WorldWideScience

Sample records for blood mesenchymal stem

  1. Isolation of mesenchymal stem cells from equine umbilical cord blood

    DEFF Research Database (Denmark)

    Koch, Thomas Gadegaard; Heerkens, Tammy; Thomsen, Preben Dybdahl;

    2007-01-01

    Background: There are no published studies on stem cells from equine cord blood although commercial storage of equine cord blood for future autologous stem cell transplantations is available. Mesenchymal stem cells (MSC) have been isolated from fresh umbilical cord blood of humans collected non-i...

  2. Isolation of mesenchymal stem cells from equine umbilical cord blood

    Directory of Open Access Journals (Sweden)

    Thomsen Preben D

    2007-05-01

    Full Text Available Abstract Background There are no published studies on stem cells from equine cord blood although commercial storage of equine cord blood for future autologous stem cell transplantations is available. Mesenchymal stem cells (MSC have been isolated from fresh umbilical cord blood of humans collected non-invasively at the time of birth and from sheep cord blood collected invasively by a surgical intrauterine approach. Mesenchymal stem cells isolation percentage from frozen-thawed human cord blood is low and the future isolation percentage of MSCs from cryopreserved equine cord blood is therefore expectedly low. The hypothesis of this study was that equine MSCs could be isolated from fresh whole equine cord blood. Results Cord blood was collected from 7 foals immediately after foaling. The mononuclear cell fraction was isolated by Ficoll density centrifugation and cultured in a DMEM low glucose based media at 38.5°C in humidified atmosphere containing 5% CO2. In 4 out of 7 samples colonies with MSC morphology were observed. Cellular morphology varied between monolayers of elongated spindle-shaped cells to layered cell clusters of cuboidal cells with shorter cytoplasmic extensions. Positive Alizarin Red and von Kossa staining as well as significant calcium deposition and alkaline phosphatase activity confirmed osteogenesis. Histology and positive Safranin O staining of matrix glycosaminoglycans illustrated chondrogenesis. Oil Red O staining of lipid droplets confirmed adipogenesis. Conclusion We here report, for the first time, the isolation of mesenchymal-like stem cells from fresh equine cord blood and their differentiation into osteocytes, chondrocytes and adipocytes. This novel isolation of equine cord blood MSCs and their preliminary in vitro differentiation positions the horse as the ideal pre-clinical animal model for proof-of-principle studies of cord blood derived MSCs.

  3. Mesenchymal stem cells.

    Science.gov (United States)

    Ding, Dah-Ching; Shyu, Woei-Cherng; Lin, Shinn-Zong

    2011-01-01

    Stem cells have two features: the ability to differentiate along different lineages and the ability of self-renewal. Two major types of stem cells have been described, namely, embryonic stem cells and adult stem cells. Embryonic stem cells (ESC) are obtained from the inner cell mass of the blastocyst and are associated with tumorigenesis, and the use of human ESCs involves ethical and legal considerations. The use of adult mesenchymal stem cells is less problematic with regard to these issues. Mesenchymal stem cells (MSCs) are stromal cells that have the ability to self-renew and also exhibit multilineage differentiation. MSCs can be isolated from a variety of tissues, such as umbilical cord, endometrial polyps, menses blood, bone marrow, adipose tissue, etc. This is because the ease of harvest and quantity obtained make these sources most practical for experimental and possible clinical applications. Recently, MSCs have been found in new sources, such as menstrual blood and endometrium. There are likely more sources of MSCs waiting to be discovered, and MSCs may be a good candidate for future experimental or clinical applications. One of the major challenges is to elucidate the mechanisms of differentiation, mobilization, and homing of MSCs, which are highly complex. The multipotent properties of MSCs make them an attractive choice for possible development of clinical applications. Future studies should explore the role of MSCs in differentiation, transplantation, and immune response in various diseases. PMID:21396235

  4. Human umbilical cord blood-derived mesenchymal stem cells promote regeneration of crush-injured rat sciatic nerves

    Institute of Scientific and Technical Information of China (English)

    Mi-Ae Sung; Jong-Ho Lee; Hun Jong Jung; Jung-Woo Lee; Jin-Yong Lee; Kang-Mi Pang; Sang Bae Yoo; Mohammad S. Alrashdan; Soung-Min Kim; Jeong Won Jahng

    2012-01-01

    Several studies have demonstrated that human umbilical cord blood-derived mesenchymal stem cells can promote neural regeneration following brain injury. However, the therapeutic effects of human umbilical cord blood-derived mesenchymal stem cells in guiding peripheral nerve regeneration remain poorly understood. This study was designed to investigate the effects of human umbilical cord blood-derived mesenchymal stem cells on neural regeneration using a rat sciatic nerve crush injury model. Human umbilical cord blood-derived mesenchymal stem cells (1 × 106) or a PBS control were injected into the crush-injured segment of the sciatic nerve. Four weeks after cell injection, brain-derived neurotrophic factor and tyrosine kinase receptor B mRNA expression at the lesion site was increased in comparison to control. Furthermore, sciatic function index, Fluoro Gold-labeled neuron counts and axon density were also significantly increased when compared with control. Our results indicate that human umbilical cord blood-derived mesenchymal stem cells promote the functional recovery of crush-injured sciatic nerves.

