WorldWideScience

Sample records for blood vaccines biological

  1. Screening vaccine formulations for biological activity using fresh human whole blood.

    Science.gov (United States)

    Brookes, Roger H; Hakimi, Jalil; Ha, Yukyung; Aboutorabian, Sepideh; Ausar, Salvador F; Hasija, Manvi; Smith, Steven G; Todryk, Stephen M; Dockrell, Hazel M; Rahman, Nausheen

    2014-01-01

    Understanding the relevant biological activity of any pharmaceutical formulation destined for human use is crucial. For vaccine-based formulations, activity must reflect the expected immune response, while for non-vaccine therapeutic agents, such as monoclonal antibodies, a lack of immune response to the formulation is desired. During early formulation development, various biochemical and biophysical characteristics can be monitored in a high-throughput screening (HTS) format. However, it remains impractical and arguably unethical to screen samples in this way for immunological functionality in animal models. Furthermore, data for immunological functionality lag formulation design by months, making it cumbersome to relate back to formulations in real-time. It is also likely that animal testing may not accurately reflect the response in humans. For a more effective formulation screen, a human whole blood (hWB) approach can be used to assess immunological functionality. The functional activity relates directly to the human immune response to a complete formulation (adjuvant/antigen) and includes adjuvant response, antigen response, adjuvant-modulated antigen response, stability, and potentially safety. The following commentary discusses the hWB approach as a valuable new tool to de-risk manufacture, formulation design, and clinical progression. PMID:24401565

  2. Screening vaccine formulations for biological activity using fresh human whole blood

    OpenAIRE

    Brookes, RH; Hakimi, J; Ha, Y; Aboutorabian, S; Ausar, SF; Hasija, M; Smith, SG; Todryk, SM; Dockrell, HM; Rahman, N

    2014-01-01

    Understanding the relevant biological activity of any pharmaceutical formulation destined for human use is crucial. For vaccine-based formulations, activity must reflect the expected immune response, while for non-vaccine therapeutic agents, such as monoclonal antibodies, a lack of immune response to the formulation is desired. During early formulation development, various biochemical and biophysical characteristics can be monitored in a high-throughput screening (HTS) format. However, it rem...

  3. Biology of Blood

    Science.gov (United States)

    ... Mail Facebook TwitterTitle Google+ LinkedIn Home Blood Disorders Biology of Blood Overview of Blood Medical Dictionary Also ... Version. DOCTORS: Click here for the Professional Version Biology of Blood Overview of Blood Components of Blood ...

  4. Conjugate Meningococcal Vaccines Development: GSK Biologicals Experience

    Directory of Open Access Journals (Sweden)

    Jacqueline M. Miller

    2011-01-01

    Full Text Available Meningococcal diseases are serious threats to global health, and new vaccines specifically tailored to meet the age-related needs of various geographical areas are required. This paper focuses on the meningococcal conjugate vaccines developed by GSK Biologicals. Two combined conjugate vaccines were developed to help protect infants and young children in countries where the incidence of meningococcal serogroup C or serogroup C and Y disease is important: Hib-MenC-TT vaccine, which offers protection against Haemophilus influenzae type b and Neisseria meningitidis serogroup C diseases, is approved in several countries; and Hib-MenCY-TT vaccine, which adds N. meningitidis serogroup Y antigen, is currently in the final stages of development. Additionally, a tetravalent conjugate vaccine (MenACWY-TT designed to help protect against four meningococcal serogroups is presently being evaluated for global use in all age groups. All of these vaccines were shown to be highly immunogenic and to have clinically acceptable safety profiles.

  5. Biological challenges to effective vaccines in the developing world.

    Science.gov (United States)

    Grassly, Nicholas C; Kang, Gagandeep; Kampmann, Beate

    2015-06-19

    The reason for holding a meeting to discuss biological challenges to vaccines is simple: not all vaccines work equally well in all settings. This special issue reviews the performance of vaccines in challenging environments, summarizes current thinking on the reasons why vaccines underperform and considers what approaches are necessary to understand the heterogeneity in responses and to improve vaccine immunogenicity and efficacy. PMID:25964451

  6. Biological challenges to effective vaccines in the developing world

    OpenAIRE

    Grassly, Nicholas C.; Kang, Gagandeep; Kampmann, Beate

    2015-01-01

    The reason for holding a meeting to discuss biological challenges to vaccines is simple: not all vaccines work equally well in all settings. This special issue reviews the performance of vaccines in challenging environments, summarizes current thinking on the reasons why vaccines underperform and considers what approaches are necessary to understand the heterogeneity in responses and to improve vaccine immunogenicity and efficacy.

  7. 77 FR 3780 - Vaccines and Related Biological Products Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2012-01-25

    ... HUMAN SERVICES Food and Drug Administration Vaccines and Related Biological Products Advisory Committee... portion of the meeting will be closed to the public. Name of Committee: Vaccines and Related Biological..., Parasitic and Allergenic Products, Office of Vaccines Research and Review, Center for Biologics...

  8. Autorosette formation of erythrocytes on peripheral blood mononuclear cells in dogs vaccinated with canine distemper live-virus vaccine.

    OpenAIRE

    Chandler, J. P.; Yang, T. J.

    1981-01-01

    A time course study of the peripheral blood leukocytes of dogs vaccinated with canine distemper live virus (a paramyxovirus) vaccines showed that autorosette-forming leukocytes appeared from day 3 to day 10 after vaccination. The number of these cells peaked at day 7 when as many as 35% of mononuclear cells formed rosettes with autologous erythrocytes. In contrast, in nonvaccinated dogs, only 0.6 +/- 0.3% (standard error of the mean) of mononuclear cells formed rosettes throughout the 2-week ...

  9. Biology and Mechanics of Blood Flows Part I: Biology

    CERN Document Server

    Thiriet, Marc

    2008-01-01

    Biology and Mechanics of Blood Flows presents the basic knowledge and state-of-the-art techniques necessary to carry out investigations of the cardiovascular system using modeling and simulation. Part I of this two-volume sequence, Biology, addresses the nanoscopic and microscopic scales. The nanoscale corresponds to the scale of biochemical reaction cascades involved in cell adaptation to mechanical stresses among other stimuli. The microscale is the scale of stress-induced tissue remodeling associated with acute or chronic loadings. The cardiovascular system, like any physiological system, has a complicated three-dimensional structure and composition. Its time dependent behavior is regulated, and this complex system has many components. In this authoritative work, the author provides a survey of relevant cell components and processes, with detailed coverage of the electrical and mechanical behaviors of vascular cells, tissues, and organs. Because the behaviors of vascular cells and tissues are tightly coupl...

  10. 78 FR 20663 - Vaccines and Related Biological Products Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2013-04-05

    ... DNA Viruses, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics... HUMAN SERVICES Food and Drug Administration Vaccines and Related Biological Products Advisory Committee... portion of the meeting will be closed to the public. Name of Committee: Vaccines and Related...

  11. 76 FR 3639 - Vaccines and Related Biological Products Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2011-01-20

    ... HUMAN SERVICES Food and Drug Administration Vaccines and Related Biological Products Advisory Committee... be open to the public. Name of Committee: Vaccines and Related Biological Products Advisory Committee... selection of strains to be included in the influenza virus vaccine for the 2011-2012 influenza season....

  12. 75 FR 2876 - Vaccines and Related Biological Products Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2010-01-19

    ... HUMAN SERVICES Food and Drug Administration Vaccines and Related Biological Products Advisory Committee... be open to the public. Name of Committee: Vaccines and Related Biological Products Advisory Committee... selection of strains to be included in the influenza virus vaccine for the 2010 - 2011 influenza season....

  13. 78 FR 5465 - Vaccines and Related Biological Products Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2013-01-25

    ... HUMAN SERVICES Food and Drug Administration Vaccines and Related Biological Products Advisory Committee... be open to the public. Name of Committee: Vaccines and Related Biological Products Advisory Committee... strains to be included in the influenza virus vaccine for the 2013- 2014 influenza season. FDA intends...

  14. Presence of mycobacterial L-forms in human blood: Challenge of BCG vaccination

    OpenAIRE

    Markova, Nadya; Slavchev, Georgi; Michailova, Lilia

    2015-01-01

    Possible persistence of bacteria in human blood as cell wall deficient forms (L-forms) represents a top research priority for microbiologists. Application of live BCG vaccine and L-form transformation of vaccine strain may display a new intriguing aspect concerning the opportunity for occurrence of unpredictable colonization inside the human body by unusual microbial life forms. L-form cultures were isolated from 141 blood samples of people previously vaccinated with BCG, none with a history ...

  15. Comparative Pathogenesis and Systems Biology for Biodefense Virus Vaccine Development

    Directory of Open Access Journals (Sweden)

    Gavin C. Bowick

    2010-01-01

    Full Text Available Developing vaccines to biothreat agents presents a number of challenges for discovery, preclinical development, and licensure. The need for high containment to work with live agents limits the amount and types of research that can be done using complete pathogens, and small markets reduce potential returns for industry. However, a number of tools, from comparative pathogenesis of viral strains at the molecular level to novel computational approaches, are being used to understand the basis of viral attenuation and characterize protective immune responses. As the amount of basic molecular knowledge grows, we will be able to take advantage of these tools not only to rationally attenuate virus strains for candidate vaccines, but also to assess immunogenicity and safety in silico. This review discusses how a basic understanding of pathogenesis, allied with systems biology and machine learning methods, can impact biodefense vaccinology.

  16. Vaccination with recombinant aspartic hemoglobinase reduces parasite load and blood loss after hookworm infection in dogs.

    Directory of Open Access Journals (Sweden)

    Alex Loukas

    2005-10-01

    Full Text Available BACKGROUND: Hookworms infect 730 million people in developing countries where they are a leading cause of intestinal blood loss and iron-deficiency anemia. At the site of attachment to the host, adult hookworms ingest blood and lyse the erythrocytes to release hemoglobin. The parasites subsequently digest hemoglobin in their intestines using a cascade of proteolysis that begins with the Ancylostoma caninum aspartic protease 1, APR-1. METHODS AND FINDINGS: We show that vaccination of dogs with recombinant Ac-APR-1 induced antibody and cellular responses and resulted in significantly reduced hookworm burdens (p = 0.056 and fecal egg counts (p = 0.018 in vaccinated dogs compared to control dogs after challenge with infective larvae of A. caninum. Most importantly, vaccinated dogs were protected against blood loss (p = 0.049 and most did not develop anemia, the major pathologic sequela of hookworm disease. IgG from vaccinated animals decreased the catalytic activity of the recombinant enzyme in vitro and the antibody bound in situ to the intestines of worms recovered from vaccinated dogs, implying that the vaccine interferes with the parasite's ability to digest blood. CONCLUSION: To the best of our knowledge, this is the first report of a recombinant vaccine from a hematophagous parasite that significantly reduces both parasite load and blood loss, and it supports the development of APR-1 as a human hookworm vaccine.

  17. Approaches to monitoring biological outcomes for HPV vaccination: challenges of early adopter countries

    DEFF Research Database (Denmark)

    Wong, Charlene A; Saraiya, Mona; Hariri, Susan;

    2011-01-01

    In this review, we describe plans to monitor the impact of human papillomavirus (HPV) vaccine on biologic outcomes in selected international areas (Australia, Canada, Mexico, the Nordic countries, Scotland, and the United States) that have adopted this vaccine. This summary of monitoring plans...... provides a background for discussing the challenges of vaccine monitoring in settings where resources and capacity may vary. A variety of approaches that depend on existing infrastructure and resources are planned or underway for monitoring HPV vaccine impact. Monitoring HPV vaccine impact on biologic...... outcomes is a complex and challenging task, but also plays an important role in documenting the benefit of vaccination, monitoring the progress of vaccination programs, and providing data to inform vaccination and disease prevention policies....

  18. Systems biology approach predicts immunogenicity of the yellow fever vaccine in humans

    OpenAIRE

    Querec, Troy D; Akondy, Rama S.; Lee, Eva K.; Cao, Weiping; Nakaya, Helder I.; Teuwen, Dirk; Pirani, Ali; Gernert, Kim; Deng, Jiusheng; Marzolf, Bruz; Kennedy, Kathleen; Wu, Haiyan; Bennouna, Soumaya; Oluoch, Herold; Miller, Joseph

    2008-01-01

    A major challenge in vaccinology is to prospectively determine vaccine efficacy. Here we have used a systems biology approach to identify early gene ‘signatures’ that predicted immune responses in humans vaccinated with yellow fever vaccine YF-17D. Vaccination induced genes that regulate virus innate sensing and type I interferon production. Computational analyses identified a gene signature, including complement protein C1qB and eukaryotic translation initiation factor 2 alpha kinase 4—an or...

  19. Systems biology applied to vaccine and immunotherapy development

    Directory of Open Access Journals (Sweden)

    Marincola Francesco M

    2011-09-01

    Full Text Available Abstract Immunotherapies, including vaccines, represent a potent tool to prevent or contain disease with high morbidity or mortality such as infections and cancer. However, despite their widespread use, we still have a limited understanding of the mechanisms underlying the induction of protective immune responses. Immunity is made of a multifaceted set of integrated responses involving a dynamic interaction of thousands of molecules; among those is a growing appreciation for the role the innate immunity (i.e. pathogen recognition receptors - PRRs plays in determining the nature and duration (immune memory of adaptive T and B cell immunity. The complex network of interactions between immune manipulation of the host (immunotherapy on one side and innate and adaptive responses on the other might be fully understood only employing the global level of investigation provided by systems biology. In this framework, the advancement of high-throughput technologies, together with the extensive identification of new genes, proteins and other biomolecules in the "omics" era, facilitate large-scale biological measurements. Moreover, recent development of new computational tools enables the comprehensive and quantitative analysis of the interactions between all of the components of immunity over time. Here, we review recent progress in using systems biology to study and evaluate immunotherapy and vaccine strategies for infectious and neoplastic diseases. Multi-parametric data provide novel and often unsuspected mechanistic insights while enabling the identification of common immune signatures relevant to human investigation such as the prediction of immune responsiveness that could lead to the improvement of the design of future immunotherapy trials. Thus, the paradigm switch from "empirical" to "knowledge-based" conduct of medicine and immunotherapy in particular, leading to patient-tailored treatment.

  20. 75 FR 17929 - Vaccines and Related Biological Products Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2010-04-08

    ... will review and discuss available data regarding the unexpected finding of DNA originating from porcine... HUMAN SERVICES Food and Drug Administration Vaccines and Related Biological Products Advisory Committee... be open to the public. Name of Committee: Vaccines and Related Biological Products Advisory...

  1. Effectiveness of DNA-recombinant anti-hepatitis B vaccines in blood donors: a cohort study

    OpenAIRE

    Petry Andrea; de Souza Denise ER; Kupek Emil

    2007-01-01

    Abstract Background Although various studies have demonstrated efficacy of DNA-recombinant anti-hepatitis B vaccines, their effectiveness in health care settings has not been researched adequately. This gap is particularly visible for blood donors, a group of significant importance in the reduction of transfusion-transmitted hepatitis B. Methods This is a double cohort study of 1411 repeat blood donors during the period 1998–2002, involving a vaccinated and an unvaccinated cohort, with matchi...

  2. Robust Vaccine Responses in Adult and Pediatric Cord Blood Transplantation Recipients Treated for Hematologic Malignancies.

    Science.gov (United States)

    Shah, Gunjan L; Shune, Leyla; Purtill, Duncan; Devlin, Sean; Lauer, Emily; Lubin, Marissa; Bhatt, Valkal; McElrath, Courtney; Kernan, Nancy A; Scaradavou, Andromachi; Giralt, Sergio; Perales, Miguel A; Ponce, Doris M; Young, James W; Shah, Monica; Papanicolaou, Genovefa; Barker, Juliet N

    2015-12-01

    Because cord blood (CB) lacks memory T and B cells and recent decreases in herd immunity to vaccine-preventable diseases in many developed countries have been documented, vaccine responses in CB transplantation (CBT) survivors are of great interest. We analyzed vaccine responses in double-unit CBT recipients transplanted for hematologic malignancies. In 103 vaccine-eligible patients, graft-versus-host disease (GVHD) most commonly precluded vaccination. Sixty-five patients (63%; engrafting units median HLA-allele match 5/8; range, 2 to 7/8) received protein conjugated vaccines, and 63 patients (median age, 34 years; range, .9 to 64) were evaluated for responses. Median vaccination time was 17 months (range, 7 to 45) post-CBT. GVHD (n = 42) and prior rituximab (n = 13) delayed vaccination. Responses to Prevnar 7 and/or 13 vaccines (serotypes 14, 19F, 23F) were seen in children and adults (60% versus 49%, P = .555). Responses to tetanus, diphtheria, pertussis, Haemophilus influenzae, and polio were observed in children (86% to 100%) and adults (53% to 89%) even if patients had prior GVHD or rituximab. CD4(+)CD45RA(+) and CD19(+) cell recovery significantly influenced tetanus and polio responses. In a smaller cohort responses were seen to measles (65%), mumps (50%), and rubella (100%) vaccines. No vaccine side effects were identified, and all vaccinated patients survived (median follow-up, 57 months). Although GVHD and rituximab can delay vaccination, CBT recipients (including adults and those with prior GVHD) have similar vaccine response rates to adult donor allograft recipients supporting vaccination in CBT recipients. PMID:26271191

  3. Effectiveness of DNA-recombinant anti-hepatitis B vaccines in blood donors: a cohort study

    Directory of Open Access Journals (Sweden)

    Petry Andrea

    2007-11-01

    Full Text Available Abstract Background Although various studies have demonstrated efficacy of DNA-recombinant anti-hepatitis B vaccines, their effectiveness in health care settings has not been researched adequately. This gap is particularly visible for blood donors, a group of significant importance in the reduction of transfusion-transmitted hepatitis B. Methods This is a double cohort study of 1411 repeat blood donors during the period 1998–2002, involving a vaccinated and an unvaccinated cohort, with matching of the two in terms of sex, age and residence. Average follow-up was 3.17 person-years. The outcome measure was infection with hepatitis B virus (HBV, defined by testing positive on serologic markers HBsAg or anti-HBC. All blood donors were from the blood bank in Joaçaba, federal state of Santa Catarina, Brazil. Results The cohorts did not differ significantly regarding sex, age and marital status but the vaccinated cohort had higher mean number of blood donations and higher proportion of those residing in the county capital Joaçaba. Hepatitis B incidences per 1000 person-years were zero among vaccinated and 2,33 among non-vaccinated, resulting in 100% vaccine effectiveness with 95% confidence interval from 30,1% to 100%. The number of vaccinated persons necessary to avoid one HBV infection in blood donors was estimated at 429 with 95% confidence interval from 217 to 21422. Conclusion The results showed very high effectiveness of DNA-recombinant anti-HBV vaccines in blood donors. Its considerable variation in this study is likely due to the limited follow-up and the influence of confounding factors normally balanced out in efficacy clinical trials.

  4. Biological mothers may be dangerous blood donors for their neonates.

    Science.gov (United States)

    Elbert, C; Strauss, R G; Barrett, F; Goeken, N E; Pittner, B; Cordle, D

    1991-01-01

    Premature neonates require blood transfusions, and biological parents may wish to be directed donors. Biological mothers pose a potential danger because their plasma may contain antibodies that will react with blood cell antigens inherited by the infant from the father. We studied 25 healthy, pregnant women at the time of delivery for the presence of antibodies against red blood cell, leukocyte and platelet antigens. Mothers known to have red cell antibodies earlier in pregnancy were excluded, and no new red cell antibodies appeared at delivery. Antileukocyte and antiplatelet antibodies were found in 16 and 12% of mothers, respectively. Because these antibodies have the potential to cause adverse reactions when transfused passively, we suggest that either biological mothers not provide blood components containing plasma for their neonates or that maternal red cells and platelets be given as washed products. PMID:1853680

  5. Quantitation of antibody-secreting cells in the blood after vaccination with Haemophilus influenzae type b conjugate vaccine

    DEFF Research Database (Denmark)

    Barington, T; Heilmann, C; Andersen, V

    1990-01-01

    -specific antibody-secreting cells (AbSC) of the isotypes IgM, IgG, and IgA. The appearance of AbSC in the blood after vaccination of adults with diphtheria toxoid-conjugated Hib polysaccharide was investigated. AbSC were detected from post-vaccination day 5 to day 14. IgA was the predominant isotype among...... these cells. IgM AbSC peaked slightly earlier (median day 7) than IgG and IgA AbSC (both day 8). On post-vaccination day 8 the numbers of AbSC were: IgA, 1217/10(6) mononuclear cells (median); IgG, 211; and IgM, 30 (n = 11). Similar isotype distribution has earlier been found after vaccination with pure...... capsular polysaccharides from Hib and pneumococci. The predominance of IgA AbSC in response to both conjugate and pure polysaccharide vaccines is probably due to reactivation of the same clones of IgA-committed memory B cells originally primed at the mucosa by natural exposure to the polysaccharide...

  6. Biological and phylogenetic characterization of a genotype VII Newcastle disease virus from Venezuela: Efficacy of vaccination

    Science.gov (United States)

    Here we describe the characterization a virulent genotype VII Newcastle disease virus (NDV) from Venezuela and evaluate the efficacy of heterologous genotype commercial vaccination under field and controlled rearing conditions. Biological pathotyping and molecular analysis were applied. Results sh...

  7. SBR-Blood: systems biology repository for hematopoietic cells.

    Science.gov (United States)

    Lichtenberg, Jens; Heuston, Elisabeth F; Mishra, Tejaswini; Keller, Cheryl A; Hardison, Ross C; Bodine, David M

    2016-01-01

    Extensive research into hematopoiesis (the development of blood cells) over several decades has generated large sets of expression and epigenetic profiles in multiple human and mouse blood cell types. However, there is no single location to analyze how gene regulatory processes lead to different mature blood cells. We have developed a new database framework called hematopoietic Systems Biology Repository (SBR-Blood), available online at http://sbrblood.nhgri.nih.gov, which allows user-initiated analyses for cell type correlations or gene-specific behavior during differentiation using publicly available datasets for array- and sequencing-based platforms from mouse hematopoietic cells. SBR-Blood organizes information by both cell identity and by hematopoietic lineage. The validity and usability of SBR-Blood has been established through the reproduction of workflows relevant to expression data, DNA methylation, histone modifications and transcription factor occupancy profiles. PMID:26590403

  8. Synthetic biology devices and circuits for RNA-based 'smart vaccines': a propositional review.

    Science.gov (United States)

    Andries, Oliwia; Kitada, Tasuku; Bodner, Katie; Sanders, Niek N; Weiss, Ron

    2015-02-01

    Nucleic acid vaccines have been gaining attention as an alternative to the standard attenuated pathogen or protein based vaccine. However, an unrealized advantage of using such DNA or RNA based vaccination modalities is the ability to program within these nucleic acids regulatory devices that would provide an immunologist with the power to control the production of antigens and adjuvants in a desirable manner by administering small molecule drugs as chemical triggers. Advances in synthetic biology have resulted in the creation of highly predictable and modular genetic parts and devices that can be composed into synthetic gene circuits with complex behaviors. With the recent advent of modified RNA gene delivery methods and developments in the RNA replicon platform, we foresee a future in which mammalian synthetic biologists will create genetic circuits encoded exclusively on RNA. Here, we review the current repertoire of devices used in RNA synthetic biology and propose how programmable 'smart vaccines' will revolutionize the field of RNA vaccination.

  9. Systems biology approach predicts immunogenicity of the yellow fever vaccine in humans

    Science.gov (United States)

    Lee, Eva K; Cao, Weiping; Nakaya, Helder I; Teuwen, Dirk; Pirani, Ali; Gernert, Kim; Deng, Jiusheng; Marzolf, Bruz; Kennedy, Kathleen; Wu, Haiyan; Bennouna, Soumaya; Oluoch, Herold; Miller, Joseph; Vencio, Ricardo Z; Mulligan, Mark; Aderem, Alan; Ahmed, Rafi; Pulendran, Bali

    2014-01-01

    A major challenge in vaccinology is to prospectively determine vaccine efficacy. Here we have used a systems biology approach to identify early gene ‘signatures’ that predicted immune responses in humans vaccinated with yellow fever vaccine YF-17D. Vaccination induced genes that regulate virus innate sensing and type I interferon production. Computational analyses identified a gene signature, including complement protein C1qB and eukaryotic translation initiation factor 2 alpha kinase 4—an orchestrator of the integrated stress response—that correlated with and predicted YF-17D CD8+ T cell responses with up to 90% accuracy in an independent, blinded trial. A distinct signature, including B cell growth factor TNFRS17, predicted the neutralizing antibody response with up to 100% accuracy. These data highlight the utility of systems biology approaches in predicting vaccine efficacy. PMID:19029902

  10. Major histocompatibility complex class I-associated vaccine protection from simian immunodeficiency virus-infected peripheral blood cells

    OpenAIRE

    1994-01-01

    To evaluate the effectiveness of vaccine protection from infected cells from another individual of the same species, vaccinated rhesus macaques (Macaca mulatta) were challenged with peripheral blood mononuclear cells from another animal diagnosed with acquired immune deficiency syndrome (AIDS). Half of the simian immunodeficiency virus (SIV)- vaccinated animals challenged were protected, whereas unprotected vaccinates progressed as rapidly to AIDS. Protection was unrelated to either total ant...

  11. The evolutionary consequences of blood-stage vaccination on the rodent malaria Plasmodium chabaudi.

    Directory of Open Access Journals (Sweden)

    Victoria C Barclay

    Full Text Available Malaria vaccine developers are concerned that antigenic escape will erode vaccine efficacy. Evolutionary theorists have raised the possibility that some types of vaccine could also create conditions favoring the evolution of more virulent pathogens. Such evolution would put unvaccinated people at greater risk of severe disease. Here we test the impact of vaccination with a single highly purified antigen on the malaria parasite Plasmodium chabaudi evolving in laboratory mice. The antigen we used, AMA-1, is a component of several candidate malaria vaccines currently in various stages of trials in humans. We first found that a more virulent clone was less readily controlled by AMA-1-induced immunity than its less virulent progenitor. Replicated parasites were then serially passaged through control or AMA-1 vaccinated mice and evaluated after 10 and 21 rounds of selection. We found no evidence of evolution at the ama-1 locus. Instead, virulence evolved; AMA-1-selected parasites induced greater anemia in naïve mice than both control and ancestral parasites. Our data suggest that recombinant blood stage malaria vaccines can drive the evolution of more virulent malaria parasites.

  12. A systems biology perspective on rational design of peptide vaccine against virus infections.

    Science.gov (United States)

    Chen, Jiajia; Wang, Ying; Guo, Deyin; Shen, Bairong

    2012-01-01

    With the recent onset of influenza A (H1N1) pandemic, the need for improved vaccines against virus infections has become an international priority. Strategies for vaccine development have changed over time, from whole-virus to immunogenic proteins and further to antigenic viral peptides. Various algorithms and bioinformatics tools have been developed to predict immunogenic peptide regions in an antigenic protein sequence. Recent advances in next-generation sequencing technologies, as represented by real time DNA sequencing, provide increased throughput and yield of data on viral pathogens and host cells. This enables us to 'mine' the genomic sequence for putative vaccine candidates or targets, allowing a more rational approach to the peptide vaccine design. This review first describes current computational tools available for the rational design of peptide vaccines and then addresses recent attempts to define pathogenic peptides at '- omics' level. As there are interplay between antibody and T cells, as well as intersection between viruses and hosts, the vaccine-mediated immunity are orchestrated by multiple factors within an interaction network. Therefore, single viral peptide alone fails to provide optimal immunity. Systems biology offers a systems-level perspective of how the various arms of the immune response are integrated to give immune response, as well as how host and virus interact, thereby providing an integrated approach to select the most promising candidates for peptide vaccines development. We highlight in this article the system-level application of rational peptide vaccine design, which may be a general paradigm for future viral vaccine development.

  13. Presence of mycobacterial L-forms in human blood: Challenge of BCG vaccination.

    Science.gov (United States)

    Markova, Nadya; Slavchev, Georgi; Michailova, Lilia

    2015-01-01

    Possible persistence of bacteria in human blood as cell wall deficient forms (L-forms) represents a top research priority for microbiologists. Application of live BCG vaccine and L-form transformation of vaccine strain may display a new intriguing aspect concerning the opportunity for occurrence of unpredictable colonization inside the human body by unusual microbial life forms. L-form cultures were isolated from 141 blood samples of people previously vaccinated with BCG, none with a history of exposure to tuberculosis. Innovative methodology to access the unusual L-form elements derived from human blood was developed. The methodology outlines the path of transformation of non- cultivable L-form element to cultivable bacteria and their adaptation for growth in vitro. All isolates showed typical L-forms growth features ("fried eggs" colonies and biofilm). Electron microscopy revealed morphology evidencing peculiar characteristics of bacterial L-form population (cell wall deficient polymorphic elements of variable shape and size). Regular detection of acid fast bacteria in smears of isolated blood L-form cultures, led us to start their identification by using specific Mycobactrium spp. genetic tests. Forty five of 97 genetically tested blood cultures provided specific positive signals for mycobacteria, confirmed by at least one of the 3 specific assays (16S rRNA PCR; IS6110 Real Time PCR and spoligotyping). In conclusion, the obtained genetic evidence suggests that these L-forms are of mycobacterial origin. As the investigated people had been vaccinated with BCG, we can assume that the identified mycobacterial L-forms may be produced by persisting live BCG vaccine. PMID:25874947

  14. Enhancing the role of veterinary vaccines reducing zoonotic diseases of humans: Linking systems biology with vaccine development

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Leslie G.; Khare, Sangeeta; Lawhon, Sara D.; Rossetti, Carlos A.; Lewin, Harris A.; Lipton, Mary S.; Turse, Joshua E.; Wylie, Dennis C.; Bai, Yu; Drake, Kenneth L.

    2011-09-22

    The aim of research on infectious diseases is their prevention, and brucellosis and salmonellosis as such are classic examples of worldwide zoonoses for application of a systems biology approach for enhanced rational vaccine development. When used optimally, vaccines prevent disease manifestations, reduce transmission of disease, decrease the need for pharmaceutical intervention, and improve the health and welfare of animals, as well as indirectly protecting against zoonotic diseases of people. Advances in the last decade or so using comprehensive systems biology approaches linking genomics, proteomics, bioinformatics, and biotechnology with immunology, pathogenesis and vaccine formulation and delivery are expected to enable enhanced approaches to vaccine development. The goal of this paper is to evaluate the role of computational systems biology analysis of host:pathogen interactions (the interactome) as a tool for enhanced rational design of vaccines. Systems biology is bringing a new, more robust approach to veterinary vaccine design based upon a deeper understanding of the host pathogen interactions and its impact on the host's molecular network of the immune system. A computational systems biology method was utilized to create interactome models of the host responses to Brucella melitensis (BMEL), Mycobacterium avium paratuberculosis (MAP), Salmonella enterica Typhimurium (STM), and a Salmonella mutant (isogenic *sipA, sopABDE2) and linked to the basis for rational development of vaccines for brucellosis and salmonellosis as reviewed by Adams et al. and Ficht et al. [1,2]. A bovine ligated ileal loop biological model was established to capture the host gene expression response at multiple time points post infection. New methods based on Dynamic Bayesian Network (DBN) machine learning were employed to conduct a comparative pathogenicity analysis of 219 signaling and metabolic pathways and 1620 gene ontology (GO) categories that defined the host

  15. Enhancing the role of veterinary vaccines reducing zoonotic diseases of humans: linking systems biology with vaccine development.

    Science.gov (United States)

    Adams, L Garry; Khare, Sangeeta; Lawhon, Sara D; Rossetti, Carlos A; Lewin, Harris A; Lipton, Mary S; Turse, Joshua E; Wylie, Dennis C; Bai, Yu; Drake, Kenneth L

    2011-09-22

    The aim of research on infectious diseases is their prevention, and brucellosis and salmonellosis as such are classic examples of worldwide zoonoses for application of a systems biology approach for enhanced rational vaccine development. When used optimally, vaccines prevent disease manifestations, reduce transmission of disease, decrease the need for pharmaceutical intervention, and improve the health and welfare of animals, as well as indirectly protecting against zoonotic diseases of people. Advances in the last decade or so using comprehensive systems biology approaches linking genomics, proteomics, bioinformatics, and biotechnology with immunology, pathogenesis and vaccine formulation and delivery are expected to enable enhanced approaches to vaccine development. The goal of this paper is to evaluate the role of computational systems biology analysis of host:pathogen interactions (the interactome) as a tool for enhanced rational design of vaccines. Systems biology is bringing a new, more robust approach to veterinary vaccine design based upon a deeper understanding of the host-pathogen interactions and its impact on the host's molecular network of the immune system. A computational systems biology method was utilized to create interactome models of the host responses to Brucella melitensis (BMEL), Mycobacterium avium paratuberculosis (MAP), Salmonella enterica Typhimurium (STM), and a Salmonella mutant (isogenic ΔsipA, sopABDE2) and linked to the basis for rational development of vaccines for brucellosis and salmonellosis as reviewed by Adams et al. and Ficht et al. [1,2]. A bovine ligated ileal loop biological model was established to capture the host gene expression response at multiple time points post infection. New methods based on Dynamic Bayesian Network (DBN) machine learning were employed to conduct a comparative pathogenicity analysis of 219 signaling and metabolic pathways and 1620 gene ontology (GO) categories that defined the host's biosignatures

  16. Vaccinations

    Science.gov (United States)

    ... vaccinated? For many years, a set of annual vaccinations was considered normal and necessary for dogs and ... to protect for a full year. Consequently, one vaccination schedule will not work well for all pets. ...

  17. Avipoxviruses: infection biology and their use as vaccine vectors

    Directory of Open Access Journals (Sweden)

    Tryland Morten

    2011-02-01

    Full Text Available Abstract Avipoxviruses (APVs belong to the Chordopoxvirinae subfamily of the Poxviridae family. APVs are distributed worldwide and cause disease in domestic, pet and wild birds of many species. APVs are transmitted by aerosols and biting insects, particularly mosquitoes and arthropods and are usually named after the bird species from which they were originally isolated. The virus species Fowlpox virus (FWPV causes disease in poultry and associated mortality is usually low, but in flocks under stress (other diseases, high production mortality can reach up to 50%. APVs are also major players in viral vaccine vector development for diseases in human and veterinary medicine. Abortive infection in mammalian cells (no production of progeny viruses and their ability to accommodate multiple gene inserts are some of the characteristics that make APVs promising vaccine vectors. Although abortive infection in mammalian cells conceivably represents a major vaccine bio-safety advantage, molecular mechanisms restricting APVs to certain hosts are not yet fully understood. This review summarizes the current knowledge relating to APVs, including classification, morphogenesis, host-virus interactions, diagnostics and disease, and also highlights the use of APVs as recombinant vaccine vectors.

  18. Anaemia in a phase 2 study of a blood stage falciparum malaria vaccine

    Directory of Open Access Journals (Sweden)

    Guindo Aldiouma

    2011-01-01

    Full Text Available Abstract Background A Phase 1-2b study of the blood stage malaria vaccine AMA1-C1/Alhydrogel was conducted in 336 children in Donéguébougou and Bancoumana, Mali. In the Phase 2 portion of the study (n = 300, no impact on parasite density or clinical malaria was seen; however, children who received the study vaccine had a higher frequency of anaemia (defined as haemoglobin Methods To further investigate the possible impact of vaccination on anaemia, additional analyses were conducted including patients from the Phase 1 portion of the study and controlling for baseline haemoglobin, haemoglobin types S or C, alpha-thalassaemia, G6PD deficiency, and age. A multiplicative intensity model was used, which generalizes Cox regression to allow for multiple events. Frailty effects for each subject were used to account for correlation of multiple anaemia events within the same subject. Intensity rates were calculated with reference to calendar time instead of time after randomization in order to account for staggered enrollment and seasonal effects of malaria incidence. Associations of anaemia with anti-AMA1 antibody were further explored using a similar analysis. Results A strong effect of vaccine on the incidence of anaemia (risk ratio [AMA1-C1 to comparator (Hiberix]= 2.01, 95% confidence interval [1.26,3.20] was demonstrated even after adjusting for baseline haemoglobin, haemoglobinopathies, and age, and using more sophisticated statistical models. Anti-AMA1 antibody levels were not associated with this effect. Conclusions While these additional analyses show a robust effect of vaccination on anaemia, this is an intensive exploration of secondary results and should, therefore, be interpreted with caution. Possible mechanisms of the apparent adverse effect on haemoglobin of vaccination with AMA1-C1/Alhydrogel and implications for blood stage vaccine development are discussed. The potential impact on malaria-associated anaemia should be closely

  19. Antiradiation Vaccine: Technology Development Of Prophylaxis, Prevention And Treatment Of Biological Consequences And Complications After Neutron Irradiation.

    Science.gov (United States)

    Popov, Dmitri; Maliev, Slava; Jones, Jeffrey

    Introduction: Neutrons irradiation produce a unique biological effectiveness compare to different types of radiation because their ability to create a denser trail of ionized atoms in biological living tissues[Straume 1982; Latif et al.2010; Katz 1978; Bogatyrev 1982]. The efficacy of an Anti-Radiation Vaccine for the prophylaxis, prevention and therapy of acute radiation pathology was studied in a neutron exposure facility. The biological effects of fast neutrons include damage of central nervous system and cardiovascular system with development of Acute Cerebrovascular and Cardiovascular forms of acute radiation pathology. After irradiation by high doses of fast neutron, formation of neurotoxins, hematotoxins,cytotoxins forming from cell's or tissue structures. High doses of Neutron Irradiation generate general and specific toxicity, inflammation reactions. Current Acute Medical Management and Methods of Radiation Protection are not effective against moderate and high doses of neutron irradiation. Our experiments demonstrate that Antiradiation Vaccine is the most effective radioprotectant against high doses of neutron-radiation. Radiation Toxins(biological substances with radio-mimetic properties) isolated from central lymph of gamma-irradiated animals could be working substance with specific antigenic properties for vaccination against neutron irradiation. Methods: Antiradiation Vaccine preparation standard - mixture of a toxoid form of Radiation Toxins - include Cerebrovascular RT Neurotoxin, Cardiovascular RT Neurotoxin, Gastrointestinal RT Neurotoxin, Hematopoietic RT Hematotoxin. Radiation Toxins were isolated from the central lymph of gamma-irradiated animals with different forms of Acute Radiation Syndromes - Cerebrovascular, Cardiovascular, Gastrointestinal, Hematopoietic forms. Devices for Y-radiation were "Panorama","Puma". Neutron exposure was accomplished at the Department of Research Institute of Nuclear Physics, Dubna, Russia. The neutrons

  20. Structural and Computational Biology in the Design of Immunogenic Vaccine Antigens

    Directory of Open Access Journals (Sweden)

    Lassi Liljeroos

    2015-01-01

    Full Text Available Vaccination is historically one of the most important medical interventions for the prevention of infectious disease. Previously, vaccines were typically made of rather crude mixtures of inactivated or attenuated causative agents. However, over the last 10–20 years, several important technological and computational advances have enabled major progress in the discovery and design of potently immunogenic recombinant protein vaccine antigens. Here we discuss three key breakthrough approaches that have potentiated structural and computational vaccine design. Firstly, genomic sciences gave birth to the field of reverse vaccinology, which has enabled the rapid computational identification of potential vaccine antigens. Secondly, major advances in structural biology, experimental epitope mapping, and computational epitope prediction have yielded molecular insights into the immunogenic determinants defining protective antigens, enabling their rational optimization. Thirdly, and most recently, computational approaches have been used to convert this wealth of structural and immunological information into the design of improved vaccine antigens. This review aims to illustrate the growing power of combining sequencing, structural and computational approaches, and we discuss how this may drive the design of novel immunogens suitable for future vaccines urgently needed to increase the global prevention of infectious disease.

  1. Canine Distemper Viral Inclusions in Blood Cells of Four Vaccinated Dogs

    OpenAIRE

    McLaughlin, Bruce G.; Adams, Pamela S.; Cornell, William D.; Elkins, A. Darrel

    1985-01-01

    Four cases of canine distemper were detected by the presence of numerous cytoplasmic inclusions in various circulating blood cells. Fluorescent antibody techniques and electron microscopy confirmed the identity of the viral inclusions. The cases occurred in the same geographic area and within a short time span. All four dogs had been vaccinated against canine distemper, but stress or other factors may have compromised their immune status. The possibility of an unusually virulent virus strain ...

  2. Decrease in blood pressure and regression of cardiovascular complications by angiotensin II vaccine in mice.

    Directory of Open Access Journals (Sweden)

    Futoshi Nakagami

    Full Text Available Vaccines have been recently developed to treat various diseases such as cancer, rheumatoid arthritis and Alzheimer's disease in addition to infectious diseases. However, before use in the clinical setting, vaccines targeting self-antigens must be demonstrated to be effective and safe, evoking an adequate humoral immune response from B cells while avoiding T cell activation in response to self. Although the vaccine targeting angiotensin II (Ang II is efficient in rodents and humans, little is known regarding the immunological activation and safety of the vaccine. In this study, we evaluated the efficiency and safety of an Ang II peptide vaccine in mice. Immunization with Ang II conjugated to keyhole limpet hemocyanin (KLH successfully induced the production of anti-Ang II antibody, which blocked Ang II signaling in human aortic smooth muscle cells. However, Ang II itself did not activate T cells, as assessed by the proliferation and lymphokine production of T cells in immunized mice, whereas KLH activated T cells. In an Ang II-infused model, the non-immunized mice showed high blood pressure (BP, whereas the immunized mice (Ang II-KLH showed a significant decrease in systolic BP, accompanied by significant reductions in cardiac hypertrophy and fibrosis. Importantly, anti-Ang II antibody titer was not elevated even after the administration of large amounts of Ang II, indicating that Ang II itself boosted antibody production, most likely due to less activation of T cells. In addition, no accumulation of inflammatory cells was observed in immunized mice, because endogenous Ang II would not activate T cells after immunization with Ang II-KLH. Taken together, these data indicate that vaccines targeting Ang II might be effective to decrease high BP and prevent cardiovascular complications without severe side effects.

  3. Merozoite surface proteins in red blood cell invasion, immunity and vaccines against malaria

    Science.gov (United States)

    Beeson, James G.; Drew, Damien R.; Boyle, Michelle J.; Feng, Gaoqian; Fowkes, Freya J.I.; Richards, Jack S.

    2016-01-01

    Malaria accounts for an enormous burden of disease globally, with Plasmodium falciparum accounting for the majority of malaria, and P. vivax being a second important cause, especially in Asia, the Americas and the Pacific. During infection with Plasmodium spp., the merozoite form of the parasite invades red blood cells and replicates inside them. It is during the blood-stage of infection that malaria disease occurs and, therefore, understanding merozoite invasion, host immune responses to merozoite surface antigens, and targeting merozoite surface proteins and invasion ligands by novel vaccines and therapeutics have been important areas of research. Merozoite invasion involves multiple interactions and events, and substantial processing of merozoite surface proteins occurs before, during and after invasion. The merozoite surface is highly complex, presenting a multitude of antigens to the immune system. This complexity has proved challenging to our efforts to understand merozoite invasion and malaria immunity, and to developing merozoite antigens as malaria vaccines. In recent years, there has been major progress in this field, and several merozoite surface proteins show strong potential as malaria vaccines. Our current knowledge on this topic is reviewed, highlighting recent advances and research priorities. PMID:26833236

  4. Pre-vaccination nasopharyngeal pneumococcal carriage in a Nigerian population: epidemiology and population biology.

    Directory of Open Access Journals (Sweden)

    Ifedayo M O Adetifa

    Full Text Available BACKGROUND: Introduction of pneumococcal vaccines in Nigeria is a priority as part of the Accelerated Vaccine Introduction Initiative (AVI of the Global Alliance for Vaccines and Immunisation (GAVI. However, country data on the burden of pneumococcal disease (IPD is limited and coverage by available conjugate vaccines is unknown. This study was carried out to describe the pre vaccination epidemiology and population biology of pneumococcal carriage in Nigeria. METHODS: This was a cross sectional survey. Nasopharyngeal swabs (NPS were obtained from a population sample in 14 contiguous peri-urban Nigerian communities. Data on demographic characteristics and risk factor for carriage were obtained from all study participants. Pneumococci isolated from NPS were characterised by serotyping, antimicrobial susceptibility and Multi Locus Sequencing Typing (MLST. RESULTS: The prevalence of pneumococcal carriage was 52.5%. Carriage was higher in children compared to adults (67.4% vs. 26%, highest (≈90% in infants aged <9 months and reduced significantly with increasing age (P<0.001. Serotypes 19F (18.6% and 6A (14.4% were most predominant. Potential vaccine coverage was 43.8%, 45.0% and 62% for PCV-7, PCV-10 and PCV-13 respectively. There were 16 novel alleles, 72 different sequence types (STs from the isolates and 3 Sequence Types (280, 310 and 5543 were associated with isolates of more than one serotype indicative of serotype switching. Antimicrobial resistance was high for cotrimoxazole (93% and tetracycline (84%, a third of isolates had intermediate resistance to penicillin. Young age was the only risk factor significantly associated with carriage. CONCLUSIONS: Pneumococcal carriage and serotype diversity is highly prevalent in Nigeria especially in infants. Based on the coverage of serotypes in this study, PCV-13 is the obvious choice to reduce disease burden and prevalence of drug resistant pneumococci. However, its use will require careful

  5. Utilizing population variation, vaccination, and systems biology to study human immunology

    Science.gov (United States)

    Tsang, John S.

    2016-01-01

    The move toward precision medicine has highlighted the importance of understanding biological variability within and across individuals in the human population. In particular, given the prevalent involvement of the immune system in diverse pathologies, an important question is how much and what information about the state of the immune system is required to enable accurate prediction of future health and response to medical interventions. Towards addressing this question, recent studies using vaccination as a model perturbation and systems-biology approaches are beginning to provide a glimpse of how natural population variation together with multiplexed, high-throughput measurement and computational analysis can be used to uncover predictors of immune response quality in humans. Here I discuss recent developments in this emerging field, with emphasis on baseline correlates of vaccination responses, sources of immune-state variability, as well as relevant features of study design, data generation, and computational analysis. PMID:26187853

  6. Current Status and Development of Vaccines and Other Biologics for Human Rabies Prevention.

    Science.gov (United States)

    Rupprecht, Charles E; Nagarajan, Thirumeni; Ertl, Hildegund

    2016-06-01

    Rabies is a neglected viral zoonosis with the highest case fatality of any infectious disease. Pasteur's historical accomplishments during the late 19(th) century began the process of human vaccine development, continuing to evolve into the 21(st) century. Over the past 35 years, great improvements occurred in the production of potent tissue culture vaccines and the gradual removal from the market of unsafe nerve tissue products. Timely and appropriate administration of modern biologics virtually assures survivorship, even after severe exposures. Nevertheless, in the developing world, if not provided for free nationally, the cost of a single course of human prophylaxis exceeds the average monthly wage of the common worker. Beyond traditional approaches, recombinant, sub-unit and other novel methods are underway to improve the availability of safe, effective and more affordable rabies biologics.

  7. Vaccination with Plasmodium knowlesi AMA1 formulated in the novel adjuvant co-vaccine HT™ protects against blood-stage challenge in rhesus macaques.

    Directory of Open Access Journals (Sweden)

    Muzamil Mahdi Abdel Hamid

    Full Text Available Plasmodium falciparum apical membrane antigen 1 (PfAMA1 is a leading blood stage vaccine candidate. Plasmodium knowlesi AMA1 (PkAMA1 was produced and purified using similar methodology as for clinical grade PfAMA1 yielding a pure, conformational intact protein. Combined with the adjuvant CoVaccine HT™, PkAMA1 was found to be highly immunogenic in rabbits and the efficacy of the PkAMA1 was subsequently tested in a rhesus macaque blood-stage challenge model. Six rhesus monkeys were vaccinated with PkAMA1 and a control group of 6 were vaccinated with PfAMA1. A total of 50 µg AMA1 was administered intramuscularly three times at 4 week intervals. One of six rhesus monkeys vaccinated with PkAMA1 was able to control parasitaemia, upon blood stage challenge with P. knowlesi H-strain. Four out of the remaining five showed a delay in parasite onset that correlated with functional antibody titres. In the PfAMA1 vaccinated control group, five out of six animals had to be treated with antimalarials 8 days after challenge; one animal did not become patent during the challenge period. Following a rest period, animals were boosted and challenged again. Four of the six rhesus monkeys vaccinated with PkAMA1 were able to control the parasitaemia, one had a delayed onset of parasitaemia and one animal was not protected, while all control animals required treatment. To confirm that the control of parasitaemia was AMA1-related, animals were allowed to recover, boosted and re-challenged with P. knowlesi Nuri strain. All control animals had to be treated with antimalarials by day 8, while five out of six PkAMA1 vaccinated animals were able to control parasitaemia. This study shows that: i Yeast-expressed PkAMA1 can protect against blood stage challenge; ii Functional antibody levels as measured by GIA correlated inversely with the day of onset and iii GIA IC(50 values correlated with estimated in vivo growth rates.

  8. Vaccination with Plasmodium knowlesi AMA1 formulated in the novel adjuvant co-vaccine HT™ protects against blood-stage challenge in rhesus macaques.

    Science.gov (United States)

    Mahdi Abdel Hamid, Muzamil; Remarque, Edmond J; van Duivenvoorde, Leonie M; van der Werff, Nicole; Walraven, Vanessa; Faber, Bart W; Kocken, Clemens H M; Thomas, Alan W

    2011-01-01

    Plasmodium falciparum apical membrane antigen 1 (PfAMA1) is a leading blood stage vaccine candidate. Plasmodium knowlesi AMA1 (PkAMA1) was produced and purified using similar methodology as for clinical grade PfAMA1 yielding a pure, conformational intact protein. Combined with the adjuvant CoVaccine HT™, PkAMA1 was found to be highly immunogenic in rabbits and the efficacy of the PkAMA1 was subsequently tested in a rhesus macaque blood-stage challenge model. Six rhesus monkeys were vaccinated with PkAMA1 and a control group of 6 were vaccinated with PfAMA1. A total of 50 µg AMA1 was administered intramuscularly three times at 4 week intervals. One of six rhesus monkeys vaccinated with PkAMA1 was able to control parasitaemia, upon blood stage challenge with P. knowlesi H-strain. Four out of the remaining five showed a delay in parasite onset that correlated with functional antibody titres. In the PfAMA1 vaccinated control group, five out of six animals had to be treated with antimalarials 8 days after challenge; one animal did not become patent during the challenge period. Following a rest period, animals were boosted and challenged again. Four of the six rhesus monkeys vaccinated with PkAMA1 were able to control the parasitaemia, one had a delayed onset of parasitaemia and one animal was not protected, while all control animals required treatment. To confirm that the control of parasitaemia was AMA1-related, animals were allowed to recover, boosted and re-challenged with P. knowlesi Nuri strain. All control animals had to be treated with antimalarials by day 8, while five out of six PkAMA1 vaccinated animals were able to control parasitaemia. This study shows that: i) Yeast-expressed PkAMA1 can protect against blood stage challenge; ii) Functional antibody levels as measured by GIA correlated inversely with the day of onset and iii) GIA IC(50) values correlated with estimated in vivo growth rates. PMID:21655233

  9. Systems biology and the quest for correlates of protection to guide the development of an HIV vaccine.

    Science.gov (United States)

    Kuri-Cervantes, Leticia; Fourati, Slim; Canderan, Glenda; Sekaly, Rafick-Pierre

    2016-08-01

    Over the last three decades, a myriad of data has been generated regarding HIV/SIV evolution, immune evasion, immune response, and pathogenesis. Much of this data can be integrated and potentially used to generate a successful vaccine. Although individual approaches have begun to shed light on mechanisms involved in vaccine-conferred protection from infection, true correlates of protection have not yet been identified. The systems biology approach helps unify datasets generated using different techniques and broaden our understanding of HIV immunopathogenesis. Moreover, systems biology is a tool that can provide correlates of protection, which can be targeted for the production of a successful HIV vaccine. PMID:27392184

  10. Human umbilical cord blood biology, transplantation and plasticity.

    Science.gov (United States)

    Goldstein, Gal; Toren, Amos; Nagler, Arnon

    2006-01-01

    As the significance of hematopoietic stem cell transplantation (HSCT) is constantly rising, the scarcity of matched donors is proving to be a troubling issue. Cord blood (CB) is an important source of stem cells (SC) for transplantation. It has been used in the last two decades for approximately 4500 transplantations. Its collection, cryopreservation, banking and thawing techniques pose unique challenges to clinicians and researchers CB has abundant stem cell with impressive proliferative capacity. On the other hand, CB's immunological system has a naïve and more tolerant nature. Except for the biological aspects, few ethical issues have become a concern for transplantation teams who use CB. There are few advantages of CB over bone marrow, especially the lower rates of acute and chronic graft-versus-host disease (GVHD) after transplantation. On the other hand, there are relatively high rates of early treatment related mortality in cord blood transplantation (CBT). This is related to the small nucleated cell (NC) dose infused from each CB unit. The clinical experience in CBT, especially in children, is encouraging. When using adequate number of NC/kg, results in CBT for malignant and non-malignant diseases are comparable to bone marrow transplantation (BMT). In this article, a comprehensive review of the largest scale studies is presented. There is a continuous search for an optimal way to deal with delayed engraftment of CB and its implication. The current investigational, and also first clinical trials using diverse methods to overcome high rates of TRM are reviewed. Almost twenty years after the first CBT was preformed, many advocate for a routine parallel search, BM and CB, for unrelated donor. Future uses of CB might also be in the field of gene transfer and non hematopoietic injured tissues repair. PMID:16712468

  11. Systems biology of stored blood cells: Can it help to extend the expiration date?

    OpenAIRE

    Paglia, Giuseppe; Bernhard Ø Palsson; Sigurjonsson, Olafur E.

    2012-01-01

    With increasingly stringent regulations regarding deferral and elimination of blood donors it will become increasingly important to extend the expiration date of blood components beyond the current allowed storage periods. One reason for the storage time limit for blood components is that platelets and red blood cells develop a condition called storage lesions during their storage in plastic blood containers. Systems biology provides comprehensive bio-chemical descriptions of organisms throug...

  12. Generating New Blood Flow : Integrating Developmental Biology and Tissue Engineering

    NARCIS (Netherlands)

    Krenning, Guido; Moonen, Jan-Renier A. J.; van Luyn, Marja J. A.; Harmsen, Martin C.

    2008-01-01

    Vascular tissue engineering aims to restore blood flow by seeding artificial tubular scaffolds with endothelial and smooth muscle cells, thus creating bioartificial blood vessels. Herein, the progenitors of smooth muscle and endothelial cells hold great promise because they efficiently differentiate

  13. Evidences of protection against blood-stage infection of Plasmodium falciparum by the novel protein vaccine SE36.

    Science.gov (United States)

    Horii, Toshihiro; Shirai, Hiroki; Jie, Li; Ishii, Ken J; Palacpac, Nirianne Q; Tougan, Takahiro; Hato, Mariko; Ohta, Nobuo; Bobogare, Albino; Arakaki, Nana; Matsumoto, Yoshitsugu; Namazue, Junko; Ishikawa, Toyokazu; Ueda, Shigeharu; Takahashi, Michiaki

    2010-09-01

    An effective malaria vaccine is a public health priority. Proteins expressed during the blood-stage of the parasite life cycle have been proposed as good vaccine candidates. No such blood-stage vaccine, however, is available against Plasmodium falciparum, the deadliest Plasmodium species. We show here that P. falciparum serine repeat antigen 5 (SERA5) is a potential vaccine immunogen. We have constructed a new recombinant molecule of SERA5, namely SE36, based on previously reported SE47' molecule by removing the serine repeats. Epidemiological study in the holo-endemic population of Solomon Islands shows highly significant correlation of sero-conversion and malaria protective immunity against this antigen. Animal experiments using non-human primates, and a human phase 1a clinical trial assessed SE36 vaccine immunogenicity. Vaccination of squirrel monkeys with SE36 protein and aluminum hydroxyl gel (SE36/AHG) conferred protection against high parasitemia and boosted serum anti-SE36 IgG after P. falciparum parasite challenge. SE36/AHG was highly immunogenic in chimpanzees, where serum anti-SE36 IgG titers last more than one year. Phase 1a clinical trial (current controlled trials, ISRCTN78679862) demonstrated the safety and immunogenicity of SE36/AHG with 30 healthy adults and 10 placebo controls. Three subcutaneous administrations of 50 and 100microg dose of SE36/AHG were well-tolerated, with no severe adverse events; and resulted in 100% sero-conversion in both dose arms. The current research results for SE36/AHG provide initial clinical validation for future trials and suggest clues/strategies for further vaccine development. PMID:20493274

  14. In vitro cytokine induction by TLR-activating vaccine adjuvants in human blood varies by age and adjuvant.

    Science.gov (United States)

    van Haren, Simon D; Ganapathi, Lakshmi; Bergelson, Ilana; Dowling, David J; Banks, Michaela; Samuels, Ronald C; Reed, Steven G; Marshall, Jason D; Levy, Ofer

    2016-07-01

    Most infections occur in early life, prompting development of novel adjuvanted vaccines to protect newborns and infants. Several Toll-like receptor (TLR) agonists (TLRAs) are components of licensed vaccine formulations or are in development as candidate adjuvants. However, the type and magnitude of immune responses to TLRAs may vary with the TLR activated as well as age and geographic location. Most notably, in newborns, as compared to adults, the immune response to TLRAs is polarized with lower Th1 cytokine production and robust Th2 and anti-inflammatory cytokine production. The ontogeny of TLR-mediated cytokine responses in international cohorts has been reported, but no study has compared cytokine responses to TLRAs between U.S. neonates and infants at the age of 6months. Both are critical age groups for the currently pediatric vaccine schedule. In this study, we report quantitative differences in the production of a panel of 14 cytokines and chemokines after in vitro stimulation of newborn cord blood and infant and adult peripheral blood with agonists of TLR4, including monophosphoryl lipid A (MPLA) and glucopyranosyl lipid Adjuvant aqueous formulation (GLA-AF), as well as agonists of TLR7/8 (R848) and TLR9 (CpG). Both TLR4 agonists, MPLA and GLA-AF, induced greater concentrations of Th1 cytokines CXCL10, TNF and Interleukin (IL)-12p70 in infant and adult blood compared to newborn blood. All the tested TLRAs induced greater infant IFN-α2 production compared to newborn and adult blood. In contrast, CpG induced greater IFN-γ, IL-1β, IL-4, IL-12p40, IL-10 and CXCL8 in newborn than in infant and adult blood. Overall, to the extent that these in vitro studies mirror responses in vivo, our study demonstrates distinct age-specific effects of TLRAs that may inform their development as candidate adjuvants for early life vaccines. PMID:27081760

  15. Application of solid-phase radioimmunoassay in determining antibodies to Aujeszky's disease virus in blood serum of vaccinated pigs

    Energy Technology Data Exchange (ETDEWEB)

    Rodak, L.; Smid, B.; Valicek, L. (Vyzkumny Ustav Veterinarniho Lekarstvi, Brno-Medlanky (Czechoslovakia))

    1983-11-01

    In the blood sera of pigs vaccinated with inactivated vaccines manufactured by three different manufacturers the RIA method was used to determine the specific antibodies to the virus of Aujeszky's disease. In certain groups of vaccinated pigs the results of the RIA examination are unfavourably affected by the bond of antibodies to the cellular antigenous determinants. This proves that following vaccination antibodies are formed not only against the viral antigen but also against the antigens of cells on which the vaccination virus is propagated. These shortcomings are eliminated by the use of suitable cellular cultures for the preparation of viral and control antigens. Antigens are applicable for RIA and for ELISA examinations of blood sera of infected and vaccinated pigs. The advantages are described of the RIA and ELISA methods as compared with the virus neutralization test.

  16. Assessment of Blood Contamination in Biological Fluids Using MALDI-TOF MS.

    Science.gov (United States)

    Laks, Katrina; Kirsipuu, Tiina; Dmitrijeva, Tuuli; Salumets, Andres; Palumaa, Peep

    2016-06-01

    Biological fluid sample collection often includes the risk of blood contamination that may alter the proteomic profile of biological fluid. In proteomics studies, exclusion of contaminated samples is usually based on visual inspection and counting of red blood cells in the sample; analysis of specific blood derived proteins is less used. To fill the gap, we developed a fast and sensitive method for ascertainment of blood contamination in crude biological fluids, based on specific blood-derived protein, hemoglobin detection by MALDI-TOF MS. The MALDI-TOF MS based method allows detection of trace hemoglobin with the detection limit of 0.12 nM. UV-spectrometry, which was used as reference method, was found to be less sensitive. The main advantages of the presented method are that it is fast, effective, sensitive, requires very small sample amount and can be applied for detection of blood contamination in various biological fluids collected for proteomics studies. Method applicability was tested on human cerebrospinal and follicular fluid, which proteomes generally do not contain hemoglobin, however, which possess high risk for blood contamination. Present method successfully detected the blood contamination in 12 % of cerebrospinal fluid and 24 % of follicular fluid samples. High percentage of contaminated samples accentuates the need for initial inspection of proteomic samples to avoid incorrect results from blood proteome overlap.

  17. The safety and immunogenicity of trivalent inactivated influenza vaccination: a study of maternal-cord blood pairs in Taiwan.

    Directory of Open Access Journals (Sweden)

    Shin-Yu Lin

    Full Text Available BACKGROUND: There are little data about adverse effects and immunogenicity of flu vaccine in Asian pregnant women. METHODS: This prospective trial (NCT01514708 enrolled 46 pregnant women who received a single intramuscular dose of trivalent flu vaccine (AdimFlu-S® containing 15 mcg of hemagglutinin for each strain/0.5 mL from influenza A (H1N1, influenza A (H3N2, and influenza B after the first trimester. Blood samples were collected at day 0 and 28 after vaccination, and at delivery. Cord blood was also collected. Hemagglutination inhibition (HAI assays were performed to determine seroprotection and seroconversion rates and fold increase in the HAI geometric mean titer (GMT. RESULTS: Twenty-eight days after vaccination the seroprotection rate against H1N1, H3N2, and influenza B was 91.3%, 84.8% and 56.5%, respectively. The GMT fold increase was 12.8, 8.4, and 4.6 for H1N1, H3N2, and influenza B, respectively. At delivery, both the seroprotection rate (86.4%, 68.2%, and 47.7% and GMT fold increase (9.4, 5.7 and 3.8 were slightly lower than day 28. The seroprotection rate and GMT fold increase in maternal and cord blood samples were comparable. No significant adverse effects were detected. CONCLUSIONS: Trivalent flu vaccine induces a strong immune response in pregnant women and their infants without adverse effects. TRIAL REGISTRATION: Clinical Trials. gov NCT01514708.

  18. Analyses of Brucella pathogenesis, host immunity, and vaccine targets using systems biology and bioinformatics.

    Science.gov (United States)

    He, Yongqun

    2012-01-01

    Brucella is a Gram-negative, facultative intracellular bacterium that causes zoonotic brucellosis in humans and various animals. Out of 10 classified Brucella species, B. melitensis, B. abortus, B. suis, and B. canis are pathogenic to humans. In the past decade, the mechanisms of Brucella pathogenesis and host immunity have been extensively investigated using the cutting edge systems biology and bioinformatics approaches. This article provides a comprehensive review of the applications of Omics (including genomics, transcriptomics, and proteomics) and bioinformatics technologies for the analysis of Brucella pathogenesis, host immune responses, and vaccine targets. Based on more than 30 sequenced Brucella genomes, comparative genomics is able to identify gene variations among Brucella strains that help to explain host specificity and virulence differences among Brucella species. Diverse transcriptomics and proteomics gene expression studies have been conducted to analyze gene expression profiles of wild type Brucella strains and mutants under different laboratory conditions. High throughput Omics analyses of host responses to infections with virulent or attenuated Brucella strains have been focused on responses by mouse and cattle macrophages, bovine trophoblastic cells, mouse and boar splenocytes, and ram buffy coat. Differential serum responses in humans and rams to Brucella infections have been analyzed using high throughput serum antibody screening technology. The Vaxign reverse vaccinology has been used to predict many Brucella vaccine targets. More than 180 Brucella virulence factors and their gene interaction networks have been identified using advanced literature mining methods. The recent development of community-based Vaccine Ontology and Brucellosis Ontology provides an efficient way for Brucella data integration, exchange, and computer-assisted automated reasoning.

  19. Analyses of Brucella pathogenesis, host immunity, and vaccine targets using systems biology and bioinformatics

    Directory of Open Access Journals (Sweden)

    Yongqun eHe

    2012-02-01

    Full Text Available Brucella is a Gram-negative, facultative intracellular bacterium that causes zoonotic brucellosis in humans and various animals. Out of ten classified Brucella species, B. melitensis, B. abortus, B. suis, and B. canis are pathogenic to humans. In the past decade, the mechanisms of Brucella pathogenesis and host immunity have been extensively investigated using the cutting edge systems biology and bioinformatics approaches. This article provides a comprehensive review of the applications of Omics (including genomics, transcriptomics, and proteomics and bioinformatics technologies for the analysis of Brucella pathogenesis, host immune responses, and vaccine targets. Based on more than 30 sequenced Brucella genomes, comparative genomics is able to identify gene variations among Brucella strains that help to explain host specificity and virulence differences among Brucella species. Diverse transcriptomics and proteomics gene expression studies have been conducted to analyze gene expression profiles of wild type Brucella strains and mutants under different laboratory conditions. High throughput Omics analyses of host responses to infections with virulent or attenuated Brucella strains have been focused on responses by mouse and cattle macrophages, bovine trophoblastic cells, mouse and boar splenocytes, and ram buffy coat. Differential serum responses in humans and rams to Brucella infections have been analyzed using high throughput serum antibody screening technology. The Vaxign reverse vaccinology has been used to predict many Brucella vaccine targets. More than 180 Brucella virulence factors and their gene interaction networks have been identified using advanced literature mining methods. The recent development of community-based Vaccine Ontology and Brucellosis Ontology provides an efficient way for Brucella data integration, exchange, and computer-assisted automated reasoning.

