WorldWideScience

Sample records for blood vessel segmentation

  1. Automatic segmentation of blood vessels from retinal fundus images ...

    Indian Academy of Sciences (India)

    through image processing and data mining techniques. Retinal image data, which is given as input for data mining process is considered as Big Data since every pixel forms a tuple. Blood vessel network is segmented through color space conversion and channel extraction, image pre-processing, Gabor filtering, application ...

  2. Blood Vessel Enhancement and Segmentation for Screening of Diabetic Retinopathy

    Directory of Open Access Journals (Sweden)

    Ibaa Jamal

    2012-06-01

    Full Text Available Diabetic retinopathy is an eye disease caused by the increase of insulin in blood and it is one of the main cuases of blindness in idusterlized countries. It is a progressive disease and needs an early detection and treatment. Vascular pattern of human retina helps the ophthalmologists in automated screening and diagnosis of diabetic retinopathy. In this article, we present a method for vascular pattern ehnacement and segmentation. We present an automated system which uses wavelets to enhance the vascular pattern and then it applies a piecewise threshold probing and adaptive thresholding for vessel localization and segmentation respectively. The method is evaluated and tested using publicly available retinal databases and we further compare our method with already proposed techniques.

  3. Blood vessel segmentation algorithms - Review of methods, datasets and evaluation metrics.

    Science.gov (United States)

    Moccia, Sara; De Momi, Elena; El Hadji, Sara; Mattos, Leonardo S

    2018-05-01

    Blood vessel segmentation is a topic of high interest in medical image analysis since the analysis of vessels is crucial for diagnosis, treatment planning and execution, and evaluation of clinical outcomes in different fields, including laryngology, neurosurgery and ophthalmology. Automatic or semi-automatic vessel segmentation can support clinicians in performing these tasks. Different medical imaging techniques are currently used in clinical practice and an appropriate choice of the segmentation algorithm is mandatory to deal with the adopted imaging technique characteristics (e.g. resolution, noise and vessel contrast). This paper aims at reviewing the most recent and innovative blood vessel segmentation algorithms. Among the algorithms and approaches considered, we deeply investigated the most novel blood vessel segmentation including machine learning, deformable model, and tracking-based approaches. This paper analyzes more than 100 articles focused on blood vessel segmentation methods. For each analyzed approach, summary tables are presented reporting imaging technique used, anatomical region and performance measures employed. Benefits and disadvantages of each method are highlighted. Despite the constant progress and efforts addressed in the field, several issues still need to be overcome. A relevant limitation consists in the segmentation of pathological vessels. Unfortunately, not consistent research effort has been addressed to this issue yet. Research is needed since some of the main assumptions made for healthy vessels (such as linearity and circular cross-section) do not hold in pathological tissues, which on the other hand require new vessel model formulations. Moreover, image intensity drops, noise and low contrast still represent an important obstacle for the achievement of a high-quality enhancement. This is particularly true for optical imaging, where the image quality is usually lower in terms of noise and contrast with respect to magnetic

  4. An Automatic Cognitive Graph-Based Segmentation for Detection of Blood Vessels in Retinal Images

    Directory of Open Access Journals (Sweden)

    Rasha Al Shehhi

    2016-01-01

    Full Text Available This paper presents a hierarchical graph-based segmentation for blood vessel detection in digital retinal images. This segmentation employs some of perceptual Gestalt principles: similarity, closure, continuity, and proximity to merge segments into coherent connected vessel-like patterns. The integration of Gestalt principles is based on object-based features (e.g., color and black top-hat (BTH morphology and context and graph-analysis algorithms (e.g., Dijkstra path. The segmentation framework consists of two main steps: preprocessing and multiscale graph-based segmentation. Preprocessing is to enhance lighting condition, due to low illumination contrast, and to construct necessary features to enhance vessel structure due to sensitivity of vessel patterns to multiscale/multiorientation structure. Graph-based segmentation is to decrease computational processing required for region of interest into most semantic objects. The segmentation was evaluated on three publicly available datasets. Experimental results show that preprocessing stage achieves better results compared to state-of-the-art enhancement methods. The performance of the proposed graph-based segmentation is found to be consistent and comparable to other existing methods, with improved capability of detecting small/thin vessels.

  5. Segmentation of retinal blood vessels using artificial neural networks for early detection of diabetic retinopathy

    Science.gov (United States)

    Mann, Kulwinder S.; Kaur, Sukhpreet

    2017-06-01

    There are various eye diseases in the patients suffering from the diabetes which includes Diabetic Retinopathy, Glaucoma, Hypertension etc. These all are the most common sight threatening eye diseases due to the changes in the blood vessel structure. The proposed method using supervised methods concluded that the segmentation of the retinal blood vessels can be performed accurately using neural networks training. It uses features which include Gray level features; Moment Invariant based features, Gabor filtering, Intensity feature, Vesselness feature for feature vector computation. Then the feature vector is calculated using only the prominent features.

  6. An automated blood vessel segmentation algorithm using histogram equalization and automatic threshold selection.

    Science.gov (United States)

    Saleh, Marwan D; Eswaran, C; Mueen, Ahmed

    2011-08-01

    This paper focuses on the detection of retinal blood vessels which play a vital role in reducing the proliferative diabetic retinopathy and for preventing the loss of visual capability. The proposed algorithm which takes advantage of the powerful preprocessing techniques such as the contrast enhancement and thresholding offers an automated segmentation procedure for retinal blood vessels. To evaluate the performance of the new algorithm, experiments are conducted on 40 images collected from DRIVE database. The results show that the proposed algorithm performs better than the other known algorithms in terms of accuracy. Furthermore, the proposed algorithm being simple and easy to implement, is best suited for fast processing applications.

  7. Segmentation of retinal blood vessels using normalized Gabor filters and automatic thresholding

    Directory of Open Access Journals (Sweden)

    Mandlenkosi Victor Gwetu

    2014-12-01

    Full Text Available Although computerized retinal image blood vessel segmentation has been extensively researched, there is still room for improvement in the quality of the segmented images. Since retinal image analysis is still widely used in the diagnosis of diabetic retinopathy, efficient and accurate image characterization techniques are required. Previous work has mainly focused on improving segmentation accuracy rates with little regard to the false positives that are produced by illumination variation. This research work presents a hybrid approach towards the segmentation of retinal blood vessels. New approaches towards the reduction of background illumination variation are proposed using normalized Gabor filtering. These are the base-offset encoding and a modified version of an existing zero-integral kernel technique. The valley emphasis automatic thresholding scheme is used to segment the Gabor response images. Experiments are conducted on the DRIVE and STARE retinal image data sets. Accuracy rates of up to 94% are achieved through the zero-integral and base offset methods. This is comparable with results from literature, where the same data sets are segmented using other classification techniques. The median-offset method is found to most effectively reduce background illumination variation.

  8. A SURVEY OF RETINA BASED DISEASE IDENTIFICATION USING BLOOD VESSEL SEGMENTATION

    Directory of Open Access Journals (Sweden)

    P Kuppusamy

    2016-11-01

    Full Text Available The colour retinal photography is one of the most essential features to identify the confirmation of various eye diseases. The iris is primary attribute to authenticate the human. This research work presents the survey and comparison of various blood vessel related feature identification, segmentation, extraction and enhancement methods. Additionally, this study is observed the various databases performance for storing the images and testing in minimal time. This paper is also provides the better performance techniques based on the survey.

  9. Retinal blood vessel segmentation in high resolution fundus photographs using automated feature parameter estimation

    Science.gov (United States)

    Orlando, José Ignacio; Fracchia, Marcos; del Río, Valeria; del Fresno, Mariana

    2017-11-01

    Several ophthalmological and systemic diseases are manifested through pathological changes in the properties and the distribution of the retinal blood vessels. The characterization of such alterations requires the segmentation of the vasculature, which is a tedious and time-consuming task that is infeasible to be performed manually. Numerous attempts have been made to propose automated methods for segmenting the retinal vasculature from fundus photographs, although their application in real clinical scenarios is usually limited by their ability to deal with images taken at different resolutions. This is likely due to the large number of parameters that have to be properly calibrated according to each image scale. In this paper we propose to apply a novel strategy for automated feature parameter estimation, combined with a vessel segmentation method based on fully connected conditional random fields. The estimation model is learned by linear regression from structural properties of the images and known optimal configurations, that were previously obtained for low resolution data sets. Our experiments in high resolution images show that this approach is able to estimate appropriate configurations that are suitable for performing the segmentation task without requiring to re-engineer parameters. Furthermore, our combined approach reported state of the art performance on the benchmark data set HRF, as measured in terms of the F1-score and the Matthews correlation coefficient.

  10. A Morphological Hessian Based Approach for Retinal Blood Vessels Segmentation and Denoising Using Region Based Otsu Thresholding

    Science.gov (United States)

    BahadarKhan, Khan; A Khaliq, Amir; Shahid, Muhammad

    2016-01-01

    Diabetic Retinopathy (DR) harm retinal blood vessels in the eye causing visual deficiency. The appearance and structure of blood vessels in retinal images play an essential part in the diagnoses of an eye sicknesses. We proposed a less computational unsupervised automated technique with promising results for detection of retinal vasculature by using morphological hessian based approach and region based Otsu thresholding. Contrast Limited Adaptive Histogram Equalization (CLAHE) and morphological filters have been used for enhancement and to remove low frequency noise or geometrical objects, respectively. The hessian matrix and eigenvalues approach used has been in a modified form at two different scales to extract wide and thin vessel enhanced images separately. Otsu thresholding has been further applied in a novel way to classify vessel and non-vessel pixels from both enhanced images. Finally, postprocessing steps has been used to eliminate the unwanted region/segment, non-vessel pixels, disease abnormalities and noise, to obtain a final segmented image. The proposed technique has been analyzed on the openly accessible DRIVE (Digital Retinal Images for Vessel Extraction) and STARE (STructured Analysis of the REtina) databases along with the ground truth data that has been precisely marked by the experts. PMID:27441646

  11. A Morphological Hessian Based Approach for Retinal Blood Vessels Segmentation and Denoising Using Region Based Otsu Thresholding.

    Directory of Open Access Journals (Sweden)

    Khan BahadarKhan

    Full Text Available Diabetic Retinopathy (DR harm retinal blood vessels in the eye causing visual deficiency. The appearance and structure of blood vessels in retinal images play an essential part in the diagnoses of an eye sicknesses. We proposed a less computational unsupervised automated technique with promising results for detection of retinal vasculature by using morphological hessian based approach and region based Otsu thresholding. Contrast Limited Adaptive Histogram Equalization (CLAHE and morphological filters have been used for enhancement and to remove low frequency noise or geometrical objects, respectively. The hessian matrix and eigenvalues approach used has been in a modified form at two different scales to extract wide and thin vessel enhanced images separately. Otsu thresholding has been further applied in a novel way to classify vessel and non-vessel pixels from both enhanced images. Finally, postprocessing steps has been used to eliminate the unwanted region/segment, non-vessel pixels, disease abnormalities and noise, to obtain a final segmented image. The proposed technique has been analyzed on the openly accessible DRIVE (Digital Retinal Images for Vessel Extraction and STARE (STructured Analysis of the REtina databases along with the ground truth data that has been precisely marked by the experts.

  12. Vessel segmentation in screening mammograms

    Science.gov (United States)

    Mordang, J. J.; Karssemeijer, N.

    2015-03-01

    Blood vessels are a major cause of false positives in computer aided detection systems for the detection of breast cancer. Therefore, the purpose of this study is to construct a framework for the segmentation of blood vessels in screening mammograms. The proposed framework is based on supervised learning using a cascade classifier. This cascade classifier consists of several stages where in each stage a GentleBoost classifier is trained on Haar-like features. A total of 30 cases were included in this study. In each image, vessel pixels were annotated by selecting pixels on the centerline of the vessel, control samples were taken by annotating a region without any visible vascular structures. This resulted in a total of 31,000 pixels marked as vascular and over 4 million control pixels. After training, the classifier assigns a vesselness likelihood to the pixels. The proposed framework was compared to three other vessel enhancing methods, i) a vesselness filter, ii) a gaussian derivative filter, and iii) a tubeness filter. The methods were compared in terms of area under the receiver operating characteristics curves, the Az values. The Az value of the cascade approach is 0:85. This is superior to the vesselness, Gaussian, and tubeness methods, with Az values of 0:77, 0:81, and 0:78, respectively. From these results, it can be concluded that our proposed framework is a promising method for the detection of vessels in screening mammograms.

  13. Retinal blood vessel segmentation using line operators and support vector classification.

    Science.gov (United States)

    Ricci, Elisa; Perfetti, Renzo

    2007-10-01

    In the framework of computer-aided diagnosis of eye diseases, retinal vessel segmentation based on line operators is proposed. A line detector, previously used in mammography, is applied to the green channel of the retinal image. It is based on the evaluation of the average grey level along lines of fixed length passing through the target pixel at different orientations. Two segmentation methods are considered. The first uses the basic line detector whose response is thresholded to obtain unsupervised pixel classification. As a further development, we employ two orthogonal line detectors along with the grey level of the target pixel to construct a feature vector for supervised classification using a support vector machine. The effectiveness of both methods is demonstrated through receiver operating characteristic analysis on two publicly available databases of color fundus images.

  14. BLOOD VESSELS SEGMENTATION BY RADIAL GRADIENT SYMMETRY METHOD VIA DIFFERENT THRESHOLD VALUES

    Directory of Open Access Journals (Sweden)

    Kumar Parasuraman

    2015-02-01

    Full Text Available A Key identifier for some diseases such as arteriosclerosis, hypertension, macular edema, diabetes mellitus, and the recognition qualities of geometrical changes in retinal veins and supply routes are recognized by Retinal Vein morphology and might be connected to a mixed carrier of clinical studies. Extraction of the retinal veins is a help to see all the more about its morphology and will give a superior wellspring of data for contemplating the different related diseases. Two of the significant issues in the extraction of retinal veins are the vicinity of a wide assortment of vessel widths and inhomogeneous foundation of the retina. Machine based dissection for computerized extraction of veins in retinal images will help eye mind pro's screen bigger populaces for vessel variations from the norm. In this extend a technique for robotized extraction of fundus pictures of the retinal vein is introduced. This paper displays another strategy for vein recognition in computerized retinal pictures. In this system first separating is carried out utilizing reciprocal channel to uproot the commotions in the picture and second, differentiates the fundus picture into red, green and blue channels. Third, Kirsch's format with spatial separating is utilized to discover the beginning and bearing of the veins and for smoothing the limits. Fourth, the veins are fragmented by applying threshold values and by utilizing outspread radial symmetry strategy. These segmentations are looked at against manual estimations and between imaging strategies. Its adequacy and strength with distinctive picture conditions, together with its smoothness and quick usage, make this vein division proposal suitable for retinal picture workstation examination, for example, computerized screening for right on time diabetic retinopathy discovery.

  15. Recent Advancements in Retinal Vessel Segmentation.

    Science.gov (United States)

    L Srinidhi, Chetan; Aparna, P; Rajan, Jeny

    2017-04-01

    Retinal vessel segmentation is a key step towards the accurate visualization, diagnosis, early treatment and surgery planning of ocular diseases. For the last two decades, a tremendous amount of research has been dedicated in developing automated methods for segmentation of blood vessels from retinal fundus images. Despite the fact, segmentation of retinal vessels still remains a challenging task due to the presence of abnormalities, varying size and shape of the vessels, non-uniform illumination and anatomical variability between subjects. In this paper, we carry out a systematic review of the most recent advancements in retinal vessel segmentation methods published in last five years. The objectives of this study are as follows: first, we discuss the most crucial preprocessing steps that are involved in accurate segmentation of vessels. Second, we review most recent state-of-the-art retinal vessel segmentation techniques which are classified into different categories based on their main principle. Third, we quantitatively analyse these methods in terms of its sensitivity, specificity, accuracy, area under the curve and discuss newly introduced performance metrics in current literature. Fourth, we discuss the advantages and limitations of the existing segmentation techniques. Finally, we provide an insight into active problems and possible future directions towards building successful computer-aided diagnostic system.

  16. Unsupervised Retinal Vessel Segmentation Using Combined Filters.

    Directory of Open Access Journals (Sweden)

    Wendeson S Oliveira

    Full Text Available Image segmentation of retinal blood vessels is a process that can help to predict and diagnose cardiovascular related diseases, such as hypertension and diabetes, which are known to affect the retinal blood vessels' appearance. This work proposes an unsupervised method for the segmentation of retinal vessels images using a combined matched filter, Frangi's filter and Gabor Wavelet filter to enhance the images. The combination of these three filters in order to improve the segmentation is the main motivation of this work. We investigate two approaches to perform the filter combination: weighted mean and median ranking. Segmentation methods are tested after the vessel enhancement. Enhanced images with median ranking are segmented using a simple threshold criterion. Two segmentation procedures are applied when considering enhanced retinal images using the weighted mean approach. The first method is based on deformable models and the second uses fuzzy C-means for the image segmentation. The procedure is evaluated using two public image databases, Drive and Stare. The experimental results demonstrate that the proposed methods perform well for vessel segmentation in comparison with state-of-the-art methods.

  17. Unsupervised Retinal Vessel Segmentation Using Combined Filters

    Science.gov (United States)

    Oliveira, Wendeson S.; Teixeira, Joyce Vitor; Ren, Tsang Ing; Cavalcanti, George D. C.; Sijbers, Jan

    2016-01-01

    Image segmentation of retinal blood vessels is a process that can help to predict and diagnose cardiovascular related diseases, such as hypertension and diabetes, which are known to affect the retinal blood vessels’ appearance. This work proposes an unsupervised method for the segmentation of retinal vessels images using a combined matched filter, Frangi’s filter and Gabor Wavelet filter to enhance the images. The combination of these three filters in order to improve the segmentation is the main motivation of this work. We investigate two approaches to perform the filter combination: weighted mean and median ranking. Segmentation methods are tested after the vessel enhancement. Enhanced images with median ranking are segmented using a simple threshold criterion. Two segmentation procedures are applied when considering enhanced retinal images using the weighted mean approach. The first method is based on deformable models and the second uses fuzzy C-means for the image segmentation. The procedure is evaluated using two public image databases, Drive and Stare. The experimental results demonstrate that the proposed methods perform well for vessel segmentation in comparison with state-of-the-art methods. PMID:26919587

  18. New Technique for Automatic Segmentation of Blood Vessels in CT Scan Images of Liver Based on Optimized Fuzzy C-Means Method.

    Science.gov (United States)

    Ahmadi, Katayoon; Karimi, Abbas; Fouladi Nia, Babak

    2016-01-01

    Automatic segmentation of medical CT scan images is one of the most challenging fields in digital image processing. The goal of this paper is to discuss the automatic segmentation of CT scan images to detect and separate vessels in the liver. The segmentation of liver vessels is very important in the liver surgery planning and identifying the structure of vessels and their relationship to tumors. Fuzzy C -means (FCM) method has already been proposed for segmentation of liver vessels. Due to classical optimization process, this method suffers lack of sensitivity to the initial values of class centers and segmentation of local minima. In this article, a method based on FCM in conjunction with genetic algorithms (GA) is applied for segmentation of liver's blood vessels. This method was simulated and validated using 20 CT scan images of the liver. The results showed that the accuracy, sensitivity, specificity, and CPU time of new method in comparison with FCM algorithm reaching up to 91%, 83.62, 94.11%, and 27.17 were achieved, respectively. Moreover, selection of optimal and robust parameters in the initial step led to rapid convergence of the proposed method. The outcome of this research assists medical teams in estimating disease progress and selecting proper treatments.

  19. Pre-operative image-based segmentation of the cranial nerves and blood vessels in microvascular decompression: Can we prevent unnecessary explorations?

    Science.gov (United States)

    Dolati, Parviz; Golby, Alexandra; Eichberg, Daniel; Abolfotoh, Mohamad; Dunn, Ian F; Mukundan, Srinivasan; Hulou, Mohamed M; Al-Mefty, Ossama

    2015-12-01

    This study was conducted to validate the accuracy of image-based pre-operative segmentation using the gold standard endoscopic and microscopic findings for localization and pre-operative diagnosis of the offensive vessel. Fourteen TN and 6 HS cases were randomly selected. All patients had 3T MRI, which included thin-sectioned 3D space T2, 3D Time of Flight and MPRAGE Sequences. Imaging sequences were loaded in BrainLab iPlanNet and fused. Individual segmentation of the affected cranial nerves and the compressing vascular structure was performed by a neurosurgeon, and the results were compared with the microscopic and endoscopic findings by two blinded neurosurgeons. For each case, at least three neurovascular landmarks were targeted. Each segmented neurovascular element was validated by manual placement of the navigation probe over each target, and errors of localization were measured in mm. All patients underwent retro-sigmoid craniotomy and MVD using both microscope and endoscope. Based on image segmentation, the compressing vessel was identified in all cases except one, which was also negative intraoperatively. Perfect correspondence was found between image-based segmentation and endoscopic and microscopic images and videos (Dice coefficient of 1). Measurement accuracy was 0.45 ± 0.21 mm (mean ± SD). Image-based segmentation is a promising method for pre-operative identification and localization of offending blood vessels causing HFS and TN. Using this method may prevent some unnecessary explorations on especially atypical cases with no vascular contacts. However, negative pre-operative image segmentation may not preclude one from exploration in classic cases of TN or HFS. A multicenter study with larger number of cases is recommended. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Blood vessel segmentation in modern wide-field retinal images in the presence of additive Gaussian noise.

    Science.gov (United States)

    Asem, Morteza Modarresi; Oveisi, Iman Sheikh; Janbozorgi, Mona

    2018-07-01

    Retinal blood vessels indicate some serious health ramifications, such as cardiovascular disease and stroke. Thanks to modern imaging technology, high-resolution images provide detailed information to help analyze retinal vascular features before symptoms associated with such conditions fully develop. Additionally, these retinal images can be used by ophthalmologists to facilitate diagnosis and the procedures of eye surgery. A fuzzy noise reduction algorithm was employed to enhance color images corrupted by Gaussian noise. The present paper proposes employing a contrast limited adaptive histogram equalization to enhance illumination and increase the contrast of retinal images captured from state-of-the-art cameras. Possessing directional properties, the multistructure elements method can lead to high-performance edge detection. Therefore, multistructure elements-based morphology operators are used to detect high-quality image ridges. Following this detection, the irrelevant ridges, which are not part of the vessel tree, were removed by morphological operators by reconstruction, attempting also to keep the thin vessels preserved. A combined method of connected components analysis (CCA) in conjunction with a thresholding approach was further used to identify the ridges that correspond to vessels. The application of CCA can yield higher efficiency when it is locally applied rather than applied on the whole image. The significance of our work lies in the way in which several methods are effectively combined and the originality of the database employed, making this work unique in the literature. Computer simulation results in wide-field retinal images with up to a 200-deg field of view are a testimony of the efficacy of the proposed approach, with an accuracy of 0.9524.

  1. Impact of segmentation errors and retinal blood vessels on retinal nerve fibre layer measurements using spectral-domain optical coherence tomography.

    Science.gov (United States)

    Ye, Cong; Yu, Marco; Leung, Christopher Kai-Shun

    2016-05-01

    To investigate the impact of retinal blood vessels and retinal nerve fibre layer (RNFL) segmentation errors on RNFL measurement. One eye of 180 subjects (60 normal, 66 mild-to-moderate and 54 advanced glaucoma subjects) was randomly selected for RNFL imaging with a spectral-domain OCT. The boundaries of the RNFL detected by the instrument software were checked, and the segmentation errors were corrected by a customized computer program. The differences in average and regional RNFL thicknesses (RNFLT) before and after the correction were analysed to determine the frequency of segmentation error (defined as an absolute difference in average RNFLT >5.0 μm). The ratio of retinal blood vessel cross-sectional area to RNFL cross-sectional area was calculated. The difference in average RNFLT (postsegmentation minus presegmentation refinement) ranged from -3.0 to 2.5 μm (mean ± standard deviation: 0.83 ± 0.86 μm) in the normal, -2.5 to 5.0 μm (0.56 ± 1.08 μm) in the mild-to-moderate glaucoma and -11.0 to 9.5 μm (0.05 ± 3.49 μm) in the advanced glaucoma groups (p = 0.003). A total of 15% of eyes had average RNFLT measurement error >5.0 μm in the advanced glaucoma group. The proportion of retinal blood vessels in the RNFL also increased with the severity of glaucoma (p < 0.001) with 4.2 ± 1.0% in the normal group, 4.9 ± 1.5% in the mild-to-moderate and 8.5 ± 3.5% in the advanced glaucoma groups. Inclusion of retinal blood vessels and RNFL segmentation error could adversely affect RNFL measurement, particularly in advanced glaucoma when the RNFL was thin. © 2015 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  2. Ionizing radiations and blood vessels

    International Nuclear Information System (INIS)

    Vorob'ev, E.I.; Stepanov, R.P.

    1985-01-01

    Data on phenomenology of radiation-induced changes in blood vessels are systematized and authors' experience is generalized. Modern concepts about processes leading to vessel structure injury after irradiation is critically analyzed. Special attention is paid to reparation and compensation of X-ray vessel injury, consideration of which is not yet sufficiently elucidated in literature

  3. Ionizing radiations and blood vessels

    International Nuclear Information System (INIS)

    Vorob'ev, E.I.; Stepanov, R.P.

    1985-01-01

    Data on phenomeology of radiation changes of blood vessels are systemized and the authors' experience is generalyzed. A critical analysis of modern conceptions on processes resulting in vessel structure damage after irradiation, is given. Special attention is paid to reparation and compensation of radiation injury of vessels

  4. An automated vessel segmentation of retinal images using multiscale vesselness

    International Nuclear Information System (INIS)

    Ben Abdallah, M.; Malek, J.; Tourki, R.; Krissian, K.

    2011-01-01

    The ocular fundus image can provide information on pathological changes caused by local ocular diseases and early signs of certain systemic diseases, such as diabetes and hypertension. Automated analysis and interpretation of fundus images has become a necessary and important diagnostic procedure in ophthalmology. The extraction of blood vessels from retinal images is an important and challenging task in medical analysis and diagnosis. In this paper, we introduce an implementation of the anisotropic diffusion which allows reducing the noise and better preserving small structures like vessels in 2D images. A vessel detection filter, based on a multi-scale vesselness function, is then applied to enhance vascular structures.

  5. Multiscale Vessel-guided Airway Tree Segmentation

    DEFF Research Database (Denmark)

    Lo, Pechin Chien Pau; Sporring, Jon; de Bruijne, Marleen

    2009-01-01

    This paper presents a method for airway tree segmentation that uses a combination of a trained airway appearance model, vessel and airway orientation information, and region growing. The method uses a voxel classification based appearance model, which involves the use of a classifier that is trai......This paper presents a method for airway tree segmentation that uses a combination of a trained airway appearance model, vessel and airway orientation information, and region growing. The method uses a voxel classification based appearance model, which involves the use of a classifier...

  6. Blood vessels, circulation and blood pressure.

    Science.gov (United States)

    Hendry, Charles; Farley, Alistair; McLafferty, Ella

    This article, which forms part of the life sciences series, describes the vessels of the body's blood and lymphatic circulatory systems. Blood pressure and its regulatory systems are examined. The causes and management of hypertension are also explored. It is important that nurses and other healthcare professionals understand the various mechanisms involved in the regulation of blood pressure to prevent high blood pressure or ameliorate its damaging consequences.

  7. Vessel-guided airway tree segmentation

    DEFF Research Database (Denmark)

    Lo, Pechin Chien Pau; Sporring, Jon; Ashraf, Haseem

    2010-01-01

    method is evaluated on 250 low dose computed tomography images from a lung cancer screening trial. Our experiments showed that applying the region growing algorithm on the airway appearance model produces more complete airway segmentations, leading to on average 20% longer trees, and 50% less leakage......This paper presents a method for airway tree segmentation that uses a combination of a trained airway appearance model, vessel and airway orientation information, and region growing. We propose a voxel classification approach for the appearance model, which uses a classifier that is trained...... to differentiate between airway and non-airway voxels. This is in contrast to previous works that use either intensity alone or hand crafted models of airway appearance. We show that the appearance model can be trained with a set of easily acquired, incomplete, airway tree segmentations. A vessel orientation...

  8. An automated method for accurate vessel segmentation

    Science.gov (United States)

    Yang, Xin; Liu, Chaoyue; Le Minh, Hung; Wang, Zhiwei; Chien, Aichi; (Tim Cheng, Kwang-Ting

    2017-05-01

    Vessel segmentation is a critical task for various medical applications, such as diagnosis assistance of diabetic retinopathy, quantification of cerebral aneurysm’s growth, and guiding surgery in neurosurgical procedures. Despite technology advances in image segmentation, existing methods still suffer from low accuracy for vessel segmentation in the two challenging while common scenarios in clinical usage: (1) regions with a low signal-to-noise-ratio (SNR), and (2) at vessel boundaries disturbed by adjacent non-vessel pixels. In this paper, we present an automated system which can achieve highly accurate vessel segmentation for both 2D and 3D images even under these challenging scenarios. Three key contributions achieved by our system are: (1) a progressive contrast enhancement method to adaptively enhance contrast of challenging pixels that were otherwise indistinguishable, (2) a boundary refinement method to effectively improve segmentation accuracy at vessel borders based on Canny edge detection, and (3) a content-aware region-of-interests (ROI) adjustment method to automatically determine the locations and sizes of ROIs which contain ambiguous pixels and demand further verification. Extensive evaluation of our method is conducted on both 2D and 3D datasets. On a public 2D retinal dataset (named DRIVE (Staal 2004 IEEE Trans. Med. Imaging 23 501-9)) and our 2D clinical cerebral dataset, our approach achieves superior performance to the state-of-the-art methods including a vesselness based method (Frangi 1998 Int. Conf. on Medical Image Computing and Computer-Assisted Intervention) and an optimally oriented flux (OOF) based method (Law and Chung 2008 European Conf. on Computer Vision). An evaluation on 11 clinical 3D CTA cerebral datasets shows that our method can achieve 94% average accuracy with respect to the manual segmentation reference, which is 23% to 33% better than the five baseline methods (Yushkevich 2006 Neuroimage 31 1116-28; Law and Chung 2008

  9. Robust shape regression for supervised vessel segmentation and its application to coronary segmentation in CTA

    DEFF Research Database (Denmark)

    Schaap, Michiel; van Walsum, Theo; Neefjes, Lisan

    2011-01-01

    This paper presents a vessel segmentation method which learns the geometry and appearance of vessels in medical images from annotated data and uses this knowledge to segment vessels in unseen images. Vessels are segmented in a coarse-to-fine fashion. First, the vessel boundaries are estimated...

  10. Multi-level deep supervised networks for retinal vessel segmentation.

    Science.gov (United States)

    Mo, Juan; Zhang, Lei

    2017-12-01

    Changes in the appearance of retinal blood vessels are an important indicator for various ophthalmologic and cardiovascular diseases, including diabetes, hypertension, arteriosclerosis, and choroidal neovascularization. Vessel segmentation from retinal images is very challenging because of low blood vessel contrast, intricate vessel topology, and the presence of pathologies such as microaneurysms and hemorrhages. To overcome these challenges, we propose a neural network-based method for vessel segmentation. A deep supervised fully convolutional network is developed by leveraging multi-level hierarchical features of the deep networks. To improve the discriminative capability of features in lower layers of the deep network and guide the gradient back propagation to overcome gradient vanishing, deep supervision with auxiliary classifiers is incorporated in some intermediate layers of the network. Moreover, the transferred knowledge learned from other domains is used to alleviate the issue of insufficient medical training data. The proposed approach does not rely on hand-crafted features and needs no problem-specific preprocessing or postprocessing, which reduces the impact of subjective factors. We evaluate the proposed method on three publicly available databases, the DRIVE, STARE, and CHASE_DB1 databases. Extensive experiments demonstrate that our approach achieves better or comparable performance to state-of-the-art methods with a much faster processing speed, making it suitable for real-world clinical applications. The results of cross-training experiments demonstrate its robustness with respect to the training set. The proposed approach segments retinal vessels accurately with a much faster processing speed and can be easily applied to other biomedical segmentation tasks.

  11. Hybrid Segmentation of Vessels and Automated Flow Measures in In-Vivo Ultrasound Imaging

    DEFF Research Database (Denmark)

    Moshavegh, Ramin; Martins, Bo; Hansen, Kristoffer Lindskov

    2016-01-01

    Vector Flow Imaging (VFI) has received an increasing attention in the scientific field of ultrasound, as it enables angle independent visualization of blood flow. VFI can be used in volume flow estimation, but a vessel segmentation is needed to make it fully automatic. A novel vessel segmentation...

  12. Segmentation and packaging reactor vessels internals

    International Nuclear Information System (INIS)

    Boucau, Joseph

    2014-01-01

    Document available in abstract form only, full text follows: With more than 25 years of experience in the development of reactor vessel internals and reactor vessel segmentation and packaging technology, Westinghouse has accumulated significant know-how in the reactor dismantling market. The primary challenges of a segmentation and packaging project are to separate the highly activated materials from the less-activated materials and package them into appropriate containers for disposal. Since disposal cost is a key factor, it is important to plan and optimize waste segmentation and packaging. The choice of the optimum cutting technology is also important for a successful project implementation and depends on some specific constraints. Detailed 3-D modeling is the basis for tooling design and provides invaluable support in determining the optimum strategy for component cutting and disposal in waste containers, taking account of the radiological and packaging constraints. The usual method is to start at the end of the process, by evaluating handling of the containers, the waste disposal requirements, what type and size of containers are available for the different disposal options, and working backwards to select a cutting method and finally the cut geometry required. The 3-D models can include intelligent data such as weight, center of gravity, curie content, etc, for each segmented piece, which is very useful when comparing various cutting, handling and packaging options. The detailed 3-D analyses and thorough characterization assessment can draw the attention to material potentially subject to clearance, either directly or after certain period of decay, to allow recycling and further disposal cost reduction. Westinghouse has developed a variety of special cutting and handling tools, support fixtures, service bridges, water filtration systems, video-monitoring systems and customized rigging, all of which are required for a successful reactor vessel internals

  13. Photoacoustic determination of blood vessel diameter

    NARCIS (Netherlands)

    Kolkman, R.G.M.; Klaessens, John H.G.M.; Hondebrink, Erwin; Hopman, Jeroen C.W.; de Mul, F.F.M.; Steenbergen, Wiendelt; Thijssen, Johan M.; van Leeuwen, Ton

    2004-01-01

    A double-ring sensor was applied in photoacoustic tomographic imaging of artificial blood vessels as well as blood vessels in a rabbit ear. The peak-topeak time (τ pp) of the laser (1064 nm) induced pressure transient was used to estimate the axial vessel diameter. Comparison with the actual vessel

  14. SEGMENTAL PATTERN OF INFILTRATES OVER RETINAL VESSELS IN FUNGAL ENDOPHTHALMITIS.

    Science.gov (United States)

    Appa, Suri N

    2015-01-01

    To describe the case of a patient with Candida tropicalis endophthalmitis who presented with a pattern of segmentally distributed preretinal infiltrates overlying the retinal blood vessels. A retrospective chart review was performed. A 72-year-old East Indian male presented with redness, pain, photosensitivity, and loss of vision in the right eye for 1 month. He had been recently hospitalized for necrotizing pancreatitis and had been receiving intravenous medications as well as parenteral nutrition through a peripherally inserted central catheter. Fundus examination revealed moderate vitreous cells and infiltrates, including a segmental pattern of preretinal bead-like opacities along several blood vessels. The patient underwent emergent vitrectomy with injection of antibiotics and antifungal medications. Vitreous cultures grew C. tropicalis. The patient was treated with oral antifungal medication for 6 weeks. By 7 weeks after surgery, all infiltrates and inflammatory cells had completely resolved. The imaging and intraoperative observations suggest that the opacities behaved like infiltrates and were associated with vitreous rather than vascular inflammation. A segmental pattern of preretinal infiltrates over retinal vessels can be a presenting feature in endogenous fungal endophthalmitis. The observations in this case may contribute to understanding the pathophysiology of the findings.

  15. NMR blood vessel imaging method and apparatus

    International Nuclear Information System (INIS)

    Riederer, S.J.

    1988-01-01

    A high speed method of forming computed images of blood vessels based on measurements of characteristics of a body is described comprising the steps of: subjecting a predetermined body area containing blood vessels of interest to, successively, applications of a short repetition time (TR) NMR pulse sequence during the period of high blood velocity and then to corresponding applications during the period of low blood velocity for successive heart beat cycles; weighting the collected imaging data from each application of the NMR pulse sequence according to whether the data was acquired during the period of high blood velocity or a period of low blood velocity of the corresponding heart beat cycle; accumulating weighted imaging data from a plurality of NMR pulse sequences corresponding to high blood velocity periods and from a plurality of NMR pulse sequences corresponding to low blood velocity periods; subtracting the weighted imaging data corresponding to each specific phase encoding acquired during the high blood velocity periods from the weighted imaging data for the same phase encoding corresponding to low blood velocity periods in order to compute blood vessel imaging data; and forming an image of the blood vessels of interest from the blood vessel imaging data

  16. Vessel segmentation and microaneurysm detection using discriminative dictionary learning and sparse representation.

    Science.gov (United States)

    Javidi, Malihe; Pourreza, Hamid-Reza; Harati, Ahad

    2017-02-01

    Diabetic retinopathy (DR) is a major cause of visual impairment, and the analysis of retinal image can assist patients to take action earlier when it is more likely to be effective. The accurate segmentation of blood vessels in the retinal image can diagnose DR directly. In this paper, a novel scheme for blood vessel segmentation based on discriminative dictionary learning (DDL) and sparse representation has been proposed. The proposed system yields a strong representation which contains the semantic concept of the image. To extract blood vessel, two separate dictionaries, for vessel and non-vessel, capable of providing reconstructive and discriminative information of the retinal image are learned. In the test step, an unseen retinal image is divided into overlapping patches and classified to vessel and non-vessel patches. Then, a voting scheme is applied to generate the binary vessel map. The proposed vessel segmentation method can achieve the accuracy of 95% and a sensitivity of 75% in the same range of specificity 97% on two public datasets. The results show that the proposed method can achieve comparable results to existing methods and decrease false positive vessels in abnormal retinal images with pathological regions. Microaneurysm (MA) is the earliest sign of DR that appears as a small red dot on the surface of the retina. Despite several attempts to develop automated MA detection systems, it is still a challenging problem. In this paper, a method for MA detection, which is similar to our vessel segmentation approach, is proposed. In our method, a candidate detection algorithm based on the Morlet wavelet is applied to identify all possible MA candidates. In the next step, two discriminative dictionaries with the ability to distinguish MA from non-MA object are learned. These dictionaries are then used to classify the detected candidate objects. The evaluations indicate that the proposed MA detection method achieves higher average sensitivity about 2

  17. Automatic Segmentation of Vessels in In-Vivo Ultrasound Scans

    DEFF Research Database (Denmark)

    Tamimi-Sarnikowski, Philip; Brink-Kjær, Andreas; Moshavegh, Ramin

    2017-01-01

    was evaluated empirically and applied to a dataset of in-vivo 1770 images recorded from 8 healthy subjects. The segmentation results were compared to manual delineation performed by two experienced users. The results showed a sensitivity and specificity of 90.41 ± 11.2 % and 97.93 ± 5.7 % (mean ± standard......Ultrasound has become highly popular to monitor atherosclerosis, by scanning the carotid artery. The screening involves measuring the thickness of the vessel wall and diameter of the lumen. An automatic segmentation of the vessel lumen, can enable the determination of lumen diameter. This paper...... presents a fully automatic segmentation algorithm, for robustly segmenting the vessel lumen in longitudinal B-mode ultrasound images. The automatic segmentation is performed using a combination of B-mode and power Doppler images. The proposed algorithm includes a series of preprocessing steps, and performs...

  18. Subconjunctival Hemorrhage (Broken Blood Vessel in Eye)

    Science.gov (United States)

    Subconjunctival hemorrhage (broken blood vessel in eye) Overview A subconjunctival hemorrhage (sub-kun-JUNK-tih-vul HEM-uh-ruj) ... may not even realize you have a subconjunctival hemorrhage until you look in the mirror and notice ...

  19. Detection of blood vessels on coronary cineangiograms

    International Nuclear Information System (INIS)

    Yanagihara, Yosio; Sugahara, Tetsuo; Uyama, Chikao

    1988-01-01

    To determine the most suitable filter for measuring blood vessel width on a coronary cineagiogram, several sizes of vessel phantoms were taken under different energies and contrast substance densities on cine film and the vessel widths were calculated by using several edge detection filters. Among the filters, the entropy and Gaussian filters were found to be twice as accurate as the derivative filters. The entropy filter was applied to one frame of a coronary angiogram, and the detected vessel edges were as accurate as the determined by a radiologist. This filter can be applied to coronary cineangiograms, including stenosed sites. (author)

  20. Blood vessel modeling for interactive simulation of interventional neuroradiology procedures.

    Science.gov (United States)

    Kerrien, E; Yureidini, A; Dequidt, J; Duriez, C; Anxionnat, R; Cotin, S

    2017-01-01

    Endovascular interventions can benefit from interactive simulation in their training phase but also during pre-operative and intra-operative phases if simulation scenarios are based on patient data. A key feature in this context is the ability to extract, from patient images, models of blood vessels that impede neither the realism nor the performance of simulation. This paper addresses both the segmentation and reconstruction of the vasculature from 3D Rotational Angiography data, and adapted to simulation: An original tracking algorithm is proposed to segment the vessel tree while filtering points extracted at the vessel surface in the vicinity of each point on the centerline; then an automatic procedure is described to reconstruct each local unstructured point set as a skeleton-based implicit surface (blobby model). The output of successively applying both algorithms is a new model of vasculature as a tree of local implicit models. The segmentation algorithm is compared with Multiple Hypothesis Testing (MHT) algorithm (Friman et al., 2010) on patient data, showing its greater ability to track blood vessels. The reconstruction algorithm is evaluated on both synthetic and patient data and demonstrate its ability to fit points with a subvoxel precision. Various tests are also reported where our model is used to simulate catheter navigation in interventional neuroradiology. An excellent realism, and much lower computational costs are reported when compared to triangular mesh surface models. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Retinal Vessels Segmentation Techniques and Algorithms: A Survey

    Directory of Open Access Journals (Sweden)

    Jasem Almotiri

    2018-01-01

    Full Text Available Retinal vessels identification and localization aim to separate the different retinal vasculature structure tissues, either wide or narrow ones, from the fundus image background and other retinal anatomical structures such as optic disc, macula, and abnormal lesions. Retinal vessels identification studies are attracting more and more attention in recent years due to non-invasive fundus imaging and the crucial information contained in vasculature structure which is helpful for the detection and diagnosis of a variety of retinal pathologies included but not limited to: Diabetic Retinopathy (DR, glaucoma, hypertension, and Age-related Macular Degeneration (AMD. With the development of almost two decades, the innovative approaches applying computer-aided techniques for segmenting retinal vessels are becoming more and more crucial and coming closer to routine clinical applications. The purpose of this paper is to provide a comprehensive overview for retinal vessels segmentation techniques. Firstly, a brief introduction to retinal fundus photography and imaging modalities of retinal images is given. Then, the preprocessing operations and the state of the art methods of retinal vessels identification are introduced. Moreover, the evaluation and validation of the results of retinal vessels segmentation are discussed. Finally, an objective assessment is presented and future developments and trends are addressed for retinal vessels identification techniques.

  2. Trends in Tissue Engineering for Blood Vessels

    Science.gov (United States)

    Nemeno-Guanzon, Judee Grace; Lee, Soojung; Berg, Johan Robert; Jo, Yong Hwa; Yeo, Jee Eun; Nam, Bo Mi; Koh, Yong-Gon; Lee, Jeong Ik

    2012-01-01

    Over the years, cardiovascular diseases continue to increase and affect not only human health but also the economic stability worldwide. The advancement in tissue engineering is contributing a lot in dealing with this immediate need of alleviating human health. Blood vessel diseases are considered as major cardiovascular health problems. Although blood vessel transplantation is the most convenient treatment, it has been delimited due to scarcity of donors and the patient's conditions. However, tissue-engineered blood vessels are promising alternatives as mode of treatment for blood vessel defects. The purpose of this paper is to show the importance of the advancement on biofabrication technology for treatment of soft tissue defects particularly for vascular tissues. This will also provide an overview and update on the current status of tissue reconstruction especially from autologous stem cells, scaffolds, and scaffold-free cellular transplantable constructs. The discussion of this paper will be focused on the historical view of cardiovascular tissue engineering and stem cell biology. The representative studies featured in this paper are limited within the last decade in order to trace the trend and evolution of techniques for blood vessel tissue engineering. PMID:23251085

  3. Vessel Segmentation in Retinal Images Using Multi-scale Line Operator and K-Means Clustering.

    Science.gov (United States)

    Saffarzadeh, Vahid Mohammadi; Osareh, Alireza; Shadgar, Bita

    2014-04-01

    Detecting blood vessels is a vital task in retinal image analysis. The task is more challenging with the presence of bright and dark lesions in retinal images. Here, a method is proposed to detect vessels in both normal and abnormal retinal fundus images based on their linear features. First, the negative impact of bright lesions is reduced by using K-means segmentation in a perceptive space. Then, a multi-scale line operator is utilized to detect vessels while ignoring some of the dark lesions, which have intensity structures different from the line-shaped vessels in the retina. The proposed algorithm is tested on two publicly available STARE and DRIVE databases. The performance of the method is measured by calculating the area under the receiver operating characteristic curve and the segmentation accuracy. The proposed method achieves 0.9483 and 0.9387 localization accuracy against STARE and DRIVE respectively.

  4. Segmental blood pressure after total hip replacement

    DEFF Research Database (Denmark)

    Gebuhr, Peter Henrik; Soelberg, M; Henriksen, Jens Henrik

    1992-01-01

    Twenty-nine patients due to have a total hip replacement had their systemic systolic and segmental blood pressures measured prior to operation and 1 and 6 weeks postoperatively. No patients had signs of ischemia. The segmental blood pressure was measured at the ankle and at the toes. A significan...

  5. AN EFFICIENT TECHNIQUE FOR RETINAL VESSEL SEGMENTATION AND DENOISING USING MODIFIED ISODATA AND CLAHE

    Directory of Open Access Journals (Sweden)

    Khan Bahadar Khan

    2016-11-01

    Full Text Available Retinal damage caused due to complications of diabetes is known as Diabetic Retinopathy (DR. In this case, the vision is obscured due to the damage of retinal tinny blood vessels of the retina. These tinny blood vessels may cause leakage which affect the vision and can lead to complete blindness. Identification of these new retinal vessels and their structure is essential for analysis of DR. Automatic blood vessels segmentation plays a significant role to assist subsequent automatic methodologies that aid to such analysis. In literature most of the people have used computationally hungry a strong preprocessing steps followed by a simple thresholding and post processing, But in our proposed technique we utilize an arrangement of  light pre-processing which consists of Contrast Limited Adaptive Histogram Equalization (CLAHE for contrast enhancement, a difference image of green channel from its Gaussian blur filtered image to remove local noise or geometrical object, Modified Iterative Self Organizing Data Analysis Technique (MISODATA for segmentation of vessel and non-vessel pixels based on global and local thresholding, and a strong  post processing using region properties (area, eccentricity to eliminate the unwanted region/segment, non-vessel pixels and noise that never been used to reject misclassified foreground pixels. The strategy is tested on the publically accessible DRIVE (Digital Retinal Images for Vessel Extraction and STARE (STructured Analysis of the REtina databases. The performance of proposed technique is assessed comprehensively and the acquired accuracy, robustness, low complexity and high efficiency and very less computational time that make the method an efficient tool for automatic retinal image analysis. Proposed technique perform well as compared to the existing strategies on the online available databases in term of accuracy, sensitivity, specificity, false positive rate, true positive rate and area under receiver

  6. Automated measurement of retinal blood vessel tortuosity

    Science.gov (United States)

    Joshi, Vinayak; Reinhardt, Joseph M.; Abramoff, Michael D.

    2010-03-01

    Abnormalities in the vascular pattern of the retina are associated with retinal diseases and are also risk factors for systemic diseases, especially cardiovascular diseases. The three-dimensional retinal vascular pattern is mostly formed congenitally, but is then modified over life, in response to aging, vessel wall dystrophies and long term changes in blood flow and pressure. A characteristic of the vascular pattern that is appreciated by clinicians is vascular tortuosity, i.e. how curved or kinked a blood vessel, either vein or artery, appears along its course. We developed a new quantitative metric for vascular tortuosity, based on the vessel's angle of curvature, length of the curved vessel over its chord length (arc to chord ratio), number of curvature sign changes, and combined these into a unidimensional metric, Tortuosity Index (TI). In comparison to other published methods this method can estimate appropriate TI for vessels with constant curvature sign and vessels with equal arc to chord ratios, as well. We applied this method to a dataset of 15 digital fundus images of 8 patients with Facioscapulohumeral muscular dystrophy (FSHD), and to the other publically available dataset of 60 fundus images of normal cases and patients with hypertensive retinopathy, of which the arterial and venous tortuosities have also been graded by masked experts (ophthalmologists). The method produced exactly the same rank-ordered list of vessel tortuosity (TI) values as obtained by averaging the tortuosity grading given by 3 ophthalmologists for FSHD dataset and a list of TI values with high ranking correlation with the ophthalmologist's grading for the other dataset. Our results show that TI has potential to detect and evaluate abnormal retinal vascular structure in early diagnosis and prognosis of retinopathies.

  7. Blood vessel classification into arteries and veins in retinal images

    Science.gov (United States)

    Kondermann, Claudia; Kondermann, Daniel; Yan, Michelle

    2007-03-01

    The prevalence of diabetes is expected to increase dramatically in coming years; already today it accounts for a major proportion of the health care budget in many countries. Diabetic Retinopathy (DR), a micro vascular complication very often seen in diabetes patients, is the most common cause of visual loss in working age population of developed countries today. Since the possibility of slowing or even stopping the progress of this disease depends on the early detection of DR, an automatic analysis of fundus images would be of great help to the ophthalmologist due to the small size of the symptoms and the large number of patients. An important symptom for DR are abnormally wide veins leading to an unusually low ratio of the average diameter of arteries to veins (AVR). There are also other diseases like high blood pressure or diseases of the pancreas with one symptom being an abnormal AVR value. To determine it, a classification of vessels as arteries or veins is indispensable. As to our knowledge despite the importance there have only been two approaches to vessel classification yet. Therefore we propose an improved method. We compare two feature extraction methods and two classification methods based on support vector machines and neural networks. Given a hand-segmentation of vessels our approach achieves 95.32% correctly classified vessel pixels. This value decreases by 10% on average, if the result of a segmentation algorithm is used as basis for the classification.

  8. Optimization of reactor pressure vessel internals segmentation in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung-Sik [Dankook Univ., Chungnam (Korea, Republic of). Dept. of Nuclear Engineering

    2017-11-15

    One of the most challenging tasks during plant decommissioning is the removal of highly radioactive internal components from the reactor pressure vessel (RPV). For RPV internals dismantling, it is essential that all activities are thoroughly planned and discussed in the early stage of the decommissioning project. One of the key activities in the detailed planning is to prepare the segmentation and packaging plan that describes the sequential steps required to segment, separate, and package each individual component of RPV, based on an activation analysis and component characterization study.

  9. Vessel-guided airway segmentation based on voxel classification

    DEFF Research Database (Denmark)

    Lo, Pechin Chien Pau; Sporring, Jon; Ashraf, Haseem

    2008-01-01

    This paper presents a method for improving airway tree segmentation using vessel orientation information. We use the fact that an airway branch is always accompanied by an artery, with both structures having similar orientations. This work is based on a  voxel classification airway segmentation...... method proposed previously. The probability of a voxel belonging to the airway, from the voxel classification method, is augmented with an orientation similarity measure as a criterion for region growing. The orientation similarity measure of a voxel indicates how similar is the orientation...... of the surroundings of a voxel, estimated based on a tube model, is to that of a neighboring vessel. The proposed method is tested on 20 CT images from different subjects selected randomly from a lung cancer screening study. Length of the airway branches from the results of the proposed method are significantly...

  10. Comparing algorithms for automated vessel segmentation in computed tomography scans of the lung: The VESSEL12 study

    NARCIS (Netherlands)

    Rudyanto, R.D.; Kerkstra, S.; Rikxoort, E.M. van; Fetita, C.; Brillet, P.-Y.; Lefevre, C.; Xue, W.; Zhu, X; Liang, J.; Öksüz, I.; Ünay, D.; Kadipasaoglu, K.; Estépar, R.S.J.; Ross, J.C.; Washko, G.R.; Prieto, J.-C.; Hoyos, M.H.a.; Orkisz, M.; Meine, H.; Hüllebrand, M.; Stöcker, C.; Mir, F.L.; Naranjo, V.; Villanueva, E.; Staring, M.; Xiao, C.; Stoel, B.C.; Fabijanska, A.; Smistad, E.; Elster, A.C.; Lindseth, F.; Foruzan, A.H.; Kiros, R.; Popuri, K.; Cobzas, D.; Jimenez-Carretero, D.; Santos, A.; Ledesma-Carbayo, M.J.; Helmberger, M.; Urschler, M.; Pienn, M.; Bosboom, D.G.H.; Campo, A.; Prokop, M.; Jong, P.A. de; Solorzano, C.O. de; Muñoz-Barrutia, A.; Ginneken, B. van

    2014-01-01

    The {VESSEL12} ({VES}sel {SE}mentation in the {L}ung) challenge objectively compares the performance of different algorithms to identify vessels in thoracic computed tomography ({CT}) scans. Vessel segmentation is fundamental in computer aided processing of data generated by 3D imaging modalities.

  11. Retinal Vessel Segmentation via Structure Tensor Coloring and Anisotropy Enhancement

    Directory of Open Access Journals (Sweden)

    Mehmet Nergiz

    2017-11-01

    Full Text Available Retinal vessel segmentation is one of the preliminary tasks for developing diagnosis software systems related to various retinal diseases. In this study, a fully automated vessel segmentation system is proposed. Firstly, the vessels are enhanced using a Frangi Filter. Afterwards, Structure Tensor is applied to the response of the Frangi Filter and a 4-D tensor field is obtained. After decomposing the Eigenvalues of the tensor field, the anisotropy between the principal Eigenvalues are enhanced exponentially. Furthermore, this 4-D tensor field is converted to the 3-D space which is composed of energy, anisotropy and orientation and then a Contrast Limited Adaptive Histogram Equalization algorithm is applied to the energy space. Later, the obtained energy space is multiplied by the enhanced mean surface curvature of itself and the modified 3-D space is converted back to the 4-D tensor field. Lastly, the vessel segmentation is performed by using Otsu algorithm and tensor coloring method which is inspired by the ellipsoid tensor visualization technique. Finally, some post-processing techniques are applied to the segmentation result. In this study, the proposed method achieved mean sensitivity of 0.8123, 0.8126, 0.7246 and mean specificity of 0.9342, 0.9442, 0.9453 as well as mean accuracy of 0.9183, 0.9442, 0.9236 for DRIVE, STARE and CHASE_DB1 datasets, respectively. The mean execution time of this study is 6.104, 6.4525 and 18.8370 s for the aforementioned three datasets respectively.

  12. Best practices for preparing vessel internals segmentation projects

    International Nuclear Information System (INIS)

    Boucau, Joseph; Segerud, Per; Sanchez, Moises

    2016-01-01

    Westinghouse has been involved in reactor internals segmentation activities in the U.S. and Europe for 30 years. Westinghouse completed in 2015 the segmentation of the reactor vessel and reactor vessel internals at the Jose Cabrera nuclear power plant in Spain and a similar project is on-going at Chooz A in France. For all reactor dismantling projects, it is essential that all activities are thoroughly planned and discussed up-front together with the customer. Detailed planning is crucial for achieving a successful project. One key activity in the preparation phase is the 'Segmentation and Packaging Plan' that documents the sequential steps required to segment, separate, and package each individual component, based on an activation analysis and component characterization study. Detailed procedures and specialized rigging equipment have to be developed to provide safeguards for preventing certain identified risks. The preparatory work can include some plant civil structure modifications for making the segmentation work easier and safer. Some original plant equipment is sometimes not suitable enough and need to be replaced. Before going to the site, testing and qualification are performed on full scale mock-ups in a specially designed pool for segmentation purposes. The mockup testing is an important step in order to verify the function of the equipment and minimize risk on site. This paper is describing the typical activities needed for preparing the reactor internals segmentation activities using under water mechanical cutting techniques. It provides experiences and lessons learned that Westinghouse has collected from its recent projects and that will be applied for the new awarded projects. (authors)

  13. Supervised retinal vessel segmentation from color fundus images based on matched filtering and AdaBoost classifier.

    Directory of Open Access Journals (Sweden)

    Nogol Memari

    Full Text Available The structure and appearance of the blood vessel network in retinal fundus images is an essential part of diagnosing various problems associated with the eyes, such as diabetes and hypertension. In this paper, an automatic retinal vessel segmentation method utilizing matched filter techniques coupled with an AdaBoost classifier is proposed. The fundus image is enhanced using morphological operations, the contrast is increased using contrast limited adaptive histogram equalization (CLAHE method and the inhomogeneity is corrected using Retinex approach. Then, the blood vessels are enhanced using a combination of B-COSFIRE and Frangi matched filters. From this preprocessed image, different statistical features are computed on a pixel-wise basis and used in an AdaBoost classifier to extract the blood vessel network inside the image. Finally, the segmented images are postprocessed to remove the misclassified pixels and regions. The proposed method was validated using publicly accessible Digital Retinal Images for Vessel Extraction (DRIVE, Structured Analysis of the Retina (STARE and Child Heart and Health Study in England (CHASE_DB1 datasets commonly used for determining the accuracy of retinal vessel segmentation methods. The accuracy of the proposed segmentation method was comparable to other state of the art methods while being very close to the manual segmentation provided by the second human observer with an average accuracy of 0.972, 0.951 and 0.948 in DRIVE, STARE and CHASE_DB1 datasets, respectively.

  14. Reactor Vessel and Reactor Vessel Internals Segmentation at Zion Nuclear Power Station - 13230

    Energy Technology Data Exchange (ETDEWEB)

    Cooke, Conrad; Spann, Holger [Siempelkamp Nuclear Services: 5229 Sunset Blvd., (Suite M), West Columbia, SC, 29169 (United States)

    2013-07-01

    Zion Nuclear Power Station (ZNPS) is a dual-unit Pressurized Water Reactor (PWR) nuclear power plant located on the Lake Michigan shoreline, in the city of Zion, Illinois approximately 64 km (40 miles) north of Chicago, Illinois and 67 km (42 miles) south of Milwaukee, Wisconsin. Each PWR is of the Westinghouse design and had a generation capacity of 1040 MW. Exelon Corporation operated both reactors with the first unit starting production of power in 1973 and the second unit coming on line in 1974. The operation of both reactors ceased in 1996/1997. In 2010 the Nuclear Regulatory Commission approved the transfer of Exelon Corporation's license to ZionSolutions, the Long Term Stewardship subsidiary of EnergySolutions responsible for the decommissioning of ZNPS. In October 2010, ZionSolutions awarded Siempelkamp Nuclear Services, Inc. (SNS) the contract to plan, segment, remove, and package both reactor vessels and their respective internals. This presentation discusses the tools employed by SNS to remove and segment the Reactor Vessel Internals (RVI) and Reactor Vessels (RV) and conveys the recent progress. SNS's mechanical segmentation tooling includes the C-HORCE (Circumferential Hydraulically Operated Cutting Equipment), BMT (Bolt Milling Tool), FaST (Former Attachment Severing Tool) and the VRS (Volume Reduction Station). Thermal segmentation of the reactor vessels will be accomplished using an Oxygen- Propane cutting system. The tools for internals segmentation were designed by SNS using their experience from other successful reactor and large component decommissioning and demolition (D and D) projects in the US. All of the designs allow for the mechanical segmentation of the internals remotely in the water-filled reactor cavities. The C-HORCE is designed to saw seven circumferential cuts through the Core Barrel and Thermal Shield walls with individual thicknesses up to 100 mm (4 inches). The BMT is designed to remove the bolts that fasten the Baffle

  15. Corrections for inhomogeneities in biological tissue caused by blood vessels

    NARCIS (Netherlands)

    Talsma, A; Chance, B; Graaff, R

    In tissue optics, the assumption that blood is homogeneously distributed in tissue can give rise to miscalculations because blood is found only in blood vessels. In our paper randomly oriented blood vessels are treated as particles for which we obtained apparent absorption and scattering

  16. A Review of Algorithms for Retinal Vessel Segmentation

    Directory of Open Access Journals (Sweden)

    Monserrate Intriago Pazmiño

    2014-10-01

    Full Text Available This paper presents a review of algorithms for extracting blood vessels network from retinal images. Since retina is a complex and delicate ocular structure, a huge effort in computer vision is devoted to study blood vessels network for helping the diagnosis of pathologies like diabetic retinopathy, hypertension retinopathy, retinopathy of prematurity or glaucoma. To carry out this process many works for normal and abnormal images have been proposed recently. These methods include combinations of algorithms like Gaussian and Gabor filters, histogram equalization, clustering, binarization, motion contrast, matched filters, combined corner/edge detectors, multi-scale line operators, neural networks, ants, genetic algorithms, morphological operators. To apply these algorithms pre-processing tasks are needed. Most of these algorithms have been tested on publicly retinal databases. We have include a table summarizing algorithms and results of their assessment.

  17. Segmental blood pressure after total hip replacement

    DEFF Research Database (Denmark)

    Gebuhr, Peter Henrik; Soelberg, M; Henriksen, Jens Henrik Sahl

    1992-01-01

    Twenty-nine patients due to have a total hip replacement had their systemic systolic and segmental blood pressures measured prior to operation and 1 and 6 weeks postoperatively. No patients had signs of ischemia. The segmental blood pressure was measured at the ankle and at the toes. A significant...... drop was found in all pressures 1 week postoperatively. The decrease followed the systemic pressure and was restored to normal after 6 weeks. In a group of six patients with preoperatively decreased ankle pressure, a significant transient further decrease in the ankle-toe gradient pressure was found...

  18. Liver vessel segmentation and identification based on oriented flux symmetry and graph cuts.

    Science.gov (United States)

    Zeng, Ye-Zhan; Zhao, Yu-Qian; Tang, Ping; Liao, Miao; Liang, Yi-Xiong; Liao, Sheng-Hui; Zou, Bei-Ji

    2017-10-01

    Accurate segmentation of liver vessels from abdominal computer tomography angiography (CTA) volume is very important for liver-vessel analysis and living-related liver transplants. This paper presents a novel liver-vessel segmentation and identification method. Firstly, an anisotropic diffusion filter is used to smooth noise while preserving vessel boundaries. Then, based on the gradient symmetry and antisymmetry pattern of vessel structures, optimal oriented flux (OOF) and oriented flux antisymmetry (OFA) measures are respectively applied to detect liver vessels and their boundaries, and further to slenderize vessels. Next, according to vessel geometrical structure, a centerline extraction measure based on height ridge traversal and leaf node line-growing (LNLG) is proposed for the extraction of liver-vessel centerlines, and an intensity model based on fast marching is integrated into graph cuts (GCs) for effective segmentation of liver vessels. Finally, a distance voting mechanism is applied to separate the hepatic vein and portal vein. The experiment results on abdominal CTA images show that the proposed method can effectively segment liver vessels, achieving an average accuracy, sensitivity, and specificity of 97.7%, 79.8%, and 98.6%, respectively, and has a good performance on thin-vessel extraction. The proposed method does not require manual selection of the centerlines and vessel seeds, and can effectively segment liver vessels and identify hepatic vein and portal vein. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Bone marrow blood vessels: normal and neoplastic niche

    Directory of Open Access Journals (Sweden)

    Saeid Shahrabi

    2016-11-01

    Full Text Available Blood vessels are among the most important factors in the transport of materials such as nutrients and oxygen. This study will review the role of blood vessels in normal bone marrow hematopoiesis as well as pathological conditions like leukemia and metastasis. Relevant literature was identified by a Pubmed search (1992-2016 of English-language papers using the terms bone marrow, leukemia, metastasis, and vessel. Given that blood vessels are conduits for the transfer of nutrients, they create a favorable situation for cancer cells and cause their growth and development. On the other hand, blood vessels protect leukemia cells against chemotherapy drugs. Finally, it may be concluded that the vessels are an important factor in the development of malignant diseases.

  20. Improving vessel segmentation in ultra-wide field-of-view retinal fluorescein angiograms.

    Science.gov (United States)

    Perez-Rovira, A; Zutis, K; Hubschman, J P; Trucco, E

    2011-01-01

    Vessel segmentation on ultra-wide field-of-view fluorescein angiogram sequences of the retina is a challenging problem. Vessel appearance undergoes severe changes, as different portions of the vascular structure become perfused in different frames. This paper presents a method for segmenting vessels in such sequences using steerable filters and automatic thresholding. We introduce a penalization stage on regions with high vessel response in the filtered image, improving the detection of peripheral vessels and reducing false positives around the optic disc and in regions of choroidal vessels and lesions. Quantitative results are provided, in which the penalization stage improves the segmentation precision segmentation by 11.84%, the recall by 12.98% and the accuracy by 0.40%. To facilitate further evaluation, usage, and algorithm comparison, the algorithm, the data set used, the ground truth, and the results are made available on the internet.

  1. Absorbed dose calculations to blood and blood vessels for internally deposited radionuclides

    International Nuclear Information System (INIS)

    Akabani, G.; Poston, J.W. Sr.

    1992-01-01

    At present, absorbed dose calculations for radionuclides in the human circulatory system use relatively simple models and are restricted in their applications. To determine absorbed doses to the blood and to the surface of the blood vessel wall, Monte Carlo calculations were performed using the code Electron Gamma Shower (EGS4). Absorbed doses were calculated for the blood and the blood vessel wall (lumen) for different blood vessel sizes. The radionuclides chosen for this study were those commonly used in nuclear medicine. No diffusion of the radionuclide into the blood vessel was or cross fire between blood vessels was assumed. Results are useful in assessing the doses to blood and blood vessel walls for different nuclear medicine procedures

  2. Absorbed dose calculations to blood and blood vessels for internally deposited radionuclides

    International Nuclear Information System (INIS)

    Akabani, G.; Poston, J.W.

    1991-05-01

    At present, absorbed dose calculations for radionuclides in the human circulatory system used relatively simple models and are restricted in their applications. To determine absorbed doses to the blood and to the surface of the blood vessel wall, EGS4 Monte Carlo calculations were performed. Absorbed doses were calculated for the blood and the blood vessel wall (lumen) for different blood vessels sizes. The radionuclides chosen for this study were those commonly used in nuclear medicine. No diffusion of the radionuclide into the blood vessel was assumed nor cross fire between vessel was assumed. Results are useful in assessing the dose in blood and blood vessel walls for different nuclear medicine procedures. 6 refs., 6 figs., 5 tabs

  3. Instability and `Sausage-String' Appearance in Blood Vessels during High Blood Pressure

    OpenAIRE

    Alstrom, Preben; Eguiluz, Victor M.; Colding-Jorgensen, Morten; Gustafsson, Finn; Holstein-Rathlou, Niels-Henrik

    1998-01-01

    A new Rayleigh-type instability is proposed to explain the `sausage-string' pattern of alternating constrictions and dilatations formed in blood vessels under influence of a vasoconstricting agent. Our theory involves the nonlinear elasticity characteristics of the vessel wall, and provides predictions for the conditions under which the cylindrical form of a blood vessel becomes unstable.

  4. Vasodilator effect of nicorandil on retinal blood vessels in rats.

    Science.gov (United States)

    Ogawa, Naoto; Saito, Maki; Mori, Asami; Sakamoto, Kenji; Kametaka, Sokichi; Nakahara, Tsutomu; Ishii, Kunio

    2007-07-01

    We examined the effect of nicorandil on retinal blood vessels in rats in vivo. Male Wistar rats (8 to 10 weeks old) were anaesthetised with thiobutabarbital (120 mg/kg, intraperitoneal). Fundus images were captured with a digital camera that was equipped with a special objective lens. Diameters of retinal blood vessels were measured with a personal computer. Nicorandil (1-300 microg kg(-1) min(-1), intravenous [i.v.]) increased diameters of retinal blood vessels and decreased systemic blood pressure in a dose-dependent manner. Both responses to nicorandil were attenuated by glibenclamide (20 mg/kg, i.v.), an adenosine triphosphate (ATP)-dependent K(+) (K(ATP)) channel blocker. On the other hand, indomethacin (5 mg/kg, i.v.), a cyclooxygenase inhibitor, attenuated the vasodilation of retinal blood vessels, but not depressor response, to nicorandil and sodium nitroprusside. Pinacidil (1-300 microg kg(-1) min(-1), i.v.), a K(ATP) channel opener, also dilated retinal blood vessels and decreased systemic blood pressure. The responses to pinacidil were prevented by glibenclamide, but not by indomethacin. The vasodilation of retinal arteriole, but not depressor response, to sodium nitroprusside (1-30 microg kg(-1) min(-1), i.v.), a nitric oxide donor, was attenuated by indomethacin. These results suggest that nicorandil dilates retinal blood vessels through opening of K(ATP) channels and production of prostaglandins that are probably generated by nitric oxide.

  5. A 2D driven 3D vessel segmentation algorithm for 3D digital subtraction angiography data

    Energy Technology Data Exchange (ETDEWEB)

    Spiegel, M; Hornegger, J [Pattern Recognition Lab, University Erlangen-Nuremberg, Erlangen (Germany); Redel, T [Siemens AG Healthcare Sector, Forchheim (Germany); Struffert, T; Doerfler, A, E-mail: martin.spiegel@informatik.uni-erlangen.de [Department of Neuroradiology, University Erlangen-Nuremberg, Erlangen (Germany)

    2011-10-07

    Cerebrovascular disease is among the leading causes of death in western industrial nations. 3D rotational angiography delivers indispensable information on vessel morphology and pathology. Physicians make use of this to analyze vessel geometry in detail, i.e. vessel diameters, location and size of aneurysms, to come up with a clinical decision. 3D segmentation is a crucial step in this pipeline. Although a lot of different methods are available nowadays, all of them lack a method to validate the results for the individual patient. Therefore, we propose a novel 2D digital subtraction angiography (DSA)-driven 3D vessel segmentation and validation framework. 2D DSA projections are clinically considered as gold standard when it comes to measurements of vessel diameter or the neck size of aneurysms. An ellipsoid vessel model is applied to deliver the initial 3D segmentation. To assess the accuracy of the 3D vessel segmentation, its forward projections are iteratively overlaid with the corresponding 2D DSA projections. Local vessel discrepancies are modeled by a global 2D/3D optimization function to adjust the 3D vessel segmentation toward the 2D vessel contours. Our framework has been evaluated on phantom data as well as on ten patient datasets. Three 2D DSA projections from varying viewing angles have been used for each dataset. The novel 2D driven 3D vessel segmentation approach shows superior results against state-of-the-art segmentations like region growing, i.e. an improvement of 7.2% points in precision and 5.8% points for the Dice coefficient. This method opens up future clinical applications requiring the greatest vessel accuracy, e.g. computational fluid dynamic modeling.

  6. A 2D driven 3D vessel segmentation algorithm for 3D digital subtraction angiography data

    International Nuclear Information System (INIS)

    Spiegel, M; Hornegger, J; Redel, T; Struffert, T; Doerfler, A

    2011-01-01

    Cerebrovascular disease is among the leading causes of death in western industrial nations. 3D rotational angiography delivers indispensable information on vessel morphology and pathology. Physicians make use of this to analyze vessel geometry in detail, i.e. vessel diameters, location and size of aneurysms, to come up with a clinical decision. 3D segmentation is a crucial step in this pipeline. Although a lot of different methods are available nowadays, all of them lack a method to validate the results for the individual patient. Therefore, we propose a novel 2D digital subtraction angiography (DSA)-driven 3D vessel segmentation and validation framework. 2D DSA projections are clinically considered as gold standard when it comes to measurements of vessel diameter or the neck size of aneurysms. An ellipsoid vessel model is applied to deliver the initial 3D segmentation. To assess the accuracy of the 3D vessel segmentation, its forward projections are iteratively overlaid with the corresponding 2D DSA projections. Local vessel discrepancies are modeled by a global 2D/3D optimization function to adjust the 3D vessel segmentation toward the 2D vessel contours. Our framework has been evaluated on phantom data as well as on ten patient datasets. Three 2D DSA projections from varying viewing angles have been used for each dataset. The novel 2D driven 3D vessel segmentation approach shows superior results against state-of-the-art segmentations like region growing, i.e. an improvement of 7.2% points in precision and 5.8% points for the Dice coefficient. This method opens up future clinical applications requiring the greatest vessel accuracy, e.g. computational fluid dynamic modeling.

  7. Detection of Blood Vessels in Retinal Fundus Images

    Directory of Open Access Journals (Sweden)

    Faraz Oloumi

    2014-07-01

    Full Text Available Detection of blood vessels in retinal fundus images is an important initial step in the development of systems for computer-aided diagnosis of pathologies of the eye. In this study, we perform multifeature analysis for the detection of blood vessels in retinal fundus images. The vessel detection techniques implemented include multiscale vesselness measures, Gabor filters, line operators, and matched filters. The selection of an appropriate threshold is crucial for accurate detection of retinal blood vessels. We evaluate an adaptive threshold selection method along with several others for this purpose. We also propose a postprocessing technique for removal of false-positive pixels around the optic nerve head. Values of the area under the receiver operating haracteristic curve of up to $0.961$ were obtained using the $20$ test images of the DRIVE database.

