plus filtration. In particular, the LDL-c decreased in the case of the corona treatment plus filtration by 31.5% from the baseline value. The effect of the corona treatment on the reduction of the WBV was significant at low shear rates, but not at high shear rates, suggesting that the precipitation of the molecules in blood plasma by the corona treatment and subsequent removal may suppress the aggregation of erythrocytes and improve rheological properties of blood.

  12. CARDIOVASCULAR RISK ASSESSMENT AND SUPPORT TECHNIQUES Whole blood viscosity assessment issues I: Extrapolation chart and reference values

    Directory of Open Access Journals (Sweden)

    Ezekiel Uba Nwose

    2010-04-01

    Full Text Available Background: There are many different methods for the assessment of whole blood viscosity, but not every pathology unit has equipment for any of the methods. However, a validated arithmetic method exists whereby whole blood viscosity can be extrapolated from haematocrit and total serum proteins. Aims: The objective of this work is to develop an algorithm in the form of a chart by which clinicians can easily extrapolate whole blood viscosity values in their consulting rooms or on the ward. Another objective is to suggest normal, subnormal and critical reference ranges applicable to this method. Materials and Methods: Whole blood viscosity at high shear stress was determined, from various possible pairs of haematocrit and total proteins. A chart was formulated so that whole blood viscosity can be extrapolated. After determination of two standard deviations from the mean and ascertainment of symmetric distribution, normal and abnormal reference ranges were defined. Results: The clinicians’ user-friendly chart is presented. Considering presumptive lower and upper limits, the continuum of ≤14.28, 14.29 – 15.00, 15.01 – 19.01, 19.02 – 19.39 and ≥19.40 (208 Sec-1 is obtained as reference ranges for critically low, subnormal low, normal, subnormal high and critically high whole blood viscosity levels respectively. Conclusion: This article advances a validated method to provide a user-friendly chart that would enable clinicians to assess whole blood viscosity for any patients who has results for full blood count and total proteins. It would make the assessment of whole blood viscosity costless and the neglect of a known cardiovascular risk factor less excusable.

  13. Effects of oxygenation and the stress hormones adrenaline and cortisol on the viscosity of blood from the trout oncorhynchus mykiss

    DEFF Research Database (Denmark)

    Sørensen, Bodil; Weber, Roy

    1995-01-01

    rates and increased it at high shear rates, resembling the effects of deoxygenation observed in blood taken by venepuncture. In oxygenated blood on the contrary, no marked adrenaline effects were observed. In deoxygenated blood, addition of cortisol lowered viscosity at all measured shear rates compared...

  14. Mathematical modelling of blood flow through a tapered overlapping stenosed artery with variable viscosity

    CERN Document Server

    Shit, G C; Sinha, A

    2012-01-01

    This paper presents a theoretical study of blood flow through a tapered and overlapping stenosed artery under the action of an externally applied magnetic field. The fluid (blood) medium is assumed to be porous in nature. The variable viscosity of blood depending on hematocrit (percentage volume of erythrocytes) is taken into account in order to improve resemblance to the real situation. The governing equation for laminar, incompressible and Newtonian fluid subject to the boundary conditions is solved by using a well known Frobenius method. The analytical expressions for velocity component, volumetric flow rate, wall shear stress and pressure gradient are obtained. The numerical values are extracted from these analytical expressions and are presented graphically. It is observed that the influence of hematocrit, magnetic field and the shape of artery have important impact on the velocity profile, pressure gradient and wall shear stress. Moreover, the effect of primary stenosis on the secondary one has been sig...

  15. Mathematical Modelling of Blood Flow through a Tapered Overlapping Stenosed Artery with Variable Viscosity

    Directory of Open Access Journals (Sweden)

    G. C. Shit

    2014-01-01

    Full Text Available This paper presents a theoretical study of blood flow through a tapered and overlapping stenosed artery under the action of an externally applied magnetic field. The fluid (blood medium is assumed to be porous in nature. The variable viscosity of blood depending on hematocrit (percentage volume of erythrocytes is taken into account in order to improve resemblance to the real situation. The governing equation for laminar, incompressible and Newtonian fluid subject to the boundary conditions is solved by using a well known Frobenius method. The analytical expressions for velocity component, volumetric flow rate, wall shear stress and pressure gradient are obtained. The numerical values are extracted from these analytical expressions and are presented graphically. It is observed that the influence of hematocrit, magnetic field and the shape of artery have important impact on the velocity profile, pressure gradient and wall shear stress. Moreover, the effect of primary stenosis on the secondary one has been significantly observed.

  16. Pulsatile flow of blood and heat transfer with variable viscosity under magnetic and vibration environment

    Science.gov (United States)

    Shit, G. C.; Majee, Sreeparna

    2015-08-01

    Unsteady flow of blood and heat transfer characteristics in the neighborhood of an overlapping constricted artery have been investigated in the presence of magnetic field and whole body vibration. The laminar flow of blood is taken to be incompressible and Newtonian fluid with variable viscosity depending upon temperature with an aim to provide resemblance to the real situation in the physiological system. The unsteady flow mechanism in the constricted artery is subjected to a pulsatile pressure gradient arising from systematic functioning of the heart and from the periodic body acceleration. The numerical computation has been performed using finite difference method by developing Crank-Nicolson scheme. The results show that the volumetric flow rate, skin-friction and the rate of heat transfer at the wall are significantly altered in the downstream of the constricted region. The axial velocity profile, temperature and flow rate increases with increase in temperature dependent viscosity, while the opposite trend is observed in the case of skin-friction and flow impedance.

  17. About a mechanism of the influence of shear stress for viscosity of the blood in vessels of small diameter

    OpenAIRE

    Катюхин, Лев Николаевич

    2014-01-01

    It is proposed a physiological and experimentally confirmed explanation of Fåhraeus-Lindqvist-effect in capillaries using the profile analyses of osmotic deformability of red blood cells. It was shown the dose-dependent change of the erythrocytes deformability in the stage of isotropic spheres after forming artificial water pores (nystatin) and occlusion (PbCl2) of available pores. The Sigma-effect reducing of hematocrit and viscosity in a shear flow of blood through the vessels of a small di...

  18. Gender features of rheological properties of blood (plasma viscosity, aggregation and deformation of erythrocytes in patients with chronic generalized periodontitis

    Directory of Open Access Journals (Sweden)

    Kazantsev A.V.

    2014-03-01

    Full Text Available The goal is to study gender features of rheological properties of blood in patients with chronic generalized periodontitis (CGP from mild to moderate severity. Material and Methods. 80 patients (43.8% male with CGP aged 42±5 years have been studied. 41 patients (43.9% male experienced mild severity of CGP, and 39 patients (43.6% male experienced moderate severity. 40 healthy adults (50% male, aged 31±7 years, have been included into the study. Plasma viscosity on shear rate values 300 sec1 to 5 sec1, and rheological features of erythrocytes (aggregation and deformation have been evaluated. Results. In healthy women and women with mild severity of CGP, plasma viscosity was lower than in the similar group of men. The rheological features of erythrocytes have not gender differences among healthy adults and patients with mild CGP. Increased severity of CGP has been associated with increased plasma viscosity and rheological features of erythrocytes, particularly in men. Conclusion. Plasma viscosity differs in men and women (childbearing age (healthy subjects and patients with CGP. In women, severity of pathological changes of plasma viscosity and rheological features of erythrocytes have been determined to be lower than in men.

  19. Effects of heat transfer on MHD flow of blood through an inclined porous artery with stenosis having variable viscosity

    CERN Document Server

    Tripathi, Bhavya

    2016-01-01

    In this paper, effects of heat transfer on the blood flow through a stenosed, inclined non-tapered porous artery subject to the action of external magnetic field is investigated. Viscosity is assumed as variable viscosity with variable Hematocrit throughout the region of the artery. Governing equations have been modeled by taking blood as incompressible magnetohydrodynamic (MHD) Newtonian fluid. The energy equation is formulated by taking an extra factor of the heat source in its equation. The nonlinear momentum equations are simplified under the assumption of mild stenosis. Homotopy perturbation method (HPM) is used to solve nonlinear equations of velocity and temperature profiles. Effects of porosity parameter (Z), applied magnetic field parameter (M), variable hematocrit parameter(Hr), Brinkman number (Br), heat source parameter (Q) and the Grashof number (Gr) on velocity and temperature profiles are discussed graphically.

  20. Effect of Pyramidal Training on Plasma Lipid Profile and Fibrinogen, and Blood Viscosity of Untrained Young Men

    Directory of Open Access Journals (Sweden)

    Abbass Ghanbari-Niaki

    2013-09-01

    Full Text Available The present study examined the effects of progressive exercise (pyramidal short-term program on plasma fibrinogen, lipid profile and blood viscosity in untrained young men. Changes and imbalances in homeostasis lead to cause of heart attacks. There is conflicting information about the effect of exercise on these factors. 19 young healthy untrained men were randomly assigned to the exercise group (n = 10 and controls (n = 9 groups. Exercise training group with increasing severity of heart maximum 25 to 100 percent began to run the practice (pyramid in 42-minute sessions, 3 times a week, for 4 weeks. There was no significant difference between the parameters of body composition, control, and training groups. Levels of total cholesterol and low density lipoprotein density and viscosity of the blood significantly decreased in the training group compared with the control group (p value, respectively is 0.001, 0.001 and 0.035. The changes in the concentration of fibrinogen, high-density lipoprotein and triglycerides in both groups are not significant in both groups (p value, respectively is 0.645, 0.993 and 0.421. The present results show that it is possible that progressive training (pyramidal short-term program changed the levels of cardiovascular risk factors by reducing blood viscosity.

  1. Effect of salvianolate combined with meglumine adenosine cyclphosphate on blood viscosity, inflammatory factors and NT-proBNP in angina pectoris patients after PCI

    Institute of Scientific and Technical Information of China (English)

    Jing Peng; Li Chen

    2016-01-01

    Objective:To study the effect of salvianolate combined with meglumine adenosine cyclphosphate on blood viscosity, inflammatory factors and NT-proBNP in angina pectoris patients after percutaneous coronary intervention (PCI).Methods:A total of 130 angina pectoris patients who received PCI treatment in our hospital from May 2012 to October 2015 were selected for study, patients' medical records were retrospectively analyzed, they were divided into the experimental group and the control group based on the different medication schemes after PCI, experimental group received routine treatment combined with salvianolate and meglumine adenosine cyclphosphate treatment after operation, and control group received conventional medical treatment after operation. The changes of perioperative blood viscosity, inflammatory factor and NT-proBNP content were compared between two groups.Results:After PCI, the blood viscosity indexes as well as inflammatory factor and NT-proBNP levels of experimental group were significantly lower than those before PCI (P0.05), inflammatory factor and NT-proBNP levels were significantly lower than those before PCI (P<0.05); 7 days after PCI, the high-shear whole blood viscosity, low-shear whole blood viscosity, plasma viscosity and aggregation index as well as TNF-α, sICAM-1, sVCAM-1, LP-PLA2, NT-proBNP, D-dimer and PTEN levels of experimental group were significantly lower than those of control group (P<0.05).Conclusions: Salvianolate combined with meglumine adenosine cyclphosphate can reduce the blood viscosity of patients with angina pectoris after PCI, and can also reduce inflammation and improve heart pump function.

  2. Development of a Comprehensive Model of the Apparent Viscosity of Blood for Simulations of the Microcirculation in Rat Spinotrapezius Muscle Fascia

    Science.gov (United States)

    Jacobitz, Frank; Porterfield, Colin; Engebrecht, Cheryn; Metzger, Ian

    2007-11-01

    A more comprehensive model for the apparent viscosity of blood is proposed and applied to simulations of the microcirculation in rat spinotrapezius muscle fascia. At the microcirculatory level, the apparent viscosity of blood depends on the local vessel diameter, hematocrit, and shear rate. Starting with the apparent viscosity model proposed by Pries, Secomb, Gaehtgens, and Gross (Circulation Research, 67, 826-834, 1990), describing the effect of vessel diameter and hematocrit on the apparent viscosity, and using experimental data presented by Lipowsky, Usami, and Chien (Microvascular Research, 19, 297-319, 1980), describing the shear rate dependence of apparent viscosity, a more comprehensive model is developed. This model is applied to simulations of the microcirculation in rat spinotrapezius muscle fascia. The simulations use realistic vessel topology for the microvasculature, reconstructed from microscope images of tissue samples, and consider passive and active vessel properties. The numerical method is based on a Hagen-Poiseuille balance in the microvessels and a sparse matrix solver is used to obtain the solution. It was found, for example, that the distribution of vessel length follows a log-normal law. The distribution of hematocrit, however, was found to be approximately normal.

  3. Plasma Viscosity : A Risk Factor In Hypertension

    Directory of Open Access Journals (Sweden)

    Puniyani R. R

    1989-01-01

    Full Text Available Haemorrheological study on hypertension was done at Indian Institute of Technology Hospital, Bombay. Male population in the age groups of 35 to 60 years was screened for hypertension from February 1986 to February 1987. Out of 340 subjects examined, 44 hypertensive cases were found, who were investigated for blood viscosity profile and were compared with 45 controls. The parameters studied were plasma viscosity, whole blood viscosity, red cell aggregation, red cell deformability and haematocrit W.H.O. criteria of hypertension (HT was strictly adhered to (B.P. above 160/95 mm of Hg. When compared to control group, plasma viscosity and whole blood viscosity were elevated in freshly detected and uncontrolled hypertensives. Red cell aggregation and deformability were significantly altered in chronic hypertensives than in normal, but haematocrit was not affected in any group.

  4. 小型猪减压性骨坏死病理及血液流变学改变%Changes of histopathology and blood viscosity in mini pigs with dysbaric osteonecrosis

    Institute of Scientific and Technical Information of China (English)

    李慈; 方以群; 孟淼; 付国举; 王杰; 朱祥祺; 蒋功达

    2010-01-01

    Objective To develop the dysharie osteonecrosis (DON) model in mini pigs induced by rapid decompression, following repeated hyperbaric exposures and observe changes in blood rheology in DON. Methods Twelve male mini pigs were exposed to compressed air of 0.45 MPa for 6 hours twice to three times a week and were then brought to the surface with linear decompression at a rate of 0.35 MPa/min. Blood viscosity was measured with cone-plate type viscosimeter, platelet count was made under the light microscope. Emission of computed tomography (ECT) and pathologic examination were performed for the evaluation of accumulated rate of 99Tc in the femur, following 3 months of repeated compression and decompression. Results ECT showed an increased accumulation of isotope in the femur, when a comparison was made between the experimental animals and the control. Osteopatholngy revealed changes of osteonecrosis in the femur. Platelet count decreased progressively with frequencies of pressure exposures, and meanwhile blood viscosity also increased progressively at a low shear rate. Conclusions Dysharie osteronecrosis was usually accompanied with bone ischemia. Platelet consumption and increased blood viscosity induced by decompression bubbles could be attributed to decreased blood flow in the bone, resulting in osteonecrosis.%目的 通过反复加减压建立小型猪减压性骨坏死模型并观察其血液流变学改变.方法 12头小型香猪,每周2~3次暴露于0.45 MPa加压舱内,每次6 h,1 min匀速减至常压.用锥板式黏度计测定全血黏度,光镜下血小板计数,反复加减压3个月后进行股骨同位素发射计算机扫描(ECT)及组织病理学检查.结果 ECT检查发现,动物股骨头同位素聚集增加,骨病理检查发现股骨发生缺血性坏死改变,血小板计数随加压次数增多而进行性降低,低剪切率下全血黏度则进行性升高.结论 减压性气泡引起的血小板消耗、血黏度增高是骨缺血坏死的原因之一.

  5. 血液黏滞系数对颅内大型动脉瘤剪切力的影响%Impact of blood viscosity on wall shear stress of large intracranial aneurysms

    Institute of Scientific and Technical Information of China (English)

    吴京; 刘爱华; 赵艺; 符策基; 彭汤明; 钱增辉; 康慧斌; 吴中学

    2015-01-01

    Objective To simulate the computational hemodynamics of large intracranial aneurysms and analyze the impact of blood viscosity on wall shear stress.Methods Eight large intracranial aneurysms at internal carotid artery between June 2013 and July 2013 were studied retrospectively.Among them,3 aneurysms were ruptured and 5 were unruptured.Pulsatile CFD simulations were carried out using three levels of blood viscosity (0.002,0.004,0.012 Pa·s).For each aneurysm model,the average wall shear stress (WSS) predicted by the three blood viscosity levels were compared.Results Blood viscosity has significant impaction on average wall shear stress of intracranial aneurysms and parent artery.Average wall shear stress increased significantly with the increase of blood viscosity.When blood viscosity was 0.002,0.004,0.012 Pa·s,the average wall shear stress of aneurysms was (2.79 ±2.23),(5.27 ±3.72) and (11.05 ± 7.56) Pa,respectively.The average wall shear stress of parent artery was (5.61 ± 2.59),(9.56 ± 3.74) and (22.56 ± 12.41) Pa respectively.A reduction in wall shear stress between the parent artery and the aneurysm sac was found in all the cases.Conclusion Abnormal increase or decrease in blood viscosity may aggravate vascular wall damage and increase the risk of aneurysmal rupture.It is necessary to adopt patient-specific value of blood viscosity in future hemodynamic studies of intracranial aneurysms.%目的 应用血流动力学数值模拟技术分析不同血液黏滞系数对颅内大型动脉瘤剪切力水平的影响.方法 收集我院2013年6月至2013年7月收治的8例颅内大型囊性动脉瘤患者脑血管三维影像数据,其中破裂动脉瘤3例,未破裂动脉瘤5例.应用CFD ICEM软件对动脉瘤三维模型进行网格划分,再进行流体力学数值模拟计算.在血液黏滞系数为0.002、0.004和0.012 Pa·s 3种水平时对颅内大型动脉瘤进行血流动力学数值模拟运算并比较动脉瘤及载

  6. Viscosity of water fog

    International Nuclear Information System (INIS)

    Fog stream velocity profiles were analysed inside narrow and wide flat channels. To calculate the shear viscosity coefficient, we used the Navier–Stokes equation. It was revealed that fog is a non-Newtonian liquid: its viscosity grows when the shear speed drops, and it can exceed the viscosity of clean air hundreds of times when the speed gradient is less than 0.01 sec−1. The high viscosity can be explained by the electrostatic interaction of the charged water drops. (paper)

  7. Viscosity measuring using microcantilevers

    Science.gov (United States)

    Oden, Patrick Ian

    2001-01-01

    A method for the measurement of the viscosity of a fluid uses a micromachined cantilever mounted on a moveable base. As the base is rastered while in contact with the fluid, the deflection of the cantilever is measured and the viscosity determined by comparison with standards.

  8. Viscosity and Solvation

    Science.gov (United States)

    Robertson, C. T.

    1973-01-01

    Discusses theories underlying the phenomena of solution viscosities, involving the Jones and Dole equation, B-coefficient determination, and flickering cluster model. Indicates that viscosity measurements provide a basis for the study of the structural effects of ions in aqueous solutions and are applicable in teaching high school chemistry. (CC)

  9. Computer Simulations of Pulsatile Human Blood Flow Through 3D-Models of the Human Aortic Arch, Vessels of Simple Geometry and a Bifurcated Artery: Investigation of Blood Viscosity and Turbulent Effects

    CERN Document Server

    Sultanov, Renat A

    2008-01-01

    We report computational results of blood flow through a model of the human aortic arch and a vessel of actual diameter and length. On the top of the aortic arch the branching of the %%three arteries are included: the subclavian and jugular. A realistic pulsatile flow is used in all simulations. Calculations for bifurcation type vessels are also carried out and presented. Different mathematical methods for numerical solution of the fluid dynamics equations have been considered. The non-Newtonian behaviour of the human blood is investigated together with turbulence effects. A detailed time-dependent mathematical convergence test has been carried out. The results of computer simulations of the blood flow in vessels of three different geometries are presented: for pressure, strain rate and velocity component distributions we found significant disagreements between our results obtained with realistic non-Newtonian treatment of human blood and the widely used method in the literature: a simple Newtonian approximati...

  10. Viscosity of colloidal suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, E.G.D. [Rockefeller Univ., New York, NY (United States); Schepper, I.M. de [Delft Univ. of Technology (Netherlands)

    1995-12-31

    Simple expressions are given for the effective Newtonian viscosity as a function of concentration as well as for the effective visco-elastic response as a function of concentration and imposed frequency, of monodisperse neutral colloidal suspensions over the entire fluid range. The basic physical mechanisms underlying these formulae are discussed. The agreement with existing experiments is very good.

  11. Viscosity model of high-viscosity dispersing system

    Institute of Scientific and Technical Information of China (English)

    魏先福; 王娜; 黄蓓青; 孙承博

    2008-01-01

    High-viscosity dispersing system is formed by dispersing the solid particles in the high-viscosity continuous medium.It is very easy to form the three-dimensional network structure for solid particles in the system and the rheology behavior becomes complicated.The apparent viscosity of this dispersing system always has the connection with the volume ratio and the shear rate.In order to discuss the rheology behavior and put up the viscosity model,the suspension of silicon dioxide and silicon oil were prepared.Through testing the viscosity,the solid concentration and the shear rate,the effects of the ratio and the shear rate on viscosity was analyzed,the model of the high-viscosity dispersing system was designed and the model with the printing ink were validated.The experiment results show that the model is applicable to the high-viscosity dispersing systems.

  12. Critical exponent for viscosity

    Science.gov (United States)

    Berg, Robert F.; Moldover, Michael R.

    1990-01-01

    The critical exponent y characterizing the divergence of the viscosity for carbon dioxide and xenon has been measured. The values of y for both fluids fall within the range y = 0.041 + or - 0.001 and are consistent with the range y = 0.042 + or - 0.002 spanned by earlier data for four binary liquid mixtures. This agreement is the strongest evidence that pure fluids and binary liquids are in the same dynamic universality class; however, the results for y are inconsistent with the recent theoretical value of 0.032.

  13. Plasma viscosity increase with progression of peripheral arterial atherosclerotic disease.

    Science.gov (United States)

    Poredos, P; Zizek, B

    1996-03-01

    Increased blood and plasma viscosity has been described in patients with coronary and peripheral arterial disease. However, the relation of viscosity to the extent of arterial wall deterioration--the most important determinant of clinical manifestation and prognosis of the disease--is not well known. Therefore, the authors studied plasma viscosity as one of the major determinants of blood viscosity in patients with different stages of arterial disease of lower limbs (according to Fontaine) and its relation to the presence of some risk factors of atherosclerosis. The study encompassed four groups of subjects: 19 healthy volunteers (group A), 18 patients with intermittent claudication up to 200 m (stage II; group B), 15 patients with critical ischemia of lower limbs (stage III and IV; group C), and 16 patients with recanalization procedures on peripheral arteries. Venous blood samples were collected from an antecubital vein without stasis for the determination of plasma viscosity (with a rotational capillary microviscometer, PAAR), fibrinogen, total cholesterol, alpha-2-macroglobulin, and glucose concentrations. In patients with recanalization procedure local plasma viscosity was also determined from blood samples taken from a vein on the dorsum of the foot. Plasma viscosity was most significantly elevated in the patients with critical ischemia (1.78 mPa.sec) and was significantly higher than in the claudicants (1.68 mPa.sec), and the claudicants also had significantly higher viscosity than the controls (1.58 mPa.sec). In patients in whom a recanalization procedure was performed, no differences in systemic and local plasma viscosity were detected, neither before nor after recanalization of the diseased artery. In all groups plasma viscosity was correlated with fibrinogen concentration (r=0.70, P < 0.01) and total cholesterol concentration (r=0.24, P < 0.05), but in group C (critical ischemia) plasma viscosity was most closely linked to the concentration of alpha-2

  14. Hall Viscosity I: Linear Response Theory for Viscosity

    Science.gov (United States)

    Bradlyn, Barry; Goldstein, Moshe; Read, Nicholas

    2012-02-01

    In two dimensional systems with broken time-reversal symmetry, there can exist a non-dissipative viscosity coefficient [1,2,3]. This Hall viscosity is similar in nature to the non-dissipative Hall conductivity. In order to investigate this phenomenon further, we develop a linear response formalism for viscosity. We derive a Kubo formula for the frequency dependent viscosity tensor in the long wavelength limit. We compute the viscosity tensor for the free electron gas, integer quantum Hall systems, and two-dimensional paired superfluids. In the zero frequency limit, we show how the known results [3,4] for the Hall viscosity are recovered.[4pt] [1] J. Avron, R. Seiler, and P. Zograf, Phys. Rev. Lett. 75, 697 (1995).[0pt] [2] P. Levay, J. Math. Phys. 36, 2792 (1995).[0pt] [3] N. Read, Phys. Rev. B 79, 045308 (2009).[0pt] [4] N. Read and E. Rezayi, Phys. Rev. B 84, 085316 (2011).

  15. Viscosity of Quantum Hall Fluids

    OpenAIRE

    Avron, J. E.; Seiler, R.; Zograf, P. G.

    1995-01-01

    The viscosity of quantum fluids with an energy gap at zero temperature is non-dissipative and is related to the adiabatic curvature on the space of flat background metrics (which plays the role of the parameter space). For a quantum Hall fluid on two dimensional tori this viscosity is computed. In this case the average viscosity is quantized and is proportional to the total magnetic flux through the torus.

  16. Shear viscosity of nuclear matter

    International Nuclear Information System (INIS)

    This paper reports my recent study[1] on the shear viscosity of neutron-rich nuclear matter from a relaxation time approach. An isospin- and momentum-dependent interaction is used in the study. Dependence of density, temperature, and isospin asymmetry of nuclear matter on its shear viscosity have been discussed. Similar to the symmetry energy, the symmetry shear viscosity is defined and its density and temperature dependence are studied. (authors)

  17. High-Frequency Shear Viscosity of Low-Viscosity Liquids

    Science.gov (United States)

    Kaatze, U.; Behrends, R.

    2014-11-01

    A thickness shear quartz resonator technique is described to measure the shear viscosity of low-viscosity liquids in the frequency range from 6 MHz to 130 MHz. Examples of shear-viscosity spectra in that frequency range are presented to show that various molecular processes are accompanied by shear-viscosity relaxation. Among these processes are conformational variations of alkyl chains, with relaxation times of about 0.3 ns for -pentadecane and -hexadecane at 25 C. These variations can be well represented in terms of a torsional oscillator model. Also featured briefly are shear-viscosity relaxations associated with fluctuations of hydrogen-bonded clusters in alcohols, for which values between 0.3 ns (-hexanol) and 1.5 ns (-dodecanol) have been found at 25 C. In addition, the special suitability of high-frequency shear-viscosity spectroscopy to the study of critically demixing mixtures is demonstrated by some illustrative examples. Due to slowing, critical fluctuations do not contribute to the shear viscosity at sufficiently high frequencies of measurements so that the non-critical background viscosity of critical systems can be directly determined from high-frequency shear-viscosity spectroscopy. Relaxations in appear also in the shear-viscosity spectra with, for example, 2 ns for the critical triethylamine-water binary mixture at temperatures between 10 C and 18 C. Such relaxations noticeably influence the relaxation rate of order parameter fluctuations. They may be also the reason for the need of a special mesoscopic viscosity when mutual diffusion coefficients of critical polymer solutions are discussed in terms of mode-coupling theory.

  18. Hall Viscosity and Electromagnetic Response

    OpenAIRE

    Hoyos, Carlos; Son, Dam Thanh

    2011-01-01

    We show that, for Galilean invariant quantum Hall states, the Hall viscosity appears in the electromagnetic response at finite wave numbers q. In particular, the leading q dependence of the Hall conductivity at small q receives a contribution from the Hall viscosity. The coefficient of the q^2 term in the Hall conductivity is universal in the limit of strong magnetic field.

  19. Impact of dual antiplatelet therapy on blood viscosity after treatment with drug-eluting coronary stents%双联抗血小板治疗对药物洗脱支架术后患者血液流变学的影响

    Institute of Scientific and Technical Information of China (English)

    阚静; 陈绍良; 林玲; 徐海梅; 赵莹莹; 刘彦; 陈峰

    2013-01-01

    目的 探讨双联抗血小板治疗对药物洗脱支架术后不同性别患者血液流变学的影响.方法 选择2009年9月至2009年12月接受药物洗脱支架置入术的598例冠心病患者,排除急性心肌梗死、急性脑梗死、肿瘤、肺源性心脏病、血流变学检查异常者,共有444例患者纳入分析.其中214例在术后9个月完成血液流变学检测随访.用ZL9000 PLUS型血流变测定仪测定全血黏度(高切、中切、低切)、血浆黏度、血细胞比容、红细胞变形指数、红细胞聚集指数、红细胞电泳时间.结果 药物洗脱支架术后双联抗血小板治疗9个月时,患者的全血黏度均明显升高,但全血低切还原黏度轻度降低,男性组红细胞沉降率和红细胞沉降率方程K值(除去血细胞比容的影响后的红细胞沉降率校正值)明显减小,但女性组变化不明显.结论 双联抗血小板治疗可以降低男性红细胞聚集,从而减少男性冠心病患者药物洗脱支架术后主要不良心脏事件的发生.%Objective To study the effect of dual antiplatelet therapy on blood viscosity in women and men after drug-eluting stent implantation. Methods 598 consecutive patients with coronary artery disease were treated by drug-eluting stent implantation from May 2009 to December 2010,of which 444 patients were included in the analysis,excluded acute myocardial infarction,acute cerebral infarction,tumor,cor pulmonale,and abnormal hemorrheology. 214 among them completed with hemorrheology follow-up 9 months after the teatment. The hemorheology was measured with hemorrheology tester (ZL9000 PLUS),including whole blood viscosity (high cut,cut,low cut),plasma viscosity,red blood cell deposited,erythrocyte deformation index,red cell aggregation index, and red blood cells electrophoretic time. Results Whole blood viscosity were significantly increased in patients with dual antiplatelet therapy continue 9-months after drug-eluting stent implantation

  20. Viscosity Measurement for Tellurium Melt

    Science.gov (United States)

    Lin, Bochuan; Li, Chao; Ban, Heng; Scripa, Rosalia N.; Su, Ching-Hua; Lehoczky, Sandor L.

    2006-01-01

    The viscosity of high temperature Te melt was measured using a new technique in which a rotating magnetic field was applied to the melt sealed in a suspended ampoule, and the torque exerted by rotating melt flow on the ampoule wall was measured. Governing equations for the coupled melt flow and ampoule torsional oscillation were solved, and the viscosity was extracted from the experimental data by numerical fitting. The computational result showed good agreement with experimental data. The melt velocity transient initiated by the rotating magnetic field reached a stable condition quickly, allowing the viscosity and electrical conductivity of the melt to be determined in a short period.

  1. Fission hindrance and nuclear viscosity

    Indian Academy of Sciences (India)

    Indranil Mazumdar

    2015-08-01

    We discuss the role of nuclear viscosity in hindering the fission of heavy nuclei as observed in the experimental measurements of GDR -ray spectra from the fissioning nuclei. We review a set of experiments carried out and reported by us previously [see Dioszegi et al, Phys. Rev. C 61, 024613 (2000); Shaw et al, Phys. Rev. C 61, 044612 (2000)] and argue that the nuclear viscosity parameter has no apparent dependence on temperature. However, it may depend upon the deformation of the nucleus.

  2. Viscosity model for aluminosilicate melt

    Directory of Open Access Journals (Sweden)

    Zhang G.H.

    2012-01-01

    Full Text Available The structurally based viscosity model proposed in our previous study is extended to include more components, e.g. SiO2, Al2O3, FeO, MnO, MgO, CaO, Na2O and K2O. A simple method is proposed to calculate the numbers of different types of oxygen ions classified by the different cations they bonded with, which is used to characterize the influence of composition on viscosity. When dealing with the aluminosilicate melts containing several basic oxides, the priority order is established for different cations for charge compensating Al3+ ions, according to the coulombic force between cation and oxygen anion. It is indicated that basic oxides have two paradox influences on viscosity: basic oxide with a higher basicity decreases viscosity more greatly by forming weaker non-bridging oxygen bond; while it increases viscosity more greatly by forming stronger bridging oxygen bond in tetrahedron after charge compensating Al3+ ion. The present model can extrapolate its application range to the system without SiO2. Furthermore, it could also give a satisfy interpretation to the abnormal phenomenon that viscosity increases when adding K2O to CaO-Al2O3-SiO2 melt within a certain composition range.

  3. Review on Nanofluid Theoretical Viscosity Models

    Directory of Open Access Journals (Sweden)

    P. C. Mukesh Kumar

    2012-04-01

    Full Text Available Much interest is shown on nanofluid as nanofluid is suitable for cooling applications. The two important thermo physical properties of nanofluid such as thermal conductivity and viscosity play key role in practical heat transfer situations. The nanofluid viscosity is investigated by many investigators next to the thermal conductivity of nanofluid as the viscosity determines the pumping power. This review summarizes the nanofluids theoretical viscosity models proposed by different research groups. Though many viscosity models formulated of nanofluids, there is no universally accepted model and reliable mechanism for viscosity over the particles volume fraction. Therefore this review leads to further investigation on the hotly debated topic of viscosity of nanofluids.

  4. Influence of electromagnetic radiation produced by mobile phone on some biophysical blood properties in rats.

    Science.gov (United States)

    El-Bediwi, Abu Bakr; Saad, Mohamed; El-kott, Attall F; Eid, Eman

    2013-04-01

    Effects of electromagnetic radiation produced by mobile phone on blood viscosity, plasma viscosity, hemolysis, Osmotic fragility, and blood components of rats have been investigated. Experimental results show that there are significant change on blood components and its viscosity which affects on a blood circulation due to many body problems. Red blood cells, White blood cells, and Platelets are broken after exposure to electromagnetic radiation produced by mobile phone. Also blood viscosity and plasma viscosity values are increased but Osmotic fragility value decreased after exposure to electromagnetic radiation produced by mobile phone.

  5. Bulk Viscosity of Interacting Hadrons

    OpenAIRE

    Wiranata, A.; M. Prakash

    2009-01-01

    We show that first approximations to the bulk viscosity $\\eta_v$ are expressible in terms of factors that depend on the sound speed $v_s$, the enthalpy, and the interaction (elastic and inelastic) cross section. The explicit dependence of $\\eta_v$ on the factor $(\\frac 13 - v_s^2)$ is demonstrated in the Chapman-Enskog approximation as well as the variational and relaxation time approaches. The interesting feature of bulk viscosity is that the dominant contributions at a given temperature ari...

  6. Bulk Viscosity of Interacting Hadrons

    CERN Document Server

    Wiranata, A

    2009-01-01

    We show that first approximations to the bulk viscosity $\\eta_v$ are expressible in terms of factors that depend on the sound speed $v_s$, the enthalpy, and the interaction (elastic and inelastic) cross section. The explicit dependence of $\\eta_v$ on the factor $(\\frac 13 - v_s^2)$ is demonstrated in the Chapman-Enskog approximation as well as the variational and relaxation time approaches. The interesting feature of bulk viscosity is that the dominant contributions at a given temperature arise from particles which are neither extremely nonrelativistic nor extremely relativistic. Numerical results for a model binary mixture are reported.

  7. Effective viscosity of confined hydrocarbons

    DEFF Research Database (Denmark)

    Sivebæk, Ion Marius; Samoilov, V.N.; Persson, B.N.J.

    2012-01-01

    We present molecular dynamics friction calculations for confined hydrocarbon films with molecular lengths from 20 to 1400 carbon atoms. We find that the logarithm of the effective viscosity ηeff for nanometer-thin films depends linearly on the logarithm of the shear rate: log ηeff=C-nlog γ̇, where...

  8. Anomalous-viscosity current drive

    Science.gov (United States)

    Stix, T.H.; Ono, M.

    1986-04-25

    The present invention relates to a method and apparatus for maintaining a steady-state current for magnetically confining the plasma in a toroidal magnetic confinement device using anomalous viscosity current drive. A second aspect of this invention relates to an apparatus and method for the start-up of a magnetically confined toroidal plasma.

  9. Bulk viscosity and deflationary universes

    CERN Document Server

    Lima, J A S; Waga, I

    2007-01-01

    We analyze the conditions that make possible the description of entropy generation in the new inflationary model by means of a nearequilibrium process. We show that there are situations in which the bulk viscosity cannot describe particle production during the coherent field oscillations phase.

  10. The Viscosity of Meson Matter

    CERN Document Server

    Dobado, A; Dobado, Antonio; Llanes-Estrada, Felipe J.

    2003-01-01

    We report a calculation of the shear viscosity in a relativistic multicomponent meson gas as a function of temperature and chemical potentials. We approximately solve the Uehling-Uhlenbeck transport equation of kinetic theory, appropriate for a boson gas, with relativistic kinematics. Since at low temperatures the gas can be taken as mostly composed of pions, with a fraction of kaons and etas, we explore the region where binary elastic collisions with at least one pion are the dominant scattering processes. Our input meson scattering phase shifts are fits to the experimental data obtained from chiral perturbation theory and the Inverse Amplitude Method. Our results take the correct non-relativistic limit (viscosity proportional to the square root of the temperature), show a viscosity of order the cubed of the pion mass up to temperatures somewhat below that mass, and then a large increase due to kaons and etas. Our approximation may break down at even higher temperatures, where the viscosity follows a tempera...

  11. Pressure Effect on Extensional Viscosity

    DEFF Research Database (Denmark)

    Christensen, Jens Horslund; Kjær, Erik Michael

    1999-01-01

    The primary object of these experiments was to investigate the influence of hydrostatic pressure on entrance flow. The effect of pressure on shear and extensional viscosity was evaluated using an axis symmetric capillary and a slit die where the hydrostatic pressure was raised with valves. The ex...

  12. Viscosity kernel of molecular fluids

    DEFF Research Database (Denmark)

    Puscasu, Ruslan; Todd, Billy; Daivis, Peter;

    2010-01-01

    The wave-vector dependent shear viscosities for butane and freely jointed chains have been determined. The transverse momentum density and stress autocorrelation functions have been determined by equilibrium molecular dynamics in both atomic and molecular hydrodynamic formalisms. The density, tem...... that generalized hydrodynamics must be applied in predicting the flow properties of molecular fluids on length scales where the strain rate varies sufficiently in the order of these dimensions (e.g., nanofluidic flows)....

  13. Viscosity kernel of molecular fluids

    DEFF Research Database (Denmark)

    Puscasu, Ruslan; Todd, Billy; Daivis, Peter;

    2010-01-01

    The wave-vector dependent shear viscosities for butane and freely jointed chains have been determined. The transverse momentum density and stress autocorrelation functions have been determined by equilibrium molecular dynamics in both atomic and molecular hydrodynamic formalisms. The density...... that generalized hydrodynamics must be applied in predicting the flow properties of molecular fluids on length scales where the strain rate varies sufficiently in the order of these dimensions (e.g., nanofluidic flows)....

  14. Viscosity of Earth's Outer Core

    CERN Document Server

    Smylie, D E

    2007-01-01

    A viscosity profile across the entire fluid outer core is found by interpolating between measured boundary values, using a differential form of the Arrhenius law governing pressure and temperature dependence. The discovery that both the retrograde and prograde free core nutations are in free decay (Palmer and Smylie, 2005) allows direct measures of viscosity at the top of the outer core, while the reduction in the rotational splitting of the two equatorial translational modes of the inner core allows it to be measured at the bottom. We find 2,371 plus/minus 1,530 Pa.s at the top and 1.247 plus/minus 0.035 x 10^11 Pa.s at the bottom. Following Brazhkin (1998) and Brazhkin and Lyapin (2000) who get 10^2 Pa.s at the top, 10^11 Pa.s at the bottom, by an Arrhenius extrapolation of laboratory experiments, we use a differential form of the Arrhenius law to interpolate along the melting temperature curve to find a viscosity profile across the outer core. We find the variation to be closely log-linear between the meas...

  15. Dynamical viscosity of nucleating bubbles

    CERN Document Server

    Alamoudi, S M; Boyanovsky, D; Aragão de Carvalho, C; Fraga, E S; Jorás, S E; Takakura, F I

    1999-01-01

    We study the viscosity corrections to the growth rate of nucleating bubbles in a first order phase transition in scalar field theory. We obtain the non-equilibrium equation of motion of the coordinate that describes small departures from the critical bubble and extract the growth rate consistently in weak coupling and in the thin wall limit. Viscosity effects arise from the interaction of this coordinate with the stable quantum and thermal fluctuations around a critical bubble. In the case of 1+1 dimensions we provide an estimate for the growth rate that depends on the details of the free energy functional. In 3+1 dimensions we recognize robust features that are a direct consequence of the thin wall approximation and give the leading viscosity corrections.These are long-wavelength hydrodynamic fluctuations that describe surface waves, quasi-Goldstone modes which are related to ripples on interfaces in phase ordered Ising-like systems. We discuss the applicability of our results to describe the growth rate of ...

  16. Shear viscosity of nuclear matter

    CERN Document Server

    Magner, A G; Grygoriev, U V; Plujko, V A

    2016-01-01

    Shear viscosity $\\eta$ is calculated for the nuclear matter described as a system of interacting nucleons with the van der Waals (VDW) equation of state. The Boltzmann-Vlasov kinetic equation is solved in terms of the plane waves of the collective overdamped motion. In the frequent collision regime, the shear viscosity depends on the particle number density $n$ through the mean-field parameter $a$ which describes attractive forces in the VDW equation. In the temperature region $T=15\\div 40$~MeV, a ratio of the shear viscosity to the entropy density $s$ is smaller than 1 at the nucleon number density $n =(0.5\\div 1.5)\\,n^{}_0$, where $n^{}_0=0.16\\,$fm$^{-3}$ is the particle density of equilibrium nuclear matter at zero temperature. A minimum of the $\\eta/s$ ratio takes place somewhere in a vicinity of the critical point of the VDW system. Large values of $\\eta/s\\gg 1$ are however found in both the low density, $n\\ll n^{}_0$, and high density, $n>2n^{}_0$, regions. This makes the ideal hydrodynamic approach ina...

  17. Viscosity Index Improvers and Thickeners

    Science.gov (United States)

    Stambaugh, R. L.; Kinker, B. G.

    The viscosity index of an oil or an oil formulation is an important physical parameter. Viscosity index improvers, VIIs, are comprised of five main classes of polymers: polymethylmethacrylates (PMAs), olefin copolymers (OCPs), hydrogenated poly(styrene-co-butadiene or isoprene) (HSD/SIP/HRIs), esterified polystyrene-co-maleic anhydride (SPEs) and a combination of PMA/OCP systems. The chemistry, manufacture, dispersancy and utility of each class are described. The comparative functions, properties, thickening ability, dispersancy and degradation of VIIs are discussed. Permanent and temporary shear thinning of VII-thickened formulations are described and compared. The end-use performance and choice of VI improvers is discussed in terms of low- and high-temperature viscosities, journal bearing oil film thickness, fuel economy, oil consumption, high-temperature pumping efficiency and deposit control. Discussion of future developments concludes that VI improvers will evolve to meet new challenges of increased thermal-oxidative degradation from increased engine operating temperatures, different base stocks of either synthetic base oils or vegetable oil-based, together with alcohol- or vegetable oil-based fuels. VI improvers must also evolve to deal with higher levels of fuel dilution and new types of sludge and also enhanced low-temperature requirements.

  18. Effect of viscosity on learned satiation

    NARCIS (Netherlands)

    Mars, M.; Hogenkamp, P.S.; Gosses, A.M.; Stafleu, A.; Graaf, de C.

    2009-01-01

    A higher viscosity of a food leads to a longer orosensory stimulation. This may facilitate the learned association between sensory signals and metabolic consequences. In the current study we investigated the effect of viscosity on learned satiation. In two intervention groups a low viscosity (LV) yo

  19. Extension of Radiative Viscosity to Superfluid Matter

    Institute of Scientific and Technical Information of China (English)

    PI Chun-Mei; YANG Shu-Hua; ZHENG Xiao-Ping

    2011-01-01

    The radiative viscosity of superfluid npe matter is studied and it is found that to the lowest order of δμ/T,the ratio of radiative viscosity to bulk viscosity is the same as that of its normal matter.As one of the most important transport coefficients,the bulk viscosities of simple npe matter,of hyperon matter and even of quark matter,both in normal and superfluid states,have been extensively studied,[1-18] for more detail see Ref.[19].%The radiative viscosity of superfluid npe matter is studied and it is found that to the lowest order of δμ/T, the ratio of radiative viscosity to bulk viscosity is the same as that of its normal matter.

  20. Effective Viscosity of Microswimmer Suspensions

    Science.gov (United States)

    Rafaï, Salima; Jibuti, Levan; Peyla, Philippe

    2010-03-01

    The measurement of a quantitative and macroscopic parameter to estimate the global motility of a large population of swimming biological cells is a challenge. Experiments on the rheology of active suspensions have been performed. Effective viscosity of sheared suspensions of live unicellular motile microalgae (Chlamydomonas Reinhardtii) is far greater than for suspensions containing the same volume fraction of dead cells. In addition, suspensions show shear thinning behavior. We relate these macroscopic measurements to the orientation of individual swimming cells under flow and discuss our results in the light of several existing models.

  1. Viscosity of ring polymer melts

    KAUST Repository

    Pasquino, Rossana

    2013-10-15

    We have measured the linear rheology of critically purified ring polyisoprenes, polystyrenes, and polyethyleneoxides of different molar masses. The ratio of the zero-shear viscosities of linear polymer melts η0,linear to their ring counterparts η0,ring at isofrictional conditions is discussed as a function of the number of entanglements Z. In the unentangled regime η0,linear/η 0,ring is virtually constant, consistent with the earlier data, atomistic simulations, and the theoretical expectation η0,linear/ η0,ring = 2. In the entanglement regime, the Z-dependence of ring viscosity is much weaker than that of linear polymers, in qualitative agreement with predictions from scaling theory and simulations. The power-law extracted from the available experimental data in the rather limited range 1 < Z < 20, η0,linear/η0,ring ∼ Z 1.2±0.3, is weaker than the scaling prediction (η0,linear/η0,ring ∼ Z 1.6±0.3) and the simulations (η0,linear/ η0,ring ∼ Z2.0±0.3). Nevertheless, the present collection of state-of-the-art experimental data unambiguously demonstrates that rings exhibit a universal trend clearly departing from that of their linear counterparts, and hence it represents a major step toward resolving a 30-year-old problem. © 2013 American Chemical Society.

  2. VISCOSITY DICTATES METABOLIC ACTIVITY of Vibrio ruber

    Directory of Open Access Journals (Sweden)

    Maja eBoric

    2012-07-01

    Full Text Available Little is known about metabolic activity of bacteria, when viscosity of their environment changes. In this work, bacterial metabolic activity in media with viscosity ranging from 0.8 to 29.4 mPas was studied. Viscosities up to 2.4 mPas did not affect metabolic activity of Vibrio ruber. On the other hand, at 29.4 mPas respiration rate and total dehydrogenase activity increased 8 and 4-fold, respectively. The activity of glucose-6-phosphate dehydrogenase increased up to 13-fold at higher viscosities. However, intensified metabolic activity did not result in faster growth rate. Increased viscosity delayed the onset as well as the duration of biosynthesis of prodigiosin. As an adaptation to viscous environment V. ruber increased metabolic flux through the pentose phosphate pathway and reduced synthesis of a secondary metabolite. In addition, V. ruber was able to modify the viscosity of its environment.

  3. Viscosity in Modified Gravity 

    Directory of Open Access Journals (Sweden)

    Iver Brevik

    2012-11-01

    Full Text Available A bulk viscosity is introduced in the formalism of modified gravity. It is shownthat, based on a natural scaling law for the viscosity, a simple solution can be found forquantities such as the Hubble parameter and the energy density. These solutions mayincorporate a viscosity-induced Big Rip singularity. By introducing a phase transition inthe cosmic fluid, the future singularity can nevertheless in principle be avoided. 

  4. VISCOSITY MODELING OF CONVENTIONAL KRAFT COOKS

    Institute of Scientific and Technical Information of China (English)

    DONGBOYAN; GOPALA.KRISHNAGOPALAN

    2004-01-01

    Static and dynamic models were studied for bothsoftwood and hardwood viscosity loss during Kraftpulping process. G-factor and initial EA charge in thestyle of Hatton equation can predicate final pulpviscosity. Dynamic models generated by effectivealkaline (EA) and temperature profile informationcan be used to predicate pulp viscosity at any timeduring pulping process. Viscosity online real-timeprediction is made possible by this model through anonline NIR sensor, which has been well calibrated tomeasure black liquor EA and temperature.

  5. FACTORS ON VISCOSITY STABILITY OF MOLD FLUXES

    Institute of Scientific and Technical Information of China (English)

    C.Y.Zhu; C.J.Liu; M.F.Jiang; Z.D.Yang

    2004-01-01

    Viscosity stability indexes of mold flux at high temperature and low temperature have been introduced,and the effects of flux compositions on viscosity stability indexes have been studied.Two mold fluxes have been developed by analyzing the effects of flux viscosity stability on the process and the condition of continuous casting slab of medium carbon steel.The results show that the fluxes are suitable for the process.

  6. VISCOSITY MODELING OF CONVENTIONAL KRAFT COOKS

    Institute of Scientific and Technical Information of China (English)

    DONGBO YAN; GOPAL A. KRISHNAGOPALAN

    2004-01-01

    Static and dynamic models were studied for both softwood and hardwood viscosity loss during Kraft pulping process. G-factor and initial EA charge in the style of Hatton equation can predicate final pulp viscosity. Dynamic models generated by effective alkaline (EA) and temperature profile information can be used to predicate pulp viscosity at any time during pulping process. Viscosity online real-time prediction is made possible by this model through an online NIR sensor, which has been well calibrated to measure black liquor EA and temperature.

  7. The effects of viscosity on circumplanetary disks

    Institute of Scientific and Technical Information of China (English)

    De-Fu Bu; Hsien Shang; Feng Yuan

    2013-01-01

    The effects of viscosity on the circumplanetary disks residing in the vicinity of protoplanets are investigated through two-dimensional hydrodynamical simulations with the shearing sheet model.We find that viscosity can considerably affect properties of the circumplanetary disk when the mass of the protoplanet Mp (<) 33 M(⊙),where M(⊙) is the Earth's mass.However,effects of viscosity on the circumplanetary disk are negligibly small when the mass of the protoplanet Mp(>) 33 M(⊙).We find that when Mp(<) 33 M(⊙),viscosity can markedly disrupt the spiral structure of the gas around the planet and smoothly distribute the gas,which weakens the torques exerted on the protoplanet.Thus,viscosity can slow the migration speed of a protoplanet.After including viscosity,the size of the circumplanetary disk can be decreased by a factor of (>) 20%.Viscosity helps to transport gas into the circumplanetary disk from the differentially rotating circumstellar disk.The mass of the circumplanetary disk can be increased by a factor of 50% after viscosity is taken into account when Mp(<) 33 M(⊙).Effects of viscosity on the formation of planets and satellites are briefly discussed.