  20. HBV vaccination of HCV-infected patients with occult HBV infection and anti-HBc-positive blood donors

    Directory of Open Access Journals (Sweden)

    J.S.F. Pereira

    2006-04-01

    Full Text Available Anti-HBc positivity is a frequent cause of donation rejection at blood banks. Hepatitis B virus (HBV infection may also occur in HBsAg-negative patients, a situation denoted occult infection. Similarly, very low levels of HBV-DNA have also been found in the sera of patients with chronic hepatitis C virus (HCV infection, even in the absence of serum HBsAg. Initially we searched for HBV-DNA in serum of 100 blood donors and 50 HCV-infected patients who were HBsAg negative/anti-HBc positive by nested-PCR and by an HBV monitor commercial test for HBV-DNA. Anti-HBs seroconversion rates were measured in 100 blood donors and in 22 patients with chronic HCV infection after HBV vaccination to determine if the HBV vaccination could eliminate an occult HBV infection in these individuals. Occult HBV infection was detected in proportionally fewer blood donors (6/100 = 6% than chronic hepatitis C patients (12/50 = 24% (P 0.05. All subjects who were HBV-DNA(+ before the first dose of HBV vaccine (D1, became HBV-DNA(- after D1, D2, and D3. Among 22 HCV-positive patients, 10 HBV-DNA(+ and 12 HBV-DNA(-, seroconversion was observed in 9/10 (90% HBV-DNA(+ and in 9/12 (75% HBV-DNA(- subjects (P > 0.05. The disappearance of HBV-DNA in the majority of vaccinated patients suggests that residual HBV can be eliminated in patients with occult infection.

  1. Biological role of surface Toxoplasma gondii antigen in development of vaccine

    Institute of Scientific and Technical Information of China (English)

    Ke-Yi Liu; Dian-Bo Zhang; Qing-Kuan Wei; Jin Li; Gui-Ping Li; Jin-Zhi Yu

    2006-01-01

    AIM: To analyze the biological role of the surface antigen of Toxoplasma gondii (T gondii) in development of vaccine.METHODS: The surface antigen of Tgondii (SAG1)was expressed in vitro. The immune response of the host to the antigen was investigated by detection of specific antibody reaction to SAG1 and production of cytokines. Mice were immunized with recombinant SAG1and challenged with lethal strain of T gondii RH. The monoclonal antibody to r-SAG1 was prepared and used to study the effects of SAG1 on T gondii tachyzoites under electromicroscope.RESULTS:The mice immunized with recombinant SAG1 delayed death for 60 h compared to the control group.The recombinant SAG1 induced specific high titer of IgG and IgM antibodies as well as IFN-γ, IL-2 and IL-4cytokines in mice. In contrast, IL-12, IL-6 and TNF-αwere undetectable. When T gondii tachyzoites were treated with the monoclonal antibody to r-SAG1, the parasites were gathered together, destroyed, deformed,swollen, and holes and gaps formed on the surface.CONCLUSION: SAG1 may be an excellent vaccine candidate against T gondii. The immune protection induced by SAG1 against Tgondii may be regulated by both hormone- and cell-mediated immune response.

  2. Cell biological characterization of the malaria vaccine candidate trophozoite exported protein 1.

    Directory of Open Access Journals (Sweden)

    Caroline Kulangara

    Full Text Available In a genome-wide screen for alpha-helical coiled coil motifs aiming at structurally defined vaccine candidates we identified PFF0165c. This protein is exported in the trophozoite stage and was named accordingly Trophozoite exported protein 1 (Tex1. In an extensive preclinical evaluation of its coiled coil peptides Tex1 was identified as promising novel malaria vaccine candidate providing the rational for a comprehensive cell biological characterization of Tex1. Antibodies generated against an intrinsically unstructured N-terminal region of Tex1 and against a coiled coil domain were used to investigate cytological localization, solubility and expression profile. Co-localization experiments revealed that Tex1 is exported across the parasitophorous vacuole membrane and located to Maurer's clefts. Change in location is accompanied by a change in solubility: from a soluble state within the parasite to a membrane-associated state after export to Maurer's clefts. No classical export motifs such as PEXEL, signal sequence/anchor or transmembrane domain was identified for Tex1.

  3. Study on biological characters of SGC7901 gastric cancer cell-dendritic cell fusion vaccines

    Institute of Scientific and Technical Information of China (English)

    Kun Zhang; Peng-Fen Gao; Pei-Wu Yu; Yun Rao; Li-Xin Zhou

    2006-01-01

    AIM: To detect the biological characters of the SGC7901 gastric cancer cell-dendritic cell fusion vaccines.METHODS: The suspending living SGC7901 gastric cancer cells and dendritic cells were induced to be fusioned by polyethylene glycol. Pure fusion cells were obtained by selective culture with the HAT/HT culture systems.The fusion cells were counted at different time points of culture and their growth curves were drawn to reflect their proliferative activities. The fusion cells were also cultured in culture medium to investigate whether they could grow into cell clones. MTT method was used to test the stimulating abilities of the fusion cells on T lymphocytes' proliferations. Moreover, the fusion cells were planted into nude mice to observe whether they could grow into new planted tumors in this kind of immunodeficiency animals.RESULTS: The fusion cells had weaker proliferative activity and clone abilities than their parental cells. When they were cultured, the counts of cells did not increase remarkably, nor could they grow into cell clones in culture medium. The fusion cells could not grow into new planted tumors after planted into nude mice. The stimulating abilities of the fusion cells on T lymphocytes' proliferations were remarkably increased than their parental dendritic cells.CONCLUSION: The SGC7901 gastric cancer cell-dendritic cell fusion vaccines have much weaker proliferative abilities than their parental cells, but they keep strong abilities to irritate the T lymphocytes and have no abilities to grow into new planted tumors in immunodeficiency animals. These are the biological basis for their antitumor biotherapies.

  4. Impact of the RTS,S malaria vaccine candidate on naturally acquired antibody responses to multiple asexual blood stage antigens.

    Directory of Open Access Journals (Sweden)

    Joseph J Campo

    Full Text Available BACKGROUND: Partial protective efficacy lasting up to 43 months after vaccination with the RTS,S malaria vaccine has been reported in one cohort (C1 of a Phase IIb trial in Mozambique, but waning efficacy was observed in a smaller contemporaneous cohort (C2. We hypothesized that low dose exposure to asexual stage parasites resulting from partial pre-erythrocytic protection afforded by RTS,S may contribute to long-term vaccine efficacy to clinical disease, which was not observed in C2 due to intense active detection of infection and treatment. METHODOLOGY/PRINCIPAL FINDINGS: Serum collected 6 months post-vaccination was screened for antibodies to asexual blood stage antigens AMA-1, MSP-1(42, EBA-175, DBL-α and variant surface antigens of the R29 laboratory strain (VSA(R29. Effect of IgG on the prospective hazard of clinical malaria was estimated. No difference was observed in antibody levels between RTS,S and control vaccine when all children aged 1-4 years at enrollment in both C1 and C2 were analyzed together, and no effects were observed between cohort and vaccine group. RTS,S-vaccinated children <2 years of age at enrollment had lower levels of IgG for AMA-1 and MSP-1(42 (p<0.01, all antigens, while no differences were observed in children ≥2 years. Lower risk of clinical malaria was associated with high IgG to EBA-175 and VSA(R29 in C2 only (Hazard Ratio [HR]: 0.76, 95% CI 0.66-0.88; HR: 0.75, 95% CI 0.62-0.92, respectively. CONCLUSIONS: Vaccination with RTS,S modestly reduces anti-AMA-1 and anti-MSP-1 antibodies in very young children. However, for antigens associated with lower risk of clinical malaria, there were no vaccine group or cohort-specific effects, and age did not influence antibody levels between treatment groups for these antigens. The antigens tested do not explain the difference in protective efficacy in C1 and C2. Other less-characterized antigens or VSA may be important to protection. TRIAL REGISTRATION: Clinical

  5. Simultaneous determination of trace levels of ethylmercury and methylmercury in biological samples and vaccines using sodium tetra(n-propyl)borate as derivatizing agent.

    Science.gov (United States)

    Gibicar, Darija; Logar, Martina; Horvat, Nusa; Marn-Pernat, Andreja; Ponikvar, Rafael; Horvat, Milena

    2007-05-01

    Because of increasing awareness of the potential neurotoxicity of even low levels of organomercury compounds, analytical techniques are required for determination of low concentrations of ethylmercury (EtHg) and methylmercury (MeHg) in biological samples. An accurate and sensitive method has been developed for simultaneous determination of methylmercury and ethylmercury in vaccines and biological samples. MeHg and EtHg were isolated by acid leaching (H2SO4-KBr-CuSO4), extraction of MeHg and EtHg bromides into an organic solvent (CH2Cl2), then back-extraction into Milli-Q water. MeHg and EtHg bromides were derivatized with sodium tetrapropylborate (NaBPr4), collected at room temperature on Tenax, separated by isothermal gas chromatography (GC), pyrolysed, and detected by cold-vapour atomic fluorescence spectrometry (CV AFS). The repeatability of results from the method was approximately 5-10% for EtHg and 5-15% for MeHg. Detection limits achieved were 0.01 ng g-1 for EtHg and MeHg in blood, saliva, and vaccines and 5 ng g-1 for EtHg and MeHg in hair. The method presented has been shown to be suitable for determination of background levels of these contaminants in biological samples and can be used in studies related to the health effects of mercury and its species in man. This work illustrates the possibility of using hair and blood as potential biomarkers of exposure to thiomersal.

  6. Defining antigen-specific plasmablast and memory B cell subsets in human blood after viral infection or vaccination.

    Science.gov (United States)

    Ellebedy, Ali H; Jackson, Katherine J L; Kissick, Haydn T; Nakaya, Helder I; Davis, Carl W; Roskin, Krishna M; McElroy, Anita K; Oshansky, Christine M; Elbein, Rivka; Thomas, Shine; Lyon, George M; Spiropoulou, Christina F; Mehta, Aneesh K; Thomas, Paul G; Boyd, Scott D; Ahmed, Rafi

    2016-10-01

    Antigen-specific B cells bifurcate into antibody-secreting cells (ASCs) and memory B cells (MBCs) after infection or vaccination. ASCs (plasmablasts) have been extensively studied in humans, but less is known about B cells that become activated but do not differentiate into plasmablasts. Here we have defined the phenotype and transcriptional program of a subset of antigen-specific B cells, which we have called 'activated B cells' (ABCs), that were distinct from ASCs and were committed to the MBC lineage. We detected ABCs in humans after infection with Ebola virus or influenza virus and also after vaccination. By simultaneously analyzing antigen-specific ASCs and ABCs in human blood after vaccination against influenza virus, we investigated the clonal overlap and extent of somatic hypermutation (SHM) in the ASC (effector) and ABC (memory) lineages. Longitudinal tracking of vaccination-induced hemagglutinin (HA)-specific clones revealed no overall increase in SHM over time, which suggested that repeated annual immunization might have limitations in enhancing the quality of influenza-virus-specific antibody. PMID:27525369

  7. Towards a Neisseria meningitidis B vaccine : introducing systems biology in process development

    NARCIS (Netherlands)

    Baart, G.J.E.

    2008-01-01

    Towards a Neisseria meningitidis B vaccine Neisseria meningitidis is a bacterium that is only found in humans and can cause the diseases meningitis or septicaemia, especially in young children. At the Netherlands Vaccine Institute a vaccine against serogroup B meningococci, which causes about 50% o

  8. Blood stage malaria vaccine eliciting high antigen-specific antibody concentrations confers no protection to young children in Western Kenya.

    Directory of Open Access Journals (Sweden)

    Bernhards R Ogutu

    Full Text Available The antigen, falciparum malaria protein 1 (FMP1, represents the 42-kDa C-terminal fragment of merozoite surface protein-1 (MSP-1 of the 3D7 clone of P. falciparum. Formulated with AS02 (a proprietary Adjuvant System, it constitutes the FMP1/AS02 candidate malaria vaccine. We evaluated this vaccine's safety, immunogenicity, and efficacy in African children.A randomised, double-blind, Phase IIb, comparator-controlled trial.The trial was conducted in 13 field stations of one mile radii within Kombewa Division, Nyanza Province, Western Kenya, an area of holoendemic transmission of P. falciparum. We enrolled 400 children aged 12-47 months in general good health.Children were randomised in a 1ratio1 fashion to receive either FMP1/AS02 (50 microg or Rabipur(R rabies vaccine. Vaccinations were administered on a 0, 1, and 2 month schedule. The primary study endpoint was time to first clinical episode of P. falciparum malaria (temperature >/=37.5 degrees C with asexual parasitaemia of >/=50,000 parasites/microL of blood occurring between 14 days and six months after a third dose. Case detection was both active and passive. Safety and immunogenicity were evaluated for eight months after first immunisations; vaccine efficacy (VE was measured over a six-month period following third vaccinations.374 of 400 children received all three doses and completed six months of follow-up. FMP1/AS02 had a good safety profile and was well-tolerated but more reactogenic than the comparator. Geometric mean anti-MSP-1(42 antibody concentrations increased from1.3 microg/mL to 27.3 microg/mL in the FMP1/AS02 recipients, but were unchanged in controls. 97 children in the FMP1/AS02 group and 98 controls had a primary endpoint episode. Overall VE was 5.1% (95% CI: -26% to +28%; p-value = 0.7.FMP1/AS02 is not a promising candidate for further development as a monovalent malaria vaccine. Future MSP-1(42 vaccine development should focus on other formulations and antigen constructs

  9. High Blood Pressure in Panama: Prevalence, Sociodemographic and Biologic Profile, Treatment, and Control (STROBE)

    OpenAIRE

    Mc Donald Posso, Anselmo J.; Motta Borrel, Jorge A.; Fontes, Flavia; Cruz Gonzalez, Clara E.; Pachón Burgos, Alvaro A.; Cumbrera Ortega, Alberto

    2014-01-01

    Abstract The objective of this study is to estimate the prevalence, treatment, and control of high blood pressure, hypertension (HBP) in Panama and assess its associations with sociodemographic and biologic factors. A cross-sectional, descriptive study was conducted in Panama by administering a survey on cardiovascular risk factors to 3590 adults and measuring their blood pressure 3 times. A single-stage, probabilistic, and randomized sampling strategy with a multivariate stratification was u...

  10. A PfRH5-Based Vaccine Is Efficacious against Heterologous Strain Blood-Stage Plasmodium falciparum Infection in Aotus Monkeys

    Science.gov (United States)

    Douglas, Alexander D.; Baldeviano, G. Christian; Lucas, Carmen M.; Lugo-Roman, Luis A.; Crosnier, Cécile; Bartholdson, S. Josefin; Diouf, Ababacar; Miura, Kazutoyo; Lambert, Lynn E.; Ventocilla, Julio A.; Leiva, Karina P.; Milne, Kathryn H.; Illingworth, Joseph J.; Spencer, Alexandra J.; Hjerrild, Kathryn A.; Alanine, Daniel G.W.; Turner, Alison V.; Moorhead, Jeromy T.; Edgel, Kimberly A.; Wu, Yimin; Long, Carole A.; Wright, Gavin J.; Lescano, Andrés G.; Draper, Simon J.

    2015-01-01

    Summary Antigenic diversity has posed a critical barrier to vaccine development against the pathogenic blood-stage infection of the human malaria parasite Plasmodium falciparum. To date, only strain-specific protection has been reported by trials of such vaccines in nonhuman primates. We recently showed that P. falciparum reticulocyte binding protein homolog 5 (PfRH5), a merozoite adhesin required for erythrocyte invasion, is highly susceptible to vaccine-inducible strain-transcending parasite-neutralizing antibody. In vivo efficacy of PfRH5-based vaccines has not previously been evaluated. Here, we demonstrate that PfRH5-based vaccines can protect Aotus monkeys against a virulent vaccine-heterologous P. falciparum challenge and show that such protection can be achieved by a human-compatible vaccine formulation. Protection was associated with anti-PfRH5 antibody concentration and in vitro parasite-neutralizing activity, supporting the use of this in vitro assay to predict the in vivo efficacy of future vaccine candidates. These data suggest that PfRH5-based vaccines have potential to achieve strain-transcending efficacy in humans. PMID:25590760

  11. Molecular biology of the blood-brain and the blood-cerebrospinal fluid barriers: similarities and differences

    Directory of Open Access Journals (Sweden)

    Redzic Zoran

    2011-01-01

    Full Text Available Abstract Efficient processing of information by the central nervous system (CNS represents an important evolutionary advantage. Thus, homeostatic mechanisms have developed that provide appropriate circumstances for neuronal signaling, including a highly controlled and stable microenvironment. To provide such a milieu for neurons, extracellular fluids of the CNS are separated from the changeable environment of blood at three major interfaces: at the brain capillaries by the blood-brain barrier (BBB, which is localized at the level of the endothelial cells and separates brain interstitial fluid (ISF from blood; at the epithelial layer of four choroid plexuses, the blood-cerebrospinal fluid (CSF barrier (BCSFB, which separates CSF from the CP ISF, and at the arachnoid barrier. The two barriers that represent the largest interface between blood and brain extracellular fluids, the BBB and the BCSFB, prevent the free paracellular diffusion of polar molecules by complex morphological features, including tight junctions (TJs that interconnect the endothelial and epithelial cells, respectively. The first part of this review focuses on the molecular biology of TJs and adherens junctions in the brain capillary endothelial cells and in the CP epithelial cells. However, normal function of the CNS depends on a constant supply of essential molecules, like glucose and amino acids from the blood, exchange of electrolytes between brain extracellular fluids and blood, as well as on efficient removal of metabolic waste products and excess neurotransmitters from the brain ISF. Therefore, a number of specific transport proteins are expressed in brain capillary endothelial cells and CP epithelial cells that provide transport of nutrients and ions into the CNS and removal of waste products and ions from the CSF. The second part of this review concentrates on the molecular biology of various solute carrier (SLC transport proteins at those two barriers and underlines

  12. Effect of the pre-erythrocytic candidate malaria vaccine RTS,S/AS01E on blood stage immunity in young children

    DEFF Research Database (Denmark)

    Bejon, Philip; Cook, Jackie; Bergmann-Leitner, Elke;

    2011-01-01

    (See the article by Greenhouse et al, on pages 19-26.) Background. RTS,S/AS01(E) is the lead candidate malaria vaccine and confers pre-erythrocytic immunity. Vaccination may therefore impact acquired immunity to blood-stage malaria parasites after natural infection. Methods. We measured, by enzyme...... concentrations to AMA-1, EBA-175, and MSP-1(42) decreased with age during the first year of life, then increased to 32 months of age. Anti-MSP-3 antibody concentrations gradually increased, and GIA gradually decreased up to 32 months. Vaccination with RTS,S/AS01(E) resulted in modest reductions in AMA-1, EBA-175......, MSP-1(42), and MSP-3 antibody concentrations and no significant change in GIA. Increasing anti-merozoite antibody concentrations and GIA were prospectively associated with increased risk of clinical malaria. Conclusions. Vaccination with RTS,S/AS01E reduces exposure to blood-stage parasites and, thus...

  13. Combining Viral Vectored and Protein-in-adjuvant Vaccines Against the Blood-stage Malaria Antigen AMA1: Report on a Phase 1a Clinical Trial

    OpenAIRE

    Susanne H. Hodgson; Choudhary, Prateek; Elias, Sean C; Milne, Kathryn H; Thomas W Rampling; Biswas, Sumi; Ian D Poulton; Miura, Kazutoyo; Douglas, Alexander D.; Alanine, Daniel GW; Illingworth, Joseph J.; de Cassan, Simone C.; ZHU, DAMING; Nicosia, Alfredo; Long, Carole A.

    2014-01-01

    The development of effective vaccines against difficult disease targets will require the identification of new subunit vaccination strategies that can induce and maintain effective immune responses in humans. Here we report on a phase 1a clinical trial using the AMA1 antigen from the blood-stage Plasmodium falciparum malaria parasite delivered either as recombinant protein formulated with Alhydrogel adjuvant with and without CPG 7909, or using recombinant vectored vaccines—chimpanzee adenovir...

  14. Phase 1 Trial of AMA1-C1/Alhydrogel plus CPG 7909: An Asexual Blood-Stage Vaccine for Plasmodium falciparum Malaria

    OpenAIRE

    Gregory E D Mullen; Ellis, Ruth D.; Kazutoyo Miura; Elissa Malkin; Caroline Nolan; Mhorag Hay; Fay, Michael P.; Allan Saul; Daming Zhu; Kelly Rausch; Samuel Moretz; Hong Zhou; Long, Carole A.; Miller, Louis H; John Treanor

    2008-01-01

    BACKGROUND: Apical Membrane Antigen 1 (AMA1), a polymorphic merozoite surface protein, is a leading blood-stage malaria vaccine candidate. This is the first reported use in humans of an investigational vaccine, AMA1-C1/Alhydrogel, with the novel adjuvant CPG 7909. METHODS: A phase 1 trial was conducted at the University of Rochester with 75 malaria-naive volunteers to assess the safety and immunogenicity of the AMA1-C1/Alhydrogel+CPG 7909 malaria vaccine. Participants were sequentially enroll...

  15. Bad Blood: The Tuskegee Syphilis Study and Legacy Recruitment for Experimental AIDS Vaccines

    Science.gov (United States)

    Hagen, Kimberly Sessions

    2005-01-01

    For African Americans, medical research often connotes exploitation and cruelty, making recruiting African Americans to participate in HIV vaccine trials particularly daunting. But infusing adult education principles into such efforts is both increasing African American participation and helping heal the legacy of the Tuskegee experiment.

  16. Changes in peripheral blood level of regulatory T cells in patients with malignant melanoma during treatment with dendritic cell vaccination and low-dose IL-2

    DEFF Research Database (Denmark)

    Bjoern, J; Brimnes, M K; Andersen, M H;

    2011-01-01

    In this study, changes in peripheral blood regulatory T cell (Treg) levels were evaluated in 46 progressive patients with melanoma treated with a dendritic cell-based vaccine and concomitant low-dose IFN-a and IL-2. The regulatory subset of CD4 T cells, characterized by CD25(high) , was prospecti......In this study, changes in peripheral blood regulatory T cell (Treg) levels were evaluated in 46 progressive patients with melanoma treated with a dendritic cell-based vaccine and concomitant low-dose IFN-a and IL-2. The regulatory subset of CD4 T cells, characterized by CD25(high) , was...

  17. Changes in peripheral blood level of regulatory T cells in patients with malignant melanoma during treatment with dendritic cell vaccination and low-dose IL-2

    DEFF Research Database (Denmark)

    Bjoern, J; Brimnes, M K; Andersen, M H;

    2011-01-01

    In this study, changes in peripheral blood regulatory T cell (Treg) levels were evaluated in 46 progressive patients with melanoma treated with a dendritic cell-based vaccine and concomitant low-dose IFN-α and IL-2. The regulatory subset of CD4 T cells, characterized by CD25(high) , was prospecti......In this study, changes in peripheral blood regulatory T cell (Treg) levels were evaluated in 46 progressive patients with melanoma treated with a dendritic cell-based vaccine and concomitant low-dose IFN-α and IL-2. The regulatory subset of CD4 T cells, characterized by CD25(high) , was...

  18. Antiviral Biologic Produced in DNA Vaccine/Goose Platform Protects Hamsters Against Hantavirus Pulmonary Syndrome When Administered Post-exposure.

    Directory of Open Access Journals (Sweden)

    Nicole Haese

    Full Text Available Andes virus (ANDV and ANDV-like viruses are responsible for most hantavirus pulmonary syndrome (HPS cases in South America. Recent studies in Chile indicate that passive transfer of convalescent human plasma shows promise as a possible treatment for HPS. Unfortunately, availability of convalescent plasma from survivors of this lethal disease is very limited. We are interested in exploring the concept of using DNA vaccine technology to produce antiviral biologics, including polyclonal neutralizing antibodies for use in humans. Geese produce IgY and an alternatively spliced form, IgYΔFc, that can be purified at high concentrations from egg yolks. IgY lacks the properties of mammalian Fc that make antibodies produced in horses, sheep, and rabbits reactogenic in humans. Geese were vaccinated with an ANDV DNA vaccine encoding the virus envelope glycoproteins. All geese developed high-titer neutralizing antibodies after the second vaccination, and maintained high-levels of neutralizing antibodies as measured by a pseudovirion neutralization assay (PsVNA for over 1 year. A booster vaccination resulted in extraordinarily high levels of neutralizing antibodies (i.e., PsVNA80 titers >100,000. Analysis of IgY and IgYΔFc by epitope mapping show these antibodies to be highly reactive to specific amino acid sequences of ANDV envelope glycoproteins. We examined the protective efficacy of the goose-derived antibody in the hamster model of lethal HPS. α-ANDV immune sera, or IgY/IgYΔFc purified from eggs, were passively transferred to hamsters subcutaneously starting 5 days after an IM challenge with ANDV (25 LD50. Both immune sera, and egg-derived purified IgY/IgYΔFc, protected 8 of 8 and 7 of 8 hamsters, respectively. In contrast, all hamsters receiving IgY/IgYΔFc purified from normal geese (n=8, or no-treatment (n=8, developed lethal HPS. These findings demonstrate that the DNA vaccine/goose platform can be used to produce a candidate antiviral

  19. Safety and immunogenicity of Onderstepoort Biological Products’ Rift Valley fever Clone 13 vaccine in sheep and goats under field conditions in Senegal

    Directory of Open Access Journals (Sweden)

    Modou M. Lo

    2015-02-01

    Full Text Available This blinded field safety study was conducted in Senegal to assess safety and immunogenicity of administration of the registered dose of Rift Valley fever virus (RVFV Clone 13 vaccine (Onderstepoort Biological Products to sheep and goats of West African breeds under natural conditions. A total of 267 small ruminants (220 sheep, 47 goats were included; half received RVFV Clone 13 vaccine at the recommended dose and half received the diluent (as placebo only. The study was performed on three commercial farms in the northern and eastern region of Senegal in accordance with veterinary good clinical practices. The animals were observed daily for 3 days after vaccination, and then weekly for 1 year. In both sheep and goats vaccinated against RVFV seroconversion rates above 70% were recorded. No seroconversion related to RVFV was observed in placebo-treated animals. No statistically significant differences were determined between placebo and vaccinated groups for mean rectal temperatures for the first 3 days after administration (p > 0.05. No abnormal clinical signs related to treatment were noted, and only one slight injection site reaction was observed in one vaccinated animal for 2 days after vaccination. Out of 176 births assessed over 1 year (93 from the vaccinated group, 83 from the placebo group, 9 were abnormal in the placebo group and 3 in the vaccinated group (p > 0.05. The frequency of adverse events was similar in the placebo and vaccinated groups. RVFV Clone 13 vaccine administered according to the manufacturer’s instructions was safe and well tolerated in West African breeds of sheep and goats, including animals of approximately 6 months of age and pregnant females, under field conditions in Senegal. Antibody levels persisted up to 1 year after vaccination.

  20. Induction of antigen-specific antibody response in human pheripheral blood lymphocytes in vitro by a dog kidney cell vaccine against rabies virus (DKCV).

    NARCIS (Netherlands)

    F.G.C.M. Uytdehaag (Fons); A.D.M.E. Osterhaus (Ab); H.G. Loggen; R.H.J. Bakker (Roland); J.A.A.M. van Asten (Jack); J.G. Kreeftenberg; P. van der Marel; G. van Steenis (Bert)

    1983-01-01

    textabstractIn the present report an in vitro method for obtaining a secondary human antibody response to a dog kidney cell vaccine against rabies virus (DKCV) is described. Cultures of peripheral blood mononuclear cells from normal rabies-immune and nonimmune donors were stimulated in vitro by DKCV

  1. Dendritic cell vaccines in cancer immunotherapy: from biology to translational medicine

    Institute of Scientific and Technical Information of China (English)

    Hongmei Xu; Xuetao Cao

    2011-01-01

    According to the GLOBOCAN reports,there were about 12.7 million cancer cases and 7.6 million cancer deaths in 2008,and the cancer burden continues to increase worldwide [1].At present,the common treatments for cancer include surgery,chemotherapy,radiotherapy,and immunotherapy.Immunotherapy aims to enhance or regulate the patient's own immune response to fight against tumors.It represents a novel and effective strategy in cancer treatments,but,generally,its efficacy needs to be improved [2].Cancer vaccination is an important and promising approach in cancer immunotherapy.For many years,prophylactic vaccines have exhibited profound accomplishment in preventing serious infectious diseases in humankind,including polio,small pox,and diphtheria.However,cancer vaccines are vastly different from the prophylactic vaccines in that they are aimed to eliminate preexisting tumors.Furthermore,the immune system is immunosuppressed in most cancer patients,so it is much more difficult to develop effective cancer vaccines.

  2. Changes in cytokine and biomarker blood levels in patients with colorectal cancer during dendritic cell-based vaccination

    DEFF Research Database (Denmark)

    Burgdorf, Stefan K; Claesson, Mogens Helweg; Nielsen, Hans J;

    2009-01-01

    Introduction. Immunotherapy based on dendritic cell vaccination has exciting perspectives for treatment of cancer. In order to clarify immunological mechanisms during vaccination it is essential with intensive monitoring of the responses. This may lead to optimization of treatment and prediction ......-inflammatory cytokines in serum of patients who achieved stable disease following vaccination suggest the occurrence of vaccine-induced Th1 responses. Since Th1 responses seem to be essential in cancer immunotherapy this may indicate a therapeutic potential of the vaccine....

  3. Antiradiation UV Vaccine: UV Radiation, Biological effects, lesions and medical management - immune-therapy and immune-protection.

    Science.gov (United States)

    Popov, Dmitri; Jones, Jeffrey; Maliev, Slava

    rabbits, 11-12 months old, live weight 3.5-3.7 (n=11), Balb mice, 2-3 months old, live weight 20-22 g (n=33), Wistar rats, 3-4 months old, live weight 180-220 g(n=33). The studies were approved by the Animal Care and Use Committee for ethical animal research equivalent, at each institution. Seven rabbits, ten mice, eleven Wistar rats were vaccinated with a UV antiradiation vaccine. A second group of animals was used as biological control which received vaccine but no UV Radiation and a third group of animals was used as control without any interventions. Before and after UV Radiation, Vaccination with the UV antiradiation vaccine were provided 17 days prior to UV exposure. The animals were irradiated by a DRT-1 UV generator lamp. The dose of irradiation for laboratory, experimental animals was 10-12 * Standard Erythema Dose (SED) at L=283,7 Laboratory animals were placed in to the box with ventilation. Results: Ultraviolet irradiation of the skin was performed with high doses and causes an inflammation or erythema in all experimental animals. However the grade of skin damage and inflammation was significantly different between animals protected by vaccination and non-protected, non-vaccinated animals. Animals UV-irradiated, but who did not receive the antiradiation vaccine suffered from extensive UV skin burns of second or third degree (grade 2-3). However, animals protected with the UV antiradiation vaccine demonstrated much mild forms of skin cellular injury - mainly erythema, first degree skin burns and a few small patches with second degree skin burns (grade 1-2). Discussion: The severity of skin damage depended on area of exposed skin, time and dose of UV irradiation. Skin injury could be divided into 4 major grades: 1. Faint erythema with dry desquamation. 2. Moderate to severe erythema. 3. Severe erythema with blistering, moist desquamation. 4. Toxic epidermal necrolysis. Mild doses of UV radiation and ionizing radiation can induce cell death by apoptosis and

  4. History of vaccination

    OpenAIRE

    Plotkin, Stanley

    2014-01-01

    Vaccines have a history that started late in the 18th century. From the late 19th century, vaccines could be developed in the laboratory. However, in the 20th century, it became possible to develop vaccines based on immunologic markers. In the 21st century, molecular biology permits vaccine development that was not possible before.

  5. Combining viral vectored and protein-in-adjuvant vaccines against the blood-stage malaria antigen AMA1: report on a phase 1a clinical trial.

    Science.gov (United States)

    Hodgson, Susanne H; Choudhary, Prateek; Elias, Sean C; Milne, Kathryn H; Rampling, Thomas W; Biswas, Sumi; Poulton, Ian D; Miura, Kazutoyo; Douglas, Alexander D; Alanine, Daniel Gw; Illingworth, Joseph J; de Cassan, Simone C; Zhu, Daming; Nicosia, Alfredo; Long, Carole A; Moyle, Sarah; Berrie, Eleanor; Lawrie, Alison M; Wu, Yimin; Ellis, Ruth D; Hill, Adrian V S; Draper, Simon J

    2014-12-01

    The development of effective vaccines against difficult disease targets will require the identification of new subunit vaccination strategies that can induce and maintain effective immune responses in humans. Here we report on a phase 1a clinical trial using the AMA1 antigen from the blood-stage Plasmodium falciparum malaria parasite delivered either as recombinant protein formulated with Alhydrogel adjuvant with and without CPG 7909, or using recombinant vectored vaccines--chimpanzee adenovirus ChAd63 and the orthopoxvirus MVA. A variety of promising "mixed-modality" regimens were tested. All volunteers were primed with ChAd63, and then subsequently boosted with MVA and/or protein-in-adjuvant using either an 8- or 16-week prime-boost interval. We report on the safety of these regimens, as well as the T cell, B cell, and serum antibody responses. Notably, IgG antibody responses primed by ChAd63 were comparably boosted by AMA1 protein vaccine, irrespective of whether CPG 7909 was included in the Alhydrogel adjuvant. The ability to improve the potency of a relatively weak aluminium-based adjuvant in humans, by previously priming with an adenoviral vaccine vector encoding the same antigen, thus offers a novel vaccination strategy for difficult or neglected disease targets when access to more potent adjuvants is not possible. PMID:25156127

  6. Protective Vaccination against Blood-Stage Malaria of Plasmodium chabaudi: Differential Gene Expression in the Liver of Balb/c Mice toward the End of Crisis Phase

    Science.gov (United States)

    Al-Quraishy, Saleh A.; Dkhil, Mohamed A.; Abdel-Baki, Abdel-Azeem A.; Delic, Denis; Wunderlich, Frank

    2016-01-01

    Protective vaccination induces self-healing of otherwise fatal blood-stage malaria of Plasmodium chabaudi in female Balb/c mice. To trace processes critically involved in self-healing, the liver, an effector against blood-stage malaria, is analyzed for possible changes of its transcriptome in vaccination-protected in comparison to non-protected mice toward the end of the crisis phase. Gene expression microarray analyses reveal that vaccination does not affect constitutive expression of mRNA and lincRNA. However, malaria induces significant (p 3-fold as compared to the corresponding constitutive expressions. Massive up-regulations, partly by >100-fold, are found for genes as RhD, Add2, Ank1, Ermap, and Slc4a, which encode proteins of erythrocytic surface membranes, and as Gata1 and Gfi1b, which encode transcription factors involved in erythrocytic development. Also, Cldn13 previously predicted to be expressed on erythroblast surfaces is up-regulated by >200-fold, though claudins are known as main constituents of tight junctions acting as paracellular barriers between epithelial cells. Other genes are up-regulated by 10-fold, which can be subgrouped in genes encoding proteins known to be involved in mitosis, in cell cycle regulation, and in DNA repair. Our data suggest that protective vaccination enables the liver to respond to P. chabaudi infections with accelerated regeneration and extramedullary erythropoiesis during crisis, which contributes to survival of otherwise lethal blood-stage malaria. PMID:27471498

  7. Blood Culture (For Parents)

    Science.gov (United States)

    ... KidsHealth in the Classroom What Other Parents Are Reading Upsetting News Reports? What to Say Vaccines: Which ... BMP) Blood Test: Complete Blood Count Basic Blood Chemistry Tests Getting a Blood Test (Video) Blood Test: ...

  8. [Blood biological constants in the deer Rusa (Cervus timorensis russa) in New-Caledonia. II. Biological constants].

    Science.gov (United States)

    Audigé, L

    1990-01-01

    Since the beginning of the year 1987, the deer "Rusa" breeding has been developing in New Caledonia. In 1988, during a slaughter operation in the herds, nearly 90 blood samples were collected in order to define the blood biological parameters (or constants) of this species. As for biochemistry, the following parameters have been search for: urea (6.8 mmol/l), creatinin rate (151.7 mmol/l), the activity of the creatin kinase (295.2 U/l), transaminase (ALAT: 60.1 UI/l; ASAT: 22.3 UI/l) and alcalin phosphatases (115.1 U/l), total bilirubin rate (2.76 mumol/l), total proteins rate (61.4 g/l) and albumin (32.6 g/l), calcium (2.42 mmol/l) and phosphorus (3.08 mmol/l). In course of the study, fluctuations of these parameters were detected, according to various criteria and to sampling conditions. PMID:2218040

  9. Epitope mapping of PfCP-2.9, an asexual blood-stage vaccine candidate of Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    He Zhicheng

    2010-04-01

    Full Text Available Abstract Background Apical membrane antigen 1 (AMA-1 and merozoite surface protein 1 (MSP1 of Plasmodium falciparum are two leading blood-stage malaria vaccine candidates. A P. falciparum chimeric protein 2.9 (PfCP-2.9 has been constructed as a vaccine candidate, by fusing AMA-1 domain III (AMA-1 (III with a C-terminal 19 kDa fragment of MSP1 (MSP1-19 via a 28-mer peptide hinge. PfCP-2.9 was highly immunogenic in animal studies, and antibodies elicited by the PfCP-2.9 highly inhibited parasite growth in vitro. This study focused on locating the distribution of epitopes on PfCP-2.9. Methods A panel of anti-PfCP-2.9 monoclonal antibodies (mAbs were produced and their properties were examined by Western blot as well as in vitro growth inhibition assay (GIA. In addition, a series of PfCP-2.9 mutants containing single amino acid substitution were produced in Pichia pastoris. Interaction of the mAbs with the PfCP-2.9 mutants was measured by both Western blot and enzyme-linked immunosorbent assay (ELISA. Results Twelve mAbs recognizing PfCP-2.9 chimeric protein were produced. Of them, eight mAbs recognized conformational epitopes and six mAbs showed various levels of inhibitory activities on parasite growth in vitro. In addition, seventeen PfCP-2.9 mutants with single amino acid substitution were produced in Pichia pastoris for interaction with mAbs. Reduced binding of an inhibitory mAb (mAb7G, was observed in three mutants including M62 (Phe491→Ala, M82 (Glu511→Gln and M84 (Arg513→Lys, suggesting that these amino acid substitutions are critical to the epitope corresponding to mAb7G. The binding of two non-inhibitory mAbs (mAbG11.12 and mAbW9.10 was also reduced in the mutants of either M62 or M82. The substitution of Leu31 to Arg resulted in completely abolishing the binding of mAb1E1 (a blocking antibody to M176 mutant, suggesting that the Leu residue at this position plays a crucial role in the formation of the epitope. In addition, the Asn15

  10. Comparative studies on the biology and filarial susceptibility of selected blood-feeding and autogenous Aedes togoi sub-colonies

    OpenAIRE

    Anuluck Junkum; Wej Choochote; Atchariya Jitpakdi; Somjai Leemingsawat; Narumon Komalamisra; Narissara Jariyapan; Chavalit Boonyatakorn

    2003-01-01

    Blood-feeding and autogenous sub-colonies were selected from a laboratory, stock colony of Aedes togoi, which was originally collected from Koh Nom Sao, Chanthaburi province, Southeast Thailand. Comparative biology and filarial susceptibility between the two sub-colonies (blood-feeding: F11, F13; autogeny: F38, F40) were investigated to evaluate their viability and vectorial capacity. The results of comparison on biology revealed intraspecific differences, i.e., the average egg deposition/gra...

  11. Isolation, Specification, Molecular Biology Assessment and Vaccine Development of Clostridium in Iran: A Review

    Directory of Open Access Journals (Sweden)

    Pilehchian Langroudi

    2015-11-01

    Full Text Available Context The genus Clostridium, which consists of spore-forming anaerobes, can cause different diseases in domestic animals and human and some of them are serious and fatal. According to the increasing economic value of the meat and milk-producing animals, the importance of a certain number of such diseases in Iran is unquestionable. Evidence Acquisition In Iran, and probably in other Near East countries, much attention was formerly paid to control more serious contagious diseases, such as rinderpest, anthrax, etc. resulting in the negligence of diseases such as enterotoxaemia. The epizootiological position has now changed whereby some of the contagious diseases are eradicated or are being methodically controlled. Conclusions This review refers to the veterinary aspects of the anaerobic clostridial diseases and vaccine development concerning the works carried out in Iran and especially at the Razi Serum and Vaccine Research Institute in the last eight decades.

  12. Early Rise of Blood T Follicular Helper Cell Subsets and Baseline Immunity as Predictors of Persisting Late Functional Antibody Responses to Vaccination in Humans

    Science.gov (United States)

    Borgogni, Erica; Zedda, Luisanna; Cantisani, Rocco; Chiappini, Nico; Schiavetti, Francesca; Rosa, Domenico; Castellino, Flora; Montomoli, Emanuele; Bodinham, Caroline L.; Lewis, David J.; Medini, Duccio; Bertholet, Sylvie; Del Giudice, Giuseppe

    2016-01-01

    CD4+ T follicular helper cells (TFH) have been identified as the T-cell subset specialized in providing help to B cells for optimal activation and production of high affinity antibody. We recently demonstrated that the expansion of peripheral blood influenza-specific CD4+IL-21+ICOS1+ T helper (TH) cells, three weeks after vaccination, associated with and predicted the rise of protective neutralizing antibodies to avian H5N1. In this study, healthy adults were vaccinated with plain seasonal trivalent inactivated influenza vaccine (TIIV), MF59®-adjuvanted TIIV (ATIIV), or saline placebo. Frequencies of circulating CD4+ TFH1 ICOS+ TFH cells and H1N1-specific CD4+IL-21+ICOS+ CXCR5+ TFH and CXCR5- TH cell subsets were determined at various time points after vaccination and were then correlated with hemagglutination inhibition (HI) titers. All three CD4+ T cell subsets expanded in response to TIIV and ATIIV, and peaked 7 days after vaccination. To demonstrate that these TFH cell subsets correlated with functional antibody titers, we defined an alternative endpoint metric, decorrelated HI (DHI), which removed any correlation between day 28/day 168 and day 0 HI titers, to control for the effect of preexisting immunity to influenza vaccine strains. The numbers of total circulating CD4+ TFH1 ICOS+ cells and of H1N1-specific CD4+IL-21+ICOS+ CXCR5+, measured at day 7, were significantly associated with day 28, and day 28 and 168 DHI titers, respectively. Altogether, our results show that CD4+ TFH subsets may represent valuable biomarkers of vaccine-induced long-term functional immunity. Trial Registration ClinicalTrials.gov NCT01771367 PMID:27336786

  13. Early Rise of Blood T Follicular Helper Cell Subsets and Baseline Immunity as Predictors of Persisting Late Functional Antibody Responses to Vaccination in Humans.

    Science.gov (United States)

    Spensieri, Fabiana; Siena, Emilio; Borgogni, Erica; Zedda, Luisanna; Cantisani, Rocco; Chiappini, Nico; Schiavetti, Francesca; Rosa, Domenico; Castellino, Flora; Montomoli, Emanuele; Bodinham, Caroline L; Lewis, David J; Medini, Duccio; Bertholet, Sylvie; Del Giudice, Giuseppe

    2016-01-01

    CD4+ T follicular helper cells (T(FH)) have been identified as the T-cell subset specialized in providing help to B cells for optimal activation and production of high affinity antibody. We recently demonstrated that the expansion of peripheral blood influenza-specific CD4(+)IL-21(+)ICOS1(+) T helper (T(H)) cells, three weeks after vaccination, associated with and predicted the rise of protective neutralizing antibodies to avian H5N1. In this study, healthy adults were vaccinated with plain seasonal trivalent inactivated influenza vaccine (TIIV), MF59(®)-adjuvanted TIIV (ATIIV), or saline placebo. Frequencies of circulating CD4(+) T(FH)1 ICOS(+) T(FH) cells and H1N1-specific CD4(+-)IL-21(+)ICOS(+) CXCR5(+) T(FH) and CXCR5(-) T(H) cell subsets were determined at various time points after vaccination and were then correlated with hemagglutination inhibition (HI) titers. All three CD4(+) T cell subsets expanded in response to TIIV and ATIIV, and peaked 7 days after vaccination. To demonstrate that these T(FH) cell subsets correlated with functional antibody titers, we defined an alternative endpoint metric, decorrelated HI (DHI), which removed any correlation between day 28/day 168 and day 0 HI titers, to control for the effect of preexisting immunity to influenza vaccine strains. The numbers of total circulating CD4(+)T(FH)1 ICOS(+) cells and of H1N1-specific CD4(+)IL-21(+)ICOS(+) CXCR5(+), measured at day 7, were significantly associated with day 28, and day 28 and 168 DHI titers, respectively. Altogether, our results show that CD4(+) T(FH) subsets may represent valuable biomarkers of vaccine-induced long-term functional immunity. PMID:27336786

  14. Physicochemical and biological characterization of 1E10 Anti-Idiotype vaccine

    Directory of Open Access Journals (Sweden)

    Machado Yoan J

    2011-11-01

    Full Text Available Abstract Background 1E10 monoclonal antibody is a murine anti-idiotypic antibody that mimics N-glycolyl-GM3 gangliosides. This antibody has been tested as an anti-idiotypic cancer vaccine, adjuvated in Al(OH3, in several clinical trials for melanoma, breast, and lung cancer. During early clinical development this mAb was obtained in vivo from mice ascites fluid. Currently, the production process of 1E10 is being transferred from the in vivo to a bioreactor-based method. Results Here, we present a comprehensive molecular and immunological characterization of 1E10 produced by the two different production processes in order to determine the impact of the manufacturing process in vaccine performance. We observed differences in glycosylation pattern, charge heterogeneity and structural stability between in vivo-produced 1E10 and bioreactor-obtained 1E10. Interestingly, these modifications had no significant impact on the immune responses elicited in two different animal models. Conclusions Changes in 1E10 primary structure like glycosylation; asparagine deamidation and oxidation affected 1E10 structural stability but did not affect the immune response elicited in mice and chickens when compared to 1E10 produced in mice.

  15. A comparison of the oral application and injection routes using the Onderstepoort Biological Products Fowl Typhoid vaccine, its safety, efficacy and duration of protection in commercial laying hens : article

    Directory of Open Access Journals (Sweden)

    C. Purchase

    2008-05-01

    Full Text Available This study was undertaken to establish whether the Onderstepoort Biological Products Fowl Typhoid (OBPft vaccine registered as an injectable vaccine was effective and safe when administered orally to commercial layers. Its efficacy and duration of protection were compared with application by intramuscular injection. Commercial brown layer hens were used as they were found to be highly susceptible to Salmonella gallinarum infections. In the vaccine safety trial birds were euthanased at timed intervals spanning 4 weeks post-vaccination. Necropsies were performed and samples were taken and tested. No clinical signs or mortalities could be attributed to the OBPft vaccine nor could active shedding of the vaccine strain be detected. Slight pathological changes were noted with both routes of vaccination; however, these changes were transient, returning to normal within the observation period. The injected groups showed a better serological response with the rapid serum plate agglutination (RSPA test than the orally vaccinated groups. In the duration of protection trial, birds were challenged at 3-8-week intervals post-vaccination. All unvaccinated birds died. Protection 8 and 16 weeks after vaccination was above 60 %, by 24 weeks after challenge, the vaccine protection was below 30 %. It was found that there was no significant difference (P < 0.05 in the protection offered by either the oral or injected route of vaccination with the OBPft vaccine.

  16. Biological characterization of clones derived from the edmonston strain of measles virus in comparison with schwarz and CAM-70 vaccine strains

    Directory of Open Access Journals (Sweden)

    Maria Beatriz Junqueira Borges

    1996-08-01

    Full Text Available Four virus clones were derived from the Edmonston strain of measles virus by repeated plaque purification. These clones were compared with the vaccine strains Schwarz and CAM-70 in terms of biological activities including plaque formation, hemagglutination, hemolysis and replication in Vero cells and chick embryo fibroblasts (CEF. Two clones of intermediate plaque yielded mixed plaque populations on subcultivation whereas the other two, showing small and large plaque sizes, showed stable plaque phenotypes. The vaccine strains showed consistent homogeneous plaque populations. All the Edmonston clones showed agglutination of monkey erythrocytes in isotonic solution while both vaccine strains hemagglutinated only in the presence of high salt concentrations. Variation in the hemolytic activity was observed among the four clones but no hemolytic activity was detected for the vaccine virus strains. Vaccine strains replicated efficiently both in Vero cells and CEF. All four clones showed efficient replication in Vero cells but different replication profiles in CEF. Two of them replicated efficiently, one was of intermediate efficiency and the other showed no replication in CEF. Two of the clones showed characteristics similar to vaccine strains. One in terms of size and homogeneity of plaques, the other for a low hemolytic activity and both for the efficiency of propagation in CEF.

  17. Towards Developing a Malaria Vaccine Based on CD4 T Cell Mediated Immunity in Blood Stage of Malaria Infection

    Institute of Scientific and Technical Information of China (English)

    徐沪济

    2004-01-01

    Twenty-one years after malaria antigens were first cloned a vaccine still appears to be a long way off. There have been periods of great excitement and in model systems subunit vaccine homologues can induce robust protection. However, significant challenges exist concerning antigenic variation and polymorphism, immunological non-respons-iveness to individual vaccine antigens, parasite-induced apoptosis of immune effector and memory cells and immune deviation as a result of maternal immtmity and alterations of dendritic cell function.

  18. Phase I Clinical Trial of a Recombinant Blood Stage Vaccine Candidate for Plasmodium falciparum Malaria Based on MSP1 and EBA175.

    Directory of Open Access Journals (Sweden)

    Chetan E Chitnis

    Full Text Available A phase I randomised, controlled, single blind, dose escalation trial was conducted to evaluate safety and immunogenicity of JAIVAC-1, a recombinant blood stage vaccine candidate against Plasmodium falciparum malaria, composed of a physical mixture of two recombinant proteins, PfMSP-1(19, the 19 kD conserved, C-terminal region of PfMSP-1 and PfF2 the receptor-binding F2 domain of EBA175.Healthy malaria naïve Indian male subjects aged 18-45 years were recruited from the volunteer database of study site. Fifteen subjects in each cohort, randomised in a ratio of 2:1 and meeting the protocol specific eligibility criteria, were vaccinated either with three doses (10 μg, 25 μg and 50 μg of each antigen of JAIVAC-1 formulated with adjuvant Montanide ISA 720 or with standard dosage of Hepatitis B vaccine. Each subject received the assigned vaccine in the deltoid muscle of the upper arms on Day 0, Day 28 and Day 180.JAIVAC-1 was well tolerated and no serious adverse event was observed. All JAIVAC-1 subjects sero-converted for PfF2 but elicited poor immune response to PfMSP-1(19. Dose-response relationship was observed between vaccine dose of PfF2 and antibody response. The antibodies against PfF2 were predominantly of IgG1 and IgG3 isotype. Sera from JAIVAC-1 subjects reacted with late schizonts in a punctate pattern in immunofluorescence assays. Purified IgG from JAIVAC-1 sera displayed significant growth inhibitory activity against Plasmodium falciparum CAMP strain.Antigen PfF2 should be retained as a component of a recombinant malaria vaccine but PfMSP-1(19 construct needs to be optimised to improve its immunogenicity.Clinical Trial Registry, India CTRI/2010/091/000301.

  19. Phase 1 trial of AMA1-C1/Alhydrogel plus CPG 7909: an asexual blood-stage vaccine for Plasmodium falciparum malaria.

    Directory of Open Access Journals (Sweden)

    Gregory E D Mullen

    Full Text Available BACKGROUND: Apical Membrane Antigen 1 (AMA1, a polymorphic merozoite surface protein, is a leading blood-stage malaria vaccine candidate. This is the first reported use in humans of an investigational vaccine, AMA1-C1/Alhydrogel, with the novel adjuvant CPG 7909. METHODS: A phase 1 trial was conducted at the University of Rochester with 75 malaria-naive volunteers to assess the safety and immunogenicity of the AMA1-C1/Alhydrogel+CPG 7909 malaria vaccine. Participants were sequentially enrolled and randomized within dose escalating cohorts to receive three vaccinations on days 0, 28 and 56 of either 20 microg of AMA1-C1/Alhydrogel+564 microg CPG 7909 (n = 15, 80 microg of AMA1-C1/Alhydrogel (n = 30, or 80 microg of AMA1-C1/Alhydrogel+564 microg CPG 7909 (n = 30. RESULTS: Local and systemic adverse events were significantly more likely to be of higher severity with the addition of CPG 7909. Anti-AMA1 immunoglobulin G (IgG were detected by enzyme-linked immunosorbent assay (ELISA, and the immune sera of volunteers that received 20 microg or 80 microg of AMA1-C1/Alhydrogel+CPG 7909 had up to 14 fold significant increases in anti-AMA1 antibody concentration compared to 80 microg of AMA1-C1/Alhydrogel alone. The addition of CPG 7909 to the AMA1-C1/Alhydrogel vaccine in humans also elicited AMA1 specific immune IgG that significantly and dramatically increased the in vitro growth inhibition of homologous parasites to levels as high as 96% inhibition. CONCLUSION/SIGNIFICANCE: The safety profile of the AMA1-C1/Alhydrogel+CPG 7909 malaria vaccine is acceptable, given the significant increase in immunogenicity observed. Further clinical development is ongoing. TRIAL REGISTRATION: ClinicalTrials.gov NCT00344539.

  20. Phase I Clinical Trial of a Recombinant Blood Stage Vaccine Candidate for Plasmodium falciparum Malaria Based on MSP1 and EBA175

    Science.gov (United States)

    Chitnis, Chetan E.; Mukherjee, Paushali; Mehta, Shantanu; Yazdani, Syed Shams; Dhawan, Shikha; Shakri, Ahmad Rushdi; Bharadwaj, Rukmini; Gupta, Puneet Kumar; Hans, Dhiraj; Mazumdar, Suman; Singh, Bijender; Kumar, Sanjeev; Pandey, Gaurav; Parulekar, Varsha; Imbault, Nathalie; Shivyogi, Preethi; Godbole, Girish; Mohan, Krishna; Leroy, Odile; Singh, Kavita; Chauhan, Virander S.

    2015-01-01

    Background A phase I randomised, controlled, single blind, dose escalation trial was conducted to evaluate safety and immunogenicity of JAIVAC-1, a recombinant blood stage vaccine candidate against Plasmodium falciparum malaria, composed of a physical mixture of two recombinant proteins, PfMSP-119, the 19 kD conserved, C-terminal region of PfMSP-1 and PfF2 the receptor-binding F2 domain of EBA175. Method Healthy malaria naïve Indian male subjects aged 18–45 years were recruited from the volunteer database of study site. Fifteen subjects in each cohort, randomised in a ratio of 2:1 and meeting the protocol specific eligibility criteria, were vaccinated either with three doses (10μg, 25μg and 50μg of each antigen) of JAIVAC-1 formulated with adjuvant Montanide ISA 720 or with standard dosage of Hepatitis B vaccine. Each subject received the assigned vaccine in the deltoid muscle of the upper arms on Day 0, Day 28 and Day 180. Results JAIVAC-1 was well tolerated and no serious adverse event was observed. All JAIVAC-1 subjects sero-converted for PfF2 but elicited poor immune response to PfMSP-119. Dose-response relationship was observed between vaccine dose of PfF2 and antibody response. The antibodies against PfF2 were predominantly of IgG1 and IgG3 isotype. Sera from JAIVAC-1 subjects reacted with late schizonts in a punctate pattern in immunofluorescence assays. Purified IgG from JAIVAC-1 sera displayed significant growth inhibitory activity against Plasmodium falciparum CAMP strain. Conclusion Antigen PfF2 should be retained as a component of a recombinant malaria vaccine but PfMSP-119 construct needs to be optimised to improve its immunogenicity. Trial Registration Clinical Trial Registry, India CTRI/2010/091/000301 PMID:25927360

  1. Biological effects of the electrostatic field: red blood cell-related alterations of oxidative processes in blood

    Science.gov (United States)

    Harutyunyan, Hayk A.; Sahakyan, Gohar V.

    2016-01-01

    The aim of this study was to determine activities of pro-/antioxidant enzymes, reactive oxygen species (ROS) content, and oxidative modification of proteins and lipids in red blood cells (RBCs) and blood plasma of rats exposed to electrostatic field (200 kV/m) during the short (1 h) and the long periods (6 day, 6 h daily). Short-term exposure was characterized by the increase of oxidatively damaged proteins in blood of rats. This was strongly expressed in RBC membranes. After long-term action, RBC content in peripheral blood was higher than in control ( P < 0.01) and the attenuation of prooxidant processes was shown.

  2. Biology and Mechanics of Blood Flows Part II: Mechanics and Medical Aspects

    CERN Document Server

    Thiriet, Marc

    2008-01-01

    Biology and Mechanics of Blood Flows presents the basic knowledge and state-of-the-art techniques necessary to carry out investigations of the cardiovascular system using modeling and simulation. Part II of this two-volume sequence, Mechanics and Medical Aspects, refers to the extraction of input data at the macroscopic scale for modeling the cardiovascular system, and complements Part I, which focuses on nanoscopic and microscopic components and processes. This volume contains chapters on anatomy, physiology, continuum mechanics, as well as pathological changes in the vasculature walls including the heart and their treatments. Methods of numerical simulations are given and illustrated in particular by application to wall diseases. This authoritative book will appeal to any biologist, chemist, physicist, or applied mathematician interested in the functioning of the cardiovascular system.

  3. Optical force on diseased blood cells: Towards the optical sorting of biological matter

    KAUST Repository

    Gongora, Juan Sebastian Totero

    2015-05-01

    By employing a series of massively parallel ab-initio simulations, we study how optical forces act on biological matter subject to morphological disease. As a representative case study, we here consider the case of Plasmodium falciparum on red blood cells (RBC) illuminated by a monochromatic plane wave. Realistic parameters for the geometry and the refractive index are then taken from published experiments. In our theoretical campaign, we study the dependence of the optical force on the disease stage for different incident wavelengths. We show that optical forces change significantly with the disease, with amplitude variation in the hundreds of pN range. Our results open up new avenues for the design of new optical systems for the treatment of human disease. © 2015 Elsevier Ltd.

  4. Optical force on diseased blood cells: towards the optical sorting of biological matter

    CERN Document Server

    Gongora, Juan Sebastian Totero

    2016-01-01

    By employing a series of massively parallel ab-initio simulations, we study how optical forces act on biological matter subject to morphological disease. As a representative case study, we here consider the case of Plasmodium Falciparum on red blood cells (RBC) illuminated by a monochromatic plane wave. Realistic parameters for the geometry and the refractive index are then taken from published experiments. In our theoretical campaign, we study the dependence of the optical force on the disease stage for different incident wavelengths. We show that optical forces change significantly with the disease, with amplitude variation in the hundreds of pN range. Our results open up new avenues for the design of new optical systems for the treatment of human disease.

  5. Extracorporeal blood oxygenation and ozonation: clinical and biological implications of ozone therapy.

    Science.gov (United States)

    Di Paolo, N; Gaggiotti, E; Galli, F

    2005-01-01

    Some lines of evidence have suggested that the challenge to antioxidants and biomolecules provoked by pro-oxidants such as ozone may be used to generate a controlled stress response of possible therapeutic relevance in some immune dysfunctions and chronic, degenerative conditions. Immune and endothelial cells have been proposed to be elective targets of the positive molecular effects of ozone and its derived species formed during blood ozonation. On the bases of these underlying principles and against often prejudicial scepticism and concerns about its toxicity, ozone has been used in autohemotherapy (AHT) for four decades with encouraging results. However, clinical application and validation of AHT have been so far largely insufficient. Latterly, a new and more effective therapeutic approach to ozone therapy has been established, namely extracorporeal blood oxygenation and ozonation (EBOO). This technique, first tested in vitro and then in vivo in sheep and humans (more than 1200 treatments performed in 82 patients), is performed with a high-efficiency apparatus that makes it possible to treat with a mixture of oxygen-ozone (0.5-1 microg/ml oxygen) in 1 h of extracorporeal circulation up to 4800 ml of heparinized blood without technical or clinical problems, whereas only 250 ml of blood can be treated with ozone by AHT. The EBOO technique can be easily adapted for use in hemodialysis also. The standard therapeutic cycle lasts for 7 weeks in which 14 treatment sessions of 1 h are performed. After a session of EBOO, the interaction of ozone with blood components results in 4-5-fold increased levels of thiobarbituric acid reactants and a proportional decrease in plasma protein thiols without any appreciable erythrocyte haemolysis. On the basis of preliminary in vitro evidence, these simple laboratory parameters may represent a useful complement in the routine monitoring of biological compliance to the treatment. The clinical experience gained so far confirms the

  6. No biological evidence of XMRV in blood or prostatic fluid from prostate cancer patients.

    Directory of Open Access Journals (Sweden)

    Ramon Mendoza

    Full Text Available BACKGROUND: XMRV (xenotropic murine leukemia virus-related virus was initially discovered in association with prostate cancer and later with chronic fatigue syndrome (CFS. Its association with CFS is now largely discredited, and current results support a laboratory origin for XMRV with no reproducible evidence for infection of humans. However, some results indicating the presence of XMRV in prostate cancer are difficult to attribute to sample contamination. Here we have sought biological evidence that might confirm the presence of XMRV in prostate cancer samples previously having tested positive. METHODS AND RESULTS: We have tested for infectious XMRV and neutralizing antibodies against XMRV in blood plasma from 29 subjects with prostate cancer, and for infectious XMRV in prostate secretions from another five prostate cancer subjects. Nine of these subjects had previously tested positive for XMRV by PCR or by virus assay. We did not detect XMRV or related retroviruses in any sample, and the neutralizing activities of the plasma samples were all very low, a result inconsistent with XMRV infection of the plasma donors. CONCLUSIONS: We find no evidence for XMRV infection of any human subject tested, either by assay for infectious virus or for neutralizing antibodies. Our results are consistent with the majority of published studies on XMRV, which find that XMRV is not present in humans. The observed low to undetectable XMRV neutralization by human plasma indicates a lack of innate restriction of XMRV replication by soluble factors in human blood.

  7. Phase 1 study in malaria naive adults of BSAM2/Alhydrogel®+CPG 7909, a blood stage vaccine against P. falciparum malaria.

    Directory of Open Access Journals (Sweden)

    Ruth D Ellis

    Full Text Available A Phase 1 dose escalating study was conducted in malaria naïve adults to assess the safety, reactogenicity, and immunogenicity of the blood stage malaria vaccine BSAM2/Alhydrogel®+ CPG 7909. BSAM2 is a combination of the FVO and 3D7 alleles of recombinant AMA1 and MSP1(42, with equal amounts by weight of each of the four proteins mixed, bound to Alhydrogel®, and administered with the adjuvant CPG 7909. Thirty (30 volunteers were enrolled in two dose groups, with 15 volunteers receiving up to three doses of 40 µg total protein at Days 0, 56, and 180, and 15 volunteers receiving up to three doses of 160 µg protein on the same schedule. Most related adverse events were mild or moderate, but 4 volunteers experienced severe systemic reactions and two were withdrawn from vaccinations due to adverse events. Geometric mean antibody levels after two vaccinations with the high dose formulation were 136 µg/ml for AMA1 and 78 µg/ml for MSP1(42. Antibody responses were not significantly different in the high dose versus low dose groups and did not further increase after third vaccination. In vitro growth inhibition was demonstrated and was closely correlated with anti-AMA1 antibody responses. A Phase 1b trial in malaria-exposed adults is being conducted.Clinicaltrials.gov NCT00889616.

  8. 76 FR 13646 - Vaccines and Related Biological Products Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2011-03-14

    ... personal privacy (5 U.S.C. 552b(c)(6)). The committee will discuss the report of the intramural research... the Agency on FDA's regulatory issues. Date and Time: The meeting will be held on April 6, 2011... Person: Donald W. Jehn or Denise Royster, Center for Biologics Evaluation and Research (HFM-71), Food...

  9. Mechanism of Action for Anti-radiation Vaccine in Reducing the Biological Impact of High-dose Gamma Irradiation

    Science.gov (United States)

    Maliev, Vladislav; Popov, Dmitri; Jones, Jeffrey A.; Casey, Rachael C.

    2007-01-01

    Ionizing radiation is a major health risk of long-term space travel, the biological consequences of which include genetic and oxidative damage. In this study, we propose an original mechanism by which high doses of ionizing radiation induce acute toxicity. We identified biological components that appear in the lymphatic vessels shortly after gamma irradiation. These radiation-induced toxins, which we have named specific radiation determinants (SRD), were generated in the irradiated tissues and then collected and circulated throughout the body via the lymph circulation and bloodstream. Depending on the type of SRD elicited, different syndromes of acute radiation sickness (ARS) were expressed. The SRDs were developed into a vaccine used to confer active immunity against acute radiation toxicity in immunologically naive animals. Animals that were pretreated with SRDs exhibited resistance to lethal doses of gamma radiation, as measured by increased survival times and survival rates. In comparison, untreated animals that were exposed to similar large doses of gamma radiation developed acute radiation sickness and died within days. This phenomenon was observed in a number of mammalian species. Initial analysis of the biochemical characteristics indicated that the SRDs were large molecular weight (200-250 kDa) molecules that were comprised of a mixture of protein, lipid, carbohydrate, and mineral. Further analysis is required to further identify the SRD molecules and the biological mechanism by which the mediate the toxicity associated with acute radiation sickness. By doing so, we may develop an effective specific immunoprophylaxis as a countermeasure against the acute effects of ionizing radiation.

  10. Vaccines in dermatology

    Directory of Open Access Journals (Sweden)

    Mitali M Shah

    2015-01-01

    Full Text Available A vaccine is a biological preparation that improves immunity to a specific disease. More than two centuries have passed since the first successful vaccine for smallpox was developed. We′ve come a long way since. Today′s vaccines are among the 21 st century′s most successful and cost-effective public health tools for preventing diseases.

  11. Use of intrinsic modes in biology: Examples of indicial response of pulmonary blood pressure to ± step hypoxia

    OpenAIRE

    Huang, Wei; Shen, Zheng; Huang, Norden E.; Fung, Yuan Cheng

    1998-01-01

    Recently, a new method to analyze biological nonstationary stochastic variables has been presented. The method is especially suitable to analyze the variation of one biological variable with respect to changes of another variable. Here, it is illustrated by the change of the pulmonary blood pressure in response to a step change of oxygen concentration in the gas that an animal breathes. The pressure signal is resolved into the sum of a set of oscillatory intrinsic mode functions, which have z...