  8. Recovery of testicular blood flow following ligation of testicular vessels

    International Nuclear Information System (INIS)

    Pascual, J.A.; Villanueva-Meyer, J.; Salido, E.; Ehrlich, R.M.; Mena, I.; Rajfer, J.

    1989-01-01

    To determine whether initial ligation of the testicular vessels of the high undescended testis followed by a delayed secondary orchiopexy is a viable alternative to the classical Fowler-Stephens procedure, a series of preliminary experiments were conducted in the rat in which testicular blood flow was measured by the 133-xenon washout technique before, and 1 hour and 30 days after ligation of the vessels. In addition, testicular histology, and testis and sex-accessory tissue weights were measured in 6 control, 6 sham operated and 6 testicular vessel ligated rats 54 days after vessel ligation. The data demonstrate that ligation and division of the testicular blood vessels produce an 80 per cent decrease in testicular blood flow 1 hour after ligation of the vessels. However, 30 days later testis blood flow returns to the control and pre-treatment value. There were no significant changes in testis or sex-accessory tissue weights 54 days after vessel ligation. Histologically, 4 of the surgically operated testes demonstrated necrosis of less than 25 per cent of the seminiferous tubules while 1 testis demonstrated more than 75 per cent necrosis. The rest of the tubules in all 6 testes demonstrated normal spermatogenesis. From this study we conclude that initial testicular vessel ligation produces an immediate decrease in testicular blood flow but with time the collateral vessels are able to compensate and return the testis blood flow to its normal pre-treatment value. These preliminary observations lend support for the concept that initial ligation of the testicular vessels followed by a delayed secondary orchiopexy in patients with a high undescended testis may be a possible alternative to the classical Fowler-Stephens approach

  9. Aging changes in the heart and blood vessels

    Science.gov (United States)

    ... vessels URL of this page: //medlineplus.gov/ency/article/004006.htm Aging changes in the heart and blood vessels To ... changes in the heart include deposits of the "aging pigment," lipofuscin . The heart muscle cells degenerate slightly. The valves inside the heart, which ...

  10. Segmentation of elastic fibres in images of vessel wall sections stained with Weigert's resorcin-fuchsin.

    Science.gov (United States)

    Hernández-Morera, Pablo; Travieso-González, Carlos M; Castaño-González, Irene; Mompeó-Corredera, Blanca; Ortega-Santana, Francisco

    2017-04-01

    The elastic fibres are an essential component of the extracellular matrix in blood vessel walls that allows a long-range of deformability and passive recoil without energy input. The quantitative determination of elastic fibres will provide information on the state of the vascular wall and to determine the role and behaviour of this key structural element in different physiological and pathological vascular processes. We present a segmentation method to identify and quantify elastic fibres based on a local threshold technique and some morphological characteristics measured on the segmented objects that facilitate the discrimination between elastic fibres and other image components. The morphological characteristics analysed are the thickness and the length of an object. The segmentation method was evaluated using an image database of vein sections stained with Weigert's resorcin-fuchsin. The performance results are based on a ground truth generated manually resulting in values of sensitivity greater than 80% with the exception in two samples, and specificity values above 90% for all samples. Medical specialists carried out a visual evaluation where the observations indicate a general agreement on the segmentation results' visual quality, and the consistency between the methodology proposed and the subjective observation of the doctors for the evaluation of pathological changes in vessel wall. The proposed methodology provides more objective measurements than the qualitative methods traditionally used in the histological analysis, with a significant potential for this method to be used as a diagnostic aid for many other vascular pathological conditions and in similar tissues such as skin and mucous membranes. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. A Computational Model Predicting Disruption of Blood Vessel Development

    Science.gov (United States)

    Vascular development is a complex process regulated by dynamic biological networks that vary in topology and state across different tissues and developmental stages. Signals regulating de novo blood vessel formation (vasculogenesis) and remodeling (angiogenesis) come from a varie...

  12. Fluid and mass transport in a single lymphatic blood vessel

    International Nuclear Information System (INIS)

    Bestman, A.R.

    1987-08-01

    The problem considers the single blood vessel model in pulmonary circulation in the presence of gravitation and mass transfer. The tissue surrounding the blood vessel is modelled as a permeable medium distinct from the blood vessel which is a normal free space. On the assumption that the mass concentration varies slowly at the interface between the blood vessel and the tissue, the problem is tackled by asymptotic approximation. A crucial point of the analysis is the dependence of the flow variables on the permeability K of the tissue in a completely arbitrary manner. A primary conjecture of the study is the intimacy of the pathological pulmonary edema and the parameter K. (author). 4 refs

  13. Anatomy-based automatic detection and segmentation of major vessels in thoracic CTA images

    International Nuclear Information System (INIS)

    Zou Xiaotao; Liang Jianming; Wolf, M.; Salganicoff, M.; Krishnan, A.; Nadich, D.P.

    2007-01-01

    Existing approaches for automated computerized detection of pulmonary embolism (PE) using computed tomography angiography (CTA) usually focus on segmental and sub-segmental emboli. The goal of our current research is to extend our existing approach to automated detection of central PE. In order to detect central emboli, the major vessels must be first identified and segmented automatically. This submission presents an anatomy-based method for automatic computerized detection and segmentation of aortas and main pulmonary arteries in CTA images. (orig.)

  14. ROI DETECTION AND VESSEL SEGMENTATION IN RETINAL IMAGE

    Directory of Open Access Journals (Sweden)

    F. Sabaz

    2017-11-01

    Full Text Available Diabetes disrupts work by affecting the structure of the eye and afterwards leads to loss of vision. Depending on the stage of disease that called diabetic retinopathy, there are sudden loss of vision and blurred vision problems. Automated detection of vessels in retinal images is a useful study to diagnose eye diseases, disease classification and other clinical trials. The shape and structure of the vessels give information about the severity of the disease and the stage of the disease. Automatic and fast detection of vessels allows for a quick diagnosis of the disease and the treatment process to start shortly. ROI detection and vessel extraction methods for retinal image are mentioned in this study. It is shown that the Frangi filter used in image processing can be successfully used in detection and extraction of vessels.

  15. Roi Detection and Vessel Segmentation in Retinal Image

    Science.gov (United States)

    Sabaz, F.; Atila, U.

    2017-11-01

    Diabetes disrupts work by affecting the structure of the eye and afterwards leads to loss of vision. Depending on the stage of disease that called diabetic retinopathy, there are sudden loss of vision and blurred vision problems. Automated detection of vessels in retinal images is a useful study to diagnose eye diseases, disease classification and other clinical trials. The shape and structure of the vessels give information about the severity of the disease and the stage of the disease. Automatic and fast detection of vessels allows for a quick diagnosis of the disease and the treatment process to start shortly. ROI detection and vessel extraction methods for retinal image are mentioned in this study. It is shown that the Frangi filter used in image processing can be successfully used in detection and extraction of vessels.

  16. Three-dimensional photoacoustic imaging of blood vessels in tissue

    NARCIS (Netherlands)

    Hoelen, C.G.A.; de Mul, F.F.M.; Pongers, R.; Dekker, A.

    1998-01-01

    We applied photoacoustics as a tissue tomography technique for the detection of blood concentrations, e.g., angiogenesis around tumors. We imaged blood vessels in highly scattering samples, using 532-nm light, to depths of ,1 cm. The samples were real tissue (chicken breast) or 10% dilutions of

  17. Improving dense conditional random field for retinal vessel segmentation by discriminative feature learning and thin-vessel enhancement.

    Science.gov (United States)

    Zhou, Lei; Yu, Qi; Xu, Xun; Gu, Yun; Yang, Jie

    2017-09-01

    As retinal vessels in color fundus images are thin and elongated structures, standard pairwise based random fields, which always suffer the "shrinking bias" problem, are not competent for such segmentation task. Recently, a dense conditional random field (CRF) model has been successfully used in retinal vessel segmentation. Its corresponding energy function is formulated as a linear combination of several unary features and a pairwise term. However, the hand-crafted unary features can be suboptimal in terms of linear models. Here we propose to learn discriminative unary features and enhance thin vessels for pairwise potentials to further improve the segmentation performance. Our proposed method comprises four main steps: firstly, image preprocessing is applied to eliminate the strong edges around the field of view (FOV) and normalize the luminosity and contrast inside FOV; secondly, a convolutional neural network (CNN) is properly trained to generate discriminative features for linear models; thirdly, a combo of filters are applied to enhance thin vessels, reducing the intensity difference between thin and wide vessels; fourthly, by taking the discriminative features for unary potentials and the thin-vessel enhanced image for pairwise potentials, we adopt the dense CRF model to achieve the final retinal vessel segmentation. The segmentation performance is evaluated on four public datasets (i.e. DRIVE, STARE, CHASEDB1 and HRF). Experimental results show that our proposed method improves the performance of the dense CRF model and outperforms other methods when evaluated in terms of F1-score, Matthews correlation coefficient (MCC) and G-mean, three effective metrics for the evaluation of imbalanced binary classification. Specifically, the F1-score, MCC and G-mean are 0.7942, 0.7656, 0.8835 for the DRIVE dataset respectively; 0.8017, 0.7830, 0.8859 for STARE respectively; 0.7644, 0.7398, 0.8579 for CHASEDB1 respectively; and 0.7627, 0.7402, 0.8812 for HRF respectively

  18. Magnetic resonance imaging of water ascent in embolized xylem vessels of grapevine stem segments

    Science.gov (United States)

    Mingtao Wang; Melvin T. Tyree; Roderick E. Wasylishen

    2013-01-01

    Temporal and spatial information about water refilling of embolized xylem vessels and the rate of water ascent in these vessels is critical for understanding embolism repair in intact living vascular plants. High-resolution 1H magnetic resonance imaging (MRI) experiments have been performed on embolized grapevine stem segments while they were...

  19. Comparison of vessel enhancement algorithms applied to time-of-flight MRA images for cerebrovascular segmentation.

    Science.gov (United States)

    Phellan, Renzo; Forkert, Nils D

    2017-11-01

    Vessel enhancement algorithms are often used as a preprocessing step for vessel segmentation in medical images to improve the overall segmentation accuracy. Each algorithm uses different characteristics to enhance vessels, such that the most suitable algorithm may vary for different applications. This paper presents a comparative analysis of the accuracy gains in vessel segmentation generated by the use of nine vessel enhancement algorithms: Multiscale vesselness using the formulas described by Erdt (MSE), Frangi (MSF), and Sato (MSS), optimally oriented flux (OOF), ranking orientations responses path operator (RORPO), the regularized Perona-Malik approach (RPM), vessel enhanced diffusion (VED), hybrid diffusion with continuous switch (HDCS), and the white top hat algorithm (WTH). The filters were evaluated and compared based on time-of-flight MRA datasets and corresponding manual segmentations from 5 healthy subjects and 10 patients with an arteriovenous malformation. Additionally, five synthetic angiographic datasets with corresponding ground truth segmentation were generated with three different noise levels (low, medium, and high) and also used for comparison. The parameters for each algorithm and subsequent segmentation were optimized using leave-one-out cross evaluation. The Dice coefficient, Matthews correlation coefficient, area under the ROC curve, number of connected components, and true positives were used for comparison. The results of this study suggest that vessel enhancement algorithms do not always lead to more accurate segmentation results compared to segmenting nonenhanced images directly. Multiscale vesselness algorithms, such as MSE, MSF, and MSS proved to be robust to noise, while diffusion-based filters, such as RPM, VED, and HDCS ranked in the top of the list in scenarios with medium or no noise. Filters that assume tubular-shapes, such as MSE, MSF, MSS, OOF, RORPO, and VED show a decrease in accuracy when considering patients with an AVM

  20. Comparative Study of Retinal Vessel Segmentation Based on Global Thresholding Techniques

    Directory of Open Access Journals (Sweden)

    Temitope Mapayi

    2015-01-01

    Full Text Available Due to noise from uneven contrast and illumination during acquisition process of retinal fundus images, the use of efficient preprocessing techniques is highly desirable to produce good retinal vessel segmentation results. This paper develops and compares the performance of different vessel segmentation techniques based on global thresholding using phase congruency and contrast limited adaptive histogram equalization (CLAHE for the preprocessing of the retinal images. The results obtained show that the combination of preprocessing technique, global thresholding, and postprocessing techniques must be carefully chosen to achieve a good segmentation performance.

  1. Heritability of retinal vessel diameters and blood pressure

    DEFF Research Database (Denmark)

    Taarnhøj, Nina C B B; Larsen, Michael; Sander, Birgit

    2006-01-01

    for CRVE, and 0.67 +/- 0.05 microm for AVR. No significant influence on artery or vein diameters was found for gender, smoking, body mass index (BMI), total cholesterol, fasting blood glucose, or 2-hour oral glucose tolerance test values. CONCLUSIONS: In healthy young adults with normal blood pressure......PURPOSE: To assess the relative influence of genetic and environmental effects on retinal vessel diameters and blood pressure in healthy adults, as well as the possible genetic connection between these two characteristics. METHODS: In 55 monozygotic and 50 dizygotic same-sex healthy twin pairs......%-80%) for CRAE, 83% (95% CI: 73%-89%) for CRVE, and 61% (95% CI: 44%-73%) for mean arterial blood pressure (MABP). Retinal artery diameter decreased with increasing age and increasing arterial blood pressure. Mean vessel diameters in the population were 165.8 +/- 14.9 microm for CRAE, 246.2 +/- 17.7 microm...

  2. Estimation of center line and diameter of brain blood vessel using three-dimensional blood vessel matching method with head three-dimensional CTA image

    International Nuclear Information System (INIS)

    Maekawa, Masashi; Shinohara, Toshihiro; Nakayama, Masato; Nakasako, Noboru

    2010-01-01

    To support and automate the brain blood vessel disease diagnosis, a novel method to obtain the center line and the diameter of a blood vessel is proposed with a three-dimensional head computed tomographic angiography (CTA) image. Although the line thinning processing with distance transform or gray information is generally used to obtain the blood vessel center line, this method is not essentially one to obtain the center line and tends to yield extra lines depending on CTA images. In this study, the center line of the blood vessel is obtained by tracing the vessel. The blood vessel is traced by sequentially estimating the center point and direction of the blood vessel. The center point and direction of the blood vessel are estimated by taking the correlation between the blood vessel and a solid model of the blood vessel that is designed by considering noise influence. In addition, the vessel diameter is also estimated by correlating the blood vessel and the blood vessel model of which the diameter is variable. The validity of the proposed method is confirmed by experimentally applied the proposed method to an actual three-dimensional head CTA image. (author)

  3. Engineering design and integration of in-vessel single turn segmental coil in vacuum vessel of SST-1

    Science.gov (United States)

    Jayswal, Snehal; Chauhan, P.; Santra, P.; Vasava, K.; Perekh, T.; Patel, H.; Biswas, P.; Pradhan, S.

    2017-04-01

    SST-1 tokamak is having the error field due to unsymmetrical positioning of Toroidal field coils which push the plasma to inner side from its major radius of 1100 mm. hence it is required to install the In-vessel Coil (PF6) at a location of 1350 mm radius and elevation of 350 mm above and below the mid plane of the toroidal field coils. The In-Vessel coil was decided to make in eight segments for futuristic use, to control the individual localized error field correction by supplying the different current. A single turn, eight segments, copper conductor with 18 mm diameter with GFRP insulation and in housed in SS304 L casing to carry 8000 A current for 10 s was designed and installed in vacuum vessel of SST-1. This paper will present the design drivers, material selection, advantages and constraints of the in-vessel coils, its conceptual and engineering design, CAD models, finite element analysis using ANSYS, its fabrication, quality assurance/control and assembly/integration aspects inside vacuum vessel of SST-1.

  4. Tracking blood vessels in human forearms using visual servoing

    DEFF Research Database (Denmark)

    Savarimuthu, Thiusius Rajeeth; Ellekilde, Lars-Peter; Hansen, Morten

    Drawing an average of more than 2 blood sample per Danish citizen per year increases the demand for an automatic blood sampling method. This paper presents a proof of concept to one of the main challenges in making a fully automated blood sampling procedure, namely: the patient movement compensat......Drawing an average of more than 2 blood sample per Danish citizen per year increases the demand for an automatic blood sampling method. This paper presents a proof of concept to one of the main challenges in making a fully automated blood sampling procedure, namely: the patient movement...... compensation. By using images taken with near-infrared light to locate the blood vessels in a human forearm and using the same images to detects movements of the arm, this paper shows that it is possible make a robot arm, potentially equipped with a needle for drawing the blood, compensate for the movements...

  5. Acrolein generation stimulates hypercontraction in isolated human blood vessels.

    Science.gov (United States)

    Conklin, D J; Bhatnagar, A; Cowley, H R; Johnson, G H; Wiechmann, R J; Sayre, L M; Trent, M B; Boor, P J

    2006-12-15

    Increased risk of vasospasm, a spontaneous hyperconstriction, is associated with atherosclerosis, cigarette smoking, and hypertension-all conditions involving oxidative stress, lipid peroxidation, and inflammation. To test the role of the lipid peroxidation- and inflammation-derived aldehyde, acrolein, in human vasospasm, we developed an ex vivo model using human coronary artery bypass graft (CABG) blood vessels and a demonstrated acrolein precursor, allylamine. Allylamine induces hypercontraction in isolated rat coronary artery in a semicarbazide-sensitive amine oxidase activity (SSAO) dependent manner. Isolated human CABG blood vessels (internal mammary artery, radial artery, saphenous vein) were used to determine: (1) vessel responses and sensitivity to acrolein, allylamine, and H(2)O(2) exposure (1 microM-1 mM), (2) SSAO dependence of allylamine-induced effects using SSAO inhibitors (semicarbazide, 1 mM; MDL 72274-E, active isomer; MDL 72274-Z, inactive isomer; 100 microM), (3) the vasoactive effects of two other SSAO amine substrates, benzylamine and methylamine, and (4) the contribution of extracellular Ca(2+) to hypercontraction. Acrolein or allylamine but not H(2)O(2), benzylamine, or methylamine stimulated spontaneous and pharmacologically intractable hypercontraction in CABG blood vessels that was similar to clinical vasospasm. Allylamine-induced hypercontraction and blood vessel SSAO activity were abolished by pretreatment with semicarbazide or MDL 72274-E but not by MDL 72274-Z. Allylamine-induced hypercontraction also was significantly attenuated in Ca(2+)-free buffer. In isolated aorta of spontaneously hypertensive rat, allylamine-induced an SSAO-dependent contraction and enhanced norepinephrine sensitivity but not in Sprague-Dawley rat aorta. We conclude that acrolein generation in the blood vessel wall increases human susceptibility to vasospasm, an event that is enhanced in hypertension.

  6. Acrolein generation stimulates hypercontraction in isolated human blood vessels

    International Nuclear Information System (INIS)

    Conklin, D.J.; Bhatnagar, A.; Cowley, H.R.; Johnson, G.H.; Wiechmann, R.J.; Sayre, L.M.; Trent, M.B.; Boor, P.J.

    2006-01-01

    Increased risk of vasospasm, a spontaneous hyperconstriction, is associated with atherosclerosis, cigarette smoking, and hypertension-all conditions involving oxidative stress, lipid peroxidation, and inflammation. To test the role of the lipid peroxidation- and inflammation-derived aldehyde, acrolein, in human vasospasm, we developed an ex vivo model using human coronary artery bypass graft (CABG) blood vessels and a demonstrated acrolein precursor, allylamine. Allylamine induces hypercontraction in isolated rat coronary artery in a semicarbazide-sensitive amine oxidase activity (SSAO) dependent manner. Isolated human CABG blood vessels (internal mammary artery, radial artery, saphenous vein) were used to determine: (1) vessel responses and sensitivity to acrolein, allylamine, and H 2 O 2 exposure (1 μM-1 mM), (2) SSAO dependence of allylamine-induced effects using SSAO inhibitors (semicarbazide, 1 mM; MDL 72274-E, active isomer; MDL 72274-Z, inactive isomer; 100 μM), (3) the vasoactive effects of two other SSAO amine substrates, benzylamine and methylamine, and (4) the contribution of extracellular Ca 2+ to hypercontraction. Acrolein or allylamine but not H 2 O 2 , benzylamine, or methylamine stimulated spontaneous and pharmacologically intractable hypercontraction in CABG blood vessels that was similar to clinical vasospasm. Allylamine-induced hypercontraction and blood vessel SSAO activity were abolished by pretreatment with semicarbazide or MDL 72274-E but not by MDL 72274-Z. Allylamine-induced hypercontraction also was significantly attenuated in Ca 2+ -free buffer. In isolated aorta of spontaneously hypertensive rat, allylamine-induced an SSAO-dependent contraction and enhanced norepinephrine sensitivity but not in Sprague-Dawley rat aorta. We conclude that acrolein generation in the blood vessel wall increases human susceptibility to vasospasm, an event that is enhanced in hypertension

  7. Automated vessel shadow segmentation of fovea-centered spectral-domain images from multiple OCT devices

    Science.gov (United States)

    Wu, Jing; Gerendas, Bianca S.; Waldstein, Sebastian M.; Simader, Christian; Schmidt-Erfurth, Ursula

    2014-03-01

    Spectral-domain Optical Coherence Tomography (SD-OCT) is a non-invasive modality for acquiring high reso- lution, three-dimensional (3D) cross sectional volumetric images of the retina and the subretinal layers. SD-OCT also allows the detailed imaging of retinal pathology, aiding clinicians in the diagnosis of sight degrading diseases such as age-related macular degeneration (AMD) and glaucoma.1 Disease diagnosis, assessment, and treatment requires a patient to undergo multiple OCT scans, possibly using different scanning devices, to accurately and precisely gauge disease activity, progression and treatment success. However, the use of OCT imaging devices from different vendors, combined with patient movement may result in poor scan spatial correlation, potentially leading to incorrect patient diagnosis or treatment analysis. Image registration can be used to precisely compare disease states by registering differing 3D scans to one another. In order to align 3D scans from different time- points and vendors using registration, landmarks are required, the most obvious being the retinal vasculature. Presented here is a fully automated cross-vendor method to acquire retina vessel locations for OCT registration from fovea centred 3D SD-OCT scans based on vessel shadows. Noise filtered OCT scans are flattened based on vendor retinal layer segmentation, to extract the retinal pigment epithelium (RPE) layer of the retina. Voxel based layer profile analysis and k-means clustering is used to extract candidate vessel shadow regions from the RPE layer. In conjunction, the extracted RPE layers are combined to generate a projection image featuring all candidate vessel shadows. Image processing methods for vessel segmentation of the OCT constructed projection image are then applied to optimize the accuracy of OCT vessel shadow segmentation through the removal of false positive shadow regions such as those caused by exudates and cysts. Validation of segmented vessel shadows uses

  8. Multi-atlas pancreas segmentation: Atlas selection based on vessel structure.

    Science.gov (United States)

    Karasawa, Ken'ichi; Oda, Masahiro; Kitasaka, Takayuki; Misawa, Kazunari; Fujiwara, Michitaka; Chu, Chengwen; Zheng, Guoyan; Rueckert, Daniel; Mori, Kensaku

    2017-07-01

    Automated organ segmentation from medical images is an indispensable component for clinical applications such as computer-aided diagnosis (CAD) and computer-assisted surgery (CAS). We utilize a multi-atlas segmentation scheme, which has recently been used in different approaches in the literature to achieve more accurate and robust segmentation of anatomical structures in computed tomography (CT) volume data. Among abdominal organs, the pancreas has large inter-patient variability in its position, size and shape. Moreover, the CT intensity of the pancreas closely resembles adjacent tissues, rendering its segmentation a challenging task. Due to this, conventional intensity-based atlas selection for pancreas segmentation often fails to select atlases that are similar in pancreas position and shape to those of the unlabeled target volume. In this paper, we propose a new atlas selection strategy based on vessel structure around the pancreatic tissue and demonstrate its application to a multi-atlas pancreas segmentation. Our method utilizes vessel structure around the pancreas to select atlases with high pancreatic resemblance to the unlabeled volume. Also, we investigate two types of applications of the vessel structure information to the atlas selection. Our segmentations were evaluated on 150 abdominal contrast-enhanced CT volumes. The experimental results showed that our approach can segment the pancreas with an average Jaccard index of 66.3% and an average Dice overlap coefficient of 78.5%. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Fuzzy c-means segmentation of major vessels in angiographic images of stroke.

    Science.gov (United States)

    Haddad, Christopher W; Drukker, Karen; Gullett, Rebecca; Carroll, Timothy J; Christoforidis, Gregory A; Giger, Maryellen L

    2018-01-01

    Patients suffering from ischemic stroke develop varying degrees of pial arterial supply (PAS), which can affect patient response to reperfusion therapy and risk of hemorrhage. Since vessel segmentation may be an important part in identifying PAS, we present a fuzzy c-means (FCM) clustering method to segment major vessels in x-ray angiograms. Our approach consists of semiautomatic region of interest (ROI) delineation, separation of major vessels from capillary blush and/or background noise through FCM clustering, and identification of the major vessel category. This method was applied to a database of x-ray angiograms of 24 patients acquired at various frame rates. The ground truth for performance evaluation was the designation by an expert radiologist selecting image pixels as being vessel or nonvessel. From receiver operating characteristic (ROC) analysis, area under the ROC curve (AUC) was the performance metric in the task of distinguishing between major vessels and blush or background. When clustering data into three categories and performing FCM segmentation on each ROI separately, the AUC was 0.89 for the entire database and [Formula: see text] for all examined frame-rates. In conclusion, our method showed promising performance in identifying major vessels and is anticipated to become an integral part of automatic quantification of PAS.

  10. Gene expression analysis in human breast cancer associated blood vessels.

    Directory of Open Access Journals (Sweden)

    Dylan T Jones

    Full Text Available Angiogenesis is essential for solid tumour growth, whilst the molecular profiles of tumour blood vessels have been reported to be different between cancer types. Although presently available anti-angiogenic strategies are providing some promise for the treatment of some cancers it is perhaps not surprisingly that, none of the anti-angiogenic agents available work on all tumours. Thus, the discovery of novel anti-angiogenic targets, relevant to individual cancer types, is required. Using Affymetrix microarray analysis of laser-captured, CD31-positive blood vessels we have identified 63 genes that are upregulated significantly (5-72 fold in angiogenic blood vessels associated with human invasive ductal carcinoma (IDC of the breast as compared with blood vessels in normal human breast. We tested the angiogenic capacity of a subset of these genes. Genes were selected based on either their known cellular functions, their enriched expression in endothelial cells and/or their sensitivity to anti-VEGF treatment; all features implicating their involvement in angiogenesis. For example, RRM2, a ribonucleotide reductase involved in DNA synthesis, was upregulated 32-fold in IDC-associated blood vessels; ATF1, a nuclear activating transcription factor involved in cellular growth and survival was upregulated 23-fold in IDC-associated blood vessels and HEX-B, a hexosaminidase involved in the breakdown of GM2 gangliosides, was upregulated 8-fold in IDC-associated blood vessels. Furthermore, in silico analysis confirmed that AFT1 and HEX-B also were enriched in endothelial cells when compared with non-endothelial cells. None of these genes have been reported previously to be involved in neovascularisation. However, our data establish that siRNA depletion of Rrm2, Atf1 or Hex-B had significant anti-angiogenic effects in VEGF-stimulated ex vivo mouse aortic ring assays. Overall, our results provide proof-of-principle that our approach can identify a cohort of

  11. Segmentation and quantification of human vessels using a 3-D cylindrical intensity model.

    Science.gov (United States)

    Wörz, Stefan; Rohr, Karl

    2007-08-01

    We introduce a new approach for 3-D segmentation and quantification of vessels. The approach is based on a 3-D cylindrical parametric intensity model, which is directly fitted to the image intensities through an incremental process based on a Kalman filter. Segmentation results are the vessel centerline and shape, i.e., we estimate the local vessel radius, the 3-D position and 3-D orientation, the contrast, as well as the fitting error. We carried out an extensive validation using 3-D synthetic images and also compared the new approach with an approach based on a Gaussian model. In addition, the new model has been successfully applied to segment vessels from 3-D MRA and computed tomography angiography image data. In particular, we compared our approach with an approach based on the randomized Hough transform. Moreover, a validation of the segmentation results based on ground truth provided by a radiologist confirms the accuracy of the new approach. Our experiments show that the new model yields superior results in estimating the vessel radius compared to previous approaches based on a Gaussian model as well as the Hough transform.

  12. A thresholding based technique to extract retinal blood vessels from fundus images

    Directory of Open Access Journals (Sweden)

    Jyotiprava Dash

    2017-12-01

    Full Text Available Retinal imaging has become the significant tool among all the medical imaging technology, due to its capability to extract many data which is linked to various eye diseases. So, the accurate extraction of blood vessel is necessary that helps the eye care specialists and ophthalmologist to identify the diseases at the early stages. In this paper, we have proposed a computerized technique for extraction of blood vessels from fundus images. The process is conducted in three phases: (i pre-processing where the image is enhanced using contrast limited adaptive histogram equalization and median filter, (ii segmentation using mean-C thresholding to extract retinal blood vessels, (iii post-processing where morphological cleaning operation is used to remove isolated pixels. The performance of the proposed method is tested on and experimental results show that our method achieve an accuracies of 0.955 and 0.954 on Digital retinal images for vessel extraction (DRIVE and Child heart and health study in England (CHASE_DB1 databases respectively.

  13. Atherosclerosis of coronary blood vessels - local or systemic inflamation?

    Science.gov (United States)

    Pejkov, Hristo; Kedev, Sasko; Panov, Saso; Srbinovska-Kostovska, Elizabeta; Lang, Irene

    2013-01-01

    The presence of atherosclerotic lesions in the blood vessels is a predisposition for the development and occurrence of acute ischaemic attacks. Bigger atherosclerotic lesions in the coronary blood vessels cause lumen occlusion, which is a cause of acute myocardial infarction. Endothelial dysfunction is defined as an ability of the endothelium to produce vasorelaxing nitric oxide (NO), or deregulation of the other vasoactive substances, such as angiotensin II and endothelin [13]. This definition describes endothelial dysfunction as an improper vasomotor constriction of the vessel, that leads to lumen occlusion of the already existing atherosclerotic lesions. According to the modern model, the development of atherosclerotic plaque and inappropriate endothelial NO production have a synergistic role in patho-physiological and molecular processes in the blood vessels [14]. Lesions in the coronary arteries are deposits of huge quantities of foamy cells and fibrous plaques. The thin fibrous plaques are 10-20% of the total plaque population and are the cause of 80-90% of clinical cases due to their ability to rupture [48]. According to all the results from published studies by far, it has been pointed out that the plaque stability, not the absolute size influences the rupture potential. Elucidating the risk factors that may modify in the atherogenesis and the consequent atherothrombic effect is the first step to this goal.

  14. Waves and fluid-solid interaction in stented blood vessels

    Science.gov (United States)

    Frecentese, S.; Argani, L. P.; Movchan, A. B.; Movchan, N. V.; Carta, G.; Wall, M. L.

    2018-01-01

    This paper focuses on the modelling of fluid-structure interaction and wave propagation problems in a stented artery. Reflection of waves in blood vessels is well documented in the literature, but it has always been linked to a strong variation in geometry, such as the branching of vessels. The aim of this work is to detect the possibility of wave reflection in a stented artery due to the repetitive pattern of the stents. The investigation of wave propagation and possible blockages under time-harmonic conditions is complemented with numerical simulations in the transient regime.

  15. Blood Vessel Extraction in Color Retinal Fundus Images with Enhancement Filtering and Unsupervised Classification

    Directory of Open Access Journals (Sweden)

    Zafer Yavuz

    2017-01-01

    Full Text Available Retinal blood vessels have a significant role in the diagnosis and treatment of various retinal diseases such as diabetic retinopathy, glaucoma, arteriosclerosis, and hypertension. For this reason, retinal vasculature extraction is important in order to help specialists for the diagnosis and treatment of systematic diseases. In this paper, a novel approach is developed to extract retinal blood vessel network. Our method comprises four stages: (1 preprocessing stage in order to prepare dataset for segmentation; (2 an enhancement procedure including Gabor, Frangi, and Gauss filters obtained separately before a top-hat transform; (3 a hard and soft clustering stage which includes K-means and Fuzzy C-means (FCM in order to get binary vessel map; and (4 a postprocessing step which removes falsely segmented isolated regions. The method is tested on color retinal images obtained from STARE and DRIVE databases which are available online. As a result, Gabor filter followed by K-means clustering method achieves 95.94% and 95.71% of accuracy for STARE and DRIVE databases, respectively, which are acceptable for diagnosis systems.

  16. Efficient leukocyte segmentation and recognition in peripheral blood image.

    Science.gov (United States)

    Shirazi, Syed H; Umar, Arif Iqbal; Naz, Saeeda; Razzak, Muhammad I

    2016-05-18

    Blood cell count, also known as differential count of various types of blood cells, provides valuable information in order to assess variety of diseases like AIDS, leukemia and blood cancer. Manual techniques are still used in diseases diagnosis that is very lingering and tedious process. However, machine based automatic analysis of leukocyte is a powerful tool that could reduce the human errors, improve the accuracy, and minimize the required time for blood cell analysis. However, leukocyte segmentation is a challenging process due to the complexity of the blood cell image; therefore, this task remains unresolved issue in the blood cell segmentation. The aim of this work is to develop an efficient leukocyte cell segmentation and classification system. This paper presents an efficient strategy to segment cell images. This has been achieved by using Wiener filter along with Curvelet transform for image enhancement and noise elimination in order to elude false edges. We have also used combination of entropy filter, thresholding and mathematical morphology for obtaining image segmentation and boundary detection, whereas we have used back-propagation neural network for leukocyte classification into its sub classes. As a result, the generated segmentation results are fruitful in a sense that we have overcome the problem of overlapping cells. We have obtained 100%, 96.15%, 92.30%, 92.30% and 96.15% accuracy for basophil, eosinophil, monocyte, lymphocyte and neutrophil respectively.

  17. Blood Vessel-Derived Acellular Matrix for Vascular Graft Application

    Directory of Open Access Journals (Sweden)

    Luigi Dall’Olmo

    2014-01-01

    Full Text Available To overcome the issues connected to the use of autologous vascular grafts and artificial materials for reconstruction of small diameter (<6 mm blood vessels, this study aimed to develop acellular matrix- (AM- based vascular grafts. Rat iliac arteries were decellularized by a detergent-enzymatic treatment, whereas endothelial cells (ECs were obtained through enzymatic digestion of rat skin followed by immunomagnetic separation of CD31-positive cells. Sixteen female Lewis rats (8 weeks old received only AM or previously in vitro reendothelialized AM as abdominal aorta interposition grafts (about 1 cm. The detergent-enzymatic treatment completely removed the cellular part of vessels and both MHC class I and class II antigens. One month after surgery, the luminal surface of implanted AMs was partially covered by ECs and several platelets adhered in the areas lacking cell coverage. Intimal hyperplasia, already detected after 1 month, increased at 3 months. On the contrary, all grafts composed by AM and ECs were completely covered at 1 month and their structure was similar to that of native vessels at 3 months. Taken together, our findings show that prostheses composed of AM preseeded with ECs could be a promising approach for the replacement of blood vessels.

  18. Blood Pool Segmentation Results in Superior Virtual Cardiac Models than Myocardial Segmentation for 3D Printing.

    Science.gov (United States)

    Farooqi, Kanwal M; Lengua, Carlos Gonzalez; Weinberg, Alan D; Nielsen, James C; Sanz, Javier

    2016-08-01

    The method of cardiac magnetic resonance (CMR) three-dimensional (3D) image acquisition and post-processing which should be used to create optimal virtual models for 3D printing has not been studied systematically. Patients (n = 19) who had undergone CMR including both 3D balanced steady-state free precession (bSSFP) imaging and contrast-enhanced magnetic resonance angiography (MRA) were retrospectively identified. Post-processing for the creation of virtual 3D models involved using both myocardial (MS) and blood pool (BP) segmentation, resulting in four groups: Group 1-bSSFP/MS, Group 2-bSSFP/BP, Group 3-MRA/MS and Group 4-MRA/BP. The models created were assessed by two raters for overall quality (1-poor; 2-good; 3-excellent) and ability to identify predefined vessels (1-5: superior vena cava, inferior vena cava, main pulmonary artery, ascending aorta and at least one pulmonary vein). A total of 76 virtual models were created from 19 patient CMR datasets. The mean overall quality scores for Raters 1/2 were 1.63 ± 0.50/1.26 ± 0.45 for Group 1, 2.12 ± 0.50/2.26 ± 0.73 for Group 2, 1.74 ± 0.56/1.53 ± 0.61 for Group 3 and 2.26 ± 0.65/2.68 ± 0.48 for Group 4. The numbers of identified vessels for Raters 1/2 were 4.11 ± 1.32/4.05 ± 1.31 for Group 1, 4.90 ± 0.46/4.95 ± 0.23 for Group 2, 4.32 ± 1.00/4.47 ± 0.84 for Group 3 and 4.74 ± 0.56/4.63 ± 0.49 for Group 4. Models created using BP segmentation (Groups 2 and 4) received significantly higher ratings than those created using MS for both overall quality and number of vessels visualized (p 3D printers with good quality and accurate representation of the virtual 3D models. We recommend using BP segmentation with either MRA or bSSFP source datasets to create virtual 3D models for 3D printing. Desktop 3D printers can offer good quality printed models with accurate representation of anatomic detail.

  19. Migraine aura pathophysiology: the role of blood vessels and microembolisation

    OpenAIRE

    Dalkara, Turgay; Nozari, Ala; Moskowitz, Michael A

    2010-01-01

    Migraine attacks with auras are sometimes associated with underlying hereditary or acquired cerebrovascular disorders. A unifying pathophysiological explanation linking migraine to these conditions has been diffcult to identify. On the basis of genetic and epidemiological evidence, we suggest that changes in blood vessels, hypoperfusion disorders, and microembolisation can cause neurovascular dysfunction and evoke cortical spreading depression, an event that is widely thought to underlie aura...

  20. Acrolein generation stimulates hypercontraction in isolated human blood vessels

    OpenAIRE

    Conklin, D.J.; Bhatnagar, A.; Cowley, H.R.; Johnson, G.H.; Wiechmann, R.J.; Sayre, L.M.; Trent, M.B.; Boor, P.J.

    2006-01-01

    Increased risk of vasospasm, a spontaneous hyperconstriction, is associated with atherosclerosis, cigarette smoking, and hypertension—all conditions involving oxidative stress, lipid peroxidation, and inflammation. To test the role of the lipid peroxidation- and inflammation-derived aldehyde, acrolein, in human vasospasm, we developed an ex vivo model using human coronary artery bypass graft (CABG) blood vessels and a demonstrated acrolein precursor, allylamine. Allylamine induces hypercontra...

  1. Historical Perspective and Future Direction of Blood Vessel Developments.

    Science.gov (United States)

    Dimitrievska, Sashka; Niklason, Laura E

    2018-02-01

    Over the past 40 years, remarkable advances have been made in our understanding of successful blood vessel regeneration, starting with the failures of early tissue-engineered vascular grafts designed using isolated components or molecules, such as collagen gels. The vascular tissue engineers are today better educated and have steered ongoing research developments toward clinical developments of more complete vascular grafts that replicate the multitude of specialized arterial aspects required for function. Copyright © 2018 Cold Spring Harbor Laboratory Press; all rights reserved.

  2. DLC coating of textile blood vessels using PLD

    Czech Academy of Sciences Publication Activity Database

    Kocourek, Tomáš; Jelínek, Miroslav; Vorlíček, Vladimír; Zemek, Josef; Janča, T.; Žížková, V.; Podlaha, J.; Popov, C.

    2008-01-01

    Roč. 93, č. 3 (2008), s. 627-632 ISSN 0947-8396 R&D Projects: GA MPO FI-IM2/068; GA ČR GA202/06/0216 Institutional research plan: CEZ:AV0Z10100522 Keywords : blood vessels * PLD * DLC * sp2 * sp3 Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.884, year: 2008

  3. Retinal Vessel Segmentation Based on Primal-Dual Asynchronous Particle Swarm Optimisation (pdAPSO Algorithm

    Directory of Open Access Journals (Sweden)

    E. G. Dada

    2017-04-01

    Full Text Available Acute damage to the retina vessel has been identified to be main reason for blindness and impaired vision all over the world. A timely detection and control of these illnesses can greatly decrease the number of loss of sight cases. Developing a high performance unsupervised retinal vessel segmentation technique poses an uphill task. This paper presents study on the Primal-Dual Asynchronous Particle Swarm Optimisation (pdAPSO method for the segmentation of retinal vessels. A maximum average accuracy rate 0.9243 with an average specificity of sensitivity rate of 0.9834 and average sensitivity rate of 0.5721 were achieved on DRIVE database. The proposed method produces higher mean sensitivity and accuracy rates in the same range of very good specificity.

  4. Leptospirosis-associated disturbances of blood vessels, lungs and hemostasis.

    Science.gov (United States)

    Medeiros, Fernanda da Rocha; Spichler, Anne; Athanazio, Daniel A

    2010-01-01

    The frequency of massive pulmonary hemorrhages seems to be increasing in different geographic areas; however, there is no clear explanation for this trend. Although data on the pathogenesis of such complications are scarce, recent research indicates a potential role of autoimmunity and/or multifactorial mechanisms. However, much information is already available on the disturbance of hemostasis and blood vessels in leptospirosis-related literature, even if some contradictory concepts coexist. The purpose of this review is to integrate both new and classical information from human and animal studies on severe pulmonary forms of leptospirosis and disorders of hemostasis and blood vessels. We propose that the involvement of blood vessels in leptospirosis must be understood as a sepsis-like, diffuse process of endothelial activation/damage rather than as a classical systemic vasculitis. Pulmonary hemorrhages are most likely multifactorial and there has recently been evidence against the role of autoimmunity; however, further investigation of strain variations, exposure to hydrocarbons and association with renal dysfunction is required. Thrombocytopenia is a consistent feature of leptospirosis but it is not clear whether it is attributable to sepsis-related mechanisms. In addition, further investigation is required to define whether platelet function is activated or inhibited during severe leptospirosis. 2010 Elsevier B.V. All rights reserved.

  5. Automatic segmentation of lymph vessel wall using optimal surface graph cut and hidden Markov Models.

    Science.gov (United States)

    Jones, Jonathan-Lee; Essa, Ehab; Xie, Xianghua

    2015-01-01

    We present a novel method to segment the lymph vessel wall in confocal microscopy images using Optimal Surface Segmentation (OSS) and hidden Markov Models (HMM). OSS is used to preform a pre-segmentation on the images, to act as the initial state for the HMM. We utilize a steerable filter to determine edge based filters for both of these segmentations, and use these features to build Gaussian probability distributions for both the vessel walls and the background. From this we infer the emission probability for the HMM, and the transmission probability is learned using a Baum-Welch algorithm. We transform the segmentation problem into one of cost minimization, with each node in the graph corresponding to one state, and the weight for each node being defined using its emission probability. We define the inter-relations between neighboring nodes using the transmission probability. Having constructed the problem, it is solved using the Viterbi algorithm, allowing the vessel to be reconstructed. The optimal solution can be found in polynomial time. We present qualitative and quantitative analysis to show the performance of the proposed method.

  6. A Cross-Modality Learning Approach for Vessel Segmentation in Retinal Images.

    Science.gov (United States)

    Li, Qiaoliang; Feng, Bowei; Xie, LinPei; Liang, Ping; Zhang, Huisheng; Wang, Tianfu

    2016-01-01

    This paper presents a new supervised method for vessel segmentation in retinal images. This method remolds the task of segmentation as a problem of cross-modality data transformation from retinal image to vessel map. A wide and deep neural network with strong induction ability is proposed to model the transformation, and an efficient training strategy is presented. Instead of a single label of the center pixel, the network can output the label map of all pixels for a given image patch. Our approach outperforms reported state-of-the-art methods in terms of sensitivity, specificity and accuracy. The result of cross-training evaluation indicates its robustness to the training set. The approach needs no artificially designed feature and no preprocessing step, reducing the impact of subjective factors. The proposed method has the potential for application in image diagnosis of ophthalmologic diseases, and it may provide a new, general, high-performance computing framework for image segmentation.

  7. Learning-based automated segmentation of the carotid artery vessel wall in dual-sequence MRI using subdivision surface fitting

    NARCIS (Netherlands)

    Gao, Shan; van't Klooster, Ronald; Kitslaar, Pieter H.; Coolen, Bram F.; van den Berg, Alexandra M.; Smits, Loek P.; Shahzad, Rahil; Shamonin, Denis P.; de Koning, Patrick J. H.; Nederveen, Aart J.; van der Geest, Rob J.

    2017-01-01

    Purpose: The quantification of vessel wall morphology and plaque burden requires vessel segmentation, which is generally performed by manual delineations. The purpose of our work is to develop and evaluate a new 3D model-based approach for carotid artery wall segmentation from dual-sequence MRI.

  8. Multimodal MEMPRAGE, FLAIR, and R2* Segmentation to Resolve Dura and Vessels from Cortical Gray Matter

    Directory of Open Access Journals (Sweden)

    Roberto Viviani

    2017-05-01

    Full Text Available While widely in use in automated segmentation approaches for the detection of group differences or of changes associated with continuous predictors in gray matter volume, T1-weighted images are known to represent dura and cortical vessels with signal intensities similar to those of gray matter. By considering multiple signal sources at once, multimodal segmentation approaches may be able to resolve these different tissue classes and address this potential confound. We explored here the simultaneous use of FLAIR and apparent transverse relaxation rates (a signal related to T2* relaxation maps and having similar contrast with T1-weighted images. Relative to T1-weighted images alone, multimodal segmentation had marked positive effects on 1. the separation of gray matter from dura, 2. the exclusion of vessels from the gray matter compartment, and 3. the contrast with extracerebral connective tissue. While obtainable together with the T1-weighted images without increasing scanning times, apparent transverse relaxation rates were less effective than added FLAIR images in providing the above mentioned advantages. FLAIR images also improved the detection of cortical matter in areas prone to susceptibility artifacts in standard MPRAGE T1-weighted images, while the addition of transverse relaxation maps exacerbated the effect of these artifacts on segmentation. Our results confirm that standard MPRAGE segmentation may overestimate gray matter volume by wrongly assigning vessels and dura to this compartment and show that multimodal approaches may greatly improve the specificity of cortical segmentation. Since multimodal segmentation is easily implemented, these benefits are immediately available to studies focusing on translational applications of structural imaging.

  9. Improvement of retinal blood vessel detection by spur removal and Gaussian matched filtering compensation

    Science.gov (United States)

    Xiao, Di; Vignarajan, Janardhan; An, Dong; Tay-Kearney, Mei-Ling; Kanagasingam, Yogi

    2016-03-01

    Retinal photography is a non-invasive and well-accepted clinical diagnosis of ocular diseases. Qualitative and quantitative assessment of retinal images is crucial in ocular diseases related clinical application. In this paper, we proposed approaches for improving the quality of blood vessel detection based on our initial blood vessel detection methods. A blood vessel spur pruning method has been developed for removing the blood vessel spurs both on vessel medial lines and binary vessel masks, which are caused by artifacts and side-effect of Gaussian matched vessel enhancement. A Gaussian matched filtering compensation method has been developed for removing incorrect vessel branches in the areas of low illumination. The proposed approaches were applied and tested on the color fundus images from one publicly available database and our diabetic retinopathy screening dataset. A preliminary result has demonstrated the robustness and good performance of the proposed approaches and their potential application for improving retinal blood vessel detection.

  10. Joint 3-D vessel segmentation and centerline extraction using oblique Hough forests with steerable filters.

    Science.gov (United States)

    Schneider, Matthias; Hirsch, Sven; Weber, Bruno; Székely, Gábor; Menze, Bjoern H

    2015-01-01

    We propose a novel framework for joint 3-D vessel segmentation and centerline extraction. The approach is based on multivariate Hough voting and oblique random forests (RFs) that we learn from noisy annotations. It relies on steerable filters for the efficient computation of local image features at different scales and orientations. We validate both the segmentation performance and the centerline accuracy of our approach both on synthetic vascular data and four 3-D imaging datasets of the rat visual cortex at 700 nm resolution. First, we evaluate the most important structural components of our approach: (1) Orthogonal subspace filtering in comparison to steerable filters that show, qualitatively, similarities to the eigenspace filters learned from local image patches. (2) Standard RF against oblique RF. Second, we compare the overall approach to different state-of-the-art methods for (1) vessel segmentation based on optimally oriented flux (OOF) and the eigenstructure of the Hessian, and (2) centerline extraction based on homotopic skeletonization and geodesic path tracing. Our experiments reveal the benefit of steerable over eigenspace filters as well as the advantage of oblique split directions over univariate orthogonal splits. We further show that the learning-based approach outperforms different state-of-the-art methods and proves highly accurate and robust with regard to both vessel segmentation and centerline extraction in spite of the high level of label noise in the training data. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Cannulation and continuous cross-sectional area measurement of small blood vessels

    NARCIS (Netherlands)

    VanBavel, E.; Mooij, T.; Giezeman, M. J.; Spaan, J. A.

    1990-01-01

    Techniques have been developed for the study of isolated small arteries. To pressurize and perfuse segments of these vessels, a cannula with a low resistance to flow was developed. This cannula consisted of two concentric micropipettes. The end of a vessel segment was sucked into the inner pipette

  12. Evidence of Flicker-Induced Functional Hyperaemia in the Smallest Vessels of the Human Retinal Blood Supply.

    Directory of Open Access Journals (Sweden)

    Angelina Duan

    Full Text Available Regional changes in blood flow are initiated within neural tissue to help fuel local differences in neural activity. Classically, this response was thought to arise only in larger arterioles and venules. However, recently, it has been proposed that a the smallest vessels of the circulation make a comparable contribution, and b the response should be localised intermittently along such vessels, due to the known distribution of contractile mural cells. To assess these hypotheses in human neural tissue in vivo, we imaged the retinal microvasculature (diameters 3-28 μm non-invasively, using adaptive optics, before and after delivery of focal (360 μm patches of flickering visible light. Our results demonstrated a definite average response in 35% of all vessel segments analysed. In these responding vessels, the magnitude of proportional dilation (mean ± SEM for pre-capillary arterioles 13 ± 5%, capillaries 31 ± 8%, and post-capillary venules 10 ± 3% is generally far greater than the magnitudes we and others have measured in the larger retinal vessels, supporting proposition a above. The dilations observed in venules were unexpected based on previous animal work, and may be attributed either to differences in stimulus or species. Response heterogeneity across the network was high; responses were also heterogeneous along individual vessels (45% of vessel segments showed demonstrable locality in their response. These observations support proposition b above. We also observed a definite average constriction across 7% of vessel segments (mean ± SEM constriction for capillaries -16 ± 3.2%, and post-capillary venules -18 ± 12%, which paints a picture of dynamic redistribution of flow throughout the smallest vessel networks in the retina in response to local, stimulus-driven metabolic demand.

  13. Angiogenesis and blood vessel stability in inflammatory arthritis.

    LENUS (Irish Health Repository)

    Kennedy, Aisling

    2012-02-01

    OBJECTIVE: To assess blood vessel stability in inflammatory synovial tissue (ST) and to examine neural cell adhesion molecule (NCAM), oxidative DNA damage, and hypoxia in vivo. METHODS: Macroscopic vascularity and ST oxygen levels were determined in vivo in patients with inflammatory arthritis who were undergoing arthroscopy. Vessel maturity\\/stability was quantified in matched ST samples by dual immunofluorescence staining for factor VIII (FVIII)\\/alpha-smooth muscle actin (alpha-SMA). NCAM and 8-oxo-7,8-dihydro-2\\'-deoxyguanosine (8-oxodG) were examined by immunohistochemistry. Angiogenesis was assessed in vitro, using human dermal endothelial cells (HDECs) in a Matrigel tube formation assay. RESULTS: A significant number of immature vessels (showing no pericyte recruitment) was observed in tissue from patients with inflammatory arthritis (P < 0.001), in contrast to osteoarthritic and normal tissue, which showed complete recruitment of pericytes. Low in vivo PO(2) levels in the inflamed joint (median [range] 22.8 [3.2-54.1] mm Hg) were inversely related to increased macroscopic vascularity (P < 0.04) and increased microscopic expression of FVIII and alpha-SMA (P < 0.04 and P < 0.03, respectively). A significant proportion of vessels showed focal expression of NCAM and strong nuclear 8-oxodG expression, implicating a loss of EC-pericyte contact and increased DNA damage, levels of which were inversely associated with low in vivo PO(2) (P = 0.04 for each comparison). Circulating cells were completely negative for 8-oxodG. Exposure of HDEC to 3% O(2) (reflecting mean ST in vivo measurements) significantly increased EC tube formation (P < 0.05). CONCLUSION: Our findings indicate the presence of unstable vessels in inflamed joints associated with hypoxia, incomplete EC-pericyte interactions, and increased DNA damage. These changes may further contribute to persistent hypoxia in the inflamed joint to further drive this unstable microenvironment.

  14. An artificial blood vessel implanted three-dimensional microsystem for modeling transvascular migration of tumor cells.

    Science.gov (United States)

    Wang, Xue-Ying; Pei, Ying; Xie, Min; Jin, Zi-He; Xiao, Ya-Shi; Wang, Yang; Zhang, Li-Na; Li, Yan; Huang, Wei-Hua

    2015-02-21

    Reproducing a tumor microenvironment consisting of blood vessels and tumor cells for modeling tumor invasion in vitro is particularly challenging. Here, we report an artificial blood vessel implanted 3D microfluidic system for reproducing transvascular migration of tumor cells. The transparent, porous and elastic artificial blood vessels are obtained by constructing polysaccharide cellulose-based microtubes using a chitosan sacrificial template, and possess excellent cytocompatibility, permeability, and mechanical characteristics. The artificial blood vessels are then fully implanted into the collagen matrix to reconstruct the 3D microsystem for modeling transvascular migration of tumor cells. Well-defined simulated vascular lumens were obtained by proliferation of the human umbilical vein endothelial cells (HUVECs) lining the artificial blood vessels, which enables us to reproduce structures and functions of blood vessels and replicate various hemodynamic parameters. Based on this model, the adhesion and transvascular migration of tumor cells across the artificial blood vessel have been well reproduced.

  15. Vascular Patterns in Iguanas and Other Squamates: Blood Vessels and Sites of Thermal Exchange.

    Directory of Open Access Journals (Sweden)

    William Ruger Porter

    Full Text Available Squamates use the circulatory system to regulate body and head temperatures during both heating and cooling. The flexibility of this system, which possibly exceeds that of endotherms, offers a number of physiological mechanisms to gain or retain heat (e.g., increase peripheral blood flow and heart rate, cooling the head to prolong basking time for the body as well as to shed heat (modulate peripheral blood flow, expose sites of thermal exchange. Squamates also have the ability to establish and maintain the same head-to-body temperature differential that birds, crocodilians, and mammals demonstrate, but without a discrete rete or other vascular physiological device. Squamates offer important anatomical and phylogenetic evidence for the inference of the blood vessels of dinosaurs and other extinct archosaurs in that they shed light on the basal diapsid condition. Given this basal positioning, squamates likewise inform and constrain the range of physiological thermoregulatory mechanisms that may have been found in Dinosauria. Unfortunately, the literature on squamate vascular anatomy is limited. Cephalic vascular anatomy of green iguanas (Iguana iguana was investigated using a differential-contrast, dual-vascular injection (DCDVI technique and high-resolution X-ray microcomputed tomography (μCT. Blood vessels were digitally segmented to create a surface representation of vascular pathways. Known sites of thermal exchange, consisting of the oral, nasal, and orbital regions, were given special attention due to their role in brain and cephalic thermoregulation. Blood vessels to and from sites of thermal exchange were investigated to detect conserved vascular patterns and to assess their ability to deliver cooled blood to the dural venous sinuses. Arteries within sites of thermal exchange were found to deliver blood directly and through collateral pathways. The venous drainage was found to have multiple pathways that could influence neurosensory

  16. Vascular Patterns in Iguanas and Other Squamates: Blood Vessels and Sites of Thermal Exchange.

    Science.gov (United States)

    Porter, William Ruger; Witmer, Lawrence M

    2015-01-01

    Squamates use the circulatory system to regulate body and head temperatures during both heating and cooling. The flexibility of this system, which possibly exceeds that of endotherms, offers a number of physiological mechanisms to gain or retain heat (e.g., increase peripheral blood flow and heart rate, cooling the head to prolong basking time for the body) as well as to shed heat (modulate peripheral blood flow, expose sites of thermal exchange). Squamates also have the ability to establish and maintain the same head-to-body temperature differential that birds, crocodilians, and mammals demonstrate, but without a discrete rete or other vascular physiological device. Squamates offer important anatomical and phylogenetic evidence for the inference of the blood vessels of dinosaurs and other extinct archosaurs in that they shed light on the basal diapsid condition. Given this basal positioning, squamates likewise inform and constrain the range of physiological thermoregulatory mechanisms that may have been found in Dinosauria. Unfortunately, the literature on squamate vascular anatomy is limited. Cephalic vascular anatomy of green iguanas (Iguana iguana) was investigated using a differential-contrast, dual-vascular injection (DCDVI) technique and high-resolution X-ray microcomputed tomography (μCT). Blood vessels were digitally segmented to create a surface representation of vascular pathways. Known sites of thermal exchange, consisting of the oral, nasal, and orbital regions, were given special attention due to their role in brain and cephalic thermoregulation. Blood vessels to and from sites of thermal exchange were investigated to detect conserved vascular patterns and to assess their ability to deliver cooled blood to the dural venous sinuses. Arteries within sites of thermal exchange were found to deliver blood directly and through collateral pathways. The venous drainage was found to have multiple pathways that could influence neurosensory tissue temperature

  17. Automatic segmentation of blood vessels from retinal fundus images ...

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... Machine Learning techniques have been useful in almost every field of concern. Data Mining, a branch of Machine Learning is one of the most extensively used techniques. The ever-increasing demands in the field of medicine are being addressed by computational approaches in which Big Data analysis, ...

  18. Automatic segmentation of blood vessels from retinal fundus images ...

    Indian Academy of Sciences (India)

    Medicine and Biology, Social Networking, Transaction analysis, Software defect analysis and many others. In this paper ..... r2008a and data mining techniques were implemented through Tanagra, an open source data mining tool. Experimental analysis is presented below. ... and the second image as test. Classification ...

  19. Automatic segmentation of blood vessels from retinal fundus images ...

    Indian Academy of Sciences (India)

    The ever-increasing demands in the field of medicine are being addressed by computational approaches in which Big Data analysis, image processing and data ... Gabor filtering, image postprocessing, feature construction through application of principal component analysis, k-means clustering and first level classification ...

  20. A higher-order tensor vessel tractography for segmentation of vascular structures.

    Science.gov (United States)

    Cetin, Suheyla; Unal, Gozde

    2015-10-01

    A new vascular structure segmentation method, which is based on a cylindrical flux-based higher order tensor (HOT), is presented. On a vessel structure, the HOT naturally models branching points, which create challenges for vessel segmentation algorithms. In a general linear HOT model embedded in 3D, one has to work with an even order tensor due to an enforced antipodal-symmetry on the unit sphere. However, in scenarios such as in a bifurcation, the antipodally-symmetric tensor embedded in 3D will not be useful. In order to overcome that limitation, we embed the tensor in 4D and obtain a structure that can model asymmetric junction scenarios. During construction of a higher order tensor (e.g. third or fourth order) in 4D, the orientation vectors lie on the unit 3-sphere, in contrast to the unit 2-sphere in 3D tensor modeling. This 4D tensor is exploited in a seed-based vessel segmentation algorithm, where the principal directions of the 4D HOT is obtained by decomposition, and used in a HOT tractography approach. We demonstrate quantitative validation of the proposed algorithm on both synthetic complex tubular structures as well as real cerebral vasculature in Magnetic Resonance Angiography (MRA) datasets and coronary arteries from Computed Tomography Angiography (CTA) volumes.

  1. Retina Image Vessel Segmentation Using a Hybrid CGLI Level Set Method

    Directory of Open Access Journals (Sweden)

    Guannan Chen

    2017-01-01

    Full Text Available As a nonintrusive method, the retina imaging provides us with a better way for the diagnosis of ophthalmologic diseases. Extracting the vessel profile automatically from the retina image is an important step in analyzing retina images. A novel hybrid active contour model is proposed to segment the fundus image automatically in this paper. It combines the signed pressure force function introduced by the Selective Binary and Gaussian Filtering Regularized Level Set (SBGFRLS model with the local intensity property introduced by the Local Binary fitting (LBF model to overcome the difficulty of the low contrast in segmentation process. It is more robust to the initial condition than the traditional methods and is easily implemented compared to the supervised vessel extraction methods. Proposed segmentation method was evaluated on two public datasets, DRIVE (Digital Retinal Images for Vessel Extraction and STARE (Structured Analysis of the Retina (the average accuracy of 0.9390 with 0.7358 sensitivity and 0.9680 specificity on DRIVE datasets and average accuracy of 0.9409 with 0.7449 sensitivity and 0.9690 specificity on STARE datasets. The experimental results show that our method is effective and our method is also robust to some kinds of pathology images compared with the traditional level set methods.

  2. War injuries of the blood vessels of the extremities

    Directory of Open Access Journals (Sweden)

    Radulović Svetozar

    2002-01-01

    Full Text Available Treatment results of 200 injured with the lesions of 282 magisterial blood vessels were analyzed. All were combat injuries, and the majority was caused by the fragments of explosive device. The mechanism of such the injuries produced large defects of soft tissues as well as the high level of the wound contamination, which aggravated reconstructive procedures and increased the risk of infection. In the majority of cases anatomic reconstruction of the artery was performed, and the ligature was used only in the case of graft infection and in the injuries of one artery of the lower leg or the forearm. The majority of injuries was solved by lateral suture or patch plastic, since postoperative constriction caused by those methods did not cause greater hemodynamic disorders due to the size of venous lumen. The duration of ischemic interval was of the utmost importance for the favorable final result of the treatment, as well as the adequate debridement of the wound, good soft-tissue cover of the reconstructed blood vessel and precise a traumatic technique. Total percentage of amputations was 14.5%, and all were involving the lower extremities, and were mostly caused by popliteal artery lesion.

  3. Intra-epithelially entrapped blood vessels in ameloblastoma.

    Science.gov (United States)

    Siar, Chong Huat; Ishak, Ismadi; Ng, Kok Han

    2015-05-01

    The ameloblastoma is a benign but locally aggressive odontogenic neoplasm with a high recurrence rate. While significant progress has been made in our understanding regarding the role of tumoral vasculature relative to the diverse behavioral characteristics of this tumor, no attention has been paid to a distinct subset of blood vessels entrapped within its epithelial compartment. As vascular niches are known to influence tumoral growth, clarification of these vessels is important. The objectives of this study were to investigate the morphologic characteristics of intra-epithelially entrapped blood vessels (IEBVs) in ameloblastoma and to speculate on their relevance. Here, we evaluated the frequency, microvessel density (MVD), morphology, and distribution pattern of IEBVs in 77 ameloblastoma of different subtypes based on their immunoreactivity for endothelial markers (CD34, CD31, CD105), vascular tight junction protein (claudin-5), pericyte [α-smooth muscle actin (α-sma)], and vascular basement membrane (collagen IV). IEBVs were heterogeneously detected in ameloblastoma. Their mean MVD (CD34 = 15.46 ± 7.25; CD31 = 15.8 ± 5.04; CD105 = 0.82 ± 0.51) showed no significant correlation with different subtypes, and between primary and recurrent tumors (P > 0.05). These microvessels may occur as single/clusters of capillary sprouts, or formed compressed branching/non-branching slits entrapped within the epithelial compartment, and in direct apposition with polyhedral/granular neoplastic epithelial cells. They expressed proteins for endothelial tight junctions (claudin-5-positive) and pericytes (α-sma-positive) but had deficient basement membrane (collagen IV weak to absent). Aberrant expression for CD34, CD31, and CD105 in tumor epithelium was variably observed. Although rare in occurrence, identification of IEBVs in ameloblastoma could potentially represent a new paradigm for vascular assessment of this neoplasm. © 2014 John Wiley & Sons A/S. Published by John

  4. Feedback from Westinghouse experience on segmentation of reactor vessel internals - 59013

    International Nuclear Information System (INIS)

    Kreitman, Paul J.; Boucau, Joseph; Segerud, Per; Fallstroem, Stefan

    2012-01-01

    With more than 25 years of experience in the development of reactor vessel internals segmentation and packaging technology, Westinghouse has accumulated significant know-how in the reactor dismantling market. Building on tooling concepts and cutting methodologies developed decades ago for the successful removal of nuclear fuel from the damaged Three Mile Island Unit 2 reactor (TMI-2), Westinghouse has continuously improved its approach to internals segmentation and packaging by incorporating lessons learned and best practices into each successive project. Westinghouse has developed several concepts to dismantle reactor internals based on safe and reliable techniques, including plasma arc cutting (PAC), abrasive water-jet cutting (AWJC), metal disintegration machining (MDM), or mechanical cutting. Westinghouse has applied its technology to all types of reactors covering Pressurized Water Reactors (PWR's), Boiling Water Reactors (BWR's), Gas Cooled Reactors (GCR's) and sodium reactors. The primary challenges of a segmentation and packaging project are to separate the highly activated materials from the less-activated materials and package them into appropriate containers for disposal. Since space is almost always a limiting factor it is therefore important to plan and optimize the available room in the segmentation areas. The choice of the optimum cutting technology is important for a successful project implementation and depends on some specific constraints like disposal costs, project schedule, available areas or safety. Detailed 3-D modeling is the basis for tooling design and provides invaluable support in determining the optimum strategy for component cutting and disposal in waste containers, taking account of the radiological and packaging constraints. Westinghouse has also developed a variety of special handling tools, support fixtures, service bridges, water filtration systems, video-monitoring systems and customized rigging, all of which are required for a

  5. A Framework for White Blood Cell Segmentation in Microscopic Blood Images Using Digital Image Processing

    Science.gov (United States)

    2009-01-01

    Evaluation of blood smear is a commonly clinical test these days. Most of the time, the hematologists are interested on white blood cells (WBCs) only. Digital image processing techniques can help them in their analysis and diagnosis. For example, disease like acute leukemia is detected based on the amount and condition of the WBC. The main objective of this paper is to segment the WBC to its two dominant elements: nucleus and cytoplasm. The segmentation is conducted using a proposed segmentation framework that consists of an integration of several digital image processing algorithms. Twenty microscopic blood images were tested, and the proposed framework managed to obtain 92% accuracy for nucleus segmentation and 78% for cytoplasm segmentation. The results indicate that the proposed framework is able to extract the nucleus and cytoplasm region in a WBC image sample. PMID:19517206

  6. Use of Gabor filters and deep networks in the segmentation of retinal vessel morphology

    Science.gov (United States)

    Leopold, Henry A.; Orchard, Jeff; Zelek, John; Lakshminarayanan, Vasudevan

    2017-02-01

    The segmentation of retinal morphology has numerous applications in assessing ophthalmologic and cardiovascular disease pathologies. The early detection of many such conditions is often the most effective method for reducing patient risk. Computer aided segmentation of the vasculature has proven to be a challenge, mainly due to inconsistencies such as noise, variations in hue and brightness that can greatly reduce the quality of fundus images. Accurate fundus and/or retinal vessel maps give rise to longitudinal studies able to utilize multimodal image registration and disease/condition status measurements, as well as applications in surgery preparation and biometrics. This paper further investigates the use of a Convolutional Neural Network as a multi-channel classifier of retinal vessels using the Digital Retinal Images for Vessel Extraction database, a standardized set of fundus images used to gauge the effectiveness of classification algorithms. The CNN has a feed-forward architecture and varies from other published architectures in its combination of: max-pooling, zero-padding, ReLU layers, batch normalization, two dense layers and finally a Softmax activation function. Notably, the use of Adam to optimize training the CNN on retinal fundus images has not been found in prior review. This work builds on prior work of the authors, exploring the use of Gabor filters to boost the accuracy of the system to 0.9478 during post processing. The mean of a series of Gabor filters with varying frequencies and sigma values are applied to the output of the network and used to determine whether a pixel represents a vessel or non-vessel.

  7. Pattern of blood vessels in eyes with coloboma

    Directory of Open Access Journals (Sweden)

    Gopal Lingam

    2013-01-01

    Full Text Available Background: Choroidal coloboma, especially with optic disc involvement affects the blood vessel (BV pattern in the fundus. Aim: The aim of this study was to report the observations on the pattern of retinal BVs in eyes with fundus coloboma. Design: Retrospective observational study. Materials and Methods: Twenty four eyes of 19 patients with fundus coloboma and the disc involvement in the coloboma was classified according to a previous publication. Results: Four varieties of BVs were identified in the area of coloboma - BVs that were continuous with those arising from the optic disc; vessels emanating from the floor of coloboma whose continuity with central retinal artery or its branches could be indirectly established; and those emanating from the floor of coloboma whose continuity with central retinal artery could not be established. In addition, extraocular BVs were visible through the thinned sclera. The retinal BVs often traversed the coloboma to reach the normal retina. The disc itself was found to be small and had no physiological cup (if not colobomatous. Conclusions: One should be aware of the major BVs transgressing the coloboma while performing relaxing cuts in the intercalary membrane, during the surgery for retinal detachments in eyes with coloboma. Physiological cup is usually absent (when the disc is not colobomatous. Hence, any cupping in such eyes should be viewed with suspicion.

  8. Computerized Reconstruction of Pulpal Blood Vessels Examined under Confocal Microscope

    Directory of Open Access Journals (Sweden)

    Digka Anna

    2015-03-01

    Full Text Available The purpose of this study was the evaluation of 3 different histological methods for studying pulpal blood vessels in combination with 2 types of confocal microscope and computer assisted 3-dimensional reconstruction. 10 human, healthy, free of restorations or caries teeth that were extracted for orthodontic reasons were used. From these teeth, the pulp tissues of 5 were removed, fixed in formalin solution, dehydrated and embedded in paraffin. Serial cross sections 5μm thick were taken from 3 of the above mentioned pulpal tissues and stained with CD34 according to the immunohistochemical ABC technique, while the rest 2 were stained with CD34 and Cy5 by means of immunofluorescence after serial cross sectioning of 10μm. 5 of the 10 teeth were fixed, decalcified, serial cross sectioned (30μm thickness and stained with eosin. The physical sections were examined under 2 types of confocal laser microscope. Serial images were taken for each section, alignment of the images was followed and finally 3-dimensional reconstructions of the pulpal vessels were achieved.

  9. Heterogeneity of muscarinic receptor subtypes in cerebral blood vessels

    International Nuclear Information System (INIS)

    Garcia-Villalon, A.L.; Krause, D.N.; Ehlert, F.J.; Duckles, S.P.

    1991-01-01

    The identity and distribution of muscarinic cholinergic receptor subtypes and associated signal transduction mechanisms was characterized for the cerebral circulation using correlated functional and biochemical investigations. Subtypes were distinguished by the relative affinities of a panel of muscarinic antagonists, pirenzepine, AF-DX 116 [11-2-[[2-[diethylaminomethyl]- 1-piperidinyl]acetyl]-5,11-dihydro-6H- pyrido[2,3-b][1,4]benzodiazepine-6-one], hexahydrosiladifenidol, methoctramine, 4-diphenylacetoxy-N-methylpiperidine methobromide, dicyclomine, para-fluoro-hexahydrosiladifenidol and atropine. Muscarinic receptors characterized by inhibition of [3H]quinuclidinylbenzilate binding in membranes of bovine pial arteries were of the M2 subtype. In contrast pharmacological analysis of [3H]-quinuclidinylbenzilate binding in bovine intracerebral microvessels suggests the presence of an M4 subtype. Receptors mediating endothelium-dependent vasodilation in rabbit pial arteries were of the M3 subtype, whereas muscarinic receptors stimulating endothelium-independent phosphoinositide hydrolysis in bovine pial arteries were of the M1 subtype. These findings suggest that characteristics of muscarinic receptors in cerebral blood vessels vary depending on the type of vessel, cellular location and function mediated

  10. Locating abnormalities in brain blood vessels using parallel computing architecture.

    Science.gov (United States)

    Adeshina, A M; Hashim, R; Khalid, N E A; Abidin, S Z Z

    2012-09-01

    CT and MRI scans are widely used in medical diagnosis procedures, but they only produce 2-D images. However, the human anatomical structure, the abnormalities, tumors, tissues and organs are in 3-D. 2-D images from these devices are difficult to interpret because they only show cross-sectional views of the human structure. Consequently, such circumstances require doctors to use their expert experiences in the interpretation of the possible location, size or shape of the abnormalities, even for large datasets of enormous amount of slices. Previously, the concept of reconstructing 2-D images to 3-D was introduced. However, such reconstruction model requires high performance computation, may either be time-consuming or costly. Furthermore, detecting the internal features of human anatomical structure, such as the imaging of the blood vessels, is still an open topic in the computer-aided diagnosis of disorders and pathologies. This paper proposes a volume visualization framework using Compute Unified Device Architecture (CUDA), augmenting the widely proven ray casting technique in terms of superior qualities of images but with slow speed. Considering the rapid development of technology in the medical community, our framework is implemented on Microsoft.NET environment for easy interoperability with other emerging revolutionary tools. The framework was evaluated with brain datasets from the department of Surgery, University of North Carolina, United States, containing around 109 MRA datasets. Uniquely, at a reasonably cheaper cost, our framework achieves immediate reconstruction and obvious mappings of the internal features of human brain, reliable enough for instantaneous locations of possible blockages in the brain blood vessels.

  11. Accuracy and Precision of MR Blood Oximetry Based On the Long Paramagnetic Cylinder Approximation of Large Vessels

    Science.gov (United States)

    Langham, Michael C.; Magland, Jeremy F.; Epstein, Charles L.; Floyd, Thomas F.; Wehrli, Felix W.