  5. Transplantation of human umbilical cord blood mesenchymal stem cells to treat a rat model of traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    Junjian Zhao; Hui Xue; Naiyao Chen; Na Shen; Hui Zhao; Dali Wang; Jun Shi; Yang Wang; Xiufeng Cui; Zhenyu Yan

    2012-01-01

    In the present study, human umbilical cord blood mesenchymal stem cells were injected into a rat model of traumatic brain injury via the tail vein. Results showed that 5-bromodeoxyuridine-labeled cells aggregated around the injury site, surviving up to 4 weeks post-transplantation. In addition, transplantation-related death did not occur, and neurological functions significantly improved. Histological detection revealed attenuated pathological injury in rat brain tissues following human umbilical cord blood mesenchymal stem cell transplantation. In addition, the number of apoptotic cells decreased. Immunohistochemistry and in situ hybridization showed increased expression of brain-derived neurotrophic factor, nerve growth factor, basic fibroblast growth factor, and vascular endothelial growth factor, along with increased microvessel density in surrounding areas of brain injury. Results demonstrated migration of transplanted human umbilical cord blood mesenchymal stem cells into the lesioned boundary zone of rats, as well as increased angiogenesis and expression of related neurotrophic factors in the lesioned boundary zone.

  6. Impact of Umbilical Cord Blood-Derived Mesenchymal Stem Cells on Cardiovascular Research

    Directory of Open Access Journals (Sweden)

    Santiago Roura

    2015-01-01

    Full Text Available Over the years, cell therapy has become an exciting opportunity to treat human diseases. Early enthusiasm using adult stem cell sources has been tempered in light of preliminary benefits in patients. Considerable efforts have been dedicated, therefore, to explore alternative cells such as those extracted from umbilical cord blood (UCB. In line, UCB banking has become a popular possibility to preserve potentially life-saving cells that are usually discarded after birth, and the number of UCB banks has grown worldwide. Thus, a brief overview on the categories of UCB banks as well as the properties, challenges, and impact of UCB-derived mesenchymal stem cells (MSCs on the area of cardiovascular research is presented. Taken together, the experience recounted here shows that UCBMSCs are envisioned as attractive therapeutic candidates against human disorders arising and/or progressing with vascular deficit.

  7. Effects of hypoxia on proliferation of human cord blood-derived mesenchymal stem cells.

    Science.gov (United States)

    Peng, Longying; Shu, Xiaomei; Lang, Changhui; Yu, Xiaohua

    2016-08-01

    The purpose of our study was to examine the influence of hypoxia on proliferation of human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs). The mononuclear cells were separated by density gradient centrifugation from human umbilical cord blood and then, respectively, cultured under hypoxia (5 % O2) or normoxia (20 % O2). Their cell morphology, cell surface markers, β-galactosidase staining, cell growth curve, DNA cycle, and the expression of hypoxia-inducible factor-1α (HIF-1α) were evaluated. We found that hypoxia, in part via HIF-1α, improved the proliferation efficiency, and prevented senescence of hUCB-MSCs without altering their morphology and surface markers. These results demonstrated that hypoxia provides a favorable culture condition to promote hUCB-MSCs proliferation in vitro, which is a better way to obtain sufficient numbers of hUCB-MSCs for research and certainly clinical application. PMID:25742732

  8. Transdifferentiation of Human Hair Follicle Mesenchymal Stem Cells into Red Blood Cells by OCT4

    Directory of Open Access Journals (Sweden)

    Zhijing Liu

    2015-01-01

    Full Text Available Shortage of red blood cells (RBCs, erythrocytes can have potentially life-threatening consequences for rare or unusual blood type patients with massive blood loss resulting from various conditions. Erythrocytes have been derived from human pluripotent stem cells (PSCs, but the risk of potential tumorigenicity cannot be ignored, and a majority of these cells produced from PSCs express embryonic ε- and fetal γ-globins with little or no adult β-globin and remain nucleated. Here we report a method to generate erythrocytes from human hair follicle mesenchymal stem cells (hHFMSCs by enforcing OCT4 gene expression and cytokine stimulation. Cells generated from hHFMSCs expressed mainly the adult β-globin chain with minimum level of the fetal γ-globin chain. Furthermore, these cells also underwent multiple maturation events and formed enucleated erythrocytes with a biconcave disc shape. Gene expression analyses showed that OCT4 regulated the expression of genes associated with both pluripotency and erythroid development during hHFMSC transdifferentiation toward erythroid cells. These findings show that mature erythrocytes can be generated from adult somatic cells, which may serve as an alternative source of RBCs for potential autologous transfusion.