  12. Tuberculosis contact investigation with a new, specific blood test in a low-incidence population containing a high proportion of BCG-vaccinated persons

    Directory of Open Access Journals (Sweden)

    Meywald-Walter K

    2006-05-01

    Full Text Available Abstract Background BCG-vaccination can confound tuberculin skin test (TST reactions in the diagnosis of latent tuberculosis infection. Methods We compared the TST with a Mycobacterium tuberculosis specific whole blood interferon-gamma assay (QuantiFERON®-TB-Gold In Tube; QFT-G during ongoing investigations among close contacts of sputum smear positive source cases in Hamburg, Germany. Results During a 6-month period, 309 contacts (mean age 28.5 ± 10.5 years from a total of 15 source cases underwent both TST and QFT-G testing. Of those, 157 (50.8% had received BCG vaccination and 84 (27.2% had migrated to Germany from a total of 25 different high prevalence countries (i.e. >20 cases/100,000. For the TST, the positive response rate was 44.3% (137/309, whilst only 31 (10% showed a positive QFT-G result. The overall agreement between the TST and the QFT-G was low (κ = 0.2, with 95% CI 0.14.-0.23, and positive TST reactions were closely associated with prior BCG vaccination (OR 24.7; 95% CI 11.7–52.5. In contrast, there was good agreement between TST and QFT-G in non-vaccinated persons (κ = 0.58, with 95% CI 0.4–0.68, increasing to 0.68 (95% CI 0.46–0.81, if a 10-mm cut off for the TST was used instead of the standard 5 mm recommended in Germany. Conclusion The QFT-G assay was unaffected by BCG vaccination status, unlike the TST. In close contacts who were BCG-vaccinated, the QFT-G assay appeared to be a more specific indicator of latent tuberculosis infection than the TST, and similarly sensitive in unvaccinated contacts. In BCG-vaccinated close contacts, measurement of IFN-gamma responses of lymphocytes stimulated with M. tuberculosis-specific antigen should be recommended as a basis for the decision on whether to perform subsequent chest X-ray examinations or to start treatment for latent tuberculosis infection.

  13. The Emergence of Blood and Blood Vessels in the Embryo and Its Relevance to Postnatal Biology and Disease

    Science.gov (United States)

    Sills, Tiffany M.; Hirschi, Karen K.

    Blood and blood vessels develop in parallel within mammalian systems, and this temporal and spatial association has led to the confirmation of an endothelial origin of hematopoiesis. The extraembryonic yolk sac and aorto-gonado-mesonephros (AGM) region both contain a specialized population of endothelial cells ("hemogenic endothelium") that function to produce hematopoietic stem and progenitor cells, which then differentiate to provide the full complement of blood cells within the developing embryo and furthermore in the adult system. Therefore, this population has great therapeutic potential in the fields of regenerative medicine and tissue engineering. This chapter reviews the development of the vascular and hematopoietic systems, characterization and function of the hemogenic endothelium within embryonic and embryonic stem cell (ES cell) models, and speculate on the presence of such a population within the adult system. In order to harness this endothelial subtype for clinical application, we must understand both the normal functions of these cells and the potential for misregulation in disease states.

  14. Evaluation of some selected vaccines and other biological products irradiated by gamma rays, electron beams and X-rays

    International Nuclear Information System (INIS)

    Molecular sizing potency results are presented for irradiated samples of one lot of Haemophilus b conjugate vaccine, pneumococcal polysaccharide type 6B and typhoid vi polysaccharide vaccine. The samples were irradiated (25 kGy) by gamma rays, electron beams and X-rays. IgG and IgM antibody response in mice test results (ELISA) are given for the Hib conjugate vaccine irradiated at 0 deg. C or frozen in liquid nitrogen

  15. Evaluation of some selected vaccines and other biological products irradiated by gamma rays, electron beams and X-rays

    Energy Technology Data Exchange (ETDEWEB)

    May, J.C. E-mail: may@cber.fda.gov; Rey, L.; Lee, C.-J

    2002-03-01

    Molecular sizing potency results are presented for irradiated samples of one lot of Haemophilus b conjugate vaccine, pneumococcal polysaccharide type 6B and typhoid vi polysaccharide vaccine. The samples were irradiated (25 kGy) by gamma rays, electron beams and X-rays. IgG and IgM antibody response in mice test results (ELISA) are given for the Hib conjugate vaccine irradiated at 0 deg. C or frozen in liquid nitrogen.

  16. Evaluation of some selected vaccines and other biological products irradiated by gamma rays, electron beams and X-rays

    Science.gov (United States)

    May, J. C.; Rey, L.; Lee, Chi-Jen

    2002-03-01

    Molecular sizing potency results are presented for irradiated samples of one lot of Haemophilus b conjugate vaccine, pneumococcal polysaccharide type 6B and typhoid vi polysaccharide vaccine. The samples were irradiated (25 kGy) by gamma rays, electron beams and X-rays. IgG and IgM antibody response in mice test results (ELISA) are given for the Hib conjugate vaccine irradiated at 0°C or frozen in liquid nitrogen.

  17. Malaria vaccines and human immune responses.

    Science.gov (United States)

    Long, Carole A; Zavala, Fidel

    2016-08-01

    Despite reductions in malaria episodes and deaths over the past decade, there is still significant need for more effective tools to combat this serious global disease. The positive results with the Phase III trial of RTS,S directed to the circumsporozoite protein of Plasmodium falciparum have established that a vaccine against malaria can provide partial protection to children in endemic areas, but its limited efficacy and relatively short window of protection mandate that new generations of more efficacious vaccines must be sought. Evidence shows that anti-parasite immune responses can control infection against other stages as well, but translating these experimental findings into vaccines for blood stages has been disappointing and clinical efforts to test a transmission blocking vaccine are just beginning. Difficulties include the biological complexity of the organism with a large array of stage-specific genes many of which in the erythrocytic stages are antigenically diverse. In addition, it appears necessary to elicit high and long-lasting antibody titers, address the redundant pathways of merozoite invasion, and still seek surrogate markers of protective immunity. Most vaccine studies have focused on a single or a few antigens with an apparent functional role, but this is likely to be too restrictive, and broad, multi-antigen, multi-stage vaccines need further investigation. Finally, novel tools and biological insights involving parasite sexual stages and the mosquito vector will provide new avenues for reducing or blocking malaria transmission. PMID:27262417

  18. Phase 1 Study in Malaria Naïve Adults of BSAM2/Alhydrogel®+CPG 7909, a Blood Stage Vaccine against P. falciparum Malaria

    OpenAIRE

    Ellis, Ruth D.; Wu, Yimin; Martin, Laura B; Shaffer, Donna; Miura, Kazutoyo; Aebig, Joan; Orcutt, Andrew; Rausch, Kelly; ZHU, DAMING; Mogensen, Anders; Fay, Michael P.; David L. Narum; Long, Carole; Miller, Louis; Durbin, Anna P.

    2012-01-01

    A Phase 1 dose escalating study was conducted in malaria naïve adults to assess the safety, reactogenicity, and immunogenicity of the blood stage malaria vaccine BSAM2/Alhydrogel®+ CPG 7909. BSAM2 is a combination of the FVO and 3D7 alleles of recombinant AMA1 and MSP142, with equal amounts by weight of each of the four proteins mixed, bound to Alhydrogel®, and administered with the adjuvant CPG 7909. Thirty (30) volunteers were enrolled in two dose groups, with 15 volunteers receiving up to ...

  19. Vaccine Safety

    Science.gov (United States)

    ... the safety of Tdap, Meningococcal, and HPV vaccines Human Papillomavirus (HPV) Vaccine is Very Safe Read about the safety of ... Hepatitis A Vaccine Safety Hepatitis B Vaccine Safety Human Papillomavirus (HPV) Vaccine Safety FAQs about HPV Safety Influenza (Flu) Vaccine ...

  20. Origins of systems biology in William Harvey's masterpiece on the movement of the heart and the blood in animals.

    Science.gov (United States)

    Auffray, Charles; Noble, Denis

    2009-04-17

    In this article we continue our exploration of the historical roots of systems biology by considering the work of William Harvey. Central arguments in his work on the movement of the heart and the circulation of the blood can be shown to presage the concepts and methods of integrative systems biology. These include: (a) the analysis of the level of biological organization at which a function (e.g. cardiac rhythm) can be said to occur; (b) the use of quantitative mathematical modelling to generate testable hypotheses and deduce a fundamental physiological principle (the circulation of the blood) and (c) the iterative submission of his predictions to an experimental test. This article is the result of a tri-lingual study: as Harvey's masterpiece was published in Latin in 1628, we have checked the original edition and compared it with and between the English and French translations, some of which are given as notes to inform the reader of differences in interpretation.

  1. The consequence of biologic graft processing on blood interface biocompatibility and mechanics.

    Science.gov (United States)

    Van de Walle, Aurore B; Uzarski, Joseph S; McFetridge, Peter S

    2015-09-01

    Processing ex vivo derived tissues to reduce immunogenicity is an effective approach to create biologically complex materials for vascular reconstruction. Due to the sensitivity of small diameter vascular grafts to occlusive events, the effect of graft processing on critical parameters for graft patency, such as peripheral cell adhesion and wall mechanics, requires detailed analysis. Isolated human umbilical vein sections were used as model allogenic vascular scaffolds that were processed with either: 1. sodium dodecyl sulfate (SDS), 2. ethanol/acetone (EtAc), or 3. glutaraldehyde (Glu). Changes in material mechanics were assessed via uniaxial tensile testing. Peripheral cell adhesion to the opaque grafting material was evaluated using an innovative flow chamber that allows direct observation of the blood-graft interface under physiological shear conditions. All treatments modified the grafts tensile strain and stiffness properties, with physiological modulus values decreasing from Glu 240±12 kPa to SDS 210±6 kPa and EtAc 140±3 kPa, Papplied to the umbilical vein scaffold were shown to modify structural mechanics and cell adhesion properties, with the EtAc treatment reducing thrombotic events relative to SDS treated samples. This approach allows time and cost effective prescreening of clinically relevant grafting materials to assess initial cell reactivity.

  2. Comparison of molecular and biological characteristics of a modified live porcine reproductive and respiratory syndrome virus (PRRSV) vaccine (ingelvac PRRS MLV), the parent strain of the vaccine (ATCC VR2332), ATCC VR2385, and two recent field isolates of PRRSV.

    Science.gov (United States)

    Opriessnig, T; Halbur, P G; Yoon, K-J; Pogranichniy, R M; Harmon, K M; Evans, R; Key, K F; Pallares, F J; Thomas, P; Meng, X J

    2002-12-01

    The objectives of this study were to compare the molecular and biological characteristics of recent porcine reproductive and respiratory syndrome virus (PRRSV) field isolates to those of a modified live virus (MLV) PRRS vaccine and its parent strain. One hundred seventeen, 4-week-old pigs were randomly assigned to six groups. Group 1 (n = 20) served as sham-inoculated negative controls, group 2 (n = 19) was inoculated with Ingelvac PRRS MLV vaccine, group 3 (n = 20) was inoculated with the parent strain of the vaccine (ATCC VR2332), group 4 (n = 19) was inoculated with vaccine-like PRRSV field isolate 98-38803, group 5 (n = 19) was inoculated with PRRSV field isolate 98-37120, and group 6 (n = 20) was inoculated with known high-virulence PRRSV isolate ATCC VR2385. The levels of severity of gross lung lesions (0 to 100%) among the groups were significantly different at both 10 (P < 0.0001) and 28 days postinoculation (p.i.) (P = 0.002). At 10 days p.i., VR2332 (26.5% +/- 4.64%) and VR2385 (36.4% +/- 6.51%) induced gross lesions of significantly greater severity than 98-38803 (0.0% +/- 0.0%), 98-37120 (0.8% +/- 0.42%), Ingelvac PRRS MLV (0.9% +/- 0.46%), and negative controls (2.3% +/- 1.26%). At 28 days p.i., 98-37120 (17.2% +/- 6.51%) induced gross lesions of significantly greater severity than any of the other viruses. Analyses of the microscopic-interstitial-pneumonia-lesion scores (0 to 6) revealed that VR2332 (2.9 +/- 0.23) and VR2385 (3.1 +/- 0.35) induced significantly more severe lesions at 10 days p.i. At 28 days p.i., VR2385 (2.5 +/- 0.27), VR2332 (2.3 +/- 0.21), 98-38803 (2.6 +/- 0.29), and 98-37120 (3.0 +/- 0.41) induced significantly more severe lesions than Ingelvac PRRS MLV (0.7 +/- 0.17) and controls (0.7 +/- 0.15). The molecular analyses and biological characterizations suggest that the vaccine-like isolate 98-38803 (99.5% amino acid homology based on the ORF5 gene) induces microscopic pneumonia lesions similar in type to, but different in severity

  3. Phase 1 trial of the Plasmodium falciparum blood stage vaccine MSP1(42-C1/Alhydrogel with and without CPG 7909 in malaria naive adults.

    Directory of Open Access Journals (Sweden)

    Ruth D Ellis

    Full Text Available BACKGROUND: Merozoite surface protein 1(42 (MSP1(42 is a leading blood stage malaria vaccine candidate. In order to induce immune responses that cover the major antigenic polymorphisms, FVO and 3D7 recombinant proteins of MSP1(42 were mixed (MSP1(42-C1. To improve the level of antibody response, MSP1(42-C1 was formulated with Alhydrogel plus the novel adjuvant CPG 7909. METHODS: A Phase 1 clinical trial was conducted in healthy malaria-naïve adults at the Center for Immunization Research in Washington, D.C., to evaluate the safety and immunogenicity of MSP1(42-C1/Alhydrogel +/- CPG 7909. Sixty volunteers were enrolled in dose escalating cohorts and randomized to receive three vaccinations of either 40 or 160 microg protein adsorbed to Alhydrogel +/- 560 microg CPG 7909 at 0, 1 and 2 months. RESULTS: Vaccinations were well tolerated, with only one related adverse event graded as severe (Grade 3 injection site erythema and all other vaccine related adverse events graded as either mild or moderate. Local adverse events were more frequent and severe in the groups receiving CPG. The addition of CPG enhanced anti-MSP1(42 antibody responses following vaccination by up to 49-fold two weeks after second immunization and 8-fold two weeks after the third immunization when compared to MSP1(42-C1/Alhydrogel alone (p<0.0001. After the third immunization, functionality of the antibody was tested by an in vitro growth inhibition assay. Inhibition was a function of antibody titer, with an average of 3% (range -2 to 10% in the non CPG groups versus 14% (3 to 32% in the CPG groups. CONCLUSION/SIGNIFICANCE: The favorable safety profile and high antibody responses induced with MSP1(42-C1/Alhydrogel + CPG 7909 are encouraging. MSP1(42-C1/Alhydrogel is being combined with other blood stage antigens and will be taken forward in a formulation adjuvanted with CPG 7909. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT00320658.

  4. Distribution of kappa and lambda light chain isotypes among human blood immunoglobulin-secreting cells after vaccination with pneumococcal polysaccharides

    DEFF Research Database (Denmark)

    Heilmann, C; Barington, T

    1989-01-01

    pokeweed mitogen (PWM) and Epstein-Barr virus (EBV), IgM-, IgG- and IgA-secreting cells expressed the kappa light chain isotype in approximately 65% of the cells. IgM- and IgG-secreting cells induced by vaccination with pneumococcal polysaccharides had a similar percentage of kappa light chain......-containing cells. In contrast, IgA-secreting cells induced by vaccination with pneumococcal polysaccharides showed a different (bimodal) distribution as regards expression of kappa light chain. The majority (56%) of the investigated individuals expressed kappa light chain in approximately 50% of the cells...... chain pattern of IgA-secreting cells from individuals vaccinated with pneumococcal polysaccharides and from unvaccinated individuals probably indicates that these cells are being derived from B-cell clones with a limited idiotypic heterogeneity, which have been selected and clonally expanded...

  5. Changes in cytokine and biomarker blood levels in patients with colorectal cancer during dendritic cell-based vaccination

    DEFF Research Database (Denmark)

    Burgdorf, Stefan; Claesson, Mogens; Nielsen, Hans;

    2009-01-01

    Introduction. Immunotherapy based on dendritic cell vaccination has exciting perspectives for treatment of cancer. In order to clarify immunological mechanisms during vaccination it is essential with intensive monitoring of the responses. This may lead to optimization of treatment and prediction...... disease showed increasing levels of plasma GM-CSF, TNF-alpha, IFN-gamma, IL-2, and IL-5. Patients with progressive disease showed significant increase in CEA and TIMP-1 levels, while patients with stable disease showed relatively unaltered levels. Conclusion. The increased levels of key pro...

  6. Serum Albumin Domain Structures in Human Blood Serum by Mass Spectrometry and Computational Biology.

    Science.gov (United States)

    Belsom, Adam; Schneider, Michael; Fischer, Lutz; Brock, Oliver; Rappsilber, Juri

    2016-03-01

    Chemical cross-linking combined with mass spectrometry has proven useful for studying protein-protein interactions and protein structure, however the low density of cross-link data has so far precluded its use in determining structures de novo. Cross-linking density has been typically limited by the chemical selectivity of the standard cross-linking reagents that are commonly used for protein cross-linking. We have implemented the use of a heterobifunctional cross-linking reagent, sulfosuccinimidyl 4,4'-azipentanoate (sulfo-SDA), combining a traditional sulfo-N-hydroxysuccinimide (sulfo-NHS) ester and a UV photoactivatable diazirine group. This diazirine yields a highly reactive and promiscuous carbene species, the net result being a greatly increased number of cross-links compared with homobifunctional, NHS-based cross-linkers. We present a novel methodology that combines the use of this high density photo-cross-linking data with conformational space search to investigate the structure of human serum albumin domains, from purified samples, and in its native environment, human blood serum. Our approach is able to determine human serum albumin domain structures with good accuracy: root-mean-square deviation to crystal structure are 2.8/5.6/2.9 Å (purified samples) and 4.5/5.9/4.8Å (serum samples) for domains A/B/C for the first selected structure; 2.5/4.9/2.9 Å (purified samples) and 3.5/5.2/3.8 Å (serum samples) for the best out of top five selected structures. Our proof-of-concept study on human serum albumin demonstrates initial potential of our approach for determining the structures of more proteins in the complex biological contexts in which they function and which they may require for correct folding. Data are available via ProteomeXchange with identifier PXD001692.

  7. Complement activation-related pseudoallergy: a stress reaction in blood triggered by nanomedicines and biologicals.

    Science.gov (United States)

    Szebeni, Janos

    2014-10-01

    Intravenous injection of a variety of nanotechnology enhanced (liposomal, micellar, polymer-conjugated) and protein-based (antibodies, enzymes) drugs can lead to hypersensitivity reactions (HSRs), also known as infusion, or anaphylactoid reactions. The molecular mechanism of mild to severe allergy symptoms may differ from case to case and is mostly not known, however, in many cases a major cause, or contributing factor is activation of the complement (C) system. The clinical relevance of C activation-related HSRs, a non-IgE-mediated pseudoallergy (CARPA), lies in its unpredictability and occasional lethal outcome. Accordingly, there is an unmet medical need to develop laboratory assays and animal models that quantitate CARPA. This review provides basic information on CARPA; a short history, issues of nomenclature, incidence, classification of reactogenic drugs and symptoms, and the mechanisms of C activation via different pathways. It is pointed out that anaphylatoxin-induced mast cell release may not entirely explain the severe reactions; a "second hit" on allergy mediating cells may also contribute. In addressing the increasing requirements for CARPA testing, the review evaluates the available assays and animal models, and proposes a possible algorithm for the screening of reactogenic drugs and hypersensitive patients. Finally, an analogy is proposed between CARPA and the classic stress reaction, suggesting that CARPA represents a "blood stress" reaction, a systemic fight of the body against harmful biological and chemical agents via the anaphylatoxin/mast-cell/circulatory system axis, in analogy to the body's fight of physical and emotional stress via the hypothalamo/pituitary/adrenal axis. In both cases the response to a broad variety of noxious effects are funneled into a uniform pattern of physiological changes. PMID:25124145

  8. False-positive serologic tests for human T-cell lymphotropic virus type I among blood donors following influenza vaccination, 1992.

    Science.gov (United States)

    1993-03-12

    From October 31 through December 15, 1991, 10 blood donors to the American Red Cross Blood Services, Badger Region (ARCBS), were found to have false-positive screening enzyme-linked immunosorbent assays (ELISAs) for antibodies to two or more of the following viruses: human immunodeficiency virus type 1 (HIV-1), human T-cell lymphotrophic virus type 1 (HTLV-I), and hepatitis C virus (HCV). An investigation by the Division of Health, Wisconsin Department of Health and Social Services (WDOH), and the ARCBS indicated that the risk for false-positive reactivity was associated with antecedent receipt of influenza vaccine formulated for the 1991-92 season. In March 1992, the ARCBS began use of newly available ELISAs for anti-HIV (HIVAB, HIV-1/HIV-2 (rDNA) EIA [Abbott Laboratories, Abbott Park, Illinois]) and anti-HCV (HCV 2.0 ELISA [Ortho Diagnostic Systems, Raritan, New Jersey]), while continuing to test with the ELISA for anti-HTLV-I [HTLV-I ELISA (Abbott Laboratories) used in 1991. From January 1 through October 13, 1992, the ARCBS identified 19 blood donors with repeatedly reactive ELISAs for HTLV-I. However, from October 14 through November 10, 15 false-positive ELISAs for HTLV-I were reported by the ARCBS to the WDOH. As a result of this increase, the ARCBS conducted a case-control study to assess the relation between influenza vaccination and testing positive for HTLV-I. This report summarizes the results of the study. PMID:8446101

  9. Comparing the Primary and Recall Immune Response Induced by a New EV71 Vaccine Using Systems Biology Approaches.

    Science.gov (United States)

    Shao, Jie; Zhang, Junnan; Wu, Xing; Mao, Qunying; Chen, Pan; Zhu, Fengcai; Xu, Miao; Kong, Wei; Liang, Zhenglun; Wang, Junzhi

    2015-01-01

    Three inactivated EV71 whole-virus vaccines have completed Phase III clinical trials in mainland China, with high efficacy, satisfactory safety, and sustained immunogenicity. However, the molecular mechanisms how this new vaccine elicit potent immune response remain poorly understood. To characterize the primary and recall responses to EV71 vaccines, PBMC from 19 recipients before and after vaccination with EV71 vaccine are collected and their gene expression signatures after stimulation with EV71 antigen were compared. The results showed that primary and recall response to EV71 antigen have both activated an IRF7 regulating type I interferon and antiviral immune response network. However, up-regulated genes involved in T cell activation regulated by IRF1, inflammatory response, B-cell activation and humoral immune response were only observed in recall response. The specific secretion of IL-10 in primary response and IL-2,IP-10,CCL14a, CCL21 in recall response was consistent with the activation of immune response process found in genes. Furthermore, the expression of MX1 and secretion of IP-10 in recall response were strongly correlated with NTAb level at 180d after vaccination (r = 0.81 and 0.99). In summary, inflammatory response, adaptive immune response and a stronger antiviral response were indentified in recall response.

  10. Comparative studies on the biology and filarial susceptibility of selected blood-feeding and autogenous Aedes togoi sub-colonies

    Directory of Open Access Journals (Sweden)

    Anuluck Junkum

    2003-06-01

    Full Text Available Blood-feeding and autogenous sub-colonies were selected from a laboratory, stock colony of Aedes togoi, which was originally collected from Koh Nom Sao, Chanthaburi province, Southeast Thailand. Comparative biology and filarial susceptibility between the two sub-colonies (blood-feeding: F11, F13; autogeny: F38, F40 were investigated to evaluate their viability and vectorial capacity. The results of comparison on biology revealed intraspecific differences, i.e., the average egg deposition/gravid female (F11/F38; F13/F40, embryonation rate (F13/F40, hatchability rate (F11/F38; F13/F40, egg width (F11/F38, wing length of females (F13/F40, and wing length and width of males (F11/F38 in the blood-feeding sub-colony were significantly greater than that in the autogenous sub-colony; and egg length (F11/F38 and width (F13/F40, and mean longevity of adult females (F11/F38 and males (F13/F40 in the blood-feeding sub-colony were significantly less than that in the autogenous sub-colony. The results of comparison on filarial susceptibility demonstrated that both sub-colonies yielded similar susceptibilities to Brugia malayi [blood-feeding/autogeny = 56.7% (F11/53.3%(F38, 60%(F13/83.3%(F40] and Dirofilaria immitis [blood-feeding/autogeny = 85.7%(F11/75%(F38, 45%(F13/29.4%(F40], suggesting autogenous Ae. togoi sub-colony was an efficient laboratory vector in study of filariasis.

  11. EFFECTS OF STRAIN, CAGE DENSITY AND POSITION ON IMMUNE RESPONSE TO VACCINES AND BLOOD PARAMETERS IN LAYER PULLETS

    Directory of Open Access Journals (Sweden)

    Z. BOZKURT

    2013-07-01

    Full Text Available Two thousand 1-day-old layer chicks were used in the study from Lohman Brown, Isa Brown, Lohman White and Bowans White breeds. The chicks were placed in the at 3 cage densities (211.8, 274.5 and 370.6 cm2 per bird and on 3 positions (as top, middle and bottom tiers. All birds were kept under standard management policy and a commercial vaccination program was practiced. Total specific antibody titres to Infectious Brochitis Virus (IBV, Infectious Bursal Desease Virus (IBDV, Newcastle Disease Virus (NDV and Egg Drop Syndrome Virus (EDSV vaccines at the ages of 5, 10 and 20 weeks were serologically determined by ELISA. Cellmediated immune response was also evaluated. In commercial white egg laying strains specific antibody titres to IBV, IBDV, NDV and EDSV vaccines were greater than in Brown egg layer strains. Keeping in cage created more stress in Brown egg laying chicks than those in white egg laying chicks. As cage density increased, the ratio of heterophils to lymphocytes (H/L ratio slightly increased. Cage position had no influence on the titres of antibodies to IBV and IBDV vaccines but the position of cage in pullets where chicks were stocked, from top to bottom, NDV and EDSV antibody titre decreased and percentage of heterophils, H/L ratio and basophil rates were low. These findings suggest that cage-related stress could be decreased, resistance to diseases and finally well-being of hens may be improved if hens are kept under proper position and density within cage systems with respect to their physiological and behavioral characteristics that controlled by genes.

  12. Iron oxide nanoparticles as a clinically acceptable delivery platform for a recombinant blood-stage human malaria vaccine.

    Science.gov (United States)

    Pusic, Kae; Aguilar, Zoraida; McLoughlin, Jaclyn; Kobuch, Sophie; Xu, Hong; Tsang, Mazie; Wang, Andrew; Hui, George

    2013-03-01

    This study explored the novel use of iron oxide (IO) nanoparticles (malaria vaccine antigen, the merozoite surface protein 1 (rMSP1), was conjugated to IO nanoparticles (rMSP1-IO). Immunizations in outbred mice with rMSP1-IO achieved 100% responsiveness with antibody titers comparable to those obtained with rMSP1 formulated with a clinically acceptable adjuvant, Montanide ISA51 (2.7×10 vs. 1.6×10; respectively). Only rMSP1-1O could induce significant levels (80%) of parasite inhibitory antibodies. The rMSP1-IO was highly stable at 4°C and was amenable to lyophilization, maintaining its antigenicity, immunogenicity, and ability to induce inhibitory antibodies. Further testing in nonhuman primates, Aotus monkeys, also elicited 100% immune responsiveness and high levels of parasite inhibitory antibodies (55-100% inhibition). No apparent local or systemic toxicity was associated with IO immunizations. Murine macrophages and dendritic cells efficiently (>90%) internalized IO nanoparticles, but only the latter were significantly activated, with elevated expression/secretion of CD86, cytokines (IL-6, TNF-α, IL1-b, IFN-γ, and IL-12), and chemokines (CXCL1, CXCL2, CCL2, CCL3, CCL4, and CXCL10). Thus, the IO nanoparticles is a novel, safe, and effective vaccine platform, with built-in adjuvancy, that is highly stable and field deployable for cost-effective vaccine delivery.

  13. Systems biology of coagulation initiation: kinetics of thrombin generation in resting and activated human blood.

    Directory of Open Access Journals (Sweden)

    Manash S Chatterjee

    Full Text Available Blood function defines bleeding and clotting risks and dictates approaches for clinical intervention. Independent of adding exogenous tissue factor (TF, human blood treated in vitro with corn trypsin inhibitor (CTI, to block Factor XIIa will generate thrombin after an initiation time (T(i of 1 to 2 hours (depending on donor, while activation of platelets with the GPVI-activator convulxin reduces T(i to ∼20 minutes. Since current kinetic models fail to generate thrombin in the absence of added TF, we implemented a Platelet-Plasma ODE model accounting for: the Hockin-Mann protease reaction network, thrombin-dependent display of platelet phosphatidylserine, VIIa function on activated platelets, XIIa and XIa generation and function, competitive thrombin substrates (fluorogenic detector and fibrinogen, and thrombin consumption during fibrin polymerization. The kinetic model consisting of 76 ordinary differential equations (76 species, 57 reactions, 105 kinetic parameters predicted the clotting of resting and convulxin-activated human blood as well as predicted T(i of human blood under 50 different initial conditions that titrated increasing levels of TF, Xa, Va, XIa, IXa, and VIIa. Experiments with combined anti-XI and anti-XII antibodies prevented thrombin production, demonstrating that a leak of XIIa past saturating amounts of CTI (and not "blood-borne TF" alone was responsible for in vitro initiation without added TF. Clotting was not blocked by antibodies used individually against TF, VII/VIIa, P-selectin, GPIb, protein disulfide isomerase, cathepsin G, nor blocked by the ribosome inhibitor puromycin, the Clk1 kinase inhibitor Tg003, or inhibited VIIa (VIIai. This is the first model to predict the observed behavior of CTI-treated human blood, either resting or stimulated with platelet activators. CTI-treated human blood will clot in vitro due to the combined activity of XIIa and XIa, a process enhanced by platelet activators and which proceeds

  14. Biological and engineering design considerations for vascular tissue engineered blood vessels (TEBVs)

    OpenAIRE

    Fernandez, Cristina E.; Achneck, Hardean E.; Reichert, William M.; Truskey, George A.

    2014-01-01

    Considerable advances have occurred in the development of tissue-engineered blood vessels (TEBVs) to repair or replace injured blood vessels, or as in vitro systems for drug toxicity testing. Here we summarize approaches to produce TEBVs and review current efforts to (1) identify suitable cell sources for the endothelium and vascular smooth muscle cells, (2) design the scaffold to mimic the arterial mechanical properties and (3) regulate the functional state of the cells of the vessel wall. I...

  15. Anthrax vaccination strategies

    OpenAIRE

    Cybulski, Robert J.; Sanz, Patrick; O'Brien, Alison D.

    2009-01-01

    The biological attack conducted through the U.S. postal system in 2001 broadened the threat posed by anthrax from one pertinent mainly to soldiers on the battlefield to one understood to exist throughout our society. The expansion of the threatened population placed greater emphasis on the reexamination of how we vaccinate against Bacillus anthracis. The currently-licensed Anthrax Vaccine, Adsorbed (AVA) and Anthrax Vaccine, Precipitated (AVP) are capable of generating a protective immune res...

  16. Lead and cadmium determinations by atomic absorption technique in biological samples: blood, placenta and umbilical cord

    International Nuclear Information System (INIS)

    In order to determine the possibility contamination of lead and cadmium in pregnant women living in the mining-smelting city of La Oroya in Peru, lead and cadmium concentrations were assessed in maternal blood (pre-birth), umbilical cord blood and placental tissue. Forty deliveries with normal evolution were evaluated between October 2002 and January 2003. Samples were analyzed by atomic absorption on a graphite furnace at the Peruvian Institute of Nuclear Energy (IPEN) laboratories. Results are summarized as follows: a) Mean lead concentrations in maternal blood (MB), umbilical cord blood (UCB) and placental tissue (PT) were 27.23 μg/dL, 18.48 μg/dL and 363.97 μg/100g, respectively; b) Mean cadmium concentrations in MB, UCB and PT were 8.82 μg/dL, 12,0 μg/dL and 104,44 μg/100g, respectively; c) The correlation coefficient between lead concentration in maternal blood and umbilical cord was 0.122; d). The correlation coefficient of cadmium concentration between MB and UCB was 0.223; e). The correlation coefficient of lead concentration between MB and PT was 0.189; f). The correlation coefficient of cadmium concentration between MB and PT was 0.633. Trans-placental transport of lead was 67.84% (27,23 μg/dL in MB vs. 18.48 μg/dL in UCB); whereas in the case of cadmium, the concentration in UC (12,00 μg/dL) was greater than in MB (8.82 μg/dL.). These results could indicate that the placenta acts as a barrier trapping lead and cadmium. This barrier is efficient for lead since the concentration in cord blood is inferior to maternal blood but it is less efficient for cadmium. (author)

  17. Phase 1b randomized trial and follow-up study in Uganda of the blood-stage malaria vaccine candidate BK-SE36.

    Directory of Open Access Journals (Sweden)

    Nirianne Marie Q Palacpac

    Full Text Available BACKGROUND: Up to now a malaria vaccine remains elusive. The Plasmodium falciparum serine repeat antigen-5 formulated with aluminum hydroxyl gel (BK-SE36 is a blood-stage malaria vaccine candidate that has undergone phase 1a trial in malaria-naive Japanese adults. We have now assessed the safety and immunogenicity of BK-SE36 in a malaria endemic area in Northern Uganda. METHODS: We performed a two-stage, randomized, single-blinded, placebo-controlled phase 1b trial (Current Controlled trials ISRCTN71619711. A computer-generated sequence randomized healthy subjects for 2 subcutaneous injections at 21-day intervals in Stage1 (21-40 year-olds to 1-mL BK-SE36 (BKSE1.0 (n = 36 or saline (n = 20 and in Stage2 (6-20 year-olds to BKSE1.0 (n = 33, 0.5-mL BK-SE36 (BKSE0.5 (n = 33, or saline (n = 18. Subjects and laboratory personnel were blinded. Safety and antibody responses 21-days post-second vaccination (Day42 were assessed. Post-trial, to compare the risk of malaria episodes 130-365 days post-second vaccination, Stage2 subjects were age-matched to 50 control individuals. RESULTS: Nearly all subjects who received BK-SE36 had induration (Stage1, n = 33, 92%; Stage2, n = 63, 96% as a local adverse event. No serious adverse event related to BK-SE36 was reported. Pre-existing anti-SE36 antibody titers negatively correlated with vaccination-induced antibody response. At Day42, change in antibody titers was significant for seronegative adults (1.95-fold higher than baseline [95% CI, 1.56-2.43], p = 0.004 and 6-10 year-olds (5.71-fold [95% CI, 2.38-13.72], p = 0.002 vaccinated with BKSE1.0. Immunogenicity response to BKSE0.5 was low and not significant (1.55-fold [95% CI, 1.24-1.94], p = 0.75. In the ancillary analysis, cumulative incidence of first malaria episodes with ≥5000 parasites/µL was 7 cases/33 subjects in BKSE1.0 and 10 cases/33 subjects in BKSE0.5 vs. 29 cases/66 subjects in the control group. Risk ratio

  18. Immunological changes in canine peripheral blood leukocytes triggered by immunization with first or second generation vaccines against canine visceral leishmaniasis.

    Science.gov (United States)

    Araújo, Márcio Sobreira Silva; de Andrade, Renata Aline; Sathler-Avelar, Renato; Magalhães, Camila Paula; Carvalho, Andréa Teixeira; Andrade, Mariléia Chaves; Campolina, Sabrina Sidney; Mello, Maria Norma; Vianna, Leonardo Rocha; Mayrink, Wilson; Reis, Alexandre Barbosa; Malaquias, Luiz Cosme Cotta; Rocha, Luciana Morais; Martins-Filho, Olindo Assis

    2011-05-15

    In this study, we summarized the major phenotypic/functional aspects of circulating leukocytes following canine immunization with Leishvaccine and Leishmune®. Our findings showed that Leishvaccine triggered early changes in the innate immunity (neutrophils and eosinophils) with late alterations on monocytes. Conversely, Leishmune(®) induced early phenotypic changes in both, neutrophils and monocytes. Moreover, Leishvaccine triggered mixed activation-related phenotypic changes on T-cells (CD4+ and CD8+ and B-lymphocytes, whereas Leishmune(®) promoted a selective response, mainly associated with CD8+ T-cell activation. Mixed cytokine profile (IFN-γ/IL-4) was observed in Leishvaccine immunized dogs whereas a selective pro-inflammatory pattern (IFN-γ/NO) was induced by Leishmune® vaccination. The distinct immunological profile triggered by Leishvaccine and Leishmune® may be a direct consequence of the distinct biochemical composition of these immunobiological, i.e. complex versus purified Leishmania antigen along with Bacillus Calmette-Guérin (BCG) versus saponin adjuvant. Both immunobiologicals are able to activate phagocytes and CD8+ T-cells and therefore could be considered as a putative vaccines against canine visceral leishmaniasis (CVL).

  19. Development of a candidate reference material for adventitious virus detection in vaccine and biologicals manufacturing by deep sequencing

    OpenAIRE

    Edward T Mee; Preston, Mark D.; Minor, Philip D.; ,; Huang, Xuening; Nguyen, Jenny; Wall, David; Hargrove, Stacey; Fu, Thomas; Xu, George; Li, Li; Cote, Colette; Delwart, Eric; Li, Linlin; Hewlett, Indira

    2016-01-01

    Background Unbiased deep sequencing offers the potential for improved adventitious virus screening in vaccines and biotherapeutics. Successful implementation of such assays will require appropriate control materials to confirm assay performance and sensitivity. Methods A common reference material containing 25 target viruses was produced and 16 laboratories were invited to process it using their preferred adventitious virus detection assay. Results Fifteen laboratories returned results, obtai...

  20. The stability of the reactive oxygen metabolites (d-ROMs) and biological antioxidant potential (BAP) tests on stored horse blood.

    Science.gov (United States)

    Celi, P; Sullivan, M; Evans, D

    2010-02-01

    Increasing interest in the role of oxidative stress (OS) in equine medicine has highlighted the need to develop reliable methods to quantify it. In this study we describe the effect of refrigeration (at 4 degrees C) on the stability of the reactive oxygen metabolites (d-ROMs) and biological antioxidant potential (BAP) tests carried out on 15 healthy horses. Blood samples, collected from the jugular vein, were immediately placed on ice and analysed using both the d-ROMs and BAP tests. Samples were also refrigerated at 4 degrees C and tested after 3, 7 and 24 h. The average results were similar for up to 24 h and minimal variations were found for each horse. The findings suggest that refrigeration is suitable for preserving equine blood samples for these assays and this approach will provide veterinarians with a technically simple, reliable test to measure OS under field conditions.

  1. WHO Expert Committee on Biological Standardization.

    Science.gov (United States)

    2013-01-01

    This report presents the recommendations of a WHO expert committee commissioned to coordinate activities leading to the adoption of international recommendations for the production and control of vaccines and other biologicals and the establishment of international biological reference materials. The report starts with a discussion of general issues brought to the attention of the Committee and provides information on the status and development of reference materials for various antibodies, antigens, blood products and related substances, cytokines, growth factors, endocrinological substances and in vitro diagnostic devices. The second part of the report, of particular relevance to manufacturers and national regulatory authorities, contains revised WHO Recommendations for evaluation of animal cell cultures as substrates for the manufacture of biological medicinal products, for production and control of hepatitis B vaccines and for production and control of yellow fever vaccines. New WHO Guidelines on the independent lot release of vaccines are also included. Finally, there is an update to the procedure for the prequalification of vaccines. Also included are lists of Recommendations, Guidelines and other documents related to the manufacture and control of biological substances used in medicine, and of International Standards and Reference Reagents for biological substances. PMID:24340794

  2. Changes in some pro-and anti-inflammatory cytokines produced by bovine peripheral blood mononuclear cells following foot and mouth disease vaccination

    Directory of Open Access Journals (Sweden)

    N. Delirezh

    2016-09-01

    Full Text Available Interleukin (IL-17 is exclusively produced by CD4 helper T-cells upon activation. It most often acts as a pro-inflammatory cytokine, which stimulates the release of pro-inflammatory cytokines IL-6, IL-8, TNF-α, and granulocyte-macrophage colony-stimulating factor (GM-CSF. In this study, we studied the in-vitro IL-17 response to specific antigens and a variety of mitogens and compared the IL-17 response to IL-2, IL-4, IL-5, IL-6, IL-10, and IFN-γ responses. We used a foot and mouth disease (FMD vaccine as specific antigens and mitogens (phytohemagglutinin [PHA], pokeweed mitogen [PWM], and concanavalin A [Con A] to stimulate peripheral blood mononuclear cells (PBMCs of vaccinated calves. Cell culture supernatant was harvested and analyzed for cytokines, using commercially available bovine ELISA kits. The mitogens induced a significant increase in IL-17 production. IL-17 was produced at high levels in response to the T cell-stimulated mitogens, PHA, and Con A, and at low levels in response to PWM mitogens. In contrast, level of the produced IL-17 cytokines in response to the FMDV antigens was lower as compared to those produced by mitogens. The FMDV antigens and mitogens significantly increased IL-17 production. There was not a correlation between IL-17 production and type-1 cytokine, IFN-γ, and IL-2, while there was a correlation between type-2 cytokine, IL-4, and IL-5 at either cytokine level produced by PBMCs stimulated by FMDV antigens. Moreover, there was an interaction between IL-17 and IL-6, that is, as IL-6 cytokine level elevated or diminished, IL-17 cytokine level increased or decreased, as well.

  3. 9 CFR 113.317 - Parvovirus Vaccine (Canine).

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Parvovirus Vaccine (Canine). 113.317... Virus Vaccines § 113.317 Parvovirus Vaccine (Canine). Parvovirus Vaccine recommended for use in dogs... parvovirus susceptible dogs (20 vaccinates and 5 controls) shall be used as test animals. Blood samples...

  4. Using the current Brazilian value for the biological exposure limit applied to blood lead level as a lead poisoning diagnostic criterion

    Directory of Open Access Journals (Sweden)

    Cordeiro Ricardo

    1996-01-01

    Full Text Available In general, biological exposure limits are only used for the promotion and preservation of workers' health and are not applied for diagnostic purposes. However, the issue is controversial for certain types of occupational poisoning. This paper proposes the utilization of biological exposure limits currently applied to blood lead levels in Brazil as an important criterion for diagnosing occupational lead poisoning. The author argues that contrary to the traditional clinical criterion, one should deal with the diagnostic problem of lead poisoning from an epidemiological perspective, using the current Brazilian value for the biological exposure limit applied to blood lead level as an indicator of high relative risk.

  5. Research toward Malaria Vaccines

    Science.gov (United States)

    Miller, Louis H.; Howard, Russell J.; Carter, Richard; Good, Michael F.; Nussenzweig, Victor; Nussenzweig, Ruth S.

    1986-12-01

    Malaria exacts a toll of disease to people in the Tropics that seems incomprehensible to those only familiar with medicine and human health in the developed world. The methods of molecular biology, immunology, and cell biology are now being used to develop an antimalarial vaccine. The Plasmodium parasites that cause malaria have many stages in their life cycle. Each stage is antigenically distinct and potentially could be interrupted by different vaccines. However, achieving complete protection by vaccination may require a better understanding of the complexities of B- and T-cell priming in natural infections and the development of an appropriate adjuvant for use in humans.

  6. Blood Stage Plasmodium falciparum Exhibits Biological Responses to Direct Current Electric Fields

    Science.gov (United States)

    Coronado, Lorena M.; Montealegre, Stephania; Chaverra, Zumara; Mojica, Luis; Espinosa, Carlos; Almanza, Alejandro; Correa, Ricardo; Stoute, José A.; Gittens, Rolando A.

    2016-01-01

    The development of resistance to insecticides by the vector of malaria and the increasingly faster appearance of resistance to antimalarial drugs by the parasite can dangerously hamper efforts to control and eradicate the disease. Alternative ways to treat this disease are urgently needed. Here we evaluate the in vitro effect of direct current (DC) capacitive coupling electrical stimulation on the biology and viability of Plasmodium falciparum. We designed a system that exposes infected erythrocytes to different capacitively coupled electric fields in order to evaluate their effect on P. falciparum. The effect on growth of the parasite, replication of DNA, mitochondrial membrane potential and level of reactive oxygen species after exposure to electric fields demonstrate that the parasite is biologically able to respond to stimuli from DC electric fields involving calcium signaling pathways. PMID:27537497

  7. Impact of AT2-receptor stimulation on vascular biology, kidney function, and blood pressure

    DEFF Research Database (Denmark)

    Danyel, L.A.; Schmerler, P.; Paulis, L.;

    2013-01-01

    angiotensin II) and with relevance for blood pressure (BP) regulation or hypertensive end-organ damage. These data will include studies on vasodilation/vasoconstriction in isolated resistance arteries ex vivo, studies on kidney function, studies on vascular remodeling, and studies that measured the net effect...... to attenuate hypertension-induced vascular remodeling and reduce arterial stiffening, which in more chronic settings and together with the natriuretic effect may result in modest lowering of BP. We conclude from these preclinical data that AT2R agonists are not suitable for antihypertensive monotherapy...

  8. IFN-γ and TNF-α producing CD4+ T-cells in the blood after Mycoplasma hyosynoviae challenge of vaccinated pigs

    DEFF Research Database (Denmark)

    Riber, Ulla; Hansen, Mette Sif; Lauritsen, Klara Tølbøll;

    In a vaccine trial against Mycoplasma hyosynoviae infection, pigs were vaccinated with formalin fixed whole-cell-antigen formulated with adjuvant DDA/TDB (SSI). Placebo pigs received adjuvant with saline. Vaccinations were performed at five and eight weeks of age, followed by an intranasal M......-α were rare. However, CD4+ cells producing IFN-γ or TNF-α after Ag-stimulation were detected in vaccinated pigs, and increased IFN-γ level (iMFI) in cells co-producing IFN-γ and TNF-α was more pronounced in vaccinated pigs compared to placebo pigs in response to M. hyosynoviae challenge (day 15 p...

  9. The proctolin gene and biological effects of proctolin in the blood-feeding bug, Rhodnius prolixus.

    Directory of Open Access Journals (Sweden)

    Ian eOrchard

    2011-10-01

    Full Text Available We have reinvestigated the possible presence or absence of the pentapeptide proctolin in Rhodnius prolixus and report here the cloning of the proctolin cDNA. The transcript is highly expressed in the central nervous system (CNS with some low expression associated with peripheral tissues. The proctolin prepropeptide encodes a single copy of proctolin along with a proctolin-precursor-associated peptide. We have biochemically identified proctolin in CNS extracts and shown its distribution using proctolin-like immunoreactivity. Immunostained processes are found on the salivary glands, female and male reproductive organs, and heart and associated alary muscles. Proctolin-like immunoreactive bipolar neurons are found on the lateral margins of the common oviduct and bursa. Proctolin is biologically active on R. prolixus tissues, stimulating increases in contraction of anterior midgut and hindgut muscles, and increasing heartbeat frequency. Contrary to the previous suggestion that proctolin is absent from R. prolixus, proctolin is indeed present and biologically active in this medically-important bug.

  10. Umbilical cord blood transplantation: basic biology and clinical challenges to immune reconstitution.

    Science.gov (United States)

    Brown, Julia A; Boussiotis, Vassiliki A

    2008-06-01

    Allogeneic stem cell transplantation has continued to evolve as a common procedure for the treatment of hematological malignancies and bone marrow failure. Donor bone marrow and mobilized peripheral stem cells are routinely employed for the reconstitution of immune function in leukemia and lymphoma patients following radiation and/or chemotherapy. Unfortunately, only 30% of patients have an HLA-identical sibling donor and the identification of matched unrelated donors, particularly for minorities, can present an exceptional challenge. The transplantation of umbilical cord blood (UCB) represents the most recent strategy to expand the potential donor pool while maintaining an acceptable level of treatment-related complications. First utilized in children, UCB transplantation permits a higher degree of HLA disparity while demonstrating a reduction in the incidence and severity of graft-versus-host disease (GvHD) compared to previous transplantation modalities. Despite the apparent decrease in GvHD, relapse rates remain comparable to transplantation with bone marrow or mobilized peripheral blood suggesting a strong graft-versus-leukemia/lymphoma (GvL) effect. However, several issues complicate the use of UCB transplantation and its extension to the treatment of adults. Many infections that afflict transplant patients are particularly frequent and more severe in the context of UCB transplantation. UCB T-cells are naive and therefore display less proliferation and IFN-gamma production in response to cognate antigen and also appear to demonstrate defects in signal transduction mechanisms. In addition, UCB contains T regulatory cells (Treg) with more potent suppressor function than adult Treg. Furthermore, adult patients often require more total cells and CD34+ progenitors for transplantation than a single UCB unit can provide. Thus, strategies to expand selected subpopulations from UCB and the use of multi-unit transplantation are areas of active research. This review

  11. [Blood biological constants in the deer Rusa (Cervus timorensis russa) in New-Caledonia. I. Hematologic constants].

    Science.gov (United States)

    Audigé, L

    1990-01-01

    Since the beginning of year 1987, the deer "Rusa" breeding has been developing in New Caledonia. In 1988, during a slaughter operation amidst the herds, nearly ninety blood samples were collected in order to define the blood biological parameters (or constants) of this species. Regarding haematology, the study concerns the following parameters: erythrocyte count (9.32 x 10(12)/l), leucocyte count (4.51 x 10(9)/l), various leucocyte lines and their formula, i.e. (neutrophile polymorphonuclear: 2.08 x 10(9)/l [46.6 p. 100]; lymphocytes: 1.75 x 10(9)/l [38.4 p. 100]; monocytes: 0.33 x 10(9)/l [7.5 p. 100]; eosinophiles polymorphonuclear leucocytes: 0.4 x 10(9)/l [7.46 p. 100]; basophile polymorphonuclear leucocytes: 0.01 x 10(9)/l [0.28 p. 100]), hematocrite (36.8 l/l), hemoglobin ratio (14.1 g/dl), mean corpuscular volume (40.3 dl), mean corpuscular hemoglobin rate (15.3 pg/cell), mean corpuscular hemoglobin concentration (38.7 g/dl). In the course of the study, variations of these parameters were detected according to various physiological criteria and to the sampling conditions as deer is a stress sensitive animal. PMID:2218039

  12. A novel platform for engineering blood-brain barrier-crossing bispecific biologics.

    Science.gov (United States)

    Farrington, Graham K; Caram-Salas, Nadia; Haqqani, Arsalan S; Brunette, Eric; Eldredge, John; Pepinsky, Blake; Antognetti, Giovanna; Baumann, Ewa; Ding, Wen; Garber, Ellen; Jiang, Susan; Delaney, Christie; Boileau, Eve; Sisk, William P; Stanimirovic, Danica B

    2014-11-01

    The blood-brain barrier (BBB) prevents the access of therapeutic antibodies to central nervous system (CNS) targets. The engineering of bispecific antibodies in which a therapeutic "arm" is combined with a BBB-transcytosing arm can significantly enhance their brain delivery. The BBB-permeable single-domain antibody FC5 was previously isolated by phenotypic panning of a naive llama single-domain antibody phage display library. In this study, FC5 was engineered as a mono- and bivalent fusion with the human Fc domain to optimize it as a modular brain delivery platform. In vitro studies demonstrated that the bivalent fusion of FC5 with Fc increased the rate of transcytosis (Papp) across brain endothelial monolayer by 25% compared with monovalent fusion. Up to a 30-fold enhanced apparent brain exposure (derived from serum and cerebrospinal fluid pharmacokinetic profiles) of FC5- compared with control domain antibody-Fc fusions after systemic dosing in rats was observed. Systemic pharmacological potency was evaluated in the Hargreaves model of inflammatory pain using the BBB-impermeable neuropeptides dalargin and neuropeptide Y chemically conjugated with FC5-Fc fusion proteins. Improved serum pharmacokinetics of Fc-fused FC5 contributed to a 60-fold increase in pharmacological potency compared with the single-domain version of FC5; bivalent and monovalent FC5 fusions with Fc exhibited similar systemic pharmacological potency. The study demonstrates that modular incorporation of FC5 as the BBB-carrier arm in bispecific antibodies or antibody-drug conjugates offers an avenue to develop pharmacologically active biotherapeutics for CNS indications. PMID:25070367

  13. Blood Transfusion

    Science.gov (United States)

    ... to infections including those we develop from our vaccinations (such as poliovirus antibodies, which are made by ... the Transfusion Medicine Unit, Blood Bank, and Stem Cell Storage Facility University of Rochester Medical ... and health educators who are available by phone Monday through Friday, 9 am to 9 pm ( ...

  14. Leptospirosis vaccines

    Directory of Open Access Journals (Sweden)

    Jin Li

    2007-12-01

    Full Text Available Abstract Leptospirosis is a serious infection disease caused by pathogenic strains of the Leptospira spirochetes, which affects not only humans but also animals. It has long been expected to find an effective vaccine to prevent leptospirosis through immunization of high risk humans or animals. Although some leptospirosis vaccines have been obtained, the vaccination is relatively unsuccessful in clinical application despite decades of research and millions of dollars spent. In this review, the recent advancements of recombinant outer membrane protein (OMP vaccines, lipopolysaccharide (LPS vaccines, inactivated vaccines, attenuated vaccines and DNA vaccines against leptospirosis are reviewed. A comparison of these vaccines may lead to development of new potential methods to combat leptospirosis and facilitate the leptospirosis vaccine research. Moreover, a vaccine ontology database was built for the scientists working on the leptospirosis vaccines as a starting tool.

  15. Pneumococcal vaccine.

    OpenAIRE

    1999-01-01

    Streptococcus pneumoniae is a frequent cause of pneumonia and meningitis. This article looks at the pneumococcal vaccine, its uses, efficacy, and adverse effects and how vaccination may be improved. We also look at the role of the new conjugate vaccines.

  16. Smallpox Vaccination

    Science.gov (United States)

    ... Newsletters Events Also Known As Smallpox = Vaccinia Smallpox Vaccination Recommend on Facebook Tweet Share Compartir The smallpox ... like many other vaccines. For that reason, the vaccination site must be cared for carefully to prevent ...

  17. Current progress toward vaccines against Toxoplasma gondii

    Directory of Open Access Journals (Sweden)

    Garcia JL

    2014-04-01

    Full Text Available João Luis Garcia,1 Elisabeth A Innes,2 Frank Katzer21Department of Preventative Veterinary Medicine, Center of Agricultural Science, State University of Londrina, Parana, Brazil; 2Moredun Research Institute, Pentlands Science Park, Edinburgh, ScotlandAbstract: Toxoplasma gondii is an intracellular protozoan parasite that can infect many warm-blooded animal species and humans. Despite substantial knowledge of the biology, epidemiology, and host-pathogen interactions of T. gondii, there are still very few effective control strategies to prevent oocyst shedding in cats, tissue cysts in livestock for consumption, and infection and disease in humans. This article reviews current progress and targets for vaccination against T. gondii.Keywords: toxoplasmosis, vaccination, livestock animals, cats, immune response, organelles

  18. Biologic

    CERN Document Server

    Kauffman, L H

    2002-01-01

    In this paper we explore the boundary between biology and the study of formal systems (logic). In the end, we arrive at a summary formalism, a chapter in "boundary mathematics" where there are not only containers but also extainers ><, entities open to interaction and distinguishing the space that they are not. The boundary algebra of containers and extainers is to biologic what boolean algebra is to classical logic. We show how this formalism encompasses significant parts of the logic of DNA replication, the Dirac formalism for quantum mechanics, formalisms for protein folding and the basic structure of the Temperley Lieb algebra at the foundations of topological invariants of knots and links.

  19. Biological evaluation of N-2-hydroxypropyl trimethyl ammonium chloride chitosan as a carrier for the delivery of live Newcastle disease vaccine.

    Science.gov (United States)

    Zhao, Kai; Sun, Yanwei; Chen, Gang; Rong, Guangyu; Kang, Hong; Jin, Zheng; Wang, Xiaohua

    2016-09-20

    Mucosal immune system plays a very important role in antiviral immune response. We prepared Newcastle disease viruses (NDV) encapsulated in N-2-hydroxypropyl trimethyl ammonium chloride chitosan (N-2-HACC) nanoparticles (NDV/La Sota-N-2-HACC-NPs) by an ionic cross linking method, and assessed the potential of N-2-HACC-NPs as a mucosal immune delivery carrier. The properties of the nanoparticles were determined by transmission electron microscopy, Zeta potential and particle size analysis, encapsulation efficiency and loading capacity. NDV/La Sota-N-2-HACC-NPs have regular spherical morphologies and high stability; with 303.88±49.8nm mean diameter, 45.77±0.75mV Zeta potential, 94.26±0.42% encapsulation efficiency and 54.06±0.21% loading capacity. In vitro release assay indicated that the release of NDV from NDV/La Sota-N-2-HACC-NPs is slow. The NDV/La Sota-N-2-HACC-NPs have good biological characteristics, very low toxicity and high level of safety. Additionally, specific pathogen-free chickens immunized with NDV/La Sota-N-2-HACC-NPs showed much stronger cellular, humoral and mucosal immune responses than commercial attenuated live Newcastle disease vaccine, and NDV/La Sota-N-2-HACC-NPs reached the sustainable release effect. Our study here provides a foundation for the further development of mucosal vaccines and drugs, and the N-2-HACC-NPs should be a potential drug delivery carrier with immense potential in medical applications.

  20. Biological evaluation of N-2-hydroxypropyl trimethyl ammonium chloride chitosan as a carrier for the delivery of live Newcastle disease vaccine.

    Science.gov (United States)

    Zhao, Kai; Sun, Yanwei; Chen, Gang; Rong, Guangyu; Kang, Hong; Jin, Zheng; Wang, Xiaohua

    2016-09-20

    Mucosal immune system plays a very important role in antiviral immune response. We prepared Newcastle disease viruses (NDV) encapsulated in N-2-hydroxypropyl trimethyl ammonium chloride chitosan (N-2-HACC) nanoparticles (NDV/La Sota-N-2-HACC-NPs) by an ionic cross linking method, and assessed the potential of N-2-HACC-NPs as a mucosal immune delivery carrier. The properties of the nanoparticles were determined by transmission electron microscopy, Zeta potential and particle size analysis, encapsulation efficiency and loading capacity. NDV/La Sota-N-2-HACC-NPs have regular spherical morphologies and high stability; with 303.88±49.8nm mean diameter, 45.77±0.75mV Zeta potential, 94.26±0.42% encapsulation efficiency and 54.06±0.21% loading capacity. In vitro release assay indicated that the release of NDV from NDV/La Sota-N-2-HACC-NPs is slow. The NDV/La Sota-N-2-HACC-NPs have good biological characteristics, very low toxicity and high level of safety. Additionally, specific pathogen-free chickens immunized with NDV/La Sota-N-2-HACC-NPs showed much stronger cellular, humoral and mucosal immune responses than commercial attenuated live Newcastle disease vaccine, and NDV/La Sota-N-2-HACC-NPs reached the sustainable release effect. Our study here provides a foundation for the further development of mucosal vaccines and drugs, and the N-2-HACC-NPs should be a potential drug delivery carrier with immense potential in medical applications. PMID:27261727

  1. Vaccine Hesitancy.

    Science.gov (United States)

    Jacobson, Robert M; St Sauver, Jennifer L; Finney Rutten, Lila J

    2015-11-01

    Vaccine refusal received a lot of press with the 2015 Disneyland measles outbreak, but vaccine refusal is only a fraction of a much larger problem of vaccine delay and hesitancy. Opposition to vaccination dates back to the 1800 s, Edward Jenner, and the first vaccine ever. It has never gone away despite the public's growing scientific sophistication. A variety of factors contribute to modern vaccine hesitancy, including the layperson's heuristic thinking when it comes to balancing risks and benefits as well as a number of other features of vaccination, including falling victim to its own success. Vaccine hesitancy is pervasive, affecting a quarter to a third of US parents. Clinicians report that they routinely receive requests to delay vaccines and that they routinely acquiesce. Vaccine rates vary by state and locale and by specific vaccine, and vaccine hesitancy results in personal risk and in the failure to achieve or sustain herd immunity to protect others who have contraindications to the vaccine or fail to generate immunity to the vaccine. Clinicians should adopt a variety of practices to combat vaccine hesitancy, including a variety of population health management approaches that go beyond the usual call to educate patients, clinicians, and the public. Strategies include using every visit to vaccinate, the creation of standing orders or nursing protocols to provide vaccination without clinical encounters, and adopting the practice of stating clear recommendations. Up-to-date, trusted resources exist to support clinicians' efforts in adopting these approaches to reduce vaccine hesitancy and its impact.

  2. Vaccine Hesitancy.

    Science.gov (United States)

    Jacobson, Robert M; St Sauver, Jennifer L; Finney Rutten, Lila J

    2015-11-01

    Vaccine refusal received a lot of press with the 2015 Disneyland measles outbreak, but vaccine refusal is only a fraction of a much larger problem of vaccine delay and hesitancy. Opposition to vaccination dates back to the 1800 s, Edward Jenner, and the first vaccine ever. It has never gone away despite the public's growing scientific sophistication. A variety of factors contribute to modern vaccine hesitancy, including the layperson's heuristic thinking when it comes to balancing risks and benefits as well as a number of other features of vaccination, including falling victim to its own success. Vaccine hesitancy is pervasive, affecting a quarter to a third of US parents. Clinicians report that they routinely receive requests to delay vaccines and that they routinely acquiesce. Vaccine rates vary by state and locale and by specific vaccine, and vaccine hesitancy results in personal risk and in the failure to achieve or sustain herd immunity to protect others who have contraindications to the vaccine or fail to generate immunity to the vaccine. Clinicians should adopt a variety of practices to combat vaccine hesitancy, including a variety of population health management approaches that go beyond the usual call to educate patients, clinicians, and the public. Strategies include using every visit to vaccinate, the creation of standing orders or nursing protocols to provide vaccination without clinical encounters, and adopting the practice of stating clear recommendations. Up-to-date, trusted resources exist to support clinicians' efforts in adopting these approaches to reduce vaccine hesitancy and its impact. PMID:26541249

  3. Correlation between circulating white blood cell counts and level of protective immune response against bovine viral diarrhea virus elicited by a modified live vaccine

    Science.gov (United States)

    Two trials (T1 and T2) were conducted to examine the range of responses elicited against bovine viral diarrhea virus (BVDV) by vaccination with modified live vaccine and to determine the level of response required for prevention of clinical disease. For T1, BVDV neutralizing (BVDV VN) titers were de...

  4. 'He is now like a brother, I can even give him some blood'--relational ethics and material exchanges in a malaria vaccine 'trial community' in The Gambia.

    Science.gov (United States)

    Geissler, P Wenzel; Kelly, Ann; Imoukhuede, Babatunde; Pool, Robert

    2008-09-01

    This paper explores social relations within the 'trial community' (staff and volunteers) of a Malaria Vaccine Trial (MVT), implemented by the Medical Research Council (MRC) in The Gambia between 2001 and 2004. It situates ethical concerns with medical research within the everyday life of scientific fieldwork. Based upon discussions with volunteers and staff, we explore processes of mediation between scientific project and study population, and between formal ethics, local ethical debates and everyday practice. We observe that material contact and substantial transactions, notably of blood and medicine, are central to the construction of the MVT. These transactions are guided by a concrete and relational form of ethics, which contrasts with the abstract and vertical formal ethical principles underwriting the scientific study protocol. The success of the MVT owed much to these kinship-like ethics. One possible conclusion from these observations is that research ethics should be understood, not just as a quasi-legal frame but also as an open, searching movement, much in the same way that kinship is not merely a juridical institution and a prescriptive frame of rules, but a network made through relational work. However, this conclusion raises new problems: by contrasting formal, abstract principles to intimate, immediate relations, and economic justice to personal morality, we accept that the order of medical research is moved further out of the public and political, and into the domains of either quasi-legal claims or of private morality. Irrespective of the undeniable importance of clear-cut rules and of good face-to-face relations, a third essential foundation of medical research ethics is the democratically constituted public sphere, including equitable health services, and transparent institutions to facilitate open debate and regulate particular interests. Ultimately, the ethics of global science can rely neither on principles nor trust but requires citizenship

  5. Dendritic cell-based vaccines in the setting of peripheral blood stem cell transplantation: CD34+ cell-depleted mobilized peripheral blood can serve as a source of potent dendritic cells.

    Science.gov (United States)

    Choi, D; Perrin, M; Hoffmann, S; Chang, A E; Ratanatharathorn, V; Uberti, J; McDonagh, K T; Mulé, J J

    1998-11-01

    We are investigating the use of tumor-pulsed dendritic cell (DC)-based vaccines in the treatment of patients with advanced cancer. In the current study, we evaluated the feasibility of obtaining both CD34+ hematopoietic stem/ progenitor cells (HSCs) and functional DCs from the same leukapheresis collection in adequate numbers for both peripheral blood stem cell transplantation (PBSCT) and immunization purposes, respectively. Leukapheresis collections of mobilized peripheral blood mononuclear cells (PBMCs) were obtained from normal donors receiving granulocyte colony-stimulating factor (G-CSF) (for allogeneic PBSCT) and from intermediate grade non-Hodgkin's lymphoma or multiple myeloma patients receiving cyclophosphamide plus G-CSF (for autologous PBSCT). High enrichment of CD34+ HSCs was obtained using an immunomagnetic bead cell separation device. After separation, the negative fraction of mobilized PBMCs from normal donors and cancer patients contained undetectable levels of CD34+ HSCs by flow cytometry. This fraction of cells was then subjected to plastic adherence, and the adherent cells were cultured for 7 days in GM-CSF (100 ng/ml) and interleukin 4 (50 ng/ml) followed by an additional 7 days in GM-CSF, interleukin 4, and tumor necrosis factor alpha (10 ng/ml) to generate DCs. Harvested DCs represented yields of 4.1+/-1.4 and 5.8+/-5.4% of the initial cells plated from the CD34+ cell-depleted mobilized PBMCs of normal donors and cancer patients, respectively, and displayed a high level expression of CD80, CD86, HLA-DR, and CD11c but not CD14. This phenotypic profile was similar to that of DCs derived from non-CD34+ cell-depleted mobilized PBMCs. DCs generated from CD34+ cell-depleted mobilized PBMCs elicited potent antitetanus as well as primary allogeneic T-cell proliferative responses in vitro, which were equivalent to DCs derived from non-CD34+ cell-depleted mobilized PBMCs. Collectively, these results demonstrate the feasibility of obtaining both DCs and

  6. Hepatitis Vaccines

    OpenAIRE

    Ogholikhan, Sina; Schwarz, Kathleen B

    2016-01-01

    Viral hepatitis is a serious health problem all over the world. However, the reduction of the morbidity and mortality due to vaccinations against hepatitis A and hepatitis B has been a major component in the overall reduction in vaccine preventable diseases. We will discuss the epidemiology, vaccine development, and post-vaccination effects of the hepatitis A and B virus. In addition, we discuss attempts to provide hepatitis D vaccine for the 350 million individuals infected with hepatitis B ...

  7. Vaccinations in adults with chronic inflammatory joint disease: Immunization schedule and recommendations for patients taking synthetic or biological disease-modifying antirheumatic drugs.