    2009-01-01

    An accurate non-invasive method to measure hemoglobin oxygen saturation (%HbO2) of deep-lying vessels without catheterization would have many clinical applications. Quantitative MRI may be the only imaging modality that can address this difficult and important problem. MR susceptometry-based oximetry for measuring blood oxygen saturation in large vessels models the vessel as a long paramagnetic cylinder immersed in an external field. The intravascular magnetic susceptibility relative to surrounding muscle tissue is a function of HbO2 and can be quantified with a field mapping pulse sequence. In this work, the method’s accuracy and precision was investigated theoretically on the basis of an analytical expression for the arbitrarily oriented cylinder, as well as experimentally in phantoms and in vivo in the femoral artery and vein at 3T field strength. Errors resulting from vessel tilt, non-circularity of vessel cross-section, and induced magnetic field gradients were evaluated and methods for correction designed and implemented. Hemoglobin saturation was measured at successive vessel segments, differing in geometry such as eccentricity and vessel tilt but constant blood oxygen saturation levels, as a means to evaluate measurement consistency. The average standard error and coefficient of variation of measurements in phantoms were less than 2% with tilt correction alone, in agreement with theory, suggesting that high accuracy and reproducibility can be achieved while ignoring non-circularity for tilt angles up to about 30°. In vivo, repeated measurements of %HbO2 in the femoral vessels yielded a coefficient of variation of less than 5%. In conclusion, the data suggest that %HbO2 can be measured reproducibly in vivo in large vessels of the peripheral circulation on the basis of the paramagnetic cylinder approximation of the incremental field. PMID:19526517

  12. An angiogenesis platform using a cubic artificial eggshell with patterned blood vessels on chicken chorioallantoic membrane.

    Science.gov (United States)

    Huang, Wenjing; Itayama, Makoto; Arai, Fumihito; Furukawa, Katsuko S; Ushida, Takashi; Kawahara, Tomohiro

    2017-01-01

    The chorioallantoic membrane (CAM) containing tiny blood vessels is an alternative to large animals for studies involving angiogenesis and tissue engineering. However, there is no technique to design the direction of growing blood vessels on the CAM at the microscale level for tissue engineering experiments. Here, a methodology is provided to direct blood vessel formation on the surface of a three-dimensional egg yolk using a cubic artificial eggshell with six functionalized membranes. A structure on the lateral side of the eggshell containing a straight channel and an interlinked chamber was designed, and the direction and formation area of blood vessels with blood flow was artfully defined by channels with widths of 70-2000 μm, without sharply reducing embryo viability. The relationship between the size of interlinked chamber and the induction of blood vessels was investigated to establish a theory of design. Role of negative and positive pressure in the induction of CAM with blood vessels was investigated, and air pressure change in the culture chamber was measured to demonstrate the mechanism for blood vessel induction. Histological evaluation showed that components of CAM including chorionic membrane and blood vessels were induced into the channels. Based on our design theory, blood vessels were induced into arrayed channels, and channel-specific injection and screening were realized, which demonstrated proposed applications. The platform with position- and space-controlled blood vessels is therefore a powerful tool for biomedical research, which may afford exciting applications in studies involved in local stimulation of blood vessel networks and those necessary to establish a living system with blood flow from a beating heart.

  13. Blood Vessel Normalization in the Hamster Oral Cancer Model for Experimental Cancer Therapy Studies

    Energy Technology Data Exchange (ETDEWEB)

    Ana J. Molinari; Romina F. Aromando; Maria E. Itoiz; Marcela A. Garabalino; Andrea Monti Hughes; Elisa M. Heber; Emiliano C. C. Pozzi; David W. Nigg; Veronica A. Trivillin; Amanda E. Schwint

    2012-07-01

    Normalization of tumor blood vessels improves drug and oxygen delivery to cancer cells. The aim of this study was to develop a technique to normalize blood vessels in the hamster cheek pouch model of oral cancer. Materials and Methods: Tumor-bearing hamsters were treated with thalidomide and were compared with controls. Results: Twenty eight hours after treatment with thalidomide, the blood vessels of premalignant tissue observable in vivo became narrower and less tortuous than those of controls; Evans Blue Dye extravasation in tumor was significantly reduced (indicating a reduction in aberrant tumor vascular hyperpermeability that compromises blood flow), and tumor blood vessel morphology in histological sections, labeled for Factor VIII, revealed a significant reduction in compressive forces. These findings indicated blood vessel normalization with a window of 48 h. Conclusion: The technique developed herein has rendered the hamster oral cancer model amenable to research, with the potential benefit of vascular normalization in head and neck cancer therapy.

  14. Segmentation of liver and vessels from CT images and classification of liver segments for preoperative liver surgical planning in living donor liver transplantation.

    Science.gov (United States)

    Yang, Xiaopeng; Yang, Jae Do; Hwang, Hong Pil; Yu, Hee Chul; Ahn, Sungwoo; Kim, Bong-Wan; You, Heecheon

    2018-05-01

    The present study developed an effective surgical planning method consisting of a liver extraction stage, a vessel extraction stage, and a liver segment classification stage based on abdominal computerized tomography (CT) images. An automatic seed point identification method, customized level set methods, and an automated thresholding method were applied in this study to extraction of the liver, portal vein (PV), and hepatic vein (HV) from CT images. Then, a semi-automatic method was developed to separate PV and HV. Lastly, a local searching method was proposed for identification of PV branches and the nearest neighbor approximation method was applied to classifying liver segments. Onsite evaluation of liver segmentation provided by the SLIVER07 website showed that the liver segmentation method achieved an average volumetric overlap accuracy of 95.2%. An expert radiologist evaluation of vessel segmentation showed no false positive errors or misconnections between PV and HV in the extracted vessel trees. Clinical evaluation of liver segment classification using 43 CT datasets from two medical centers showed that the proposed method achieved high accuracy in liver graft volumetry (absolute error, AE = 45.2 ± 20.9 ml; percentage of AE, %AE = 6.8% ± 3.2%; percentage of %AE > 10% = 16.3%; percentage of %AE > 20% = none) and the classified segment boundaries agreed with the intraoperative surgical cutting boundaries by visual inspection. The method in this study is effective in segmentation of liver and vessels and classification of liver segments and can be applied to preoperative liver surgical planning in living donor liver transplantation. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. White blood cell counting analysis of blood smear images using various segmentation strategies

    Science.gov (United States)

    Safuan, Syadia Nabilah Mohd; Tomari, Razali; Zakaria, Wan Nurshazwani Wan; Othman, Nurmiza

    2017-09-01

    In white blood cell (WBC) diagnosis, the most crucial measurement parameter is the WBC counting. Such information is widely used to evaluate the effectiveness of cancer therapy and to diagnose several hidden infection within human body. The current practice of manual WBC counting is laborious and a very subjective assessment which leads to the invention of computer aided system (CAS) with rigorous image processing solution. In the CAS counting work, segmentation is the crucial step to ensure the accuracy of the counted cell. The optimal segmentation strategy that can work under various blood smeared image acquisition conditions is remain a great challenge. In this paper, a comparison between different segmentation methods based on color space analysis to get the best counting outcome is elaborated. Initially, color space correction is applied to the original blood smeared image to standardize the image color intensity level. Next, white blood cell segmentation is performed by using combination of several color analysis subtraction which are RGB, CMYK and HSV, and Otsu thresholding. Noises and unwanted regions that present after the segmentation process is eliminated by applying a combination of morphological and Connected Component Labelling (CCL) filter. Eventually, Circle Hough Transform (CHT) method is applied to the segmented image to estimate the number of WBC including the one under the clump region. From the experiment, it is found that G-S yields the best performance.

  16. The vascular Ca2+-sensing receptor regulates blood vessel tone and blood pressure.

    Science.gov (United States)

    Schepelmann, M; Yarova, P L; Lopez-Fernandez, I; Davies, T S; Brennan, S C; Edwards, P J; Aggarwal, A; Graça, J; Rietdorf, K; Matchkov, V; Fenton, R A; Chang, W; Krssak, M; Stewart, A; Broadley, K J; Ward, D T; Price, S A; Edwards, D H; Kemp, P J; Riccardi, D

    2016-02-01

    The extracellular calcium-sensing receptor CaSR is expressed in blood vessels where its role is not completely understood. In this study, we tested the hypothesis that the CaSR expressed in vascular smooth muscle cells (VSMC) is directly involved in regulation of blood pressure and blood vessel tone. Mice with targeted CaSR gene ablation from vascular smooth muscle cells (VSMC) were generated by breeding exon 7 LoxP-CaSR mice with animals in which Cre recombinase is driven by a SM22α promoter (SM22α-Cre). Wire myography performed on Cre-negative [wild-type (WT)] and Cre-positive (SM22α)CaSR(Δflox/Δflox) [knockout (KO)] mice showed an endothelium-independent reduction in aorta and mesenteric artery contractility of KO compared with WT mice in response to KCl and to phenylephrine. Increasing extracellular calcium ion (Ca(2+)) concentrations (1-5 mM) evoked contraction in WT but only relaxation in KO aortas. Accordingly, diastolic and mean arterial blood pressures of KO animals were significantly reduced compared with WT, as measured by both tail cuff and radiotelemetry. This hypotension was mostly pronounced during the animals' active phase and was not rescued by either nitric oxide-synthase inhibition with nitro-l-arginine methyl ester or by a high-salt-supplemented diet. KO animals also exhibited cardiac remodeling, bradycardia, and reduced spontaneous activity in isolated hearts and cardiomyocyte-like cells. Our findings demonstrate a role for CaSR in the cardiovascular system and suggest that physiologically relevant changes in extracellular Ca(2+) concentrations could contribute to setting blood vessel tone levels and heart rate by directly acting on the cardiovascular CaSR.

  17. [Effects of high intensity focused ultrasound with SonoVue on blood vessels pathological examinations].

    Science.gov (United States)

    Qin, Yan; Bai, Jin; Li, Faqi; Wang, Zhibiao

    2010-12-01

    The injury of tumor blood vessels will break up the nutrition supply for the tumor. In this paper, we investigated the effects exerted by high intensity focused ultrasound (HIFU) combined with ultrasound microbubble agent on blood vessels. Ultrasound diagnosis was used to find the goat hepatic blood vessels each being approximately 3mm in diameter. HIFU was focused on the blood vessels. The acoustic power was 250W; HIFU irradiating Mode was line scan (the length of the line: 10 mm; speed: 3 mm/s; irradiating time: 30s). In the experimental group, 0.03 ml/kg SonoVue was injected into the goat before HIFU irradiation,while normal saline was given to the control group. The goats were killed at 24h after HIFU irradiation, then goat liver tissues and blood vessels of target area were taken out. HE staining and Victoria's blue and Ponceau's staining of tissue section showed that the endothelial cells of blood vessels dropped off and became necrosed, and the continuity of blood vessels was interrupted. HIFU combined with SonoVue will damage large blood vessels on HIFU focus, but there is no evident discrepancy between the group with SonoVue and the group without SonoVue.

  18. Determination of the critical buckling pressure of blood vessels using the energy approach.

    Science.gov (United States)

    Han, Hai-Chao

    2011-03-01

    The stability of blood vessels under lumen blood pressure is essential to the maintenance of normal vascular function. Differential buckling equations have been established recently for linear and nonlinear elastic artery models. However, the strain energy in bent buckling and the corresponding energy method have not been investigated for blood vessels under lumen pressure. The purpose of this study was to establish the energy equation for blood vessel buckling under internal pressure. A buckling equation was established to determine the critical pressure based on the potential energy. The critical pressures of blood vessels with small tapering along their axis were estimated using the energy approach. It was demonstrated that the energy approach yields both the same differential equation and critical pressure for cylindrical blood vessel buckling as obtained previously using the adjacent equilibrium approach. Tapering reduced the critical pressure of blood vessels compared to the cylindrical ones. This energy approach provides a useful tool for studying blood vessel buckling and will be useful in dealing with various imperfections of the vessel wall.

  19. Captopril improves tumor nanomedicine delivery by increasing tumor blood perfusion and enlarging endothelial gaps in tumor blood vessels.

    Science.gov (United States)

    Zhang, Bo; Jiang, Ting; Tuo, Yanyan; Jin, Kai; Luo, Zimiao; Shi, Wei; Mei, Heng; Hu, Yu; Pang, Zhiqing; Jiang, Xinguo

    2017-12-01

    Poor tumor perfusion and unfavorable vessel permeability compromise nanomedicine drug delivery to tumors. Captopril dilates blood vessels, reducing blood pressure clinically and bradykinin, as the downstream signaling moiety of captopril, is capable of dilating blood vessels and effectively increasing vessel permeability. The hypothesis behind this study was that captopril can dilate tumor blood vessels, improving tumor perfusion and simultaneously enlarge the endothelial gaps of tumor vessels, therefore enhancing nanomedicine drug delivery for tumor therapy. Using the U87 tumor xenograft with abundant blood vessels as the tumor model, tumor perfusion experiments were carried out using laser Doppler imaging and lectin-labeling experiments. A single treatment of captopril at a dose of 100 mg/kg significantly increased the percentage of functional vessels in tumor tissues and improved tumor blood perfusion. Scanning electron microscopy of tumor vessels also indicated that the endothelial gaps of tumor vessels were enlarged after captopril treatment. Immunofluorescence-staining of tumor slices demonstrated that captopril significantly increased bradykinin expression, possibly explaining tumor perfusion improvements and endothelial gap enlargement. Additionally, imaging in vivo, imaging ex vivo and nanoparticle distribution in tumor slices indicated that after a single treatment with captopril, the accumulation of 115-nm nanoparticles in tumors had increased 2.81-fold with a more homogeneous distribution pattern in comparison to non-captopril treated controls. Finally, pharmacodynamics experiments demonstrated that captopril combined with paclitaxel-loaded nanoparticles resulted in the greatest tumor shrinkage and the most extensive necrosis in tumor tissues among all treatment groups. Taken together, the data from the present study suggest a novel strategy for improving tumor perfusion and enlarging blood vessel permeability simultaneously in order to improve

  20. Three-dimensional reconstruction of rat dermal blood vessels in vivo

    Science.gov (United States)

    Barton, Jennifer K.; Izatt, Joseph A.; Kulkarni, Manish D.; Welch, Ashley J.

    1997-05-01

    We performed imaging and reconstruction of dermal and subdermal blood vessels in a rat skin flap window model. The window model consists of a double thickness of dorsal skin which is sutured to a holding fixture. A 1 cm circle of skin is removed from one thickness, exposing the dermal blood vessels of the opposing side. An optical coherence tomography system operating at 1310 nm was used to image the blood vessels. A series of transverse images of the window model characterized sections of tissue. Off-the-shelf software for desktop and workstation computers was used to preprocess the images, identify and reconstruct blood vessels, and to extract parameters such depth, diameter, and percent volume of blood vessels. Such parameters may be of interest in developing improved treatments for vascular disorders such as port wine stains.

  1. Hepatic vessel segmentation for 3D planning of liver surgery experimental evaluation of a new fully automatic algorithm.

    Science.gov (United States)

    Conversano, Francesco; Franchini, Roberto; Demitri, Christian; Massoptier, Laurent; Montagna, Francesco; Maffezzoli, Alfonso; Malvasi, Antonio; Casciaro, Sergio

    2011-04-01

    The aim of this study was to identify the optimal parameter configuration of a new algorithm for fully automatic segmentation of hepatic vessels, evaluating its accuracy in view of its use in a computer system for three-dimensional (3D) planning of liver surgery. A phantom reproduction of a human liver with vessels up to the fourth subsegment order, corresponding to a minimum diameter of 0.2 mm, was realized through stereolithography, exploiting a 3D model derived from a real human computed tomographic data set. Algorithm parameter configuration was experimentally optimized, and the maximum achievable segmentation accuracy was quantified for both single two-dimensional slices and 3D reconstruction of the vessel network, through an analytic comparison of the automatic segmentation performed on contrast-enhanced computed tomographic phantom images with actual model features. The optimal algorithm configuration resulted in a vessel detection sensitivity of 100% for vessels > 1 mm in diameter, 50% in the range 0.5 to 1 mm, and 14% in the range 0.2 to 0.5 mm. An average area overlap of 94.9% was obtained between automatically and manually segmented vessel sections, with an average difference of 0.06 mm(2). The average values of corresponding false-positive and false-negative ratios were 7.7% and 2.3%, respectively. A robust and accurate algorithm for automatic extraction of the hepatic vessel tree from contrast-enhanced computed tomographic volume images was proposed and experimentally assessed on a liver model, showing unprecedented sensitivity in vessel delineation. This automatic segmentation algorithm is promising for supporting liver surgery planning and for guiding intraoperative resections. Copyright © 2011 AUR. Published by Elsevier Inc. All rights reserved.

  2. Westinghouse PWR and BWR reactor vessel segmentation experience in using mechanical cutting process

    International Nuclear Information System (INIS)

    Segerud, Per; Fallstroem, Stefan; Boucau, Joseph; Kreitman, Paul J.

    2011-01-01

    Some commercial nuclear power plants have been permanently shut down to date and decommissioned using dismantling methods. Other operating plants have decided to undergo an upgrade process that includes replacement of reactor internals. In both cases, there is a need to perform a segmentation of the reactor vessel internals with proven methods for long term waste disposal. Westinghouse has developed several concepts to dismantle reactor internals based on safe and reliable techniques, including plasma arc cutting (PAC), abrasive waterjet cutting (AWJC), metal disintegration machining (MDM), or mechanical cutting. Mechanical cutting has been used by Westinghouse since 1999 for both Pressurized Water Reactors (PWR's) and Boiling Water Reactors (BWR's) and its process has been continuously improved over the years. The complexity of the work requires well designed and reliable tools. Different band saws, disc saws, tube cutters and shearing tools have been developed to cut the reactor internals. All of those equipments are hydraulically driven which is very suitable for submerged applications. Westinghouse experience in mechanical cutting has demonstrated that it is an excellent technique for segmentation of internals. In summary, the purpose of this paper will be to provide an overview of the Westinghouse mechanical segmentation process, based on actual experience from the work that has been completed to date. (author)

  3. Effects of shear forces and pressure on blood vessel function and metabolism in a perfusion bioreactor.

    Science.gov (United States)

    Hoenicka, Markus; Wiedemann, Ludwig; Puehler, Thomas; Hirt, Stephan; Birnbaum, Dietrich E; Schmid, Christof

    2010-12-01

    Bovine saphenous veins (BSV) were incubated in a perfusion bioreactor to study vessel wall metabolism and wall structure under tissue engineering conditions. Group 1 vessels were perfused for 4 or 8 days. The viscosity of the medium was increased to that of blood in group 2. Group 3 vessels were additionally strained with luminal pressure. Groups 1-d through 3-d were similar except that BSV were endothelium-denuded before perfusion. Groups 1-a through 3-a used native vessels at elevated flow rates. Group 3 vessels responded significantly better to noradrenaline on day 4, whereas denuded vessels showed attenuated responses (p vessels. pO₂ gradients across the vessels were independent of time and significantly higher in group 2 (p vessels of groups 3, 1-d, and 3-d which released more lactate than glucose could supply (p vessels as well as all vessels perfused with elevated flow rates showed a loss of endothelial cells after 4 days, whereas group 2 and 3 vessels retained most of the endothelium. These data suggest that vessel metabolism was not limited by oxygen supply. Shear forces did not affect glucose metabolism but increased oxygen consumption and endothelial cell survival. Luminal pressure caused the utilization of energy sources other than glucose, as long as the endothelium was intact. Therefore, vessel metabolism needs to be monitored during tissue engineering procedures which challenge the constructs with mechanical stimuli.

  4. Primo Vascular System Accompanying a Blood Vessel from Tumor Tissue and a Method to Distinguish It from the Blood or the Lymph System

    Directory of Open Access Journals (Sweden)

    Jaekwan Lim

    2013-01-01

    Full Text Available A primo vessel was observed in the abdominal cavity in the lung cancer mouse model, and its function as an extra metastatic path was observed. In this work, we found a primo vessel accompanying a blood vessel emanating from a tumor in the skin. We also presented simple and efficient criteria to distinguish a primo vessel from a blood or a lymph vessel and from a nerve. The criteria for using DAPI and Phalloidin will be useful in clinical situations to find and identify the primo vessels among the blood vessels, lymph vessels, or nerves in the tissue surrounding a tumor such as a melanoma or breast cancer.

  5. Effect of non-Newtonian characteristics of blood on magnetic particle capture in occluded blood vessel

    Energy Technology Data Exchange (ETDEWEB)

    Bose, Sayan; Banerjee, Moloy, E-mail: moloy_kb@yahoo.com

    2015-01-15

    Magnetic nanoparticles drug carriers continue to attract considerable interest for drug targeting in the treatment of cancer and other pathological conditions. Magnetic carrier particles with surface-bound drug molecules are injected into the vascular system upstream from the desired target site, and are captured at the target site via a local applied magnetic field. Herein, a numerical investigation of steady magnetic drug targeting (MDT) using functionalized magnetic micro-spheres in partly occluded blood vessel having a 90° bent is presented considering the effects of non-Newtonian characteristics of blood. An Eulerian–Lagrangian technique is adopted to resolve the hemodynamic flow and the motion of the magnetic particles in the flow using ANSYS FLUENT. An implantable infinitely long cylindrical current carrying conductor is used to create the requisite magnetic field. Targeted transport of the magnetic particles in a partly occluded vessel differs distinctly from the same in a regular unblocked vessel. Parametric investigation is conducted and the influence of the insert configuration and its position from the central plane of the artery (z{sub offset}), particle size (d{sub p}) and its magnetic property (χ) and the magnitude of current (I) on the “capture efficiency” (CE) is reported. Analysis shows that there exists an optimum regime of operating parameters for which deposition of the drug carrying magnetic particles in a target zone on the partly occluded vessel wall can be maximized. The results provide useful design bases for in vitro set up for the investigation of MDT in stenosed blood vessels. - Highlights: • Two counter rotating vortices forces the fluid flow back through the more viscous region. • The existence of strong recirculation zone just downstream side of the occlusion. • Configuration 4 produces the better efficient MDT system. • Modified Casson model predicts the highest value of CE, whereas the generalized power law gives

  6. Segmentation, Reconstruction, and Analysis of Blood Thrombus Formation in 3D 2-Photon Microscopy Images

    Directory of Open Access Journals (Sweden)

    Xu Zhiliang

    2010-01-01

    Full Text Available We study the problem of segmenting, reconstructing, and analyzing the structure growth of thrombi (clots in blood vessels in vivo based on 2-photon microscopic image data. First, we develop an algorithm for segmenting clots in 3D microscopic images based on density-based clustering and methods for dealing with imaging artifacts. Next, we apply the union-of-balls (or alpha-shape algorithm to reconstruct the boundary of clots in 3D. Finally, we perform experimental studies and analysis on the reconstructed clots and obtain quantitative data of thrombus growth and structures. We conduct experiments on laser-induced injuries in vessels of two types of mice (the wild type and the type with low levels of coagulation factor VII and analyze and compare the developing clot structures based on their reconstructed clots from image data. The results we obtain are of biomedical significance. Our quantitative analysis of the clot composition leads to better understanding of the thrombus development, and is valuable to the modeling and verification of computational simulation of thrombogenesis.

  7. Estimation of vessel diameter and blood flow dynamics from laser speckle images

    DEFF Research Database (Denmark)

    Postnov, Dmitry D.; Tuchin, Valery V.; Sosnovtseva, Olga

    2016-01-01

    Laser speckle imaging is a rapidly developing method to study changes of blood velocity in the vascular networks. However, to assess blood flow and vascular responses it is crucial to measure vessel diameter in addition to blood velocity dynamics. We suggest an algorithm that allows for dynamical...... masking of a vessel position and measurements of it's diameter from laser speckle images. This approach demonstrates high reliability and stability....

  8. Investigating laser/blood-vessel interaction with color Doppler optical coherence tomography

    Science.gov (United States)

    Barton, Jennifer K.; Izatt, Joseph A.; Welch, Ashley J.

    1998-04-01

    A non-invasive method of imaging laser irradiated blood vessels, and of tracking the healing response, has been achieved using Color Doppler Optical Coherence Tomography (CDOCT). This method may increase understanding of the mechanisms behind treatment of vascular disorders such as port wine stains. The CDOCT system uses a superluminescent diode with a center wavelength of 1280 nm. Pulsed dye and KTP lasers operating at 585 and 532 nm, respectively, were used to irradiate rat and hamster dorsal skin flap window models. The window model is a chronic preparation which exposes subdermal blood vessels while maintaining a thickness of normal skin. Irradiation sites were imaged with CDOCT prior to and immediately after laser irradiation, and at intervals up to several days following irradiation. The CDOCT signal was processed to provide both magnitude and color Doppler images. The Doppler signal provides an estimate of the blood flow velocity. The response of blood vessels to radiant exposures above and below the threshold for vessel coagulation was measured. An increase in the blood vessel backscattered signal was observed as blood and vessel walls were coagulated. Changes in blood flow velocity were noted in cases where vessels constricted or flow became occluded.

  9. Form, shape and function: segmented blood flow in the choriocapillaris

    Science.gov (United States)

    Zouache, M. A.; Eames, I.; Klettner, C. A.; Luthert, P. J.

    2016-10-01

    The development of fluid transport systems was a key event in the evolution of animals and plants. While within vertebrates branched geometries predominate, the choriocapillaris, which is the microvascular bed that is responsible for the maintenance of the outer retina, has evolved a planar topology. Here we examine the flow and mass transfer properties associated with this unusual geometry. We show that as a result of the form of the choriocapillaris, the blood flow is decomposed into a tessellation of functional vascular segments of various shapes delineated by separation surfaces across which there is no flow, and in the vicinity of which the transport of passive substances is diffusion-limited. The shape of each functional segment is determined by the distribution of arterioles and venules and their respective relative flow rates. We also show that, remarkably, the mass exchange with the outer retina is a function of the shape of each functional segment. In addition to introducing a novel framework in which the structure and function of the metabolite delivery system to the outer retina may be investigated in health and disease, the present work provides a general characterisation of the flow and transfers in multipole Hele-Shaw configurations.

  10. Pericyte coverage of abnormal blood vessels in myelofibrotic bone marrows

    DEFF Research Database (Denmark)

    Zetterberg, Eva; Vannucchi, Alessandro M; Migliaccio, Anna Rita

    2007-01-01

    BACKGROUND AND OBJECTIVES: Myelofibrotic bone marrow displays abnormal angiogenesis but the pathogenic mechanisms of this are poorly understood. Since pericyte abnormalities are described on solid tumor vessels we studied whether vessel morphology and pericyte coverage in bone marrow samples from...... megakaryocytopoesis, wide, pericyte-coated and morphologically aberrant vessels were detected. MVD was significantly greater in bone marrow and spleen samples from animals with myelofibrosis than in wild-type mice. INTERPRETATION AND CONCLUSIONS: We conclude that angiogenesis is similarly abnormal in human and murine...... myelofibrosis with intense pericyte coating, presumably related to abnormal megakaryocytopoiesis....

  11. Nerves are more abundant than blood vessels in the degenerate human intervertebral disc.

    Science.gov (United States)

    Binch, Abbie L A; Cole, Ashley A; Breakwell, Lee M; Michael, Antony L R; Chiverton, Neil; Creemers, Laura B; Cross, Alison K; Le Maitre, Christine L

    2015-12-21

    Chronic low back pain (LBP) is the most common cause of disability worldwide. New ideas surrounding LBP are emerging that are based on interactions between mechanical, biological and chemical influences on the human IVD. The degenerate IVD is proposed to be innervated by sensory nerve fibres and vascularised by blood vessels, and it is speculated to contribute to pain sensation. However, the incidence of nerve and blood vessel ingrowth, as well as whether these features are always associated, is unknown. We investigated the presence of nerves and blood vessels in the nucleus pulposus (NP) of the IVD in a large population of human discs. Immunohistochemistry was performed with 61 human IVD samples, to identify and localise nerves (neurofilament 200 [NF200]/protein gene product 9.5) and blood vessels (CD31) within different regions of the IVD. Immunopositivity for NF200 was identified within all regions of the IVD within post-mortem tissues. Nerves were seen to protrude across lamellar ridges and through matrix towards NP cells. Nerves were identified deep within the NP and were in many cases, but not always, seen in close proximity to fissures or in areas where decreased matrix was seen. Fifteen percent of samples were degenerate and negative for nerves and blood vessels, whilst 16 % of all samples were degenerate with nerves and blood vessels. We identified 52% of samples that were degenerate with nerves but no blood vessels. Interestingly, only 4% of all samples were degenerate with no nerves but positive for blood vessels. Of the 85 samples investigated, only 6 % of samples were non-degenerate without nerves and blood vessels and 7% had nerves but no blood vessels. This study addresses the controversial topic of nerve and blood vessel ingrowth into the IVD in a large number of human samples. Our findings demonstrate that nerves are present within a large proportion of NP samples from degenerate IVDs. This study shows a possible link between nerve ingrowth and

  12. Solitonlike attractor for blood vessel tip density in angiogenesis

    Science.gov (United States)

    Bonilla, L. L.; Carretero, M.; Terragni, F.

    2016-12-01

    Recently, numerical simulations of a stochastic model have shown that the density of vessel tips in tumor-induced angiogenesis adopts a solitonlike profile [Sci. Rep. 6, 31296 (2016), 10.1038/srep31296]. In this work, we derive and solve the equations for the soliton collective coordinates that indicate how the soliton adapts its shape and velocity to varying chemotaxis and diffusion. The vessel tip density can be reconstructed from the soliton formulas. While the stochastic model exhibits large fluctuations, we show that the location of the maximum vessel tip density for different replicas follows closely the soliton peak position calculated either by ensemble averages or by solving an alternative deterministic description of the density. The simple soliton collective coordinate equations may also be used to ascertain the response of the vessel network to changes in the parameters and thus to control it.

  13. A functional requirement for astroglia in promoting blood vessel development in the early postnatal brain.

    Science.gov (United States)

    Ma, Shang; Kwon, Hyo Jun; Huang, Zhen

    2012-01-01

    Astroglia are a major cell type in the brain and play a key role in many aspects of brain development and function. In the adult brain, astrocytes are known to intimately ensheath blood vessels and actively coordinate local neural activity and blood flow. During development of the neural retina, blood vessel growth follows a meshwork of astrocytic processes. Several genes have also been implicated in retinal astrocytes for regulating vessel development. This suggests a role of astrocytes in promoting angiogenesis throughout the central nervous system. To determine the roles that astrocytes may play during brain angiogenesis, we employ genetic approaches to inhibit astrogliogenesis during perinatal corticogenesis and examine its effects on brain vessel development. We find that conditional deletion from glial progenitors of orc3, a gene required for DNA replication, dramatically reduces glial progenitor cell number in the subventricular zone and astrocytes in the early postnatal cerebral cortex. This, in turn, results in severe reductions in both the density and branching frequency of cortical blood vessels. Consistent with a delayed growth but not regression of vessels, we find neither significant net decreases in vessel density between different stages after normalizing for cortical expansion nor obvious apoptosis of endothelial cells in these mutants. Furthermore, concomitant with loss of astroglial interactions, we find increased endothelial cell proliferation, enlarged vessel luminal size as well as enhanced cytoskeletal gene expression in pericytes, which suggests compensatory changes in vascular cells. Lastly, we find that blood vessel morphology in mutant cortices recovers substantially at later stages, following astrogliosis. These results thus implicate a functional requirement for astroglia in promoting blood vessel growth during brain development.

  14. High-resolution ultrasound imaging and noninvasive optoacoustic monitoring of blood variables in peripheral blood vessels

    Science.gov (United States)

    Petrov, Irene Y.; Petrov, Yuriy; Prough, Donald S.; Esenaliev, Rinat O.

    2011-03-01

    Ultrasound imaging is being widely used in clinics to obtain diagnostic information non-invasively and in real time. A high-resolution ultrasound imaging platform, Vevo (VisualSonics, Inc.) provides in vivo, real-time images with exceptional resolution (up to 30 microns) using high-frequency transducers (up to 80 MHz). Recently, we built optoacoustic systems for probing radial artery and peripheral veins that can be used for noninvasive monitoring of total hemoglobin concentration, oxyhemoglobin saturation, and concentration of important endogenous and exogenous chromophores (such as ICG). In this work we used the high-resolution ultrasound imaging system Vevo 770 for visualization of the radial artery and peripheral veins and acquired corresponding optoacoustic signals from them using the optoacoustic systems. Analysis of the optoacoustic data with a specially developed algorithm allowed for measurement of blood oxygenation in the blood vessels as well as for continuous, real-time monitoring of arterial and venous blood oxygenation. Our results indicate that: 1) the optoacoustic technique (unlike pure optical approaches and other noninvasive techniques) is capable of accurate peripheral venous oxygenation measurement; and 2) peripheral venous oxygenation is dependent on skin temperature and local hemodynamics. Moreover, we performed for the first time (to the best of our knowledge) a comparative study of optoacoustic arterial oximetry and a standard pulse oximeter in humans and demonstrated superior performance of the optoacoustic arterial oximeter, in particular at low blood flow.

  15. Peptide-Mediated Liposomal Drug Delivery System Targeting Tumor Blood Vessels in Anticancer Therapy

    Directory of Open Access Journals (Sweden)

    Han-Chung Wu

    2010-01-01

    Full Text Available Solid tumors are known to recruit new blood vessels to support their growth. Therefore, unique molecules expressed on tumor endothelial cells can function as targets for the antiangiogenic therapy of cancer. Current efforts are focusing on developing therapeutic agents capable of specifically targeting cancer cells and tumor-associated microenvironments including tumor blood vessels. These therapies hold the promise of high efficacy and low toxicity. One recognized strategy for improving the therapeutic effectiveness of conventional chemotherapeutics is to encapsulate anticancer drugs into targeting liposomes that bind to the cell surface receptors expressed on tumor-associated endothelial cells. These anti-angiogenic drug delivery systems could be used to target both tumor blood vessels as well as the tumor cells, themselves. This article reviews the mechanisms and advantages of various present and potential methods using peptide-conjugated liposomes to specifically destroy tumor blood vessels in anticancer therapy.

  16. Blood vessel growth blocker may treat AIDS-related Kaposi’s sarcoma

    Science.gov (United States)

    Patients with an AIDS-associated cancer, Kaposi's sarcoma (KS), showed improvement after receiving the combination of bevacizumab, a cancer drug that blocks the growth of new blood vessels, and highly active antiretroviral therapy (HAART).

  17. Effect of electrical stimulation on blood flow velocity and vessel size

    Directory of Open Access Journals (Sweden)

    Jin Hee-Kyung

    2017-03-01

    Full Text Available Interferential current electrical stimulation alters blood flow velocity and vessel size. We aimed to investigate the changes in the autonomic nervous system depending on electrical stimulation parameters.

  18. Engineering a Blood Vessel Network Module for Body-on-a-Chip Applications.

    Science.gov (United States)

    Ryu, Hyunryul; Oh, Soojung; Lee, Hyun Jae; Lee, Jin Young; Lee, Hae Kwang; Jeon, Noo Li

    2015-06-01

    The blood circulatory system links all organs from one to another to support and maintain each organ's functions consistently. Therefore, blood vessels have been considered as a vital unit. Engineering perfusable functional blood vessels in vitro has been challenging due to difficulties in designing the connection between rigid macroscale tubes and fragile microscale ones. Here, we propose a generalizable method to engineer a "long" perfusable blood vessel network. To form millimeter-scale vessels, fibroblasts were co-cultured with human umbilical vein endothelial cells (HUVECs) in close proximity. In contrast to previous works, in which all cells were permanently placed within the device, we developed a novel method to culture paracrine factor secreting fibroblasts on an O-ring-shaped guide that can be transferred in and out. This approach affords flexibility in co-culture, where the effects of secreted factors can be decoupled. Using this, blood vessels with length up to 2 mm were successfully produced in a reproducible manner (>90%). Because the vessels form a perfusable network within the channel, simple links to inlets and outlets of the device allowed connections to the outside world. The robust and reproducible formation of in vitro engineered vessels can be used as a module to link various organ components as parts of future body-on-a-chip applications. © 2014 Society for Laboratory Automation and Screening.

  19. Temperature evolution in tissues embedded with large blood vessels during photo-thermal heating.

    Science.gov (United States)

    Paul, Anup; Narasimhan, Arunn; Kahlen, Franz J; Das, Sarit K

    2014-04-01

    During laser-assisted photo-thermal therapy, the temperature of the heated tissue region must rise to the therapeutic value (e.g., 43°C) for complete ablation of the target cells. Large blood vessels (larger than 500 micron in diameter) at or near the irradiated tissues have a considerable impact on the transient temperature distribution in the tissue. In this study, the cooling effects of large blood vessels on temperature distribution in tissues during laser irradiation are predicted using finite element based simulation. A uniform flow is assumed at the entrance and three-dimensional conjugate heat transfer equations in the tissue region and the blood region are simultaneously solved for different vascular models. A volumetric heat source term based on Beer-Lambert law is introduced into the energy equation to account for laser heating. The heating pattern is taken to depend on the absorption and scattering coefficients of the tissue medium. Experiments are also conducted on tissue mimics in the presence and absence of simulated blood vessels to validate the numerical model. The coupled heat transfer between thermally significant blood vessels and their surrounding tissue for three different tissue-vascular networks are analyzed keeping the laser irradiation constant. A surface temperature map is obtained for different vascular models and for the bare tissue (without blood vessels). The transient temperature distribution is seen to differ according to the nature of the vascular network, blood vessel size, flow rate, laser spot size, laser power and tissue blood perfusion rate. The simulations suggest that the blood flow through large blood vessels in the vicinity of the photothermally heated tissue can lead to inefficient heating of the target. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Superficial and deep blood vessel distribution in the frog telencephalon. Reference to morphological brain asymmetries.

    Science.gov (United States)

    Kemali, M; Sada, E; Fiorino, L

    1990-01-01

    Nine frogs of the species "Rana esculenta" were heart perfused with Microfile Silicone Rubber. The frogs were examined both after dissection (cut with a razor blade) to study the superficial blood vessel pattern, and histologically (the Nissl staining method) to study the distribution of the deep blood capillaries. While the superficial blood vary in pattern, the deep capillaries are distributed symmetrically. This finding does not support a correlation between blood vessel pattern and morphological brain asymmetry, at least in the frog, and thus other explanations must be sought to explain brain asymmetry.

  1. Differential Effects between Cigarette Total Particulate Matter and Cigarette Smoke Extract on Blood and Blood Vessel

    Science.gov (United States)

    Park, Jung-Min; Chang, Kyung-Hwa; Park, Kwang-Hoon; Choi, Seong-Jin; Lee, Kyuhong; Lee, Jin-Yong; Satoh, Masahiko; Song, Seong-Yu; Lee, Moo-Yeol

    2016-01-01

    The generation and collection of cigarette smoke (CS) is a prerequisite for any toxicology study on smoking, especially an in vitro CS exposure study. In this study, the effects on blood and vascular function were tested with two widely used CS preparations to compare the biological effects of CS with respect to the CS preparation used. CS was prepared in the form of total particulate matter (TPM), which is CS trapped in a Cambridge filter pad, and cigarette smoke extract (CSE), which is CS trapped in phosphate-buffered saline. TPM potentiated platelet reactivity to thrombin and thus increased aggregation at a concentration of 25~100 μg/mL, whereas 2.5~10% CSE decreased platelet aggregation by thrombin. Both TPM and CSE inhibited vascular contraction by phenylephrine at 50~100 μg/mL and 10%, respectively. TPM inhibited acetylcholine-induced vasorelaxation at 10~100 μg/mL, but CSE exhibited a minimal effect on relaxation at the concentration that affects vasoconstriction. Neither TPM nor CSE induced hemolysis of erythrocytes or influenced plasma coagulation, as assessed by prothrombin time (PT) and activated partial thromboplastin time (aPTT). Taken together, CS affects platelet activity and deteriorates vasomotor functions in vitro. However, the effect on blood and blood vessels may vary depending on the CS preparation. Therefore, the results of experiments conducted with CS preparations should be interpreted with caution. PMID:27818738

  2. Remission spectrometry for blood vessel detection during stereotactic biopsy of brain tumors.

    Science.gov (United States)

    Markwardt, Niklas A; Stepp, Herbert; Franz, Gerhard; Sroka, Ronald; Goetz, Marcus; Zelenkov, Petr; Rühm, Adrian

    2017-08-01

    Stereotactic biopsy is used to enable diagnostic confirmation of brain tumors and treatment planning. Despite being a well-established technique, it is related to significant morbidity and mortality rates mostly caused by hemorrhages due to blood vessel ruptures. This paper presents a method of vessel detection during stereotactic biopsy that can be easily implemented by integrating two side-view fibers into a conventional side-cutting biopsy needle. Tissue within the needle window is illuminated through the first fiber; the second fiber detects the remitted light. By taking the ratio of the intensities at two wavelengths with strongly differing hemoglobin absorption, blood vessels can be recognized immediately before biopsy sampling. Via ray tracing simulations and phantom experiments, the dependency of the remission ratio R = I 578 /I 650 on various parameters (blood oxygenation, fiber-to-vessel and inter-fiber distance, vessel diameter and orientation) was investigated for a bare-fiber probe. Up to 800-1200 µm away from the probe, a vessel can be recognized by a considerable reduction of the remission ratio from the background level. The technique was also successfully tested with a real biopsy needle probe on both optical phantoms and ex-vivo porcine brain tissue, thus showing potential to improve the safety of stereotactic biopsy. Dual-wavelength remission measurement for the detection of blood vessels during stereotactic biopsy. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Intensity-vesselness Gaussian mixture model (IVGMM) for 2D + t segmentation of coronary arteries for X-ray angiography image sequences.

    Science.gov (United States)

    Lee, Hyunna; Shim, Hackjoon; Chang, Hyuk-Jae

    2015-01-01

    This study aimed to propose an intensity-vesselness Gaussian mixture model (IVGMM) tracking for 2D + t segmentation of coronary arteries for X-ray angiography (XA) image sequences. We compose a two dimensional (2D) feature vector of intensity and vesselness to characterize the Gaussian mixture models. In our IVGMM tracking, vessel segmentation is performed for each image frame based on these vessel and background IVGMMs and then the segmentation results of the current image frame is used to update these IVGMMs. The 2D + t segmentation of coronary arteries over the 2D XA image sequence is solved by means of iterating two processes, i.e., segmentation of coronary arteries and update of the IVGMMs. The performance of the proposed IVGMM tracking was evaluated using clinical 2D XA datasets. We evaluated the segmentation accuracy of the IVGMM tracking by comparing with two previous 2D vessel segmentation methods and seven background subtraction (BGS) methods. Of the ten segmentation methods, IVGMM tracking shows the highest similarity to the manual segmentation in terms of precision, recall, Jaccard index (JI), F1 score, and peak signal-to-noise ratio (PSNR). It is concluded that the IVGMM tracking could obtain reasonable segmentation accuracy outperforming conventional vessel enhancement methods and object tracking methods.

  4. Growth and Remodeling in Blood Vessels Studied In Vivo With Fractal Analysis

    Science.gov (United States)

    Parsons-Wingerter, Patricia A.

    2003-01-01

    Every cell in the human body must reside in close proximity to a blood vessel (within approximately 200 mm) because blood vessels provide the oxygen, metabolite, and fluid exchanges required for cellular existence. The growth and remodeling of blood vessels are required to support the normal physiology of embryonic development, reproductive biology, wound healing and adaptive remodeling to exercise, as well as abnormal tissue change in diseases such as cancer, diabetes, and coronary heart disease. Cardiovascular and hemodynamic (blood flow dynamics) alterations experienced by astronauts during long-term spaceflight, including orthostatic intolerance, fluid shifts in the body, and reduced numbers of red (erythrocyte) and white (immune) blood cells, are identified as risk factors of very high priority in the NASA task force report on risk reduction for human spaceflight, the "Critical Path Roadmap."

  5. White blood cell segmentation by color-space-based k-means clustering.

    Science.gov (United States)

    Zhang, Congcong; Xiao, Xiaoyan; Li, Xiaomei; Chen, Ying-Jie; Zhen, Wu; Chang, Jun; Zheng, Chengyun; Liu, Zhi

    2014-09-01

    White blood cell (WBC) segmentation, which is important for cytometry, is a challenging issue because of the morphological diversity of WBCs and the complex and uncertain background of blood smear images. This paper proposes a novel method for the nucleus and cytoplasm segmentation of WBCs for cytometry. A color adjustment step was also introduced before segmentation. Color space decomposition and k-means clustering were combined for segmentation. A database including 300 microscopic blood smear images were used to evaluate the performance of our method. The proposed segmentation method achieves 95.7% and 91.3% overall accuracy for nucleus segmentation and cytoplasm segmentation, respectively. Experimental results demonstrate that the proposed method can segment WBCs effectively with high accuracy.

  6. Effect of the Blood Vessel Viscoelasticity on Periodic Blood Pressure Wave Propagation

    Science.gov (United States)

    Kitawaki, Tomoki; Shimizu, Masashi

    Clinical arterial stiffness indexes such as PWV (pulse wave velocity) or PP (pulse pressure), which are obtained by analyzing blood pressure pulse waveforms in vivo, are used in the prognosis of cardiovascular diseases and thus analyses of pulse waveform are clinically important. The pulse wave in vivo, however, is complicated because of the complex viscoelastic property of the blood vessel wall. In addition, numerical flow simulations are useful for understanding pulse wave propagation in circulatory systems. Our proposed nonlinear one-dimensional numerical simulation model can accurately simulate the measurements of pressure waves in a silicone rubber tube and indicate that the viscoelasticity of the tube wall was significantly influenced by a single pulse waveform; however, the influence of viscoelasticity change on periodic pulsatile wave propagation has not yet been studied. The purpose of this study was therefore to investigate the effect of viscoelasticity change on the periodic pulsatile wave. For this purpose, we examined the effect of the viscoelasticity of a single silicone tube on periodic pulse wave propagation by comparing the calculated results using a one-dimensional model. As a result, the one-dimensional model could accurately express the experimental results with periodic pulsatile waves. In addition, both PWV and PP increase when the viscoelastic value of the dynamic modulus elasticity ratio increases, because increasing the elastic modulus is more effective than the energy dissipation effect by viscoelasticity change. Consequently, it is necessary to measure the viscoelastic property of the vessel wall accurately in order to estimate the arterial stiffness index (PWV and PP) accurately.

  7. Laser photothermolysis of single blood vessels in the chick chorioallantoic membrane (CAM)

    Science.gov (United States)

    Kimel, Sol; Svaasand, Lars O.; Milner, Thomas E.; Hammer-Wilson, Marie J.; Schell, Michael J.; Nelson, J. Stuart; Berns, Michael W.

    1994-02-01

    Individual blood vessels in the chick chorioallantoic membrane (CAM) were selectively coagulated through photothermolysis, using pulsed laser irradiation at 585 nm. Pulse durations were chosen to be 0.45 ms and 10 ms, which correspond to the thermal relaxation times in blood vessels of 30 micrometers and 150 micrometers diameter, respectively. The dose vs diameter (D vs d) relationship for coagulation was calculated for the two pulse shapes. The energy deposited in a cylindrical absorber of diameter d by an optical field, incident perpendicular to the vessel, was expressed analytically and compared with the energy required to coagulate a blood vessel of the same lumen diameter. When thermal diffusion is incorporated into the model, our findings can be accounted for quantitatively. This information will be of use for improving the laser treatment of port wine stains and other vasculopathies.

  8. Conduit vessel blood flow during the trek to Mount Everest base camp.

    Science.gov (United States)

    Dumais, Valerie; Nault, Patrice; Tsertsvadze, Alexander; Forbes, Thomas L

    2011-12-01

    Hemodynamic changes in response to the hypoxic environment of high altitude are vascular bed-specific. The aim of the present study was to investigate diameter and blood flow changes in conduit vessels in response to hypobaric hypoxia. Eleven healthy subjects ascending Mount Everest to base camp participated in this study. Vessel diameter and blood velocity for brachial, carotid, common femoral, superficial femoral, and deep femoral arteries were measured by portable Doppler ultrasound. Blood flow was calculated from these values. Measurements were taken at sea level, at increasing altitudes on ascent to base camp (1310 m, 3470 m, 5330 m), and repeated on descent to lower altitude (1310 m). For all vessels except carotids, both vessel diameter and blood flow decreased between sea level and initial ascent to altitude, with subsequent persistence of these decreased values; there was no further significant change with continued ascent to higher altitude. Blood flow for all arteries (except carotids) increased significantly on descent to lower altitude, with an associated nonsignificant increase in velocity and decrease in diameter. This study showed that there is vasoconstriction of limb conduit vessels at altitude, which persists upon descent to lower altitude. Blood flow in these vessels also decreases with initial exposure to high altitude, yet increases when returning to lower altitude, reflecting variations in blood velocity. Carotid arteries responded differently to the stimulus of hypobaria than limb conduit vessels; there was no change in diameter seen on ascent or descent, but there was a progressive decrease in blood flow on ascent, with no change on subsequent descent. Copyright © 2011 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  9. An experimental system for the study of ultrasound exposure of isolated blood vessels

    International Nuclear Information System (INIS)

    Tokarczyk, Anna; Rivens, Ian; Symonds-Tayler, Richard; Ter Haar, Gail; Van Bavel, E

    2013-01-01

    An experimental system designed for the study of the effects of diagnostic or therapeutic ultrasound exposure on isolated blood vessels in the presence or absence of intraluminal contrast agent is described. The system comprised several components. A microscope was used to monitor vessel size (and thus vessel functionality), and potential leakage of intraluminal 70 kDa FITC-dextran fluorescence marker. A vessel chamber allowed the mounting of an isolated vessel whilst maintaining its viability, with pressure regulation for the control of intraluminal pressure and induction of flow for the infusion of contrast microbubbles. A fibre-optic hydrophone sensor mounted on the vessel chamber using a micromanipulator allowed pre-exposure targeting of the vessel to within 150 µm, and monitoring of acoustic cavitation emissions during exposures. Acoustic cavitation was also detected using changes in the ultrasound drive voltage and by detection of audible emissions using a submerged microphone. The suitability of this system for studying effects in the isolated vessel model has been demonstrated using a pilot study of 6 sham exposed and 18 high intensity focused ultrasound exposed vessels, with or without intraluminal contrast agent (SonoVue) within the vessels. (paper)

  10. An experimental system for the study of ultrasound exposure of isolated blood vessels

    Science.gov (United States)

    Tokarczyk, Anna; Rivens, Ian; van Bavel, E.; Symonds-Tayler, Richard; ter Haar, Gail

    2013-04-01

    An experimental system designed for the study of the effects of diagnostic or therapeutic ultrasound exposure on isolated blood vessels in the presence or absence of intraluminal contrast agent is described. The system comprised several components. A microscope was used to monitor vessel size (and thus vessel functionality), and potential leakage of intraluminal 70 kDa FITC-dextran fluorescence marker. A vessel chamber allowed the mounting of an isolated vessel whilst maintaining its viability, with pressure regulation for the control of intraluminal pressure and induction of flow for the infusion of contrast microbubbles. A fibre-optic hydrophone sensor mounted on the vessel chamber using a micromanipulator allowed pre-exposure targeting of the vessel to within 150 µm, and monitoring of acoustic cavitation emissions during exposures. Acoustic cavitation was also detected using changes in the ultrasound drive voltage and by detection of audible emissions using a submerged microphone. The suitability of this system for studying effects in the isolated vessel model has been demonstrated using a pilot study of 6 sham exposed and 18 high intensity focused ultrasound exposed vessels, with or without intraluminal contrast agent (SonoVue) within the vessels.

  11. Blood pressure gradients in cerebral arteries: a clue to pathogenesis of cerebral small vessel disease.

    Science.gov (United States)

    Blanco, Pablo J; Müller, Lucas O; Spence, J David

    2017-09-01

    The role of hypertension in cerebral small vessel disease is poorly understood. At the base of the brain (the 'vascular centrencephalon'), short straight arteries transmit blood pressure directly to small resistance vessels; the cerebral convexity is supplied by long arteries with many branches, resulting in a drop in blood pressure. Hypertensive small vessel disease (lipohyalinosis) causes the classically described lacunar infarctions at the base of the brain; however, periventricular white matter intensities (WMIs) seen on MRI and WMI in subcortical areas over the convexity, which are often also called 'lacunes', probably have different aetiologies. We studied pressure gradients from proximal to distal regions of the cerebral vasculature by mathematical modelling. Blood flow/pressure equations were solved in an Anatomically Detailed Arterial Network (ADAN) model, considering a normotensive and a hypertensive case. Model parameters were suitably modified to account for structural changes in arterial vessels in the hypertensive scenario. Computations predict a marked drop in blood pressure from large and medium-sized cerebral vessels to cerebral peripheral beds. When blood pressure in the brachial artery is 192/113 mm Hg, the pressure in the small arterioles of the posterior parietal artery bed would be only 117/68 mm Hg. In the normotensive case, with blood pressure in the brachial artery of 117/75 mm Hg, the pressure in small parietal arterioles would be only 59/38 mm Hg. These findings have important implications for understanding small vessel disease. The marked pressure gradient across cerebral arteries should be taken into account when evaluating the pathogenesis of small WMIs on MRI. Hypertensive small vessel disease, affecting the arterioles at the base of the brain should be distinguished from small vessel disease in subcortical regions of the convexity and venous disease in the periventricular white matter.

  12. A rigid disc for protection of exposed blood vessels during negative pressure wound therapy.

    Science.gov (United States)

    Anesäter, Erik; Borgquist, Ola; Torbrand, Christian; Roupé, K Markus; Ingemansson, Richard; Lindstedt, Sandra; Malmsjö, Malin

    2013-02-01

    There are increasing reports of serious complications and deaths associated with negative pressure wound therapy (NPWT). Bleeding may occur when NPWT is applied to a wound with exposed blood vessels. Inserting a rigid disc in the wound may protect these structures. The authors examined the effects of rigid discs on wound bed tissue pressure and blood flow through a large blood vessel in the wound bed during NPWT. Wounds were created over the femoral artery in the groin of 8 pigs. Rigid discs were inserted. Wound bed pressures and arterial blood flow were measured during NPWT. Pressure transduction to the wound bed was similar for control wounds and wounds with discs. Blood flow through the femoral artery decreased in control wounds. When a disc was inserted, the blood flow was restored. NPWT causes hypoperfusion in the wound bed tissue, presumably as a result of mechanical deformation. The insertion of a rigid barrier alleviates this effect and restores blood flow.

  13. A color and shape based algorithm for segmentation of white blood cells in peripheral blood and bone marrow images.

    Science.gov (United States)

    Arslan, Salim; Ozyurek, Emel; Gunduz-Demir, Cigdem

    2014-06-01

    Computer-based imaging systems are becoming important tools for quantitative assessment of peripheral blood and bone marrow samples to help experts diagnose blood disorders such as acute leukemia. These systems generally initiate a segmentation stage where white blood cells are separated from the background and other nonsalient objects. As the success of such imaging systems mainly depends on the accuracy of this stage, studies attach great importance for developing accurate segmentation algorithms. Although previous studies give promising results for segmentation of sparsely distributed normal white blood cells, only a few of them focus on segmenting touching and overlapping cell clusters, which is usually the case when leukemic cells are present. In this article, we present a new algorithm for segmentation of both normal and leukemic cells in peripheral blood and bone marrow images. In this algorithm, we propose to model color and shape characteristics of white blood cells by defining two transformations and introduce an efficient use of these transformations in a marker-controlled watershed algorithm. Particularly, these domain specific characteristics are used to identify markers and define the marking function of the watershed algorithm as well as to eliminate false white blood cells in a postprocessing step. Working on 650 white blood cells in peripheral blood and bone marrow images, our experiments reveal that the proposed algorithm improves the segmentation performance compared with its counterparts, leading to high accuracies for both sparsely distributed normal white blood cells and dense leukemic cell clusters. © 2014 International Society for Advancement of Cytometry.

  14. Vasodilator effects of ibudilast on retinal blood vessels in anesthetized rats.

    Science.gov (United States)

    Noguchi, Masahiro; Mori, Asami; Sakamoto, Kenji; Nakahara, Tsutomu; Ishii, Kunio

    2009-11-01

    Ibudilast (3-isobutyryl-2-isopropylpyrazolo[1,5-alpha]pyridine) is clinically used as a cerebral vasodilator in Japan. However, the effects of ibudilast on retinal blood vessels have not been fully examined. The aim of this study, therefore, was to examine the effects of ibudilast on retinal blood vessels in rats in vivo. Male Wistar rats (8 to 10 weeks old) were anesthetized with thiobutabarbital (120 mg/kg, intraperitoneally (i.p.)). Retinal vascular images were captured with a fundus camera system for small animals, and the diameter of retinal blood vessels was measured. Ibudilast (0.1 and 1 mg/kg, intravenously (i.v.)) elicited a sustained increase in the diameter of retinal blood vessels and heart rate without altering systemic blood pressure. The effects of ibudilast were significantly reduced by treatment with the nonselective cyclooxygenase inhibitor indomethacin (5 mg/kg, i.p.). These results suggest that ibudilast dilates retinal blood vessels through cyclooxygenase-dependent mechanisms in rats in vivo.

  15. Computational Fluid Dynamics Analysis of Pulsatile Blood Flow Behavior in Modelled Stenosed Vessels with Different Severities

    Directory of Open Access Journals (Sweden)

    Mohsen Mehrabi

    2012-01-01

    Full Text Available This study focuses on the behavior of blood flow in the stenosed vessels. Blood is modelled as an incompressible non-Newtonian fluid which is based on the power law viscosity model. A numerical technique based on the finite difference method is developed to simulate the blood flow taking into account the transient periodic behaviour of the blood flow in cardiac cycles. Also, pulsatile blood flow in the stenosed vessel is based on the Womersley model, and fluid flow in the lumen region is governed by the continuity equation and the Navier-Stokes equations. In this study, the stenosis shape is cosine by using Tu and Devil model. Comparing the results obtained from three stenosed vessels with 30%, 50%, and 75% area severity, we find that higher percent-area severity of stenosis leads to higher extrapressure jumps and higher blood speeds around the stenosis site. Also, we observe that the size of the stenosis in stenosed vessels does influence the blood flow. A little change on the cross-sectional value makes vast change on the blood flow rate. This simulation helps the people working in the field of physiological fluid dynamics as well as the medical practitioners.

  16. Study of fluid dynamics reveals direct communications between lymphatic vessels and venous blood vessels at lymph nodes of mice.

    Science.gov (United States)

    Takeda, Kazu; Mori, Shiro; Kodama, Tetsuya

    2017-06-01

    Cancer cells metastasize to lymph nodes, with distant metastasis resulting in poor prognosis. The role of lymph node metastasis (LNM) in the spread of cancer to distant organs remain incompletely characterized. The visualization of flow dynamics in the lymphatic and blood vessels of MXH10/Mo-lpr/lpr mice, which develop systemic swelling of lymph nodes up to 10mm in diameter, has revealed that lymph nodes have the potential to be a direct source of systemic metastasis. However, it is not known whether these fluid dynamics characteristics are universal phenomena present in other strains of laboratory mice. Here we show that the fluid dynamics observed in MXH10/Mo-lpr/lpr mice are the same as those observed in C57BL/6J, BALB/cAJcl and NOD/ShiJic-scidJcl mice. Furthermore, when fluorescent solution was injected into a tumor-bearing lymph node, the flow dynamics observed in the efferent lymphatic vessels and thoracoepigastric vein depended on the type of tumor cell. Our results indicate that fluid dynamics in the lymphatic and blood vessels of MXH10/Mo-lpr/lpr mice are generalized phenomena seen in conventional laboratory mice. We anticipate our results can facilitate studies of the progression of lymphatic metastasis to hematogenous metastasis via lymph nodes and the early diagnosis and treatment of LNM. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Perivascular adipose tissue alleviates inflammatory factors and stenosis in diabetic blood vessels.

    Science.gov (United States)

    Li, Tianjia; Liu, Xinnong; Ni, Leng; Wang, Zhanqi; Wang, Wenda; Shi, Tao; Liu, Xiu; Liu, Changwei

    2016-11-11

    Adipose tissue can modulate disease processes in a depot-specific manner. However, the functional properties of perivascular adipocytes, and their influence on the pathophysiology of blood vessel walls, remain to be determined. In this study, we aimed to investigate whether perivascular adipose tissue could have an ameliorative effect on blood vessels damaged in diabetes. Using in vitro coculture, and in vivo transplantation model simulating diabetic angioplasty-induced injury, we showed that perivascular adipose tissue has an important function in protecting blood vessels from high glucose impairment. Levels of inflammatory cytokines, including intercellular cell adhesion molecule-1 and osteopontin, were markedly reduced, whereas that of endothelial nitric-oxide synthase was markedly elevated in vascular walls. These depot-specific differences in blood vessels exposed to high levels of glucose were demonstrable both in vivo, with transplanted adipose tissues, and in vitro, when vascular endothelial cells were cocultured with adipocytes. In addition, intimal hyperplasia was also decreased by transplanted perivascular adipose tissue after balloon injury combined with hyperglycemia. We conclude that perivascular adipocytes can reduce inflammation in blood vessels and promote the normal function of endothelium, which could afford a new therapeutic strategy in vascular walls damaged by diabetes. Copyright © 2016. Published by Elsevier Inc.

  18. Nitric oxide dilates rat retinal blood vessels by cyclooxygenase-dependent mechanisms.

    Science.gov (United States)

    Ogawa, Naoto; Mori, Asami; Hasebe, Masami; Hoshino, Maya; Saito, Maki; Sakamoto, Kenji; Nakahara, Tsutomu; Ishii, Kunio

    2009-10-01

    It has been suggested that nitric oxide (NO) stimulates the cyclooxygenase (COX)-dependent mechanisms in the ocular vasculature; however, the importance of the pathway in regulating retinal circulation in vivo remains to be elucidated. Therefore, we investigated the role of COX-dependent mechanisms in NO-induced vasodilation of retinal blood vessels in thiobutabarbital-anesthetized rats with and without neuronal blockade (tetrodotoxin treatment). Fundus images were captured with a digital camera that was equipped with a special objective lens. The retinal vascular response was assessed by measuring changes in diameter of the retinal blood vessel. The localization of COX and soluble guanylyl cyclase in rat retina was examined using immunohistochemistry. The NO donors (sodium nitroprusside and NOR3) increased the diameter of the retinal blood vessels but decreased systemic blood pressure in a dose-dependent manner. Treatment of rats with indomethacin, a nonselective COX inhibitor, or SC-560, a selective COX-1 inhibitor, markedly attenuated the vasodilation of retinal arterioles, but not the depressor response, to the NO donors. However, both the vascular responses to NO donors were unaffected by the selective COX-2 inhibitors NS-398 and nimesulide. Indomethacin did not change the retinal vascular and depressor responses to hydralazine, 8-(4-chlorophenylthio)-guanosine-3', 5'-cyclic monophosphate (a membrane-permeable cGMP analog) and 8-(4-chlorophenylthio)-adenosine-3', 5'-cyclic monophosphate (a membrane-permeable cAMP analog). Treatment with SQ 22536, an adenylyl cyclase inhibitor, but not ODQ, a soluble guanylyl cyclase inhibitor, significantly attenuated the NOR3-induced vasodilation of retinal arterioles. The COX-1 immunoreactivity was found in retinal blood vessels. The retinal blood vessel was faintly stained for soluble guanylyl cyclase, although the apparent immunoreactivities on mesenteric and choroidal blood vessels were observed. These results suggest

  19. Truncated Hormone Inhibits Breast Tumor Blood Vessel Formation, Not Tumor Growth | Center for Cancer Research

    Science.gov (United States)

    The hormone prolactin (PRL) plays a critical role in normal breast development by stimulating the proliferation of mammary cells, the production of milk proteins, and the formation of new mammary blood vessels. Unfortunately, the same cell and vessel growth pathways controlled by PRL in normal cells also operate in breast cancer cells, and elevated plasma PRL is a risk factor for breast cancer, especially in post-menopausal women.

  20. Estimation Of Blood Vessels Functional State By Means Of Analysis Of Temperature Reaction On Occlusive Test

    Directory of Open Access Journals (Sweden)

    A.P. Rytik

    2009-12-01

    Full Text Available Temperature reaction of distant phalanges in the case of the occlusive test has been registered. It has been revealed that the temperature reaction on the occlusive test for the group of patients with disturbances of vessel tone regulation differs from the reaction of norm group. Possible influence of vessel regulation state and volumetric blood supply on the skin temperature dynamics has been estimated. Diagnostic ability of the temperature occlusive test has been investigated

  1. Estimation Of Blood Vessels Functional State By Means Of Analysis Of Temperature Reaction On Occlusive Test

    OpenAIRE

    A.P. Rytik; E.V. Miroshnichenko; A.A. Sagaidachnyi; A.V. Skripal; A.A. Protopopov; D.A. Usanov

    2009-01-01

    Temperature reaction of distant phalanges in the case of the occlusive test has been registered. It has been revealed that the temperature reaction on the occlusive test for the group of patients with disturbances of vessel tone regulation differs from the reaction of norm group. Possible influence of vessel regulation state and volumetric blood supply on the skin temperature dynamics has been estimated. Diagnostic ability of the temperature occlusive test has been investigated

  2. Learning-based automated segmentation of the carotid artery vessel wall in dual-sequence MRI using subdivision surface fitting.

    Science.gov (United States)

    Gao, Shan; van 't Klooster, Ronald; Kitslaar, Pieter H; Coolen, Bram F; van den Berg, Alexandra M; Smits, Loek P; Shahzad, Rahil; Shamonin, Denis P; de Koning, Patrick J H; Nederveen, Aart J; van der Geest, Rob J

    2017-10-01

    The quantification of vessel wall morphology and plaque burden requires vessel segmentation, which is generally performed by manual delineations. The purpose of our work is to develop and evaluate a new 3D model-based approach for carotid artery wall segmentation from dual-sequence MRI. The proposed method segments the lumen and outer wall surfaces including the bifurcation region by fitting a subdivision surface constructed hierarchical-tree model to the image data. In particular, a hybrid segmentation which combines deformable model fitting with boundary classification was applied to extract the lumen surface. The 3D model ensures the correct shape and topology of the carotid artery, while the boundary classification uses combined image information of 3D TOF-MRA and 3D BB-MRI to promote accurate delineation of the lumen boundaries. The proposed algorithm was validated on 25 subjects (48 arteries) including both healthy volunteers and atherosclerotic patients with 30% to 70% carotid stenosis. For both lumen and outer wall border detection, our result shows good agreement between manually and automatically determined contours, with contour-to-contour distance less than 1 pixel as well as Dice overlap greater than 0.87 at all different carotid artery sections. The presented 3D segmentation technique has demonstrated the capability of providing vessel wall delineation for 3D carotid MRI data with high accuracy and limited user interaction. This brings benefits to large-scale patient studies for assessing the effect of pharmacological treatment of atherosclerosis by reducing image analysis time and bias between human observers. © 2017 American Association of Physicists in Medicine.

  3. Tissue Engineering of Blood Vessels: Functional Requirements, Progress, and Future Challenges.

    Science.gov (United States)

    Kumar, Vivek A; Brewster, Luke P; Caves, Jeffrey M; Chaikof, Elliot L

    2011-09-01

    Vascular disease results in the decreased utility and decreased availability of autologus vascular tissue for small diameter (engineered replacement vessels represent an ideal solution to this clinical problem. Ongoing progress requires combined approaches from biomaterials science, cell biology, and translational medicine to develop feasible solutions with the requisite mechanical support, a non-fouling surface for blood flow, and tissue regeneration. Over the past two decades interest in blood vessel tissue engineering has soared on a global scale, resulting in the first clinical implants of multiple technologies, steady progress with several other systems, and critical lessons-learned. This review will highlight the current inadequacies of autologus and synthetic grafts, the engineering requirements for implantation of tissue-engineered grafts, and the current status of tissue-engineered blood vessel research.

  4. In vitro fabrication of functional three-dimensional tissues with perfusable blood vessels.

    Science.gov (United States)

    Sekine, Hidekazu; Shimizu, Tatsuya; Sakaguchi, Katsuhisa; Dobashi, Izumi; Wada, Masanori; Yamato, Masayuki; Kobayashi, Eiji; Umezu, Mitsuo; Okano, Teruo

    2013-01-01

    In vitro fabrication of functional vascularized three-dimensional tissues has been a long-standing objective in the field of tissue engineering. Here we report a technique to engineer cardiac tissues with perfusable blood vessels in vitro. Using resected tissue with a connectable artery and vein as a vascular bed, we overlay triple-layer cardiac cell sheets produced from coculture with endothelial cells, and support the tissue construct with media perfused in a bioreactor. We show that endothelial cells connect to capillaries in the vascular bed and form tubular lumens, creating in vitro perfusable blood vessels in the cardiac cell sheets. Thicker engineered tissues can be produced in vitro by overlaying additional triple-layer cell sheets. The vascularized cardiac tissues beat and can be transplanted with blood vessel anastomoses. This technique may create new opportunities for in vitro tissue engineering and has potential therapeutic applications.

  5. Three-dimensional display of blood vessels and soft tissues with MR images

    International Nuclear Information System (INIS)

    Shiotani, Y.; Sato, H.; Machida, Y.; Yoshida, T.

    1988-01-01

    The authors developed a three-dimensional display technique for blood vessels related to soft tissues, using MR images generated by the three-dimensional Fourier transform method or multisection method. An application of this study for neurosurgery provided satisfactory results. In this paper they describe this display technique and its clinical practice, including procedures (1) to enhance blood vessels by nonlinear filter capable of detecting three-dimensional line patterns without losing the form of soft tissues, (2) to generate three-dimensional images by the numerical projection, and (3) to present three-dimensional display utilizing the dynamic or binocular parallex (animation display or stereoscopic display). This technique facilitates the recognition of the three-dimensional structure of blood vessels related to soft tissues

  6. The use of high-hydrostatic pressure treatment to decellularize blood vessels.

    Science.gov (United States)

    Funamoto, Seiichi; Nam, Kwangwoo; Kimura, Tsuyoshi; Murakoshi, Ayako; Hashimoto, Yoshihide; Niwaya, Kazuo; Kitamura, Soichiro; Fujisato, Toshiya; Kishida, Akio

    2010-05-01

    A decellularization method using high-hydrostatic pressure (HHP) technology (>600MPa) is described. The HHP disrupts the cells inside the tissue. The cell debris can be eliminated with a simple washing process, producing clean, decellularized tissue. In this study, porcine aortic blood vessel was decellularized by HHP. The mechanical properties and in vivo performance of the decellularized tissue were evaluated. Mechanical properties of the decellularized tissue were not altered by the HHP treatment. Reduced inflammation of the decellularized tissue was confirmed by xenogenic transplant experimentation. An allogenic transplantation study showed that decellularized blood vessel endured the arterial blood pressure, and there was no clot formation on the luminal surface. In addition, cellular infiltration into the vessel wall was observed 4 weeks after implantation, suggesting that HHP treatments could be applied widely as a high-quality decellularization method. Copyright 2010 Elsevier Ltd. All rights reserved.

  7. Detection of Blood Vessels in Color Fundus Images using a Local Radon Transform

    Directory of Open Access Journals (Sweden)

    Reza Pourreza

    2010-09-01

    Full Text Available Introduction: This paper addresses a method for automatic detection of blood vessels in color fundus images which utilizes two main tools: image partitioning and local Radon transform. Material and Methods: The input images are firstly divided into overlapping windows and then the Radon transform is applied to each. The maximum of the Radon transform in each window corresponds to the probable available sub-vessel. To verify the detected sub-vessel, the maximum is compared with a predefined threshold. The verified sub-vessels are reconstructed using the Radon transform information. All detected and reconstructed sub-vessels are finally combined to make the final vessel tree. Results: The algorithm’s performance was evaluated numerically by applying it to 40 images of DRIVE database, a standard retinal image database. The vessels were extracted manually by two physicians. This database was used to test and compare the available and proposed algorithms for vessel detection in color fundus images. By comparing the output of the algorithm with the manual results, the two parameters TPR and FPR were calculated for each image and the average of TPRs and FPRs were used to plot the ROC curve. Discussion and Conclusion: Comparison of the ROC curve of this algorithm with other algorithms demonstrated the high achieved accuracy. Beside the high accuracy, the Radon transform which is integral-based makes the algorithm robust against noise.

  8. Blood vessel damage correlated with irradiance for in vivo vascular targeted photodynamic therapy

    Science.gov (United States)

    Zhang, Jinde; Tan, Zou; Niu, Xiangyu; Lin, Linsheng; Lin, Huiyun; Li, Buhong

    2016-10-01

    Vascular targeted photodynamic therapy (V-PDT) has been widely utilized for the prevention or treatment of vascular-related diseases, including age-related macular degeneration, port-wine stains and prostate cancer. In order to quantitative assessment the blood vessel damage during V-PDT, nude mice were implanted with Titanium dorsal skin window chambers for in vivo V-PDT studies. For treatments, various irradiances including 50, 75, 100 and 200 mW/cm2 provided by a 532 nm semiconductor laser were performed with the same total light dose of 30 J/cm2 after the mice were intravenously injection of Rose Bengal for 25 mg/Kg body weight. Laser speckle imaging and microscope were used to monitor blood flow dynamics and vessel constriction during and after V-PDT, respectively. The V-PDT induced vessel damages between different groups were compared. The results show that significant difference in blood vessel damage was found between the lower irradiances (50, 75 and 100 mW/cm2) and higher irradiance (200 mW/cm2), and the blood vessel damage induced by V-PDT is positively correlated with irradiance. This study implies that the optimization of irradiance is required for enhancing V-PDT therapeutic efficiency.