  9. Mesenchymal stem cells derived from human placenta suppress allogeneic umbilical cord blood lymphocyte proliferation

    Institute of Scientific and Technical Information of China (English)

    Chang Dong LI; Wei Yuan ZHANG; He Lian LI; Xiao Xia JIANG; Yi ZHANG; Pei Hsien TANG; Ning MAO

    2005-01-01

    Human placenta-derived mononuclear cells (MNC) were isolated by a Percoll density gradient and cultured in mesenchymal stem cell (MSC) maintenance medium.The homogenous layer of adherent cells exhibited a typical fibroblastlike morphology,a large expansive potential,and cell cycle characteristics including a subset of quiescent cells.In vitro differentiation assays showed the tripotential differentiation capacity of these cells toward adipogenic,osteogenic and chondrogenic lineages.Flow cytometry analyses and immunocytochemistry stain showed that placental MSC was a homogeneous cell population devoid of hematopoietic cells,which uniformly expressed CD29,CD44,CD73,CD 105,CD166,laminin,fibronectin and vimentin while being negative for expression of CD31,CD34,CD45 and α-smooth muscle actin.Most importantly,immuno-phenotypic analyses demonstrated that these cells expressed class I major histocompatibility complex (MHC-Ⅰ),but they did not express MHC-Ⅱ molecules.Additionally these cells could suppress umbilical cord blood (UCB) lymphocytes proliferation induced by cellular or nonspecific mitogenic stimuli.This strongly implies that they may have potential application in allograft transplantation.Since placenta and UCB are homogeneous,the MSC derived from human placenta can be transplanted combined with hematopoietic stem cells (HSC) from UCB to reduce the potential graft-versus-host disease (GVHD) in recipients.

  10. Production of good manufacturing practice-grade human umbilical cord blood-derived mesenchymal stem cells for therapeutic use.

    Science.gov (United States)

    Van Pham, Phuc; Phan, Ngoc Kim

    2015-01-01

    Human umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) are multipotent stem cells that can be differentiated into several specific cell types such as adipocytes, osteoblasts, and chondroblasts. They also were demonstrated to trans-differentiate into other cell lineages such as muscle cells and neurons. Thus, they are considered a promising stem cell source for therapeutic use. Here, we describe a method for production of good manufacturing practice-grade human UCB-MSCs for therapeutic use. The obtained UCB-MSCs are free of allogenous or xenogenous proteins. In addition, these MSCs could maintain the MSC phenotype in long-term culture.

  11. Isolation and characterisation of peripheral blood-derived feline mesenchymal stem cells.

    Science.gov (United States)

    Sato, Keiichi; Yamawaki-Ogata, Aika; Kanemoto, Isamu; Usui, Akihiko; Narita, Yuji

    2016-10-01

    The aim of this study was to isolate mesenchymal stem cells (MSCs) from feline peripheral blood (fPB-MSCs) and to characterise the cells' in vitro properties. The mononuclear cell fractions were isolated from venous blood of cats by density gradient centrifugation and cultured on plastic dishes under various culture conditions to isolate MSCs. When these cells were cultured with 5% autologous plasma (AP) and 10% foetal bovine serum (FBS), adherent spindle shaped fibroblast-like cells (fPB-MSCs) were obtained from 15/22 (68%) cats. These cells were isolated only from medium containing both AP and FBS. The morphology of these MSCs was similar to those isolated from other species and from other feline tissues. fPB-MSCs expanded steadily up to 5-6 passages, but had increased population doubling time during passaging and almost all cells stopped proliferation at passages 7-9. These cells expressed CD44 and CD90, and were mostly negative for major histocompatibility class II and CD4. The cells could be induced to differentiate into adipogenic, osteogenic and chondrogenic cell lineages. These findings indicate that fPB-MSCs can be generated but appear to require specific culture conditions. PMID:27687950

  12. Defining Molecular Phenotypes of Mesenchymal and hematopoietic Stem Cells derived from Peripheral blood of Acute Lymphocytic Leukemia patients for regenerative stem cell therapy

    OpenAIRE

    Pravin D. Potdar; Rambhadur P Subedi

    2011-01-01

    Acute Lymphocytic Leukemia (ALL) is a clonal myeloid disorder affecting all age groups, characterized by accumulation of immature blast cells in bone marrow and in peripheral blood. Autologous Bone Marrow Transplantation is a present treatment for cure of ALL patients, which is very expensive, invasive process and may have possibility of transplantation of malignant stem cells to patients. In the present study, we hypothesized to isolate large number of normal Mesenchymal & Hematopoietic stem...

  13. Phenotypical and functional characteristics of mesenchymal stem cells derived from equine umbilical cord blood.

    Science.gov (United States)

    Mohanty, N; Gulati, B R; Kumar, R; Gera, S; Kumar, S; Kumar, P; Yadav, P S

    2016-08-01

    Mesenchymal stem cells (MSCs) offer promise as therapeutic aid in the repair of tendon and ligament injuries in race horses. Fetal adnexa is considered as an ideal source of MSCs due to many advantages, including non-invasive nature of isolation procedures and availability of large tissue mass for harvesting the cells. However, MSCs isolated from equine fetal adnexa have not been fully characterized due to lack of species-specific markers. Therefore, this study was carried out to isolate MSCs from equine umbilical cord blood (UCB) and characterize them using cross-reactive markers. The plastic-adherent cells could be isolated from 13 out of 20 (65 %) UCB samples. The UCB derived cells proliferated till passage 20 with average cell doubling time of 46.40 ± 2.86 h. These cells expressed mesenchymal surface markers but did not express haematopoietic/leucocytic markers by RT-PCR and immunocytochemistry. The phenotypic expression of CD29, CD44, CD73 and CD90 was shown by 96.36 ± 1.28, 93.40 ± 0.70, 73.23 ± 1.29 and 46.75 ± 3.95 % cells, respectively in flow cytometry, whereas, reactivity against the haematopoietic antigens CD34 and CD45 was observed only in 2.4 ± 0.20 and 0.1 ± 0.0 % of cells, respectively. Osteogenic and chondrogenic differentiation could be achieved using established methods, whereas the optimum adipogenic differentiation was achieved after supplementing media with 15 % rabbit serum and 20 ng/ml of recombinant human insulin. In this study, we optimized methodology for isolation, cultural characterization, differentiation and immunophenotyping of MSCs from equine UCB. Protocols and markers used in this study can be employed for unequivocal characterization of equine MSCs. PMID:25487085