    Science.gov (United States)

    Morel, Jacques; Czitrom, Séverine Guillaume; Mallick, Auriane; Sellam, Jérémie; Sibilia, Jean

    2016-03-01

    The risk of infection associated with autoimmune diseases is further increased by the use of biotherapies. Recommendations to minimize this risk include administering the full complement of vaccines on the standard immunization schedule, as well as the pneumococcal and influenza vaccines. Adults with chronic inflammatory joint disease (IJD) may receive a 13-valent pneumococcal conjugate vaccine, as well as a live attenuated vaccine against recurrent herpes zoster, recently licensed by European regulatory authorities. Live attenuated vaccines can be given only after an interval without immunosuppressant and/or glucocorticoid therapy. The effectiveness of vaccines, as assessed based on titers of protective antibodies, varies across vaccine types and disease-modifying antirheumatic drugs (DMARDs). Thus, methotrexate and rituximab are usually associated with decreased vaccine responses. The risks associated with vaccines are often considerably exaggerated by the media, which serve lobbies opposed to immunizations and make some patients reluctant to accept immunizations. Increasing immunization coverage may diminish the risk of treatment-related infections. A physician visit dedicated specifically to detecting comorbidities in patients with chronic IJD may result in improved immunization coverage. In this review, we discuss immunizations for adults with chronic IJD based on the treatments used, as well as immunization coverage. Many questions remain unanswered and warrant investigation by studies coordinated by the French networks IREIVAC (Innovative clinical research network in vaccinology) and IMIDIATE (Immune-Mediated Inflammatory Disease Alliance for Translational and Clinical Research). PMID:26453106

  8. Implementation workshop of WHO guidelines on evaluation of malaria vaccines: Current regulatory concepts and issues related to vaccine quality, Pretoria, South Africa 07 Nov 2014.

    Science.gov (United States)

    Ho, Mei Mei; Baca-Estrada, Maria; Conrad, Christoph; Karikari-Boateng, Eric; Kang, Hye-Na

    2015-08-26

    The current World Health Organization (WHO) guidelines on the quality, safety and efficacy of recombinant malaria vaccines targeting the pre-erythrocytic and blood stages of Plasmodium falciparum were adopted by the WHO Expert Committee on Biological Standardization in 2012 to provide guidance on the quality, nonclinical and clinical aspects of recombinant malaria vaccines. A WHO workshop was organised to facilitate implementation into African (national/regional) regulatory practices, of the regulatory evaluation principles outlined in the guidelines regarding quality aspects. The workshop was used also to share knowledge and experience on regulatory topics of chemistry, manufacturing and control with a focus on vaccines through presentations and an interactive discussion using a case study approach. The basic principles and concepts of vaccine quality including consistency of production, quality control and manufacturing process were presented and discussed in the meeting. By reviewing and practicing a case study, better understanding on the relationship between consistency of production and batch release tests of an adjuvanted pre-erythrocytic recombinant malaria vaccine was reached. The case study exercise was considered very useful to understand regulatory evaluation principles of vaccines and a suggestion was made to WHO to provide such practices also through its Global Learning Opportunities for Vaccine Quality programme.

  9. Stability evaluation of vaccines: WHO approach.

    Science.gov (United States)

    Knezevic, Ivana

    2009-11-01

    The stability of vaccines has a major impact on the success of immunization programmes worldwide. In line with this, clear definition of the stability characteristics of a vaccine is of critical importance. One of the concerns at country level is whether vaccines will remain potent on its way from the manufacturer, through the distribution channels, to the final users and vaccine recipients. In response to the requests for assistance in defining stability profile of vaccines, the Expert Committee on Biological Standardization (ECBS) in October 2006 agreed that new WHO guidelines be established on stability evaluation of vaccines (http://www.who.int/biologicals/publications/trs/areas/vaccines/stability/en/index.html). This document applies to all vaccines against infectious diseases. The aim of this guideline is to provide the scientific basis and guiding principles for evaluation of vaccine stability for the purpose of clinical trial approval, licensing, and post-licensure monitoring. As part of its initiative to promote use of vaccines of assured quality, WHO emphasizes the role of National Regulatory Authorities (NRAs) and National Control Laboratories (NCLs) in overall vaccine evaluation, including stability assessment. While recognizing that manufacturers are responsible for the quality of the vaccines they produce, compliance with vaccine quality specifications is part of regulatory oversight. This article provides basic information about WHO international standards as well as key definitions and principles for stability evaluation of vaccines that are elaborated in detail in the above mentioned guidance document.

  10. Molecular and biological characterization of the 5 human-bovine rotavirus (WC3)-based reassortant strains of the pentavalent rotavirus vaccine, RotaTeq (registered)

    International Nuclear Information System (INIS)

    RotaTeq (registered) is a pentavalent rotavirus vaccine that contains five human-bovine reassortant strains (designated G1, G2, G3, G4, and P1) on the backbone of the naturally attenuated tissue culture-adapted parental bovine rotavirus (BRV) strain WC3. The viral genomes of each of the reassortant strains were completely sequenced and compared pairwise and phylogenetically among each other and to human rotavirus (HRV) and BRV reference strains. Reassortants G1, G2, G3, and G4 contained the VP7 gene from their corresponding HRV parent strains, while reassortants G1 and G2 also contained the VP3 gene (genotype M1) from the HRV parent strain. The P1 reassortant contained the VP4 gene from the HRV parent strain and all the other gene segments from the BRV WC3 strain. The human VP7s had a high level of overall amino acid identity (G1: 95-99%, G2: 94-99% G3: 96-100%, G4: 93-99%) when compared to those of representative rotavirus strains of their corresponding G serotypes. The VP4 of the P1 reassortant had a high identity (92-97%) with those of serotype P1A[8] HRV reference strains, while the BRV VP7 showed identities ranging from 91% to 94% to those of serotype G6 HRV strains. Sequence analyses of the BRV or HRV genes confirmed that the fundamental structure of the proteins in the vaccine was similar to those of the HRV and BRV references strains. Sequences analyses showed that RotaTeq (registered) exhibited a high degree of genetic stability as no mutations were identified in the material of each reassortant, which undergoes two rounds of replication cycles in cell culture during the manufacturing process, when compared to the final material used to fill the dosing tubes. The infectivity of each of the reassortant strains of RotaTeq (registered) , like HRV strains, did not require the presence of sialic acid residues on the cell surface. The molecular and biologic characterization of RotaTeq (registered) adds to the significant body of clinical data supporting the

  11. Biomarkers of safety and immune protection for genetically modified live attenuated Leishmania vaccines against visceral leishmaniasis-Discovery and implications

    Directory of Open Access Journals (Sweden)

    Sreenivas eGannavaram

    2014-05-01

    Full Text Available Despite intense efforts there is no safe and efficacious vaccine against visceral leishmaniasis, which is fatal and endemic in many tropical countries. A major shortcoming in the vaccine development against blood borne parasitic agents such as Leishmania is the inadequate predictive power of the early immune responses mounted in the host against the experimental vaccines. Often immune correlates derived from in-bred animal models do not yield immune markers of protection that can be readily extrapolated to humans. The limited efficacy of vaccines based on DNA, sub-unit, heat killed parasites has led to the realization that acquisition of durable immunity against the protozoan parasites requires a controlled infection with a live attenuated organism. Recent success of irradiated malaria parasites as a vaccine candidate further strengthens this approach to vaccination. We developed several gene deletion mutants in L. donovani as potential live attenuated vaccines and reported extensively on the immunogenicity of LdCentrin1 deleted mutant in mice, hamsters and dogs. Additional limited studies using genetically modified live attenuated Leishmania parasites as vaccine candidates have been reported. However, for the live attenuated parasite vaccines, the primary barrier against widespread use remains the absence of clear biomarkers associated with protection and safety. Recent studies in evaluation of vaccines e.g., influenza and yellow fever vaccines, using systems biology tools demonstrated the power of such strategies in understanding the immunological mechanisms that underpin a protective phenotype. Applying similar tools in isolated human tissues such as PBMCs from healthy individuals infected with live attenuated parasites such as LdCen1-/- in vitro followed by human microarray hybridization experiments will enable us to understand how early vaccine-induced gene expression profiles and the associated immune responses are coordinately regulated

  12. The immunological effects of oral polio vaccine provided with BCG vaccine at birth

    DEFF Research Database (Denmark)

    Jensen, Kristoffer Jarlov; Karkov, Hanne Sophie; Lund, Najaaraq;

    2014-01-01

    BACKGROUND: Vaccines may have non-specific effects. An observational study from Guinea-Bissau suggested that oral polio vaccine at birth (OPV0) provided with Bacillus Calmette-Guérin (BCG) vaccine was associated with down-regulation of the immune response to BCG vaccine 6 weeks later. Based...... BCG alone at birth, and subsequently randomised to have a blood sample taken at 2, 4 or 6 weeks post-randomisation. Excreted levels of cytokines (IL-2, IL-5, IL-10, TNF-α and IFN-γ) were measured from whole blood in vitro stimulations with a panel of recall vaccine antigens (BCG, PPD, OPV), mitogen...

  13. Using Biologic Markers in Blood to Assess Exposure to Multiple Environmental Chemicals for Inner-City Children 3–6 Years of Age

    OpenAIRE

    Sexton, Ken; Adgate, John L.; Fredrickson, Ann L; Ryan, Andrew D.; Needham, Larry L.; Ashley, David L.

    2005-01-01

    Biomarkers of exposure & early effects: field studiesBiomarker: 50 environmental chemicalsExposure/effect represented:detection of 11 VOCs, 2 heavy metals, 11organochlorine pesticides, 30 PCB congenersStudy design: cross-sectionalStudy size: 43 ethnically diverse childrenAnalytical technique: GC/MSTissue/biological material/sample size: bloodIntra-individual variation: for 6 VOCs (1,4 dichlorobenzene, ethylbenzene, m-l-p-xylene, o-xylene, styrene, tetrachloroethylene) and PCB 66, 105, 110, 18...

  14. The amphiphilic nature of saponins and their effects on artificial and biological membranes and potential consequences for red blood and cancer cells

    OpenAIRE

    Lorent, Joseph H.; Quetin-Leclercq, Joëlle; Mingeot-Leclercq, Marie-Paule

    2014-01-01

    Saponins, amphiphiles of natural origin with numerous biological activities, are widely used in the cosmetic and pharmaceutical industry. Some saponins exhibit relatively selective cytotoxic effects on cancer cells but the tendency of saponins to induce hemolysis limits their anticancer potential. This review focused on the effects of saponin activity on membranes and consequent implications for red blood and cancer cells. This activity seems to be strongly related to the amphiphilic characte...

  15. Examination of the Blood Groups and Biologal Activity of the Freeze-drying Red Blood Cells%冻干前后红细胞血型及生物活性指标的检测

    Institute of Scientific and Technical Information of China (English)

    吴学忠; 刘忠; 吕蓉; 李敏; 李素萍; 於娟; 赵丹

    2011-01-01

    目的 检测冻干前、后红细胞血型抗原及其生物学活性,了解冻干前、后红细胞血型抗原及其生物学活性的变化情况.方法红细胞血型抗原的检测采用血型血清学方法,2,3-DPG和ATP用ELISA法.结果在ABO、Rh、MNSs、Kell、Duffy、P血型抗原中,冷冻前、冻干后红细胞血型抗原一致;在Lewis血型抗原中,冷冻前、冻干后红细胞血型抗原有变化.冷冻前、冻干后红细胞2,3-DPG和ATP含量均无明显变化.结论冷冻前、冻干后红细胞Lewis血型系统中的Lea和Leb血型抗原变化有明显差异;冷冻前、冻干后红细胞2,3-DPG和ATP含量变化无统计学意义.%Objective To detect the blood group antigens, the levels of 2,3-DPG and ATP of red blood cells (RBCs) before and after freeze-drying. Also the changes of blood group antigens and biological activity of RBCs before and after RBCs freeze-drying was observed. Methods The blood group antigens of RBCs were detected by the blood group serology, the levels of 2,3-DPG and ATP were detected by ELISA. Results The blood group antigens of RBCs were the same as before and after freeze-drying about ABO, Rh, MNSs, Kell, Duffy and P blood group systems. But the blood group antigens of RBCs of Lewis blood group systems were different before and after freeze-drying. The levels of 2,3-DPG and ATP of RBCs before and after freeze-drying didn't change significantly. Conclusion The Lea and Leb blood group antigens of RBCs before and after freeze-drying of Lewis blood group systems have changed significantly. The levels of 2,3-DPG and ATP of RBCs before and after freeze-drying havn't chenged significantly.

  16. Diphtheria Vaccination

    Science.gov (United States)

    ... children and adults - Tetanus-diphtheria-acellular Pertussis vaccine Diphtheria Vaccination Pronounced (dif-THEER-ee-a) Recommend on Facebook Tweet Share Compartir Diphtheria causes a thick covering in the back of ...

  17. A phase 1 trial of MSP2-C1, a blood-stage malaria vaccine containing 2 isoforms of MSP2 formulated with Montanide® ISA 720.

    Directory of Open Access Journals (Sweden)

    James S McCarthy

    Full Text Available BACKGROUND: In a previous Phase 1/2b malaria vaccine trial testing the 3D7 isoform of the malaria vaccine candidate Merozoite surface protein 2 (MSP2, parasite densities in children were reduced by 62%. However, breakthrough parasitemias were disproportionately of the alternate dimorphic form of MSP2, the FC27 genotype. We therefore undertook a dose-escalating, double-blinded, placebo-controlled Phase 1 trial in healthy, malaria-naïve adults of MSP2-C1, a vaccine containing recombinant forms of the two families of msp2 alleles, 3D7 and FC27 (EcMSP2-3D7 and EcMSP2-FC27, formulated in equal amounts with Montanide® ISA 720 as a water-in-oil emulsion. METHODOLOGY/PRINCIPAL FINDINGS: The trial was designed to include three dose cohorts (10, 40, and 80 µg, each with twelve subjects receiving the vaccine and three control subjects receiving Montanide® ISA 720 adjuvant emulsion alone, in a schedule of three doses at 12-week intervals. Due to unexpected local reactogenicity and concern regarding vaccine stability, the trial was terminated after the second immunisation of the cohort receiving the 40 µg dose; no subjects received the 80 µg dose. Immunization induced significant IgG responses to both isoforms of MSP2 in the 10 µg and 40 µg dose cohorts, with antibody levels by ELISA higher in the 40 µg cohort. Vaccine-induced antibodies recognised native protein by Western blots of parasite protein extracts and by immunofluorescence microscopy. Although the induced anti-MSP2 antibodies did not directly inhibit parasite growth in vitro, IgG from the majority of individuals tested caused significant antibody-dependent cellular inhibition (ADCI of parasite growth. CONCLUSIONS/SIGNIFICANCE: As the majority of subjects vaccinated with MSP2-C1 developed an antibody responses to both forms of MSP2, and that these antibodies mediated ADCI provide further support for MSP2 as a malaria vaccine candidate. However, in view of the reactogenicity of this

  18. Pneumococcal Vaccines

    OpenAIRE

    Chen-Fang Ho; Tzou-Yien Lin

    2005-01-01

    Streptococcus pneumoniae is the leading bacterial pathogen of infectious diseases inchildren and adolescents. The 23-valent pneumococcal polysaccharide vaccine could preventinvasive pneumococcal infection with broader serotype coverage but still has some limitations.On the other hand, 7-valent pneumococcal conjugate vaccine has been shown todecrease cases of nasopharyngeal acquired S. pneumoniae vaccine serotypes and provedherd immunity. The safety and efficacy against vaccine serotype pneumo...

  19. ROTAVIRUS VACCINES

    OpenAIRE

    Kang G

    2006-01-01

    Rotavirus, the most common cause of severe diarrhea and a leading cause of mortality in children, has been a priority target for vaccine development for the past several years. The first rotavirus vaccine licensed in the United States was withdrawn because of an association of the vaccine with intussusception. However, the need for a vaccine is greatest in the developing world, because the benefits of preventing deaths due to rotavirus disease are substantially greater than the risk of intuss...

  20. Dendrimers for Vaccine and Immunostimulatory Uses

    DEFF Research Database (Denmark)

    Heegaard, Peter M. H.; Boas, Ulrik; Sørensen, Nanna Skall

    2010-01-01

    Dendrimers are well-defined (monodisperse) synthetic globular polymers with a range of interesting chemical and biological properties. Chemical properties include the presence of multiple accessible surface functional groups that can be used for coupling biologically relevant molecules and methods...... of molecularly defined vaccines with highly predictable and specific properties and enable knowledge-based vaccine design substituting the traditional empirically based approaches for vaccine development and production....

  1. Serological response following re-vaccination with Salmonella typhi Vi-capsular polysaccharide vaccines in healthy adult travellers.

    Science.gov (United States)

    Roggelin, Louise; Vinnemeier, Christof D; Fischer-Herr, Johanna; Johnson-Weaver, Brandi T; Rolling, Thierry; Burchard, Gerd D; Staats, Herman F; Cramer, Jakob P

    2015-08-01

    An injectable Vi-capsular polysaccharide vaccine against typhoid fever is available but vaccine-induced immunity tends to wane over time. The phenomenon of immunotolerance or hyporesponsiveness has earlier been described for polysaccharide vaccines such as pneumococcal capsular polysaccharide vaccine and some publications also suggest a possible immunotolerance after revaccination with Vi-capsular polysaccharide vaccines. In this study, post-immunisation antibody concentrations in adult travellers first vaccinated with a Salmonella typhi Vi-capsular polysaccharide vaccine (primary vaccination group) were compared with those having received one or more vaccinations previously (multiple vaccinations group). Vaccines administered were Typherix(®) (GlaxoSmithKline), Typhim Vi(®) (Sanofi Pasteur MSD) or Hepatyrix(®) (GlaxoSmithKline). Blood samples were obtained prior to vaccination (day 0) and on day 28 (-1/+14) after vaccination. Serum Vi-Antigen IgG concentrations were measured by ELISA. Of the 85 subjects included in the per protocol data set, 45 (53%) belonged to the multiple vaccinations group. In both groups, geometric mean antibody concentrations (GMCs) were significantly higher after vaccination than before vaccination. Pre-vaccination GMCs were lower in the primary vaccination group than in the multiple vaccinations group (3.40 μg/ml versus 6.13 μg/ml, P=0.005), while there was no significant difference in the post vaccination GMCs between groups (11.34 μg/ml versus 14.58 μg/ml, P=0.4). In the multiple vaccinations group, vaccination was performed 18 to 57 months after the last vaccination (median 38 months) and there was a negative correlation between time since last vaccination and antibody concentration on day 0. In conclusion, we were not able to demonstrate a relevant immunotolerance after multiple versus primary vaccination with S. typhi Vi-capsular polysaccharide vaccines.

  2. Feasibility Study of GlaxoSmithKline Biologicals' GSK2202083A Vaccine in Healthy Infants at 3, 5 and 11 Months of Age.

    Science.gov (United States)

    2012-11-16

    Haemophilus Influenzae Type b; Poliomyelitis; Hepatitis B; Serogroup C Meningococcal Diseases; Diphtheria; Pertussis; Diphtheria-Tetanus-aPertussis-Hepatitis B-Poliomyelitis-Haemophilus Influenzae Type b-Neisseria Meningitidis Vaccines; Tetanus

  3. Theoretical and methodological aspects of BCG vaccine from the discovery of Calmette and Guérin to molecular biology. A review.

    Science.gov (United States)

    Lugosi, L

    1992-10-01

    The BCG vaccine has been used to prevent tuberculosis since 1921 and applied for immunostimulation in neoplasia since the 1960s. Both the preventive and immunostimulation effects have been evaluated and communicated with contradictory, positive and negative conclusions. For an objective evaluation and interpretation of the protective efficacy, effectiveness and efficiency of the BCG vaccination it must be considered that: (1) several BCG substrains have been developed in manufacturing laboratories that differ in the residual virulence which determines immunogenicity and reactogenicity; (2) various liquid and freeze-dried BCG vaccine production methods are used, resulting in different BCG viable units per dose; (3) quantitative bioassay methods are not yet being used for statistical quality control of the vaccine; (4) BCG products are applied in various demographical, epidemiological and socioeconomic conditions with different vaccination policies; (5) inadequate biostatistical models are often used to analyse efficacy, effectiveness and adverse reactions. The same conditions influence the precise evaluation of BCG immunostimulation in neoplasia. Recombinant DNA technology will modify production methods, and explain at the molecular level the mechanism of the protective effects BCG confers in tuberculosis and immunostimulation in neoplasia. High level laboratory techniques and biostatistical methods, based on probability logic and inductive inference, ensure appropriate experimental designs and the exact analysis of laboratory data and the results of vaccination policies. They will lead to the evaluation of the protective effect of BCG in order to reduce the BCG contradictions. PMID:1493232

  4. 自体树突细胞与混合T淋巴细胞疫苗治疗慢性乙型肝炎的护理%Nursing effect on blood collection and doping for cbronic hepatitis B patients treated with self dendritic cells and mixed T lymphocytes vaccine

    Institute of Scientific and Technical Information of China (English)

    王选琴; 李玲香

    2012-01-01

    Objective To explore the clinical blood collection and doping nursing care for hepatitis B patients who use self dendritic cells (DC)and mixed T lymphocytes vaccine (resistant HBV-DC-MTL for short ) for treatment.Methods Thirty-eight chronic hepatitis B virus (HBV) infection patients including 33 chronic hepatitis B and 5 chronic HBV carriers undergone clinical trial during December 2010 to July 2011.Fifty millilitre heparin anticoagulation peripheral venous blood was taken for cultivating mature DC and mixed T lymphocytes vaccine with laboratory biological immune technology,the DC obtained on the seventh day and resistant HBV-MTL obtained on the fourteenth day intravenously injected to the patients and we observed the cell collection and doping nursing effect.Results No case was recollected blood for blood coagulation,the obtained cells after cultivated were returned to the patient without adverse effects and showed a distinct effect in 38 patients.Conclusions It is more successful in blood collection by using the heparin 50 ml syringe and anticoagulant 9 infusion scalp needle in the great vessels; it is the key in obtaining cell vaccine that the specimen is cold preservation in 4 ℃,and separated and cultured in 2 h; doping method is of high safety and Iess complications.%目的 探讨乙肝患者使用自体树突细胞和混合T淋巴细胞疫苗(简称抗HBV-DC-MTL)治疗慢性乙型肝炎的临床采血与回输的护理.方法 取乙肝患者的肝素抗凝外周静脉血50 ml,通过实验室生物免疫技术培养获得成熟的树突细胞和混合T淋巴细胞疫苗,培养第7天将收获的DC、第14天收获的抗HBV-MTL分别回输给患者.并对38例乙肝患者采集细胞与回输的护理进行观察.结果 38例患者好转36例,无效1例,治愈1例.结论 采用肝素抗凝的50 ml注射器加9号输液头皮针在大血管处采血,采血成功率高;标本4℃左右冷藏保存,2h内分离培养,是收获细胞疫苗成功的关键;回

  5. DNA vaccines

    Science.gov (United States)

    Gregersen, Jens-Peter

    2001-12-01

    Immunization by genes encoding immunogens, rather than with the immunogen itself, has opened up new possibilities for vaccine research and development and offers chances for new applications and indications for future vaccines. The underlying mechanisms of antigen processing, immune presentation and regulation of immune responses raise high expectations for new and more effective prophylactic or therapeutic vaccines, particularly for vaccines against chronic or persistent infectious diseases and tumors. Our current knowledge and experience of DNA vaccination is summarized and critically reviewed with particular attention to basic immunological mechanisms, the construction of plasmids, screening for protective immunogens to be encoded by these plasmids, modes of application, pharmacokinetics, safety and immunotoxicological aspects. DNA vaccines have the potential to accelerate the research phase of new vaccines and to improve the chances of success, since finding new immunogens with the desired properties is at least technically less demanding than for conventional vaccines. However, on the way to innovative vaccine products, several hurdles have to be overcome. The efficacy of DNA vaccines in humans appears to be much less than indicated by early studies in mice. Open questions remain concerning the persistence and distribution of inoculated plasmid DNA in vivo, its potential to express antigens inappropriately, or the potentially deleterious ability to insert genes into the host cell's genome. Furthermore, the possibility of inducing immunotolerance or autoimmune diseases also needs to be investigated more thoroughly, in order to arrive at a well-founded consensus, which justifies the widespread application of DNA vaccines in a healthy population.

  6. FLU VACCINATION

    CERN Document Server

    2007-01-01

    People working on the CERN site who wish to be vaccinated may go to the Infirmary (ground-floor, bldg. 57), with their vaccine, without a prior appointment. The vaccine can be reimbursed directly by Uniqa providing you attach the receipt and the prescription that you will receive from the Medical Service the day of your injection at the infirmary. Ideally, the vaccination should take place between 1st October and 30th November 2007 (preferably between 14:00 and 16:00). CERN staff aged 50 or over are recommended to have influenza vaccinations. Vaccination is particularly important for those suffering from chronic lung, cardio-vascular or kidney problems, for diabetics and those convalescing from serious medical problems or after serious surgical operations. The Medical Service will not administer vaccines for family members or retired staff members, who must contact their normal family doctor. Medical Service

  7. Periodontal vaccine

    Directory of Open Access Journals (Sweden)

    Ranjan Malhotra

    2011-01-01

    Full Text Available Vaccine is the name applied generally to a substance of the nature of dead or attenuated living infectious material introduced into the body with the object of increasing its power to resist or get rid of a disease. Vaccines are generally prophylactic, i.e. they ameliorate the effects of future infection. One such vaccine considered here is the "Periodontal vaccine". Till date, no preventive modality exists for periodontal disease and treatment rendered is palliative. Thus, availability of periodontal vaccine would not only prevent and modulate periodontal disease, but also enhance the quality of life of people for whom periodontal treatment cannot be easily obtained. The aim of the research should be development of a multispecies vaccine targeting the four prime periodontal pathogens, viz. Porphyromonas gingivalis, T. forsythus, T. denticola and A. comitans. Success is still elusive in case of periodontal vaccine due to the complex etiopathogenesis of the disease.

  8. Measurement of Androgen and Estrogen Concentrations in Cord Blood: Accuracy, Biological Interpretation and Applications to Understanding Human Behavioural Development

    OpenAIRE

    LaurenPHollier; JeffreyAKeelan; MarthaHickey

    2014-01-01

    Accurately measuring hormone exposure during prenatal life presents a methodological challenge and there is currently no ‘gold standard’ approach. Ideally, circulating fetal hormone levels would be measured at repeated time points during pregnancy. However, it is not currently possible to obtain fetal blood samples without significant risk to the fetus, and therefore surrogate markers of fetal hormone levels must be utilized. Umbilical cord blood can be readily obtained at birth and largely r...

  9. Cytokine production associated with smallpox vaccine responses.

    Science.gov (United States)

    Simon, Whitney L; Salk, Hannah M; Ovsyannikova, Inna G; Kennedy, Richard B; Poland, Gregory A

    2014-01-01

    Smallpox was eradicated 34 years ago due to the success of the smallpox vaccine; yet, the vaccine continues to be studied because of its importance in responding to potential biological warfare and the adverse events associated with current smallpox vaccines. Interindividual variations in vaccine response are observed and are, in part, due to genetic variation. In some cases, these varying responses lead to adverse events, which occur at a relatively high rate for the smallpox vaccine compared with other vaccines. Here, we aim to summarize the cytokine responses associated with smallpox vaccine response to date. Along with a description of each of these cytokines, we describe the genetic and adverse event data associated with cytokine responses to smallpox vaccination.

  10. Agility in adversity: Vaccines on Demand.

    Science.gov (United States)

    De Groot, Anne S; Moise, Leonard; Olive, David; Einck, Leo; Martin, William

    2016-09-01

    Is the US ready for a biological attack using Ebola virus or Anthrax? Will vaccine developers be able to produce a Zika virus vaccine, before the epidemic spreads around the world? A recent report by The Blue Ribbon Study Panel on Biodefense argues that the US is not ready for these challenges, however, technologies and capabilities that could address these deficiencies are within reach. Vaccine technologies have advanced and readiness has improved in recent years, due to advances in sequencing technology and computational power making the 'vaccines on demand' concept a reality. Building a robust strategy to design effective biodefense vaccines from genome sequences harvested by real-time biosurveillance will benefit from technologies that are being brought to bear on the cancer cure 'moonshot'. When combined with flexible vaccine production platforms, vaccines on demand will relegate expensive and, in some cases, insufficiently effective vaccine stockpiles to the dust heap of history. PMID:27389971

  11. Agility in adversity: Vaccines on Demand.

    Science.gov (United States)

    De Groot, Anne S; Moise, Leonard; Olive, David; Einck, Leo; Martin, William

    2016-09-01

    Is the US ready for a biological attack using Ebola virus or Anthrax? Will vaccine developers be able to produce a Zika virus vaccine, before the epidemic spreads around the world? A recent report by The Blue Ribbon Study Panel on Biodefense argues that the US is not ready for these challenges, however, technologies and capabilities that could address these deficiencies are within reach. Vaccine technologies have advanced and readiness has improved in recent years, due to advances in sequencing technology and computational power making the 'vaccines on demand' concept a reality. Building a robust strategy to design effective biodefense vaccines from genome sequences harvested by real-time biosurveillance will benefit from technologies that are being brought to bear on the cancer cure 'moonshot'. When combined with flexible vaccine production platforms, vaccines on demand will relegate expensive and, in some cases, insufficiently effective vaccine stockpiles to the dust heap of history.

  12. Smallpox vaccines for biodefense.

    Science.gov (United States)

    Kennedy, Richard B; Ovsyannikova, Inna; Poland, Gregory A

    2009-11-01

    Few diseases can match the enormous impact that smallpox has had on mankind. Its influence can be seen in the earliest recorded histories of ancient civilizations in Egypt and Mesopotamia. With fatality rates up to 30%, smallpox left its survivors with extensive scarring and other serious sequelae. It is estimated that smallpox killed 500 million people in the 19th and 20th centuries. Given the ongoing concerns regarding the use of variola as a biological weapon, this review will focus on the licensed vaccines as well as current research into next-generation vaccines to protect against smallpox and other poxviruses. PMID:19837292

  13. ERM immersion vaccination and adjuvants

    DEFF Research Database (Denmark)

    Skov, J.; Chettri, J. K.; Jaafar, R. M.;

    2015-01-01

    Two candidate adjuvants were tested with a commercial ERM dip vaccine (AquaVac™ Relera, MSD Animal Health) for rainbow trout in an experimental design compatible with common vaccination practices at farm level, i.e. immersion of fish in vaccine (±adjuvant) for 30 s. The adjuvants were...... the commercial product Montanide™ IMS 1312 VG PR (SEPPIC), and a soluble and ≥98% pure β-glucan from yeast (Saccharomyces cerevisiae) (Sigma-Aldrich). Hence, five experimental groups in duplicate were established and exposed to vaccine and adjuvants in the following combinations: AquaVac™ Relera (alone); Aqua......Vac™ Relera + Montanide™; AquaVac™ Relera + β-glucan; Montanide™ (alone); and β-glucan (alone). Approximately 450 degree days post-vaccination, the fish were bath-challenged with live Yersinia ruckeri to produce survival curves. Blood, skin and gills were sampled at selected time points during the course...

  14. Efetividade das vacinas anti-VHB (DNA-recombinante em doadores de sangue de uma região endêmica para hepatite B no sul do Brasil Effectiveness of recombinant DNA vaccines against hepatitis B in blood donors in an endemic region of South Brazil

    Directory of Open Access Journals (Sweden)

    Andrea Petry

    2006-10-01

    Full Text Available O objetivo deste estudo foi de estimar a efetividade das vacinas anti-VHB em um estudo longitudinal, retrospectivo composto por 1.012 doadores de sangue que completaram o esquema padrão de vacinação (três doses, incluindo doses de reforço nos doadores com títulos de anti-HBs The objective of this work was to estimate the effectiveness of DNA recombinant anti-HBV vaccines in a retrospective cohort study of 1,012 Brazilian blood donors who completed the vaccination schedule (3 doses + booster of antibody titer <10IU/L during the period 1998-2002. The results showed that seroconversion rates were significantly lower among the donors whose antibody titers was measured six months after completing the vaccination scheme and among older donors, particularly those aged over 50. Overall vaccine effectiveness was 88.7%, ranging from 80.6% in the oldest (50 years or over to 91.4% among the youngest (18-30 years donors. The booster regimen was effective at reducing the percentage of non-responders. We conclude that vaccine effectiveness was significantly better in younger blood donors and that the anti-HBs testing interval influenced the vaccine effectiveness.

  15. 医院输血科生物安全管理现状及对策%Current management of biological safety in hospital blood transfusion and countermeasures

    Institute of Scientific and Technical Information of China (English)

    吴争胜; 蒋璐茜; 陈秉宇

    2011-01-01

    目的 根据浙江省输血科(血库)生物安全建设的现状,探讨进行规范化管理的方法. 方法 随机调查浙江省30所医院输血科(血库)存在的生物安全隐患,探讨制定切实可行的管理措施. 结果 综合性医院输血科生物安全管理方面存在诸多隐患,其中管理制度、操作规程等完善的合格率仅60.0%,66.7%输血科工作区布局不够合理、工作人员感染防范意识较差、医疗废弃物处理不规范等,个人防护的基本配置>90.0%,但实际使用率欠佳. 结论 必须严格执行生物安全的法律法规,制定和健全规章制度,才能确保输血科生物安全,有效预防与控制医院感染.%OBJECTIVE To approach standardized management of biological safety in blood transfusion based upon the present situation in this field in Zhejiang.METHODS A randomized survey of hidden hazardous factors threatening biological safety was conducted among the departments of blood transfusion in 30 hospitals and the data were statistically analyzed.RESULTS Several risky issues were found in the management of blood transfusion and biological safety.The qualified rate of supervising system and operating rules was only 60.0 %, unreasonable layout of workspace, poor awareness of prevention of infection, inadequate disposition of medical wastes accounted for 66.7%, staff's body sheltering was equipped over 90.0%, but the actual using rate was unexpectedly low.CONCLUSION In order to ensure the biological safety in blood transfusion and effective prevention and control of hospital infection, the relevant laws and regulations concerning biological safety should be established and strictly carried out.

  16. Hepatitis Vaccines.

    Science.gov (United States)

    Ogholikhan, Sina; Schwarz, Kathleen B

    2016-01-01

    Viral hepatitis is a serious health problem all over the world. However, the reduction of the morbidity and mortality due to vaccinations against hepatitis A and hepatitis B has been a major component in the overall reduction in vaccine preventable diseases. We will discuss the epidemiology, vaccine development, and post-vaccination effects of the hepatitis A and B virus. In addition, we discuss attempts to provide hepatitis D vaccine for the 350 million individuals infected with hepatitis B globally. Given the lack of a hepatitis C vaccine, the many challenges facing the production of a hepatitis C vaccine will be shown, along with current and former vaccination trials. As there is no current FDA-approved hepatitis E vaccine, we will present vaccination data that is available in the rest of the world. Finally, we will discuss the existing challenges and questions facing future endeavors for each of the hepatitis viruses, with efforts continuing to focus on dramatically reducing the morbidity and mortality associated with these serious infections of the liver. PMID:26978406

  17. Hepatitis Vaccines

    Directory of Open Access Journals (Sweden)

    Sina Ogholikhan

    2016-03-01

    Full Text Available Viral hepatitis is a serious health problem all over the world. However, the reduction of the morbidity and mortality due to vaccinations against hepatitis A and hepatitis B has been a major component in the overall reduction in vaccine preventable diseases. We will discuss the epidemiology, vaccine development, and post-vaccination effects of the hepatitis A and B virus. In addition, we discuss attempts to provide hepatitis D vaccine for the 350 million individuals infected with hepatitis B globally. Given the lack of a hepatitis C vaccine, the many challenges facing the production of a hepatitis C vaccine will be shown, along with current and former vaccination trials. As there is no current FDA-approved hepatitis E vaccine, we will present vaccination data that is available in the rest of the world. Finally, we will discuss the existing challenges and questions facing future endeavors for each of the hepatitis viruses, with efforts continuing to focus on dramatically reducing the morbidity and mortality associated with these serious infections of the liver.

  18. 光量子效应对血液生物活性成分的影响%Effect of photon on blood biologic components in photochemical treatment

    Institute of Scientific and Technical Information of China (English)

    高飞; 熊鸿燕; 徐彬

    2001-01-01

    Objective To explore the effect of photon on blood biologic components in blood photochemical treatment. Methods After the blood sample was adjusted to an appropriate density, it was treated with 0.1 nmol/ml 8-MOP (8-methoxypsoralen), 0.1 nmol/ml TFO (triple helix-forming oligonuletide) and UVA (ultraviolet A radiation) at the intensity of 1 800 μW/cm2 for 3~20 min. The changes of biologic activities of major components in blood were measured with automatic blood gas analyzer, platelet aggregation analyzer, blood coagulation analyzer, micropipette aspiration system and assay of poly-lysine adsorption. Results The oxygen content in blood was increased gradually. The resilience of erythrocyte was enhanced ,but its adhesiveness was decreased. The parameters related to blood coagulation had some changes but all remained within the normal ranges. Conclusion Under the definite condition of blood virus being inactivated effectively, the nonspecific effect of photosensitive response may improve blood oxygen content, enhance the transfiguring ability of erythrocyte and decrease the blood viscosity, but having no obvious change on blood coagulation.%目的 观察特定条件下光量子效应对血液生物活性的影响。方法 采用全自动血气分析仪、血小板聚集测定仪、血凝测定仪以及微管吸吮系统和多聚赖氨酸吸附等技术观察在使用有效灭活血液病毒的光量子剂量下,光量子对血液主要生物活性成分的影响。结果 在适宜的血液浓度下,0.1 nmol/ml的8-甲氧基补骨脂素(8-MOP)和三螺旋结构寡核苷酸(TFO)结合1 800 μW/cm2的UVA照射,在3~20 min的照射时间内,血液的含氧量逐渐增加,红细胞弹性增强,红细胞粘附性降低,血凝相关指标有一定的变化,但维持在正常变化范围。结论 在有效灭活血液中病毒的特定条件下,光敏反应效应的非特异作用可使血液携氧状态改善,红细胞变形能

  19. Origins of Systems Biology in William Harvey’s Masterpiece on the Movement of the Heart and the Blood in Animals

    Directory of Open Access Journals (Sweden)

    Charles Auffray

    2009-04-01

    Full Text Available In this article we continue our exploration of the historical roots of systems biology by considering the work of William Harvey. Central arguments in his work on the movement of the heart and the circulation of the blood can be shown to presage the concepts and methods of integrative systems biology. These include: (a the analysis of the level of biological organization at which a function (e.g. cardiac rhythm can be said to occur; (b the use of quantitative mathematical modelling to generate testable hypotheses and deduce a fundamental physiological principle (the circulation of the blood and (c the iterative submission of his predictions to an experimental test. This article is the result of a tri-lingual study: as Harvey’s masterpiece was published in Latin in 1628, we have checked the original edition and compared it with and between the English and French translations, some of which are given as notes to inform the reader of differences in interpretation.

  20. A biological effectiveness study on chromosomal aberrations induced by fission neutrons versus 60Co γ-rays in human peripheral blood lymphocytes

    International Nuclear Information System (INIS)

    Objective: Whole blood lymphocytes samples being exposed to neutrons of 18 MeV energy and 60Co γ-rays respectively, both good dose-response relationships and relative biological effectiveness (RBE) were derived. Methods: Heparinized whole blood samples were exposed to neutrons and 60Co γ-rays, respectively. Radiation doses were from 0.5 Gy to 3.0 Gy. Dose rate was 0.2 Gy/min. Unstable chromosomal aberrations dicentrics and centric rings (dic+r), the same as Micronuclei in binucleated cells, were scored. Relative biological effectiveness (RBE) values of dic+rand Micronucleus were derived. Results: Chromosomal aberrations (dic+r) and Micronucleus induced by either neutrons or 60Co γ-rays had a good dose-response relationship. RBE value of chromosomal aberrations, exposed neutrons at 0.5-3.0 Gy, ranged from 1.59 to 2.81, similarly, micronucleus from 1.23 to 2.14. Conclusion: linear-quadratic dose-response was found for the induction of dic+r and Micronucleus in human lymphocytes exposed in vitro to neutrons of 18 MeV energy. neutrons has higher biological effectiveness in low doses. (authors)

  1. Comparison of immunogenicity of Aluminum salts as adjuvant for recombinant Hepatitis-B vaccine

    Directory of Open Access Journals (Sweden)

    Fazeli MR

    2007-05-01

    Full Text Available Background: Aluminum salts are common adjuvants in human and animal vaccine preparations. The two adjuvants aluminum phosphate and aluminum hydroxide show acceptable immunoadjuvant properties with many antigens. These two salts have different physicochemical characteristics that make each one suitable for certain antigens. The surface antigen of Hepatitis B (HBsAg has several antigenic epitopes that bind to aluminum adjuvants by a ligand exchange mechanism. Although HBV vaccines using an aluminum hydroxide adjuvant are available, higher antigenicity is needed for the subgroup of people who do not respond sufficiently to the currently available vaccines. Methods: A solution of recombinant HBsAg for making different formulations of vaccines with aluminum phosphate (Adju-Phos® and aluminum hydroxide (Alhydrogel® adjuvants was obtained from Darupakhsh Pharmaceutical Company. The total protein content, antigenicity, and purity of HBsAg solution were determined using BCA, ELISA, and SDS-PAGE methods, respectively. The different formulations were prepared in the lab and administered i.p. to two test groups of Balb/C mice and a third test group received the Engerix vaccine, which is currently available on the market and uses an aluminum hydroxide adjuvant. The control group of animals received the solution without antigen. After 28 days, heart blood samples were collected and serum was separated to determine the antibody titer against HBsAg using an ELISA kit. Results: This study shows that the vaccine formulated with aluminum phosphate exerted more immunogenicity than both the aluminum hydroxide laboratory formulation and the Engerix vaccines. Conclusion: Although the results of our study indicate higher immunogenic properties of the vaccine formulated with the aluminum phosphate adjuvant, complementary experiments are needed to further evaluate the biological properties with respect to effectiveness, adverse effects, product stability and finally

  2. Flu Vaccination

    CERN Multimedia

    2006-01-01

    People working on the CERN site who wish to be vaccinated against influenza may go to the Medical Service (ground floor, Bldg. 57) without an appointment (preferably between 14:00 and 16:00), PROVIDED THAT THEY BRING THEIR OWN VACCINE WITH THEM. Ideally, vaccination should take place between 1st October and 30th November 2006. The influenza vaccine is recommended for CERN staff aged 50 and over. Vaccination is particularly important for those suffering from chronic lung, cardio-vascular or kidney problems, for diabetics and for those convalescing from serious medical problems or major surgery. The Medical Service will not administer vaccines to family members or retired staff members, who must contact their family doctor. CERN Medical service

  3. Flu Vaccination

    CERN Document Server

    2006-01-01

    People working on the CERN site who wish to be vaccinated against influenza may go to the Medical Service (ground floor, Bldg. 57) without an appointment (preferably between 14:00 and 16:00), PROVIDED THAT THEY BRING THEIR OWN VACCINE WITH THEM. Ideally, vaccination should take place between 1st October and 30th November 2006. The influenza vaccine is recommended for CERN staff aged 50 and over. Vaccination is particularly important for those suffering from chronic lung, cardio-vascular or kidney problems, for diabetics and for those convalescing from serious medical problems or major surgery. The Medical Service will not administer vaccines to family members or retired staff members, who must contact their family doctor. CERN Medical Service

  4. Flu vaccination

    CERN Multimedia

    CERN Medical Service

    2006-01-01

    People working on the CERN site who wish to be vaccinated against influenza may go to the Medical Service (ground floor, Bldg. 57) without an appointment (preferably between 14:00 and 16:00), PROVIDED THAT THEY BRING THEIR OWN VACCINE WITH THEM. Ideally, vaccination should take place between 1st October and 30th November 2006. The influenza vaccine is recommended for CERN staff aged 50 and over. Vaccination is particularly important for those suffering from chronic lung, cardio-vascular or kidney problems, for diabetics and for those convalescing from serious medical problems or major surgery. The Medical Service will not administer vaccines to family members or retired staff members, who must contact their family doctor.CERN Medical Service

  5. FLU VACCINATION

    CERN Multimedia

    2006-01-01

    People working on the CERN site who wish to be vaccinated against influenza may go to the Medical Service (ground floor, Bldg. 57) without an appointment (preferably between 14:00 and 16:00), PROVIDED THAT THEY BRING THEIR OWN VACCINE WITH THEM. Ideally, vaccination should take place between 1st October and 30th November 2006. The influenza vaccine is recommended for CERN staff aged 50 and over. Vaccination is particularly important for those suffering from chronic lung, cardio-vascular or kidney problems, for diabetics and for those convalescing from serious medical problems or major surgery. The Medical Service will not administer vaccines to family members or retired staff members, who must contact their family doctor. CERN Medical Service

  6. Current topics in red cell biology: report on the Red Cell Special Interest Group meeting held at NHS Blood and Transplant Bristol on 30 October 2015.

    Science.gov (United States)

    Bullock, T; Bruce, L J; Ridgwell, K

    2016-08-01

    The Red Cell Special Interest Group (SIG) meeting, hosted by the British Blood Transfusion Society, provides an annual forum for the presentation of UK- and European-based red cell research. The 2015 meeting was held on Friday 30 October at the National Health Service Blood & Transplant (NHSBT) facility in Filton, Bristol and provided an exciting and varied programme on the themes of erythropoiesis, malaria biology and pathophysiology and red cells properties in stress and disease. Ten speakers presented on these topics over the course of one day. The meeting was well attended by over 90 delegates. Posters were presented during the lunch break, and abstracts from the posters are published at the end of this issue.

  7. Physical exercise, fitness and dietary pattern and their relationship with circadian blood pressure pattern, augmentation index and endothelial dysfunction biological markers: EVIDENT study protocol

    Directory of Open Access Journals (Sweden)

    Nicolás Eguskiñe

    2010-05-01

    Full Text Available Abstract Background Healthy lifestyles may help to delay arterial aging. The purpose of this study is to analyze the relationship of physical activity and dietary pattern to the circadian pattern of blood pressure, central and peripheral blood pressure, pulse wave velocity, carotid intima-media thickness and biological markers of endothelial dysfunction in active and sedentary individuals without arteriosclerotic disease. Methods/Design Design: A cross-sectional multicenter study with six research groups. Subjects: From subjects of the PEPAF project cohort, in which 1,163 who were sedentary became active, 1,942 were sedentary and 2,346 were active. By stratified random sampling, 1,500 subjects will be included, 250 in each group. Primary measurements: We will evaluate height, weight, abdominal circumference, clinical and ambulatory blood pressure with the Radial Pulse Wave Acquisition Device (BPro, central blood pressure and augmentation index with Pulse Wave Application Software (A-Pulse and SphymgoCor System Px (Pulse Wave Analysis, pulse wave velocity (PWV with SphymgoCor System Px (Pulse Wave Velocity, nutritional pattern with a food intake frequency questionnaire, physical activity with the 7-day PAR questionnaire and accelerometer (Actigraph GT3X, physical fitness with the cycle ergometer (PWC-170, carotid intima-media thickness by ultrasound (Micromax, and endothelial dysfunction biological markers (endoglin and osteoprotegerin. Discussion Determining that sustained physical activity and the change from sedentary to active as well as a healthy diet improve circadian pattern, arterial elasticity and carotid intima-media thickness may help to propose lifestyle intervention programs. These interventions could improve the cardiovascular risk profile in some parameters not routinely assessed with traditional risk scales. From the results of this study, interventional approaches could be obtained to delay vascular aging that combine physical

  8. Hepatitis B Vaccine

    Science.gov (United States)

    ... as a combination product containing Hepatitis A Vaccine, Hepatitis B Vaccine) ... Hepatitis B vaccine: Why get vaccinated?Hepatitis B vaccine can prevent hepatitis B, and the serious consequences of hepatitis ...

  9. [HPV vaccination].

    Science.gov (United States)

    Stronski Huwiler, Susanne; Spaar, Anne

    2016-01-01

    Human Papilloma Viruses are associated with genital carcinoma (of the cervix, anus, vulva, vagina and the penis) as well as with non-genital carcinoma (oropharyngeal carcinoma) and genital warts. In Switzerland two highly efficient and safe vaccines are available. The safety of these vaccines has been repeatedly subject of controversial discussions, however so far post marketing surveillance has always been able to confirm the safety. In Switzerland girls and young women have been offered the HPV vaccination within cantonal programmes since 2008. 2015 the recommendation for the HPV-vaccination for boys and young men was issued, and starting July 1, 2016 they as well will be offered vaccination free of charge within the cantonal programmes. This article discusses the burden of disease, efficacy and safety of the vaccines and presents facts which are important for vaccinating these young people. Specifically, aspects of the decisional capacity of adolescents to consent to the vaccination are presented. Finally, the future perspective with a focus on a new vaccine with an enlarged spectrum of HPV-types is discussed. PMID:27268446

  10. Chemical composition and biological value of spray dried porcine blood by-products and bone protein hydrolysate for young chickens.

    Science.gov (United States)

    Jamroz, D; Wiliczkiewicz, A; Orda, J; Skorupińska, J; Słupczyńska, M; Kuryszko, J

    2011-10-01

    The chemical composition of spray dried porcine blood by-products is characterised by wide variation in crude protein contents. In spray dried porcine blood plasma (SDBP) it varied between 670-780 g/kg, in spray dried blood cells (SDBC) between 830-930 g/kg, and in bone protein hydrolysate (BPH) in a range of 740-780 g/kg. Compared with fish meal, these feeds are poor in Met and Lys. Moreover, in BPH deep deficits of Met, Cys, Thr and other amino acids were found. The experiment comprised 7 dietary treatments: SDBP, SDBC, and BPH, each at an inclusion rate of 20 or 40 g/kg diet, plus a control. The addition of 20 or 40 g/kg of the analysed meals into feeds for very young chickens (1-28 d post hatch) significantly decreased the body weight (BW) of birds. Only the treatments with 40 g/kg of SDBP and SDBC showed no significant difference in BW as compared with the control. There were no significant differences between treatments and type of meal for feed intake, haematocrit and haemoglobin concentrations in blood. Addition of bone protein and blood cell meals to feed decreased the IgG concentration in blood and caused shortening of the femur and tibia bones. However, changes in the mineral composition of bones were not significantly affected by the type of meal used. The blood by-products, which are rich in microelements, improved retention of Ca and Cu only. In comparison to control chickens, significantly better accretion of these minerals was found in treatments containing 20 g/kg of SDBP or 40 g/kg of SDBC. Great variability in apparent ileal amino acid digestibility in chickens was determined. In this respect, some significant differences related to the type of meal fed were confirmed for Asp, Pro, Val, Tyr and His. In general, the apparent ileal digestibility of amino acids was about 2-3 percentage units better in chickens fed on diets containing the animal by products than in control birds. PMID:22029787

  11. The March Toward Malaria Vaccines

    Science.gov (United States)

    Hoffman, Stephen L.; Vekemans, Johan; Richie, Thomas L.; Duffy, Patrick E.

    2016-01-01

    In 2013 there were an estimated 584,000 deaths and 198 million clinical illnesses due to malaria, the majority in sub-Saharan Africa. Vaccines would be the ideal addition to the existing armamentarium of anti-malaria tools. However, malaria is caused by parasites, and parasites are much more complex in terms of their biology than the viruses and bacteria for which we have vaccines, passing through multiple stages of development in the human host, each stage expressing hundreds of unique antigens. This complexity makes it more difficult to develop a vaccine for parasites than for viruses and bacteria, since an immune response targeting one stage may not offer protection against a later stage, because different antigens are the targets of protective immunity at different stages. Furthermore, depending on the life cycle stage and whether the parasite is extra- or intra-cellular, antibody and/or cellular immune responses provide protection. It is thus not surprising that there is no vaccine on the market for prevention of malaria, or any human parasitic infection. In fact, no vaccine for any disease with this breadth of targets and immune responses exists. In this limited review, we focus on four approaches to malaria vaccines, (1) a recombinant protein with adjuvant vaccine aimed at Plasmodium falciparum (Pf) pre-erythrocytic stages of the parasite cycle (RTS,S/AS01), (2) whole sporozoite vaccines aimed at Pf pre-erythrocytic stages (PfSPZ Vaccine and PfSPZ-CVac), (3) prime boost vaccines that include recombinant DNA, viruses and bacteria, and protein with adjuvant aimed primarily at Pf pre-erythrocytic, but also asexual erythrocytic stages, and (4) recombinant protein with adjuvant vaccines aimed at Pf and Plasmodium vivax sexual erythrocytic and mosquito stages. We recognize that we are not covering all approaches to malaria vaccine development, or most of the critically important work on development of vaccines against P. vivax, the second most important cause of

  12. The march toward malaria vaccines.

    Science.gov (United States)

    Hoffman, Stephen L; Vekemans, Johan; Richie, Thomas L; Duffy, Patrick E

    2015-11-27

    In 2013 there were an estimated 584,000 deaths and 198 million clinical illnesses due to malaria, the majority in sub-Saharan Africa. Vaccines would be the ideal addition to the existing armamentarium of anti-malaria tools. However, malaria is caused by parasites, and parasites are much more complex in terms of their biology than the viruses and bacteria for which we have vaccines, passing through multiple stages of development in the human host, each stage expressing hundreds of unique antigens. This complexity makes it more difficult to develop a vaccine for parasites than for viruses and bacteria, since an immune response targeting one stage may not offer protection against a later stage, because different antigens are the targets of protective immunity at different stages. Furthermore, depending on the life cycle stage and whether the parasite is extra- or intra-cellular, antibody and/or cellular immune responses provide protection. It is thus not surprising that there is no vaccine on the market for prevention of malaria, or any human parasitic infection. In fact, no vaccine for any disease with this breadth of targets and immune responses exists. In this limited review, we focus on four approaches to malaria vaccines, (1) a recombinant protein with adjuvant vaccine aimed at Plasmodium falciparum (Pf) pre-erythrocytic stages of the parasite cycle (RTS,S/AS01), (2) whole sporozoite vaccines aimed at Pf pre-erythrocytic stages (PfSPZ Vaccine and PfSPZ-CVac), (3) prime boost vaccines that include recombinant DNA, viruses and bacteria, and protein with adjuvant aimed primarily at Pf pre-erythrocytic, but also asexual erythrocytic stages, and (4) recombinant protein with adjuvant vaccines aimed at Pf and Plasmodium vivax sexual erythrocytic and mosquito stages. We recognize that we are not covering all approaches to malaria vaccine development, or most of the critically important work on development of vaccines against P. vivax, the second most important cause of

  13. VACCINATION IN RHEUMATOLOGY: CURRENT ASPECTS

    OpenAIRE

    B S Belov; M. S. Naumtseva; G M Tarasova; M V Polyanskaya

    2014-01-01

    Infectious diseases still remain a serious social and medical problem. The importance of comorbid infections in rheumatology has increased substantially in recent years, particularly due to the clinical introduction of biologicals. The investigation and active use of different vaccines are one of the ways to solve the above problem. This review considers the issues concerning the use of vaccines against influenza, infections caused by pneumococci, herpesviruses, human papillomavirus, and hepa...

  14. Virtual Reconstruction and Three-Dimensional Printing of Blood Cells as a Tool in Cell Biology Education.

    Science.gov (United States)

    Augusto, Ingrid; Monteiro, Douglas; Girard-Dias, Wendell; Dos Santos, Thaisa Oliveira; Rosa Belmonte, Simone Letícia; Pinto de Oliveira, Jairo; Mauad, Helder; da Silva Pacheco, Marcos; Lenz, Dominik; Stefanon Bittencourt, Athelson; Valentim Nogueira, Breno; Lopes Dos Santos, Jorge Roberto; Miranda, Kildare; Guimarães, Marco Cesar Cunegundes

    2016-01-01

    The cell biology discipline constitutes a highly dynamic field whose concepts take a long time to be incorporated into the educational system, especially in developing countries. Amongst the main obstacles to the introduction of new cell biology concepts to students is their general lack of identification with most teaching methods. The introduction of elaborated figures, movies and animations to textbooks has given a tremendous contribution to the learning process and the search for novel teaching methods has been a central goal in cell biology education. Some specialized tools, however, are usually only available in advanced research centers or in institutions that are traditionally involved with the development of novel teaching/learning processes, and are far from becoming reality in the majority of life sciences schools. When combined with the known declining interest in science among young people, a critical scenario may result. This is especially important in the field of electron microscopy and associated techniques, methods that have greatly contributed to the current knowledge on the structure and function of different cell biology models but are rarely made accessible to most students. In this work, we propose a strategy to increase the engagement of students into the world of cell and structural biology by combining 3D electron microscopy techniques and 3D prototyping technology (3D printing) to generate 3D physical models that accurately and realistically reproduce a close-to-the native structure of the cell and serve as a tool for students and teachers outside the main centers. We introduce three strategies for 3D imaging, modeling and prototyping of cells and propose the establishment of a virtual platform where different digital models can be deposited by EM groups and subsequently downloaded and printed in different schools, universities, research centers and museums, thereby modernizing teaching of cell biology and increasing the accessibility to

  15. Virtual Reconstruction and Three-Dimensional Printing of Blood Cells as a Tool in Cell Biology Education

    Science.gov (United States)

    Girard-Dias, Wendell; dos Santos, Thaisa Oliveira; Rosa Belmonte, Simone Letícia; Pinto de Oliveira, Jairo; Mauad, Helder; da Silva Pacheco, Marcos; Lenz, Dominik; Stefanon Bittencourt, Athelson; Valentim Nogueira, Breno; Lopes dos Santos, Jorge Roberto; Miranda, Kildare; Guimarães, Marco Cesar Cunegundes

    2016-01-01

    The cell biology discipline constitutes a highly dynamic field whose concepts take a long time to be incorporated into the educational system, especially in developing countries. Amongst the main obstacles to the introduction of new cell biology concepts to students is their general lack of identification with most teaching methods. The introduction of elaborated figures, movies and animations to textbooks has given a tremendous contribution to the learning process and the search for novel teaching methods has been a central goal in cell biology education. Some specialized tools, however, are usually only available in advanced research centers or in institutions that are traditionally involved with the development of novel teaching/learning processes, and are far from becoming reality in the majority of life sciences schools. When combined with the known declining interest in science among young people, a critical scenario may result. This is especially important in the field of electron microscopy and associated techniques, methods that have greatly contributed to the current knowledge on the structure and function of different cell biology models but are rarely made accessible to most students. In this work, we propose a strategy to increase the engagement of students into the world of cell and structural biology by combining 3D electron microscopy techniques and 3D prototyping technology (3D printing) to generate 3D physical models that accurately and realistically reproduce a close-to-the native structure of the cell and serve as a tool for students and teachers outside the main centers. We introduce three strategies for 3D imaging, modeling and prototyping of cells and propose the establishment of a virtual platform where different digital models can be deposited by EM groups and subsequently downloaded and printed in different schools, universities, research centers and museums, thereby modernizing teaching of cell biology and increasing the accessibility to

  16. Virtual Reconstruction and Three-Dimensional Printing of Blood Cells as a Tool in Cell Biology Education.

    Science.gov (United States)

    Augusto, Ingrid; Monteiro, Douglas; Girard-Dias, Wendell; Dos Santos, Thaisa Oliveira; Rosa Belmonte, Simone Letícia; Pinto de Oliveira, Jairo; Mauad, Helder; da Silva Pacheco, Marcos; Lenz, Dominik; Stefanon Bittencourt, Athelson; Valentim Nogueira, Breno; Lopes Dos Santos, Jorge Roberto; Miranda, Kildare; Guimarães, Marco Cesar Cunegundes

    2016-01-01

    The cell biology discipline constitutes a highly dynamic field whose concepts take a long time to be incorporated into the educational system, especially in developing countries. Amongst the main obstacles to the introduction of new cell biology concepts to students is their general lack of identification with most teaching methods. The introduction of elaborated figures, movies and animations to textbooks has given a tremendous contribution to the learning process and the search for novel teaching methods has been a central goal in cell biology education. Some specialized tools, however, are usually only available in advanced research centers or in institutions that are traditionally involved with the development of novel teaching/learning processes, and are far from becoming reality in the majority of life sciences schools. When combined with the known declining interest in science among young people, a critical scenario may result. This is especially important in the field of electron microscopy and associated techniques, methods that have greatly contributed to the current knowledge on the structure and function of different cell biology models but are rarely made accessible to most students. In this work, we propose a strategy to increase the engagement of students into the world of cell and structural biology by combining 3D electron microscopy techniques and 3D prototyping technology (3D printing) to generate 3D physical models that accurately and realistically reproduce a close-to-the native structure of the cell and serve as a tool for students and teachers outside the main centers. We introduce three strategies for 3D imaging, modeling and prototyping of cells and propose the establishment of a virtual platform where different digital models can be deposited by EM groups and subsequently downloaded and printed in different schools, universities, research centers and museums, thereby modernizing teaching of cell biology and increasing the accessibility to

  17. N-Trimethyl chitosan (TMC) nanoparticles loaded with influenza subunit antigen for intranasal vaccination : Biological properties and immunogenicity in a mouse model

    NARCIS (Netherlands)

    Amidi, Maryam; Romeijn, Stefan G.; Verhoef, J. Coos; Junginger, Hans E.; Bungener, Laura; Huckriede, Anke; Crommelin, Daan J. A.; Jiskoot, Wim

    2007-01-01

    In this study, the potential of N-trimethyl chitosan (TMC) nanoparticles as a carrier system for the nasal delivery of a monovalent influenza subunit vaccine was investigated. The antigen-loaded nanoparticles were prepared by mixing a solution containing TMC and monovalent influenza A subunit H3N2 w

  18. Vaccines directed against microorganisms or their products present during biofilm lifestyle: can we make a translation as a broad biological model to tuberculosis?

    Directory of Open Access Journals (Sweden)

    Mario Alberto eFlores-Valdez

    2016-01-01

    Full Text Available Tuberculosis (TB remains as a global public health problem. In recent years, experimental evidence suggesting the relevance of in vitro pellicle (a type of biofilm formed at the air-liquid interface production as a phenotype mimicking aspects found by M. tuberculosis-complex bacteria during in vivo infection has started to accumulate. There are still opportunities for better diagnostic tools, therapeutic molecules as well as new vaccine candidates to assist in TB control programs worldwide and particularly in less developed nations. Regarding vaccines, despite the availability of a live, attenuated strain (M. bovis BCG since almost a century ago, its variable efficacy and lack of protection against pulmonary and latent disease has prompted basic and applied research leading to preclinical and clinical evaluation of up to 15 new candidates. In this work, I present examples of vaccines based on whole cells grown as biofilms, or specific proteins expressed under such condition, and the effect they have shown in relevant animal models or directly in the natural host. I also discuss why it might be worthwhile to explore these approaches, for constructing and developing new vaccine candidates for testing their efficacy against TB.

  19. Rotavirus Vaccine

    Science.gov (United States)

    Why get vaccinated?Rotavirus is a virus that causes diarrhea, mostly in babies and young children. The diarrhea can be severe, and lead ... and fever are also common in babies with rotavirus.Before rotavirus vaccine, rotavirus disease was a common ...

  20. Data bank of optical properties of biological tissue and blood in the visible and near infrared spectral region

    Science.gov (United States)

    Khairullina, Alphiya Y.; Bui, Lilia; Oleinik, Tatiana V.; Artishevsky, Nelli; Prigoun, Natalia; Sevkovsky, Jakov; Mokhort, Tatiana

    1996-12-01

    The data bank contains optical, ordinary biochemical and biophysical information on 120 venous blood samples of donors, healthy persons, patients with high pathology, 60 tissue samples. The optical parameters include diffuse reflection R((lambda) ) and transmission T((lambda) ) coefficients for optically thick layers, the absorption K((lambda) ) and extinction (epsilon) ((lambda) ) spectra, oxygenation degree CO2, parameter p determined by sizes and shapes of cells and their aggregates, refractive index of a disperse phase relative to surrounding media, and cooperative effects at high relative concentration. The peculiarities in absorption K((lambda) spectra are connected with different pathologies. It is shown from K((lambda) ) that the grade of pathology connected with the concentration of hemoglobin and mithohondrion together with oxygenation degree of blood and tissues, with the pathological hemoglobin's forms and its decomposition products of different levels. Parameter p is an important diagnostic parameter. We consider that it is necessary to include the oxygenation degree and erythrocyte's aggregation parameter to extend the range of common diagnostic parameters of blood by the first rota.

  1. Smallpox: clinical highlights and considerations for vaccination.

    Directory of Open Access Journals (Sweden)

    Mahoney M

    2003-01-01

    Full Text Available Smallpox virus has gained considerable attention as a potential bioterrorism agent. Recommendations for smallpox (vaccinia vaccination presume a low risk for use of smallpox as a terrorist biological agent and vaccination is currently recommended for selected groups of individuals such as health care workers, public health authorities, and emergency/rescue workers, among others. Information about adverse reactions to the smallpox vaccine is based upon studies completed during the 1950s and 1960s. The prevalence of various diseases has changed over the last four decades and new disease entities have been described during this period. The smallpox vaccination may be contra-indicated in many of these conditions. This has made pre-screening of potential vaccines necessary. It is believed that at present, the risks of vaccine-associated complications far outweigh the potential benefits of vaccination in the general population.

  2. Unresolved clinical aspects and safety hazards of blood derived- EV/MV in stored blood components: From personal memory lanes to newer perspectives on the roles of EV/MV in various biological phenomena.