  9. Mathematical modelling for trajectories of magnetic nanoparticles in a blood vessel under magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Shashi, E-mail: shashisharma1984@gmail.com; Katiyar, V.K.; Singh, Uaday

    2015-04-01

    A mathematical model is developed to describe the trajectories of a cluster of magnetic nanoparticles in a blood vessel for the application of magnetic drug targeting (MDT). The magnetic nanoparticles are injected into a blood vessel upstream from a malignant tissue and are captured at the tumour site with help of an applied magnetic field. The applied field is produced by a rare earth cylindrical magnet positioned outside the body. All forces expected to significantly affect the transport of nanoparticles were incorporated, including magnetization force, drag force and buoyancy force. The results show that particles are slow down and captured under the influence of magnetic force, which is responsible to attract the magnetic particles towards the magnet. It is optimized that all particles are captured either before or at the centre of the magnet (z≤0) when blood vessel is very close proximity to the magnet (d=2.5 cm). However, as the distance between blood vessel and magnet (d) increases (above 4.5 cm), the magnetic nanoparticles particles become free and they flow away down the blood vessel. Further, the present model results are validated by the simulations performed using the finite element based COMSOL software. - Highlights: • A mathematical model is developed to describe the trajectories of magnetic nanoparticles. • The dominant magnetic, drag and buoyancy forces are considered. • All particles are captured when distance between blood vessel and magnet (d) is up to 4.5 cm. • Further increase in d value (above 4.5 cm) results the free movement of magnetic particles.

  10. Mathematical modelling for trajectories of magnetic nanoparticles in a blood vessel under magnetic field

    International Nuclear Information System (INIS)

    Sharma, Shashi; Katiyar, V.K.; Singh, Uaday

    2015-01-01

    A mathematical model is developed to describe the trajectories of a cluster of magnetic nanoparticles in a blood vessel for the application of magnetic drug targeting (MDT). The magnetic nanoparticles are injected into a blood vessel upstream from a malignant tissue and are captured at the tumour site with help of an applied magnetic field. The applied field is produced by a rare earth cylindrical magnet positioned outside the body. All forces expected to significantly affect the transport of nanoparticles were incorporated, including magnetization force, drag force and buoyancy force. The results show that particles are slow down and captured under the influence of magnetic force, which is responsible to attract the magnetic particles towards the magnet. It is optimized that all particles are captured either before or at the centre of the magnet (z≤0) when blood vessel is very close proximity to the magnet (d=2.5 cm). However, as the distance between blood vessel and magnet (d) increases (above 4.5 cm), the magnetic nanoparticles particles become free and they flow away down the blood vessel. Further, the present model results are validated by the simulations performed using the finite element based COMSOL software. - Highlights: • A mathematical model is developed to describe the trajectories of magnetic nanoparticles. • The dominant magnetic, drag and buoyancy forces are considered. • All particles are captured when distance between blood vessel and magnet (d) is up to 4.5 cm. • Further increase in d value (above 4.5 cm) results the free movement of magnetic particles

  11. Effect of Rolling Massage on the Vortex Flow in Blood Vessels with Lattice Boltzmann Simulation

    Science.gov (United States)

    Yi, Hou Hui

    The rolling massage manipulation is a classic Chinese Medical Massage, which is a nature therapy in eliminating many diseases. Here, the effect of the rolling massage on the cavity flows in blood vessel under the rolling manipulation is studied by the lattice Boltzmann simulation. The simulation results show that the vortex flows are fully disturbed by the rolling massage. The flow behavior depends on the rolling velocity and the rolling depth. Rolling massage has a better effect on the flows in the cavity than that of the flows in a planar blood vessel. The result is helpful to understand the mechanism of the massage and develop the rolling techniques.

  12. Compressed sensing based simultaneous black- and gray-blood carotid vessel wall MR imaging.

    Science.gov (United States)

    Li, Bo; Li, Hao; Kong, Hanjing; Dong, Li; Zhang, Jue; Fang, Jing

    2017-05-01

    In this study, we sought to demonstrate the blood suppression performance, image quality and morphological measurements for compressed sensing (CS) based simultaneous 3D black- and gray-blood imaging sequence (CS-siBLAG) in carotid vessel wall MR imaging. Seven healthy volunteers and five patients were recruited. Healthy subjects underwent five CS-siBLAG scans with 1, 2, 3, 4 and 5-fold accelerations. Signal-to-tissue ratio (STR) and contrast-to-tissue ratio (CTR) were computed as the measures of flowing signal suppression performance and the image quality for black-blood imaging of the technique. Vessel lumen area (LA) and wall area (WA) were compared between fully sampled acquisition and each accelerated acquisition. Patients underwent three CS-siBLAG scans with 1, 3 and 5-fold accelerations as well as a 3D time of flight (3D TOF) scan. Two radiologists reviewed the under-sampled black- and gray-blood image quality. STR and CTR values obtained with 2 to 5-fold accelerations were not significantly different from those with full acquisition. LA and WA measured at 2×, 3×, 4× and 5× were all highly correlated to the corresponding values at 1×. For patients imaging, two radiologists both found that the dual-contrast images at 3× acceleration exhibited comparable image quality to that of the fully sampled acquisition, and that the images at 5× exhibited slightly blurred vessel wall and outer vessel wall boundaries. By combining the CS under-sampling pattern and reconstruction, pseudo-centric phase encoding order and dual blood contrast sequences, this technique provides spatially registered black- and gray-blood images and excellent visualization for vessel wall imaging and gray-blood imaging in a short scan time. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Contact-inhibited chemotaxis in de novo and sprouting blood-vessel growth.

    Directory of Open Access Journals (Sweden)

    Roeland M H Merks

    2008-09-01

    Full Text Available Blood vessels form either when dispersed endothelial cells (the cells lining the inner walls of fully formed blood vessels organize into a vessel network (vasculogenesis, or by sprouting or splitting of existing blood vessels (angiogenesis. Although they are closely related biologically, no current model explains both phenomena with a single biophysical mechanism. Most computational models describe sprouting at the level of the blood vessel, ignoring how cell behavior drives branch splitting during sprouting. We present a cell-based, Glazier-Graner-Hogeweg model (also called Cellular Potts Model simulation of the initial patterning before the vascular cords form lumens, based on plausible behaviors of endothelial cells. The endothelial cells secrete a chemoattractant, which attracts other endothelial cells. As in the classic Keller-Segel model, chemotaxis by itself causes cells to aggregate into isolated clusters. However, including experimentally observed VE-cadherin-mediated contact inhibition of chemotaxis in the simulation causes randomly distributed cells to organize into networks and cell aggregates to sprout, reproducing aspects of both de novo and sprouting blood-vessel growth. We discuss two branching instabilities responsible for our results. Cells at the surfaces of cell clusters attempting to migrate to the centers of the clusters produce a buckling instability. In a model variant that eliminates the surface-normal force, a dissipative mechanism drives sprouting, with the secreted chemical acting both as a chemoattractant and as an inhibitor of pseudopod extension. Both mechanisms would also apply if force transmission through the extracellular matrix rather than chemical signaling mediated cell-cell interactions. The branching instabilities responsible for our results, which result from contact inhibition of chemotaxis, are both generic developmental mechanisms and interesting examples of unusual patterning instabilities.

  14. Mouse lung contains endothelial progenitors with high capacity to form blood and lymphatic vessels

    Directory of Open Access Journals (Sweden)

    Barleon Bernhard

    2010-07-01

    Full Text Available Abstract Background Postnatal endothelial progenitor cells (EPCs have been successfully isolated from whole bone marrow, blood and the walls of conduit vessels. They can, therefore, be classified into circulating and resident progenitor cells. The differentiation capacity of resident lung endothelial progenitor cells from mouse has not been evaluated. Results In an attempt to isolate differentiated mature endothelial cells from mouse lung we found that the lung contains EPCs with a high vasculogenic capacity and capability of de novo vasculogenesis for blood and lymph vessels. Mouse lung microvascular endothelial cells (MLMVECs were isolated by selection of CD31+ cells. Whereas the majority of the CD31+ cells did not divide, some scattered cells started to proliferate giving rise to large colonies (> 3000 cells/colony. These highly dividing cells possess the capacity to integrate into various types of vessels including blood and lymph vessels unveiling the existence of local microvascular endothelial progenitor cells (LMEPCs in adult mouse lung. EPCs could be amplified > passage 30 and still expressed panendothelial markers as well as the progenitor cell antigens, but not antigens for immune cells and hematopoietic stem cells. A high percentage of these cells are also positive for Lyve1, Prox1, podoplanin and VEGFR-3 indicating that a considerabe fraction of the cells are committed to develop lymphatic endothelium. Clonogenic highly proliferating cells from limiting dilution assays were also bipotent. Combined in vitro and in vivo spheroid and matrigel assays revealed that these EPCs exhibit vasculogenic capacity by forming functional blood and lymph vessels. Conclusion The lung contains large numbers of EPCs that display commitment for both types of vessels, suggesting that lung blood and lymphatic endothelial cells are derived from a single progenitor cell.

  15. Resonance frequency of microbubbles in small blood vessels: a numerical study

    International Nuclear Information System (INIS)

    Sassaroli, E; Hynynen, K

    2005-01-01

    Microbubbles are currently used as ultrasound contrast agents. Their potential therapeutic applications are also under investigation. This work is designed to provide some insight into the mechanisms of energy absorption and deposition by a preformed gas bubble in the microvasculature to optimize its efficacy. In the linear regime, the most favourable condition for the transfer of energy from an ultrasonic field to a gas bubble occurs when the centre frequency of the ultrasonic field equals the resonance frequency of the bubble. The resonance frequency of gas microbubbles has been investigated up to now mainly in unbounded liquids; however when bubbles are confined in small regions, their resonance frequency is strongly affected by the surrounding boundaries. A parametric study on how the resonance frequency of microbubbles in blood vessels is affected by the bubble radius, vessel radius and the bubble position in the vessel is presented. The resonance frequency decreases below its free value with decreasing vessel radius for vessels smaller than 200-300 μm depending on the bubble size. This model suggests the possibility of using ultrasound in a range of frequencies that are, in general, lower than the ones used now for therapeutic and diagnostic applications of ultrasound (a few MHz). When microbubbles oscillate at their resonance frequency they absorb and therefore emit more energy. This energy may allow specific blood vessels to be targeted for both diagnostic and therapeutic applications of ultrasound

  16. Wave reflection and transmission in multiply stented blood vessels

    Science.gov (United States)

    Papathanasiou, T. K.; Movchan, A. B.; Bigoni, D.

    2017-06-01

    Closed circulatory systems display an exquisite balance between vascular elasticity and viscous fluid effects, to induce pulse-smoothing and avoid resonance during the cardiac cycle. Stents in the arterial tree alter this balance through stiffening and because a periodic structure is introduced, capable of interacting with the fluid in a complex way. While the former feature has been investigated, the latter received no attention so far. But periodic structures are the building blocks of metamaterials, known for their `non-natural' behaviour. Thus, the investigation of a stent's periodic microstructure dynamical interactions is crucial to assess possible pathological responses. A one-dimensional fluid-structure interaction model, simple enough to allow an analytical solution for situations of interest involving one or two interacting stents, is introduced. It is determined: (i) whether or not frequency bands exist in which reflected blood pulses are highly increased and (ii) if these bands are close to the characteristic frequencies of arteries and finally, (iii) if the internal structure of the stent can sensibly affect arterial blood dynamics. It is shown that, while the periodic structure of an isolated stent can induce anomalous reflection only in pathological conditions, the presence of two interacting stents is more critical, and high reflection can occur at frequencies not far from the physiological values.

  17. Application of Texture Analysis to Study Small Vessel Disease and Blood-Brain Barrier Integrity.

    Science.gov (United States)

    Valdés Hernández, Maria Del C; González-Castro, Victor; Chappell, Francesca M; Sakka, Eleni; Makin, Stephen; Armitage, Paul A; Nailon, William H; Wardlaw, Joanna M

    2017-01-01

    We evaluate the alternative use of texture analysis for evaluating the role of blood-brain barrier (BBB) in small vessel disease (SVD). We used brain magnetic resonance imaging from 204 stroke patients, acquired before and 20 min after intravenous gadolinium administration. We segmented tissues, white matter hyperintensities (WMH) and applied validated visual scores. We measured textural features in all tissues pre- and post-contrast and used ANCOVA to evaluate the effect of SVD indicators on the pre-/post-contrast change, Kruskal-Wallis for significance between patient groups and linear mixed models for pre-/post-contrast variations in cerebrospinal fluid (CSF) with Fazekas scores. Textural "homogeneity" increase in normal tissues with higher presence of SVD indicators was consistently more overt than in abnormal tissues. Textural "homogeneity" increased with age, basal ganglia perivascular spaces scores ( p  < 0.01) and SVD scores ( p  < 0.05) and was significantly higher in hypertensive patients ( p  < 0.002) and lacunar stroke ( p  = 0.04). Hypertension (74% patients), WMH load (median = 1.5 ± 1.6% of intracranial volume), and age (mean = 65.6 years, SD = 11.3) predicted the pre/post-contrast change in normal white matter, WMH, and index stroke lesion. CSF signal increased with increasing SVD post-contrast. A consistent general pattern of increasing textural "homogeneity" with increasing SVD and post-contrast change in CSF with increasing WMH suggest that texture analysis may be useful for the study of BBB integrity.

  18. Mathematical Modeling of Bingham Plastic Model of Blood Flow Through Stenotic Vessel

    OpenAIRE

    S.R. Verma

    2014-01-01

    The aim of the present paper is to study the axially symmetric, laminar, steady, one-dimensional flow of blood through narrow stenotic vessel. Blood is considered as Bingham plastic fluid. The analytical results such as pressure drop, resistance to flow and wall shear stress have been obtained. Effect of yield stress and shape of stenosis on resistance to flow and wall shear stress have been discussed through tables and graphically. It has been shown that resistance to flow and th...

  19. Failure to show decrease in small pulmonary blood vessels in rats with experimental pulmonary hypertension.

    OpenAIRE

    Kay, J M; Suyama, K L; Keane, P M

    1982-01-01

    We induced chronic pulmonary hypertension in one group of rats by exposing them to chronic hypobaric hypoxia (380 mm Hg for three weeks) and in another group by administering a single subcutaneous dose of monocrotaline (60 mg/kg body weight). Both groups of rats showed increase of the right ventricular mean systolic blood pressure and right ventricular hypertrophy. We measured the surface area of histological sections of the left or right lungs and counted all small blood vessels with an exte...

  20. Blood vessel extraction and optic disc removal using curvelet transform and kernel fuzzy c-means.

    Science.gov (United States)

    Kar, Sudeshna Sil; Maity, Santi P

    2016-03-01

    This paper proposes an automatic blood vessel extraction method on retinal images using matched filtering in an integrated system design platform that involves curvelet transform and kernel based fuzzy c-means. Since curvelet transform represents the lines, the edges and the curvatures very well and in compact form (by less number of coefficients) compared to other multi-resolution techniques, this paper uses curvelet transform for enhancement of the retinal vasculature. Matched filtering is then used to intensify the blood vessels' response which is further employed by kernel based fuzzy c-means algorithm that extracts the vessel silhouette from the background through non-linear mapping. For pathological images, in addition to matched filtering, Laplacian of Gaussian filter is also employed to distinguish the step and the ramp like signal from that of vessel structure. To test the efficacy of the proposed method, the algorithm has also been applied to images in presence of additive white Gaussian noise where the curvelet transform has been used for image denoising. Performance is evaluated on publicly available DRIVE, STARE and DIARETDB1 databases and is compared with the large number of existing blood vessel extraction methodologies. Simulation results demonstrate that the proposed method is very much efficient in detecting the long and the thick as well as the short and the thin vessels with an average accuracy of 96.16% for the DRIVE and 97.35% for the STARE database wherein the existing methods fail to extract the tiny and the thin vessels. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. The Fine Structure of Some Blood Vessels of the Earthworm, Eisenia foetida

    Science.gov (United States)

    Hama, Kiyoshi

    1960-01-01

    The fine structure of the main dorsal and ventral circulatory trunks and of the subneural vessels and capillaries of the ventral nerve cord of the earthworm, Eisenia foetida, has been studied with the electron microscope. All of these vessels are lined internally by a continuous extracellular basement membrane varying in thickness (0.03 to 1 µ) with the vessel involved. The dorsal, ventral, and subneural vessels display inside this membrane scattered flattened macrophagic or leucocytic cells called amebocytes. These lie against the inner lining of the basement membrane, covering only a small fraction of its surface. They have long, attenuated branching cell processes. All of these vessels are lined with a continuous layer of unfenestrated endothelial cells displaying myofilaments and hence qualifying for the designation of "myoendothelial cells." The degree of muscular specialization varies over a spectrum, however, ranging from a delicate endowment of thin myofilaments in the capillary myoendothelial cells to highly specialized myoendothelial cells in the main pulsating dorsal blood trunk, which serves as the worm's "heart" or propulsive "aorta." The myoendothelial cells most specialized for contraction display well organized sarcoplasmic reticulum and myofibrils with thick and thin myofilaments resembling those of the earthworm body wall musculature. In the ventral circulatory trunk, circular and longitudinal myofilaments are found in each myoendothelial cell. In the dorsal trunk, the lining myoendothelial cells contain longitudinal myofilaments. Outside these cells are circular muscle cells. The lateral parts of the dorsal vessels have an additional outer longitudinal muscle layer. The blood plasma inside all of the vessels shows scattered particles representing the circulating earthworm blood pigment, erythrocruorin. PMID:14399190

  2. Cerebral blood flow in small vessel disease : A systematic review and meta-analysis

    NARCIS (Netherlands)

    Shi, Yulu; Thrippleton, Michael J; Makin, Stephen D; Marshall, Ian; Geerlings, Mirjam I; de Craen, Anton Jm; van Buchem, Mark A; Wardlaw, Joanna M

    2016-01-01

    White matter hyperintensities are frequent on neuroimaging of older people and are a key feature of cerebral small vessel disease. They are commonly attributed to chronic hypoperfusion, although whether low cerebral blood flow is cause or effect is unclear. We systematically reviewed studies that

  3. Photoacoustic imaging of blood vessels with a double-ring sensor featuring a narrow angular aperture

    NARCIS (Netherlands)

    Kolkman, R.G.M.; Hondebrink, Erwin; Steenbergen, Wiendelt; van Leeuwen, Ton; de Mul, F.F.M.

    2004-01-01

    A photoacoustic double-ring sensor, featuring a narrow angular aperture, is developed for laser-induced photoacoustic imaging of blood vessels. An integrated optical fiber enables reflection-mode detection of ultrasonic waves. By using the cross-correlation between the signals detected by the two

  4. Mass Spectrometry and Antibody-Based Characterization of Blood Vessels from Brachylophosaurus canadensis.

    Science.gov (United States)

    Cleland, Timothy P; Schroeter, Elena R; Zamdborg, Leonid; Zheng, Wenxia; Lee, Ji Eun; Tran, John C; Bern, Marshall; Duncan, Michael B; Lebleu, Valerie S; Ahlf, Dorothy R; Thomas, Paul M; Kalluri, Raghu; Kelleher, Neil L; Schweitzer, Mary H

    2015-12-04

    Structures similar to blood vessels in location, morphology, flexibility, and transparency have been recovered after demineralization of multiple dinosaur cortical bone fragments from multiple specimens, some of which are as old as 80 Ma. These structures were hypothesized to be either endogenous to the bone (i.e., of vascular origin) or the result of biofilm colonizing the empty osteonal network after degradation of original organic components. Here, we test the hypothesis that these structures are endogenous and thus retain proteins in common with extant archosaur blood vessels that can be detected with high-resolution mass spectrometry and confirmed by immunofluorescence. Two lines of evidence support this hypothesis. First, peptide sequencing of Brachylophosaurus canadensis blood vessel extracts is consistent with peptides comprising extant archosaurian blood vessels and is not consistent with a bacterial, cellular slime mold, or fungal origin. Second, proteins identified by mass spectrometry can be localized to the tissues using antibodies specific to these proteins, validating their identity. Data are available via ProteomeXchange with identifier PXD001738.

  5. TMA Vessel Segmentation Based on Color and Morphological Features: Application to Angiogenesis Research

    Science.gov (United States)

    Fernández-Carrobles, M. Milagro; Tadeo, Irene; Bueno, Gloria; Noguera, Rosa; Déniz, Oscar; Salido, Jesús; García-Rojo, Marcial

    2013-01-01

    Given that angiogenesis and lymphangiogenesis are strongly related to prognosis in neoplastic and other pathologies and that many methods exist that provide different results, we aim to construct a morphometric tool allowing us to measure different aspects of the shape and size of vascular vessels in a complete and accurate way. The developed tool presented is based on vessel closing which is an essential property to properly characterize the size and the shape of vascular and lymphatic vessels. The method is fast and accurate improving existing tools for angiogenesis analysis. The tool also improves the accuracy of vascular density measurements, since the set of endothelial cells forming a vessel is considered as a single object. PMID:24489494

  6. The influence of surrogate blood vessels on the impact response of a physical model of the brain.

    Science.gov (United States)

    Parnaik, Yednesh; Beillas, Philippe; Demetropoulos, Constantine K; Hardy, Warren N; Yang, King H; King, Albert I

    2004-11-01

    Cerebral blood vessels are an integral part of the brain and may play a role in the response of the brain to impact. The purpose of this study was to quantify the effects of surrogate vessels on the deformation patterns of a physical model of the brain under various impact conditions. Silicone gel and tubing were used as surrogates for brain tissue and blood vessels, respectively. Two aluminum cylinders representing a coronal section of the brain were constructed. One cylinder was filled with silicone gel only, and the other was filled with silicone gel and silicone tubing arranged in the radial direction in the peripheral region. An array of markers was embedded in the gel in both cylinders to facilitate strain calculation via high-speed video analysis. Both cylinders were simultaneously subjected to a combination of linear and angular acceleration using a two-segment pendulum. Marker motion was tracked, and maximum shear strain (MSS) and maximum principal strain (MPS) were calculated using markers clustered in groups of three. Four test series were conducted. Peak angular acceleration varied from 2,600 to 26,000 rad/s2, and peak angular speed varied from 17 to 29 rad/s. For a given impact condition, the test-to-test variation of these values was less than 5.5%. For all clusters, the peak MSS and peak MPS for both physical models were less than 26% and 32%, respectively. For 90% of the cluster locations, the absolute value of the difference in peak MSS and peak MPS between the physical models was 4% and 6%, respectively. In the physical model with tubing, strain tended to decrease in the periphery (near to the tubing), while it tended to increase toward the center (away from the tubing). Strain amplitudes were found to be sensitive to the peak angular speeds. In general, this study suggests that the vasculature could influence the deformation response of the brain.

  7. Hybrid PIV-PTV technique for measuring blood flow in rat mesenteric vessels.

    Science.gov (United States)

    Ha, Hojin; Nam, Kweon-Ho; Lee, Sang Joon

    2012-11-01

    The micro-particle tracking velocimetry (μ-PTV) technique is used to obtain the velocity fields of blood flow in the microvasculature under in vivo conditions because it can provide the blood velocity distribution in microvessels with high spatial resolution. The in vivo μ-PTV technique usually requires a few to tens of seconds to obtain a whole velocity profile across the vessel diameter because of the limited number density of tracer particles under in vivo conditions. Thus, the μ-PTV technique alone is limited in measuring unsteady blood flows that fluctuate irregularly due to the heart beating and muscle movement in surrounding tissues. In this study, a new hybrid PIV-PTV technique was established by combining PTV and particle image velocimetry (PIV) techniques to resolve the drawbacks of the μ-PTV method in measuring blood flow in microvessels under in vivo conditions. Images of red blood cells (RBCs) and fluorescent particles in rat mesenteric vessels were obtained simultaneously. Temporal variations of the centerline blood velocity were monitored using a fast Fourier transform-based cross-correlation PIV method. The fluorescence particle images were analyzed using the μ-PTV technique to extract the spatial distribution of the velocity vectors. Data from the μ-PTV and PIV methods were combined to obtain a better estimate of the velocity profile in actual blood flow. This technique will be useful in investigating hemodynamics in microcirculation by measuring unsteady irregular blood flows more accurately. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Optics based signal processing methods for intraoperative blood vessel detection and quantification in real time (Conference Presentation)

    Science.gov (United States)

    Chaturvedi, Amal; Shukair, Shetha A.; Le Rolland, Paul; Vijayvergia, Mayank; Subramanian, Hariharan; Gunn, Jonathan W.

    2016-03-01

    Minimally invasive operations require surgeons to make difficult cuts to blood vessels and other tissues with impaired tactile and visual feedback. This leads to inadvertent cuts to blood vessels hidden beneath tissue, causing serious health risks to patients and a non-reimbursable financial burden to hospitals. Intraoperative imaging technologies have been developed, but these expensive systems can be cumbersome and provide only a high-level view of blood vessel networks. In this research, we propose a lean reflectance-based system, comprised of a dual wavelength LED, photodiode, and novel signal processing algorithms for rapid vessel characterization. Since this system takes advantage of the inherent pulsatile light absorption characteristics of blood vessels, no contrast agent is required for its ability to detect the presence of a blood vessel buried deep inside any tissue type (up to a cm) in real time. Once a vessel is detected, the system is able to estimate the distance of the vessel from the probe and the diameter size of the vessel (with a resolution of ~2mm), as well as delineate the type of tissue surrounding the vessel. The system is low-cost, functions in real-time, and could be mounted on already existing surgical tools, such as Kittner dissectors or laparoscopic suction irrigation cannulae. Having been successfully validated ex vivo, this technology will next be tested in a live porcine study and eventually in clinical trials.

  9. Skeletonization algorithm-based blood vessel quantification using in vivo 3D photoacoustic imaging

    Science.gov (United States)

    Meiburger, K. M.; Nam, S. Y.; Chung, E.; Suggs, L. J.; Emelianov, S. Y.; Molinari, F.

    2016-11-01

    Blood vessels are the only system to provide nutrients and oxygen to every part of the body. Many diseases can have significant effects on blood vessel formation, so that the vascular network can be a cue to assess malicious tumor and ischemic tissues. Various imaging techniques can visualize blood vessel structure, but their applications are often constrained by either expensive costs, contrast agents, ionizing radiations, or a combination of the above. Photoacoustic imaging combines the high-contrast and spectroscopic-based specificity of optical imaging with the high spatial resolution of ultrasound imaging, and image contrast depends on optical absorption. This enables the detection of light absorbing chromophores such as hemoglobin with a greater penetration depth compared to purely optical techniques. We present here a skeletonization algorithm for vessel architectural analysis using non-invasive photoacoustic 3D images acquired without the administration of any exogenous contrast agents. 3D photoacoustic images were acquired on rats (n  =  4) in two different time points: before and after a burn surgery. A skeletonization technique based on the application of a vesselness filter and medial axis extraction is proposed to extract the vessel structure from the image data and six vascular parameters (number of vascular trees (NT), vascular density (VD), number of branches (NB), 2D distance metric (DM), inflection count metric (ICM), and sum of angles metric (SOAM)) were calculated from the skeleton. The parameters were compared (1) in locations with and without the burn wound on the same day and (2) in the same anatomic location before (control) and after the burn surgery. Four out of the six descriptors were statistically different (VD, NB, DM, ICM, p  burn surgery). The study demonstrates an approach to obtain quantitative characterization of the vascular network from 3D photoacoustic images without any exogenous contrast agent which can assess

  10. Vascular patterns in the heads of crocodilians: blood vessels and sites of thermal exchange.

    Science.gov (United States)

    Porter, William Ruger; Sedlmayr, Jayc C; Witmer, Lawrence M

    2016-12-01

    Extant crocodilians are a highly apomorphic archosaur clade that is ectothermic, yet often achieve large body sizes that can be subject to higher heat loads. Therefore, the anatomical and physiological roles that blood vessels play in crocodilian thermoregulation need further investigation to better understand how crocodilians establish and maintain cephalic temperatures and regulate neurosensory tissue temperatures during basking and normal activities. The cephalic vascular anatomy of extant crocodilians, particularly American alligator (Alligator mississippiensis) was investigated using a differential-contrast, dual-vascular injection technique and high resolution X-ray micro-computed tomography (μCT). Blood vessels were digitally isolated to create representations of vascular pathways. The specimens were then dissected to confirm CT results. Sites of thermal exchange, consisting of the oral, nasal, and orbital regions, were given special attention due to their role in evaporative cooling and cephalic thermoregulation in other diapsids. Blood vessels to and from sites of thermal exchange were studied to detect conserved vascular patterns and to assess their ability to deliver cooled blood to neurosensory tissues. Within the orbital region, both the arteries and veins demonstrated consistent branching patterns, with the supraorbital, infraorbital, and ophthalmotemporal vessels supplying and draining the orbit. The venous drainage of the orbital region showed connections to the dural sinuses via the orbital veins and cavernous sinus. The palatal region demonstrated a vast plexus that comprised both arteries and veins. The most direct route of venous drainage of the palatal plexus was through the palatomaxillary veins, essentially bypassing neurosensory tissues. Anastomotic connections with the nasal region, however, may provide an alternative route for palatal venous blood to reach neurosensory tissues. The nasal region in crocodilians is probably the most

  11. Towards cavitation-enhanced permeability in blood vessel on a chip

    Science.gov (United States)

    De Luca, R.; Silvani, G.; Scognamiglio, C.; Sinibaldi, G.; Peruzzi, G.; Chinappi, M.; Kiani, M. F.; Casciola, C. M.

    2017-08-01

    The development of targeted delivery systems releasing pharmaceutical agents directly at the desired site of action may improve their therapeutic efficiency while minimizing damage to healthy tissues, toxicity to the patient and drug waste. In this context, we have developed a bio-inspired microdevice mimicking the tumour microvasculature which represents a valuable tool for assessing the enhancement of blood vessel permeability due to cavitation. This novel system allows us to investigate the effects of ultrasound-driven microbubbles that temporarily open the endothelial intercellular junctions allowing drug to extravasate blood vessels into tumour tissues. The blood vessel on a chip consists of a tissue chamber and two independent vascular channels (width 200 µm, height 100 µm, length 2762 µm) cultured with endothelial cells placed side-by-side and separated by a series of 3 µm pores. Its geometry and dimensions mimic the three-dimensional morphology, size and flow characteristics of microvessels in vivo. The early stage of this project had a twofold objective: 1. To define the protocol for culturing of Human Umbilical Vein Endothelial Cells (HUVECs) within the vascular channel; 2. To develop a fluorescence based microscopy technique for measuring permeability. We have developed a reliable and reproducible protocol to culture endothelial cells within the artificial vessels in a realistic manner: HUVECs show the typical elongated shape in the direction of flow, exhibit tight junction formation and form a continuous layer with a central lumen that completely covers the channels wall. As expected, the permeability of cell-free device is higher than the one cultured with HUVECs in the vascular channels. The proposed blood vessel on a chip and the permeability measurement protocol have a significant potential to allow for the study of cavitation-enhanced permeability of the endothelium and improve efficiency in screening drug delivery systems.

  12. In vivo measurement of hemodynamic information in stenosed rat blood vessels using X-ray PIV.

    Science.gov (United States)

    Park, Hanwook; Park, Jun Hong; Lee, Sang Joon

    2016-11-28

    Measurements of the hemodynamic information of blood flows, especially wall shear stress (WSS), in animal models with circulatory vascular diseases (CVDs) are important to understand the pathological mechanism of CVDs. In this study, X-ray particle image velocimetry (PIV) with high spatial resolution was applied to obtain velocity field information in stenosed blood vessels with high WSS. 3D clips fabricated with a 3D printer were applied to the abdominal aorta of a rat cadaver to induce artificial stenosis in the real blood vessel of an animal model. The velocity and WSS information of blood flows in the stenosed vessel were obtained and compared at various stenosis severities. In vivo measurement was also conducted by fastening a stenotic clip on a live rat model through surgical intervention to reduce the flow rate to match the limited temporal resolution of the present X-ray PIV system. Further improvement of the temporal resolution of the system might be able to provide in vivo measurements of hemodynamic information from animal disease models under physiological conditions. The present results would be helpful for understanding the relation between hemodynamic characteristics and the pathological mechanism in animal CVD models.

  13. [Topography of the blood vessels in the hilum of the kidney of Myrmecophaga tridactyla].

    Science.gov (United States)

    Souza, W M; Miglino, M A; Arantes, I G; Nascimento, A A

    1991-01-01

    The study was undertaken in 10 formol-imbibed kidneys of great anteater (Myrmecophaga tridactyla). After the dissection the following characteristics were showed: kidney blood vessels are distributed in 2 different sites, namely hilar and extrahilar, amounting 3 to 6 in the right side 3 to 7 in the left side. Arterial branches in extrahilar region range from 1 to 2 in both sides and in hilar region they present from 1 to 4 in the right and 1 to 2 in the left. Venous roots occur in 1 to 2 vessels in the right and 1 to 3 vessels in the left, occupying only the hilar region, except one case where it was present in the right side.

  14. Non-Newtonian Mathematical Model and Numerical Simulations for the Blood Flow in Capillary Vessels

    Directory of Open Access Journals (Sweden)

    Balazs ALBERT

    2016-03-01

    Full Text Available In this paper, taking into consideration the rheological Cross type non-Newtonian model, we elaborate an axial-symmetric mathematical model for the blood flow in capillary vessel with adequate numeric algorithms. We take into account the elastic and porous behavior of the vessel wall which leads to a more realistic approach of the problem. We also accept that the change of substances through these vessels complies with the Starling hypothesis. This hypothesis states that the mass debit through the capillary wall is proportional to the pressure difference between outside and inside the capillaries. The existence of a slip condition along the permeable surface is also accepted using the results of Beavers and Joseph. The numerical experiments are made using COMSOL Multiphysics 3.3. Some numerical results with respect to the velocity field, pressure variation and the wall shear stress are presented.

  15. THE ROLE OF ECG IN LOCALIZING THE CULPRIT VESSEL OCCLUSION IN ACUTE ST SEGMENT ELEVATION MYOCARDICAL INFARCTION WITH ANGIOGRAPHIC CORRELATION

    Directory of Open Access Journals (Sweden)

    Markandeya Rao

    2015-12-01

    Full Text Available BACKGROUND & OBJECTIVES The Electrocardiogram remains a crucial tool in the identification and management of acute myocardial infarction. A detailed analysis of patterns of ST-segment elevation may influence decisions regarding the perfusion therapy. This study was undertaken to identify the culprit vessel from ECG in patients with acute ST elevation myocardial infarction and correlate with coronary angiogram. MATERIALS & METHODS This is a prospective study, conducted on 126 patients in Osmania General Hospital, Hyderabad. Patients with ST segment elevation from ECG was evaluated to identify culprit vessel and later correlated with coronary angiogram. RESULTS Amongst 126 patients in this study, 70 patients had anterior wall and 56 patients had inferior wall myocardial infarction. ST> 1mm in V4R, ST  V3/ST  LIII Lead II was the most sensitive and ratio of STV3/STLIII >1.2 was the most specific criteria. ST in inferior leads > 1mm had maximum sensitivity in localizing occlusion in proximal D1 occlusion proximal to S1 as well. Absence of ST i in inferior leads is the most sensitive criteria in occlusion distal to S1 as well as in distal D1 in AWMI. CONCLUSION The admission ECG in patients with ST elevation AMI is valuable not only for determining early reperfusion treatment, but also provides important information to guide clinical decision-making.

  16. [Imaging Blood Flow and Pulsation of Retinal Vessels with Full-Field Swept-Source OCT].

    Science.gov (United States)

    Spahr, H; Hillmann, D; Hain, C; Pfäffle, C; Sudkamp, H; Franke, G; Koch, P; Hüttmann, G

    2016-12-01

    Optical coherence tomography (OCT) uses interference to image the retina with high axial resolution. In the last 25 years, new technologies have permitted a steady increase in imaging speed, which made it possible to enlarge the imaged field and to avoid motion artefacts. The speed and precision of retinal imaging is now limited by photodamage of the retina caused by the focused OCT beam and by the speed of the scanning mechanics. Full-field swept-source (FF-SS)-OCT decreases irradiance on the retina and dispenses moving parts by using a camera to acquire the full volume of the retina in parallel. Here we show that FF-SS-OCT is rapid and precise enough to image pulsation in the retina induced by the heart beat. Series of OCT volumes 1.8 × 0.7 mm wide and 1.8 mm deep were recorded in young volunteers over a few cycles of the heart beat. Morphology of the retinal vessels, blood flow and tissue motion as caused by vessel pulsation were calculated from the OCT data. FF-SS-OCT was able to visualise the main structures of the neuronal retina, including vessels and small capillaries and without any motion artefacts. Information on three different dynamic processes was obtained from only one recorded series of OCT volumes: pulsation of blood flow and blood pressure in retinal vessels as well as pulsation of the choroid. Delays between arterial and venous pulse and delay between pulsation in retinal and choroidal vessels were calculated. With a time resolution of 0.5 ms, FF-SS-OCT is able to visualise previously unmeasurably fast changes in the retina, including the propagation of pulse waves. Georg Thieme Verlag KG Stuttgart · New York.

  17. Blood vessels pattern heparan sulfate gradients between their apical and basolateral aspects.

    Directory of Open Access Journals (Sweden)

    Liat Stoler-Barak

    Full Text Available A hallmark of immune cell trafficking is directional guidance via gradients of soluble or surface bound chemokines. Vascular endothelial cells produce, transport and deposit either their own chemokines or chemokines produced by the underlying stroma. Endothelial heparan sulfate (HS was suggested to be a critical scaffold for these chemokine pools, but it is unclear how steep chemokine gradients are sustained between the lumenal and ablumenal aspects of blood vessels. Addressing this question by semi-quantitative immunostaining of HS moieties around blood vessels with a pan anti-HS IgM mAb, we found a striking HS enrichment in the basal lamina of resting and inflamed post capillary skin venules, as well as in high endothelial venules (HEVs of lymph nodes. Staining of skin vessels with a glycocalyx probe further suggested that their lumenal glycocalyx contains much lower HS density than their basolateral extracellular matrix (ECM. This polarized HS pattern was observed also in isolated resting and inflamed microvascular dermal cells. Notably, progressive skin inflammation resulted in massive ECM deposition and in further HS enrichment around skin post capillary venules and their associated pericytes. Inflammation-dependent HS enrichment was not compromised in mice deficient in the main HS degrading enzyme, heparanase. Our results suggest that the blood vasculature patterns steep gradients of HS scaffolds between their lumenal and basolateral endothelial aspects, and that inflammatory processes can further enrich the HS content nearby inflamed vessels. We propose that chemokine gradients between the lumenal and ablumenal sides of vessels could be favored by these sharp HS scaffold gradients.

  18. A Strategy for Rapid Construction of Blood Vessel-Like Structures with Complex Cell Alignments.

    Science.gov (United States)

    Wang, Nuoxin; Peng, Yunhu; Zheng, Wenfu; Tang, Lixue; Cheng, Shiyu; Yang, Junchuan; Liu, Shaoqin; Zhang, Wei; Jiang, Xingyu

    2018-04-17

    A method is developed that can rapidly produce blood vessel-like structures by bonding cell-laden electrospinning (ES) films layer by layer using fibrin glue within 90 min. This strategy allows control of cell type, cell orientation, and material composition in separate layers. Furthermore, ES films with thicker fibers (polylactic-co-glycolic acid, fiber diameter: ≈3.7 µm) are used as cell-seeding layers to facilitate the cell in-growth; those with thinner fibers (polylactic acid, fiber diameter: ≈1.8 µm) are used as outer reinforcing layers to improve the mechanical strength and reduce the liquid leakage of the scaffold. Cells grow, proliferate, and migrate well in the multilayered structure. This design aims at a new type of blood vessel substitute with flexible control of parameters and implementation of functions. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Tight junction between endothelial cells: the interaction between nanoparticles and blood vessels

    Directory of Open Access Journals (Sweden)

    Yue Zhang

    2016-05-01

    Full Text Available Since nanoparticles are now widely applied as food additives, in cosmetics and other industries, especially in medical therapy and diagnosis, we ask here whether nanoparticles can cause several adverse effects to human health. In this review, based on research on nanotoxicity, we mainly discuss the negative influence of nanoparticles on blood vessels in several aspects and the potential mechanism for nanoparticles to penetrate endothelial layers of blood vessels, which are the sites of phosphorylation of tight junction proteins (claudins, occludins, and ZO (Zonula occludens proteins, oxidative stress and shear stress. We propose a connection between the presence of nanoparticles and the regulation of the tight junction, which might be the key approach for nanoparticles to penetrate endothelial layers and then have an impact on other tissues and organs.

  20. Electrospun Fibrous Scaffolds for Small-Diameter Blood Vessels: A Review

    Directory of Open Access Journals (Sweden)

    Nasser K. Awad

    2018-03-01

    Full Text Available Small-diameter blood vessels (SDBVs are still a challenging task to prepare due to the occurrence of thrombosis formation, intimal hyperplasia, and aneurysmal dilation. Electrospinning technique, as a promising tissue engineering approach, can fabricate polymer fibrous scaffolds that satisfy requirements on the construction of extracellular matrix (ECM of native blood vessel and promote the adhesion, proliferation, and growth of cells. In this review, we summarize the polymers that are deployed for the fabrication of SDBVs and classify them into three categories, synthetic polymers, natural polymers, and hybrid polymers. Furthermore, the biomechanical properties and the biological activities of the electrospun SBVs including anti-thrombogenic ability and cell response are discussed. Polymer blends seem to be a strategic way to fabricate SDBVs because it combines both suitable biomechanical properties coming from synthetic polymers and favorable sites to cell attachment coming from natural polymers.

  1. Heat as a contrast agent to enhance thermal imaging of blood vessels

    Science.gov (United States)

    Case, Jason R.; Trammell, Susan R.; Young, Madison A.; Israel, Uriah; Crown, Michael X.

    2013-03-01

    In this study we test the feasibility of using low-cost LEDs to selectivity heat blood for enhanced thermal imaging of vascular structures. Applications of this new imaging technique include mapping blood vessels during surgeries such as tumor removal and vascular repair. In addition, this technique could potentially be used to determine the location of increased vascular density, and thus breast cancer tumors. Porcine blood, skeletal muscle, skin and fat were illuminated with LEDs that emit at 405 nm and 530 nm (near the blood absorption peaks) and the increase in temperature as a function of time was recorded using a thermal camera. In the studies with the 530 nm LED, blood heated more than other tissue types and the heating rate for the blood was significantly faster than other tissues. Illumination of blood with the 530 nm LED at low powers (tissue irradiance tissue. Illumination with the 405 nm LED produced large temperature changes (up to 15°C) at low LED powers (tissue irradiance muscle tissue was dependent on the skeletal muscle type, but most samples showed heating comparable to or larger than blood. This LED was not effective at selectively heating blood relative to the other tissue types. The results of the preliminary studies suggest that the best contrast can be achieved with pulsed 530 nm LED illumination and an image analysis method that highlights rapid changes in temperature.

  2. [Do double gloves protect against contamination during cannulation of blood vessels? A prospective randomized study].

    Science.gov (United States)

    Szarpak, Łukasz; Kurowski, Andrzej

    2014-01-01

    Undamaged medical gloves protect medical personnel from contact with physiological fluids of the patient. Thus they protect the assistance provider from hand skin contamination with potentially infectious biological materials. The aim of the study was to evaluate the occurrence of pierce, perforations or damage of medical gloves during cannulation of blood vessels. In the prospective randomized study 303 pairs of gloves, used during cannulation of blood vessels under simulated resuscitation, were analyzed. Gloves were tested by the water leak test. The water test revealed 44 cases of damage to the gloves used during cannulation of blood vessels. Significant differences were noted in the frequency of damage to both the outer and single pairs of gloves and the inner pair of gloves. The study showed that the use of double gloves provides a higher level of security for a paramedic than the use of a single pair of gloves, however, double gloves reduce the manual dexterity of a paramedic. A large number of damages to gloves are not noticed by medical personnel during surgery.

  3. Effect of Electrical Stimulation on Blood Flow Velocity and Vessel Size

    Science.gov (United States)

    Jin, Hee-Kyung; Hwang, Tae-Yeon; Cho, Sung-Hyoun

    2017-01-01

    Abstract Interferential current electrical stimulation alters blood flow velocity and vessel size. We aimed to investigate the changes in the autonomic nervous system depending on electrical stimulation parameters. Forty-five healthy adult male and female subjects were studied. Bipolar adhesive pad electrodes were used to stimulate the autonomic nervous system at the thoracic vertebrae 1-4 levels for 20 min. Using Doppler ultrasonography, blood flow was measured to determine velocity and vessel size before, immediately after, and 30 min after electrical stimulation. Changes in blood flow velocity were significantly different immediately and 30 min after stimulation. The interaction between intervention periods and groups was significantly different between the exercise and pain stimulation groups immediately after stimulation (p<0.05). The vessel size was significantly different before and 30 min after stimulation (p<0.05). Imbalances in the sympathetic nervous system, which regulates balance throughout the body, may present with various symptoms. Therefore, in the clinical practice, the parameters of electrical stimulation should be selectively applied in accordance with various conditions and changes in form. PMID:28401194

  4. Promoting blood vessel growth in ischemic diseases: challenges in translating preclinical potential into clinical success

    Directory of Open Access Journals (Sweden)

    Galina Dragneva

    2013-03-01

    Full Text Available Angiogenic therapy, which involves the use of an exogenous stimulus to promote blood vessel growth, is an attractive approach for the treatment of ischemic diseases. It has been shown in animal models that the stimulation of blood vessel growth leads to the growth of the whole vascular tree, improvement of ischemic tissue perfusion and improved muscle aerobic energy metabolism. However, very few positive results have been gained from Phase 2 and 3 clinical angiogenesis trials. Many reasons have been given for the failures of clinical trials, including poor transgene expression (in gene-therapy trials and instability of the vessels induced by therapy. In this Review, we discuss the selection of preclinical models as one of the main reasons why clinical translation has been unsuccessful thus far. This issue has received little attention, but could have had dramatic implications on the expectations of clinical trials. We highlight crucial differences between human patients and animal models with regards to blood flow and pressure, as well as issues concerning the chronic nature of ischemic diseases in humans. We use these as examples to demonstrate why the results from preclinical trials might have overestimated the efficacy of angiogenic therapies developed to date. We also suggest ways in which currently available animal models of ischemic disease could be improved to better mimic human disease conditions, and offer advice on how to work with existing models to avoid overestimating the efficacy of new angiogenic therapies.

  5. Effect of Electrical Stimulation on Blood Flow Velocity and Vessel Size.

    Science.gov (United States)

    Jin, Hee-Kyung; Hwang, Tae-Yeon; Cho, Sung-Hyoun

    2017-01-01

    Interferential current electrical stimulation alters blood flow velocity and vessel size. We aimed to investigate the changes in the autonomic nervous system depending on electrical stimulation parameters. Forty-five healthy adult male and female subjects were studied. Bipolar adhesive pad electrodes were used to stimulate the autonomic nervous system at the thoracic vertebrae 1-4 levels for 20 min. Using Doppler ultrasonography, blood flow was measured to determine velocity and vessel size before, immediately after, and 30 min after electrical stimulation. Changes in blood flow velocity were significantly different immediately and 30 min after stimulation. The interaction between intervention periods and groups was significantly different between the exercise and pain stimulation groups immediately after stimulation (p<0.05). The vessel size was significantly different before and 30 min after stimulation (p<0.05). Imbalances in the sympathetic nervous system, which regulates balance throughout the body, may present with various symptoms. Therefore, in the clinical practice, the parameters of electrical stimulation should be selectively applied in accordance with various conditions and changes in form.

  6. Dual-body magnetic helical robot for drilling and cargo delivery in human blood vessels

    Science.gov (United States)

    Lee, Wonseo; Jeon, Seungmun; Nam, Jaekwang; Jang, Gunhee

    2015-05-01

    We propose a novel dual-body magnetic helical robot (DMHR) manipulated by a magnetic navigation system. The proposed DMHR can generate helical motions to navigate in human blood vessels and to drill blood clots by an external rotating magnetic field. It can also generate release motions which are relative rotational motions between dual-bodies to release the carrying cargos to a target region by controlling the magnitude of an external magnetic field. Constraint equations were derived to selectively manipulate helical and release motions by controlling external magnetic fields. The DMHR was prototyped and various experiments were conducted to demonstrate its motions and verify its manipulation methods.

  7. Note: Reflection-type micro multipoint laser Doppler velocimeter for measuring velocity distributions in blood vessels.

    Science.gov (United States)

    Ishida, H; Kobayashi, D; Shirakawa, H; Andoh, T; Akiguchi, S; Wakisaka, T; Ishizuka, M; Hachiga, T

    2011-07-01

    We have developed a laser Doppler velocimeter (LDV) for measuring velocity distributions in blood vessels. We converted a transmission-based LDV into a reflection-based LDV to make it suitable for clinical applications. The velocity distribution image of a serpentine flow channel obtained could be qualitatively explained by the numerical results. Finally, we evaluated the system by using it to measure injection of blood into a glass tube by a syringe pump. The results obtained demonstrate that erythrocytes can be used as seeding particles for the reflection-type micro multipoint LDV. The results obtained are useful as basic data for clinical applications.

  8. Computer Aided Solution for Automatic Segmenting and Measurements of Blood Leucocytes Using Static Microscope Images.

    Science.gov (United States)

    Abdulhay, Enas; Mohammed, Mazin Abed; Ibrahim, Dheyaa Ahmed; Arunkumar, N; Venkatraman, V

    2018-02-17

    Blood leucocytes segmentation in medical images is viewed as difficult process due to the variability of blood cells concerning their shape and size and the difficulty towards determining location of Blood Leucocytes. Physical analysis of blood tests to recognize leukocytes is tedious, time-consuming and liable to error because of the various morphological components of the cells. Segmentation of medical imagery has been considered as a difficult task because of complexity of images, and also due to the non-availability of leucocytes models which entirely captures the probable shapes in each structures and also incorporate cell overlapping, the expansive variety of the blood cells concerning their shape and size, various elements influencing the outer appearance of the blood leucocytes, and low Static Microscope Image disparity from extra issues outcoming about because of noise. We suggest a strategy towards segmentation of blood leucocytes using static microscope images which is a resultant of three prevailing systems of computer vision fiction: enhancing the image, Support vector machine for segmenting the image, and filtering out non ROI (region of interest) on the basis of Local binary patterns and texture features. Every one of these strategies are modified for blood leucocytes division issue, in this manner the subsequent techniques are very vigorous when compared with its individual segments. Eventually, we assess framework based by compare the outcome and manual division. The findings outcome from this study have shown a new approach that automatically segments the blood leucocytes and identify it from a static microscope images. Initially, the method uses a trainable segmentation procedure and trained support vector machine classifier to accurately identify the position of the ROI. After that, filtering out non ROI have proposed based on histogram analysis to avoid the non ROI and chose the right object. Finally, identify the blood leucocytes type using

  9. Microstructured Blood Vessel Surrogates Reveal Structural Tropism of Motile Malaria Parasites.

    Science.gov (United States)

    Muthinja, Mendi J; Ripp, Johanna; Hellmann, Janina K; Haraszti, Tamas; Dahan, Noa; Lemgruber, Leandro; Battista, Anna; Schütz, Lucas; Fackler, Oliver T; Schwarz, Ulrich S; Spatz, Joachim P; Frischknecht, Friedrich

    2017-03-01

    Plasmodium sporozoites, the highly motile forms of the malaria parasite, are transmitted naturally by mosquitoes and traverse the skin to find, associate with, and enter blood capillaries. Research aimed at understanding how sporozoites select blood vessels is hampered by the lack of a suitable experimental system. Arrays of uniform cylindrical pillars can be used to study small cells moving in controlled environments. Here, an array system displaying a variety of pillars with different diameters and shapes is developed in order to investigate how Plasmodium sporozoites associate to the pillars as blood vessel surrogates. Investigating the association of sporozoites to pillars in arrays displaying pillars of different diameters reveals that the crescent-shaped parasites prefer to associate with and migrate around pillars with a similar curvature. This suggests that after transmission by a mosquito, malaria parasites may use a structural tropism to recognize blood capillaries in the dermis in order to gain access to the blood stream. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. The Emergence of Blood and Blood Vessels in the Embryo and Its Relevance to Postnatal Biology and Disease

    Science.gov (United States)

    Sills, Tiffany M.; Hirschi, Karen K.

    Blood and blood vessels develop in parallel within mammalian systems, and this temporal and spatial association has led to the confirmation of an endothelial origin of hematopoiesis. The extraembryonic yolk sac and aorto-gonado-mesonephros (AGM) region both contain a specialized population of endothelial cells ("hemogenic endothelium") that function to produce hematopoietic stem and progenitor cells, which then differentiate to provide the full complement of blood cells within the developing embryo and furthermore in the adult system. Therefore, this population has great therapeutic potential in the fields of regenerative medicine and tissue engineering. This chapter reviews the development of the vascular and hematopoietic systems, characterization and function of the hemogenic endothelium within embryonic and embryonic stem cell (ES cell) models, and speculate on the presence of such a population within the adult system. In order to harness this endothelial subtype for clinical application, we must understand both the normal functions of these cells and the potential for misregulation in disease states.

  11. An Experimental Study to Replace the Thoracic Descending Aorta for Pigs with a Self-Made Sutureless Blood Vessel

    Directory of Open Access Journals (Sweden)

    Fenglin Song

    2014-01-01

    Full Text Available To simplify the procedure of blood vessel replacement operation and shorten the vascular anastomosis time, we developed a special artificial blood vessel which can be connected to native blood vessels without suture. The self-made sutureless blood vessel (SMSBV was made from two titanium connectors and a Gore-Tex graft. To investigate blood compatibility and histocompatibility of the SMSBV, we carried thoracic descending aorta replacement using either SMSBV or Gore-Tex, respectively, in pigs. The aortic clamp time and the operative blood loss in the experimental group (using SMSBV were less than those in the control group (using Gore-Tex. The whole blood hematocrit, platelet count, plasma soluble P-selectin, plasma free hemoglobin, and interleukins 2, 6 at each time point were not different significantly between the two groups. Light microscopy and transmission electron microscopy examination showed there were layers of vascular smooth muscle cells and endothelial cells adhered in the inner wall of artificial blood vessel without any signs of thrombosis. Based on the result, we have drawn the conclusion that the application of SMSBV can significantly shorten the vascular anastomosis time, reduce operative blood loss, and show good blood and tissue compatibility.

  12. An Experimental Study to Replace the Thoracic Descending Aorta for Pigs with a Self-Made Sutureless Blood Vessel

    Science.gov (United States)

    Song, Fenglin; Zhou, Wenwu; Tang, Tao; Li, Xiaobing; Wu, Xiaoming; Yang, Jinfu

    2014-01-01

    To simplify the procedure of blood vessel replacement operation and shorten the vascular anastomosis time, we developed a special artificial blood vessel which can be connected to native blood vessels without suture. The self-made sutureless blood vessel (SMSBV) was made from two titanium connectors and a Gore-Tex graft. To investigate blood compatibility and histocompatibility of the SMSBV, we carried thoracic descending aorta replacement using either SMSBV or Gore-Tex, respectively, in pigs. The aortic clamp time and the operative blood loss in the experimental group (using SMSBV) were less than those in the control group (using Gore-Tex). The whole blood hematocrit, platelet count, plasma soluble P-selectin, plasma free hemoglobin, and interleukins 2, 6 at each time point were not different significantly between the two groups. Light microscopy and transmission electron microscopy examination showed there were layers of vascular smooth muscle cells and endothelial cells adhered in the inner wall of artificial blood vessel without any signs of thrombosis. Based on the result, we have drawn the conclusion that the application of SMSBV can significantly shorten the vascular anastomosis time, reduce operative blood loss, and show good blood and tissue compatibility. PMID:24696856

  13. An experimental study to replace the thoracic descending aorta for pigs with a self-made sutureless blood vessel.

    Science.gov (United States)

    Song, Fenglin; Zhou, Wenwu; Tang, Tao; Li, Xiaobing; Wu, Xiaoming; Yang, Jinfu

    2014-01-01

    To simplify the procedure of blood vessel replacement operation and shorten the vascular anastomosis time, we developed a special artificial blood vessel which can be connected to native blood vessels without suture. The self-made sutureless blood vessel (SMSBV) was made from two titanium connectors and a Gore-Tex graft. To investigate blood compatibility and histocompatibility of the SMSBV, we carried thoracic descending aorta replacement using either SMSBV or Gore-Tex, respectively, in pigs. The aortic clamp time and the operative blood loss in the experimental group (using SMSBV) were less than those in the control group (using Gore-Tex). The whole blood hematocrit, platelet count, plasma soluble P-selectin, plasma free hemoglobin, and interleukins 2, 6 at each time point were not different significantly between the two groups. Light microscopy and transmission electron microscopy examination showed there were layers of vascular smooth muscle cells and endothelial cells adhered in the inner wall of artificial blood vessel without any signs of thrombosis. Based on the result, we have drawn the conclusion that the application of SMSBV can significantly shorten the vascular anastomosis time, reduce operative blood loss, and show good blood and tissue compatibility.

  14. Fast and robust segmentation of white blood cell images by self-supervised learning.

    Science.gov (United States)

    Zheng, Xin; Wang, Yong; Wang, Guoyou; Liu, Jianguo

    2018-04-01

    A fast and accurate white blood cell (WBC) segmentation remains a challenging task, as different WBCs vary significantly in color and shape due to cell type differences, staining technique variations and the adhesion between the WBC and red blood cells. In this paper, a self-supervised learning approach, consisting of unsupervised initial segmentation and supervised segmentation refinement, is presented. The first module extracts the overall foreground region from the cell image by K-means clustering, and then generates a coarse WBC region by touching-cell splitting based on concavity analysis. The second module further uses the coarse segmentation result of the first module as automatic labels to actively train a support vector machine (SVM) classifier. Then, the trained SVM classifier is further used to classify each pixel of the image and achieve a more accurate segmentation result. To improve its segmentation accuracy, median color features representing the topological structure and a new weak edge enhancement operator (WEEO) handling fuzzy boundary are introduced. To further reduce its time cost, an efficient cluster sampling strategy is also proposed. We tested the proposed approach with two blood cell image datasets obtained under various imaging and staining conditions. The experiment results show that our approach has a superior performance of accuracy and time cost on both datasets. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Mammalian Cardiovascular Patterning as Determined by Hemodynamic Forces and Blood Vessel Genetics

    Science.gov (United States)

    Anderson, Gregory Arthur

    Cardiovascular development is a process that involves the timing of multiple molecular events, and numerous subtle three-dimensional conformational changes. Traditional developmental biology techniques have provided large quantities of information as to how these complex organ systems develop. However, the major drawback of the majority of current developmental biological imaging is that they are two-dimensional in nature. It is now well recognized that circulation of blood is required for normal patterning and remodeling of blood vessels. Normal blood vessel formation is dependent upon a complex network of signaling pathways, and genetic mutations in these pathways leads to impaired vascular development, heart failure, and lethality. As such, it is not surprising that mutant mice with aberrant cardiovascular patterning are so common, since normal development requires proper coordination between three systems: the heart, the blood, and the vasculature. This thesis describes the implementation of a three-dimensional imaging technique, optical projection tomography (OPT), in conjunction with a computer-based registration algorithm to statistically analyze developmental differences in groups of wild-type mouse embryos. Embryos that differ by only a few hours' gestational time are shown to have developmental differences in blood vessel formation and heart development progression that can be discerned. This thesis describes how we analyzed mouse models of cardiovascular perturbation by OPT to detect morphological differences in embryonic development in both qualitative and quantitative ways. Both a blood vessel specific mutation and a cardiac specific mutation were analyzed, providing evidence that developmental defects of these types can be quantified. Finally, we describe the implementation of OPT imaging to identify statistically significant phenotypes from three different mouse models of cardiovascular perturbation across a range of developmental time points. Image

  16. Adaptable three-dimensional Monte Carlo modeling of imaged blood vessels in skin

    Science.gov (United States)

    Pfefer, T. Joshua; Barton, Jennifer K.; Chan, Eric K.; Ducros, Mathieu G.; Sorg, Brian S.; Milner, Thomas E.; Nelson, J. Stuart; Welch, Ashley J.

    1997-06-01

    In order to reach a higher level of accuracy in simulation of port wine stain treatment, we propose to discard the typical layered geometry and cylindrical blood vessel assumptions made in optical models and use imaging techniques to define actual tissue geometry. Two main additions to the typical 3D, weighted photon, variable step size Monte Carlo routine were necessary to achieve this goal. First, optical low coherence reflectometry (OLCR) images of rat skin were used to specify a 3D material array, with each entry assigned a label to represent the type of tissue in that particular voxel. Second, the Monte Carlo algorithm was altered so that when a photon crosses into a new voxel, the remaining path length is recalculated using the new optical properties, as specified by the material array. The model has shown good agreement with data from the literature. Monte Carlo simulations using OLCR images of asymmetrically curved blood vessels show various effects such as shading, scattering-induced peaks at vessel surfaces, and directionality-induced gradients in energy deposition. In conclusion, this augmentation of the Monte Carlo method can accurately simulate light transport for a wide variety of nonhomogeneous tissue geometries.

  17. A simply prepared small-diameter artificial blood vessel that promotes in situ endothelialization.

    Science.gov (United States)

    Guo, Hong-Feng; Dai, Wei-Wei; Qian, De-Hui; Qin, Zhe-Xue; Lei, Yan; Hou, Xiao-Yu; Wen, Can

    2017-05-01

    Synthetic grafts are of limited use in small-diameter vessels (Φartificial blood vessels with the aim of facilitating early endothelialization and improving long-term patency. STATEMENT OF SIGNIFICANCE: (1) SDF-1α/VEGF loaded PU conduits were simply prepared by electrospinning. The cytokines with definite and potent effects on angiogenesis were used to avoid complicated mechanism researches. Compared with most of the current vascular grafts which are of poor strength or elasticity, the conduits have favorable mechanical property. All of these inhibit the conduits from occlusion, and thus improve their long-term patency rate. (2) For the in vivo tests, the dogs did not receive any anticoagulant medication in the follow-up period to expose the grafts to the strictest conditions. In vivo endothelialization of the conduits was thoroughly investigated by Sonography, HE staining, SEM and LSCM. The study will be helpful for the construction of small-diameter artificial blood vessels. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  18. A Gaussian process and derivative spectral-based algorithm for red blood cell segmentation

    Science.gov (United States)

    Xue, Yingying; Wang, Jianbiao; Zhou, Mei; Hou, Xiyue; Li, Qingli; Liu, Hongying; Wang, Yiting

    2017-07-01

    As an imaging technology used in remote sensing, hyperspectral imaging can provide more information than traditional optical imaging of blood cells. In this paper, an AOTF based microscopic hyperspectral imaging system is used to capture hyperspectral images of blood cells. In order to achieve the segmentation of red blood cells, Gaussian process using squared exponential kernel function is applied first after the data preprocessing to make the preliminary segmentation. The derivative spectrum with spectral angle mapping algorithm is then applied to the original image to segment the boundary of cells, and using the boundary to cut out cells obtained from the Gaussian process to separated adjacent cells. Then the morphological processing method including closing, erosion and dilation is applied so as to keep adjacent cells apart, and by applying median filtering to remove noise points and filling holes inside the cell, the final segmentation result can be obtained. The experimental results show that this method appears better segmentation effect on human red blood cells.

  19. High Endothelial Venules and Other Blood Vessels: Critical Regulators of Lymphoid Organ Development and Function

    Science.gov (United States)

    Ager, Ann

    2017-01-01

    The blood vasculature regulates both the development and function of secondary lymphoid organs by providing a portal for entry of hemopoietic cells. During the development of lymphoid organs in the embryo, blood vessels deliver lymphoid tissue inducer cells that initiate and sustain the development of lymphoid tissues. In adults, the blood vessels are structurally distinct from those in other organs due to the requirement for high levels of lymphocyte recruitment under non-inflammatory conditions. In lymph nodes (LNs) and Peyer’s patches, high endothelial venules (HEVs) especially adapted for lymphocyte trafficking form a spatially organized network of blood vessels, which controls both the type of lymphocyte and the site of entry into lymphoid tissues. Uniquely, HEVs express vascular addressins that regulate lymphocyte entry into lymphoid organs and are, therefore, critical to the function of lymphoid organs. Recent studies have demonstrated important roles for CD11c+ dendritic cells in the induction, as well as the maintenance, of vascular addressin expression and, therefore, the function of HEVs. Tertiary lymphoid organs (TLOs) are HEV containing LN-like structures that develop inside organized tissues undergoing chronic immune-mediated inflammation. In autoimmune lesions, the development of TLOs is thought to exacerbate disease. In cancerous tissues, the development of HEVs and TLOs is associated with improved patient outcomes in several cancers. Therefore, it is important to understand what drives the development of HEVs and TLOs and how these structures contribute to pathology. In several human diseases and experimental animal models of chronic inflammation, there are some similarities between the development and function of HEVs within LN and TLOs. This review will summarize current knowledge of how hemopoietic cells with lymphoid tissue-inducing, HEV-inducing, and HEV-maintaining properties are recruited from the bloodstream to induce the development and

  20. Comparison between PVHIS on the MRI and the permeability of brain blood vessels in elderly patients

    International Nuclear Information System (INIS)

    Yamaguchi, Katsuhiko; Tanaka, Yuriko; Kubo, Hideki; Takagi, Yasushi; Tachikawa, Shinzo; Katsunuma, Hideyo.

    1989-01-01

    The degree of PVHIS (periventricular high intensity signal) on the MRI was composed with the permeability of brain blood vessels using the cerebrospinal fluid (CSF)/serum ratio for albumin, and the CSF/serum ratio for IgG in elderly patients. The 47 elderly patients (mean age=79.9) were divided into three groups: (1) Mild group (20 cases, M:6, F:14, mean age=75.8), (2) Moderate group (18 cases, M:7, F:11, mean age=82.6), (3) Severe group (9 cases, M:2, F:7, mean age=82.9), in accordance with the degree of PVHIS on the MRI. The MRI was operated at a field strength of 0.22 tesla. The pulse sequence (used on all patients) had a repetition times (TR) of 2,000 msec and a time to echo (TE) of 40 msec. The levels of albumin and IgG in the serum and CSF were measured. The CSF/serum ratio for albumin was used of analyze the permeability of the brain blood vessels in each group. There was no significant difference in the level of the serum albumin, the CSF albumin, the serum IgG, the CSF IgG and the CSF/serum ratio for IgG among the three groups. The same was found to be true for the IgG index which indicates the synthesis of immunoglobulin in the central nervous system. However, there was a statistically significant difference (p<0.05) in the CSF/serum ratio for albumin between groups (1) and (3). The increased CSF/serum ratio for albumin in the severe group indicated there were confluent lesions involving the entire extent of the periventriular white matter on the MRI. This suggested an increased permeability of brain blood vessels which revealed the dysfunction of the blood brain barrier due to affected cerebral endothelial cells in capillaries. (author)

  1. Processing of MRI images weighted in TOF for blood vessels analysis: 3-D reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez D, J.; Cordova F, T. [Universidad de Guanajuato, Campus Leon, Departamento de Ingenieria Fisica, Loma del Bosque No. 103, Lomas del Campestre, 37150 Leon, Guanajuato (Mexico); Cruz A, I., E-mail: hernandezdj.gto@gmail.com [CONACYT, Centro de Investigacion en Matematicas, A. C., Jalisco s/n, Col. Valenciana, 36000 Guanajuato, Gto. (Mexico)

    2015-10-15

    This paper presents a novel presents an approach based on differences of intensities for the identification of vascular structures in medical images from MRI studies of type time of flight method (TOF). The plating method hypothesis gave high intensities belonging to the vascular system image type TOF can be segmented by thresholding of the histogram. The enhanced vascular structures is performed using the filter Vesselness, upon completion of a decision based on fuzzy thresholding minimizes error in the selection of vascular structures. It will give a brief introduction to the vascular system problems and how the images have helped diagnosis, is summarized the physical history of the different imaging modalities and the evolution of digital images with computers. Segmentation and 3-D reconstruction became image type time of flight; these images are typically used in medical diagnosis of cerebrovascular diseases. The proposed method has less error in segmentation and reconstruction of volumes related to the vascular system, clear images and less noise compared with edge detection methods. (Author)

  2. Mathematical Models and Numerical Simulations for the Blood Flow in Large Vessels

    Directory of Open Access Journals (Sweden)

    Titus PETRILA

    2012-12-01

    Full Text Available We are proposing a non-Newtonian, Cross type rheological model for the blood flow, under the conditions of an unsteady flow regime connected with the rhythmic pumping of the blood by the heart. We admit the incompressibility and homogeneity of the blood while its flow is laminar and the exterior body forces are neglected. We take also into account the viscoelastic behavior of the vessel walls. The mathematical equations and the appropriate boundary conditions are considered in cylindrical (axisymmetric coordinates. Numerical experiments in case of stenosed artery and in artery with aneurysm (using COMSOL Multiphysics 3.3 are made. The variation of the wall shear stress, which is believed to have a special importance in the rupture of aneurysms, is calculated using both a Newtonian and a non-Newtonian model.

  3. Apparatus and method for examining a blood vessel of interest using radiation detected outside the body

    International Nuclear Information System (INIS)

    Shaw, R.F.

    1982-01-01

    Stenotic atherosclerotic lesions of the coronary arteries are detected by injecting a number of particulate signal sources such as positron-emitting particles (e.g. gallium 68) into the blood of a subject to determine the velocity of blood flow through the coronary vessels. The particles are tracked in three dimensions whenever they appear in the region of the heart by means of high-resolution high-speed gamma detectors that surround the chest. These recordings of particle position as a function of time are analyzed, and the velocity of blood as it flows through the coronary artery is measured by timing the transit of the particle. From the accumulated data of multiple particle transits through the coronary circulation, a three-dimensional representation of the lumen of the coronary arterial system is constructed

  4. Computer-aided detection of pulmonary embolism: Influence on radiologists' detection performance with respect to vessel segments

    International Nuclear Information System (INIS)

    Das, Marco; Muehlenbruch, Georg; Helm, Anita; Guenther, Rolf W.; Wildberger, Joachim E.; Bakai, Annemarie; Salganicoff, Marcos; Liang, Jianming; Wolf, Matthias; Stanzel, Sven

    2008-01-01

    The purpose was to assess the sensitivity of a CAD software prototype for the detection of pulmonary embolism in MDCT chest examinations with regard to vessel level and to assess the influence on radiologists' detection performance. Forty-three patients with suspected PE were included in this retrospective study. MDCT chest examinations with a standard PE protocol were acquired at a 16-slice MDCT. All patient data were read by three radiologists (R1, R2, R3), and all thrombi were marked. A CAD prototype software was applied to all datasets, and each finding of the software was analyzed with regard to vessel level. The standard of reference was assessed in a consensus read. Sensitivity for the radiologists and CAD software was assessed. Thirty-three patients were positive for PE, with a total of 215 thrombi. The mean overall sensitivity for the CAD software alone was 83% (specificity, 80%). Radiologist sensitivity was 77% = R3, 82% = R2, and R1 = 87%. With the aid of the CAD software, sensitivities increased to 98% (R1), 93% (R2), and 92% (R3) (p<0.0001). CAD performance at the lobar level was 87%, at the segmental 90% and at the subsegmental 77%. With the use of CAD for PE, the detection performance of radiologists can be improved. (orig.)

  5. Brain Blood Vessel Map Extraction Using Wavelet-based DSA Fusion

    Directory of Open Access Journals (Sweden)

    Saba Momeni

    2013-10-01

    Full Text Available Recently image fusion has prominent and applicable roles in medical image processing. Digital subtraction angiography (DSA image is applied to display map of blood vessels. In this essay, a new fusion algorithm for DSA serial images based on discrete wavelet transform coefficients is proposed. Fusion of high frequency coefficients is based on proposed fusion map and four evaluation criteria which introduce level of coefficient's energy. Our algorithm will be compared for different wavelet transforms and activity criteria for high frequency coefficients. The comparisons are based on the objective evaluation criteria which show measure of noise existence, sharpness and correlation between the fusion result and reference image. Finally, Meyer discrete wavelet transform is resulted as the best wavelet transform, and sum of modified Laplacian, local energy are introduced as activity level measurment for high and low frequency coefficients in process of brain vessel map extraction.

  6. Utilizing the Foreign Body Response to Grow Tissue Engineered Blood Vessels in Vivo.

    Science.gov (United States)

    Geelhoed, Wouter J; Moroni, Lorenzo; Rotmans, Joris I

    2017-04-01

    It is well known that the number of patients requiring a vascular grafts for use as vessel replacement in cardiovascular diseases, or as vascular access site for hemodialysis is ever increasing. The development of tissue engineered blood vessels (TEBV's) is a promising method to meet this increasing demand vascular grafts, without having to rely on poorly performing synthetic options such as polytetrafluoroethylene (PTFE) or Dacron. The generation of in vivo TEBV's involves utilizing the host reaction to an implanted biomaterial for the generation of completely autologous tissues. Essentially this approach to the development of TEBV's makes use of the foreign body response to biomaterials for the construction of the entire vascular replacement tissue within the patient's own body. In this review we will discuss the method of developing in vivo TEBV's, and debate the approaches of several research groups that have implemented this method.

  7. [Molecular mechanism for the establishment of blood-vessel gateway for immune cells in the CNS.

    Science.gov (United States)

    Murakami, Masaaki

    We have been studying about the molecular mechanism responsible for the establishment of the blood-vessel gateway through which immune cells enter the CNS. We have discovered three kinds of gateways in a multiple sclerosis model, EAE, based on the neural stimulations and named them the gravity-gateway reflex, electric-gateway reflex, and pain-gateway reflex, respectively. All gateway reflexes are involved in specific crosstalk between sensory-sympathetic pathways. For example, in the gravity-gateway reflex, gravity-mediated sensory stimulation via the soleus muscles activates fifth lumber(L5)dorsal loot ganglions to activate L5 sympathetic ganglions, which express norepinephrine at specific vessels of the L5 cord. We explain these three types of gateway reflexes in this chapter.