  8. Shear Viscosity from Lattice QCD

    CERN Document Server

    Mages, Simon W; Fodor, Zoltán; Schäfer, Andreas; Szabó, Kálmán

    2015-01-01

    Understanding of the transport properties of the the quark-gluon plasma is becoming increasingly important to describe current measurements at heavy ion collisions. This work reports on recent efforts to determine the shear viscosity h in the deconfined phase from lattice QCD. The main focus is on the integration of the Wilson flow in the analysis to get a better handle on the infrared behaviour of the spectral function which is relevant for transport. It is carried out at finite Wilson flow time, which eliminates the dependence on the lattice spacing. Eventually, a new continuum limit has to be carried out which sends the new regulator introduced by finite flow time to zero. Also the non-perturbative renormalization strategy applied for the energy momentum tensor is discussed. At the end some quenched results for temperatures up to 4 : 5 T c are presented

  9. Holographic viscosity of fundamental matter.

    Science.gov (United States)

    Mateos, David; Myers, Robert C; Thomson, Rowan M

    2007-03-01

    A holographic dual of a finite-temperature SU(Nc) gauge theory with a small number of flavors Nfblack hole background. By considering the backreaction of the branes, we demonstrate that, to leading order in Nf/Nc, the viscosity to entropy ratio in these theories saturates the conjectured universal bound eta/s> or =1/4pi. Given the known results for the entropy density, the contribution of the fundamental matter eta fund is therefore enhanced at strong 't Hooft coupling lambda; for example, eta fund approximately lambda NcNfT3 in four dimensions. Other transport coefficients are analogously enhanced. These results hold with or without a baryon number chemical potential. PMID:17358523

  10. Drop spreading with random viscosity

    CERN Document Server

    Xu, Feng

    2016-01-01

    We examine theoretically the spreading of a viscous liquid drop over a thin film of uniform thickness, assuming the liquid's viscosity is regulated by the concentration of a solute that is carried passively by the spreading flow. The solute is assumed to be initially heterogeneous, having a spatial distribution with prescribed statistical features. To examine how this variability influences the drop's motion, we investigate spreading in a planar geometry using lubrication theory, combining numerical simulations with asymptotic analysis. We assume diffusion is sufficient to suppress solute concentration gradients across but not along the film. The solute field beneath the bulk of the drop is stretched by the spreading flow, such that the initial solute concentration immediately behind the drop's effective contact lines has a long-lived influence on the spreading rate. Over long periods, solute swept up from the precursor film accumulates in a short region behind the contact line, allowing patches of elevated v...

  11. Surface dilatational viscosity of Langmuir monolayers

    Science.gov (United States)

    Lopez, Juan; Vogel, Michael; Hirsa, Amir

    2003-11-01

    With increased interest in microfluidic systems, interfacial phenomena is receiving more attention. As the length scales of fluid problems decrease, the surface to volume ratio increases and the coupling between interfacial flow and bulk flow becomes increasingly dominated by effects due to intrinsic surface viscosities (shear and dilatational), in comparison to elastic effects (due to surface tension gradients). The surface shear viscosity is well-characterized, as cm-scale laboratory experiments are able to isolate its effects from other interfacial processes (e.g., in the deep-channel viscometer). The same is not true for the dilatational viscosity, because it acts in the direction of surface tension gradients. Their relative strength scale with the capillary number, and for cm-scale laboratory flows, surface tension effects tend to dominate. In microfluidic scale flows, the scaling favors viscosity. We have devised an experimental apparatus which is capable of isolating and enhancing the effects of dilatational viscosity at the cm scales by driving the interface harmonically in time, while keeping the interface flat. In this talk, we shall present both the theory for how this works as well as experimental measurements of surface velocity from which we deduce the dilatational viscosity of several monolayers on the air-water interface over a substantial range of surface concentrations. Anomalous behavior over some range of concentration, which superficially indicates negative viscosity, maybe explained in terms of compositional effects due to large spatial and temporal variations in concentration and corresponding viscosity.

  12. Viscosity evolution of anaerobic granular sludge

    NARCIS (Netherlands)

    Pevere, A.; Guibaud, G.; Hullebusch, van E.D.; Lens, P.N.L.; Baudu, M.

    2006-01-01

    The evolution of the apparent viscosity at steady shear rate of sieved anaerobic granular sludge (20¿315 ¿m diameter) sampled from different full-scale anaerobic reactors was recorded using rotation tests. The ¿limit viscosity¿ of sieved anaerobic granular sludge was determined from the apparent vis

  13. Fuel viscosity/density compensation device

    Energy Technology Data Exchange (ETDEWEB)

    Bostwick, N.W.

    1989-12-26

    This patent describes a fuel viscosity compensating device for providing an output which may be used to regulate the output of a fuel pump based on the viscosity of the fuel. It comprises: a housing including walls defining a pressure chamber and a fuel inlet; a piston; a piston spring; a pressure regulator; conduit means; swirl means; and fuel control means.

  14. Viscosity of deeply supercooled water and its coupling to molecular diffusion.

    Science.gov (United States)

    Dehaoui, Amine; Issenmann, Bruno; Caupin, Frédéric

    2015-09-29

    The viscosity of a liquid measures its resistance to flow, with consequences for hydraulic machinery, locomotion of microorganisms, and flow of blood in vessels and sap in trees. Viscosity increases dramatically upon cooling, until dynamical arrest when a glassy state is reached. Water is a notoriously poor glassformer, and the supercooled liquid crystallizes easily, making the measurement of its viscosity a challenging task. Here we report viscosity of water supercooled close to the limit of homogeneous crystallization. Our values contradict earlier data. A single power law reproduces the 50-fold variation of viscosity up to the boiling point. Our results allow us to test the Stokes-Einstein and Stokes-Einstein-Debye relations that link viscosity, a macroscopic property, to the molecular translational and rotational diffusion, respectively. In molecular glassformers or liquid metals, the violation of the Stokes-Einstein relation signals the onset of spatially heterogeneous dynamics and collective motions. Although the viscosity of water strongly decouples from translational motion, a scaling with rotational motion remains, similar to canonical glassformers. PMID:26378128

  15. The influence of oxidative damage on viscosity of seminal fluid in infertile men.

    Science.gov (United States)

    Aydemir, Birsen; Onaran, Ilhan; Kiziler, Ali Riza; Alici, Bulent; Akyolcu, Mehmet Can

    2008-01-01

    Increased oxidative damage has been suggested to play an important role in the viscosity changes of blood. However, changes in levels of oxidative damage products in semen and their relationship to seminal fluid viscosity are unknown. The aim of our study was to investigate whether oxidative damage was associated with seminal plasma viscosity in infertile subjects. The levels of malondialdehyde, and protein carbonyls were measured in sperm and seminal plasma from 102 individuals, including 60 infertile patients. Seminal fluid viscosity and semen viscosity were studied by use of capillary viscometer and glass pipettes, respectively. Significantly higher levels of oxidative stress and damage markers were found in subfertile subjects compared with the control subjects. The seminal fluid viscosities of patients were found to be significantly higher, although all of the control and patient subjects had normal viscoelasticity when semen samples were assessed according to World Health Organization guidelines. From Pearson correlation analysis, there were significant positive correlations between seminal fluid viscosity and seminal malondialdehyde and carbonyl levels in infertile males (r = .676, P < .01; r = .276, P < .05, respectively). Our results suggest that increased oxidative damage might be a factor for hyperviscosity of seminal plasma in infertile males. PMID:17673435

  16. Viscosity measurement techniques in Dissipative Particle Dynamics

    Science.gov (United States)

    Boromand, Arman; Jamali, Safa; Maia, Joao M.

    2015-11-01

    In this study two main groups of viscosity measurement techniques are used to measure the viscosity of a simple fluid using Dissipative Particle Dynamics, DPD. In the first method, a microscopic definition of the pressure tensor is used in equilibrium and out of equilibrium to measure the zero-shear viscosity and shear viscosity, respectively. In the second method, a periodic Poiseuille flow and start-up transient shear flow is used and the shear viscosity is obtained from the velocity profiles by a numerical fitting procedure. Using the standard Lees-Edward boundary condition for DPD will result in incorrect velocity profiles at high values of the dissipative parameter. Although this issue was partially addressed in Chatterjee (2007), in this work we present further modifications (Lagrangian approach) to the original LE boundary condition (Eulerian approach) that will fix the deviation from the desired shear rate at high values of the dissipative parameter and decrease the noise to signal ratios in stress measurement while increases the accessible low shear rate window. Also, the thermostat effect of the dissipative and random forces is coupled to the dynamic response of the system and affects the transport properties like the viscosity and diffusion coefficient. We investigated thoroughly the dependency of viscosity measured by both Eulerian and Lagrangian methodologies, as well as numerical fitting procedures and found that all the methods are in quantitative agreement.

  17. Bulk viscosity in holographic Lifshitz hydrodynamics

    OpenAIRE

    Carlos Hoyos; Bom Soo Kim; Yaron Oz

    2014-01-01

    We compute the bulk viscosity in holographic models dual to theories with Lifshitz scaling and/or hyperscaling violation, using a generalization of the bulk viscosity formula derived in arXiv:1103.1657 from the null focusing equation. We find that only a class of models with massive vector fields are truly Lifshitz scale invariant, and have a vanishing bulk viscosity. For other holographic models with scalars and/or massless vector fields we find a universal formula in terms of the dynamical ...

  18. Shear viscosity of liquid mixtures: Mass dependence

    International Nuclear Information System (INIS)

    Expressions for zeroth, second, and fourth sum rules of transverse stress autocorrelation function of two component fluid have been derived. These sum rules and Mori's memory function formalism have been used to study shear viscosity of Ar-Kr and isotopic mixtures. It has been found that theoretical result is in good agreement with the computer simulation result for the Ar-Kr mixture. The mass dependence of shear viscosity for different mole fraction shows that deviation from ideal linear model comes even from mass difference in two species of fluid mixture. At higher mass ratio shear viscosity of mixture is not explained by any of the emperical model. (author)

  19. Bulk viscosity in holographic Lifshitz hydrodynamics

    International Nuclear Information System (INIS)

    We compute the bulk viscosity in holographic models dual to theories with Lifshitz scaling and/or hyperscaling violation, using a generalization of the bulk viscosity formula derived in arXiv:1103.1657 from the null focusing equation. We find that only a class of models with massive vector fields are truly Lifshitz scale invariant, and have a vanishing bulk viscosity. For other holographic models with scalars and/or massless vector fields we find a universal formula in terms of the dynamical exponent and the hyperscaling violation exponent

  20. Bulk viscosity of hot and dense hadrons

    International Nuclear Information System (INIS)

    The bulk viscosity of hot and dense hadrons has been estimated within the framework of hadronic resonance gas model. We observe that the bulk viscosity to entropy ratio increases faster with temperature for higher μB. The magnitude of ζ is more at high μB. This results will have crucial importance for fire-ball produced at low energy nuclear collisions (FAIR, NICA). We note that the bulk to shear viscosity ratio remains above the bound set by AdS/CFT

  1. Intrinsic viscosity of a suspension of cubes

    KAUST Repository

    Mallavajula, Rajesh K.

    2013-11-06

    We report on the viscosity of a dilute suspension of cube-shaped particles. Irrespective of the particle size, size distribution, and surface chemistry, we find empirically that cubes manifest an intrinsic viscosity [η]=3.1±0.2, which is substantially higher than the well-known value for spheres, [η]=2.5. The orientation-dependent intrinsic viscosity of cubic particles is determined theoretically using a finite-element solution of the Stokes equations. For isotropically oriented cubes, these calculations show [η]=3.1, in excellent agreement with our experimental observations. © 2013 American Physical Society.

  2. Viscosity studies of water based magnetite nanofluids

    Science.gov (United States)

    Anu, K.; Hemalatha, J.

    2016-05-01

    Magnetite nanofluids of various concentrations have been synthesized through co-precipitation method. The structural and topographical studies made with the X-Ray Diffractometer and Atomic Force Microscope are presented in this paper. The density and viscosity studies for the ferrofluids of various concentrations have been made at room temperature. The experimental viscosities are compared with theoretical values obtained from Einstein, Batchelor and Wang models. An attempt to modify the Rosensweig model is made and the modified Rosensweig equation is reported. In addition, new empirical correlation is also proposed for predicting viscosity of ferrofluid at various concentrations.

  3. The extension of radiative viscosity to superfluid matter

    OpenAIRE

    Pi, Chun-Mei; Yang, Shu-Hua; Zheng, Xiao-Ping

    2010-01-01

    The radiative viscosity of superfluid $npe$ matter is studied, and it is found that to the lowest order of $\\delta \\mu/T$ the ratio of radiative viscosity to bulk viscosity is the same as that of the normal matter.

  4. Shear viscosity in magnetized neutron star crust

    CERN Document Server

    Ofengeim, D D

    2015-01-01

    The electron shear viscosity due to Coulomb scattering of degenerate electrons by atomic nuclei throughout a magnetized neutron star crust is calculated. The theory is based on the shear viscosity coefficient calculated neglecting magnetic fields but taking into account gaseous, liquid and solid states of atomic nuclei, multiphonon scattering processes, and finite sizes of the nuclei albeit neglecting the effects of electron band structure. The effects of strong magnetic fields are included in the relaxation time approximation with the effective electron relaxation time taken from the field-free theory. The viscosity in a magnetized matter is described by five shear viscosity coefficients. They are calculated and their dependence on the magnetic field and other parameters of dense matter is analyzed. Possible applications and open problems are outlined.

  5. Lift force due to odd (Hall) viscosity

    CERN Document Server

    Kogan, E

    2016-01-01

    We study the problem of flow past an infinite cylinder at right angle to its axis at low Reynolds number when the fluid is characterised by broken time-reversal invariance, and hence by odd viscosity in addition to the normal even one. We solve the Oseen approximation to Navier-Stokes equation and calculate the lift force which appears due to the odd viscosity.

  6. A Simple BODIPY-Based Viscosity Probe for Imaging of Cellular Viscosity in Live Cells.

    Science.gov (United States)

    Su, Dongdong; Teoh, Chai Lean; Gao, Nengyue; Xu, Qing-Hua; Chang, Young-Tae

    2016-01-01

    Intracellular viscosity is a fundamental physical parameter that indicates the functioning of cells. In this work, we developed a simple boron-dipyrromethene (BODIPY)-based probe, BTV, for cellular mitochondria viscosity imaging by coupling a simple BODIPY rotor with a mitochondria-targeting unit. The BTV exhibited a significant fluorescence intensity enhancement of more than 100-fold as the solvent viscosity increased. Also, the probe showed a direct linear relationship between the fluorescence lifetime and the media viscosity, which makes it possible to trace the change of the medium viscosity. Furthermore, it was demonstrated that BTV could achieve practical applicability in the monitoring of mitochondrial viscosity changes in live cells through fluorescence lifetime imaging microscopy (FLIM). PMID:27589762

  7. STUDY OF THE VISCOSITY OF PROTEIN SOLUTIONS THROUGH THE RAPID VISCOSITY ANALYZER (RVA

    Directory of Open Access Journals (Sweden)

    Maura P. Alves

    2014-05-01

    Full Text Available This study aimed to determine viscosity curves prepared from whey protein concentrates (WPCs by the rapid viscosity analyzer (RVA and determine the optimal heat treatment time in order to obtain the maximum viscosity solutions at this stage. The WPCs produced from whey samples initially subjected to thermal treatment and microfiltration presented composition compatible with the international standards, with a significant difference (p<0.05 for fat concentration. Viscographic profiles indicated that WPCs produced from microfiltered whey had higher viscosities than those subjected to heat treatment. In addition, 10 min was determined to be the optimal length of time for heat treatment in order to maximise WPCs viscosity. These results indicate that WPC production can be designed for different food applications. Finally, a rapid viscosity analyzer was demonstrated to be an appropriate tool to study the application of whey proteins in food systems.

  8. High-Temperature Viscosity Of Commercial Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Hrma, Pavel R; See, Clem A; Lam, Oanh P; Minister, Kevin B

    2005-01-01

    Viscosity was measured for six types of commercial glasses: low-expansion-borosilicate glasses, E glasses, fiberglass wool glasses, TV panel glasses, container glasses, and float glasses. Viscosity data were obtained with rotating spindle viscometers within the temperature range between 900°C and 1550°C; the viscosity varied from 1 Pa∙s to 750 Pa∙s. Arrhenius coefficients were calculated for individual glasses and linear models were applied to relate them to the mass fractions of 11 major components (SiO2, CaO, Na2O, Al2O3, B2O3, BaO, SrO, K2O, MgO, PbO, and ZrO2) and 12 minor components (Fe2O3, ZnO, Li2O, TiO2, CeO2, F, Sb2O3, Cr2O3, As2O3, MnO2, SO3, and Co3O4). The models are recommended for glasses containing 42 to 84 mass% SiO2 to estimate viscosities or temperatures at a constant viscosity for melts within both the temperature range from 1100°C to 1550°C and viscosity range from 10 to 400 Pas.

  9. Experimental study on the pressure and pulse wave propagation in viscoelastic vessel tubes-effects of liquid viscosity and tube stiffness.

    Science.gov (United States)

    Ikenaga, Yuki; Nishi, Shohei; Komagata, Yuka; Saito, Masashi; Lagrée, Pierre-Yves; Asada, Takaaki; Matsukawa, Mami

    2013-11-01

    A pulse wave is the displacement wave which arises because of ejection of blood from the heart and reflection at vascular bed and distal point. The investigation of pressure waves leads to understanding the propagation characteristics of a pulse wave. To investigate the pulse wave behavior, an experimental study was performed using an artificial polymer tube and viscous liquid. A polyurethane tube and glycerin solution were used to simulate a blood vessel and blood, respectively. In the case of the 40 wt% glycerin solution, which corresponds to the viscosity of ordinary blood, the attenuation coefficient of a pressure wave in the tube decreased from 4.3 to 1.6 dB/m because of the tube stiffness (Young's modulus: 60 to 200 kPa). When the viscosity of liquid increased from approximately 4 to 10 mPa·s (the range of human blood viscosity) in the stiff tube, the attenuation coefficient of the pressure wave changed from 1.6 to 3.2 dB/m. The hardening of the blood vessel caused by aging and the increase of blood viscosity caused by illness possibly have opposite effects on the intravascular pressure wave. The effect of the viscosity of a liquid on the amplitude of a pressure wave was then considered using a phantom simulating human blood vessels. As a result, in the typical range of blood viscosity, the amplitude ratio of the waves obtained by the experiments with water and glycerin solution became 1:0.83. In comparison with clinical data, this value is much smaller than that seen from blood vessel hardening. Thus, it can be concluded that the blood viscosity seldom affects the attenuation of a pulse wave.

  10. Viscosity of Xenon Examined in Microgravity

    Science.gov (United States)

    Zimmerli, Gregory A.; Berg, Robert F.; Moldover, Michael R.

    1999-01-01

    Why does water flow faster than honey? The short answer, that honey has a greater viscosity, merely rephrases the question. The fundamental answer is that viscosity originates in the interactions between a fluid s molecules. These interactions are so complicated that, except for low-density gases, the viscosity of a fluid cannot be accurately predicted. Progress in understanding viscosity has been made by studying moderately dense gases and, more recently, fluids near the critical point. Modern theories predict a universal behavior for all pure fluids near the liquid-vapor critical point, and they relate the increase in viscosity to spontaneous fluctuations in density near this point. The Critical Viscosity of Xenon (CVX) experiment tested these theories with unprecedented precision when it flew aboard the Space Shuttle Discovery (STS-85) in August 1997. Near the critical point, xenon is a billion times more compressible than water, yet it has about the same density. Because the fluid is so "soft," it collapses under its own weight when exposed to the force of Earth s gravity - much like a very soft spring. Because the CVX experiment is conducted in microgravity, it achieves a very uniform fluid density even very close to the critical point. At the heart of the CVX experiment is a novel viscometer built around a small nickel screen. An oscillating electric field forces the screen to oscillate between pairs of electrodes. Viscosity, which dampens the oscillations, can be calculated by measuring the screen motion and the force applied to the screen. So that the fluid s delicate state near the critical point will not be disrupted, the screen oscillations are set to be both slow and small.

  11. On the similarity of variable viscosity flows

    Science.gov (United States)

    Voivenel, L.; Danaila, L.; Varea, E.; Renou, B.; Cazalens, M.

    2016-08-01

    Turbulent mixing is ubiquitous in both nature and industrial applications. Most of them concern different fluids, therefore with variable physical properties (density and/or viscosity). The focus here is on variable viscosity flows and mixing, involving density-matched fluids. The issue is whether or not these flows may be self-similar, or self-preserving. The importance of this question stands on the predictability of these flows; self-similar dynamical systems are easier tractable from an analytical viewpoint. More specifically, self-similar analysis is applied to the scale-by-scale energy transport equations, which represent the transport of energy at each scale and each point of the flow. Scale-by-scale energy budget equations are developed for inhomogeneous and anisotropic flows, in which the viscosity varies as a result of heterogeneous mixture or temperature variations. Additional terms are highlighted, accounting for the viscosity gradients, or fluctuations. These terms are present at both small and large scales, thus rectifying the common belief that viscosity is a small-scale quantity. Scale-by-scale energy budget equations are then adapted for the particular case of a round jet evolving in a more viscous host fluid. It is further shown that the condition of self-preservation is not necessarily satisfied in variable-viscosity jets. Indeed, the jet momentum conservation, as well as the constancy of the Reynolds number in the central region of the jet, cannot be satisfied simultaneously. This points to the necessity of considering less stringent conditions (with respect to classical, single-fluid jets) when analytically tackling these flows and reinforces the idea that viscosity variations must be accounted for when modelling these flows.

  12. Viscosity correlations for Gulf of Mexico crude oils

    Energy Technology Data Exchange (ETDEWEB)

    Petrosky, G.E. Jr.; Farshad, F.F. [Univ. of Southwestern Louisiana, Lafayette, LA (United States)

    1995-12-31

    In 1984, Sutton and Farshad evaluated the accuracy of several published viscosity correlations for application in the Gulf of Mexico. A total of 31 different crude oil systems from the Louisiana and Texas gulf coast were used in their analysis. The errors encountered were rather high for dead and saturated oil viscosity. New empirical viscosity correlations for estimating dead oil, saturated oil and undersaturated oil viscosities have been developed as a function of commonly available field data. Results show that these viscosities can be predicted with average absolute errors ranging from 2.91% for undersaturated oil viscosity to 14.47% for saturated oil viscosity.

  13. Blood Clots

    Science.gov (United States)

    ... Index A-Z Blood Clots Blood clots are semi-solid masses of blood that can be stationary (thrombosis) ... treated? What are blood clots? Blood clots are semi-solid masses of blood. Normally, blood flows freely through ...

  14. Viscosity of a dusty plasma liquid

    International Nuclear Information System (INIS)

    We present the results of our experimental study of the flow of a dusty plasma liquid produced by macroparticles in an argon plasma. The dependences of shear viscosity for such a liquid on the magnitude of the external force inducing the dusty plasma liquid flow and on the plasma-generating gas pressure are analyzed. We have established that the viscosity of a dusty plasma medium decreases with increasing shear stress in it, while the viscosity of such a liquid increases with buffer gas pressure. The flow of a dusty plasma liquid under the action of an external force has been found to resemble the plastic deformation of a Bingham body. We suggest that the formation of crystal-like dusty plasma clusters in a 'liquid' phase can be responsible for the non-Newtonian behavior of the dusty plasma liquid flow

  15. Viscosity jump in Earth's mid-mantle.

    Science.gov (United States)

    Rudolph, Maxwell L; Lekić, Vedran; Lithgow-Bertelloni, Carolina

    2015-12-11

    The viscosity structure of Earth's deep mantle affects the thermal evolution of Earth, the ascent of mantle plumes, settling of subducted oceanic lithosphere, and the mixing of compositional heterogeneities in the mantle. Based on a reanalysis of the long-wavelength nonhydrostatic geoid, we infer viscous layering of the mantle using a method that allows us to avoid a priori assumptions about its variation with depth. We detect an increase in viscosity at 800- to 1200-kilometers depth, far greater than the depth of the mineral phase transformations that define the mantle transition zone. The viscosity increase is coincident in depth with regions where seismic tomography has imaged slab stagnation, plume deflection, and changes in large-scale structure and offers a simple explanation of these phenomena. PMID:26659053

  16. Viscosity jump in Earth's mid-mantle.

    Science.gov (United States)

    Rudolph, Maxwell L; Lekić, Vedran; Lithgow-Bertelloni, Carolina

    2015-12-11

    The viscosity structure of Earth's deep mantle affects the thermal evolution of Earth, the ascent of mantle plumes, settling of subducted oceanic lithosphere, and the mixing of compositional heterogeneities in the mantle. Based on a reanalysis of the long-wavelength nonhydrostatic geoid, we infer viscous layering of the mantle using a method that allows us to avoid a priori assumptions about its variation with depth. We detect an increase in viscosity at 800- to 1200-kilometers depth, far greater than the depth of the mineral phase transformations that define the mantle transition zone. The viscosity increase is coincident in depth with regions where seismic tomography has imaged slab stagnation, plume deflection, and changes in large-scale structure and offers a simple explanation of these phenomena.

  17. The Friction Theory for Viscosity Modeling

    DEFF Research Database (Denmark)

    Cisneros, Sergio; Zeberg-Mikkelsen, Claus Kjær; Stenby, Erling Halfdan

    2001-01-01

    such as the SRK, PR and PRSV, can provide accurate viscosity prediction and modeling of characterized oils. In the case of light reservoir oils, whose properties are close to those of normal alkanes, the one-parameter f-theory general models can predict the viscosity of these fluids with good accuracy. Yet...... below the saturation pressure. In addition, a tuned f-theory general model delivers accurate modeling of different kinds of light and heavy oils. Thus, the simplicity and stability of the f-theory general models make them a powerful tool for applications such as reservoir simulations, between others. (C......In this work the one-parameter friction theory (f-theory) general models have been extended to the viscosity prediction and modeling of characterized oils. It is demonstrated that these simple models, which take advantage of the repulsive and attractive pressure terms of cubic equations of state...

  18. Viscosity Meaurement Technique for Metal Fuels

    International Nuclear Information System (INIS)

    Metallic fuels have exceptional transient behavior, excellent thermal conductivity, and a more straightforward reprocessing path, which does not separate out pure plutonium from the process stream. Fabrication of fuel containing minor actinides and rare earth (RE) elements for irradiation tests, for instance, U-20Pu-3Am-2Np-1.0RE-15Zr samples at the Idaho National Laboratory, is generally done by melt casting in an inert atmosphere. For the design of a casting system and further scale up development, computational modeling of the casting process is needed to provide information on melt flow and solidification for process optimization. Therefore, there is a need for melt viscosity data, the most important melt property that controls the melt flow. The goal of the project was to develop a measurement technique that uses fully sealed melt sample with no Americium vapor loss to determine the viscosity of metallic melts and at temperatures relevant to the casting process. The specific objectives of the project were to: develop mathematical models to establish the principle of the measurement method, design and build a viscosity measurement prototype system based on the established principle, and calibrate the system and quantify the uncertainty range. The result of the project indicates that the oscillation cup technique is applicable for melt viscosity measurement. Detailed mathematical models of innovative sample ampoule designs were developed to not only determine melt viscosity, but also melt density under certain designs. Measurement uncertainties were analyzed and quantified. The result of this project can be used as the initial step toward the eventual goal of establishing a viscosity measurement system for radioactive melts.

  19. Viscosity Meaurement Technique for Metal Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Ban, Heng [Utah State Univ., Logan, UT (United States). Mechanical and Aerospace Engineering; Kennedy, Rory [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-02-09

    Metallic fuels have exceptional transient behavior, excellent thermal conductivity, and a more straightforward reprocessing path, which does not separate out pure plutonium from the process stream. Fabrication of fuel containing minor actinides and rare earth (RE) elements for irradiation tests, for instance, U-20Pu-3Am-2Np-1.0RE-15Zr samples at the Idaho National Laboratory, is generally done by melt casting in an inert atmosphere. For the design of a casting system and further scale up development, computational modeling of the casting process is needed to provide information on melt flow and solidification for process optimization. Therefore, there is a need for melt viscosity data, the most important melt property that controls the melt flow. The goal of the project was to develop a measurement technique that uses fully sealed melt sample with no Americium vapor loss to determine the viscosity of metallic melts and at temperatures relevant to the casting process. The specific objectives of the project were to: develop mathematical models to establish the principle of the measurement method, design and build a viscosity measurement prototype system based on the established principle, and calibrate the system and quantify the uncertainty range. The result of the project indicates that the oscillation cup technique is applicable for melt viscosity measurement. Detailed mathematical models of innovative sample ampoule designs were developed to not only determine melt viscosity, but also melt density under certain designs. Measurement uncertainties were analyzed and quantified. The result of this project can be used as the initial step toward the eventual goal of establishing a viscosity measurement system for radioactive melts.

  20. Apparatus and method for measuring viscosity

    Science.gov (United States)

    Murphy, Jr., Robert J.

    1986-01-01

    The present invention is directed to an apparatus and method for measuring the viscosity of a fluid. This apparatus and method is particularly useful for the measurement of the viscosity of a liquid in a harsh environment characterized by high temperature and the presence of corrosive or deleterious gases and vapors which adversely affect conventional ball or roller bearings. The apparatus and method of the present invention employ one or more flexural or torsional bearings to suspend a bob capable of limited angular motion within a rotatable sleeve suspended from a stationary frame.

  1. Entropy viscosity method for nonlinear conservation laws

    KAUST Repository

    Guermond, Jean-Luc

    2011-05-01

    A new class of high-order numerical methods for approximating nonlinear conservation laws is described (entropy viscosity method). The novelty is that a nonlinear viscosity based on the local size of an entropy production is added to the numerical discretization at hand. This new approach does not use any flux or slope limiters, applies to equations or systems supplemented with one or more entropy inequalities and does not depend on the mesh type and polynomial approximation. Various benchmark problems are solved with finite elements, spectral elements and Fourier series to illustrate the capability of the proposed method. © 2010 Elsevier Inc.

  2. Shear viscosity of a hadronic gas mixture

    OpenAIRE

    Itakura, Kazunori; Morimatsu, Osamu; Otomo, Hiroshi

    2007-01-01

    We discuss in detail the shear viscosity coefficient eta and the viscosity to entropy density ratio eta/s of a hadronic gas comprised of pions and nucleons. In particular, we study the effects of baryon chemical potential on eta and eta/s. We solve the relativistic quantum Boltzmann equations with binary collisions (pi pi, pi N, and NN) for a state slightly deviated from thermal equilibrium at temperature T and baryon chemical potential mu. The use of phenomenological amplitudes in the collis...

  3. Rare Gas Viscosities: A Learning Tool

    Science.gov (United States)

    Halpern, Arthur M.

    2002-02-01

    The viscosities, h, of the rare gases and SF6 are determined in a physical chemistry laboratory experiment using the evacuation method, which is based on Poiseuille's equation. Students become aware that h does not vary monotonically with row number (or atomic mass) and confirm this behavior on the basis of the kinetic theory expression for h. They find that the collision diameters of the gases, s, which are obtained from h values, increase monotonically with molar mass, as expected. Students can show that values of s obtained from gas viscosities agree reasonably well with ab initio calculations of atomic (molecular) diameters using Gaussian 98W.

  4. Thermal relics in cosmology with bulk viscosity

    International Nuclear Information System (INIS)

    In this paper we discuss some consequences of cosmological models in which the primordial cosmic matter is described by a relativistic imperfect fluid. The latter takes into account the dissipative effects (bulk viscosity) arising from different cooling rates of the fluid components in the expanding Universe. We discuss, in particular, the effects of the bulk viscosity on Big Bang Nucleosynthesis and on the thermal relic abundance of particles, looking at recent results of PAMELA experiment. The latter has determined an anomalous excess of positron events, which cannot be explained by conventional cosmology and particle physics. (orig.)

  5. Shear viscosity coefficient of liquid lanthanides

    International Nuclear Information System (INIS)

    Present paper deals with the computation of shear viscosity coefficient (η) of liquid lanthanides. The effective pair potential v(r) is calculated through our newly constructed model potential. The Pair distribution function g(r) is calculated from PYHS reference system. To see the influence of local field correction function, Hartree (H), Tailor (T) and Sarkar et al (S) local field correction function are used. Present results are compared with available experimental as well as theoretical data. Lastly, we found that our newly constructed model potential successfully explains the shear viscosity coefficient (η) of liquid lanthanides

  6. SOME ASPECTS OF THE REACTIVITY OF PULP INTENDED FOR HIGH-VISCOSITY VISCOSE

    Directory of Open Access Journals (Sweden)

    Linda Ostberg,

    2012-01-01

    Full Text Available The motivation for this study was to reduce the consumption of C2S when preparing high-viscosity viscose by pre-treating two softwood pulps with enzymes prior to the viscose stages. Reactivity was evaluated in two ways, Fock´s test of the pulp and the gamma number of the viscose solution prior to regeneration. Whilst the reactivity of a pulp that had been subjected to enzyme pretreatment increased according to Fock´s test, it did not increase according to the gamma number. This unexpected difference between the two reactivity tests was investigated. It was concluded that Fock´s test measures the extent to which C2S reacts with a pulp sample during a standardized test, whereas the gamma number measures the resulting degree of xanthate substitution on the cellulose backbone. The gamma number was judged to be the more relevant of the two tests, since it reflects the dissolution ability of a pulp in the viscose preparation. A higher gamma number also means that the coagulation time in the spinning process is prolonged; this is beneficial, as it can be used to increase the tenacity of the viscose fibres. Measuring the reactivity according to Fock´s test, on the contrary, provides more dubious results, as the test has no undisputed correlation to the viscose preparation process.

  7. Does Reactive Thrombocytosis Observed in Iron Deficiency Anemia Affect Plasma Viscosity?

    Directory of Open Access Journals (Sweden)

    Selami K. Toprak

    2012-09-01

    Full Text Available OBJECTIVE: The accompanying thrombocytosis is referred to as the major factor associated with thromboembolism in iron deficiency anemia (IDA. Increased viscosity may increase the risk of thrombosis. We hypothesized that increased platelet count -with reactive thrombocytosis- might also affect plasma viscosity. We planned to evaluate the influence of normal and high platelet count on plasma viscosity in IDA patients. METHODS: The patient population consisted of fifty-three newly diagnosed and untreated women aged between 18 and 62 years with IDA. Group 1 consisted of 33 patients, platelet levels below 400 x 109/L. Group 2 consisted of 20 patients, platelet levels above 400 x 109/L. Measurements of plasma viscosity were performed using Brookfield viscometer. RESULTS: Mean plasma viscosity was found as 1.05 ± 0.08 mPa.s. in Group 1, and 1.03 ± 0.06 mPa.s. in Group 2. Mean plasma viscosity was not statistically different. White blood cell count was significantly higher in Group 2. Vitamin B12 levels were significantly higher in Group 2, while folic acid levels were higher in Group 1 (p=0.011 and p=0.033. Plasma viscosity was correlated with erythrocyte sedimentation rate (r=0.512 p=0.002 in Group 1 and inversely correlated with vitamin B12 (r=−0.480 p=0.032 in Group 2. CONCLUSION: Despite the significant difference between groups in terms of platelet count, no significant difference was detected in plasma viscosity and this finding could be explained as the following; 1-These platelets were not thrombocythemic platelets; 2-Similar to the theory about leukocytes, higher platelet counts – even non-thrombocythemic – may increase plasma viscosity; 3-Evaluating platelet count alone is not sufficient and the associating red-cell deformability should also be taken into account; and 4-Although other diseases that could affect viscosity are excluded, some definitely proven literature criteria such as fibrinogen, hyperlipidemia, and the inflammatory

  8. Pressure-viscosity coefficient of biobased lubricants

    Science.gov (United States)

    Film thickness is an important tribological property that is dependent on the combined effect of lubricant properties, material property of friction surfaces, and the operating conditions of the tribological process. Pressure-viscosity coefficient (PVC) is one of the lubricant properties that influe...

  9. Uniaxial Elongational viscosity of bidisperse polystyrene melts

    DEFF Research Database (Denmark)

    Nielsen, Jens Kromann; Rasmussen, Henrik K.; Hassager, Ole

    2006-01-01

    The startup and steady uniaxial elongational viscosity have been measured for three bidisperse polystyrene (PS) melts, consisting of blends of monodisperse PS with molecular weights of 52 kg/mole or 103 kg/mole and 390 kg/mole. The bidisperse melts have a maximum in the steady elongational...

  10. On the measurement of magnetic viscosity

    Energy Technology Data Exchange (ETDEWEB)

    Serletis, C. [Department of Physics, Aristotle University, Thessaloniki 54124 (Greece); Efthimiadis, K.G., E-mail: kge@auth.gr [Department of Physics, Aristotle University, Thessaloniki 54124 (Greece)

    2012-08-15

    This work is an investigation of the experimental method used for measuring the magnetic viscosity in a hard ferromagnetic material, i.e. the recording of the magnetization under constant applied field and temperature, after the material has been magnetically saturated. It investigates how the experimental results are affected by the initial conditions of the method (saturation field, field change rate and field oscillation prior to its stabilization), and by minor variations of field and temperature during the recording. Based on the arising conclusions and the use of a more complex fitting function of measurements, the accuracy and repeatability of experimental results is improved. - Highlights: Black-Right-Pointing-Pointer Magnetic viscosity is affected by initial measurement conditions. Black-Right-Pointing-Pointer Minor field deviations prior to its stabilization cause large changes in viscosity. Black-Right-Pointing-Pointer Viscosity is strongly dependent on the field change rate from saturation to the measurement field. Black-Right-Pointing-Pointer Small changes in field and temperature during the experiment can lead to false measurements. Black-Right-Pointing-Pointer Errors in measurements can be eliminated through the use of a proper fitting function.

  11. Viscosity Solutions of Monotonic Functional Parabolic PDE

    Institute of Scientific and Technical Information of China (English)

    Wei An LIU; Gang LU

    2004-01-01

    In this paper, by the technique of coupled solutions, the notion of viscosity solution is extended to quasi-monotonic fully nonlinear parabolic equations with delay, which involves many models arising from optimal control theory, economy and finance, biology etc. The comparison, existence and uniqueness are proved. And the results are applied to the retarded Bellman equations.

  12. Viscosity of endodontic irrigants: Influence of temperature

    Science.gov (United States)

    Poggio, Claudio; Ceci, Matteo; Beltrami, Riccardo; Colombo, Marco; Dagna, Alberto

    2015-01-01

    Background: The aim of this study was to assess the influence of temperature on the viscosity of different endodontic irrigants. Materials and Methods: The measurements of viscosity of 3% hydrogen peroxide, 0.9% sodium chloride, aqueous solution of 0.2% chlorhexidine (CHX) and 0.2% cetrimide, 5% sodium hypochlorite (NaOCl) and 17% ethylenediaminetetraacetic acid (EDTA) at different temperatures (22°C, 30°C, 40°C, 50°C and 60°C) were obtained using Mohr balance and Ostwald viscometer. The Shapiro-Wilk test and Mann-Whitney U-tests were used for the statistical analysis. (α = 0.05). Results: No significant differences were recorded at each temperature among 3% hydrogen peroxide, 0.9% sodium chloride and aqueous solution of 0.2% CHX and 0.2% cetrimide. 5% NaOCl and 17% EDTA showed the higher values. Viscosity statistically decreased with increasing temperature. Conclusion: Within the limitations of this study, 5% NaOCl and 17% EDTA are significantly viscous at room temperature and their viscosity reduces with elevating temperature. PMID:26604955

  13. Sensor for Viscosity and Shear Strength Measurement

    International Nuclear Information System (INIS)

    Measurement of the physical properties (viscosity and density) of waste slurries is critical in evaluating transport parameters to ensure turbulent flow through transport pipes. The environment for measurement and sensor exposure is extremely harsh; therefore, reliability and ruggedness are critical in the sensor design. The work for this project will be performed in three phases. The first phase, carried out in FY96, involved (1) an evaluation of acoustic and other methods for viscosity measurement; (2) measurement of the parameters of slurries over the range of percent solids found in tanks and transport systems; (3) a comparison of physical properties (e.g., viscosity and density) to percent solids found composition; and (4) the design of a prototype sensor. The second phase (FY97) will involve the fabrication of a prototype hybrid sensor to measure the viscosity and mechanical properties of slurries in remote, high-radiation environments. Two different viscometer designs are being investigated in this study: a magnetostrictive pulse wave guide viscometer; an oscillating cylinder viscometer. In FY97, the Hemispheric Center for Environmental Technology (HCET) at Florida International University (FIU), which has printed circuit, thick film, thin film, and co-fired ceramic fabrication capability, will fabricate five probes for demonstration after technology selection and evaluation

  14. Weak Dynamic Programming Principle for Viscosity Solutions

    OpenAIRE

    Bouchard, Bruno; Touzi, Nizar

    2011-01-01

    We prove a weak version of the dynamic programming principle for standard stochastic control problems and mixed control-stopping problems, which avoids the technical difficulties related to the measurable selection argument. In the Markov case, our result is tailor-maid for the derivation of the dynamic programming equation in the sense of viscosity solutions.

  15. Viscose and Terylene Market Witnesses Positive Activity

    Institute of Scientific and Technical Information of China (English)

    Hua xiaowei; Guoyun

    2010-01-01

    @@ Viscose and terylene staple fiber market is very hot as prices rise this year. The main reason for the positive market activity is that cotton prices hay increased rapidly. But, there is a worry that the appreciation of the yuan, to gether with the rate hike will squeeze profit margins of the industry.

  16. Viscosity of endodontic irrigants: Influence of temperature

    Directory of Open Access Journals (Sweden)

    Claudio Poggio

    2015-01-01

    Full Text Available Background: The aim of this study was to assess the influence of temperature on the viscosity of different endodontic irrigants. Materials and Methods: The measurements of viscosity of 3% hydrogen peroxide, 0.9% sodium chloride, aqueous solution of 0.2% chlorhexidine (CHX and 0.2% cetrimide, 5% sodium hypochlorite (NaOCl and 17% ethylenediaminetetraacetic acid (EDTA at different temperatures (22°C, 30°C, 40°C, 50°C and 60°C were obtained using Mohr balance and Ostwald viscometer. The Shapiro-Wilk test and Mann-Whitney U-tests were used for the statistical analysis. (α = 0.05. Results: No significant differences were recorded at each temperature among 3% hydrogen peroxide, 0.9% sodium chloride and aqueous solution of 0.2% CHX and 0.2% cetrimide. 5% NaOCl and 17% EDTA showed the higher values. Viscosity statistically decreased with increasing temperature. Conclusion: Within the limitations of this study, 5% NaOCl and 17% EDTA are significantly viscous at room temperature and their viscosity reduces with elevating temperature.

  17. From Stopping to Viscosity in Nuclear Reactions

    OpenAIRE

    Danielewicz, P.; Barker, B.; Shi, L.

    2009-01-01

    Data on stopping in intermediate-energy central heavy-ion collisions are analyzed following transport theory based on the Boltzmann equation. In consequence, values of nuclear shear viscosity are inferred. The inferred values are significantly larger than obtained for free nucleon dispersion relations and free nucleon-nucleon cross sections.

  18. Heat flux viscosity in collisional magnetized plasmas

    Science.gov (United States)

    Liu, C.; Fox, W.; Bhattacharjee, A.

    2015-05-01

    Momentum transport in collisional magnetized plasmas due to gradients in the heat flux, a "heat flux viscosity," is demonstrated. Even though no net particle flux is associated with a heat flux, in a plasma there can still be momentum transport owing to the velocity dependence of the Coulomb collision frequency, analogous to the thermal force. This heat-flux viscosity may play an important role in numerous plasma environments, in particular, in strongly driven high-energy-density plasma, where strong heat flux can dominate over ordinary plasma flows. The heat flux viscosity can influence the dynamics of the magnetic field in plasmas through the generalized Ohm's law and may therefore play an important role as a dissipation mechanism allowing magnetic field line reconnection. The heat flux viscosity is calculated directly using the finite-difference method of Epperlein and Haines [Phys. Fluids 29, 1029 (1986)], which is shown to be more accurate than Braginskii's method [S. I. Braginskii, Rev. Plasma Phys. 1, 205 (1965)], and confirmed with one-dimensional collisional particle-in-cell simulations. The resulting transport coefficients are tabulated for ease of application.

  19. Spiders Tune Glue Viscosity to Maximize Adhesion.

    Science.gov (United States)

    Amarpuri, Gaurav; Zhang, Ci; Diaz, Candido; Opell, Brent D; Blackledge, Todd A; Dhinojwala, Ali

    2015-11-24

    Adhesion in humid conditions is a fundamental challenge to both natural and synthetic adhesives. Yet, glue from most spider species becomes stickier as humidity increases. We find the adhesion of spider glue, from five diverse spider species, maximizes at very different humidities that matches their foraging habitats. By using high-speed imaging and spreading power law, we find that the glue viscosity varies over 5 orders of magnitude with humidity for each species, yet the viscosity at maximal adhesion for each species is nearly identical, 10(5)-10(6) cP. Many natural systems take advantage of viscosity to improve functional response, but spider glue's humidity responsiveness is a novel adaptation that makes the glue stickiest in each species' preferred habitat. This tuning is achieved by a combination of proteins and hygroscopic organic salts that determines water uptake in the glue. We therefore anticipate that manipulation of polymer-salts interaction to control viscosity can provide a simple mechanism to design humidity responsive smart adhesives.

  20. Heat flux viscosity in collisional magnetized plasmas

    International Nuclear Information System (INIS)

    Momentum transport in collisional magnetized plasmas due to gradients in the heat flux, a “heat flux viscosity,” is demonstrated. Even though no net particle flux is associated with a heat flux, in a plasma there can still be momentum transport owing to the velocity dependence of the Coulomb collision frequency, analogous to the thermal force. This heat-flux viscosity may play an important role in numerous plasma environments, in particular, in strongly driven high-energy-density plasma, where strong heat flux can dominate over ordinary plasma flows. The heat flux viscosity can influence the dynamics of the magnetic field in plasmas through the generalized Ohm's law and may therefore play an important role as a dissipation mechanism allowing magnetic field line reconnection. The heat flux viscosity is calculated directly using the finite-difference method of Epperlein and Haines [Phys. Fluids 29, 1029 (1986)], which is shown to be more accurate than Braginskii's method [S. I. Braginskii, Rev. Plasma Phys. 1, 205 (1965)], and confirmed with one-dimensional collisional particle-in-cell simulations. The resulting transport coefficients are tabulated for ease of application

  1. Viscosity in a Lepton-Photon Universe

    CERN Document Server

    Husdal, Lars

    2016-01-01

    We look at viscosity production in a universe consisting purely of leptons and photons. This is quite close to what the Universe actually look like when the temperature was between $10^{10}$ K and $10^{12}$ K ($1$ -- $100$ MeV). By taking the strong force and the hadronic particles out of the equation, we can examine how the viscous forces behave with all the 12 leptons present. By this we study how shear- and (more interestingly) bulk viscosity is affected during periods with particle annihilation. We use the theory given by Hoogeveen et. al. from 1986, replicate their 9-particle results and expanded it to include the muon and tau particles as well. This will impact the bulk viscosity immensely for high temperatures. We will show that during the beginning of the lepton era, when the temperature is around 100 MeV, the bulk viscosity will be roughly 100 million times larger with muons included in the model compared to a model without.

  2. Sensor for Viscosity and Shear Strength Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Dillon, J.; Moore, J.E. Jr.; Ebadian, M.A.; Jones, W.K.

    1998-10-20

    Measurement of the physical properties (viscosity and density) of waste slurries is critical in evaluating transport parameters to ensure turbulent flow through transport pipes. The environment for measurement and sensor exposure is extremely harsh; therefore, reliability and ruggedness are critical in the sensor design. The work for this project will be performed in three phases. The first phase, carried out in FY96, involved (1) an evaluation of acoustic and other methods for viscosity measurement; (2) measurement of the parameters of slurries over the range of percent solids found in tanks and transport systems; (3) a comparison of physical properties (e.g., viscosity and density) to percent solids found composition; and (4) the design of a prototype sensor. The second phase (FY97) will involve the fabrication of a prototype hybrid sensor to measure the viscosity and mechanical properties of slurries in remote, high-radiation environments. Two different viscometer designs are being investigated in this study: a magnetostrictive pulse wave guide viscometer; an oscillating cylinder viscometer. In FY97, the Hemispheric Center for Environmental Technology (HCET) at Florida International University (FIU), which has printed circuit, thick film, thin film, and co-fired ceramic fabrication capability, will fabricate five probes for demonstration after technology selection and evaluation.

  3. Shear Viscosity of Turbulent Chiral Plasma

    CERN Document Server

    Kumar, Avdhesh; Das, Amita; Kaw, P K

    2016-01-01

    It is well known that the difference between the chemical potentials of left-handed and right-handed particles in a parity violating (chiral) plasma can lead to an instability. We show that the chiral instability may drive turbulent transport. Further we estimate the anomalous viscosity of chiral plasma arising from the enhanced collisionality due to turbulence.

  4. Reference Correlation for the Viscosity of Ethane

    International Nuclear Information System (INIS)

    A new representation of the viscosity for the fluid phase of ethane includes a zero-density correlation and a contribution for the critical enhancement, initially both developed separately, but based on experimental data. The higher-density contributions are correlated as a function of the reduced density δ = ρ/ρc and of the reciprocal reduced temperature τ = Tc/T (ρc—critical density and Tc—critical temperature). The final formulation contains 14 coefficients obtained using a state-of-the-art linear optimization algorithm. The evaluation and choice of the selected primary data sets is reviewed, in particular with respect to the assessment used in earlier viscosity correlations. The new viscosity surface correlation makes use of the reference equation of state for the thermodynamic properties of ethane by Bücker and Wagner [J. Phys. Chem. Ref. Data 35, 205 (2006)] and is valid in the fluid region from the melting line to temperatures of 675 K and pressures of 100 MPa. The viscosity in the limit of zero density is described with an expanded uncertainty of 0.5% (coverage factor k = 2) for temperatures 290 < T/K < 625, increasing to 1.0% at temperatures down to 212 K. The uncertainty of the correlated values is 1.5% in the range 290 < T/K < 430 at pressures up to 30 MPa on the basis of recent measurements judged to be very reliable as well as 4.0% and 6.0% in further regions. The uncertainty in the near-critical region (1.001 < 1/τ < 1.010 and 0.8 < δ < 1.2) increases with decreasing temperature up to 3.0% considering the available reliable data. Tables of the viscosity calculated from the correlation are listed in an appendix for the single-phase region, for the vapor–liquid phase boundary, and for the near-critical region

  5. Plasma Viscosity with Mass Transport in Spherical ICF Implosion Simulations

    CERN Document Server

    Vold, Erik L; Ortega, Mario I; Moll, Ryan; Fenn, Daniel; Molvig, Kim

    2015-01-01

    The effects of viscosity and small-scale atomic-level mixing on plasmas in inertial confinement fusion (ICF) currently represent challenges in ICF research. Many current ICF hydrodynamic codes ignore the effects of viscosity though recent research indicates viscosity and mixing by classical transport processes may have a substantial impact on implosion dynamics. We have implemented a Lagrange hydrodynamic code in one-dimensional spherical geometry with plasma viscosity and mass transport and including a three temperature model for ions, electrons, and radiation treated in a gray radiation diffusion approximation. The code is used to study ICF implosion differences with and without plasma viscosity and to determine the impacts of viscosity on temperature histories and neutron yield. It was found that plasma viscosity has substantial impacts on ICF shock dynamics characterized by shock burn timing, maximum burn temperatures, convergence ratio, and time history of neutron production rates. Plasma viscosity reduc...