    Science.gov (United States)

    Seghatchian, Jerard; Amiral, Jean

    2016-08-01

    Blood cells generate heterogeneous populations of vesicles that are delivered, as small-specialized packages of highly active cell fragments in blood circulation, having almost similar functional activities, as the mother cells. These so called extracellular vesicles are the essential part of an energy-dependent natural apoptotic process; hence their beneficial and harmful biological functions cannot be ignored. Evidence is accumulating, that cellular derived vesicles, originate from all viable cells including: megakaryocytes, platelets, red blood cells, white blood cells and endothelial cells, the highest in proportions from platelets. Shedding can also be triggered by pathological activation of inflammatory processes and activation of coagulation or complement pathways, or even by shear stress in the circulation. Structurally, so called MV/EV appear to be, sometimes inside-out and sometimes outside-in cell fragments having a bilayered phospholipid structure exposing coagulant-active phosphatidylserine, expressing various membrane receptors, and they serve as cell-to-cell shuttles for bioactive molecules such as lipids, growth factors, microRNAs, and mitochondria. Ex vivo processing of blood into its components, embodying centrifugation, processing by various apheresis procedures, leukoreduction, pathogen reduction, and finally storage in different media and different types of blood bags, also have major impacts on the generation and retention of MV content. These artificially generated small, but highly liable packages, together with the original pool of MVs collected from the donor, do exhibit differing biological activities, and are not inert elements and should be considered as a parameter of blood safety in haemovigilance programmes. Harmonization and consensus in sampling protocols, sample handling, processing, and assessment methods, in particular converting to full automation, are needed to achieve consensual interpretations. This review focuses on some of

  3. Tumor vaccines

    International Nuclear Information System (INIS)

    Tumor vaccines have several potential advantages over standard anticancer regiments. They represent highly specific anticancer therapy. Inducing tumor-specific memory T-lymphocytes, they have potential for long-lived antitumor effects. However, clinical trials, in which cancer patients were vaccinated with tumor vaccines, have been so far mainly disappointing. There are many reasons for the inefficiency of tumor vaccines. Most cancer antigens are normal self-molecules to which immune tolerance exists. That is why the population of tumor-specific lymphocytes is represented by a small number of low-affinity T-lymphocytes that induce weak antitumor immune response. Simultaneously, tumors evolve many mechanisms to actively evade immune system, what makes them poorly immunogenic or even tolerogenic. Novel immunotherapeutic strategies are directed toward breaking immune tolerance to tumor antigens, enhancing immunogenicity of tumor vaccines and overcoming mechanisms of tumor escape. There are several approaches, unfortunately, all of them still far away from an ideal tumor vaccine that would reject a tumor. Difficulties in the activation of antitumor immune response by tumor vaccines have led to the development of alternative immunotherapeutic strategies that directly focus on effector mechanisms of immune system (adoptive tumor- specific T-lymphocyte transfer and tumor specific monoclonal antibodies). (author)

  4. Absence of detectable measles virus genome sequence in blood of autistic children who have had their MMR vaccination during the routine childhood immunization schedule of UK.

    Science.gov (United States)

    Afzal, M A; Ozoemena, L C; O'Hare, A; Kidger, K A; Bentley, M L; Minor, P D

    2006-05-01

    Leukocyte preparations from children with documented evidence of MMR vaccination and confirmed diagnosis of autism were examined by several assays designed to target multiple regions of the measles virus genome sequence. No sample was found positive by any method. The assays applied were highly sensitive, specific and robust in nature, and were based on the amplification of measles virus RNA transcripts by real-time quantitative RT-PCR (QRT-PCR) as well as by conventional RT-PCR-nested PCR. The assays applied were potentially able to detect measles virus RNA down to single figure copy numbers per reaction. The amount of total nucleic acid extract of leukocytes subjected to various measles virus-specific investigations was several fold higher than minimally required of a sample where measles virus persistence is well documented. This study failed to substantiate reports of the persistence of measles virus in autistic children with development regression.

  5. Veterinary vaccines against Toxoplasma gondii

    Directory of Open Access Journals (Sweden)

    Elisabeth A Innes

    2009-03-01

    Full Text Available Toxoplasma gondii has a very wide intermediate host range and is thought to be able to infect all warm blooded animals. The parasite causes a spectrum of different diseases and clinical symptoms within the intermediate hosts and following infection most animals develop adaptive humoral and cell-mediated immune responses. The development of protective immunity to T. gondii following natural infection in many host species has led researchers to look at vaccination as a strategy to control disease, parasite multiplication and establishment in animal hosts. A range of different veterinary vaccines are required to help control T. gondii infection which include vaccines to prevent congenital toxoplasmosis, reduce or eliminate tissue cysts in meat producing animals and to prevent oocyst shedding in cats. In this paper we will discuss some of the history, challenges and progress in the development of veterinary vaccines against T. gondii.

  6. Biological and Epidemiological Features of Antibiotic-Resistant Streptococcus pneumoniae in Pre- and Post-Conjugate Vaccine Eras: a United States Perspective.

    Science.gov (United States)

    Kim, Lindsay; McGee, Lesley; Tomczyk, Sara; Beall, Bernard

    2016-07-01

    Streptococcus pneumoniae inflicts a huge disease burden as the leading cause of community-acquired pneumonia and meningitis. Soon after mainstream antibiotic usage, multiresistant pneumococcal clones emerged and disseminated worldwide. Resistant clones are generated through adaptation to antibiotic pressures imposed while naturally residing within the human upper respiratory tract. Here, a huge array of related commensal streptococcal strains transfers core genomic and accessory resistance determinants to the highly transformable pneumococcus. β-Lactam resistance is the hallmark of pneumococcal adaptability, requiring multiple independent recombination events that are traceable to nonpneumococcal origins and stably perpetuated in multiresistant clonal complexes. Pneumococcal strains with elevated MICs of β-lactams are most often resistant to additional antibiotics. Basic underlying mechanisms of most pneumococcal resistances have been identified, although new insights that increase our understanding are continually provided. Although all pneumococcal infections can be successfully treated with antibiotics, the available choices are limited for some strains. Invasive pneumococcal disease data compiled during 1998 to 2013 through the population-based Active Bacterial Core surveillance program (U.S. population base of 30,600,000) demonstrate that targeting prevalent capsular serotypes with conjugate vaccines (7-valent and 13-valent vaccines implemented in 2000 and 2010, respectively) is extremely effective in reducing resistant infections. Nonetheless, resistant non-vaccine-serotype clones continue to emerge and expand. PMID:27076637

  7. Meningococcal Vaccinations.

    Science.gov (United States)

    Crum-Cianflone, Nancy; Sullivan, Eva

    2016-06-01

    Neisseria meningitidis, a gram-negative diplococcal bacterium, is a common asymptomatic nasopharyngeal colonizer that may infrequently lead to invasive disease in the form of meningitis or bacteremia. Six serogroups (A, B, C, W, X and Y) are responsible for the majority of invasive infections. Increased risk of disease occurs in specific population groups including infants, adolescents, those with asplenia or complement deficiencies, and those residing in crowded living conditions such as in college dormitories. The incidence of invasive meningococcal disease varies geographically with some countries (e.g., in the African meningitis belt) having both high endemic disease rates and ongoing epidemics, with annual rates reaching 1000 cases per 100,000 persons. Given the significant morbidity and mortality associated with meningococcal disease, it remains a major global health threat best prevented by vaccination. Several countries have implemented vaccination programs with the selection of specific vaccine(s) based on locally prevalent serogroup(s) of N. meningitidis and targeting population groups at highest risk. Polysaccharide meningococcal vaccines became available over 40 years ago, but are limited by their inability to produce immunologic memory responses, poor immunogenicity in infants/children, hyporesponsiveness after repeated doses, and lack of efficacy against nasopharyngeal carriage. In 1999, the first meningococcal conjugate vaccines were introduced and have been successful in overcoming many of the shortcomings of polysaccharide vaccines. The implementation of meningococcal conjugate vaccination programs in many areas of the world (including the massive campaign in sub-Saharan Africa using a serogroup A conjugate vaccine) has led to dramatic reductions in the incidence of meningococcal disease by both individual and population protection. Progressive advances in vaccinology have led to the recent licensure of two effective vaccines against serogroup B

  8. Duration of serum antibody response to rabies vaccination in horses.

    Science.gov (United States)

    Harvey, Alison M; Watson, Johanna L; Brault, Stephanie A; Edman, Judy M; Moore, Susan M; Kass, Philip H; Wilson, W David

    2016-08-15

    OBJECTIVE To investigate the impact of age and inferred prior vaccination history on the persistence of vaccine-induced antibody against rabies in horses. DESIGN Serologic response evaluation. ANIMALS 48 horses with an undocumented vaccination history. PROCEDURES Horses were vaccinated against rabies once. Blood samples were collected prior to vaccination, 3 to 7 weeks after vaccination, and at 6-month intervals for 2 to 3 years. Serum rabies virus-neutralizing antibody (RVNA) values were measured. An RVNA value of ≥ 0.5 U/mL was used to define a predicted protective immune response on the basis of World Health Organization recommendations for humans. Values were compared between horses vaccinated and those inferred to be immunologically naïve. RESULTS A protective RVNA value (≥ 0.5 U/mL) was maintained for 2 to 3 years in horses inferred to have been previously vaccinated on the basis of prevaccination RVNA values. No significant difference was evident in response to rabies vaccination or duration of protective RVNA values between horses vaccination. Significant differences were identified between horses inferred to have been previously vaccinated and horses inferred to be naïve prior to the study. CONCLUSIONS AND CLINICAL RELEVANCE A rabies vaccination interval > 1 year may be appropriate for previously vaccinated horses but not for horses vaccinated only once. Additional research is required to confirm this finding and characterize the optimal primary dose series for rabies vaccination. PMID:27479286

  9. HPV vaccine

    Science.gov (United States)

    ... EFFECTS The most common side effects are fainting, dizziness, nausea, headache, and skin reactions at the site where the shot was given. WHAT ELSE TO THINK ABOUT The HPV vaccine does not protect against all types of HPV ...

  10. Arthropod vaccines.

    Science.gov (United States)

    Lee, R; Opdebeeck, J P

    1999-03-01

    Antigens located in the midgut of the tick are hidden from the host's immune system. Egg production of ticks can be reduced when ticks are fed on animals vaccinated with midgut antigens of the tick, and a subunit vaccine formulated with the recombinant antigen Bm86 is now available that can reduce the number of ticks infesting cattle grazing on pasture. Midgut antigens used in vaccines against insects that transmit pathogenic organisms to humans have not been as effective in reducing insect fecundity and an alternative approach may be necessary. Transmission-blocking vaccines directed at interfering with the vector-pathogen interaction could result in loss of vector competence and block the spread of disease-causing organisms. PMID:10198800

  11. BCG vaccination: a role for vitamin D?

    Directory of Open Access Journals (Sweden)

    Maeve K Lalor

    Full Text Available BACKGROUND: BCG vaccination is administered in infancy in most countries with the aim of providing protection against tuberculosis. There is increasing interest in the role of vitamin D in immunity to tuberculosis. This study objective was to determine if there was an association between circulating 25(OHD concentrations and BCG vaccination status and cytokine responses following BCG vaccination in infants. METHODS: Blood samples were collected from UK infants who were vaccinated with BCG at 3 (n = 47 and 12 (n = 37 months post BCG vaccination. These two time-points are denoted as time-point 1 and time-point 2. Two blood samples were also collected from age-matched unvaccinated infants (n = 32 and 28 respectively, as a control group. Plasma vitamin D concentrations (25(OHD were measured by radio-immunoassay. The cytokine IFNγ was measured in supernatants from diluted whole blood stimulated with M.tuberculosis (M.tb PPD for 6 days. RESULTS: 58% of infants had some level of hypovitaminosis (25(OHD <30 ng/ml at time-point 1, and this increased to 97% 9 months later. BCG vaccinated infants were almost 6 times (CI: 1.8-18.6 more likely to have sufficient vitamin D concentrations than unvaccinated infants at time-point 1, and the association remained strong after controlling for season of blood collection, ethnic group and sex. Among vaccinees, there was also a strong inverse association between IFNγ response to M.tb PPD and vitamin D concentration, with infants with higher vitamin D concentrations having lower IFNγ responses. CONCLUSIONS: Vitamin D may play an immuno-regulatory role following BCG vaccination. The increased vitamin D concentrations in BCG vaccinated infants could have important implications: vitamin D may play a role in immunity induced by BCG vaccination and may contribute to non-specific effects observed following BCG vaccination.

  12. Antipneumococcal vaccination

    Directory of Open Access Journals (Sweden)

    Gian Vincenzo Zuccotti

    2013-06-01

    Full Text Available Streptococcus pneumoniae (SP is a gram-positive bacterium with more than 90 known serotypes causing around 11% of all deaths worldwide in children aged 1-59 months. A new era in prevention of SP-related diseases started in at the beginning of 2000s when a 7-valent pneumococcal conjugate vaccine (PCV7 was recommended as the vaccine of choice in pediatric age. PCV7 dramatically reduced invasive pneumococcal diseases (IPD among children with indirect effects noted among other age groups as well. However, thanks to a strict surveillance network, an increase in non-vaccine serotypes (NVTs causing IPD was noted worldwide and in late 2000s a new second generation vaccine (13-valent pneumococcal conjugate vaccine-PCV13 with an expanded serotype coverage was licensed. Due to the lack of solid effectiveness data, up to know it is difficult to predict how the composition of NVTs will change after the large-scale introduction of PCV13 or whether the characteristics of the serotypes will change. Long-term surveillance of both IPD, pneumonia, acute otitis media and carriage will be crucial to ascertain whether these second generation vaccines are having the desired effect of reducing the incidence of diseases in the long term. Proceedings of the 9th International Workshop on Neonatology · Cagliari (Italy · October 23rd-26th, 2013 · Learned lessons, changing practice and cutting-edge research

  13. Ear Infection and Vaccines

    Science.gov (United States)

    ... an ENT Doctor Near You Ear Infection and Vaccines Ear Infection and Vaccines Patient Health Information News ... or may need reinsertion over time. What about vaccines? A vaccine is a preparation administered to stimulate ...

  14. Vaccines and Thimerosal

    Science.gov (United States)

    ... Preparedness Vaccine Safety Partners About ISO Thimerosal in Vaccines Recommend on Facebook Tweet Share Compartir Thimerosal is ... harm. Thimerosal prevents the growth of bacteria in vaccines. Thimerosal is added to vials of vaccine that ...

  15. Live Virus Smallpox Vaccine

    Science.gov (United States)

    ... A - Z Index SMALLPOX FACT SHEET The Live Virus Smallpox Vaccine The vaccinia virus is the "live ... it cannot cause smallpox. What is a "live virus" vaccine? A "live virus" vaccine is a vaccine ...

  16. Extracting Biological Meaning From Global Proteomic Data on Circulating-Blood Platelets: Effects of Diabetes and Storage Time

    Energy Technology Data Exchange (ETDEWEB)

    Miller, John H.; Suleiman, Atef; Daly, Don S.; Springer, David L.; Spinelli, Sherry L.; Blumberg, Neil; Phipps, Richard P.

    2008-11-25

    Transfusion of platelets into patients suffering from trauma and a variety of disease is a common medical practice that involves millions of units per year. Partial activation of platelets can result in the release of bioactive proteins and lipid mediators that increase the risk of adverse post-transfusion effects. Type-2 diabetes and storage are two factors known to cause partial activation of platelets. A global proteomic study was undertaken to investigate these effects. In this paper we discuss the methods used to interpret these data in terms of biological processes affected by diabetes and storage. The main emphasis is on the processing of proteomic data for gene ontology enrichment analysis by techniques originally designed for microarray data.

  17. Food and Drug Administration regulation and evaluation of vaccines.

    Science.gov (United States)

    Marshall, Valerie; Baylor, Norman W

    2011-05-01

    The vaccine-approval process in the United States is regulated by the Center for Biologics Evaluation and Research of the US Food and Drug Administration. Throughout the life cycle of development, from preclinical studies to after licensure, vaccines are subject to rigorous testing and oversight. Manufacturers must adhere to good manufacturing practices and control procedures to ensure the quality of vaccines. As mandated by Title 21 of the Code of Regulations, licensed vaccines must meet stringent criteria for safety, efficacy, and potency.

  18. Optimal vaccination scenarios against vector-borne diseases

    DEFF Research Database (Denmark)

    Græsbøll, Kaare; Enøe, Claes; Bødker, Rene;

    Using a process oriented semi-agent based model we simulated the spread of Bluetongue virus in Denmark. We evaluated the efficiency and minimum vaccination cover for eight different preventive vaccination strategies in Denmark. The simulation model replicates both passive and active flight...... of Culicoides between hosts on pasture and stables in Denmark. Seasonal abundance of midges and temperature dependence on biological processes were included in the model. The eight vaccination scenarios comprised of: All holdings vaccinated to a given percentage, random holdings selected for vaccination, two...... scenarios based on the size of holdings, mosaic vaccination of nearest neighbor farms, vaccination of hosts on pasture, regional vaccination, and trench vaccination from the border to Germany. These eight scenarios were investigated under normal grazing conditions and under a forced housing scenario...

  19. Vaccines for viral diseases with dermatologic manifestations.

    Science.gov (United States)

    Brentjens, Mathijs H; Yeung-Yue, Kimberly A; Lee, Patricia C; Tyring, Stephen K

    2003-04-01

    Vaccines against infectious diseases have been available since the 1800s, when an immunization strategy against smallpox developed by Jenner gained wide acceptance. Until recently, the only vaccination strategies available involved the use of protein-based, whole killed, and attenuated live virus vaccines. These strategies have led to the development of effective vaccines against a variety of diseases with primary or prominent cutaneous manifestations. Effective and safe vaccines now used worldwide include those directed against measles and rubella (now commonly used together with a mumps vaccine as the trivalent MMR), chickenpox, and hepatitis B. The eradication of naturally occurring smallpox remains one of the greatest successes in the history of modern medicine, but stockpiles of live smallpox exist in the United States and Russia. Renewed interest in the smallpox vaccine reflects concerns about a possible bioterrorist threat using this virus. Yellow fever is a hemorrhagic virus endemic to tropical areas of South America and Africa. An effective vaccine for this virus has existed since 1937, and it is used widely in endemic areas of South America, and to a lesser extent in Africa. This vaccine is recommended once every 10 years for people who are traveling to endemic areas. Advances in immunology have led to a greater understanding of immune system function in viral diseases. Progress in genetics and molecular biology has allowed researchers to design vaccines with novel mechanisms of action (eg, DNA, vector, and VLP vaccines). Vaccines have also been designed to specifically target particular viral components, allowing for stimulation of various arms of the immune system as desired. Ongoing research shows promise in prophylactic and therapeutic vaccination for viral infections with cutaneous manifestations. Further studies are necessary before vaccines for HSV, HPV, and HIV become commercially available. PMID:12757257

  20. The immunosuppressive impact of PRRS virus on the immune response following anti - erysipelas vaccination in swine from various farms

    Directory of Open Access Journals (Sweden)

    Viorica Chiurciu

    2014-12-01

    Full Text Available PRRS virus, the etiologic agent of Porcine Reproductive and Respiratory Syndrome by immunosuppressive action can significantly affect the immune response after vaccination. It was intended the following of the immunological reaction induced by the Erysipelothrix rhusopathiae vaccination from pigs from intensive system and from households. The biological material studied was provided from clinically healthy pigs of different ages. The animals were from four different locations. Serological examinations were performed by blood sampling [gathered from the confluence of jugular vein] before and after the vaccination. The investigations were performed by ELISA method. In the industrial breeding system, seroprevalence of anti PRRS presented high levels, in contrast to the low level of postvaccinal E. rhusopathiae antibodies. In households the incidence of PRRS virus was low and the seroconversion after the vaccination was raised. The morphopathological and bacteriological examinations performed from the lesions in various organs [lungs, lymph nodes, liver, spleen and intestine] has revealed the presence of germ association, pathogenic or potentially pathogenic. The results point the link between the existence of PRRS virus in the swine populations and post-vaccinal response, its presence interfering significantly with the vaccination protocols efficacy.

  1. [Vaccination against hepatitis A].

    Science.gov (United States)

    Balli, F; Di Biase, A R; Viola, L

    1996-01-01

    The epidemiology of hepatitis A, a disease endemic in various countries, is in a state of continuous change. Adults are more exposed to infection and considering the frequent absence of immunity, in contrast to children in whom the disease is almost always asymptomatic, the disease is often serious and prolonged with a mortality of up to 2.5%. The mode of transmission of HAV is predominantly the fecal-oral route; the virus is isolated during the prodromic period of the disease from the feces, blood, bile and seminal fluid. The virus can also be found in saliva (OMS '95); in addition it may also be transmitted by the maternal-fetal route. The HAV infects cells in vitro but does not cause a direct cytopathic effect. At the beginning of the acute phase of the disease the production of anti-HAV antibodies is of the IgM type followed later by IgG. Some studies have shown a potential role of cellular immunity in clearance of the virus from the hepatocytes and in the pathogenesis of the infection of HAV. The efficacy of immunoglobulin serum in the prevention of hepatitis A has been demonstrated since 1944. As regards active immunity two types of vaccinations have been prepared. One with live attenuated HAV carried by either bacteria or virus. The other, killed inactivated HAV, HAV capsule, antigenic subunit, synthetic peptides, anti-idiotypes or virosomes. The recent literature describe the vaccine produced by Merck Sharp & Dohme and by Smith Kline Beecham (SKB); both vaccines are made from HAV, grown in vitro, inactivated with formalin and adsorbed to aluminum hydroxide. The protection of the vaccine begins 14 days after administration and lasts from one month to one year. Numerous studies have been conducted which have shown that the vaccine is effective when given in 2 doses and confers protection against HAV for at least one year. The results have shown that the vaccination causes seroconversion in approximately 100% of subjects, and does not cause serious side

  2. Vaccination against bacterial kidney disease: Chapter 22

    Science.gov (United States)

    Elliott, Diane G.; Wiens, Gregory D.; Hammell, K. Larry; Rhodes, Linda D.; Edited by Gudding, Roar; Lillehaug, Atle; Evensen, Øystein

    2014-01-01

    Bacterial kidney disease (BKD) of salmonid fishes, caused by Renibacterium salmoninarum, has been recognized as a serious disease in salmonid fishes since the 1930s. This chapter discusses the occurrence and significance, etiology, and pathogenesis of BKD. It then describes the different vaccination procedures and the effects and side-effects of vaccination. Despite years of research, however, only a single vaccine has been licensed for prevention of BKD, and has demonstrated variable efficacy. Therefore, in addition to a presentation of the current status of BKD vaccination, a discussion of potential future directions for BKD vaccine development is included in the chapter. This discussion is focused on the unique characteristics of R. salmoninarum and its biology, as well as aspects of the salmonid immune system that might be explored specifically to develop more effective vaccines for BKD prevention.

  3. [Vaccinations in patients with autoimmune diseases].

    Science.gov (United States)

    Bühler, Silja; Hatz, Christoph

    2016-01-01

    The number of individuals with autoimmune diseases treated with immunosuppressive drugs is increasing steadily. The variety of immunosuppressive drugs and in particular biological therapies is also rising. The autoimmune disease itself as well as the immunosuppressive therapy increases the risk of infection in this population. Particularly the risk of vaccine-preventable infections is elevated. Thus, preventing infections by the means of vaccination is of utmost importance. The Division of Infectious Diseases of the Epidemiology, Biostatistics and Prevention Institute, University of Zurich, performed a literature search on the topic of vaccinations in patients with autoimmune diseases upon request by the Swiss Federal Commission for Vaccination Issues. Overall, data are scarce. The following main points were retrieved from the literature: Inactivated vaccines are safe, but their immunogenicity may be reduced under immunosuppressive therapy. In addition to the generally recommended basic vaccinations, specific vaccinations, such as influenza and pneumococcal vaccination are indicated in these patient groups. Live vaccines are generally contraindicated under immunosuppressive therapy due to safety concerns. However, specific exceptions apply. Furthermore, certain time intervals for the administration of live vaccines after pausing or ceasing an immunosuppressive therapy should be respected. PMID:27268452

  4. A multicomponent bioactive tissue-engineered blood vessel: Fabrication, mechanical evaluation and biological evaluation with physiological-relevant conditions

    Science.gov (United States)

    Bonani, Walter

    The high long-term failure rate of synthetic vascular grafts in the replacement of small vessels is known to be associated with the lack of physiological signals to vascular cells causing adverse hemodynamic, inflammatory or coagulatory events. Current studies focus on developing engineered vascular devices with ability of directing cell activity in vitro and in vivo for tissue regeneration. It is also known that controlled molecule release from scaffolds can dramatically increase the scaffold ability of directing cell activities in vitro and in vivo for tissue regeneration. To address the mechanical and biological problems associated with graft materials, we demonstrated a degradable polyester-fibroin composite tubular scaffolds which shows well-integrated nanofibrous structure, endothelial-conducive surface and anisotropic mechanical property, suitable as engineered vascular constructs. Tissue regeneration needs not only functional biomolecules providing signaling cues to cells and guide tissue remodeling, but also an adequate modality of molecule delivery. In fact, healthy tissue formation requires specific signals at well-defined place and time. To develop scaffolds with multi-modal presentation of biomolecules, we patterned electrospun nanofibers over the thickness of the 3-dimensional scaffolds by programming the deposition of interpenetrating networks of degradable polymers poly(a-caprolactone) and poly(lactide-co-glycolide) acid in tailored proportion. Fluorescent model molecules, drug and growth factors were embedded in the polymeric fibers with different techniques and release profiles were obtained and discussed. Fabrication process resulted in precise gradient patterns of materials and functional biomolecules throughout the thickness of the scaffold. These graded materials showed programmable spatio-temporal control over the release. Molecule release profiles on each side of the scaffolds were used to determine the separation efficiency of molecule

  5. Influenza vaccination

    DEFF Research Database (Denmark)

    Østerhus, Sven Frederick

    2015-01-01

    The Cochrane Library was systematically searched for meta-analyses regarding influenza vaccination of various populations, both healthy and sick. An effect in reducing the number of cases of influenza, influenza-like illness or complications to influenza was found in some studies, but, generally,......, the quality of the studies was low, and several studies lacked hard clinical endpoints. Data on adverse effects were scarce. More randomised controlled trials investigating the effects of influenza vaccination are warranted.......The Cochrane Library was systematically searched for meta-analyses regarding influenza vaccination of various populations, both healthy and sick. An effect in reducing the number of cases of influenza, influenza-like illness or complications to influenza was found in some studies, but, generally...

  6. Vaccination priorities.

    Science.gov (United States)

    Steffen, Robert; Baños, Ana; deBernardis, Chiara

    2003-02-01

    Selection of immunizations should be based on requirements and on risk of infection. According to the International Health Regulations, many countries require yellow fever vaccination and proof thereof as the International Certificate of vaccination. Additionally selected countries require proof of vaccination against cholera and meningococcal disease. A consultation for travel health advice is always an opportunity to ascertain that routine immunizations have been performed. Recommended immunizations often are more important for traveller's health than the required or routine ones. The most frequent vaccine preventable infection in non-immune travellers to developing countries is hepatitis A with an average incidence rate of 0.3% per month; in high risk backpackers or foreign-aid-volunteers this rate is 2.0%. Many immunizations are recommended for special risk groups only: there is a growing tendency in many countries to immunize all young travellers to developing countries against hepatitis B, as it is uncertain who will voluntarily or involuntarily get exposed. The attack rate of influenza in intercontinental travel is estimated to be 1%. Immunity against poliomyelitis remains essential for travel to Africa and parts of Asia. Many of the 0.2-0.4% who experience an animal bite are at risk of rabies. Typhoid fever is diagnosed with an incidence rate of 0.03% per month among travellers to the Indian subcontinent, North and West Africa (except Tunisia), and Peru, elsewhere this rate is 10-fold lower. Meningococcal disease, Japanese encephalitis, cholera and tuberculosis have been reported in travellers, but these infections are rare in this population. Although no travel health vaccine is cost beneficial, most professionals will offer protection against the frequent risks, while most would find it ridiculous to use all available vaccines in every traveller. It is essentially an arbitrary decision made on the risk level one wishes to recommend protection--but the

  7. Vaccine Vexes

    Institute of Scientific and Technical Information of China (English)

    Maya; Reid

    2011-01-01

    IT’S always nice when expectations are exceeded by half a billion dollars.This was the case for the Global Alliance for Vaccines and Immunization(GAVI) at its fundraising conference in June.A public-private initiative,GAVI,which works to ensure children in developing countries receive crucial vaccinations,had gone into the meeting hoping to net $3.7 billion.They came away with $4.3 billion,"despite the fact that donors everywhere are coping with budget crises," as Bill Gates

  8. Sistema de grupo sangüíneo Duffy: biologia e prática transfusional Duffy blood group system: biology and transfusion practice

    Directory of Open Access Journals (Sweden)

    Eduardo Jens

    2005-06-01

    locus was mapped on chromosome 1q22-q23. The Fyª and Fy b antigens are encoded by FYA and FYB alleles, and are responsible for the Fy(a+b-, Fy(a-b+ and Fy(a+b+ phenotypes. They are carried by a 336 amino acid glycoprotein called DARC (Duffy Antigen/Receptor for Chemokines which has high affinity to chemokines, also being Plasmodium vivax receptors. The polymorphisms related to its alleles have led to the development of a PCR genotyping technique, which is useful for the safety of blood transfusion, and determining fetus-maternal incompatibilities. In the last decade, much research has been done to determine the biological role of blood group antigens. In this paper we reviewed the Duffy Blood Group System, especially in respect to transfusional practice and biological functions.

  9. [Towards a new vaccine economy?].

    Science.gov (United States)

    Poirot, P; Martin, J F

    1994-01-01

    When Jonas Salk announced in the mid-50s the availability of a new vaccine against poliomyelitis, the world had the impression that it was now controlling infectious diseases. In fact, the success of this vaccine has been considerable and although some innovations lead to the launch of vaccines against flu, measles, rubella or mumps, the world vaccine market remained remarkably stable till the mid-80s. However, since 1984 (launch of the hepatitis B vaccine) there have been very substantial changes and further change is expected in the next ten years in the world market. Today, big companies are making a concentrated supply: Pasteur Mérieux with its subsidiary Connaught, SmithKline Beecham who acquired the Belgian company RIT, and Merck & Co. who is joining its forces with Pasteur Mérieux. Medium sized and small companies remain and reflect the situation of the past, but must work hard to secure their long term existence eventhough the world demand is going to double before the year 2000. Very substantial technological innovations explain to a large extent the development of the supply: progress in molecular biology, and particularly genetic engineering, lead to recombinant vaccines of which hepatitis B is the best example with worldwide sales in the range of $600 million a year. Similarly, conjugation technologies have allowed the development of new vaccines against meningitis, particularly Haemophilus influenzae type b. More recently, an efficacious vaccine against hepatitis A has been launched and many new products will be marketed in the next years against herpes, Lyme disease, and agents of other meningitis, etc.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7921683

  10. Replicating vaccines

    Science.gov (United States)

    Early work on fish immunology and disease resistance demonstrated fish (like animals and humans) that survived infection were typically resistant to re-infection with the same pathogen. The concepts of resistance upon reinfection lead to the research and development of replicating (live) vaccines in...

  11. Malaria vaccine.

    Science.gov (United States)

    1994-05-01

    Some have argued that the vaccine against malaria developed by Manuel Pattaroyo, a Colombian scientist, is being tested prematurely in humans and that it is unlikely to be successful. While the Pattaroyo vaccine has been shown to confer protection against the relatively mild malaria found in Colombia, doubts exist over whether it will be effective in Africa. Encouraging first results, however, are emerging from field tests in Tanzania. The vaccine triggered a strong new immune response, even in individuals previously exposed to malaria. Additional steps must be taken to establish its impact upon mortality and morbidity. Five major trials are underway around the world. The creator estimates that the first ever effective malaria vaccine could be available for widespread use within five years and he has no intention of securing a patent for the discovery. In another development, malaria specialists from 35 African countries convened at an international workshop in Zimbabwe to compare notes. Participants disparaged financial outlays for the fight against malaria equivalent to 2% of total AIDS funding as insufficient; noted intercountry differences in prevention, diagnosis, and treatment; and found information exchange between anglophone and francophone doctors to be generally poor. PMID:12287671

  12. Vexing Vaccines

    Science.gov (United States)

    Bowman, Darcia Harris

    2004-01-01

    Schools play a key role in ensuring that children are being immunized against diseases, but conflicting research is making enforcement difficult. This article discusses a growing trend of vaccine avoidance and the endless supply of conflicting information and research about immunization safety. Despite the controversy, many people appear to accept…

  13. Lot-to-lot consistency of live attenuated SA 14-14-2 Japanese encephalitis vaccine manufactured in a good manufacturing practice facility and non-inferiority with respect to an earlier product.

    Science.gov (United States)

    Zaman, K; Naser, Abu Mohd; Power, Maureen; Yaich, Mansour; Zhang, Lei; Ginsburg, Amy Sarah; Luby, Stephen P; Rahman, Mahmudur; Hills, Susan; Bhardwaj, Mukesh; Flores, Jorge

    2014-10-21

    We conducted a four-arm, double-blind, randomized controlled trial among 818 Bangladeshi infants between 10 and 12 months of age to establish equivalence among three lots of live attenuated SA 14-14-2 JE vaccine manufactured by the China National Biotec Group's Chengdu Institute of Biological Products (CDIBP) in a new Good Manufacturing Practice (GMP) facility and to evaluate non-inferiority of the product with a lot of the same vaccine manufactured in CDIBP's original facility. The study took place in two sites in Bangladesh, rural Matlab and Mirpur in urban Dhaka. We collected pre-vaccination (Day 0) and post-vaccination Day 28 (-4 to +14 days) blood samples to assess neutralizing anti-JE virus antibody titers in serum by plaque reduction neutralization tests (PRNT). Seroprotection following vaccination was defined as a PRNT titer ≥1:10 at Day 28 in participants non-immune at baseline. Follow-up for reactogenicity and safety was conducted through home visits at Day 7 and monitoring for serious adverse events through Day 28. Seroprotection rates ranged from 80.2% to 86.3% for all four lots of vaccine. Equivalence of the seroprotection rates between pairs of vaccine lots produced in the new GMP facility was satisfied at the pre-specified 10% margin of the 95% confidence interval (CI) for two of the three pairwise comparisons, but not for the third (-4.3% observed difference with 95% CI of -11.9 to 3.3%). Nevertheless, the aggregate seroprotection rate for all three vaccine lots manufactured in the GMP facility was calculated and found to be within the non-inferiority margin (within 10%) to the vaccine lot produced in the original facility. All four lots of vaccine were safe and well tolerated. These study results should facilitate the use of SA 14-14-2 JE vaccine as a routine component of immunization programs in Asian countries.

  14. Blood Clots

    Science.gov (United States)

    ... Index A-Z Blood Clots Blood clots are semi-solid masses of blood that can be stationary (thrombosis) ... treated? What are blood clots? Blood clots are semi-solid masses of blood. Normally, blood flows freely through ...

  15. Fish Vaccines in Aquaculture

    Science.gov (United States)

    Vaccination is a proven, cost-effective method to prevent infectious diseases in animals. Current fish vaccines can be categorized as killed fish vaccines or modified live vaccines. The major advantage of live vaccine is their ability to stimulate both cell-mediated and humoral immune responses for ...

  16. In vitro opioid induced proliferation of peripheral blood immune cells correlates with in vivo cold pressor pain tolerance in humans: a biological marker of pain tolerance.

    Science.gov (United States)

    Hutchinson, Mark R; La Vincente, Sophie F; Somogyi, Andrew A

    2004-08-01

    There is substantial evidence for bidirectional communication between the immune system and the central nervous system, as the cells and signalling molecules of the immune system influence many central nervous system functions, for instance nociception. Opioids, such as morphine, produce analgesia and numerous other central and peripheral effects including sedation and euphoria, while their effects on the immune system are wide-ranging. There is considerable interindividual variability in basal nociception and response to opioids, however, the physiological and biological mechanisms underlying this are unclear. Therefore, we investigated the relationship between the immune system and basal nociceptive thresholds, using the proliferative response of isolated peripheral blood mononuclear cells and cold pressor pain tolerance. Here we show that the percent increase in proliferation of peripheral immune cells from 13 healthy subjects incubated with morphine ex vivo is highly correlated with the subjects' tolerance to noxious cold stimuli (Pearson r = 0.92, P humans, which also links the immune and opioid systems with basal pain tolerance.

  17. On the bifurcation of blood vessels--Wilhelm Roux's doctoral thesis (Jena 1878)--a seminal work for biophysical modelling in developmental biology.

    Science.gov (United States)

    Kurz, H; Sandau, K; Christ, B

    1997-02-01

    Wilhelm Roux's doctoral thesis described the relationship between the angle and diameter of bifurcating blood vessels. We have re-read this work in the light of biophysics and developmental biology and found two remarkable aspects hidden among a multitude of observations, rules and exceptions to these rules. First, the author identified the major determinants involved in vascular development; genetics, cybernetics, and mechanics; moreover, he knew that he could not deal with the genetic and regulatory aspects, and could hardly treat the mechanical part adequately. Second, he was deeply convinced that the laws of physics determine the design of organisms, and that a necessity for optimality was inherent in development. We combined the analysis of diameter relationships with the requirement for optimality in a stochastic biophysical model, and concluded that a constant wall-stress condition could define a minimum wall-tissue optimum during arterial development. Hence, almost 120 years after Wilhelm Roux's pioneering work, our model indicates one possible way in which physical laws have determined the evolution of regulatory and structural properties in vessel wall development. PMID:9059737

  18. VACCINATION IN RHEUMATOLOGY: CURRENT ASPECTS

    Directory of Open Access Journals (Sweden)

    B. S. Belov

    2014-01-01

    Full Text Available Infectious diseases still remain a serious social and medical problem. The importance of comorbid infections in rheumatology has increased substantially in recent years, particularly due to the clinical introduction of biologicals. The investigation and active use of different vaccines are one of the ways to solve the above problem. This review considers the issues concerning the use of vaccines against influenza, infections caused by pneumococci, herpesviruses, human papillomavirus, and hepatitis B virus in rheumatology patients. It discusses the safety and immunogenicity of vaccination associated with the prevention of airway infections as the most common cause of a poor outcome in rheumatic diseases. The main areas of future investigations in the problem under consideration are defined.

  19. Leishmaniasis: vaccine candidates and perspectives.

    Science.gov (United States)

    Singh, Bhawana; Sundar, Shyam

    2012-06-01

    Leishmania is a protozoan parasite and a causative agent of the various clinical forms of leishmaniasis. High cost, resistance and toxic side effects of traditional drugs entail identification and development of therapeutic alternatives. The sound understanding of parasite biology is key for identifying novel drug targets, that can induce the cell mediated immunity (mainly CD4+ and CD8+ IFN-gamma mediated responses) polarized towards a Th1 response. These aspects are important in designing a new vaccine along with the consideration of the candidates with respect to their ability to raise memory response in order to improve the vaccine performance. This review is an effort to identify molecules according to their homology with the host and their ability to be used as potent vaccine candidates.

  20. Vaccines Stop Illness

    Science.gov (United States)

    Skip Navigation Bar Home Current Issue Past Issues Vaccines Stop Illness Past Issues / Spring 2008 Table of ... meningitis won't infect, cripple, or kill children. Vaccine Safety In light of recent questions about vaccine ...

  1. Vaccines Stop Illness

    Science.gov (United States)

    ... page please turn JavaScript on. Feature: Diseases and Vaccinations Vaccines Stop Illness Past Issues / Spring 2015 Table ... if we take away the protection given by vaccination, more and more people will be infected and ...

  2. Vaccinations and HIV

    Science.gov (United States)

    ... 23, 2014 Select a Language: Fact Sheet 207 Vaccinations and HIV WHAT ARE VACCINATIONS? WHAT’S DIFFERENT FOR ... your viral load within 4 weeks of any vaccination. Flu shots have been studied more than any ...

  3. Vaccinations during Pregnancy

    Science.gov (United States)

    ... you do need any vaccinations, wait 1 month after you get them before you try to get pregnant. ... vaccine during pregnancy, you can get it right after you give birth. Getting the Tdap vaccine soon after ...

  4. Weighing the risks and benefits of vaccination.

    Science.gov (United States)

    Glickman, L T

    1999-01-01

    are "just too dangerous." Some owners report that since they completely stopped vaccinating their animals, they have been healthy. What they fail to realize is that a high percentage of animal owners are responsible and do vaccinate their animals, thus providing "herd immunity" protection to the unvaccinated animals whom they contact. The solution to the vaccine controversy is not to abandon vaccination as an effective means of disease prevention and control, but rather to encourage vaccine research to answer important questions regarding safety and to identify the biological basis for adverse reactions. Key questions to be answered include these: What components of vaccines are responsible for adverse reactions? What is the genetic basis for susceptibility to adverse health effects in animals? How can susceptible individuals be identified? Do multivalent vaccines cause a higher rate of adverse reactions than monovalent vaccines? Is administration of multiple doses of monovalent vaccines really any safer than administering a single multivalent vaccine? These and other vaccine-related questions deserve our attention as veterinarians so we can fulfill our veterinary oath to relieve animal suffering and "above all else, do no harm."

  5. Influenza Vaccines

    OpenAIRE

    Ellebedy, A. H.; Webby, R J

    2009-01-01

    Influenza A viruses pose a substantial threat to the human population whether by purposeful manipulation and release or by the natural process of interspecies transmissions from animal reservoirs. The challenge with preparing for these events with vaccination strategies is that the best forms of protective immunity target the most variably of the viral proteins, hemagglutinin. Add to this even just the natural extent of variation in this protein and the challenges to vaccinologists become gre...

  6. Protein Crystallography in Vaccine Research and Development.

    Science.gov (United States)

    Malito, Enrico; Carfi, Andrea; Bottomley, Matthew J

    2015-06-09

    The use of protein X-ray crystallography for structure-based design of small-molecule drugs is well-documented and includes several notable success stories. However, it is less well-known that structural biology has emerged as a major tool for the design of novel vaccine antigens. Here, we review the important contributions that protein crystallography has made so far to vaccine research and development. We discuss several examples of the crystallographic characterization of vaccine antigen structures, alone or in complexes with ligands or receptors. We cover the critical role of high-resolution epitope mapping by reviewing structures of complexes between antigens and their cognate neutralizing, or protective, antibody fragments. Most importantly, we provide recent examples where structural insights obtained via protein crystallography have been used to design novel optimized vaccine antigens. This review aims to illustrate the value of protein crystallography in the emerging discipline of structural vaccinology and its impact on the rational design of vaccines.

  7. Canine distemper virus detection in asymptomatic and non vaccinated dogs

    OpenAIRE

    Del Puerto, Helen L; Vasconcelos, Anilton C.; Luciana Moro; Fabiana Alves; Braz, Gissandra F; Almir S. Martins

    2010-01-01

    A quantitative real time polymerase chain reaction (PCR) revealed canine distemper virus presence in peripheral blood samples from asymptomatic and non vaccinated dogs. Samples from eleven domestic dogs with no signs of canine distemper and not vaccinated at the month of collection were used. Canine distemper virus vaccine samples in VERO cells were used as positive controls. RNA was isolated with Trizol®, and treated with a TURBO DNA-free kit. Primers were designed for canine distemper virus...

  8. Smallpox vaccines: targets of protective immunity.

    Science.gov (United States)

    Moss, Bernard

    2011-01-01

    The eradication of smallpox, one of the great triumphs of medicine, was accomplished through the prophylactic administration of live vaccinia virus, a comparatively benign relative of variola virus, the causative agent of smallpox. Nevertheless, recent fears that variola virus may be used as a biological weapon together with the present susceptibility of unimmunized populations have spurred the development of new-generation vaccines that are safer than the original and can be produced by modern methods. Predicting the efficacy of such vaccines in the absence of human smallpox, however, depends on understanding the correlates of protection. This review outlines the biology of poxviruses with particular relevance to vaccine development, describes protein targets of humoral and cellular immunity, compares animal models of orthopoxvirus disease with human smallpox, and considers the status of second- and third-generation smallpox vaccines.

  9. Meningococcal Vaccine (For Parents)

    Science.gov (United States)

    ... Palsy: Shannon's Story" 5 Things to Know About Zika & Pregnancy Your Child's Immunizations: Meningococcal Vaccines KidsHealth > For Parents > Your Child's Immunizations: Meningococcal Vaccines ...

  10. Plasmacytoid dendritic cells delineate immunogenicity of influenza vaccine subtypes.

    Science.gov (United States)

    Koyama, Shohei; Aoshi, Taiki; Tanimoto, Takeshi; Kumagai, Yutaro; Kobiyama, Kouji; Tougan, Takahiro; Sakurai, Kazuo; Coban, Cevayir; Horii, Toshihiro; Akira, Shizuo; Ishii, Ken J

    2010-03-31

    A variety of different vaccine types are available for H1N1 influenza A virus infections; however, their immunological mechanisms of action remain unclear. Here, we show that plasmacytoid dendritic cells (pDCs) and type I interferon (IFN)-mediated signaling delineate the immunogenicity of live attenuated virus, inactivated whole-virus (WV), and split-virus vaccines. Although Toll-like receptor 7 acted as the adjuvant receptor for the immunogenicity of both live virus and WV vaccines, the requirement for type I IFN production by pDCs for the immunogenicity of the vaccines was restricted to WV. A split vaccine commonly used in humans failed to immunize naïve mice, but a pDC-activating adjuvant could restore immunogenicity. In blood from human adults, however, split vaccine alone could recall memory T cell responses, underscoring the importance of this adjuvant pathway for primary, but not secondary, vaccination. PMID:20424013

  11. Evaluation of the response to vaccination with hepatitis B vaccine in pediatric patients diagnosed with celiac disease

    OpenAIRE

    Walkiewicz-Jedrzejczak, Dorota; Egberg, Matthew; Nelson, Catherine; Eickoff, Jens

    2014-01-01

    Background: A gap exists in the literature on celiac disease populations and the response to hepatitis B vaccination. Objective: To identify pediatric patients with celiac disease who received the primary hepatitis B vaccination and investigate their response to vaccine. Design/Methods: Patients underwent blood draw for hepatitis B surface antibody titers. Patients with undetectable or non-protective HBsAb titers were contacted. Study outcome measures and patient characteristics variables wer...

  12. Amylase and blood cell-count hematological radiation-injury biomarkers in a rhesus monkey radiation model-use of multiparameter and integrated biological dosimetry

    International Nuclear Information System (INIS)

    Effective medical management of suspected radiation exposure incidents requires the recording of dynamic medical data (clinical signs and symptoms), biological assessments of radiation exposure, and physical dosimetry in order to provide diagnostic information to the treating physician and dose assessment for personnel radiation protection records. The need to rapidly assess radiation dose in mass-casualty and population-monitoring scenarios prompted an evaluation of suitable biomarkers that can provide early diagnostic information after exposure. We investigated the utility of serum amylase and hematological blood-cell count biomarkers to provide early assessment of severe radiation exposures in a non-human primate model (i.e., rhesus macaques; n=8) exposed to whole-body radiation of 60Co-gamma rays (6.5 Gy, 40cGymin-1). Serum amylase activity was significantly elevated (12.3±3.27- and 2.6±0.058-fold of day zero samples) at 1 and 2-days, respectively, after radiation. Lymphocyte cell counts decreased (≤15% of day zero samples) 1 and 2 days after radiation exposure. Neutrophil cell counts increased at day one by 1.9(±0.38)-fold compared with levels before irradiation. The ratios of neutrophil to lymphocyte cell counts increased by 13(±2.66)- and 4.23(±0.95)-fold at 1 and 2 days, respectively, after irradiation. These results demonstrate that increases in serum amylase activity along with decreases of lymphocyte counts, increases in neutrophil cell counts, and increases in the ratio of neutrophil to lymphocyte counts 1 day after irradiation can provide enhanced early triage discrimination of individuals with severe radiation exposure and injury. Use of the biodosimetry assessment tool (BAT) application is encouraged to permit dynamic recording of medical data in the management of a suspected radiological casualty

  13. PRODUCTION AND QUALITY CONTROL OF VACCINES

    OpenAIRE

    Manish kumar; Kunal; M. B.Anusha; P. Udhayaraja

    2014-01-01

    Health specialists are not always aware of the need to apply different purchasing approaches.There are many companies producing vaccines but only a few meet internationally- recognized standards of safety and efficacy. The safety and efficacy of the vaccines cannot Biological E. Limited determined through laboratory testing.From the chemical testing we concluded that the amount of Adjuvant and preservative were exactly equal and was not found to violet the limits set and r...

  14. Blood Donation and Transfusion (Beyond the Basics)

    Science.gov (United States)

    ... donor, a person who has recently received the hepatitis B vaccine should wait 21 days before donating blood. At ... PARTY WHO HAS BEEN INVOLVED IN THE CREATION, PRODUCTION, PROMOTION OR MARKETING OF THE LICENSED MATERIALS BE ...

  15. Defending against smallpox: a focus on vaccines.

    Science.gov (United States)

    Voigt, Emily A; Kennedy, Richard B; Poland, Gregory A

    2016-09-01

    Smallpox has shaped human history, from the earliest human civilizations well into the 20th century. With high mortality rates, rapid transmission, and serious long-term effects on survivors, smallpox was a much-feared disease. The eradication of smallpox represents an unprecedented medical victory for the lasting benefit of human health and prosperity. Concerns remain, however, about the development and use of the smallpox virus as a biological weapon, which necessitates the need for continued vaccine development. Smallpox vaccine development is thus a much-reviewed topic of high interest. This review focuses on the current state of smallpox vaccines and their context in biodefense efforts.

  16. Defending against smallpox: a focus on vaccines.

    Science.gov (United States)

    Voigt, Emily A; Kennedy, Richard B; Poland, Gregory A

    2016-09-01

    Smallpox has shaped human history, from the earliest human civilizations well into the 20th century. With high mortality rates, rapid transmission, and serious long-term effects on survivors, smallpox was a much-feared disease. The eradication of smallpox represents an unprecedented medical victory for the lasting benefit of human health and prosperity. Concerns remain, however, about the development and use of the smallpox virus as a biological weapon, which necessitates the need for continued vaccine development. Smallpox vaccine development is thus a much-reviewed topic of high interest. This review focuses on the current state of smallpox vaccines and their context in biodefense efforts. PMID:27049653

  17. Significantly Reduced Genoprevalence of Vaccine-Type HPV-16/18 Infections among Vaccinated Compared to Non-Vaccinated Young Women 5.5 Years after a Bivalent HPV-16/18 Vaccine (Cervarix®) Pilot Project in Uganda

    Science.gov (United States)

    Berggren, Vanja; Wabinga, Henry; Lillsunde-Larsson, Gabriella; Helenius, Gisela; Kaliff, Malin; Karlsson, Mats; Kirimunda, Samuel; Musubika, Caroline; Andersson, Sören

    2016-01-01

    The objective of this study was to determine the prevalence and some predictors for vaccine and non-vaccine types of HPV infections among bivalent HPV vaccinated and non-vaccinated young women in Uganda. This was a comparative cross sectional study 5.5 years after a bivalent HPV 16/18 vaccination (Cervarix®, GlaxoSmithKline, Belgium) pilot project in western Uganda. Cervical swabs were collected between July 2014-August 2014 and analyzed with a HPV genotyping test, CLART® HPV2 assay (Genomica, Madrid Spain) which is based on PCR followed by microarray for determination of genotype. Blood samples were also tested for HIV and syphilis infections as well as CD4 and CD8 lymphocyte levels. The age range of the participants was 15–24 years and mean age was 18.6(SD 1.4). Vaccine-type HPV-16/18 strains were significantly less prevalent among vaccinated women compared to non-vaccinated women (0.5% vs 5.6%, p 0.006, OR 95% CI 0.08(0.01–0.64). At type-specific level, significant difference was observed for HPV16 only. Other STIs (HIV/syphilis) were important risk factors for HPV infections including both vaccine types and non-vaccine types. In addition, for non-vaccine HPV types, living in an urban area, having a low BMI, low CD4 count and having had a high number of life time sexual partners were also significant risk factors. Our data concurs with the existing literature from other parts of the world regarding the effectiveness of bivalent HPV-16/18 vaccine in reducing the prevalence of HPV infections particularly vaccine HPV- 16/18 strains among vaccinated women. This study reinforces the recommendation to vaccinate young girls before sexual debut and integrate other STI particularly HIV and syphilis interventions into HPV vaccination packages. PMID:27482705

  18. Significantly Reduced Genoprevalence of Vaccine-Type HPV-16/18 Infections among Vaccinated Compared to Non-Vaccinated Young Women 5.5 Years after a Bivalent HPV-16/18 Vaccine (Cervarix®) Pilot Project in Uganda.

    Science.gov (United States)

    Kumakech, Edward; Berggren, Vanja; Wabinga, Henry; Lillsunde-Larsson, Gabriella; Helenius, Gisela; Kaliff, Malin; Karlsson, Mats; Kirimunda, Samuel; Musubika, Caroline; Andersson, Sören

    2016-01-01

    The objective of this study was to determine the prevalence and some predictors for vaccine and non-vaccine types of HPV infections among bivalent HPV vaccinated and non-vaccinated young women in Uganda. This was a comparative cross sectional study 5.5 years after a bivalent HPV 16/18 vaccination (Cervarix®, GlaxoSmithKline, Belgium) pilot project in western Uganda. Cervical swabs were collected between July 2014-August 2014 and analyzed with a HPV genotyping test, CLART® HPV2 assay (Genomica, Madrid Spain) which is based on PCR followed by microarray for determination of genotype. Blood samples were also tested for HIV and syphilis infections as well as CD4 and CD8 lymphocyte levels. The age range of the participants was 15-24 years and mean age was 18.6(SD 1.4). Vaccine-type HPV-16/18 strains were significantly less prevalent among vaccinated women compared to non-vaccinated women (0.5% vs 5.6%, p 0.006, OR 95% CI 0.08(0.01-0.64). At type-specific level, significant difference was observed for HPV16 only. Other STIs (HIV/syphilis) were important risk factors for HPV infections including both vaccine types and non-vaccine types. In addition, for non-vaccine HPV types, living in an urban area, having a low BMI, low CD4 count and having had a high number of life time sexual partners were also significant risk factors. Our data concurs with the existing literature from other parts of the world regarding the effectiveness of bivalent HPV-16/18 vaccine in reducing the prevalence of HPV infections particularly vaccine HPV- 16/18 strains among vaccinated women. This study reinforces the recommendation to vaccinate young girls before sexual debut and integrate other STI particularly HIV and syphilis interventions into HPV vaccination packages.

  19. The immunogenicity and safety of a reduced PRP-content DTPw-HBV/Hib vaccine when administered according to the accelerated EPI schedule

    Directory of Open Access Journals (Sweden)

    Collard Alix

    2010-10-01

    Full Text Available Abstract Background Combination vaccines improve coverage, compliance and effectively introduce new antigens to mass vaccination programmes. This was a phase III, observer-blind, randomized study of GSK Biologicals diphtheria-tetanus-whole cell pertussis vaccine combined with hepatitis B and Haemophilus influenzae type b vaccines, containing a reduced amount of polyribosyl-ribitol-phosphate (PRP and a DTPw component manufactured at a different site (DTPw-HBV/Hib2.5 [Kft]. The primary aim of this study was to demonstrate that DTPw-HBV/Hib2.5 [Kft] was not inferior to the licensed DTPw-HBV/Hib (Tritanrix(tm-HepB/Hiberix(tm vaccine or the DTPw-HBV/Hib2.5 vaccine, also containing a reduced amount of PRP, with respect to the immune response to the PRP antigen, when administered to healthy infants, according to the Expanded Programme for Immunization (EPI schedule at 6, 10 and 14 weeks of age. Methods 299 healthy infants were randomised to receive either DTPw-HBV/Hib2.5 [Kft] DTPw-HBV/Hib2.5 or DTPw-HBV/Hib according to the 6-10-14 week EPI schedule. Blood samples were analysed prior to the first dose of study vaccine and one month after the third vaccine dose for the analysis of immune responses. Solicited local and general symptoms such as pain, redness and swelling at the injection site and drowsiness and fever, unsolicited symptoms (defined as any additional adverse event and serious adverse events (SAEs were recorded up to 20 weeks of age. Results One month after the third vaccine dose, 100% of subjects receiving DTPw-HBV/Hib2.5 [Kft] or DTPw-HBV/Hib and 98.8% of subjects receiving DTPw-HBV/Hib2.5 vaccine had seroprotective levels of anti-PRP antibodies (defined as anti-PRP antibody concentration ≥0.15 μg/ml. Seroprotective antibody concentrations were attained in over 98.9% of subjects for diphtheria, tetanus and hepatitis B. The vaccine response rate to pertussis antigen was at least 97.8% in each group. Overall, the DTPw-HBV/Hib2.5 [Kft

  20. Yellow Fever Vaccine: What You Need to Know

    Science.gov (United States)

    ... a risk of transmitting the vaccine virus through blood products during that period. 4 Wfevheorsvhaocuclidnen?ot get yellow • Anyone with a severe (life-threatening) allergy to any component of the vaccine, including eggs, chicken proteins, or gelatin, or who has had a ...

  1. Child mortality related to seroconversion or lack of seroconversion after measles vaccination

    DEFF Research Database (Denmark)

    Aaby, Peter; Pedersen, I R; Knudsen, K;

    1989-01-01

    When blood samples were analyzed for seroconversion after measles vaccination, it was discovered that the vaccine had been ineffective for a certain period. During the 2 years between vaccination and the time of seroanalysis, nonseroconverters had a significantly higher mortality than seroconvert...

  2. Influence of Tricaine Methanesulfonate on Streptococcus agalactiae vaccination of Nile tilapia (Oreochromis niloticus)

    Science.gov (United States)

    Experiments were conducted to study the influence of tricaine methanesulfonate (MS-222) on blood glucose levels and percent cumulative survival of Nile tilapia (Oreochromis niloticus) challenged with Streptococcus agalactiae 30 days post-vaccination with S. agalactiae vaccine or sham-vaccination wit...

  3. A combined vaccine against Brucella abortus and infectious bovine rhinotracheitis.

    Science.gov (United States)

    Kamaraj, Govindasamy; Chinchkar, Shankar R; Rajendra, Lingala; Srinivasan, Villuppanoor Alwar

    2009-06-01

    The present study was undertaken to study the immune response in calves vaccinated with Brucella abortus strain 19, infectious bovine rhinotracheitis (IBR) vaccines in monovalent form and combined vaccine containing both antigen. The seroconversion of monovalent and combined vaccines was tested in seronegative cattle calves. IBR vaccine alone and combination with live Brucella abortus S19 vaccine elicited an anamnestic response on day 60 post booster but started declining from day 90 onwards against IBR. B. abortus S19 alone and in combination with IBR vaccine gave more than 2 log protection in mice two weeks post challenge. Fluorescence polarization assay analysis with sera samples of calves vaccinated with B. abortus S19 monovalent vaccine alone and in combination with IBR vaccine revealed the presence of B. abortus antibodies. The components of the combined vaccine did not show any evidence of interference in the development of immunity. This combined vaccine may provide economical and affordable biological for the control of brucellosis and IBR. PMID:23100765

  4. Nine μg intradermal influenza vaccine and 15 μg intramuscular influenza vaccine induce similar cellular and humoral immune responses in adults

    Science.gov (United States)

    Nougarede, Nolwenn; Bisceglia, Hélène; Rozières, Aurore; Goujon, Catherine; Boudet, Florence; Laurent, Philippe; Vanbervliet, Beatrice; Rodet, Karen; Hennino, Ana; Nicolas, Jean-François

    2014-01-01

    Intanza® 9 μg (Sanofi Pasteur), a trivalent split-virion vaccine administered by intradermal (ID) injection, was approved in Europe in 2009 for the prevention of seasonal influenza in adults 18 to 59 years. Here, we examined the immune responses induced in adults by the ID 9 μg vaccine and the standard trivalent intramuscular (IM) vaccine (Vaxigrip® 15 μg, Sanofi Pasteur). This trial was a randomized, controlled, single-center, open-label study in healthy adults 18 to 40 years of age during the 2007/8 influenza season. Subjects received a single vaccination with the ID 9 μg (n = 38) or IM 15 μg (n = 42) vaccine. Serum, saliva, and peripheral blood mononuclear cells were collected up to 180 days post-vaccination. Geometric mean hemagglutination inhibition titers, seroprotection rates, seroconversion rates, and pre-vaccination-to-post-vaccination ratios of geometric mean hemagglutination inhibition titers did not differ between the two vaccines. Compared with pre-vaccination, the vaccines induced similar increases in vaccine-specific circulating B cells at day 7 but did not induce significant increases in vaccine-specific memory B cells at day 180. Cell-mediated immunity to all three vaccine strains, measured in peripheral blood mononuclear cells, was high at baseline and not increased by either vaccine. Neither vaccine induced a mucosal immune response. These results show that the humoral and cellular immune responses to the ID 9 μg vaccine are similar to those to the standard IM 15 μg vaccine. PMID:25483667

  5. A Systems Biology-Based Approach to Uncovering the Molecular Mechanisms Underlying the Effects of Dragon's Blood Tablet in Colitis, Involving the Integration of Chemical Analysis, ADME Prediction, and Network Pharmacology

    OpenAIRE

    Haiyu Xu; Yanqiong Zhang; Yun Lei; Xiumei Gao; Huaqiang Zhai; Na Lin; Shihuan Tang; Rixin Liang; Yan Ma; Defeng Li; Yi Zhang; Guangrong Zhu; Hongjun Yang; Luqi Huang

    2014-01-01

    Traditional Chinese medicine (TCM) is one of the oldest East Asian medical systems. The present study adopted a systems biology-based approach to provide new insights relating to the active constituents and molecular mechanisms underlying the effects of dragon's blood (DB) tablets for the treatment of colitis. This study integrated chemical analysis, prediction of absorption, distribution, metabolism, and excretion (ADME), and network pharmacology. Firstly, a rapid, reliable, and accurate ult...

  6. Extended Generalized Riccati Equation Mapping for Thermal Traveling-Wave Distribution in Biological Tissues through a Bio-Heat Transfer Model with Linear/Quadratic Temperature-Dependent Blood Perfusion

    OpenAIRE

    Emmanuel Kengne; Fathi Ben Hamouda; Ahmed Lakhssassi

    2013-01-01

    Analytical thermal traveling-wave distribution in biological tissues through a bio-heat transfer (BHT) model with linear/quadratic temperature-dependent blood perfusion is discussed in this paper. Using the extended generalized Riccati equation mapping method, we find analytical traveling wave solutions of the considered BHT equation. All the travelling wave solutions obtained have been used to explicitly investigate the effect of linear and quadratic coefficients of te...

  7. Mucosal vaccination of fish

    NARCIS (Netherlands)

    Rombout, J.H.W.M.; Kiron, V.

    2014-01-01

    Among the novel vaccination methods, mucosal vaccination seems to possess all the desired criteria. The chapter reviews the state-of-the-art knowledge regarding this type of vaccination with a focus on their uptake, immune stimulation, and where possible, discusses their potential as future vaccines

  8. Correlates of Protection Following Vaccination with Inactivated Porcine Circovirus 2 Vaccines.

    Science.gov (United States)

    Zanotti, Cinzia; Martinelli, Nicola; Lelli, Davide; Amadori, Massimo

    2015-12-01

    Porcine circovirus type 2 (PCV2) is associated with a number of diseases and syndromes, collectively referred to as porcine circovirus-associated disease. The main objective of this study was to define some in vitro correlates of protection after injection of inactivated PCV2 vaccines with a defined antigen mass. Twelve pigs were vaccinated with three different doses of inactivated, whole-virus antigen (211-844 ng), while four animals were injected with a commercial vaccine (positive control) and four other pigs were mock-vaccinated with phosphate-buffered saline (PBS) in the same oil emulsion. Four weeks later, they were intranasally challenged with 2 × 10(5) TCID50 of a PCV2a strain. Antibody was measured in blood and oral fluids by enzyme-linked immunosorbent assay (ELISA) and a neutralization assay. PCV2 was quantified in serum by real-time polymerase chain reaction for ORF2 gene. PCV2-specific cell-mediated responses were investigated by an IFN-γ release assay in whole blood, IFN-γ ELISPOT, and lymphocyte proliferation (Ki-67 and BrDU assays). All the vaccines under study but mock provided complete or incomplete protection from PCV2 infection in terms of post-challenge viremia. Serum antibody titers (ELISA and neutralizing) after vaccination were not correlated with protection, as opposed to the early neutralizing antibody levels of vaccinated pigs at day 7 after infection. Cell-mediated immune parameters showed a good correlation with vaccine efficacy. In particular, the IFN-γ release assay at 3 weeks after vaccination was an effective marker for predicting protection. All control pigs always tested negative in assays of cell-mediated immunity. Our results outline in vitro testing procedures toward reduced animal usage in the control of PCV2 vaccine batches. PMID:26401584

  9. Influenza virus vaccine live intranasal--MedImmune vaccines: CAIV-T, influenza vaccine live intranasal.

    Science.gov (United States)

    2003-01-01

    (now Wyeth Vaccines) had begun a phase II bridging study with a refrigerator-stable liquid formulation of FluMist in the Southern Hemisphere. The randomised single-blind trial is being conducted together with Aviron (now MedImmune Vaccines) and is intended to demonstrate clinical equivalence between frozen and liquid FluMist. At the time of the announcement, more than 500 children aged 1-3 years had been enrolled to receive either frozen or liquid FluMist. The final study population is approximately 1300. If clinical equivalence of the two forms of FluMist is demonstrated in this study, MedImmune Vaccines will be able to use data from trials of frozen FluMist in licence applications for international markets. Aviron submitted a Biologics Licence Application (BLA) to the US FDA in July 1998. The FDA rejected this application on the grounds of a lack of data on manufacturing, validation and stability. In June 1999, Aviron announced that it had completed a bridging study on FluMist designed to provide some of the manufacturing data required by the US FDA on FluMist prepared at one of two manufacturing sites. Preliminary analysis indicated that the results had met the company's objectives. The primary endpoint of the study was to demonstrate that the batch of FluMist blended and filled at Packaging Coordinators, Inc. in Philadelphia had similar immunogenicity for all three 1997-98 influenza strains as the vaccine used in earlier clinical trials, which was manufactured by Medeva Pharma (now Evans Vaccines, a subsidiary of PowderJect Pharmaceuticals) in England. The secondary endpoint was to show that these lots of FluMist had similar safety and tolerability profiles. Aviron then submitted a BLA in October 2000. However, in late July 2001, an FDA advisory committee declined to recommend approval of the vaccine, citing concerns with safety. Aviron subsequently received a Complete Response Letter from the FDA requesting additional clinical and manufacturing data. Aviron stated

  10. Vaccine adverse events.

    Science.gov (United States)

    Follows, Jill

    2012-01-01

    Millions of adults are vaccinated annually against the seasonal influenza virus. An undetermined number of individuals will develop adverse events to the influenza vaccination. Those who suffer substantiated vaccine injuries, disabilities, and aggravated conditions may file a timely, no-fault and no-cost petition for financial compensation under the National Vaccine Act in the Vaccine Court. The elements of a successful vaccine injury claim are described in the context of a claim showing the seasonal influenza vaccination was the cause of Guillain-Barré syndrome.

  11. Nucleic Acid Vaccines

    Institute of Scientific and Technical Information of China (English)

    LU Shan

    2004-01-01

    @@ Anew method of immunization was discovered in the early 1990s. Several research groups independently demonstrated that direct inoculation of DNA plasmids coding for a specific protein antigen could elicit immune responses against that antigen[1-4].Since in theory the mRNA molecules also have the potential to be translated into the protein antigen, this vaccination approach was officially named by WHO as the nucleic acid vaccination even though the term DNA vaccine has been used more commonly in the literature. This novel approach is considered the fourth generation of vaccines after live attenuated vaccines, killed or inactivated vaccines and recombinant protein based subunit vaccines.