  8. Understanding How Space Travel Affects Blood Vessels: Arterial Remodeling and Functional Adaptations Induced by Microgravity

    Science.gov (United States)

    Delp, Michael; Vasques, Marilyn; Aquilina, Rudy (Technical Monitor)

    2002-01-01

    Ever rise quickly from the couch to get something from the kitchen and suddenly feel dizzy? With a low heart rate and relaxed muscles, the cardiovascular system does not immediately provide the resistance necessary to keep enough blood going to your head. Gravity wins, at least for a short time, before your heart and blood vessels can respond to the sudden change in position and correct the situation. Actually, the human cardiovascular system is quite well adapted to the constant gravitational force of the Earth. When standing, vessels in the legs constrict to prevent blood from collecting in the lower extremities. In the space environment, the usual head-to-foot blood pressure and tissue fluid gradients that exist during the upright posture on Earth are removed. The subsequent shift in fluids from the lower to the upper portions of the body triggers adaptations within the cardiovascular system to accommodate the new pressure and fluid gradients. In animal models that simulate microgravity, the vessels in the head become more robust while those in the lower limbs become thin and lax. Similar changes may also occur in humans during spaceflight and while these adaptations are appropriate for a microgravity environment, they can cause problems when the astronauts return to Earth or perhaps another planet. Astronauts often develop orthostatic intolerance which means they become dizzy or faint when standing upright. This dizziness can persist for a number of days making routine activities difficult. In an effort to understand the physiological details of these cardiovascular adaptations, Dr. Michael Delp at Texas A&M University, uses the rat as a model for his studies. For the experiment flown on STS-107, he will test the hypothesis that blood vessels in the rats' hindlimbs become thinner, weaker, and constrict less in response to pressure changes and to chemical signals when exposed to microgravity. In addition, he will test the hypothesis that arteries in the brain

  9. A novel white blood cells segmentation algorithm based on adaptive neutrosophic similarity score.

    Science.gov (United States)

    Shahin, A I; Guo, Yanhui; Amin, K M; Sharawi, Amr A

    2018-12-01

    White blood cells (WBCs) play a crucial role in the diagnosis of many diseases according to their numbers or morphology. The recent digital pathology equipments investigate and analyze the blood smear images automatically. The previous automated segmentation algorithms worked on healthy and non-healthy WBCs separately. Also, such algorithms had employed certain color components which leak adaptively with different datasets. In this paper, a novel segmentation algorithm for WBCs in the blood smear images is proposed using multi-scale similarity measure based on the neutrosophic domain. We employ neutrosophic similarity score to measure the similarity between different color components of the blood smear image. Since we utilize different color components from different color spaces, we modify the neutrosphic score algorithm to be adaptive. Two different segmentation frameworks are proposed: one for the segmentation of nucleus, and the other for the cytoplasm of WBCs. Moreover, our proposed algorithm is applied to both healthy and non-healthy WBCs. in some cases, the single blood smear image gather between healthy and non-healthy WBCs which is considered in our proposed algorithm. Also, our segmentation algorithm is performed without any external morphological binary enhancement methods which may effect on the original shape of the WBC. Different public datasets with different resolutions were used in our experiments. We evaluate the system performance based on both qualitative and quantitative measurements. The quantitative results indicates high precision rates of the segmentation performance measurement A1 = 96.5% and A2 = 97.2% of the proposed method. The average segmentation performance results for different WBCs types reach to 97.6%. In this paper, a method based on adaptive neutrosphic sets similarity score is proposed in order to detect WBCs from a blood smear microscopic image and segment its components (nucleus and the cytoplasm). The proposed

  10. Control of weft yarn or density improves biocompatibility of PET small diameter artificial blood vessels.

    Science.gov (United States)

    Hu, Xingyou; Hu, Tao; Guan, Guoping; Yu, Shaoting; Wu, Yufen; Wang, Lu

    2018-04-01

    Polyethylene glycol terephthalate (PET) fabrics with woven structures have proved to be quite effective for use on large diameter artificial blood vessels. However, their use within small-diameter artificial blood vessels has been associated with poor long-term patency, a problem resulting from slow endothelialization on PET and an over hyperplasia of smooth muscle cells. Previous research from our laboratory has revealed that ICAM-1 can be used as a marker to investigate cell adhesion, an effect which was closely associated with cell behavior on the surface of polycaprolactone (PCL) films. Moreover, we found that the coarseness or pore size of the surface exerts considerable influence on cell adhesion and proliferation on PCL films. In this study, we successfully fabricated six types of PET woven fabrics with varying gradients of tightness and porosities. Levels of ICAM-1 expression (membrane ICAM-1 & soluble ICAM-1) were then determined in these woven fabrics. Our results show that increased levels of mICAM-1 and decreased levels of sICAM-1 expression were obtained in HUVECs seeded on these six samples. These findings indicate that cell adhesion and proliferation on fabric surfaces were strongly influenced by their structural parameters, in particular the initial adhesion between the cell and fabric surface. In addition, we also found that extracellular matrix adhesion tends to prefer flat and tight surfaces, which promotes cell-cell and cell-matrix interactions, as well as the endothelialization on the surface of PET fabrics. These findings provide some novel insights with regard to the design and application of small-diameter artificial blood vessels. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 954-964, 2018. © 2017 Wiley Periodicals, Inc.

  11. A new model for the artificial aorta blood vessels using double-sided radial functionally graded biomaterials.

    Science.gov (United States)

    Salimi Bani, M; Asgharzadeh Shirazi, H; Ayatollahi, M R; Asnafi, Alireza

    2017-05-01

    Based on radial functionally graded biomaterials and inspired by the geometry of a real aorta blood vessel, a new model was proposed to fabricate the artificial blood vessels. A finite element analyzer is employed to reach the optimal and proper material properties while earlier, it was validated by two famous theories, i.e., the first shear deformation and the plane elasticity. First, the geometry of a real ascending aorta part was simulated and then solved under the axially varying blood pressure and other real and actual conditions. Since the construction of artificial blood vessels just similar to the natural one is impossible, it was tried to find the best substitutes for other materials. Due to the significant properties of functionally graded biomaterials in the reduction in sudden changes of stress and deformation, these types of materials were selected and studied. Two types of conventional single-sided and an efficient double-sided radial functionally graded vessel were proposed and simulated. The elastic behaviors of proposed vessels were obtained and compared to ones previously attained from the real vessel. The results show that all the desired behaviors cannot be achieved by using a conventional single-sided radial FG vessel. Instead and as a conjecture, a smart double-sided radial FG biomaterial is suggested. Fortunately, the proposed material can meet all the desired goals and satisfy all of the indices simultaneously.

  12. Design and development of a blood vessel localization system using a Nir viewer

    International Nuclear Information System (INIS)

    Hernandez R, A.; Plascencia C, L. E.; Cordova F, T.; Padilla R, N.

    2017-10-01

    In addition to the multiple applications of ionizing radiation in clinical diagnosis there is the possibility of using another part of the electromagnetic spectrum such as near infrared (Nir). This paper presents the design and construction of a Nir Biosensor in a range between 800 and 900 nm, which allows the visualization of blood vessels for the venepuncture procedure with the aim of reducing the trauma of venous access to patients of all ages. The possibility that the device is used in the location of venous ulcers as an alternative to veno grams obtained by X-rays is also explored. (Author)

  13. Effects of a protein glycocalyx in the hemodynamics of small blood vessels

    Science.gov (United States)

    Dimakopoulos, Yiannis; Delidakis, George; Tsamopoulos, John

    2015-11-01

    Glycocalyx is a protein layer of approximate thickness 0.5 μm that lines vessel walls. We study the effects this layer has on the blood flow inside arterioles and venules, where the relative size of the glycocalyx is significant. To properly describe phenomena that naturally occur in blood flow, such as the inhomogeneous distribution of red blood cells and their aggregation, we use an improved viscoelastic constitutive model. The glycocalyx layer is modeled as fixed porous media. Cells cannot penetrate inside it, since its hydraulic permeability is very low, and the flow inside this layer is described by the equations for a viscous fluid with an extra Brinkman term to account for the effects the porous medium has on the flow. The closed set of equations is solved using the Finite Element method, assuming steady-state with dependence only in the r-direction. Our results are favorably compared with the in vivo velocity profiles in venules of mice produced by Damiano et al. (2004) and the formation of cell-free layer near glycocalyx. Flow inside the glycocalyx layer is found to be severely attenuated due to the low hydraulic permeability, which can have interesting implications in the transport of various substances form the blood to the tissues or in the use of shear stresses as signals for the endothelial surface cells. Finally, we simulate the transient blood flow under pulsatile conditions.

  14. Limitations of quantitative photoacoustic measurements of blood oxygenation in small vessels

    International Nuclear Information System (INIS)

    Sivaramakrishnan, Mathangi; Maslov, Konstantin; Zhang, Hao F; Stoica, George; Wang, Lihong V

    2007-01-01

    We investigate the feasibility of obtaining accurate quantitative information, such as local blood oxygenation level (sO 2 ), with a spatial resolution of about 50 μm from spectral photoacoustic (PA) measurements. The optical wavelength dependence of the peak values of the PA signals is utilized to obtain the local blood oxygenation level. In our in vitro experimental models, the PA signal amplitude is found to be linearly proportional to the blood optical absorption coefficient when using ultrasonic transducers with central frequencies high enough such that the ultrasonic wavelengths are shorter than the light penetration depth into the blood vessels. For an optical wavelength in the 578-596 nm region, with a transducer central frequency that is above 25 MHz, the sensitivity and accuracy of sO 2 inversion is shown to be better than 4%. The effect of the transducer focal position on the accuracy of quantifying blood oxygenation is found to be negligible. In vivo oxygenation measurements of rat skin microvasculature yield results consistent with those from in vitro studies, although factors specific to in vivo measurements, such as the spectral dependence of tissue optical attenuation, dramatically affect the accuracy of sO 2 quantification in vivo

  15. A numerical analysis on the curved bileaflet Mechanical Heart Valve (MHV) : leaflet motion and blood flow in an elastic blood vessel

    International Nuclear Information System (INIS)

    Bang, Jin Seok; Kim, Chang Nyung; Choi, Choeng Ryul

    2005-01-01

    In blood flow passing through the Mechanical Heart Valve (MHV) and elastic blood vessel, hemolysis and platelet activation causing thrombus formation can be seen owing to the shear stress in the blood. Also, fracture and deformation of leaflets can be observed depending on the shape and material properties of the leaflets which is opened and closed in a cycle. Hence, comprehensive study is needed on the hemodynamics which is associated with the motion of leaflet and elastic blood vessel in terms of fluid-structure interaction. In this paper, a numerical analysis has been performed for a three-dimensional pulsatile blood flow associated with the elastic blood vessel and curved bileaflet for multiple cycles in light of fluid-structure interaction. From this analysis fluttering phenomenon and rebound of the leaflet have been observed and recirculation and regurgitation have been found in the flow fields of the blood. Also, the pressure distribution and the radial displacement of the elastic blood vessel have been obtained. The motion of the leaflet and flow fields of the blood have shown similar tendency compared with the previous experiments carried out in other studies. The present study can contribute to the design methodology for the curved bileaflet mechanical heart valve. Furthermore, the proposed fluid-structure interaction method will be effectively used in various fields where the interaction between fluid flow and structure are involved

  16. Analysis of trends and prospects regarding stents for human blood vessels.

    Science.gov (United States)

    Lee, Jeong Hee; Kim, Eung Do; Jun, Eun Jung; Yoo, Hyoung Sun; Lee, Joon Woo

    2018-01-01

    The purpose of this paper is to provide technology trends and information regarding market and prospects in stents used for human blood vessels in Korea and the world.A stent is a medical device in the form of a cylindrical metal net used to normalize flow when blood or other bodily fluids such as biliary fluids are obstructed in blood vessels, gastrointestinal tracts, etc. by inserting the stent into a narrowed or clogged area. Stents are classified into vascular and non-vascular stents. The coronary artery stent is avascular stent that is used for coronary atherosclerosis.The demand is increasing for stents to treat diseases such as those affecting the heart and blood vessels of elderly and middle-aged patients. Due to the current shift in the demographic structure caused by an aging society, the prospect for stents seems to be very bright.The use of a stent designed to prevent acute vascular occlusion and restenosis, which is a side effect of conventional balloon angioplasty, has rapidly become popular because it can prevent acute complications and improve clinical outcomes. Since the initial release of this stent, there have been significant developments in its design, the most notable of which has been the introduction of drug-eluting stents (DES). Bioresorbable scaffolds (BRS) have the potential to introduce a paradigm shift in interventional cardiology, a true anatomical and functional "vascular restoration" instead of an artificial stiff tube encased by a persistent metallic foreign body. Data for this research were gathered from primary and secondary sources as well as the databases of the Korea Institute of Science Technology Information (KISTI) located in Seoul, Korea like KISTI Market Report. The sources used for primary research included the databases available from the Korea Institute of Science Technology Information, past industry research services/studies, economic and demographic data, and trade and industry journals. Secondary research was used

  17. Retinal hemodynamic oxygen reactivity assessed by perfusion velocity, blood oximetry and vessel diameter measurements

    DEFF Research Database (Denmark)

    Klefter, Oliver Niels; Lauritsen, Anne Øberg; Larsen, Michael

    2015-01-01

    PURPOSE: To test the oxygen reactivity of a fundus photographic method of measuring macular perfusion velocity and to integrate macular perfusion velocities with measurements of retinal vessel diameters and blood oxygen saturation. METHODS: Sixteen eyes in 16 healthy volunteers were studied at two...... (ICC) and limits of agreement. RESULTS: Fifteen minutes of hyperoxia was accompanied by mean reductions in arterial and venous perfusion velocities of 14% and 16%, respectively (p = 0.0080; p = 0.0019), constriction of major arteries and veins by 5.5% and 8.2%, respectively (p ...). For perfusion velocities, short-term ICCs were 0.79-0.82 and long-term ICCs were 0.06-0.11. Intersession increases in blood glucose were associated with reductions in perfusion velocities (arterial p = 0.0067; venous p = 0.018). CONCLUSION: Oxygen reactivity testing supported that motion-contrast velocimetry...

  18. Blood Pressure Control in Aging Predicts Cerebral Atrophy Related to Small-Vessel White Matter Lesions

    Directory of Open Access Journals (Sweden)

    Kyle C. Kern

    2017-05-01

    Full Text Available Cerebral small-vessel damage manifests as white matter hyperintensities and cerebral atrophy on brain MRI and is associated with aging, cognitive decline and dementia. We sought to examine the interrelationship of these imaging biomarkers and the influence of hypertension in older individuals. We used a multivariate spatial covariance neuroimaging technique to localize the effects of white matter lesion load on regional gray matter volume and assessed the role of blood pressure control, age and education on this relationship. Using a case-control design matching for age, gender, and educational attainment we selected 64 participants with normal blood pressure, controlled hypertension or uncontrolled hypertension from the Northern Manhattan Study cohort. We applied gray matter voxel-based morphometry with the scaled subprofile model to (1 identify regional covariance patterns of gray matter volume differences associated with white matter lesion load, (2 compare this relationship across blood pressure groups, and (3 relate it to cognitive performance. In this group of participants aged 60–86 years, we identified a pattern of reduced gray matter volume associated with white matter lesion load in bilateral temporal-parietal regions with relative preservation of volume in the basal forebrain, thalami and cingulate cortex. This pattern was expressed most in the uncontrolled hypertension group and least in the normotensives, but was also more evident in older and more educated individuals. Expression of this pattern was associated with worse performance in executive function and memory. In summary, white matter lesions from small-vessel disease are associated with a regional pattern of gray matter atrophy that is mitigated by blood pressure control, exacerbated by aging, and associated with cognitive performance.

  19. Calcification in arteriovenous fistula blood vessels may predict arteriovenous fistula failure: a 5-year follow-up study.

    Science.gov (United States)

    Jankovic, Aleksandar; Damjanovic, Tatjana; Djuric, Zivka; Marinkovic, Jelena; Schlieper, Georg; Djuric, Petar; Dragovic, Jelena Tosic; Bulatovic, Ana; Mitrovic, Milos; Popovic, Jovan; Floege, Jürgen; Dimkovic, Nada

    2017-05-01

    Arteriovenous fistula (AVF) is the preferred vascular access for hemodialysis. The impact of vascular calcification process on AVF survival remains unclear and results of several studies about this issue are controversial. In the light of the new knowledge about the different susceptibility for calcification process in different blood vessels, the aim of our study was to analyze whether the calcification of AVF-blood vessels may have an impact on AVF longevity. The study included 90 patients, 49 males and 41 females, all of them Caucasians, with a mean age 62 ± 11 years, on regular hemodialysis for more than 1 year with patent primary AVFs. Vascular calcification in AVF-blood vessels or in the anastomotic region was detected using X-ray examination. Calcification in AVF-blood vessels was found in 62% of patients. Binary logistic regression analysis demonstrated that male gender, presence of diabetes mellitus and longer duration of AVF before calcification determination were associated with calcification of AVF-blood vessels. Using a Cox proportional hazard model adjusted for these standardized predicted values revealed that patients with present AVF-blood vessels calcification had increased risk to develop AVF failure with a hazard rate of 3.42 (95% confidence interval 1.00-11.67; P = 0.049). Calcifications of AVF-blood vessels are found frequently among dialysis patients and may jeopardize the survival of native AVF. We suggested the local X-ray as simple and valid method for detection of patients that are at risk for AVFs failure which should be monitored more closely.

  20. Method for Separation of Blood Vessels on the Three-Color Images of Biological Tissues

    Science.gov (United States)

    Lisenko, S. A.

    2017-07-01

    A new technology was developed to improve the visibility of blood vessels on images of tissues of hollow human organs(the alimentary tract and respiratory system) based on the relation between the color components of the image, the scattering properties of the tissue, and its hemoglobin content. A statistical operator was presented to convert the three-color image of the tissue into a parametric map objectively characterizing the concentration of hemoglobin in the tissue regardless of the illumination and shooting conditions. An algorithm for obtaining conversion parameters for image systems with known spectral characteristics was presented. An image of a multilayer multiple-scattering medium modeling bronchial tissue was synthesized and was used to evaluate the efficiency of the proposed conversion system. It was shown that the conversion made it possible to increase the contrast of the blood vessels by almost two orders of magnitude, to significantly improve the clarity of the display of their borders, and to eliminate almost completely the influence of background and nonuniform illumination of the medium in comparison with the original image.

  1. Imaging transient blood vessel fusion events in zebrafish by correlative volume electron microscopy.

    Directory of Open Access Journals (Sweden)

    Hannah E J Armer

    Full Text Available The study of biological processes has become increasingly reliant on obtaining high-resolution spatial and temporal data through imaging techniques. As researchers demand molecular resolution of cellular events in the context of whole organisms, correlation of non-invasive live-organism imaging with electron microscopy in complex three-dimensional samples becomes critical. The developing blood vessels of vertebrates form a highly complex network which cannot be imaged at high resolution using traditional methods. Here we show that the point of fusion between growing blood vessels of transgenic zebrafish, identified in live confocal microscopy, can subsequently be traced through the structure of the organism using Focused Ion Beam/Scanning Electron Microscopy (FIB/SEM and Serial Block Face/Scanning Electron Microscopy (SBF/SEM. The resulting data give unprecedented microanatomical detail of the zebrafish and, for the first time, allow visualization of the ultrastructure of a time-limited biological event within the context of a whole organism.

  2. An Original Approach for Quantification of Blood Vessels on the Whole Tumour Section

    Directory of Open Access Journals (Sweden)

    Nga Tran Kim

    2003-01-01

    Full Text Available Relative abundance of tumour angiogenesis has been shown to be of clinical relevance in cancers of various locations such as the ovary. Nevertheless, several problems are encountered when quantifying tumour microvessels: (i as many other tumour markers, vascularity pattern is often heterogeneous within the tumour mass and even within the same histological section. As a consequence, an adequate acquisition method must be developed for accurate field sampling. (ii Manual microvessel counting is long, tedious and subject to poor reproducibility. Introduction in routine practice requires a fast, reproducible and reliable automatic image processing. In this study we present an original procedure combining a slide scanner image acquisition and a fully automatic image analysis sequence. The slide scanner offers the advantage of recording an image of the whole histological section for subsequent automatic blood vessel detection and hot spot area location. Microvessel density and surface fraction were measured for the whole section as well as within hot spots. Different immunostaining methods were tested in order to optimise the procedure. Moreover, the method proposed was submitted to a quality control procedure, with reference to interactive identification of microvessels at scanner level. This experiment showed that 93 to 97% of blood vessels were detected, according to the staining protocol used. Colour figures can be viewed on http://www.esacp.org/acp/2003/25‐2/kim.htm.

  3. [Flap repair for vascular prosthesis exposure after artificial blood vessel bypass surgery for critical limb ischemia].

    Science.gov (United States)

    Wu, Wei-wei; Wu, Hao; Zeng, Ang; Bai, Ming; Zeng, Rong; Chen, Yu; Liu, Chang-wei

    2013-08-01

    To investigate the effectiveness of flap repair for vascular prosthesis exposure after the artificial blood vessel bypass surgery for critical limb ischemia. From August 2007 to December 2011, bypass surgery with vascular prosthetic grafts were performed in 192 patients with critical limb ischemia.Five patients among them (2.6%) suffered from vascular prosthesis exposure 6 to 13 days after the previous surgery, including 4 males and 1 female, with a median age of 68 years(arranged from 52 to 81 years). The surgical managements included surgical debridement and local flap or transferred muscle-cutaneous flap repair to preserve the prosthetic vascular grafts. Three patients underwent Z-plasty with local flap repair, while 2 patients underwent transferred rectus abdominis or rectus femoris muscle flap repair of the wounds. After the surgery, prosthetic vascular graft was successfully preserved in 4 of the 5 cases with first intention healing. At a median follow-up of 38 months (arranged from 5 to 57 months), all the 4 limbs were salvaged with patent of the prosthetic grafts.One flap failed to heal and the prosthetic graft had to be removed due to infection and hemorrhage. An above-knee-amputation was performed due to severe limb ischemia. The vascular prosthesis exposure is often a disaster after artificial blood vessel bypass surgery for critical limb ischemia.Local flap or transferred muscle-cutaneous flap repair is an effective surgical management to salvage the exposed graft and the affected limb.

  4. Low cost labeling with highlighter ink efficiently visualizes developing blood vessels in avian and mouse embryos.

    Science.gov (United States)

    Takase, Yuta; Tadokoro, Ryosuke; Takahashi, Yoshiko

    2013-12-01

    To understand how blood vessels form to establish the intricate network during vertebrate development, it is helpful if one can visualize the vasculature in embryos. We here describe a novel labeling method using highlighter ink, easily obtained in stationery stores with a low cost, to visualize embryo-wide vasculatures in avian and mice. We tested 50 different highlighters for fluorescent microscopy with filter sets equipped in a standard fluorescent microscope. The yellow and violet inks yielded fluorescent signals specifically detected by the filters used for green fluorescent protein (GFP) and red fluorescent protein (RFP) detections, respectively. When the ink solution was infused into chicken/quail and mouse embryos, vasculatures including large vessels and capillaries were labeled both in living and fixed embryos. Ink-infused embryos were further subjected to histological sections, and double stained with antibodies including QH-1 (quail), α smooth muscle actin (αSMA), and PECAM-1 (mouse), revealing that the endothelial cells were specifically labeled by the infused highlighter ink. Highlighter-labeled signals were detected with a resolution comparable to or higher than signals of fluorescein isothiocyanate (FITC)-lectin and Rhodamine-dextran, conventionally used for angiography. Furthermore, macroconfocal microscopic analyses with ink-infused embryos visualized fine vascular structures of both embryo proper and extra-embryonic plexus in a Z-stack image of 2400 μm thick with a markedly high resolution. Together, the low cost highlighter ink serves as an alternative reagent useful for visualization of blood vessels in developing avian and mouse embryos and possibly in other animals. © 2013 The Authors Development, Growth & Differentiation © 2013 Japanese Society of Developmental Biologists.

  5. Effect of collagen and elastin content on the burst pressure of human blood vessel seals formed with a bipolar tissue sealing system.

    Science.gov (United States)

    Latimer, Cassandra A; Nelson, Meghan; Moore, Camille M; Martin, Kimberly E

    2014-01-01

    Bipolar devices are routinely used to seal blood vessels instead of sutures and clips. Recent work examining the impact of vascular proteins on bipolar seal performance found that collagen and elastin (CE) content within porcine arteries was a significant predictor of a vessel's burst pressure (VBPr). This study examined seal performance across a range of human blood vessels to investigate whether a similar relationship existed. In addition, we compared VBPr and CE content between porcine and human blood vessels. Our primary hypothesis is that higher collagen-to-elastin ratio will predict higher VBPr in human vasculature. In six cadavers, 185 blood vessels from nine anatomic locations were sealed using a bipolar electrosurgical system. A linear mixed model framework was used to evaluate the impact of vessel diameter and CE content on VBPr. The effect of CE ratio on VBPr is modified by vessel size, with CE ratio having larger influence on VBPr in smaller diameter vessels. Seal burst pressure of vessels 2-5 mm in diameter was significantly associated with their CE content. Comparison of average VBPr between species revealed porcine carotid and iliac arteries (440-670 mmHg) to be the best vessel types for predicting the seal strength of most human blood vessels (420-570 mmHg) examined. CE content significantly modified the seal strength of small to medium sized blood vessels but had limited impact on vessels >5 mm. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Anatomical relationships of the pia mater to cerebral blood vessels in man.

    Science.gov (United States)

    Hutchings, M; Weller, R O

    1986-09-01

    Using scanning and transmission electron microscopy and light microscopy, the authors studied the human pia mater and its relationship to the entry of blood vessels into the normal cerebral cortex. The purpose of this investigation was to examine the long-established concept that the subarachnoid space communicates directly with the perivascular spaces of the cerebral cortex. Brains obtained post mortem from subjects with recent subarachnoid hemorrhage (SAH) and purulent leptomeningitis were studied by light microscopy to determine the permeability of the pia mater to red blood cells and inflammatory cells. Scanning electron microscopy showed that the normal pia mater is a flat sheet of cells that is reflected from the surface of the brain to form the outer coating of the meningeal vessels in the subarachnoid space. Transmission electron microscopy confirmed that the cells of the pia mater are joined by junctional complexes and form a continuous sheet that separates the subarachnoid space on one side from the subpial and perivascular spaces on the other. Thus, neither the pia mater nor the subarachnoid space extends into the brain beside blood vessels as they enter the cerebral cortex. The perivascular spaces were, in fact, found to be confluent with the subpial space and not with the subarachnoid space. In cases of recent SAH, red blood cells did not enter the perivascular spaces from the subarachnoid space; neither did India ink injected post mortem into the subarachnoid space pass into the perivascular spaces. The results of these crude tracer studies suggest that the pia mater is an effective barrier to the passage of particulate matter. Histological examination of brains of patients who had died with purulent leptomeningitis showed that inflammatory cells were present in the cortical perivascular spaces and in the contiguous subpial spaces. The presence of a large number of inflammatory cells in the subarachnoid space suggests that inflammatory cells readily

  7. Ovarian blood vessel occlusion as a surgical sterilization method in rats.

    Science.gov (United States)

    Murakami, Eduardo; Sartori de Camargo, Laíza; Freitas Cardoso, Karym Christine de; Miguel, Marina Pacheco; Tavares, Denise Cláudia; Santos Honsho, Cristiane dos; Ferreira de Souza, Fabiana

    2014-04-01

    To evaluate the female sterilization by occlusion of the ovarian blood flow, using the rat as experimental model. Fifty-five females rats were divided into four groups: I (n=10), bilateral ovariectomy, euthanized at 60 or 90 days; II (n=5), opening the abdominal cavity, euthanized at 90 days; III (n=20), bilateral occlusion of the ovarian blood supply using titanium clips, euthanized at 60 or 90 days; and IV (n=20), bilateral occlusion of the ovarian blood supply using nylon thread, euthanized at 60 or 90 days. The estrous cycle was monitored by vaginal cytology. After euthanasia, the reproductive tissues were evaluated histologically. Ovarian atresia was identified macroscopically at 60 days after surgery in the rats in groups III and IV; however, most of the rats in group III maintained cyclicity. Histology of the tissues from group IV revealed that the ovarian tissue was replaced by dense fibrous connective tissue that was slightly vascularized and that intact follicles were absent by 90 days. Ovarian blood vessels occluded caused ischemia, leading to progressive tissue necrosis, and bilateral occlusion using a nylon ligature is a viable method for surgical sterilization.

  8. 3D-black-blood 3T-MRI for the diagnosis of thoracic large vessel vasculitis: A feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Treitl, Karla Maria; Saam, Tobias [Institute for Clinical Radiology, LMU Munich, Munich (Germany); German Center for Cardiovascular Disease Research (DZHK e.V.), Munich (Germany); Maurus, Stefan; Sommer, Nora Narvina; Coppenrath, Eva; Treitl, Marcus [Institute for Clinical Radiology, LMU Munich, Munich (Germany); Kooijman-Kurfuerst, Hendrik [Philips Healthcare, Hamburg (Germany); Czihal, Michael; Hoffmann, Ulrich [LMU Munich, Division of Vascular Medicine, Medical Clinic and Policlinic IV, Munich (Germany); Dechant, Claudia; Schulze-Koops, Hendrik [LMU Munich, Division of Rheumatology and Clinical Immunology, Medical Clinic and Policlinic IV, Munich (Germany)

    2017-05-15

    To evaluate the feasibility of T1w-3D black-blood turbo spin echo (TSE) sequence with variable flip angles for the diagnosis of thoracic large vessel vasculitis (LVV). Thirty-five patients with LVV, diagnosed according to the current standard of reference, and 35 controls were imaged at 3.0T using 1.2 x 1.3 x 2.0 mm{sup 3} fat-suppressed, T1w-3D, modified Volumetric Isotropic TSE Acquisition (mVISTA) pre- and post-contrast. Applying a navigator and peripheral pulse unit triggering (PPU), the total scan time was 10-12 min. Thoracic aorta and subclavian and pulmonary arteries were evaluated for image quality (IQ), flow artefact intensity, diagnostic confidence, concentric wall thickening and contrast enhancement (CWT, CCE) using a 4-point scale. IQ was good in all examinations (3.25 ± 0.72) and good to excellent in 342 of 408 evaluated segments (83.8 %), while 84.1 % showed no or minor flow artefacts. The interobserver reproducibility for the identification of CCE and CWT was 0.969 and 0.971 (p < 0.001) with an average diagnostic confidence of 3.47 ± 0.64. CCE and CWT were strongly correlated (Cohen's k = 0.87; P < 0.001) and significantly more frequent in the LVV-group (52.8 % vs. 1.0 %; 59.8 % vs. 2.4 %; P < 0.001). Navigated fat-suppressed T1w-3D black-blood MRI with PPU-triggering allows diagnosis of thoracic LVV. (orig.)

  9. Regulator of G-protein signaling 5 controls blood pressure homeostasis and vessel wall remodeling.

    Science.gov (United States)

    Holobotovskyy, Vasyl; Manzur, Mitali; Tare, Marianne; Burchell, Jennifer; Bolitho, Erin; Viola, Helena; Hool, Livia C; Arnolda, Leonard F; McKitrick, Douglas J; Ganss, Ruth

    2013-03-01

    Regulator of G-protein signaling 5 (RGS5) modulates G-protein-coupled receptor signaling and is prominently expressed in arterial smooth muscle cells. Our group first reported that RGS5 is important in vascular remodeling during tumor angiogenesis. We hypothesized that RGS5 may play an important role in vessel wall remodeling and blood pressure regulation. To demonstrate that RGS5 has a unique and nonredundant role in the pathogenesis of hypertension and to identify crucial RGS5-regulated signaling pathways. We observed that arterial RGS5 expression is downregulated with chronically elevated blood pressure after angiotensin II infusion. Using a knockout mouse model, radiotelemetry, and pharmacological inhibition, we subsequently showed that loss of RGS5 results in profound hypertension. RGS5 signaling is linked to the renin-angiotensin system and directly controls vascular resistance, vessel contractility, and remodeling. RGS5 deficiency aggravates pathophysiological features of hypertension, such as medial hypertrophy and fibrosis. Moreover, we demonstrate that protein kinase C, mitogen-activated protein kinase/extracellular signal-regulated kinase, and Rho kinase signaling pathways are major effectors of RGS5-mediated hypertension. Loss of RGS5 results in hypertension. Loss of RGS5 signaling also correlates with hyper-responsiveness to vasoconstrictors and vascular stiffening. This establishes a significant, distinct, and causal role of RGS5 in vascular homeostasis. RGS5 modulates signaling through the angiotensin II receptor 1 and major Gαq-coupled downstream pathways, including Rho kinase. So far, activation of RhoA/Rho kinase has not been associated with RGS molecules. Thus, RGS5 is a crucial regulator of blood pressure homeostasis with significant clinical implications for vascular pathologies, such as hypertension.

  10. Bioprinting of artificial blood vessels: current approaches towards a demanding goal.

    Science.gov (United States)

    Hoch, Eva; Tovar, Günter E M; Borchers, Kirsten

    2014-11-01

    Free-form fabrication techniques, often referred to as '3D printing', are currently tested with regard to the processing of biological and biocompatible materials in general and for fabrication of vessel-like structures in particular. Such computer-controlled methods assemble 3D objects by layer-wise deposition or layer-wise cross-linking of materials. They use, for example, nozzle-based deposition of hydrogels and cells, drop-on-demand inkjet-printing of cell suspensions with subsequent cross-linking, layer-by-layer cross-linking of synthetic or biological polymers by selective irradiation with light and even laser-induced deposition of single cells. The need of vessel-like structures has become increasingly crucial for the supply of encapsulated cells for 3D tissue engineering, or even with regard to future application such as vascular grafts. The anticipated potential of providing tubes with tailored branching geometries made of biocompatible or biological materials pushes future visions of patient-specific vascularized tissue substitutions, tissue-engineered blood vessels and bio-based vascular grafts. We review here the early attempts of bringing together innovative free-form manufacturing processes with bio-based and biodegradable materials. The presented studies provide many important proofs of concepts such as the possibility to integrate viable cells into computer-controlled processes and the feasibility of supplying cells in a hydrogel matrix by generation of a network of perfused channels. Several impressive results in the generation of complex shapes and high-aspect-ratio tubular structures demonstrate the potential of additive assembly methods. Yet, it also becomes obvious that there remain major challenges to simultaneously match all material requirements in terms of biological functions (cell function supporting properties), physicochemical functions (mechanical properties of the printed material) and process-related (viscosity, cross

  11. The Proposal to “Snapshot” Raim Method for Gnss Vessel Receivers Working in Poor Space Segment Geometry

    Directory of Open Access Journals (Sweden)

    Nowak Aleksander

    2015-12-01

    Full Text Available Nowadays, we can observe an increase in research on the use of small unmanned autonomous vessel (SUAV to patrol and guiding critical areas including harbours. The proposal to “snapshot” RAIM (Receiver Autonomous Integrity Monitoring method for GNSS receivers mounted on SUAV operating in poor space segment geometry is presented in the paper. Existing “snapshot” RAIM methods and algorithms which are used in practical applications have been developed for airborne receivers, thus two main assumptions have been made. The first one is that the geometry of visible satellites is strong. It means that the exclusion of any satellite from the positioning solution don’t cause significant deterioration of Dilution of Precision (DOP coefficients. The second one is that only one outlier could appear in pseudorange measurements. In case of SUAV operating in harbour these two assumptions cannot be accepted. Because of their small dimensions, GNSS antenna is only a few decimetres above sea level and regular ships, buildings and harbour facilities block and reflect satellite signals. Thus, different approach to “snapshot” RAIM is necessary. The proposal to method based on analyses of allowable maximal separation of positioning sub-solutions with using some information from EGNOS messages is described in the paper. Theoretical assumptions and results of numerical experiments are presented.

  12. Patency of heart blood vessels under photosensitization reaction shortly after intravenous injection of talaporfin sodium in canine model

    Science.gov (United States)

    Hamada, Risa; Matsuzaki, Ryota; Ogawa, Emiyu; Arai, Tsunenori

    2016-03-01

    In order to investigate patency of heart blood vessels by photosensitization reaction shortly after intravenous injection of talaporfin sodium, we performed in vitro endothelial cell lethality study and in vivo study of heart blood vessel patency in canine one week after photosensitization reaction. Cell lethality of human umbilical vein endothelial cells under different albumin concentrations corresponding with blood and interstice concentrations were employed and their lethality 2 hours after the reaction was measured by WST assay in vitro. Almost all cells survived by 40 J/cm2 photosensitization reaction with blood albumin concentration. Laser diffuser made of plastic optical fiber with 70 mm in length was used in vivo. Red diode laser of 664nm wavelength was emitted from this diffuser with 17.1-42.9 mW/cm in 10 minutes. We estimated the fluence rate distribution by a ray-trace simulator using pre-measured optical coefficients of myocardium tissue, μa 0.12 mm-1 and μs' 0.36 mm-1. Almost all blood vessels were patent in every irradiation conditions in canine heart. Coronary artery and vein up to 1 mm diameter were patent in typical myocardium sample with 25.7 mW/cm. We estimated fluence rate distribution of this sample and found that blood vessels were patent even fluence rate over 40 J/cm2. This in vivo study could be explained by the result of in vitro study. We suggest that this blood vessel patency after our particular photosensitization reaction might be because of few photosensitizer uptake in the blood endothelial cells and/or reduced oxidation damage by thick albumin concentration in blood.

  13. Technical aspects of the process of segmentation and packaging of the reactor vessel of Jose Cabrera NPP; Aspectos tecnicos del proceso de segmentacion y embalaje de la vasija del reactor de la central nuclear Jose Cabrera

    Energy Technology Data Exchange (ETDEWEB)

    Valdivieso, J. M.; Garcia Castro, R.

    2015-07-01

    Westinghouse is carrying out the segmentation of the reactor pressure vessel (RPV) within the framework of the Dismantling and Decommissioning Project of the Jose Cabrera NPP. The final concept is based on the comprehensive Westinghouse experience in the field of LWR pressure vessel and internals segmentation, and particularly in previous reactor internals segmentation project for Jose Cabrera NPP. This article shows the development of all the activities included: cutting method selection, preparatory works, cutting activities, waste characterization and packaging activities. (Author)

  14. Chronic hydrocephalus-induced hypoxia: increased expression of VEGFR-2+ and blood vessel density in hippocampus.

    Science.gov (United States)

    Dombrowski, S M; Deshpande, A; Dingwall, C; Leichliter, A; Leibson, Z; Luciano, M G

    2008-03-18

    Chronic hydrocephalus (CH) is a neurological disease characterized by increased cerebrospinal fluid volume and pressure that is often associated with impaired cognitive function. By and large, CH is a complex and heterogeneous cerebrospinal fluid (CSF) disorder where the exact site of brain insult is uncertain. Several mechanisms including neural compression, fiber stretch, and local or global hypoxia have been implicated in the underlying pathophysiology of CH. Specifically, the hippocampus, which plays a significant role in memory processing and is in direct contact with expanding CSF ventricles, may be involved. Using our model of chronic hydrocephalus, we quantified the density of vascular endothelial growth factor receptor 2 (VEGFR-2(+)) neurons, glial, endothelial cells, and blood vessels in hippocampal regions CA1, CA2-3, dentate gyrus and hilus using immunohistochemical and stereological methods. Density and %VEGFR-2(+) cell populations were estimated for CH animals (2-3 weeks vs. 12-16 weeks) and surgical controls (SC). Overall, we found approximately six- to eightfold increase in the cellular density of VEGFR-2(+) and more than double blood vessel density (BVd) in the hippocampus of CH compared with SC. There were no significant regional differences in VEGFR-2(+) cellular and BVd expression in the CH group. VEGFR-2(+) and BVds were significantly related to changes in CSF volume (Pblood vessel expression was related to focal compression alone or in combination with global ischemia/hypoxia conditions as previously described. These findings suggest that VEGFR-2 may play an adaptive role in angiogenesis after CH

  15. Distinct mechanisms of relaxation to bioactive components from chamomile species in porcine isolated blood vessels

    International Nuclear Information System (INIS)

    Roberts, R.E.; Allen, S.; Chang, A.P.Y.; Henderson, H.; Hobson, G.C.; Karania, B.; Morgan, K.N.; Pek, A.S.Y.; Raghvani, K.; Shee, C.Y.; Shikotra, J.; Street, E.; Abbas, Z.; Ellis, K.; Heer, J.K.; Alexander, S.P.H.

    2013-01-01

    German chamomile (Matricaria recutita L.), a widely-used herbal medicine, has been reported to have a wide range of biological effects, including smooth muscle relaxation. The aim of this study was to compare the effects of representative compounds from chamomile (apigenin, luteolin, (−)-α-bisabolol, farnesene, umbelliferone; 3–30 μM) on vascular tone using porcine coronary and splenic arteries mounted for isometric tension recording in isolated tissue baths and precontracted with the thromboxane-mimetic U46619. Apigenin, luteolin, and (−)-α-bisabolol produced slow, concentration-dependent relaxations in both the coronary and splenic arteries that were not blocked by inhibition of nitric oxide synthase or potassium channels. Removal of extracellular calcium inhibited the relaxations to all three compounds, and these compounds also inhibited calcium re-addition-evoked contractions, indicating that the relaxation response may be mediated through inhibition of calcium influx. Apigenin and luteolin, but not (−)-α-bisabolol, enhanced the relaxation to the nitric oxide donor sodium nitroprusside, indicating that apigenin and luteolin may act to regulate cyclic GMP levels. Umbelliferone produced a rapid, transient relaxation in the splenic artery, but not the coronary artery, that was inhibited by L-NAME and removal of the endothelium, suggesting an influence on nitric oxide production. Farnesene, at concentrations up to 30 μM, was without effect in either blood vessel. In conclusion, hydroxylated compounds (apigenin, luteolin and (−)-α-bisabolol) found in chamomile all caused a slow relaxation of isolated blood vessels through an effect on calcium influx. Umbelliferone, on the other hand, produced a rapid, transient relaxation dependent upon release of nitric oxide from the endothelium. - Highlights: • Apigenin, luteolin, and (-)-α-bisabolol are present in chamomile. • They produced slow, concentration-dependent relaxations in arteries. • These

  16. Distinct mechanisms of relaxation to bioactive components from chamomile species in porcine isolated blood vessels

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, R.E., E-mail: Richard.roberts@nottingham.ac.uk; Allen, S.; Chang, A.P.Y.; Henderson, H.; Hobson, G.C.; Karania, B.; Morgan, K.N.; Pek, A.S.Y.; Raghvani, K.; Shee, C.Y.; Shikotra, J.; Street, E.; Abbas, Z.; Ellis, K.; Heer, J.K.; Alexander, S.P.H., E-mail: steve.alexander@nottingham.ac.uk

    2013-11-01

    German chamomile (Matricaria recutita L.), a widely-used herbal medicine, has been reported to have a wide range of biological effects, including smooth muscle relaxation. The aim of this study was to compare the effects of representative compounds from chamomile (apigenin, luteolin, (−)-α-bisabolol, farnesene, umbelliferone; 3–30 μM) on vascular tone using porcine coronary and splenic arteries mounted for isometric tension recording in isolated tissue baths and precontracted with the thromboxane-mimetic U46619. Apigenin, luteolin, and (−)-α-bisabolol produced slow, concentration-dependent relaxations in both the coronary and splenic arteries that were not blocked by inhibition of nitric oxide synthase or potassium channels. Removal of extracellular calcium inhibited the relaxations to all three compounds, and these compounds also inhibited calcium re-addition-evoked contractions, indicating that the relaxation response may be mediated through inhibition of calcium influx. Apigenin and luteolin, but not (−)-α-bisabolol, enhanced the relaxation to the nitric oxide donor sodium nitroprusside, indicating that apigenin and luteolin may act to regulate cyclic GMP levels. Umbelliferone produced a rapid, transient relaxation in the splenic artery, but not the coronary artery, that was inhibited by L-NAME and removal of the endothelium, suggesting an influence on nitric oxide production. Farnesene, at concentrations up to 30 μM, was without effect in either blood vessel. In conclusion, hydroxylated compounds (apigenin, luteolin and (−)-α-bisabolol) found in chamomile all caused a slow relaxation of isolated blood vessels through an effect on calcium influx. Umbelliferone, on the other hand, produced a rapid, transient relaxation dependent upon release of nitric oxide from the endothelium. - Highlights: • Apigenin, luteolin, and (-)-α-bisabolol are present in chamomile. • They produced slow, concentration-dependent relaxations in arteries. • These

  17. 3D Near Infrared and Ultrasound Imaging of Peripheral Blood Vessels for Real-Time Localization and Needle Guidance.

    Science.gov (United States)

    Chen, Alvin I; Balter, Max L; Maguire, Timothy J; Yarmush, Martin L

    2016-10-01

    This paper presents a portable imaging device designed to detect peripheral blood vessels for cannula insertion that are otherwise difficult to visualize beneath the skin. The device combines near infrared stereo vision, ultrasound, and real-time image analysis to map the 3D structure of subcutaneous vessels. We show that the device can identify adult forearm vessels and be used to guide manual insertions in tissue phantoms with increased first-stick accuracy compared to unassisted cannulation. We also demonstrate that the system may be coupled with a robotic manipulator to perform automated, image-guided venipuncture.

  18. Multi-detector spiral CT study of the relationships between pulmonary ground-glass nodules and blood vessels

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Feng; Li, Ming; Ge, Xiaojun; Ren, Qingguo; Hua, Yanqing [Huadong Hospital Fudan University, Department of Radiology, Shanghai (China); Zheng, Xiangpeng [Huadong Hospital Fudan University, Department of Radiation Oncology, Shanghai (China); Chen, Yan [Huadong Hospital Fudan University, Department of Pathology, Shanghai (China); Lv, Fangzhen [Huadong Hospital Fudan University, Department of Thoracic Surgery, Shanghai (China)

    2013-12-15

    To investigate the relationships between pulmonary ground-glass nodules (GGN) and blood vessels and their diagnostic values in differentiating GGNs. Multi-detector spiral CT imaging of 108 GGNs was retrospectively reviewed. The spatial relationships between GGNs and supplying blood vessels were categorized into four types: I, vessels passing by GGNs; II, intact vessels passing through GGNs; III, distorted, dilated or tortuous vessels seen within GGNs; IV, more complicated vasculature other than described above. Relationship types were correlated to pathologic and/or clinical findings of GGNs. Of 108 GGNs, 10 were benign, 24 preinvasive nodules and 74 adenocarcinomas that were pathologically proven. Types I, II, III and IV vascular relationships were observed in 9, 58, 21 and 20 GGNs, respectively. Type II relationship was the dominating relationship for each GGN group, but significant differences were shown among them. Correlation analysis showed strong correlation between invasive adenocarcinoma and type III and IV relationships. Subgroup analysis indicated that type III was more commonly seen in IAC with comparison to type IV more likely seen in MIA. Different GGNs have different relationships with vessels. Understanding and recognising characteristic GGN-vessel relationships may help identify which GGNs are more likely to be malignant. (orig.)

  19. An automated and robust image processing algorithm for glaucoma diagnosis from fundus images using novel blood vessel tracking and bend point detection.

    Science.gov (United States)

    M, Soorya; Issac, Ashish; Dutta, Malay Kishore

    2018-02-01

    Glaucoma is an ocular disease which can cause irreversible blindness. The disease is currently identified using specialized equipment operated by optometrists manually. The proposed work aims to provide an efficient imaging solution which can help in automating the process of Glaucoma diagnosis using computer vision techniques from digital fundus images. The proposed method segments the optic disc using a geometrical feature based strategic framework which improves the detection accuracy and makes the algorithm invariant to illumination and noise. Corner thresholding and point contour joining based novel methods are proposed to construct smooth contours of Optic Disc. Based on a clinical approach as used by ophthalmologist, the proposed algorithm tracks blood vessels inside the disc region and identifies the points at which first vessel bend from the optic disc boundary and connects them to obtain the contours of Optic Cup. The proposed method has been compared with the ground truth marked by the medical experts and the similarity parameters, used to determine the performance of the proposed method, have yield a high similarity of segmentation. The proposed method has achieved a macro-averaged f-score of 0.9485 and accuracy of 97.01% in correctly classifying fundus images. The proposed method is clinically significant and can be used for Glaucoma screening over a large population which will work in a real time. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. The Effect of Silver Nanofibers on the Deformation Properties of Blood Vessels: Towards the Development of New Nanotechnologies to Prevent Rupture of Aneurysms

    Directory of Open Access Journals (Sweden)

    Miguel Gonzalez

    2014-01-01

    Full Text Available An aneurysm is the result of a widening or ballooning of a portion of a blood vessel. The rupture of an aneurysm occurs when the mechanical stress acting on the inner wall exceeds the failure strength of the blood vessel. We propose an innovative approach to prevent the rupture of an aneurysm based on the use of nanotechnology to improve the strength of the blood vessel. We present results on the effect of silver nanofibers on the resistance toward deformation of blood vessels. The silver nanofibers are grown on the surface of the blood vessels. The nanofibers are 120±30 nm in diameter and 2.7±0.8 μm in length. The deformation per applied force of blood vessels was found to decrease from 0.15 m/N in control blood vessels to 0.003 m/N in blood vessels treated with the nanofibers. This represents an increase in the resistance towards deformation of a factor of 50. The increase in the resistance towards deformation is clinically significant since blood pressure increases by factors slightly larger than one in the human body. Treatment of blood vessels with silver nanofibers is a potential translational clinical tool for preventing rupture of aneurysms in a clinical setting.

  1. Internal dosimetry for blood vessels radiotherapy; Dosimetria interna para terapia com radiacao em vasos sanguineos

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Laelia Pumilla Botelho [Pernambuco Univ., Recife, PE (Brazil). Dept. de Energia Nuclear] E-mail: lpbcampos@uol.com.br; Stabin, Michael Gregory [Vanderbilt Univ., Nashville, TN (United States). Dept. of Radiology and Radiological Sciences] E-mail: Michael.Stabin@mcmail.vanderbilt.edu

    2001-07-01

    Among the cardiovascular diseases, the most common is acute myocardial infarction, which occurs because of the occlusion of one or more coronary arteries. Balloon angioplasty has been a popular treatment which is less invasive than surgeries involving revascularization of the myocardium, thus promising a better quality of life for patients. Unfortunately, the rate of restenosis (re-closing of the vessel) after balloon angioplasty is high (approximately 30-50% within the first year after treatment). Known as Intravascular Brachytherapy, the technique has been used with several radiation sources, and researchers have obtained success in decreasing the rate of restenosis. In order to study the radiation dosimetry in the patient and radiological protection for this therapy, radiation dose distributions for monoenergetic electrons and photons (at nine discrete energies) were calculated for blood vessels of diameter 0.15, 0.30 and 0.45 cm with balloon and wire sources using the radiation transport code MCNP4B. Specific calculations were carried out for several radionuclides. Advantages and disadvantages of the radionuclides and source geometries are discussed and the dosimetry developed here will aid in the realization of the benefits obtained in patients. (author)

  2. Streaming flow from ultrasound contrast agents by acoustic waves in a blood vessel model.

    Science.gov (United States)

    Cho, Eunjin; Chung, Sang Kug; Rhee, Kyehan

    2015-09-01

    To elucidate the effects of streaming flow on ultrasound contrast agent (UCA)-assisted drug delivery, streaming velocity fields from sonicated UCA microbubbles were measured using particle image velocimetry (PIV) in a blood vessel model. At the beginning of ultrasound sonication, the UCA bubbles formed clusters and translated in the direction of the ultrasound field. Bubble cluster formation and translation were faster with 2.25MHz sonication, a frequency close to the resonance frequency of the UCA. Translation of bubble clusters induced streaming jet flow that impinged on the vessel wall, forming symmetric vortices. The maximum streaming velocity was about 60mm/s at 2.25MHz and decreased to 15mm/s at 1.0MHz for the same acoustic pressure amplitude. The effect of the ultrasound frequency on wall shear stress was more noticeable. Maximum wall shear stress decreased from 0.84 to 0.1Pa as the ultrasound frequency decreased from 2.25 to 1.0MHz. The maximum spatial gradient of the wall shear stress also decreased from 1.0 to 0.1Pa/mm. This study showed that streaming flow was induced by bubble cluster formation and translation and was stronger upon sonication by an acoustic wave with a frequency near the UCA resonance frequency. Therefore, the secondary radiant force, which is much stronger at the resonance frequency, should play an important role in UCA-assisted drug delivery. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. OCT imaging detection of brain blood vessels in mouse, based on semiconducting polymer nanoparticles.

    Science.gov (United States)

    Yang, Shaozhuang; Chen, Haobin; Liu, Liwei; Chen, Bingling; Yang, Zhigang; Wu, Changfeng; Hu, Siyi; Lin, Huiyun; Li, Buhong; Qu, Junle

    2017-11-20

    Optical Coherence Tomography (OCT) is a valuable technology that has been used to obtain microstructure images of tissue, and has several advantages, though its applications are limited in high-scattering tissues. Therefore, semiconducting polymer nanoparticles (SPNs) that possess strong absorption characteristics are applied to decrease light scattering in tissues and used as exogenous contrast agents for enhancing the contrast of OCT imaging detection. In this paper, we prepared two kinds of SPNs, termed PIDT-TBZ SPNs and PBDT-TBZ SPNs, as the contrast agents for OCT detection to enhance the signal. Firstly, we proved that they were good contrast agents for OCT imaging in agar-TiO 2 . After that, the contrast effects of these two SPNs were quantitatively analyzed, and then cerebral blood vessels were monitored by a home-made SD-OCT system. Finally, we created OCT images in vitro and in vivo with these two probes and performed quantitative analysis using the images. The results indicated that these SPNs created a clear contrast enhancement of small vessels in the OCT imaging process, which provides a basis for the application of SPNs as contrast agents for bioimaging studies.

  4. Simultaneous shape and deformation measurements in a blood vessel model by two wavelength interferometry

    Science.gov (United States)

    Andrés, Nieves; Pinto, Cristina; Lobera, Julia; Palero, Virginia; Arroyo, M. Pilar

    2017-06-01

    Holographic techniques have been used to measure the shape and the radial deformation of a blood vessel model and a real sheep aorta. Measurements are obtained from several holograms recorded for different object states. For each object state, two holograms with two different wavelengths are multiplexed in the same digital recording. Thus both holograms are simultaneously recorded but the information from each of them is separately obtained. The shape analysis gives a wrapped phase map whose fringes are related to a synthetic wavelength. After a filtering and unwrapping process, the 3D shape can be obtained. The shape data for each line are fitted to a circumference in order to determine the local vessel radius and center. The deformation analysis also results in a wrapped phase map, but the fringes are related to the laser wavelength used in the corresponding hologram. After the filtering and unwrapping process, a 2D map of the deformation in an out-of-plane direction is reconstructed. The radial deformation is then calculated by using the shape information.

  5. [Telescopic adhesive anastomosis of small blood vessel applied in formation of arteriovenous fistula for hemodialysis].

    Science.gov (United States)

    Shen, G; Leng, Y; Rong, G

    1997-03-01

    The formation of an arteriovenous fistual for dialysis by routine interrupted sutures anastomosing the vein and artery is difficult to perform and time-consuming. A new method, telescopic adhesive anastomosis was studied and applied in 10 hemodialysis patients, who were in need of an arteriovenous fistula. The external diameter of the vessels anastomosed was 2.40 +/- 0.20 mm (radial artery) or 2.40 +/- 0.35 mm (cephalic vein). After thorough debridement of the vascular ends, the arterial end was put in the venous lumen. In order to fix the telescopic vessels, two stitches were applied 180 degrees apart from each other and tied. Each stitch was inserted from vein (penetrating the whole wall) to artery (just through the adventitia and partial thickness of the media vasorum). The distance from the stitch to the edge of the vein was 0.5 mm, and that of the artery was approximated to the external diameter of the vessle. The medical adhesive was then applied for sealing the anastomotic adventitia. Ten seconds were given for the solidification of the adhesive. The patients were followed up for 8 months. The patency rate was 100%, and the rate of blood flow was more than 300 ml/min (measured by ultrasonography). It was shown that this method could be managed easily and quickly, and the so-formed fistula would fulfill the need of hemodialysis.

  6. OPTIMAL RESOLUTION FOR AUTOMATIC QUANTIFICATION OF BLOOD VESSELS ON DIGITIZED IMAGES OF THE WHOLE CANCER SECTION

    Directory of Open Access Journals (Sweden)

    Ronan Françoise

    2011-05-01

    Full Text Available Discrepancies concerning the prognostic significance of cancer vascularization can be partly explained by biases due to quantification protocols. We recently recommended a swift, inexpensive and automatic analysis of 2,700 dpi slide scanner images of the whole immunostained sections. Another team, proposed, quite at the same time, to work at 4,000 dpi. The aim of the present paper is to check if information contained in images scanned at 2,700 and 4,000 dpi are relevant and equivalent, when compared to the low magnification of the microscope, in order to propose the best compromise between precision and time expense. To evaluate precisely the amount of information gained or lost according to the resolution used, we compared the number and size of blood vessel profiles, manually detected, on twenty one Hodgkin lymphoma acquired with a scanner (2,700 and 4,000 dpi and with a microscope (16,000 dpi. Results obtained at 4,000 dpi were equivalent to the estimation performed at microscopical level either by a biologist or a pathologist, while tiny vessels were lost at 2,700 dpi. Scanning whole histological sections at 4,000 dpi provides a relevant method for evaluating tumour vascularization, which can be easily automated and standardized.

  7. Comparison of the number of gingival blood vessels between type 2 diabetes mellitus and chronic periodontitis patients: An immunohistological study

    Directory of Open Access Journals (Sweden)

    Gautami Subhadra Penmetsa

    2015-01-01

    Full Text Available Background: The relationship between diabetes and periodontitis has been studied for more than 50 years and is generally agreed that the periodontal disease is more prevalent in diabetic patients compared to nondiabetics. Vascular changes like increased thickness of basement membrane in small vessels has been reported in diabetic patients, but the quantity of blood vessels in gingiva of diabetic patients has not been discussed much. The aim of this study was to compare the number of blood vessels in gingiva between chronic periodontitis (CP patients, CP with diabetes (type 2, and normal healthy gingiva. Materials and Methods: The study included 75 patients, divided into three groups of 25 patients each-Group I with healthy periodontium (HP, Group II with CP, and Group III with CP with diabetes mellitus (CPDM.Gingival biopsies were obtained from the subjects undergoing crown lengthening procedure for Group I, and in patients with CP and in CPDM biopsies were collected from teeth undergoing extraction. Sections were prepared for immune histochemical staining with CD34. Results: Difference was observed in the average number of blood vessels when compared between HP, CP, and CPDM groups. Statistical significant difference was observed when the HP and CP groups and HP and CPDM groups were compared. Conclusion: The results of the study indicated that the number of blood vessels in gingival connective tissue is significantly higher in CP and CPDM patients.

  8. Ultrastructural analysis of small blood vessels in skin biopsies in CADASIL

    Directory of Open Access Journals (Sweden)

    Lačković Vesna

    2008-01-01

    Full Text Available Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL is an inherited small- and medium-artery disease of the brain caused by mutation of the Notch3 gene. Very often, this disease is misdiagnosed. We examined skin biopsies in two members of the first discovered Serbian family affected by CADASIL. Electron microscopy showed that skin blood vessels of both patients contain numerous deposits of granular osmiophilic material (GOM around vascular smooth muscle cells (VSMCs. We observed degeneration of VSMCs, reorganization of their cytoskeleton and dense bodies, disruption of myoendothelial contacts, and apoptosis. Our results suggest that the presence of GOM in small skin arteries represents a specific marker in diagnosis of CADASIL.

  9. Spatiotemporal image correlation analysis of blood flow in branched vessel networks of zebrafish embryos

    Science.gov (United States)

    Ceffa, Nicolo G.; Cesana, Ilaria; Collini, Maddalena; D'Alfonso, Laura; Carra, Silvia; Cotelli, Franco; Sironi, Laura; Chirico, Giuseppe

    2017-10-01

    Ramification of blood circulation is relevant in a number of physiological and pathological conditions. The oxygen exchange occurs largely in the capillary bed, and the cancer progression is closely linked to the angiogenesis around the tumor mass. Optical microscopy has made impressive improvements in in vivo imaging and dynamic studies based on correlation analysis of time stacks of images. Here, we develop and test advanced methods that allow mapping the flow fields in branched vessel networks at the resolution of 10 to 20 μm. The methods, based on the application of spatiotemporal image correlation spectroscopy and its extension to cross-correlation analysis, are applied here to the case of early stage embryos of zebrafish.

  10. Wrong theories on the origin of blood vessels: Polybus and De Natura Hominis.

    Science.gov (United States)

    Shoja, Mohammadali M; Tubbs, R Shane; Loukas, Marios; Ardalan, Mohammad R

    2008-06-06

    Polybus of Cos (approximately 400 B.C.) was the son-in-law and the successor of Hippocrates. He is credited with founding the school of Dogmatism, and writing "The Nature of Man" which was important in advancing the theory of the four body humors (humoralism). Some earlier scholars negated Polybus' role as an independent medical figure. However, Corpus Aristotelicum quoted him as having a unique theory regarding the body vasculature which stated that this system was composed of four pairs of blood vessels originating from the head and that these supplied the whole body. In an interpretation of this theory, we opined that numerological mysticism might have been the common motive for both Hippocrates' humoralism and Polybus' theory of the vasculature. A discussion on this issue is presented.

  11. Transgenic quail production by microinjection of lentiviral vector into the early embryo blood vessels.

    Directory of Open Access Journals (Sweden)

    Zifu Zhang

    Full Text Available Several strategies have been used to generate transgenic birds. The most successful method so far has been the injection of lentiviral vectors into the subgerminal cavity of a newly laid egg. We report here a new, easy and effective way to produce transgenic quails through direct injection of a lentiviral vector, containing an enhanced-green fluorescent protein (eGFP transgene, into the blood vessels of quail embryos at Hamburger-Hamilton stage 13-15 (HH13-15. A total of 80 embryos were injected and 48 G0 chimeras (60% were hatched. Most injected embryo organs and tissues of hatched quails were positive for eGFP. In five out of 21 mature G0 male quails, the semen was eGFP-positive, as detected by polymerase chain reaction (PCR, indicating transgenic germ line chimeras. Testcross and genetic analyses revealed that the G0 quail produced transgenic G1 offspring; of 46 G1 hatchlings, 6 were transgenic (6/46, 13.0%. We also compared this new method with the conventional transgenesis using stage X subgerminal cavity injection. Total 240 quail embryos were injected by subgerminal cavity injection, of which 34 (14.1% were hatched, significantly lower than the new method. From these hatched quails semen samples were collected from 19 sexually matured males and tested for the transgene by PCR. The transgene was present in three G0 male quails and only 4/236 G1 offspring (1.7% were transgenic. In conclusion, we developed a novel bird transgenic method by injection of lentiviral vector into embryonic blood vessel at HH 13-15 stage, which result in significant higher transgenic efficiency than the conventional subgerminal cavity injection.

  12. Factor V Leiden Is Associated with Higher Risk of Deep Venous Thrombosis of Large Blood Vessels

    Science.gov (United States)

    Arsov, Todor; Miladinova, Daniela; Spiroski, Mirko

    2006-01-01

    Aim To determine the prevalence of factor V Leiden mutation in patients with different presentation of venous thromboembolic disease and healthy individuals in the Republic of Macedonia. Methods The retrospective case-control study involved 190 patients with venous thromboembolic disease and 200 healthy individuals, who were screened for the presence of factor V Leiden mutation, using a polymerase chain reaction-restriction fragment length polymorphism method. The prevalence of factor V Leiden was analyzed according to the localization of thrombosis, presence of risk factors, and family history of thrombosis. The odds of deep venous thrombosis were calculated with respect to the presence of factor V Leiden mutation. Results The prevalence of factor V Leiden mutation among patients with venous thromboembolic disease was 21.1%, compared with 5.5% in the healthy individuals. Factor V Leiden positive patients had the first episode of deep venous thrombosis at a younger age, and the prevalence of the mutation was the highest among patients with a positive family history of thrombosis (33.9%, P = 0.003) and in patients with deep venous thrombosis affecting a large blood vessel (37.7%, P = 0.001). The prevalence of factor V Leiden mutation was lower in patients with calf deep venous thrombosis and primary thromboembolism (13.3% and 13.1%, respectively; P>0.05). The odds ratio for iliofemoral or femoral deep venous thrombosis in factor V Leiden carriers was 10.4 (95% confidence interval, 4.7-23.1). Conclusion The prevalence of factor V Leiden mutation was high in patients with venous thromboembolic disease and healthy individuals in the Republic of Macedonia. Factor V Leiden carriers have the highest odds of developing deep venous thrombosis affecting a large venous blood vessel. PMID:16758522

  13. Distinct mechanisms of relaxation to bioactive components from chamomile species in porcine isolated blood vessels.

    Science.gov (United States)

    Roberts, R E; Allen, S; Chang, A P Y; Henderson, H; Hobson, G C; Karania, B; Morgan, K N; Pek, A S Y; Raghvani, K; Shee, C Y; Shikotra, J; Street, E; Abbas, Z; Ellis, K; Heer, J K; Alexander, S P H

    2013-11-01

    German chamomile (Matricaria recutita L.), a widely-used herbal medicine, has been reported to have a wide range of biological effects, including smooth muscle relaxation. The aim of this study was to compare the effects of representative compounds from chamomile (apigenin, luteolin, (-)-α-bisabolol, farnesene, umbelliferone; 3-30 μM) on vascular tone using porcine coronary and splenic arteries mounted for isometric tension recording in isolated tissue baths and precontracted with the thromboxane-mimetic U46619. Apigenin, luteolin, and (-)-α-bisabolol produced slow, concentration-dependent relaxations in both the coronary and splenic arteries that were not blocked by inhibition of nitric oxide synthase or potassium channels. Removal of extracellular calcium inhibited the relaxations to all three compounds, and these compounds also inhibited calcium re-addition-evoked contractions, indicating that the relaxation response may be mediated through inhibition of calcium influx. Apigenin and luteolin, but not (-)-α-bisabolol, enhanced the relaxation to the nitric oxide donor sodium nitroprusside, indicating that apigenin and luteolin may act to regulate cyclic GMP levels. Umbelliferone produced a rapid, transient relaxation in the splenic artery, but not the coronary artery, that was inhibited by L-NAME and removal of the endothelium, suggesting an influence on nitric oxide production. Farnesene, at concentrations up to 30 μM, was without effect in either blood vessel. In conclusion, hydroxylated compounds (apigenin, luteolin and (-)-α-bisabolol) found in chamomile all caused a slow relaxation of isolated blood vessels through an effect on calcium influx. Umbelliferone, on the other hand, produced a rapid, transient relaxation dependent upon release of nitric oxide from the endothelium. © 2013.

  14. SDF-1 controls the muscle and blood vessel formation of the somite.

    Science.gov (United States)

    Abduelmula, Aisha; Huang, Ruijin; Pu, Qin; Tamamura, Hirokazu; Morosan-Puopolo, Gabriela; Brand-Saberi, Beate

    2016-01-01

    Stromal-cell-derived factor-1 (SDF-1), the only ligand of the chemokine receptor CXCR4, is involved in skeletal muscle development. However, its role in the proliferation, differentiation and migration of somite cells is not well understood. Here, we investigated its function during somite development in chicken embryos by using gain-of-function and loss-of-function experiments. Overexpression of SDF-1 was performed by electroporating SDF-1 constructs into the ventrolateral part of the somite, or by injecting SDF-1-expressing cells into the somites of stages HH14-16 chicken embryos. We found that enhanced SDF-1 signaling induced cell proliferation in the somite. This resulted in an increase in number of both myotomal and endothelial cells. In contrast, inhibition of SDF-1/CXCR4 signaling led to a reduction of myotomal cells. Injection of SDF-1 producing cells into the somite induced ectopic localization of myotomal cells in the sclerotome. Although many SDF-1-expressing somite cells colonized the limb, only a few of them developed into muscle cells. This resulted in a reduction of the limb muscle mass. This means that most myogenic progenitors were stopped on their migration towards the limb due to the high concentration of the SDF-1 signal in the somite. Most of the SDF-1-expressing somite cells found in the limb were of endothelial cell fate and they contributed to the increase in limb blood vessels. These results reveal that SDF-1 promotes the proliferation of both myogenic and angiogenic progenitor cells of the somite and controls myotome formation. Furthermore, SDF-1 controls muscle and blood vessel formation in the limb in different ways.

  15. Tumor blood vessel "normalization" improves the therapeutic efficacy of boron neutron capture therapy (BNCT) in experimental oral cancer

    Energy Technology Data Exchange (ETDEWEB)

    D. W. Nigg

    2012-01-01

    We previously demonstrated the efficacy of BNCT mediated by boronophenylalanine (BPA) to treat tumors in a hamster cheek pouch model of oral cancer with no normal tissue radiotoxicity and moderate, albeit reversible, mucositis in precancerous tissue around treated tumors. It is known that boron targeting of the largest possible proportion of tumor cells contributes to the success of BNCT and that tumor blood vessel normalization improves drug delivery to the tumor. Within this context, the aim of the present study was to evaluate the effect of blood vessel normalization on the therapeutic efficacy and potential radiotoxicity of BNCT in the hamster cheek pouch model of oral cancer.

  16. THE INFLUINCE OF THE STAPHYLOCOCCUS INFECTION TO THE STRUCTURAL ORGANIZATION OF WISTAR RATS BRAIN AND CEREBRAL BLOOD VESSELS

    Directory of Open Access Journals (Sweden)

    Torianik I. I.

    2013-12-01

    Full Text Available In this article there are a dates about the influence of thestaphylococcus infection to the structural organization of Wistar rats brain and cerebral blood vessels in experiment. The purpose of the experiment’s are achieving by the seding staphylococcus infection means of the characterical structures of the brain and cerebralblood damages, that similar with the such in a human in a case of the development of a traditional clinic pathology.The results are evaluated to character of the morphological changes (brain cortex and cerebral blood vessels destructive and degenerative alterations,inflammatory processes.

  17. Predicting effects of blood flow rate and size of vessels in a vasculature on hyperthermia treatments using computer simulation.

    Science.gov (United States)

    Huang, Huang-Wen; Shih, Tzu-Ching; Liauh, Chihng-Tsung

    2010-03-26

    Pennes Bio Heat Transfer Equation (PBHTE) has been widely used to approximate the overall temperature distribution in tissue using a perfusion parameter term in the equation during hyperthermia treatment. In the similar modeling, effective thermal conductivity (Keff) model uses thermal conductivity as a parameter to predict temperatures. However the equations do not describe the thermal contribution of blood vessels. A countercurrent vascular network model which represents a more fundamental approach to modeling temperatures in tissue than do the generally used approximate equations such as the Pennes BHTE or effective thermal conductivity equations was presented in 1996. This type of model is capable of calculating the blood temperature in vessels and describing a vasculature in the tissue regions. In this paper, a countercurrent blood vessel network (CBVN) model for calculating tissue temperatures has been developed for studying hyperthermia cancer treatment. We use a systematic approach to reveal the impact of a vasculature of blood vessels against a single vessel which most studies have presented. A vasculature illustrates branching vessels at the periphery of the tumor volume. The general trends present in this vascular model are similar to those shown for physiological systems in Green and Whitmore. The 3-D temperature distributions are obtained by solving the conduction equation in the tissue and the convective energy equation with specified Nusselt number in the vessels. This paper investigates effects of size of blood vessels in the CBVN model on total absorbed power in the treated region and blood flow rates (or perfusion rate) in the CBVN on temperature distributions during hyperthermia cancer treatment. Also, the same optimized power distribution during hyperthermia treatment is used to illustrate the differences between PBHTE and CBVN models. Keff (effective thermal conductivity model) delivers the same difference as compared to the CBVN model. The

  18. Predicting effects of blood flow rate and size of vessels in a vasculature on hyperthermia treatments using computer simulation

    Directory of Open Access Journals (Sweden)

    Shih Tzu-Ching

    2010-03-01

    Full Text Available Abstract Background Pennes Bio Heat Transfer Equation (PBHTE has been widely used to approximate the overall temperature distribution in tissue using a perfusion parameter term in the equation during hyperthermia treatment. In the similar modeling, effective thermal conductivity (Keff model uses thermal conductivity as a parameter to predict temperatures. However the equations do not describe the thermal contribution of blood vessels. A countercurrent vascular network model which represents a more fundamental approach to modeling temperatures in tissue than do the generally used approximate equations such as the Pennes BHTE or effective thermal conductivity equations was presented in 1996. This type of model is capable of calculating the blood temperature in vessels and describing a vasculature in the tissue regions. Methods In this paper, a countercurrent blood vessel network (CBVN model for calculating tissue temperatures has been developed for studying hyperthermia cancer treatment. We use a systematic approach to reveal the impact of a vasculature of blood vessels against a single vessel which most studies have presented. A vasculature illustrates branching vessels at the periphery of the tumor volume. The general trends present in this vascular model are similar to those shown for physiological systems in Green and Whitmore. The 3-D temperature distributions are obtained by solving the conduction equation in the tissue and the convective energy equation with specified Nusselt number in the vessels. Results This paper investigates effects of size of blood vessels in the CBVN model on total absorbed power in the treated region and blood flow rates (or perfusion rate in the CBVN on temperature distributions during hyperthermia cancer treatment. Also, the same optimized power distribution during hyperthermia treatment is used to illustrate the differences between PBHTE and CBVN models. Keff (effective thermal conductivity model delivers the

  19. The influence of the blood vessel diameter on the full scattering profile from cylindrical tissues: experimental evidence for the shielding effect.