  6. Effect of non-Newtonian viscosity on the fluid-dynamic characteristics in stenotic vessels

    Science.gov (United States)

    Huh, Hyung Kyu; Ha, Hojin; Lee, Sang Joon

    2015-08-01

    Although blood is known to have shear-thinning and viscoelastic properties, the effects of such properties on the hemodynamic characteristics in various vascular environments are not fully understood yet. For a quantitative hemodynamic analysis, the refractive index of a transparent blood analogue needs to be matched with that of the flowing conduit in order to minimize the errors according to the distortion of the light. In this study, three refractive index-matched blood analogue fluids with different viscosities are prepared—one Newtonian and two non-Newtonian analogues—which correspond to healthy blood with 45 % hematocrit (i.e., normal non-Newtonian) and obese blood with higher viscosity (i.e., abnormal non-Newtonian). The effects of the non-Newtonian rheological properties of the blood analogues on the hemodynamic characteristics in the post-stenosis region of an axisymmetric stenosis model are experimentally investigated using particle image velocimetry velocity field measurement technique and pathline flow visualization. As a result, the centerline jet flow from the stenosis apex is suppressed by the shear-thinning feature of the blood analogues when the Reynolds number is smaller than 500. The lengths of the recirculation zone for abnormal and normal non-Newtonian blood analogues are 3.67 and 1.72 times shorter than that for the Newtonian analogue at Reynolds numbers smaller than 200. The Reynolds number of the transition from laminar to turbulent flow for all blood analogues increases as the shear-thinning feature increases, and the maximum wall shear stresses in non-Newtonian fluids are five times greater than those in Newtonian fluids. However, the shear-thinning effect on the hemodynamic characteristics is not significant at Reynolds numbers higher than 1000. The findings of this study on refractive index-matched non-Newtonian blood analogues can be utilized in other in vitro experiments, where non-Newtonian features dominantly affect the flow

  7. Magnetic effect in viscosity of magnetorheological fluids

    Science.gov (United States)

    Fonseca, H. A.; Gonzalez, E.; Restrepo, J.; Parra, C. A.; Ortiz, C.

    2016-02-01

    In this work the study of viscosity is presented for a magnetorheological fluid made from iron oxides micrometre, under an external magnetic field. The material was characterized by magnetic loops in a vibrating sample magnetometer and its crystal structure by X-ray diffraction. The results show that saturation magnetization and coercive field have dependence with the powder size. The material has different crystal structure which lattice parameters were determined by Rietveld refinement. The viscosity of the magnetorheological fluid was measured by a viscometer with rotational symmetry with and without external field. This result evidence a dependency on the size, percentage iron oxide and the applied magnetic field, it is due to the hydrodynamic volume of iron oxide interacts with the external magnetic field, increasing the flow resistance.

  8. Bulk and shear viscosity in Hagedorn fluid

    Energy Technology Data Exchange (ETDEWEB)

    Tawfik, A.; Wahba, M. [Egyptian Center for Theoretical Physics (ECTP), MTI University, Faculty of Engineering, Cairo (Egypt)

    2010-11-15

    Assuming that the Hagedorn fluid composed of known particles and resonances with masses m <2 GeV obeys the first-order theory (Eckart) of relativistic fluid, we discuss the transport properties of QCD confined phase. Based on the relativistic kinetic theory formulated under the relaxation time approximation, expressions for bulk and shear viscosity in thermal medium of hadron resonances are derived. The relaxation time in the Hagedorn dynamical fluid exclusively takes into account the decay and eventually van der Waals processes. We comment on the in-medium thermal effects on bulk and shear viscosity and averaged relaxation time with and without the excluded-volume approach. As an application of these results, we suggest the dynamics of heavy-ion collisions, non-equilibrium thermodynamics and the cosmological models, which require thermo- and hydro-dynamics equations of state. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  9. Bulk and Shear Viscosity in Hagedorn Fluid

    CERN Document Server

    Tawfik, A

    2010-01-01

    Assuming that the Hagedorn fluid composed of known particles and resonances with masses $m<2\\,$GeV obeys the {\\it first-order} theory (Eckart) of relativistic fluid, we discuss the transport properties of QCD confined phase. Based on the relativistic kinetic theory formulated under the relaxation time approximation, expressions for bulk and shear viscosity in thermal medium are derived. The relaxation time in the Hagedorn dynamical fluid exclusively takes into account the decay and eventually van der Waals processes. We comment on the {\\it in-medium} thermal effects on bulk and shear viscosities and averaged relaxation time with and without the excluded-volume approach. As an application of these results, we suggest the dynamics of heavy-ion collisions, non-equlibrium thermodynamics and the cosmological models, which require thermo and hydrodynamics equations of state.

  10. Viscosity: From air to hot nuclei

    Indian Academy of Sciences (India)

    Nguyen Dinh Dang

    2014-11-01

    After a brief review of the history of viscosity from classical to quantal fluids, a discussion of how the shear viscosity of a finite hot nucleus is calculated directly from the width and energy of the giant dipole resonance (GDR) of the nucleus is given in this paper. The ratio / with s being the entropy volume density, is extracted from the experimental systematic of GDR in copper, tin and lead isotopes at finite temperature . These empirical results are compared with the results predicted by several independent models, as well as with almost model-independent estimations. Based on these results, it is concluded that the ratio / in medium and heavy nuclei decreases with increasing to reach (1.3−4)$×\\hbar/(4 k_B)$ at = 5 MeV, which is almost the same as that obtained for quark-gluon plasma at > 170 MeV.

  11. Viscosity effects in wind wave generation

    CERN Document Server

    Paquier, Anna; Rabaud, Marc

    2016-01-01

    We investigate experimentally the influence of the liquid viscosity on the problem of the generation of waves by a turbulent wind at the surface of a liquid, extending the results of Paquier, Moisy and Rabaud [Phys. Fluids {\\bf 27}, 122103 (2015)] over nearly three decades of viscosity. The surface deformations are measured with micrometer accuracy using the Free-Surface Synthetic Schlieren method. We recover the two regimes of surface deformations previously identified: the wrinkles regime at small wind velocity, resulting from the viscous imprint on the liquid surface of the turbulent fluctuations in the boundary layer, and the regular wave regime at large wind velocity. Below the wave threshold, we find that the characteristic amplitude of the wrinkles scales as $\

  12. Shear viscosity, cavitation and hydrodynamics at LHC

    Energy Technology Data Exchange (ETDEWEB)

    Bhatt, Jitesh R., E-mail: jeet@prl.res.in [Theoretical Physics Division, Physical Research Laboratory, Navrangpura, Ahmedabad 380 009 (India); Mishra, Hiranmaya, E-mail: hm@prl.res.in [Theoretical Physics Division, Physical Research Laboratory, Navrangpura, Ahmedabad 380 009 (India); Sreekanth, V., E-mail: skv@prl.res.in [Theoretical Physics Division, Physical Research Laboratory, Navrangpura, Ahmedabad 380 009 (India)

    2011-10-25

    We study evolution of quark-gluon matter in the ultrarelativistic heavy-ion collisions within the frame work of relativistic second-order viscous hydrodynamics. In particular, by using the various prescriptions of a temperature-dependent shear viscosity to the entropy ratio, we show that the hydrodynamic description of the relativistic fluid becomes invalid due to the phenomenon of cavitation. For most of the initial conditions relevant for LHC, the cavitation sets in very early stage. The cavitation in this case is entirely driven by the large values of shear viscosity. Moreover we also demonstrate that the conformal terms used in equations of the relativistic dissipative hydrodynamic can influence the cavitation time.

  13. Shear viscosity, cavitation and hydrodynamics at LHC

    CERN Document Server

    Bhatt, Jitesh R; Sreekanth, V

    2011-01-01

    We study evolution of quark-gluon matter in the ultrarelativistic heavy-ion collisions within the frame work of relativistic second-order viscous hydrodynamics. In particular, by using the various prescriptions of a temperature-dependent shear viscosity to the entropy ratio, we show that the hydrodynamic description of the relativistic fluid become invalid due to the phenomenon of cavitation. For most of the initial conditions relevant for LHC, the cavitation sets in very early during the evolution of the hydrodynamics in time $\\lesssim 2 $fm/c. The cavitation in this case is entirely driven by the large values of shear viscosity. Moreover we also demonstrate that the conformal term used in equations of the relativistic dissipative hydrodynamic can influence the cavitation time.

  14. Molten Composition B Viscosity at Elevated Temperature

    Science.gov (United States)

    Zerkle, David K.; Núñez, Marcel P.; Zucker, Jonathan M.

    2016-10-01

    A shear-thinning viscosity model is developed for molten Composition B at elevated temperature from analysis of falling ball viscometer data. Results are reported with the system held at 85, 110, and 135°C. Balls of densities of 2.7, 8.0, and 15.6 g/cm3 are dropped to generate a range of strain rates in the material. Analysis of video recordings gives the speed at which the balls fall. Computer simulation of the viscometer is used to determine parameters for a non-Newtonian model calibrated to measured speeds. For the first time, viscosity is shown to be a function of temperature and strain rate-dependent maximum RDX (cyclotrimethylenetrinitramine) particle volume fraction.

  15. Low temperature viscosity in elongated ferrofluids

    Science.gov (United States)

    Alarcón, T.; Pérez-Madrid, A.; Rubí, J. M.

    1997-12-01

    We have studied the relaxation and transport properties of a ferrofluid in an elongational flow. These properties are influenced by the bistable nature of the potential energy. Bistability comes from the irrotational character of the flow together with the symmetry of the dipoles. Additionally, the presence of a constant magnetic field destroys the symmetry of the potential energy magnetizing the system. We have shown that at a moderate temperature, compared to the height of the energy barrier, the viscosity decreases with respect to the value it would have if the potential were stable. This phenomenon is known as the "negative viscosity" effect. Thermal motion induces jumps of the magnetic moment between the two stable states of the system leading to the aforementioned lowered dissipation effect.

  16. An acoustic transmission sensor for the longitudinal viscosity of fluids

    OpenAIRE

    Antlinger, Hannes; Clara, Stefan; Beigelbeck, Roman; Cerimovic, Samir; Keplinger, Franz; Jakoby, Bernhard

    2013-01-01

    Physical fluid parameters like viscosity, mass density and sound velocity can be determined utilizing ultrasonic sensors. We introduce the concept of a recently devised transmission based sensor utilizing pressure waves to determine the longitudinal viscosity, bulk viscosity, and second coefficient of viscosity of a sample fluid in a test chamber. A model is presented which allows determining these parameters from measurement values by means of a fit. The setup is particularly suited for liqu...

  17. Viscosity estimation for slags containing calcium fluoride

    Institute of Scientific and Technical Information of China (English)

    Qifeng Shu; Jiayun Zhang

    2005-01-01

    Based on recently published experimental data, the Riboud model was modified for viscosity estimation of the slags containing calcium fluoride. The estimated values were in good agreement with measured data. Reasonable estimation can be achieved using the modified Riboud model for mould fluxes and ESR (eletro slag remelting) slags. Especially for ESR slags, the modified Riboud model can provide much more precise values than the original Riboud model.

  18. A Viscosity Adaptive Lattice Boltzmann Method

    OpenAIRE

    Conrad, Daniel

    2015-01-01

    The present thesis describes the development and validation of a viscosity adaption method for the numerical simulation of non-Newtonian fluids on the basis of the Lattice Boltzmann Method (LBM), as well as the development and verification of the related software bundle SAM-Lattice. By now, Lattice Boltzmann Methods are established as an alternative approach to classical computational fluid dynamics methods. The LBM has been shown to be an accurate and efficient tool for the numerical...

  19. Viscoelastic-electromagnetism and Hall viscosity

    OpenAIRE

    Hidaka, Yoshimasa; Hirono, Yuji(Department of Physics, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan); Kimura, Taro; MINAMI, Yuki

    2012-01-01

    We introduce a kind of electromagnetism, which we call viscoelastic-electromagnetism, to investigate viscoelastic transport phenomena. It is shown that Cartan's formalism of general relativity is essential for viscoelastic theory, and then the corresponding electric and magnetic fields are regarded as a velocity gradient and a Burgers vector density, respectively. As an application of this formalism, the Streda formula for the Hall viscosity is obtained.

  20. Liquid mixture viscosities correlation with rational models

    Directory of Open Access Journals (Sweden)

    Knežević-Stevanović Anđela B.

    2014-01-01

    Full Text Available In this paper twenty two selected rational correlation models for liquid mixture viscosities of organic compounds were tested on 219 binary sets of experimental data taken from literature. The binary sets contained 3675 experimental data points for 70 different compounds. The Dimitrov-Kamenski X, Dimitrov-Kamenski XII, and Dimitrov-Kamenski XIII models demonstrated the best correlative characteristics for binary mixtures with overall absolute average deviation less then 2%. [Projekat Ministarstva nauke Republike Srbije, br. 172063

  1. Diffusion, Viscosity, and Thermodynamics in Liquid Systems

    OpenAIRE

    Bosse, Dennis

    2005-01-01

    This thesis aims at an overall improvement of the diffusion coefficient predictions. For this reason the theoretical determination of diffusion, viscosity, and thermodynamics in liquid systems is discussed. Furthermore, the experimental determination of diffusion coefficients is also part of this work. All investigations presented are carried out for organic binary liquid mixtures. Diffusion coefficient data of 9 highly nonideal binary mixtures are reported over the whole concentration range ...

  2. Cosmological Implications of QGP Bulk Viscosity

    CERN Document Server

    Anand, Sampurn; Bhatt, Jitesh R

    2016-01-01

    Recent studies of the hot QCD matter indicate that the bulk viscosity ($\\zeta$) of quark-gluon plasma (QGP) rises sharply near the critical point of the QCD phase transition. In this work, we show that such a sharp rise of the bulk viscosity will lead to an effective negative pressure near the critical temperature, $T_{c}$ which in turn drives the Universe to inflate. This inflation has a natural graceful exist when the viscous effect evanesce. We estimate that, depending upon the peak value of $\\zeta$, universe expands by a factor of $10$ to $80$ times in a very short span ($\\Delta t\\sim 10^{-8}$ seconds). Another important outcome of the bulk viscosity dominated dynamics is the cavitation of QGP around $T \\sim 1.5T_{c}$. This would lead to the phenomenon of formation of cavitation bubbles within the QGP phase. The above scenario is independent of the order of QCD phase transition. We delineate some of the important cosmological consequences of the inflation and the cavitation.

  3. Shear viscosity of a hadronic gas mixture

    CERN Document Server

    Itakura, Kazunori; Otomo, Hiroshi

    2007-01-01

    We discuss in detail the shear viscosity coefficient eta and the viscosity to entropy density ratio eta/s of a hadronic gas comprised of pions and nucleons. In particular, we study the effects of baryon chemical potential on eta and eta/s. We solve the relativistic quantum Boltzmann equations with binary collisions (pi pi, pi N, and NN) for a state slightly deviated from thermal equilibrium at temperature T and baryon chemical potential mu. The use of phenomenological amplitudes in the collision terms, which are constructed to reproduce experimental data, greatly helps to extend the validity region in the T-mu plane. The total viscosity coefficient eta(T,mu)=eta^pi + eta^N increases as a function of T and mu, indirectly reflecting energy dependences of binary cross sections. The increase in mu direction is due to enhancement of the nucleon contribution eta^N while the pion contribution eta^pi diminishes with increasing mu. On the other hand, due to rapid growth of entropy density, the ratio eta/s becomes a de...

  4. Magnetic viscosity studies in hard magnetic materials

    International Nuclear Information System (INIS)

    The magnetic viscosity behavior has been studied in several hard magnets with different magnetization reversal mechanisms including barium ferrite powders, Cu-Mn-Al, ferrite magnets, Nd-Fe-B, and SmCo5, Sm2(Co,Fe,Cu,Zr)17. The measurements were made with a vibrating sample magnetometer for times up to 60 s and a SQUID magnetometer for longer times in the range of 60--2300 s. For most of the samples the magnetization was found to vary logarithmically with time. The field and temperature dependence of the magnetic viscosity coefficient S was studied. Here, S was found to vary with the applied field and it usually peaked around the coercive field Hc. The measured values of Smax at 10 K range from 0.004 to 1.853 emu/g for Cu-Mn-Al and Sm2(Co,Fe,Cu,Zr)17, respectively. The magnetic viscosity coefficient was used together with the magnetic susceptibility to determine the activation volume

  5. RELAP-7 Numerical Stabilization: Entropy Viscosity Method

    Energy Technology Data Exchange (ETDEWEB)

    R. A. Berry; M. O. Delchini; J. Ragusa

    2014-06-01

    The RELAP-7 code is the next generation nuclear reactor system safety analysis code being developed at the Idaho National Laboratory (INL). The code is based on the INL's modern scientific software development framework, MOOSE (Multi-Physics Object Oriented Simulation Environment). The overall design goal of RELAP-7 is to take advantage of the previous thirty years of advancements in computer architecture, software design, numerical integration methods, and physical models. The end result will be a reactor systems analysis capability that retains and improves upon RELAP5's capability and extends the analysis capability for all reactor system simulation scenarios. RELAP-7 utilizes a single phase and a novel seven-equation two-phase flow models as described in the RELAP-7 Theory Manual (INL/EXT-14-31366). The basic equation systems are hyperbolic, which generally require some type of stabilization (or artificial viscosity) to capture nonlinear discontinuities and to suppress advection-caused oscillations. This report documents one of the available options for this stabilization in RELAP-7 -- a new and novel approach known as the entropy viscosity method. Because the code is an ongoing development effort in which the physical sub models, numerics, and coding are evolving, so too must the specific details of the entropy viscosity stabilization method. Here the fundamentals of the method in their current state are presented.

  6. Viscosity solution of linear regulator quadratic for degenerate diffusions

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available The paper studied a linear regulator quadratic control problem for degenerate Hamilton-Jacobi-Bellman (HJB equation. We showed the existence of viscosity properties and established a unique viscosity solution of the degenerate HJB equation associated with this problem by the technique of viscosity solutions.

  7. ON THE EDDY VISCOSITY MODEL OF PERIODIC TURBULENT SHEAR FLOWS

    Institute of Scientific and Technical Information of China (English)

    王新军; 罗纪生; 周恒

    2003-01-01

    Physical argument shows that eddy viscosity is essentially different from molecular viscosity. By direct numerical simulation, it was shown that for periodic turbulent flows, there is phase difference between Reynolds stress and rate of strain. This finding posed great challenge to turbulence modeling, because most turbulence modeling, which use the idea of eddy viscosity, do not take this effect into account.

  8. Blood transfusions

    Science.gov (United States)

    ... called homologous blood donation. Many communities have a blood bank at which any healthy person can donate blood. ... need to arrange with your hospital or local blood bank before your surgery to have directed donor blood. ...

  9. The Role of Viscosity in TATB Hot Spot Ignition

    Energy Technology Data Exchange (ETDEWEB)

    Fried, L E; Zepeda-Ruis, L; Howard, W M; Najjar, F; Reaugh, J E

    2011-08-02

    The role of dissipative effects, such as viscosity, in the ignition of high explosive pores is investigated using a coupled chemical, thermal, and hydrodynamic model. Chemical reactions are tracked with the Cheetah thermochemical code coupled to the ALE3D hydrodynamic code. We perform molecular dynamics simulations to determine the viscosity of liquid TATB. We also analyze shock wave experiments to obtain an estimate for the shock viscosity of TATB. Using the lower bound liquid-like viscosities, we find that the pore collapse is hydrodynamic in nature. Using the upper bound viscosity from shock wave experiments, we find that the pore collapse is closest to the viscous limit.

  10. Non-Newtonian viscosity wedge in film formation of EHL

    Institute of Scientific and Technical Information of China (English)

    GUOF.; WONGP.L.

    2001-01-01

    This paper aims to evaluate the action of viscosity wedge in the oil film formation ofEHL at opposite sliding and zero entrainment. Using solvers developed for Newtonian and Eyringfluids, the film formation behavior originating from viscosity wedge is investigated. The numericalsimulation displays that lubricant film formation induced by viscosity wedge is different from that bythe well-known geometrical wedge with entrainment in classic EHL. The numerical analyses showthat at high opposite sliding speed the viscosity wedge acts as a leading role in film formation, thenon-Newtonian effects can have a pronounced influence on action of the viscosity wedge.

  11. TEMPERATURE DEPENDENCE OF VISCOSITY OF Al-Si ALLOY MELTS

    Institute of Scientific and Technical Information of China (English)

    H.R. Geng; R. Wang; Z.X. Yang; J.H. Chen; C.J. Sun; Y. Wang

    2005-01-01

    The relationship between the viscosity and temperature of Al-Si alloy melts was investigated.The viscosity of three different types of Al-Si alloy melts was measured. It was showed that the relationship between the viscosity and temperature of hypoeutectic Al-5% Si and eutectic Al12.5%Si alloy melts is approximately exponential except for some special zones, but that of the hypereutectic melt is different. The paper discussed the correlation of the viscosity and atomic density, which is thought that the viscosity corresponds to the atomic density to some extent.

  12. On the measurement of magnetic viscosity

    Science.gov (United States)

    Serletis, C.; Efthimiadis, K. G.

    2012-08-01

    This work is an investigation of the experimental method used for measuring the magnetic viscosity in a hard ferromagnetic material, i.e. the recording of the magnetization under constant applied field and temperature, after the material has been magnetically saturated. It investigates how the experimental results are affected by the initial conditions of the method (saturation field, field change rate and field oscillation prior to its stabilization), and by minor variations of field and temperature during the recording. Based on the arising conclusions and the use of a more complex fitting function of measurements, the accuracy and repeatability of experimental results is improved.

  13. Effect of nuclear viscosity on fission process

    Energy Technology Data Exchange (ETDEWEB)

    Li Shidong; Kuang Huishun; Zhang Shufa; Xing Jingru; Zhuo Yizhong; Wu Xizhen; Feng Renfa

    1989-02-01

    According to the fission diffusion model, the deformation motion of fission nucleuses is regarded as a diffusion process of quasi-Brownian particles under fission potential. Through simulating such Brownian motion in two dimensional phase space by Monte-Carlo mehtod, the effect of nuclear visocity on Brownian particle diffusion is studied. Dynamical quanties, such as fission rate, kinetic energy distribution on scission, and soon are numerically calculated for various viscosity coefficients. The results are resonable in physics. This method can be easily extended to deal with multi-dimensional diffusion problems.

  14. Correlation of the liquid mixture viscosities

    Directory of Open Access Journals (Sweden)

    Knežević-Stevanović Anđela B.

    2012-01-01

    Full Text Available In this paper forty two selected correlation models for liquid mixture viscosities of organic compounds were tested on 219 binary and 41 ternary sets of experimental data taken from literature. The binary sets contained 3675 experimental data points for 70 different compounds. The ternary sets contained 2879 experimental data points for 29 different compounds. The Heric I, Heric-Brewer II, and Krishnan-Laddha models demonstrated the best correlative characteristics for binary mixtures (overall absolute average deviation < 2%. The Heric I, Heric-Brewer II, Krishnan-Laddha and Heric II models demonstrated the best correlative characteristics for ternary mixtures (overall absolute average deviation < 3%.

  15. From Suitable Weak Solutions to Entropy Viscosity

    KAUST Repository

    Guermond, Jean-Luc

    2010-12-16

    This paper focuses on the notion of suitable weak solutions for the three-dimensional incompressible Navier-Stokes equations and discusses the relevance of this notion to Computational Fluid Dynamics. The purpose of the paper is twofold (i) to recall basic mathematical properties of the three-dimensional incompressible Navier-Stokes equations and to show how they might relate to LES (ii) to introduce an entropy viscosity technique based on the notion of suitable weak solution and to illustrate numerically this concept. © 2010 Springer Science+Business Media, LLC.

  16. Vinpocetine and Pyritinol: A New Model for Blood Rheological Modulation in Cerebrovascular Disorders—A Randomized Controlled Clinical Study

    Directory of Open Access Journals (Sweden)

    Hayder M. Alkuraishy

    2014-01-01

    Full Text Available Blood and plasma viscosity are the major factors affecting blood flow and normal circulation. Whole blood viscosity is mainly affected by plasma viscosity, red blood cell deformability/aggregation and hematocrit, and other physiological factors. Thirty patients (twenty males + ten females with age range 50–65 years, normotensive with history of cerebrovascular disorders, were selected according to the American Heart Stroke Association. Blood viscosity and other rheological parameters were measured after two-day abstinence from any medications. Dual effects of vinpocetine and pyritinol exhibit significant effects on all hemorheological parameters (P0.05. Therefore, joint effects of vinpocetine and pyritinol improve blood and plasma viscosity in patients with cerebrovascular disorders.

  17. Solvent viscosity dependence for enzymatic reactions

    CERN Document Server

    Sitnitsky, A E

    2008-01-01

    A mechanism for relationship of solvent viscosity with reaction rate constant at enzyme action is suggested. It is based on fluctuations of electric field in enzyme active site produced by thermally equilibrium rocking (cranckshaft motion) of the rigid plane (in which the dipole moment $\\approx 3.6 D$ lies) of a favourably located and oriented peptide group (or may be a few of them). Thus the rocking of the plane leads to fluctuations of the electric field of the dipole moment. These fluctuations can interact with the reaction coordinate because the latter in its turn has transition dipole moment due to separation of charges at movement of the reacting system along it. The rocking of the plane of the peptide group is sensitive to the microviscosity of its environment in protein interior and the latter is a function of the solvent viscosity. Thus we obtain an additional factor of interrelationship for these characteristics with the reaction rate constant. We argue that due to the properties of the cranckshaft ...

  18. Multiresolution schemes for conservation laws with viscosity

    International Nuclear Information System (INIS)

    This paper presents multiresolution schemes for the efficient numerical solution of one-dimensional conservation laws with viscosity. The method, originally developed by A, Harten (Commun. Pure Appl. Math., to appear) for hyperbolic conservation laws, computes the cell average multiresolution representation of the solution which provides much information about the solution's regularity. As a consequence, the possibly expensive ENO (essentially nonoscillatory) reconstruction as well as numerous flux computations are performed only near discontinuities, and thereby the numerical solution procedure becomes considerably more efficient. The multiresolution scheme is also expected to open-quotes followclose quotes possibly unsteady irregularities from one time step to the next. When viscosity is added, predicting the location of the irregularity becomes a problem of estimating the change in shock thickness. To this end, we derive shock width estimates for our 1D prototype equations, which, when combined with the stability restriction of the numerical scheme, provide a reliable mechanism for enlarging the original multiresolution stencil. The numerical experiments for scalar conservation laws indicate the feasibility of multiresolution schemes for the viscous case as well

  19. Viscosity, entropy and the viscosity to entropy density ratio; how perfect is a nucleonic fluid?

    CERN Document Server

    Mekjian, Aram Z

    2010-01-01

    The viscosity of hadronic matter is studied using a classical evaluation of the scattering angle and a quantum mechanical discussion based on phase shifts from a potential. Semi classical limits of the quantum theory are presented. A hard sphere and an attractive square well potential step are each considered as well as the combined effects of both. The lowest classical value of the viscosity for an attractive potential is shown to be a hard sphere limit. The high wave number-short wavelength limits of the quantum result have scaling laws associated with it for both the viscosity and entropy. These scaling laws are similar to the Fraunhoher diffraction increase for the hard sphere geometric cross section. Specific examples for nuclear collisions are given. The importance of the nuclear tensor force and hard core is mentioned. The viscosity (eta), entropy density (s) and eta/s ratio are calculated for a gas of dilute neutrons in the unitary limit of large scattering length. Away from the unitary limit, the rat...

  20. Blood culture

    Science.gov (United States)

    Culture - blood ... A blood sample is needed . The site where blood will be drawn is first cleaned with an antiseptic such ... organism from the skin getting into (contaminating) the blood sample and causing a false-positive result (see ...

  1. Blood Thinners

    Science.gov (United States)

    If you have some kinds of heart or blood vessel disease, or if you have poor blood flow to your brain, your doctor may recommend that you take a blood thinner. Blood thinners reduce the risk of heart ...

  2. Blood Basics

    Science.gov (United States)

    ... Patient Group Links Advocacy Toolkit Home For Patients Blood Basics Blood is a specialized body fluid. It ... about 9 pints. Jump To: The Components of Blood and Their Importance Many people have undergone blood ...

  3. Blood pressure

    Science.gov (United States)

    ... the walls of the arteries is called blood pressure. Blood pressure is measured both as the heart contracts, which ... as it relaxes, which is called diastole. Normal blood pressure is considered to be a systolic blood pressure ...

  4. EFFECT OF ADSORPTION ON THE VISCOSITY OF DILUTE POLYMER SOLUTION

    Institute of Scientific and Technical Information of China (English)

    Rong-shi Cheng; Yu-fang Shao; Ming-zhu Liu; Rong-qing Lu

    1999-01-01

    Careful measurements of the dilute solution viscosities of polyethylene glycol and polyvinyl alcohol in water were carried out. The reduced viscosities of both polymer solutions plot upward curves at extremely dilute concentration levels similar to the phenomena observed for many polymer solutions in the early 1950's. Upon observation of the changes of the flow times of pure water in and the wall surface wettability of the viscometer after measuring solution viscosity, a view was formed that the observed viscosity abnormality at extremely dilute concentration regions is solely due to the effect of adsorption of polymer chains onto the wall surface of viscometer. A theory of adsorption effect based on the Langmuir isotherms was proposed and a mathematical analysis for data treatment was performed. The theory could adequately describe the existing viscosity data. It seems necessary to correct the viscosity result of dilute polymer solutions measured by glass capillary viscometer by taking into account the effect of adsorption in all cases.

  5. Universal quantum viscosity in a unitary Fermi gas.

    Science.gov (United States)

    Cao, C; Elliott, E; Joseph, J; Wu, H; Petricka, J; Schäfer, T; Thomas, J E

    2011-01-01

    A Fermi gas of atoms with resonant interactions is predicted to obey universal hydrodynamics, in which the shear viscosity and other transport coefficients are universal functions of the density and temperature. At low temperatures, the viscosity has a universal quantum scale ħ n, where n is the density and ħ is Planck's constant h divided by 2π, whereas at high temperatures the natural scale is p(T)(3)/ħ(2), where p(T) is the thermal momentum. We used breathing mode damping to measure the shear viscosity at low temperature. At high temperature T, we used anisotropic expansion of the cloud to find the viscosity, which exhibits precise T(3/2) scaling. In both experiments, universal hydrodynamic equations including friction and heating were used to extract the viscosity. We estimate the ratio of the shear viscosity to the entropy density and compare it with that of a perfect fluid. PMID:21148347

  6. GodunovSPH with shear viscosity : implementation and tests

    CERN Document Server

    Cha, Seung-Hoon

    2016-01-01

    The acceleration and energy dissipation terms due to the shear viscosity have been implemented and tested in GodunovSPH. The double summation method has been employed to avoid the well known numerical noise of the second derivative in particle based codes. The plane Couette flow with various initial and boundary conditions have been used as tests, and the numerical and analytical results show a good agreement. Not only the viscosity--only calculation, but the full hydrodynamics simulations have been performed, and they show expected results as well. The very low kinematic viscosity simulations show a turbulent pattern when the Reynolds number exceeds $\\sim$$10^2$. The critical value of the Reynolds number at the transition point of the laminar and turbulent flows coincides with the previous works approximately. A smoothed dynamic viscosity has been suggested to describe the individual kinematic viscosity of particles. The infinitely extended Couette flow which has two layers of different viscosities has been ...

  7. Modeling the viscosity of silicate melts containing manganese oxide

    Directory of Open Access Journals (Sweden)

    Kim Wan-Yi

    2013-01-01

    Full Text Available Our recently developed model for the viscosity of silicate melts is applied to describe and predict the viscosities of oxide melts containing manganese oxide. The model requires three pairs of adjustable parameters that describe the viscosities in three systems: pure MnO, MnO-SiO2 and MnO-Al2O3-SiO2. The viscosity of other ternary and multicomponent silicate melts containing MnO is then predicted by the model without any additional adjustable model parameters. Experimental viscosity data are reviewed for melts formed by MnO with SiO2, Al2O3, CaO, MgO, PbO, Na2O and K2O. The deviation of the available experimental data from the viscosities predicted by the model is shown to be within experimental error limits.

  8. Isomorphic Viscosity Equation of State for Binary Fluid Mixtures.

    Science.gov (United States)

    Behnejad, Hassan; Cheshmpak, Hashem; Jamali, Asma

    2015-01-01

    The thermodynamic behavior of the simple binary mixtures in the vicinity of critical line has a universal character and can be mapped from pure components using the isomorphism hypothesis. Consequently, based upon the principle of isomorphism, critical phenomena and similarity between P-ρ-T and T-η-(viscosity)-P relationships, the viscosity model has been developed adopting two cubic, Soave-Redlich-Kwong (SRK) and Peng-Robinson (PR), equations of state (EsoS) for predicting the viscosity of the binary mixtures. This procedure has been applied to the methane-butane mixture and predicted its viscosity data. Reasonable agreement with the experimental data has been observed. In conclusion, we have shown that the isomorphism principle in conjunction with the mapped viscosity EoS suggests a reliable model for calculating the viscosity of mixture of hydrocarbons over a wide pressure range up to 35 MPa within the stated experimental errors. PMID:26680701

  9. Does seminal fluid viscosity influence sperm chromatin integrity?

    Science.gov (United States)

    Gopalkrishnan, K; Padwal, V; Balaiah, D

    2000-01-01

    A retrospective study was undertaken to investigate whether viscosity alters sperm chromatin integrity. Semen samples were obtained from 269 men attending the infertility clinic. The viscosity was measured quantitatively by needle and syringe method and the viscosity ratio was calculated against distilled water. The chromatin integrity was evaluated by in vitro decondensation test using 1% SDS and 6 mM EDTA. According to the viscosity ratios the samples were divided into 2 groups: I, normal (ratio 9, n = 30) viscosity. Chromatin integrity was significantly lower in the group with higher viscosity. Significant decrease in sperm count and motility were seen in group II as compared to group I. Thus, hyperviscosity of seminal fluid alters the sperm chromatin integrity. PMID:11028927

  10. Bulk and shear viscosities of hot and dense hadron gas

    CERN Document Server

    Kadam, Guru Prakash

    2014-01-01

    We estimate bulk and shear viscosity at finite temperature and baryon densities of hadronic matter within hadron resonance gas model. For bulk viscosity we use low energy theorems of QCD for the energy momentum tensor correlators. For shear viscosity coefficient, we estimate the same using molecular kinetic theory to relate the shear viscosity coefficient to average momentum of the hadrons in the hot and dense hadron gas. The bulk viscosity to entropy ratio increases with chemical potential and is related to the reduction of velocity of sound at nonzero chemical potential. The shear viscosity to entropy ratio on the other hand, shows a nontrivial behavior with the ratio decreasing with chemical potential for small temperatures but increasing with chemical potential at high temperatures and is related to decrease of entropy density with chemical potential at high temperature due to finite volume of the hadrons.

  11. Rye affects bacterial translocation, intestinal viscosity, microbiota composition and bone mineralization in Turkey poults.

    Directory of Open Access Journals (Sweden)

    Guillermo Tellez

    Full Text Available Previously, we have reported that rye significantly increased both viscosity and Clostridium perfringens proliferation when compared with corn in an in vitro digestive model. Two independent trials were conducted to evaluate the effect of rye as a source of energy on bacterial translocation, intestinal viscosity, gut microbiota composition, and bone mineralization, when compared with corn in turkey poults. In each experiment, day-of-hatch, turkey poults were randomly assigned to either a corn or a rye diet (n = 0 /group. At 10 d of age, in both experiments, 12 birds/group were given an oral gavage dose of fluorescein isothiocyanate dextran (FITC-d. After 2.5 h of oral gavage, blood and liver samples were collected to evaluate the passage of FITC-d and bacterial translocation (BT respectively. Duodenum, ileum and cecum gut sections were collected to evaluate intestinal viscosity and to enumerate gut microbiota. Tibias were collected for observation of bone parameters. Broilers fed with a rye diet showed increased (p<0.05 intestinal viscosity, BT, and serum FITC-d. Bacterial enumeration revealed that turkey poults fed with rye had increased the number of total lactic acid bacteria (LAB in all three sections of the gastrointestinal tract evaluated when compared to turkey poults fed with corn. Turkey poults fed with rye also had significantly higher coliforms in duodenum and ileum but not in the ceca, whereas the total number of anaerobes increased only in duodenum. A significant reduction in bone strength and bone mineralization was observed in turkey poults fed with rye when compared with corn fed turkey poults. In conclusion, rye evoked mucosal damage in turkey poults that increased intestinal viscosity, increased leakage through the intestinal tract, and altered the microbiota composition and bone mineralization. Studies to evaluate dietary inclusion of selected Direct-Fed Microbial (DFM candidates that produce exogenous enzymes in rye fed

  12. Non-invasive fluid density and viscosity measurement

    Science.gov (United States)

    Sinha, Dipen N.

    2012-05-01

    The noninvasively measurement of the density and viscosity of static or flowing fluids in a section of pipe such that the pipe performs as the sensing apparatus, is described. Measurement of a suitable structural vibration resonance frequency of the pipe and the width of this resonance permits the density and viscosity to be determined, respectively. The viscosity may also be measured by monitoring the decay in time of a vibration resonance in the pipe.

  13. Viscosity, thermal diffusivity and Prandtl number of nanoparticle suspensions

    Institute of Scientific and Technical Information of China (English)

    WANG Buxuan; ZHOU Leping; PENG Xiaofeng

    2004-01-01

    Using our reported experimental data of effective thermal conductivity, specific heat capacity and viscosity for CuO nanoparticle suspensions, the corresponding thermal diffusivity and Prandtl number are calculated. With the hard sphere model and considering effects of particle clustering and surface adsorption, the increase of viscosity for nanoparticle suspension observed is explained. It is shown that the effective thermal conductivity will be strongly affected by the formation and correlated spatial distribution of nanoparticle clusters when compared to viscosity in hosting liquid.

  14. Extracting the bulk viscosity of the quark–gluon plasma

    International Nuclear Information System (INIS)

    We investigate the implications of a nonzero bulk viscosity coefficient on the azimuthal momentum anisotropy of ultracentral relativistic heavy ion collisions at the Large Hadron Collider. We find that, with IP-Glasma initial conditions, a finite bulk viscosity coefficient leads to a better description of the flow harmonics in ultracentral collisions. We then extract optimal values of bulk and shear viscosity coefficients that provide the best agreement with flow harmonic coefficients data in this centrality class

  15. Rotational and spin viscosities of water: Application to nanofluidics

    DEFF Research Database (Denmark)

    Hansen, Jesper Søndergaard; Bruus, Henrik; Todd, B.D.;

    2010-01-01

    In this paper we evaluate the rotational viscosity and the two spin viscosities for liquid water using equilibrium molecular dynamics. Water is modeled via the flexible SPC/Fw model where the Coulomb interactions are calculated via the Wolf method which enables the long simulation times required....... We find that the rotational viscosity is independent of the temperature in the range from 284 to 319 K. The two spin viscosities, on the other hand, decrease with increasing temperature and are found to be two orders of magnitude larger than that estimated by Bonthuis et al. [Phys. Rev. Lett. 103...

  16. Notes on shear viscosity bound violation in anisotropic models

    CERN Document Server

    Ge, Xian-Hui

    2015-01-01

    The shear viscosity bound violation in Einstein gravity for anisotropic black branes is discussed, with the aim of constraining the deviation of the shear viscosity-entropy density ratio from the shear viscosity bound using causality and thermodynamics analysis. The results show that no stringent constraints can be imposed. The diffusion bound in anisotropic phases is also studied. Ultimately, it is concluded that shear viscosity violation always occurs in cases where the equation of motion of the metric fluctuations cannot be written in a form identical to that of the minimally coupled massless scalar fields.

  17. Determination of viscosity in recirculating fluidized bed using radioactive tracer

    International Nuclear Information System (INIS)

    The use of radioactive tracer for measuring viscosity is proposed. The methodology relates the terminal velocity of a radioactive sphere in interior of fluid with the viscosity, which can be a fluidized bed or total flow of solids. The arrangement is composed by two γ detectors placed externally and along the bed. Both detectors are coupled by amplifier to electronic clock. The drop time of sphere between two detectors is measured. The bed viscosity two detectors is measured. The bed viscosity is calculated from mathematical correlations of terminal velocity of the sphere. (M.C.K.)

  18. Observation of parallel viscosity in the CHS Heliotron/Torsatron

    International Nuclear Information System (INIS)

    Damping of the toroidal velocity owing to parallel viscosity is observed in the plasma with a tangential neutral beam injection in the CHS Heliotron/Torsatron device. Toroidal velocity profile is dominated by the perpendicular viscosity when magnetic field modulation is weak near axis. However, the parallel viscosity is found to be dominant when the modulation is strong enough and to increase in proportion to the square of the modulation of magnetic field. The absolute values of the viscosity agree with the neoclassical prediction within a factor of three. (author)

  19. Heat Transfer Analysis for Peristaltic Mechanism in Variable Viscosity Fluid

    Institute of Scientific and Technical Information of China (English)

    T.Hayat; F.M.Abbasi; Awatif A.Hendi

    2011-01-01

    An analysis is carried out for a peristaltic flow of a third-order fluid with heat transfer and variable viscosity when no-slip condition does not hold. Perturbation solution is discussed and a comparative study between the cases of constant and variable viscosities is presented and analyzed.%@@ An analysis is carried out for a peristaltic flow of a third-order fluid with heat transfer and variable viscosity when no-slip condition does not hold.Perturbation solution is discussed and a comparative stuity between the cases of constant and variable viscosities is presented and analyzed.

  20. Experimental Viscosity Measurements for Copper Oxide Nanoparticle Suspensions

    Institute of Scientific and Technical Information of China (English)

    李俊明; 李泽梁; 王补宣

    2002-01-01

    The viscosity of water with copper oxide nanoparticle suspensions was measured using capillary viscometers. The mass fractions of copper oxide nanoparticles in the experiment, w, varied between 0.02 and 0.10, and the temperature range was 30℃ to 80℃. The experimental results show that the temperature was the major factor affecting the viscosity of the nanoparticle suspensions, while the effect of the mass fraction on the viscosity was not so obvious as that of the temperature for the mass fractions chosen in the experiment. The effect of the capillary tube size on the viscosity was also found to be relatively important at higher mass fractions.

  1. Non-Newtonian viscosity in magnetized plasma

    CERN Document Server

    Johnson, Robert W

    2007-01-01

    The particle and momentum balance equations can be solved on concentric circular flux surfaces to determine the effective viscous drag present in a magnetized tokamak plasma in the low aspect ratio limit. An analysis is developed utilizing the first-order Fourier expansion of the poloidal variation of quantities on the flux surface akin to that by Stacey and Sigmar [Phys. Fluids, 28, 9 (1985)]. Expressions to determine the poloidal variations of density, poloidal velocity, toroidal velocity, radial electric field, poloidal electric field, and other radial profiles are presented in a multi-species setting. Using as input experimental data for the flux surface averaged profiles of density, temperature, toroidal current, toroidal momentum injection, and the poloidal and toroidal rotations of at least one species of ion, one may solve the equations numerically for the remaining profiles. The resultant effective viscosities are compared to those predicted by Stacey and Sigmar and Shaing, et al., [Nuclear Fusion, 2...

  2. Holographic bulk viscosity: GPR vs EO

    CERN Document Server

    Buchel, Alex; Kiritsis, Elias

    2011-01-01

    Recently Eling and Oz (EO) proposed a formula for the holographic bulk viscosity, in arXiv:1103.1657, derived from the null horizon focusing equation. This formula seems different from that obtained earlier by Gubser, Pufu and Rocha (GPR) in arXiv:0806.0407 calculated from the IR limit of the two-point function of the trace of the stress tensor. The two were shown to agree only for some simple scaling cases. We point out that the two formulae agree in two non-trivial holographic theories describing RG flows. The first is the strongly coupled N=2* gauge theory plasma. The second is the semi-phenomenological model of Improved Holographic QCD.

  3. Universe Models with Negative Bulk Viscosity

    CERN Document Server

    Brevik, Iver

    2013-01-01

    The concept of negative temperatures has occasionally been used in connection with quantum systems. A recent example of this sort is reported in the paper of S. Braun et al. [Science 339,52 (2013)], where an attractively interacting ensemble of ultracold atoms is investigated experimentally and found to correspond to a negative-temperature system since the entropy decreases with increasing energy at the high end of the energy spectrum. As the authors suggest, it would be of interest to investigate whether a suitable generalization of standard cosmological theory could be helpful, in order to elucidate the observed accelerated expansion of the universe usually explained in terms of a positive tensile stress (negative pressure). In the present note we take up this basic idea and investigate a generalization of the standard viscous cosmological theory, not by admitting negative temperatures but instead by letting the bulk viscosity take negative values. Evidently, such an approach breaks standard thermodynamics,...

  4. Hydrodynamics of spacetime and vacuum viscosity

    Science.gov (United States)

    Eling, Christopher

    2008-11-01

    It has recently been shown that the Einstein equation can be derived by demanding a non-equilibrium entropy balance law dS = δQ/T+diS hold for all local acceleration horizons through each point in spacetime. The entropy change dS is proportional to the change in horizon area while δQ and T are the energy flux across the horizon and Unruh temperature seen by an accelerating observer just inside the horizon. The internal entropy production term diS is proportional to the squared shear of the horizon and the ratio of the proportionality constant to the area entropy density is hbar/4π. Here we will show that this derivation can be reformulated in the language of hydrodynamics. We postulate that the vacuum thermal state in the Rindler wedge of spacetime obeys the holographic principle. Hydrodynamic perturbations of this state exist and are manifested in the dynamics of a stretched horizon fluid at the horizon boundary. Using the equations of hydrodynamics we derive the entropy balance law and show the Einstein equation is a consequence of vacuum hydrodynamics. This result implies that hbar/4π is the shear viscosity to entropy density ratio of the local vacuum thermal state. The value hbar/4π has attracted much attention as the shear viscosity to entropy density ratio for all gauge theories with an Einstein gravity dual. It has also been conjectured as the universal lower bound on the ratio. We argue that our picture of the vacuum thermal state is consistent with the physics of the gauge/gravity dualities and then consider possible applications to open questions.

  5. Cosmic String Universes Embedded with Viscosity

    Institute of Scientific and Technical Information of China (English)

    Koijam Manihar Singh; Kangujam Priyokumar Singh

    2011-01-01

    We study string cosmological models with attached particles in LRS BI type space time.The dynamical and physical properties of such universes are studied,and the possibility that during the evolution of the universe the strings disappear,leaving only the particles,is also discussed.It is found that bulk viscosity plays a large role in the evolution of the universe.In these models we find critical instances of when there was a “Bounce”.The studied models are found to be of an inflationary type,and since a desirable feature of a meaningful string cosmological model is the presence of an inflationary epoch in the very early stages of evolution,our models can be thought of as realistic universes.The origin of the universe and the early stages of formation are still interesting areas of research.The concept of string theory was developed to describe the events of the early stages of the evolution of the universe.The universe can be described as a collection of extended (non point) objects.Thus,“string dust” cosmology will provide us with a model to investigate the properties related to this fact.%We study string cosmological models with attached particles in LRS BI type space time. The dynamical and physical properties of such universes are studied, and the possibility that during the evolution of the universe the strings disappear, leaving only the particles, is also discussed. It is found that bulk viscosity plays a large role in the evolution of the universe. In these models we find critical instances of when there was a "Bounce". The studied models are found to be of an inflationary type, and since a desirable feature of a meaningful string cosmological model is the presence of an inflationary epoch in the very early stages of evolution, our models can be thought of as realistic universes.

  6. Hydrodynamics of spacetime and vacuum viscosity

    International Nuclear Information System (INIS)

    It has recently been shown that the Einstein equation can be derived by demanding a non-equilibrium entropy balance law dS = δQ/T+diS hold for all local acceleration horizons through each point in spacetime. The entropy change dS is proportional to the change in horizon area while δQ and T are the energy flux across the horizon and Unruh temperature seen by an accelerating observer just inside the horizon. The internal entropy production term diS is proportional to the squared shear of the horizon and the ratio of the proportionality constant to the area entropy density is h-bar /4π. Here we will show that this derivation can be reformulated in the language of hydrodynamics. We postulate that the vacuum thermal state in the Rindler wedge of spacetime obeys the holographic principle. Hydrodynamic perturbations of this state exist and are manifested in the dynamics of a stretched horizon fluid at the horizon boundary. Using the equations of hydrodynamics we derive the entropy balance law and show the Einstein equation is a consequence of vacuum hydrodynamics. This result implies that h-bar /4π is the shear viscosity to entropy density ratio of the local vacuum thermal state. The value h-bar /4π has attracted much attention as the shear viscosity to entropy density ratio for all gauge theories with an Einstein gravity dual. It has also been conjectured as the universal lower bound on the ratio. We argue that our picture of the vacuum thermal state is consistent with the physics of the gauge/gravity dualities and then consider possible applications to open questions.

  7. Sensor for viscosity and shear strength measurement

    Energy Technology Data Exchange (ETDEWEB)

    Ebadian, M.A.; Dillion, J.; Moore, J.; Jones, K.

    1998-01-01

    Measurement of the physical properties (viscosity and density) of waste slurries is critical in evaluating transport parameters to ensure turbulent flow through transport pipes. The environment for measurement and sensor exposure is extremely harsh; therefore, reliability and ruggedness are critical in the sensor design. Two different viscometer techniques are being investigated in this study, based on: magnetostrictive pulse generated acoustic waves; and an oscillating cylinder. Prototype sensors have been built and tested which are based on both techniques. A base capability instrumentation system has been designed, constructed, and tested which incorporates both of these sensors. It requires manual data acquisition and off-line calculation. A broad range of viscous media has been tested using this system. Extensive test results appear in this report. The concept for each technique has been validated by these test results. This base capability system will need to be refined further before it is appropriate for field tests. The mass of the oscillating system structure will need to be reduced. A robust acoustic probe assembly will need to be developed. In addition, in March 1997 it was made known for the first time that the requirement was for a deliverable automated viscosity instrumentation system. Since then such a system has been designed, and the hardware has been constructed so that the automated concept can be proved. The rest of the hardware, which interfaced to a computer, has also been constructed and tested as far as possible. However, for both techniques the computer software for automated data acquisition, calculation, and logging had not been completed before funding and time ran out.