  12. Le vaccin antivariolique historique Lister : séquence génomique, diversité phénotypique et neuropathogénicité : perspectives vaccinales

    OpenAIRE

    Garcel, Aude

    2007-01-01

    The smallpox constituted a real scourge for humanity until 1980, the year of the declaration of its eradication due to vaccination. The risk of variola virus reemerging as a biological weapon, considering manufacturing conditions, the low population immunity and historical vaccine post-vaccinal complications, make new smallpox vaccines development a necessity.In this paper, the historical Lister strain vaccine study is described as part of the elaboration strategy of a new vaccine coming from...

  13. [Childhood vaccines and autism--much ado about nothing?].

    Science.gov (United States)

    Solt, Ido; Bornstein, Jacob

    2010-04-01

    The increased diagnoses of autism and developmental disorders in recent decades, together with the childhood vaccination program, has led to the hypothesis that vaccination in general, and the measles, mumps, and rubella virus live vaccine, and vaccines that contain mercury, in particular, cause autism. It has been hypothesized that intestinal infection caused by live virus vaccines change the permeability of the intestinal wall, and subsequently, the passage of peptides through the intestinal wall to the blood, and from there to the brain. It has been suggested that the accumulation of these peptides in the central nervous system causes autism. Studies that investigated this theory did not find an association between vaccine administration and between digestive system symptoms and autism. According to a second hypothesis, an organomercury compound (Thimerosal), used as a preservative in vaccines that do not include live viruses, is a cause of autism. Like the former, this hypothesis has been well researched, and refuted. Some studies have in fact found an increase in autism diagnosis among children who were vaccinated after Thimerosal was removed from the vaccine preparation. Recent studies have refuted the theory that the consecutive administration of vaccines weakens the young immune system in children, and leads to an autoimmune process that causes autism. The etiology of autism is still unknown, with research continuing from different directions. The extensive research conducted so far indicates that childhood vaccination is not a cause of the sharp increase in autism diagnoses in recent decades.

  14. OBSERVATION ON VACCINATING Newcastle Disease Virus Vaccine with Inhalation and Preventing Recurrence of Nasopharyngeal cancer after Radiotherapy

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective: To understand whether the Newcastle disease virus(NDV) vaccine can successfully vaccinate the rabbits and volunteers of cancer patients by inhalation and to observe the effects of NDV vaccine on nasopharyngeal carcinoma (NRC) patients after radiotherapy. Methods: The live NDV vaccine was vaccinated through nasal cavities of rabbits, NPC patients and other cancer patients who were treated by surgery or chemotherapy with larynx spray. The blood specimens of vein from the tested rabbits and volunteers of patients with cancer were collected before and after vaccination. The anti-NDV-antibody in serum was detected by conventional blood coagulation inhibiting method. The white blood cell (WBC) amount in blood samples was counted. In addition, the NPC patients after radiotherapy were divided into both test group and control group with random match. The both were followed-up by multiple kinds of way in order to understand effects of NDV immunotherapy for NPC. Results: The anti-NDV-antibody level of the rabbits and the patients with NPC rose significantly after vaccination. The WBC amount of cancer patients treated by surgery or chemotherapy also rose significantly after vaccination. The recurrence rate (3.23%) of NRC patients in test group who received immunotherapy of NDV vaccine for 4 to 10 treatment courses within 3 years after end of radiotherapy were significantly lower than that (25.81%) of the control group (P<0.025). Conclusion: The NDV vaccine La Sota strain can vaccinate the rabbits and the cancer patients in success by inhalation. And it has remarkable effect to decrease 3 year recurrence rate of NRC patients after radiotherapy.

  15. Blood Clotting and Pregnancy

    Medline Plus

    Full Text Available ... First Edition Abstracts Blood Advances A peer-reviewed, online only, open access journal with a unique focus ... ASH ASH Meeting on Hematologic Malignancies Consultative Hematology Course ASH Meeting on Lymphoma Biology ASH Workshop on ...

  16. Human anti-anthrax protective antigen neutralizing monoclonal antibodies derived from donors vaccinated with anthrax vaccine adsorbed

    OpenAIRE

    Sawada-Hirai, Ritsuko; Jiang, Ivy; Wang, Fei; Sun, Shu Man; Nedellec, Rebecca; Ruther, Paul; Alvarez, Alejandro; Millis, Diane; Morrow, Phillip R.; Kang, Angray S

    2004-01-01

    Background Potent anthrax toxin neutralizing human monoclonal antibodies were generated from peripheral blood lymphocytes obtained from Anthrax Vaccine Adsorbed (AVA) immune donors. The anti-anthrax toxin human monoclonal antibodies were evaluated for neutralization of anthrax lethal toxin in vivo in the Fisher 344 rat bolus toxin challenge model. Methods Human peripheral blood lymphocytes from AVA immunized donors were engrafted into severe combined immunodeficient (SCID) mice. Vaccination w...

  17. High white blood cell count at diagnosis of childhood acute lymphoblastic leukaemia: biological background and prognostic impact. Results from the NOPHO ALL-92 and ALL-2000 studies

    DEFF Research Database (Denmark)

    Vaitkeviciene, G; Forestier, E; Hellebostad, M;

    2011-01-01

    Prognostic impact of peripheral blood white blood cell count (WBC) at the diagnosis of childhood acute lymphoblastic leukaemia (ALL) was evaluated in a population-based consecutive series of 2666 children aged 1–15 treated for ALL between 1992 and 2008 in the five Nordic countries (Denmark, Finland...

  18. Induced HBs antigenemia in healthy adults after immunization with two different hepatitis B recombinant vaccines

    OpenAIRE

    Masoud ZIAEE; Saádatjoo, Alireza; Mohamadpour, Malihe; Namaei, Mohammad Hasan

    2010-01-01

    Background and Aims Currently, vaccination is the most effective protective tool against hepatitis B virus infection. Some studies have shown that positive results for a hepatitis B virus surface antigen (HBsAg) test may be seen after vaccination. Materials and Methods In this clinical trial study, 62 healthy adult volunteers were randomly assigned to receive either the Engerix-B or the Hepavax-Gene hepatitis B recombinant vaccine. Blood samples were drawn 1, 3, and 5 days after vaccination a...

  19. Oral vaccination of fish

    OpenAIRE

    Embregts, Carmen W.E.; Forlenza, Maria

    2016-01-01

    The limited number of oral vaccines currently approved for use in humans and veterinary species clearly illustrates that development of efficacious and safe oral vaccines has been a challenge not only for fish immunologists. The insufficient efficacy of oral vaccines is partly due to antigen breakdown in the harsh gastric environment, but also to the high tolerogenic gut environment and to inadequate vaccine design. In this review we discuss current approaches used to develop oral vaccines fo...

  20. Towards universal influenza vaccines?

    OpenAIRE

    Osterhaus, Ab; Fouchier, Ron; Rimmelzwaan, Guus

    2011-01-01

    Vaccination is the most cost-effective way to reduce the considerable disease burden of seasonal influenza. Although seasonal influenza vaccines are effective, their performance in the elderly and immunocompromised individuals would benefit from improvement. Major problems related to the development and production of pandemic influenza vaccines are response time and production capacity as well as vaccine efficacy and safety. Several improvements can be envisaged. Vaccine production technologi...

  1. Vaccines against poverty

    OpenAIRE

    MacLennan, Calman A.; Saul, Allan

    2014-01-01

    With the 2010s declared the Decade of Vaccines, and Millennium Development Goals 4 and 5 focused on reducing diseases that are potentially vaccine preventable, now is an exciting time for vaccines against poverty, that is, vaccines against diseases that disproportionately affect low- and middle-income countries (LMICs). The Global Burden of Disease Study 2010 has helped better understand which vaccines are most needed. In 2012, US$1.3 billion was spent on research and development for new vacc...

  2. Testing for HIV

    Science.gov (United States)

    ... Medical Devices Radiation-Emitting Products Vaccines, Blood & Biologics Animal & Veterinary Cosmetics Tobacco Products Vaccines, Blood & Biologics Home Vaccines, Blood & Biologics Safety & Availability (Biologics) HIV Home Test Kits Testing for HIV Share Tweet Linkedin Pin it More ...

  3. Blood transfusions

    Science.gov (United States)

    ... called homologous blood donation. Many communities have a blood bank at which any healthy person can donate blood. ... need to arrange with your hospital or local blood bank before your surgery to have directed donor blood. ...

  4. Adjuvants for allergy vaccines.

    Science.gov (United States)

    Moingeon, Philippe

    2012-10-01

    Allergen-specific immunotherapy is currently performed via either the subcutaneous or sublingual routes as a treatment for type I (IgE dependent) allergies. Aluminum hydroxide or calcium phosphate are broadly used as adjuvants for subcutaneous allergy vaccines, whereas commercial sublingual vaccines rely upon high doses of aqueous allergen extracts in the absence of any immunopotentiator. Adjuvants to be included in the future in products for allergen specific immunotherapy should ideally enhance Th1 and CD4+ regulatory T cell responses. Imunomodulators impacting dendritic or T cell functions to induce IL10, IL12 and IFNγ production are being investigated in preclinical allergy models. Such candidate adjuvants encompass synthetic or biological immunopotentiators such as glucocorticoids, 1,25-dihydroxy vitamin D3, selected probiotic strains (e.g., Lactobacillus and Bifidobacterium species) as well as TLR2 (Pam3CSK4), TLR4 (monophosphoryl lipid A, synthetic lipid A analogs) or TLR9 (CpGs) ligands. Furthermore, the use of vector systems such as mucoadhesive particules, virus-like particles or liposomes are being considered to enhance allergen uptake by tolerogenic antigen presenting cells present in mucosal tissues.

  5. Association of IDDM and attenuated response of 2',5'-oligoadenylate synthetase to yellow fever vaccine

    DEFF Research Database (Denmark)

    Bonnevie-Nielsen, V; Larsen, M L; Frifelt, J J;

    1989-01-01

    Basal and yellow fever vaccination-induced 2',5'-oligoadenylate synthetase (2',5'A) activity was determined in blood mononuclear cells (peripheral blood lymphocytes [PBLs]) from insulin-dependent diabetes mellitus (IDDM) and matched control subjects. The live attenuated yellow fever vaccine repre...

  6. Recombinant vaccines and the development of new vaccine strategies

    Directory of Open Access Journals (Sweden)

    I.P. Nascimento

    2012-12-01

    Full Text Available Vaccines were initially developed on an empirical basis, relying mostly on attenuation or inactivation of pathogens. Advances in immunology, molecular biology, biochemistry, genomics, and proteomics have added new perspectives to the vaccinology field. The use of recombinant proteins allows the targeting of immune responses focused against few protective antigens. There are a variety of expression systems with different advantages, allowing the production of large quantities of proteins depending on the required characteristics. Live recombinant bacteria or viral vectors effectively stimulate the immune system as in natural infections and have intrinsic adjuvant properties. DNA vaccines, which consist of non-replicating plasmids, can induce strong long-term cellular immune responses. Prime-boost strategies combine different antigen delivery systems to broaden the immune response. In general, all of these strategies have shown advantages and disadvantages, and their use will depend on the knowledge of the mechanisms of infection of the target pathogen and of the immune response required for protection. In this review, we discuss some of the major breakthroughs that have been achieved using recombinant vaccine technologies, as well as new approaches and strategies for vaccine development, including potential shortcomings and risks.

  7. Recombinant vaccines and the development of new vaccine strategies

    International Nuclear Information System (INIS)

    Vaccines were initially developed on an empirical basis, relying mostly on attenuation or inactivation of pathogens. Advances in immunology, molecular biology, biochemistry, genomics, and proteomics have added new perspectives to the vaccinology field. The use of recombinant proteins allows the targeting of immune responses focused against few protective antigens. There are a variety of expression systems with different advantages, allowing the production of large quantities of proteins depending on the required characteristics. Live recombinant bacteria or viral vectors effectively stimulate the immune system as in natural infections and have intrinsic adjuvant properties. DNA vaccines, which consist of non-replicating plasmids, can induce strong long-term cellular immune responses. Prime-boost strategies combine different antigen delivery systems to broaden the immune response. In general, all of these strategies have shown advantages and disadvantages, and their use will depend on the knowledge of the mechanisms of infection of the target pathogen and of the immune response required for protection. In this review, we discuss some of the major breakthroughs that have been achieved using recombinant vaccine technologies, as well as new approaches and strategies for vaccine development, including potential shortcomings and risks

  8. Recombinant vaccines and the development of new vaccine strategies

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, I.P.; Leite, L.C.C. [Centro de Biotecnologia, Instituto Butantan, São Paulo, SP (Brazil)

    2012-09-07

    Vaccines were initially developed on an empirical basis, relying mostly on attenuation or inactivation of pathogens. Advances in immunology, molecular biology, biochemistry, genomics, and proteomics have added new perspectives to the vaccinology field. The use of recombinant proteins allows the targeting of immune responses focused against few protective antigens. There are a variety of expression systems with different advantages, allowing the production of large quantities of proteins depending on the required characteristics. Live recombinant bacteria or viral vectors effectively stimulate the immune system as in natural infections and have intrinsic adjuvant properties. DNA vaccines, which consist of non-replicating plasmids, can induce strong long-term cellular immune responses. Prime-boost strategies combine different antigen delivery systems to broaden the immune response. In general, all of these strategies have shown advantages and disadvantages, and their use will depend on the knowledge of the mechanisms of infection of the target pathogen and of the immune response required for protection. In this review, we discuss some of the major breakthroughs that have been achieved using recombinant vaccine technologies, as well as new approaches and strategies for vaccine development, including potential shortcomings and risks.

  9. IMMUNE RESPONSES OF GOATS (SHAMI BREED TO VACCINATION WITH A FULL, REDUCED AND CONJUNCTIVAL DOSE OF BRUCEVAC (BRUCELLA MELITENSIS REV.1 VACCINE

    Directory of Open Access Journals (Sweden)

    F. ALDOMY, M. ALKHAWALDEH1 AND I. B. YOUNIS

    2009-10-01

    Full Text Available Three groups of Shami goats were randomly vaccinated with Brucevac (Rev. 1 vaccine. Group 1 was vaccinated subcutaneously with a full dose (1.54 x 109 organisms. Group 2 was vaccinated conjunctively with one eye drop (5.2 x 108 organisms, while Group 3 was injected subcutaneously with a reduced dose (7.1 x 105 organisms of vaccine. Blood samples were collected before vaccination, two, four, eight, 15 and 24 weeks post vaccination. All samples were tested through CFT, ELISA, SAT and Rose Bengal plate test. All serological tests used detected a higher percentage of vaccinated female kids with a full dose than they did in other groups vaccinated with a reduced dose or with a conjunctival dose of Rev.1 vaccine. The overall results suggested that 100% of animals vaccinated with a conjunctival dose became positive to CFT at two, four, eight and 15 weeks post vaccination, and then the percentage of seropositive animals declined and became 20% at 24 weeks post inoculation. The conjunctival route of vaccination significantly reduced the intensity and duration of the post vaccination serological response, which makes the use of this vaccine compatible with brucellosis programmes, even when these are based on a test-and–slaughter policy. The overall results showed that Shami goats responded to Rev.1 vaccine in the expected way. The majority of animals were seropositive to the CFT by two weeks after vaccination with higher numbers of seropositive animals in the kids group vaccinated with a full dose of Rev.1 vaccine.

  10. Results of a survey of biological drug and device industries inspected by FDA under the Team Biologics Program.

    Science.gov (United States)

    Buchholz, Steve; Gangi, Victor J; Johnson, Anne; Little, Jacqueline; Mendivil, Steven; Trott, Carolyn; Webber, Keith; Weinstein, Mark

    2007-01-01

    The Product Quality Research Institute, in conjunction with the Food and Drug Administration, conducted an anonymous, electronic survey of the biological products manufacturing industry inspected by Team Biologics, with emphasis in obtaining industry input on inspection and compliance aspects of program operations. Representatives from all of the product-specific manufacturing industries inspected under the Team Biologics Program responded to this survey (vaccines; fractionated plasma proteins and recombinant analogs; allergenics; therapeutics and in-vivo diagnostics; and in-vitro diagnostics, including blood grouping reagents). Data and written feedback was obtained regarding each firm's interactions and experiences of Team Biologics inspections at its facilities over the past three years. The three areas most impacted by Team Biologic inspections were "Production and Process Controls", "Failure Investigations" and "Facility / Equipment Controls". Overall assessment of the program was generally positive with 68% identifying a positive impact on the sites operations and 88% assessed the inspections as being conducted fairly. The findings and conclusions of this report will be utilized by the FDA to evaluate and further assess the impact of the Team Biologics Program and to implement any necessary changes. This report provides useful information to companies currently manufacturing licensed biologic products subject to Team Biologics inspections and also to those companies anticipating these inspections for future product manufacturing.

  11. Typhoid fever vaccination strategies.

    Science.gov (United States)

    Date, Kashmira A; Bentsi-Enchill, Adwoa; Marks, Florian; Fox, Kimberley

    2015-06-19

    Typhoid vaccination is an important component of typhoid fever prevention and control, and is recommended for public health programmatic use in both endemic and outbreak settings. We reviewed experiences with various vaccination strategies using the currently available typhoid vaccines (injectable Vi polysaccharide vaccine [ViPS], oral Ty21a vaccine, and injectable typhoid conjugate vaccine [TCV]). We assessed the rationale, acceptability, effectiveness, impact and implementation lessons of these strategies to inform effective typhoid vaccination strategies for the future. Vaccination strategies were categorized by vaccine disease control strategy (preemptive use for endemic disease or to prevent an outbreak, and reactive use for outbreak control) and vaccine delivery strategy (community-based routine, community-based campaign and school-based). Almost all public health typhoid vaccination programs used ViPS vaccine and have been in countries of Asia, with one example in the Pacific and one experience using the Ty21a vaccine in South America. All vaccination strategies were found to be acceptable, feasible and effective in the settings evaluated; evidence of impact, where available, was strongest in endemic settings and in the short- to medium-term. Vaccination was cost-effective in high-incidence but not low-incidence settings. Experience in disaster and outbreak settings remains limited. TCVs have recently become available and none are WHO-prequalified yet; no program experience with TCVs was found in published literature. Despite the demonstrated success of several typhoid vaccination strategies, typhoid vaccines remain underused. Implementation lessons should be applied to design optimal vaccination strategies using TCVs which have several anticipated advantages, such as potential for use in infant immunization programs and longer duration of protection, over the ViPS and Ty21a vaccines for typhoid prevention and control.

  12. Is obesity a risk factor for vaccine non-responsiveness?

    Directory of Open Access Journals (Sweden)

    Katherine M Young

    Full Text Available Understanding the link between vaccine immunogenicity and efficacy is currently a major focus in HIV research. Consequently, recent developments in the HIV-1 vaccine field have led to a closer look at immune responses to known efficacious vaccines. We undertook a study to explore clinical predictors of vaccine efficacy following recombinant hepatitis B (rHBV vaccination in a cohort of HIV-uninfected, hepatitis B virus naïve women living in a peri-urban setting in Cape Town. Our aim was to define host biological risk factors associated with lack of vaccine uptake. We found a significant association (p=0.009 between body mass index (BMI and lack of vaccine-specific IgG titre (<10 mIU/mL. Obese individuals (BMI ≥ 30 kg/m(2 were significantly more likely to be non-responders following 2 rHBV vaccine doses (Adjusted Odds Ratio of 8.75; p=0.043. There was no observed association between vaccine responses and age, method of contraception or time from vaccination to antibody measurement. These data suggest that obesity-associated factors interfere with vaccine immunogenicity and possible efficacy.

  13. Large animal models for vaccine development and testing.

    Science.gov (United States)

    Gerdts, Volker; Wilson, Heather L; Meurens, Francois; van Drunen Littel-van den Hurk, Sylvia; Wilson, Don; Walker, Stewart; Wheler, Colette; Townsend, Hugh; Potter, Andrew A

    2015-01-01

    The development of human vaccines continues to rely on the use of animals for research. Regulatory authorities require novel vaccine candidates to undergo preclinical assessment in animal models before being permitted to enter the clinical phase in human subjects. Substantial progress has been made in recent years in reducing and replacing the number of animals used for preclinical vaccine research through the use of bioinformatics and computational biology to design new vaccine candidates. However, the ultimate goal of a new vaccine is to instruct the immune system to elicit an effective immune response against the pathogen of interest, and no alternatives to live animal use currently exist for evaluation of this response. Studies identifying the mechanisms of immune protection; determining the optimal route and formulation of vaccines; establishing the duration and onset of immunity, as well as the safety and efficacy of new vaccines, must be performed in a living system. Importantly, no single animal model provides all the information required for advancing a new vaccine through the preclinical stage, and research over the last two decades has highlighted that large animals more accurately predict vaccine outcome in humans than do other models. Here we review the advantages and disadvantages of large animal models for human vaccine development and demonstrate that much of the success in bringing a new vaccine to market depends on choosing the most appropriate animal model for preclinical testing.

  14. Large animal models for vaccine development and testing.

    Science.gov (United States)

    Gerdts, Volker; Wilson, Heather L; Meurens, Francois; van Drunen Littel-van den Hurk, Sylvia; Wilson, Don; Walker, Stewart; Wheler, Colette; Townsend, Hugh; Potter, Andrew A

    2015-01-01

    The development of human vaccines continues to rely on the use of animals for research. Regulatory authorities require novel vaccine candidates to undergo preclinical assessment in animal models before being permitted to enter the clinical phase in human subjects. Substantial progress has been made in recent years in reducing and replacing the number of animals used for preclinical vaccine research through the use of bioinformatics and computational biology to design new vaccine candidates. However, the ultimate goal of a new vaccine is to instruct the immune system to elicit an effective immune response against the pathogen of interest, and no alternatives to live animal use currently exist for evaluation of this response. Studies identifying the mechanisms of immune protection; determining the optimal route and formulation of vaccines; establishing the duration and onset of immunity, as well as the safety and efficacy of new vaccines, must be performed in a living system. Importantly, no single animal model provides all the information required for advancing a new vaccine through the preclinical stage, and research over the last two decades has highlighted that large animals more accurately predict vaccine outcome in humans than do other models. Here we review the advantages and disadvantages of large animal models for human vaccine development and demonstrate that much of the success in bringing a new vaccine to market depends on choosing the most appropriate animal model for preclinical testing. PMID:25991698

  15. Who Should Not Get Vaccinated with These Vaccines?

    Science.gov (United States)

    ... be updated.) Top of Page HPV-Cervarix (Human Papillomavirus) vaccine Some people should not get HPV vaccine or ... updated.) Top of Page HPV-Gardasil-9 (Human Papillomavirus) vaccine Some people should not get HPV vaccine. Anyone ...

  16. [The biological significance of the genetically determined Se-se human blood group and its effect on the antibody formation process in donors immunized with staphylococcal anatoxin].

    Science.gov (United States)

    Patoka, V V

    1999-01-01

    82 blood donors have been observed, 63 of them were immunized. Blood group ABO(H), secreting group Se--se and Staphylococcus antibody contents (anti-alpha-staphylolysins) were determined in all the donors. It was found out that the donors-secretors with A(II) blood group exhibited the antibody-production increasing. It is supposed that the secreting of group-specific substance A, that has structural elements similar those of staphylococcus into saliva promotes antibody production increase against staphylococcus. The mechanism of such specific stimulation remains to be unknown and requires further studying. PMID:10687067

  17. Lactococcus lactis-based vaccines from laboratory bench to human use: an overview.

    Science.gov (United States)

    Bahey-El-Din, Mohammed

    2012-01-17

    Developing effective vaccines is an important weapon in the battle against potential pathogens and their evolving antibiotic resistance trends. Several vaccine delivery vectors have been investigated among which the generally regarded as safe (GRAS) Lactococcus lactis has a distinguished position. In this review, different factors affecting the efficacy of L. lactis-based vaccines are discussed. In addition, the issues of biological containment and pharmaceutical quality assurance of L. lactis vaccines are highlighted. These issues are critical for the success of medical translation of L. lactis-based vaccines from research laboratories to clinical use by ensuring consistent manufacturing of safe and efficacious vaccines.

  18. Producing, controlling, and stabilizing Pasteur's anthrax vaccine: creating a new industry and a health market.

    Science.gov (United States)

    Cassier, Maurice

    2008-06-01

    When Pasteur and Chamberland hastily set up their small biological industry to meet the agricultural demand for the anthrax vaccine, their methods for preparation and production had not yet been stabilized. The process of learning how to standardize biological products was accelerated in 1882 when vaccination accidents required the revision of production norms as the first hypotheses on fixity, inalterability, and transportability of vaccines were invalidated and replaced by procedures for continuous monitoring of the calibration of vaccines and the renewal of vaccine strains. Initially, the incompleteness and ongoing development of production standards justified Pasteur's monopoly on the production of the anthrax vaccine under his immediate supervision. Later on, the Pasteur Institute maintained control of these standards in the framework of a commercial monopoly that it established on the veterinary vaccines first sent and then cultivated abroad by the Société de Vulgarisation du Vaccin Charbonneux Pasteur, founded in 1886.

  19. Vaccinomics, the new road to tick vaccines.

    Science.gov (United States)

    de la Fuente, José; Merino, Octavio

    2013-12-01

    Ticks are a threat to human and animal health worldwide. Ticks are considered to be second worldwide to mosquitoes as vectors of human diseases, the most important vectors of diseases that affect cattle industry worldwide and important vectors of diseases affecting pets. Tick vaccines are a cost-effective and environmentally friendly alternative to protect against tick-borne diseases through the control of vector infestations and reducing pathogen infection and transmission. These premises stress the need for developing improved tick vaccines in a more efficient way. In this context, development of improved vaccines for tick-borne diseases will be greatly enhanced by vaccinomics approaches starting from the study of tick–host–pathogen molecular interactions and ending in the characterization and validation of vaccine formulations. The discovery of new candidate vaccine antigens for the control of tick infestations and pathogen infection and transmission requires the development of effective screening platforms and algorithms that allow the analysis and validation of data produced by systems biology approaches to tick research. Tick vaccines that affect both tick infestations and pathogen transmission could be used to vaccinate human and animal populations at risk and reservoir species to reduce host exposure to ticks while reducing the number of infected ticks and their vectorial capacity for pathogens that affect human and animal health worldwide. PMID:24396872

  20. Rotavirus vaccine: a review.

    Science.gov (United States)

    Kumar, Goel Manish; Arun, Kumar; Bilas, Jain Ram; Ruchi, Jain; Pardeep, Khanna; Pradeep, Siwach

    2012-12-01

    Worldwide, large proportion i.e., 37% of deaths due to diarrhea in young children is attributed to rotavirus. A monovalent P1A[8] G1 vaccine and a pentavalent bovine-human reassortant vaccine human rotavirus vaccine had shown good clinical efficacy without any increase in intussusception among vaccine recipients. WHO recommends that the first dose of rotavirus vaccine should be administered to infants up to age of 6-15 weeks irrespective of the prior history of rotavirus infection and the maximum age for administering the last dose of the vaccine should be 32 weeks. Booster doses are not recommended. The current update reviews the issues related to rotavirus vaccines and their usages like milestones in the development of rotavirus vaccines, concerns regarding their efficacy and cost-effectiveness, immunity after natural infection, potential for changes in virus strains, current recommendations, post marketing surveillance, and future challenges and scope for further research regarding rotavirus vaccines. PMID:25145068

  1. Commercialisation of a recombinant vaccine against Boophilus microplus.

    Science.gov (United States)

    Willadsen, P; Bird, P; Cobon, G S; Hungerford, J

    1995-01-01

    Increasingly, there is need for methods to control cattle tick (Boophilus microplus) infestations by the use of non-chemical technology. This need is brought about by a mixture of market forces and the failure or inadequacy of existing technology. A recombinant vaccine has now been developed against the tick. This vaccine relies on the uptake with the blood meal of antibody directed against a critical protein in the tick gut. The isolation of the vaccine antigen, Bm86, and its production as a recombinant protein is briefly described. The vaccine has been tested in the field, has been taken through the full registration process and is now in commercial use in Australia. A related development has occurred in Cuba. The potential for improvement of the current vaccine and for the development of similar vaccines against other haematophagous parasites is discussed. PMID:7784128

  2. Influenza virus vaccination and kidney graft rejection: causality or coincidence.

    Science.gov (United States)

    Fischer, Anne Sophie Lind; Møller, Bjarne Kuno; Krag, Søren; Jespersen, Bente

    2015-06-01

    Influenza can cause significant morbidity and mortality in renal transplant recipients especially with a high rate of lower respiratory disease. Annual influenza vaccination is therefore recommended to renal transplant recipients. We report the first three cases of acute kidney injury in renal transplant recipients following influenza vaccination that all led to graft loss. They all had different native diseases and were all vaccinated in the same season of 2009-10. The time span from vaccination to decline of kidney function is shorter than the time to diagnosis since the three patients only had blood tests every 3 months or when symptoms became severe. These reports do not justify a change of current recommendations regarding influenza vaccination in renal transplant recipients, but they support the continued attention and registration of vaccinations to monitor side effects. PMID:26034595

  3. Vaccines, reverse vaccinology, and bacterial pathogenesis.

    Science.gov (United States)

    Delany, Isabel; Rappuoli, Rino; Seib, Kate L

    2013-05-01

    Advances in genomics and innovative strategies such as reverse vaccinology have changed the concepts and approaches to vaccine candidate selection and design. Genome mining and blind selection of novel antigens provide a novel route to investigate the mechanisms that underpin pathogenesis. The resulting lists of novel candidates are revealing new aspects of pathogenesis of target organisms, which in turn drives the rational design of optimal vaccine antigens. Here we use the discovery, characterization, and exploitation of fHbp, a vaccine candidate and key virulence factor of meningococcus, as an illustrative case in point. Applying genomic approaches to study both the pathogen and host will ultimately increase our fundamental understanding of pathogen biology, mechanisms responsible for the development of protective immunity, and guide next-generation vaccine design. PMID:23637311

  4. Diphtheria Vaccination: Who Needs It?

    Science.gov (United States)

    ... and adults - Tetanus-diphtheria-acellular Pertussis vaccine Diphtheria Vaccination: Who Needs It? Recommend on Facebook Tweet Share ... Vaccine Information Statement (VIS) See also: Healthcare Personnel Vaccination Recommendations [1 page] July 2008 Top of Page ...

  5. 75 FR 48712 - Proposed Vaccine Information Materials for Influenza Vaccine

    Science.gov (United States)

    2010-08-11

    ..., rotavirus, hepatitis A, meningococcal, human papillomavirus (HPV), and trivalent influenza vaccines.... People who got the 2009 H1N1 vaccine still need to get vaccinated with the 2010-2011 influenza vaccine... always changing. Because of this, influenza vaccines are updated every year, and an annual vaccination...

  6. Sex-based differences in immune function and responses to vaccination

    Science.gov (United States)

    Klein, Sabra L.; Marriott, Ian; Fish, Eleanor N.

    2015-01-01

    Females typically develop higher antibody responses and experience more adverse reactions following vaccination than males. These differences are observed in response to diverse vaccines, including the bacillus Calmette-Guerin vaccine, the measles, mumps and rubella vaccine, the yellow fever virus vaccine and influenza vaccines. Sex differences in the responses to vaccines are observed across diverse age groups, ranging from infants to aged individuals. Biological as well as behavioral differences between the sexes are likely to contribute to differences in the outcome of vaccination between the sexes. Immunological, hormonal, genetic and microbiota differences between males and females may also affect the outcome of vaccination. Identifying ways to reduce adverse reactions in females and increase immune responses in males will be necessary to adequately protect both sexes against infectious diseases. PMID:25573105

  7. Analysis behaviour of free radicals produced by ionizing radiations in human blood by EPR for biological dosimetry in patients; Analisis del comportamiento de los radicales libre en la radiolisis de la sangre por EPR para dosimetria biologia en pacientes

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza, O. O.; Almanza, A.; Plazas, M. M. C.

    2006-07-01

    In this work is analyzed the biological dosimetry of the free radicals produced by ionizing radiations in human blood obtained by EPR and the biological behaviour of samples In-Vitro, with Rh: O+, in tubes with EDTA (Acid Etilen Diamino Tetracetic) the samples was extracted of the main investigator, these samples were radiated with gammas of ''60Co of a Theratron 780 between plates of PMMA to a depth of Z{sub m}ax of 0.5 cm and between doses 1 to 25 Gy. In these results the behaviors of signal the free radicals presented a increasing a their intensity depending on applied dose, of equal way are results of the biologic dosimetry displayed in sanguineous populations like. White Globules, Red. Platelets etc, to being compared with Resonance Paramagnetic Electronic (EPR). The results show changes in sanguineous populations in high doses (D>10 Gy) in the case of lymphocytes, granulocitos, macusanita, plaquetas, hemoglobina, haematocrit with change similarly in medium and low doses (D>10Gy) in linfocites, platelets, granulocytes, monocytes and the haematocrit. A sanguineous sample without radiating analyzes by EPR giving the presence of signals with values of g=2.13 2,41 in blood. For the first certain value of g authors have associated it to free radicals like: globin (Fe(IV)=0) or Cu''+ incorporated to the ceruloplasmin molecule. (Author)

  8. The relationship between RTS,S vaccine-induced antibodies, CD4⁺ T cell responses and protection against Plasmodium falciparum infection.

    Directory of Open Access Journals (Sweden)

    Michael T White

    Full Text Available Vaccination with the pre-erythrocytic malaria vaccine RTS,S induces high levels of antibodies and CD4(+ T cells specific for the circumsporozoite protein (CSP. Using a biologically-motivated mathematical model of sporozoite infection fitted to data from malaria-naive adults vaccinated with RTS,S and subjected to experimental P. falciparum challenge, we characterised the relationship between antibodies, CD4(+ T cell responses and protection from infection. Both anti-CSP antibody titres and CSP-specific CD4(+ T cells were identified as immunological surrogates of protection, with RTS,S induced anti-CSP antibodies estimated to prevent 32% (95% confidence interval (CI 24%-41% of infections. The addition of RTS,S-induced CSP-specific CD4(+ T cells was estimated to increase vaccine efficacy against infection to 40% (95% CI, 34%-48%. This protective efficacy is estimated to result from a 96.1% (95% CI, 93.4%-97.8% reduction in the liver-to-blood parasite inoculum, indicating that in volunteers who developed P. falciparum infection, a small number of parasites (often the progeny of a single surviving sporozoite are responsible for breakthrough blood-stage infections.

  9. Female contraceptive vaccine possible, but not for years.

    Science.gov (United States)

    1989-10-01

    Researchers are presently testing 2 types of contraceptive vaccines in animal models. One of these is the sperm antigen vaccine which would cause immunity to sperm within the female reproductive tract. The other works against the zona pellucida (the extracellular membrane surrounding the ovum) which the sperm must bind to and penetrate for fertilization to take place. At this time, researchers do not yet know what vaccine is the best route. The sperm antigen vaccine would inhibit capacitation--that stage where they become capable of fertilizing the ovum. The researchers foresee certain problems with this vaccine, however. For example, it will be difficult to get a vaccine to work properly within just the reproductive tract since most antigen vaccines work within the entire immune system. Further, all the areas of the reproductive tract are biologically different. In addition, researchers must find a vaccine potent enough to affect the millions of sperm that enter the uterus. A potential problem with the zona pellucida vaccine is that it could create ovarian dysfunction permanently. Therefore, researchers realize the importance of finding a zona pellucida vaccine that will induce fertilization but not destroy the ovaries. WHO is in the early stages of working on a vaccine against human chorionic gonadotropin to prevent implantation, but this and any postfertilization vaccine will probably not be produced for the US market because of the present antiabortion sentiment. Additional barriers to production of a contraceptive vaccine is that pharmaceutical companies fear liability in marketing a new contraceptive and their profit margin will be low. Nevertheless, the earliest a contraceptive vaccine would become available in 1999.

  10. The changing face of HIV vaccine research

    Directory of Open Access Journals (Sweden)

    Gary J Nabel

    2012-07-01

    Full Text Available While there has been remarkable progress in understanding the biology of HIV-1 and its recognition by the human immune system, we have not yet developed an efficacious HIV-1 vaccine. Vaccine challenges include the genetic diversity and mutability of HIV-1 which create a plethora of constantly changing antigens, the structural features of the viral envelope glycoprotein that disguise conserved receptor-binding sites from the immune system, and the presence of carbohydrate moieties that shield potential epitopes from antibodies. Despite these challenges, there has been significant scientific progress in recent years. In 2009, a large-scale clinical trial known as RV144 demonstrated that a HIV-1 vaccine could modestly reduce the incidence of HIV-1 infection. Further, the identification of broadly neutralizing monoclonal antibodies (such as VRC01, a human monoclonal antibody capable of neutralizing over 90% of natural HIV-1 isolates, as well as PG and PGT antibodies that recognize conserved glycopeptide epitopes has revealed new opportunities for vaccine design. Our ability to understand HIV-1 structure and antibody epitopes at the atomic level, the rapid advance of computational and bioinformatics approaches to immunogen design, and our newly acquired knowledge that it is possible for a vaccine to reduce the risk of HIV-1 infection, have all opened up new and promising pathways towards the development of an urgently needed effective HIV-1 vaccine. This article summarizes challenges to the development of an HIV-1 vaccine, lessons learned from scientific investigation and completed vaccine trials, and promising developments in HIV-1 vaccine design.

  11. A single vaccination with an improved nonspreading Rift Valley fever virus vaccine provides sterile immunity in lambs.

    Directory of Open Access Journals (Sweden)

    Nadia Oreshkova

    Full Text Available Rift Valley fever virus (RVFV is an important pathogen that affects ruminants and humans. Recently we developed a vaccine based on nonspreading RVFV (NSR and showed that a single vaccination with this vaccine protects lambs from viremia and clinical signs. However, low levels of viral RNA were detected in the blood of vaccinated lambs shortly after challenge infection. These low levels of virus, when present in a pregnant ewe, could potentially infect the highly susceptible fetus. We therefore aimed to further improve the efficacy of the NSR vaccine. Here we report the expression of Gn, the major immunogenic protein of the virus, from the NSR genome. The resulting NSR-Gn vaccine was shown to elicit superior CD8 and CD4-restricted memory responses and improved virus neutralization titers in mice. A dose titration study in lambs revealed that the highest vaccination dose of 10(6.3 TCID50/ml protected all lambs from clinical signs and viremia. The lambs developed neutralizing antibodies within three weeks after vaccination and no anamnestic responses were observed following challenge. The combined results suggest that sterile immunity was achieved by a single vaccination with the NSR-Gn vaccine.

  12. A single vaccination with an improved nonspreading Rift Valley fever virus vaccine provides sterile immunity in lambs.

    Science.gov (United States)

    Oreshkova, Nadia; van Keulen, Lucien; Kant, Jet; Moormann, Rob J M; Kortekaas, Jeroen

    2013-01-01

    Rift Valley fever virus (RVFV) is an important pathogen that affects ruminants and humans. Recently we developed a vaccine based on nonspreading RVFV (NSR) and showed that a single vaccination with this vaccine protects lambs from viremia and clinical signs. However, low levels of viral RNA were detected in the blood of vaccinated lambs shortly after challenge infection. These low levels of virus, when present in a pregnant ewe, could potentially infect the highly susceptible fetus. We therefore aimed to further improve the efficacy of the NSR vaccine. Here we report the expression of Gn, the major immunogenic protein of the virus, from the NSR genome. The resulting NSR-Gn vaccine was shown to elicit superior CD8 and CD4-restricted memory responses and improved virus neutralization titers in mice. A dose titration study in lambs revealed that the highest vaccination dose of 10(6.3) TCID50/ml protected all lambs from clinical signs and viremia. The lambs developed neutralizing antibodies within three weeks after vaccination and no anamnestic responses were observed following challenge. The combined results suggest that sterile immunity was achieved by a single vaccination with the NSR-Gn vaccine.

  13. Optimal vaccination strategies against vector-borne diseases

    DEFF Research Database (Denmark)

    Græsbøll, Kaare; Enøe, Claes; Bødker, Rene;

    2014-01-01

    Using a process oriented semi-agent based model, we simulated the spread of Bluetongue virus by Culicoides, biting midges, between cattle in Denmark. We evaluated the minimum vaccination cover and minimum cost for eight different preventive vaccination strategies in Denmark. The simulation model...... replicates both a passive and active flight of midges between cattle distributed on pastures and cattle farms in Denmark. A seasonal abundance of midges and temperature dependence of biological processes were included in the model. The eight vaccination strategies were investigated under four different...... grazing conditions. Furthermore, scenarios were tested with three different index locations stratified for cattle density. The cheapest way to vaccinate cattle with a medium risk profile (less than 1000 total affected cattle) was to vaccinate cattle on pasture. Regional vaccination displayed better...

  14. Malaria vaccines:looking back and lessons learnt

    Institute of Scientific and Technical Information of China (English)

    Veronique; Lorenz; Panagiotis; Karanis

    2011-01-01

    The current status of malaria vaccine approaches has the background of a long and arduous path of malaria disease control and vaccine development.Here,we critically review with regard to unilateral interventional approaches and highlight the impact of socioeconomic elements of malaria endemicity. The necessity of re-energizing basic research of malaria life-cycle and Plasmodium developmental biology to provide the basis for promising and cost-effective vaccine approaches and to reach eradication goals is more urgent than previously believed.We closely analyse the flaws of various vaccine approaches,outline future directions and challenges that still face us and conclude that the focus of the field must be shifted to the basic research efforts including findings on the skin stage of infection.We also reflect on economic factors of vaccine development and the impact of public perception when it comes to vaccine uptake.

  15. HIV-1 Polymorphism: a Challenge for Vaccine Development - A Review

    Directory of Open Access Journals (Sweden)

    Morgado MG

    2002-01-01

    Full Text Available The perspective for the development of anti-HIV/AIDS vaccines became a target sought by several research groups and pharmaceutical companies. However, the complex virus biology in addition to a striking genetic variability and the limited understanding of the immunological correlates of protection have made this an enormous scientific challenge not overcome so far. In this review we presented an updating of HIV-1 subtypes and recombinant viruses circulating in South American countries, focusing mainly on Brazil, as one of the challenges for HIV vaccine development. Moreover, we discussed the importance of stimulating developing countries to participate in the process of vaccine evaluation, not only testing vaccines according to already defined protocols, but also working together with them, in order to take into consideration their local information on virus diversity and host genetic background relevant for the vaccine development and testing, as well as including local virus based reagents to evaluate the immunogenicity of the candidate vaccines.

  16. Key Facts about Seasonal Flu Vaccine

    Science.gov (United States)

    ... flu is to get vaccinated each year. Flu Vaccination Why should people get vaccinated against the flu? ... Vaccine Benefits What are the benefits of flu vaccination? While how well the flu vaccine works can ...

  17. Maternal supplementation with LGG reduces vaccine-specific immune responses in infants at high-risk of developing allergic disease

    Directory of Open Access Journals (Sweden)

    Paul V Licciardi

    2013-11-01

    Full Text Available Probiotics are defined as live micro-organisms that when administered in adequate amounts confer a health benefit on the host. Among their pleiotropic effects, inhibition of pathogen colonisation at the mucosal surface as well as modulation of immune responses are widely recognised as the principal biological activities of probiotic bacteria. In recent times, the immune effects of probiotics have led to their application as vaccine adjuvants, offering a novel strategy for enhancing the efficacy of current vaccines. Such an approach is particularly relevant in regions where infectious disease burden is greatest and where access to complete vaccination programs is limited. In this study, we report the effects of the probiotic, Lactobacillus rhamnosus GG (LGG on immune responses to tetanus, Haemophilus influenzae type b (Hib and pneumococcal conjugate (PCV7 vaccines in infants. This study was conducted as part of a larger clinical trial assessing the impact of maternal LGG supplementation in preventing the development of atopic eczema in infants at high-risk for developing allergic disease. Maternal LGG supplementation was associated with reduced antibody responses against tetanus, Hib and pneumococcal serotypes contained in PCV7 (N=31 compared to placebo-treatment (N=30 but not total IgG levels. Maternal LGG supplementation was also associated with a trend to increased number of tetanus toxoid-specific Treg in the peripheral blood compared to placebo-treated infants. These findings suggest that maternal LGG supplementation may not be beneficial in terms of improving vaccine-specific immunity in infants. Further clinical studies are needed to confirm these findings. As probiotic immune effects can be species/strain specific, our findings do not exclude the potential use of other probiotic bacteria to modulate infant immune responses to vaccines.

  18. Pertussis (Whooping Cough) Vaccination

    Science.gov (United States)

    ... Tdap= Tetanus-diphtheria-acellular Pertussis vaccine Pertussis (Whooping Cough) Vaccination Pronounced (per-TUS-iss) Recommend on Facebook Tweet Share Compartir Whooping cough — known medically as pertussis — is a ...

  19. Screening Tests and Vaccines

    Science.gov (United States)

    ... Contact Us Text size | Print | Screening Tests and Vaccines This information in Spanish ( en español ) Getting important screening tests and vaccines can save your life. Check this section of ...

  20. Vaccine Safety Datalink

    Science.gov (United States)

    The Vaccine Safety Datalink is part of the National Immunization Program within the Centers for Disease Control and Prevention and was started in recognition of gaps in the scientific knowledge of rare vaccine side effects.

  1. The HPV Vaccination Crisis

    Science.gov (United States)

    Following the release of a consensus statement from the NCI-Designated Cancer Centers urging HPV vaccination in the United States, Dr. Noel Brewer discusses the country’s low vaccination rates and how clinicians can help to improve them.

  2. Blood culture

    Science.gov (United States)

    Culture - blood ... A blood sample is needed . The site where blood will be drawn is first cleaned with an antiseptic such ... organism from the skin getting into (contaminating) the blood sample and causing a false-positive result (see ...

  3. Blood Thinners

    Science.gov (United States)

    If you have some kinds of heart or blood vessel disease, or if you have poor blood flow to your brain, your doctor may recommend that you take a blood thinner. Blood thinners reduce the risk of heart ...

  4. Blood Basics

    Science.gov (United States)

    ... Patient Group Links Advocacy Toolkit Home For Patients Blood Basics Blood is a specialized body fluid. It ... about 9 pints. Jump To: The Components of Blood and Their Importance Many people have undergone blood ...

  5. Blood pressure

    Science.gov (United States)

    ... the walls of the arteries is called blood pressure. Blood pressure is measured both as the heart contracts, which ... as it relaxes, which is called diastole. Normal blood pressure is considered to be a systolic blood pressure ...

  6. Developing Anti-tick Vaccines.

    Science.gov (United States)

    Rodríguez-Mallon, Alina

    2016-01-01

    Ticks are responsible for the transmission of viral, bacterial, and protozoal diseases of man and animals and also produce significant economic losses to cattle industry. The use of acaricides constitutes a major component of integrated tick control strategies. However, this is accompanied by the selection of acaricide-resistant ticks and contamination of environment and milk and meat products with drug residues. These issues highlight the need for alternative approaches to control tick infestations and have triggered the search for tick protective antigens for vaccine development. Vaccination as a tick control method has been practiced since the introduction of TickGARD and Gavac that were developed using the midgut glycoprotein Bm86 as antigen. Gavac within integrated tick management systems has proven to reduce the number of acaricidal applications per year that are required to control some strains of R. microplus ticks in different geographical regions. Nevertheless, it has limited or no efficacy against other tick species. These issues have stimulated research for additional tick protective antigens with critical functions in the tick. This chapter presents methodologies for the design and test of molecules as antigens against ticks. Considerations about different methods for the tick control compared to the immunological methods, the desirable characteristics for an anti-tick vaccine and the obstacles encountered for developing this kind of vaccines are discussed. Detailed methodologies for the establishment of a biological model to test new molecules as immunogens against ticks and to perform challenge trials with this model are presented. General considerations in the efficacy calculation for any anti-tick vaccine are also discussed. PMID:27076303

  7. 表达ESAT-6-gpi和IL-21的B16F10瘤苗的构建及其活性鉴定%Construction of B16F10 tumor vaccine expressing ESAT-6-gpi and IL-21 and identification of its biological activity

    Institute of Scientific and Technical Information of China (English)

    何向锋; 王净; 余方流; 赵枫姝; 张洪义; 曹文虎; 窦骏

    2011-01-01

    为构建膜表达糖基化磷脂酰肌醇(GPI)锚定的结核杆菌早期分泌靶抗原6 kD(ESAT-6 )和分泌IL-21的B16F10瘤苗并鉴定其活性,利用重叠PCR法构建pIRES-ESAT-6-gpi/IL-21重组质粒,以脂质体转染重组质粒到B16F10细胞,G418筛选出阳性克隆,用RT-PCR、免疫荧光、FCM和Western blot检测瘤苗细胞靶抗原表达,用瘤苗细胞培养上清刺激小鼠CD8+ T细胞,检测瘤苗所分泌IL-21的生物学活性.结果表明,pIRES-ESAT-6-gpi/IL-21重组质粒DNA测序正确,B16F10-ESAT-6-gpi/IL-21瘤苗细胞目的基因ESAT-6表达于瘤苗细胞表面,增殖能力未受外源基因导入影响,分泌的IL-21具有生物学活性,为研究膜表达ESAT-6和分泌表达IL-21瘤苗的抗瘤效应奠定了基础.%To construct B16F10 tumor vaccine that express the IL-21 and the 6 kDearly secreted antigenic target(ESAT-6) anchored by glycosylated phosphatidylinositol (GPI) on cell membrane and to identify its biological activity, plasmid recombination method based on overlap extension PCR was used to construct the eukaryotic expression vector for pIRES-ESAT-6-gpi/IL-21, then the melanoma B16F10 cells were transfected with the recombinant plasmid. The expressions of the fused protein and IL-21 were determined by RT-PCR. Immunofluorescence, FCM, Western blot assay, respectively. Mouse splenocytes were cultivated with supernatant from the tumor vaccine cells to detect the biological activity of IL-21 secreted by tumor vaccine cells. It was demonstrated that the ESAT-6 target molecule was expressed on the surface of B16F10-ESAT-6-gpi/IL-21 tumor vaccine cells, and the exogenous gene did not affect the proliferation of vaccine cells. Furthermore, the IL-21 secreted from vaccine cells has biological activity. The stable transfected B16F10-ESAT-6-gpi/IL-21 tumor vaccine cell line was successfully constructed and the vaccine could be used for further anti-tumor research.

  8. Biological Monitoring of Blood Naphthalene Levels as a Marker of Occupational Exposure to PAHs among Auto-Mechanics and Spray Painters in Rawalpindi

    Directory of Open Access Journals (Sweden)

    Cheema Iqbal U

    2011-06-01

    Full Text Available Abstract Background Routine exposure to chemical contaminants in workplace is a cause for concern over potential health risks to workers. In Pakistan, reports on occupational exposure and related health risks are almost non-existent, which reflects the scarce availability of survey data and criteria for determining whether an unsafe exposure has occurred. The current study was designed to evaluate blood naphthalene (NAPH levels as an indicator of exposure to polycyclic aromatic hydrocarbons (PAHs among automobile workshop mechanics (MCs and car-spray painters (PNs. We further determined the relationship between blood NAPH levels and personal behavioural, job related parameters and various environmental factors that may further be associated with elevated risks of occupational exposures to PAHs. Methods Sixty blood samples (n = 20 for each group i.e. MC, PN and control group were collected to compare their blood NAPH levels among exposed (MCs and PNs and un-exposed (control groups. Samples were analyzed using high pressure liquid chromatography (HPLC. Data regarding demographic aspects of the subjects and their socioeconomic features were collected using a questionnaire. Subjects were also asked to report environmental hygiene conditions of their occupational environment. Results We identified automobile work areas as potential sites for PAHs exposure, which was reflected by higher blood NAPH levels among MCs. Blood NAPH levels ranged from 53.7 to 1980.6 μgL-1 and 54.1 to 892.9 μgL-1 among MCs and PNs respectively. Comparison within each group showed that smoking enhanced exposure risks several fold and both active and passive smoking were among personal parameters that were significantly correlated with log-transformed blood NAPH levels. For exposed groups, work hours and work experience were job related parameters that showed strong associations with the increase in blood NAPH levels. Poor workplace hygiene and ventilation were recognized as

  9. Anti-Infectious Human Vaccination in Historical Perspective.

    Science.gov (United States)

    D'Amelio, Enrico; Salemi, Simonetta; D'Amelio, Raffaele

    2016-05-01

    A brief history of vaccination is presented since the Jenner's observation, through the first golden age of vaccinology (from Pasteur's era to 1938), the second golden age (from 1940 to 1970), until the current period. In the first golden age, live, such as Bacille Calmette Guérin (BCG), and yellow fever, inactivated, such as typhoid, cholera, plague, and influenza, and subunit vaccines, such as tetanus and diphtheria toxoids, have been developed. In the second golden age, the cell culture technology enabled polio, measles, mumps, and rubella vaccines be developed. In the era of modern vaccines, in addition to the conjugate polysaccharide, hepatitis A, oral typhoid, and varicella vaccines, the advent of molecular biology enabled to develop hepatitis B, acellular pertussis, papillomavirus, and rotavirus recombinant vaccines. Great successes have been achieved in the fight against infectious diseases, including the smallpox global eradication, the nearly disappearance of polio, the control of tetanus, diphtheria, measles, rubella, yellow fever, and rabies. However, much work should still be done for improving old vaccines, such as BCG, anthrax, smallpox, plague, or for developing effective vaccines against old or emerging infectious threats, such as human-immunodeficiency-virus, malaria, hepatitis C, dengue, respiratory-syncytial-virus, cytomegalovirus, multiresistant bacteria, Clostridium difficile, Ebola virus. In addition to search for innovative and effective vaccines and global infant coverage, even risk categories should adequately be protected. Despite patients under immunosuppressive therapy are globally increasing, their vaccine coverage is lower than recommended, even in developed and affluent countries. PMID:26606466

  10. RECOMBINANT INFLUENZA VACCINES

    OpenAIRE

    Sedova, E.; Shcherbinin, D.; Migunov, A.; Smirnov, Iu; Logunov, D.; Shmarov, M.; Tsybalova, L.; Naroditskiĭ, B.; O. Kiselev; Gintsburg, A.

    2012-01-01

    This review covers the problems encountered in the construction and production of new recombinant influenza vaccines. New approaches to the development of influenza vaccines are investigated; they include reverse genetics methods, production of virus-like particles, and DNA- and viral vector-based vaccines. Such approaches as the delivery of foreign genes by DNA- and viral vector-based vaccines can preserve the native structure of antigens. Adenoviral vectors are a promising gene-delivery pla...

  11. Clinical vaccine development

    OpenAIRE

    Han, Seunghoon

    2015-01-01

    Vaccination is regarded as one of the biggest triumphs in the history of medicine. We are living in the most successful period of vaccine development. The accumulation of multidisciplinary knowledge and the investment of massive funding have enabled the development of vaccines against many infectious diseases as well as other diseases including malignant tumors. The paradigm of clinical vaccine evaluation and licensure has also been modernized based on scientific improvements and historical e...

  12. Comparative evaluation of changes in the absorbed doses of neutron radiation and chromosome aberration frequency in human blood lymphocytes by a water phantom depth during irradiation with a medico-biological beam at the BR-10 reactor

    International Nuclear Information System (INIS)

    Distribution of the chromosome aberration frequency in human blood lymphocyte samples and absorbed doses have been compared by the water phantom depth during irradiation with 1.5 Gy neutrons (mean energy of 0.85 MeV). There is a good concordance of their depth distribution. The half-fall layer of the absorbed dose within the tissue-equivalent medium is similar (∼ 5 cm) with both measurements done. The aberration frequency in the biological samples placed outside the radiation field in the phantom increases which indicates that the neutron beem bounds are indistinct upon passing the tissue-equivalent medium

  13. Immune Response to Hepatitis B Vaccine among Dental Students

    Directory of Open Access Journals (Sweden)

    HR Abdolsamadi

    2009-06-01

    Full Text Available "nBackground: Hepatitis B infection is a major public health problem worldwide. Dental students who are frequently in contact with body fluids like blood and saliva are still at high risk for HBV exposure. The aim of this study was to evaluate the effectiveness of HBV vaccine and personal factors associated with serologic evidence of the immune response."nMethods: A descriptive-cross sectional study was carried out using data from Hamadan dental school students that received just three doses of HBV vaccine. The serum sample of 86 dental clinical students were examined in order to determine hepatitis B surface antigen and the level of anti-HBs using IEMA method. Logistic regression models were used to assess the relationship of vaccine response to the variables Sex, age weight, smoking status and the time lasting from the third dose of vaccine injection."nResults: Ninety-three percent had positive anti-HBs response and 7% were non-responders. No one showed HBsAg. Vaccine response was most strongly associated with age, smoking status, sex and weight. The time lasting from the third dose was unrelated to vaccine response."nConclusion: Clinical dental students had desirable immune response to the HBV vaccine nevertheless recommended num­ber of doses, standard protocol and early vaccination are critical to adequate protection against hepatitis infection among all health care workers, in particular dental students and dentists who are often exposed to blood and other body fluids.

  14. Vaccination: problems and perspectives.

    OpenAIRE

    S. M. Kharit

    2014-01-01

    Massive vaccination had proved its effective morbidity reduction. Today it is necessary to extend vaccination schedule, creation of selective, regional schedules based on epidemiological, clinical, economical substantiation. Development of vaccination needs the profound scientific research, modernization of adverse reaction observing system, betterment training system and awareness of population.

  15. A Dengue Vaccine.

    Science.gov (United States)

    Durbin, Anna P

    2016-06-30

    Denvaxia is the first licensed vaccine for the prevention of dengue. It is a live vaccine developed using recombinant DNA technology. The vaccine is given as three doses over the course of a year and has the potential to prevent hundreds of thousands of hospitalizations each year. PMID:27368091

  16. Persistence of antibodies 3 years after booster vaccination of adults with combined acellular pertussis, diphtheria and tetanus toxoids vaccine.

    Science.gov (United States)

    Weston, Wayde; Messier, Marc; Friedland, Leonard R; Wu, Xiangfeng; Howe, Barbara

    2011-11-01

    The duration of protection after vaccination with reduced antigen content diphtheria, tetanus and acellular pertussis vaccines (Tdap) is not known. Long-term post-vaccination serological data will help to improve understanding of the duration of humoral immunity and guide vaccination policy for the timing of repeat dose administration. The persistence of antibodies to Tdap antigens was measured 3 years after vaccination of adults 19-64 years of age with one of 2 Tdap vaccines (Boostrix(®), GlaxoSmithKline Biologicals; Tdap-B: or Adacel(®), Sanofi Pasteur; Tdap-A). In both groups, geometric mean concentrations for antibodies to diphtheria, tetanus, and pertussis vaccine antigens were decreased at year 3 relative to levels observed 1 month and 1 year following vaccination, but remained higher than pre-vaccination levels. Seroprotection rates for diphtheria and tetanus remained high for both Tdap vaccines (for diphtheria, 96.9% and 97.8% for the Tdap-B and Tdap-A groups, respectively; for tetanus, 98.1% and 99.6%, respectively).

  17. 21 CFR 640.13 - Collection of the blood.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Collection of the blood. 640.13 Section 640.13...) BIOLOGICS ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Red Blood Cells § 640.13 Collection of the blood. (a) The source blood shall be collected as prescribed in § 640.4. (b) Source blood may also...

  18. Seasonal and biological variation of blood concentrations of total cholesterol, dehydroepiandrosterone sulfate, hemoglobin A(1c), IgA, prolactin, and free testosterone in healthy women

    DEFF Research Database (Denmark)

    Garde, A H; Hansen, Åse Marie; Skovgaard, L T;

    2000-01-01

    Concentrations of physiological response variables fluctuate over time. The present study describes within-day and seasonal fluctuations for total cholesterol, dehydroepiandrosterone sulfate (DHEA-S), hemoglobin A(1c) (HbA(1c)), IgA, prolactin, and free testosterone in blood, and estimates within...

  19. Signs of the Biological Effect of ~2 μm Low-Intensity Laser Radiation in Raman and Absorption Spectra of Blood

    Science.gov (United States)

    Batay, L. E.; Khodasevich, I. A.; Khodasevich, M. A.; Gorbunova, N. B.; Manina, E. Yu.

    2016-09-01

    Local exposure of experimental animals to low-intensity emission from a thulium laser (λ = 1.96 μm) leads to changes in the Raman and IR absorption spectra of blood. This indicates development of systemic effects caused by direct excitation of water molecules by radiation with wavelength ~2 μm, in particular modifi cation of the hemoglobin molecule.

  20. Funções biológicas dos antígenos eritrocitários Biological functions of blood group antigens

    Directory of Open Access Journals (Sweden)

    Silvia L. Bonifácio

    2009-04-01

    Full Text Available Os antígenos de grupos sanguíneos eritrocitários são estruturas macromoleculares localizadas na superfície extracelular da membrana eritrocitária. Com o desenvolvimento de estudos moleculares, mais de 250 antígenos são conhecidos e estão organizados em 29 sistemas de grupos sanguíneos reconhecidos pela Sociedade Internacional de Transfusão Sanguínea (ISBT. Estudos têm revelado que os antígenos de grupo sanguíneo estão expressos na membrana eritrocitária com ampla diversidade estrutural, incluindo epítopos de carboidratos em glicoproteínas e/ou glicolipídios e em proteínas inseridas na membrana via um domínio, via domínios de multipassagem ou ligados a glicosilfosfatidinositol. Além das diversidades estruturais, muitas funções importantes têm sido associadas aos antígenos eritrocitários recentemente identificadas, podendo ser esquematicamente divididas em: estruturais, transportadores, receptores e moléculas de adesão, enzimas, proteínas controladoras do complemento e outras. Esta revisão tem como foco as funções potenciais das moléculas que expressam os antígenos eritrocitários.Erythrocyte blood group antigens are macromolecules structures located on the extracellular surface of the red blood cell membrane. The development of molecular studies allowed the recognition of more than 250 antigens by the International Society for Blood Transfusion (ISBT. These studies have also shown that blood group antigens are carried on red blood cell membrane of wide structural diversity, including carbohydrate epitopes on glycoproteins and/or glycolipids and on proteins inserted within the membrane via single or multi-pass transmembrane domains, or via glycosylphosphatidylinositol linkages. In addition, to their structural diversity, many important functions associated with blood group antigens have been recently identified and can be didactically divided into: structural proteins, transporters, receptors and adhesion

  1. Influenza vaccination: from epidemiological aspects and advances in research to dissent and vaccination policies.

    Science.gov (United States)

    Gasparini, R; Amicizia, D; Lai, P L; Panatto, D

    2016-01-01

    Influenza is a serious public health problem, since seasonal epidemics affect approximately 5-10% of the population and thus give rise to a heavy social and healthcare burden. The heavy burden of disease is due to several factors, one of which is the biological features of the pathogen. Indeed influenza viruses display high mutation rates and undergo frequent genetic reassortment. Minor variations cause seasonal epidemics and major variations, which result from the hybridization of viruses typical of different animal species, can lead to pandemics. Vaccination remains the most efficacious means of mitigating the harmful healthcare and social effects of influenza. Influenza vaccines have evolved over time in order to offer broader protection against circulating strains. Trivalent vaccines containing two A viruses and one B virus are currently available. However, given the co-circulation of both B virus lineages (B/Yamagata and B/Victoria), quadrivalent vaccines have recently been developed. The new quadrivalent vaccines constitute a great advance, in that they can offer broader strain coverage. Despite the availability of effective and safe influenza vaccines, the Italian public's trust in vaccination has declined and, in the last few years, influenza vaccination coverage rates have decreased both among the elderly and among at-risk adults. It is therefore necessary that users, in their own interests, regain trust in this important means of disease prevention. In order to mitigate the damage wreaked by influenza, it seems important to: (i) improve clinical-epidemiological and virological surveillance of the disease; (ii) promote the development of new efficacious vaccines, as has recently been done through the introduction of the quadrivalent vaccine; (iii) extend free vaccination to the entire population, as in the US and Canada; (iv) ensure that general healthcare professionals are properly informed and always updated with regard to vaccination; (v) promote public

  2. Biological and mechanical evaluation of the small-diameter tissue-engineered blood vessels matrix%小口径组织工程血管基质材料的生物学和力学评价

    Institute of Scientific and Technical Information of China (English)

    谭菊; 曾文; 周静婷; 李刚; 张晓彦; 朱楚洪

    2014-01-01

    Objective To develop a small-diameter tissue-engineered blood vessels which possesses normal blood vessels physiological structure, good biocompatibility, and mechanical properties. And it was evaluated by mechanical and biological of national standard of medi-cal transfusion material. Methods The bio-derived material were regarded as the ground substance, and it was evaluated by mechanical and biological of national standard after composite modification. Results The axial and radial tensile stress of the blood vessel was 23. 14 N and 36. 79 N respectively, and it was greater than the standard 7. 5N. The tensile rate of the axial and radial was 95. 19% and 80. 24% respec-tively, which were higher than the standard value 20%. The suture strength of the blood vessel was 13. 71 N, which was conform to the me-chanical requirement. Mainly used blood vessels or its extracts to detect the pH of the blood vessels is in the scope of control deionized water pH (7. 5 ± 1. 5);the hemolysis rate was 1. 3972% which was less than 5%;the whole blood coagulation time was 50% longer than the con-trol level, and there was no stimulation after intradermal injection. Conclusion With bio-derived material as the ground substance and com-positely modified, this kind od blood vessels is conform to the mechanical and biological of national standard, and it has the potential of clini-cal application which could play an important role in the replacement therapy of small-diameter vascular xenografts.%目的:研制一种具备正常血管的生理结构和良好的生物相容性,而且具有血管力学特性的小口径组织工程血管基质材料,并按医用输血材料的力学及生物学国家标准评价。方法以去细胞生物衍生材料作为基质,按照国家标准对其进行力学和生物学评价。结果血管的轴向、径向拉伸应力分别为23.14 N和36.79 N,均大于标准规定的7.5 N;拉伸率分别为95.19%和80.24%,大于标准规定的20%

  3. Hib Vaccines: Past, Present, and Future Perspectives.

    Science.gov (United States)

    Zarei, Adi Essam; Almehdar, Hussein A; Redwan, Elrashdy M

    2016-01-01

    Haemophilus influenzae type b (Hib) causes many severe diseases, including epiglottitis, pneumonia, sepsis, and meningitis. In developed countries, the annual incidence of meningitis caused by bacteria is approximately 5-10 cases per population of 100,000. The Hib conjugate vaccine is considered protective and safe. Adjuvants, molecules that can enhance and/or regulate the fundamental immunogenicity of an antigen, comprise a wide range of diverse compounds. While earlier developments of adjuvants created effective products, there is still a need to create new generations, rationally designed based on recent discoveries in immunology, mainly in innate immunity. Many factors may play a role in the immunogenicity of Hib conjugate vaccines, such as the polysaccharides and proteins carrier used in vaccine construction, as well as the method of conjugation. A Hib conjugate vaccine has been constructed via chemical synthesis of a Hib saccharide antigen. Two models of carbohydrate-protein conjugate have been established, the single ended model (terminal amination-single method) and cross-linked lattice matrix (dual amination method). Increased knowledge in the fields of immunology, molecular biology, glycobiology, glycoimmunology, and the biology of infectious microorganisms has led to a dramatic increase in vaccine efficacy. PMID:26904695

  4. Hib Vaccines: Past, Present, and Future Perspectives

    Directory of Open Access Journals (Sweden)

    Adi Essam Zarei

    2016-01-01

    Full Text Available Haemophilus influenzae type b (Hib causes many severe diseases, including epiglottitis, pneumonia, sepsis, and meningitis. In developed countries, the annual incidence of meningitis caused by bacteria is approximately 5–10 cases per population of 100,000. The Hib conjugate vaccine is considered protective and safe. Adjuvants, molecules that can enhance and/or regulate the fundamental immunogenicity of an antigen, comprise a wide range of diverse compounds. While earlier developments of adjuvants created effective products, there is still a need to create new generations, rationally designed based on recent discoveries in immunology, mainly in innate immunity. Many factors may play a role in the immunogenicity of Hib conjugate vaccines, such as the polysaccharides and proteins carrier used in vaccine construction, as well as the method of conjugation. A Hib conjugate vaccine has been constructed via chemical synthesis of a Hib saccharide antigen. Two models of carbohydrate-protein conjugate have been established, the single ended model (terminal amination-single method and cross-linked lattice matrix (dual amination method. Increased knowledge in the fields of immunology, molecular biology, glycobiology, glycoimmunology, and the biology of infectious microorganisms has led to a dramatic increase in vaccine efficacy.