    Science.gov (United States)

    Feder, Idit; Duadi, Hamootal; Dreifuss, Tamar; Fixler, Dror

    2016-10-01

    Optical methods for detecting physiological state based on light-tissue interaction are noninvasive, inexpensive, simplistic, and thus very useful. The blood vessels in human tissue are the main cause of light absorbing and scattering. Therefore, the effect of blood vessels on light-tissue interactions is essential for optically detecting physiological tissue state, such as oxygen saturation, blood perfusion and blood pressure. We have previously suggested a new theoretical and experimental method for measuring the full scattering profile, which is the angular distribution of light intensity, of cylindrical tissues. In this work we will present experimental measurements of the full scattering profile of heterogenic cylindrical phantoms that include blood vessels. We show, for the first time that the vessel diameter influences the full scattering profile, and found higher reflection intensity for larger vessel diameters accordance to the shielding effect. For an increase of 60% in the vessel diameter the light intensity in the full scattering profile above 90° is between 9% to 40% higher, depending on the angle. By these results we claim that during respiration, when the blood-vessel diameter changes, it is essential to consider the blood-vessel diameter distribution in order to determine the optical path in tissues. A CT scan of the measured silicon-based phantoms. The phantoms contain the same blood volume in different blood-vessel diameters. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Lama1 mutations lead to vitreoretinal blood vessel formation, persistence of fetal vasculature, and epiretinal membrane formation in mice

    Directory of Open Access Journals (Sweden)

    Heng Céline

    2011-10-01

    Full Text Available Abstract Background Valuable insights into the complex process of retinal vascular development can be gained using models with abnormal retinal vasculature. Two such models are the recently described mouse lines with mutations in Lama1, an important component of the retinal internal limiting membrane (ILM. These mutants have a persistence of the fetal vasculature of vitreous (FVV but lack a primary retinal vascular plexus. The present study provides a detailed analysis of astrocyte and vascular development in these Lama1 mutants. Results Although astrocytes and blood vessels initially migrate into Lama1 mutant retinas, both traverse the peripapillary ILM into the vitreous by P3. Once in the vitreous, blood vessels anastomose with vessels of the vasa hyaloidea propria, part of the FVV, and eventually re-enter the retina where they dive to form the inner and outer retinal capillary networks. Astrocytes continue proliferating within the vitreous to form a dense mesh that resembles epiretinal membranes associated with persistent fetal vasculature and proliferative vitreoretinopathy. Conclusions Lama1 and a fully intact ILM are required for normal retinal vascular development. Mutations in Lama1 allow developing retinal vessels to enter the vitreous where they anastomose with vessels of the hyaloid system which persist and expand. Together, these vessels branch into the retina to form fairly normal inner retinal vascular capillary plexi. The Lama1 mutants described in this report are potential models for studying the human conditions persistent fetal vasculature and proliferative vitreoretinopathy.

  1. Blood Vessel Density in Basal Cell Carcinomas and Benign Trichogenic Tumors as a Marker for Differential Diagnosis in Dermatopathology

    International Nuclear Information System (INIS)

    Winter, J.; Kneitz, H.; Brocker, E. B.

    2011-01-01

    In order to get insight into the density of blood vessels in the stroma of benign and malignant trichogenic neoplasms, immuno histological quantification of CD 31 positive vessels was performed in 112 tumors, comprised of 50 BCCs of nodular (35) or morphoeic (15) growth patterns, 17 Pinkus' tumors, as well as 17 trichoepitheliomas of which 6 were desmoplastic, 8 trichofolliculomas, and 20 trichoblastomas. Methods. Vessel density was counted within the tumors, in the tumor-surrounding stroma, and, as a control, in the normal skin of the operation specimen. The results were compared using statistical methods. Results. Whereas, irrespective of the patients' age and location of tumors, the vessel density in normal skin showed no significant differences (8.8±2.7), the counts in the peritumoral stroma revealed significant differences between the different tumors investigated. The highest counts were obtained in BCC (24.7±6.7) and the lowest in benign trichogenic neoplasms (around 14) Pinkus' tumors revealed intermediate counts (19.7±6.6). The vessel densities within the tumors were generally low, and no correlation to the dignity was found. Conclusion. Determination of blood vessel density in the peritumoral stroma may be an additional parameter for differential diagnosis of trichogenic tumors of uncertain dignity.

  2. Ultrasound sonication with microbubbles disrupts blood vessels and enhances tumor treatments of anticancer nanodrug

    Directory of Open Access Journals (Sweden)

    Lin CY

    2012-04-01

    Full Text Available Chung-Yin Lin1*, Hsiao-Ching Tseng1*, Heng-Ruei Shiu1, Ming-Fang Wu2, Cheng-Ying Chou3, Win-Li Lin1,41Institute of Biomedical Engineering, 2Laboratory Animal Center, 3Department of Bio-Industrial Mechatronics Engineering, National Taiwan University, Taipei, Taiwan; 4Division of Medical Engineering Research, National Health Research Institutes, Miaoli, Taiwan*These authors contributed equally to this workAbstract: Ultrasound (US sonication with microbubbles (MBs has the potential to disrupt blood vessels and enhance the delivery of drugs into the sonicated tissues. In this study, mouse ear tumors were employed to investigate the therapeutic effects of US, MBs, and pegylated liposomal doxorubicin (PLD on tumors. Tumors started to receive treatments when they grew up to about 15 mm3 (early stage with injection of PLD 10 mg/kg, or up to 50 mm3 (medium stage with PLD 6 (or 4 mg/kg. Experiments included the control, PLD alone, PLD + MBs + US, US alone, and MBs + US groups. The procedure for the PLD + MBs + US group was that PLD was injected first, MB (SonoVue injection followed, and then US was immediately sonicated on the tumor. The results showed that: (1 US sonication with MBs was always able to produce a further hindrance to tumor growth for both early and medium-stage tumors; (2 for the medium-stage tumors, 6 mg/kg PLD alone was able to inhibit their growth, while it did not work for 4 mg/kg PLD alone; (3 with the application of MBs + US, 4 mg/kg PLD was able to inhibit the growth of medium-stage tumors; (4 for early stage tumors after the first treatment with a high dose of PLD alone (10 mg/kg, the tumor size still increased for several days and then decreased (a biphasic pattern; (5 MBs + US alone was able to hinder the growth of early stage tumors, but unable to hinder that of medium stage tumors. The results of histological examinations and blood perfusion measurements indicated that the application of MBs + US disrupts the tumor blood

  3. Effect of a novel motion correction algorithm (SSF) on the image quality of coronary CTA with intermediate heart rates: Segment-based and vessel-based analyses

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qianwen, E-mail: qianwen18@126.com; Li, Pengyu, E-mail: lipyu818@gmail.com; Su, Zhuangzhi, E-mail: suzhuangzhi@xwh.ccmu.edu.cn; Yao, Xinyu, E-mail: 314985151@qq.com; Wang, Yan, E-mail: wy19851121@126.com; Wang, Chen, E-mail: fskwangchen@gmail.com; Du, Xiangying, E-mail: duxying_xw@163.com; Li, Kuncheng, E-mail: kuncheng.li@gmail.com

    2014-11-15

    Highlights: • SSF provided better image quality than single-sector and bi-sector reconstruction among the intermediate heart rates (65–75 bpm). • Evidence for the application of prospective ECG-triggered coronary CTA with SSF onto an expanded heart rate range. • Information about the inconsistent effectiveness of SSF among the segments of coronary artery. - Abstract: Purpose: To evaluate the effect of SnapShot Freeze (SSF) reconstruction at an intermediate heart-rate (HR) range (65–75 bpm) and compare this method with single-sector reconstruction and bi-sector reconstruction on segmental and vessel bases in retrospective coronary computed tomography angiography (CCTA). Materials and methods: Retrospective electrocardiogram-gated CCTA was performed on 37 consecutive patients with HR between 65 and 75 bpm using a 64-row CT scanner. Retrospective single-sector reconstruction, bi-sector reconstruction, and SSF were performed for each patient. Multi-phase single-sector reconstruction was performed to select the optimal phase. SSF and bi-sector images were also reconstructed at the optimal phase. The images were interpreted in an intent-to-diagnose fashion by two experienced readers using a 5-point scale, with 3 points as diagnostically acceptable. Image quality among the three reconstruction groups were compared on per-patient, per-vessel, and per-segment bases. Results: The average HR of the enrolled patients was 69.4 ± 2.7 bpm. A total of 111 vessels and 481 coronary segments were assessed. SSF provided significantly higher interpretability of the coronary segments than bi-sector reconstructions. The qualified and excellent rates of SSF (97.9% and 82.3%) were significantly higher than those of single-sector (92.9% and 66.3%) and bi-sector (90.9% and 64.7%) reconstructions. The image quality score (IQS) using SSF was also significantly higher than those of single-sector and bi-sector reconstructions both on per-patient and per-vessel bases. On per-segment

  4. The relationship of retinal vessel diameters and fractal dimensions with blood pressure and cardiovascular risk factors.

    Directory of Open Access Journals (Sweden)

    Pengli Zhu

    Full Text Available BACKGROUND: This study aimed to investigate the correlation between quantitative retinal vascular parameters such as central retinal arteriolar equivalent (CRAE and retinal vascular fractal dimension (D(f, and cardiovascular risk factors in the Chinese Han population residing in the in islands of southeast China. METHODOLOGY/PRINCIPLE FINDINGS: In this cross-sectional study, fundus photographs were collected and semi-automated analysis software was used to analyze retinal vessel diameters and fractal dimensions. Cardiovascular risk factors such as relevant medical history, blood pressure (BP, lipids, and blood glucose data were collected. Subjects had a mean age of 51.9 ± 12.0 years and included 812 (37.4% males and 1,357 (62.6% females. Of the subjects, 726 (33.5% were overweight, 226 (10.4% were obese, 272 (12.5% had diabetes, 738 (34.0% had hypertension, and 1,156 (53.3% had metabolic syndrome. After controlling for the effects of potential confounders, multivariate analyses found that age (β = 0.06, P = 0.008, sex (β = 1.33, P = 0.015, mean arterial blood pressure (β = -0.12, P<0.001, high-sensitivity C-reactive protein (β = -0.22, P = 0.008, and CRVE (β = 0.23, P<0.001 were significantly associated with CRAE. Age (β = -0.0012, P < 0.001, BP classification (prehypertension: β = -0.0075, P = 0.014; hypertension: β = -0.0131, P = 0.002, and hypertension history (β = -0.0007, P = 0.009 were significantly associated with D(f. CONCLUSIONS/SIGNIFICANCE: D(f exhibits a stronger association with BP than CRAE. Thus, D(f may become a useful indicator of cardiovascular risk.

  5. Tests of the geometrical description of blood vessels in a thermal model using counter-current geometries

    NARCIS (Netherlands)

    van Leeuwen, G. M.; Kotte, A. N.; Crezee, J.; Lagendijk, J. J.

    1997-01-01

    We have developed a thermal model, for use in hyperthermia treatment planning, in which blood vessels are described as geometrical objects; 3D curves with associated diameters. For the calculation of the heat exchange with the tissue an analytic result is used. To arrive at this result some

  6. Antibody-linked drug destroys tumor cells and tumor blood vessels in many types of cancer | Center for Cancer Research

    Science.gov (United States)

    A team led by Brad St. Croix, Ph.D., Senior Associate Scientist, Mouse Cancer Genetics Program, has developed an antibody-drug conjugate (ADC) that destroys both tumor cells and the blood vessels that nourish them. The drug significantly shrank breast tumors, colon tumors and several other types of cancer and prolonged survival. Learn more...  

  7. Does Physical Fitness Buffer the Relationship between Psychosocial Stress, Retinal Vessel Diameters, and Blood Pressure among Primary Schoolchildren?

    Science.gov (United States)

    Gerber, Markus; Endes, Katharina; Herrmann, Christian; Colledge, Flora; Brand, Serge; Donath, Lars; Faude, Oliver; Pühse, Uwe; Hanssen, Henner; Zahner, Lukas

    2016-01-01

    Background . Strong evidence exists showing that psychosocial stress plays an important part in the development of cardiovascular diseases. Because physical inactivity is associated with less favourable retinal vessel diameter and blood pressure profiles, this study explores whether physical fitness is able to buffer the negative effects of psychosocial stress on retinal vessel diameters and blood pressure in young children. Methods . 325 primary schoolchildren (51% girls, M age = 7.28 years) took part in this cross-sectional research project. Retinal arteriolar diameters, retinal venular diameters, arteriolar to venular ratio, and systolic and diastolic blood pressure were assessed in all children. Interactions terms between physical fitness (performance in the 20 m shuttle run test) and four indicators of psychosocial stress (parental reports of critical life events, family, peer and school stress) were tested in a series of hierarchical regression analyses. Results . Critical life events and family, peer, and school-related stress were only weakly associated with retinal vessel diameters and blood pressure. No support was found for a stress-buffering effect of physical fitness. Conclusion . More research is needed with different age groups to find out if and from what age physical fitness can protect against arteriolar vessel narrowing and the occurrence of other cardiovascular disease risk factors.

  8. "Sausage-string" appearance of arteries and arterioles can be caused by an instability of the blood vessel wall

    DEFF Research Database (Denmark)

    Jacobsen, Jens Christian Brings; Beierholm, Ulrik; Mikkelsen, Rene

    2002-01-01

    observed experimentally. Most importantly, it suggests that the "sausaging" phenomenon is neither caused by a mechanical failure of the vessel wall due to a high blood pressure nor is it due to standing pressure waves caused by the beating of the heart. Rather, it is the expression of a general instability...

  9. Did antepartum hypoxic insult caused by fetal vessel thrombosis influence the procalcitonin level in umbilical blood? A case report.

    Science.gov (United States)

    Kaneko, Masatoki; Yamauchi, Aya; Yamashita, Rie; Sato, Yuichiro; Kodama, Yuki; Sameshima, Hiroshi

    2015-11-01

    We report a case of marked elevation of the procalcitonin level in umbilical blood and neonatal blood at birth. The mother did not perceive fetal motion. Antepartum fetal heart rate monitoring showed a loss of variability and absence of acceleration. No fetal breathing movement, fetal movement, or fetal tone were observed by ultrasonography. The female neonate was delivered by cesarean section at 25 weeks of gestation, with birthweight 774 g. The umbilical arterial pH value at birth was 7.29. Mild elevation in interleukin-6 and tumor necrosis factor-α in umbilical blood were observed. Cytochrome c showed a high level in umbilical and neonatal blood at birth. Placental histopathology revealed multiple fetal vessel thrombosis in the large stem villi and chorionic vessels. The neonate showed no infectious signs throughout the neonatal period. Computed tomography at 3 months of age revealed atrophy in the cerebrum and cerebellum. At 1 year after birth, the infant showed spastic quadriplegia. In this case, antepartum asphyxia due to fetal vessel thrombosis may have influenced the elevation of procalcitonin level in umbilical blood and neonatal blood at birth. © 2015 Japan Society of Obstetrics and Gynecology.

  10. A new resorbable device for ligation of blood vessels - A pilot study.

    Science.gov (United States)

    Höglund, Odd V; Hagman, Ragnvi; Olsson, Kerstin; Mindemark, Jonas; Borg, Niklas; Lagerstedt, Anne-Sofie

    2011-07-08

    During surgery, controlled haemostasis to prevent blood loss is vital for a successful outcome. It can be difficult to ligate vessels located deep in the abdomen. A device that is easy to use and enables secure ligatures could be beneficial. Cable ties made of nylon have been used for ligation but the non-resorbable material caused tissue reactions. The objective of this study was to use a resorbable material to construct a device with a self-locking mechanism and to test its mechanical strength and ligation efficiency. The device was manufactured by injection moulding of polydioxanone, a resorbable polymer used for suture materials. Polydioxanone with inherent viscosities of 1.9 dL/g and 1.3 dL/g were tested. The device consisted of a perforated flexible band which could be pulled through a case with a locking mechanism. After a first version of the device had been tested, some improvements were made. The locking case was downsized, corners were rounded off, the band was made thicker and the mould was redesigned to produce longer devices. Tensile tests were performed with the second version.The first version of the device was used to ligate the ovarian pedicle in a euthanized dog and to test echogenicity of the device with ultrasound. Compression of vessels of the ovarian pedicle was examined by histology. Both versions of the device were tested for haemostasis of and tissue grip on renal arteries in six anaesthetised pigs. The tensile strength of the flexible band of the devices with inherent viscosity of 1.9 dL/g was 50.1 ± 5.5 N (range 35.2-62.9 N, n = 11) and the devices with inherent viscosity of 1.3 dL/g had a tensile strength of 39.8 ± 8.1 N (range 18.6-54.2 N, n = 11). Injection moulding of the polymer with lower inherent viscosity resulted in a longer flow distance.Both versions of the device had an effective tissue grip and complete haemostasis of renal arteries was verified. The device attached to the ovarian pedicle could be seen with ultrasound, and

  11. [Aetiology and pathogenesis of damages to blood vessels in drug addicts].

    Science.gov (United States)

    Sultanaliev, T A; Tursynbaev, S E; Ivakin, V M

    2007-01-01

    The article deals with the problems concerning aetiology and pathogenesis of damages to blood vessels in patients practicing parenteral administration of surrogates of narcotic substances. In order to clinically and experimentally study the pattern of morphological alterations in the area of narcotic substances administration and to work out an appropriate classification of the forms and stages of development of the pathological process, the authors analysed the clinical course of vascular lesions and complications thereof in a total of 244 drug abusers having parenterally administered surrogates of narcotic substances and undergoing treatment at the Department of Vascular Surgery of the Municipal Clinical Hospital of the city of Almaty. Additionally, experimental studies were carried out on 16 rabbits with the induced model of parenteral administration of surrogates of narcotic substances, thus making it possible to study the degree of their effect and to confirm the theory of a chemical impact of the homemade drugs on the vascular wall. The findings of the carried out studies enabled us to single out the following clinical stages of vascular lesions: stage I - the initial stage of cicatricial-and-ulcerous lesions formation, stage II - formation of cutaneous-and-vascular fistulas, stage III - the stage of complications characterized by development of health-hazardous vascular lesions, i. e., arterial and venous thromboses of the major vessels, as well as arrosive bleedings. It was noted that more than 50% of patients were admitted to the clinic presenting with the third stage of vascular lesions. The experimental part of the study included 64 experiments on 16 rabbits (one experiment per each paw of the animal). The laboratory animals were subdivided into three groups. The first experimental group consisted of the rabbits with a mechanically inflicted injury to the vessels. The second and third experimental groups were composed of the rabbits having received

  12. Rapid sealing of porcine renal blood vessels, ex vivo, using a high power, 1470-nm laser, and laparoscopic prototype

    Science.gov (United States)

    Hardy, Luke A.; Hutchens, Thomas C.; Larson, Eric R.; Gonzalez, David A.; Chang, Chun-Hung; Nau, William H.; Fried, Nathaniel M.

    2017-05-01

    Energy-based, radiofrequency (RF) and ultrasonic (US) devices currently provide rapid sealing of blood vessels during laparoscopic procedures. We are exploring infrared lasers as an alternate energy modality for vessel sealing, capable of generating less collateral thermal damage. Previous studies demonstrated feasibility of sealing vessels in an in vivo porcine model using a 1470-nm laser. However, the initial prototype was designed for testing in open surgery and featured tissue clasping and light delivery mechanisms incompatible with laparoscopic surgery. In this study, a laparoscopic prototype similar to devices currently in surgical use was developed, and performance tests were conducted on porcine renal blood vessels, ex vivo. The 5-mm outer-diameter laparoscopic prototype featured a traditional Maryland jaw configuration that enables tissue manipulation and blunt dissection. Laser energy was delivered through a 550-μm-core-diameter optical fiber with side-delivery from the lower jaw and beam dimensions of 18-mm length×1.2-mm width. The 1470-nm diode laser delivered 68 W with 3-s activation time, consistent with vessel seal times associated with RF and US-based devices. A total of 69 fresh porcine renal vessels with mean diameter of 3.3±1.7 mm were tested, ex vivo. Vessels smaller than 5-mm diameter were consistently sealed (48/51) with burst pressures greater than malignant hypertension blood pressure (180 mmHg), averaging 1038±474 mmHg. Vessels larger than 5 mm were not consistently sealed (6/18), yielding burst pressures of only 174±221 mmHg. Seal width, thermal damage zone, and thermal spread averaged 1.7±0.8, 3.4±0.7, and 1.0±0.4 mm, respectively. Results demonstrated that the 5-mm optical laparoscopic prototype consistently sealed vessels less than 5-mm diameter with low thermal spread. Further in vivo studies are planned to test the performance across a variety of vessels and tissues.

  13. Improving left ventricular segmentation in four-dimensional flow MRI using intramodality image registration for cardiac blood flow analysis.

    Science.gov (United States)

    Gupta, Vikas; Bustamante, Mariana; Fredriksson, Alexandru; Carlhäll, Carl-Johan; Ebbers, Tino

    2018-01-01

    Assessment of blood flow in the left ventricle using four-dimensional flow MRI requires accurate left ventricle segmentation that is often hampered by the low contrast between blood and the myocardium. The purpose of this work is to improve left-ventricular segmentation in four-dimensional flow MRI for reliable blood flow analysis. The left ventricle segmentations are first obtained using morphological cine-MRI with better in-plane resolution and contrast, and then aligned to four-dimensional flow MRI data. This alignment is, however, not trivial due to inter-slice misalignment errors caused by patient motion and respiratory drift during breath-hold based cine-MRI acquisition. A robust image registration based framework is proposed to mitigate such errors automatically. Data from 20 subjects, including healthy volunteers and patients, was used to evaluate its geometric accuracy and impact on blood flow analysis. High spatial correspondence was observed between manually and automatically aligned segmentations, and the improvements in alignment compared to uncorrected segmentations were significant (P analysis from manual and automatically corrected segmentations did not differ significantly (P > 0.05). Our results demonstrate the efficacy of the proposed approach in improving left-ventricular segmentation in four-dimensional flow MRI, and its potential for reliable blood flow analysis. Magn Reson Med 79:554-560, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  14. Inter-method agreement in retinal blood vessels diameter analysis between Dynamic Vessel Analyzer and optical coherence tomography.

    Science.gov (United States)

    Benatti, Lucia; Corvi, Federico; Tomasso, Livia; Mercuri, Stefano; Querques, Lea; Ricceri, Fulvio; Bandello, Francesco; Querques, Giuseppe

    2017-06-01

    To analyze the inter-methods agreement in arteriovenous ratio (AVR) evaluation between spectral-domain optical coherence tomography (SD-OCT) and Dynamic Vessel Analyzer (DVA). Healthy volunteers underwent DVA and SD-OCT examination. AVR was measured by SD-OCT using the four external lines of the optic nerve head-centered 7-line cube and by DVA using an automated AVR estimation. The mean AVR was calculated, twice, separately by two independent readers for each tool. Twenty-two eyes of 11 healthy subjects (five women and six men, mean age 35) were included. AVR analysis by DVA showed high inter-observer agreement between reader 1 and 2, and high intra-observer agreement for both reader 1 and reader 2. With regard to AVR analysis on SD-OCT, we found high inter-observer agreement between reader 1 and 2, and low intra-observer agreement for reader 2 but high intra-observer agreement for reader 1. Overall, the mean AVR measured on SD-OCT turned out to be significantly higher than mean AVR measured through DVA (reader 1, 0.9023 ± 0.06 vs 0.8036 ± 0.08; p DVA and SD-OCT). We found significant difference in the two noninvasive methods for AVR measurement, with a tendency for SD-OCT to overestimate retinal vascular caliber in comparison to DVA. This may be useful for achieving greater accuracy in the evaluation of retinal vessel in ocular as well as systemic diseases.

  15. X-ray PIV measurement of blood flow in deep vessels of a rat: An in vivo feasibility study.

    Science.gov (United States)

    Park, Hanwook; Yeom, Eunseop; Lee, Sang Joon

    2016-01-18

    X-ray PIV measurement is a noninvasive approach to measure opaque blood flows. However, it is not easy to measure real pulsatile blood flows in the blood vessels located at deep position of the body, because the surrounding tissues significantly attenuate the contrast of X-ray images. This study investigated the effect of surrounding tissues on X-ray beam attenuation by measuring the velocity fields of blood flows in deep vessels of a live rat. The decrease in image contrast was minimized by employing biocompatible CO2 microbubbles as tracer particles. The maximum measurable velocity of blood flows in the abdominal aorta of a rat model was found through comparative examination between the PIV measurement accuracy and the level of image contrast according to the input flow rate. Furthermore, the feasibility of using X-ray PIV to accurately measure in vivo blood flows was demonstrated by determining the velocity field of blood flows in the inferior vena cava of a rat. This study may serve as a reference in conducting in vivo X-ray PIV measurements of pulsatile blood flows in animal disease models and investigating hemodynamic characteristics and circulatory vascular diseases.

  16. Effects of pomegranate extract on blood flow and vessel diameter after high-intensity exercise in young, healthy adults.

    Science.gov (United States)

    Roelofs, Erica J; Smith-Ryan, Abbie E; Trexler, Eric T; Hirsch, Katie R; Mock, Meredith G

    2017-04-01

    The effects of pomegranate extract (PE) supplementation were evaluated on high-intensity exercise performance, blood flow, vessel diameter, oxygen saturation (SPO 2 ), heart rate (HR), and blood pressure (BP). In a randomized, crossover design, nineteen recreationally resistance-trained participants were randomly assigned to PE (1000 mg) or placebo (PL), which were consumed 30 min prior to a repeated sprint ability (RSA) test and repetitions to fatigue (RTF) on bench and leg press. The RSA consisted of ten six-second sprints on a friction-loaded cycle ergometer with 30 s recovery. Brachial artery blood flow and vessel diameter were assessed by ultrasound. Blood flow, vessel diameter, SPO 2 , HR, and BP were assessed at baseline, 30 min post ingestion, immediately post exercise (IPost), and 30 min post exercise (30minPost). With PE, blood flow significantly increased IPost RSA (mean difference = 18.49 mL min -1 ; P exercise performance enhancement from increased delivery of substrates and oxygen. The acute timing and capsule form of PE may be advantageous to athletic populations due to ergogenic effects, taste, and convenience.

  17. Cellular transport of subretinal material into choroidal and scleral blood vessels: an electron microscopic study.

    Science.gov (United States)

    Peters, S; Kayatz, P; Kociok, N; Heimann, K; Schraermeyer, U

    1999-12-01

    The fate of indigestible material injected into the subretinal space of rats was investigated. The non-toxic dye Monastral Blue (MB), which cannot be digested within the lysosomal compartment, was injected transsclerally into the subretinal space of Long Evans and Wistar rats. After 5 and 12 days respectively the eyes were enucleated and examined by light and electron microscopy. Cryo sections were made of eyes 5 days after MB injection for the application of immunohistochemical techniques using markers for epithelial cells (cytokeratin) and macrophages (ED 1). Retina, choroid and sclera were not altered in their morphology in the circumference of the MB-containing bubble generated by subretinal injection. After both 5 and 12 days no injected material was found extracellularly in the subretinal space. Especially high amounts of MB were found, in particular 5 days after injection, in lysosomes and melanosomes of RPE cells as well as in cells between choroidal melanocytes. Cells containing MB were seen in contact with choroidal and scleral blood vessels. These MB-containing cells in the choroid and in the sclera were positive for macrophage antibodies. Subretinal injection was confirmed as a suitable method for placing fluids into the subretinal space without affecting the morphology of the retina. Subretinal injected material was shown to be incorporated into lysosomes and melanosomes of RPE cells. The injected material was subsequently transported through Bruch's membrane to be finally removed from the eye via choroidal and scleral veins, the process involving macrophages.

  18. Evaluation of local density enhancement of microcapsules in artificial blood vessel during exposure to focused ultrasound

    Science.gov (United States)

    Nakamoto, Ryusuke; Masuda, Kohji; Watarai, Nobuyuki; Taguchi, Yuto; Kato, Toshikazu; Yoshinaga, Takashi; Miyamoto, Yoshitaka; Chiba, Toshio

    2011-09-01

    We have proposed a physical DDS (Drug Delivery System) which makes use of microcapsules of μm size, which may contain a specified drug and also are easily affected by ultrasound exposure near their resonant frequency, to release various kinds of medications. These capsules are easily detected and actuated by ultrasound. However, because of the diffusion of capsules after injection into human body, it was difficult to enhance the efficiency of drug delivery. Thus we have considered a method for controlling the density of capsules in flow which uses acoustic radiation force, which moves the capsules to balance flow resistance. We have experimented with trapping microcapsules or microbubbles in flow of an artificial blood vessel. We have evaluated the effect of radiation force by measuring the trapped area of capsules or bubbles for various frequencies, sound pressures, and exposure times of sinusoidal ultrasound. The trapped area of capsules or bubbles increased with sound pressure and exposure time, and decreased with frequency. From those results, we have derived optimal conditions for trapping the capsules or bubbles.

  19. Thermal expansion of vitrified blood vessels permeated with DP6 and synthetic ice modulators.

    Science.gov (United States)

    Eisenberg, David P; Taylor, Michael J; Jimenez-Rios, Jorge L; Rabin, Yoed

    2014-06-01

    This study provides thermal expansion data for blood vessels permeated with the cryoprotective cocktail DP6, when combined with selected synthetic ice modulators (SIMs): 12% polyethylene glycol 400, 6% 1,3-cyclohexanediol, and 6% 2,3-butanediol. The general classification of SIMs includes molecules that modulate ice nucleation and growth, or possess properties of stabilizing the amorphous state, by virtue of their chemical structure and at concentrations that are not explained on a purely colligative basis. The current study is part of an ongoing effort to characterize thermo-mechanical effects on structural integrity of cryopreserved materials, where thermal expansion is the driving mechanism to thermo-mechanical stress. This study focuses on the lower part of the cryogenic temperature range, where the cryoprotective agent (CPA) behaves as a solid for all practical applications. By combining results obtained in the current study with literature data on the thermal expansion in the upper part of the cryogenic temperature range, unified thermal expansion curves are presented. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Infrared tomography for diagnostic imaging of port wine stain blood vessels

    Energy Technology Data Exchange (ETDEWEB)

    Goodman, D. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    The objective of this work is the development of Infrared Tomography (IRT) for detecting and characterizing subsurface chromophores in human skin. Characterization of cutaneous chromophores is crucial for advances in the laser treatment of pigmented lesions (e.g., port wine stain birthmarks and tatoos). Infrared tomography (IRT) uses a fast infrared focal plane array (IR-FPA) to detect temperature rises in a substrate induced by pulsed radiation. A pulsed laser is used to produce transient heating of an object. The temperature rise, due to the optical absorption of the pulsed laser light, creates an increase in infrared emission which is measured by the IR-FPA. Although the application of IRT to image subsurface cracks due to metal fatigue is a topic of great interest in the aircraft industry, the application to image subsurface chromophores in biological materials is novel. We present an image recovery method based on a constrained conjugate gradient algorithm that has obtained the first ever high quality images of port wine blood vessels.

  1. Mast cells present protrusions into blood vessels upon tracheal allergen challenge in mice.

    Directory of Open Access Journals (Sweden)

    Oishee Bose

    Full Text Available Mast cells (MC and myeloid dendritic cells (DC act proximally in detecting and processing antigens and immune insults. We sought to understand their comparative dynamic behavior with respect to the airway epithelium in the steady state and in response to an allergic stimulus in mouse trachea. We devised methods to label MC in living trachea and to demonstrate that MC and DC occupy distinct layers of the tracheal mucosa, with DC being closer to the lumen. DC numbers doubled after allergen challenge, but MC numbers remained stable. MC and DC migrated minimally in either steady state or allergen-challenge conditions, and their interactions with one another appeared to be stochastic and relatively infrequent. While DC, unlike MC, exhibited probing behaviors involving dendrites, these projections did not cross the epithelium into the airway lumen. MC typically were located too far from the epithelial surface to contact the tracheal lumen. However, MC had protrusions toward and into blood vessels, likely to load with IgE. Thus, DC and MC occupy distinct niches and engage in sessile surveillance in the mouse trachea. Little or no access of these cell types to the airway lumen suggests that trans-epithelial transport of proteins in the steady state would be required for them to access luminal antigens.

  2. Thermal Expansion of Vitrified Blood Vessels Permeated with DP6 and Synthetic Ice Modulators

    Science.gov (United States)

    Eisenberg, David P.; Taylor, Michael J.; Jimenez-Rios, Jorge L.; Rabin, Yoed

    2014-01-01

    This study provides thermal expansion data for blood vessels permeated with the cryoprotective cocktail DP6, when combined with selected synthetic ice modulators (SIMs): 12% polyethylene glycol 400, 6% 1,3-cyclohexanediol, and 6% 2,3-butanediol. The general classification of SIMs includes molecules that modulate ice nucleation and growth, or possess properties of stabilizing the amorphous state, by virtue of their chemical structure and at concentrations that are not explained on a purely colligative basis. The current study is part of an ongoing effort to characterize thermo-mechanical effects on structural integrity of cryopreserved materials, where thermal expansion is the driving mechanism to thermo-mechanical stress. This study focuses on the lower part of the cryogenic temperature range, where the cryoprotective agent (CPA) behaves as a solid for all practical applications. By combining results obtained in the current study with literature data on the thermal expansion in the upper part of the cryogenic temperature range, unified thermal expansion curves are presented. PMID:24769313

  3. Numerical investigation of MHD flow of blood and heat transfer in a stenosed arterial segment

    Energy Technology Data Exchange (ETDEWEB)

    Majee, Sreeparna; Shit, G.C., E-mail: gcs@math.jdvu.ac.in

    2017-02-15

    A numerical investigation of unsteady flow of blood and heat transfer has been performed with an aim to provide better understanding of blood flow through arteries under stenotic condition. The blood is treated as Newtonian fluid and the arterial wall is considered to be rigid having deposition of plaque in its lumen. The heat transfer characteristic has been analyzed by taking into consideration of the dissipation of energy due to applied magnetic field and the viscosity of blood. The vorticity-stream function formulation has been adopted to solve the problem using implicit finite difference method by developing well known Peaceman–Rachford Alternating Direction Implicit (ADI) scheme. The quantitative profile analysis of velocity, temperature and wall shear stress as well as Nusselt number is carried out over the entire arterial segment. The streamline and temperature contours have been plotted to understand the flow pattern in the diseased artery, which alters significantly in the downstream of the stenosis in the presence of magnetic field. Both the wall shear stress and Nusselt number increases with increasing magnetic field strength. However, wall shear stress decreases and Nusselt number enhances with Reynolds number. The results show that with an increase in the magnetic field strength upto 8 T, does not causes any damage to the arterial wall, but the study is significant for assessing temperature rise during hyperthermic treatment. - Highlights: • Fully numerical simulation is carried out for MHD blood flow in stenosed artery. • Dissipation of energy due to both magnetic field and blood viscosity is considered. • Strong Vortices are observed at the downstream of the stenosis in the arterial wall. • Flow reversal of blood is reduced by applying sufficient magnetic field strength. • Isothermal lines are strongly distorted in the presence of magnetic field strength.

  4. Investigation of source-detector separation optimization for an implantable perfusion and oxygenation sensor for liver blood vessels

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Justin S [ORNL; Akl, Tony [Texas A& M University; Cote, Gerard L. [Texas A& M University; Wilson, Mark A. [University of Pittsburgh School of Medicine, Pittsburgh PA; Ericson, Milton Nance [ORNL

    2011-01-01

    An implanted system is being developed to monitor transplanted liver health during the critical 7-10 day period posttransplantation. The unit will monitor organ perfusion and oxygen consumption using optically-based probes placed on both the inflow and outflow blood vessels, and on the liver parenchymal surface. Sensing probes are based on a 3- wavelength LED source and a photodiode detector. Sample diffuse reflectance is measured at 735, 805, and 940 nm. To ascertain optimal source-to-photodetector spacing for perfusion measurement in blood vessels, an ex vivo study was conducted. In this work, a dye mixture simulating 80% blood oxygen saturation was developed and perfused through excised porcine arteries while collecting data for various preset probe source-to-photodetector spacings. The results from this study demonstrate a decrease in the optical signal with decreasing LED drive current and a reduction in perfusion index signal with increasing probe spacing. They also reveal a 2- to 4-mm optimal range for blood vessel perfusion probe source-to-photodetector spacing that allows for sufficient perfusion signal modulation depth with maximized signal to noise ratio (SNR). These findings are currently being applied to guide electronic configuration and probe placement for in vivo liver perfusion porcine model studies.

  5. Analysis by NASA's VESGEN Software of Retinal Blood Vessels Before and After 70-Day Bed Rest: A Retrospective Study

    Science.gov (United States)

    Raghunandan, Sneha; Vyas, Ruchi J.; Vizzeri, Gianmarco; Taibbi, Giovanni; Zanello, Susana B.; Ploutz-Snyder, Robert; Parsons-Wingerter, Patricia A.

    2016-01-01

    Significant risks for visual impairment associated with increased intracranial pressure (VIIP) are incurred by microgravity spaceflight, especially long-duration missions. Impairments include decreased near visual acuity, posterior globe flattening, choroidal folds, optic disc edema and cotton wool spots. We hypothesize that microgravity-induced fluid shifts result in pathological changes within the retinal blood vessels that precede development of visual and other ocular impairments. Potential contributions of retinal vascular remodeling to VIIP etiology are therefore being investigated by NASAs innovative VESsel GENeration Analysis (VESGEN) software for two studies: (1) head-down tilt in human subjects before and after 70 days of bed rest, and (2) U.S. crew members before and after ISS missions. VESGEN analysis in previous research supported by the US National Institutes of Health identified surprising new opportunities to regenerate retinal vessels during early-stage, potentially reversible progression of the visually impairing and blinding disease, diabetic retinopathy.

  6. Development and evaluation of in vivo tissue engineered blood vessels in a porcine model.

    Science.gov (United States)

    Rothuizen, Tonia C; Damanik, Febriyani F R; Lavrijsen, Tom; Visser, Michel J T; Hamming, Jaap F; Lalai, Reshma A; Duijs, Jacques M G J; van Zonneveld, Anton Jan; Hoefer, Imo E; van Blitterswijk, Clemens A; Rabelink, T J; Moroni, Lorenzo; Rotmans, Joris I

    2016-01-01

    There's a large clinical need for novel vascular grafts. Tissue engineered blood vessels (TEBVs) have great potential to improve the outcome of vascular grafting procedures. Here, we present a novel approach to generate autologous TEBV in vivo. Polymer rods were engineered and implanted, evoking an inflammatory response that culminates in encapsulation by a fibrocellular capsule. We hypothesized that, after extrusion of the rod, the fibrocellular capsule differentiates into an adequate vascular conduit once grafted into the vasculature. Rods were implanted subcutaneously in pigs. After 4 weeks, rods with tissue capsules grown around it were harvested. Tissue capsules were grafted bilaterally as carotid artery interposition. One and 4-week patency were evaluated by angiography whereupon pigs were sacrificed. Tissue capsules before and after grafting were evaluated on tissue remodeling using immunohistochemistry, RNA profiling and mechanical testing. Rods were encapsulated by thick, well-vascularized tissue capsules, composed of circumferentially aligned fibroblasts, collagen and few leukocytes, with adequate mechanical strength. Patency was 100% after 1 week and 87.5% after 4 weeks. After grafting, tissue capsules remodeled towards a vascular phenotype. Gene profiles of TEBVs gained more similarity with carotid artery. Wall thickness and αSMA-positive area significantly increased. Interestingly, a substantial portion of (myo)fibroblasts present before grafting expressed smooth muscle cell markers. While leukocytes were hardly present anymore, the lumen was largely covered with endothelial cells. Burst pressure remained stable after grafting. Autologous TEBVs were created in vivo with sufficient mechanical strength enabling vascular grafting. Grafts differentiated towards a vascular phenotype upon grafting. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Analysis of changes in sagging type ST-T segment induced by exercise. Assessment of regional myocardial blood flow using quantitative 13NH3 positron emission tomography

    International Nuclear Information System (INIS)

    Watanabe, Takuya; Akutsu, Yasushi; Okazaki, Osamu

    1995-01-01

    Regional myocardial blood flow (RMBF) associated with exercise-induced ST depression was assessed using 13 NH 3 positron emission tomography (PET) to determine the significance of horizontal and sagging type ST segments. The subjects were 25 patients with angina pectoris, 25 patients with myocardial infarction, and 5 healthy male volunteers. Eleven regions of interests (ROI) were prepared to calculate RMBF. ST segments were unchanged in 27 patients (Group A) and were depressed in 23 patients (Group B). A 10% increase in RMBF was significantly observed in Group A (74.1%) than Group B (34.8%). In Group B, ST depression was divided into horizontal type (8 patients) and sagging type (15 patients). According to the type of ST depression, RMBF was increased by 10% or more in 50% (4/8) for horizontal type and in 26.7% (4/15) for sagging type. These findings suggested that unfavorable increase in RMBF in stenosiss-related coronary vessels may contribute to the development of ST depression induced by exercise. A constant increase in RMBF in all ROIs, including those with unfavorable RMBF increase, may be involved in the occurrence of horizontal type ST depression; sagging type ST depression may, however, occur by an increased difference in blood flow between unfavorable and favorable RMBF. (N.K.)

  8. BLOOD VESSELS IN GANGLIA IN HUMAN ESOPHAGUS MIGHT EXPLAIN THE HIGHER FREQUENCY OF MEGAESOPHAGUS COMPARED WITH MEGACOLON

    Directory of Open Access Journals (Sweden)

    Sheila Jorge Adad

    2014-12-01

    Full Text Available This study aimed to determine the existence of blood vessels within ganglia of the myenteric plexus of the human esophagus and colon. At necropsy, 15 stillborns, newborns and children up to two years of age, with no gastrointestinal disorders, were examined. Rings of the esophagus and colon were analyzed and then fixed in formalin and processed for paraffin. Histological sections were stained by hematoxylin-eosin, Giemsa and immunohistochemistry for the characterization of endothelial cells, using antibodies for anti-factor VIII and CD31. Blood vessels were identified within the ganglia of the myenteric plexus of the esophagus, and no blood vessels were found in any ganglia of the colon. It was concluded that the ganglia of the myenteric plexus of the esophagus are vascularized, while the ganglia of the colon are avascular. Vascularization within the esophageal ganglia could facilitate the entrance of infectious agents, as well as the development of inflammatory responses (ganglionitis and denervation, as found in Chagas disease and idiopathic achalasia. This could explain the higher frequency of megaesophagus compared with megacolon.

  9. About a mechanism of the influence of shear stress for viscosity of the blood in vessels of small diameter

    Directory of Open Access Journals (Sweden)

    Лев Николаевич Катюхин

    2014-12-01

    Full Text Available It is proposed a physiological and experimentally confirmed explanation of Fåhraeus-Lindqvist-effect in capillaries using the profile analyses of osmotic deformability of red blood cells. It was shown the dose-dependent change of the erythrocytes deformability in the stage of isotropic spheres after forming artificial water pores (nystatin and occlusion (PbCl2 of available pores. The Sigma-effect reducing of hematocrit and viscosity in a shear flow of blood through the vessels of a small diameter was conditioned by the interchange of liquid phase between the erythrocyte and the plasma.

  10. Spinal cord blood flow and ischemic injury after experimental sacrifice of thoracic and abdominal segmental arteries.

    Science.gov (United States)

    Etz, Christian D; Homann, Tobias M; Luehr, Maximilian; Kari, Fabian A; Weisz, Donald J; Kleinman, George; Plestis, Konstadinos A; Griepp, Randall B

    2008-06-01

    Spinal cord blood flow (SCBF) after sacrifice of thoracoabdominal aortic segmental arteries (TAASA) during thoracoabdominal aortic aneurysm (TAAA) repair remains poorly understood. This study explored SCBF for 72 h after sacrifice of all TAASA. Fourteen juvenile Yorkshire pigs underwent complete serial TAASA sacrifice (T4-L5). Six control pigs underwent anesthesia and cooling to 32 degrees C with no TAASA sacrifice. In the experimental animals, spinal cord function was continuously monitored using motor evoked potentials (MEPs) until 1h after clamping the last TAASA. Fluorescent microspheres enabled segmental measurement of SCBF along the entire spinal cord before, and 5 min, 1 h, 5 h, 24 h and 72 h after complete TAASA sacrifice. A modified Tarlov score was obtained for 3 days after surgery. All the pigs with complete TAASA sacrifice retained normal cord function (MEP) until 1h after TAASA ligation. Seven pigs (50%) with complete TAASA sacrifice recovered after 72 h; seven pigs suffered paraparesis or paraplegia. Intraoperatively, and until 1h postoperatively, SCBF was similar among the three groups along the entire cord. Postoperatively, SCBF did not decrease in any group, but significant hyperemia occurred at 5h in controls and recovery animals, but did not occur in pigs that developed paraparesis or paraplegia in the T8-L2 segments (p=0.0002) and L3-S segments (p=0.0007). At 24h, SCBF remained marginally lower from T8 caudally; at 72h, SCBF was similar among all groups along the entire cord. SCBF in the segments T8-L2 at 5h predicted functional recovery (p=0.003). This study suggests that critical spinal cord ischemia after complete TAASA sacrifice does not occur immediately (intraoperatively), but is delayed 1-5h or longer after clamping, and represents failure to mount a hyperemic response to rewarming and awakening. The short duration of low SCBF associated with spinal cord injury suggests that hemodynamic and metabolic manipulation lasting only 24-72 h may

  11. Integrating atlas and graph cut methods for right ventricle blood-pool segmentation from cardiac cine MRI

    Science.gov (United States)

    Dangi, Shusil; Linte, Cristian A.

    2017-03-01

    Segmentation of right ventricle from cardiac MRI images can be used to build pre-operative anatomical heart models to precisely identify regions of interest during minimally invasive therapy. Furthermore, many functional parameters of right heart such as right ventricular volume, ejection fraction, myocardial mass and thickness can also be assessed from the segmented images. To obtain an accurate and computationally efficient segmentation of right ventricle from cardiac cine MRI, we propose a segmentation algorithm formulated as an energy minimization problem in a graph. Shape prior obtained by propagating label from an average atlas using affine registration is incorporated into the graph framework to overcome problems in ill-defined image regions. The optimal segmentation corresponding to the labeling with minimum energy configuration of the graph is obtained via graph-cuts and is iteratively refined to produce the final right ventricle blood pool segmentation. We quantitatively compare the segmentation results obtained from our algorithm to the provided gold-standard expert manual segmentation for 16 cine-MRI datasets available through the MICCAI 2012 Cardiac MR Right Ventricle Segmentation Challenge according to several similarity metrics, including Dice coefficient, Jaccard coefficient, Hausdorff distance, and Mean absolute distance error.

  12. A protective role of early collateral blood flow in patients with ST-segment elevation myocardial infarction.

    Science.gov (United States)

    Kim, Eun Kyoung; Choi, Jin-Ho; Song, Young Bin; Hahn, Joo-Yong; Chang, Sung-A; Park, Sung-Ji; Lee, Sang-Chol; Choi, Seung-Hyuk; Choe, Yeon Hyeon; Park, Seung Woo; Gwon, Hyeon-Cheol

    2016-01-01

    Conflict persists regarding whether the presence of early collateral blood flow to the infarct-related artery has an effective role in reducing infarct size and improving myocardial salvage in patients with ST-segment elevation myocardial infarction (STEMI). We sought to investigate the impact of the collateral circulation on myocardial salvage and infarct size in STEMI patients. In 306 patients who were diagnosed with STEMI and underwent cardiac magnetic resonance within 1 week after revascularization, initial collateral flow to the infarct-related artery was assessed by coronary angiography. Using cardiac magnetic resonance imaging, myocardial infarct size and salvage were measured. Among 247 patients with preprocedural Thrombolysis in Myocardial Infarction flow 0/1, 54 (22%) patients had good collaterals (Rentrop grade ≥ 2, Collateral Connection Score ≥ 2). Infarct size and area at risk were significantly smaller in patients with good collaterals than those with poor collaterals (infarct size: 17.1 ± 10.1 %LV vs 21.8 ± 10.5 %LV, P = .003, area at risk: 33.8 ± 16.8 %LV vs 38.8 ± 15.5 %LV, P = .039). There was a significant difference of myocardial salvage index between 2 groups (50.9% ± 15.0% vs 43.8% ± 18.5%, P = .005). Poor collateralization was an independent predictor for large infarct size (odd ratio 2.48 [1.28-4.80], P = .007). In patients with STEMI, the presence of well-developed collaterals to occluded coronary artery from the noninfarct vessel and its extent were independently associated with reduced infarct burden and improved myocardial salvage. Our results help explain why MI patients with well-developed collateralization have reduced mortality and morbidity. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Oesophageal heat transfer properties indication of segmental blood flow changes during distension

    DEFF Research Database (Denmark)

    Liao, Donghua; Frøkjær, Jens Brøndum; Brock, Christina

    2008-01-01

    The pain perception to distension of the oesophagus can be explained by activation of receptors responding to mechanical deformation or to distension-induced ischaemia. The aim of this study was to develop a new method for detection of changes in segmental blood flow during distension based...... on measurement of heat transfer. A bag was distended in the distal oesophagus of six healthy subjects followed by cooling or heating of the bag fluid to 5 or 60 degrees C. After equilibrium, the temperature was allowed to change back to body temperature. The temperature was recorded together with intraluminal...... ultrasound imaging, allowing assessment of the heat transfer properties at different bag volumes. The heat transfer constants were higher after heating the bag than after cooling the bag (Tukey, P

  14. Pressure controlled clamp using shape memory alloy for minimal vessel invasion in blood flow occlusion.

    Science.gov (United States)

    Zhang, Ye; Kanetaka, Hiroyasu; Sano, Yuya; Kano, Mitsuhiro; Kudo, Tadaaki; Sato, Takumi; Shimizu, Yoshinaka

    2013-01-01

    Vessel damage after clamping may affect the success of surgical operations. A new pressure controlled clamp (SMA clamp) was designed using super elastic property of shape memory alloy (SMA) to realize atraumatic vessel occlusion. The ability and biological effect of the SMA clamp to control pressure was investigated in vivo. The loading-displacement curves of the SMA clamps (experimental group) and conventional clamp (control group) by occlusion of pig carotid arteries were evaluated using a clamping-pressure analyzing system. To investigate macroscopically and histologically the vessel damage of the SMA and conventional clamps, pig carotid arteries were stained with Evan's blue and its histological sections were stained with Elastica Massion after clamping for fifteen minutes. Constant value was shown in the loading-displacement curve of SMA clamp. In the control group, damaged area stained with Evan's blue in the vessel wall showed enlargement with the pressure increasing. Less areas in experimental groups are observed than that in the control group. Histological section in the experimental group showed no obvious except a slight compressive damage in the tunica intima. In the control group, vessel wall showed irreversible damages. This experiment indicated that the SMA clamp, which has a unique mechanical property, can be used without vessels damage. This pressure controlled clamp can be a selection in clinical apparatus to improve surgical safety.

  15. Evaluation of Mast Cell and Blood Vessel Density in Inflammatory Periapical Lesions

    Directory of Open Access Journals (Sweden)

    Safoura Seifi

    2012-01-01

    Full Text Available Introduction: Radicular cystsand periapical granulomas are the most common periapical inflammatory lesions. However, the role of cellular immunity and microvessels in their pathogenesis remains unknown. The aim of this study was to evaluate the mast cell density (MCD, mircovessel density (MVD and investigating the correlation between their densities with each other in the above mentioned lesions.Materials & Methods: In this descriptive cross-sectional study, 40 paraffin blocks of mentioned lesions were selected from achieves of School of Dentistry, Babol University of Medical Sciences. Three sections were prepared from each block and stained by hematoxylin-eosin, toluidine blue, and immunohistochemically for CD34 to determine the score of inflammation, presence of mast cells and degranulatedmast cells (DMCs, and MVD, respectively. The correlation between MCD and either inflammatory infiltrate or MVD was evaluated. Data analyzed by t student, Mann-Whitney and Spearman test.Results: Mast cells were present in all periapical inflammatory lesions; 15.4±14.8 for MCD, 7.2±6.1 for DMCs, and the ratio of DMCs to total number of MCs was 0.354±0.166 and 14.8+4.44 for blood vessel density in radicular cyst and 8.52±6.75, 2.91±2.1, 0.196±0.194 and 13±8.02 in periapical granulomas, respectively. There was a positive correlation between MCD and MVD in radicular cyst (P=0.03, r=0.341, but not in periapical granulomas (P=0.6, r=0.124. MCD and MVD increased with the score of inflammation in radicular cyst (P=0.001, r=0.7 and periapical granuloma (P=0.012, r=0.54.Conclusion: Mast cells and microvessels play a role in pathogenesis of periapical inflammatory lesions. In this study, the density of mast cells and DMCs in radicular cyst was higher than periapical granulomas, but no difference was observed regarding MVD in periapical inflammatory lesions. It seems that the relationship between MCD and MVD is different based on the clinical stage of periapical

  16. 3-D MDT with spherical targets by bilinear interpolation for determining blood velocity profiles including the vessel wall effect

    Science.gov (United States)

    Choomphon-anomakhun, Natthaphon; Natenapit, Mayuree

    2018-02-01

    A numerical simulation of three-dimensional (3-D) implant assisted-magnetic drug targeting (IA-MDT) using ferromagnetic spherical targets, including the effect from the vessel wall on the blood flow, is presented. The targets were implanted within arterioles and subjected to an externally uniform applied magnetic field in order to increase the effectiveness of targeting magnetic drug carrier particles (MDCPs). The capture area (As) of the MDCPs was determined by inspection of the particle trajectories simulated from the particle equations of motion. The blood flow velocities at any particle position around the target were obtained by applying bilinear interpolation to the numerical blood velocity data. The effects on As of the type of ferromagnetic materials in the targets and MDCPs, average blood flow rates, mass fraction of the ferromagnetic material in the MDCPs, average radii of MDCPs (Rp) and the externally applied magnetic field strength (μ0H0) were evaluated. Furthermore, the appropriate μ0H0 and Rp for the IA-MDT design is suggested. In the case of the SS409 target and magnetite MDCPs, dimensionless capture areas ranging from 4.1- to 12.4 and corresponding to particle capture efficiencies of 31-94% were obtained with Rp ranging from 100- to 500 nm, weight fraction of 80%, μ0H0 of 0.6 T and an average blood flow rate of 0.01 ms-1. In addition, the more general 3-D modelling of IA-MDT in this work is applicable to IA-MDT using spherical targets implanted within blood vessels for both laminar and potential blood flows including the wall effect.

  17. Ultrastructure of Pericystic or Intracystic Blood Vessels in Epidermoid Cysts-A Transmission Electron Microscopy Study: Laboratory Investigation.

    Science.gov (United States)

    Ren, Xiao-Hui; Ma, Jun; Zeng, Chun; Sun, Yi-Lin; Lin, Song

    2017-07-01

    Recently, we reported a tendency toward spontaneous hemorrhage in both the preoperative and postoperative periods in patients with intracranial epidermoid cyst (EC). According to our experience, this tendency for spontaneous hemorrhage was partly caused by the pathologic blood vessels adjacent to the EC. This study was designed to testify this hypothesis. Twenty-three removable pericystic or intracystic blood vessels from 17 patients with EC were collected during surgery and were then examined by transmission electron microscopy. The microvascular structure in gliomas was chosen as the control. Under electron microscopy, variant pathologic changes of vessels were found in all patients with EC. In the tunicae intima, we found vacuolization, apoptosis, necrosis, and intralumenal protrusion of endothelial cells, as well as swollen basement and highly flexed and discontinued elastic plate. In the tunicae media, vacuolization and swollen mitochondria were found in muscular cells. In the tunicae adventitia, extravascular erythrocytes, edema or apoptosis of pericytes, collagen predominance, and inflammatory cell infiltration and destruction were found. Neuron denature and necrosis were found in the peripheral brain tissue. In the microvascular structure of 5 glioma specimens, we found enlargement and hyperplasia of endothelial cells, swollen basement membrane, swollen pericytes, and astrocytic hyperplasia and neuron denature in adjacent brain tissues. Our findings provide strong evidence for the hypothesis that intracystic or pericystic vascular degeneration or destruction accounts for the spontaneous hemorrhage tendency before and after surgical resection of ECs. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Segmentation of white blood cells and comparison of cell morphology by linear and naïve Bayes classifiers.

    Science.gov (United States)

    Prinyakupt, Jaroonrut; Pluempitiwiriyawej, Charnchai

    2015-06-30

    Blood smear microscopic images are routinely investigated by haematologists to diagnose most blood diseases. However, the task is quite tedious and time consuming. An automatic detection and classification of white blood cells within such images can accelerate the process tremendously. In this paper we propose a system to locate white blood cells within microscopic blood smear images, segment them into nucleus and cytoplasm regions, extract suitable features and finally, classify them into five types: basophil, eosinophil, neutrophil, lymphocyte and monocyte. Two sets of blood smear images were used in this study's experiments. Dataset 1, collected from Rangsit University, were normal peripheral blood slides under light microscope with 100× magnification; 555 images with 601 white blood cells were captured by a Nikon DS-Fi2 high-definition color camera and saved in JPG format of size 960 × 1,280 pixels at 15 pixels per 1 μm resolution. In dataset 2, 477 cropped white blood cell images were downloaded from CellaVision.com. They are in JPG format of size 360 × 363 pixels. The resolution is estimated to be 10 pixels per 1 μm. The proposed system comprises a pre-processing step, nucleus segmentation, cell segmentation, feature extraction, feature selection and classification. The main concept of the segmentation algorithm employed uses white blood cell's morphological properties and the calibrated size of a real cell relative to image resolution. The segmentation process combined thresholding, morphological operation and ellipse curve fitting. Consequently, several features were extracted from the segmented nucleus and cytoplasm regions. Prominent features were then chosen by a greedy search algorithm called sequential forward selection. Finally, with a set of selected prominent features, both linear and naïve Bayes classifiers were applied for performance comparison. This system was tested on normal peripheral blood smear slide images from two datasets. Two sets

  19. Subsurface thermal behaviour of tissue mimics embedded with large blood vessels during plasmonic photo-thermal therapy.

    Science.gov (United States)

    Paul, Anup; Narasimhan, Arunn; Das, Sarit K; Sengupta, Soujit; Pradeep, Thalappil

    2016-11-01

    The purpose of this study was to understand the subsurface thermal behaviour of a tissue phantom embedded with large blood vessels (LBVs) when exposed to near-infrared (NIR) radiation. The effect of the addition of nanoparticles to irradiated tissue on the thermal sink behaviour of LBVs was also studied. Experiments were performed on a tissue phantom embedded with a simulated blood vessel of 2.2 mm outer diameter (OD)/1.6 mm inner diameter (ID) with a blood flow rate of 10 mL/min. Type I collagen from bovine tendon and agar gel were used as tissue. Two different nanoparticles, gold mesoflowers (AuMS) and graphene nanostructures, were synthesised and characterised. Energy equations incorporating a laser source term based on multiple scattering theories were solved using finite element-based commercial software. The rise in temperature upon NIR irradiation was seen to vary according to the position of the blood vessel and presence of nanoparticles. While the maximum rise in temperature was about 10 °C for bare tissue, it was 19 °C for tissue embedded with gold nanostructures and 38 °C for graphene-embedded tissues. The axial temperature distribution predicted by computational simulation matched the experimental observations. A different subsurface temperature distribution has been obtained for different tissue vascular network models. The position of LBVs must be known in order to achieve optimal tissue necrosis. The simulation described here helps in predicting subsurface temperature distributions within tissues during plasmonic photo-thermal therapy so that the risks of damage and complications associated with in vivo experiments and therapy may be avoided.

  20. In-vivo imaging of blood flow in human retinal vessels using color Doppler optical coherence tomography

    Science.gov (United States)

    Yazdanfar, Siavash; Rollins, Andrew M.; Izatt, Joseph A.

    1999-04-01

    Quantification of retinal blood flow may lead to a better understanding of the progression and treatment of several ocular disorders, including diabetic retinopathy, age- related macular degeneration, and glaucoma. Current techniques, such as fluorescein angiography and laser Doppler velocimetry are limited, failing to provide sufficient information to the clinician. Color Doppler optical coherence tomography (CDOCT) is a novel technique using coherent heterodyne detection for simultaneous cross- sectional imaging of tissue microstructure and blood flow. This technique is capable of high spatial and velocity resolution imaging in highly scattering media. We implemented CDOCT for retinal blood flow mapping in human subjects. No dilation of the pupil was necessary. CDOCT is demonstrated for determining bidirectional flow in sub- 100micrometers diameter vessels in the retina. Additionally, we calculated Doppler broadening using the variance of depth- resolved spectra to identify regions with large velocity gradients within the Xenopus heart. This technique may be useful in quantifying local tissue perfusion in highly vascular retinal tissue.

  1. A theoretical framework for quantifying blood volume flow rate from dynamic angiographic data and application to vessel-encoded arterial spin labeling MRI ☆

    OpenAIRE

    Okell, Thomas W.; Chappell, Michael A.; Jezzard, Peter

    2013-01-01

    Angiographic methods can provide valuable information on vessel morphology and hemodynamics, but are often qualitative in nature, somewhat limiting their ability for comparison across arteries and subjects. In this work we present a method for quantifying absolute blood volume flow rates within large vessels using dynamic angiographic data. First, a kinetic model incorporating relative blood volume, bolus dispersion and signal attenuation is fitted to the data. A self-calibration method is al...

  2. Dissociation between vascular endothelial growth factor receptor-2 and blood vessel density in the caudate nucleus after chronic hydrocephalus.

    Science.gov (United States)

    Deshpande, Abhishek; Dombrowski, Stephen M; Leichliter, Anna; Krajcir, Natalie; Zingales, Nicholas; Inoue, Masahiro; Schenk, Soren; Fukamachi, Kiyotaka; Luciano, Mark G

    2009-11-01

    Chronic hydrocephalus (CH) is characterized by the presence of ventricular enlargement, decreased cerebral blood flow (CBF), and brain tissue oxygen delivery. Although the underlying pathophysiological role of vascular endothelial growth factor (VEGF) is not clear, ischemic-hypoxic events in CH are known to trigger its release. Previously, we have shown increased VEGF receptor-2 (VEGFR-2) and blood vessel density (BVd) in the hippocampus after CH. We investigated changes in neuronal and glial VEGFR-2 density and BVd in the caudate nucleus in an experimental model of CH. Animals with CH were divided into short term (ST, 2 to 4 weeks) and long term (LT, 12 to 16 weeks) and were compared with surgical controls (SCs, 12 to 16 weeks). The cellular and BVds were estimated using immunohistochemical and stereological counting methods. Overall, percentage (%)VEGFR-2 neurons were approximately two times greater in CH (ST, LT) than in SC. By comparison, glial cell %VEGFR-2 was greater by 10% to 17% in ST and 4% to 11% lower in LT compared with that in SC. Blood vessel density was significantly lower in CH than in SC in the superficial caudate. Changes in cerebrospinal fluid ventricular volume and pressure, as well as in CBF did not correlate with either VEGFR-2 or BVd. These observed findings suggest that destructive forces may outweigh angiogenic forces and possibly show a disassociation between VEGFR-2 and BV expressions.

  3. Study of blood flow inside the stenosis vessel under the effect of solenoid magnetic field using ferrohydrodynamics principles

    Science.gov (United States)

    Badfar, Homayoun; Motlagh, Saber Yekani; Sharifi, Abbas

    2017-10-01

    In this paper, biomagnetic blood flow in the stenosis vessel under the effect of the solenoid magnetic field is studied using the ferrohydrodynamics (FHD) model. The parabolic profile is considered at an inlet of the axisymmetric stenosis vessel. Blood is modeled as electrically non-conducting, Newtonian and homogeneous fluid. Finite volume and the SIMPLE (Semi-Implicit Method for Pressure Linked Equations) algorithm are utilized to discretize governing equations. The investigation is studied at different magnetic numbers ( MnF=164, 328, 1640 and 3280) and the number of the coil loops (three, five and nine loops). Results indicate an increase in heat transfer, wall shear stress and energy loss (pressure drop) with an increment in the magnetic number (ratio of Kelvin force to dynamic pressure force), arising from the FHD, and the number of solenoid loops. Furthermore, the flow pattern is affected by the magnetic field, and the temperature of blood can be decreased up to 1.48 {}°C under the effect of the solenoid magnetic field with nine loops and reference magnetic field ( B0) of 2 tesla.

  4. Blood Vessel Model using Tissue Modules with on-demand Stimuli

    NARCIS (Netherlands)

    Trikalitis, V.; Salehi Nik, N.; Rouwkema, J.

    2017-01-01

    Artificial vascularization of tissue has been a major barrier in the upscaling of tissue engineering. Achieving angiogenesis from a pre-existing vessel in a controlled manner is a possible solution to prevascularize tissue. Microfluidic approaches do not allow yet the creation of a complex

  5. A new approach in the numerical simulation for the blood flow in large vessels

    Directory of Open Access Journals (Sweden)

    Balazs ALBERT

    2013-03-01

    Full Text Available In this paper we are proposing a new approach in the numerical simulation of the bloodflow in large vessels. The initial conditions are set to be compatible with the non-Newtonian modelused. Numerical experiments in stenosed artery and in artery with aneurysm (using COMSOL 3.3,are presented.

  6. Blood vessel endothelium-directed tumor cell streaming in breast tumors requires the HGF/C-Met signaling pathway.

    Science.gov (United States)

    Leung, E; Xue, A; Wang, Y; Rougerie, P; Sharma, V P; Eddy, R; Cox, D; Condeelis, J

    2017-05-11

    During metastasis to distant sites, tumor cells migrate to blood vessels. In vivo, breast tumor cells utilize a specialized mode of migration known as streaming, where a linear assembly of tumor cells migrate directionally towards blood vessels on fibronectin-collagen I-containing extracellular matrix (ECM) fibers in response to chemotactic signals. We have successfully reconstructed tumor cell streaming in vitro by co-plating tumors cells, macrophages and endothelial cells on 2.5 μm thick ECM-coated micro-patterned substrates. We found that tumor cells and macrophages, when plated together on the micro-patterned substrates, do not demonstrate sustained directional migration in only one direction (sustained directionality) but show random bi-directional walking. Sustained directionality of tumor cells as seen in vivo was established in vitro when beads coated with human umbilical vein endothelial cells were placed at one end of the micro-patterned 'ECM fibers' within the assay. We demonstrated that these endothelial cells supply the hepatocyte growth factor (HGF) required for the chemotactic gradient responsible for sustained directionality. Using this in vitro reconstituted streaming system, we found that directional streaming is dependent on, and most effectively blocked, by inhibiting the HGF/C-Met signaling pathway between endothelial cells and tumor cells. Key observations made with the in vitro reconstituted system implicating C-Met signaling were confirmed in vivo in mammary tumors using the in vivo invasion assay and intravital multiphoton imaging of tumor cell streaming. These results establish HGF/C-Met as a central organizing signal in blood vessel-directed tumor cell migration in vivo and highlight a promising role for C-Met inhibitors in blocking tumor cell streaming and metastasis in vivo, and for use in human trials.

  7. Morphological evaluation of the cerebral blood vessels in the late gestation fetal sheep following hypoxia in utero.

    Science.gov (United States)

    Baburamani, Ana A; Lo, Camden; Castillo-Melendez, Margie; Walker, David W

    2013-01-01

    Hypoxia can significantly contribute to the development of permanent brain injury in the term neonate; however the response of cerebral blood vessels is not well understood. This study aimed to quantitatively measure vascular density and morphology using laminin immunohistochemistry as a marker of blood vessels, and determine the effects of a single, severe bout of hypoxia (umbilical cord occlusion, UCO) late in gestation on the developing cerebrovasculature in fetal sheep. At 124-126 days gestation singleton fetal sheep underwent surgery for implantation of catheters and placement of an inflatable cuff around the umbilical cord. A 10 min UCO or sham UCO (n=5) occurred at 132 days gestation. Fetal brains were collected at 24 h (n=5) or 48 h (n=4) after UCO for vascular density and morphology analysis of laminin immunohistochemistry. 48 h following a single, brief bout of severe hypoxia late in gestation decreased vascular density was seen in the caudate nucleus and no changes in vascular morphology occurred. However closer analysis revealed a significant shift in the frequency of smaller (≤10 μm) to larger (≤100 μm) perimeter blood vessels in periventricular and subcortical white matter. Close examination of the frequency distribution of vascular perimeter highlights that alterations in vascular morphology persist in the near term fetal brain for up to 48 h following a brief (10 min) hypoxia in white but not gray matter. These findings suggest that the near term brain may still be vulnerable to white matter injury following in utero hypoxia. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Effect of antiprogesterone RU486 on VEGF expression and blood vessel remodeling on ovarian follicles before ovulation.

    Directory of Open Access Journals (Sweden)

    Annunziata Mauro

    Full Text Available BACKGROUND: The success of ovarian follicle growth and ovulation is strictly related to the development of an adequate blood vessel network required to sustain the proliferative and endocrine functions of the follicular cells. Even if the Vascular Endothelial Growth Factor (VEGF drives angiogenesis before ovulation, the local role exerted by Progesterone (P₄ remains to be clarified, in particular when its concentration rapidly increases before ovulation. AIM: This in vivo study was designed to clarify the effect promoted by a P₄ receptor antagonist, RU486, on VEGF expression and follicular angiogenesis before ovulation, in particular, during the transition from pre to periovulatory follicles induced by human Chorionic Gonadotropins (hCG administration. MATERIAL AND METHODS: Preovulatory follicle growth and ovulation were pharmacologically induced in prepubertal gilts by combining equine Chorionic Gonadotropins (eCG and hCG used in the presence or absence of RU486. The effects on VEGF expression were analyzed using biochemical and immunohistochemical studies, either on granulosa or on theca layers of follicles isolated few hours before ovulation. This angiogenic factor was also correlated to follicular morphology and to blood vessels architecture. RESULTS AND CONCLUSIONS: VEGF production, blood vessel network and follicle remodeling were impaired by RU486 treatment, even if the cause-effect correlation remains to be clarified. The P₄ antagonist strongly down-regulated theca VEGF expression, thus, preventing most of the angiogenic follicle response induced by hCG. RU486-treated follicles displayed a reduced vascular area, a lower rate of endothelial cell proliferation and a reduced recruitment of perivascular mural cells. These data provide important insights on the biological role of RU486 and, indirectly, on steroid hormones during periovulatory follicular phase. In addition, an in vivo model is proposed to evaluate how periovulatory

  9. Micropatterned coculture of vascular endothelial and smooth muscle cells on layered electrospun fibrous mats toward blood vessel engineering.

    Science.gov (United States)

    Li, Huinan; Liu, Yaowen; Lu, Jinfu; Wei, Jiaojun; Li, Xiaohong

    2015-06-01

    A major challenge in vascular engineering is the establishment of proper microenvironment to guide the spatial organization, growth, and extracellular matrix (ECM) productions of cells found in blood vessels. In the current study, micropatterned fibrous mats with distinct ridges and grooves of different width were created to load smooth muscle cells (SMCs), which were assembled by stacking on vascular endothelial cell (EC)-loaded flat fibrous mats to mimic the in vivo-like organized structure of blood vessels. SMCs were mainly distributed in the ridges, and aligned fibers in the patterned regions led to the formation of elongated cell bodies, intense actin filaments, and expressions of collagen I and α-smooth muscle actin in a parallel direction with fibers. ECs spread over the flat fibrous mats and expressed collagen IV and laminin with a cobblestone-like feature. A z-stack scanning of fluorescently stained fibrous mats indicated that SMCs effectively infiltrated into fibrous scaffolds at the depth of around 200 μm. Compared with SMCs cultured alone, the coculture with ECs enhanced the proliferation, infiltration, and cytoskeleton elongation of SMCs on patterned fibrous mats. Although the coculture of SMCs made no significant difference in the EC growth, the coculture system on patterned fibrous scaffolds promoted ECM productions of both ECs and SMCs. Thus, this patterned fibrous configuration not only offers a promising technology in the design of tissue engineering scaffolds to construct blood vessels with durable mechanical properties, but also provides a platform for patterned coculture to investigate cell-matrix and cell-cell interactions in highly organized tissues. © 2014 Wiley Periodicals, Inc.

  10. Early Generation of New PrPSc on Blood Vessels after Brain Microinjection of Scrapie in Mice.

    Science.gov (United States)

    Chesebro, Bruce; Striebel, James; Rangel, Alejandra; Phillips, Katie; Hughson, Andrew; Caughey, Byron; Race, Brent

    2015-09-22

    Aggregation of misfolded host proteins in the central nervous system is believed to be important in the pathogenic process in several neurodegenerative diseases of humans, including prion diseases, Alzheimer's disease, and Parkinson's disease. In these diseases, protein misfolding and aggregation appear to expand through a process of seeded polymerization. Prion diseases occur in both humans and animals and are experimentally transmissible orally or by injection, thus providing a controllable model of other neurodegenerative protein misfolding diseases. In rodents and ruminants, prion disease has a slow course, lasting months to years. Although prion infectivity has been detected in brain tissue at 3 to 4 weeks postinfection (p.i.), the details of early prion replication in the brain are not well understood. Here we studied the localization and quantitation of PrPSc generation in vivo starting at 30 min postmicroinjection of scrapie into the brain. In C57BL mice at 3 days p.i., generation of new PrPSc was detected by immunohistochemistry and immunoblot assays, and at 7 days p.i., new generation was confirmed by real-time quaking-induced conversion assay. The main site of new PrPSc generation was near the outer basement membrane of small and medium blood vessels. The finding and localization of replication at this site so early after injection have not been reported previously. This predominantly perivascular location suggested that structural components of the blood vessel basement membrane or perivascular astrocytes might act as cofactors in the initial generation of PrPSc. The location of PrPSc replication at the basement membrane also implies a role for the brain interstitial fluid drainage in the early infection process. Neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and prion diseases, of humans are characterized by misfolding and aggregation of certain proteins, resulting in the destruction of brain tissue. In these diseases

  11. Retina image–based optic disc segmentation

    Directory of Open Access Journals (Sweden)

    Ching-Lin Wang

    2016-05-01

    Full Text Available The change of optic disc can be used to diagnose many eye diseases, such as glaucoma, diabetic retinopathy and macular degeneration. Moreover, retinal blood vessel pattern is unique for human beings even for identical twins. It is a highly stable pattern in biometric identification. Since optic disc is the beginning of the optic nerve and main blood vessels in retina, it can be used as a reference point of identification. Therefore, optic disc segmentation is an important technique for developing a human identity recognition system and eye disease diagnostic system. This article hence presents an optic disc segmentation method to extract the optic disc from a retina image. The experimental results show that the optic disc segmentation method can give impressive results in segmenting the optic disc from a retina image.