  14. Mitochondrial Function and Energy Metabolism in Umbilical Cord Blood- and Bone Marrow-Derived Mesenchymal Stem Cells

    OpenAIRE

    Pietilä, Mika; Palomäki, Sami; Lehtonen, Siri; Ritamo, Ilja; Valmu, Leena; Nystedt, Johanna; Laitinen, Saara; Leskelä, Hannnu-Ville; Sormunen, Raija; Pesälä, Juha; Nordström, Katrina; Vepsäläinen, Ari; Lehenkari, Petri

    2011-01-01

    Human mesenchymal stem cells (hMSCs) are an attractive choice for a variety of cellular therapies. hMSCs can be isolated from many different tissues and possess unique mitochondrial properties that can be used to determine their differentiation potential. Mitochondrial properties may possibly be used as a quality measure of hMSC-based products. Accordingly, the present work focuses on the mitochondrial function of hMSCs from umbilical cord blood (UCBMSC) cells and bone marrow cells from donor...

  15. The therapeutic potential of human umbilical cord blood-derived mesenchymal stem cells in Alzheimer's disease.

    Science.gov (United States)

    Lee, Hyun Ju; Lee, Jong Kil; Lee, Hyun; Shin, Ji-woong; Carter, Janet E; Sakamoto, Toshiro; Jin, Hee Kyung; Bae, Jae-sung

    2010-08-30

    The neuropathological hallmarks of Alzheimer's disease (AD) include the presence of extracellular amyloid-beta peptide (Abeta) in the form of amyloid plaques in the brain parenchyma and neuronal loss. The mechanism associated with neuronal death by amyloid plaques is unclear but oxidative stress and glial activation has been implicated. Human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) are being scrutinized as a potential therapeutic tool to prevent various neurodegenerative diseases including AD. However, the therapeutic impact of hUCB-MSCs in AD has not yet been reported. Here we undertook in vitro work to examine the potential impact of hUCB-MSCs treatment on neuronal loss using a paradigm of cultured hippocampal neurons treated with Abeta. We confirmed that hUCB-MSCs co-culture reduced the hippocampal apoptosis induced by Abeta treatment. Moreover, in an acute AD mouse model to directly test the efficacy of hUCB-MSCs treatment on AD-related cognitive and neuropathological outcomes, we demonstrated that markers of glial activation, oxidative stress and apoptosis levels were decreased in AD mouse brain. Interestingly, hUCB-MSCs treated AD mice demonstrated cognitive rescue with restoration of learning/memory function. These data suggest that hUCB-MSCs warrant further investigation as a potential therapeutic agent in AD.

  16. Defining Molecular Phenotypes of Mesenchymal and hematopoietic Stem Cells derived from Peripheral blood of Acute Lymphocytic Leukemia patients for regenerative stem cell therapy

    Science.gov (United States)

    Potdar, PD; Subedi, RP

    2011-01-01

    Acute Lymphocytic Leukemia (ALL) is a clonal myeloid disorder affecting all age groups, characterized by accumulation of immature blast cells in bone marrow and in peripheral blood. Autologous Bone Marrow Transplantation is a present treatment for cure of ALL patients, which is very expensive, invasive process and may have possibility of transplantation of malignant stem cells to patients. In the present study, we hypothesized to isolate large number of normal Mesenchymal & Hematopoietic stem cells from peripheral blood of ALL patients, which will be further characterized for their normal phenotypes by using specific molecular stem cell markers. This is the first study, which defines the existing phenotypes of isolated MSCs and HSCs from peripheral blood of ALL patients. We have established three cell lines in which two were Mesenchymal stem cells designated as MSCALL and MSCnsALL and one was suspension cell line designated as HSCALL. The HSCALL cell line was developed from the lymphocyte like cells secreted by MSCALL cells. Our study also showed that MSCALL from peripheral blood of ALL patient secreted hematopoietic stem cells in vitro culture. We have characterized all three-cell lines by 14 specific stem cell molecular markers. It was found that both MSC cell lines expressed CD105, CD13, and CD73 with mixed expression of CD34 and CD45 at early passage whereas, HSCALL cell line expressed prominent feature of hematopoietic stem cells such as CD34 and CD45 with mild expression of CD105 and CD13. All three-cell lines expressed LIF, OCT4, NANOG, SOX2, IL6, and DAPK. These cells mildly expressed COX2 and did not express BCR-ABL. Overall it was shown that isolated MSCs and HSCs can be use as a model system to study the mechanism of leukemia at stem cell level and their use in stem cell regeneration therapy for Acute Lymphocytic Leukemia. PMID:24693170

  17. Defining Molecular Phenotypes of Mesenchymal and hematopoietic Stem Cells derived from Peripheral blood of Acute Lymphocytic Leukemia patients for regenerative stem cell therapy