  5. Vaccination in Fish

    DEFF Research Database (Denmark)

    Chettri, Jiwan Kumar

    intensive method, which however, provides the best protection of the fish. Immersion vaccination is used for immunization of a high number of small fish is cost-efficient and fast (30 sec immersion into vaccine). Oral vaccination (vaccine in feed) is the least efficient. As in higher vertebrates fish...... significant losses in aquacultural enterprises but vaccination methods implemented since the 1990s have demonstrated their role as one of the most efficient disease control strategies. These have been particularly successful with regard to bacterial diseases in Norwegian salmon farming where multivalent...

  6. Vaccination for Disease

    Science.gov (United States)

    Oehen, Stephan; Hengartner, Hans; Zinkernagel, Rolf M.

    1991-01-01

    Recombinant virus vaccines that express a limited number of epitopes are currently being developed to prevent disease by changing the relative balance between viral spread and the immune response. Some circumstances, however, were found in infections with a noncytopathic virus in which vaccination caused disease; sensitive parameters included the genetic background of the host, the time or dose of infection, and the constituents of the vaccine. Thus, immunopathologic damage by T cells may be an unwanted consequence of vaccination with the new types of peptide or recombinant vaccines that are being investigated for the human immunodeficiency viruses and other pathogens.

  7. Advances in FIV vaccine technology

    OpenAIRE

    Uhl, Elizabeth W.; Martin, Marcus; Coleman, James K.; Yamamoto, Janet K

    2008-01-01

    Advances in vaccine technology are occurring in the molecular techniques used to develop vaccines and in the assessment of vaccine efficacy, allowing more complete characterization of vaccine-induced immunity correlating to protection. FIV vaccine development has closely mirrored and occasionally surpassed the development of HIV-1 vaccine, leading to first licensed technology. This review will discuss technological advances in vaccine designs, challenge infection assessment, and characterizat...

  8. 21 CFR 640.6 - Modifications of Whole Blood.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Modifications of Whole Blood. 640.6 Section 640.6...) BIOLOGICS ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Whole Blood § 640.6 Modifications of Whole Blood. Upon approval by the Director, Center for Biologics Evaluation and Research, of a supplement...

  9. Protective activity of Vi capsular polysaccharide vaccine against typhoid fever.

    Science.gov (United States)

    Klugman, K P; Gilbertson, I T; Koornhof, H J; Robbins, J B; Schneerson, R; Schulz, D; Cadoz, M; Armand, J

    1987-11-21

    The protective efficacy against typhoid fever of a single intramuscular injection of 25 micrograms of the Vi capsular polysaccharide (CPS) was assessed in a randomised double-blind controlled trial. Vaccination of 11,384 children was followed by 21 months' surveillance. 47 blood-culture-proven cases of typhoid occurred in children who received meningococcal A + C CPS vaccine and 19 cases in those vaccinated with Vi CPS. Protective efficacy was 60% calculated from the day of vaccination and 64% from 6 weeks after vaccination. Surveillance also included 11,691 unvaccinated children; 173 cases occurred in this group. Protective efficacy in relation to the unvaccinated group was 77.4% and 81.0% after 21 months, calculated immediately and 6 weeks after vaccination, respectively. Vaccination was associated with minimum local side-effects, and an increase in anti-Vi antibodies occurred, as measured by radioimmunoassay and enzyme-linked immunosorbent assay. Antibody levels remained significantly raised at 6 and 12 months post vaccination. Vi CPS is thus a safe and effective means of typhoid vaccination.

  10. Biodegradable Microspheres as Hepatitis B Vaccine Delivery Systems

    Institute of Scientific and Technical Information of China (English)

    杨春; 贾文祥; 陈恬; 曾蔚; 杨远; 杨发龙; 谢轶; 杨维清; 周绍兵; 李孝红

    2003-01-01

    In order to investigate the immtmogenicity of the controlled-release microencapsulated hepatitis B vaccine in mice, polyethylene glycol-poly-dl-lactide (PELA) microspheres with entrapped HSsAg were prepared by double emulsion W/O/W based on solvent extraction methods. BALB/c mice were immunized with the encapsulated vaccine by oral feeding or injection. Blood samples were collected at 8th, 10th, 14th and 24th weeks, respectively, and the levels of antibody response were detected by EI.ISA. It was found that the scanning electron microscopy showed the prepared microspheres had smoothand spherical surface, suitable for vaccine delivery. Two groups of mice orally fed with the encapsulated or conventional recombinant vaccines, respectively, there sere showed no obvious difference in the IgG levels. At 14th week, the group injected with a single dose of encapsulated vaccine had a similar level of IgG response to the group injected with two doses of the recombination vaccine. At 24th week, the IgG levels of the group injected with two doses of encapsulated vaccine were higher than those of the group injected with two doses of the recombination vaccine. It concludes that Controlled-release microencapsulated hepatitis B vaccine possesses the feature of slowly releasing in v/vo and long times immtmogenicity.

  11. Emerging Vaccine Informatics

    Directory of Open Access Journals (Sweden)

    Yongqun He

    2010-01-01

    Full Text Available Vaccine informatics is an emerging research area that focuses on development and applications of bioinformatics methods that can be used to facilitate every aspect of the preclinical, clinical, and postlicensure vaccine enterprises. Many immunoinformatics algorithms and resources have been developed to predict T- and B-cell immune epitopes for epitope vaccine development and protective immunity analysis. Vaccine protein candidates are predictable in silico from genome sequences using reverse vaccinology. Systematic transcriptomics and proteomics gene expression analyses facilitate rational vaccine design and identification of gene responses that are correlates of protection in vivo. Mathematical simulations have been used to model host-pathogen interactions and improve vaccine production and vaccination protocols. Computational methods have also been used for development of immunization registries or immunization information systems, assessment of vaccine safety and efficacy, and immunization modeling. Computational literature mining and databases effectively process, mine, and store large amounts of vaccine literature and data. Vaccine Ontology (VO has been initiated to integrate various vaccine data and support automated reasoning.

  12. Vaccines for allergy.

    Science.gov (United States)

    Linhart, Birgit; Valenta, Rudolf

    2012-06-01

    Vaccines aim to establish or strengthen immune responses but are also effective for the treatment of allergy. The latter is surprising because allergy represents a hyper-immune response based on immunoglobulin E production against harmless environmental antigens, i.e., allergens. Nevertheless, vaccination with allergens, termed allergen-specific immunotherapy is the only disease-modifying therapy of allergy with long-lasting effects. New forms of allergy diagnosis and allergy vaccines based on recombinant allergen-derivatives, peptides and allergen genes have emerged through molecular allergen characterization. The molecular allergy vaccines allow sophisticated targeting of the immune system and may eliminate side effects which so far have limited the use of traditional allergen extract-based vaccines. Successful clinical trials performed with the new vaccines indicate that broad allergy vaccination is on the horizon and may help to control the allergy pandemic.

  13. Vaccine epidemiology: A review.

    Science.gov (United States)

    Lahariya, Chandrakant

    2016-01-01

    This review article outlines the key concepts in vaccine epidemiology, such as basic reproductive numbers, force of infection, vaccine efficacy and effectiveness, vaccine failure, herd immunity, herd effect, epidemiological shift, disease modeling, and describes the application of this knowledge both at program levels and in the practice by family physicians, epidemiologists, and pediatricians. A case has been made for increased knowledge and understanding of vaccine epidemiology among key stakeholders including policy makers, immunization program managers, public health experts, pediatricians, family physicians, and other experts/individuals involved in immunization service delivery. It has been argued that knowledge of vaccine epidemiology which is likely to benefit the society through contributions to the informed decision-making and improving vaccination coverage in the low and middle income countries (LMICs). The article ends with suggestions for the provision of systematic training and learning platforms in vaccine epidemiology to save millions of preventable deaths and improve health outcomes through life-course. PMID:27453836

  14. Large scale production of Blackleg vaccine by fermenter and enriched culture medium in Iran

    Directory of Open Access Journals (Sweden)

    Pilehchian Langroudi, R.

    2012-06-01

    Full Text Available In all biological systems growth is defined as increase of chemical compounds. Bacteria can achieve to balanced growth if they are growing in a medium, which are completely adapted to it. Clostridium chauvoei, (Clostridium feseri is an anaerobic, spore forming, motile, and polymorph bacteria, which its size varies from 0.5-1 to 3-8 micron and could be observed as individual bacterium, diplo, and rarely streptococcus. Blackleg is a fatal disease of young cattle. It produces an acute local infection, and the resulting blood poisoning leads to rapid death. Clostridium chauvoei and, less frequently, Clostridium septicum are the most commonly responsible organisms. Vaccination is the only effective means for controlling of blackleg disease. Several kinds of vaccine are available commercially. It is 4 decades that blackleg vaccine is produced in Razi institute and because of enhanced demand of country, decision was made to improve the production procedure of this vaccine using large-scale fermenter, so the aim of this study was adaptation of Clostridium chauvoei to growth and proliferation in fermenter for preparation of a potent vaccine. Accordingly attempts were made to prepare and formulate the ingredients in order to obtain high yield of Clostridium chauvoei in culture medium by fermenter. All experiments were done in two sets: A-growth in glass bottles using conventional culture medium and B-growth in fermenter using conventional culture medium similar to A and also enriched culture medium. Results showed high yield of Clostridium chauvoei suspension in fermenter after 10 hours, using enriched culture medium (more than 1,480,000,000 organisms/ml, but no significant changes was obtained in glass bottles conditions comparing to the fermenter conditions. The safety and potency of the prepared vaccine was determined in sheep and guinea pigs according to British pharmacopoeia (veterinary with satisfactory results. Since this research has been

  15. Investigation of medico-biological action of intravasular irradiation of blood on the immune system of an organism at some pathological state of the peripheral nervous system

    Science.gov (United States)

    Lapina, Victoria A.; Tanina, Raisa M.

    1994-02-01

    We investigated the influence of intravenous laser irradiation of blood (ILIB) on the immune system of the organism at vertebrogenic disorders of the peripheral nervous system (PNS) with a prominent pain syndrome. It has been found that ILIB produces a positive effect on the immunity T-link increasing the proliferative activity of T-lymphocytes, has positive dynamics in clinics, doesn't cause any side or negative effects.

  16. New tuberculosis vaccines.

    Science.gov (United States)

    Martín Montañés, Carlos; Gicquel, Brigitte

    2011-03-01

    The current tuberculosis (TB) vaccine, bacille Calmette-Guerin (BCG), is a live vaccine used worldwide, as it protects against severe forms of the disease, saving thousands of lives every year, but its efficacy against pulmonary forms of TB, responsible for transmission of the diseases, is variable. For more than 80 years now no new TB vaccines have been successfully developed. Over the last decade the effort of the scientific community has resulted in the design and construction of promising vaccine candidates. The goal is to develop a new generation of vaccines effective against respiratory forms of the disease. We will focus this review on new prophylactic vaccine candidates that aim to prevent TB diseases. Two are the main strategies used to improve the immunity conferred by the current BCG vaccine, by boosting it with new subunit vaccines, and a second strategy is focused on the construction of new more effective live vaccines, capable to replace the current BCG and to be used as prime vaccines. After rigorous preclinical studies in different animal models new TB vaccine candidates enter in clinical trials in humans. First, a small Phase I for safety followed by immunological evaluation in Phase II trials and finally evaluated in large population Phase III efficacy trials in endemic countries. At present BCG prime and boost with different subunit vaccine candidates are the more advanced assessed in Phase II. Two prime vaccines (based on recombinant BCG) have been successfully evaluated for safety in Phase I trials. A short number of live attenuated vaccines are in advance preclinical studies and the candidates ready to enter Phase I safety trials are produced under current good manufacturing practices. PMID:21420568

  17. The Xs and Y of immune responses to viral vaccines.

    Science.gov (United States)

    Klein, Sabra L; Jedlicka, Anne; Pekosz, Andrew

    2010-05-01

    The biological differences associated with the sex of an individual are a major source of variation, affecting immune responses to vaccination. Compelling clinical data illustrate that men and women differ in their innate, humoral, and cell-mediated responses to viral vaccines. Sex affects the frequency and severity of adverse effects of vaccination, including fever, pain, and inflammation. Pregnancy can also substantially alter immune responses to vaccines. Data from clinical trials and animal models of vaccine efficacy lay the groundwork for future studies aimed at identifying the biological mechanisms that underlie sex-specific responses to vaccines, including genetic and hormonal factors. An understanding and appreciation of the effect of sex and pregnancy on immune responses might change the strategies used by public health officials to start efficient vaccination programmes (optimising the timing and dose of the vaccine so that the maximum number of people are immunised), ensure sufficient levels of immune responses, minimise adverse effects, and allow for more efficient protection of populations that are high priority (eg, pregnant women and individuals with comorbid conditions).

  18. Donating Blood Questions and Answers

    Science.gov (United States)

    ... of Communication, Outreach and Development Food and Drug Administration 10903 New Hampshire Avenue Building 71 Room 3103 Silver Spring, MD 20993-0002 More in Donating Blood Resources for You Consumers (Biologics) Healthcare Providers (Biologics) Industry (Biologics) About the Center for ...

  19. Immunity to viruses: learning from successful human vaccines.

    Science.gov (United States)

    Pulendran, Bali; Oh, Jason Z; Nakaya, Helder I; Ravindran, Rajesh; Kazmin, Dmitri A

    2013-09-01

    For more than a century, immunologists and vaccinologists have existed in parallel universes. Immunologists have for long reveled in using 'model antigens', such as chicken egg ovalbumin or nitrophenyl haptens, to study immune responses in model organisms such as mice. Such studies have yielded many seminal insights about the mechanisms of immune regulation, but their relevance to humans has been questioned. In another universe, vaccinologists have relied on human clinical trials to assess vaccine efficacy, but have done little to take advantage of such trials for studying the nature of immune responses to vaccination. The human model provides a nexus between these two universes, and recent studies have begun to use this model to study the molecular profile of innate and adaptive responses to vaccination. Such 'systems vaccinology' studies are beginning to provide mechanistic insights about innate and adaptive immunity in humans. Here, we present an overview of such studies, with particular examples from studies with the yellow fever and the seasonal influenza vaccines. Vaccination with the yellow fever vaccine causes a systemic acute viral infection and thus provides an attractive model to study innate and adaptive responses to a primary viral challenge. Vaccination with the live attenuated influenza vaccine causes a localized acute viral infection in mucosal tissues and induces a recall response, since most vaccinees have had prior exposure to influenza, and thus provides a unique opportunity to study innate and antigen-specific memory responses in mucosal tissues and in the blood. Vaccination with the inactivated influenza vaccine offers a model to study immune responses to an inactivated immunogen. Studies with these and other vaccines are beginning to reunite the estranged fields of immunology and vaccinology, yielding unexpected insights about mechanisms of viral immunity. Vaccines that have been proven to be of immense benefit in saving lives offer us a new

  20. Role of histo-blood group antigens in primate enteric calicivirus infections.

    Science.gov (United States)

    Sestak, Karol

    2014-08-12

    Human noroviruses (NoV) are associated with large proportion of non-bacterial diarrhea outbreaks together with > 50% of food-associated diarrheas. The function of histo-blood group antigens (HBGAs) in pathogenesis of virus infection was implicated. Until recently however, due to lack of a robust animal and in vitro models of human NoV infection, only the partial knowledge concerning the virus pathogenesis (receptor, co-receptor and target cell) and absence of viable vaccine candidates were the frequently referenced attributes of this acute diarrheal illness. Recently, a novel group of enteric caliciviruses (CV) of rhesus macaque host origin was discovered and described. The new genus within the family Caliciviridae was identified: Rhesus Enteric CV, i.e., "Recovirus" (ReCV). ReCVs are genetically and biologically close relatives of human NoVs, exhibit similar genetic and biological features and are capable of being propagated in cell culture. ReCVs cause symptomatic disease (diarrhea and fever) in experimentally inoculated macaques. Formulation and evaluation of efficient NoV vaccine might take several years. As suggested by recent studies, inhibition of HBGAs or HBGA-based antivirals could meanwhile be exploited as vaccine alternatives. The purpose of this minireview is to provide the guidance in respect to newly available primate model of enteric CV infection and its similarities with human NoV in utilizing the HBGAs as potential virus co-receptors to indirectly address the unresolved questions of NoV pathogenesis and immunity. PMID:25392814

  1. 76 FR 32364 - Collaboration in Regulatory Science and Capacity To Advance Global Access to Safe Vaccines and...

    Science.gov (United States)

    2011-06-06

    ... oversight is essential in assuring the safety, efficacy and quality of vaccines. WHO is the directing and... availability of high quality, effective influenza vaccines that can be deployed worldwide quickly and equitably... Global Access to Safe Vaccines and Biologicals AGENCY: Food and Drug Administration, HHS. ACTION:...

  2. Effect of feeding whole compared with cell-free colostrum on calf immune status: Vaccination response.

    Science.gov (United States)

    Langel, S N; Wark, W A; Garst, S N; James, R E; McGilliard, M L; Petersson-Wolfe, C S; Kanevsky-Mullarky, I

    2016-05-01

    Vaccination contributes to improved herd health and production. Boosting immune development at a young age may have long-term effects by enhancing vaccine immune response and efficacy. In the bovine, colostrum is the sole source of maternal immunity, having a substantial effect on health status in the neonate. To date, colostral antibody concentration is used to evaluate colostrum quality. However, colostrum also contains proteins and cells, which may affect immune development and future responses to vaccines. To determine the effect of maternal colostral cells on immune development, 37 female Holstein and Jersey dairy calves were bottle-fed 4 quarts total of whole colostrum (WC) or cell-free colostrum (CFC) at birth. Calves were vaccinated with 2 series of multivalent vaccines. Series A consisted of vaccines given between 1 and 4mo of life. Series B consisted of vaccines given between 5 and 10mo of life. Calf peripheral blood samples were obtained before each vaccination series and monthly for 3mo after each vaccination series. Cellular blood parameters were determined by flow cytometry. Quantitative real-time PCR was used to determine cytokine gene expression in peripheral blood mononuclear cells before vaccination series B and once a month for 2mo after vaccination series B. Calves fed CFC had fewer numbers of B cells in mo 2 after vaccination series A when compared with WC-fed calves. Calves fed CFC had decreased gene expression levels of IL-2 in mo 1 and numbers of CD4(+)CD62L(+)CD45RO(-) and CD4(+)CD62L(+)CD45RO(+) T cells in mo 0 and 1 after vaccination series B as compared with WC-fed calves. Our findings indicate a greater response to vaccines up to 6 to 10mo post-WC feeding when compared with CFC. These data suggest that adoptive transfer of maternal colostral cells at birth has a long-term effect on development of the neonatal immune system. PMID:26923041

  3. Effect of feeding whole compared with cell-free colostrum on calf immune status: Vaccination response.

    Science.gov (United States)

    Langel, S N; Wark, W A; Garst, S N; James, R E; McGilliard, M L; Petersson-Wolfe, C S; Kanevsky-Mullarky, I

    2016-05-01

    Vaccination contributes to improved herd health and production. Boosting immune development at a young age may have long-term effects by enhancing vaccine immune response and efficacy. In the bovine, colostrum is the sole source of maternal immunity, having a substantial effect on health status in the neonate. To date, colostral antibody concentration is used to evaluate colostrum quality. However, colostrum also contains proteins and cells, which may affect immune development and future responses to vaccines. To determine the effect of maternal colostral cells on immune development, 37 female Holstein and Jersey dairy calves were bottle-fed 4 quarts total of whole colostrum (WC) or cell-free colostrum (CFC) at birth. Calves were vaccinated with 2 series of multivalent vaccines. Series A consisted of vaccines given between 1 and 4mo of life. Series B consisted of vaccines given between 5 and 10mo of life. Calf peripheral blood samples were obtained before each vaccination series and monthly for 3mo after each vaccination series. Cellular blood parameters were determined by flow cytometry. Quantitative real-time PCR was used to determine cytokine gene expression in peripheral blood mononuclear cells before vaccination series B and once a month for 2mo after vaccination series B. Calves fed CFC had fewer numbers of B cells in mo 2 after vaccination series A when compared with WC-fed calves. Calves fed CFC had decreased gene expression levels of IL-2 in mo 1 and numbers of CD4(+)CD62L(+)CD45RO(-) and CD4(+)CD62L(+)CD45RO(+) T cells in mo 0 and 1 after vaccination series B as compared with WC-fed calves. Our findings indicate a greater response to vaccines up to 6 to 10mo post-WC feeding when compared with CFC. These data suggest that adoptive transfer of maternal colostral cells at birth has a long-term effect on development of the neonatal immune system.

  4. Vaccine strategies against schistosomiasis

    Directory of Open Access Journals (Sweden)

    A. Capron

    1992-01-01

    Full Text Available In this review the authors analyze the effector and regulatory mechanisms in the immune response to schistosomiasis. To study these mechanisms two animal models were used, mouse and rat. The mouse totaly permissive host like human, show prominent-T cell control in the acquisition of resistance. But other mechanisms like antibody mediated cytotoxity (ADCC involving eosinophils and IgG antibodies described in humans, are observed in rats. Also in this animal, it is observed specific IgE antibody high production and blood and tisssue eosinophilia. Using the rat model and schistosomula as target, some ADCC features have emerged: the cellular population involved are bone marrow derived inflammatory cell (mononuclear phagocytes, eosinophils and platelets, interacting with IgE through IgE Fc receptors. Immunization has been attempted using the recombinant protein Sm28/GST. Protection has been observed in rodents with significant decrease of parasite fecundity and egg viability affecting the number, size and volume of liver egg granulomas. The association of praziquantel and immunization with with Sm28/GST increases the resistance to infection and decreases egg viability. The authors suggest the possibility of the stablishment of a future vaccine against Schistosoma mansoni.

  5. Blood Types

    Science.gov (United States)

    ... How Can I Help a Friend Who Cuts? Blood Types KidsHealth > For Teens > Blood Types Print A A ... or straight hair instead of curly. ...Make Eight Blood Types The different markers that can be found in ...

  6. Leukocyte transcript alterations in West-African girls following a booster vaccination with diphtheria-tetanus-pertussis vaccine

    DEFF Research Database (Denmark)

    Orntoft, Nikolaj W; Thorsen, Kasper; Benn, Christine S;

    2013-01-01

    Background. Observational studies from low-income countries have shown that the vaccination against diphtheria, tetanus and pertussis (DTP) is associated with excess female mortality due to infectious diseases. Methods. To investigate possible changes in gene expression after DTP vaccination, we...... identified a group of nine comparable West African girls, from a biobank of 356 children, who were due to receive DTP booster vaccine at age 18 months. As a pilot experiment we extracted RNA from blood samples before, and 6 weeks after, vaccination to analyze the coding transcriptome in leukocytes using...... expression microarrays, and ended up with information from eight girls. The data was further analyzed using dedicated array pathway and network software. We aimed to study whether DTP vaccination introduced a systematic alteration in the immune system in girls. Results. We found very few transcripts to alter...

  7. 75 FR 48706 - Proposed Vaccine Information Materials for Rotavirus Vaccine

    Science.gov (United States)

    2010-08-11

    ..., rotavirus, hepatitis A, meningococcal, human papillomavirus (HPV), and trivalent influenza vaccines... HUMAN SERVICES Centers for Disease Control and Prevention Proposed Vaccine Information Materials for Rotavirus Vaccine AGENCY: Centers for Disease Control and Prevention (CDC), Department of Health and...

  8. Vaccine Effectiveness - How Well Does the Seasonal Flu Vaccine Work?

    Science.gov (United States)

    ... flu viruses. What are the benefits of flu vaccination? While how well the flu vaccine works can ... of age and older). How are benefits of vaccination measured? Public health researchers measure how well flu ...

  9. Blocking Babesia bovis vaccine reactions of dairy cattle in milk

    Directory of Open Access Journals (Sweden)

    Michael P. Combrink

    2012-12-01

    Full Text Available The use of 1.16 mg/kg (one third of the recommended dose of diminazene aceturate, administered indiscriminately to cattle on day seven of the unfrozen Babesia bovis and Babesia bigemina bivalent live blood vaccine reaction, was an infection and block treatment method of immunisation used successfully with no known adverse effect on the parasites or the development of protective immunity. Continuing with this practice after replacement of the unfrozen vaccine with deep-frozen monovalent B. bovis and B. bigemina live blood vaccines resulted in reports of vaccine failure. Laboratory investigation indicated the harmful effect of block treatment in preventing the development of durable immunity against B. bigemina as opposed to the much lesser effect it had on B. bovis. Consequently the practice was no longer recommended. A B. bovis vaccination attempt aimed at controlling the disease of dairy cows in milk (n = 30 resulted in 20% fatalities during the expected vaccine reaction period. The practice of block treating B. bovis was therefore reinvestigated, this time in a field trial using dairy cattle in milk (n = 11. Using 0.88 mg/kg (one quarter of the recommended dose of diminazene administered on day 12 of the B. bovis vaccine reaction resulted in only two animals (n = 5 testing ≥ 1/80 positive with the indirect fluorescent antibody test (IFAT although parasites could be demonstrated in three. In the untreated control group, by contrast, five of the vaccinated animals (n = 6 tested ≥ 1/80 positive with IFAT and parasites could be demonstrated in all. The unsatisfactory outcome obtained in this study, combined with that of the earlier investigation, indicated that there are more factors that influence successful vaccination than previously considered. It is therefore concluded that block treatment of the live frozen South African cattle babesiosis vaccines reactions is not recommended.

  10. Immunization of Aotus monkeys with Plasmodium falciparum blood-stage recombinant proteins.

    OpenAIRE

    S Herrera; Herrera, M. A.; Perlaza, B L; Burki, Y; Caspers, P; Döbeli, H; Rotmann, D; Certa, U

    1990-01-01

    The current spread of multidrug-resistant malaria demands rapid vaccine development against the major pathogen Plasmodium falciparum. The high quantities of protein required for a worldwide vaccination campaign select recombinant DNA technology as a practical approach for large-scale antigen production. We describe the vaccination of Aotus monkeys with two recombinant blood-stage antigens (recombinant p41 and 190N) that were considered as vaccine candidates because parasite-derived antigen pr...

  11. Persistence of T-cell immune response induced by two acellular pertussis vaccines in children five years after primary vaccination.

    Science.gov (United States)

    Palazzo, Raffaella; Carollo, Maria; Bianco, Manuela; Fedele, Giorgio; Schiavoni, Ilaria; Pandolfi, Elisabetta; Villani, Alberto; Tozzi, Alberto E; Mascart, Françoise; Ausiello, Clara M

    2016-01-01

    The resurgence of pertussis suggests the need for greater efforts to understand the long-lasting protective responses induced by vaccination. In this paper we dissect the persistence of T memory responses induced by primary vaccination with two different acellular pertussis (aP) vaccines, hexavalent Hexavac® vaccine (Hexavac) (Sanofi Pasteur MSD) and Infanrix hexa® (Infanrix) (Glaxo-SmithKline Biologicals). We evaluated magnitude and duration of T-cell responses to pertussis toxin (PT) by measuring T-cell proliferation, cytokines (IL-2 and IFNγ) production and memory subsets in two groups of children 5 years after primary vaccination. Some of the enrolled children received only primary vaccination, while others had the pre-school boost dose. Positive T-cell responses to PT were detected in 36% of children. Percentage of responsive children, T-cell proliferation and CD4IL-2+ cells were significantly higher in the children primed with Hexavac than in those who received Infanrix vaccine. No major effects of the boost on PT-specific proliferation were observed. Overall, our data documented a persistence of T-cell memory against PT in a minor fraction of children 5 years after primary vaccination. The different responses induced by Hexavac and Infanrix vaccine could rely on differences in PT inactivation process or excipients/adjuvants formulations.

  12. Can influenza epidemics be prevented by voluntary vaccination?

    Directory of Open Access Journals (Sweden)

    Raffaele Vardavas

    2007-05-01

    Full Text Available Previous modeling studies have identified the vaccination coverage level necessary for preventing influenza epidemics, but have not shown whether this critical coverage can be reached. Here we use computational modeling to determine, for the first time, whether the critical coverage for influenza can be achieved by voluntary vaccination. We construct a novel individual-level model of human cognition and behavior; individuals are characterized by two biological attributes (memory and adaptability that they use when making vaccination decisions. We couple this model with a population-level model of influenza that includes vaccination dynamics. The coupled models allow individual-level decisions to influence influenza epidemiology and, conversely, influenza epidemiology to influence individual-level decisions. By including the effects of adaptive decision-making within an epidemic model, we can reproduce two essential characteristics of influenza epidemiology: annual variation in epidemic severity and sporadic occurrence of severe epidemics. We suggest that individual-level adaptive decision-making may be an important (previously overlooked causal factor in driving influenza epidemiology. We find that severe epidemics cannot be prevented unless vaccination programs offer incentives. Frequency of severe epidemics could be reduced if programs provide, as an incentive to be vaccinated, several years of free vaccines to individuals who pay for one year of vaccination. Magnitude of epidemic amelioration will be determined by the number of years of free vaccination, an individuals' adaptability in decision-making, and their memory. This type of incentive program could control epidemics if individuals are very adaptable and have long-term memories. However, incentive-based programs that provide free vaccination for families could increase the frequency of severe epidemics. We conclude that incentive-based vaccination programs are necessary to control

  13. The Regulatory Evaluation of Vaccines for Human Use.

    Science.gov (United States)

    Baylor, Norman W

    2016-01-01

    A vaccine is an immunogen, the administration of which is intended to stimulate the immune system to result in the prevention, amelioration, or therapy of any disease or infection (US Food and Drug Administration. Guidance for Industry: content and format of chemistry, manufacturing, and controls information and establishment description information for a vaccine or related product). A vaccine may be a live attenuated preparation of microorganisms, inactivated (killed) whole organisms, living irradiated cells, crude fractions, or purified immunogens, including those derived from recombinant DNA in a host cell, conjugates formed by covalent linkage of components, synthetic antigens, polynucleotides (such as the plasmid DNA vaccines), living vectored cells expressing specific heterologous immunogens, or cells pulsed with immunogen. Vaccines are highly complex products that differ from small molecule drugs because of the biological nature of the source materials such as those derived from microorganisms as well as the various cell substrates from which some are derived. Regardless of the technology used, because of their complexities, vaccines must undergo extensive characterization and testing. Special expertise and procedures are needed for their manufacture, control, and regulation. The Food and Drug Administration (FDA) is the National Regulatory Authority (NRA) in the United States responsible for assuring quality, safety, and effectiveness of all human medical products, including vaccines for human use.The Center for Biologics Evaluation and Research (CBER) within the US FDA is responsible for overseeing the regulation of therapeutic and preventative vaccines against infectious diseases. Authority for the regulation of vaccines resides in Section 351 of the Public Health Service Act and specific sections of the Federal Food, Drug, and Cosmetic Act (FD&C). Vaccines are regulated as biologics and licensed based on the demonstration of safety and effectiveness. The

  14. Immunoelectrophoresis - blood

    Science.gov (United States)

    IEP - serum; Immunoglobulin electrophoresis - blood; Gamma globulin electrophoresis; Serum immunoglobulin electrophoresis ... A blood sample is needed. For information on how this is done, see: Venipuncture

  15. Antigen-Specific CD4+ T Cells Recognize Epitopes of Protective Antigen following Vaccination with an Anthrax Vaccine

    OpenAIRE

    Laughlin, Elsa M.; Miller, Joseph D.; James, Eddie; Fillos, Dimitri; Ibegbu, Chris C.; Mittler, Robert S.; Akondy, Rama; Kwok, William; Ahmed, Rafi; Nepom, Gerald,

    2007-01-01

    Detection of antigen-specific CD4+ T cells is facilitated by the use of fluorescently labeled soluble peptide-major histocompatibility complex (MHC) multimers which mirror the antigen specificity of T-cell receptor recognition. We have used soluble peptide-MHC class II tetramers containing peptides from the protective antigen (PA) of Bacillus anthracis to detect circulating T cells in peripheral blood of subjects vaccinated with an anthrax vaccine. PA-specific HLA class II-restricted T lympho...

  16. Back to Jenner for a protective malaria vaccine

    OpenAIRE

    Padmanaban, G

    2005-01-01

    The trend of modern biology is to understand and define processes at the level of whole organisms after all the explosion in knowledge with respect to molecules governing life processes. This knowledge has, however, generated powerful tools to understand biology at the organismic level. This approach could perhaps lead to effective vaccines as well for some of the intractable diseases.

  17. Cytokine responses in camels (Camelus bactrianus) vaccinated with Brucella abortus strain 19 vaccine.

    Science.gov (United States)

    Odbileg, Raadan; Purevtseren, Byambaa; Gantsetseg, Dorj; Boldbaatar, Bazartseren; Buyannemekh, Tumurjav; Galmandakh, Zagd; Erdenebaatar, Janchivdorj; Konnai, Satoru; Onuma, Misao; Ohashi, Kazuhiko

    2008-02-01

    In the present study, we determined the levels of cytokines produced by camel (Camelus bactrianus) peripheral blood mononuclear cells (PBMCs) in response to live attenuated Brucella abortus (B. abortus) S19 vaccine. Seven camels were vaccinated with commercial B. abortus S19 vaccine, and their cytokine responses were determined using a real-time PCR assay. Cytokine responses to B. abortus S19 were examined at 6 hr, 48 hr and 1, 2 and 3 weeks post-vaccination. Serological tests were performed to further confirm these immune responses. The results revealed that IFN-gamma and IL-6 were upregulated during the first week post-vaccination. Low level expressions of IL-1alpha, IL-1beta, TNFalpha and IL-10 and no expression of IL-2 and IL-4 were observed compared with the control camels. The findings showed that B. abortus stimulates cell-mediated immunity by directly activating camel Th1 cells to secrete IFN-gamma. This quantification of cytokine expression in camels is essential for understanding of Camelidae disease development and protective immune responses. This is the first report of in vivo camel cytokine quantification after vaccination. PMID:18319583

  18. Vaccination and neurological disorders

    Directory of Open Access Journals (Sweden)

    Anastasia Gkampeta

    2015-12-01

    Full Text Available Active immunization of children has been proven very effective in elimination of life threatening complications of many infectious diseases in developed countries. However, as vaccination-preventable infectious diseases and their complications have become rare, the interest focuses on immunization-related adverse reactions. Unfortunately, fear of vaccination-related adverse effects can led to decreased vaccination coverage and subsequent epidemics of infectious diseases. This review includes reports about possible side effects following vaccinations in children with neurological disorders and also published recommendations about vaccinating children with neurological disorders. From all international published data anyone can conclude that vaccines are safer than ever before, but the challenge remains to convey this message to society.

  19. Vaccination against seasonal flu

    CERN Multimedia

    2015-01-01

    The Medical Service once again recommends you to get your annual flu vaccination for the year.   Vaccination is the most effective way of avoiding the illness and any serious consequences and protecting those around you. The flu can have especially serious consequences for people with chronic conditions (diabetes, cardio-vascular disease, etc.), pregnant women, infants, and people over 65 years of age. Remember, anyone working on the CERN site who wishes to be vaccinated against seasonal flu should go to the Infirmary (Building 57, ground floor) with their vaccine. The Medical Service will issue a prescription on the day of the vaccination for the purposes of reimbursement by UNIQA. NB: The Medical Service cannot provide this vaccination service for family members or retired members of the personnel. For more information: • The "Seasonal flu" flyer by the Medical Service • Recommendations of the Swiss Federal Office of Public...

  20. [Vaccination for international travelers].

    Science.gov (United States)

    Arrazola, M Pilar; Serrano, Almudena; López-Vélez, Rogelio

    2016-05-01

    Traveler's vaccination is one of the key strategies for the prevention of infectious diseases during international travel. The risk of acquiring an infectious disease is determined in each case by the characteristics of the traveler and the travel, so the pre-departure medical advice of the traveler must be individualized. The World Health Organization classifies travelerś vaccines into three groups. - Vaccines for routine use in national immunization programs: Haemophilus influenzae type b, hepatitis B, polio, measles-mumps-rubella, tetanus-diphtheria-whooping a cough, and chickenpox. - Vaccinations required by law in certain countries before to enter them: yellow fever, meningococcal disease and poliomyelitis. - Vaccines recommended depending on the circumstances: cholera, japanese encephalitis, tick-borne encephalitis, meningococcal disease, typhoid fever, influenza, hepatitis A, hepatitis B, rabies and BCG. This review is intended to introduce the reader to the field of international vaccination. PMID:26920587

  1. Vaccine herd effect.

    Science.gov (United States)

    Kim, Tae Hyong; Johnstone, Jennie; Loeb, Mark

    2011-09-01

    Vaccination ideally protects susceptible populations at high risk for complications of the infection. However, vaccines for these subgroups do not always provide sufficient effectiveness. The herd effect or herd immunity is an attractive way to extend vaccine benefits beyond the directly targeted population. It refers to the indirect protection of unvaccinated persons, whereby an increase in the prevalence of immunity by the vaccine prevents circulation of infectious agents in susceptible populations. The herd effect has had a major impact in the eradication of smallpox, has reduced transmission of pertussis, and protects against influenza and pneumococcal disease. A high uptake of vaccines is generally needed for success. In this paper we aim to provide an update review on the herd effect, focusing on the clinical benefit, by reviewing data for specific vaccines.

  2. A New Method for the Evaluation of Vaccine Safety Based on Comprehensive Gene Expression Analysis

    Directory of Open Access Journals (Sweden)

    Haruka Momose

    2010-01-01

    Full Text Available For the past 50 years, quality control and safety tests have been used to evaluate vaccine safety. However, conventional animal safety tests need to be improved in several aspects. For example, the number of test animals used needs to be reduced and the test period shortened. It is, therefore, necessary to develop a new vaccine evaluation system. In this review, we show that gene expression patterns are well correlated to biological responses in vaccinated rats. Our findings and methods using experimental biology and genome science provide an important means of assessment for vaccine toxicity.

  3. Evaluation of Serum Anti-Hbs Concentration in Children Vaccinated with Recombinant Hepatitis B Vaccine at Birth

    OpenAIRE

    M Nejad-Ghaderi; Mozafari, A.; J Montazerifar; GH Hassanshahi; HR Rashidi-Nejad; A Jafarzadeh

    2006-01-01

    Introduction: Vaccination with the major surface antigen of hepatitis B virus (HBsAg) induces anti-HBs antibody production and level of 10 IU/L is considered protective. It has been shown that the level of anti-HBs antibody does wane after vaccination. The aim of this study was to evaluate the persistence of anti-HBs antibodies in healthy Iranian children 10 years after primary vaccination. Methods: Blood samples were collected from 146 children, 10 years after completion of primary hepatitis...

  4. TH1 and TH2 responses are influenced by HLA antigens in healthy neonates vaccinated with recombinant hepatitis B vaccine.

    OpenAIRE

    Abdollah Jafarzadeh; Fazel Shokri

    2012-01-01

    The immune response to hepatitis B surface antigen (HBsAg) is influenced by several factors, of which HLA antigens and balanced secretion of Th1/Th2 cytokines play important roles. The aim of this study was to evaluate the influence of HLA antigens on cytokine secretion by HBsAg-stimulated peripheral blood mononuclear cells (PBMC) from healthy neonates vaccinated with recombinant HBsAg. PBMCs were isolated from 48 Iranian neonates vaccinated with a recombinant HBV vaccine. The cells were stim...

  5. Challenges and opportunities in developing and marketing vaccines for OIE List A and emerging animal diseases.

    Science.gov (United States)

    Gay, C G; Salt, J; Balaski, C

    2003-01-01

    Veterinary pharmaceutical products generated 14.5 billion U.S. Dollars (USD) in worldwide sales in 2000, with biological products contributing 16.2 percent or 2.3 billion USD. The leading biological products were foot-and-mouth disease (FMD) vaccines, with 284 million USD in sales, representing 26.4 percent of the entire livestock biological business. Despite the potential opportunities for the biologicals industry, non-vaccination policies and undefined control and eradication strategies have deterred the private sector from significant investments in the research and development of vaccines against List A diseases. The primary research focus remains vaccines for infectious diseases that have an impact on current domestic herd health management systems. Changing the vaccine paradigm, investing in new technologies, and creating the future by integrating into key alliances with producers and regulatory authorities will be paramount in protecting our poultry and livestock industries against highly infectious diseases and potential acts of bioterrorism. PMID:14677694

  6. Immunobiology of Influenza Vaccines

    OpenAIRE

    Gomez Lorenzo, Margarita M.; Fenton, Matthew J.

    2013-01-01

    Vaccination is the primary strategy for prevention and control of influenza. The surface hemagglutinin (HA) protein of the influenza virus contains two structural elements (head and stalk) that differ in their potential utility as vaccine targets. The head of the HA protein is the primary target of antibodies that confer protective immunity to influenza viruses. The underlying health status, age, and gene polymorphisms of vaccine recipients and, just as importantly, the extent of the antigeni...

  7. Influenza vaccination during pregnancy.

    OpenAIRE

    Goldman, Ran D.; Koren, Gideon

    2002-01-01

    QUESTION: A 27-year-old patient of mine recently learned she is pregnant. She took the influenza vaccine offered at work when she was 7 weeks pregnant. Is her fetus at risk of malformations? ANSWER: No evidence indicates that killed influenza vaccine is teratogenic, even if given during the first trimester. Since 1996, Health Canada's Centre for Disease Control and Prevention has recommended that pregnant women in their second and third trimesters be vaccinated. This should not be interpreted...

  8. Vaccines for Drug Abuse

    Science.gov (United States)

    Shen, Xiaoyun; Orson, Frank M.; Kosten, Thomas R.

    2012-01-01

    Current medications for drug abuse have had only limited success. Anti-addiction vaccines to elicit antibodies that block the pharmacological effects of drugs have great potential for treating drug abuse. We review the status for two vaccines that are undergoing clinical trials (cocaine and nicotine) and two that are still in pre-clinical development (methamphetamine and heroin). We also outline the challenges and ethical concerns for anti-addiction vaccine development and their use as future therapeutics. PMID:22130115

  9. Vaccination against RSV

    OpenAIRE

    Kaaijk, Patricia; Luytjes, Willem; Rots, Nynke Y.

    2013-01-01

    The respiratory syncytial virus (RSV) is the major cause of lower respiratory tract illness (LRI) in infants worldwide. Also persons with heart/lung disease or an immunodeficiency disorder, and the elderly are at increased risk for severe LRI upon RSV infection. Although there is at present no licensed RSV vaccine available, it is a priority target for several vaccine developers. For the implementation of a future RSV vaccination within national immunization schemes, various strategies can be...

  10. Inflammatory and Autoimmune Reactions in Atherosclerosis and Vaccine Design Informatics

    Directory of Open Access Journals (Sweden)

    Michael Jan

    2010-01-01

    Full Text Available Atherosclerosis is the leading pathological contributor to cardiovascular morbidity and mortality worldwide. As its complex pathogenesis has been gradually unwoven, the regime of treatments and therapies has increased with still much ground to cover. Active research in the past decade has attempted to develop antiatherosclerosis vaccines with some positive results. Nevertheless, it remains to develop a vaccine against atherosclerosis with high affinity, specificity, efficiency, and minimal undesirable pathology. In this review, we explore vaccine development against atherosclerosis by interpolating a number of novel findings in the fields of vascular biology, immunology, and bioinformatics. With recent technological breakthroughs, vaccine development affords precision in specifying the nature of the desired immune response—useful when addressing a disease as complex as atherosclerosis with a manifold of inflammatory and autoimmune components. Moreover, our exploration of available bioinformatic tools for epitope-based vaccine design provides a method to avoid expenditure of excess time or resources.

  11. Effect of antipyretic analgesics on immune responses to vaccination.

    Science.gov (United States)

    Saleh, Ezzeldin; Moody, M Anthony; Walter, Emmanuel B

    2016-09-01

    While antipyretic analgesics are widely used to ameliorate vaccine adverse reactions, their use has been associated with blunted vaccine immune responses. Our objective was to review literature evaluating the effect of antipyretic analgesics on vaccine immune responses and to highlight potential underlying mechanisms. Observational studies reporting on antipyretic use around the time of immunization concluded that their use did not affect antibody responses. Only few randomized clinical trials demonstrated blunted antibody response of unknown clinical significance. This effect has only been noted following primary vaccination with novel antigens and disappears following booster immunization. The mechanism by which antipyretic analgesics reduce antibody response remains unclear and not fully explained by COX enzyme inhibition. Recent work has focused on the involvement of nuclear and subcellular signaling pathways. More detailed immunological investigations and a systems biology approach are needed to precisely define the impact and mechanism of antipyretic effects on vaccine immune responses. PMID:27246296

  12. Monitoring the immune response to vaccination with an inactivated vaccine associated to bovine neonatal pancytopenia by deep sequencing transcriptome analysis in cattle.

    Science.gov (United States)

    Demasius, Wiebke; Weikard, Rosemarie; Hadlich, Frieder; Müller, Kerstin Elisabeth; Kühn, Christa

    2013-01-01

    Bovine neonatal pancytopenia (BNP) is a new fatal, alloimmune/alloantibody mediated disease of new-born calves induced by ingestion of colostrum from cows, which had been vaccinated with a specific vaccine against the Bovine Virus Diarrhoea Virus (BVDV). The hypothesis of pathogenic MHC class I molecules in the vaccine had been put up, but no formal proof of specific causal MHC class I alleles has been provided yet. However, the unique features of the vaccine obviously result in extremely high specific antibody titres in the vaccinated animals, but apparently also in further molecules inducing BNP. Thus, a comprehensive picture of the immune response to the vaccine is essential. Applying the novel approach of next generation RNA sequencing (RNAseq), our study provides a new holistic, comprehensive analysis of the blood transcriptome regulation after vaccination with the specific BVDV vaccine. Our RNAseq approach identified a novel cytokine-like gene in the bovine genome that is highly upregulated after vaccination. This gene has never been described before in any other species and might be specific to ruminant immune response. Furthermore, our data revealed a very coordinated immune response to double-stranded (ds) RNA or a dsRNA analogue after vaccination with the inactivated single-stranded (ss) RNA vaccine. This would suggest either a substantial contamination of the vaccine with dsRNA from host cells after virus culture or a dsRNA analogue applied to the vaccine. The first option would highlight the potential risks associated with virus culture on homologous cells during vaccine production; the latter option would emphasise the potential risks associated with immune stimulating adjuvants used in vaccine production. PMID:24099437

  13. Immunological effects of a 10-μg dose of domestic hepatitis B vaccine in adults*

    OpenAIRE

    Ren, Jing-jing; Dai, Xue-wei; Jiang, Zheng-gang; Shen, Ling-zhi; Chen, Yong-di; Li, Qian; Ren, Wen; Liu, Ying; Yao, Jun; Li, Lan-Juan

    2012-01-01

    Objective: To evaluate the immunological effects of three types of domestic 10-μg/dose hepatitis B vaccines in adults compared with a foreign vaccine, and to provide scientific evidence in support of adult hepatitis B vaccination. Methods: Adults from five counties (Deqing, Changxing, Nanxun, Wuxing, Anji) in Huzhou City, Shaoxing County and Tongxiang County, Zhejiang Province, China were selected. Blood samples were taken to assess serum HBsAg, anti-HBs, and anti-HBc using a chemiluminescenc...

  14. Concerns regarding hepatitis B vaccination and post-vaccination test among Brazilian dentists

    Directory of Open Access Journals (Sweden)

    Teixeira Rosângela

    2010-07-01

    Full Text Available Abstract Background Hepatitis B infection is the major cause of acute and chronic liver disease, cirrhosis and hepatocellular carcinoma worldwide and has long been recognized as an occupational hazard among dentists. The aim of the present study was to examine factors associated to the self-reporting of hepatitis B vaccination and immunization status among dentists working in the city of Belo Horizonte, Brazil. Methods A cross-sectional survey was carried out with 1302 dentists in Belo Horizonte, Brazil. After signing a term of informed consent, the participants answered a structured questionnaire on their knowledge regarding their vaccination and immunization status against hepatitis B. Data on demographic, behavioural and occupational exposure aspects were also collected through questionnaires. Results The results revealed that 73.8% of the dentists reported having received three doses of the vaccine. Multivariate analysis revealed that gender (p = 0.006, use of individual protective equipment (p = 0.021, history of blood transfusion (p = 0.024 and history of illicit drug use (p = 0.013 were independently associated with vaccination against hepatitis B. Only 14.8% had performed a post-vaccination test. The use of individual protective equipment (p = 0.038, dentists who asked patients about hepatitis during dental treatment (p Conclusions Although there were a large number of vaccinated dentists in Belo Horizonte, the percentage was less than what was expected, as Brazil offers the National Program of Viral Hepatitis Vaccination, which provides free hepatitis B vaccinations to all healthcare workers. Despite being part of a high risk group for contamination, most of the dentists did not know their immunization status.

  15. Tetanus, Diphtheria, Pertussis (Tdap) Vaccine

    Science.gov (United States)

    Adacel® (as a combination product containing Diphtheria, Tetanus Toxoids, Acellular Pertussis Vaccine) ... Boostrix® (as a combination product containing Diphtheria, Tetanus Toxoids, Acellular Pertussis Vaccine)

  16. Typhim Vi vaccine against typhoid fever: a clinical trial in Kenya.

    Science.gov (United States)

    Mirza, N B; Wamola, I A; Estambale, B A; Mbithi, E; Poillet, M

    1995-03-01

    Safety, tolerance and immunogenicity of the purified Vi polysaccharide vaccine (Typhim Vi) against typhoid fever was evaluated in primary school children aged 5-15 years. A total of 435 children were vaccinated, each with a single intramuscular injection in the left deltoid muscle. One hundred and ten children were randomly selected for blood samples on day 0 (pre vaccination) and day 30 (post vaccination). Vi antibodies studied by Radio immuno assay (RIA) on 97(88%) paired sera showed a seroconversion rate of 76.2% and seroprotection rate after vaccination was 74.2%, while 6.2% of children already had protective immunity before vaccination. The vaccine was well tolerated. Most commonly reported reactions were mild pain at site of injection (83%), and a few complained of mild swelling (4.6%), induration (1.1%), itching (1.1%) and headaches (1.4%). All reactions were of mild severity and disappeared within 24 to 48 hours.

  17. Immune Response to Hepatitis A Vaccine Combined or Given Simultaneously with Typhoid Fever Vaccine.

    Science.gov (United States)

    Vodopija; Baklaic; Vodopija; Clemens

    1997-09-01

    Background: Because both hepatitis A and typhoid vaccination are frequently indicated in the same traveler, a prospective, randomized controlled study was performed to evaluate the feasibility of simultaneous administration of hepatitis A and typhoid fever vaccines in adult volunteers. Methods: Two groups of 25 subjects received either separate injections of hepatitis A (Havrixtrade mark, SmithKline Beecham Biologicals) and typhoid fever (Typhim Vitrade mark, Pasteur-Mérieux) vaccines in opposite arms, or a syringe-mixed combination of both vaccines as a single injection. A booster dose of Havrix was given at 6 months. Results: The immune response to hepatitis A tended to be higher in the mixed-injection group, but this difference was significant (p=.048) only following the booster dose. Adverse reactions were generally mild with no differences between the two groups. Conclusion: A combined formulated vaccine against both typhoid fever and hepatitis A is feasible and offers more convenience without added adverse reactions to travelers who have appropriate indications for both vaccines.

  18. The search for animal models for Lassa fever vaccine development

    OpenAIRE

    Lukashevich, Igor S.

    2013-01-01

    Lassa virus (LASV) is the most prevalent arenavirus in West Africa and is responsible for several hundred thousand infections and thousands of deaths annually. The sizeable disease burden, numerous imported cases of Lassa fever (LF) and the possibility that LASV can be used as an agent of biological warfare make a strong case for vaccine development. Currently there is no licensed LF vaccine and research and devlopment is hampered by the high cost of nonhuman primate animal models and by bioc...

  19. Transfusions of blood and blood products and viral infections

    Directory of Open Access Journals (Sweden)

    Marta Wróblewska

    2002-06-01

    Full Text Available Transfusions of blood and blood products are commonly used in medicine, but being biological materials they carry a risk of transmitting infections--viral, bacterial, parasitic, as well as prions. Laboratory tests used for screening of donated blood for viral infections at present cannot detect all infectious units. Criteria for selection of blood donors therefore must be very strict, while methods of inactivation of viruses and laboratory assays for detection of their presence must be improved. Indications for blood transfusion should be restricted.

  20. Manipulation of BCG vaccine: a double-edged sword.

    Science.gov (United States)

    Singh, V K; Srivastava, R; Srivastava, B S

    2016-04-01

    Mycobacterium bovis Bacillus Calmette-Guérin (BCG), an attenuated vaccine derived from M. bovis, is the only licensed vaccine against tuberculosis (TB). Despite its protection against TB in children, the protective efficacy in pulmonary TB is variable in adolescents and adults. In spite of the current knowledge of molecular biology, immunology and cell biology, infectious diseases such as TB and HIV/AIDS are still challenges for the scientific community. Genetic manipulation facilitates the construction of recombinant BCG (rBCG) vaccine that can be used as a highly immunogenic vaccine against TB with an improved safety profile, but, still, the manipulation of BCG vaccine to improve efficacy should be carefully considered, as it can bring in both favourable and unfavourable effects. The purpose of this review is not to comprehensively review the interaction between microorganisms and host cells in order to use rBCG expressing M. tuberculosis (Mtb) immunodominant antigens that are available in the public domain, but, rather, to also discuss the limitations of rBCG vaccine, expressing heterologous antigens, during manipulation that pave the way for a promising new vaccine approach. PMID:26810060

  1. Co-administration of human papillomavirus-16/18 AS04-adjuvanted vaccine with hepatitis B vaccine: randomized study in healthy girls.

    NARCIS (Netherlands)

    Schmeink, C.E.; Bekkers, R.L.M.; Josefsson, A.; Richardus, J.H.; Berndtsson Blom, K.; David, M.P.; Dobbelaere, K.; Descamps, D.

    2011-01-01

    BACKGROUND: To evaluate co-administration of GlaxoSmithKline Biologicals' human papillomavirus-16/18 AS04-adjuvanted vaccine (HPV) and hepatitis B vaccine (HepB). METHODS: This was a randomized, controlled, open, multicenter study. Healthy girls, aged 9-15 years, were randomized to receive HPV (n=24

  2. The haematological profile of female bronze turkeys (Meleagris gallopavo vaccinated with various commercial strains of Newcastle disease

    Directory of Open Access Journals (Sweden)

    Elizabeth M.d.S. Schmidt

    2014-02-01

    Full Text Available The effects of vaccination on avian blood parameters are poorly understood. The present study was designed to evaluate whether different strains (Ulster 2C, B1, live LaSota and inactivated LaSota of Newcastle disease vaccines had an effect on the haematological profile of female turkeys. Seventy-five female turkeys were allocated to treatment groups according to vaccination strain. All the birds, except those in the control group, were vaccinated at 32 weeks of age and revaccinated at 40 and 48 weeks of age. Blood samples were obtained for haematological analyses and serum samples for the haemagglutination inhibition test. Haemoglobin concentration was significantly lower (p < 0.05 in vaccinated female turkeys than in the control birds 28 days after vaccination. Monocytes were significantly higher (p < 0.05 in 44-week-old female turkeys vaccinated with inactivated LaSota strain compared with the other groups. Turkeys vaccinated with the B1 strain showed significantly higher (p < 0.05 total white blood cell counts compared with the other groups vaccinated with various commercial strains of the Newcastle disease virus. In conclusion, female turkeys showed significant differences in haemoglobin concentrations, monocytes and white blood cell counts when vaccinated against Newcastle disease.

  3. The haematological profile of female bronze turkeys (Meleagris gallopavo) vaccinated with various commercial strains of Newcastle disease.

    Science.gov (United States)

    Schmidt, Elizabeth M d S; Santos, Ivan F C; Paulillo, António C; Martins, Gislaine R V; Denadai, Janine; Lapela, Ivan M

    2014-08-25

    The effects of vaccination on avian blood parameters are poorly understood. The present study was designed to evaluate whether different strains (Ulster 2C, B1, live LaSota and inactivated LaSota) of Newcastle disease vaccines had an effect on the haematological profile of female turkeys. Seventy-five female turkeys were allocated to treatment groups according to vaccination strain. All the birds, except those in the control group, were vaccinated at 32 weeks of age and revaccinated at 40 and 48 weeks of age. Blood samples were obtained for haematological analyses and serum samples for the haemagglutination inhibition test. Haemoglobin concentration was significantly lower (p < 0.05) in vaccinated female turkeys than in the control birds 28 days after vaccination. Monocytes were significantly higher (p < 0.05) in 44-week-old female turkeys vaccinated with inactivated LaSota strain compared with the other groups. Turkeys vaccinated with the B1 strain showed significantly higher (p < 0.05) total white blood cell counts compared with the other groups vaccinated with various commercial strains of the Newcastle disease virus. In conclusion, female turkeys showed significant differences in haemoglobin concentrations, monocytes and white blood cell counts when vaccinated against Newcastle disease.

  4. Clinical development of Ebola vaccines.

    Science.gov (United States)

    Sridhar, Saranya

    2015-09-01

    The ongoing outbreak of Ebola virus disease in West Africa highlighted the lack of a licensed drug or vaccine to combat the disease and has renewed the urgency to develop a pipeline of Ebola vaccines. A number of different vaccine platforms are being developed by assessing preclinical efficacy in animal models and expediting clinical development. Over 15 different vaccines are in preclinical development and 8 vaccines are now in different stages of clinical evaluation. These vaccines include DNA vaccines, virus-like particles and viral vectors such as live replicating vesicular stomatitis virus (rVSV), human and chimpanzee adenovirus, and vaccinia virus. Recently, in preliminary results reported from the first phase III trial of an Ebola vaccine, the rVSV-vectored vaccine showed promising efficacy. This review charts this rapidly advancing area of research focusing on vaccines in clinical development and discusses the future opportunities and challenges faced in the licensure and deployment of Ebola vaccines.

  5. Clinical development of Ebola vaccines.

    Science.gov (United States)

    Sridhar, Saranya

    2015-09-01

    The ongoing outbreak of Ebola virus disease in West Africa highlighted the lack of a licensed drug or vaccine to combat the disease and has renewed the urgency to develop a pipeline of Ebola vaccines. A number of different vaccine platforms are being developed by assessing preclinical efficacy in animal models and expediting clinical development. Over 15 different vaccines are in preclinical development and 8 vaccines are now in different stages of clinical evaluation. These vaccines include DNA vaccines, virus-like particles and viral vectors such as live replicating vesicular stomatitis virus (rVSV), human and chimpanzee adenovirus, and vaccinia virus. Recently, in preliminary results reported from the first phase III trial of an Ebola vaccine, the rVSV-vectored vaccine showed promising efficacy. This review charts this rapidly advancing area of research focusing on vaccines in clinical development and discusses the future opportunities and challenges faced in the licensure and deployment of Ebola vaccines. PMID:26668751

  6. Should smallpox vaccine be made available to the general public?

    Science.gov (United States)

    May, Thomas; Silverman, Ross D

    2003-06-01

    In June 2002, the Advisory Committee on Immunization Practices (ACIP) approved draft recommendations concerning preparation for potential biological terror attacks that utilize the smallpox virus. ACIP recommends against both mandatory and voluntary vaccination of the general public. The present paper examines the moral and political considerations both for and against each of the general public vaccination options considered by the ACIP in the context of the state's authority over vaccination for the purposes of protecting public health. Although it is clear that compulsory mass vaccination is not justified at this time, the issues surrounding voluntary vaccination are more complex. Should smallpox vaccination prior to an outbreak be made available to the general public? The paper concludes that the vaccine should not be made available at this time. This conclusion, however, is based upon contingent features of current circumstances, which would change once an outbreak occurred. In the even of a terror-related outbreak of smallpox, the general public's access to voluntary vaccination would become justified, even in areas beyond where the outbreak has occurred.

  7. Nanosized blood microparticles

    NARCIS (Netherlands)

    Yuana, Yuana

    2011-01-01

    Microparticles (MPs) have important physiological and pathological roles in blood coagulation, inflammation and tumor progression. In recent years MPs also have been recognized to participate in important biological processes, such as in signaling and in the horizontal transfer of their specific pro

  8. Cochlear-Meningitis Vaccination

    Science.gov (United States)

    ... Prevnar 13®) 23-valent pneumococcal polysaccharide (PPSV) (Pneumovax®) Haemophilus influenzae type b conjugate (Hib) Tetravalent (A, C, Y, W-135) ... CDC immunization guidelines for routine meningococcal vaccination. The Haemophilus influenzae type b (Hib) vaccine is not routinely recommended for those ...

  9. Vaccines and autoimmunity.

    Science.gov (United States)

    Agmon-Levin, Nancy; Paz, Ziv; Israeli, Eitan; Shoenfeld, Yehuda

    2009-11-01

    Vaccines have been used for over 200 years and are the most effective way of preventing the morbidity and mortality associated with infections. Like other drugs, vaccines can cause adverse events, but unlike conventional medicines, which are prescribed to people who are ill, vaccines are administered to healthy individuals, thus increasing the concern over adverse reactions. Most side effects attributed to vaccines are mild, acute and transient; however, rare reactions such as hypersensitivity, induction of infection, and autoimmunity do occur and can be severe and even fatal. The rarity and subacute presentation of post-vaccination autoimmune phenomena means that ascertaining causality between these events can be difficult. Moreover, the latency period between vaccination and autoimmunity ranges from days to years. In this article, on the basis of published evidence and our own experience, we discuss the various aspects of the causal and temporal interactions between vaccines and autoimmune phenomena, as well as the possible mechanisms by which different components of vaccines might induce autoimmunity.

  10. Vaccines and autoimmunity.

    Science.gov (United States)

    De Martino, M; Chiappini, E; Galli, L

    2013-01-01

    Vaccines have eradicated or controlled many infectious diseases, saving each year millions of lives and quality of life of many other millions of people. In spite of the success of vaccines over the last two centuries, parents (and also some health care workers) gloss over the devastating consequences of diseases, which are now avoided thanks to vaccines, and direct their attention to possible negative effects of immunization. Three immunological objections are raised: vaccines cause antigenic overload, natural immunity is safer and better than vaccine-induced immunity, and vaccines induce autoimmunity. The last point is examined in this review. Theoretically, vaccines could trigger autoimmunity by means of cytokine production, anti-idiotypic network, expression of human histocompatibility leukocyte antigens, modification of surface antigens and induction of novel antigens, molecular mimicry, bystander activation, epitope spreading, and polyclonal activation of B cells. There is strong evidence that none of these mechanisms is really effective in causing autoimmune diseases. Vaccines are not a source of autoimmune diseases. By contrast, absolute evidence exists that infectious agents can trigger autoimmune mechanisms and that they do cause autoimmune diseases.

  11. Chimeric Pestivirus Experimental Vaccines.

    Science.gov (United States)

    Reimann, Ilona; Blome, Sandra; Beer, Martin

    2016-01-01

    Chimeric pestiviruses have shown great potential as marker vaccine candidates against pestiviral infections. Exemplarily, we describe here the construction and testing of the most promising classical swine fever vaccine candidate "CP7_E2alf" in detail. The description is focused on classical cloning technologies in combination with reverse genetics. PMID:26458840

  12. Vaccines and immunotherapies for the prevention of infectious diseases having cutaneous manifestations.

    Science.gov (United States)

    Wu, Jashin J; Huang, David B; Pang, Katie R; Tyring, Stephen K

    2004-04-01

    Although the development of antimicrobial drugs has advanced rapidly in the past several years, such agents act against only certain groups of microbes and are associated with increasing rates of resistance. These limitations of treatment force physicians to continue to rely on prevention, which is more effective and cost-effective than therapy. From the use of the smallpox vaccine by Jenner in the 1700s to the current concerns about biologic warfare, the technology for vaccine development has seen numerous advances. The currently available vaccines for viral illnesses include Dryvax for smallpox; the combination measles, mumps, and rubella vaccine; inactivated vaccine for hepatitis A; plasma-derived vaccine for hepatitis B; and the live attenuated Oka strain vaccine for varicella zoster. Vaccines available against bacterial illnesses include those for anthrax, Haemophilus influenzae, and Neisseria meningitidis. Currently in development for both prophylactic and therapeutic purposes are vaccines for HIV, herpes simplex virus, and human papillomavirus. Other vaccines being investigated for prevention are those for cytomegalovirus, respiratory syncytial virus, parainfluenza virus, hepatitis C, and dengue fever, among many others. Fungal and protozoan diseases are also subjects of vaccine research. Among immunoglobulins approved for prophylactic and therapeutic use are those against cytomegalovirus, hepatitis A and B, measles, rabies, and tetanus. With this progress, it is hoped that effective vaccines soon will be developed for many more infectious diseases with cutaneous manifestations. PMID:15034501

  13. Artificial blood

    Directory of Open Access Journals (Sweden)

    Sarkar Suman

    2008-01-01

    Full Text Available Artificial blood is a product made to act as a substitute for red blood cells. While true blood serves many different functions, artificial blood is designed for the sole purpose of transporting oxygen and carbon dioxide throughout the body. Depending on the type of artificial blood, it can be produced in different ways using synthetic production, chemical isolation, or recombinant biochemical technology. Development of the first blood substitutes dates back to the early 1600s, and the search for the ideal blood substitute continues. Various manufacturers have products in clinical trials; however, no truly safe and effective artificial blood product is currently marketed. It is anticipated that when an artificial blood product is available, it will have annual sales of over $7.6 billion in the United States alone.