  8. Rheology and tribology of lubricants with polymeric viscosity modifiers

    Science.gov (United States)

    Babak, LotfizadehDehkordi

    Elastohydrodynamic lubrication (EHL) theory has been used to model the lubrication state of antifriction machine elements, where initial viscosity and pressure viscosity coefficients are essential parameters in film thickness modeling. Since the pressures of lubricants in the contact zone can be very high, it is important to know the rheological properties of lubricants in these pressure and temperature regimes. The characteristics of viscosity behavior as a function of pressure are also essential for a universal definition of the pressure viscosity coefficient in order to estimate film thickness in an EHL regime. In this study, viscosities and pressure-viscosity coefficients of ten commercial engine and gear oils and seventeen laboratory-produced oil/polymer viscosity modifiers (VM) additives are measured up to 1.3 GPa at 40, 75 and 100 °C. For the first time, a sharp increase in the viscosity and piezoviscous factor is observed in both mineral-based and synthetic-based oils with different VMs. Analysis of the experimental results indicates that sharp increase in viscosity observed in these experiments are believed to arise from physical changes in the VMs, that is liquid-solid phase transition. Evidence is offered that polymer properties such as molecular weight, concentration and structure influence the onset of the phase transitions. A modified Yasutomi model, which normally describes the pressure dependence of the viscosity of lubricants very well, fails to predict the viscosity of the specimens above the onset of sharp increase in viscosity. A design of experiment (DOE) analysis using Design-Expert software indicates that pressure and temperature are the most critical parameters in the viscosity variation. Tribological tests demonstrate that wear in the contact, zone occurs at temperatures and stresses that coincides with the VM phase transitions in both commercial and laboratory synthesized oil/VMs. Tribological results also indicate that the onset of the

  9. Viscosity of iodinated contrast agents during renal excretion

    International Nuclear Information System (INIS)

    Objective: Modern iodinated non-ionic contrast agents (CAs) can be classified based on their molecular structure into monomeric and dimeric CAs and have at comparable iodine concentrations a different viscosity and osmolality. During their renal excretion, CAs are concentrated in the renal tubuli which might enhance the viscosity difference between monomeric and dimeric CAs. The viscosity of a CA might have an underestimated importance for renal safety, as suggested by recent publications. In this study, we investigated the viscosities of CAs at the concentrations expected to be present in renal tubules. This concentration process was simulated in vitro using dialysis. Furthermore, we investigated urine viscosity and urine flow in rodents after administration of several non-ionic monomeric and dimeric CAs. Materials and methods: To estimate the viscosity of the CAs in vivo, we performed an in vitro dialysis of monomeric and dimeric CAs at various physiological osmolalities of the renal tubulus (290, 400, 500, 700 and 1000 mOsm/kg H2O). Following the dialysis, the iodine concentrations and the viscosities of the CAs were determined. Furthermore, to investigate the concentration process in vivo, we measured the urine viscosity and the urine flow in Han Wister rats after the administration of Iopromide, Iohexol, Ioversol, Iomeprol, Iodixanol, and Iosimenol at comparable iodine concentrations. As a control, saline was injected at the same volume. Results: In vitro dialysis of the dimeric CA increased the iodine concentration and strongly increased the viscosity at all tested osmolalities. In contrast, for the monomeric agents an increase in concentration and viscosity was observed only at 700 as well 1000 mOsm/kg H2O but to a lesser extent. In summary, dialysis strongly enhanced the viscosity differences between the non-ionic monomeric and dimeric CAs. The administration of dimeric CAs leads to a strong increase in urine viscosity; this was not observed for the

  10. Elongational viscosity of narrow molar mass distribution polystyrene

    DEFF Research Database (Denmark)

    Bach, Anders; Almdal, Kristoffer; Rasmussen, Henrik Koblitz;

    2003-01-01

    Transient and steady elongational viscosity has been measured for two narrow molar mass distribution polystyrene melts of molar masses 200 000 and 390 000 by means of a filament stretching rheometer. Total Hencky strains of about five have been obtained. The transient elongational viscosity rises...

  11. Elongational viscosity of monodisperse and bidisperse polystyrene melts

    DEFF Research Database (Denmark)

    Nielsen, Jens Kromann; Rasmussen, Henrik K.; Hassager, Ole;

    2006-01-01

    The start-up and steady uniaxial elongational viscosity have been measured for two monodisperse polystyrene melts with molecular weights of 52 and 103 kg/mole, and for three bidisperse polystyrene melts. The monodisperse melts show a maximum in the steady elongational viscosity vs. the elongational...

  12. A Riemann problem with small viscosity and dispersion

    Directory of Open Access Journals (Sweden)

    Kayyunnapara Thomas Joseph

    2006-09-01

    Full Text Available In this paper we prove existence of global solutions to a hyperbolic system in elastodynamics, with small viscosity and dispersion terms and derive estimates uniform in the viscosity-dispersion parameters. By passing to the limit, we prove the existence of solution the Riemann problem for the hyperbolic system with arbitrary Riemann data.

  13. Post glacial rebounds measure the viscosity of the lithosphere

    CERN Document Server

    Garai, J

    2003-01-01

    The observed higher uplift rates before the end of deglaciation requires the existence of a low viscosity channel or layer. The uplifts observed after the end of deglaciation does not show any contribution from this low viscosity channel and a homogeneous viscosity model fits very well to the observed uplift. Most of the researchers therefore prefer the homogeneous model and suggest that the higher uplift rate before the end of deglaciation is the result of elastic contamination. It has been shown that the elastic deformation of the lithosphere is far too small to be responsible for the observed extra uplift; therefore, the homogeneous viscosity model should be discredited. The homogeneous viscosity of the postglacial period and the high uplift rate of the late glacial period can be explained with a model which has an upper layer determining the homogeneous viscosity and the layer below it which has a low viscosity. The contribution to the uplift of this low viscosity layer is indistinguishable from an instan...

  14. Nonlinear Eddy Viscosity Models applied to Wind Turbine Wakes

    DEFF Research Database (Denmark)

    Laan, van der, Paul Maarten; Sørensen, Niels N.; Réthoré, Pierre-Elouan;

    2013-01-01

    The linear k−ε eddy viscosity model and modified versions of two existing nonlinear eddy viscosity models are applied to single wind turbine wake simulations using a Reynolds Averaged Navier-Stokes code. Results are compared with field wake measurements. The nonlinear models give better results...... compared to the linear model, however, high turbulence levels can produce numerical instabilities....

  15. Poiseuille flow to measure the viscosity of particle model fluids.

    NARCIS (Netherlands)

    J.A. Backer; C.P. Lowe; H.C.J. Hoefsloot; P.D. Iedema

    2005-01-01

    The most important property of a fluid is its viscosity, it determines the flow properties. If one simulates a fluid using a particle model, calculating the viscosity accurately is difficult because it is a collective property. In this article we describe a new method that has a better signal to noi

  16. Critical exponent for the viscosity of four binary liquids

    Science.gov (United States)

    Berg, Robert F.; Moldover, Michael R.

    1988-01-01

    The viscosity of the following binary mixtures was measured near their consolute points: (1) methanol + cyclohexane, (2) isobutyric acid + water, (3) nitroethane + 3-methylpentane, and (4) 2-butoxyethanol + water. It is shown that the multiplicative hypothesis is valid for these mixtures. It is also found that the concentration closest to critical has the largest viscosity enhancement.

  17. Viscosity Prediction of Hydrocarbon Mixtures Based on the Friction Theory

    DEFF Research Database (Denmark)

    Zeberg-Mikkelsen, Claus Kjær; Cisneros, Sergio; Stenby, Erling Halfdan

    2001-01-01

    The application and capability of the friction theory (f-theory) for viscosity predictions of hydrocarbon fluids is further illustrated by predicting the viscosity of binary and ternary liquid mixtures composed of n-alkanes ranging from n-pentane to n-decane for wide ranges of temperature and from...

  18. On-line measurement of food viscosity during flow

    DEFF Research Database (Denmark)

    Mason, Sarah Louise; Friis, Alan

    2006-01-01

    Sarah L. Mason and Alan Friis discuss some of the principles and equipment used to monitor food viscosity in real time.......Sarah L. Mason and Alan Friis discuss some of the principles and equipment used to monitor food viscosity in real time....

  19. Bianchi-Type Ⅱ String Cosmological Models with Bulk Viscosity

    Institute of Scientific and Technical Information of China (English)

    WANG Xing-Xiang

    2004-01-01

    The locally rotationally symmetric Bianchi-type Ⅱ string cosmological models with bulk viscosity are obtained, where an equation of state, p = kλ, and a relation between metric potentials, R = ASn, are adopted. The physical features of the models are also discussed. In special cases the model reduces to the string models without viscosity that was previously given in the literatures.

  20. Turbulent viscosity variability in self-propelled body wake model

    CERN Document Server

    Dubrovin, K; Golbraikh, E; Soloviev, A

    2011-01-01

    We study the influence of turbulent viscosity variability on the properties of self-propelled body wake model. In addition to the already known integrals of motion obtained with constant turbulent viscosity, we obtain new ones. The presence of new integrals of motion leads, in particular, to changes in the behavior of the width and profile of the wake leading to its conservation.

  1. Sound damping in ferrofluids: Magnetically enhanced compressional viscosity

    OpenAIRE

    Mueller, Hanns Walter; Jiang, Yimin; Liu, Mario

    2002-01-01

    The damping of sound waves in magnetized ferrofluids is investigated and shown to be considerably higher than in the non-magnetized case. This fact may be interpreted as a field-enhanced, effective compressional viscosity -- in analogy to the ubiquitous field-enhanced shear viscosity that is known to be the reason for many unusual behavior of ferrofluids under shear.

  2. Viscosity Prediction of Natural Gas Using the Friction Theory

    DEFF Research Database (Denmark)

    Zeberg-Mikkelsen, Claus Kjær; Cisneros, Sergio; Stenby, Erling Halfdan

    2002-01-01

    rules based on the values of the pure component friction coefficients. Since natural gases contain mainly methane, two f-theory models are combined, where the friction coefficients of methane are estimated by a seven-constant f-theory model directly fitted to methane viscosities, and the friction......Based on the concepts of the friction theory (f-theory) for viscosity modeling, a procedure is introduced for predicting the viscosity of hydrocarbon mixtures rich in one component, which is the case for natural gases. In this procedure, the mixture friction coefficients are estimated with mixing...... coefficients of the other components are estimated by the one-parameter general f-theory model. The viscosity predictions are performed with the SRK, the PR, and the PRSV equations of state, respectively. For recently measured viscosities of natural gases, the resultant AAD (0.5 to 0.8%) is in excellent...

  3. Influence of chromium, oxygen, carbon and nitrogen on iron viscosity

    International Nuclear Information System (INIS)

    Kinetic viscosity of 70 beforehand melted iron samples with additions of chromium (up to 2%) and carbon (up to 1%) has been investigated. Different conditions of melting brought about differences in oxygen and nitrogen contents. Viscosity of most samples has been determined in the 1550-1650 deg C temperature range. It is stated that small additions to pure iron of each of the investigated elements (O, Cr, C, N) decrease its viscosity. Combined effect of these additions on viscosity is inadditive. Simultaneous introduction of oxygen and carbon may result in increase of melt viscosity. The same fact is observed at combined introduction of chromium and nitrogen. Simultaneous introduction of other impurities-chromium with oxygen or carbon, nitrogen with oxygen causes amplification of their individual effect. Reasons for the observed regularities result from changes in energies of interparticle interactions in the melt and therefore rebuilding of structure of its short-range order

  4. The seismic quest for estimating heavy heavy oil viscosity

    Energy Technology Data Exchange (ETDEWEB)

    Vasheghani, Fereidoon; Lines, Larry R.; Embleton, Joan [CHORUS, Department of Geoscience , University of Calgary (Canada)], email: vashegha@ucalgary.ca, email: lrlines@ucalgary.ca, email: jembleto@ucalgary.ca

    2011-07-01

    A large proportion of the world's petroleum lies in heavy oil reserves, which are believed to be in greatest abundance in Canada and Venezuela. In general, methods for enhanced oil recovery (EOR) try to increase oil mobility through reduction of its viscosity. The simplest expression of fluid flow is found in Darcy's Law. One can use viscometers and geochemistry to estimate viscosity from borehole samples, but this study attempts to estimate viscosity between boreholes by accurately estimating seismic Q and by using rock physics to transform Q (inverse attenuation) values to micro values. This estimation is made for a heavy oil field in Northern Alberta (Wabasca area). However, the relation between Q and micro is ambiguous because for a given Q, there are two possible viscosity values, and this ambiguity had to be resolved first. For the Wabasca area, the study targeted the oil sands of the Grand Rapids formation, where fluid viscosities are very high.

  5. Differential Geometrically Consistent Artificial Viscosity in Comoving Curvilinear Coordinates

    CERN Document Server

    Höller, Harald; Dorfi, Ernst; Benger, Werner

    2013-01-01

    Context. High-resolution numerical methods have been developed for nonlinear, discontinuous problems as they appear in simulations of astrophysical objects. One of the strategies applied is the concept of artificial viscosity. Aims. Grid-based numerical simulations ideally utilize problem-oriented grids in order to minimize the necessary number of cells at a given (desired) spatial resolution. We want to propose a modified tensor of artificial viscosity which is employable for generally comoving, curvilinear grids. Methods. We study a differential geometrically consistent artificial viscosity analytically and visualize a comparison of our result to previous implementations by applying it to a simple self-similar velocity field. We give a general introduction to artificial viscosity first and motivate its application in numerical analysis. Then we present how a tensor of artificial viscosity has to be designed when going beyond common static Eulerian or Lagrangian comoving rectangular grids. Results. We find t...

  6. Quantitative characterization of the viscosity of a microemulsion

    Science.gov (United States)

    Berg, Robert F.; Moldover, Michael R.; Huang, John S.

    1987-01-01

    The viscosity of the three-component microemulsion water/decane/AOT has been measured as a function of temperature and droplet volume fraction. At temperatures well below the phase-separation temperature the viscosity is described by treating the droplets as hard spheres suspended in decane. Upon approaching the two-phase region from low temperature, there is a large (as much as a factor of four) smooth increase of the viscosity which may be related to the percolation-like transition observed in the electrical conductivity. This increase in viscosity is not completely consistent with either a naive electroviscous model or a simple clustering model. The divergence of the viscosity near the critical point (39 C) is superimposed upon the smooth increase. The magnitude and temperature dependence of the critical divergence are similar to that seen near the critical points of binary liquid mixtures.

  7. Shear viscosity relaxation of a critical binary liquid.

    Science.gov (United States)

    Behrends, Ralph; Kaatze, Udo

    2003-07-01

    Two series of diffusion coefficients D are reported for the triethylamine-water binary critical mixture. One has been obtained from quasielastic light scattering measurements, the other one has been derived from broadband ultrasonic spectra, yielding the relaxation rate of order parameter fluctuations, and shear viscosity data. Using high frequency shear impedance spectrometry in the range 20-130 MHz, relaxations in the background part of the viscosity, resulting in viscoelastic mixture properties, have been found. Both series of D data agree either if a half-attenuation frequency distinctly smaller than the theoretical value Omega(1/2)=2.1 is used in the Bhattacharjee-Ferrell scaling function or if the viscosity extrapolated from the shear impedance measurements to low frequencies is applied to the Kawasaki-Ferrell relation. This extrapolated viscosity is smaller than the static shear viscosity measured with capillary viscosimeters. PMID:12935130

  8. Bulk viscosity of spin-one color superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Sa' d, Basil A.

    2009-08-27

    The bulk viscosity of several quark matter phases is calculated. It is found that the effect of color superconductivity is not trivial, it may suppress, or enhance the bulk viscosity depending on the critical temperature and the temperature at which the bulk viscosity is calculated. Also, is it found that the effect of neutrino-emitting Urca processes cannot be neglected in the consideration of the bulk viscosity of strange quark matter. The results for the bulk viscosity of strange quark matter are used to calculate the r-mode instability window of quark stars with several possible phases. It is shown that each possible phase has a different structure for the r-mode instability window. (orig.)

  9. Measuring Solution Viscosity and its Effect on Enzyme Activity

    Directory of Open Access Journals (Sweden)

    Uribe Salvador

    2003-01-01

    Full Text Available In proteins, some processes require conformational changes involving structural domain diffusion. Among these processes are protein folding, unfolding and enzyme catalysis. During catalysis some enzymes undergo large conformational changes as they progress through the catalytic cycle. According to Kramers theory, solvent viscosity results in friction against proteins in solution, and this should result in decreased motion, inhibiting catalysis in motile enzymes. Solution viscosity was increased by adding increasing concentrations of glycerol, sucrose and trehalose, resulting in a decrease in the reaction rate of the H+-ATPase from the plasma membrane of Kluyveromyces lactis. A direct correlation was found between viscosity (&eegr; and the inhibition of the maximum rate of catalysis (V max. The protocol used to measure viscosity by means of a falling ball type viscometer is described, together with the determination of enzyme kinetics and the application of Kramers’ equation to evaluate the effect of viscosity on the rate of ATP hydrolysis by the H+-ATPase.

  10. Temperature dependence of bulk viscosity in water using acoustic spectroscopy

    CERN Document Server

    Holmes, M J; Povey, M J W

    2010-01-01

    Despite its fundamental role in the dynamics of compressible fluids, bulk viscosity has received little experimental attention and there remains a paucity of measured data. Acoustic spectroscopy provides a robust and accurate approach to measuring this parameter. Working from the Navier-Stokes model of a compressible fluid one can show that the bulk viscosity makes a significant and measurable contribution to the frequency-squared acoustic attenuation. Here we employ this methodology to determine the bulk viscosity of Millipore water over a temperature range of 7 to 50 degrees Celsius. The measured attenuation spectra are consistent with the theoretical predictions, while the bulk viscosity of water is found to be approximately three times larger than its shear counterpart, reinforcing its significance in acoustic propagation. Moreover, our results demonstrate that this technique can be readily and generally applied to fluids to accurately determine their temperature dependent bulk viscosities.

  11. Turbulent thermal boundary layers with temperature-dependent viscosity

    International Nuclear Information System (INIS)

    Highlights: • Turbulent thermal boundary layers with temperature-dependent viscosity are simulated. • Effect of temperature-dependent viscosity on the statistics of the scalar field. • An identity for the Stanton number is derived and analyzed. • Effect of temperature-dependent viscosity on the statistics of scalar transfer rate. • Modification of turbulent flow field leads to an enhanced scalar transfer rate. - Abstract: Direct numerical simulations (DNS) of turbulent boundary layers (TBLs) over isothermally heated walls were performed, and the influence of the wall-heating on the thermal boundary layers was investigated. The DNS adopt an empirical relation for the temperature-dependent viscosity of water. The Prandtl number therefore changes with temperature, while the Péclet number is constant. Two wall temperatures (Tw = 70 °C and 99 °C) were considered relative to T∞ = 30 °C, and a reference simulation of TBL with constant viscosity was also performed for comparison. In the variable viscosity flow, the mean and variance of the scalar, when normalized by the friction temperature deficit, decrease relative to the constant viscosity flow. A relation for the mean scalar which takes into account the variable viscosity is proposed. Appropriate scalings for the scalar fluctuations and the scalar flux are also introduced, and are shown to be applicable for both variable and constant viscosity flows. Due to the modification of the near-wall turbulence, the Stanton number and the Reynolds analogy factor are augmented by 10% and 44%, respectively, in the variable viscosity flow. An identity for the Stanton number is derived and shows that the mean wall-normal velocity and wall-normal scalar flux cause the increase in the heat transfer coefficient. Finally, the augmented near-wall velocity fluctuations lead to an increase of the wall-normal scalar flux, which contributes favorably to the enhanced heat transfer at the wall

  12. Blood Types

    Science.gov (United States)

    ... How Can I Help a Friend Who Cuts? Blood Types KidsHealth > For Teens > Blood Types Print A A ... or straight hair instead of curly. ...Make Eight Blood Types The different markers that can be found in ...

  13. A biodynamic microsystem for fluids viscosity measurements

    International Nuclear Information System (INIS)

    The purpose of this research was to model, design and fabricate a biodynamic analysis microsystem required for determination of various molecular transport properties of the biological fluids. In order to achieve this, a lab-on-a-chip device was fabricated. The microfluidic system developed satisfies the objectives for the study of microcirculation and characterization of cell rheological properties, functions and behaviour. The measurement principle of the viscosity of biological fluids is based on the detection of the rotation of a polysilicon gear-wheels system. The gear-wheels have external diameters of 250 μm, 200 μm, 160 μm and 3 μm thickness. The micromachining process combines the undercut and refill technique with pin-joint bearing permitting the fabrication of bushings that were used to elevate the rotor away from the silicon surface. The testing of the microfluidic dynamic system was performed using electromagnetic micropumps and magnetic controllers. Each device was fabricated by silicon micromachining technology and tested to obtain the specific characteristics

  14. Methods of viscosity measurements in sealed ampoules

    Science.gov (United States)

    Mazuruk, Konstantin

    1999-07-01

    Viscosity of semiconductors and metallic melts is usually measured by oscillating cup method. This method utilizes the melts contained in vacuum sealed silica ampoules, thus the problems related to volatility, contamination, and high temperature and pressure can be alleviate. In a typical design, the time required for a single measurement is of the order of one hour. In order to reduce this time to a minute range, a high resolution angular detection system is implemented in our design of the viscometer. Furthermore, an electromagnet generating a rotational magnetic field (RMF) is incorporated into the apparatus. This magnetic field can be used to remotely and nonintrusively measure the electrical conductivity of the melt. It can also be used to induce a well controlled rotational flow in the system. The transient behavior of this flow can potentially yield of the fluid. Based on RMF implementation, two novel viscometry methods are proposed in this work: a) the transient torque method, b) the resonance method. A unified theoretical approach to the three methods is presented along with the initial test result of the constructed apparatus. Advantages of each of the method are discussed.

  15. Effects of Metal Ions on Viscosity of Aqueous Sodium Carboxylmethylcellulose Solution and Development of Dropping Ball Method on Viscosity

    Science.gov (United States)

    Set, Seng; Ford, David; Kita, Masakazu

    2015-01-01

    This research revealed that metal ions with different charges could significantly affect the viscosity of aqueous sodium carboxylmethylcellulose (CMC) solution. On the basis of an Ostwald viscometer, an improvised apparatus using a dropping ball for examining the viscosity of liquids/solutions has been developed. The results indicate that the…

  16. Fluid Viscosity Affects the Fragmentation and Inertial Cavitation Threshold of Lipid-Encapsulated Microbubbles.

    Science.gov (United States)

    Helfield, Brandon; Black, John J; Qin, Bin; Pacella, John; Chen, Xucai; Villanueva, Flordeliza S

    2016-03-01

    Ultrasound and microbubble optimization studies for therapeutic applications are often conducted in water/saline, with a fluid viscosity of 1 cP. In an in vivo context, microbubbles are situated in blood, a more viscous fluid (∼4 cP). In this study, ultrahigh-speed microscopy and passive cavitation approaches were employed to investigate the effect of fluid viscosity on microbubble behavior at 1 MHz subject to high pressures (0.25-2 MPa). The propensity for individual microbubble (n = 220) fragmentation was found to significantly decrease in 4-cP fluid compared with 1-cP fluid, despite achieving similar maximum radial excursions. Microbubble populations diluted in 4-cP fluid exhibited decreased wideband emissions (up to 10.2 times), and increasingly distinct harmonic emission peaks (e.g., ultraharmonic) with increasing pressure, compared with those in 1-cP fluid. These results suggest that in vitro studies should consider an evaluation using physiologic viscosity perfusate before transitioning to in vivo evaluations. PMID:26674676

  17. Immunoelectrophoresis - blood

    Science.gov (United States)

    IEP - serum; Immunoglobulin electrophoresis - blood; Gamma globulin electrophoresis; Serum immunoglobulin electrophoresis ... A blood sample is needed. For information on how this is done, see: Venipuncture

  18. The viscosity of planetary tholeiitic melts: A configurational entropy model

    Science.gov (United States)

    Sehlke, Alexander; Whittington, Alan G.

    2016-10-01

    The viscosity (η) of silicate melts is a fundamental physical property controlling mass transfer in magmatic systems. Viscosity can span many orders of magnitude, strongly depending on temperature and composition. Several models are available that describe this dependency for terrestrial melts quite well. Planetary basaltic lavas however are distinctly different in composition, being dominantly alkali-poor, iron-rich and/or highly magnesian. We measured the viscosity of 20 anhydrous tholeiitic melts, of which 15 represent known or estimated surface compositions of Mars, Mercury, the Moon, Io and Vesta, by concentric cylinder and parallel plate viscometry. The planetary basalts span a viscosity range of 2 orders of magnitude at liquidus temperatures and 4 orders of magnitude near the glass transition, and can be more or less viscous than terrestrial lavas. We find that current models under- and overestimate superliquidus viscosities by up to 2 orders of magnitude for these compositions, and deviate even more strongly from measured viscosities toward the glass transition. We used the Adam-Gibbs theory (A-G) to relate viscosity (η) to absolute temperature (T) and the configurational entropy of the system at that temperature (Sconf), which is in the form of log η =Ae +Be /TSconf . Heat capacities (CP) for glasses and liquids of our investigated compositions were calculated via available literature models. We show that the A-G theory is applicable to model the viscosity of individual complex tholeiitic melts containing 10 or more major oxides as well or better than the commonly used empirical equations. We successfully modeled the global viscosity data set using a constant Ae of -3.34 ± 0.22 log units and 12 adjustable sub-parameters, which capture the compositional and temperature dependence on melt viscosity. Seven sub-parameters account for the compositional dependence of Be and 5 for Sconf. Our model reproduces the 496 measured viscosity data points with a 1

  19. GodunovSPH with shear viscosity: implementation and tests

    Science.gov (United States)

    Cha, Seung-Hoon; Wood, Matt A.

    2016-05-01

    The acceleration and energy dissipation terms due to the shear viscosity have been implemented and tested in GodunovSPH. The double summation method has been employed to avoid the well-known numerical noise of the second derivative in particle based codes. The plane Couette flow with various initial and boundary conditions have been used as tests, and the numerical and analytical results show a good agreement. Not only the viscosity-only calculation, but the full hydrodynamics simulations have been performed, and they show expected results as well. The very low kinematic viscosity simulations show a turbulent pattern when the Reynolds number exceeds ˜102. The critical value of the Reynolds number at the transition point of the laminar and turbulent flows coincides with the previous works approximately. A smoothed dynamic viscosity has been suggested to describe the individual kinematic viscosity of particles. The infinitely extended Couette flow which has two layers of different viscosities has been simulated to check the smoothed dynamic viscosity, and the result agrees well with the analytic solution. In order to compare the standard smoothed particle hydrodynamics (SPH) and GodunovSPH, the two layers test has been performed again with a density contrast. GodunovSPH shows less dispersion than the standard SPH, but there is no significant difference in the results. The results of the viscous ring evolution has also been presented as well, and the numerical results agrees with the analytic solution.

  20. Singularities and Entropy in Bulk Viscosity Dark Energy Model

    Institute of Scientific and Technical Information of China (English)

    孟新河; 窦旭

    2011-01-01

    In this paper bulk viscosity is introduced to describe the effects of cosmic non-perfect fluid on the cosmos evolution and to build the unified dark energy (DE) with (dark) matter models. Also we derive a general relation between the bulk viscosity form and Hubble parameter that can provide a procedure for the viscosity DE model building. Especially, a redshift dependent viscosity parameter ζ ∝ λ0 +λ1(1 +z)n proposed in the previous work [X.H. Meng and X. Dou, Commun. Theor. Phys. B2 (2009) 377] is investigated extensively in this present work. Further more we use the recently released supernova dataset (the Constitution dataset) to constrain the model parameters. In order to differentiate the proposed concrete dark energy models from the well known ACDM model, statefinder diagnostic method is applied to this bulk viscosity model, as a complementary to the Om parameter diagnostic and the deceleration parameter analysis performed by us before. The DE model evolution behavior and tendency are shown in the plane of the statefinder diagnostic parameter pair {τ, s} as axes where the fixed point represents the A CDM model The possible singularity property in this bulk viscosity cosmology is also discussed to which we can conclude that in the different parameter regions chosen properly, this concrete viscosity DE model can have various late evolution behaviors and the late time singularity could be avoided. We also calculate the cosmic entropy in the bulk viscosity dark energy frame, and find that the total entropy in the viscosity DE model increases monotonously with respect to the scale factor evolution, thus this monotonous increasing property can indicate an arrow of time in the universe evolution, though the quantum version of the arrow of time is still very puzzling.

  1. Red blood cell in simple shear flow

    Science.gov (United States)

    Chien, Wei; Hew, Yayu; Chen, Yeng-Long

    2013-03-01

    The dynamics of red blood cells (RBC) in blood flow is critical for oxygen transport, and it also influences inflammation (white blood cells), thrombosis (platelets), and circulatory tumor migration. The physical properties of a RBC can be captured by modeling RBC as lipid membrane linked to a cytoskeletal spectrin network that encapsulates cytoplasm rich in hemoglobin, with bi-concave equilibrium shape. Depending on the shear force, RBC elasticity, membrane viscosity, and cytoplasm viscosity, RBC can undergo tumbling, tank-treading, or oscillatory motion. We investigate the dynamic state diagram of RBC in shear and pressure-driven flow using a combined immersed boundary-lattice Boltzmann method with a multi-scale RBC model that accurately captures the experimentally established RBC force-deformation relation. It is found that the tumbling (TU) to tank-treading (TT) transition occurs as shear rate increases for cytoplasm/outer fluid viscosity ratio smaller than 0.67. The TU frequency is found to be half of the TT frequency, in agreement with experiment observations. Larger viscosity ratios lead to the disappearance of stable TT phase and unstable complex dynamics, including the oscillation of the symmetry axis of the bi-concave shape perpendicular to the flow direction. The dependence on RBC bending rigidity, shear modulus, the order of membrane spectrin network and fluid field in the unstable region will also be discussed.

  2. Numerical solutions of Williamson fluid with pressure dependent viscosity

    Directory of Open Access Journals (Sweden)

    Iffat Zehra

    2015-01-01

    Full Text Available In the present paper, we have examined the flow of Williamson fluid in an inclined channel with pressure dependent viscosity. The governing equations of motion for Williamson fluid model under the effects of pressure dependent viscosity and pressure dependent porosity are modeled and then solved numerically by the shooting method with Runge Kutta Fehlberg for two types of geometries i.e., (i Poiseuille flow and (ii Couette flow. Four different cases for pressure dependent viscosity and pressure dependent porosity are assumed and the physical features of pertinent parameters are discussed through graphs.

  3. Shear viscosity of $\\beta$-stable nuclear matter

    CERN Document Server

    Benhar, Omar

    2009-01-01

    Viscosity plays a critical role in determining the stability of rotating neutron stars. We report the results of a calculation of the shear viscosity of $\\beta$~-~stable matter, carried out using an effective interaction based on a state-of-the-art nucleon-nucleon potential and the formalism of correlated basis functions. Within our approach the equation of state, determining the proton fraction, and the nucleon-nucleon scattering probability are consistently obtained from the same dynamical model. The results show that, while the neutron contribution to the viscosity is always dominant, above nuclear saturation density the electron contribution becomes appreciable.

  4. Viscosity of Liquid Fayalite up to 9 GPa

    OpenAIRE

    Spice, Holly; Sanloup, Chrystèle; Cochain, Benjamin; de Grouchy, Charlotte; Kono, Yoshio

    2015-01-01

    International audience The viscosity of liquid fayalite (Fe 2 SiO 4) was determined up to 9.2 GPa and 1850 • C using in situ falling sphere viscometry and X-ray radiography imaging. The viscosity of liquid fayalite was found to decrease with pressure, reducing by a factor of 2.5 between ambient pressure and 9.2 GPa. The results are in contrast with previous studies on depolymerised silicate melts which found viscosity to increase with pressure. In accordance with recent in situ structural ...

  5. Theoretical evaluation of bulk viscosity: Expression for relaxation time

    Science.gov (United States)

    Hossein Mohammad Zaheri, Ali; Srivastava, Sunita; Tankeshwar, K.

    2007-10-01

    A theoretical calculation of bulk viscosity has been carried out by deriving an expression for the relaxation time which appears in the formula for bulk viscosity derived by Okumura and Yonezawa. The expression involved a pair distribution function and interaction potential. Numerical results have been obtained over a wide range of densities and temperatures for Lennard-Jones fluids. It is found that our results provide a good description of bulk viscosity as has been judged by comparing the results with nonequilibrium molecular dynamics results. In addition, our results demonstrate the importance of the multiparticle correlation function.

  6. Fiber optic sensor for flow and viscosity measurement

    Science.gov (United States)

    Wang, Wei-Chih; Leang, Jonathan

    2016-04-01

    A sensitive fluid viscosity and flow measurement device using optical intensity based sensing is presented. The sensing principle makes use of the damping characteristic of a vibrating optical fiber probe with approximate hinge-free end configuration. The viscosity and mass flow are determined by measuring the vibration of a sinusoidally excited tapered optical fiber under different flow conditions. By measuring the frequency response of the fiber probe, viscosity and mass flow can be deduced from the damping coefficient of the response. The concepts and experimental data presented demonstrate and refine the sensing process of the proposed system.

  7. Nonlocal transport and the hydrodynamic shear viscosity in graphene

    Science.gov (United States)

    Torre, Iacopo; Tomadin, Andrea; Geim, Andre K.; Polini, Marco

    2015-10-01

    Motivated by recent experimental progress in preparing encapsulated graphene sheets with ultrahigh mobilities up to room temperature, we present a theoretical study of dc transport in doped graphene in the hydrodynamic regime. By using the continuity and Navier-Stokes equations, we demonstrate analytically that measurements of nonlocal resistances in multiterminal Hall bar devices can be used to extract the hydrodynamic shear viscosity of the two-dimensional (2D) electron liquid in graphene. We also discuss how to probe the viscosity-dominated hydrodynamic transport regime by scanning probe potentiometry and magnetometry. Our approach enables measurements of the viscosity of any 2D electron liquid in the hydrodynamic transport regime.

  8. Shear viscosities of photons in strongly coupled plasmas

    Science.gov (United States)

    Yang, Di-Lun; Müller, Berndt

    2016-09-01

    We investigate the shear viscosity of thermalized photons in the quark gluon plasma (QGP) at weak coupling and N = 4 super Yang-Mills plasma (SYMP) at both strong and weak couplings. We find that the shear viscosity due to the photon-parton scattering up to the leading order of electromagnetic coupling is suppressed when the coupling of the QGP/SYMP is increased, which stems from the blue-shift of the thermal-photon spectrum at strong coupling. In addition, the shear viscosity rapidly increases near the deconfinement transition in a phenomenological model analogous to the QGP.

  9. Viscosity of Liquid Crystal Mixtures in the Presence of Electroconvection

    Science.gov (United States)

    Nagaya, Tomoyuki; Satou, Yuki; Goto, Yoshitomo; Hidaka, Yoshiki; Orihara, Hiroshi

    2016-07-01

    We have experimentally investigated the viscosity of nematic liquid crystal mixtures of p-methoxybenzylidene-p'-n-butylaniline (MBBA) and p-ethoxybenzylidene-p'-cyanoaniline (EBCA) in the presence of electroconvection under an ac electric field with 60 Hz. Although the viscosity of the mixtures with negative dielectric anisotropy shows a characteristic decrease in the high-voltage regime, that with positive dielectric anisotropy shows a monotonic increase as the applied voltage is increased. The experimental results suggest that the decrease in viscosity observed only for the mixtures with negative dielectric anisotropy is attributed to the negative contribution of electric stress caused by the anisotropic director distribution of the turbulent state.

  10. Effect of Xiaoke Granule(消渴冲剂)on Blood Sugar and Blood Rheological Property in Experimental Diabetic Animals

    Institute of Scientific and Technical Information of China (English)

    季晓梅; 刘根尚; 齐昉; 郑虎占; 佘靖; 龚慕辛; 孙军; 章红英

    2002-01-01

    Objective: To study the pharmacological effect of Xiaoke Granule (XKG, 消渴冲剂) on blood sugar and blood rheological property in the diabetic animals.Methods: Alloxan induced diabetic mice or rats were grouped randomly. The effects of XKG on blood sugar, appetite, capacity of drinking, glucose tolerance, blood lipid and blood rheological property were observed and compared among groups.Results:XKG showed a trend in reducing the appetite and capacity of drinking, increasing the body weight, and significantly inhibiting the increase of blood sugar coused by ectogenic glucose in mice, and could improve the blood lipid and blood rheological property in rats.Conclusion:XKG is effective in reducing serum total cholesterol, lowering the blood viscosity, improving the blood rheological property of alloxan induced diabetic animals. Therefore, it might effective in treating and preventing the occurrence of diabetes mellitus and the complications of blood stasis.

  11. CFD simulation of blood flow inside the corkscrew collaterals of the Buerger’s disease

    Directory of Open Access Journals (Sweden)

    Alireza Sharifi

    2016-03-01

    Results: The local velocity patterns, pressure and kinematic viscosity distributions in different segments of the corkscrew collateral artery was demonstrated and discussed for the first time for this kind of artery. The effects of non-Newtonian consideration for the blood viscosity behavior were investigated in different segments of the artery. Moreover, the variations of the blood flow patterns along the artery were investigated in details for each segment. Conclusion: It was found that the flow patterns were affected by the complex geometry of this artery in such a way that it could lead to the presence of sites that were prone to the accumulation of the flowing particles in blood like nicotine. Furthermore, due to the existence of many successive bends in this artery, the variations of kinematic viscosity along this artery were significant, therefore the non-Newtonian behavior of the blood viscosity must be considered.

  12. Measurement of viscosity as a means to identify irradiated food

    International Nuclear Information System (INIS)

    The measurement of viscosity is a simple method to identify previous irradiation of some kinds of spices and foods, at least in combination with other methods. A possible change of the soaking capacity was examined up to a storage period of 18 months after irradiation of black pepper, white pepper, cinnamon, ginger and onion powder with a radiation dose of 10 kGy each. After irradiation, either increased or decreased viscosity values were measured; the results showed, also after the 18-months-storage period, considerable differences of the viscosity behaviour in non-irradiated and irradiated samples. The time of storage had no effect to the individual viscosity values, so that this method could also be applied to the examined spices after a longer storage period. (orig.) With 51 figs., 25 tabs

  13. Experimental Study of Additives on Viscosity biodiesel at Low Temperature

    Science.gov (United States)

    Fajar, Berkah; Sukarno

    2015-09-01

    An experimental investigation was performed to find out the viscosity of additive and biodiesel fuel mixture in the temperature range from 283 K to 318 K. Solutions to reduce the viscosity of biodiesel is to add the biodiesel with some additive. The viscosity was measured using a Brookfield Rheometer DV-II. The additives were the generic additive (Diethyl Ether/DDE) and the commercial additive Viscoplex 10-330 CFI. Each biodiesel blends had a concentration of the mixture: 0.0; 0.25; 0.5; 0.75; 1.0; and 1.25% vol. Temperature of biodiesel was controlled from 40°C to 0°C. The viscosity of biodiesel and additive mixture at a constant temperature can be approximated by a polynomial equation and at a constant concentration by exponential equation. The optimum mixture is at 0.75% for diethyl ether and 0.5% for viscoplex.

  14. Birkhoff's theorem and viscosity solutions of Hamilton-Jacobi equations

    Institute of Scientific and Technical Information of China (English)

    CHENG Wei

    2009-01-01

    We obtain a partial generalization of Birkhoff's theorem of invariant curve to higher dimesional case in the context of viscosity solutions of Hamilton-Jacobi equations,or weak KAM theory.This is a new approach after Herman's proof.

  15. Viscosity Measurements and Correlation of the Squalane + CO2 Mixture

    Science.gov (United States)

    Tomida, D.; Kumagai, A.; Yokoyama, C.

    2007-02-01

    Experimental results for the viscosity of squalane + CO2 mixtures are reported. The viscosities were measured using a rolling ball viscometer. The experimental temperatures were 293.15, 313.15, 333.15, and 353.15 K, and pressures were 10.0, 15.0, and 20.0 MPa. The CO2 mole fraction of the mixtures varied from 0 to 0.417. The experimental uncertainties in viscosity were estimated to be within ±3.0%. The viscosity of the mixtures decreased with an increase in the CO2 mole fraction. The experimental data were compared with predictions from the Grunberg-Nissan and McAllister equations, which correlated the experimental data with maximum deviations of 10 and 8.7%, respectively.

  16. Viscosity and density tables of sodium chloride solutions

    Energy Technology Data Exchange (ETDEWEB)

    Fair, J.A.; Ozbek, H. (comps.)

    1977-04-01

    A file is presented containing tabulated data extracted from the scientific literature on the density and viscosity of aqueous sodium chloride solutions. Also included is a bibliography of the properties of aqueous sodium chloride solutions. (MHR)

  17. Mechanism of sulfide effect on viscosity of HPAM polymer solution

    Institute of Scientific and Technical Information of China (English)

    康万利; 周阳; 王志伟; 孟令伟; 刘述忍; 白宝君

    2008-01-01

    The effect of sulfide on HPAM solution viscosity was studied using BROOKFIELD DV-II viscometer,and the interaction mechanism was discussed.The HPAM solution viscosity was investigated through fully reducing sulfide by the addition of hydrogen peroxide oxidation,and the mechanism of increasing polymer viscosity was investigated.The experimental results also show that there is a critical concentration of 15 mg/L.Below it,the loss rate of HPAM solution viscosity increases more rapidly,but becomes slowly above the critical concentration.A theoretical guidance for oilfields to prepare polymer solution using sewage-water by eliminating sulfide,and it is also importance to prepare polymer solution using sewage-water and save fresh water.

  18. PVT characterization and viscosity modeling and prediction of crude oils

    DEFF Research Database (Denmark)

    Cisneros, Eduardo Salvador P.; Dalberg, Anders; Stenby, Erling Halfdan

    2004-01-01

    In previous works, the general, one-parameter friction theory (f-theory), models have been applied to the accurate viscosity modeling of reservoir fluids. As a base, the f-theory approach requires a compositional characterization procedure for the application of an equation of state (EOS), in most...... pressure, is also presented. The combination of the mass characterization scheme presented in this work and the f-theory, can also deliver accurate viscosity modeling results. Additionally, depending on how extensive the compositional characterization is, the approach,presented in this work may also...... deliver accurate viscosity predictions. The modeling approach presented in this work can deliver accurate viscosity and density modeling and prediction results over wide ranges of reservoir conditions, including the compositional changes induced by recovery processes such as gas injection....

  19. Viscosity of aluminum under shock-loading conditions

    Institute of Scientific and Technical Information of China (English)

    Ma Xiao-Juan; Liu Fu-Sheng; Zhang Ming-Jian; Sun Yan-Yun

    2011-01-01

    A reliable data treatment method is critical for viscosity measurements using the disturbance amplitude damping method of shock waves. In this paper the finite difference method is used to obtain the numerical solutions for the disturbance amplitude damping behaviour of the sinusoidal shock front in a flyer-impact experiment. The disturbance amplitude damping curves are used to depict the numerical solutions of viscous flow. By fitting the experimental data to the numerical solutions of different viscosities, we find that the effective shear viscosity coefficients of shocked aluminum at pressures of 42, 78 and 101 GPa are (1500±100) Pa. s, (2800±100) Pa. s and (3500±100) Pa. s respectively. It is clear that the shear viscosity of aluminum increases with an increase in shock pressure, so aluminum does not melt below a shock pressure of 101 GPa. This conclusion is consistent with the sound velocity measurement.

  20. Viscosity measurements of metallic melts using the oscillating drop technique

    Science.gov (United States)

    Heintzmann, P.; Yang, F.; Schneider, S.; Lohöfer, G.; Meyer, A.

    2016-06-01

    By means of benchmarking reduced gravity experiments, we have verified the measured viscosity of binary Zr-Ni glass forming liquids utilizing the oscillating drop technique combined with ground-based electrostatic levitation (ESL). Reliable viscosity data can be obtained as long as internal viscous damping of a single oscillation mode of a levitated drop dominates external perturbations. This can be verified by the absence of a sample mass dependence of the results. Hence, ESL is an excellent tool for studying the viscosity of metallic glass forming melts in the range of about 10-250 mPa s, with sample masses below 100 mg. To this end, we show that, for binary Zr-Ni melts, the viscosity is qualitatively controlled by the packing density.

  1. Modeling effective viscosity reduction behaviour of solid suspensions

    Institute of Scientific and Technical Information of China (English)

    Wei En-Bo; Ji Yan-Ju; Zhang Jun

    2012-01-01

    Under a simple shearing flow,the effective viscosity of solid suspensions can be reduced by controlling the inclusion particle size or the number of inclusion particles in a unit volume.Based on the Stokes equation,the transformation field method is used to model the reduction behaviour of effective viscosity of solid suspensions theoretically by enlarging the particle size at a given high concentration of particles.With a lot of samples of random cubic particles in a unit cell,our statistical results show that at the same higher concentration,the effective viscosity of solid suspensions can be reduced by increasing the particle size or reducing the number of inclusion particles in a unit volume.This work discloses the viscosity reduction mechanism of increasing particle size,which is observed experimentally.

  2. Comment on "Accelerating cosmological expansion from shear and bulk viscosity"

    CERN Document Server

    Giovannini, Massimo

    2015-01-01

    In a recent Letter [Phys. Rev. Lett. 114 091301 (2105)] the cause of the acceleration of the present Universe has been identified with the shear viscosity of an imperfect relativistic fluid even in the absence of any bulk viscous contribution. The gist of this comment is that the shear viscosity, if anything, can only lead to an accelerated expansion over sufficiently small scales well inside the Hubble radius.

  3. Convergence of a residual based artificial viscosity finite element method

    KAUST Repository

    Nazarov, Murtazo

    2013-02-01

    We present a residual based artificial viscosity finite element method to solve conservation laws. The Galerkin approximation is stabilized by only residual based artificial viscosity, without any least-squares, SUPG, or streamline diffusion terms. We prove convergence of the method, applied to a scalar conservation law in two space dimensions, toward an unique entropy solution for implicit time stepping schemes. © 2012 Elsevier B.V. All rights reserved.

  4. Measuring Solution Viscosity and its Effect on Enzyme Activity

    OpenAIRE

    Uribe Salvador; Sampedro José G.

    2003-01-01

    In proteins, some processes require conformational changes involving structural domain diffusion. Among these processes are protein folding, unfolding and enzyme catalysis. During catalysis some enzymes undergo large conformational changes as they progress through the catalytic cycle. According to Kramers theory, solvent viscosity results in friction against proteins in solution, and this should result in decreased motion, inhibiting catalysis in motile enzymes. Solution viscosity was increas...

  5. Viscosity and mutual diffusion in strongly asymmetric binary ionic mixtures

    OpenAIRE

    Bastea, Sorin

    2006-01-01

    We present molecular dynamics simulation results for the viscosity and mutual diffusion constant of a strongly asymmetric binary ionic mixture (BIM). We compare the results with available theoretical models previously tested for much smaller asymmetries. For the case of viscosity we propose a new predictive framework based on the linear mixing rule, while for mutual diffusion we discuss some consistency problems of widely used Boltzmann equation based models.

  6. Dark matter perturbations and viscosity: a causal approach

    OpenAIRE

    Acquaviva, Giovanni; John, Anslyn; Pénin, Aurélie

    2016-01-01

    The inclusion of dissipative effects in cosmic fluids modifies their clustering properties and could have observable effects on the formation of large scale structures. We analyse the evolution of density perturbations of cold dark matter endowed with causal bulk viscosity. The perturbative analysis is carried out in the Newtonian approximation and the bulk viscosity is described by the causal Israel-Stewart (IS) theory. In contrast to the non-causal Eckart theory, we obtain a third order evo...

  7. Viscosity and mutual diffusion in strongly asymmetric binary ionic mixtures

    CERN Document Server

    Bastea, S

    2005-01-01

    We present molecular dynamics simulation results for the viscosity and mutual diffusion constant of a strongly asymmetric binary ionic mixture (BIM). We compare the results with available theoretical models previously tested for much smaller asymmetries. For the case of viscosity we propose a new predictive framework based on the linear mixing rule, while for mutual diffusion we discuss some consistency problems of widely used Boltzmann equation based models.

  8. GodunovSPH with shear viscosity : implementation and tests

    OpenAIRE

    Cha, Seung-Hoon; Wood, Matt A.

    2016-01-01

    The acceleration and energy dissipation terms due to the shear viscosity have been implemented and tested in GodunovSPH. The double summation method has been employed to avoid the well known numerical noise of the second derivative in particle based codes. The plane Couette flow with various initial and boundary conditions have been used as tests, and the numerical and analytical results show a good agreement. Not only the viscosity--only calculation, but the full hydrodynamics simulations ha...

  9. VARIATION IN MEAT COMPOSITION VISCOSITY DURING THE MIXING PROCESS

    OpenAIRE

    DANIELA IANIłCHI; CRISTIANA DIACONESCU; LAURA URDES; CARMEN NICOLAE; I.G. MALOS

    2013-01-01

    Animal raw material processing is directly influenced by the physical and chemical characteristics of the materials which also influence their water holding capacity. The various combinations and status of the raw materials used in the food industry determine specific behaviours that may influence the processing equipment performance and construction. The study on meat composition viscosity depending upon the added components, temperature and mixing time length, has shown that viscosity is in...

  10. INFLUENCE OF STARCH ADDING ON THE BEEF COMPOSITIONS VISCOSITY

    OpenAIRE

    DANIELA IANIŢCHI; LUCICA NISTOR; LAURA URDEŞ; CAMELIA HODOŞAN; CRISTIANA DIACONESCU

    2013-01-01

    Animal raw material processing is directly influenced by the physical and chemical characteristics of their. The various combinations and status of the raw materials used in the food industry determine specific behaviours that may influence the processing equipment performance and construction. The study on meat composition viscosity depending upon the added components, temperature and mixing time length, has shown that viscosity is increasing with lower mixing temperature , higher mixing tim...

  11. Artificial blood

    Directory of Open Access Journals (Sweden)

    Sarkar Suman

    2008-01-01

    Full Text Available Artificial blood is a product made to act as a substitute for red blood cells. While true blood serves many different functions, artificial blood is designed for the sole purpose of transporting oxygen and carbon dioxide throughout the body. Depending on the type of artificial blood, it can be produced in different ways using synthetic production, chemical isolation, or recombinant biochemical technology. Development of the first blood substitutes dates back to the early 1600s, and the search for the ideal blood substitute continues. Various manufacturers have products in clinical trials; however, no truly safe and effective artificial blood product is currently marketed. It is anticipated that when an artificial blood product is available, it will have annual sales of over $7.6 billion in the United States alone.

  12. Contraints on cosmological viscosity from GW150914 observation

    CERN Document Server

    Goswami, Gaurav; Prasanna, A R

    2016-01-01

    It has been shown that gravitational waves propagate through ideal fluids without experiencing any dispersion or dissipation. However, if the medium has a non-zero shear viscosity $\\eta$ , gravitational waves will be dissipated at a rate proportional to $G \\eta$. We test dark matter and dark energy models with non-zero shear viscosity by calculating the dissipation of GW150914 which propagates over a distance of 410 Mpc through the dissipative fluid and testing the data with the theoretical prediction. We put an upper bound on the shear viscosity of the cosmological fluid as $\\eta < 1.9 \\times 10^{9} {\\rm Pa \\,\\, sec}$ which is close to the critical viscosity of fluids at which the viscous pressure becomes significant for the dynamics of the universe. The upper bound on $\\eta$ is lower than the estimated shear viscosity of self-interacting dark matter in galaxy cluster Abel 3827. Future observations of gravitational waves at LIGO have the potential of detecting the viscosity of dark matter and dark energy.

  13. ESTIMATION OF VISCOSITY ENGINE OILS USING ROTATIONAL RHEOMETER

    Directory of Open Access Journals (Sweden)

    Anna M. RYNIEWICZ

    2014-06-01

    Full Text Available The operating criteria, the assurance of energy-efficiency and environmental protection impose very diversified rheological requirements on the parameters of work of car engine oils. The aim of the work was the estimation of rheological parameters of selected car engine oils at controlled shear stress in a wide range of temperatures, using a rotational rheometer. Investigated mineral engine oils, semi-synthetic and synthetic ones that belong to different viscosity classes. The characteristics of viscosity in relation to temperature in the testing node were determined. The results of tests at sub-zero and low temperatures indicate significant differentiation of rheological properties of engine oils. It can be claimed that in the exploited friction nodes, especially in the conditions of fluid and mixed friction, the smallest viscosity is characteristic to the fully synthetic oils from the tested group 5W and the semi-synthetic oil Orlen Gas Semisynthetic 10W-40. Semi-synthetic oil Platinum Rally Sport 10W-60 stands out as its viscosity values at sub-zero and low temperatures are greater than the ones of mineral oils from the tested group 15W-40. At high temperatures one can distinguish the oil called Elf Sporti SRI 15W-40 whose viscosity very slightly decreases. The conducted oil tests confirmed their catalog parameters and affiliation to viscosity classes.