    Directory of Open Access Journals (Sweden)

    Pravin D. Potdar

    2011-01-01

    Full Text Available Acute Lymphocytic Leukemia (ALL is a clonal myeloid disorder affecting all age groups, characterized by accumulation of immature blast cells in bone marrow and in peripheral blood. Autologous Bone Marrow Transplantation is a present treatment for cure of ALL patients, which is very expensive, invasive process and may have possibility of transplantation of malignant stem cells to patients. In the present study, we hypothesized to isolate large number of normal Mesenchymal & Hematopoietic stem cells from peripheral blood of ALL patients, which will be further characterized for their normal phenotypes by using specific molecular stem cell markers. This is the first study, which defines the existing phenotypes of isolated MSCs and HSCs from peripheral blood of ALL patients. We have established three cell lines in which two were Mesenchymal stem cells designated as MSCALL and MSCnsALL and one was suspension cell line designated as HSCALL. The HSCALL cell line was developed from the lymphocyte like cells secreted by MSCALL cells. Our study also showed that MSCALL from peripheral blood of ALL patient secreted hematopoietic stem cells in vitro culture. We have characterized all three-cell lines by 14 specific stem cell molecular markers. It was found that both MSC cell lines expressed CD105, CD13, and CD73 with mixed expression of CD34 and CD45 at early passage whereas, HSCALL cell line expressed prominent feature of hematopoietic stem cells such as CD34 and CD45 with mild expression of CD105 and CD13. All three-cell lines expressed LIF, OCT4, NANOG, SOX2, IL6, and DAPK. These cells mildly expressed COX2 and did not express BCR-ABL. Overall it was shown that isolated MSCs and HSCs can be use as a model system to study the mechanism of leukemia at stem cell level and their use in stem cell regeneration therapy for Acute Lymphocytic Leukemia.

  18. Factors inducing human umbilical cord blood-derived mesenchymal stem cells to differentiate into neuron-like cells

    Institute of Scientific and Technical Information of China (English)

    Nawei Zhang; Fengqing Ji

    2006-01-01

    OBJECTIVE:Human umbilical cord blood-derived mesenchymal stem cells (HUCB-derived MSCs)can differentiate into neuron-like cells,which can be used to treat some central nervous system(CNS)diseases.To investigate the factors,which can induce HUCB-derived MSCs to differentiate into neuron-like cells,so as to find effective methods for future clinical application.DATA SOURCES:Using the key terms"human umbilical cord blood"combined with"mesenchymal stem cells,neuron-like cells,neural cells"respectively,the relevant articles in English published during the period from January 1999 to June 2006 were searched from the Medline database.Meanwhile,relevant Chinese articles published from January 1999 to June 2006 were searched Using the same key terms.STUDY SELECTION: All articles associated with the differentiation from human umbilical cord blood into neuron-like cells were selected firstly.Then the full texts were looked up by searchling Ovid medical Journals full-text database and Elsevier Electrical Journals Full-text Database.Articles with full expeiments,enrolled in inducible factors or involved inducible mechanism were retdeved.DATA EXTRACTION:Among 119 collected correlative articles,29 were involved and 90 were excluded.DATA SYNTHESIS:The inducible factors of HUCB-derived MSCs differentiatling into neuron-like cells included renal endothelial growth factors,fibroblasts,β-mercaptoethanol,dimethyl sulfoxide,butyl hydroxyl anisol,brain-derived neurotrophic factor,Danshen,retinoic acid,sodium ferulate and so on,but its mechanism was unclear.CONCLUSION:Human umbilical cord blood-derived MSCs can differentiate into neuron-like cells,with varied inductors.

  19. Intrathecal injection of human umbilical cord blood-derived mesenchymal stem cells for the treatment of basilar artery dissection: a case report

    Directory of Open Access Journals (Sweden)

    Han Hoon

    2011-12-01

    Full Text Available Abstract Introduction Basilar artery dissection is a rare occurrence, and is significantly associated with morbidity and mortality. To the best of our knowledge, we report the first case of basilar artery dissection treated with mesenchymal stem cells. Case presentation We present the case of a 17-year-old Korean man who was diagnosed with basilar artery dissection. Infarction of the bilateral pons, midbrain and right superior cerebellum due to his basilar artery dissection was partially recanalized by intrathecal injection of human umbilical cord blood-derived mesenchymal stem cells. No immunosuppressants were given to our patient, and human leukocyte antigen alloantibodies were not detected after cell therapy. Conclusions This case indicates that intrathecal injections of mesenchymal stem cells can be used in the treatment of basilar artery dissection.

  20. Human umbilical cord blood mononuclear cells and chorionic plate-derived mesenchymal stem cells promote axon survival in a rat model of optic nerve crush injury

    OpenAIRE

    CHUNG, SOKJOONG; RHO, SEUNGSOO; KIM, GIJIN; Kim, So-Ra; Baek, Kwang-Hyun; KANG, MYUNGSEO; Lew, Helen

    2016-01-01

    The use of mesenchymal stem cells (MSCs) in cell therapy in regenerative medicine has great potential, particularly in the treatment of nerve injury. Umbilical cord blood (UCB) reportedly contains stem cells, which have been widely used as a hematopoietic source and may have therapeutic potential for neurological impairment. Although ongoing research is dedicated to the management of traumatic optic nerve injury using various measures, novel therapeutic strategies based on the complex underly...