  14. Next generation vaccines.

    Science.gov (United States)

    Riedmann, Eva M

    2011-07-01

    In February this year, about 100 delegates gathered for three days in Vienna (Austria) for the Next Generation Vaccines conference. The meeting held in the Vienna Hilton Hotel from 23rd-25th February 2011 had a strong focus on biotech and industry. The conference organizer Jacob Fleming managed to put together a versatile program ranging from the future generation of vaccines to manufacturing, vaccine distribution and delivery, to regulatory and public health issues. Carefully selected top industry experts presented first-hand experience and shared solutions for overcoming the latest challenges in the field of vaccinology. The program also included several case study presentations on novel vaccine candidates in different stages of development. An interactive pre-conference workshop as well as interactive panel discussions during the meeting allowed all delegates to gain new knowledge and become involved in lively discussions on timely, interesting and sometimes controversial topics related to vaccines. PMID:22002157

  15. Therapeutic HIV Peptide Vaccine

    DEFF Research Database (Denmark)

    Fomsgaard, Anders

    2015-01-01

    infection directed to subdominant conserved HIV-1 epitopes restricted to frequent HLA supertypes. The rationale for selecting HIV peptides and adjuvants are provided. Peptide subunit vaccines are regarded as safe due to the simplicity, quality, purity, and low toxicity. The caveat is reduced immunogenicity......Therapeutic vaccines aim to control chronic HIV infection and eliminate the need for lifelong antiretroviral therapy (ART). Therapeutic HIV vaccine is being pursued as part of a functional cure for HIV/AIDS. We have outlined a basic protocol for inducing new T cell immunity during chronic HIV-1...... and hence adjuvants are included to enhance and direct the immune response. Although the vaccine has been tested in ART naïve individuals, we recommend future testing of the vaccine during (early started) ART that improves immune function and to select individuals likely to benefit. Peptides representing...

  16. Neisseria meningitidis B vaccines.

    Science.gov (United States)

    Panatto, Donatella; Amicizia, Daniela; Lai, Piero Luigi; Gasparini, Roberto

    2011-09-01

    Invasive infections caused by Neisseria meningitidis are a serious public health problem worldwide and have a heavy economic impact. The incidence of invasive disease due to Neisseria meningitidis is highly variable according to geographical area and serogroup distribution. Since the introduction of vaccination programs with conjugated vaccine C in children and adolescents, most cases of invasive meningococcal disease in developed countries have been caused by meningococcus B. It is important to underline that invasive meningococcal disease will not be controlled until safe and effective vaccines for meningococcal B are available and widely used. The aims of this article are to describe the most recent developments in meningococcal B vaccines and to discuss how these vaccines can contribute to containing meningococcal disease.

  17. DNA fusion gene vaccines

    DEFF Research Database (Denmark)

    Holst, Peter Johannes; Bassi, Maria Rosaria; Thomsen, Allan Randrup;

    2010-01-01

    DNA vaccines are versatile and safe, but limited immunogenicity has prevented their use in the clinical setting. Experimentally, immunogenicity may be enhanced by the use of new delivery technologies, by coadministration of cytokines and pathogen-associated molecular patterns, or by fusion...... of antigens into molecular domains that enhance antigen presentation. More specifically, the immunogenicity of DNA vaccines may benefit from increased protein synthesis, increased T-cell help and MHC class I presentation, and the addition of a range of specific cytokines and pathogen-associated molecular...... with viral-vectored vaccines, various synergistic components may need to be incorporated into DNA vaccines. From the perspective of the future clinical use of DNA vaccines, it has been suggested that antigen presentation should be improved and cytokine coadministration attempted. However, even...

  18. Immune memory responses to HBV vaccine 13-18 years after primary vaccination.

    Science.gov (United States)

    Hou, L; Li, W; Wei, X; Zhou, Y; Zhuo, Y; Wu, H; Shen, B

    2015-01-01

    The aim of this study was to evaluate the immune memory response 13-18 years after an hepatitis B virus (HBV) vaccine by performing a specific in vitro stimulation experiment. Thirty healthy volunteers who had been inoculated 13-18 years ago with the HBV vaccine were collected from the physical examination center. Peripheral blood mononuclear cells were stimulated with 50 ng/mL recombinant HBsAg. An ELISA kit was used for the detection of antibodies that were produced by these cells in vitro. It was found that even 13-18 years after inoculation with the HBV vaccine, an anamnestic antibody response still existed, and was not correlated with the serum antibody levels (r = -0.177, P = 0.377). In conclusion, our data showed that the individuals after inoculation, including those with anti-HBs B cells. PMID:26345774

  19. Vaccine safety--vaccine benefits: science and the public's perception.

    Science.gov (United States)

    Wilson, C B; Marcuse, E K

    2001-11-01

    The development of cowpox vaccination by Jenner led to the development of immunology as a scientific discipline. The subsequent eradication of smallpox and the remarkable effects of other vaccines are among the most important contributions of biomedical science to human health. Today, the need for new vaccines has never been greater. However, in developed countries, the public's fear of vaccine-preventable diseases has waned, and awareness of potential adverse effects has increased, which is threatening vaccine acceptance. To further the control of disease by vaccination, we must develop safe and effective new vaccines to combat infectious diseases, and address the public's concerns.

  20. Detection of Francisella tularensis in blood by polymerase chain reaction.

    OpenAIRE

    Long, G W; Oprandy, J J; Narayanan, R. B.; Fortier, A H; Porter, K R; Nacy, C.A.

    1993-01-01

    We developed a polymerase chain reaction-based assay for Francisella tularensis which we evaluated by using spiked blood samples and experimentally infected mice. The assay detected both type A and type B F. tularensis at levels equivalent to one CFU/microliter of spiked blood. Results from polymerase chain reaction-based assay of limiting dilutions of blood from mice infected with the live vaccine strain agreed closely with results from blood culture.

  1. New approaches and omics tools for mining of vaccine candidates against vector-borne diseases.

    Science.gov (United States)

    Kuleš, Josipa; Horvatić, Anita; Guillemin, Nicolas; Galan, Asier; Mrljak, Vladimir; Bhide, Mangesh

    2016-08-16

    Vector-borne diseases (VBDs) present a major threat to human and animal health, as well as place a substantial burden on livestock production. As a way of sustainable VBD control, focus is set on vaccine development. Advances in genomics and other "omics" over the past two decades have given rise to a "third generation" of vaccines based on technologies such as reverse vaccinology, functional genomics, immunomics, structural vaccinology and the systems biology approach. The application of omics approaches is shortening the time required to develop the vaccines and increasing the probability of discovery of potential vaccine candidates. Herein, we review the development of new generation vaccines for VBDs, and discuss technological advancement and overall challenges in the vaccine development pipeline. Special emphasis is placed on the development of anti-tick vaccines that can quell both vectors and pathogens.

  2. Side-by-side comparison of gene-based smallpox vaccine with MVA in nonhuman primates.

    Directory of Open Access Journals (Sweden)

    Joseph W Golden

    Full Text Available Orthopoxviruses remain a threat as biological weapons and zoonoses. The licensed live-virus vaccine is associated with serious health risks, making its general usage unacceptable. Attenuated vaccines are being developed as alternatives, the most advanced of which is modified-vaccinia virus Ankara (MVA. We previously developed a gene-based vaccine, termed 4pox, which targets four orthopoxvirus antigens, A33, B5, A27 and L1. This vaccine protects mice and non-human primates from lethal orthopoxvirus disease. Here, we investigated the capacity of the molecular adjuvants GM-CSF and Escherichia coli heat-labile enterotoxin (LT to enhance the efficacy of the 4pox gene-based vaccine. Both adjuvants significantly increased protective antibody responses in mice. We directly compared the 4pox plus LT vaccine against MVA in a monkeypox virus (MPXV nonhuman primate (NHP challenge model. NHPs were vaccinated twice with MVA by intramuscular injection or the 4pox/LT vaccine delivered using a disposable gene gun device. As a positive control, one NHP was vaccinated with ACAM2000. NHPs vaccinated with each vaccine developed anti-orthopoxvirus antibody responses, including those against the 4pox antigens. After MPXV intravenous challenge, all control NHPs developed severe disease, while the ACAM2000 vaccinated animal was well protected. All NHPs vaccinated with MVA were protected from lethality, but three of five developed severe disease and all animals shed virus. All five NHPs vaccinated with 4pox/LT survived and only one developed severe disease. None of the 4pox/LT-vaccinated animals shed virus. Our findings show, for the first time, that a subunit orthopoxvirus vaccine delivered by the same schedule can provide a degree of protection at least as high as that of MVA.

  3. Epitope-driven DNA vaccine design employing immunoinformatics against B-cell lymphoma: a biotech's challenge.

    Science.gov (United States)

    Iurescia, Sandra; Fioretti, Daniela; Fazio, Vito Michele; Rinaldi, Monica

    2012-01-01

    DNA vaccination has been widely explored to develop new, alternative and efficient vaccines for cancer immunotherapy. DNA vaccines offer several benefits such as specific targeting, use of multiple genes to enhance immunity and reduced risk compared to conventional vaccines. Rapid developments in molecular biology and immunoinformatics enable rational design approaches. These technologies allow construction of DNA vaccines encoding selected tumor antigens together with molecules to direct and amplify the desired effector pathways, as well as highly targeted vaccines aimed at specific epitopes. Reliable predictions of immunogenic T cell epitope peptides are crucial for rational vaccine design and represent a key problem in immunoinformatics. Computational approaches have been developed to facilitate the process of epitope detection and show potential applications to the immunotherapeutic treatment of cancer. In this review a number of different epitope prediction methods are briefly illustrated and effective use of these resources to support experimental studies is described. Epitope-driven vaccine design employs these bioinformatics algorithms to identify potential targets of vaccines against cancer. In this paper the selection of T cell epitopes to develop epitope-based vaccines, the need for CD4(+) T cell help for improved vaccines and the assessment of vaccine performance against tumor are reviewed. We focused on two applications, namely prediction of novel T cell epitopes and epitope enhancement by sequence modification, and combined rationale design with bioinformatics for creation of new synthetic mini-genes. This review describes the development of epitope-based DNA vaccines and their antitumor effects in preclinical research against B-cell lymphoma, corroborating the usefulness of this platform as a potential tool for cancer therapy. Achievements in the field of DNA vaccines allow to overcome hurdles to clinical translation. In a scenario where the vaccine

  4. Vaccines for canine leishmaniasis

    Directory of Open Access Journals (Sweden)

    Clarisa B. Palatnik-De-Sousa

    2012-04-01

    Full Text Available Leishmaniasis is the third most important vector-borne disease worldwide. Visceral leishmaniasis (VL is a severe and frequently lethal protozoan disease of increasing incidence and severity due to infected human and dog migration, new geographical distribution of the insect due to global-warming, co-infection with immunosuppressive diseases and poverty. The disease is an anthroponosis in India and Central Africa and a canid zoonosis (ZVL in the Americas, the Middle East, Central Asia, China and the Mediterranean. The ZVL epidemic has been controlled by one or more measures including the culling of infected dogs, treatment of human cases and insecticidal treatment of homes and dogs. However, the use of vaccines is considered the most cost-effective control tool for human and canine disease. Since the severity of the disease is related to the generation of T-cell immunosuppression, effective vaccines should be capable of sustaining or enhancing the T-cell immunity. In this review we summarize the clinical and parasitological characteristics of ZVL with special focus on the cellular and humoral canine immune response and review state-of-the-art vaccine development against human and canine visceral leishmaniasis. Experimental vaccination against leishmaniasis has evolved from the practice of leishmanization with living parasites to vaccination with crude lysates, native parasite extracts to recombinant and DNA vaccination. Although more than 30 defined vaccines have been studied in laboratory models no human formulation has been licensed so far; however three second-generation canine vaccines have already been registered. As expected for a zoonotic disease, the recent preventive vaccination of dogs in Brazil has led to a reduction in the incidence of canine and human disease. The recent identification of several Leishmania proteins with T-cell epitopes anticipates development of a multiprotein vaccine that will be capable of protecting both humans

  5. Lassa fever vaccine.

    Science.gov (United States)

    Fisher-Hoch, Susan P; McCormick, Joseph B

    2004-04-01

    Lassa fever remains a serious challenge to public health in West Africa threatening both local residents in rural areas and those who serve them, particularly medical care providers. Given the ecology of the rodent host and conditions in the endemic area, a vaccine is mandatory for control. The challenge is to overcome the scientific, political and economic obstacles to producing a human use vaccine candidate. There are some scientific issues to resolve. It is known that the G-protein confers protection but we do not know its duration. If the N-protein is also included there may be a better duration of protection but it is unclear whether the N-protein as a vaccine may possibly enhance the infection. The original vaccinia vector must be replaced by new vectors, chimeras or by delivering DNA in some format. A live vaccine is attractive because it can confer protection in a single shot. A killed vaccine is more stable, particularly for distribution in the tropics but usually requires repeated shots. For practical reasons a live vaccine format should probably be pursued, which could then be combined with a yellow fever vaccine, using the same cold chains, since this disease occupies the same endemic areas in West Africa. Lassa vaccine initiatives have suffered from a lack of funding in the past but bioterrorism has brought new resources to Lassa virus science. Adequate funding and applications of new vaccine technologies give hope that we may soon see a vaccine in clinical trials. However, the difficulty of conducting trials in endemic areas and lack of political stability remain serious problems. PMID:15056044

  6. The Vaccine Safety Datalink: successes and challenges monitoring vaccine safety.

    Science.gov (United States)

    McNeil, Michael M; Gee, Julianne; Weintraub, Eric S; Belongia, Edward A; Lee, Grace M; Glanz, Jason M; Nordin, James D; Klein, Nicola P; Baxter, Roger; Naleway, Allison L; Jackson, Lisa A; Omer, Saad B; Jacobsen, Steven J; DeStefano, Frank

    2014-09-22

    The Vaccine Safety Datalink (VSD) is a collaborative project between the Centers for Disease Control and Prevention (CDC) and 9 health care organizations. Established in 1990, VSD is a vital resource informing policy makers and the public about the safety of vaccines used in the United States. Large linked databases are used to identify and evaluate adverse events in over 9 million individuals annually. VSD generates rapid, important safety assessments for both routine vaccinations and emergency vaccination campaigns. VSD monitors safety of seasonal influenza vaccines in near-real time, and provided essential information on the safety of influenza A (H1N1) 2009 monovalent vaccine during the recent pandemic. VSD investigators have published important studies demonstrating that childhood vaccines are not associated with autism or other developmental disabilities. VSD prioritizes evaluation of new vaccines; searches for possible unusual health events after vaccination; monitors vaccine safety in pregnant women; and has pioneered development of biostatistical research methods.

  7. Human peripheral blood lymphocytes from recently vaccinated individuals produce both type-specific and intertypic cross-reacting neutralizing antibody on in vitro stimulation with one type of poliovirus.

    NARCIS (Netherlands)

    F.G.C.M. Uytdehaag (Fons); H.G. Loggen; T. Logtenberg (Ton); R.A. Lichtveld; G. van Steenis (Bert); J.A.A.M. van Asten (Jack); A.D.M.E. Osterhaus (Ab)

    1985-01-01

    textabstractAn in vitro system of poliovirus-specific antibody production by peripheral blood B cells on stimulation by the virus has been developed. Virus-neutralizing antibodies in culture supernatant fluids, or virus-specific antibody-secreting cells (ASC) were detected by microneutralization ass

  8. A Systems Framework for Vaccine Design

    OpenAIRE

    Mooney, Michael; McWeeney, Shannon; Canderan, Glenda; Sékaly, Rafick-Pierre

    2013-01-01

    Numerous challenges have been identified in vaccine development, including variable efficacy as a function of population demographics and a lack of characterization and mechanistic understanding of immune correlates of protection able to guide delivery and dosing. There is tremendous opportunity in recent technological and computational advances to elucidate systems level understanding of pathogen-host interactions and correlates of immunity. A systems biology approach to vaccinology provides...

  9. Anthrax vaccine design: strategies to achieve comprehensive protection against spore, bacillus, and toxin

    OpenAIRE

    Roehrl, Michael H.; Wang, Jun-Xia

    2005-01-01

    The successful use of Bacillus anthracis as a lethal biological weapon has prompted renewed research interest in the development of more effective vaccines against anthrax. The disease consists of three critical components: spore, bacillus, and toxin, elimination of any of which confers at least partial protection against anthrax. Current remedies rely on postexposure antibiotics to eliminate bacilli and pre- and postexposure vaccination to target primarily toxins. Vaccines effective against ...

  10. Replacement, Reduction and Refinement of Animal Testing in the Quality Control of Human Vaccines

    OpenAIRE

    HALDER MARIA ELISABETH

    2015-01-01

    Vaccines are recognised as a highly cost effective tool for preventing infectious diseases. They are derived from biological sources and due to the complexity of composition and heterogeneity of products, vaccine lots undergo legally required quality control before they are released. Traditionally, laboratory animals have played an important role in quality control of vaccines and still, many laboratory animals are used in Europe for this purpose. Over the last decades, Replacement, Reduction...

  11. The Optimal Composition of Influenza Vaccines Subject to Random Production Yields

    OpenAIRE

    Soo-Haeng Cho

    2010-01-01

    The Vaccine and Related Biologic Products Advisory Committee meets at least once a year to decide the composition of seasonal influenza vaccine in the United States. Past evidence suggests that the committee could use a more systematic approach to incorporate observed information and to quantify the risks associated with different options. There are two key trade-offs involved in this decision. First, if the Committee decides to retain the current vaccine composition instead of updating to a ...

  12. Oral DNA Vaccine in Chickens

    Directory of Open Access Journals (Sweden)

    Seyed Davoud Jazayeri

    2012-01-01

    Full Text Available Attenuated Salmonella has been used as a carrier for DNA vaccine. However, in vitro and in vivo studies on the bacteria following transfection of plasmid DNA were poorly studied. In this paper, eukaryotic expression plasmids encoding avian influenza virus (AIV subtype H5N1 genes, pcDNA3.1/HA, NA, and NP, were transfected into an attenuated Salmonella enteric typhimurium SV4089. In vitro stability of the transfected plasmids into Salmonella were over 90% after 100 generations. The attenuated Salmonella were able to invade MCF-7 (1.2% and MCF-10A (0.5% human breast cancer cells. Newly hatched specific-pathogen-free (SPF chicks were inoculated once by oral gavage with 109 colony-forming unit (CFU of the attenuated Salmonella. No abnormal clinical signs or deaths were recorded after inoculation. Viable bacteria were detected 3 days after inoculation by plating from spleen, liver, and cecum. Fluorescent in situ hybridization (FISH and polymerase chain reaction (PCR were carried out for confirmation. Salmonella was not detected in blood cultures although serum antibody immune responses to Salmonella O antiserum group D1 factor 1, 9, and 12 antigens were observed in all the inoculated chickens after 7 days up to 35 days. Our results showed that live attenuated S. typhimurium SV4089 harboring pcDNA3.1/HA, NA, and NP may provide a unique alternative as a carrier for DNA oral vaccine in chickens.

  13. 21 CFR 610.53 - Dating periods for licensed biological products.

    Science.gov (United States)

    2010-04-01

    ... Vaccine Adsorbed ......do ......do Do. Plague Vaccine ......do ......do Do. Plasma products: 1. Fresh Frozen Plasma Not applicable ......do 1 year from date of collection of source blood (−18 °C or colder). 2. Liquid Plasma ......do ......do (a) 26 days from date of collection of source blood (between...

  14. H. influenzae type b (Hib) vaccine--controversies.

    Science.gov (United States)

    Shah, Nitin K

    2003-06-01

    Hib vaccine is the 8th vaccine knocking at the door to be included in the EPI the world over. However there are some controversies that need to be addressed, especially when it comes to use of this vaccine in India. It is difficult to culture Hib unless one uses sheep blood enriched media for culture. There is a lack of good community based data on Hib burden in India. This makes many feel that Hib is rare in India. However this is not true. There are many studies that have looked at this closely. Hib is a common cause of meningitis and pneumonitis in children less than 5 years old in India. There is wide spread problem of multi-drug resistance by Hib in India. Mortality of meningitis is as high as 100% if third generation cephalosporins are not used in time. Of the survivors of meningitis, 60% develop long-term sequelae. Hib vaccine is very effective and can lead to 99% reduction with mass vaccination in just 2-3 years. It is also a very safe vaccine. Of the conjugated vaccines available in India all are equally effective and safe and there is nothing to choose one over the other. There is a need to give a booster dose at 15-18 months of age. Even UK, which never gave the booster dose, is seriously thinking of changing their practice and give a booster dose. Lastly the combination vaccines of Hib with IPV, DPwT/DPaT, and Hepatitis B are safe and effective and should be encouraged to improve the compliance. The use of Hib vaccine is recommended in India, for those who can afford the vaccine. PMID:12921318

  15. Optics of Biological Particles

    CERN Document Server

    Hoekstra, Alfons; Videen, Gorden

    2007-01-01

    This book covers the optics of single biological particles, both theory and experiment, with emphasis on Elastic Light Scattering and Fluorescence. It deals with the optics of bacteria (bio-aerosols), marine particles (selected phytoplankton communities) and red and white blood cells. Moreover, there are dedicated chapters on a general theory for scattering by a cell, and modelling and simulation of scattering by inhomogeneous biological cells. Finally, one chapter is dedicated to astro-biological signatures, discussing the possibilities for detecting non-terrestrial biological material. The volume has up-to-date discussions on new experimental and numerical techniques, and many examples of applications of these techniques in real-life systems, as used to detect and characterize e.g. biological warfare agents or human blood cells.

  16. [Current events in vaccination].

    Science.gov (United States)

    Aubert, M; Aumaître, H; Beytout, J; Bloch, K; Bouhour, D; Callamand, P; Chave, C; Cheymol, J; Combadière, B; Dahlab, A; Denis, F; De Pontual, L; Dodet, B; Dommergues, M-A; Dufour, V; Gagneur, A; Gaillat, J; Gaudelus, J; Gavazzi, G; Gillet, Y; Gras-le-Guen, C; Haas, H; Hanslik, T; Hau-Rainsard, I; Larnaudie, S; Launay, O; Lorrot, M; Loulergue, P; Malvy, D; Marchand, S; Picherot, G; Pinquier, D; Pulcini, C; Rabaud, C; Regnier, F; Reinert, P; Sana, C; Savagner, C; Soubeyrand, B; Stephan, J-L; Strady, C

    2011-11-01

    The annual meeting of the Infectious Disease Society of America (IDSA) ; which brought together nearly 5000 participants from over 80 countries in Vancouver, Canada, October 21 to 24, 2010 ; provided a review of the influenza (H1N1) 2009 pandemic, evaluated vaccination programmes and presented new vaccines under development. With 12,500 deaths in the United States in 2009-2010, the influenza (H1N1) 2009 pandemic was actually less deadly than the seasonal flu. But it essentially hit the young, and the toll calculated in years of life lost is high. The monovalent vaccines, whether live attenuated or inactivated with or without adjuvants, were well tolerated in toddlers, children, adults and pregnant women. In order to protect infants against pertussis, family members are urged to get their booster shots. The introduction of the 13-valent Pneumococcal conjugated vaccine in the beginning of 2010 may solve - but for how long ? - the problem of serotype replacement, responsible for the re-increasing incidence of invasive Pneumococcal infections observed in countries that had introduced the 7-valent vaccine. The efficacy of a rotavirus vaccine has been confirmed, with a reduction in hospitalization in the United States and a reduction in gastroenteritis-related deaths in Mexico. In the United States, vaccination of pre-adolescents against human papillomavirus (HPV) has not resulted in any specific undesirable effects. Routine vaccination against chicken pox, recommended since 1995, has not had an impact on the evolution of the incidence of shingles. Vaccination against shingles, recommended in the United States for subjects 60 years and over, shows an effectiveness of 55 %, according to a cohort study (Kaiser Permanente, Southern California). Although some propose the development of personalized vaccines according to individual genetic characteristics, the priority remains with increasing vaccine coverage, not only in infants but also in adults and the elderly. Vaccine

  17. [Present status of vaccines in 1989].

    Science.gov (United States)

    Roussey, M; Dabadie, A

    1989-01-01

    The authors describe 2 new vaccines now available in France: one is the GenHevac, an hepatitis B vaccine, the first virus recombinant vaccine; the other one is the Typhim Vi, a polysaccharide typhoid vaccine. Three other vaccines are currently used in foreign countries and will be soon available: the Hemophilus influenzae vaccine, the acellular pertussis vaccine and the varicella vaccine. Rotavirus and Cytomegalovirus vaccines are studied for their clinical efficacy.

  18. Development of fowl cholera vaccine: I. Protection of Pasteurella multocida local isolate vaccine against challenge of homologous and heterologous strains.

    Directory of Open Access Journals (Sweden)

    Supar

    2001-03-01

    Full Text Available Pasteurella multocida locally isolated from chicken and ducks (BCC 299, BCC 2331, DY1, DY2, 12TG, 15TG andimported strains (BCC 1359, 1362; HEDDLESTON group 1 and 6 respectively had been tested for its pathogenicity in theprevious study. The aims of this experiment were to study the preparation of local isolate pasteurellosis vaccines and to determine the protective effect of that vaccines in chicken against the highly pathogenic local isolates of P. multocida. Killed monovalent, bivalent and polyvalent pasteurellosis vaccines were prepared and each was adjunvanted with aluminum hydroxide gel at a final concentration of 1.5% and the cell concentration was equal to the No 10 of MacFarland tube standard. Each of the vaccine prepared was used to vaccinated on a group of six week old of layer chicken (8 per group. Each chicken was subcutaneously injected with 0.2 ml of vaccine, four weeks later each was boostered with similar vaccine with the same dose. Two weeks after giving the boostered vaccine each group of chicken were challenged, half with life bacterium of P. Multocida BCC 2331 and other with DY2. Any chick which survive after challenge was designated as protected by vaccination. Before vaccination 1 ml of blood was drawn from each of chicken and then two weeks apart up to challenge. Serum from each sample was separated and kept in deep freeze until tested by enzyme-linked immunosorbent assay (ELISA. Chicken vaccinated with killed whole cell P. multocida vaccines of monovalent (BCC 2331 or DY2 and bivalent (BCC 2331 + DY2 were protected against challenge with live bacterium of either BCC 2331 or DY2 at rate 67-100%. There was no protection in chicken vaccinated with either BCC 299, DY1, 12TG, 15TG, BCC 1359, or 1362 killed vaccine. Similarly no protection of chicken vaccinated with either DY1 + BCC299, 12TG + 15TG or BCC 1359 + BCC 1362 bivalent vaccines. The protection rate of the polyvalent local isolate vaccine was at average 50-75%. All

  19. Immunogenicity of a combined DTPa-HB vaccine co-administered with Haemophilus influenzae type B conjugate vaccine (PRP-T for primary and booster vaccinations

    Directory of Open Access Journals (Sweden)

    Humberto Bracco Neto

    2005-10-01

    Full Text Available OBJECTIVE: To evaluate the immunogenicity of a combined DTPa-HB vaccine co-administered with Haemophilus influenzae type b conjugate vaccine (PRP-T in Brazilian infants. MATERIAL AND METHODS: A prospective and open clinical study, in which 110 infants were immunized with a three-dose primary vaccination regime at two, four and six months of age and with a single booster vaccination. Blood samples were drawn immediately before the first dose, one month after the third dose, at the time of the booster dose and one month after the booster to assess seropositivity and antibody geometric mean titers (GMTs of antibodies for diphtheria, tetanus, hepatitis B, Haemophilus influenzae type b and for the three pertussis antigens: Pertussis Toxin (PT, Filamentous Hemagglutinin (FHA and Pertactin (PRN. RESULTS: Among the original 110 infants, 93 completed the study. Seropositivity was 100% for all seven involved antibodies, after the primary vaccination course. At the time of the booster dose, all antibodies (except diphtheria 33.7% and anti-PT 59% were seropositive for more than 94% of subjects. After the booster, seropositivity increased to 100% for all antibodies. The GMT of these antibodies followed a similar pattern, with a strong increase after the primary course, followed by a second increase after the booster dose. At this time, GMT was2- to 7-fold higher than after the primary course, for all vaccine components. CONCLUSIONS: Concomitant administration of DTPa-HB and Hib vaccines elicited strong seroprotection for all the antigenic components. No interference with antibody response was evident. The vaccines provided high immunogenicity, following both the primary vaccinations and the booster dose.

  20. Blood smear

    Science.gov (United States)

    ... osmotic fragility ) Deficiency of an enzyme called lecithin cholesterol acyl transferase Abnormalities of hemoglobin , the protein in ... sickle and Pappenheimer Red blood cells, target cells Formed elements of blood References Bain BJ. The peripheral ...

  1. Safety, tolerability, and immunogenicity of a recombinant, genetically engineered, live-attenuated vaccine against canine blastomycosis.

    Science.gov (United States)

    Wüthrich, Marcel; Krajaejun, Theerapong; Shearn-Bochsler, Valerie; Bass, Chris; Filutowicz, Hanna I; Legendre, Alfred M; Klein, Bruce S

    2011-05-01

    Blastomycosis is a severe, commonly fatal infection caused by the dimorphic fungus Blastomyces dermatitidis in dogs that live in the United States, Canada, and parts of Africa. The cost of treating an infection can be expensive, and no vaccine against this infection is commercially available. A genetically engineered live-attenuated strain of B. dermatitidis lacking the major virulence factor BAD-1 successfully vaccinates against lethal experimental infection in mice. Here we studied the safety, toxicity, and immunogenicity of this strain as a vaccine in dogs, using 25 beagles at a teaching laboratory and 78 foxhounds in a field trial. In the beagles, escalating doses of live vaccine ranging from 2 × 10⁴ to 2 × 10⁷ yeast cells given subcutaneously were safe and did not disseminate to the lung or induce systemic illness, but a dose of vaccine dose of 10⁵ yeast cells was also well tolerated in vaccinated foxhounds who had never had blastomycosis; however, vaccinated dogs with prior infection had more local reactions at the vaccine site. The draining lymph node cells and peripheral blood lymphocytes from vaccinated dogs demonstrated gamma interferon (IFN-γ), tumor necrosis factor alpha (TNF-α), and granulocyte-macrophage colony-stimulating factor (GM-CSF) specifically in response to stimulation with Blastomyces antigens. Thus, the live-attenuated vaccine against blastomycosis studied here proved safe, well tolerated, and immunogenic in dogs and merits further studies of vaccine efficacy.

  2. Protection of inactive intranasal ántrax vaccine to Bacillus anthracis infection

    Directory of Open Access Journals (Sweden)

    Adin Priadi

    2010-06-01

    Full Text Available Ánthrax is an endemic zoonotic disease distributed in many parts of Indonesia. Although vaccination program has been implemented in many areas, cases are still frequently reported. Farmers are reluctant to vaccinate their livestock since spore vaccine used in the field often cause side effects and death of the animals. To overcome this problem, an inactive vaccine composes of Bacillus anthracis toxins, cell wall and capsule subunits was developed. B. anthracis Sterne strain (34F2 was selected to produce toxins and cell walls. Local Bacillus anthracis isolated from Citaringgul was used to produce capsule as the Polymerase Chain Reaction (PCR revealed that this isolate poses cap gene encoding for capsule. Two vaccines compose of 15 μg toxoid, 30 μg of capsule, 15 μg of cell wall and 30 μg toxoid, 60 μg of capsule, 15 μg of cell walls were designated as vaccine I and vaccine II respectively. For each experiment, 10 mice were nasally immunized by placing 5 μl of vaccine into each nare 3 times at 2-week intervals. A group of 10 mice were unvaccinated and used as control. Blood was collected fortnightly to monitor antibody responses. All mice were challenged with 2 x 105 B. anthracis Sterne spores injected subcutaneously two weeks after the last vaccination. Two weeks after vaccination of antibodies to B. anthracis toxin, capsule and cell wall were detected in dot-blot assay. Mice that were immunised intranasally with chitosan adjuvanted vaccine developed high IgG responses in sera as detected by ELISA, and the response was dose dependent. Vaccine II gave better response than vaccine I. Vaccine I and II protected mice from challenge at a rate of 60 and 80% respectively. This results showed that intranasal B. anthracis vaccine composes of toxin, capsule and cell wall with chitosan as an adjuvant gave a good protection against B. anthracis Sterne spores challenge in mice.

  3. Efficacy of two canine distemper vaccines in wild Nearctic river otters (Lontra canadensis).

    Science.gov (United States)

    Peper, Steven T; Peper, Randall L; Kollias, George V; Brooks, Robert P; Stevens, Sadie S; Serfass, Thomas L

    2014-09-01

    Canine distemper virus (CDV), a contagious morbillivirus, infects families in the order Carnivora, including Nearctic river otters (Lontra canadensis). As a preventative measure, vaccinations against CDV are frequently given to mustelids in captive environments. The Pennsylvania River Otter Reintroduction Project (PRORP) used wild-caught river otters to evaluate the efficacy and need for vaccinations against CDV as part of any reintroduction project. The objectives of this study were to: 1) evaluate the prevalence of exposure to CDV in wild river otters, 2) determine the immunologic response of river otters (i.e., seroconversion) after vaccination with a single (primary) vaccine dose compared to a second (booster) dose of Galaxy-D, a modified live-virus canine distemper (CD) vaccine (MLV CDV), and 3) determine the immunologic response after being vaccinated with a primary vaccination compared to a booster dose of Fervac-D, an MLV CDV. River otters were injected subcutaneously in the nape of the neck with their designated vaccine. Timeframes for collection of blood samples and/or injection of booster vaccines varied depending on the parameters of PRORP. Ten of the 22 river otters had positive prevaccination titer levels to CD. Both vaccines, Galaxy-D and Fervac-D, produced sufficient seroconversion or rise of titer levels (86% and 57%, respectively) to recommend the use of vaccines in wild river otters. Future studies are recommended to evaluate currently produced CD vaccines. Future research should also focus on the number of days required between administration of primary and booster vaccines to achieve sufficient immune response. If only a primary dose is required, then hard-release reintroduction projects for river otters could be recommended. If primary and booster vaccines are required then soft-release reintroduction projects should be recommended. Soft-release projects should include captive management periods that allow for appropriate vaccination intervals

  4. DNA vaccine: the miniature miracle

    Directory of Open Access Journals (Sweden)

    Karthik Kaliaperumal

    2013-08-01

    Full Text Available DNA, the essential part of the life is making way in to new vaccine technology. Plasmid vectors from the bacteria have revolutionized the world of vaccine design by its new technology – DNA vaccines. Small portion of the nucleotides from the pathogen held under the control of promoter in a plasmid vector can be used as a vaccine. DNA vaccines alleviate the odds of the other vaccines by having good hold on both the faces of the immunity. The key to the success of DNA vaccine lies in the route of administration of the vaccine which can be done in many ways. Prime boost strategy is an approach used to boost the action of DNA vaccine. To date there are only four DNA vaccine available in the market. [Vet World 2013; 6(4.000: 228-232

  5. [Vaccinations in respiratory medicine].

    Science.gov (United States)

    Lode, H M; Stahlmann, R

    2015-09-01

    Vaccinations are the most successful and cost-effective measures for prevention of infections. Important pathogens of respiratory tract infections (e.g. influenza viruses and pneumococci) can be effectively treated by vaccinations. The seasonal trivalent and recently now quadrivalent influenza vaccines include antigens from influenza A and B type viruses, which have to be modified annually oriented to the circulating strains. The effective protection by influenza vaccination varies considerably (too short protection time, mismatch); therefore, administration late in the year is the best approach (November/December). Two pneumococcal vaccines are recommended for adults: the over 30-year-old 23-valent polysaccharide vaccine (PPV23) and the 4-year-old 13-valent conjugate vaccine (PCV13). The immunological and clinical efficacy of PPV23 is controversially discussed; however, a moderate reduction of invasive pneumococcal infections is widely accepted. The PCV13 stimulates a T-cell response and has currently demonstrated its clinical efficacy in an impressive study (CAPiTA). The problem of PCV13 is the relatively limited coverage of only 47% of the currently circulating invasive pneumococcal serotypes. PMID:26330051

  6. Flu vaccination in pregnancy

    Directory of Open Access Journals (Sweden)

    Maria Siettou

    2012-04-01

    Full Text Available In periods of seasonal influenza, during pandemic flu in the past and from recent experience that we have the emergence of influenza A (H1N1, pregnant compared with non-pregnant women are at increased risk to get sick and to develop serious complications up to mortality. Purpose: This paper examines the risks that arise for pregnant from contamination with the flu virus and the safety of influenza vaccination in pregnancy. Method: The method involves searching review and research studies in Pubmed data base mainly of the 2000 until 2009 and the words were used is pregnancy, flu vaccination, complications of the flu vaccination at the period of pregnancy. Results: Morbidity during periods of seasonal influenza in pregnant women is increased, while in times of pandemic are recorded fatalities. Based on this, specific recommendations have been made for a flu vaccination in pregnant women, both from the CDC, the American College of Obstetricians and Gynecologists in the U.S. and other official bodies like the World Health Organization, according to that the constitution of influenza vaccine in the pregnancy is necessary, given that the probability of morbidity in this period is increased at 10%. Conclusions: The studies so far to influenza vaccination in pregnancy, do not record serious complications for pregnant women and infants. However more research needs to be done on the safety of influenza vaccination in pregnancy.

  7. Vaccine acceptance: The UK perspective

    OpenAIRE

    Ford, John A; Mahgoub, Hamid; Shankar, Ananda Giri

    2013-01-01

    The United Kingdom has had a long history with vaccine acceptability dating back to Edward Jenner’s theory of small pox vaccination. More recently, the discredited, Wakefield study published in 1998 continues to cause MMR skepticism. In pregnant women pertussis vaccination has been considerably more successful than influenza vaccination. Influenza vaccine uptake in healthcare workers remains poor. The media, politicians, and health reforms have contributed to the mixed coverage for these vacc...

  8. Use of Rhodamine B as a biomarker for oral plague vaccination of prairie dogs

    Science.gov (United States)

    Fernandez, Julia Rodriguez-Ramos; Rocke, Tonie E.

    2011-01-01

    Oral vaccination against Yersinia pestis could provide a feasible approach for controlling plague in prairie dogs (Cynomys spp.) for conservation and public health purposes. Biomarkers are useful in wildlife vaccination programs to demonstrate exposure to vaccine baits. Rhodamine B (RB) was tested as a potential biomarker for oral plague vaccination because it allows nonlethal sampling of animals through hair, blood, and feces. We found that RB is an appropriate marker for bait uptake studies of C. ludovicianus) when used at concentrations 10 mg RB per kg target animal mass. Whiskers with follicles provided the best sample for RB detection.

  9. Development of CpG ODN Based Vaccine Adjuvant Formulations.

    Science.gov (United States)

    Gursel, Mayda; Gursel, Ihsan

    2016-01-01

    Development of effective vaccine mediated immune responses relies on the use of vaccine adjuvants capable of enhancing and directing the adaptive immune response to the antigen. When used as vaccine adjuvants, type I interferon inducing agents can elicit potent effector/memory T cell responses and humoral immunity. Distinct sequences of single stranded synthetic oligodeoxynucleotides containing unmethylated cytosine-phosphate-guanine oligodeoxynucleotide motifs (CpG ODN) can generate type I interferon production via a TLR9-MyD88-IRF7-mediated signaling pathway. Here, we describe two different methods of preparing CpG ODN-based vaccine adjuvant formulations that can induce a robust IFNα response from human peripheral blood mononuclear cells. PMID:27076306

  10. Novel approaches to identify protective malaria vaccine candidates

    Directory of Open Access Journals (Sweden)

    Wan Ni eChia

    2014-11-01

    Full Text Available Efforts to develop vaccines against malaria have been the focus of substantial research activities for decades. Several categories of candidate vaccines are currently being developed for protection against malaria, based on antigens corresponding to the pre-erythrocytic, blood-stage or sexual stages of the parasite. Long lasting sterile protection from Plasmodium falciparum sporozoite challenge has been observed in human following vaccination with whole parasite formulations, clearly demonstrating that a protective immune response targeting predominantly the pre-erythrocytic stages can develop against malaria. However, most of vaccine candidates currently being investigated, which are mostly subunits vaccines, have not been able to induce substantial (>50% protection thus far. This is due to the fact that the antigens responsible for protection against the different parasite stages are still yet to be known and relevant correlates of protection have remained elusive. For a vaccine to be developed in a timely manner, novel approaches are required. In this article, we review the novel approaches that have been developed to identify the antigens for the development of an effective malaria vaccine.

  11. The inflammatory response to vaccination is altered in the elderly.

    Science.gov (United States)

    El Yousfi, Mimoun; Mercier, Sabine; Breuillé, Denis; Denis, Philippe; Papet, Isabelle; Mirand, Philippe Patureau; Obled, Christiane

    2005-08-01

    To further explore whether immune function and acute phase response are altered during ageing, the response to a mild inflammatory stress (DT-Polio-Typhim vaccination) was studied in elderly and young subjects. Cytokine production (IFN-gamma, TNF-alpha, IL-6, IL-10) by whole blood cultures, circulating cytokines and acute phase proteins were analysed before and 2 days after vaccination. Prior to vaccination, only IFN-gamma production was lower in the elderly than in the young subjects due to a lower mononuclear cell number. In the same time, although in the normal range, several acute phase proteins were greater in elderly than in young subjects, suggesting a low-grade inflammatory state in the elderly. After vaccination, IFN-gamma production remained lower in the elderly than in the young, supporting an altered cell-mediated immunity with advancing age. TNF-alpha production was unaffected by either ageing or vaccination. IL-6 production was stimulated by vaccination in young subjects but not significantly in the elderly. IL-10 production was inhibited by vaccination in the elderly but not in the young. Acute phase proteins were less increased in elderly than in young subjects. Taken together, these results support a general lack of inflammatory response in the elderly exposed to an immune challenge and suggest that immune deficiency may concern both Th1 and Th2 responses. However, the interpretation must respect the limitation of small subjects number.

  12. Vaccinomics Approach to Tick Vaccine Development.

    Science.gov (United States)

    Contreras, Marinela; Villar, Margarita; Alberdi, Pilar; de la Fuente, José

    2016-01-01

    Ticks are blood-feeding arthropod ectoparasites that transmit disease-causing pathogens to humans and animals worldwide. Vaccines using tick antigens have proven to be cost-effective and environmental friendly for the control of vector infestations and pathogen infection and transmission. However, new strategies are needed to identify tick protective antigens for development of improved vaccines. These strategies will be greatly enhanced by vaccinomics approaches starting from the study of tick-host-pathogen molecular interactions and ending in the characterization and validation of vaccine formulations. The discovery of tick antigens that affect both tick infestations and pathogen infection/transmission could be used for vaccines targeting human and animal populations at risk and reservoir species to reduce host exposure to ticks while reducing the number of infected ticks and their vector capacity for pathogens that affect human and animal health. In this chapter, we describe methods of the vaccinomics platform using transcriptomics and proteomics for the identification of candidate protective antigens in Ixodes scapularis, the vector for human and animal granulocytic anaplasmosis, tick-borne encephalitis, and Lyme disease.

  13. Cellular based cancer vaccines

    DEFF Research Database (Denmark)

    Hansen, Morten; Met, O; Svane, I M;

    2012-01-01

    Cancer vaccines designed to re-calibrate the existing host-tumour interaction, tipping the balance from tumor acceptance towards tumor control holds huge potential to complement traditional cancer therapies. In general, limited success has been achieved with vaccines composed of tumor...... in vitro migration via autocrine receptor-mediated endocytosis of CCR7. In the current review, we discuss optimal design of DC maturation focused on pre-clinical as well as clinical results from standard and polarized dendritic cell based cancer vaccines....

  14. Anti-addiction vaccines

    Science.gov (United States)

    Shen, Xiaoyun; Orson, Frank M.

    2011-01-01

    Despite intensive efforts to eradicate it, addiction to both legal and illicit drugs continues to be a major worldwide medical and social problem. Anti-addiction vaccines can produce the antibodies to block the effects of these drugs on the brain, and have great potential to ameliorate the morbidity and mortality associated with illicit drug intoxications. This review provides a current overview of anti-addiction vaccines that are under clinical trial and pre-clinical research evaluation. It also outlines the development challenges, ethical concerns, and likely future intervention for anti-addiction vaccines. PMID:22003367

  15. Meningococcal vaccine evolution

    Directory of Open Access Journals (Sweden)

    Gianni Bona

    2012-06-01

    Full Text Available Neisseria meningitidis is a leading cause of bacterial sepsis and meningitis worldwide. Although polysaccharide and glycoconjugate vaccines have been developed for serogroups A, C, Y and W-135, currently there are no broadly effective vaccines available for the prevention of meningococcal B disease. A general overview of the burden of the disease and the strains prevalence in the world with the focus in particular on the Italian situation is provided in this article, together with the vaccinations developed and under evaluation.

  16. Hepatitis B vaccination.

    Science.gov (United States)

    Romanò, Luisa; Paladini, Sara; Galli, Cristina; Raimondo, Giovanni; Pollicino, Teresa; Zanetti, Alessandro R

    2015-01-01

    Hepatitis B virus is a worldwide leading cause of acute and chronic liver disease including cirrhosis and hepatocellular carcinoma. Effective vaccines have been available since the early '80s and vaccination has proved highly successful in reducing the disease burden, the development of the carrier state and the HB-related morbidity and mortality in the countries where vaccination has been implemented.   Neutralizing (protective) antibodies (anti-HBs) induced by vaccination are targeted largely towards the amino acid hydrophilic region, referred to as the common a determinant which is present on the outer protein coat or surface antigen (HBsAg), spanning amino acids 124-149. This provides protection against all HBV genotypes (from A to H) and is responsible for the broad immunity afforded by hepatitis B vaccination. Thus, alterations of residues within this region of the surface antigen may determine conformational changes that can allow replication of the mutated HBV in vaccinated people. An important mutation in the surface antigen region was identified in Italy some 25 years ago in infants born to HBsAg carrier mothers who developed breakthrough infections despite having received HBIG and vaccine at birth. This virus had a point mutation from guanosine to adenosine at nucleotide position 587, resulting in aa substitution from glycine (G) to arginine (R) at position 145 in the a determinant. Since the G145R substitution alters the projecting loop (aa 139-147) of the a determinant, the neutralizing antibodies induced by vaccination are no longer able to recognize the mutated epitope. Beside G145R, other S-gene mutations potentially able to evade neutralizing anti-HBs and infect vaccinated people have been described worldwide. In addition, the emergence of Pol mutants associated with resistance to treatment with nucleos(t)ide analogues can select viruses with crucial changes in the overlapping S-gene, potentially able to alter the S protein immunoreactivity. Thus

  17. Status of vaccine research and development for Shigella.

    Science.gov (United States)

    Mani, Sachin; Wierzba, Thomas; Walker, Richard I

    2016-06-01

    Shigella are gram-negative bacteria that cause severe diarrhea and dysentery. In 2013, Shigella infections caused an estimated 34,400 deaths in children less than five years old and, in 2010, an estimated 40,000 deaths in persons older than five years globally. New disease burden estimates from newly deployed molecular diagnostic assays with increased sensitivity suggest that Shigella-associated morbidity may be much greater than previous disease estimates from culture-based methods. Primary prevention of this disease should be based on universal provision of potable water and sanitation methods and improved personal and food hygiene. However, an efficacious and low-cost vaccine would complement and accelerate disease reduction while waiting for universal access to water, sanitation, and hygiene improvements. This review article provides a landscape of Shigella vaccine development efforts. No vaccine is yet available, but human and animal challenge-rechallenge trials with virulent Shigella as well as observational studies in Shigella-endemic areas have shown that the incidence of disease decreases following Shigella infection, pointing to biological feasibility of a vaccine. Immunity to Shigella appears to be strain-specific, so a vaccine that covers the most commonly detected strains (i.e., S. flexneri 2a, 3a, 6, and S. sonnei) or a vaccine using cross-species conserved antigens would likely be most effective. Vaccine development and testing may be accelerated by use of animal models, such as the guinea pig keratoconjunctivitis or murine pneumonia models. Because there is no correlate of protection, however, human studies will be necessary to evaluate vaccine efficacy prior to deployment. A diversity of Shigella vaccine constructs are under development, including live attenuated, formalin-killed whole-cell, glycoconjugate, subunit, and novel antigen vaccines (e.g., Type III secretion system and outer membrane proteins). PMID:26979135

  18. Antiviral treatment is more effective than smallpox vaccination upon lethal monkeypox virus infection

    NARCIS (Netherlands)

    Stittelaar, Koert J; Neyts, Johan; Naesens, Lieve; van Amerongen, Geert; van Lavieren, Rob F; Holý, Antonin; De Clercq, Erik; Niesters, Hubert G M; Fries, Edwin; Maas, Chantal; Mulder, Paul G H; van der Zeijst, Ben A M; Osterhaus, Albert D M E

    2006-01-01

    There is concern that variola virus, the aetiological agent of smallpox, may be used as a biological weapon. For this reason several countries are now stockpiling (vaccinia virus-based) smallpox vaccine. Although the preventive use of smallpox vaccination has been well documented, little is known ab

  19. 人乳头瘤病毒E2蛋白生物学活性及疫苗研究进展%Biological activity of the human papilloma virus E2 protein and development of related vaccines

    Institute of Scientific and Technical Information of China (English)

    周良; 唐双阳; 万艳平

    2011-01-01

    人乳头瘤病毒(human papilloma virus,HPV)能感染皮肤和粘膜的基底层上皮细胞,尤其与生殖系统感染相关密切.乳头瘤的形成与HPV E2蛋白密不可分,该蛋白质与细胞增殖及病毒的有丝分裂等有关.近年来,学者们利用E2蛋白的特性研制出各种E2蛋白相关的疫苗,有助于清除与HPV感染有关的早期病变,有效降低宫颈癌的发生.%The human papilloma virus (HPV) can infect the basal epithelial cells of the skin and mucous membranes and is closely associated with infections of the reproductive system.Papilloma formation is closely linked to the HPV E2 protein, which is associated with cell growth and viral replication.In recent years, researchers have utilized the characteristics of the E2 protein to prepare a variety of vaccines related to the E2 protein.These vaccines may help to eliminate early lesions associated with HPV infection and thus effectively reduce the incidence of cervical cancer.

  20. DNA vaccines and intradermal vaccination by DNA tattooing.

    Science.gov (United States)

    Oosterhuis, K; van den Berg, J H; Schumacher, T N; Haanen, J B A G

    2012-01-01

    Over the past two decades, DNA vaccination has been developed as a method for the induction of immune responses. However, in spite of high expectations based on their efficacy in preclinical models, immunogenicity of first generation DNA vaccines in clinical trials was shown to be poor, and no DNA vaccines have yet been licensed for human use. In recent years significant progress has been made in the development of second generation DNA vaccines and DNA vaccine delivery methods. Here we review the key characteristics of DNA vaccines as compared to other vaccine platforms, and recent insights into the prerequisites for induction of immune responses by DNA vaccines will be discussed. We illustrate the development of second generation DNA vaccines with the description of DNA tattooing as a novel DNA delivery method. This technique has shown great promise both in a small animal model and in non-human primates and is currently under clinical evaluation.

  1. Induction of strain-transcending immunity against Plasmodium chabaudi adami malaria with a multiepitope DNA vaccine.

    Science.gov (United States)

    Scorza, T; Grubb, K; Smooker, P; Rainczuk, A; Proll, D; Spithill, T W

    2005-05-01

    A major goal of current malaria vaccine programs is to develop multivalent vaccines that will protect humans against the many heterologous malaria strains that circulate in endemic areas. We describe a multiepitope DNA vaccine, derived from a genomic Plasmodium chabaudi adami DS DNA expression library of 30,000 plasmids, which induces strain-transcending immunity in mice against challenge with P. c. adami DK. Segregation of this library and DNA sequence analysis identified vaccine subpools encoding open reading frames (ORFs)/peptides of >9 amino acids [aa] (the V9+ pool, 303 plasmids) and >50 aa (V50+ pool, 56 plasmids), respectively. The V9+ and V50+ plasmid vaccine subpools significantly cross-protected mice against heterologous P. c. adami DK challenge, and protection correlated with the induction of both specific gamma interferon production by splenic cells and opsonizing antibodies. Bioinformatic analysis showed that 22 of the V50+ ORFs were polypeptides conserved among three or more Plasmodium spp., 13 of which are predicted hypothetical proteins. Twenty-nine of these ORFs are orthologues of predicted Plasmodium falciparum sequences known to be expressed in the blood stage, suggesting that this vaccine pool encodes multiple blood-stage antigens. The results have implications for malaria vaccine design by providing proof-of-principle that significant strain-transcending immunity can be induced using multiepitope blood-stage DNA vaccines and suggest that both cellular responses and opsonizing antibodies are necessary for optimal protection against P. c. adami.

  2. EXPERIMENTAL MEASLES VACCINES: A RESEARCH TOOL IN VACCINATION EVENTS

    Directory of Open Access Journals (Sweden)

    V. A. Liashenko

    2007-01-01

    Full Text Available Abstract. The review article considers different variants of measles vaccine that may be classified into two groups, i.e., vaccines that do not contain viable measles virus, and attenuated measles vaccines which could be employed in unusual manner.The first group includes DNA-vaccines, recombinant vaccine strains encoding synthesis of measles hemagglutinin and fusion protein, as well as peptide vaccines containing molecular fragments of these proteins. The mentioned variants of vaccines were effective in animal experiments, but they have not been tested in humans. The second group includes live attenuated mucosal measles vaccins applied in combination with immunomodulator(s, as aerosol and intranasally. Efficiency of these vaccines was tested and confirmed by immunization of children and adults. Mucosal measles vaccine induces local production of IgA measles antibodies, along with induced synthesis of circulating IgM and IgG antibodies against measles. The latter experimental variant could be a live attenuated measles vaccine containing some immunity-modulating agent. Elaboration of these variant was based on the known data about transient immunosuppressive activity of measles vaccine. An appropriate experimental variant represents a mixture of attenuated measles vaccine and synthetic immunomodulating agent (MP-2 peptide which protects T-lymphocytes from inhibitory effect of the measles virus. In present revue, some data are presented concerning the mechanisms of immunogenic activity and adverse effects of measles vaccines.

  3. Cord Blood

    Directory of Open Access Journals (Sweden)

    Saeed Abroun

    2014-05-01

    Full Text Available   Stem cells are naïve or master cells. This means they can transform into special 200 cell types as needed by body, and each of these cells has just one function. Stem cells are found in many parts of the human body, although some sources have richer concentrations than others. Some excellent sources of stem cells, such as bone marrow, peripheral blood, cord blood, other tissue stem cells and human embryos, which last one are controversial and their use can be illegal in some countries. Cord blood is a sample of blood taken from a newborn baby's umbilical cord. It is a rich source of stem cells, umbilical cord blood and tissue are collected from material that normally has no use following a child’s birth. Umbilical cord blood and tissue cells are rich sources of stem cells, which have been used in the treatment of over 80 diseases including leukemia, lymphoma and anemia as bone marrow stem cell potency.  The most common disease category has been leukemia. The next largest group is inherited diseases. Patients with lymphoma, myelodysplasia and severe aplastic anemia have also been successfully transplanted with cord blood. Cord blood is obtained by syringing out the placenta through the umbilical cord at the time of childbirth, after the cord has been detached from the newborn. Collecting stem cells from umbilical blood and tissue is ethical, pain-free, safe and simple. When they are needed to treat your child later in life, there will be no rejection or incompatibility issues, as the procedure will be using their own cells. In contrast, stem cells from donors do have these potential problems. By consider about cord blood potency, cord blood banks (familial or public were established. In IRAN, four cord blood banks has activity, Shariati BMT center cord blood bank, Royan familial cord blood banks, Royan public cord blood banks and Iranian Blood Transfusion Organ cord blood banks. Despite 50,000 sample which storage in these banks, but the

  4. SARS Vaccine: Progress and Challenge

    Institute of Scientific and Technical Information of China (English)

    Yan Zhi; James M. Wilson; Hao Shen

    2005-01-01

    Severe acute respiratory syndrome (SARS) emerged in 2002 as a severe and highly contagious infectious disease that rapidly spread to a number of different countries. The collaborative efforts of the global scientific community have provided, within a short period of time, substantial insights into the molecular biology and immunology of SARS-CoV. Although the outbreak has been contained, there is continuous concern that the virus may resurface into the human population through seasonal changes, animal reservoirs or laboratory accidents. The severe morbidity and mortality associated with SARS make it imperative that an effective vaccine be developed to prevent reemergence and epidemics in the future. Cellular & Molecular Immunology. 2005;2(2):101-105.

  5. Smallpox vaccine revisited.

    Science.gov (United States)

    Capriotti, Teri

    2002-12-01

    Smallpox is a serious contagious disease which is back in the public eye. Yet, most health care providers are unprepared for its return. Nurses will be key health care professionals in a smallpox outbreak or vaccination program.

  6. Hepatitis B Vaccination Protection

    Science.gov (United States)

    Fact Sheet Hepatitis B Vaccination Protection Hepatitis B virus (HBV) is a pathogenic microorganism that can cause potentially life- threatening disease in humans. HBV infection is transmitted through exposure ...

  7. Human Papillomavirus (HPV) Vaccines

    Science.gov (United States)

    ... Prevention Overview–for health professionals Research Human Papillomavirus (HPV) Vaccines On This Page What are human papillomaviruses? Which cancers are caused by HPV? Who gets HPV infections? Can HPV infections be ...

  8. Diseases and vaccines

    DEFF Research Database (Denmark)

    Andersen, Nina Blom; Almlund, Pernille

    between authorities, politicians, media and citizens. On the contrary, no broad commitment about the offer of a new pandemic vaccine to individuals from e.g. at-risk groups was reached. The vaccine was characterized by considerable uncertainty with regard to effects and side effects and many people...... considered the vaccine as risky and a threat more severe than the influenza. The health authorities’ communication was more unclear on this question, confusion increased in the Danish population and more critical voices were raised. This uncertain communication about the vaccines’ effects and side effects...... and the critical voices in the population are widespread in communication about vaccines in general and an increasing number of people are expressing skepticism and deselect this product. The communication processes are seen as a typical example of the difficulties of communicating science and risk and show how...

  9. Vaccines against typhoid fever.

    Science.gov (United States)

    Guzman, Carlos A; Borsutzky, Stefan; Griot-Wenk, Monika; Metcalfe, Ian C; Pearman, Jon; Collioud, Andre; Favre, Didier; Dietrich, Guido

    2006-05-01

    Because of high infectivity and significant disease burden, typhoid fever constitutes a major global health problem. Implementation of adequate food handling practices and establishment of safe water supplies are the cornerstone for the development of an effective prevention program. However, vaccination against typhoid fever remains an essential tool for the effective management of this disease. Currently, there are two well tolerated and effective licensed vaccines. One is based on defined subunit virulence (Vi) polysaccharide antigen and can be administered either intramuscularly or subcutaneously and the other is based on the use of live attenuated bacteria for oral administration. The advantages and disadvantages of the various approaches taken in the development of a vaccine against typhoid fever are discussed, along with the potential for future vaccine candidates.

  10. Tetanus, Diphtheria (Td) Vaccine

    Science.gov (United States)

    Tenivac® (as a combination product containing Diphtheria, Tetanus Toxoids) ... Why get vaccinated?Tetanus and diphtheria are very serious diseases. They are rare in the United States today, but people who do become infected often have severe ...

  11. Coxiella burnetii antibody dynamics in heifers born to vaccinated versus non-vaccinated dams in a chronically infected dairy herd.

    Science.gov (United States)

    Tutusaus, Joan; Garcia-Ispierto, Irina; López-Gatius, Fernando

    2015-09-01

    This study was designed to compare Coxiella burnetii antibody dynamics in heifers born to vaccinated or non-vaccinated dams in a single high-producing dairy herd chronically infected with the bacterium. Antibody dynamics were examined from birth to the postpartum period in replacement heifers (n = 14) born to non-vaccinated dams (n = 7) or to dams that had been vaccinated on gestation days 171-177 (n = 7) and 192-198. Samples of blood, milk, faeces, vaginal fluid, colostrum and cotyledons (the latter two only at parturition) were obtained in the dams over the period from gestation days 171-177 to postpartum days 91-97. Blood samples were used to detect antibodies against C. burnetii and remaining samples for PCR identification of the bacterium. In their calves/heifers, blood samples for antibody determinations were collected from birth to postpartum at the time points 1-7 and 22-28 days and 3, 6 and 12 months of age; 90-96 and 210-216 days of gestation; and 22-28 days postpartum. All calves were born seronegative for C. burnetii. Irrespective of the shedding status of their mothers (7 were C. burnetii shedders), seroconversion occurred after colostrum intake in all calves born to seropositive cows (n = 9) and in two of three vaccinated seronegative dams. Thereafter antibody titres gradually declined and by 6 months of age all calves were seronegative. Seronegativity persisted until their first postpartum period. These findings indicate that cows vaccinated during advanced pregnancy transfer immunity to their calves via the colostrum. Maternal C. burnetii antibodies in calves persisted for three months in calves born both to seronegative vaccinated and seropositive dams. PMID:26551423

  12. Governments, off-patent vaccines, smallpox and universal childhood vaccination.

    Science.gov (United States)

    Music, Stanley

    2010-01-22

    WHO is now celebrating more than 30 years of freedom from smallpox. What was originally seen as a victory over an ancient scourge can now be viewed as an epidemiologically driven programme to overcome governmental inertia and under-achievement in delivering an off-patent vaccine. Though efforts are accelerating global vaccine use, a plea is made to push the world's governments to commit to universal childhood vaccination via a proposed new programme. The latter should begin by exploiting a long list of ever more affordable off-patent vaccines, vaccines that can virtually eliminate the bulk of the world's current vaccine-preventable disease burden. PMID:19699330

  13. 21 CFR 640.33 - Testing the blood.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Testing the blood. 640.33 Section 640.33 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) BIOLOGICS ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Plasma § 640.33 Testing the blood. (a) Blood...

  14. Next Generation Pneumococcal Vaccines

    OpenAIRE

    Kristin L Moffitt; Malley, Richard

    2011-01-01

    Currently licensed pneumococcal vaccines are based on the generation of antibodies to the pneumococcal polysaccharide, of which there are more than 90 different types. While these vaccines are highly effective against the serotypes included, their high cost and limited serotype coverage limits their usefulness worldwide, particularly in low resources areas. Thus alternative or adjunctive options are being actively pursued. This review will present these various approaches, including variation...

  15. Nieuw vaccin tegen campylobacter

    OpenAIRE

    Wagenaar, J.A.

    2008-01-01

    Het vaccin dat de kip moet beschermen tegen de bacterie Campylobacter werkt in het laboratorium. Dat wil bacterioloog Jaap Wagenaar wel kwijt. Wanneer het er komt en zelfs of het er komt, daarover laat Wagenaar zich niet uit. "Het is een hele klus om het immuunsysteem van kippen effectief op te laten treden tegen Campylobacter", zegt Wagenaar die werkt bij het CVI en hoogleraar is aan de Universiteit Utrecht. "Geen van de vaccins die onderzoekers tot nu hebben uitgeprobeerd werken"

  16. Vaccines for Pandemic Influenza

    OpenAIRE

    Luke, Catherine J.; Subbarao, Kanta

    2006-01-01

    Recent outbreaks of highly pathogenic avian influenza in Asia and associated human infections have led to a heightened level of awareness and preparation for a possible influenza pandemic. Vaccination is the best option by which spread of a pandemic virus could be prevented and severity of disease reduced. Production of live attenuated and inactivated vaccine seed viruses against avian influenza viruses, which have the potential to cause pandemics, and their testing in preclinical studies and...

  17. Advances in influenza vaccination

    OpenAIRE

    Reperant, Leslie A.; Rimmelzwaan, Guus F.; Osterhaus, Albert D. M. E.

    2014-01-01

    Influenza virus infections yearly cause high morbidity and mortality burdens in humans, and the development of a new influenza pandemic continues to threaten mankind as a Damoclean sword. Influenza vaccines have been produced by using egg-based virus growth and passaging techniques that were developed more than 60 years ago, following the identification of influenza A virus as an etiological agent of seasonal influenza. These vaccines aimed mainly at eliciting neutralizing antibodies targetin...

  18. Meningococcal vaccines Review

    OpenAIRE

    Kurugöl, Zafer

    2007-01-01

    Meningococcal disease presenting primarily as meningococcemia and meningitis continues to be a devastating problem around the world In the past 200 years several meningococcal epidemics have been noted in Europe Africa Asia and the United States Annually 500 000 cases of invasive meningococcal disease occur still worldwide of which 8805;50 000 result in death Therefore vaccine development has been undertaken in earnest for the prevention of this disease Polysaccharide vaccines have been avail...

  19. Anti-addiction vaccines

    OpenAIRE

    Shen, Xiaoyun; Orson, Frank M.; Kosten, Thomas R.

    2011-01-01

    Despite intensive efforts to eradicate it, addiction to both legal and illicit drugs continues to be a major worldwide medical and social problem. Anti-addiction vaccines can produce the antibodies to block the effects of these drugs on the brain, and have great potential to ameliorate the morbidity and mortality associated with illicit drug intoxications. This review provides a current overview of anti-addiction vaccines that are under clinical trial and pre-clinical research evaluation. It ...

  20. Current status of rotavirus vaccines

    Institute of Scientific and Technical Information of China (English)

    Ching-Min Wang; Shou-Chien Chen; Kow-Tong Chen

    2015-01-01

    Background: Rotaviruses remain the major cause of childhood diarrheal disease worldwide and of diarrheal deaths of infants and children in developing countries. The huge burden of childhood rotavirus-related diarrhea in the world continues to drive the remarkable pace of vaccine development. Data sources: Research articles were searched using terms "rotavirus" and "rotavirus vaccine" in MEDLINE and PubMed. Articles not published in the English language, articles without abstracts, and opinion articles were excluded from the review. After preliminary screening, all articles were reviewed and synthesized to provide an overview of current vaccines and vaccination programs. Results: In this review of the global rotavirus vaccines and vaccination programs, the principles of rotavirus vaccine development and the efficacy of the currently licensed vaccines from both developed and developing countries were summarized. Conclusions: Rotavirus is a common cause of diarrhea in children in both developed and developing countries. Rotavirus vaccination is a cost-effective measure to prevent rotavirus diarrhea.