  14. Viscosity of In and In-Sb alloys

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The dynamic viscosity of pure In, In-1%Sb (mass fraction, so as the follows) alloy, In-55%Sb hypoeutectic alloyand In-69.5%Sb eutectic alloy was measured by using a torsional oscillation viscometer at different temperatures above liq-uidus. The experimental results show that the viscosity of these melts decreases with increasing temperature. The anomalouschange of viscosity occurs at about 430 and 470℃ in pure In melt. The variation of viscosity with temperature well meetsexponential correlation and no anomalous change occurs in measured temperature range in the In-1%Sb alloy melt. A tran-sition occurs at about 800℃ in both of In-55%Sb and In-69.5%Sb alloy melts. The sudden change of viscosity suggests thestructure change of melts. DSC (differential scanning calorimetry) curves of In-1%Sb alloy during heating and cooling weremeasured, and the results show that no structural variation in In-1%Sb alloy melt was testified further. In addition, the vis-cosity of In melt decreases with the addition of 1%Sb.

  15. Viscosity of liquid fayalite up to 9 GPa

    Science.gov (United States)

    Spice, Holly; Sanloup, Chrystèle; Cochain, Benjamin; de Grouchy, Charlotte; Kono, Yoshio

    2015-01-01

    The viscosity of liquid fayalite (Fe2SiO4) was determined up to 9.2 GPa and 1850 °C using in situ falling sphere viscometry and X-ray radiography imaging. The viscosity of liquid fayalite was found to decrease both along the melting curve and an isotherm, therefore temperature is thought to have little effect on liquid fayalite viscosity at high pressure. The results are in contrast with previous studies on depolymerised silicate melts which found viscosity to increase with pressure. In accordance with recent in situ structural measurements on liquid fayalite, the viscosity decrease is likely a result of the increase in Fe-O coordination with pressure. The results show that liquid silicate viscosities need to be considered on an individual basis and can be strongly dependent on the melt structure and composition. This has important implications for models of planetary differentiation. In particular, terrestrial bodies with high Fe contents and reducing mantle conditions are likely to have had very mobile melts at depth.

  16. Effect of Solvation Film on the Viscosity of Colloidal Dispersions

    Institute of Scientific and Technical Information of China (English)

    PENG Chang-Sheng; GU Qing-Bao; SONG Shao-Xian

    2005-01-01

    Viscosity is one of the most important properties of colloids in mixing, transportation, stabilization, energy consumption, and so on. According to Einstein's viscosity equation, the viscosity of a colloidal dispersion increases with the increase of particle concentration. And the equation can be applicable to all micro-particle dispersions, because the effect of solvation films coated on particles can be neglectable in that case. But with the decrease of particle size to nano-scale, the formation of solvation films on nano-particles can greatly affect the viscosity of a dispersion, and Einstein's equation may not be applicable to this case. In this work, one kind of micro-size silica particle and two kinds of nano-size silica particles were used to investigate the effect of solvation films on dispersion viscosity, dispersed in water and ethyl alcohol solvents, respectively. The results of theoretical calculation and experimental investigation show that the increase of viscosity is contributed from solvation films by more than 95 percent for nano-particle dispersions, while less than 10 percent for micro-particle dispersions.

  17. Effects of viscosity variations in temporal mixing layer

    International Nuclear Information System (INIS)

    The objective of the present investigation is to assess the effects of viscosity variations in low-speed temporally-evolving turbulent mixing layer. Direct Numerical Simulations (DNS) are performed for several viscosity ratios, Rv = vhigh/vlow, varying between 1 and 9, whereas the upper and lower streams are of equal density. The space-time evolution of Variable-Viscosity Flow (VVF) is compared with the Constant-Viscosity Flow (CVF), for which Rv = 1. The initial Reynolds number, based on the initial momentum thickness, δθ,0, is Reδθ,0 = 160 for the considered cases. The study focuses on the first stages of the temporal evolution of the mixing-layer. It is shown that in VVF (with respect to CVF): (i) the birth of turbulent fluctuations is accelerated; (ii) large-scale quantities, i.e. mean longitudinal velocity and momentum thickness, are affected by the viscosity variations, thus dispelling the myth that viscosity is a 'small-scale quantity that does not affect the large scales'; (iii) the velocity fluctuations are enhanced for VVF. In particular, the turbulent kinetic energy peaks earlier and is three times larger for VVF than CVF at the earliest stage of the mixing, and (iv) the transport equation for the turbulent kinetic energy is derived and favourably compared with simulations data.

  18. Bulk viscosity from the Polyakov-Nambu-Jona-Lasinio model

    International Nuclear Information System (INIS)

    The insufficiency of ideal fluid dynamics to reproduce certain expected results threw light on the necessity of dissipative effects. The viscosity coefficients give an estimate of the hydrodynamical evolution of fluid dissipative processes. Not only do they provide information about the deviation of the system from ideal hydrodynamics, they also give us a picture of the fluid dynamics and critical phenomena. In this work we concentrate on the effects of bulk viscosity. Bulk viscosity bears essential significance like in the context of violation of scale invariance. Now, the smallness of sound velocity being directly related to the former, it becomes obvious that bulk viscosity will show a peak-like nature in the critical region. Bulk viscosity manifests itself by an addition of the diagonal term πδij to the stress tensor Tij in the local rest frame. In this work we take resort to the Kubo formalism which relates viscosity coefficients to the correlation functions of the energy-momentum (E-M) tensor

  19. Bulk and shear viscosities of hot and dense hadron gas

    International Nuclear Information System (INIS)

    We estimate the bulk and the shear viscosity at finite temperature and baryon densities of hadronic matter within a hadron resonance gas model which includes a Hagedorn spectrum. The parameters of the Hagedorn spectrum are adjusted to fit recent lattice QCD simulations at finite chemical potential. For the estimation of the bulk viscosity we use low energy theorems of QCD for the energy momentum tensor correlators. For the shear viscosity coefficient, we estimate the same using molecular kinetic theory to relate the shear viscosity coefficient to average momentum of the hadrons in the hot and dense hadron gas. The bulk viscosity to entropy ratio increases with chemical potential and is related to the reduction of velocity of sound at nonzero chemical potential. The shear viscosity to entropy ratio on the other hand, shows a nontrivial behavior with the ratio decreasing with chemical potential for small temperatures but increasing with chemical potential at high temperatures and is related to decrease of entropy density with chemical potential at high temperature due to finite volume of the hadrons

  20. Effect of viscosity on harmonic signals from magnetic fluid

    International Nuclear Information System (INIS)

    We explored the effect of viscosity on harmonic signals from a magnetic fluid. Using a numerical simulation that accounts for both the Brownian and Néel processes, we clarified how the magnetization mechanism is affected by viscosity. When the excitation field varies much slower than the Brownian relaxation time, magnetization can be described by the Langevin function. On the other hand, for the case when the excitation field varies much faster than the Brownian relaxation time, but much slower than the Néel relaxation time, the easy axes of the magnetic nanoparticles (MNPs) turn to some extent toward the direction of the excitation field in an equilibrium state. This alignment of the easy axes of MNPs caused by the AC field becomes more significant with the increase of the AC field strength. Consequently, the magnetization is different from the Langevin function even though Néel relaxation time is faster than time period of the external frequency. It is necessary to consider these results when we use harmonic signals from a magnetic fluid in a high-viscosity medium. - Highlights: • We explore the effect of viscosity on harmonic signals from a magnetic fluid. • We clarify how the magnetization mechanism is affected by the viscosity of the fluid. • The magnetization in a high-viscosity medium is different from a Langevin function. • We empirically express the alignment of easy axes of the MNPs caused by an AC field

  1. Development of Viscosity Model for Petroleum Industry Applications

    Science.gov (United States)

    Motahhari, Hamed reza

    Heavy oil and bitumen are challenging to produce and process due to their very high viscosity, but their viscosity can be reduced either by heating or dilution with a solvent. Given the key role of viscosity, an accurate viscosity model suitable for use with reservoir and process simulators is essential. While there are several viscosity models for natural gases and conventional oils, a compositional model applicable to heavy petroleum and diluents is lacking. The objective of this thesis is to develop a general compositional viscosity model that is applicable to natural gas mixtures, conventional crudes oils, heavy petroleum fluids, and their mixtures with solvents and other crudes. The recently developed Expanded Fluid (EF) viscosity correlation was selected as a suitable compositional viscosity model for petroleum applications. The correlation relates the viscosity of the fluid to its density over a broad range of pressures and temperatures. The other inputs are pressure and the dilute gas viscosity. Each fluid is characterized for the correlation by a set of fluid-specific parameters which are tuned to fit data. First, the applicability of the EF correlation was extended to asymmetric mixtures and liquid mixtures containing dissolved gas components. A new set of mass-fraction based mixing rules was developed to calculate the fluid-specific parameters for mixtures. The EF correlation with the new set of mixing rules predicted the viscosity of over 100 mixtures of hydrocarbon compounds and carbon dioxide with overall average absolute relative deviations (AARD) of less than 10% either with measured densities or densities estimated by Advanced Peng-Robinson equation of state (APR EoS). To improve the viscosity predictions with APR EoS-estimated densities, general correlations were developed for non-zero viscosity binary interaction parameters. The EF correlation was extended to non-hydrocarbon compounds typically encountered in natural gas industry. It was

  2. Viscosity Relaxation in Molten HgZnTe

    Science.gov (United States)

    Baird, James K.

    2002-01-01

    Because of its narrow electronic band-gap, HgZnTe solid solutions have been proposed as effective detectors for infrared radiation. To produce the best single crystals of these materials for this application, knowledge of the phase diagram that governs the freezing of the liquid is essential. Besides the phase diagram, however, some information concerning the thermophysical properties of the melt, such as viscosity, density, specific heat, and enthalpy of mixing, can also be useful. Of these thermophysical properties, the viscosity is perhaps of the most interest scientifically. Measurements using the oscillating cup method have shown that the isothermal melt requires tens of hours of equilibration time before a steady value of the viscosity can be achieved. Over this equilibration time, which depends upon temperature, the viscosity can increase by as much as a factor of two before reaching a steady state. We suggest that this relaxation phenomenon may be due to a slight polymerization of Te atoms in the melt. To account for the time dependence of the viscosity in the HgZnTe melt, we propose that the liquid acts as a solvent that favors the formation of Te atom chains. We suggest that as the melt is cooled from a high temperature to the temperature for measurement of the viscosity, a free radical polymerization of Te atoms begins. To estimate this average molecular weight, we use a simple free radical polymerization mechanism, including a depolymerization step, to calculate the time dependence to the concentration of each Te polymer molecular weight fraction. From these molecular weight fractions, we compute the weight average molecular weight of the distribution. Using the semi-empirical relation between average molecular weight and viscosity, we obtain a formula for the time dependence of the viscosity of the melt. Upon examining this formula, we find that the viscosity achieves a steady value when a balance is achieved between the rate of formation of the chains

  3. Blood smear

    Science.gov (United States)

    ... osmotic fragility ) Deficiency of an enzyme called lecithin cholesterol acyl transferase Abnormalities of hemoglobin , the protein in ... sickle and Pappenheimer Red blood cells, target cells Formed elements of blood References Bain BJ. The peripheral ...

  4. Shear viscosity of shocked metals at mega-bar pressures

    Science.gov (United States)

    Liu, Fu-Sheng

    2013-06-01

    Viscosity of metals at high pressures and temperatures has been one of the most concerned problems in weapon physics and geophysics, e.g., the shear viscosity coefficients of substances in earth's mantle and earth's core at mega-bar pressures are needed for understanding the core mantle convection in deep earth. But the experimental data is very scarce because the conventional measurement methods can hardly be applied to such compression conditions [1]. In this talk, the principle of small-disturbance perturbation method [2] is re-investigated based on both the analytic solution and the numerical solution of the two-dimentional shock flow of sinusoidal distubance on front. In numerical solution, the real viscosity, which governs the flow behind the shock front and the perturbation damping feature, and the artificial viscosity, whick controls the numerical oscillation, separately treated. The relation between the viscosity of flow and the damping features of perturbation amplitude is quantitatively established for the loading situations of Sakharov's [3] and a flyer-impact situation with a finite disturbance. The later is the theoretical basis to develop a new experimental method, called the flyer-impact small-disturbance method [4]. In the flyer-impact small-disturbance method, the two-stage light-gas gun is used to launch a metal flyer. When the flyer directly impacts on the wedge-shaped sample with a sinusoidal surface, a two-dimensional shock flow of sinusoidal distubance on its front is generated. The amplitude of disturbance and its dependance with propagation distance is measured by use of an electric pin-array probe or a fibre-array probe. Correspondingly, the solution of the flow is given by numerically solving the hydrodynamic equations by the finite difference technique to find out the quantative correlations among the amplitude decay, the initial distribution of flow, the amplitude of initial disturbance, the shear viscosity of the flow, and the material

  5. The influence of magnetic fields on crude oils viscosity

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, Jose L.; Bombard, Antonio J. F. [Universidade Federal de Itajuba (UNIFEI), Itajuba, MG (Brazil). Instituto de Ciencias Exatas. Lab. de Reologia

    2009-07-01

    The crystallization of paraffin causes serious problems in the process of transportation of petroleum. This phenomenon increases the crude oil viscosity and implies an organic resin accumulation on pipeline wall, resulting in a reduced flux area or totally blocked pipes. One of the most challenging tasks for pipeline maintenance is solving this problem at low cost. Therefore, a method that inhibits the crystallization of paraffin and reduces the viscosity of crude oil could have many useful applications within the petroleum industry. Recent studies showed that magnetic fields reduce the Wax Appearance Temperature (WAT) and the viscosity of paraffin-based crude oil. For better understanding of this discovery, a series of tests was performed. This paper will show the influence of a DC magnetic field on rheological proprieties of three crude oils with different paraffin concentrations: a crude oil sample with 11 % p/p of paraffin concentration (sample 1); a crude oil sample with 6 % p/p of paraffin concentration (sample 2); a mixture of paraffin plus light crude oil with a total of 11 % p/p of paraffin concentration. These samples were placed in an electromagnet that generates a magnetic field of 1.3 Tesla. The samples' temperatures were conditioned around their Wax Appearance Temperature (WAT), and they were exposed to the field. As the viscosity of crude oil is very sensitive to the changes in temperature, it was ensured that the temperature has remained constant throughout the process. The sample 1 revealed a considerable reduction of viscosity: its original viscosity was 66 cP before magnetic field exposure, after that its viscosity was reduced to 39 cP. The other samples showed the same viscosity, before and after the magnetic field exposure. Since the samples 1 and 3 have the same paraffin concentrations, the viscosity reduction is not due only to the presence of paraffin; there must be other factors responsible for the interaction of sample 1 with the

  6. Viscosity changes in hyaluronic acid: Irradiation and rheological studies

    Energy Technology Data Exchange (ETDEWEB)

    Daar, Eman [Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom)], E-mail: e.daar@surrey.ac.uk; King, L.; Nisbet, A. [Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom); Thorpe, R.B. [Fluids and Systems Centre, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom); Bradley, D.A. [Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom)

    2010-04-15

    Hyaluronic acid (HA) is a significant component of the extracellular matrix (ECM), particular interest being shown herein in synovial fluid. The present study aims to investigate the degrading effects of X-ray radiation on HA at radiotherapy doses. Measurements of viscosity and shear stresses on HA solutions have been made at different shear rates using various types of viscometer for different concentrations in the range 0.01-1% w/v of HA. The HA has been subjected to doses of 6 MV photon radiation ranging from 0 to 20 Gy, the major emphasis being on doses below 5 Gy. It is found that there is a dose-dependent relationship between viscosity and shear rate, viscosity reducing with radiation dose, this being related to polymer scissions via the action of radiation-induced free radicals. The dependency appears to become weaker at higher concentrations, possibly due to the contribution to viscosity from polymer entanglement becoming dominant over that from mean molecular weight. Present results, for HA solutions in the concentration range 0.01% to 1% w/v, show reduced viscosity with dose over the range 0-4 Gy, the latter covering the dose regime of interest in fractionated radiotherapy. The work also shows agreement with previous Raman microspectrometry findings by others, the possible bond alterations being defined by comparison with available published data.

  7. Viscosity and crystallization mechanism of cesium loaded iron phosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, Kitheri, E-mail: joskit@igcar.gov.in [Chemistry Group, IGCAR, Kalpakkam 603 102 (India); Kutty, K.V. Govindan [Chemistry Group, IGCAR, Kalpakkam 603 102 (India); Goswami, M.C. [National Metallurgical Laboratory, Jamshedpur 831 007 (India); Rao, P.R. Vasudeva [Chemistry Group, IGCAR, Kalpakkam 603 102 (India)

    2014-07-01

    Highlights: • Melt viscosity of cesium loaded iron phosphate glasses is measured and reported for the first time. • Viscosity – temperature followed Arrhenius model. • Activation energy of viscous flow is strongly correlated to glass transition temperature of the glasses. • Process of crystallization of cesium loaded glass by approximation-free kinetic method to understand the mechanism. • Cesium loaded IPG and IPG shows bulk crystallization mechanism. - Abstract: This paper describes the melt viscosity behaviour and the crystallization mechanism of a series of iron phosphate glasses. High temperature viscosity measurements were carried out on pristine iron phosphate glass and a series of cesium loaded iron phosphate glasses in order to understand the effect of addition of Cs{sub 2}O on viscosity of iron phosphate glasses. Activation energy of viscous flow was estimated from the experimental data by applying Arrhenius model of viscosity–temperature relationship. Activation energy of viscous flow is observed to be strongly correlated to glass transition temperature of these glasses. Fragility of iron phosphate and cesium loaded iron phosphate glass systems were also evaluated in region of high temperature. Crystallization of these glasses was studied using thermal analysis techniques. Temperature integral approximation free method was utilized to evaluate the kinetic parameters such as activation energy of crystallization (E{sub c}) and Avrami exponent (n). The value of Avrami exponent ‘n’ obtained showed that the glasses under present study crystallize via bulk crystallization mechanism, i.e., nucleation and three dimensional growth.

  8. Investigation of viscosity of whole hydrolyze sweetened condensed milk

    Directory of Open Access Journals (Sweden)

    O. Kalinina

    2015-05-01

    Full Text Available Introduction. Рaper is aimed at developing of low-lactose (hydrolyzed sweetened condensed milk products technology for lactose intolerant people and for the whole population. Materials and methods: Rheological characteristics were determined on a Reotest device by the 2 nd method of viscometry Results and discussion. Reasonability of ß-galactosidase use for milk lactose hydrolyze during the production of canned products with sugar was proved in the previous works. This technology gives possibility to increase the quality of condensed canned foods, to reduce sugar concentration till 50 %, to increase dietary properties. Due to the reducing of saccharose mass part till 22 and 31 % the products had a liquid consistency that’s why was a necessity to increase the viscosity properties of condensed products. One of method to increase the product viscosity is inoculation of stabilization systems. Reasonability of the usage of stabilization system Bivicioc 1L was proved. The researches of viscosity determination in whole hydrolyzed sweetened condensed milk were shown in the work. Relations of viscosity of whole hydrolyzed condensed milk to the deformation rate were presented. Conclusions Viscosity indices of experimental samples in the fresh produced products and during storage are determined and justified.

  9. Dynamics of rising bubble inside a viscosity-stratified medium

    Science.gov (United States)

    Tripathi, Manoj; Premlata, A. R.; Sahu, Kirti

    2015-11-01

    The rising bubble dynamics in an unconfined quiescent viscosity-stratified medium has been numerically investigated. This is frequently encountered in industrial as well as natural phenomena. In spite of the large number of studies carried out on bubbles and drops, very few studies have examined the influence of viscosity stratification on bubble rise dynamics. To the best of our knowledge, none of them have isolated the effects of viscosity-stratification alone, even though it is known to influence the dynamics extensively, which is the main objective of the present study. By conducting time-dependent simulations, we present a library of bubble shapes in the Gallilei and the Eötvös numbers plane. Our results demonstrate some counter-intuitive phenomena for certain range of parameters due to the presence of viscosity stratification in the surrounding fluid. We found that in a linearly increasing viscosity medium, for certain values of parameters, bubble undergoes large deformation by forming an elongated skirt, while the skirt tends to physically separate the wake region from the rest of the surrounding fluid. This peculiar dynamics is attributed to the migration of less viscous fluid that is carried in the wake of the bubble as it rises, and thereby creating an increase.

  10. Low viscosity automatic transmission fluids with enhanced friction durability

    Institute of Scientific and Technical Information of China (English)

    Kenji Yatsunami; Samuel H. Tersigni; TANG Hong- zhi; Lee D. Saathoff; Christopher S. Cleveland; Mark Jones

    2009-01-01

    This study focused on the development of a new low viscosity automatic transmission fluid (ATF) with enhanced friction durability to meet the needs of new step type automatic transmissions. Recent high fuel prices encourage increased efficiency in the driveline, including the transmission. Reduction in fluid viscosity and wider use of slip control in torque con-verter clutches are two ways to practically improve fuel efficiency. Increased torque and more shifting is seen with a variety of new transmission hardware platforms, such as wet starting clutches, dual clutches and seven - or eight - speed ATs.This suggests the need for enhanced levels of friction durability from the ATF. The new challenge from this hardware for the ATF formulator lies in the need to simultaneously meet the wear, friction durability and torque capacity requirements at low viscosity in a cost- effective manner. This report introduced a new low viscosity fluid that represents a different commercial ATF formulation style. The new chemistry employs a low viscosity for increased fuel economy, while easily doubling the friction durability of current conven-tional ATFs and offering higher torque and better EP.

  11. Effective Foam Viscosity and Implications on Vadose Zone Remediation

    Science.gov (United States)

    Zhang, Z. F.; Zhong, L.; White, M.

    2011-12-01

    Foam is a two-phase system in which gas cells are dispersed in a liquid and separated by thin liquid films called lamellae. It can be used as a carrier of either aqueous or gaseous amendments to the deep vadose zone for contaminant remediation. The effective foam viscosity is affected not only by foam properties but also by the sediment properties and operation conditions. We determined the average effective foam viscosity via a series of laboratory experiments and investigated the impacts of foam quality, injection rate, and sediment permeability on the effective foam viscosity. These impacts are quantified by a new mathematical expression, which are tested with experimental results and data from literature. The results show that the effective foam viscosity increased with the liquid fraction in foam, the injection rate, and sediment permeability. Contrary to the previous findings that neglected gas compression, we found that foam velocity has nearly no impact on the effective foam viscosity. These results imply that soil heterogeneity has a lesser impact on foam flow than on other fluid flow; foam quality and injection rate need to be optimized for best remediation efficiency.

  12. Viscosity and crystallization mechanism of cesium loaded iron phosphate glasses

    International Nuclear Information System (INIS)

    Highlights: • Melt viscosity of cesium loaded iron phosphate glasses is measured and reported for the first time. • Viscosity – temperature followed Arrhenius model. • Activation energy of viscous flow is strongly correlated to glass transition temperature of the glasses. • Process of crystallization of cesium loaded glass by approximation-free kinetic method to understand the mechanism. • Cesium loaded IPG and IPG shows bulk crystallization mechanism. - Abstract: This paper describes the melt viscosity behaviour and the crystallization mechanism of a series of iron phosphate glasses. High temperature viscosity measurements were carried out on pristine iron phosphate glass and a series of cesium loaded iron phosphate glasses in order to understand the effect of addition of Cs2O on viscosity of iron phosphate glasses. Activation energy of viscous flow was estimated from the experimental data by applying Arrhenius model of viscosity–temperature relationship. Activation energy of viscous flow is observed to be strongly correlated to glass transition temperature of these glasses. Fragility of iron phosphate and cesium loaded iron phosphate glass systems were also evaluated in region of high temperature. Crystallization of these glasses was studied using thermal analysis techniques. Temperature integral approximation free method was utilized to evaluate the kinetic parameters such as activation energy of crystallization (Ec) and Avrami exponent (n). The value of Avrami exponent ‘n’ obtained showed that the glasses under present study crystallize via bulk crystallization mechanism, i.e., nucleation and three dimensional growth

  13. Viscosity and thermal conductivity of stable graphite suspensions near percolation.

    Science.gov (United States)

    Ma, Lei; Wang, Jianjian; Marconnet, Amy M; Barbati, Alexander C; McKinley, Gareth H; Liu, Wei; Chen, Gang

    2015-01-14

    Nanofluids have received much attention in part due to the range of properties possible with different combinations of nanoparticles and base fluids. In this work, we measure the viscosity of suspensions of graphite particles in ethylene glycol as a function of the volume fraction, shear rate, and temperature below and above the percolation threshold. We also measure and contrast the trends observed in the viscosity with increasing volume fraction to the thermal conductivity behavior of the same suspensions: above the percolation threshold, the slope that describes the rate of thermal conductivity enhancement with concentration reduces compared to below the percolation threshold, whereas that of the viscosity enhancement increases. While the thermal conductivity enhancement is independent of temperature, the viscosity changes show a strong dependence on temperature and exhibit different trends with respect to the temperature at different shear rates above the percolation threshold. Interpretation of the experimental observations is provided within the framework of Stokesian dynamics simulations of the suspension microstructure and suggests that although diffusive contributions are not important for the observed thermal conductivity enhancement, they are important for understanding the variations in the viscosity with changes of temperature and shear rate above the percolation threshold. The experimental results can be collapsed to a single master curve through calculation of a single dimensionless parameter (a Péclet number based on the rotary diffusivity of the graphite particles). PMID:25469709

  14. Cord Blood

    Directory of Open Access Journals (Sweden)

    Saeed Abroun

    2014-05-01

    Full Text Available   Stem cells are naïve or master cells. This means they can transform into special 200 cell types as needed by body, and each of these cells has just one function. Stem cells are found in many parts of the human body, although some sources have richer concentrations than others. Some excellent sources of stem cells, such as bone marrow, peripheral blood, cord blood, other tissue stem cells and human embryos, which last one are controversial and their use can be illegal in some countries. Cord blood is a sample of blood taken from a newborn baby's umbilical cord. It is a rich source of stem cells, umbilical cord blood and tissue are collected from material that normally has no use following a child’s birth. Umbilical cord blood and tissue cells are rich sources of stem cells, which have been used in the treatment of over 80 diseases including leukemia, lymphoma and anemia as bone marrow stem cell potency.  The most common disease category has been leukemia. The next largest group is inherited diseases. Patients with lymphoma, myelodysplasia and severe aplastic anemia have also been successfully transplanted with cord blood. Cord blood is obtained by syringing out the placenta through the umbilical cord at the time of childbirth, after the cord has been detached from the newborn. Collecting stem cells from umbilical blood and tissue is ethical, pain-free, safe and simple. When they are needed to treat your child later in life, there will be no rejection or incompatibility issues, as the procedure will be using their own cells. In contrast, stem cells from donors do have these potential problems. By consider about cord blood potency, cord blood banks (familial or public were established. In IRAN, four cord blood banks has activity, Shariati BMT center cord blood bank, Royan familial cord blood banks, Royan public cord blood banks and Iranian Blood Transfusion Organ cord blood banks. Despite 50,000 sample which storage in these banks, but the

  15. Artificial viscosity in the transonic stream function formulation

    Institute of Scientific and Technical Information of China (English)

    徐建中; 杜建一; 沈浩; 刘海涛

    1995-01-01

    The artificial density method which has been applied widely in the transonic potential calculation and the current transonic stream function calculation is investigated theoretically. The analysis shows that in the stream function formulation the artificial density is not equivalent to the artificial viscosity and cannot be used, and a correct expression of the artificial viscosity in the stream function method is then derived. The principal equation of the stream function, the density equation converted from one of the momentum equations and the present artificial viscosity scheme constitute the complete transonic stream function formulation. The numerical practice demonstrates that the range of Mach number computed by this approach is extended and the shock location is close to the experimental result.

  16. Synthesis and Aqueous Solution Viscosity of Hydrophobically Modified Xanthan Gum

    Institute of Scientific and Technical Information of China (English)

    QIAN Xiao-lin; WU Wen-hui; YU Pei-zhi; WANG Jian-quan

    2007-01-01

    Two xanthan gum derivatives hydrophobically modified by 4 or 8 tetradecyl chains per 100 xanthan gum structure units were synthesized. The derivatives were studied by scanning electron microscope and pyrene fluorescence spectrometry. And the aqueous solution apparent viscosity of the derivatives was investigated. The results indicate that the network of the derivatives with more hydrophobic groups is closer and tighter. With increasing of alkyl chain substitution degree, the hydrophobically associating interactions enhance in aqueous solution. Aqueous solution apparent viscosity of the derivatives increases with increasing of polymer concentration and alkyl substitution degree, and decreases with the increase of temperature. In the brine solution, the strong viscosity enhancement phenomenon appears. The interaction between the derivatives and surfactant sodium dodecylbenzene sulfonate is strong.

  17. The Effects of Fluid Viscosity on the Orifice Rotameter

    Directory of Open Access Journals (Sweden)

    Jiang Wei

    2016-04-01

    Full Text Available Due to the viscous shear stress, there is an obvious error between the real flow rate and the rotameter indication for measuring viscous fluid medium. At 50 cSt the maximum error of DN40 orifice rotameter is up to 35 %. The fluid viscosity effects on the orifice rotameter are investigated using experimental and theoretical models. Wall jet and concentric annulus laminar theories were adapted to study the influence of viscosity. And a new formula is obtained for calculating the flow rate of viscous fluid. The experimental data were analyzed and compared with the calculated results. At high viscosity the maximum theoretical results error is 6.3 %, indicating that the proposed measurement model has very good applicability.

  18. Boosting magnetic reconnection by viscosity and thermal conduction

    Science.gov (United States)

    Minoshima, Takashi; Miyoshi, Takahiro; Imada, Shinsuke

    2016-07-01

    Nonlinear evolution of magnetic reconnection is investigated by means of magnetohydrodynamic simulations including uniform resistivity, uniform viscosity, and anisotropic thermal conduction. When viscosity exceeds resistivity (the magnetic Prandtl number P r m > 1 ), the viscous dissipation dominates outflow dynamics and leads to the decrease in the plasma density inside a current sheet. The low-density current sheet supports the excitation of the vortex. The thickness of the vortex is broader than that of the current for P r m > 1 . The broader vortex flow more efficiently carries the upstream magnetic flux toward the reconnection region, and consequently, boosts the reconnection. The reconnection rate increases with viscosity provided that thermal conduction is fast enough to take away the thermal energy increased by the viscous dissipation (the fluid Prandtl number Pr < 1). The result suggests the need to control the Prandtl numbers for the reconnection against the conventional resistive model.

  19. Diffusivities and Viscosities of Poly(ethylene oxide) Oligomers †

    KAUST Repository

    Hong, Bingbing

    2010-10-14

    Diffusivities and viscosities of poly(ethylene oxide) (PEO) oligomer melts with 1 to 12 repeat units have been obtained from equilibrium molecular dynamics simulations using the TraPPE-UA force field. The simulations generated diffusion coefficients with high accuracy for all of the molar masses studied, but the statistical uncertainties in the viscosity calculations were significantly larger for longer chains. There is good agreement of the calculated viscosities and densities with available experimental data, and thus, the simulations can be used to bridge gaps in the data and for extrapolations with respect to chain length, temperature, and pressure. We explored the convergence characteristics of the Green-Kubo formulas for different chain lengths and propose minimal production times required for convergence of the transport properties. The chain-length dependence of the transport properties suggests that neither Rouse nor reptation models are applicable in the short-chain regime investigated. © 2010 American Chemical Society.

  20. Variable viscosity condition in the modeling of a slider bearing

    CERN Document Server

    Uprety, Kedar Nath

    2014-01-01

    To reduce tear and wear of machinery lubrication is essential. Lubricants form a layer between two surfaces preventing direct contact and reduce friction between moving parts and hence reduce wear. In this short letter the lubrication of two slider bearings with parallel and nonparallel is studied. First, we show that bearings with parallel plates cannot support any load. For bearings with nonparallel plates we are interested on how constant and temperature dependent viscosity affects the properties of the bearings. Also, a critical temperature for which the bearings would fail due to excess in temperature is found for both latter cases. If the viscosity is constant, the critical temperature is given by an explicit formula, while for the non-constant viscosity the critical temperature can be always found from a closed form formula involving Weber functions

  1. Boosting Magnetic Reconnection by Viscosity and Thermal Conduction

    CERN Document Server

    Minoshima, Takashi; Imada, Shinsuke

    2016-01-01

    Nonlinear evolution of magnetic reconnection is investigated by means of magnetohydrodynamic simulations including uniform resistivity, uniform viscosity, and anisotropic thermal conduction. When viscosity exceeds resistivity (the magnetic Prandtl number Prm > 1), the viscous dissipation dominates outflow dynamics and leads to the decrease in the plasma density inside a current sheet. The low-density current sheet supports the excitation of the vortex. The thickness of the vortex is broader than that of the current for Prm > 1. The broader vortex flow more efficiently carries the upstream magnetic flux toward the reconnection region, and consequently boosts the reconnection. The reconnection rate increases with viscosity provided that thermal conduction is fast enough to take away the thermal energy increased by the viscous dissipation (the fluid Prandtl number Pr < 1). The result suggests the need to control the Prandtl numbers for the reconnection against the conventional resistive model.

  2. Pipeline flow of heavy oil with temperature-dependent viscosity

    Energy Technology Data Exchange (ETDEWEB)

    Maza Quinones, Danmer; Carvalho, Marcio da Silveira [Pontifical Catholic University of Rio de Janeiro (PUC-Rio), RJ (Brazil). Dept. of Mechanical Engineering], E-mail: msc@puc-rio.br

    2010-07-01

    The heavy oil produced offshore needs to be transported through pipelines between different facilities. The pipelines are usually laid down on the seabed and are submitted to low temperatures. Although heavy oils usually present Newtonian behavior, its viscosity is a strong function of temperature. Therefore, the prediction of pressure drops along the pipelines should include the solution of the energy equation and the dependence of viscosity to temperature. In this work, an asymptotic model is developed to study this problem. The flow is considered laminar and the viscosity varies exponentially with temperature. The model includes one-dimensional equations for the temperature and pressure distribution along the pipeline at a prescribed flow rate. The solution of the coupled differential equation is obtained by second-order finite difference. Results show a nonlinear behavior as a result of coupled interaction between the velocity, temperature, and temperature dependent material properties. (author)

  3. Viscosity mixing rules for binary systems containing one ionic liquid.

    Science.gov (United States)

    Tariq, Mohammed; Altamash, Tausif; Salavera, Daniel; Coronas, Alberto; Rebelo, Luis P N; Canongia Lopes, Jose N

    2013-06-24

    In this work the applicability of four of the most commonly used viscosity mixing rules to [ionic liquid (IL)+molecular solvent (MS)] systems is assessed. More than one hundred (IL+MS) binary mixtures were selected from the literature to test the viscosity mixing rules proposed by 1) Hind (Hi), 2) Grunberg and Nissan (G-N), 3) Herric (He) and 4) Katti and Chaudhri (K-C). The analyses were performed by estimating the average (absolute or relative) deviations, AADs and ARDs, between the available experimental data and the predicted ideal mixture viscosity values obtained by means of each rule. The interaction terms corresponding to the adjustable parameters inherent to each rule were also calculated and their trends discussed. PMID:23650138

  4. Viscosity and thermal conductivity of moderately dense gas mixtures.

    Science.gov (United States)

    Wakeham, W. A.; Kestin, J.; Mason, E. A.; Sandler, S. I.

    1972-01-01

    Derivation of a simple, semitheoretical expression for the initial density dependence of the viscosity and thermal conductivity of gaseous mixtures in terms of the appropriate properties of the pure components and of their interaction quantities. The derivation is based on Enskog's theory of dense gases and yields an equation in which the composition dependence of the linear factor in the density expansion is explicit. The interaction quantities are directly related to those of the mixture extrapolated to zero density and to a universal function valid for all gases. The reliability of the formulation is assessed with respect to the viscosity of several binary mixtures. It is found that the calculated viscosities of binary mixtures agree with the experimental data with a precision which is comparable to that of the most precise measurements.

  5. Viscous Moment, Mechanism of Slow Slip, and Subduction Megathrust Viscosity

    Science.gov (United States)

    Fagereng, A.

    2015-12-01

    Slow slip events (SSEs) represent transient slip velocities slower than earthquakes but faster than steady, average plate motion. SSEs repeating at the same location have characteristic slip magnitude and duration. Contrary to earthquakes, however, average slip relates to neither duration nor area. Variations in duration, slip, and slip rate can instead be tied to variations in effective viscosity, calculated from a viscous definition of moment. In this paradigm, the observation that deep slow slip events are slower and longer, implies a higher effective viscosity than in shallower, colder SSEs. Observed variations in effective viscosity and slip rate can be interpreted in terms of differences in driving stress and shear zone width, and likely arise in anastomosing shear zones containing a heterogeneous mixture of materials.

  6. In situ viscosity measurements of albite melt under high pressure

    CERN Document Server

    Funakoshi, K I; Terasaki, H

    2002-01-01

    The viscosities of albite (NaAlSi sub 3 O sub 8) melt under high pressures have been measured using an x-ray radiography falling sphere method with synchrotron radiation. This method has enabled us to determine the precise sinking velocity directly. Recent experiments of albite melt showed the presence of a viscosity minimum around 5 GPa (Poe et al 1997 Science 276 1245, Mori et al 2000 Earth Planet. Sci. Lett. 175 87). We present the results for albite melt up to 5.2 GPa at 1600 and 1700 deg. C. The viscosity minimum is clearly observed to be around 4.5 GPa, and it might be explained not by the change of the compression mechanism in albite melt but by change of the phase itself.

  7. MODELING A SOLID BOUNDARY AS A FLUID OF INFINITE VISCOSITY

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A new approach to model viscosity in the conservation of momentum equations is presented and discussed. Coefficient of viscosity is modeled in such a way that it reaches asymptotically to infinity at the solid boundary but still yields a finite value for the shear stress at the solid wall. Basic objective of this research is to show that certain combinations of higher order normal velocity gradients become zero at the solid boundary.Modified solutions for the Couette flow and Poiseuille flow between two parallel plates are obtained by modeling the coefficient of viscosity in a novel way. Also,viscous drag computed by our model is expected to yield higher values than the values predicted by the existing models, which matches closely to the experimental data.

  8. Magnetic Instability in Accretion Disks with Anomalous Viscosity

    Institute of Scientific and Technical Information of China (English)

    ZHOU Ai-Ping; LI Xiao-Qing

    2004-01-01

    @@ Using the new model of anomalous viscosity, we investigate the magnetic instability in the accretion disks and give the dispersion formula. On the basis of the dispersion relation obtained, it is numerically shown that the instability condition of viscous accretion disk is well consistent with that of the ideal accretion disk, namely there would be magneto-rotational instability in the presence of a vertical weak magnetic field. For a given distance R from the centre of the disk, the growth rate in the anomalous case deviates from the ideal case more greatly when the vertical magnetic field is smaller. The large viscosity limits to the instability. In the two cases, the distributions of growth rate with wave number k approach each other when the magnetic field increases. It greatly represses the effect of viscosity.

  9. Geometry-dependent viscosity reduction in sheared active fluids

    CERN Document Server

    Słomka, Jonasz

    2016-01-01

    We investigate flow pattern formation and viscosity reduction mechanisms in active fluids by studying a generalized Navier-Stokes model that captures the experimentally observed bulk vortex dynamics in microbial suspensions. We present exact analytical solutions including stress-free vortex lattices and introduce a computational framework that allows the efficient treatment of previously intractable higher-order shear boundary conditions. Large-scale parameter scans identify the conditions for spontaneous flow symmetry breaking, geometry-dependent viscosity reduction and negative-viscosity states amenable to energy harvesting in confined suspensions. The theory uses only generic assumptions about the symmetries and long-wavelength structure of active stress tensors, suggesting that inviscid phases may be achievable in a broad class of non-equilibrium fluids by tuning confinement geometry and pattern scale selection.

  10. Viscosity Measurement via Drop Coalescence: A Space Station Experiment

    Science.gov (United States)

    Antar, Basil; Ethridge, Edwin C.

    2010-01-01

    The concept of using low gravity experimental data together with CFD simulations for measuring the viscosity of highly viscous liquids was recently validated on onboard the International Space Station (ISS). A series of microgravity tests were conducted for this purpose on the ISS in July, 2004 and in May of 2005. In these experiments two liquid drops were brought manually together until they touched and were allowed to coalesce under the action of the capillary force alone. The coalescence process was recorded photographically from which the contact radius speed of the merging drops was measured. The liquid viscosity was determined by fitting the measured data with accurate numerical simulation of the coalescence process. Several liquids were tested and for each liquid several drop diameters were employed. Experimental and numerical results will be presented in which the viscosity of several highly viscous liquids were determined using this technique.

  11. Bulk Viscosity and Particle Creation in the Inflationary Cosmology

    CERN Document Server

    Eshaghi, Mehdi; Kiasatpour, Ahmad

    2015-01-01

    We study particle creation in the presence of bulk viscosity of cosmic fluid in the early universe within the framework of open thermodynamical systems. Since the first-order theory of non-equilibrium thermodynamics is non-causal and unstable, we try to solve the bulk viscosity equation of the cosmic fluid with particle creation through the full causal theory. By adopting an appropriate function for particle creation rate of "Creation of Cold Dark Matter" model, we obtain analytical solutions which do not suffer from the initial singularity and are in agreement with equivalent solutions of Lambda-CDM model. We constrain the free parameter of particle creation in our model based on recent Planck data. It is also found that the inflationary solution is driven by bulk viscosity with or without particle creation.

  12. Ferrohydrodynamic evaluation of rotational viscosity and relaxation in certain ferrofluids.

    Science.gov (United States)

    Patel, Rajesh

    2012-07-01

    A significant effect of aggregation dynamics for aqueous ferrofluid (AF) and kerosene based ferrofluid (KF) using magnetic field dependent capillary viscosity and magneto-optical relaxation measurements is studied. For better comparison parameters of AF and KF are kept similar. Ferrohydrodynamic equations of chain forming ferrofluids, dilute ferrofluids, and Brownian dynamic simulations are compared. It is observed that the rotational viscosity of AF is larger than that of KF due to field induced aggregates in it and strong dipolar interactions. It is also observed that at Ωτ ~ 0.04 both AF and KF viscosity becomes almost similar, suggesting similar behavior at that shear rate. The magneto-optical relaxation in AF exhibits nonexponential behavior when relaxed from higher magnetic field and follows irreversible thermodynamics, whereas for KF the relaxation is exponential and follows the effective field method. This discrepancy is explained based on aggregation dynamics of magnetic particles. Results are well described by the corresponding theoretical models. PMID:23005542

  13. VISCOSITY BEHAVIOR OF LACQUER POLYSACCHARIDE IN AQUEOUS SOLUTION

    Institute of Scientific and Technical Information of China (English)

    QIU Xingping; ZHANG Lina; DU Yumin; QIAN Baogong

    1991-01-01

    The dependence of measured viscosity on NaCl concentration (0.1 to 3.0M), pH (range of 2-13) and cadoxen composition Wcad (from 2% to 100% ) for the lacquer polysaccharide in NaCl/cadoxen/H2O mixture containing HCl or without were obtained. All the viscosity exponents γ in the Mark-Houwink equations under three different solvent condition are close to 0.5. The wcad dependence of reduced viscosity ηsp/c confirms the single strand chain of the polysaccharide. As the γ values close to 0.5 and values of unperturbed dimension θ/M and [η] much smaller than those for usual linear polymers, these facts suggest that the polysaccharide chains in the aqueous solutions should be dense random coil owing to the highly branched structure.

  14. A Mathematical Study on Three Layered Oscillatory Blood Flow Through Stenosed Arteries

    Institute of Scientific and Technical Information of China (English)

    Dharmendra Tripathi

    2012-01-01

    A mathematical model is constructed to examine the characteristics of three layered blood flow through the oscillatory cylindrical tube (stenosed arteries).The proposed model basically consists three layers of blood (viscous fluids with different viscosities) named as core layer (red blood cells),intermediate layer (platelets/white blood cells) and peripheral layer (plasma).The analysis was restricted to propagation of small-amplitude harmonic waves,generated due to blood flow whose wave length is larger compared to the radius of the arterial segment.The impacts of viscosity of fluid in peripheral layer and intermediate layer on the interfaces,average flow rate,mechanical efficiency,trapping and reflux are discussed with the help of numerical and computational results.This model is the generalized form of the preceding models.On the basis of present discussion,it is found that the size of intermediate and peripheral layers reduces in expanded region and enhances in contracted region with the increasing viscosity of fluid in peripheral layer,whereas,opposite effect is observed for viscosity of fluid in intermediate layer.Final conclusion is that the average flow rate and mechanical efficiency increase with the increasing viscosity of fluid in both layers,however,the effects of the viscosity of fluid in both layers on trapping and reflux are opposite to each other.

  15. [The viscosity of Thiokol impression material during gelation (author's transl)].

    Science.gov (United States)

    Araki, Y; Kawakami, M

    1976-09-01

    Viscosity behavior of the impression materials is important property which determines the pressure and its distribution to be exerted on oral soft tissues in relation to the tray design and impression technique. The impression material, however, react to gel so fast to measure the viscosity during the reaction that it is still not completely elucidated. It would be able to seize the viscosity behavior of Thiokol impression material during the gelation unequivocally by retarding the oxidative condensation reaction using weak oxidative, lead monoxide. Based on the equal reactivity of SH groups of Thiokol liquid polymer there is no difference in statistic molecular weight distribution at any degree of the reaction between with lead monoxide and with the other oxidatives now in practical use. The viscosity measurement of the mixture of Thiokol LP-2, lead monoxide, and di-butyl phthalate was performed at the rates of shear ranged from 10(1.5) to 10(3.9) sec-1 at 20 degrees C. The viscosity of the mixture progressively increases after spatulation of the materials but yield value does not appear for the time being before setting, that is, the infinite network forming via the pendant SH groups could not take place until the most of SH groups were consumed, attributed to low concentration of poly-functional prepolymer in the liquid polymer. At early stages of the reaciton the viscosity behavior is approximately Newtonian at lower rates of shear and pseudplastic at higher rates of shear. As the reaction proceeds it becomes pseudplastic even at lower rates of shear.

  16. Effective viscosity of non-gravitactic Chlamydomonas Reinhardtii microswimmer suspensions

    Science.gov (United States)

    Mussler, Matthias; Rafaï, Salima; Peyla, Philippe; Wagner, Christian

    2013-03-01

    Active microswimmers are known to affect the macroscopic viscosity of suspensions in a more complex manner than passive particles. For puller-like microswimmers an increase in the viscosity has been observed. It has been suggested that the persistence of the orientation of the microswimmers hinders the rotation that is normally caused by the vorticity. It was previously shown that some sorts of algae are bottom-heavy swimmers, i.e., their centre of mass is not located in the centre of the body. In this way, the algae affect the vorticity of the flow when they are perpendicularly oriented to the axis of gravity. This orientation of gravity to vorticity is given in a rheometer that is equipped with a cone-plate geometry. Here we present measurements of the viscosity both in a cone-plate and a Taylor-Couette cell. The two set-ups yielded the same increase in viscosity although the axis of gravitation in the Taylor-Couette cell is parallel to the direction of vorticity. In a complementary experiment we tested the orientation of the direction of swimming through microscopic observation of single Chlamydomonas reinhardtii and could not identify a preferred orientation, i.e., our specific strain of Chlamydomonas reinhardtii are not bottom-heavy swimmers. We thus conclude that bottom heaviness is not a prerequisite for the increase of viscosity and that the effect of gravity on the rheology of our strain of Chlamydomonas reinhardtii is negligible. This finding reopens the question of whether the origin of persistence in the orientation of cells is actually responsible for the increased viscosity of the suspension.

  17. VISCOSITY ANALYSIS OF EMPTY FRUIT BUNCH (EFB BIO-OIL

    Directory of Open Access Journals (Sweden)

    Z.S. Nazirah

    2013-12-01

    Full Text Available Empty fruit bunches (EFB are one of the solid wastes produced by the palm oil industry, which is increasing rapidly. The aim of this paper is to analyse the viscosity of empty fruit bunch (EFB bio-oil that can be extracted from all solid waste EFB as a sample, and a few processes were executed. The samples underwent two processes, which were pre-treatment and pyrolysis. The pre-treatment involved three processes, namely, cutting, shredding and sieving, which were necessary in order to prepare EFB into a particle size suitable for the reactor. After that, the samples were fed into the feedback reactor as feedstock for the pyrolysis process to produce bio-oil. Once the bio-oil was produced, its viscosity was tested using the Brookfield Viscometer in two conditions: before and after the chemical reaction. The bio-oil was treated by adding 10 ml and 20 ml of acetone respectively through the chemical reaction. The viscosity test was carried out at different temperatures, which were 25°C, 30°C, 35°C, 40°C, 45°C and 50°C respectively. The observed viscosity of the EFB bio-oil varied and was higher as the temperature decreased. In addition, the viscosity of the EFB bio-oil was higher when it reacted chemically with the acetone added. Therefore, the results showed that the chemical reaction with acetone has the potential to increase the viscosity of EFB bio-oil.

  18. [The viscosity of Thiokol impression material during gelation (author's transl)].

    Science.gov (United States)

    Araki, Y; Kawakami, M

    1976-09-01

    Viscosity behavior of the impression materials is important property which determines the pressure and its distribution to be exerted on oral soft tissues in relation to the tray design and impression technique. The impression material, however, react to gel so fast to measure the viscosity during the reaction that it is still not completely elucidated. It would be able to seize the viscosity behavior of Thiokol impression material during the gelation unequivocally by retarding the oxidative condensation reaction using weak oxidative, lead monoxide. Based on the equal reactivity of SH groups of Thiokol liquid polymer there is no difference in statistic molecular weight distribution at any degree of the reaction between with lead monoxide and with the other oxidatives now in practical use. The viscosity measurement of the mixture of Thiokol LP-2, lead monoxide, and di-butyl phthalate was performed at the rates of shear ranged from 10(1.5) to 10(3.9) sec-1 at 20 degrees C. The viscosity of the mixture progressively increases after spatulation of the materials but yield value does not appear for the time being before setting, that is, the infinite network forming via the pendant SH groups could not take place until the most of SH groups were consumed, attributed to low concentration of poly-functional prepolymer in the liquid polymer. At early stages of the reaciton the viscosity behavior is approximately Newtonian at lower rates of shear and pseudplastic at higher rates of shear. As the reaction proceeds it becomes pseudplastic even at lower rates of shear. PMID:1069036

  19. Electromechanical Model of Blood Flow in Vessels

    OpenAIRE

    Ivo Cap; Barbora Czippelova

    2008-01-01

    The present paper deals with some theoretical derivations connected with very efficient method of solution of hydrodynamic problems of blood flow in human cardiovascular system. The electromechanical analogy of liquid flow in a tube and electromagnetic wave propagating along an electric transmission line is discussed. We have derived a detailed circuit-like model of an elementary section of the elastic tube with viscose Newtonian liquid. The analogy harmonic current electrical cir...

  20. Mathematical Viscosity Models for Ternary Metallic and Silicate Melts

    Institute of Scientific and Technical Information of China (English)

    FU Yuan-kun; MENG Xian-min; GUO Han-jie

    2004-01-01

    The mathematical viscosity models for metallic melts were discussed. The experimental data of Ag-Au-Cu systems were used to verify the models based on Chou's general geometric thermodynamic model and the calculated results are consistent with the reported experimental data. A new model predicting the viscosity of multi-component silicate melts was established. The CaO-MnO-SiO2, CaO-FeO-SiO2 and FeO-MnO-SiO2 silicate slag systems were used to verify the model.

  1. Bianchi Type Ⅲ String Cosmological Model with Bulk Viscosity

    Institute of Scientific and Technical Information of China (English)

    WANGXing-Xiang

    2004-01-01

    The Bianchi type Ⅲ cosmological model for a cloud string with bulk viscosity are presented. To obtain a determinate model, an equation of state ρ=kλ and a relation between metric potentials B = Cn are assumed. The physical and geometric aspects of the model are also discussed. The model describes a shearing non-rotating continuously expanding universe with a big-bang start, and the relation between the coefficient of bulk viscosity and the energy density is ζ∝ρ1/2.