  1. Uses of mesenchymal stem cells

    OpenAIRE

    M. Delgado; González-Rey, Elena; Büscher, Dirk

    2008-01-01

    The invention relates to the use of mesenchymal stem cells (MSCs) for treating systemic infiammatory response syndrome (SIRS) in a subject. The invention provides compositions, uses and methods for the treatment of SIRS.

  2. Mesenchymal Stem Cell-Derived Microvesicles Support Ex Vivo Expansion of Cord Blood-Derived CD34+ Cells

    Directory of Open Access Journals (Sweden)

    Hui Xie

    2016-01-01

    Full Text Available Mesenchymal stem cells (MSCs are known to support the characteristic properties of hematopoietic stem and progenitor cells (HSPCs in the bone marrow hematopoietic microenvironment. MSCs are used in coculture systems as a feeder layer for the ex vivo expansion of umbilical cord blood (CB to increase the relatively low number of HSPCs in CB. Findings increasingly suggest that MSC-derived microvesicles (MSC-MVs play an important role in the biological functions of their parent cells. We speculate that MSC-MVs may recapitulate the hematopoiesis-supporting effects of their parent cells. In the current study, we found MSC-MVs containing microRNAs that are involved in the regulation of hematopoiesis. We also demonstrated that MSC-MVs could improve the expansion of CB-derived mononuclear cells and CD34+ cells and generate a greater number of primitive progenitor cells in vitro. Additionally, when MSC-MVs were added to the CB-MSC coculture system, they could improve the hematopoiesis-supporting effects of MSCs. These findings highlight the role of MSC-MVs in the ex vivo expansion of CB, which may offer a promising therapeutic approach in CB transplantation.

  3. Immunological characteristics of mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Cíntia de Vasconcellos Machado

    2013-01-01

    Full Text Available Although bone marrow is the main source, mesenchymal stem cells have already been isolated from various other tissues, such as the liver, pancreas, adipose tissue, peripheral blood and dental pulp. These plastic adherent cells are morphologically similar to fibroblasts and have a high proliferative potential. This special group of cells possesses two essential characteristics: self-renewal and differentiation, with appropriate stimuli, into various cell types. Mesenchymal stem cells are considered immunologically privileged, since they do not express costimulatory molecules, required for complete T cell activation, on their surface. Several studies have shown that these cells exert an immunosuppressive effect on cells from both innate and acquired immunity systems. Mesenchymal stem cells can regulate the immune response in vitro by inhibiting the maturation of dendritic cells, as well as by suppressing the proliferation and function of T and B lymphocytes and natural killer cells. These special properties of mesenchymal stem cells make them a promising strategy in the treatment of immune mediated disorders, such as graft-versus-host disease and autoimmune diseases, as well as in regenerative medicine. The understanding of immune regulation mechanisms of mesenchymal stem cells, and also those involved in the differentiation of these cells in various lineages is primordial for their successful and safe application in different areas of medicine.

  4. Human umbilical cord blood derived mesenchymal stem cells were differentiated into pancreatic endocrine cell by Pdx-1 electrotransfer

    Directory of Open Access Journals (Sweden)

    Phuoc Thi-My Nguyen

    2014-02-01

    Full Text Available Diabetes mellitus type 1 is an autoimmune disease with high incidence in adolescents and young adults. A seductive approach overcomes normally obstacles treatment is cell-replacement therapy to endogenous insulin production. At the present, to get enough pancreatic endocrine cells (PECs in cell transplantation, differentiation of mesenchymal stem cells (MSCs into IPCs is an interesting and promising strategy. This study aimed to orient umbilical cord blood-derived MSCs (UCB-MSCs to PECs by Pdx-1 electrotransfer. UCB-MSCs were isolated from human umbilical cord blood according to published protocol. Pdx-1 was isolated and cloned into a plasmid vector. Optimal voltage of an electrotransfer was investigated to improve the cell viability and gene transfection efficacy. The results showed that 200V of the electrotransfer significantly increased in the efficiency of electrotransfer and survival cells compared with other high voltages (350V and 550V. Pdx-1 successfully transfected UCB-MSCs over-expressed pancreatic related genes as Ngn3, Nkx6.1. These results suggested that Pdx-1 transfected UCB-MSCs were successfully oriented PECs. Different to lentiviral vectors, electrotransfer is a safer method to transfer Pdx-1 to UCB-MSCs and a useful tool in translational research. [Biomed Res Ther 2014; 1(2.000: 50-56

  5. Efficient generation of multipotent mesenchymal stem cells from umbilical cord blood in stroma-free liquid culture.

    Directory of Open Access Journals (Sweden)