  12. MRI measurement of oxygen extraction fraction, mean vessel size and cerebral blood volume using serial hyperoxia and hypercapnia.

    Science.gov (United States)

    Germuska, Michael; Bulte, Daniel P

    2014-05-15

    Functional magnetic resonance imaging measures signal increases arising from a variety of interrelated effects and physiological sources. Recently there has been some success in disentangling this signal in order to quantify baseline physiological parameters, including the resting oxygen extraction fraction (OEF), cerebral blood volume (CBV) and mean vessel size. However, due to the complicated nature of the signal, each of these methods relies on certain physiological assumptions to derive a solution. In this work we present a framework for the simultaneous, voxelwise measurement of these three parameters. The proposed method removes the assumption of a fixed vessel size from the quantification of OEF and CBV, while simultaneously removing the need for an assumed OEF in the calculation of vessel size. The new framework is explored through simulations and validated with a pilot study in healthy volunteers. The MRI protocol uses a combined hyperoxia and hypercapnia paradigm with a modified spin labelling sequence collecting multi-slice gradient echo and spin echo data. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. [Effect on maternal blood dilution of fetoscopic laser occlusion of chorioangiopagous vessels in treating twin to twin transfusion syndrome].

    Science.gov (United States)

    Wang, Xueju; Wei, Yuan; Yuan, Pengbo; Zhao, Yangyu

    2016-01-01

    To evaluate the effect on maternal blood dilution of fetoscopic laser occlusion of chorioangiopagous vessels (FLOC) in treating twin to twin transfusion syndrome (TTTS). The clinical data of 71 cases of TTTS who had FLOC in Peking University Third Hospital were reviewed. Fluid intake, blood pressure, heart rate, red blood cell count, hemoglobin and hematocrit in perioperative 24 hours were analyzed. (1) According to the Quintero staging, 9 cases were stage Ⅰ, 24 were stage Ⅱ, 28 were stage Ⅲ and 10 cases were stage Ⅳ. (2) The average operation time of FLOC was (64.0±16.3) minutes. One case had placental abruption after the procedure; one had placental vessel rupture and 6 women refused to take blood counting. These 8 cases were excluded and 63 cases were included in the study. (3) The perioperative bleeding volume was 3 (1, 5) ml, and the volume of fluid intake, urine, amniotic fluid drainage and net fluid intake in the perioperative 24 hours was 2 050 ml(1 530 ml, 3 700 ml), 2 300 ml (1 100 ml, 3 500 ml), 1 900 ml (1 400 ml, 2 700 ml) and -1 760 ml (-100 ml, -3 350 ml), respectively. There was no significant difference between maternal blood pressure or heart rate preoperatively and postoperatively. (4) The maternal red blood cell count [(3.47±0.36)×10(12)/L versus (3.01± 0.37)×10(12)/L, P=0.000], hemoglobin [(107.8±12.1) g/L versus (95.1±11.2) g/L, P=0.000] and hematocrit [0.313(0.238, 0.387) versus 0.276(0.213, 0.800), P=0.000] decreased significantly 24 hours after FLOC. (5) The postoperative hematocrit decreased more in the group which the amniotic fluid drainage volume was 2 000-3 000 ml than that in the group which the amniotic fluid drainage volume was 1 000-1 999 ml. The blood dilution can not be ignored after the FLOC in TTTS patients. The more the amniodrainage volume during the FLOC, the more the maternal blood dilution would be. It might result from amniodrainage during the FLOC, improved maternal-placenta circulation and tocolytics used

  14. Fast magnetic reconstruction of the portal vein with allogeneic blood vessels in canines.

    Science.gov (United States)

    Wang, Shan-Pei; Yan, Xiao-Peng; Xue, Fei; Dong, Ding-Hui; Zhang, Xu-Feng; Ma, Feng; Wang, Hao-Hua; Lv, Yi

    2015-06-01

    The resection and reconstruction of large vessels, including the portal vein, are frequently needed in tumor resection. Warm ischemia before reconstruction might have deleterious effects on the function of some vital organs and therefore, how to reconstruct the vessels quickly after resection is extremely important. The present study was to introduce a new type of magnetic compression anastomosis (MCA) device to establish a quick non-suture anastomosis of the portal vein after resection in canines. The new MCA device consists of a pair of titanium alloy and neodymium-ferrum-boron magnet (Ti-NdFeB) composite rings. The NdFeB magnetic ring as a core of the device was hermetically sealed inside the biomedical titanium alloy case. Twelve canines were divided into two groups: a MCA group in which the end-to-end anastomoses was made with a new device after resection in the portal vein and a traditional manual suture (TMS) group consisted of 6 canines. The anastomosis time, anastomotic patency and quality were investigated at week 24 postoperatively. The portal vein was reconstructed successfully in all of the animals and they all survived. The duration of portal vein anastomosis was significantly shorter in the MCA group than in the TMS group (8.16+/-1.25 vs 36.24+/-2.17 min, PNdFeB composite MCA device was applicable in reconstruction of large vessels after resection. This device was easy to use and the anastomosis was functionally better than the traditional sutured anastomosis.

  15. Studies of aggregated nanoparticles steering during magnetic-guided drug delivery in the blood vessels

    Energy Technology Data Exchange (ETDEWEB)

    Hoshiar, Ali Kafash [School of Mechanical and Aerospace Engineering and ReCAPT, Gyeongsang National University, Jinju 660-701 (Korea, Republic of); Faculty of Industrial and Mechanical Engineering, Islamic Azad University, Qazvin Branch, Qazvin (Iran, Islamic Republic of); Le, Tuan-Anh [School of Mechanical and Aerospace Engineering and ReCAPT, Gyeongsang National University, Jinju 660-701 (Korea, Republic of); Amin, Faiz Ul [Department of Biology and Applied Life Science, Gyeongsang National University, Jinju 660-701 (Korea, Republic of); Kim, Myeong Ok, E-mail: mokim@gnu.ac.kr [Department of Biology and Applied Life Science, Gyeongsang National University, Jinju 660-701 (Korea, Republic of); Yoon, Jungwon, E-mail: jwyoon@gnu.ac.kr [School of Mechanical and Aerospace Engineering and ReCAPT, Gyeongsang National University, Jinju 660-701 (Korea, Republic of)

    2017-04-01

    Magnetic-guided targeted drug delivery (TDD) systems can enhance the treatment of diverse diseases. Despite the potential and promising results of nanoparticles, aggregation prevents precise particle guidance in the vasculature. In this study, we developed a simulation platform to investigate aggregation during steering of nanoparticles using a magnetic field function. The magnetic field function (MFF) comprises a positive and negative pulsed magnetic field generated by electromagnetic coils, which prevents adherence of particles to the vessel wall during magnetic guidance. A commonly used Y-shaped vessel was simulated and the performance of the MFF analyzed; the experimental data were in agreement with the simulation results. Moreover, the effects of various parameters on magnetic guidance were evaluated and the most influential identified. The simulation results presented herein will facilitate more precise guidance of nanoparticles in vivo. - Highlights: • We developed a simulation platform to investigate aggregation of nanoparticles. • The influential parameters for magnetic steering of a Y-shaped vessel were identified. • The proposed platform will facilitate more precise guidance of nanoparticles in vivo.

  16. Vessel Wall Enhancement and Blood-Cerebrospinal Fluid Barrier Disruption After Mechanical Thrombectomy in Acute Ischemic Stroke.

    Science.gov (United States)

    Renú, Arturo; Laredo, Carlos; Lopez-Rueda, Antonio; Llull, Laura; Tudela, Raúl; San-Roman, Luis; Urra, Xabier; Blasco, Jordi; Macho, Juan; Oleaga, Laura; Chamorro, Angel; Amaro, Sergio

    2017-03-01

    Less than half of acute ischemic stroke patients treated with mechanical thrombectomy obtain permanent clinical benefits. Consequently, there is an urgent need to identify mechanisms implicated in the limited efficacy of early reperfusion. We evaluated the predictors and prognostic significance of vessel wall permeability impairment and its association with blood-cerebrospinal fluid barrier (BCSFB) disruption after acute stroke treated with thrombectomy. A prospective cohort of acute stroke patients treated with stent retrievers was analyzed. Vessel wall permeability impairment was identified as gadolinium vessel wall enhancement (GVE) in a 24- to 48-hour follow-up contrast-enhanced magnetic resonance imaging, and severe BCSFB disruption was defined as subarachnoid hemorrhage or gadolinium sulcal enhancement (present across >10 slices). Infarct volume was evaluated in follow-up magnetic resonance imaging, and clinical outcome was evaluated with the modified Rankin Scale at day 90. A total of 60 patients (median National Institutes of Health Stroke Scale score, 18) were analyzed, of whom 28 (47%) received intravenous alteplase before mechanical thrombectomy. Overall, 34 (57%) patients had GVE and 27 (45%) had severe BCSFB disruption. GVE was significantly associated with alteplase use before thrombectomy and with more stent retriever passes, along with the presence of severe BCSFB disruption. GVE was associated with poor clinical outcome, and both GVE and severe BCSFB disruption were associated with increased final infarct volume. These findings may support the clinical relevance of direct vessel damage and BCSFB disruption after acute stroke and reinforce the need for further improvements in reperfusion strategies. Further validation in larger cohorts of patients is warranted. © 2017 American Heart Association, Inc.

  17. [Characteristics of Distribution of Blood Vessels and Nerve Fibers in the Skin Tissues of Acupoint "Taichong" (LR 3) in the Rat].

    Science.gov (United States)

    Xu, Dong-Sheng; She, Chen; Wang, Jia; Cui, Jing-Jing; Cai, Hong; Bai, Wan-Zhu

    2016-12-25

    To investigate the microstructure (blood vessels and nerve fibers) of the skin tissue in "Taichong" (LR 3) region for reveling morphological characteristics of acupoint. Five SD rats were used in the present study. The skin tissue in the region of acupoint LR 3 was taken from the dorsum of hind foot following transcardial perfusion with 4% paraformaldehyde. Then, the skin samples were sagittally or horizontally cut into sections (20 μm or 40 μm in the thickness) to be stained with Phalloidin and calcitonin gene related peptide (CGRP) by using fluorescent histochemistry and immunohistochemistry. The labeled vascular structure and nerve fibers were observed and recorded using fluorescent microscope and laser scanning confocal microscope. In the skin tissue of LR 3, different types of blood vessels labeled by phalliodin, including capillaries and glomera mainly distributing in the superficial layer of the dermis, and thicker blood vessels and their sub-branches mainly existing in the deeper layer of the dermis and the subcutaneous layer, were found. In addition, CGRP positive nerve fibers were found to run parallel to the thin blood vessels or to gather around the thicker blood vessels. From the subcutaneous la-yer to the epidermis, blood vessels and nerve fibers coexisted and formed a stereo-network structure. In the skin of LR 3 area, there exists a stereo-network structure consisting of different types of blood vessels and nerve fibers. Although this structure is not specifically associated with acupoint area alone, this result may provide a new sight to further understand the microstructure of acupoint.

  18. Chronic mild hypoxia promotes profound vascular remodeling in spinal cord blood vessels, preferentially in white matter, via an α5β1 integrin-mediated mechanism.

    Science.gov (United States)

    Halder, Sebok K; Kant, Ravi; Milner, Richard

    2018-05-01

    Spinal cord injury (SCI) leads to rapid destruction of neuronal tissue, resulting in devastating motor and sensory deficits. This is exacerbated by damage to spinal cord blood vessels and loss of vascular integrity. Thus, approaches that protect existing blood vessels or stimulate the growth of new blood vessels might present a novel approach to minimize loss or promote regeneration of spinal cord tissue following SCI. In light of the remarkable power of chronic mild hypoxia (CMH) to stimulate vascular remodeling in the brain, the goal of this study was to examine how CMH (8% O 2 for up to 7 days) affects blood vessel remodeling in the spinal cord. We found that CMH promoted the following: (1) endothelial proliferation and increased vascularity as a result of angiogenesis and arteriogenesis, (2) increased vascular expression of the angiogenic extracellular matrix protein fibronectin as well as concomitant increases in endothelial expression of the fibronectin receptor α5β1 integrin, (3) strongly upregulated endothelial expression of the tight junction proteins claudin-5, ZO-1 and occludin and (4) astrocyte activation. Of note, the vascular remodeling changes induced by CMH were more extensive in white matter. Interestingly, hypoxic-induced vascular remodeling in spinal cord blood vessels was markedly attenuated in mice lacking endothelial α5 integrin expression (α5-EC-KO mice). Taken together, these studies demonstrate the considerable remodeling potential of spinal cord blood vessels and highlight an important angiogenic role for the α5β1 integrin in promoting endothelial proliferation. They also imply that stimulation of the α5β1 integrin or controlled use of mild hypoxia might provide new approaches for promoting angiogenesis and improving vascular integrity in spinal cord blood vessels.

  19. Genetically modified T cells targeting neovasculature efficiently destroy tumor blood vessels, shrink established solid tumors and increase nanoparticle delivery.

    Science.gov (United States)

    Fu, Xinping; Rivera, Armando; Tao, Lihua; Zhang, Xiaoliu

    2013-11-15

    Converting T cells into tumor cell killers by grafting them with a chimeric antigen receptor (CAR) has shown promise as a cancer immunotherapeutic. However, the inability of these cells to actively migrate and extravasate into tumor parenchyma has limited their effectiveness in vivo. Here we report the construction of a CAR containing an echistatin as its targeting moiety (eCAR). As echistatin has high binding affinity to αvβ3 integrin that is highly expressed on the surface of endothelial cells of tumor neovasculature, T cells engrafted with eCAR (T-eCAR) can efficiently lyse human umbilical vein endothelial cells and tumor cells that express αvβ3 integrin when tested in vitro. Systemic administration of T-eCAR led to extensive bleeding in tumor tissues with no evidence of damage to blood vessels in normal tissues. Destruction of tumor blood vessels by T-eCAR significantly inhibited the growth of established bulky tumors. Moreover, when T-eCAR was codelivered with nanoparticles in a strategically designed temporal order, it dramatically increased nanoparticle deposition in tumor tissues, pointing to the possibility that it may be used together with nanocarriers to increase their capability to selectively deliver antineoplastic drugs to tumor tissues. Copyright © 2013 UICC.

  20. Treatment of radiation exposure and regeneration medicine. Regeneration treatment of blood vessels by transplantation of autologous marrow monocytes

    International Nuclear Information System (INIS)

    Nagai, Kazuhiro; Kamihira, Shimeru; Matsumaru, Ichiro; Fukushima, Takuya; Yamaguchi, Hakuichiro; Miyazaki, Yasushi; Yamachika, Shiro; Eishi, Kiyoyuki; Tomonaga, Masao

    2007-01-01

    Described are usefulness and future view of regenerative medicine in the treatment of radiation exposure as exemplified by the vascular regeneration by autologous marrow cell transplantation. Vascular endothelial cells (VEC), possessing a high ability to divide, are known sensitive to radiation, which gives damage of blood vessel to alter its permeability leading to apoptosis of VEC, organ/tissue injuries and final damages in the cerebral blood vessels, central nervous system and skin, the acute radiation syndrome (ARS). Authors present successful cases of patients with chronic limb ischemia in the Therapeutic Angiogenesis using Cell Transplantation Trial (TACT), to whom the treatment is conducted with transplantation of autologous marrow monocyte fraction containing endothelial progenitor cells that differentiate to VEC. As well, they touch on a case of the patient encountered in a nuclear accident, mentioning that VEC are found partly derived from the donor after heamatopoietic stem cell transplantation (HSCT). Efficacy of HSCT in a literature is reviewed and commented to be an only limited one in 31 patients of various radiation accidents. However, treatment of ARS where stem cells are target, with regenerative medicine will become more useful in future, as basic and clinical researches will provide requisite findings. (T.I.)

  1. Mutation of p107 exacerbates the consequences of Rb loss in embryonic tissues and causes cardiac and blood vessel defects.

    Science.gov (United States)

    Berman, Seth D; West, Julie C; Danielian, Paul S; Caron, Alicia M; Stone, James R; Lees, Jacqueline A

    2009-09-01

    The retinoblastoma tumor-suppressor protein, pRb, is a member of the pocket protein family that includes p107 and p130. These proteins have well-defined roles in regulating entry into and exit from the cell cycle and also have cell cycle-independent roles in facilitating differentiation. Here we investigate the overlap between pocket protein's function during embryonic development by using conditional mutant alleles to generate Rb;p107 double-mutant embryos (DKOs) that develop in the absence of placental defects. These DKOs die between e13.5 and e14.5, much earlier than either the conditional Rb or the germline p107 single mutants, which survive to birth or are largely viable, respectively. Analyses of the e13.5 DKOs shows that p107 mutation exacerbates the phenotypes resulting from pRb loss in the central nervous system and lens, but not in the peripheral nervous system. In addition, these embryos exhibit novel phenotypes, including increased proliferation of blood vessel endothelial cells, and heart defects, including double-outlet right ventricle (DORV). The DORV is caused, at least in part, by a defect in blood vessel endothelial cells and/or heart mesenchymal cells. These findings demonstrate novel, overlapping functions for pRb and p107 in numerous murine tissues.

  2. Bone morphogenetic protein signaling promotes morphogenesis of blood vessels, wound epidermis, and actinotrichia during fin regeneration in zebrafish.

    Science.gov (United States)

    Thorimbert, Valentine; König, Désirée; Marro, Jan; Ruggiero, Florence; Jaźwińska, Anna

    2015-10-01

    Zebrafish fin regeneration involves initial formation of the wound epidermis and the blastema, followed by tissue morphogenesis. The mechanisms coordinating differentiation of distinct tissues of the regenerate are poorly understood. Here, we applied pharmacologic and transgenic approaches to address the role of bone morphogenetic protein (BMP) signaling during fin restoration. To map the BMP transcriptional activity, we analyzed the expression of the evolutionarily conserved direct phospho-Smad1 target gene, id1, and its homologs id2a and id3. This analysis revealed the BMP activity in the distal blastema, wound epidermis, osteoblasts, and blood vessels of the regenerate. Blocking the BMP function with a selective chemical inhibitor of BMP type I receptors, DMH1, suppressed id1 and id3 expression and arrested regeneration after blastema formation. We identified several previously uncharacterized functions of BMP during fin regeneration. Specifically, BMP signaling is required for remodeling of plexus into structured blood vessels in the rapidly growing regenerate. It organizes the wound epithelium by triggering wnt5b expression and promoting Collagen XIV-A deposition into the basement membrane. BMP represents the first known signaling that induces actinotrichia formation in the regenerate. Our data reveal a multifaceted role of BMP for coordinated morphogenesis of distinct tissues during regeneration of a complex vertebrate appendage. © FASEB.

  3. Erythropoietin-enhanced endothelial progenitor cell recruitment in peripheral blood and renal vessels during experimental acute kidney injury in rats.

    Science.gov (United States)

    Cakiroglu, Figen; Enders-Comberg, Sora Maria; Pagel, Horst; Rohwedel, Jürgen; Lehnert, Hendrik; Kramer, Jan

    2016-03-01

    Beneficial effects of erythropoietin (EPO) have been reported in acute kidney injury (AKI) when administered prior to induction of AKI. We studied the effects of EPO administration on renal function shortly after ischemic AKI. For this purpose, rats were subjected to renal ischemia for 30 min and EPO was administered at a concentration of 500 U/kg either i.v. as a single shot directly after ischemia or with an additional i.p. dose until 3 days after surgery. The results were compared with AKI rats without EPO application and a sham-operated group. Renal function was assessed by measurement of serum biochemical markers, histological grading, and using an isolated perfused kidney (IPK) model. Furthermore, we performed flow cytometry to analyze the concentration of endothelial progenitor cells (EPCs) in the peripheral blood and renal vessels. Following EPO application, there was only a statistically non-significant tendency of serum creatinine and urea to improve, particularly after daily EPO application. Renal vascular resistance and the renal perfusion rate were not significantly altered. In the histological analysis, acute tubular necrosis was only marginally ameliorated following EPO administration. In summary, we could not demonstrate a significant improvement in renal function when EPO was applied after AKI. Interestingly, however, EPO treatment resulted in a highly significant increase in CD133- and CD34-positive EPC both in the peripheral blood and renal vessels. © 2015 International Federation for Cell Biology.

  4. Blood vessel formation during tail regeneration in the leopard gecko (Eublepharis macularius): The blastema is not avascular.

    Science.gov (United States)

    Payne, Samantha L; Peacock, Hanna M; Vickaryous, Matthew K

    2017-03-01

    Unique among amniotes, many lizards are able to self-detach (autotomize) their tail and then regenerate a replacement. Tail regeneration involves the formation of a blastema, an accumulation of proliferating cells at the site of autotomy. Over time, cells of the blastema give rise to most of the tissues in the replacement tail. In non-amniotes capable of regenerating (such as urodeles and some teleost fish), the blastema is reported to be essentially avascular until tissue differentiation takes place. For tail regenerating lizards less is known. Here, we investigate neovascularization during tail regeneration in the leopard gecko (Eublepharis macularius). We demonstrate that the gecko tail blastema is not an avascular structure. Beginning with the onset of regenerative outgrowth, structurally mature (mural cell supported) blood vessels are found within the blastema. Although the pattern of blood vessel distribution in the regenerate tail differs from that of the original, a hierarchical network is established, with vessels of varying luminal diameters and wall thicknesses. Using immunostaining, we determine that blastema outgrowth and tissue differentiation is characterized by a dynamic interplay between the pro-angiogenic protein vascular endothelial growth factor (VEGF) and the anti-angiogenic protein thrombospondin-1 (TSP-1). VEGF-expression is initially widespread, but diminishes as tissues differentiate. In contrast, TSP-1 expression is initially restricted but becomes more abundant as VEGF-expression wanes. We predict that variation in the neovascular response observed between different regeneration-competent species likely relates to the volume of the blastema. J. Morphol. 278:380-389, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  5. Peripheral layer viscosity on the stenotic blood vessels for Herschel-Bulkley fluid model

    Directory of Open Access Journals (Sweden)

    G. Neeraja

    2017-01-01

    Full Text Available This paper deals with a theoretical investigation of blood flow in an arterial fragment with the existence of stenosis. The stream-wise blood is treated as steady and it is composed of two layers (the central core and plasma. The blood is taken to be non-Newtonian liquid described with help of Herschel-Bulkley fluid model. The artery is simulated as a cylindrical tube. Flow of blood is considered as steady. An extensive quantitative exploration has been performed through numerical computations of the flow physical parameters (the velocity, mass flux and shear stress. It is found that the mass-flux reduced as the consistency of peripheral layer fluid decreases, this happens due to the enhancement of pseudo plastic nature of the blood.

  6. Lay-out and construction of a pressure vessel built-up of cast steel segments for a pebble-bed high temperature reactor with a thermal power of 3000 MW

    International Nuclear Information System (INIS)

    Voigt, J.

    1978-03-01

    The prestressed cast vessel is an alternative to the prestressed concrete vessel for big high temperature reactors. In this report different cast steel vessel concepts for an HTR for generation of current with 3000 MW(th) are compared concerning their realization and economy. The most favourable variant serves as a base for the lay-out of the single vessel components as cast steel segments, bracing, cooling and outer sealing. Hereby the actual available possibilities of production and transport are considered. For the concept worked out possibilities of inspection and repair are suggested. A comparison of costs with adequate proposititons of the industry for a prestressed concrete and a cast iron pressure vessel investigates the economical competition. (orig.) [de

  7. Endothelial cell hyperproliferation and stratification in uteroplacental blood vessels of the black mastiff bat, Molossus rufus.

    Science.gov (United States)

    Rasweiler, J J; Badwaik, N K; Salame, G; Abulafia, O

    2011-09-01

    Placentation was studied histologically and immunocytochemically in black mastiff bats obtained at frequent intervals throughout pregnancy. These were bred in a captive colony or collected from a reproductively-synchronized wild population. During late pregnancy, the single fetus was largely sustained by a discoidal, hemochorial placenta located at the cranial end of the right uterine horn. This invariant positioning was determined by a vascular tuft that developed there both during early pregnancy and non-pregnant cycles. This provided a scaffold for early placental morphogenesis. As development proceeded, small arterioles and venules serving the tuft were converted to large uteroplacental vessels. Within the base of the placenta, these became lined by an unusual vascular epithelium composed of intermingled patches of multilayered endothelial cells and cytotrophoblast. Initially, the endothelium became multilayered by hypertrophy, proliferation, and infolding of its basal lamina. These created endothelial bilayers usually insinuated between basal laminae. The development of temporary gaps in the laminae then permitted further enlargement of the vessels and proliferation of the endothelial cells as monolayer sheets or chains. The latter were interconnected, forming a complex, stratified, cellular network associated with a prominent meshwork of basal laminae. Throughout much of pregnancy, these endothelial cells were cuboidal to columnar and possessed an abundance of basal glycoprotein granules presumably containing basal lamina precursors. The cells also expressed vimentin and frequently von Willebrand factor, but not cytokeratins or desmin. Pronounced thickening of the endothelia and amplification of their basal laminae likely evolved to greatly strengthen the walls of the uteroplacental vessels. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Synthetic reconstruction of dynamic blood flow in cortical arteries using optical coherence tomography for the evaluation of vessel compliance

    Science.gov (United States)

    Baraghis, Edward; Bolduc, Virginie; Gillis, Marc-Antoine; Srinivasan, Vivek J.; Thorin, Éric; Boudoux, Caroline; Lesage, Frédéric

    2011-03-01

    Optical Coherence Tomography (OCT) has recently been used to produce 3D angiography of microvasculature in the rodent brain in-vivo and blood flow maps of large vessels. Key enabling developments were novel algorithms for detecting Doppler shifts produced by moving scatterers and new scanning protocols tailored to increase sensitivity to small flow speeds. These progresses were pushed by the need for a non invasive imaging modality to monitor quantitative blood flow at a higher resolution and a greater depth than could be achieved by other means. The rationale for this work originates from new hypotheses regarding the role of blood regulation in neurodegenerative diseases and from current investigations of animal models of vascular degeneration. In this work we demonstrate the synthetic reconstruction of dynamic blood flow in mice over the course of a single cardiac cycle in an 800μm wide by ~ 3mm deep B-Frame slice with a lateral resolution of 10μm and a depth resolution of 7μm. Images were taken using a cranial window over the exposed parietal bone of mice skull. Electrocardiography (ECG) recordings were co registered with the OCT A lines at high temporal resolution. QRS peak detection was then used to locate the time value of each A-line in the cardiac cycle and to reconstruct a synthetic temporal frame over one cardiac cycle. Doppler speed in this cardiac cycle was used to measure temporal variations of flow inside arteries and of their area. Three dimensional volume scans yielded measurements of quantitative blood flow on the same arteries. Using these informations a measure of compliance could be established. Comparing measures between atherosclerotic (ATX) and wild type (WT) mice revealed higher blood flow in WT mice, suggested lower systemic compliance in the ATX group but higher compliance of cerebral vasculature on these mice. These results are consistent with expectations showing that OCT is a potential tool for in-vivo arterial compliance evaluation.

  9. C-reactive protein and chitinase 3-like protein 1 as biomarkers of spatial redistribution of retinal blood vessels on digital retinal photography in patients with diabetic retinopathy.

    Science.gov (United States)

    Cekić, Sonja; Cvetković, Tatjana; Jovanović, Ivan; Jovanović, Predrag; Pesić, Milica; Stanković Babić, Gordana; Milenković, Svetislav; Risimić, Dijana

    2014-08-20

    The aim of the study was to investigate the correlation between the levels of C-reactive protein (CRP) and chitinase 3-like protein 1 (YKL-40) in blood samples with morpohometric parameters of retinal blood vessels in patients with diabetic retinopathy. Blood laboratory examination of 90 patients included the measurement of glycemia, HbA1C, total cholesterol, LDL-C, HDL-C, triglycerides and CRP. Levels of YKL-40 were detected and measured in serum by ELISA (Micro VueYKL-40 EIA Kit, Quidel Corporation, San Diego, USA). YKL-40 correlated positively with diameter and negatively with number of retinal blood vessels. The average number of the blood vessels per retinal zone was significantly higher in the group of patients with mild non-proliferative diabetic retinopathy than in the group with severe form in the optic disc and all five retinal zones. The average outer diameter of the evaluated retinal zones and optic disc vessels was significantly higher in the group with severe compared to the group with mild diabetic retinopathy. Morphological analysis of the retinal vessels on digital fundus photography and correlation with YKL-40 may be valuable for the follow-up of diabetic retinopathy.

  10. C - reactive protein and chitinase 3-like protein 1 as biomarkers of spatial redistribution of retinal blood vessels on digital retinal photography in patients with diabetic retinopathy

    Directory of Open Access Journals (Sweden)

    Sonja Predrag Cekic

    2014-08-01

    Full Text Available The aim of the study was to investegate the correlation between the levels of CRP and YKL-40 in blood samples with morphometric parameters of retinal blood vessels in patients with diabetic retinopathy.Blood laboratory examination of 90 patients included the measurement of glycemia, HbA1C, total cholesterol, LDL-C, HDL-C, triglycerides and CRP. Levels of YKL-40 were detected and measured in serum by ELISA (Micro VueYKL-40 EIA Kit, Quidel Corporation, San Diego, USA.Morphmetric analysis was performed with ImageJ software (http://rsbweb.nih.gov/ij/ for digital retinal photography. We measured the number, diameter of retinal blood vessels in five different parts concentric to the optic disc. Differences between the morphometric parameters and the blood test analysis results were evaluated using the Student’s t – test. One Way ANOVA was used to establish the significance of differences.CRP and YKL-40 levels were moderately higher in the group of patients with severe diabetic retinopathy. Levels of YKL-40 correlated positively with diameter and negatively with number of retinal blood vessels. The average number of the blood vessels per retinal zone was significantly higher in the group of patients with mild non-proliferative diabetic retinopathy than in the group with severe form in the optic disc and all five retinal zones. The average outer diameter of the evaluated retinal zones and optic disc vessels was significantly higher in the group with severe compared to the group with mild diabetic retinopathy.Morphological analysis of the retinal vessels on digital fundus photography and correlation with YKL-40 may be valuable for the follow-up of diabetic retinopathy.

  11. Distribution of Vascular Patterns in Different Subtypes of Renal Cell Carcinoma. A Morphometric Study in Two Distinct Types of Blood Vessels.

    Science.gov (United States)

    Ruiz-Saurí, Amparo; García-Bustos, V; Granero, E; Cuesta, S; Sales, M A; Marcos, V; Llombart-Bosch, A

    2017-07-01

    To analyze the presence of mature and immature vessels as a prognostic factor in patients with renal cell carcinoma and propose a classification of renal cancer tumor blood vessels according to morphometric parameters. Tissue samples were obtained from 121 renal cell carcinoma patients who underwent radical nephrectomy. Staining with CD31 and CD34 was used to differentiate between immature (CD31+) and mature (CD34+) blood vessels. We quantified the microvascular density, microvascular area and different morphometric parameters: maximum diameter, minimum diameter, major axis, minor axis, perimeter, radius ratio and roundness. We found that the microvascular density was higher in CD31+ than CD34+ vessels, but CD34+ vessels were larger than CD31+ vessels, as well as being strongly correlated with the ISUP tumor grade. We also identified four vascular patterns: pseudoacinar, fascicular, reticular and diffuse. Pseudoacinar and fascicular patterns were more frequent in clear cell renal cell carcinoma (37.62 and 35.64% respectively), followed by reticular pattern (21.78%), while in chromophobe tumors the reticular pattern predominated (90%). The isolated pattern was present in all papillary tumors (100%). In healthy renal tissue, the pseudoacinar and isolated patterns were differentially found in the renal cortex and medulla respectively. We defined four distinct vascular patterns significantly related with the ISUP tumor grade in renal cell carcinomas. Further studies in larger series are needed in order to validate these results. Analysis of both mature and immature vessels (CD34+ and CD31+) provides additional information when evaluating microvascular density.

  12. Nanostructural haemocompatible coatings for the internal side of artificial blood vessels

    Science.gov (United States)

    Trembecka-Wojciga, K.; Major, R.; Lackner, J. M.; Butruk-Raszeja, B.; Sanak, M.; Major, B.

    2016-03-01

    The main goal of the work was to elaborate low thrombogenicity of surface inside tube-like elements for cardiovascular system support by combination of low-temperature glow discharge and hydrogel coatings to inhibit blood-clotting cascade activation. A large share of amorphous phase silicon was observed in the microstructure analysis. The crystalline elements were uniformly distributed in the amorphous structure. Combination of low thickness, the proper microstructure and density of the coatings provided a highly flexible nature of the whole system. The blood-material interaction was analyzed in vitro in dynamic conditions by using a designed and fabricated novel blood flow simulator. Coatings deposited by the glow discharge expressed good hemocopatibile properties. The use of hydrogel coatings did not reduce coagulation parameter. Hydrogel coatings did not improve the hemocompatibility of the surface modified with carbon based coatings. Modification of surface with hydrogel resulted in further increased risk of hemolysis.

  13. [Studies and clinical experiences in the use of domestic blood vessel prostheses with increased thromboresistance].

    Science.gov (United States)

    Spiridonov, A A; Satmari, V V; Zaporozhan, A A; Grozovskiĭ, Iu A; Il'ina, M B; Novikova, S P; Shekhter, A B; Dobrova, N B

    1989-01-01

    The experimental and clinical data on the use of new native grafts with increased thromboresistance--the Vitlan and heparinized ones are presented. In all the acute and chronic experiments, the increased thromboresistance of both types of the grafts versus the common Fluorlon-Lavsan ones, and well-formed neointima with sufficient vascularization by the year 1 and 5 of follow-up were revealed. Complete organization of the external and internal capsules of the grafts was noted 5 mos later, no tissue reaction to Vitlan and heparinized grafts was revealed. The Vitlan grafts were used in 19 patients. Good immediate and long-term results were obtained in reconstruction of the aorto-femoral, aorto-pulmonary and femoro-popliteal segments with the grafts of 10 and 8 mm in diameter. All the Vitlan shunts of the femoro-popliteal segment with 6 mm diameter were thrombosed 1-6 mos after the operation. The heparinized grafts with 8 mm diameter at the femoro-popliteal position were used in 28 patients, good long-term results were noted in 27.

  14. Curvature affects Doppler investigation of vessels: implications for clinical practice.

    Science.gov (United States)

    Balbis, S; Roatta, S; Guiot, C

    2005-01-01

    In clinical practice, blood velocity estimations from Doppler examination of curved vascular segments are normally different from those of nearby straight segments. The observed "accelerations," sometimes considered as a sort of stochastic disturbances, can actually be related to very specific physical effects due to vessel curvature (i.e., the development of nonaxial velocity [NAV] components) and the spreading of the axial velocity direction in the Doppler sample volume with respect to the insonation axis. The relevant phenomena and their dependence on the radius of curvature of the vessels and on the insonation angle are investigated with a beam-vessel geometry as close as possible to clinical setting, with the simplifying assumptions of steady flow, mild vessel curvature, uniform ultrasonic beam and complete vessel insonation. The insonation angles that minimize the errors are provided on the basis of the study results.

  15. In vivo photoacoustic imaging of blood vessels with a pulsed laser diode

    NARCIS (Netherlands)

    Kolkman, R.G.M.; Steenbergen, Wiendelt; van Leeuwen, Ton

    2006-01-01

    Photoacoustic imaging is a hybrid imaging modality that is based on the detection of acoustic waves generated by absorption of pulsed light by tissue chromophores such as hemoglobin in blood. For this technique, usually large and costly Q-switched Nd:YAG lasers are used. These lasers provide a pulse

  16. Blood-Vessel Mimicking Structures by Stereolithographic Fabrication of Small Porous Tubes Using Cytocompatible Polyacrylate Elastomers, Biofunctionalization and Endothelialization

    Directory of Open Access Journals (Sweden)

    Birgit Huber

    2016-04-01

    Full Text Available Blood vessel reconstruction is still an elusive goal for the development of in vitro models as well as artificial vascular grafts. In this study, we used a novel photo-curable cytocompatible polyacrylate material (PA for freeform generation of synthetic vessels. We applied stereolithography for the fabrication of arbitrary 3D tubular structures with total dimensions in the centimeter range, 300 µm wall thickness, inner diameters of 1 to 2 mm and defined pores with a constant diameter of approximately 100 µm or 200 µm. We established a rinsing protocol to remove remaining cytotoxic substances from the photo-cured PA and applied thio-modified heparin and RGDC-peptides to functionalize the PA surface for enhanced endothelial cell adhesion. A rotating seeding procedure was introduced to ensure homogenous endothelial monolayer formation at the inner luminal tube wall. We showed that endothelial cells stayed viable and adherent and aligned along the medium flow under fluid-flow conditions comparable to native capillaries. The combined technology approach comprising of freeform additive manufacturing (AM, biomimetic design, cytocompatible materials which are applicable to AM, and biofunctionalization of AM constructs has been introduced as BioRap® technology by the authors.

  17. CLASSICAL AREAS OF PHENOMENOLOGY: Lattice Boltzmann simulation of behaviour of particles moving in blood vessels under the rolling massage

    Science.gov (United States)

    Yi, Hou-Hui; Yang, Xiao-Feng; Wang, Cai-Feng; Li, Hua-Bing

    2009-07-01

    The rolling massage is one of the most important manipulations in Chinese massage, which is expected to eliminate many diseases. Here, the effect of the rolling massage on a pair of particles moving in blood vessels under rolling massage manipulation is studied by the lattice Boltzmann simulation. The simulated results show that the motion of each particle is considerably modified by the rolling massage, and it depends on the relative rolling velocity, the rolling depth, and the distance between particle position and rolling position. Both particles' translational average velocities increase almost linearly as the rolling velocity increases, and obey the same law. The increment of the average relative angular velocity for the leading particle is smaller than that of the trailing one. The result is helpful for understanding the mechanism of the massage and to further develop the rolling techniques.

  18. New approach to carbon monoxide poisoning treatment by laser-induced photodissociation of carboxyhemoglobin of cutaneous blood vessels

    Science.gov (United States)

    Asimov, Mustafo M.; Asimov, Rustam M.; Gisbrecht, Alexander

    2005-04-01

    A new approach to carbon monoxide poisoning treatment based on laser-induced photodissociation of the carboxyhemoglobin is proposed. Using the simple model of laser tissue interaction the action spectra of laser radiation on carboxyhemoglobin of cutaneous blood vessels has been calculated. The results of the calculatoins indicate that there is a relatively narrow spectral range in the visible region where one could effectively irradiate carboxyhemoglobin through the tissue not in a deep distances. In the case of deeper penetration, the action spectra of laser radiation shifts toward the longer wavelength region. Despite the similarity of the carboxyhemoglobin and oxyhemoglobin action spectra, the significant difference in quantum yields of photodissociation makes possible to develop an effective method of carbon monoxide poisoning treatment.

  19. Combination probe for optically assisted ultrasonic velocity-change imaging aimed at detecting unstable blood vessel plaque

    Science.gov (United States)

    Tanigawa, Shohei; Mano, Kazune; Wada, Kenji; Matsunaka, Toshiyuki; Horinaka, Hiromichi

    2016-04-01

    Blood vessel plaque with a large lipid core is at risk of becoming thrombus and is likely to induce acute heart disease. To prevent this, it is necessary to determine not only the plaque's size but also its chemical composition. We, therefore, made the prototype of a combination probe to diagnose carotid artery plaque. It is used to differentiate propagation characteristics between light spectra and ultrasonic images. By propagating light and ultrasound along a common direction, it is possible to effectively warm the diagnosis domain. Moreover, the probe is thought to be compact and be easy to use for diagnosing human carotid artery plaque. We applied the combination probe to a carotid artery phantom with a lipid area and obtained an image of the ultrasonic velocity change in the fatty area.

  20. The corn snake yolk sac becomes a solid tissue filled with blood vessels and yolk-rich endodermal cells.

    Science.gov (United States)

    Elinson, Richard P; Stewart, James R

    2014-01-01

    The amniote egg was a key innovation in vertebrate evolution because it supports an independent existence in terrestrial environments. The egg is provisioned with yolk, and development depends on the yolk sac for the mobilization of nutrients. We have examined the yolk sac of the corn snake Pantherophis guttatus by the dissection of living eggs. In contrast to the familiar fluid-filled sac of birds, the corn snake yolk sac invades the yolk mass to become a solid tissue. There is extensive proliferation of yolk-filled endodermal cells, which associate with a meshwork of blood vessels. These novel attributes of the yolk sac of corn snakes compared with birds suggest new pathways for the evolution of the amniote egg.

  1. Systematic review: comparative effectiveness of adjunctive devices in patients with ST-segment elevation myocardial infarction undergoing percutaneous coronary intervention of native vessels

    Directory of Open Access Journals (Sweden)

    Sobieraj Diana M

    2011-12-01

    Full Text Available Abstract Background During percutaneous coronary intervention (PCI, dislodgement of atherothrombotic material from coronary lesions can result in distal embolization, and may lead to increased major adverse cardiovascular events (MACE and mortality. We sought to systematically review the comparative effectiveness of adjunctive devices to remove thrombi or protect against distal embolization in patients with ST-segment elevation myocardial infarction (STEMI undergoing PCI of native vessels. Methods We conducted a systematic literature search of Medline, the Cochrane Database, and Web of Science (January 1996-March 2011, http://www.clinicaltrials.gov, abstracts from major cardiology meetings, TCTMD, and CardioSource Plus. Two investigators independently screened citations and extracted data from randomized controlled trials (RCTs that compared the use of adjunctive devices plus PCI to PCI alone, evaluated patients with STEMI, enrolled a population with 95% of target lesion(s in native vessels, and reported data on at least one pre-specified outcome. Quality was graded as good, fair or poor and the strength of evidence was rated as high, moderate, low or insufficient. Disagreement was resolved through consensus. Results 37 trials met inclusion criteria. At the maximal duration of follow-up, catheter aspiration devices plus PCI significantly decreased the risk of MACE by 27% compared to PCI alone. Catheter aspiration devices also significantly increased the achievement of ST-segment resolution by 49%, myocardial blush grade of 3 (MBG-3 by 39%, and thrombolysis in myocardial infarction (TIMI 3 flow by 8%, while reducing the risk of distal embolization by 44%, no reflow by 48% and coronary dissection by 70% versus standard PCI alone. In a majority of trials, the use of catheter aspiration devices increased procedural time upon qualitative assessment. Distal filter embolic protection devices significantly increased the risk of target revascularization

  2. In vivo label-free lymphangiography of cutaneous lymphatic vessels in human burn scars using optical coherence tomography.

    Science.gov (United States)

    Gong, Peijun; Es'haghian, Shaghayegh; Harms, Karl-Anton; Murray, Alexandra; Rea, Suzanne; Wood, Fiona M; Sampson, David D; McLaughlin, Robert A

    2016-12-01

    We present an automated, label-free method for lymphangiography of cutaneous lymphatic vessels in humans in vivo using optical coherence tomography (OCT). This method corrects for the variation in OCT signal due to the confocal function and sensitivity fall-off of a spectral-domain OCT system and utilizes a single-scattering model to compensate for A-scan signal attenuation to enable reliable thresholding of lymphatic vessels. A segment-joining algorithm is then incorporated into the method to mitigate partial-volume effects with small vessels. The lymphatic vessel images are augmented with images of the blood vessel network, acquired from the speckle decorrelation with additional weighting to differentiate blood vessels from the observed high decorrelation in lymphatic vessels. We demonstrate the method with longitudinal scans of human burn scar patients undergoing ablative fractional laser treatment, showing the visualization of the cutaneous lymphatic and blood vessel networks.

  3. Investigations for the mechanical and nuclear realisation of a pressure-vessel built-up of cast-steel-segments for a high-temperature reactor with a power of 3000 MWsub(th)

    International Nuclear Information System (INIS)

    Grebe, H.W.

    1978-06-01

    Presently for gas-cooled reactors prestressed concrete vessels made of prestressed concrete are inserted. An alternative to the prestressed concrete vessel is the prestressed cast-steel vessel, whose mechanical and nuclear realisation is investigated in this report. On the basis of defined interpretation criteria the dimensioning calculations for the necessary cast-steel and prestressed steel-segments are performed as well as voltage gradients and deformation status for different load situations are determined and practically represented, whereby a reactor with ring core is comparative confronted to a reactor with cylindrical core. In the nuclear part it is tested how far the prestressed cast-steel-vessel suffices as a biological shielding or how far problems are to be expected concerning neutron activation and integrated neutron radiation. Weak points are shown and solution proposals are made. (orig.) [de

  4. MAPK and pro-inflammatory mediators in the walls of brain blood vessels following cerebral ischemia

    OpenAIRE

    Maddahi, Aida

    2012-01-01

    INTRODUCTION Stroke is a serious neurological disease which may lead to death and severe disability [1, 2]. There are two major types of stroke: ischemic and hemorrhagic stroke. Both are associated with disruption of blood flow to a part of the brain with rapid depletion of cellular energy and oxygen, resulting in ionic disturbances and eventually neuronal cell death [3]. The pathologic process that develops after stroke is divided into acute (within hours), sub-acute (hours to days), ...

  5. Microwave Ablation Using Four-Tine Antenna: Effects of Blood Flow Velocity, Vessel Location, and Total Displacement on Porous Hepatic Cancer Tissue

    Directory of Open Access Journals (Sweden)

    Montree Chaichanyut

    2016-01-01

    Full Text Available This research is concerned with microwave ablation analyses using a 2.45 GHz four-tine (4T antenna for hepatic cancer tissue. In the study, three-dimensional finite-element models were utilized to examine the tissue temperature distributions during and after MW ablation. A preliminary study was first carried out with regard to the specific absorption rates along the 4T antenna insertion depths and the temperature distributions inside the solid and porous liver models with either 3 cm-in-diameter tumor or 5 cm-in-diameter tumor. Based on the preliminary results, the porous models were further examined for the effect of varying blood flow velocities (0–200 cm/s with a 1 cm-in-diameter blood vessel next to the antenna and also for the effect of vessel-antenna locations (0, 0.8, and 1.3 cm with a constant blood flow velocity of 16.7 cm/s. All scenarios were simulated under temperature-controlled mode (90°C. The findings revealed that the blood flow velocity and vessel location influence the ablation effectiveness and that increased blood flow inhibits heat transfer to the vessel wall. At the nearest and farthest vessel-antenna locations (0 and 1.3 cm, approximately 90.3% and 99.55% of the cancer cells were eradicated except for the areas adjacent to the vessel. In addition, total tissue thermal displacement is 5.9 mm which is 6.59% of the total length of the overall model.

  6. In 6- to 8-year-old children, hair cortisol is associated with body mass index and somatic complaints, but not with stress, health-related quality of life, blood pressure, retinal vessel diameters, and cardiorespiratory fitness.

    Science.gov (United States)

    Gerber, Markus; Endes, Katharina; Brand, Serge; Herrmann, Christian; Colledge, Flora; Donath, Lars; Faude, Oliver; Pühse, Uwe; Hanssen, Henner; Zahner, Lukas

    2017-02-01

    Hair cortisol measurement has become an increasingly accepted approach in endocrinology and biopsychology. However, while in adult research hair cortisol has been proposed as a relevant biomarker for chronic stress (and its adverse consequences), studies with children are scarce. Therefore, the goal of the present exploratory study was to examine the associations between hair cortisol concentrations (HCCs), stress, and a series of health-related outcomes in a sample of Swiss first grade schoolchildren. The sample consisted of 318 children (53% girls, M age =7.26, SD=0.35). Hair strands were taken near the scalp from a posterior vertex position, and HCCs were tested for the first 3-cm hair segment. Parents provided information about their children's age, gender, parental education, children's stress (recent critical life events, daily hassles), health-related quality of life, and psychosomatic complaints. Body composition, blood pressure, retinal vessel diameters, and cardiorespiratory fitness were measured with established methods. In multiple regression analyses, higher HCCs were weakly associated with increased BMI in girls (β=0.22, phealth-related quality of life, blood pressure, retinal vessel diameters, and cardiorespiratory fitness. Although small significant relationships were found between HCCs, BMI and somatic complaints, the findings of this exploratory study challenge the view that HCCs can be used as a reliable biomarker of recent critical life events, daily hassles, health-related quality of life, and cardiovascular health indicators in non-clinical young children. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. A cellular nonlinear network: real-time technology for the analysis of microfluidic phenomena in blood vessels

    Science.gov (United States)

    Sapuppo, F.; Bucolo, M.; Intaglietta, M.; Fortuna, L.; Arena, P.

    2006-02-01

    A new approach to the observation and analysis of dynamic structural and functional parameters in the microcirculation is described. The new non-invasive optical system is based on cellular nonlinear networks (CNNs), highly integrated analogue processor arrays whose processing elements, the cells, interact directly within a finite local neighbourhood. CNNs, thanks to their parallel processing feature and spatially distributed structure, are widely used to solve high-speed image processing and recognition problems and in the description and modelling of biological dynamics through the solution of time continuous partial differential equations (PDEs). They are therefore considered extremely suitable for spatial-temporal dynamic characterization of fluidic phenomena at micrometric to nanometric scales, such as blood flow in microvessels and its interaction with the cells of the vessel wall. A CNN universal machine (CNN-UM) structure was used to implement, via simulation and hardware (ACE16k), the algorithms to determine the functional capillarity density (FCD) and red blood cell velocity (RBCV) in capillaries obtained by intravital microscopy during in vivo experiments on hamsters. The system exploits the moving particles to distinguish the functional capillaries from the stationary background. This information is used to reconstruct a map and to calculate the velocity of the moving objects.

  8. Multi-scale finite element analyses for stress and strain evaluations of braid fibril artificial blood vessel and smooth muscle cell.

    Science.gov (United States)

    Nakamachi, Eiji; Uchida, Takahiro; Kuramae, Hiroyuki; Morita, Yusuke

    2014-08-01

    In this study, we developed a multi-scale finite element (FE) analysis code to obtain the stress and strain that occurred in the smooth muscle cell (SMC) at micro-scale, which was seeded in the real fabricated braid fibril artificial blood vessel. This FE code can predict the dynamic response of stress under the blood pressure loading. We try to establish a computer-aided engineering (CAE)-driven scaffold design technique for the blood vessel regeneration. Until now, there occurred the great progresses for the endothelial cell activation and intima layer regeneration in the blood vessel regeneration study. However, there remains the difficulty of the SMC activation and media layer regeneration. Therefore, many researchers are now studying to elucidate the fundamental mechanism of SMC activation and media layer regeneration by using the biomechanical technique. As the numerical tool, we used the dynamic-explicit FE code PAM-CRASH, ESI Ltd. For the material models, the nonlinear viscoelastic constitutive law was adapted for the human blood vessel, SMC and the extra-cellular matrix, and the elastic law for the polyglycolic acid (PGA) fiber. Through macro-FE and micro-FE analyses of fabricated braid fibril tubes by using PGA fiber under the combined conditions of the orientation angle and the pitch of fiber, we searched an appropriate structure for the stress stimulation for SMC functionalization. Objectives of this study are indicated as follows: 1. to analyze the stress and strain of the human blood vessel and SMC, and 2. to calculate stress and strain of the real fabricated braid fibril artificial blood vessel and SMC to search an appropriate PGA fiber structure under combined conditions of PGA fiber numbers, 12 and 24, and the helical orientation angles of fiber, 15, 30, 45, 60, and 75 degrees. Finally, we found a braid fibril tube, which has an angle of 15 degree and 12 PGA fibers, as a most appropriate artificial blood vessel for SMC functionalization. Copyright

  9. ICG-assisted blood vessel detection during stereotactic neurosurgery: simulation study on excitation power limitations due to thermal effects in human brain tissue.

    Science.gov (United States)

    Rühm, Adrian; Göbel, Werner; Sroka, Ronald; Stepp, Herbert

    2014-09-01

    Intraoperative blood vessel detection based on intraluminal indocyanin-green (ICG) would allow to minimize the risk of blood vessel perforation during stereotactic brain tumor biopsy. For a fiber-based approach compatible with clinical conditions, the maximum tolerable excitation light power was derived from simulations of the thermal heat load on the tissue. Using the simulation software LITCIT, the temperature distribution in human brain tissue was calculated as a function of time for realistic single-fiber probes (0.72mm active diameter, numerical aperture 0.35, optional focusing to 0.29mm diameter) and for the optimum ICG excitation wavelength of 785nm. The asymptotic maximum temperature in the simulated tissue region was derived for different radiant fluxes at the distal fiber end. Worst case values were assumed for all other parameters. In addition to homogeneous (normal and tumor) brain tissue with homogeneous blood perfusion, models with localized extra blood vessels incorporated ahead of the distal fiber end were investigated. If one demands that destruction of normal brain tissue must be excluded by limiting the tissue heating to 42°C, then the radiant flux at the distal fiber end must be limited to 33mW with and 43mW without focusing. When considering extra blood vessels of 0.1mm diameter incorporated into homogeneously perfused brain tissue, the tolerable radiant flux is reduced to 22mW with and 32mW without focusing. The threshold value according to legal laser safety regulations for human skin tissue is 28.5mW. For the envisaged modality of blood vessel detection, light power limits for an application-relevant fiber configuration were determined and found to be roughly consistent with present legal regulations for skin tissue. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Relationship between segmental thallium-201 uptake and regional myocardial blood flow in patients with coronary artery disease

    International Nuclear Information System (INIS)

    Nichols, A.B.; Weiss, M.B.; Sciacca, R.R.; Cannon, P.J.; Blood, D.K.

    1983-01-01

    The relationship between the spatial distribution of thallium-201 in myocardial perfusion scintigrams and the distribution of left ventricular regional myocardial blood flow was examined in 25 patients undergoing coronary arteriography. Thallium-201 myocardial scintigrams were obtained after symptom-limited exercise and after a 4 hr delay. Regional myocardial blood flow was measured by the xenon-133 clearance method in patients at rest and during rapid atrial pacing to a double product comparable with that achieved during exercise stress testing. Patterns of regional thallium-201 activity and regional myocardial blood flow, recorded in similar left anterior oblique projections, were compared for left ventricular segments supplied by the left anterior descending (LAD) and left circumflex (CIRC) arteries. In 11 patients without significant lesions of the left coronary artery (group 1), thallium-201 was homogeneously distributed in the LAD and CIRC distributions in scintigrams taken during peak exercise; these scintigrams correspond to homogeneous regional myocardial blood flow in the LAD and CIRC regions during pacing-induced stress. In 14 patients with significant lesions of the left coronary artery (group 2), ratios of regional thallium-201 activity in the LAD and CIRC distributions of exercise scintigrams correlated well (r . .84) with ratios of regional myocardial blood flow measured during rapid pacing. Background subtraction altered the relationship between relative thallium-201 uptake and regional myocardial blood flow, causing overestimation of the magnitude of flow reduction on exercise scintigrams

  11. Endothelial mineralocorticoid receptor ablation does not alter blood pressure, kidney function or renal vessel contractility

    DEFF Research Database (Denmark)

    Laursen, Sidsel B.; Finsen, Stine; Marcussen, Niels

    2018-01-01

    found between the groups with respect to urinary excretion of sodium after 4 weeks of AngII infusion, or in urinary albumin excretion and kidney morphology. In conclusion, deletion of the EC-MR does not confer protection towards the development of hypertension, endothelial dysfunction of renal arteries......Aldosterone blockade confers substantial cardiovascular and renal protection. The effects of aldosterone on mineralocorticoid receptors (MR) expressed in endothelial cells (EC) within the renal vasculature have not been delineated. We hypothesized that lack of MR in EC may be protective in renal...... vasculature and examined this by ablating the Nr3c2 gene in endothelial cells (EC-MR) in mice. Blood pressure, heart rate and PAH clearance were measured using indwelling catheters in conscious mice. The role of the MR in EC on contraction and relaxation was investigated in the renal artery and in perfused...

  12. Simulation of balloon angioplasty in residually stressed blood vessels-Application of a gradient-enhanced fibre damage model.

    Science.gov (United States)

    Polindara, César; Waffenschmidt, Tobias; Menzel, Andreas

    2016-08-16

    In this contribution we study the balloon angioplasty in a residually stressed artery by means of a non-local gradient-enhanced fibre damage model. The balloon angioplasty is a common surgical intervention used to extend or reopen narrowed blood vessels in order to restore the continuous blood flow in, for instance, atherosclerotic arteries. Inelastic, i.e. predominantly damage-related and elastoplastic processes are induced in the artery during its inflation resulting in an irreversible deformation. As a beneficial consequence, provided that the inelastic deformations do not exceed a specific limit, higher deformations can be obtained within the same pressure level and a continuous blood flow can be guaranteed. In order to study the mechanical response of the artery in this scenario, we make use of the non-local gradient-enhanced model proposed in Waffenschmidt et al. (2014). In this contribution, we extend this model to make use of an incompressible format in connection with a Q1Q1P0 finite element implementation. The residual stresses in the artery are also taken into account following the framework presented in Waffenschmidt (2015). From the results it becomes apparent that, when the artery is subjected to radial stresses beyond the physiological range, damage evolution is triggered in the collagen fibres. The impact of the residual stresses on the structural response and on the circumferential stress distribution along the thickness of the arterial wall is also studied. It is observed that the residual stresses have a beneficial effect on the mechanical response of the arterial wall. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Remote non-invasive stereoscopic imaging of blood vessels: first in-vivo results of a new multispectral contrast enhancement technology

    NARCIS (Netherlands)

    Wieringa, F.P.; Mastik, F.; Cate, F.J. ten; Neumann, H.A.M.; Steen, A.F.W. van der

    2006-01-01

    We describe a contactless optical technique selectively enhancing superficial blood vessels below variously pigmented intact human skin by combining images in different spectral bands. Two CMOS-cameras, with apochromatic lenses and dual-band LED-arrays, simultaneously streamed Left (L) and Right (R)

  14. Angiogenesis & Vasculogenesis: Inducing the growth of new blood vessels and wound healing by stimulation of Bone Marrow Derived Progenitor Cell Mobilization and Homing

    Science.gov (United States)

    Velazquez, Omaida C.

    2009-01-01

    During embryonic development, the vasculature is among the first organs to form and is in charge of maintaining metabolic homeostasis by supplying oxygen and nutrients and removing waste products. As one would expect, blood vessels are critical not only for organ growth in the embryo, but also for repair of wounded tissue in the adult. An imbalance in ‘Angiogenesis’ (a time-honored term that globally refers to the growth of new blood vessels) contributes to the pathogenesis of numerous malignant, inflammatory, ischemic, infectious, immune, and wound healing disorders. In this review, we will focus on the central role of the growth of new blood vessels in ischemic and diabetic wound healing. We define the most current nomenclature that describes the neovascularization process in wounds. There are now two well defined, distinct, yet interrelated processes for the formation of post-natal new blood vessels, angiogenesis and vasculogenesis. We review recent new data on vasculogenesis that promises to advance the field of wound healing. PMID:17544023

  15. Nutritional supplementation with L-arginine prevents pelvic radiation-induced changes in morphology, density, and regulating factors of blood vessels in the wall of rat bladder.

    Science.gov (United States)

    Costa, Waldemar S; Ribeiro, Monica N; Cardoso, Luiz E M; Dornas, Maria C; Ramos, Cristiane F; Gallo, Carla B M; Sampaio, Francisco J B

    2013-06-01

    To determine whether L-arginine has protective effects against radiation-induced alterations in the morphology and regulatory factors of vesical blood vessels in rats. Male rats aged 3-4 months were divided into groups of 10 animals each: (a) controls, consisting of non-treated animals; (b) radiated-only rats; and (c) radiated rats receiving L-arginine supplementation. Radiation was in one session of 10 Gy and was aimed at the pelvic-abdominal region. L-arginine was administered once a day (0.65 g/kg body weight), starting 7 days before radiation and continuing until killing on the 16th day after radiation. The density, relative area, and wall thickness of blood vessels were measured in the vesical lamina propria using histological methods, and the expression of vascular endothelial growth factor (VEGF) and fibroblast growth factors (FGF) in the bladder wall was assessed by RT-PCR. Compared with controls, radiation alone decreased the density and relative area of blood vessels by 32 % (p supplemented with L-arginine were not significantly different from controls. Pelvic radiation leads to significant vesical modifications, as in the morphology of blood vessels and in VEGF and FGF expression. All these changes, however, were prevented by L-arginine treatment. These results emphasize, therefore, the potential use of this amino acid as a radioprotective drug.

  16. Porous hybrid structures based on P(DLLA-co-TMC) and collagen for tissue engineering of small-diameter blood vessels

    NARCIS (Netherlands)

    Buttafoco, L.; Boks, Niels P.; Engbers-Buijtenhuijs, P.; Grijpma, Dirk W.; Poot, Andreas A.; Dijkstra, Pieter J.; Vermes, I.; Feijen, Jan

    2006-01-01

    Poly (D,L-lactide)-7co-(1,3-trimethylene carbonate) [P(DLLA-co-TMC)] (83 mol % DLLA) was used to produce matrices suitable for tissue engineering of small-diameter blood vessels. The copolymer was processed into tubular structures with a porosity of 98% by melt spinning and fiber winding, thus

  17. Modeling envelope statistics of blood and myocardium for segmentation of echocardiographic images.

    NARCIS (Netherlands)

    Nillesen, M.M.; Lopata, R.G.P.; Gerrits, I.H.; Kapusta, L.; Thijssen, J.M.; Korte, C.L. de

    2008-01-01

    The objective of this study was to investigate the use of speckle statistics as a preprocessing step for segmentation of the myocardium in echocardiographic images. Three-dimensional (3D) and biplane image sequences of the left ventricle of two healthy children and one dog (beagle) were acquired.

  18. Post-mortem quetiapine concentrations in hair segments of psychiatric patients - Correlation between hair concentration, dose and concentration in blood.

    Science.gov (United States)

    Günther, Kamilla Nyborg; Johansen, Sys Stybe; Nielsen, Marie Katrine Klose; Wicktor, Petra; Banner, Jytte; Linnet, Kristian

    2018-04-01

    Drug analysis in hair is useful when seeking to establish drug intake over a period of months to years. Segmental hair analysis can also document whether psychiatric patients are receiving a stable intake of antipsychotics. This study describes segmental analysis of the antipsychotic drug quetiapine in post-mortem hair samples from long-term quetiapine users by ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) analysis. The aim was to obtain more knowledge on quetiapine concentrations in hair and to relate the concentration in hair to the administered dose and the post-mortem concentration in femoral blood. We analyzed hair samples from 22 deceased quetiapine-treated individuals, who were divided into two groups: natural hair colour and dyed/bleached hair. Two to six 1cm long segments were analyzed per individual, depending on the length of the hair, with 6cm corresponding to the last six months before death. The average daily quetiapine dose and average concentration in hair for the last six months prior to death were examined for potential correlation. Estimated doses ranged from 45 to 1040mg quetiapine daily over the period, and the average concentration in hair ranged from 0.18 to 13ng/mg. A significant positive correlation was observed between estimated daily dosage of quetiapine and average concentration in hair for individuals with natural hair colour (p=0.00005), but statistical significance was not reached for individuals with dyed/bleached hair (p=0.31). The individual coefficient of variation (CV) of the quetiapine concentrations between segments ranged from 3 to 34% for individuals with natural hair colour and 22-62% for individuals with dyed/bleached hair. Dose-adjusted concentrations in hair were significantly lower in females with dyed/bleached hair than in individuals with natural hair colour. The quetiapine concentrations in post-mortem femoral blood and in the proximal hair segment, segment 1 (S1), representing

  19. Clinicopathologic correlation of 282 leukocytoclastic vasculitis cases in a tertiary hospital: a focus on direct immunofluorescence findings at the blood vessel wall.

    Science.gov (United States)

    Takatu, Caroline Maris; Heringer, Antonio Pedro Ribeiro; Aoki, Valéria; Valente, Neusa Yuriko Sakai; de Faria Sanchez, Paula Cristina; de Carvalho, Jozélio Freire; Criado, Paulo Ricardo

    2017-02-01

    This is the largest direct immunofluorescence (DIF) analysis of patients with histology-proven cutaneous leukocytoclastic vasculitis (LCV). To establish the correlation of deposition of immune complexes at the blood vessel walls with underlying causes and prognosis of LCV, we performed a retrospective study from January 2007 to December 2014. The patients are followed at the Department of Dermatology, Hospital Das Clínicas da Faculdade de Medicina da Universidade de São Paulo, a tertiary hospital at São Paulo, Brazil. We reviewed the data of 282 biopsy-proven LCV cases with DIF performed. For the statistical analysis, we included only patients with positive DIF exclusively in vessel walls (235/282 patients). We planned to find a correlation between the DIF profiles of LCV patients and the epidemiology data, underlying causes and prognosis. Ages ranged from five to 87 years old (yo), median age of 45 and 191/282 (67.73 %) were female individuals. DIF analysis showed positivity in 70.21 % of the samples, and C3 was the most frequent immunoreactant. Immunoglobulin A (IgA) deposition at the blood vessel wall was related to age and absence of autoimmune/inflammatory diseases. Immunoglobulin M (IgM) deposition at the blood vessel wall was related to females, autoimmune/inflammatory disorders, C3 and C4 consumption and antinuclear antibody and anti-SSA/anti-SSB positivity. Immunoglobulin G (IgG) deposition at the blood vessel wall was associated with age and positive ANCA; finally, C3 deposition at the blood vessel wall was associated with hematuria and renal involvement. Systemic involvement was present in 12.5 % cases of LCV patients. C3 deposits, the most frequent finding of this study, were related to renal involvement; IgA deposits to absence of autoimmune or inflammatory diseases; IgM deposition to the presence of autoimmune or inflammatory diseases and IgG deposits were associated with positive ANCA. DIF seems to be an important method to establish the

  20. Placental mesenchymal stromal cells derived from blood vessels or avascular tissues: what is the better choice to support endothelial cell function?

    Science.gov (United States)

    König, Julia; Weiss, Gregor; Rossi, Daniele; Wankhammer, Karin; Reinisch, Andreas; Kinzer, Manuela; Huppertz, Berthold; Pfeiffer, Dagmar; Parolini, Ornella; Lang, Ingrid

    2015-01-01

    Mesenchymal stromal cells (MSCs) are promising tools for therapeutic revascularization of ischemic tissues and for support of vessel formation in engineered tissue constructs. Recently, we could show that avascular-derived MSCs from placental amnion release soluble factors that exhibit survival-enhancing effects on endothelial cells (ECs). We hypothesize that MSCs derived from placental blood vessels might have even more potent angiogenic effects. Therefore, we isolated and characterized MSCs from placental chorionic blood vessels (bv-MSCs) and tested their angiogenic potential in comparison to amnion-derived avascular MSCs (av-MSCs). bv-MSCs express a very similar surface marker profile compared with av-MSCs and could be differentiated toward the adipogenic and osteogenic lineages. bv-MSCs exert immunosuppressive properties on peripheral blood mononuclear cells, suggesting that they are suitable for cell transplantation settings. Conditioned medium (Cdm) from av-MSCs and bv-MSCs significantly enhanced EC viability, whereas only Cdm from bv-MSCs significantly increased EC migration and network formation (Matrigel assay). Angiogenesis array analysis of av- and bv-MSC-Cdm revealed a similar secretion pattern of angiogenic factors, including angiogenin, interleukins-6 and -8, and tissue inhibitors of matrix metalloproteinase-1 and 2. Enzyme-linked immunosorbent assay analysis showed that, in contrast to av-MSCs, bv-MSCs secreted vascular endothelial growth factor. In direct coculture with bv-MSCs, ECs showed a significantly increased formation of vessel-like structures compared with av-MSCs. With regard to therapeutic treatment, bv-MSCs and particularly their Cdm might be valuable to stimulate angiogenesis especially in ischemic tissues. av-MSCs and their Cdm could be beneficial in conditions when it is required to promote the survival and stabilization of blood vessels without the risk of unmeant angiogenesis.

  1. Comparison of adenoid cystic carcinomas arising from the parotid gland vs. the submandibular gland: focus on systemic metastasis and tumor-associated blood vessels.

    Science.gov (United States)

    Shin, Da-Yong; Jang, Kyu-Sun; Kim, Bo Young; Choi, Ji Eun; Yoon, Heejei; Ko, Young-Hyeh; Jeong, Han-Sin

    2014-07-01

    Although several studies reported that distant metastasis occurs more frequently in the tumors of submandibular gland (SMG) than parotid gland (PG), why SMG tumors preferentially metastasize to distant organs is not fully understood. We aimed to identify the differential tumor microenvironment for distant metastasis and possible underlying mechanisms. We retrieved 27 cases of 1-4-cm-sized adenoid cystic carcinomas (ACCs) arising from the PG (n = 12) and SMG (n = 15). c-KIT, VEGF-R2, and CD31 staining were quantified by image-based analysis to define the positive expression or tumor-associated vessel areas in two representative sections per case. In addition, angiogenesis-related genomic expression profiling was carried out to explore the underlying mechanism, which was confirmed by RT-PCR and immunohistochemistry. Earlier systemic dissemination within 2 years was detected exclusively in SMG ACCs (5/15). The area of tumor-associated blood vessels was larger in SMG ACCs than PG ACCs, and ACCs showing distant metastasis had greater blood vessel area than those without metastasis. Interestingly, normal SMG had more blood vessels per area than PG. Among angiogenesis-related signals, the level of IL-6 was significantly lower in SMG ACCs than PG ACCs. Moreover, IL-6 expression decreased significantly in SMG ACCs compared with that in normal SMG, whereas it was up-regulated in PG ACCs. ACCs in the SMG microenvironment have more abundant tumor-associated blood vessels than PG ACCs, which may explain the higher risk of distant metastasis from SMG tumors. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. White Blood Cell Segmentation by Circle Detection Using Electromagnetism-Like Optimization

    OpenAIRE

    Cuevas, Erik; Oliva, Diego; D?az, Margarita; Zaldivar, Daniel; P?rez-Cisneros, Marco; Pajares, Gonzalo

    2013-01-01

    Medical imaging is a relevant field of application of image processing algorithms. In particular, the analysis of white blood cell (WBC) images has engaged researchers from fields of medicine and computer vision alike. Since WBCs can be approximated by a quasicircular form, a circular detector algorithm may be successfully applied. This paper presents an algorithm for the automatic detection of white blood cells embedded into complicated and cluttered smear images that considers the complete ...

  3. A method for increasing the homogeneity of the temperature distribution during magnetic fluid hyperthermia with a Fe-Cr-Nb-B alloy in the presence of blood vessels

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Yundong [College of Physics and Information Engineering, Fuzhou University, Fuzhou 350116 (China); Flesch, Rodolfo C.C. [Departamento de Automação e Sistemas, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC (Brazil); Jin, Tao, E-mail: jintly@fzu.edu.cn [College of Electrical Engineering and Automation, Fuzhou University, Fuzhou 350116 (China)

    2017-06-15

    Highlights: • The effects of blood vessels on temperature field distribution are investigated. • The critical thermal energy of hyperthermia is computed by the Finite Element Analysis. • A treatment method is proposed by using the MNPs with low Curie temperature. • The cooling effects due to the blood flow can be controlled. - Abstract: Magnetic hyperthermia ablates tumor cells by absorbing the thermal energy from magnetic nanoparticles (MNPs) under an external alternating magnetic field. The blood vessels (BVs) within tumor region can generally reduce treatment effectiveness due to the cooling effect of blood flow. This paper aims to investigate the cooling effect of BVs on the temperature field of malignant tumor regions using a complex geometric model and numerical simulation. For deriving the model, the Navier-Stokes equation for blood flow is combined with Pennes bio-heat transfer equation for human tissue. The effects on treatment temperature caused by two different BV distributions inside a mammary tumor are analyzed through numerical simulation under different conditions of flow rate considering a Fe-Cr-Nb-B alloy, which has low Curie temperature ranging from 42 °C to 45 °C. Numerical results show that the multi-vessel system has more obvious cooling effects than the single vessel one on the temperature field distribution for hyperthermia. Besides, simulation results show that the temperature field within tumor area can also be influenced by the velocity and diameter of BVs. To minimize the cooling effect, this article proposes a treatment method based on the increase of the thermal energy provided to MNPs associated with the adoption of low Curie temperature particles recently reported in literature. Results demonstrate that this approach noticeably improves the uniformity of the temperature field, and shortens the treatment time in a Fe-Cr-Nb-B system, thus reducing the side effects to the patient.