  2. Bianchi Type Ⅲ String Cosmological Model with Bulk Viscosity

    Institute of Scientific and Technical Information of China (English)

    WANG Xing-Xiang

    2004-01-01

    The Bianchi type Ⅲ cosmological model for a cloud string with bulk viscosity are presented. To obtaina determinate model, an equation of state p = κλ and a relation between metric potentials B = Cn are assumed. Thephysical and geometric aspects of the model are also discussed. The model describes a shearing non-rotating continuouslyexpanding universe with a big-bang start, and the relation between the coefficient of bulk viscosity and the energy densityis ζ∝1 p1/2.

  3. An overview of Viscosity Solutions of Path-Dependent PDEs

    OpenAIRE

    Ren, Zhenjie; Touzi, Nizar; Zhang, Jianfeng

    2014-01-01

    This paper provides an overview of the recently developed notion of viscosity solutions of path-dependent partial di erential equations. We start by a quick review of the Crandall- Ishii notion of viscosity solutions, so as to motivate the relevance of our de nition in the path-dependent case. We focus on the wellposedness theory of such equations. In partic- ular, we provide a simple presentation of the current existence and uniqueness arguments in the semilinear case. We also review the sta...

  4. NVP melt/magma viscosity: insight on Mercury lava flows

    Science.gov (United States)

    Rossi, Stefano; Morgavi, Daniele; Namur, Olivier; Vetere, Francesco; Perugini, Diego; Mancinelli, Paolo; Pauselli, Cristina

    2016-04-01

    After more than four years of orbiting Mercury, NASA's MESSENGER spacecraft came to an end in late April 2015. MESSENGER has provided many new and surprising results. This session will again highlight the latest results on Mercury based on MESSENGER observations or updated modelling. The session will further address instrument calibration and science performance both retrospective on MESSENGER and on the ESA/JAXA BepiColombo mission. Papers covering additional themes related to Mercury are also welcomed. Please be aware that this session will be held as a PICO session. This will allow an intensive exchange of expertise and experience between the individual instruments and mission. NVP melt/magma viscosity: insight on Mercury lava flows S. Rossi1, D. Morgavi1, O. Namur2, D. Perugini1, F.Vetere1, P. Mancinelli1 and C. Pauselli1 1 Dipartimento di Fisica e Geologia, Università di Perugia, piazza Università 1, 06123 Perugia, Italy 2 Uni Hannover Institut für Mineralogie, Leibniz Universität Hannover, Callinstraβe 3, 30167 Hannover, Germany In this contribution we report new measurements of viscosity of synthetic komatitic melts, used the behaviour of silicate melts erupted at the surface of Mercury. Composition of Mercurian surface magmas was calculated using the most recent maps produced from MESSENGER XRS data (Weider et al., 2015). We focused on the northern hemisphere (Northern Volcanic Province, NVP, the largest lava flow on Mercury and possibly in the Solar System) for which the spatial resolution of MESSENGER measurements is high and individual maps of Mg/Si, Ca/Si, Al/Si and S/Si were combined. The experimental starting material contains high Na2O content (≈7 wt.%) that strongly influences viscosity. High temperature viscosity measurements were carried out at 1 atm using a concentric cylinder apparatus equipped with an Anton Paar RheolabQC viscometer head at the Department of Physics and Geology (PVRG_lab) at the University of Perugia (Perugia, Italy

  5. Changing shapes and implied viscosities of suspended submicron particles

    Directory of Open Access Journals (Sweden)

    Y. Zhang

    2015-03-01

    area. Numerical modeling was used to estimate the particle viscosity associated with this flow. Based on particle diameter and RH exposure time, the viscosity dropped from 10(8.7±2.0 to 10(7.0±2.0 Pa s (2σ for an increase in RH from < 5 to 58% at 293 K, corresponding to a solid to semisolid transition for the organic material. These results imply that the equilibration of the chemical composition of the particle phase with the gas phase can shift from hours at mid-range RH to weeks for low RH.

  6. Density and viscosity modeling and characterization of heavy oils

    DEFF Research Database (Denmark)

    Cisneros, Sergio; Andersen, Simon Ivar; Creek, J

    2005-01-01

    to thousands of mPa center dot s. Essential to the presented extended approach for heavy oils is, first, achievement of accurate P nu T results for the EOS-characterized fluid. In particular, it has been determined that, for accurate viscosity modeling of heavy oils, a compressibility correction in the way...... are widely used within the oil industry. Further work also established the basis for extending the approach to heavy oils. Thus, in this work, the extended f-theory approach is further discussed with the study and modeling of a wider set of representative heavy reservoir fluids with viscosities up...

  7. Viscosity of a binary mixture: Approach to the hydrodynamic limit

    OpenAIRE

    McPhie, M. G.; Daivis, P. J.; Snook, I.K.

    2006-01-01

    We have used equilibrium and nonequilibrium molecular dynamics simulations to study the solute self-diffusion coefficient and the shear rate dependence of the solution viscosity in solutions of model nanocolloidal particles that range in mass ratio from mu=1 up to mu=50 and size ratio from s=1 up to s=4.03 at various concentrations. The zero shear rate viscosities and the initial rates of shear thinning were determined from data in the shear rate region in which the suspension is strongly she...

  8. Quantifying the Efficiency Advantages of High Viscosity Index Hydraulic Fluids

    Institute of Scientific and Technical Information of China (English)

    Christian D. Neveu; Michael D. Zink; Alex Tsay

    2006-01-01

    By providing higher in- use viscosity at elevated operating temperatures, hydraulic fluids with high viscosity index improve the efficiency of the hydraulic system. For mobile hydraulic equipment this efficiency can be quantified as an increase in fuel economy. This paper reviews the research that demonstrates these efficiency advantages in gear, vane and piston pumps and presents a method for predicting the overall fuel economy for a fleet of hydraulic equipment in opquipment operator to easily improve the performance of the system and reduce fuel consumption.

  9. Non-equilibrium Spacetime Thermodynamics, Entanglement viscosity and KSS bound

    Energy Technology Data Exchange (ETDEWEB)

    Chirco, G; Eling, C; Liberati, S, E-mail: chirco@sissa.it, E-mail: eling@sissa.it, E-mail: liberati@sissa.it [SISSA, Via Bonomea 265, 34136 Trieste (Italy) and INFN Sezione di Trieste (Italy)

    2011-09-22

    We propose a dual lower dimensional description of the vacuum state associated to a strongly coupled CFT living on Rindler wedge slice close to the horizon hypersurface. From this field theory, with a linear response approach, we show the possibility to derive an entanglement horizon viscosity via a holographic Kubo formula in terms of a two-point function of the stress tensor of matter fields in the bulk. The entanglement viscosity over entropy density ratio come out to satisfy the universal Kovtun-Son-Starinets (KSS) value 1/4{pi} in four dimensions, suggesting the universal ratio may be a fundamental property of quantum entanglement.

  10. Effect of magnetic field-dependent viscosity on revolving ferrofluid

    International Nuclear Information System (INIS)

    The effect of magnetic field-dependent viscosity on the revolving axi-symmetric steady flow of ferrofluid in a disc is investigated by solving the boundary layer equations using Neuringer-Rosenweig model. Besides numerically calculating the velocity components and pressure for different values of magnetic field-dependent viscosity with variation in dimensionless parameter α (Karman's parameter), we also have calculated the thickness of the boundary layer and the total volume flowing outward the z-axis. Here, the solutions of non-linear differential equations are obtained in the form of asymptotic series.

  11. Effect of magnetic field-dependent viscosity on revolving ferrofluid

    Energy Technology Data Exchange (ETDEWEB)

    Ram, Paras, E-mail: parasram_nit@yahoo.co.i [Department of Mathematics, National Institute of Technology, Kurukshetra (India); Bhandari, Anupam, E-mail: pankaj.anupam6@gmail.co [Department of Mathematics, National Institute of Technology, Kurukshetra (India); Sharma, Kushal [Department of Mathematics, National Institute of Technology, Kurukshetra (India)

    2010-11-15

    The effect of magnetic field-dependent viscosity on the revolving axi-symmetric steady flow of ferrofluid in a disc is investigated by solving the boundary layer equations using Neuringer-Rosenweig model. Besides numerically calculating the velocity components and pressure for different values of magnetic field-dependent viscosity with variation in dimensionless parameter {alpha} (Karman's parameter), we also have calculated the thickness of the boundary layer and the total volume flowing outward the z-axis. Here, the solutions of non-linear differential equations are obtained in the form of asymptotic series.

  12. Cosmology with bulk viscosity and the gravitino problem

    CERN Document Server

    Buoninfante, L

    2016-01-01

    The gravitino problem is revisited in the framework of cosmological models in which the primordial cosmic matter is described by a relativistic imperfect fluid. Dissipative effects (or bulk viscosity effects) arise owing to the different cooling rates of the fluid components. We show that the effects of the bulk viscosity allow to avoid the late abundance of gravitinos. In particular, we found that for a particular choice of the parameters characterizing the cosmological model, the gravitino abundance turns out to be independent on the reheating temperature.

  13. RECENT PROGRESS IN NONLINEAR EDDY-VISCOSITY TURBULENCE MODELING

    Institute of Scientific and Technical Information of China (English)

    符松; 郭阳; 钱炜祺; 王辰

    2003-01-01

    This article presents recent progresses in turbulence modeling in the Unit for Turbulence Simulation in the Department of Engineering Mechanics at Tsinghua University. The main contents include: compact Non-Linear Eddy-Viscosity Model (NLEVM) based on the second-moment closure, near-wall low-Re non-linear eddy-viscosity model and curvature sensitive turbulence model.The models have been validated in a wide range of complex flow test cases and the calculated results show that the present models exhibited overall good performance.

  14. Viscosity-Induced Crossing of the Phantom Barrier

    Directory of Open Access Journals (Sweden)

    Iver Brevik

    2015-09-01

    Full Text Available We show explicitly, by using astrophysical data plus reasonable assumptions for the bulk viscosity in the cosmic fluid, how the magnitude of this viscosity may be high enough to drive the fluid from its position in the quintessence region at present time t = 0 across the barrier w = −1 into the phantom region in the late universe. The phantom barrier is accordingly not a sharp mathematical divide, but rather a fuzzy concept. We also calculate the limiting forms of various thermodynamical quantities, including the rate of entropy production, for a dark energy fluid near the future Big Rip singularity.

  15. VARIATION IN MEAT COMPOSITION VISCOSITY DURING THE MIXING PROCESS

    Directory of Open Access Journals (Sweden)

    DANIELA IANIłCHI

    2013-12-01

    Full Text Available Animal raw material processing is directly influenced by the physical and chemical characteristics of the materials which also influence their water holding capacity. The various combinations and status of the raw materials used in the food industry determine specific behaviours that may influence the processing equipment performance and construction. The study on meat composition viscosity depending upon the added components, temperature and mixing time length, has shown that viscosity is increasing with lower added water percentage, lower mixing temperature and higher mixing time length.

  16. Shear viscosity from a large-Nc NJL model

    International Nuclear Information System (INIS)

    We investigate the shear viscosity to entropy ratio within the vicinity of the chiral phase transition/crossover using the NJL model in a large-Nc expansion. As heavy-ion collisions at RHIC and LHC in combination with hydrodynamic simulations suggest, this ratio is close to the AdS/CFT benchmark. This indicates a strongly correlated state of matter produced in such collisions. We study in detail the non-perturbative structure of the NJL model and the question if resummation techniques are required. In the large-Nc expansion next-to-leading-order contributions to the shear viscosity are derived.

  17. Time Dependent and Steady Uni-axial Elongational Viscosity

    DEFF Research Database (Denmark)

    Nielsen, Jens K.; Rasmussen, Henrik Koblitz; Hassager, Ole

    2005-01-01

    Here we present measurements of transient and steady uni-axial elongational viscosity, using the Filament Stretching Rheometer1 or FSR1 (see Fig. 1) of the following melts: Four narrow MMD polystyrene (PS) samples with weight-average molar mass Mw in the range of 50k to 390k. Three different bi......-disperse samples, mixed from the narrow MMD PS. Two low-density polyethylene (LDPE) melts (Lupolen 1840D and 3020D). A steady-state viscosity was kept for 1-2.5 Hencky strain units in all measurements....

  18. Effect of simvastatin combined amlodipine besylate on blood rheology and platelet activation in elderly patients with hypertension complicated with hyperlipemia

    Institute of Scientific and Technical Information of China (English)

    Ming-Zheng Jiang; Li Qiong; Hui Liu

    2016-01-01

    Objective:To investigate the effect of simvastatin combined amlodipine besylate on blood rheology and platelet activation in elderly patients with hypertension complicated with hyperlipemia.Methods: A total of 200 elderly patients with hypertension complicated with hyperlipemia were divided into hypertension group (n=64), hyperlipemia group (n=71) and combined (hypertension complicated with hyperlipemia) group (n=65). And alternate period health check-up 100 cases were selected as control group. The hypertension group was treated with amlodipine besylate monotherapy, hyperlipidemia group with simvastatin monotherapy, combined group received simvastatin combined with amlodipine besylate treatment, patients of three groups were treated for 12 weeks. Blood rheology and platelet activation before and after treatment were compared.Results: After treatment, blood pressure was significantly lower than that before treatment in hypertension and combined group (P<0.05), and the combined group reduced more significantly (P<0.05), blood fat was significantly lower than that before treatment in hyperlipemia and combined group (P<0.05), and combined group reduced more significantly (P<0.05); Before treatment, indexes of blood rheology (high shear whole blood viscosity, low shear whole blood viscosity, plasma viscosity, fibrinogen and platelet activation index (CD62p and CD63) of three groups were significantly higher than those in control group (P<0.05), and the combined group was increased more significantly than hypertension and hyperlipidemia group (P<0.05); After treatment, blood rheology (high shear whole blood viscosity, low shear whole blood viscosity, plasma viscosity, fibrinogen) and platelet activation index (CD62p and CD63) of hyperlipidemia group and combined group were significantly lower than before treatment (P<0.05), and the reduction combined group were more significant in amplitude (P<0.05).Conclusions: Simvastatin combined amlodipine besylate therapy can

  19. Blood / Money

    OpenAIRE

    Strong, Thomas

    1997-01-01

    Marilyn Strathern has argued that "nature" in Euro-American culture has appeared as constraint; it has figured the givens of existence on which human artifice is seen to construct "society" or "culture."(5) Among those givens is the notion that human beings are naturally individuals. And blood, too, images individuality: "The very thought of blood, individual blood, touches the deepest feelings in man about life and death" ([RIchard Titmuss] 16.) Transfusion medicine, then, draws on a series ...

  20. Effects of viscosity on endothelial cell damage under acoustic droplet vaporization

    Science.gov (United States)

    Seda, Robinson; Singh, Rahul; Li, David; Pitre, John; Putnam, Andrew; Fowlkes, J. Brian; Bull, Joseph

    2014-11-01

    Acoustic droplet vaporization (ADV) is a process by which stabilized superheated microdroplets are able to undergo phase transition with the aid of focused ultrasound. Gas bubbles resulting from ADV can provide local occlusion of the blood vessels supplying diseased tissue, such as tumors. The ADV process can also induce bioeffects that increase vessel permeability, which is beneficial for localized drug delivery. Previous in vitro studies have demonstrated that vaporization at the endothelial layer will affect cell attachment and viability. Several hypotheses have been proposed to elucidate the mechanism of damage including the generation of normal and shear stresses during bubble expansion. A single 3.5 MHz ultrasound pulse consisting of 8 cycles (~2.3 μs) and a 6 MPa peak rarefactional pressure was used to induce ADV on endothelial cells in media of different viscosities. Carboxylmethyl cellulose was added to the cell media to increase the viscosity up to 300 cP to and aid in the reduction of stresses during bubble expansion. The likelihood of cell damage was decreased when compared to our control (~1 cP), but it was still present in some cases indicating that the mechanism of damage does not depend entirely on viscous stresses associated with bubble expansion. This work was supported by NIH Grant R01EB006476.

  1. Viscosities and viscosity deviations of binary mixtures of biodiesel + petrodiesel (or n-hexadecane at different temperatures

    Directory of Open Access Journals (Sweden)

    F. M. R. Mesquita

    2012-09-01

    Full Text Available Viscosities of four binaries mixtures [soybean biodiesel + diesel oil (or n-hexadecane and coconut biodiesel + diesel oil (or n-hexadecane] have been determined at T = (293.15, 313.15, 333.15, 353.15, 373.15 K and atmospheric pressure over the entire composition range. Experimental data were fitted to the Andrade equation and the adjustable parameters and the standard deviations between experimental and calculated values were estimated. From the experimental data, the viscosity deviations, , were calculated by using the Redlich - Kister polynomial equation. The comparison between experimental data determined in this work and four predictive methods used for the estimation of viscosities of biodiesel fuels (based on their fatty acid composition is discussed.

  2. Understanding Blood Counts

    Science.gov (United States)

    ... Lab and Imaging Tests Understanding Blood Counts Understanding Blood Counts Understanding Blood Counts SHARE: Print Glossary Blood cell counts give ... your blood that's occupied by red cells. Normal Blood Counts Normal blood counts fall within a range ...

  3. Heat Transfer in Hydromagnetic Fluid Flow: Study of Temperature Dependence of Fluid Viscosity

    Directory of Open Access Journals (Sweden)

    G. C. Shit

    2014-01-01

    Full Text Available Flow of a viscoelastic fluid through a channel with stretching walls in the presence of a magnetic field has been investigated. The viscosity of the fluid is assumed to vary with temperature. Convective heat transfer is considered along with viscous dissipation and Ohmic dissipation. The equations that govern the motion of the fluid and heat transfer are coupled and non-linear. The governing partial differential equations are reduced to a set of ordinary differential equations by using similarity transformation. The transformed equations subject to the boundary conditions are solved by developing a suitable finite difference scheme. Numerical estimates of the flow and heat transfer variables are obtained by considering blood as the working fluid. The computational values are found to be in good agreement with those of previous studies.

  4. Blood donation

    CERN Multimedia

    GS Department

    2009-01-01

    A blood donation is organised by the Cantonal Hospital of Geneva On Thursday 19 March 2009 from 9 a.m. to 5 p.m. CERN RESTAURANT 2 Number of donations during the last blood donations :135 donors in July 2008 122 donors in November 2008 Let’s do better in 2009 !!! Give 30 minutes of your time to save lives...

  5. BLOOD DONATION

    CERN Document Server

    SC Unit

    2008-01-01

    A blood donation, organized by EFS (Etablissement Français du Sang) of Annemasse will take place On Wednesday 12 November 2008, from 8:30 to 16:00, at CERN Restaurant 2 If possible, please, bring your blood group Card.

  6. Viscosity of diesel engine fuel oil under pressure

    Science.gov (United States)

    Hersey, Mayo D

    1929-01-01

    In the development of Diesel engine fuel injection systems it is necessary to have an approximate knowledge of the absolute viscosity of the fuel oil under high hydrostatic pressures. This report presents the results of experimental tests conducted by Mr. Jackson Newton Shore, utilizing the A.S.M.E. high pressure equipment.

  7. Measurement of Viscosity of Hydrocarbon Liquids Using a Microviscometer

    DEFF Research Database (Denmark)

    Dandekar, Abhijit; Andersen, Simon Ivar; Stenby, Erling Halfdan

    1998-01-01

    The viscosity of normal alkanes, their mixtures, and true boiling point (TBP) fractions (C (sub 6) -C (sub 19)) of four North Sea petroleum reservoir fluids have been measured by use of an automatic rolling ball mixroviscometer at 20°C. The equipment is specially suited for samples of limited amo...

  8. Measuring Viscosity with a Levitating Magnet: Application to Complex Fluids

    Science.gov (United States)

    Even, C.; Bouquet, F.; Remond, J.; Deloche, B.

    2009-01-01

    As an experimental project proposed to students in fourth year of university, a viscometer was developed, consisting of a small magnet levitating in a viscous fluid. The viscous force acting on the magnet is directly measured: viscosities in the range 10-10[superscript 6] mPa s are obtained. This experiment is used as an introduction to complex…

  9. Iterative Method for Intrinsic Viscosity Measurements on Perpendicular Recording Media

    NARCIS (Netherlands)

    Kim, Phan Le; Lodder, Cock

    2002-01-01

    We introduce a new method that allows one to directly measure the intrinsic viscosity (S/sub i/) for perpendicular media using a vibrating sample magnetometer. The measurement is carried out in a number of iterations. In each iteration, the behavior of applied field (H/sub a/) with time is gradually

  10. Collective Flow and Viscosity in Relativistic Heavy-Ion Collisions

    NARCIS (Netherlands)

    Heinz, U.; Snellings, R.J.M.

    2013-01-01

    We review collective flow, its anisotropies, and its event-to-event fluctuations in relativistic heavy-ion collisions, as well as the extraction of the specific shear viscosity of quark–gluon plasma from collective flow data collected in heavy-ion collision experiments at RHIC and the LHC. We emphas

  11. Upper mantle viscosity and lithospheric thickness under Iceland

    NARCIS (Netherlands)

    Barnhoorn, A.; Wal, W. van der; Drury, M.R.

    2011-01-01

    Deglaciation during the Holocene on Iceland caused uplift due to glacial isostatic adjustment. Relatively low estimates for the upper mantle viscosity and lithospheric thickness result in rapid uplift responses to the deglaciation cycles on Iceland. The relatively high temperatures of the upper mant

  12. Bistability in a simple fluid network due to viscosity contrast

    CERN Document Server

    Geddes, John B; Gardner, David; Carr, Russell T

    2009-01-01

    We study the existence of multiple equilibrium states in a simple fluid network using Newtonian fluids and laminar flow. We demonstrate theoretically the presence of hysteresis and bistability, and we confirm these predictions in an experiment using two miscible fluids of different viscosity--sucrose solution and water. Possible applications include bloodflow, microfluidics, and other network flows governed by similar principles.

  13. Almost Periodic Viscosity Solutions of Nonlinear Parabolic Equations

    Directory of Open Access Journals (Sweden)

    Zhang Shilin

    2009-01-01

    Full Text Available We generalize the comparison result 2007 on Hamilton-Jacobi equations to nonlinear parabolic equations, then by using Perron's method to study the existence and uniqueness of time almost periodic viscosity solutions of nonlinear parabolic equations under usual hypotheses.

  14. Viscosity Coefficient Curve Fits for Ionized Gas Species Grant Palmer

    Science.gov (United States)

    Palmer, Grant; Arnold, James O. (Technical Monitor)

    2001-01-01

    Viscosity coefficient curve fits for neutral gas species are available from many sources. Many do a good job of reproducing experimental and computational chemistry data. The curve fits are usually expressed as a function of temperature only. This is consistent with the governing equations used to derive an expression for the neutral species viscosity coefficient. Ionized species pose a more complicated problem. They are subject to electrostatic as well as intermolecular forces. The electrostatic forces are affected by a shielding phenomenon where electrons shield the electrostatic forces of positively charged ions beyond a certain distance. The viscosity coefficient for an ionized gas species is a function of both temperature and local electron number density. Currently available curve fits for ionized gas species, such as those presented by Gupta/Yos, are a function of temperature only. What they did was to assume an electron number density. The problem is that the electron number density they assumed was unrealistically high. The purpose of this paper is two-fold. First, the proper expression for determining the viscosity coefficient of an ionized species as a function of both temperature and electron number density will be presented. Then curve fit coefficients will be developed using the more realistic assumption of an equilibrium electron number density. The results will be compared against previous curve fits and against highly accurate computational chemistry data.

  15. Measurement of viscosity of gaseous mixtures at atmospheric pressure

    Science.gov (United States)

    Singh, J. J.; Mall, G. H.; Chegini, H.

    1986-01-01

    Coefficients of viscosity of various types of gas mixtures, including simulated natural-gas samples, have been measured at atmospheric pressure and room temperature using a modified capillary tube method. Pressure drops across the straight capillary tube section of a thermal mass flowmeter were measured for small, well-defined, volume flow rates for the test gases and for standard air. In this configuration, the flowmeter provides the volumetric flow rates as well as a well-characterized capillary section for differential pressure measurements across it. The coefficients of viscosity of the test gases were calculated using the reported value of 185.6 micro P for the viscosity of air. The coefficients of viscosity for the test mixtures were also calculated using Wilke's approximation of the Chapman-Enskog (C-E) theory. The experimental and calculated values for binary mixtures are in agreement within the reported accuracy of Wilke's approximation of the C-E theory. However, the agreement for multicomponent mixtures is less satisfactory, possible because of the limitations of Wilkes's approximation of the classical dilute-gas state model.

  16. Effective viscosity of non-gravitactic Chlamydomonas Reinhardtii microswimmer suspensions

    CERN Document Server

    Mussler, Matthias; Peyla, Philippe; Wagner, Christian

    2013-01-01

    Active microswimmers are known to affect the macroscopic viscosity of suspensions in a more complex manner than passive particles. For puller-like microswimmers an increase in the viscosity has been observed. It has been suggested that the persistence of the orientation of the microswimmers hinders the rotation that is normally caused by the vorticity. It was previously shown that some sorts of algaes are bottom-heavy swimmers, i.e. their centre of mass is not located in the centre of the body. In this way, the algae affects the vorticity of the flow when it is perpendicular oriented to the axis of gravity. This orientation of gravity to vorticity is given in a rheometer that is equipped with a cone-plate geometry. Here we present measurements of the viscosity both in a cone-plate and a Taylor-Couette cell. The two set-ups yielded the same increase in viscosity although the axis of gravitation in the Taylor-Couette cell is parallel to the direction of vorticity. In a complementary experiment we tested the ori...

  17. Viscosity measurement of alkali chlorides with capillary viscometer

    International Nuclear Information System (INIS)

    Viscosities of molten alkali chlorides have been measured by means of newly designed capillary viscometer made of fused quartz as shown in Fig. 1 and combined with a special transparent electric furnace which can be inverted. The viscometer was of a suspended level type and designed so as to minimize the error associated with the measurement, e.g., the effect of surface tension. Reynolds number of the capillary was less than 100. The sample was introduced into the viscometer through the quartz filter and then sealed under vacuum. Cell constants of the viscometer were determined by using distilled water as a calibration liquid. Efflux times were measured by direct visual observation using a digital stopwatch, and showed excellent reproducibility. The viscometer in the present investigation proved to be very precise and the errors accompanied were considered to be less than 0.7%. Viscosities obtained are collected in Table 1 and Figs. 3-1 -- 3-5 together with the previous data. Whereas the viscosity did not necessarily show any regularity, the activation energy for viscous flow increased with increasing cation size in the series of molten alkali chlorides. On the basis of a hard sphere model, the sizes of the flow units were considered to be nearly equal to those of cation-anion pairs. The viscosity of each molten alkali chloride at melting temperature increased with an increasing ratio of the flow unit volume to the hole volume. (author)

  18. Viscosity solutions of fully nonlinear functional parabolic PDE

    Directory of Open Access Journals (Sweden)

    Liu Wei-an

    2005-01-01

    Full Text Available By the technique of coupled solutions, the notion of viscosity solutions is extended to fully nonlinear retarded parabolic equations. Such equations involve many models arising from optimal control theory, economy and finance, biology, and so forth. The comparison principle is shown. Then the existence and uniqueness are established by the fixed point theory.

  19. Considerations of viscosity in the preliminaries to mammalian fertilisation.

    Science.gov (United States)

    Hunter, Ronald H F; Coy, P; Gadea, J; Rath, D

    2011-03-01

    Migration of spermatozoa in the female genital tract will be strongly influenced by the viscosity of the fluids encountered, yet little systematic analysis has been given to such a consideration. This essay reviews the series of milieux confronting a fertilising sperm during its progression to the oviduct ampulla. Two groups are discussed, first those in which ejaculation is into the vagina, second those in which semen enters the uterus during a protracted mating. Viscous glycoprotein secretions that accumulate in the oviduct isthmus of both groups before ovulation are highlighted, as is the environment generated in the ampulla by the post-ovulatory suspension of oocyte(s), cumulus cells and spermatozoa; follicular and peritoneal fluids may also be present. The viscosity of all female tract fluids responds to cyclical variations in temperature, and these exist within the oviduct near the time of ovulation. Gradations in viscosity influence the pattern and strength of sperm flagellar activity and the rate of forward movement. Measurements of sperm motility are currently made in a physiological medium of constant viscosity and temperature, thereby overlooking changes in the female genital tract. A more sophisticated approach might reveal an adequate fertilising potential in a proportion of putatively poor semen samples. PMID:21234667

  20. High sperm chromatin stability in semen with high viscosity.

    Science.gov (United States)

    Gonzales, G F; Sánchez, A

    1994-01-01

    This study was designed to determine the effects of high semen viscosity on sperm chromatin stability. Semen samples obtained from men with normal and high viscosity were studied. Sperm chromatin stability was tested by exposure to sodium dodecyl sulfate (SDS) only and SDS together with a zinc-chelating agent, disodium ethylene diamine tetraacetate (SDS+EDTA). After SDS incubation, stable sperm was 61.36 +/- 3.0 and 54.71 +/- 3.42% for normal and high semen viscosity, respectively (P:NS), and after SDS+EDTA, it was further reduced to 12.48 +/- 0.99% in semen samples with normal consistency and in a less magnitude in semen samples with high viscosity (25.6 +/- 5.2). Comparing values obtained in SDS+EDTA, a high sperm stability was observed in samples with hyperviscosity (p hyperviscosity is associated with a high sperm chromatin stability in situations when a zinc-chelating agent is present. PMID:8122934

  1. Steady-shear viscosity of stirred yogurts with varying ropiness

    NARCIS (Netherlands)

    Marle, van M.E.; Ende, van den D.; Kruif, de C.G.; Mellema, J.

    1999-01-01

    Stirred yogurt was viewed as a concentrated dispersion of aggregates consisting of protein particles. The steady-shear behavior of three types of stirred yogurt with varying ropiness was investigated experimentally. To describe the shear-dependent viscosity, a microrheological model was used which w

  2. Effect of Fluid Dynamic Viscosity on the Strength of Chalk

    DEFF Research Database (Denmark)

    Hedegaard, K.; Fabricius, Ida Lykke

    The mechanical strength of high porosity and weakly cemented chalk is affected by the fluid in the pores. In this study, the effect of the dynamic viscosity of non-polar fluids has been measured on outcrop chalk from Sigerslev Quarry, Stevns, Denmark. The outcome is that the measured strength...

  3. Relook on fitting of viscosity with undercooling of glassy liquids

    Indian Academy of Sciences (India)

    C Chattopadhyay; S Sangal; K Mondal

    2014-02-01

    The present approach is on the modification of viscosity fitting of undercooled liquid as a function of undercooling. The method consists of finding analytical solution of three arbitrary constants of the Vogel–Fulcher–Tamman (VFT) equation by choosing three viscosity data at three critical temperatures for an undercooled liquid. Three critical temperatures are liquidus temperature (l), crystallization onset temperature (x) and glass transition temperature (g). The experimental viscosity data at or very near to these three critical temperatures (depending on the availability in literature) have been utilized to achieve the analytical solution. The analytical solution of VFT equation is further examined by selecting the experimental data points away from the critical temperatures in order to check their (l, x and g) significance towards the solution. Total absolute error (TAE) and total squared error (TSE) values obtained from the present method with respect to the experimental viscosity data in the temperature range between l and g are very much comparable and in most of the cases lower than that of existing `best-fit' cited in the literature for a number of glassy alloys. Moreover, this method interestingly enables us to find the fragility parameters for a number of glassy alloys and convincingly explain their true glass forming abilities (GFA).

  4. Magnetic microrheometer for in situ characterization of coating viscosity.

    Science.gov (United States)

    Song, Jin-Oh; Henry, Robert M; Jacobs, Ryan M; Francis, Lorraine F

    2010-09-01

    A magnetic microrheometer has been designed to characterize the local viscosity of liquid-applied coatings in situ during solidification. The apparatus includes NdFeB magnets mounted on computer-controlled micropositioners for the manipulation of ∼1 μm diameter superparamagnetic particles in the coating. Magnetic field gradients at 20-70 T/m are generated by changing magnet size and the gap distance between the magnets. A specimen stage located between two magnets is outfitted with a heater and channels to control process conditions (temperature and air flow), and a digital optical microscope lens above the stage is used to monitor the probe particle position. Validation studies with glycerol and polyimide precursor solution showed that microrheometry results match traditional bulk rheometry within an error of 5%. The viscosities of polyvinyl alcohol (PVA) solution and polyimide precursor solution coatings were measured at different shear rates (0.01-5 s(-1)) by adjusting the magnetic field gradient. The effect of proximity to the substrate on the particle motion was characterized and compared with theoretical predictions. The magnetic microrheometer was used to characterize the time-viscosity profile of PVA coatings during drying at several temperatures. The viscosity range measured by the apparatus was 0.1-20 Pa s during drying of coatings at temperatures between room temperature and 80 °C. PMID:20886990

  5. Viscosity of aqueous and cyanate ester suspensions containing alumina nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Lawler, Katherine [Iowa State Univ., Ames, IA (United States)

    2009-01-01

    The viscosities of both aqueous and cyanate ester monomer (BECy) based suspensions of alumina nanoparticle were studied. The applications for these suspensions are different: aqueous suspensions of alumina nanoparticles are used in the production of technical ceramics made by slip casting or tape casting, and the BECy based suspensions are being developed for use in an injection-type composite repair resin. In the case of aqueous suspensions, it is advantageous to achieve a high solids content with low viscosity in order to produce a high quality product. The addition of a dispersant is useful so that higher solids content suspensions can be used with lower viscosities. For BECy suspensions, the addition of nanoparticles to the BECy resin is expected to enhance the mechanical properties of the cured composite. The addition of saccharides to aqueous suspensions leads to viscosity reduction. Through DSC measurements it was found that the saccharide molecules formed a solution with water and this resulted in lowering the melting temperature of the free water according to classic freezing point depression. Saccharides also lowered the melting temperature of the bound water, but this followed a different rule. The shear thinning and melting behaviors of the suspensions were used to develop a model based on fractal-type agglomeration. It is believed that the structure of the particle flocs in these suspensions changes with the addition of saccharides which leads to the resultant viscosity decrease. The viscosity of the BECy suspensions increased with solids content, and the viscosity increase was greater than predicted by the classical Einstein equation for dilute suspensions. Instead, the Mooney equation fits the viscosity behavior well from 0-20 vol% solids. The viscosity reduction achieved at high particle loadings by the addition of benzoic acid was also investigated by NMR. It appears that the benzoic acid interacts with the surface of the alumina particle which may

  6. Temperature Dependence of Viscosities of Common Carrier Gases

    Science.gov (United States)

    Sommers, Trent S.; Nahir, Tal M.

    2005-01-01

    Theoretical and experimental evidence for the dependence of viscosities of the real gases on temperature is described, suggesting that this dependence is greater than that predicted by the kinetic theory of gases. The experimental results were obtained using common modern instrumentation and could be reproduced by students in analytical or…

  7. Density, viscosity, and saturated vapor pressure of ethyl trifluoroacetate

    International Nuclear Information System (INIS)

    Highlights: • Density of ethyl trifluoroacetate was measured and its thermal expansion coefficient was determined. • Viscosity of ethyl trifluoroacetate was measured and fitted to the Andrade equation. • Saturated vapor pressure of ethyl trifluoroacetate was reported. • The Clausius–Clapeyron equation was used to calculate the molar evaporation enthalpy of ethyl trifluoroacetate. - Abstract: The properties of ethyl trifluoroacetate (CF3COOCH2CH3) were measured as a function of temperature: density (278.08 to 322.50) K, viscosity (293.45 to 334.32) K, saturated vapor pressure (293.35 to 335.65) K. The density data were fitted to a quadratic polynomial equation, and the viscosity data were regressed to the Andrade equation. The correlation coefficient (R2) of equations for density and viscosity are 0.9997 and 0.9999, respectively. The correlation between saturated vapor pressures and temperatures was achieved with a maximum absolute relative deviation of 0.142%. In addition, the molar evaporation enthalpy in the range of T = (293.35 to 335.65) K was estimated by the Clausius–Clapeyron equation

  8. Noninvasive blood pressure measurement in large vessels

    International Nuclear Information System (INIS)

    Pulse pressure in the aorta was evaluated by the measurement of pulse wave velocity (PWV) and blood flow velocity (BFV). PWV reflects the elasticity of the vessel and was determined by a time-of-flight method. BFV was measured by analyzing the change of magnetization decay due to flow in multiecho experiments. If one neglects pulse wave reflections at vascular branch points and flow resistance due to blood viscosity, pulse pressure is proportional to PWV and BFV. Noninvasive MR imaging measurements were obtained in 12 patients, all of whom underwent correlative arterial catheterization. Values varied between 35 and 100 mm Hg. The results demonstrated a high correlation between the two methods

  9. Tainted blood

    DEFF Research Database (Denmark)

    Deleuran, Ida; Sheikh, Zainab Afshan; Hoeyer, Klaus

    2015-01-01

    study of the historical rise and current workings of safety practices in the Danish blood system. Here, we identify a strong focus on contamination in order to avoid 'tainted blood', at the expense of working with risks that could be avoided through enhanced blood monitoring practices. Of further...... significance to this focus are the social dynamics found at the heart of safety practices aimed at avoiding contamination. We argue that such dynamics need more attention, in order to achieve good health outcomes in transfusion medicine. Thus, we conclude that, to ensure continuously safe blood systems, we...... need to move beyond the bifurcation of the social and medical aspects of blood supply as two separate issues and approach social dynamics as key medical safety questions....

  10. A new look at blood shear-thinning

    CERN Document Server

    Lanotte, Luca; Mendez, Simon; Fedosov, Dmitry A; Fromental, Jean-Marc; Clavería, Viviana; Nicoud, Franck; Gompper, Gerhard; Abkarian, Manouk

    2016-01-01

    Blood viscosity decreases with shear stress, a property essential for an efficient perfusion of the vascular tree. Shear-thinning is intimately related to the dynamics and mutual interactions of red blood cells (RBCs), the major constituents of blood. Our work explores RBCs dynamics under physiologically relevant conditions of flow strength, outer fluid viscosity and volume fraction. Our results contradict the current paradigm stating that RBCs should align and elongate in the flow direction thanks to their membrane circulation around their center of mass, reducing flow-lines disturbances. On the contrary, we observe both experimentally and with simulations, rich morphological transitions that relate to global blood rheology. For increasing shear stresses, RBCs successively tumble, roll, deform into rolling stomatocytes and finally adopt highly deformed and polylobed shapes even for semi-dilute volume fractions analogous to microcirculatory values. Our study suggests that any pathological change in plasma com...

  11. A new reference viscosity model for hydrogen sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, K.A.G. [Alberta Univ., Edmonton, AB (Canada). Dept. of Chemical and Materials Engineering, Electrical and Computer Engineering Research Facility; Quinones-Cisneros, S.E. [Univ. Nacional Autonoma de Mexico, Mexico City (Mexico). Dept. of Rheology, Materials Research Inst.; Giri, B.R.; Blais, P.; Marriott, R.A. [Alberta Sulphur Research Ltd., Calgary, AB (Canada); Calgary Univ., AB (Canada). Dept. of Chemistry

    2010-07-01

    New and economical ways of reducing emissions of acid gases to the atmosphere are becoming increasingly important in the petroleum industry. This presentation discussed the promising sequestration option of injecting these acid gases into formations for disposal and or storage. Acid gas injection (AGI) is a commonly used process for the disposal of mixtures of hydrogen sulphide and carbon dioxide, particularly in small scale schemes. The acid gas is sometimes used as a miscible flood fluid for pressure maintenance. The use of AGI is being considered for the production of elemental sulphur. Accurate viscosities are needed in the design of these injection schemes to determine pressure drops due to fluid flow in both the acid gas pipeline and the injection well. This presentation included experimental data and discussed the applicability of the friction theory for viscosity modelling to reproduce the existing experimental visco cities of hydrogen sulphide and its mixtures. The friction theory model was shown to be a highly flexible and powerful tool for the modelling the viscosity of reservoir fluids, from light to heavy fluids under broad conditions of temperature, pressure and composition. During the development of this reference viscosity model, a literature review identified areas where additional data is needed to fill voids and resolve discrepancies of existing data sets. It was concluded that although the developed model was based on limited data, the sound physical reasoning provided good results. An experimental program has been launched to determine the viscosities of hydrogen sulphide (H{sub 2}S) in the critical areas identified in the initial reference model. The current update to the data set consists of experimental H{sub 2}S viscosities up to 1000 bar and at temperatures between 0 and 150 degrees C. The data will be applied to update the H{sub 2}S reference viscosity model based on the friction-theory. The updated reference equation will help improve

  12. VEGF-induced angiogenesis following localized delivery via injectable, low viscosity poly(trimethylene carbonate).

    Science.gov (United States)

    Amsden, Brian G; Timbart, Laurianne; Marecak, Dale; Chapanian, Rafi; Tse, M Yat; Pang, Stephen C

    2010-07-14

    The purpose of this study was to examine the potential of low molecular weight poly(trimethylene carbonate) for localized vascular endothelial growth factor (VEGF) delivery. Poly(trimethylene carbonate) of various molecular weights was prepared by ring-opening polymerization initiated by 1-octanol. The resultant polymers were liquid at room temperature with low glass transition temperatures and viscosities at 37 degrees C that permitted their injection through an 18 (1/2) G 1.5'' needle. Particles consisting of VEGF co-lyophilized with trehalose were mixed into the polymers and the rate of release of VEGF was assessed in vitro. With a 1% particle loading, VEGF was released from the polymer at a rate of 20 ng/day over a period of 3 weeks. This release behavior was independent of the molecular weight of polymer used. Increasing the VEGF content in the lyophilized particles did not increase the VEGF release rate, an effect attributed to the solubility limit of VEGF in the solution formed upon dissolution of the particles. The VEGF released retained its bioactivity at greater than 95% of that of as-lyophilized VEGF, as assessed using a human aortic endothelial cell proliferation assay. This high bioactivity was supported by in vivo release experiments, wherein VEGF containing polymer implants induced the generation of significantly greater numbers of blood vessels towards the polymer implant than controls. The blood vessels did not remain stable and were reduced in number by three weeks, due to the unsustained and low concentration of VEGF released. This formulation approach, of using a low viscosity polymer delivery vehicle, is potentially useful for localized delivery of acid-sensitive proteins, such as VEGF. PMID:20381557

  13. Fluid Dynamic Evidence for Extremely Low Viscosity Coseismic Fault Fluids

    Science.gov (United States)

    Brodsky, E. E.; Meneghini, F.; Rowe, C. D.; Moore, J. C.

    2007-12-01

    We combine geological observations of fault rock textures with fluid mechanics to constrain the mechanics of a fault zone during a subduction earthquake. We analyze buoyant intrusive features in a fault rock that formed at 12- 14 km depth in a large-scale thrust fault embedded in a paleo-accretionary prism in Kodiak Island, AK. The fault rock can been interpreted as either a pseudotachylyte or fluidized ultracataclasite. The intrusive structures provide new, direct evidence on the coseismic rheology of the fault. The asymmetric buoyant intrusions are most readily understood as Rayleigh-Taylor instabilities with an unusually short wavelengths relative to the thickness of the layer. The geometry requires a moderately high Reynolds number flow (Re~1-10) in order to produce the observed wavelength to thickness ratio. The resulting rise velocity under these conditions is ~40 cm/s. Since the shear strain in the layer is over order 1 and the deformation is continuous, the rise velocity must be comparable to the horizontal shear velocity during emplacement. Thus, the geometry alone requires that the fault rocks were intruded coseismically. Furthermore, the Reynolds number constraint combined with the computed rise velocity provides a maximum bound on the viscosity of the fluid during emplacement. The coseismic fault fluid at this locality must have had a viscosity of \\ll 10 Pa-s. This viscosity constraint is compatible with the viscosity of the silicate melt of the observed composition at 1300-1400°, which is consistent with the temperature constraints imposed by the absence of plagioclase survivor grains. In summary, both the fluid dynamical and geological evidence points to an extraordinarily low viscosity fluid in the fault zone during rupture and hence extremely low local stress in the fault during an earthquake.

  14. Intermolecular potential parameters and combining rules determined from viscosity data

    Energy Technology Data Exchange (ETDEWEB)

    Bastien, Lucas A.J.; Price, Phillip N.; Brown, Nancy J.

    2010-05-07

    The Law of Corresponding States has been demonstrated for a number of pure substances and binary mixtures, and provides evidence that the transport properties viscosity and diffusion can be determined from a molecular shape function, often taken to be a Lennard-Jones 12-6 potential, that requires two scaling parameters: a well depth {var_epsilon}{sub ij} and a collision diameter {sigma}{sub ij}, both of which depend on the interacting species i and j. We obtain estimates for {var_epsilon}{sub ij} and {sigma}{sub ij} of interacting species by finding the values that provide the best fit to viscosity data for binary mixtures, and compare these to calculated parameters using several 'combining rules' that have been suggested for determining parameter values for binary collisions from parameter values that describe collisions of like molecules. Different combining rules give different values for {sigma}{sub ij} and {var_epsilon}{sub ij} and for some mixtures the differences between these values and the best-fit parameter values are rather large. There is a curve in ({var_epsilon}{sub ij}, {sigma}{sub ij}) space such that parameter values on the curve generate a calculated viscosity in good agreement with measurements for a pure gas or a binary mixture. The various combining rules produce couples of parameters {var_epsilon}{sub ij}, {sigma}{sub ij} that lie close to the curve and therefore generate predicted mixture viscosities in satisfactory agreement with experiment. Although the combining rules were found to underpredict the viscosity in most of the cases, Kong's rule was found to work better than the others, but none of the combining rules consistently yields parameter values near the best-fit values, suggesting that improved rules could be developed.

  15. A comparison of viscosity-concentration relationships for emulsions.

    Science.gov (United States)

    Bullard, Jeffrey W; Pauli, Adam T; Garboczi, Edward J; Martys, Nicos S

    2009-02-01

    Differential effective medium theory (D-EMT) has been used by a number of investigators to derive expressions for the shear viscosity of a colloidal suspension or an emulsion as a function of the volume fraction of the dispersed phase. Pal and Rhodes [R. Pal, E. Rhodes, J. Rheol. 33 (7) (1989) 1021-1045] used D-EMT to derive a viscosity-concentration expression for non-Newtonian emulsions, in which variations among different oil-water emulsions were accommodated by fitting the value of an empirical solvation factor by matching the volume fraction at which the ratio of each emulsion was experimentally observed to have a viscosity 100 times greater than that of the pure solvent. When the particles in suspension have occluded volume due to solvation or flocculation, we show that the application of D-EMT to the problem becomes more ambiguous than these investigators have indicated. In addition, the resulting equations either do not account for the limiting behavior near the critical concentration, that is, the concentration at which the viscosity diverges, or they incorporate this critical behavior in an ad hoc way. We suggest an alternative viscosity-concentration equation for emulsions, based on work by Bicerano and coworkers [J. Bicerano, J.F. Douglas, D.A. Brune, J. Macromol. Sci., Rev. Macromol. Chem. Phys. C 39 (4) (1999) 561-642]. This alternative equation has the advantages that (1) its parameters are more closely related to physical properties of the suspension and (2) it recovers the correct limiting behavior both in the dilute limit and near the critical concentration for rigid particles. In addition, the equation can account for the deformability of flexible particles in the semidilute regime. The proposed equation is compared to the equation proposed by Pal and Rhodes. PMID:18995865

  16. Mathematical analysis of non-Newtonian blood flow in stenosis narrow arteries.

    Science.gov (United States)

    Sriyab, Somchai

    2014-01-01

    The flow of blood in narrow arteries with bell-shaped mild stenosis is investigated that treats blood as non-Newtonian fluid by using the K-L model. When skin friction and resistance of blood flow are normalized with respect to non-Newtonian blood in normal artery, the results present the effect of stenosis length. When skin friction and resistance of blood flow are normalized with respect to Newtonian blood in stenosis artery, the results present the effect of non-Newtonian blood. The effect of stenosis length and effect of non-Newtonian fluid on skin friction are consistent with the Casson model in which the skin friction increases with the increase of either stenosis length or the yield stress but the skin friction decreases with the increase of plasma viscosity coefficient. The effect of stenosis length and effect of non-Newtonian fluid on resistance of blood flow are contradictory. The resistance of blood flow (when normalized by non-Newtonian blood in normal artery) increases when either the plasma viscosity coefficient or the yield stress increases, but it decreases with the increase of stenosis length. The resistance of blood flow (when normalized by Newtonian blood in stenosis artery) decreases when either the plasma viscosity coefficient or the yield stress increases, but it decreases with the increase of stenosis length.

  17. Viscosity of aqueous and cyanate ester suspensions containing alumina nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Lawler, Katherine [Iowa State Univ., Ames, IA (United States)

    2009-01-01

    The viscosities of both aqueous and cyanate ester monomer (BECy) based suspensions of alumina nanoparticle were studied. The applications for these suspensions are different: aqueous suspensions of alumina nanoparticles are used in the production of technical ceramics made by slip casting or tape casting, and the BECy based suspensions are being developed for use in an injection-type composite repair resin. In the case of aqueous suspensions, it is advantageous to achieve a high solids content with low viscosity in order to produce a high quality product. The addition of a dispersant is useful so that higher solids content suspensions can be used with lower viscosities. For BECy suspensions, the addition of nanoparticles to the BECy resin is expected to enhance the mechanical properties of the cured composite. The addition of saccharides to aqueous suspensions leads to viscosity reduction. Through DSC measurements it was found that the saccharide molecules formed a solution with water and this resulted in lowering the melting temperature of the free water according to classic freezing point depression. Saccharides also lowered the melting temperature of the bound water, but this followed a different rule. The shear thinning and melting behaviors of the suspensions were used to develop a model based on fractal-type agglomeration. It is believed that the structure of the particle flocs in these suspensions changes with the addition of saccharides which leads to the resultant viscosity decrease. The viscosity of the BECy suspensions increased with solids content, and the viscosity increase was greater than predicted by the classical Einstein equation for dilute suspensions. Instead, the Mooney equation fits the viscosity behavior well from 0-20 vol% solids. The viscosity reduction achieved at high particle loadings by the addition of benzoic acid was also investigated by NMR. It appears that the benzoic acid interacts with the surface of the alumina particle which may

  18. Dual Role of Viscosity During Start-Up of a Maxwell Fluid in a Pipe

    Institute of Scientific and Technical Information of China (English)

    任玲; 朱克勤

    2004-01-01

    Based on the exact solution of start-up flow of Maxwell fluids in a long circular straight pipe, the effect of viscosity on the time of flow establishment is analysed. It is found that the viscosity of Maxwell fluids plays a dual role.A key parameter is the dimensionless relaxation time λ-. For 0 <λ-< 0.0432, the viscosity mainly plays the same role as in Newtonian fluids, and the time of flow establishment decreases with the increasing viscosity; for λ- > 0.0432, the viscosity mainly plays a role of strengthening the oscillation, and the time of flow establishment increases with the incremental viscosity.