    Rowayda Peters

    Full Text Available BACKGROUND: Haematopoiesis is sustained by haematopoietic (HSC and mesenchymal stem cells (MSC. HSC are the precursors for blood cells, whereas marrow, stroma, bone, cartilage, muscle and connective tissues derive from MSC. The generation of MSC from umbilical cord blood (UCB is possible, but with low and unpredictable success. Here we describe a novel, robust stroma-free dual cell culture system for long-term expansion of primitive UCB-derived MSC. METHODS AND FINDINGS: UCB-derived mononuclear cells (MNC or selected CD34(+ cells were grown in liquid culture in the presence of serum and cytokines. Out of 32 different culture conditions that have been tested for the efficient expansion of HSC, we identified one condition (DMEM, pooled human AB serum, Flt-3 ligand, SCF, MGDF and IL-6; further denoted as D7 which, besides supporting HSC expansion, successfully enabled long-term expansion of stromal/MSC from 8 out of 8 UCB units (5 MNC-derived and 3 CD34(+ selected cells. Expanded MSC displayed a fibroblast-like morphology, expressed several stromal/MSC-related antigens (CD105, CD73, CD29, CD44, CD133 and Nestin but were negative for haematopoietic cell markers (CD45, CD34 and CD14. MSC stemness phenotype and their differentiation capacity in vitro before and after high dilution were preserved throughout long-term culture. Even at passage 24 cells remained Nestin(+, CD133(+ and >95% were positive for CD105, CD73, CD29 and CD44 with the capacity to differentiate into mesodermal lineages. Similarly we show that UCB derived MSC express pluripotency stem cell markers despite differences in cell confluency and culture passages. Further, we generated MSC from peripheral blood (PB MNC of 8 healthy volunteers. In all cases, the resulting MSC expressed MSC-related antigens and showed the capacity to form CFU-F colonies. CONCLUSIONS: This novel stroma-free liquid culture overcomes the existing limitation in obtaining MSC from UCB and PB enabling so far unmet

  6. Differentiating of banked human umbilical cord blood-derived mesenchymal stem cells into insulin-secreting cells.

    Science.gov (United States)

    Phuc, Pham Van; Nhung, Truong Hai; Loan, Dang Thi Tung; Chung, Doan Chinh; Ngoc, Phan Kim

    2011-01-01

    Umbilical cord blood (UCB)-derived mesenchymal stem cells (MSCs) are multipotent cells. They are able to differentiate into functional cells from not only mesoderm but also endoderm. Many researches showed that cells derived from fresh human UCB could transdifferentiate into insulin-secreting cells. In this study, transdifferentiating potential of cryopreserved human UCB-derived MSCs into insulin-secreting cell was investigated. Fresh human UCB was enriched the mononuclear cells by Ficoll-Paque centrifugation. The mononuclear cell population was cryopreserved in cryo-medium containing Iscove's modified Dulbecco's media (IMDM) with 10% DMSO at -196°C for 1 yr. After thawing, mononuclear cells were cultured to isolate MSCs in medium IMDM with 20% FBS supplemented with growth factors. At the fifth passages, MSCs were confirmed by flow cytometry about expression of CD13, CD14, CD34, CD45, CD166, and HLA-DR markers; after that, they were induced to differentiate into adipocytes and osteoblasts. After inducing with specific medium for islet differentiation, there were many clusters of cell like islet at day 14-28. Using real-time reverse transcription polymerase chain reaction (RT-PCR) to analyze the expression of functional genes, the result showed that Nestin, Pdx-1, Ngn3, Ils-1, Pax6, Pax4, Nkx2.2, Nkx6.1, Glut-2, Insulin genes expressed. The results showed that MSCs derived from banked cord blood can differentiate into functional pancreatic islet-like cells in vitro. If human MSCs, especially MSCs from banked cord blood of diabetes patients themselves can be isolated, proliferated, differentiated into functional pancreatic islet-like cells, and transplanted back into them (autologous transplantation), their high-proliferation potency and rejection avoidance will provide one promising therapy for diabetes.

  7. Mitochondrial Function and Energy Metabolism in Umbilical Cord Blood- and Bone Marrow-Derived Mesenchymal Stem Cells

    Science.gov (United States)

    Palomäki, Sami; Lehtonen, Siri; Ritamo, Ilja; Valmu, Leena; Nystedt, Johanna; Laitinen, Saara; Leskelä, Hannnu-Ville; Sormunen, Raija; Pesälä, Juha; Nordström, Katrina; Vepsäläinen, Ari; Lehenkari, Petri

    2012-01-01

    Human mesenchymal stem cells (hMSCs) are an attractive choice for a variety of cellular therapies. hMSCs can be isolated from many different tissues and possess unique mitochondrial properties that can be used to determine their differentiation potential. Mitochondrial properties may possibly be used as a quality measure of hMSC-based products. Accordingly, the present work focuses on the mitochondrial function of hMSCs from umbilical cord blood (UCBMSC) cells and bone marrow cells from donors younger than 18 years of age (BMMSC 50). Changes of ultrastructure and energy metabolism during osteogenic differentiation in all hMSC types were studied in detail. Results show that despite similar surface antigen characteristics, the UCBMSCs had smaller cell surface area and possessed more abundant rough endoplasmic reticulum than BMMSC >50. BMMSC 50 and BMMSC 50 showed a lower level of mitochondrial maturation and differentiation capacity. UCBMSCs and BMMSCs also showed a different pattern of exocytosed proteins and glycoproteoglycansins. These results indicate that hMSCs with similar cell surface antigen expression have different mitochondrial and functional properties, suggesting different maturation levels and other significant biological variations of the hMSCs. Therefore, it appears that mitochondrial analysis presents useful characterization criteria for hMSCs intended for clinical use. PMID:21615273

  8. Conditioned Media from Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells Inhibits Melanogenesis by Promoting Proteasomal Degradation of MITF.