  4. Grading vascularity from histopathological images based on traveling salesman distance and vessel size

    Science.gov (United States)

    Niazi, M. Khalid Khan; Hemminger, Jessica; Kurt, Habibe; Lozanski, Gerard; Gurcan, Metin

    2014-03-01

    Vascularity represents an important element of tissue/tumor microenvironment and is implicated in tumor growth, metastatic potential and resistence to therapy. Small blood vessels can be visualized using immunohistochemical stains specific to vascular cells. However, currently used manual methods to assess vascular density are poorly reproducible and are at best semi quantitative. Computer based quantitative and objective methods to measure microvessel density are urgently needed to better understand and clinically utilize microvascular density information. We propose a new method to quantify vascularity from images of bone marrow biopsies stained for CD34 vascular lining cells protein as a model. The method starts by automatically segmenting the blood vessels by methods of maxlink thresholding and minimum graph cuts. The segmentation is followed by morphological post-processing to reduce blast and small spurious objects from the bone marrow images. To classify the images into one of the four grades, we extracted 20 features from the segmented blood vessel images. These features include first four moments of the distribution of the area of blood vessels, first four moments of the distribution of 1) the edge weights in the minimum spanning tree of the blood vessels, 2) the shortest distance between blood vessels, 3) the homogeneity of the shortest distance (absolute difference in distance between consecutive blood vessels along the shortest path) between blood vessels and 5) blood vessel orientation. The method was tested on 26 bone marrow biopsy images stained with CD34 IHC stain, which were evaluated by three pathologists. The pathologists took part in this study by quantifying blood vessel density using gestalt assessment in hematopoietic bone marrow portions of bone marrow core biopsies images. To determine the intra-reader variability, each image was graded twice by each pathologist with two-week interval in between their readings. For each image, the ground

  5. Dilated thin-walled blood and lymphatic vessels in human endometrium: a potential role for VEGF-D in progestin-induced break-through bleeding.

    Directory of Open Access Journals (Sweden)

    Jacqueline F Donoghue

    Full Text Available Progestins provide safe, effective and cheap options for contraception as well as the treatment of a variety of gynaecological disorders. Episodes of irregular endometrial bleeding or breakthrough bleeding (BTB are a major unwanted side effect of progestin treatment, such that BTB is the leading cause for discontinued use of an otherwise effective and popular medication. The cellular mechanisms leading to BTB are poorly understood. In this study, we make the novel finding that the large, dilated, thin walled vessels characteristic of human progestin-treated endometrium include both blood and lymphatic vessels. Increased blood and lymphatic vessel diameter are features of VEGF-D action in other tissues and we show by immunolocalisation and Western blotting that stromal cell decidualisation results in a significant increase in VEGF-D protein production, particularly of the proteolytically processed 21 kD form. Using a NOD/scid mouse model with xenografted human endometrium we were able to show that progestin treatment causes decidualisation, VEGF-D production and endometrial vessel dilation. Our results lead to a novel hypothesis to explain BTB, with stromal cell decidualisation rather than progestin treatment per se being the proposed causative event, and VEGF-D being the proposed effector agent.

  6. Gene expression in peripheral blood differs after cardioembolic compared with large-vessel atherosclerotic stroke: biomarkers for the etiology of ischemic stroke.

    Science.gov (United States)

    Xu, Huichun; Tang, Yang; Liu, Da-Zhi; Ran, Ruiqiong; Ander, Bradley P; Apperson, Michelle; Liu, Xin She; Khoury, Jane C; Gregg, Jeffrey P; Pancioli, Arthur; Jauch, Edward C; Wagner, Kenneth R; Verro, Piero; Broderick, Joseph P; Sharp, Frank R

    2008-07-01

    There are no biomarkers that differentiate cardioembolic from large-vessel atherosclerotic stroke, although the treatments differ for each and approximately 30% of strokes and transient ischemic attacks have undetermined etiologies using current clinical criteria. We aimed to define gene expression profiles in blood that differentiate cardioembolic from large-vessel atherosclerotic stroke. Peripheral blood samples were obtained from healthy controls and acute ischemic stroke patients (genes differ at least 1.5-fold between them, and a minimum number of 23 genes differentiate the two types of stroke with at least 95.2% specificity and 95.2% sensitivity for each. Genes regulated in large-vessel atherosclerotic stroke are expressed in platelets and monocytes and modulate hemostasis. Genes regulated in cardioembolic stroke are expressed in neutrophils and modulate immune responses to infectious stimuli. This new method can be used to predict whether a stroke of unknown etiology was because of cardioembolism or large-vessel atherosclerosis that would lead to different therapy. These results have wide ranging implications for similar disorders.

  7. Application of optical coherence tomography for in vivo monitoring of the meningeal lymphatic vessels during opening of blood-brain barrier: mechanisms of brain clearing

    Science.gov (United States)

    Semyachkina-Glushkovskaya, Oxana; Abdurashitov, Arkady; Dubrovsky, Alexander; Bragin, Denis; Bragina, Olga; Shushunova, Nataliya; Maslyakova, Galina; Navolokin, Nikita; Bucharskaya, Alla; Tuchin, Valery; Kurths, Juergen; Shirokov, Alexander

    2017-12-01

    The meningeal lymphatic vessels were discovered 2 years ago as the drainage system involved in the mechanisms underlying the clearance of waste products from the brain. The blood-brain barrier (BBB) is a gatekeeper that strongly controls the movement of different molecules from the blood into the brain. We know the scenarios during the opening of the BBB, but there is extremely limited information on how the brain clears the substances that cross the BBB. Here, using the model of sound-induced opening of the BBB, we clearly show how the brain clears dextran after it crosses the BBB via the meningeal lymphatic vessels. We first demonstrate successful application of optical coherence tomography (OCT) for imaging of the lymphatic vessels in the meninges after opening of the BBB, which might be a new useful strategy for noninvasive analysis of lymphatic drainage in daily clinical practice. Also, we give information about the depth and size of the meningeal lymphatic vessels in mice. These new fundamental data with the applied focus on the OCT shed light on the mechanisms of brain clearance and the role of lymphatic drainage in these processes that could serve as an informative platform for a development of therapy and diagnostics of diseases associated with injuries of the BBB such as stroke, brain trauma, glioma, depression, or Alzheimer disease.

  8. White blood cell segmentation by circle detection using electromagnetism-like optimization.

    Science.gov (United States)

    Cuevas, Erik; Oliva, Diego; Díaz, Margarita; Zaldivar, Daniel; Pérez-Cisneros, Marco; Pajares, Gonzalo

    2013-01-01

    Medical imaging is a relevant field of application of image processing algorithms. In particular, the analysis of white blood cell (WBC) images has engaged researchers from fields of medicine and computer vision alike. Since WBCs can be approximated by a quasicircular form, a circular detector algorithm may be successfully applied. This paper presents an algorithm for the automatic detection of white blood cells embedded into complicated and cluttered smear images that considers the complete process as a circle detection problem. The approach is based on a nature-inspired technique called the electromagnetism-like optimization (EMO) algorithm which is a heuristic method that follows electromagnetism principles for solving complex optimization problems. The proposed approach uses an objective function which measures the resemblance of a candidate circle to an actual WBC. Guided by the values of such objective function, the set of encoded candidate circles are evolved by using EMO, so that they can fit into the actual blood cells contained in the edge map of the image. Experimental results from blood cell images with a varying range of complexity are included to validate the efficiency of the proposed technique regarding detection, robustness, and stability.

  9. White Blood Cell Segmentation by Circle Detection Using Electromagnetism-Like Optimization

    Science.gov (United States)

    Oliva, Diego; Díaz, Margarita; Zaldivar, Daniel; Pérez-Cisneros, Marco; Pajares, Gonzalo

    2013-01-01

    Medical imaging is a relevant field of application of image processing algorithms. In particular, the analysis of white blood cell (WBC) images has engaged researchers from fields of medicine and computer vision alike. Since WBCs can be approximated by a quasicircular form, a circular detector algorithm may be successfully applied. This paper presents an algorithm for the automatic detection of white blood cells embedded into complicated and cluttered smear images that considers the complete process as a circle detection problem. The approach is based on a nature-inspired technique called the electromagnetism-like optimization (EMO) algorithm which is a heuristic method that follows electromagnetism principles for solving complex optimization problems. The proposed approach uses an objective function which measures the resemblance of a candidate circle to an actual WBC. Guided by the values of such objective function, the set of encoded candidate circles are evolved by using EMO, so that they can fit into the actual blood cells contained in the edge map of the image. Experimental results from blood cell images with a varying range of complexity are included to validate the efficiency of the proposed technique regarding detection, robustness, and stability. PMID:23476713

  10. White Blood Cell Segmentation by Circle Detection Using Electromagnetism-Like Optimization

    Directory of Open Access Journals (Sweden)

    Erik Cuevas

    2013-01-01

    Full Text Available Medical imaging is a relevant field of application of image processing algorithms. In particular, the analysis of white blood cell (WBC images has engaged researchers from fields of medicine and computer vision alike. Since WBCs can be approximated by a quasicircular form, a circular detector algorithm may be successfully applied. This paper presents an algorithm for the automatic detection of white blood cells embedded into complicated and cluttered smear images that considers the complete process as a circle detection problem. The approach is based on a nature-inspired technique called the electromagnetism-like optimization (EMO algorithm which is a heuristic method that follows electromagnetism principles for solving complex optimization problems. The proposed approach uses an objective function which measures the resemblance of a candidate circle to an actual WBC. Guided by the values of such objective function, the set of encoded candidate circles are evolved by using EMO, so that they can fit into the actual blood cells contained in the edge map of the image. Experimental results from blood cell images with a varying range of complexity are included to validate the efficiency of the proposed technique regarding detection, robustness, and stability.

  11. Short-Term Blood Pressure Variability Relates to the Presence of Subclinical Brain Small Vessel Disease in Primary Hypertension.

    Science.gov (United States)

    Filomena, Josefina; Riba-Llena, Iolanda; Vinyoles, Ernest; Tovar, José L; Mundet, Xavier; Castañé, Xavier; Vilar, Andrea; López-Rueda, Antonio; Jiménez-Baladó, Joan; Cartanyà, Anna; Montaner, Joan; Delgado, Pilar

    2015-09-01

    Blood pressure (BP) variability is associated with stroke risk, but less is known about subclinical cerebral small vessel disease (CSVD). We aimed to determine whether CSVD relates to short-term BP variability independently of BP levels and also, whether they improve CSVD discrimination beyond clinical variables and office BP levels. This was a cohort study on asymptomatic hypertensives who underwent brain magnetic resonance imaging and 24-hour ambulatory BP monitoring. Office and average 24-hour, daytime and nighttime BP levels, and several metrics of BP variability (SD, weighted SD, coefficient of variation, and average real variability [ARV]) were calculated. Definition of CSVD was based on the presence of lacunar infarcts and white matter hyperintensity grades. Multivariate analysis and integrated discrimination improvement were performed to assess whether BP variability and levels were independently associated with CSVD and improved its discrimination. Four hundred eighty-seven individuals participated (median age, 64; 47% women). CSVD was identified in 18.9%, related to age, male sex, diabetes mellitus, use of treatment, ambulatory BP monitoring-defined BP levels, and ARV of systolic BP at any period. The highest prevalence (33.7%) was found in subjects with both 24-hour BP levels and ARV elevated. BP levels at any period and ARV (24 hours and nocturnal) emerged as independent predictors of CSVD, and discrimination was incrementally improved although not to a clinically significant extent (integrated discrimination improvement, 5.31%, 5.17% to 5.4%). Ambulatory BP monitoring-defined BP levels and ARV of systolic BP relate to subclinical CSVD in hypertensive individuals. © 2015 American Heart Association, Inc.

  12. P2X7R antagonism after subfailure overstretch injury of blood vessels reverses vasomotor dysfunction and prevents apoptosis.

    Science.gov (United States)

    Luo, Weifeng; Feldman, Daniel; McCallister, Reid; Brophy, Colleen; Cheung-Flynn, Joyce

    2017-12-01

    Human saphenous vein (HSV) is harvested and prepared prior to implantation as an arterial bypass graft. Injury and the response to injury from surgical harvest and preparation trigger cascades of molecular events and contribute to graft remodeling and intimal hyperplasia. Apoptosis is an early response after implantation that contributes the development of neointimal lesions. Here, we showed that surgical harvest and preparation of HSV leads to vasomotor dysfunction, increased apoptosis and downregulation of the phosphorylation of the anti-apoptotic protein, Niban. A model of subfailure overstretch injury in rat aorta (RA) was used to demonstrate impaired vasomotor function, increased extracellular ATP (eATP) release, and increased apoptosis following pathological vascular injury. The subfailure overstretch injury was associated with activation of p38 MAPK stress pathway and decreases in the phosphorylation of the anti-apoptotic protein Niban. Treatment of RA after overstretch injury with antagonists to purinergic P2X7 receptor (P2X7R) antagonists or P2X7R/pannexin (PanX1) complex, but not PanX1 alone, restored vasomotor function. Inhibitors to P2X7R and PanX1 reduced stretch-induced eATP release. P2X7R/PanX1 antagonism led to decrease in p38 MAPK phosphorylation, restoration of Niban phosphorylation and increases in the phosphorylation of the anti-apoptotic protein Akt in RA and reduced TNFα-stimulated caspase 3/7 activity in cultured rat vascular smooth muscle cells. In conclusion, inhibition of P2X7R after overstretch injury restored vasomotor function and inhibited apoptosis. Treatment with P2X7R/PanX1 complex inhibitors after harvest and preparation injury of blood vessels used for bypass conduits may prevent the subsequent response to injury that lead to apoptosis and represents a novel therapeutic approach to prevent graft failure.

  13. Accelerated whole brain intracranial vessel wall imaging using black blood fast spin echo with compressed sensing (CS-SPACE).

    Science.gov (United States)

    Zhu, Chengcheng; Tian, Bing; Chen, Luguang; Eisenmenger, Laura; Raithel, Esther; Forman, Christoph; Ahn, Sinyeob; Laub, Gerhard; Liu, Qi; Lu, Jianping; Liu, Jing; Hess, Christopher; Saloner, David

    2017-12-05

    Develop and optimize an accelerated, high-resolution (0.5 mm isotropic) 3D black blood MRI technique to reduce scan time for whole-brain intracranial vessel wall imaging. A 3D accelerated T 1 -weighted fast-spin-echo prototype sequence using compressed sensing (CS-SPACE) was developed at 3T. Both the acquisition [echo train length (ETL), under-sampling factor] and reconstruction parameters (regularization parameter, number of iterations) were first optimized in 5 healthy volunteers. Ten patients with a variety of intracranial vascular disease presentations (aneurysm, atherosclerosis, dissection, vasculitis) were imaged with SPACE and optimized CS-SPACE, pre and post Gd contrast. Lumen/wall area, wall-to-lumen contrast ratio (CR), enhancement ratio (ER), sharpness, and qualitative scores (1-4) by two radiologists were recorded. The optimized CS-SPACE protocol has ETL 60, 20% k-space under-sampling, 0.002 regularization factor with 20 iterations. In patient studies, CS-SPACE and conventional SPACE had comparable image scores both pre- (3.35 ± 0.85 vs. 3.54 ± 0.65, p = 0.13) and post-contrast (3.72 ± 0.58 vs. 3.53 ± 0.57, p = 0.15), but the CS-SPACE acquisition was 37% faster (6:48 vs. 10:50). CS-SPACE agreed with SPACE for lumen/wall area, ER measurements and sharpness, but marginally reduced the CR. In the evaluation of intracranial vascular disease, CS-SPACE provides a substantial reduction in scan time compared to conventional T 1 -weighted SPACE while maintaining good image quality.

  14. Role of Nox inhibitors plumbagin, ML090 and gp91ds-tat peptide on homocysteine thiolactone induced blood vessel dysfunction.

    Science.gov (United States)

    Smith, Renee M; Kruzliak, Peter; Adamcikova, Zuzana; Zulli, Anthony

    2015-08-01

    Antioxidants have not reduced the burden of cardiovascular disease, and current evidence suggests a beneficial role of oxidative stress, via NADPH oxidase (Nox) upregulation, in endothelial function. Homocysteine thiolactone (HcyT) induces blood vessel dysfunction and this correlates with increased vascular oxidative stress. This study aimed to determine if pharmacological inhibition of Nox could impair HcyT induced blood vessel dysfunction. Abdominal aorta were excised from New Zealand White rabbits (n = 6), cut into rings and sequentially mounted in organ baths. Rings were preincubated with 0.55 μmol/L homocysteine thiolactone for 1 h, or combinations of putative Nox inhibitors (plumbagin for Nox4, gp91ds-tat for Nox2, and ML090 for Nox1), 30 min prior to the addition of HcyT, followed by a dose response curve to acetylcholine on phenylephrine preconstricted rings. Plumbagin, ML090 + gp91ds-tat and HcyT reduced responses to acetylcholine, and Plumbagin + Hcyt caused constriction to acetylcholine, which was normalised to plumbagin by ML090. Plumbagin + ML090 or plumbagin + gp91ds-tat completely impaired the effect of acetylcholine. ML090 inhibited the effect of HcyT on reduced response to acetylcholine, whereas gp91ds-tat had no effect. This study concludes that inhibition of Nox1 prevents, whereas inhibition of Nox4 worsens, acetylcholine induced blood vessel relaxation caused by HcyT, while Nox2 inhibition has no effect. However combinations of Nox inhibitors worsen acetylcholine induced blood vessel relaxation. These results suggest that there is cross-talk between Nox isoforms during physiological and pathophysiological processes. © 2015 Wiley Publishing Asia Pty Ltd.

  15. Nanobubbles Form at Active Hydrophobic Spots on the Luminal Aspect of Blood Vessels: Consequences for Decompression Illness in Diving and Possible Implications for Autoimmune Disease—An Overview

    Directory of Open Access Journals (Sweden)

    Ran Arieli

    2017-08-01

    Full Text Available Decompression illness (DCI occurs following a reduction in ambient pressure. Decompression bubbles can expand and develop only from pre-existing gas micronuclei. The different hypotheses hitherto proposed regarding the nucleation and stabilization of gas micronuclei have never been validated. It is known that nanobubbles form spontaneously when a smooth hydrophobic surface is submerged in water containing dissolved gas. These nanobubbles may be the long sought-after gas micronuclei underlying decompression bubbles and DCI. We exposed hydrophobic and hydrophilic silicon wafers under water to hyperbaric pressure. After decompression, bubbles appeared on the hydrophobic but not the hydrophilic wafers. In a further series of experiments, we placed large ovine blood vessels in a cooled high pressure chamber at 1,000 kPa for about 20 h. Bubbles evolved at definite spots in all the types of blood vessels. These bubble-producing spots stained positive for lipids, and were henceforth termed “active hydrophobic spots” (AHS. The lung surfactant dipalmitoylphosphatidylcholine (DPPC, was found both in the plasma of the sheep and at the AHS. Bubbles detached from the blood vessel in pulsatile flow after reaching a mean diameter of ~1.0 mm. Bubble expansion was bi-phasic—a slow initiation phase which peaked 45 min after decompression, followed by fast diffusion-controlled growth. Many features of decompression from diving correlate with this finding of AHS on the blood vessels. (1 Variability between bubblers and non-bubblers. (2 An age-related effect and adaptation. (3 The increased risk of DCI on a second dive. (4 Symptoms of neurologic decompression sickness. (5 Preconditioning before a dive. (6 A bi-phasic mechanism of bubble expansion. (7 Increased bubble formation with depth. (8 Endothelial injury. (9 The presence of endothelial microparticles. Finally, constant contact between nanobubbles and plasma may result in distortion of proteins and their

  16. High blood pressure - infants

    Science.gov (United States)

    Hypertension - infants ... and blood vessels The health of the kidneys High blood pressure in infants may be due to kidney or ... blood vessel of the kidney) In newborn babies, high blood pressure is often caused by a blood clot in ...

  17. Blood Vessel Formation and Bone Regeneration Potential of the Stromal Vascular Fraction Seeded on a Calcium Phosphate Scaffold in the Human Maxillary Sinus Floor Elevation Model

    Directory of Open Access Journals (Sweden)

    Elisabet Farré-Guasch

    2018-01-01

    Full Text Available Bone substitutes are used as alternatives for autologous bone grafts in patients undergoing maxillary sinus floor elevation (MSFE for dental implant placement. However, bone substitutes lack osteoinductive and angiogenic potential. Addition of adipose stem cells (ASCs may stimulate osteogenesis and osteoinduction, as well as angiogenesis. We aimed to evaluate the vascularization in relation to bone formation potential of the ASC-containing stromal vascular fraction (SVF of adipose tissue, seeded on two types of calcium phosphate carriers, within the human MSFE model, in a phase I study. Autologous SVF was obtained from ten patients and seeded on β-tricalcium phosphate (n = 5 or biphasic calcium phosphate carriers (n = 5, and used for MSFE in a one-step surgical procedure. After six months, biopsies were obtained during dental implant placement, and the quantification of the number of blood vessels was performed using histomorphometric analysis and immunohistochemical stainings for blood vessel markers, i.e., CD34 and alpha-smooth muscle actin. Bone percentages seemed to correlate with blood vessel formation and were higher in study versus control biopsies in the cranial area, in particular in β-tricalcium phosphate-treated patients. This study shows the safety, feasibility, and efficiency of the use of ASCs in the human MSFE, and indicates a pro-angiogenic effect of SVF.

  18. Comparative survival study of glial cells and cells composing walls of blood vessels in crustacean ventral nerve cord after photodynamic treatment

    Science.gov (United States)

    Kolosov, Mikhail S.; Shubina, Elena

    2015-03-01

    Photodynamic therapy is a prospective treatment modality of brain cancers. It is of importance to have information about relative survival rate of different cell types in nerve tissue during photodynamic treatment. Particularly, for development of sparing strategy of the photodynamic therapy of brain tumors, which pursuits both total elimination of malignant cells, which are usually of glial origin, and, at the same time, preservation of normal blood circulation as well as normal glial cells in the brain. The aim of this work was to carry out comparative survival study of glial cells and cells composing walls of blood vessels after photodynamic treatment, using simple model object - ventral nerve cord of crustacean.

  19. Accurate segmentation of leukocyte in blood cell images using Atanassov's intuitionistic fuzzy and interval Type II fuzzy set theory.

    Science.gov (United States)

    Chaira, Tamalika

    2014-06-01

    In this paper automatic leukocyte segmentation in pathological blood cell images is proposed using intuitionistic fuzzy and interval Type II fuzzy set theory. This is done to count different types of leukocytes for disease detection. Also, the segmentation should be accurate so that the shape of the leukocytes is preserved. So, intuitionistic fuzzy set and interval Type II fuzzy set that consider either more number of uncertainties or a different type of uncertainty as compared to fuzzy set theory are used in this work. As the images are considered fuzzy due to imprecise gray levels, advanced fuzzy set theories may be expected to give better result. A modified Cauchy distribution is used to find the membership function. In intuitionistic fuzzy method, non-membership values are obtained using Yager's intuitionistic fuzzy generator. Optimal threshold is obtained by minimizing intuitionistic fuzzy divergence. In interval type II fuzzy set, a new membership function is generated that takes into account the two levels in Type II fuzzy set using probabilistic T co norm. Optimal threshold is selected by minimizing a proposed Type II fuzzy divergence. Though fuzzy techniques were applied earlier but these methods failed to threshold multiple leukocytes in images. Experimental results show that both interval Type II fuzzy and intuitionistic fuzzy methods perform better than the existing non-fuzzy/fuzzy methods but interval Type II fuzzy thresholding method performs little bit better than intuitionistic fuzzy method. Segmented leukocytes in the proposed interval Type II fuzzy method are observed to be distinct and clear. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Effects of High-sugar and High-fat Diet on Fat Deposition and Blood Vessel Wall on Sprague Dawley Rats Liver

    Directory of Open Access Journals (Sweden)

    Vera Citra Setiawan Hoei

    2013-11-01

    Full Text Available People nowadays tend to consume more fast food and sweetened beverages. These foods usually contain high amount sugar and fat that have effects on the body including liver.This study was conducted to explore the effects of extensive intake of sugar and fat on blood glucose and  cholesterol level as well as changes in liver. Research was conducted with experimental method using 20 Sprague Dawley rats which were divided into 4 groups; 2 controls and 2 treatments. Rats were given 5 ml sugar or lard alternatively every 2 consecutive days for 1-month and 2-month respectively. Data was retrieved include blood glucose and cholesterol level, fatty liver percentage and blood vessel thickening after intervention through HE staining. The results showed that both 1-month and 2-month intervention group has significant increase in blood glucose and cholesterol level. However, the enhancement of fatty liver percentage and number of thickened blood vessels (p<0.05 were only foundsignificant (p<0.05 in 1-month intervention group.  We concluded that high intake of sugar and fat within 1-monthintervention have significant effects on the rat body including liver. Nevertheless, it was not found significant in 2-months intervention. Further studies are still needed to analyze this incongruent result.Key words: high-sugar diet, high-fat diet, fatty liver, atherosclerosis 

  1. Limited intentional normovolemic hemodilution: ST-segment changes and use of homologous blood products in patients with left main coronary artery stenosis.

    Science.gov (United States)

    Herregods, L; Moerman, A; Foubert, L; Den Blauwen, N; Mortier, E; Poelaert, J; Struys, M

    1997-02-01

    To assess and compare the effects of limited intentional normovolemic hemodilution (LINH) on ST-segment changes and to evaluate the need for homologous blood products. Prospective, randomized study. University hospital. Seventy-one patients with left main stenosis scheduled for semi-urgent coronary artery bypass grafting. Patients in group A (n = 39) underwent LINH during the prebypass period until a hematocrit of 34% was obtained. Simultaneously, succinyl-linked gelatin was infused. In group B (n = 32), no hemodilution was performed. Mean arterial pressure and central venous pressure were kept as constant as possible. During the postbypass period, autologous blood was retransfused. The need for homologous blood products was noted intraoperatively and postoperatively. ST-segment analysis of lead II and chest lead was continuously performed in all patients. An ST-segment change was defined as a decrease from baseline of 1.0 mm (-0.1 mV). The appearance and degree of ST-segment depression were comparable in both groups (group A: 7 patients -0.1 mV, 1 patient -0.2 mV; group B: 5 patients -0.1 mV; 3 patients -0.2 mV). In group A, ST-segment depression occurred during and after the blood exchange. However, the mean duration of the ST-segment depression (group A: 33 +/- 18 minutes; group B: 20 +/- 10 minutes) was comparable between groups. In group A, a mean of 750 mL +/- 245 mL of blood was obtained. Total blood loss was significantly higher in group B (p < 0.052); 25 patients in group A (64%) and 12 patients in group B (38%) did not require homologous blood products (p < 0.03). Intraoperatively, only the need for packed red cells was greater in group B (p < 0.04). Postoperatively, the use of homologous blood products is higher than intraoperatively (p < 0.02). LINH performed in patients with left main stenosis, scheduled for semi-urgent coronary bypass, is not associated with increases in frequency, degree, or duration of ST-segment changes. This procedure allowed a

  2. Effect of heat transfer on unsteady MHD flow of blood in a permeable vessel in the presence of non-uniform heat source

    Directory of Open Access Journals (Sweden)

    A. Sinha

    2016-09-01

    Full Text Available This paper presents a theoretical analysis of blood flow and heat transfer in a permeable vessel in the presence of an external magnetic field. The unsteadiness in the coupled flow and temperature fields is considered to be caused due to the time-dependent stretching velocity and the surface temperature of the vessel. The non-uniform heat source/sink effect on blood flow and heat transfer is taken into account. This study is of potential value in the clinical treatment of cardiovascular disorders accompanied by accelerated circulation. The problem is treated mathematically by reducing it to a system of coupled nonlinear differential equations, which have been solved by using similarity transformation and boundary layer approximation. The resulting nonlinear coupled ordinary differential equations are solved numerically by using an implicit finite difference scheme. Computational results are obtained for the velocity, temperature, the skin-friction coefficient and the rate of heat transfer in the vessel. The estimated results are compared with another analytical study reported earlier in scientific literatures. The present study reveals that the heat transfer rate is enhanced as the value of the unsteadiness parameter increases, but it reduces as the space-dependence parameter for heat source/sink increases.

  3. Specific Accumulation of Tumor-Derived Adhesion Factor in Tumor Blood Vessels and in Capillary Tube-Like Structures of Cultured Vascular Endothelial Cells

    Science.gov (United States)

    Akaogi, Kotaro; Okabe, Yukie; Sato, Junji; Nagashima, Yoji; Yasumitsu, Hidetaro; Sugahara, Kazuyuki; Miyazaki, Kaoru

    1996-08-01

    Tumor-derived adhesion factor (TAF) was previously identified as a cell adhesion molecule secreted by human bladder carcinoma cell line EJ-1. To elucidate the physiological function of TAF, we examined its distribution in human normal and tumor tissues. Immunochemical staining with an anti-TAF monoclonal antibody showed that TAF was specifically accumulated in small blood vessels and capillaries within and adjacent to tumor nests, but not in those in normal tissues. Tumor blood vessel-specific staining of TAF was observed in various human cancers, such as esophagus, brain, lung, and stomach cancers. Double immunofluorescent staining showed apparent colocalization of TAF and type IV collagen in the vascular basement membrane. In vitro experiments demonstrated that TAF preferentially bound to type IV collagen among various extracellular matrix components tested. In cell culture experiments, TAF promoted adhesion of human umbilical vein endothelial cells to type IV collagen substrate and induced their morphological change. Furthermore, when the endothelial cells were induced to form capillary tube-like structures by type I collagen, TAF and type IV collagen were exclusively detected on the tubular structures. The capillary tube formation in vitro was prevented by heparin, which inhibited the binding of TAF to the endothelial cells. These results strongly suggest that TAF contributes to the organization of new capillary vessels in tumor tissues by modulating the interaction of endothelial cells with type IV collagen.

  4. Segmental bioelectrical impedance analysis (SBIA) and blood rheology: Reducing the gap between in vivo and in vitro?

    Science.gov (United States)

    Varlet-Marie, Emmanuelle; Joré, Céline; Brun, Jean-Frédéric

    2016-01-01

    Bioelectrical impedancemetry (BIA) has been used to evaluate hematocrit and red cell aggregability in vitro but whole body impedance measurements are also correlated to some hemorheologic factors, suggesting a relationship between viscosity factors and electric properties of blood. We repeatedly reported correlations with whole body BIA and hematocrit, whole blood viscosity and plasma viscosity, red cell rigidity and RBC aggregation. The SBIA Inbody 770 modelizes body as 5 cylinders and measures impedance at 1, 5, 50, 250, 500, and 1000 kHz. With the SBIA we found that hematocrit is best correlated to leg reactance at 50 kHz but also to leg impedance at 1 and 5 kHz and trunk reactance. RBC aggregation "M" is best correlated to arm reactance at 5 kHz but also to most measurements of segmental impedance (28 correlations found). RBC aggregation "M1" is best correlated to arm reactance at 5 kHz and to 19 other impedance measurements. A predictive equation for "M" from the mean between the two arm reactances at 5 kHz (maXc5) is found: M = 2.1845maXc5-23.958 (r = 0.665, p < 0.001) that provides a satisfactory Bland-Altman plot (mean difference: 0.000524 range [-1.6;+1.6]. This study suggests that previously reported correlations between BIA and viscosity factors were not spurious, and that in a narrow cylinder such as the arm the structure of circulating blood (hematocrit, red cell aggregation) may influence the passage of an electric current by increasing reactance.

  5. Segmentation of White Blood Cells From Microscopic Images Using a Novel Combination of K-Means Clustering and Modified Watershed Algorithm.

    Science.gov (United States)

    Ghane, Narjes; Vard, Alireza; Talebi, Ardeshir; Nematollahy, Pardis

    2017-01-01

    Recognition of white blood cells (WBCs) is the first step to diagnose some particular diseases such as acquired immune deficiency syndrome, leukemia, and other blood-related diseases that are usually done by pathologists using an optical microscope. This process is time-consuming, extremely tedious, and expensive and needs experienced experts in this field. Thus, a computer-aided diagnosis system that assists pathologists in the diagnostic process can be so effective. Segmentation of WBCs is usually a first step in developing a computer-aided diagnosis system. The main purpose of this paper is to segment WBCs from microscopic images. For this purpose, we present a novel combination of thresholding, k-means clustering, and modified watershed algorithms in three stages including (1) segmentation of WBCs from a microscopic image, (2) extraction of nuclei from cell's image, and (3) separation of overlapping cells and nuclei. The evaluation results of the proposed method show that similarity measures, precision, and sensitivity respectively were 92.07, 96.07, and 94.30% for nucleus segmentation and 92.93, 97.41, and 93.78% for cell segmentation. In addition, statistical analysis presents high similarity between manual segmentation and the results obtained by the proposed method.

  6. Vessel Operating Units (Vessels)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains data for vessels that are greater than five net tons and have a current US Coast Guard documentation number. Beginning in1979, the NMFS...

  7. Correlations Between the Density of Tryptase Positive Mast Cells (DMCT and that of New Blood Vessels (CD105+ in Patients with Gastric Cancer

    Directory of Open Access Journals (Sweden)

    Micu Gianina Viorica

    2016-06-01

    Full Text Available Mast cells proteases, tryptase and chymase are directly involved in the growth and progression of solid tumors due to their important role in tumor angiogenesis. We examined the density of tryptase positive mast cells and the mean density of new blood vessels in gastric malignant tumors of patients with and without Helicobacter pylori infection, using immunohistochemical staining for tryptase (for mast cells and CD 105 (for new vessels. Tryptase and CD 105 expression was detected in gastrectomy specimens. In this study, mast cell density correlates with angiogenesis and the growth and progression of gastric cancer. It also shows that the participation of Helicobacter pylori infection in the growth and progress of gastric neoplasia is due to an increase of peritumoral angiogenesis, with subsequent local and distant tumor spread and perivascular growth, but without perineural and nodal involvement.

  8. Mapping by VESGEN of Blood Vessels in the Retinas of ISS Crew Members and Bed Rest Subjects for Increased Understanding of VIIP

    Science.gov (United States)

    Parsons-Wingerter, P. A.; Vizzeri, G.; Tabbi, G.; Zanello, S. B.; Ploutz-Snyder, R.

    2014-01-01

    Research by NASA has established that significant risks for visual impairment in association with increased intracranial pressure (VIIP) are incurred by microgravity spaceflight, especially long-duration missions. Impairments include decreased near visual acuity, posterior globe flattening, choroidal folds, optic disc edema, and cotton wool spots. Much remains to be learned about the etiology of VIIP before effective countermeasures can be developed. Contributions of retinal vascular remodeling to the etiology of VIIP have not yet been investigated, primarily due to the current lack of ophthalmic tools for precisely measuring progressive pathophysiological remodeling of the retinal microvasculature. Although ophthalmic science and clinical practice are now highly sophisticated at detecting indirect, secondary signs of vascular remodeling such as cotton wool spots that arise during the progression of retinal vascular diseases, methods for quantifying direct, primary vascular changes are not yet established. To help develop insightful analysis of retinal vascular remodeling for aerospace medicine, we will map and quantify by our innovative VESsel GENeration Analysis (VESGEN) software the remodeling status of retinal blood vessels in crew members before and after ISS missions, and in healthy human subjects before and after head-down tilt bed rest. For this proof-of-concept study, we hypothesize that pathophysiological remodeling of retinal blood vessels occurs in coordination with microgravity-induced fluid shifts prior to development of visual impairments. VESGEN analysis in previous research supported by the US National Institutes of Health identified surprising new opportunities to regenerate retinal vessels during early-stage progression of the visually impairing, potentially blinding disease, diabetic retinopathy.

  9. Vacuum vessel for thermonuclear device

    International Nuclear Information System (INIS)

    Hagiwara, Koji; Imura, Yasuya.

    1979-01-01

    Purpose: To provide constituted method for easily performing baking of vacuum vessel, using short-circuiting segments. Constitution: At the time of baking, one turn circuit is formed by the vacuum vessel and short-circuiting segments, and current transformer converting the one turn circuit into a secondary circuit by the primary coil and iron core is formed, and the vacuum vessel is Joule heated by an induction current from the primary coil. After completion of baking, the short-circuiting segments are removed. (Kamimura, M.)

  10. Development of a fast ultrasonic three-dimensional imaging system for diagnosing blood vessels of artificial-kidney-dialyzed patients

    Science.gov (United States)

    Akahane, Mutsuhiro; Mochizuki, Takashi; Yamashita, Yuko; Kasai, Chihiro; Kobayashi, Masayuki; Kishino, Osamu; Ogawa, Tomoya

    2001-05-01

    It is very important to observe the vessels of the patient who are dialyzed artificially. An X-ray examination using contrast medium injected to the patient has been used for this purpose up to the present, but sometimes the examination has a risk of radiation damage. Therefore, we developed a safe and easy-to-use system in which 3D images of the vessels in the patients are reconstructed very quick from ultrasonic echoes. In this system, a view point for 3D rendering is set on the above position of the ultrasonic transducer, and a ray for the rendering is coincided with an ultrasonic beam. These features enable 3D images to be gradually reconstructed in real time while the echoes are being received. A magnetic position sensor system and a special 3D scanner which was developed were adopted for acquiring 3D echo data. In signal processing, intensity inversion technology is carried out before the 3D rendering process in order to detect and emphasize the vessels. With this system, we have acquired echo signals from the vessels in the arm of kidney dialyzed patients and made similar 3D images of X-ray angiography with the echoes in a short time such as 4 to 8 seconds.

  11. A method for increasing the homogeneity of the temperature distribution during magnetic fluid hyperthermia with a Fe-Cr-Nb-B alloy in the presence of blood vessels

    Science.gov (United States)

    Tang, Yundong; Flesch, Rodolfo C. C.; Jin, Tao

    2017-06-01

    Magnetic hyperthermia ablates tumor cells by absorbing the thermal energy from magnetic nanoparticles (MNPs) under an external alternating magnetic field. The blood vessels (BVs) within tumor region can generally reduce treatment effectiveness due to the cooling effect of blood flow. This paper aims to investigate the cooling effect of BVs on the temperature field of malignant tumor regions using a complex geometric model and numerical simulation. For deriving the model, the Navier-Stokes equation for blood flow is combined with Pennes bio-heat transfer equation for human tissue. The effects on treatment temperature caused by two different BV distributions inside a mammary tumor are analyzed through numerical simulation under different conditions of flow rate considering a Fe-Cr-Nb-B alloy, which has low Curie temperature ranging from 42 °C to 45 °C. Numerical results show that the multi-vessel system has more obvious cooling effects than the single vessel one on the temperature field distribution for hyperthermia. Besides, simulation results show that the temperature field within tumor area can also be influenced by the velocity and diameter of BVs. To minimize the cooling effect, this article proposes a treatment method based on the increase of the thermal energy provided to MNPs associated with the adoption of low Curie temperature particles recently reported in literature. Results demonstrate that this approach noticeably improves the uniformity of the temperature field, and shortens the treatment time in a Fe-Cr-Nb-B system, thus reducing the side effects to the patient.

  12. Blood PGC-1α Concentration Predicts Myocardial Salvage and Ventricular Remodeling After ST-segment Elevation Acute Myocardial Infarction.

    Science.gov (United States)

    Fabregat-Andrés, Óscar; Ridocci-Soriano, Francisco; Estornell-Erill, Jordi; Corbí-Pascual, Miguel; Valle-Muñoz, Alfonso; Berenguer-Jofresa, Alberto; Barrabés, José A; Mata, Manuel; Monsalve, María

    2015-05-01

    Peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α) is a metabolic regulator induced during ischemia that prevents cardiac remodeling in animal models. The activity of PGC-1α can be estimated in patients with ST-segment elevation acute myocardial infarction. The aim of the present study was to evaluate the value of blood PGC-1α levels in predicting the extent of necrosis and ventricular remodeling after infarction. In this prospective study of 31 patients with a first myocardial infarction in an anterior location and successful reperfusion, PGC-1α expression in peripheral blood on admission and at 72 hours was correlated with myocardial injury, ventricular volume, and systolic function at 6 months. Edema and myocardial necrosis were estimated using cardiac magnetic resonance imaging during the first week. At 6 months, infarct size and ventricular remodeling, defined as an increase > 10% of the left ventricular end-diastolic volume, was evaluated by follow-up magnetic resonance imaging. Myocardial salvage was defined as the difference between the edema and necrosis areas. Greater myocardial salvage was seen in patients with detectable PGC-1α levels at admission (mean [standard deviation (SD)], 18.3% [5.3%] vs 4.5% [3.9%]; P = .04). Induction of PGC-1α at 72 hours correlated with greater ventricular remodeling (change in left ventricular end-diastolic volume at 6 months, 29.7% [11.2%] vs 1.2% [5.8%]; P = .04). Baseline PGC-1α expression and an attenuated systemic response after acute myocardial infarction are associated with greater myocardial salvage and predict less ventricular remodeling. Copyright © 2014 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  13. A Comparison of Black-blood T2 Mapping Sequences for Carotid Vessel Wall Imaging at 3T: An Assessment of Accuracy and Repeatability.

    Science.gov (United States)

    Yuan, Jianmin; Patterson, Andrew J; Ruetten, Pascal P R; Reid, Scott A; Gillard, Jonathan H; Graves, Martin J

    2018-03-08

    This study is to compare the accuracy of four different black-blood T 2 mapping sequences in carotid vessel wall. Four different black-blood T 2 mapping sequences were developed and tested through phantom experiments and 17 healthy volunteers. The four sequences were: 1) double inversion-recovery (DIR) prepared 2D multi-echo spin-echo (MESE); 2) DIR-prepared 2D multi-echo fast spin-echo (MEFSE); 3) improved motion-sensitized driven-equilibrium (iMSDE) prepared 3D FSE and 4) iMSDE prepared 3D fast spoiled gradient echo (FSPGR). The concordance correlation coefficient and Bland-Altman statistics were used to compare the sequences with a gold-standard 2D MESE, without blood suppression in phantom studies. The volunteers were scanned twice to test the repeatability. Mean and standard deviation of vessel wall T 2 , signal-to-noise (SNR), the coefficient of variance and interclass coefficient (ICC) of the two scans were compared. The phantom study demonstrated that T 2 measurements had high concordance with respect to the gold-standard (all r values >0.9). In the volunteer study, the DIR 2D MEFSE had significantly higher T 2 values than the other three sequences (P 0.05). iMSDE 3D FSE had the highest SNR (P < 0.05) compared with the other three sequences. The 2D DIR MESE has the highest repeatability (ICC: 0.96, [95% CI: 0.88-0.99]). Although accurate T 2 measurements can be achieved in phantom by the four sequences, in vivo vessel wall T 2 quantification shows significant differences. The in vivo images can be influenced by multiple factors including black-blood preparation and acquisition method. Therefore, a careful choice of acquisition methods and analysis of the confounding factors are required for accurate in vivo carotid vessel wall T 2 measurements. From the settings in this study, the iMSDE prepared 3D FSE is preferred for the future volunteer/patient scans.

  14. Vessel Delineation in Retinal Images using Leung-Malik filters and Two Levels Hierarchical Learning.

    Science.gov (United States)

    Varnousfaderani, Ehsan S; Yousefi, Siamak; Bowd, Christopher; Belghith, Akram; Goldbaum, Michael H

    2015-01-01

    Blood vessel segmentation is important for the analysis of ocular fundus images for diseases affecting vessel caliber, occlusion, leakage, inflammation, and proliferation. We introduce a novel supervised method to evaluate performance of Leung-Malik filters in delineating vessels. First, feature vectors are extracted for every pixel with respect to the response of Leung-Malik filters on green channel retinal images in different orientations and scales. A two level hierarchical learning framework is proposed to segment vessels in retinal images with confounding disease abnormalities. In the first level, three expert classifiers are trained to delineate 1) vessels, 2) background, and 3) retinal pathologies including abnormal pathologies such as lesions and anatomical structures such as optic disc. In the second level, a new classifier is trained to detect vessels and non-vessel pixels based on results of the expert classifiers. Qualitative evaluation shows the effectiveness of the proposed expert classifiers in modeling retinal pathologies. Quantitative results on two standard datasets STARE (AUC = 0.971, Acc=0.927) and DRIVE (AUC = 0.955, Acc =0.903) are comparable with other state-of-the-art vessel segmentation methods.

  15. Delineation and segmentation of cerebral tumors by mapping blood-brain barrier disruption with dynamic contrast-enhanced CT and tracer kinetics modeling-a feasibility study

    International Nuclear Information System (INIS)

    Bisdas, S.; Vogl, T.J.; Yang, X.; Koh, T.S.; Lim, C.C.T.

    2008-01-01

    Dynamic contrast-enhanced (DCE) imaging is a promising approach for in vivo assessment of tissue microcirculation. Twenty patients with clinical and routine computed tomography (CT) evidence of intracerebral neoplasm were examined with DCE-CT imaging. Using a distributed-parameter model for tracer kinetics modeling of DCE-CT data, voxel-level maps of cerebral blood flow (F), intravascular blood volume (v i ) and intravascular mean transit time (t 1 ) were generated. Permeability-surface area product (PS), extravascular extracellular blood volume (v e ) and extraction ratio (E) maps were also calculated to reveal pathologic locations of tracer extravasation, which are indicative of disruptions in the blood-brain barrier (BBB). All maps were visually assessed for quality of tumor delineation and measurement of tumor extent by two radiologists. Kappa (κ) coefficients and their 95% confidence intervals (CI) were calculated to determine the interobserver agreement for each DCE-CT map. There was a substantial agreement for the tumor delineation quality in the F, v e and t 1 maps. The agreement for the quality of the tumor delineation was excellent for the v i , PS and E maps. Concerning the measurement of tumor extent, excellent and nearly excellent agreement was achieved only for E and PS maps, respectively. According to these results, we performed a segmentation of the cerebral tumors on the base of the E maps. The interobserver agreement for the tumor extent quantification based on manual segmentation of tumor in the E maps vs. the computer-assisted segmentation was excellent (κ = 0.96, CI: 0.93-0.99). The interobserver agreement for the tumor extent quantification based on computer segmentation in the mean images and the E maps was substantial (κ = 0.52, CI: 0.42-0.59). This study illustrates the diagnostic usefulness of parametric maps associated with BBB disruption on a physiology-based approach and highlights the feasibility for automatic segmentation of

  16. Vascular segmentation of head phase-contrast magnetic resonance angiograms using grayscale and shape features.

    Science.gov (United States)

    Xiao, Ruoxiu; Ding, Hui; Zhai, Fangwen; Zhao, Tong; Zhou, Wenjing; Wang, Guangzhi

    2017-04-01

    In neurosurgery planning, vascular structures must be predetermined, which can guarantee the security of the operation carried out in the case of avoiding blood vessels. In this paper, an automatic algorithm of vascular segmentation, which combined the grayscale and shape features of the blood vessels, is proposed to extract 3D vascular structures from head phase-contrast magnetic resonance angiography dataset. First, a cost function of mis-segmentation is introduced on the basis of traditional Bayesian statistical classification, and the blood vessel of weak grayscale that tended to be misclassified into background will be preserved. Second, enhanced vesselness image is obtained according to the shape-based multiscale vascular enhancement filter. Third, a new reconstructed vascular image is established according to the fusion of vascular grayscale and shape features using Dempster-Shafer evidence theory; subsequently, the corresponding segmentation structures are obtained. Finally, according to the noise distribution characteristic of the data, segmentation ratio coefficient, which increased linearly from top to bottom, is proposed to control the segmentation result, thereby preventing over-segmentation. Experiment results show that, through the proposed method, vascular structures can be detected not only when both grayscale and shape features are strong, but also when either of them is strong. Compared with traditional grayscale feature- and shape feature-based methods, it is better in the evaluation of testing in segmentation accuracy, and over-segmentation and under-segmentation ratios. The proposed grayscale and shape features combined vascular segmentation is not only effective but also accurate. It may be used for diagnosis of vascular diseases and planning of neurosurgery. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. An image-segmentation-based framework to detect oil slicks from moving vessels in the Southern African oceans using SAR imagery

    CSIR Research Space (South Africa)

    Mdakane, Lizwe W

    2017-06-01

    Full Text Available Oil slick events caused due to bilge leakage/dumps from ships and from other anthropogenic sources pose a threat to the aquatic ecosystem and need to be monitored on a regular basis. An automatic image-segmentation-based framework to detect oil...

  18. Computer aided solution for segmenting the neuron line in hippocampal microscope images

    Science.gov (United States)

    Albaidhani, Tahseen; Jassim, Sabah; Al-Assam, Hisham

    2017-05-01

    The brain Hippocampus component is known to be responsible for memory and spatial navigation. Its functionality depends on the status of different blood vessels within the Hippocampus and is severely impaired by Alzheimer's disease as a result blockage of increasing number of blood vessels by accumulation of amyloid-beta (Aβ) protein. Accurate counting of blood vessels within the Hippocampus of mice brain, from microscopic images, is an active research area for the understanding of Alzheimer's disease. Here, we report our work on automatic detection of the Region of Interest, i.e. the region in which blood vessels are located. This area typically falls between the hippocampus edge and the line of neurons within the Hippocampus. This paper proposes a new method to detect and exclude the neuron line to improve the accuracy of blood vessel counting because some neurons on it might lead to false positive cases as they look like blood vessels. Our proposed solution is based on using trainable segmentation approach with morphological operations, taking into account variation in colour, intensity values, and image texture. Experiments on a sufficient number of microscopy images of mouse brain demonstrate the effectiveness of the developed solution in preparation for blood vessels counting.

  19. Increase in cell adhesiveness on a poly(ethylene terephthalate) fabric by sintered hydroxyapatite nanocrystal coating in the development of an artificial blood vessel.

    Science.gov (United States)

    Furuzono, Tsutomu; Masuda, Miwa; Okada, Masahiro; Yasuda, Shoji; Kadono, Hiroyuki; Tanaka, Ryoichi; Miyatake, Kunio

    2006-01-01

    Nano-scaled sintered hydroxyapatite (HAp) crystals were covalently linked onto a poly(ethylene terephthalate) (PET) fabric substrate chemically modified by graft polymerization with gamma-methacryloxypropyl triethoxysilane (MPTS) for development of an artificial blood vessel. The weight gain of graft polymerization with poly(MPTS) on PET in benzyl alcohol containing H2O2 as an initiator increased as increasing the reaction time and finally reached a plateau value of about 3.5 wt%. The surface characterization of surface modification with poly(MPTS)-grafting was conducted by x-ray photoelectron spectroscopy. HAp nanocrystals of approximately 50 nm in diameter, monodispersed in pure ethanol, were coupled with alkoxysilyl groups of the poly(MPTS)-grafted PET substrate. The HAp nanocrystals were uniformly and strongly coated on the surface of the PET fabrics, although HAp particles adsorbed physically on the original PET without poly(MPTS) grafting were almost removed by ultrasonic wave treatment. More human umbilical vein endothelial cells adhered to the HAp/PET composite fabric compared with original PET after only 4 hours of initial incubation, and the same was observed on the collagen-coated PET. The coating of sintered HAp nanocrystals imparted bioactivity to the polyester substrate, which is a widely used biomedical polymer, without a coating of adhesion proteins derived from animals, such as collagen or gelatin. A prototype of an artificial blood vessel was finally fabricated by use of HAp/PET composite.

  20. P/Q-type and T-type voltage-gated calcium channels are involved in the contraction of mammary and brain blood vessels from hypertensive patients

    DEFF Research Database (Denmark)

    Thuesen, A D; Lyngsø, K S; Rasmussen, L

    2017-01-01

    : The P/Q-type antagonist ω-agatoxin IVA (10(-8) mol L(-1) ) and the T-type calcium blocker mibefradil (10(-7) mol L(-1) ) inhibited KCl depolarization-induced contraction in mammary arteries from hypertensive patients with no effect on blood vessels from normotensive patients. ω-Agatoxin IVA decreased......AIM: Calcium channel blockers are widely used in cardiovascular diseases. Besides L-type channels, T- and P/Q-type calcium channels are involved in the contraction of human renal blood vessels. It was hypothesized that T- and P/Q-type channels are involved in the contraction of human brain...... contraction in cerebral arterioles from hypertensive patients. L-type blocker nifedipine abolished the contraction in mammary arteries. PCR analysis showed expression of P/Q-type (Cav 2.1), T-type (Cav 3.1 and Cav 3.2) and L-type (Cav 1.2) calcium channels in mammary and cerebral arteries. Immunohistochemical...

  1. Compliant model of a coupled sequential coronary arterial bypass graft: effects of vessel wall elasticity and non-Newtonian rheology on blood flow regime and hemodynamic parameters distribution.

    Science.gov (United States)

    Kabinejadian, Foad; Ghista, Dhanjoo N

    2012-09-01

    We have recently developed a novel design for coronary arterial bypass surgical grafting, consisting of coupled sequential side-to-side and end-to-side anastomoses. This design has been shown to have beneficial blood flow patterns and wall shear stress distributions which may improve the patency of the CABG, as compared to the conventional end-to-side anastomosis. In our preliminary computational simulation of blood flow of this coupled sequential anastomoses design, the graft and the artery were adopted to be rigid vessels and the blood was assumed to be a Newtonian fluid. Therefore, the present study has been carried out in order to (i) investigate the effects of wall compliance and non-Newtonian rheology on the local flow field and hemodynamic parameters distribution, and (ii) verify the advantages of the CABG coupled sequential anastomoses design over the conventional end-to-side configuration in a more realistic bio-mechanical condition. For this purpose, a two-way fluid-structure interaction analysis has been carried out. A finite volume method is applied to solve the three-dimensional, time-dependent, laminar flow of the incompressible, non-Newtonian fluid; the vessel wall is modeled as a linearly elastic, geometrically non-linear shell structure. In an iteratively coupled approach the transient shell equations and the governing fluid equations are solved numerically. The simulation results indicate a diameter variation ratio of up to 4% and 5% in the graft and the coronary artery, respectively. The velocity patterns and qualitative distribution of wall shear stress parameters in the distensible model do not change significantly compared to the rigid-wall model, despite quite large side-wall deformations in the anastomotic regions. However, less flow separation and reversed flow is observed in the distensible models. The wall compliance reduces the time-averaged wall shear stress up to 32% (on the heel of the conventional end-to-side model) and somewhat

  2. Coronary artery segmentation in X-ray angiograms using gabor filters and differential evolution.

    Science.gov (United States)

    Cervantes-Sanchez, Fernando; Cruz-Aceves, Ivan; Hernandez-Aguirre, Arturo; Solorio-Meza, Sergio; Cordova-Fraga, Teodoro; Aviña-Cervantes, Juan Gabriel

    2017-08-05

    Segmentation of coronary arteries in X-ray angiograms represents an essential task for computer-aided diagnosis, since it can help cardiologists in diagnosing and monitoring vascular abnormalities. Due to the main disadvantages of the X-ray angiograms are the nonuniform illumination, and the weak contrast between blood vessels and image background, different vessel enhancement methods have been introduced. In this paper, a novel method for blood vessel enhancement based on Gabor filters tuned using the optimization strategy of Differential evolution (DE) is proposed. Because the Gabor filters are governed by three different parameters, the optimal selection of those parameters is highly desirable in order to maximize the vessel detection rate while reducing the computational cost of the training stage. To obtain the optimal set of parameters for the Gabor filters, the area (Az) under the receiver operating characteristics curve is used as objective function. In the experimental results, the proposed method achieves an A z =0.9388 in a training set of 40 images, and for a test set of 40 images it obtains the highest performance with an A z =0.9538 compared with six state-of-the-art vessel detection methods. Finally, the proposed method achieves an accuracy of 0.9423 for vessel segmentation using the test set. In addition, the experimental results have also shown that the proposed method can be highly suitable for clinical decision support in terms of computational time and vessel segmentation performance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. In vivo Observations on a Specialized Microvasculature, the Primary and Secondary Vessels in Fishes

    DEFF Research Database (Denmark)

    STEFFENSEN, JF; LOMHOLT, JP; VOGEL, WOP

    1986-01-01

    Microscopical observations have been made on the blood circulation of intact, unanaesthetized specimens of the transparent glass catfish. Along the segmental arteries of the trunk, groups of short, curled vessels of capillary dimensions (termed inter-arterial anastomoses) branch off and reunite......-arterial anastomoses a pronounced plasma skimming is observed. Hence, blood perfusing the secondary capillaries of the fin membrane contains very few red blood cells....

  4. Training on insertion and retrieval of optional inferior vena cava filters for interventional radiologists with little or just some experience with the combined use of blood vessel and animal models.

    Science.gov (United States)

    Yamagami, Takuji; Hasebe, Terumitsu; Yoshimatsu, Rika; Matsumoto, Tomohiro; Hashimoto, Takeshi; Komemushi, Atsushi; Kamei, Seiji; Hagihara, Makiyo; Sato, Yozo; Kondo, Hiroshi; Inoue, Masanori; Nakatsuka, Atsuhiro; Takahashi, Makoto; Koizumi, Jun; Saito, Hiroya

    2013-01-01

    To evaluate the usefulness of a tool that we developed to simulate performance of insertion and retrieval of optional inferior vena cava filters to be additionally used in training of beginners with an animal model. Thirty young doctors who had little or no experience in insertion and/or retrieval of filters were subjects of this study to evaluate the training tool. Eleven trainees practiced both insertion and retrieval of filters first with the animal model then with the blood vessel model while 19 trainees first practiced with the blood vessel model then with the animal model. All trainees successfully inserted the filter. Two of the 11 trainees who used the animal model before the blood vessel model failed in retrieval, and 2 of the 19 trainees who used the blood vessel model before the animal model failed. In the former group, mean time for filter implantation and withdrawal in the animal model was 75 ± 62 s and 341 ± 238 s, respectively, and in the latter group were 54 ± 16 s and 311 ± 236 s, respectively. Training with the combination of a blood vessel model and animal model is helpful for beginners to learn to insert and withdraw optional filters.

  5. Marginal space learning for medical image analysis efficient detection and segmentation of anatomical structures

    CERN Document Server

    Zheng, Yefeng

    2014-01-01

    Presents an award winning image analysis technology (Thomas Edison Patent Award, MICCAI Young Investigator Award) that achieves object detection and segmentation with state-of-the-art accuracy and efficiency Flexible, machine learning-based framework, applicable across multiple anatomical structures and imaging modalities Thirty five clinical applications on detecting and segmenting anatomical structures such as heart chambers and valves, blood vessels, liver, kidney, prostate, lymph nodes, and sub-cortical brain structures, in CT, MRI, X-Ray and Ultrasound.

  6. Diffusion tensor image segmentation of the cerebrum provides a single measure of cerebral small vessel disease severity related to cognitive change

    Directory of Open Access Journals (Sweden)

    Owen A. Williams

    2017-01-01

    DSEG θ is a powerful tool for characterising subtle brain change in SVD that has a negative impact on cognition and remains a significant predictor of cognitive change when other MRI markers of brain change are accounted for. DSEG provides an automatic segmentation of the whole cerebrum that is sensitive to a range of SVD related structural changes and successfully predicts cognitive change. Power analysis shows DSEG θ has potential as a monitoring tool in clinical trials. As such it may provide a marker of SVD severity from a single imaging modality (i.e. DTIs.

  7. Automatic evaluation of vessel diameter variation from 2D X-ray angiography.

    Science.gov (United States)

    M'hiri, Faten; Duong, Luc; Desrosiers, Christian; Dahdah, Nagib; Miró, Joaquim; Cheriet, Mohamed

    2017-11-01

    Early detection of blood vessel pathologies can be made through the evaluation of functional and structural abnormalities in the arteries, including the arterial distensibility measure. We propose a feasibility study on computing arterial distensibility automatically from monoplane 2D X-ray sequences for both small arteries (such as coronary arteries) and larger arteries (such as the aorta). To compute the distensibility measure, three steps were developed: First, the segment of an artery is extracted using our graph-based segmentation method. Then, the same segment is tracked in the moving sequence using our spatio-temporal segmentation method: the Temporal Vessel Walker. Finally, the diameter of the artery is measured automatically at each frame of the sequence based on the segmentation results. The method was evaluated using one simulated sequence and 4 patients' angiograms depicting the coronary arteries and three depicting the ascending aorta. Results of the simulated sequence achieved a Dice index of 98%, with a mean squared error in diameter measurement of [Formula: see text] mm. Results obtained from patients' X-ray sequences are consistent with manual assessment of the diameter by experts. The proposed method measures changes in diameter of a specific segment of a blood vessel during the cardiac sequence, automatically based on monoplane 2D X-ray sequence. Such information might become a key to help physicians in the detection of variations of arterial stiffness associated with early stages of various vasculopathies.

  8. Safety and feasibility of performing staged non-culprit vessel percutaneous coronary intervention within the index hospitalization in patients with ST-segment elevation myocardial infarction and multivessel disease

    International Nuclear Information System (INIS)

    Loh, Joshua P.; Kitabata, Hironori; Torguson, Rebecca; Satler, Lowell F.; Kent, Kenneth M.; Suddath, William O.; Pichard, Augusto D.; Lindsay, Joseph; Waksman, Ron

    2013-01-01

    Objectives: To determine whether staged percutaneous coronary intervention (PCI) within the same hospitalization as primary PCI is safe. Background: In ST-segment elevation myocardial infarction (STEMI) patients with multivessel disease undergoing primary PCI, staged non-culprit vessel PCI at a separate session is recommended. Methods: We conducted a retrospective analysis of 282 consecutive STEMI patients with multivessel disease who underwent primary PCI followed by staged PCI of the non-culprit vessel. Patients were categorized into staged PCI in the same hospitalization (n = 184) and staged PCI at a separate hospitalization within 8 weeks of primary PCI (n = 98). Results: Baseline characteristics, presentation of STEMI, and procedural characteristics were similar in both groups. Contrast amount was higher in the separate hospitalization group for both index (175 vs. 153 ml, p = 0.011) and staged (144 vs. 120 ml, p = 0.004) procedures. More staged left main PCI was performed in the separate hospitalization group (3.9 vs. 0.3%, p = 0.008). Angiographic success of staged PCI was similar in both groups, with similar rates of vascular complications and major bleeding. Following staged PCI, in-hospital major adverse cardiac events (3.3 vs. 1.0%, p = 0.43) and mortality (2.7 vs. 0%, p = 0.17) were similar in both groups. Conclusions: Our study supports the safety and feasibility of staged PCI within the same hospitalization as primary PCI, achieving similar procedural success and in-hospital outcomes as staged PCI at a separate hospitalization. Higher contrast amount used during primary PCI and presence of left main lesion in non-culprit vessels may influence the decision to stage the PCI at a separate hospitalization

  9. Identification of pro-angiogenic markers in blood vessels from stroked-affected brain tissue using laser-capture microdissection

    Directory of Open Access Journals (Sweden)

    Baldellou Maribel

    2009-03-01

    Full Text Available Abstract Background Angiogenesis correlates with patient survival following acute ischaemic stroke, and survival of neurons is greatest in tissue undergoing angiogenesis. Angiogenesis is critical for the development of new microvessels and leads to re-formation of collateral circulation, reperfusion, enhanced neuronal survival and improved recovery. Results Here, we have isolated active (CD105/Flt-1 positive and inactive (CD105/Flt-1 minus (n=5 micro-vessel rich-regions from stroke-affected and contralateral tissue of patients using laser-capture micro-dissection. Areas were compared for pro- and anti-angiogenic gene expression using targeted TaqMan microfluidity cards containing 46 genes and real-time PCR. Further analysis of key gene de-regulation was performed by immunohistochemistry to define localization and expression patterns of identified markers and de novo synthesis by human brain microvessel endothelial cells (HBMEC was examined following oxygen-glucose deprivation (OGD. Our data revealed that seven pro-angiogenic genes were notably up-regulated in CD105 positive microvessel rich regions. These were, beta-catenin, neural cell adhesion molecule (NRCAM, matrix metalloproteinase-2 (MMP-2, tissue inhibitor of matrix metalloproteinase-1 (TIMP-1, hepatocyte growth factor-alpha (HGF-alpha, monocyte chemottractant protein-1 (MCP-1 and and Tie-2 as well as c-kit. Immunohistochemistry demonstrated strong staining of MMP-2, HGF-alpha, MCP-1 and Tie-2 in stroke-associated regions of active remodeling in association with CD105 positive staining. In vitro, OGD stimulated production of Tie-2, MCP-1 and MMP-2 in HBMEC, demonstrated a de novo response to hypoxia. Conclusion In this work we have identified concurrent activation of key angiogenic molecules associated with endothelial cell migration, differentiation and tube-formation, vessel stabilization and stem cell homing mechanisms in areas of revascularization. Therapeutic stimulation of these

  10. In-vessel co-composting of horse stable bedding waste and blood meal at different C/N ratios: process evaluation.

    Science.gov (United States)

    Wong, Jonathan W C; Selvam, Ammaiyappan; Zhao, Zhenyong; Karthikeyana, Obuli P; Yu, Shuk Man; Law, Alex C W; Chung, Patricia C P

    2012-12-01

    Abattoir blood meal is rich in nitrogen and its potential as a co-composting material for horse stable bedding waste was evaluated at two C/N ratios -32 (LBM, low blood meal) and 16 (HBM, high blood meal) - to improve the nutrient contents of the final compost. The mix was composted for 7 days in a 10 tonne/day in-vessel composter and cured aerobically. After 56 days ofcomposting, the ammoniacal-N, CO2 evolution rate and C/N ratio of both LBM and HBM were within the guideline values; however, delayed decomposition and lower seed germination index were observed with HBM. In addition, HBM resulted in 84% loss of the initial ammoniacal-N. Almost similar organic decompositions, 62.4% and 59.6% with LBM and HBM, respectively, were achieved. However, a stable compost product can be obtained within 6-7 weeks with LBM, whereas >8 weeks were required for HBM composting. Therefore, co-composting at the C/N ratio of 32 is recommended to achieve odour-free and faster composting.

  11. Transient electro-magneto-hydrodynamic two-phase blood flow and thermal transport through a capillary vessel.

    Science.gov (United States)

    Mirza, I A; Abdulhameed, M; Vieru, D; Shafie, S

    2016-12-01

    Therapies with magnetic/electromagnetic field are employed to relieve pains or, to accelerate flow of blood-particles, particularly during the surgery. In this paper, a theoretical study of the blood flow along with particles suspension through capillary was made by the electro-magneto-hydrodynamic approach. Analytical solutions to the non-dimensional blood velocity and non-dimensional particles velocity are obtained by means of the Laplace transform with respect to the time variable and the finite Hankel transform with respect to the radial coordinate. The study of thermally transfer characteristics is based on the energy equation for two-phase thermal transport of blood and particles suspension with viscous dissipation, the volumetric heat generation due to Joule heating effect and electromagnetic couple effect. The solution of the nonlinear heat transfer problem is derived by using the velocity field and the integral transform method. The influence of dimensionless system parameters like the electrokinetic width, the Hartman number, Prandtl number, the coefficient of heat generation due to Joule heating and Eckert number on the velocity and temperature fields was studied using the Mathcad software. Results are presented by graphical illustrations. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. The optimal intestinal segment length for experimental size-mismatched intestinal transplantation: Defining the maximum length with the lowest blood flow needs in a porcine model.

    Science.gov (United States)

    Frongia, Giovanni; Majlesara, Ali; Saffari, Arash; Emami, Golnaz; Golriz, Mohammad; Günther, Patrick; Mehrabi, Arianeb

    2018-03-01

    Transplanted Intestinal Segments (IS) must match the perfusion capacities of the recipient. This can be challenging during a size-mismatched SBTX. In this study, we defined the maximum IS length with lowest blood flow needs in a porcine model by evaluating the physiological perfusion rates of different IS lengths. Blood flow in the SMA, aorta segment four, and general circulatory parameters were monitored before and after sequential intestinal resection. IS lengths of 30 cm, 60 cm, 120 cm, and 300 cm (n = 8 each) were compared. The IS blood flow requirements increased with IS length (30 cm: 19.5 ± 3.4 mL/min; 60 cm: 16.9 ± 6.7 mL/min; 120 cm: 34.9 ± 8.5 mL/min; 300 cm: 62.9 ± 11.6 mL/min). Absolute IS blood flow (P = .004), percentage IS blood flow uptake from the SMA (P = .001), and percentage IS blood flow uptake from the aorta (P = .005) increased significantly between 60 cm and 120 cm. We concluded that 60 cm was the maximum IS length before blood flow demands significantly increased in a porcine model. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. On the bifurcation of blood vessels--Wilhelm Roux's doctoral thesis (Jena 1878)--a seminal work for biophysical modelling in developmental biology.

    Science.gov (United States)

    Kurz, H; Sandau, K; Christ, B

    1997-02-01

    Wilhelm Roux's doctoral thesis described the relationship between the angle and diameter of bifurcating blood vessels. We have re-read this work in the light of biophysics and developmental biology and found two remarkable aspects hidden among a multitude of observations, rules and exceptions to these rules. First, the author identified the major determinants involved in vascular development; genetics, cybernetics, and mechanics; moreover, he knew that he could not deal with the genetic and regulatory aspects, and could hardly treat the mechanical part adequately. Second, he was deeply convinced that the laws of physics determine the design of organisms, and that a necessity for optimality was inherent in development. We combined the analysis of diameter relationships with the requirement for optimality in a stochastic biophysical model, and concluded that a constant wall-stress condition could define a minimum wall-tissue optimum during arterial development. Hence, almost 120 years after Wilhelm Roux's pioneering work, our model indicates one possible way in which physical laws have determined the evolution of regulatory and structural properties in vessel wall development.

  14. Correlation between expressions of hypoxia -inducible factor (HIF-1α, blood vessels density, cell proliferation, and apoptosis intensity in canine fibromas and fibrosarcomas

    Directory of Open Access Journals (Sweden)

    Madej Janusz A.

    2014-03-01

    Full Text Available The study aimed to demonstrate the expression of hypoxia-inducible factor (HIF-1α in soft tissue mesenchymal tumours (fibroma and fibrosarcoma in dogs. An attempt was made to correlate the obtained results with density of blood vessels (expression of von Willebrand Factor, vWF, expression of Ki-67 proliferation antigen, and with intensity of apoptosis in studied tumours. The study was performed on paraffin sections of 15 fibromas and 40 fibrosarcomas sampled from 55 female dogs aged 6 to 16 years. Immunohistochemical staining against HIF-1α, vWF, and Ki-67 was performed. Apoptosis was detected with the use of TUNEL reaction. A significantly higher HIF-1α expression was noted in fibrosarcomas in comparison to fibromas (P < 0.0001. HIF-1α expression in fibromas manifested strong positive correlation with tumour vascularity (r = 0.67, P = 0.007. Moreover, HIF-1α expression in fibrosarcomas manifested a moderate positive correlation with tumour malignancy grade (r = 0.44, P = 0.004, tumour vascularity (r = 0.52, P < 0.001, Ki-67 antigen expression (r = 0.42; P = 0.007, and TUNELpositive cells (r = 0.37, P = 0.017. Expression of HIF-1α was detected in 86.7% of fibroma type tumours and in 100% of fibrosarcomas. In all studied tumours expression of HIF-1α manifested positive correlation with the density of blood vessels, and in fibrosarcomas it correlated also with malignancy grade, intensity of Ki-67 expression, and with intensity of apoptosis in tumour cells.

  15. The development of whole blood titanium levels after instrumented spinal fusion – Is there a correlation between the number of fused segments and titanium levels?

    Science.gov (United States)

    2012-01-01

    Background Most modern spinal implants contain titanium and remain in the patient’s body permanently. Local and systemic effects such as tissue necrosis, osteolysis and malignant cell transformation caused by implants have been described. Increasing tissue concentration and whole blood levels of ions are necessary before a disease caused by a contaminant develops. The aim of the present study was the measurement of whole blood titanium levels and the evaluation of a possible correlation between these changes and the number of fused segments. Methods A prospective study was designed to determine changes in whole blood titanium levels after spinal fusion and to analyze the correlation to the number of pedicle screws, cross connectors and interbody devices implanted. Blood samples were taken preoperatively in group I (n = 15), on the first, second and 10th day postoperatively, as well as 3 and 12 months after surgery. Group II (n = 16) served as a control group of volunteers who did not have any metal implants in the body. Blood samples were taken once in this group. The number of screw-rod-connections and the length of the spinal fusion were determined using radiographic pictures. This study was checked and approved by the ethical committee of the University of Tuebingen. Results The mean age in group I was 47 ± 22 years (range 16 - 85 years). There were three male (20%) and twelve female (80%) patients. The median number of fused segments was 5 (range 1 to 11 segments). No statistically significant increase in the titanium level was seen 12 months after surgery (mean difference: -7.2 μg/l, 95% CI: -26.9 to 12.5 μg/l, p = 0.446). By observing the individual titanium levels, 4 out of 15 patients demonstrated an increase in titanium levels 12 months after surgery. No statistically significant correlation between fused segments (r = -0.188, p = 0.503) length of instrumentation (r = -0.329, p = 0.231), number of

  16. Flow measurements in a blood-perfused collagen vessel using x-ray micro-particle image velocimetry.

    Directory of Open Access Journals (Sweden)

    Elizabeth Antoine

    Full Text Available Blood-perfused tissue models are joining the emerging field of tumor engineering because they provide new avenues for modulation of the tumor microenvironment and preclinical evaluation of the therapeutic potential of new treatments. The characterization of fluid flow parameters in such in-vitro perfused tissue models is a critical step towards better understanding and manipulating the tumor microenvironment. However, traditional optical flow measurement methods are inapplicable because of the opacity of blood and the thickness of the tissue sample. In order to overcome the limitations of optical method we demonstrate the feasibility of using phase-contrast x-ray imaging to perform microscale particle image velocimetry (PIV measurements of flow in blood perfused hydrated tissue-representative microvessels. However, phase contrast x-ray images significantly depart from the traditional PIV image paradigm, as they have high intensity background, very low signal-to-noise ratio, and volume integration effects. Hence, in order to achieve accurate measurements special attention must be paid to the image processing and PIV cross-correlation methodologies. Therefore we develop and demonstrate a methodology that incorporates image preprocessing as well as advanced PIV cross-correlation methods to result in measured velocities within experimental uncertainty.

  17. Small vessel vasculitis History, classification, etiology, histopathology, clinic, diagnosis and treatment

    International