  19. Numerical simulation of the blood flow behavior in the circle of Willis

    Directory of Open Access Journals (Sweden)

    Razavi Seyyed Esmail

    2014-06-01

    Full Text Available Introduction: This paper represents the numerical simulation of blood flow in the circle of Willis (CoW. Circle of Willis is responsible for the oxygenated blood distribution into the cerebral mass. To investigate the blood behavior, two Newtonian and non-Newtonian viscosity models were considered and the results were compared under steady state conditions. Methods: Methodologically, the arterial geometry was obtained using 3D magnetic resonance angiography (MRA data. The blood flow through the cerebral vasculature was considered to be steady and laminar, and the Galerkin’s finite element method was applied to solve the systems of non-linear Navier-Stokes equations. Results: Flow patterns including flow rates and shear rates were obtained through the simulation. The minimal magnitude of shear rates was much greater than 100 s-1 through the larger arteries; thus, the non-Newtonian blood viscosity tended to approach the constant limit of infinite shear viscosity through the CoW. So, in larger arteries the non-Newtonian nature of blood was less dominant and it would be treated as a Newtonian fluid. The only exception was the anterior communicating artery (ACoA in which the blood flow showed different behavior for the Newtonian and non-Newtonian cases. Conclusion: By comparing the results it was concluded that the Newtonian viscosity assumption of blood flow through the healthy, complete circle of Willis under the normal and steady conditions would be acceptably accurate.

  20. Moving blood.

    Science.gov (United States)

    Pelis, K

    1997-01-01

    Our internationally acclaimed journalist Sanguinia has returned safely from her historic assignment. Travelling from Homeric Greece to British Romanticism, she was witness to blood drinking, letting, bathing, and transfusion. In this report, she explores connections between the symbolic and the sadistic; the mythic and the medical--all in an effort to appreciate the layered meanings our culture has given to the movement of blood between our bodies. PMID:9407636

  1. Biology of Blood

    Science.gov (United States)

    ... Mail Facebook TwitterTitle Google+ LinkedIn Home Blood Disorders Biology of Blood Overview of Blood Medical Dictionary Also ... Version. DOCTORS: Click here for the Professional Version Biology of Blood Overview of Blood Components of Blood ...

  2. Blood donation before surgery

    Science.gov (United States)

    ... type of donor blood. Many communities have a blood bank where healthy people can donate blood. This blood ... need to arrange with your hospital or local blood bank before your surgery to have directed donor blood. ...

  3. Blood Clotting and Pregnancy

    Medline Plus

    Full Text Available ... Blood Basics Blood Disorders Anemia Bleeding Disorders Blood Cancers Blood Clots Blood Clotting and Pregnancy Clots and ... Increased maternal age Other medical illness (e.g., cancer, infection) back to top How are Blood Clots ...

  4. Catecholamine blood test

    Science.gov (United States)

    Norepinephrine -- blood; Epinephrine -- blood; Adrenalin -- blood; Dopamine -- blood ... A blood sample is needed. ... the test. This is especially true if both blood and urine catecholamines are to be measured. You ...

  5. Blood (For Parents)

    Science.gov (United States)

    ... Story" 5 Things to Know About Zika & Pregnancy Blood KidsHealth > For Parents > Blood Print A A A ... about the mysterious, life-sustaining fluid called blood. Blood Basics Two types of blood vessels carry blood ...

  6. Blood Facts and Statistics

    Science.gov (United States)

    ... About Blood > Blood Facts and Statistics Printable Version Blood Facts and Statistics Facts about blood needs Facts ... about American Red Cross Blood Services Facts about blood needs Every two seconds someone in the U.S. ...

  7. A Clinical Study on Treatment of Senile Psoriasis by Replenishing Qi to Activate Blood--A Report of 40 Cases

    Institute of Scientific and Technical Information of China (English)

    刘洪普; 谭奇纹; 刘华昌

    2004-01-01

    40 cases of senile psoriasis were treated by the therapeutic principle of replenishing qi to activate blood,and the changes of T lymphocyte subgroups and indexes of haemorheology were observed. The results showed that CD4 was significantly increased, CDs significantly decreased, and the CD4/CD8 ratio significantly raised; and that the specific viscosity of whole blood at high shearing rate, and at low shearing rate, the specific viscosity of plasma, packed cell volume, and fibrinogen all significantly decreased after treatment. It is therefore concluded that the therapeutic method of replenishing qi to activate blood can exert an effect of improving immunologic function and blood circulation.

  8. Hartmann flow with Braginsky viscosity: a test problem for intercluster plasma

    CERN Document Server

    Lyutikov, Maxim

    2008-01-01

    We consider a Hartmann layer, stationary flow of a viscose and resistive fluid between two plates with superimposed transverse magnetic field, in the limit of gyrotropic plasma, when viscosity across the field is strongly suppressed. For zero cross-field viscosity, the problem is not well posed, since viscosity then vanishes on the boundaries and in the middle of the layer, where there is no longitudinal field. An additional arbitrarily small isotropic viscosity allows one to find magnetic field and velocity profiles which are independent of this viscosity floor and different from flows with isotropic viscosity. Velocity sharply rises in a thin boundary layer, which thickness depends both on the Hartmann number and on the Lundquist number of the flow. The implication of the work is that, in simulating ICM dynamics it is imperative to use numerical schemes which take into account anisotropic viscosity. Although magnetic fields are dynamically subdominant in the ICM they do determine its the dissipative propert...

  9. On the viscosity of magnetic fluid with low and moderate solid fraction

    Institute of Scientific and Technical Information of China (English)

    Zhiqiang Ren; Yanping Han; Ruoyu Hong; Jianmin Ding; Hongzhong Li

    2008-01-01

    The design of a pressurized capillary rheometer operating at prescribed temperature is described to measure the viscosity of magnetic fluids (MFs) containing Fe3O4 magnetic nanoparticles (MNPs). The equipment constant of the rheometer was obtained using liquids with predetermined viscosities. Experimentally measured viscosities were used to evaluate different equations for suspension viscosities. Deviation of measured suspension viscosities from the Einstein equation was found to be basically due to the influence of spatial distribution and aggregation of Fe3O4 MNPs. By taking account of the coating layer on MNPs and the aggregation of MNPs in MFs, a modified Einstein equation was proposed to fit the experimental data. Moreover, the influence of external magnetic field on viscosity was also taken into account. Viscosities thus predicted are in good agreement with experimental data. Temperature effect on suspension viscosity was shown experimentally to be due to the shear-thinning behavior of the MFs.

  10. Viscosity of egg white from hens of different strains fed with commercial and natural additives

    Directory of Open Access Journals (Sweden)

    Fernanda Papa Spada

    2012-03-01

    Full Text Available Yolk color and egg white (albumen cleanliness and viscosity are important parameters by which consumers judge the quality of eggs. This study aimed to investigate changes in albumen viscosity during storage of eggs for up to 36 days from two different commercial laying hen strains (Carijo Barbada and Isa Brown fed a diet containing annatto (1.5 and 2.0% or a synthetic additive without synthetic colorants (control. Analyses of humidity, albumen height, pH, viscosity, foam formation, and stability were carried out on eggs. Carijo Barbada strain had smaller albumen, lower humidity and higher egg white viscosity than Isa Brown strain; however, with storage, viscosity lowered significantly on both strains. Initially, the addition of 2.0% of annatto or a synthetic additive increased viscosity in both strains, but with storage only the control maintained longer viscosity. Lower viscosity did not change foam density and stability.

  11. Utilizing the non-bridge oxygen model to predict the glass viscosity

    International Nuclear Information System (INIS)

    Viscosity is the most important process property of waste glass. Viscosity measurement is difficult and costs much. Non-bridging Oxygen (NBO) model which relates glass composition to viscosity had been developed for high level waste at the Savannah River Site (SRS). This research utilized this NBO model to predict the viscosity of KEPRI's 55 glasses. It was found that there was a linear relationship between the measured viscosity and the predicted viscosity. The NBO model could be used to predict glass viscosity in glass formulation development. However the precision of predicted viscosity is out of satisfaction because the composition ranges are very different between the SRS and KEPRI glasses. The modification of NBO calculation, which included modification of alkaline earth elements and TiO2, could not strikingly improve the precision of predicted values

  12. Gas distribution effects on waste properties: Viscosities of bubbly slurries

    Energy Technology Data Exchange (ETDEWEB)

    Gauglitz, P.A.; Shah, R.R.; Davis, R.L.

    1994-09-01

    The retention and episodic release of flammable gases are critical safety concerns for double-shell tanks that contain waste slurries. The rheological behavior of the waste, particularly of the settled sludge, is critical to characterizing the tendency of the waste to retain gas bubbles. The presence of gas bubbles is expected to affect the rheology of the sludge, but essentially no literature data are available to assess the effect of bubbles. Accordingly, the objectives of this study are to develop models for the effect of gas bubbles on the viscosity of a particulate slurry, develop an experimental method (capillary rheometer), collect data on the viscosity of a bubbly slurry, and develop a theoretical basis for interpreting the experimental data from the capillary rheometer.

  13. Hubble Parameter in QCD Universe for finite Bulk Viscosity

    CERN Document Server

    Tawfik, A; Mansour, H; Harko, T

    2010-01-01

    The influence of perturbative bulk viscosity on the evolution of Hubble parameter in the QCD era of the early Universe has been analyzed, where Friedmann-Robertson-Walker metric and Einstein field equations are utilized. Homogeneous and isotropic background matter is assumed to be characterized by barotropic equations of state deduced from recent lattice QCD simulations and heavy--ion collisions. Taking into account perturbative bulk viscosity coefficient, an estimation for the evolution of the Hubble parameter has been introduced and compared with its evolution in a non--viscous matter. A numerical solution for finite viscous Israel-Stewart background matter is also worked out. Both methods qualitatively agree in reproducing viscous Hubble parameter that turns to be slightly different from the non--viscous one. This treatment is strictly limited within a very narrow temperature-- or time--interval in QCD era, where the QGP matter is likely dominant.

  14. Dissipative Processes in the Early Universe: Bulk Viscosity

    CERN Document Server

    Tawfik, A; Mansour, H; Wahba, M

    2009-01-01

    In this talk, we discuss one of the dissipative processes which likely take place in the Early Universe. We assume that the matter filling the isotropic and homogeneous background is to be described by a relativistic viscous fluid characterized by an ultra-relativistic equation of state and finite bulk viscosity deduced from recent lattice QCD calculations and heavy-ion collisions experiments. We concentrate our treatment to bulk viscosity as one of the essential dissipative processes in the rapidly expanding Early Universe and deduce the dependence of the scale factor and Hubble parameter on the comoving time $t$. We find that both scale factor and Hubble parameter are finite at $t=0$, revering to absence of singularity. We also find that their evolution apparently differs from the one resulting in when assuming that the background matter is an ideal and non-viscous fluid.

  15. Relationship between the thermal conductivity and shear viscosity of nanofluids

    Science.gov (United States)

    Ding, Yulong; Chen, Haisheng; Musina, Zenfira; Jin, Yi; Zhang, Tianfu; Witharana, Sanjeeva; Yang, Wei

    2010-05-01

    Nanofluids are dilute liquid suspensions of nanoparticles. Nanoparticles and liquid media, in such fluids, mix and interact at the nanoscale. Interactions between nanoparticles in nanofluids can lead to structuring of the particles. This paper discusses how the nanoparticle structuring affects the thermal conductivity and viscosity of nanofluids and how the two transport properties are related through the nanoparticle structuring. It is shown that the experimentally measured thermal conductivity enhancement and the viscosity increase due to the presence of nanoparticles can be interpreted by the aggregation of nanoparticles. It is also shown that modification of the conventional form of the effective medium theory by taking into account nanoparticle structuring information from the rheological analyses gives good agreement with experimentally measured thermal conductivity.

  16. Dark matter perturbations and viscosity: A causal approach

    Science.gov (United States)

    Acquaviva, Giovanni; John, Anslyn; Pénin, Aurélie

    2016-08-01

    The inclusion of dissipative effects in cosmic fluids modifies their clustering properties and could have observable effects on the formation of large-scale structures. We analyze the evolution of density perturbations of cold dark matter endowed with causal bulk viscosity. The perturbative analysis is carried out in the Newtonian approximation and the bulk viscosity is described by the causal Israel-Stewart (IS) theory. In contrast to the noncausal Eckart theory, we obtain a third-order evolution equation for the density contrast that depends on three free parameters. For certain parameter values, the density contrast and growth factor in IS mimic their behavior in Λ CDM when z ≥1 . Interestingly, and contrary to intuition, certain sets of parameters lead to an increase of the clustering.

  17. Black Brane Viscosity and the Gregory-Laflamme Instability

    CERN Document Server

    Camps, Joan; Haddad, Nidal

    2010-01-01

    We study long wavelength perturbations of neutral black p-branes in asymptotically flat space and show that, as anticipated in the blackfold approach, solutions of the relativistic hydrodynamic equations for an effective p+1-dimensional fluid yield solutions to the vacuum Einstein equations in a derivative expansion. Going beyond the perfect fluid approximation, we compute the effective shear and bulk viscosities of the black brane. The values we obtain saturate generic bounds. Sound waves in the effective fluid are unstable, and have been previously related to the Gregory-Laflamme instability of black p-branes. By including the damping effect of the viscosity in the unstable sound waves, we obtain a remarkably good and simple approximation to the dispersion relation of the Gregory-Laflamme modes, whose accuracy increases with the number of transverse dimensions. We propose an exact limiting form as the number of dimensions tends to infinity.

  18. Gas distribution effects on waste properties: Viscosities of bubbly slurries

    International Nuclear Information System (INIS)

    The retention and episodic release of flammable gases are critical safety concerns for double-shell tanks that contain waste slurries. The rheological behavior of the waste, particularly of the settled sludge, is critical to characterizing the tendency of the waste to retain gas bubbles. The presence of gas bubbles is expected to affect the rheology of the sludge, but essentially no literature data are available to assess the effect of bubbles. Accordingly, the objectives of this study are to develop models for the effect of gas bubbles on the viscosity of a particulate slurry, develop an experimental method (capillary rheometer), collect data on the viscosity of a bubbly slurry, and develop a theoretical basis for interpreting the experimental data from the capillary rheometer

  19. Area evolution, bulk viscosity and entropy principles for dynamical horizons

    CERN Document Server

    Gourgoulhon, E; Gourgoulhon, Eric; Jaramillo, Jose Luis

    2006-01-01

    We derive from Einstein equation an evolution law for the area of a trapping or dynamical horizon. The solutions to this differential equation show a causal behavior. Moreover, in a viscous fluid analogy, the equation can be interpreted as an energy balance law, yielding to a positive bulk viscosity. These two features contrast with the event horizon case, where the non-causal evolution of the area and the negative bulk viscosity require teleological boundary conditions. This reflects the local character of trapping horizons as opposed to event horizons. Interpreting the area as the entropy, we propose to use an area/entropy evolution principle to select a unique dynamical horizon and time slicing in the Cauchy evolution of an initial marginally trapped surface.

  20. Dark matter perturbations and viscosity: a causal approach

    CERN Document Server

    Acquaviva, Giovanni; Pénin, Aurélie

    2016-01-01

    The inclusion of dissipative effects in cosmic fluids modifies their clustering properties and could have observable effects on the formation of large scale structures. We analyse the evolution of density perturbations of cold dark matter endowed with causal bulk viscosity. The perturbative analysis is carried out in the Newtonian approximation and the bulk viscosity is described by the causal Israel-Stewart (IS) theory. In contrast to the non-causal Eckart theory, we obtain a third order evolution equation for the density contrast that depends on three free parameters. For certain parameter values, the density contrast and growth factor in IS mimic their behaviour in $\\Lambda$CDM when $z \\geq 1$. Interestingly, and contrary to intuition, certain sets of parameters lead to an increase of the clustering.

  1. Entropy production, viscosity bounds and bumpy black holes

    CERN Document Server

    Hartnoll, Sean A; Santos, Jorge E

    2016-01-01

    The ratio of shear viscosity to entropy density, $\\eta/s$, is computed in various holographic geometries that break translation invariance (but are isotropic). The shear viscosity does not have a hydrodynamic interpretation in such backgrounds, but does quantify the rate of entropy production due to a strain. Fluctuations of the metric components $\\delta g_{xy}$ are massive about these backgrounds, leading to $\\eta/s < 1/(4\\pi)$ at all finite temperatures (even in Einstein gravity). As the temperature is taken to zero, different behaviors are possible. If translation symmetry breaking is irrelevant in the far IR, then $\\eta/s$ tends to a constant at $T=0$. This constant can be parametrically small. If the translation symmetry is broken in the far IR (which nonetheless develops emergent scale invariance), then $\\eta/s \\sim T^{2 \

  2. Probing equilibrium glass flow up to exapoise viscosities.

    Science.gov (United States)

    Pogna, Eva Arianna Aurelia; Rodríguez-Tinoco, Cristian; Cerullo, Giulio; Ferrante, Carino; Rodríguez-Viejo, Javier; Scopigno, Tullio

    2015-02-24

    Glasses are out-of-equilibrium systems aging under the crystallization threat. During ordinary glass formation, the atomic diffusion slows down, rendering its experimental investigation impractically long, to the extent that a timescale divergence is taken for granted by many. We circumvent these limitations here, taking advantage of a wide family of glasses rapidly obtained by physical vapor deposition directly into the solid state, endowed with different "ages" rivaling those reached by standard cooling and waiting for millennia. Isothermally probing the mechanical response of each of these glasses, we infer a correspondence with viscosity along the equilibrium line, up to exapoise values. We find a dependence of the elastic modulus on the glass age, which, traced back to the temperature steepness index of the viscosity, tears down one of the cornerstones of several glass transition theories: the dynamical divergence. Critically, our results suggest that the conventional wisdom picture of a glass ceasing to flow at finite temperature could be wrong. PMID:25675511

  3. Holographic Shear Viscosity in Hyperscaling Violating Theories without Translational Invariance

    CERN Document Server

    Ling, Yi; Zhou, Zhenhua

    2016-01-01

    In this paper we investigate the ratio of shear viscosity to entropy density, $\\eta/s$, in hyperscaling violating geometry with lattice structure. We show that the scaling relation with hyperscaling violation gives a strong constraint to the mass of graviton and usually leads to a power law of temperature, $\\eta/s\\sim T^\\kappa$. Remarkably, we find the exponent $\\kappa$ can be greater than two such that the new bound for viscosity raised in arXiv:1601.02757 is violated. Our above observation is testified by constructing specific solutions with UV completion in various holographic models. Finally, we compare the boundedness of $\\kappa$ with the behavior of entanglement entropy and conjecture a relation between them.

  4. Low Viscosity Imides Based on Asymmetric Oxydiphthalic Anhydride

    Science.gov (United States)

    Chuang, Kathy C.; Criss, Jim M., Jr.; Mintz, Eric A.; Scheiman, Daniel A.; Nguyen, Baochau N.; McCorkle, Linda S.

    2008-01-01

    A series of low-melt viscosity imide resins were prepared from asymmetric oxydiphthalic dianhydride (a-ODPA) and 4-phenylethynylphthalic anhydride as the endcap, along with 3,4' - oxydianiline (3,4' -ODA), 3,4' -methylenedianiline (3,4' -MDA), 3,3' -methylenedianiline (3,3' - MDA) and 3,3'-diaminobenzophenone (3,3'-DABP), using a solvent-free melt process. These imide oligomers displays low-melt viscosities (2-15 poise) at 260-280 C, which made them amenable to low-cost resin transfer molding (RTM) process. The a-ODPA based RTM resins exhibits glass transition temperatures (Tg's) in the range of 265-330 C after postcure at 343 C. The mechanical properties of these polyimide/carbon fiber composites fabricated by RTM will be discussed.

  5. High Resolution Viscosity Measurement by Thermal Noise Detection

    Directory of Open Access Journals (Sweden)

    Felipe Aguilar Sandoval

    2015-11-01

    Full Text Available An interferometric method is implemented in order to accurately assess the thermal fluctuations of a micro-cantilever sensor in liquid environments. The power spectrum density (PSD of thermal fluctuations together with Sader’s model of the cantilever allow for the indirect measurement of the liquid viscosity with good accuracy. The good quality of the deflection signal and the characteristic low noise of the instrument allow for the detection and corrections of drawbacks due to both the cantilever shape irregularities and the uncertainties on the position of the laser spot at the fluctuating end of the cantilever. Variation of viscosity below 0.03 mPa·s was detected with the alternative to achieve measurements with a volume as low as 50 µL.

  6. Electron viscosity, current vortices and negative nonlocal resistance in graphene

    Science.gov (United States)

    Levitov, Leonid; Falkovich, Gregory

    2016-07-01

    Quantum-critical strongly correlated electron systems are predicted to feature universal collision-dominated transport resembling that of viscous fluids. However, investigation of these phenomena has been hampered by the lack of known macroscopic signatures of electron viscosity. Here we identify vorticity as such a signature and link it with a readily verifiable striking macroscopic d.c. transport behaviour. Produced by the viscous flow, vorticity can drive electric current against an applied field, resulting in a negative nonlocal voltage. We argue that the latter may play the same role for the viscous regime as zero electrical resistance does for superconductivity. Besides offering a diagnostic that distinguishes viscous transport from ohmic currents, the sign-changing electrical response affords a robust tool for directly measuring the viscosity-to-resistivity ratio. A strongly interacting electron-hole plasma in high-mobility graphene affords a unique link between quantum-critical electron transport and the wealth of fluid mechanics phenomena.

  7. The Shear Viscosity in an Anisotropic Unitary Fermi Gas

    CERN Document Server

    Samanta, Rickmoy; Trivedi, Sandip P

    2016-01-01

    We consider a system consisting of a strongly interacting, ultracold unitary Fermi gas under harmonic confinement. Our analysis suggests the possibility of experimentally studying, in this system, an anisotropic shear viscosity tensor driven by the anisotropy in the trapping potential. In particular, we suggest that this experimental setup could mimic some features of anisotropic geometries that have recently been studied for strongly coupled field theories which have a gravitational dual. Results using the AdS/CFT correspondence in these theories show that in systems with a background linear potential, certain viscosity components can be made much smaller than the entropy density, parametrically violating the KSS bound. This intuition, along with results from a Boltzmann analysis that we perform, suggests that a violation of the KSS bound can perhaps occur in the unitary Fermi gas system when it is subjected to a suitable anisotropic trapping potential. We give a concrete proposal for an experimental setup w...

  8. The Flow of a Variable Viscosity Fluid down an Inclined Plane with a Free Surface

    OpenAIRE

    M. S. Tshehla

    2013-01-01

    The effect of a temperature dependent variable viscosity fluid flow down an inclined plane with a free surface is investigated. The fluid film is thin, so that lubrication approximation may be applied. Convective heating effects are included, and the fluid viscosity decreases exponentially with temperature. In general, the flow equations resulting from the variable viscosity model must be solved numerically. However, when the viscosity variation is small, then an asymptotic approximation is p...

  9. Prediction on the viscosity of multi-component melts with a new geometric model

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A geometric model for calculating the viscosity of multi-component melt from related binary physicochemistry properties was derived based on Chou's thermodynamic geometric model. The model derived was employed to predict the viscosity of Au-Ag-Cu alloys. The results show that the calculated viscosity for Au-Ag-Cu alloys meet the experimental data very well. In addition, the viscosity of Bi-Sn-In systems was also predicted with this model.

  10. The impact of viscosity on the morphology of gaseous flows in semidetached binary systems

    CERN Document Server

    Bisikalo, D V; Kuznetsov, O A; Chechetkin, V M

    2000-01-01

    Results of 3D gas dynamical simulation of mass transfer in binaries are presented for systems with various values of viscosity. Analysis of obtained solutions shows that in the systems with low value of viscosity the flow structure is qualitatively similar to one for systems with high viscosity. Presented calculations confirm that there is no shock interaction between the stream from L1 and the forming accretion disk (`hot spot') at any value of viscosity.

  11. Apparent Viscosity of Active Nematics in Poiseuille Flow

    Science.gov (United States)

    Cui, Zhenlu; Su, Jianbing; Zeng, Xiaoming

    2015-09-01

    A Leslie-Erickson continuum hydrodynamic for flowing active nematics has been used to characterize active particle systems such as bacterial suspensions. The behavior of such a system under a plane pressure-driven Poiseuille flow is analyzed. When plate anchoring is tangential and normal, we find the apparent viscosity formula indicating a significant difference between tangential anchoring and normal anchoring conditions for both active rodlike and discoid nematics.

  12. Variable viscosity condition in the modeling of a slider bearing

    OpenAIRE

    Uprety, Kedar Nath; Mancas, Stefan C.

    2014-01-01

    To reduce tear and wear of machinery lubrication is essential. Lubricants form a layer between two surfaces preventing direct contact and reduce friction between moving parts and hence reduce wear. In this short letter the lubrication of two slider bearings with parallel and nonparallel is studied. First, we show that bearings with parallel plates cannot support any load. For bearings with nonparallel plates we are interested on how constant and temperature dependent viscosity affects the pro...

  13. Gamma radiation effects on the viscosity of green banana flour

    Energy Technology Data Exchange (ETDEWEB)

    Uehara, Vanessa B.; Inamura, Patricia Y.; Mastro, Nelida L. Del [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)], e-mail: vanessa.uehara@usp.br, e-mail: patyoko@yahoo.com, e-mail: nlmastro@ipen.br

    2009-07-01

    Banana (Musa sp) is a tropical fruits with great acceptability among consumers and produced in Brazil in a large scale. Bananas are not being as exploited as they could be in prepared food, and research could stimulate greater interest from industry. The viscosity characteristics and a product consistency can determine its acceptance by the consumer. Particularly the starch obtained from green banana had been studied from the nutritional point of view since the concept of Resistant Starch was introduced. Powder RS with high content of amylose was included in an approved food list with alleged functional properties in Brazilian legislation. Ionizing radiation can be used as a public health intervention measure for the control of food-borne diseases. Radiation is also a very convenient tool for polymer materials modification through degradation, grafting and crosslinking. In this work the influence of ionizing radiation on the rheological behavior of green banana pulp was investigated. Samples of green banana pulp flour were irradiated in a {sup 60}Co Gammacell 220 (AECL) with doses of 0 kGy,1 kGy, 3 kGy, 5 kGy and 10 kGy in glass recipients. After irradiation 3% and 5% aqueous dilution were prepared and viscosity measurements performed in a Brooksfield, model DVIII viscometer using spindle SC4-18 and SC4-31. There was a reduction of the initial viscosity of the samples as a consequence of radiation processing, being the reduction inversely proportional to the flour concentration. The polysaccharide content of the banana starch seems to be degraded by radiation in solid state as shown by the reduction of viscosity as a function of radiation dose. (author)

  14. Zero Viscosity Limit for Analytic Solutions of the Primitive Equations

    Science.gov (United States)

    Kukavica, Igor; Lombardo, Maria Carmela; Sammartino, Marco

    2016-10-01

    The aim of this paper is to prove that the solutions of the primitive equations converge, in the zero viscosity limit, to the solutions of the hydrostatic Euler equations. We construct the solution of the primitive equations through a matched asymptotic expansion involving the solution of the hydrostatic Euler equation and boundary layer correctors as the first order term, and an error that we show to be {O(√{ν})}. The main assumption is spatial analyticity of the initial datum.

  15. Shear viscosity for a moderately dense granular binary mixture

    OpenAIRE

    Garzo, Vicente; Montanero, Jose Maria

    2003-01-01

    The shear viscosity for a moderately dense granular binary mixture of smooth hard spheres undergoing uniform shear flow is determined. The basis for the analysis is the Enskog kinetic equation, solved first analytically by the Chapman-Enskog method up to first order in the shear rate for unforced systems as well as for systems driven by a Gaussian thermostat. As in the elastic case, practical evaluation requires a Sonine polynomial approximation. In the leading order, we determine the shear v...

  16. Considerations of viscosity in the preliminaries to mammalian fertilisation

    OpenAIRE

    Hunter, Ronald H. F.; Coy, P; Gadea, J.; Rath, D

    2011-01-01

    Migration of spermatozoa in the female genital tract will be strongly influenced by the viscosity of the fluids encountered, yet little systematic analysis has been given to such a consideration. This essay reviews the series of milieux confronting a fertilising sperm during its progression to the oviduct ampulla. Two groups are discussed, first those in which ejaculation is into the vagina, second those in which semen enters the uterus during a protracted mating. Viscous glycoprotein secreti...

  17. Viscosity in molecular dynamics with periodic boundary conditions

    OpenAIRE

    Viscardy, S.; Gaspard, P.

    2003-01-01

    We report a study of viscosity by the method of Helfand moment in systems with periodic boundary conditions. We propose a new definition of Helfand moment which takes into account the minimum image convention used in molecular dynamics with periodic boundary conditions. Our Helfand-moment method is equivalent to the method based on the Green-Kubo formula and is not affected by ambiguities due to the periodic boundary conditions. Moreover, in hard-ball systems, our method is equivalent to the ...

  18. viscosity and density stratification in vertical Poiseuille flow

    OpenAIRE

    Renardy, Y

    1987-01-01

    The linear stability of plane three_layer vertical Poiseuille flow is considered. The layers are composed of two immiscible fluids, one next to the walls and one centrally located. The fluids have different viscosities and densities and surface tension effects are included. Intuitively, an analogy with the concentric Hagen-Poiseuille flow is expected and the similarities and differences are investigated. The ability of heuristic reasoning to predict which arrangements are more likely to be ob...

  19. Magnetic component of gluon plasma and its viscosity

    Energy Technology Data Exchange (ETDEWEB)

    Chernodub, M.N. [CNRS, Laboratoire de Mathematiques et Physique Theorique, Universite Francois-Rabelais Tours, Parc de Grandmont, 37200 Tours (France); Department of Physics and Astronomy, University of Gent, Krijgslaan 281, S9, B-9000 Gent (Belgium); Verschelde, H. [Department of Physics and Astronomy, University of Gent, Krijgslaan 281, S9, B-9000 Gent (Belgium); Zakharov, V.I. [ITEP, B. Cheremushkinskaya 25, Moscow, 117218 (Russian Federation); Max-Planck-Institut fuer Physik, Foehringer Ring 6, 80805 Munich (Germany)

    2010-10-15

    We discuss the role of the magnetic degrees of freedom of the gluon plasma in its viscosity. The main assumption is that motions of the magnetic component and of the rest of the plasma can be considered as independent. The magnetic component in the deconfined phase is described by a three-dimensional (Euclidean) field theory. The parameters of the theory can be estimated phenomenologically. It is not ruled out that the magnetic component is superfluid.

  20. Global scaling symmetry, Noether charge, and universality of shear viscosity

    Science.gov (United States)

    Liu, Hai-Shan

    2016-05-01

    Recently, it was established in Einstein-Maxwell-Dilaton gravity that the Kovtun-Son-Starinets viscosity/entropy ratio associated with anti-de Sitter planar black holes can be viewed as the boundary dual to the generalized Smarr relation of the black holes in the bulk. In this paper, we establish this relation in Einstein gravity with general minimally coupled matter and also in theories with an additional nonminimally coupled scalar field. We consider two examples for explicit demonstrations.

  1. Synthetic Organic Electrochemistry in Ionic Liquids: The Viscosity Question

    Directory of Open Access Journals (Sweden)

    Scott T. Handy

    2011-07-01

    Full Text Available Ionic liquids are obvious candidates for use in electrochemical applications due to their ionic character. Nevertheless, relatively little has been done to explore their application in electrosynthesis. We have studied the Shono oxidation of arylamines and carbamates using ionic liquids as recyclable solvents and have noted that the viscosity of the medium is a major problem, although with the addition of sufficient co-solvent, good results and excellent recovery and recycling of the ionic liquid can be achieved.

  2. Viscosity and Softening Behavior of Alkali Zinc Sulfophosphate Glasses

    DEFF Research Database (Denmark)

    Da, Ning; Krolikowski, Sebastian; Nielsen, Karsten Hansgaard;

    2010-01-01

    We report on the softening properties and viscosity of glasses from the system ZnO-Na2O-SO3-P2O5 for low-temperature sealing applications. Up to a ratio of network-forming ions PO(4)3-:SO(4)2- of about 2:1, a gradual substitution of P2O5 by SO3 results in decreasing glass transition and softening...

  3. A NEW CONTINUUM TRAFFIC MODEL WITH THE EFFECT OF VISCOSITY*

    Institute of Scientific and Technical Information of China (English)

    SONG Tao; LI Xing-li; KUANG Hua; DONG Li-yun

    2011-01-01

    Through considering the connection between microscopic car-following model and macroscopic continuum model, a new viscous vehicular flow model is proposed, in which the viscosity coefficient is determined by a more realistic constitutive relationship between averaged reaction time of drivers and the car density. Further analysis indicates that two traffic sound speeds in this viscous model may determine the existence and the stability of traveling wave solutions with an analytical method.

  4. Ward identities and relations between conductivities and viscosities in holography

    CERN Document Server

    Hoyos, Carlos

    2015-01-01

    We derive relations between viscosities and momentum conductivity in $2+1$ dimensions by finding a generalization of holographic Ward identities for the energy-momentum tensor. The generalization is novel in the sense that it goes beyond the usual identities obtained from holographic renormalization. Our results are consistent with previous field theory analysis. The main tools we use are a constant `probability current' in the gravity dual, that we are able to define for any system of linear ODEs, and parity symmetry.

  5. Viscosity Effects on the Dynamics of Long Axisymmetric Liquid Bridges

    OpenAIRE

    Meseguer Ruiz, José; Perales Perales, José Manuel

    1992-01-01

    In this paper the dynamics of axisymmetric liquid columns held by capillary forces between two circular, concentric, solid disks is considered. The problem has been solved by using an one-dimensional model known in the literature as the Cosserat model, which includes viscosity effects, where the axial velocity is considered constant in each section of the liquid bridge. The dynamic response of the bridge to an excitation consisting of a small amplitude vibration of the supporting disks has be...

  6. Managing your blood sugar

    Science.gov (United States)

    Hyperglycemia - control; Hypoglycemia - control; Diabetes - blood sugar control; Blood glucose - managing ... Know how to: Recognize and treat low blood sugar (hypoglycemia) Recognize and treat high blood sugar (hyperglycemia) ...

  7. Effect of viscosity on appetite and gastro-intestinal hormones

    DEFF Research Database (Denmark)

    Zijlstra, Nicolien; Mars, Monica; de Wijk, René A;

    2009-01-01

    In previous studies we showed that higher viscosity resulted in lower ad libitum intake and that eating rate is an important factor. In this study we aimed to explore the effect of viscosity on the gastro-intestinal hormones ghrelin, CCK-8 and GLP-1. Thirty-two subjects (22+/-2 y, BMI 21.9+/-2.2 kg...... than the liquid. There was a significant product effect for fullness (p 0.03), desire to eat (p 0.04), appetite something sweet (p 0.002) and prospective consumption (p 0.0009). We observed no clear effect of viscosity on gastro-intestinal hormones. Only for desacyl ghrelin there was a significant...... product effect (p 0.004). Concentrations were consistently higher after intake of the semi-solid product. Ad libitum intake of the chocolate cake was 102+/-55 g after the liquid and 96+/-46 g after the semi-solid product (ns). The results of our study show a similar response of the gastro...

  8. Effect of temperature on rotational viscosity in magnetic nano fluids.

    Science.gov (United States)

    Patel, R

    2012-10-01

    Flow behavior of magnetic nano fluids with simultaneous effect of magnetic field and temperature is important for its application for cooling devices such as transformer, loud speakers, electronic cooling and for its efficiency in targeted drug delivery and hyperthermia treatment. Using a specially designed horizontal capillary viscometer, temperature-sensitive and non-temperature-sensitive magnetic nano fluids are studied. In both these case the temperature-dependent rotational viscosity decreases, but follows a quite different mechanism. For temperature-sensitive magnetic nano fluids, the reduction in rotational viscosity is due to the temperature dependence of magnetization. Curie temperature ((T)(c)) and pyromagnetic coefficient are extracted from the study. A fluid with low T(c) and high pyromagnetic coefficient is useful for thermo-sensitive cooling devices and magnetic hyperthermia. For non-temperature-sensitive magnetic nano fluids, reduction in rotational viscosity is due to removal of physisorbed secondary surfactant on the particle because of thermal and frictional effects. This can be a good analogy for removal of drug from the magnetic particles in the case of targeted drug delivery. PMID:23096152

  9. Modeling of the eddy viscosity by breaking waves

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Breaking wave induced nearsurface turbulence has important consequences for many physical and biochemical processes including water column and nutrients mixing, heat and gases exchange across air-sea interface. The energy loss from wave breaking and the bubble plume penetration depth are estimated. As a consequence, the vertical distribution of the turbulent kinetic energy (TKE), the TKE dissipation rate and the eddy viscosity induced by wave breaking are also provided. It is indicated that model results are found to be consistent with the observational evidence that most TKE generated by wave breaking is lost within a depth of a few meters near the sea surface. High turbulence level with intensities of eddy viscosity induced by breaking is nearly four orders larger than υwl(=κu *wz), the value predicted for the wall layer scaling close to the surface, where u *w is the friction velocity in water, κ with 0.4 is the von Kármán constant, and z is the water depth, and the strength of the eddy viscosity depends both on wind speed and sea state, and decays rapidly through the depth. This leads to the conclusion that the breaking wave induced vertical mixing is mainly limited to the near surface layer, well above the classical values expected from the similarity theory. Deeper down, however, the effects of wave breaking on the vertical mixing become less important.

  10. A Study of Eddy Viscosity Coefficient in Numerical Tidal Simulation

    Institute of Scientific and Technical Information of China (English)

    陈永平; 雷智益

    2001-01-01

    Based on the fluid motion equations, the physical meaning of eddy viscosity coefficient and the rationality of theBoussinesq hypothesis are discussed in this paper. The effect of the coefficient on numerical stability is analyzed briefly.A semi-enclosed rectangular sea area, with an orthogonal spur dike, is applied in a 2-D numerical model to study the effect of horizontal eddy viscosity coefficient (AH). The computed result shows that AH has little influence on the tidal level and averaged flow velocity, but has obvious influence on the intensity and the range of return flow around near thespur dike. Correspondingly, a wind-driven current pool and an annular current are applied in a 3-D numerical modelrespectively to study the effect of vertical eddy viscosity coefficient (AV). The computed result shows that the absolute value of AV is inversely proportional to that of horizontal velocity, and the vertical gradient value of AV determines the ver-tical distribution of horizontal velocity. The distribution form of AV is theoretically recommended as a parabolic type, ofwhich the maximum value appears at 0.5 H.

  11. Energy Loss in Pulse Detonation Engine due to Fuel Viscosity

    Directory of Open Access Journals (Sweden)

    Weipeng Hu

    2014-01-01

    Full Text Available Fluid viscosity is a significant factor resulting in the energy loss in most fluid dynamical systems. To analyze the energy loss in the pulse detonation engine (PDE due to the viscosity of the fuel, the energy loss in the Burgers model excited by periodic impulses is investigated based on the generalized multisymplectic method in this paper. Firstly, the single detonation energy is simplified as an impulse; thus the complex detonation process is simplified. And then, the symmetry of the Burgers model excited by periodic impulses is studied in the generalized multisymplectic framework and the energy loss expression is obtained. Finally, the energy loss in the Burgers model is investigated numerically. The results in this paper can be used to explain the difference between the theoretical performance and the experimental performance of the PDE partly. In addition, the analytical approach of this paper can be extended to the analysis of the energy loss in other fluid dynamic systems due to the fluid viscosity.

  12. Viscosity in the excluded volume hadron gas model

    CERN Document Server

    Gorenstein, M I; Moroz, O N

    2007-01-01

    The shear viscosity $\\eta$ in the van der Waals excluded volume hadron-resonance gas model is considered. For the shear viscosity the result of the non-relativistic gas of hard-core particles is extended to the mixture of particles with different masses, but equal values of hard-core radius r. The relativistic corrections to hadron average momenta in thermal equilibrium are also taken into account. The ratio of the viscosity $\\eta$ to the entropy density s is studied. It monotonously decreases along the chemical freeze-out line in nucleus-nucleus collisions with increasing collision energy. As a function of hard-core radius r, a broad minimum of the ratio $\\eta/s\\approx 0.3$ near $r \\approx 0.5$ fm is found at high collision energies. For the charge-neutral system at $T=T_c=180$ MeV, a minimum of the ratio $\\eta/s\\cong 0.24$ is reached for $r\\cong 0.53$ fm. To justify a hydrodynamic approach to nucleus-nucleus collisions within the hadron phase the restriction from below, $r~ \\ge ~0.2$ fm, on the hard-core ha...

  13. Temperature-Dependent Conformations of Model Viscosity Index Improvers

    Energy Technology Data Exchange (ETDEWEB)

    Ramasamy, Uma Shantini; Cosimbescu, Lelia; Martini, Ashlie

    2015-05-01

    Lubricants are comprised of base oils and additives where additives are chemicals that are deliberately added to the oil to enhance properties and inhibit degradation of the base oils. Viscosity index (VI) improvers are an important class of additives that reduce the decline of fluid viscosity with temperature [1], enabling optimum lubricant performance over a wider range of operating temperatures. These additives are typically high molecular weight polymers, such as, but not limited to, polyisobutylenes, olefin copolymer, and polyalkylmethacrylates, that are added in concentrations of 2-5% (w/w). Appropriate polymers, when dissolved in base oil, expand from a coiled to an uncoiled state with increasing temperature [2]. The ability of VI additives to increase their molar volume and improve the temperature-viscosity dependence of lubricants suggests there is a strong relationship between molecular structure and additive functionality [3]. In this work, we aim to quantify the changes in polymer size with temperature for four polyisobutylene (PIB) based molecular structures at the nano-scale using molecular simulation tools. As expected, the results show that the polymers adopt more conformations at higher temperatures, and there is a clear indication that the expandability of a polymer is strongly influenced by molecular structure.

  14. Modeling viscosity and diffusion of plasma mixtures across coupling regimes

    Science.gov (United States)

    Arnault, Philippe

    2014-10-01

    Viscosity and diffusion of plasma for pure elements and multicomponent mixtures are modeled from the high-temperature low-density weakly coupled regime to the low-temperature high-density strongly coupled regime. Thanks to an atom in jellium modeling, the effect of electron screening on the ion-ion interaction is incorporated through a self-consistent definition of the ionization. This defines an effective One Component Plasma, or an effective Binary Ionic Mixture, that is representative of the strength of the interaction. For the viscosity and the interdiffusion of mixtures, approximate kinetic expressions are supplemented by mixing laws applied to the excess viscosity and self-diffusion of pure elements. The comparisons with classical and quantum molecular dynamics results reveal deviations in the range 20--40% on average with almost no predictions further than a factor of 2 over many decades of variation. Applications in the inertial confinement fusion context could help in predicting the growth of hydrodynamic instabilities.

  15. Shear viscosity of a model for confined granular media.

    Science.gov (United States)

    Soto, Rodrigo; Risso, Dino; Brito, Ricardo

    2014-12-01

    The shear viscosity in the dilute regime of a model for confined granular matter is studied by simulations and kinetic theory. The model consists on projecting into two dimensions the motion of vibrofluidized granular matter in shallow boxes by modifying the collision rule: besides the restitution coefficient that accounts for the energy dissipation, there is a separation velocity that is added in each collision in the normal direction. The two mechanisms balance on average, producing stationary homogeneous states. Molecular dynamics simulations show that in the steady state the distribution function departs from a Maxwellian, with cumulants that remain small in the whole range of inelasticities. The shear viscosity normalized with stationary temperature presents a clear dependence with the inelasticity, taking smaller values compared to the elastic case. A Boltzmann-like equation is built and analyzed using linear response theory. It is found that the predictions show an excellent agreement with the simulations when the correct stationary distribution is used but a Maxwellian approximation fails in predicting the inelasticity dependence of the viscosity. These results confirm that transport coefficients depend strongly on the mechanisms that drive them to stationary states. PMID:25615082

  16. Estimate of the Bulk Viscosity in the Cosmic Fluid

    CERN Document Server

    Normann, Ben David

    2016-01-01

    We first give a review of recent works on bulk viscous cosmology. Then, we derive general solutions of the Friedmann equations when bulk viscosity is included in the energy-momentum tensor, both for a single-component and a multicomponent fluid, showing that these general solutions reduce to those found in the literature in special cases. We solve the energy conservation equation for the three cases $\\zeta$=const., $\\zeta\\propto \\sqrt{\\rho}$, and $\\zeta\\propto \\rho$, often studied in previous investigations, and find the best-fit values for the present day viscosity $\\zeta_0$ in each of the three cases. Taking into account constraints from thermodynamics we find, in agreement with previous works, that the present day viscosity is less than about $ 10^7~$Pa s. In fact the best fit values suggest $\\zeta_0\\sim 10^6$Pa s. We point out that this magnitude is acceptable from a hydrodynamic point of view. Altogether, we give preference to the model $\\zeta\\propto \\sqrt{\\rho}$, which by now seems to be widely accepted...

  17. Empirical Modelling of Nonmonotonous Behaviour of Shear Viscosity

    Directory of Open Access Journals (Sweden)

    J. David

    2013-01-01

    Full Text Available Almost all hitherto proposed empirical models used for characterization of shear viscosity of non-Newtonian liquids describe only its monotonous course. However, the onset of new materials is accompanied by more complicated characteristics of their behaviour including nonmonotonous course of shear viscosity. This feature is reflected not only in an existence of one extreme point (maximum or minimum, but also it can appear in both extreme points; that is, this shear viscosity initially exhibits shear thinning; after attaining a local minimum, it converts to shear thickening, and again after reaching a local maximum, it has a shear-thinning character. It is clear that, for an empirical description of this complex behaviour, a hitherto, used number of parameters (four, five in classical monotonous models (such as Cross or Carreau-Yasuda are no longer tenable. If more parameters are applied, there should be given an emphasis on a relatively simple algebraic form of the proposed models, unambiguity of the involved parameters, and their sound interpretation in the whole modelling. This contribution provides an overview of the existing empirical nonmonotonous models and proposes a new 10-parameter model including a demonstration of its flexibility using various experimental data.

  18. Changes in erythrocytic deformability and plasma viscosity in neonatal ictericia.

    Science.gov (United States)

    Bonillo-Perales, A; Muñoz-Hoyos, A; Martínez-Morales, A; Molina-Carballo, A; Uberos-Fernández, J; Puertas-Prieto, A

    1999-01-01

    We studied 45 full-term newborns divided into 3 groups. Group 1: 17 newborns with bilirubin ictericia (bilirubin 11-20 mg/dL) and Group 3: 10 newborns with moderate hemolytic ictericia needing exchange transfusion. The following were studied: erythrocytic deformability, plasma viscosity, plasmatic osmolarity, seric bilirubin, bilirubin/albumin ratio, free fatty acids and corpuscular volume of the erythrocytes. In full-term newborns, the following are risk factors for increased erythrocytic rigidity: neonatal hemolytic illness (p = 0.004, odds ratio: 7.02), increases in total bilirubin (p = 0.02, odds ratio: 4.3) and increases in the bilirubin/albumin ratio (p = 0.025, odds ratio: 4.25). Furthermore, the most important risk factor for high plasma viscosity is also neonatal hemolytic illness (p = 0.01, odds ratio: 2.30). The role of total bilirubin is also important (p = 0.09, odds ratio: 2.10), while that of the bilirubin/albumin ratio (p = 0.012, NS) is less so. The greater the hemolysis, the greater the erythrocytic rigidity and plasma viscosity (p ictericia, hemolytic illness and increases in the bilirubin/albumin ratio are accompanied by rheological alterations that could affect cerebral microcirculation and cause a neurological deficit not exclusively related to the levels of bilirubin in plasma.

  19. Viscous hydrodynamics with bulk viscosity -- uncertainties from relaxation time and initial conditions

    CERN Document Server

    Song, Huichao

    2009-01-01

    Bulk viscosity suppresses elliptic flow v_2, as does shear viscosity. It can thus not be neglected when extracting the shear viscosity from elliptic flow data. We here explore uncertainties in the bulk viscous contribution to viscous v_2 suppression that arise from presently uncontrolled uncertainties in the initial value of the bulk viscous pressure and its microscopic relaxation time.

  20. Viscosity prediction of carbon dioxide plus hydrocarbon mixtures using the friction theory

    DEFF Research Database (Denmark)

    Zeberg-Mikkelsen, Claus Kjær; Cisneros, Sergio; Stenby, Erling Halfdan

    2002-01-01

    The general one-parameter f-theory model has been used in conjunction with the SRK and the PR EOS to predict the viscosity of well-defined carbon dioxide + hydrocarbon mixtures. The predicted viscosities are within the uncertainty appropriate for most industrial applications. Although the studied...... mixtures develop may have a direct influence on the performance of the viscosity modeling and prediction....

  1. Universality of the high-temperature viscosity limit of silicate liquids

    DEFF Research Database (Denmark)

    Zheng, Qiuju; Mauro, John C.; Ellison, Adam J.;

    2011-01-01

    We investigate the high-temperature limit of liquid viscosity by analyzing measured viscosity curves for 946 silicate liquids and 31 other liquids including metallic, molecular, and ionic systems. Our results show no systematic dependence of the high-temperature viscosity limit on chemical compos...

  2. Process for stabilizing the viscosity characteristics of coal derived materials and the stabilized materials obtained thereby

    Energy Technology Data Exchange (ETDEWEB)

    Bronfenbrenner, James C. (Allentown, PA); Foster, Edward P. (Allentown, PA); Tewari, Krishna (Allentown, PA)

    1985-01-01

    A process is disclosed for stabilizing the viscosity of coal derived materials such as an SRC product by adding up to 5.0% by weight of a light volatile phenolic viscosity repressor. The viscosity will remain stabilized for a period of time of up to 4 months.

  3. Process for stabilizing the viscosity characteristics of coal derived materials and the stabilized materials obtained thereby

    Energy Technology Data Exchange (ETDEWEB)

    Bronfenbrenner, J.C.; Foster, E.P.

    1985-11-26

    A process is disclosed for stabilizing the viscosity of coal derived materials such as an SRC product by adding up to 5.0% by weight of a light volatile phenolic viscosity repressor. The viscosity will remain stabilized for a period of time of up to 4 months.

  4. Interpretation of the complex viscosity of dense hard-sphere dispersions

    NARCIS (Netherlands)

    Mellema, J.; Werff, van der J.C.; Blom, C.; Kruif, de C.G.

    1989-01-01

    The complex viscosity of dense hard-sphere dispersions has been determined recently over a large frequency range. If conceived as a homogeneous system with continuously distributed elasticity and viscosity, the complex viscosity can be described theoretically with a constant relaxation strength and

  5. Viscose production : Impact from alkali resistance (R18) and hemicellulose content in dissolving cellulose on the processability and quality of viscose.

    OpenAIRE

    Hellström, Sara

    2012-01-01

    In this study the influence of variations in alkali resistance (R18) of cellulose on the quality of the viscose product in terms of carbohydrate content have been examined. The dissolution pattern of hemicellulose in the first steps of the viscose process with different running parameters has been determined. Furthermore the correlation between R18 and hemicellulose content has been studied. Mercerization and pressing was performed in a viscose micro plant at MoRe Research with varying proces...

  6. Effects of aortic irregularities on blood flow.

    Science.gov (United States)

    Prahl Wittberg, Lisa; van Wyk, Stevin; Fuchs, Laszlo; Gutmark, Ephraim; Backeljauw, Philippe; Gutmark-Little, Iris

    2016-04-01

    Anatomic aortic anomalies are seen in many medical conditions and are known to cause disturbances in blood flow. Turner syndrome (TS) is a genetic disorder occurring only in females where cardiovascular anomalies, particularly of the aorta, are frequently encountered. In this study, numerical simulations are applied to investigate the flow characteristics in four TS patient- related aortic arches (a normal geometry, dilatation, coarctation and elongation of the transverse aorta). The Quemada viscosity model was applied to account for the non-Newtonian behavior of blood. The blood is treated as a mixture consisting of water and red blood cells (RBC) where the RBCs are modeled as a convected scalar. The results show clear geometry effects where the flow structures and RBC distribution are significantly different between the aortas. Transitional flow is observed as a jet is formed due to a constriction in the descending aorta for the coarctation case. RBC dilution is found to vary between the aortas, influencing the WSS. Moreover, the local variations in RBC volume fraction may induce large viscosity variations, stressing the importance of accounting for the non-Newtonian effects. PMID:26104133

  7. Filtration parameters influencing circulating tumor cell enrichment from whole blood.

    Directory of Open Access Journals (Sweden)

    Frank A W Coumans

    Full Text Available Filtration can achieve circulating tumor cell (CTC enrichment from blood. Key parameters such as flow-rate, applied pressure, and fixation, vary largely between assays and their influence is not well understood. Here, we used a filtration system, to monitor these parameters and determine their relationships. Whole blood, or its components, with and without spiked tumor cells were filtered through track-etched filters. We characterize cells passing through filter pores by their apparent viscosity; the viscosity of a fluid that would pass with the same flow. We measured a ratio of 5·10(4∶10(2∶1 for the apparent viscosities of 15 µm diameter MDA-231 cells, 10 µm white cells and 90 fl red cells passing through a 5 µm pore. Fixation increases the pressure needed to pass cells through 8 µm pores 25-fold and halves the recovery of spiked tumor cells. Filtration should be performed on unfixed samples at a pressure of ∼10 mbar for a 1 cm(2 track-etched filter with 5 µm pores. At this pressure MDA-231 cells move through the filter in 1 hour. If fixation is needed for sample preservation, a gentle fixative should be selected. The difference in apparent viscosity between CTC and blood cells is key in optimizing recovery of CTC.

  8. High-Performance Polymers Having Low Melt Viscosities

    Science.gov (United States)

    Jensen, Brian J.

    2005-01-01

    High-performance polymers that have improved processing characteristics, and a method of making them, have been invented. One of the improved characteristics is low (relative to corresponding prior polymers) melt viscosities at given temperatures. This characteristic makes it possible to utilize such processes as resin-transfer molding and resin-film infusion and to perform autoclave processing at lower temperatures and/or pressures. Another improved characteristic is larger processing windows that is, longer times at low viscosities. Other improved characteristics include increased solubility of uncured polymer precursors that contain reactive groups, greater densities of cross-links in cured polymers, improved mechanical properties of the cured polymers, and greater resistance of the cured polymers to chemical attack. The invention is particularly applicable to poly(arylene ether)s [PAEs] and polyimides [PIs] that are useful as adhesives, matrices of composite materials, moldings, films, and coatings. PAEs and PIs synthesized according to the invention comprise mixtures of branched, linear, and star-shaped molecules. The monomers of these polymers can be capped with either reactive end groups to obtain thermosets or nonreactive end groups to obtain thermoplastics. The synthesis of a polymeric mixture according to the invention involves the use of a small amount of a trifunctional monomer. In the case of a PAE, the trifunctional monomer is a trihydroxy- containing compound for example, 1,3,5-trihydroxybenzene (THB). In the case of a PI, the trifunctional monomer is a triamine for example, triamino pyrimidine or melamine. In addition to the aforementioned trifunctional monomer, one uses the difunctional monomers of the conventional formulation of the polymer in question (see figure). In cases of nonreactive end caps, the polymeric mixtures of the invention have melt viscosities and melting temperatures lower than those of the corresponding linear polymers of equal

  9. Influence of the uniform electric field on viscosity of magnetic nanofluid (Fe3O4-EG)

    Science.gov (United States)

    Monajjemi Rarani, E.; Etesami, N.; Nasr Esfahany, M.

    2012-11-01

    Viscosity of Fe3O4/ethylene glycol nanofluids under electric field (ac and dc) was investigated experimentally. Magnetic nanofluids were prepared by dispersing Fe3O4 nanoparticles in ethylene glycol using a sonicator. Experiments showed that dilute magnetic nanofluids (fluid exhibit Newtonian behavior. Viscosity of Fe3O4 / ethylene glycol nanofluids in electric field was measured using capillary tube viscometer. Electric field decreased the viscosity of magnetic nanofluids and base fluid. The viscosity reduction was more profound in higher volume concentrations of nanoparticles. dc electric field caused greater viscosity reduction in magnetic nanofluids relative to ac electric field while ac electric field showed greater reduction effect for base liquid.

  10. Ciliary kinematics of Chlamydomonas reinhardtii in Complex Fluids: Role of viscosity

    Science.gov (United States)

    Gopinath, Arvind; Qin, Boyang; Arratia, Paulo

    2014-11-01

    The motility behavior of microorganisms can be significantly affected by the rheology of their fluidic environment. Guided by our experiments on the swimming gait of Chlamydomonas reinhardtii in viscoelastic fluids, we focus on ciliary waveforms in Newtonian fluids and systematically study the effect of increasing viscosity. We find that the beat frequency as well as the wave speed are both strongly influenced by fluid viscosity. Interestingly, ciliary waveforms at low viscosity show a larger influence of the cell body than waveforms at higher viscosity. We use slender body theory and principal component analysis to elucidate the role of fluid viscosity in regulating the kinematics of the swimming process.

  11. Effects of a temperature dependent viscosity on thermal convection in binary mixtures

    CERN Document Server

    Hilt, Markus; Zimmermann, Walter

    2013-01-01

    We investigate the effect of a temperature dependent viscosity on the onset of thermal convection in a horizontal layer of a binary fluid mixture that is heated from below. For an exponential temperature dependence of the viscosity, we find in binary mixtures as a function of a positive separation ratio and beyond a certain viscosity contrast a discontinuous transition between two stationary convection modes having a different wavelength. In the range of negative values of the separation ratio, a (continuous or discontinuous) transition from an oscillatory to a stationary onset of convection occurs beyond a certain viscosity contrast, and for large values of the viscosity ratio, the oscillatory onset of convection is suppressed.

  12. FORMULATION, EVALUATION AND SPECTROSCOPIC VALIDATION OF LABETALOL HYDROCLORIDE SR TABLETS USING VARIOUS VISCOSITY GRADES OF HPMC

    Directory of Open Access Journals (Sweden)

    Debashrita Sahoo

    2014-03-01

    Full Text Available The primary objective of sustained release drug delivery system is to ensure safety and to improve efficacy of drugs as well as patient compliance by controlling the drug release pattern within narrow therapeutic range, leading to minimize the side effect and ensure the safety. The aim of the study is to design, characterize and evaluate Labetalol hydrochloride sustained release tablets using various viscosity grades of HPMC. The principal physiologic action of Labetalol is to competitively block adrenergic stimulation of β-receptors within the myocardium (β1-receptors and within bronchial and vascular smooth muscle (β2-receptors, and α1-receptors within vascular smooth muscle which causes a decrease in systemic arterial blood pressure and systemic vascular resistance without a substantial reduction in resting heart rate, cardiac output, or stroke volume, apparently because of its combined α- and β-adrenergic blocking activity. The author in the presence study attempts to formulate the sustained release tablets of Labetalol HCl using different viscosity grades of HPMC i.e. HPMC K4m, HPMCK15M, HPMC K100 M with different drug polymer ratio to reducing the dosing frequency, minimize the flections of plasma drug concentration, evaluation has been done of the prepared formulation and compared with the standard. The prepared granules were free flowing and characterized for drug content, DSC, X-ray diffraction study and FTIR. The X-ray diffraction study & DSC obtained from various formulations showed no interaction within these formulations. The in-vitro release studies were performed using pH 7.4 phosphate buffer for 12 hours from which the different drug polymer ratios are followed zero order kinetics. The analytical validation by UV spectroscopic method of the formulation for specificity, Linearity, Accuracy, Precision and intermediate precision and stability of the solution over desired period of time is carried out.

  13. Advances of Studies on Mechanisms of Drugs for Activating Blood Circulation and Removing Blood Stasis in Treatment of Primary Liver Cancer

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ Primary liver cancer is mainly characterized by the mass in hypochondriac region, stabbing pain at a fixative region, tenderness, dim complexion,vascular spider, vein exposure, livid tongue,ecchymosis, taut and uneven pulse and other symptoms of blood stasis. Experimental studies have found that the patient with liver cancer is often accompanied with disturbance of microcirculation,increase of blood viscosity and high blood agglutinative state. Therefore, activating blood circulation to remove blood stasis is clinically an important therapy for primary liver cancer. A great number of studies on the mechanisms have been carried out in China and other countries. The follow is a review about the mechanisms.

  14. Blood Transfusion

    Science.gov (United States)

    ... to infections including those we develop from our vaccinations (such as poliovirus antibodies, which are made by ... the Transfusion Medicine Unit, Blood Bank, and Stem Cell Storage Facility University of Rochester Medical ... and health educators who are available by phone Monday through Friday, 9 am to 9 pm ( ...

  15. Experimental determination of viscosity of water based magnetite nanofluid for application in heating and cooling systems

    Science.gov (United States)

    Toghraie, Davood; Alempour, Seyed Mohammadbagher; Afrand, Masoud

    2016-11-01

    In this paper, experimental determination of dynamic viscosity of water based magnetite nanofluid (Fe3O4/water) was performed. The viscosity was measured in the temperature range of 20-55 °C for various samples with solid volume fractions of 0.1%, 0.2%, 0.4%, 1%, 2% and 3%. The results showed that the viscosity considerably decreases with increasing temperature. Moreover, the viscosity enhances with an increase in the solid volume fraction, remarkably. The calculated viscosity ratios showed that the maximum viscosity enhancement was 129.7%. Using experimental data, a new correlation has been proposed to predict the viscosity of magnetite nanofluid (Fe3O4/water). A comparison between the experimental results and the correlation outputs showed that the proposed model has a suitable accuracy.

  16. Dependence of viscosity of Cu9In4 intermetallics melt on thermal history

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The temperature dependence of the dynamic viscosity of Cu9In4 intermetallics melt has been investigated in five kinds of different heating and cooling processes with a torsional oscillation viscometer. It has been found that the viscosity of all Cu9In4 intermetallics decreases with increasing temperature in five kinds of different thermal processes. Thermal history has considerable effect on the viscosity. The viscosity in the cooling process with high superheating is greater than that in the cooling process with low superheating. The viscosity in the heating process is greater than that in the cooling process.No anomalous change in viscosity is measured in three kinds of cooling processes with low superheating. The anomalous change occurs at about 1050℃ in cooling with high superheating and at 800℃ in heating. Furthermore, the structural variation in different thermal processes has also been discussed on the basis of the change in viscosity and DSC analysis.

  17. Employing Taylor and Heisenberg subfilter viscosities to simulate turbulent statistics in LES models

    Science.gov (United States)

    Degrazia, G. A.; Rizza, U.; Puhales, F. S.; Welter, G. S.; Acevedo, O. C.; Maldaner, S.

    2012-02-01

    A turbulent subfilter viscosity for Large Eddy Simulation (LES) based on the Taylor statistical diffusion theory is proposed. This viscosity is described in terms of a velocity variance and a time scale, both associated to the inertial subrange. This new subfilter viscosity contains a cutoff wavenumber kc, presenting an identical form (differing by a constant) to the Heisenberg subfilter viscosity. Therefore, both subfilter viscosities are described in terms of a sharp division between large and small wavenumbers of a turbulent flow and, henceforth, Taylor and Heisenberg subfilter viscosities are in agreement with the sharp Fourier filtering operation, frequently employed in LES models. Turbulent statistics of different orders, generated from atmospheric boundary layer simulations employing both Taylor and Heisenberg subfilter viscosities have been compared with observations and results provided by other simulations. The comparison shows that the LES model utilizing the approaches of Taylor and Heisenberg reproduces these turbulent statistics correctly in different vertical regions of a planetary convective boundary layer (CBL).

  18. Ultrasonic Imaging of Hemodynamic Force in Carotid Blood Flow

    Science.gov (United States)

    Nitta, N.; Homma, K.

    Hemodynamic forces including blood pressure and shear stress affect vulnerable plaque rupture in arteriosclerosis and biochemical activation of endothelium such as NO production. In this study, a method for estimating and imaging shear stress and pressure gradient distributions in blood vessel as the hemodynamic force based on viscosity estimation is presented. Feasibility of this method was investigated by applying to human carotid blood flow. Estimated results of shear stress and pressure gradient distributions coincide with the ideal distributions obtained by numerical simulation and flow-phantom experiment.

  19. Blood Culture (For Parents)

    Science.gov (United States)

    ... KidsHealth in the Classroom What Other Parents Are Reading Upsetting News Reports? What to Say Vaccines: Which ... BMP) Blood Test: Complete Blood Count Basic Blood Chemistry Tests Getting a Blood Test (Video) Blood Test: ...

  20. Blood Clotting and Pregnancy

    Medline Plus

    Full Text Available ... For Patients Blood Disorders Blood Clots Blood Clotting & Pregnancy If you are pregnant, or you have just ... The risk of developing a blood clot during pregnancy is increased by the following: Previous blood clots ...

  1. Blood Count Tests

    Science.gov (United States)

    Your blood contains red blood cells (RBC), white blood cells (WBC), and platelets. Blood count tests measure the number and types of cells in your blood. This helps doctors check on your overall health. ...

  2. Blood pressure measurement

    Science.gov (United States)

    Diastolic blood pressure; Systolic blood pressure; Blood pressure reading; Measuring blood pressure ... or your health care provider will wrap the blood pressure cuff snugly around your upper arm. The ...

  3. Blood Transfusions (For Teens)

    Science.gov (United States)

    ... How Can I Help a Friend Who Cuts? Blood Transfusions KidsHealth > For Teens > Blood Transfusions Print A ... United States get blood transfusions. A Bit About Blood As blood moves throughout the body, it carries ...

  4. High Blood Pressure (Hypertension)

    Science.gov (United States)

    ... your doctor prescribes it, medicine. What Is Blood Pressure? Blood pressure is the force of blood flow inside ... Will I Know if I Have High Blood Pressure? High blood pressure is a silent problem — you won't ...

  5. Blood Pressure Quiz

    Science.gov (United States)

    ... page please turn Javascript on. Feature: High Blood Pressure Blood Pressure Quiz Past Issues / Fall 2011 Table of Contents ... About High Blood Pressure / Treatment: Types of Blood Pressure Medications / Blood Pressure Quiz Fall 2011 Issue: Volume 6 Number ...

  6. Hypertension (High Blood Pressure)

    Science.gov (United States)

    ... right away. continue How Do Doctors Measure Blood Pressure? Blood pressure readings are fast and painless. Blood pressure ... same age, height, and gender have lower blood pressure. Blood pressure between 90% and 95% of the normal ...

  7. Experimental comparison of mammalian and avian blood flow in microchannels

    Science.gov (United States)

    Fink, Kathryn; Liepmann, Dorian

    2015-11-01

    The non-Newtonian, shear rate dependent behavior of blood in microchannel fluid dynamics has been studied for nearly a century, with a significant focus on the characteristics of human blood. However, for over 200 years biologists have noted significant differences in red blood cell characteristics across vertebrate species, with particularly drastic differences in cell size and shape between mammals and non-mammalian classes. We present an experimental analysis of flow in long microchannels for several varieties of mammalian and avian blood, across a range of hematocrits, channel diameters, and flow rates. Correlation of shear rate and viscosity is compared to existing constitutive equations for human blood to further quantify the importance of red blood cell characteristics. Ongoing experimental results are made available in an online database for reference or collaboration. K.F. acknowledges funding from the ARCS Foundation and an NSF Graduate Research Fellowship through NSF Grant DGE 1106400.

  8. Variations for Pure Cu Melt Viscosity with Different Atmospheres

    Institute of Scientific and Technical Information of China (English)

    耿红霞; 耿浩然; 薛宪营; 郁可; 刘建同

    2003-01-01

    The viscosity of Cu melt is obtained to be in the ranges from 2.418 to 3.039mPa.s under vacuum atmosphere (2Pa), from 2.907 to 3.425mPa.s under nitrogen gas atmosphere and from 3.352 to 4.015mPa.s under argon gas atmosphere. The activation energy is estimated to be 0.224, 0.162 and 0.150eV for the vacuum atmosphere (2 Pa), nitrogen gas atmosphere and argon gas atmosphere, respectively. The results reflect the essential structural change in the Cu melt by using different atmospheres.

  9. Viscosity in X-ray clusters: Braginskii over 5

    CERN Document Server

    Gruzinov, A

    2006-01-01

    We argue that it is currently impossible to simulate X-ray clusters using correct equations, because even the MHD description is not applicable. But since fluid simulations actually reproduce observations quite well, one may try to improve the fluid codes by including molecular transport of heat and momentum. We calculate the effective molecular viscosity for the simplest model of magnetic field and obtain 1/5 of the Braginskii value, similar to 1/3 of Spitzer for the heat conduction. This is large enough to noticeably damp the X-ray cluster turbulence.

  10. Viscosity changes of probiotic yoghurt with transglutaminase during storage

    OpenAIRE

    Iličić Mirela D.; Carić Marijana Đ.; Milanović Spasenija D.; Dokić Ljubica P.; Đurić Mirjana S.; Bošnjak Goran S.; Duraković Katarina G.

    2008-01-01

    The aim of this study was to determine the effect of the quantity of transglutaminase as well as conditions of its application (direct, or after activation by milk heating for 2 h at 40°C and for 1 min at 80°C), on yoghurt viscosity manufactured from two kinds of low fat milk (0.1 % w/w fat and 0.5% w/w fat) during 10 days of storage. The fermentation in both series started after the adequate amounts of probiotic starter culture ABT-4 (Chr. Hansen A/S Denmark) were added to the milk at 43°C. ...

  11. Radius of gyration and intrinsic viscosity of polyelectrolyte solutions

    Energy Technology Data Exchange (ETDEWEB)

    Milas, M.; Borsali, R.; Rinaudo, M. [CNRS, Cedex (France)

    1993-12-31

    Relatively low molecular weights polyelectrolytes (10{sup 4}-10{sup 6}) behave as worm-like chain when electrostatic repulsions are assumed to govern the excluded volume parameter. Under such conditions, predictions of chain expansion and effect of polyelectrolyte concentrations are made assuming that unperturbed dimensions could be obtained at infinite salt content. Experimental studies of an ionic polysaccharide, namely the Na-hyaluronate, were done and the values obtained for the radius of gyration as well as the intrinsic viscosity at different charge densities are in good agreement with the predictions.

  12. Measurement of Liquid Viscosities in Tapered or Parabolic Capillaries.

    Science.gov (United States)

    Ershov; Zorin; Starov

    1999-08-01

    The possibility of using tapered or parabolic capillaries for measurement of liquid viscosities is investigated both experimentally and theoretically. It is demonstrated that even small deviations in capillary radius from a constant value may substantially affect measurement results. Equations are derived which allow correct analysis of the measurement results in tapered or parabolic capillaries. The following cases are analyzed: a water imbibition into a tapered or parabolic capillary and displacement of one liquid by another immiscible liquid in tapered or parabolic capillaries. Two possibilities are considered: (a) the narrow end of the capillary as capillary inlet and (b) the wide end of the capillary as capillary inlet. Copyright 1999 Academic Press.

  13. Orbitally Shaken Bioreactors - Viscosity effects on flow characteristics

    OpenAIRE

    Ducci, A.; Weheliye, W. H.

    2014-01-01

    Phase resolved PIV measurements were carried out to assess the flow dynamics occurring in orbitally shaken bioreactors of cylindrical geometry when working fluids of increasing viscosity are considered. Study of the phase-resolved flow characteristics allowed to built a Re-Fr map, where four quadrants associated to di fferent flow regimes are identifi ed: in-phase toroidal vortex (low Fr, high Re), out-of-phase precessional vortex (high Fr, high Re), in-phase single vortex (low Fr, low Re), o...

  14. Parallel Plate System for Collecting Data Used to Determine Viscosity

    Science.gov (United States)

    Kaukler, William (Inventor); Ethridge, Edwin C. (Inventor)

    2013-01-01

    A parallel-plate system collects data used to determine viscosity. A first plate is coupled to a translator so that the first plate can be moved along a first direction. A second plate has a pendulum device coupled thereto such that the second plate is suspended above and parallel to the first plate. The pendulum device constrains movement of the second plate to a second direction that is aligned with the first direction and is substantially parallel thereto. A force measuring device is coupled to the second plate for measuring force along the second direction caused by movement of the second plate.

  15. A first approaching to work with viscosity in college level

    Science.gov (United States)

    Carmona, Karla; Flores, Sergio; Alfaro, Luis L.; Gonzalez, Maria D.

    2008-10-01

    Working with the concepts of flow, velocity and emptying time, in containers with different area, the research group named Physics and Mathematics in Context from the University of Juarez in Mexico is attempting to experiment with the relationship between the geometry of the containers and their discharge time with different kind of liquids. Thus, we have built two different sets of containers, and use kitchen oil, maple syrup, and car oil. Where the cross area is constant: prisms with bases of different geometries. Thus, in order to achieve a better understanding related to differential equations situations and introduce viscosity.

  16. The non-isothermal rheology of low viscosity magmas.

    Science.gov (United States)

    Kolzenburg, Stephan; Giordano, Daniele; Dingwell, Donald B.

    2016-04-01

    Accurate prediction of the run-out distance of lava flows, as well as the understanding of magma migration in shallow dyke systems is hampered by an incomplete understanding of the transient, sub-liquidus rheology of crystallizing melts. This sets significant limits to physical property based modelling of lava flow (especially flow width, length and advancement rate) and magma migration behaviour and the resulting accuracy of volcanic hazard assessment The importance of the dynamic rheology of a lava / magma on its emplacement style becomes especially apparent in towards later stages of flow and dyke emplacement, where the melt builds increasing resistance to flow, entering rheologic regimes that determine the halting of lava flows and sealing of dykes. Thermal gradients between the interior of a melt body and the contact with air or the substratum govern these rheologic transitions that give origin to flow directing or impeding features like levees, tubes and chilled margins. Besides the critical importance of non-isothermal and sub-liquidus processes for the understanding of natural systems, accurate rheologic data at these conditions are scarce and studies capturing the transient rheological evolution of lavas at conditions encountered during emplacement virtually absent. We describe the rheologic evolution of a series of natural, re-melted lava samples during transient and non-equilibrium crystallization conditions characteristic of lava flows and shallow magmatic systems in nature. The sample suite spans from foidites to basalts; the dominant compositions producing low viscosity lava flows. Our data show that all melts undergo one or more change zones in effective viscosity when subjected to sub liquidus temperatures. The apparent viscosity of the liquid-crystal suspension increases drastically from the theoretical temperature-viscosity relationship of a pure liquid once cooled below the liquidus temperature. We find that: 1) Both cooling rate and shear rate

  17. Influence of ureter mirror holmium laser lithotripsy on blood rheology and oxidative stress in patients with upper ureteral calculi

    Institute of Scientific and Technical Information of China (English)

    Guo-Dong Chen; Jian Dong; Jun Ding; Guo-Bo Li; Chen-Xi Zhou

    2016-01-01

    Objective:To explore the influence of ureter mirror holmium laser lithotripsy on blood rheology and oxidative stress in patients with upper ureteral calculi.Methods:A total of 113 cases patients who underwent surgical treatment of ureter mirror holmium laser lithotripsy were divided into observation group (n=76) and the control group (n=37) according to different therapeutic methods. Patients in the observation group were treated by ureteroscopy holmium laser lithotripsy treatment and patients in control group were treated by open surgery treatment. Venous blood was collected ro test the blood rheology and oxidative stress indicators respectively in the preoperative and postoperative 1 d, 7 d after treatment.Results:The postoperative backlog of red blood cells increased performance first decreased after treatment in two groups, the plasma viscosity and whole blood viscosity, high shear viscosity of whole blood were increased after the stable trend, the postoperative hematocritg, plasma viscosity, whole blood viscosity, high shear viscosity of whole blood were significantly lower than the control group in the observation group 1 d and 7 d after operation; The postoperative Cor, MDA in two groups showed a rising trend, SOD showed a decreasing trend, the difference was statistically significant; MDA in observation group 1 d and 7 d after operation was significantly lower than the control group, SOD was significantly higher than control group in the same point in time.Conclusions:Patients with upper ureteral calculi treated by surgical treatment may cause abnormal blood rheology and oxidative stress. And compared with open surgery, ureteroscopy holmium laser lithotripsy is of smaller side effect, and is beneficial for postoperative recovery.

  18. Evaluation of Lama glama semen viscosity with a cone-plate rotational viscometer.

    Science.gov (United States)

    Casaretto, C; Martínez Sarrasague, M; Giuliano, S; Rubin de Celis, E; Gambarotta, M; Carretero, I; Miragaya, M

    2012-05-01

    Llama semen is highly viscous. This characteristic is usually evaluated subjectively by measuring the thread formed when carefully pippeting a sample of semen. The aims of this study were (i) to objectively determine and analyse llama semen viscosity, (ii) to compare semen viscosity between ejaculates of the same male as well as between different males, (iii) to study the correlation between viscosity and other semen characteristics and (iv) to evaluate the effect of collagenase on semen viscosity. Semen viscosity was evaluated using a cone-plate Brookfield rotational viscometer. A non Newtonian, pseudoplastic behaviour was observed in the 45 semen samples evaluated. Rheological parameters were determined obtaining the following results (mean ± SD): apparent viscosity at 11.5 s(-1): 46.71 ± 26.8 cpoise and at 115 s(-1): 12.61 ± 4.1 cpoise; structural viscosity (K) (dyne s cm(-2)): 2.18 ± 1.4 and coefficient of consistency (n): 0.45 ± 0.1. Statistical differences were found between different ejaculates of the same male for structural viscosity and apparent viscosity at 11.5 s(-1) (P viscosity at 115 s(-1) were found between samples incubated with and without collagenase (P < 0.05). PMID:21729143

  19. Viscosity of magnetorheological fluids using Iron-silicon nanoparticles.

    Science.gov (United States)

    Kim, Jong Hee; Kim, CheolGi; Lee, Seung Goo; Hong, Tae Min; Choi, Joon Hong

    2013-09-01

    Fe-6.5Si fine particles were mechanically fabricated by a milling method for use in magnetorheological fluids. Oleic acid was used as a surfactant for the dispersed substance for preparing the hydrophobic fluid with silicon oil as a dispersing medium. Further, oleic acid and sodium dodecyl benzene sulfonate were used as surfactants, forming a bilayer structure, for preparing the hydrophilic fluid with polyethylene glycol as a dispersing medium. The adsorption of oleic acid onto the Fe-Si particles was achieved by oxidizing the particle surface with trimethylamine N-oxide dihydrate. In order to make a comparative examination of the fluid properties, ferromagnetic nanoparticles were synthesized by chemical precipitation and the subsequent process was accompanied under the same conditions as applied for the magnetorheological fluid. The fluid particles were characterized by magnetization measurements. The viscosity of the fluids was obtained at various concentrations under an external field. The viscosity values of the magnetorheological fluid were higher than those of the ferromagnetic fluid. Moreover, they increased considerably by using silicon oil as the dispersing medium as well as under an applied magnetic field and at higher fluid concentrations. The magnetorheological fluids may be effectively resistant to a strong impact from outside when the appropriate fluid concentration is used and a magnetic field is applied for increasing the shear strength of the fluids. PMID:24205598

  20. A new model for calculating the effective viscosity of nanofluids

    Energy Technology Data Exchange (ETDEWEB)

    Masoumi, N; Sohrabi, N; Behzadmehr, A, E-mail: amin.behzadmehr@eng.usb.ac.i [Mechanical Engineering Department, University of Sistan and Baluchestan, PO Box 98164-161 Zahedan (Iran, Islamic Republic of)

    2009-03-07

    In this paper a new equation for calculating the nanofluid viscosity by considering the Brownian motion of nanoparticles is introduced. The relative velocity between the base fluid and nanoparticles has been taken into account. This equation presents the nanofluid viscosity as a function of the temperature, the mean nanoparticle diameter, the nanoparticle volume fraction, the nanoparticle density and the base fluid physical properties. In developing the model a correction factor is introduced to take into account the simplification that was applied on the boundary condition. It is calculated by using very limited experimental data for nanofluids consisting of 13 nm Al{sub 2}O{sub 3} nanoparticles and water and 28 nm Al{sub 2}O{sub 3} nanoparticles and water. The predicted results are then compared with many other published experimental results for different nanofluids and very good concordance between these results is observed. Compared with the other theoretical models that are available in the literature, the presented model, in general, has a higher accuracy and precision.

  1. Hubble parameter in QCD Universe for finite bulk viscosity

    Energy Technology Data Exchange (ETDEWEB)

    Tawfik, A.; Wahba, M. [Egyptian Center for Theoretical Physics (ECTP), MTI University, Al Mukattam, Cairo 11212 (Egypt); Mansour, H. [Department of Physics, Cairo University, Giza (Egypt); Harko, T. [Department of Physics and Center for Theoretical and Computational Physics, The University of Hong Kong, Pok Fu Lam Road, Hong Kong (China)

    2010-12-01

    We consider the influence of the perturbative bulk viscosity on the evolution of the Hubble parameter in the QCD era of the early Universe. For the geometry of the Universe we assume the homogeneous and isotropic Friedmann-Lemaitre-Robertson-Walker metric, while the background matter is assumed to be characterized by barotropic equations of state, obtained from recent lattice QCD simulations, and heavy-ion collisions, respectively. Taking into account a perturbative form for the bulk viscosity coefficient, we obtain the evolution of the Hubble parameter, and we compare it with its evolution for an ideal (non-viscous) cosmological matter. A numerical solution for the viscous QCD plasma in the framework of the causal Israel-Stewart thermodynamics is also obtained. Both the perturbative approach and the numerical solution qualitatively agree in reproducing the viscous corrections to the Hubble parameter, which in the viscous case turns out to be slightly different as compared to the non-viscous case. Our results are strictly limited within a very narrow temperature- or time-interval in the QCD era, where the quark-gluon plasma is likely dominant. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. High viscosity fluid simulation using particle-based method

    KAUST Repository

    Chang, Yuanzhang

    2011-03-01

    We present a new particle-based method for high viscosity fluid simulation. In the method, a new elastic stress term, which is derived from a modified form of the Hooke\\'s law, is included in the traditional Navier-Stokes equation to simulate the movements of the high viscosity fluids. Benefiting from the Lagrangian nature of Smoothed Particle Hydrodynamics method, large flow deformation can be well handled easily and naturally. In addition, in order to eliminate the particle deficiency problem near the boundary, ghost particles are employed to enforce the solid boundary condition. Compared with Finite Element Methods with complicated and time-consuming remeshing operations, our method is much more straightforward to implement. Moreover, our method doesn\\'t need to store and compare to an initial rest state. The experimental results show that the proposed method is effective and efficient to handle the movements of highly viscous flows, and a large variety of different kinds of fluid behaviors can be well simulated by adjusting just one parameter. © 2011 IEEE.

  3. Modification of Platelet Margination Rate via Reduction of Viscosity Ratio

    Science.gov (United States)

    Reasor, Daniel; Mehrabadi, Marmar; Ku, David; Aidun, Cyrus

    2011-11-01

    Experimental investigations of platelet margination have primarily been limited to effects of hematocrit (Ht.) and shear rate. The suspending fluids used commonly have viscosities greater than plasma which can modify the transition in dynamical regimes from tumbling to tank-treading for isolated RBCs. This work focuses on the effects of λ, the ratio of internal to suspending fluid viscosity of RBCs, on the rate of platelet margination in a rigid 41.3 μm diameter vessel. Simulations are performed with a lattice-Boltzmann fluid solver using the standard bounce-back boundary condition coupled with a coarse-grained spectrin-link RBC membrane model and a Newtonian dynamics solver for rigid platelets. Our results are consistent with observations that an increase in Ht. increases the rate of platelet margination for Ht.=20-40%, but we focus on the modification of λ at Ht.=20%. Our results show that rigid RBCs inhibit margination, but modifying λ with deformable RBCs show significant increases in margination rate. Our observations demonstrate an increase in platelet wall-normal velocity fluctuations, enhanced margination rate, and an increase in the wall-normal diffusivity as λ is reduced from the physiological value of five. NSF TeraGrid Grant: TG-CTS100012.

  4. Entropy Production and Effective Viscosity in Heavy-Ion Collisions

    CERN Document Server

    Ivanov, Yu B

    2016-01-01

    Entropy production and an effective viscosity in central Au+Au collisions are estimated in a wide range of incident energies 3.3 GeV $\\le \\sqrt{s_{NN}}\\le$ 39 GeV. The simulations are performed within a three-fluid model employing three different equations of state with and without deconfinement transition, which are equally good in reproduction of the momentum-integrated elliptic flow of charged particles in the considered energy range. It is found that more that 80\\% entropy is prodused during a short early collision stage which lasts $\\sim$1 fm/c at highest considered energies $\\sqrt{s_{NN}}\\ge$ 20 GeV. The estimated values of the viscosity-to-entropy ratio ($\\eta/s$) are approximately the same in all considered scenarios. At final stages of the system expansion they range from $\\sim$0.05 at highest considered energies to $\\sim$0.5 lowest ones. It is found that the $\\eta/s$ ratio decreases with the temperature ($T$) rise approximately as $\\sim 1/T^4$ and exhibits a rather weak dependence on the net-baryon ...

  5. Viscosity sinergism of hydrozypropmethyl and carboxy methyl cellulose

    Directory of Open Access Journals (Sweden)

    Katona Jaroslav M.

    2008-01-01

    Full Text Available Rheology modifiers are common constituents of food, cosmetic and pharmaceutic products. Often, by using two or more of them, better control of the product rheological properties can be achieved. In this work, rheological properties of hydroxypropymethyl cellulose (HPMC and sodium carboxymethyl cellulose (NaCMC solutions of different concentrations were investigated and compared to the flow properties of 1% HPMC/NaCMC binary mixtures at various HPMC/NaCMC mass ratios. Solutions of HPMC and NaCMC were found to be pseudoplastic, where pseudoplasticity increases with increase in the macromolecules concentration. Changes of the degree of pseudoplasticity, n as well as the coefficient of consistency, K with the concentration are more pronounced in HPMC solutions when compared to the NaCMC ones. This is mostly due to the ability of HPMC molecules to associate with each other at concentrations above critical overlap concentration, c , and greater flexibility of macromolecular chains. Binary mixtures of HPMC/NaCMC were also found to be pseudoplastic. Experimentally obtained viscosities of the mixture were proved to be larger than theoretically expected ones, indicating viscosity synergism as a consequence of HPMC-NaCMC interaction. Maximum in synergy was observed when HPMC/NaCMC mass ratio was 0.4/0.6, no matter of the shear rate applied. On the other hand, it was found that relative positive deviation, RPD decreases when shear rate is increased.

  6. Viscosity changes of probiotic yoghurt with transglutaminase during storage

    Directory of Open Access Journals (Sweden)

    Iličić Mirela D.

    2008-01-01

    Full Text Available The aim of this study was to determine the effect of the quantity of transglutaminase as well as conditions of its application (direct, or after activation by milk heating for 2 h at 40°C and for 1 min at 80°C, on yoghurt viscosity manufactured from two kinds of low fat milk (0.1 % w/w fat and 0.5% w/w fat during 10 days of storage. The fermentation in both series started after the adequate amounts of probiotic starter culture ABT-4 (Chr. Hansen A/S Denmark were added to the milk at 43°C. After milk fermentation at pH 4.5, probiotic yoghurt samples were cooled to 8°C, gently homogenized and packed in plastic containers and stored for 10 days, at +4oC. Viscosity of all samples was measured at 5°C on a Haake Rheostress 600 viscosimeter. On the basis of the obtained results it can be concluded that yoghurt samples produced with low level of transglutaminase activated prior to fermentation have significantly better rheological properties than the samples produced without activation and yoghurt control. Generally, the application of low level transglutaminase in low - fat yoghurt production improves overall rheological properties of the final product.

  7. Liquid structure and viscosity of In80Cu20 alloy

    Institute of Scientific and Technical Information of China (English)

    程素娟; 王忠华; 边秀房; 秦绪波; 司鹏超

    2004-01-01

    The structure and dynamic viscosity of In80Cu20 alloy melt in the temperature range from 600 ℃ to 1 000℃ were investigated by using a high-temperature X-ray diffractometer and a torsional oscillation viscometer. The experiments show that there exist medium range order (MRO) structures in In80Cu20 alloy melt in a low temperature range above liquidus. The MRO structures are weakened with increasing temperature and disappear when the temperature surpasses 800 ℃. The nearest interatomic distance r1 and the coordination number Ns of In80Cu20 alloy melt decrease as temperature increases from 650 ℃ to 1 000 ℃. Thermal contraction of atom clusters can be found in the heating process. The viscosity of In80Cu20 alloy melt drops as temperature increases and meets with the exponential relation. No sudden change in structure occurs in the measured temperature range. DSC curve of In80Cu20 alloy during cooling process was measured. It is found that there is no noticeable variation of heat during cooling from 1000 ℃ to 600 ℃ , which testifies further that there is no sudden change in structure of In80Cu20 alloy melt.

  8. Lignopolymers as viscosity-reducing additives in magnesium oxide suspensions.

    Science.gov (United States)

    Murray, Lisa R; Gupta, Chetali; Washburn, Newell R; Erk, Kendra A

    2015-12-01

    Lignopolymers are a new class of polymer additives with the capability to be used as dispersants in cementitious pastes. Made with kraft lignin cores and grafted polymer side-chains, the custom-synthesized lignopolymers were examined in terms of the molecular architecture for viscosity reducing potential in inert model suspensions. Lignin-poly(acrylic acid) (LPAA) and lignin-polyacrylamide (LPAm) have been found to vary the rheology of magnesium oxide (MgO) suspensions based on differences in chain architecture and particle-polymer interactions. A commercial comb-polymer polycarboxylate ester was compared to LPAA and LPAm at 2.7 mg/mL, a typical dosage for cement admixtures, as well as 0.25mg/mL. It was found that LPAm was a more effective viscosity reducer than both LPAA and the commercial additive at low concentrations, which was attributed to greater adsorption on the MgO particle surface and increased steric dispersion from PAm side-chain extension. The influence of chain adsorption and grafted side-chain molecular weight on rheology was also tested. PMID:26275503

  9. Magneto-viscosity of MnZn-ferrite ferrofluid

    International Nuclear Information System (INIS)

    Mn0.75Zn0.25Fe2O4 (MZF) ferrofluid was synthesized using a precipitation method in ethylene glycol colloidal media. The x-ray diffraction and transmission electron microscope studies show nanophase of the MZF ultra fine nanoparticles. The magnetization (M) vs magnetic field (H) show zero coercivity and high saturation field characteristic of superparamagnetic behavior. The dynamic light scattering (DLS) data show the formation of aggregates or clusters with size distribution ranging from 50 to 600 nm. Magneto-viscosity of the ferrofluid is studied using rheological measurements under magnetic field up to 1.3 T. The behavior of shear rate vs effective shear viscosity (η) plot in zero and higher magnetic field changes from non-Newtonian to Newtonian as shear rate increases. At a steady shear rate irreversible nonlinear behavior is observed in η vs H plots. The data indicate the particle size distribution and formation of chains in the ferrofluid with increase in magnetic field

  10. Effective viscosity of grease ice in linearized gravity waves

    CERN Document Server

    de Carolis, G; Pignagnoli, L; Carolis, Giacomo de; Olla, Piero; Pignagnoli, Luca

    2004-01-01

    Grease ice is an agglomeration of disc-shaped ice crystals, named frazil ice, which forms in turbulent waters of the Polar Oceans and in rivers as well. It has been recognized that the properties of grease ice to damp surface gravity waves could be explained in terms of the effective viscosity of the ice slurry. This paper is devoted to the study of the dynamics of a suspension of disc-shaped particles in a gravity wave field. For dilute suspensions,depending on the strength and frequency of the external wave flow, two orientation regimes of the particles are predicted: a preferential orientation regime with the particles rotating in coherent fashion with the wave field, and a random orientation regime in which the particles oscillate around their initial orientation while diffusing under the effect of Brownian motion. For both motion regimes, the effective viscosity has been derived as a function of the wave frequency, wave amplitude and aspect ratio of the particles. Model predictions have been validated ag...

  11. Effect of combined treatments on viscosity of whey dispersions

    International Nuclear Information System (INIS)

    Whey proteins, enriched protein fractions from milk, are of great interest as ingredients due to nutritional value associated with its functional properties. These proteins could have their structural properties improved when some treatments are applied, such as thermal and gamma irradiation or when some compounds are added. The current work aimed to study the viscometer behavior of whey dispersions submitted to two different combined treatments: (1) thermal plus irradiation and (2) thermal plus vacuum and N2 plus irradiation. Dispersions of whey protein in water (5% and 8% protein (w/v) base) and containing proteins and glycerol at ratios 1:1 and 2:1 (protein:glycerol) were submitted to both combined treatments. The irradiation doses were 0, 5, 15 and 25 kGy. The viscosity of the two combined treatments and for four levels of absorbed doses is presented and the combined effects are discussed. The thermal treatment combined with gamma irradiation contributed to increase the viscosity as irradiation doses increases for both (5% and 8%) concentrations of proteins (p<0.05). For protein and glycerol solutions, the irradiation dose seemed to result in a slightly increase. The vacuum applied before the irradiation showed a small contribution

  12. Effect of Short Chain Alcohols upon Viscosity of TTAB Solution

    Institute of Scientific and Technical Information of China (English)

    Yun-fei Yan; Hua-zhen Li; Hai-yang Yang; Jia-sheng Qian; Ping-ping Zhu; Ping-sheng He

    2008-01-01

    The effect of ethanol (C2H5OH),propanol (C3H7OH),and butanol (C4H9OH) upon the viscosity of tetrade- cyltrimethylammonium bromide (TTAB) solution in the presence or absence of KBr at 30℃ was investi- gated,where the surfactant concentration Cs is kept constant.In the absence of KBr,the relative viscosity ηr of TTAB solution increases linearly with the alcohol concentration CA,indicating that the alcohols do not promote micelle formation of TTAB.In the presence of KBr,ηr linearly decreases with CA for C2H5OH, but it exhibits a maximum with increasing CA for C3H7OH or C4H9OH.The facts reveal that C2H5OH or C4H9OH promotes the micelle formation of TTAB.A possible explanation is that the hydrophobicity of the micellar interior is enhanced by KBr,so that C2H5OH or C4H9OH can dissolve in micelle and promotes micelle formation.In the presence of KCl,which is less efficient in promoting the micelle formation of cationic surfactant,both C3H7OH and C4H9OH have only a slight effect on the micelle formation.In contrast,due to the hydrophilicity,C2H5OH cannot dissolve in micelles in the presence of KBr or KCl.

  13. Viscosity and dissipative hydrodynamics from effective field theory

    Science.gov (United States)

    Grozdanov, Sašo; Polonyi, Janos

    2015-05-01

    With the goal of deriving dissipative hydrodynamics from an action, we study classical actions for open systems, which follow from the generic structure of effective actions in the Schwinger-Keldysh closed-time-path (CTP) formalism with two time axes and a doubling of degrees of freedom. The central structural feature of such effective actions is the coupling between degrees of freedom on the two time axes. This reflects the fact that from an effective field theory point of view, dissipation is the loss of energy of the low-energy hydrodynamical degrees of freedom to the integrated-out, UV degrees of freedom of the environment. The dynamics of only the hydrodynamical modes may therefore not possess a conserved stress-energy tensor. After a general discussion of the CTP effective actions, we use the variational principle to derive the energy-momentum balance equation for a dissipative fluid from an effective Goldstone action of the long-range hydrodynamical modes. Despite the absence of conserved energy and momentum, we show that we can construct the first-order dissipative stress-energy tensor and derive the Navier-Stokes equations near hydrodynamical equilibrium. The shear viscosity is shown to vanish in the classical theory under consideration, while the bulk viscosity is determined by the form of the effective action. We also discuss the thermodynamics of the system and analyze the entropy production.

  14. Hemoglobin, hematocrit, and changes in cerebral blood flow : The Second Manifestations of ARTerial disease-Magnetic Resonance study

    NARCIS (Netherlands)

    van der Veen, Pieternella H.; Muller, Majon; Vincken, Koen L.; Westerink, Jan; Mali, Willem P. T. M.; van der Graaf, Yolanda; Geerlings, Mirjam I.; Doevendans, PAFM

    2015-01-01

    Hemoglobin and hematocrit are important determinants of blood viscosity and arterial oxygen content and may therefore influence cerebral blood flow (CBF). We examined cross-sectional and prospective associations of hemoglobin and hematocrit with CBF in 569 patients with manifest arterial disease (me

  15. Modeling Of Blood Vessel Constriction In 2-D Case Using Molecular Dynamics Method

    CERN Document Server

    Rendi, Mohamad; Viridi, Sparisoma

    2013-01-01

    Blood vessel constriction is simulated with particle-based method using a molecular dynamics authoring software known as Molecular Workbench (WM). Blood flow and vessel wall, the only components considered in constructing a blood vessel, are all represented in particle form with interaction potentials: Lennard-Jones potential, push-pull spring potential, and bending spring potential. Influence of medium or blood plasma is accommodated in plasma viscosity through Stokes drag force. It has been observed that pressure p is increased as constriction c is increased. Leakage of blood vessel starts at 80 % constriction, which shows existence of maximum pressure that can be overcome by vessel wall.

  16. Investigating the effect of lateral viscosity variations in the Earth's mantle

    Science.gov (United States)

    O'Farrell, K. A.; Lithgow-Bertelloni, C. R.

    2015-12-01

    Seismic tomography can be used to investigate radial viscosity variations on instantaneous flow models by predicting the global geoid and comparing with the observed geoid. This method is one of many that has been used to constrain viscosity structure in the Earth's mantle in the last few decades. Using the 3D mantle convection model, Stag-YY (e.g., Hernlund and Tackley, 2008), we are further able to explore the effect of lateral variations in viscosity in addition to the radial variations. Examining over 50 tomographic models we found notable differences by comparing a synthetically produced geoid with the observed geoid. Comparing S- and P-wave tomographic models, the S-wave models provided a better fit to the observed geoid. Using this large suite of 50 tomographic models, we have been able to constrain the radial viscosity structure of the Earth. We found that two types of viscosity profiles yielded equally good fits. A viscosity profile with a low transition zone viscosity and a lower mantle viscosity equal to the upper mantle, or a profile with a large lower mantle viscosity and a transition zone viscosity similar to the upper mantle. Using the set of radial viscosity profiles that gave the best fit to the observed geoid, we can explore a range of lateral viscosity variations and see how they affect the different types of tomographic models. Improving on previous studies of lateral viscosity variations (e.g. Ghosh, Becker and Zhong, 2010), we systematically explore a large range of tomographic models and density-velocity conversion factors. We explore which type of tomographic model (S- or P- wave) is more strongly affected by lateral viscosity variations, as well as the effect on isotropic and anisotropic models. We constrain the strength of lateral viscosity variations necessary to produce a high correlation between observed and predicted geoid anomalies. We will discuss the wavelength of flow that is most affected by the lateral viscosity variations

  17. Energy Dissipation and Apparent Viscosity of Semi-solid Metal during Rheological Processes Part Ⅱ: Apparent Viscosity

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This study investigated the rheological properties of semi-solid metal. An analytical model of apparent viscosity was built up based on analysis of energy dissipation during rheological processes such as slurry preparing,delivering and model filling. The rheological properties of SSM (semi-solid metal) slurry was described by an analytical model in terms of microstructural parameters, which consist of effective solid fraction, particle size and shape, and flow parameters such as mean velocity, fluctuant velocity and relative velocity between liquid and solid phase. The model was verified in the experiment of A356 alloys with a coaxial double-bucket rheometer. And the maximum relative error between the theoretical value and measured one is less than 10%.The results of experiment and theoretical calculation also indicate that the microstructural parameters and flow parameters are two major factors that affect the apparent viscosity of semi-solid alloys, and fluctuant velocity and relative velocity between liquid and solid phase are the key factors to distinguish between steady and transient rheological properties.

  18. Shear viscosity, bulk viscosity, and relaxation times of causal dissipative relativistic fluid-dynamics at finite temperature and chemical potential

    Science.gov (United States)

    Huang, Xu-Guang; Koide, Tomoi

    2012-09-01

    The microscopic formulas for the shear viscosity η, the bulk viscosity ζ, and the corresponding relaxation times τπ and τΠ of causal dissipative relativistic fluid-dynamics are obtained at finite temperature and chemical potential by using the projection operator method. The non-triviality of the finite chemical potential calculation is attributed to the arbitrariness of the operator definition for the bulk viscous pressure. We show that, when the operator definition for the bulk viscous pressure Π is appropriately chosen, the leading-order result of the ratio, ζ over τΠ, coincides with the same ratio obtained at vanishing chemical potential. We further discuss the physical meaning of the time-convolutionless (TCL) approximation to the memory function, which is adopted to derive the main formulas. We show that the TCL approximation violates the time reversal symmetry appropriately and leads results consistent with the quantum master equation obtained by van Hove. Furthermore, this approximation can reproduce an exact relation for transport coefficients obtained by using the f-sum rule derived by Kadanoff and Martin. Our approach can reproduce also the result in Baier et al. (2008) [8] by taking into account the next-order correction to the TCL approximation, although this correction causes several problems.

  19. "Coulombic Viscosity" In Granular Materials: Planetary and Astrophysical Implications

    Science.gov (United States)

    Marshall, J. R.

    1999-01-01

    The term "Coulombic viscosity" is introduced here to define an empirically observed phenomenon from experiments conducted in both microgravity, and in ground-based 1-g conditions. In the latter case, a sand attrition device was employed to test the longevity of aeolian materials by creating two intersecting grain-circulation paths or cells that would lead to most of the grain energy being expended on grain-to-grain collisions (simulating dune systems). In the areas in the device where gravitationally-driven grain-slurries recycled the sand, the slurries moved with a boundary-layer impeded motion down the chamber walls. Excessive electrostatic charging of the grains during these experiments was prevented by the use of an a.c. corona (created by a Tesla coil) through which the grains passed on every cycle. This created both positive and negative ions which neutralized the triboelectrically-generated grain charges. When the corona was switched on, the velocity of the wall-attached slurries increased by a factor of two as approximately determined by direct observation. What appeared to be a freely-flowing slurry of grains impeded only by intergranular mechanical friction, had obviously been significantly retarded in its motion by electrostatic forces between the grains; with the charging reduced, the grains were able to move past one another without a flow "viscosity" imposed by the Coulombic intergranular forces. A similar phenomenon was observed during microgravity experiments aboard Space Shuttle in USML-1 & USML-2 spacelabs where freely-suspended clouds of sand were being investigated for their potential to for-m aggregates. In this environment, the grains were also charged electrostatically (by natural processes prior to flight), but were free from the intervention of gravity in their interactions. The grains were dispersed into dense clouds by bursts of air turbulence and allowed to form aggregates as the ballistic and turbulent motions damped out. During this

  20. Size and temperature effects on the viscosity of water inside carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Ye Hongfei

    2011-01-01

    Full Text Available Abstract The influences of the diameter (size of single-walled carbon nanotubes (SWCNTs and the temperature on the viscosity of water confined in SWCNTs are investigated by an "Eyring-MD" (molecular dynamics method. The results suggest that the relative viscosity of the confined water increases with increasing diameter and temperature, whereas the size-dependent trend of the relative viscosity is almost independent of the temperature. Based on the computational results, a fitting formula is proposed to calculate the size- and temperature- dependent water viscosity, which is useful for the computation on the nanoflow. To demonstrate the rationality of the calculated relative viscosity, the relative amount of the hydrogen bonds of water confined in SWCNTs is also computed. The results of the relative amount of the hydrogen bonds exhibit similar profiles with the curves of the relative viscosity. The present results should be instructive for understanding the coupling effect of the size and the temperature at the nanoscale.