    Directory of Open Access Journals (Sweden)

    Eun Sung Kim

    Full Text Available Human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs secrete various beneficial molecules, which have anti-apoptotic activity and cell proliferation. However, the effect of hUCB-MSCs in melanogenesis is largely unclear. In this study, we show that conditioned media (CM derived from hUCB-MSCs inhibit melanogenesis by regulating microphthalmia-associated transcription factor (MITF expression via the ERK signalling pathway. Treatment of hUCB-MSC-CM strongly inhibited the alpha-melanocyte stimulating hormone-induced hyperpigmentation in melanoma cells as well as melanocytes. Treatment of hUCB-MSC-CM induced ERK1/2 activation in melanocytes. In addition, inhibition of ERK1/2 suppressed the anti-pigmentation activity of the hUCB-MSC-CM in melanocytes and in vitro artificial skin models. We also found that the expression of MITF was appreciably diminished while expression of phosphorylated MITF, which leads to its proteasomal degradation, was increased in cells treated with hUCB-MSC-CM. These results suggested that hUCB-MSC-CM significantly suppresses melanin synthesis via MITF degradation by the ERK pathway activation.

  9. Cartilage repair by human umbilical cord blood-derived mesenchymal stem cells with different hydrogels in a rat model.

    Science.gov (United States)

    Park, Yong-Beom; Song, Minjung; Lee, Choong-Hee; Kim, Jin-A; Ha, Chul-Won

    2015-11-01

    This study was carried out to assess the feasibility of human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) in articular cartilage repair and to further determine a suitable delivering hydrogel in a rat model. Critical sized full thickness cartilage defects were created. The hUCB-MSCs and three different hydrogel composites (hydrogel A; 4% hyaluronic acid/30% pluronic (1:1, v/v), hydrogel B; 4% hyaluronic acid, and hydrogel C; 4% hyaluronic acid/30% pluronic/chitosan (1:1:2, v/v)) were implanted into the experimental knee (right knee) and hydrogels without hUCB-MSCs were implanted into the control knee (left knee). Defects were evaluated after 8 weeks. The hUCB-MSCs with hydrogels composites resulted in a better repair as seen by gross and histological evaluation compared with hydrogels without hUCB-MSCs. Among the three different hydrogels, the 4% hyaluronic acid hydrogel composite (hydrogel B) showed the best result in cartilage repair as seen by the histological evaluation compared with the other hydrogel composites (hydrogel A and C). The results of this study suggest that hUCB-MSCs may be a promising cell source in combination with 4% hyaluronic acid hydrogels in the in vivo repair of cartilage defects.

  10. Chondrogenic commitment of human umbilical cord blood-derived mesenchymal stem cells in collagen matrices for cartilage engineering.

    Science.gov (United States)

    Gómez-Leduc, Tangni; Hervieu, Magalie; Legendre, Florence; Bouyoucef, Mouloud; Gruchy, Nicolas; Poulain, Laurent; de Vienne, Claire; Herlicoviez, Michel; Demoor, Magali; Galéra, Philippe

    2016-01-01

    Umbilical cord blood (UCB) is a promising alternative source of mesenchymal stem cells (MSCs), because UCB-MSCs are abundant and harvesting them is a painless non-invasive procedure. Potential clinical applications of UCB-MSCs have been identified, but their ability for chondrogenic differentiation has not yet been fully evaluated. The aim of our work was to characterize and determine the chondrogenic differentiation potential of human UCB-MSCs (hUCB-MSCs) for cartilage tissue engineering using an approach combining 3D culture in type I/III collagen sponges and chondrogenic factors. Our results showed that UCB-MSCs have a high proliferative capacity. These cells differentiated easily into an osteoblast lineage but not into an adipocyte lineage. Furthermore, BMP-2 and TGF-β1 potentiated chondrogenic differentiation, as revealed by a strong increase in mature chondrocyte-specific mRNA (COL2A1, COL2B, ACAN) and protein (type II collagen) markers. Although growth factors increased the transcription of hypertrophic chondrocyte markers such as COL10A1 and MMP13, the cells present in the neo-tissue maintained their phenotype and did not progress to terminal differentiation and mineralization of the extracellular matrix after subcutaneous implantation in nude mice. Our study demonstrates that our culture model has efficient chondrogenic differentiation, and that hUCB-MSCs can be a reliable source for cartilage tissue engineering. PMID:27604951

  11. Transplantation of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells or Their Conditioned Medium Prevents Bone Loss in Ovariectomized Nude Mice

    OpenAIRE

    An, Jee Hyun; Park, Hyojung; Song, Jung Ah; Ki, Kyung Ho; Yang, Jae-Yeon; Choi, Hyung Jin; Cho, Sun Wook; Kim, Sang Wan; Kim, Seong Yeon; Yoo, Jeong Joon; Baek, Wook-Young; Kim, Jung-Eun; Choi, Soo Jin; Oh, Wonil; Shin, Chan Soo

    2013-01-01

    Umbilical cord blood (UCB) has recently been recognized as a new source of mesenchymal stem cells (MSCs) for use in stem cell therapy. We studied the effects of systemic injection of human UCB-MSCs and their conditioned medium (CM) on ovariectomy (OVX)-induced bone loss in nude mice. Ten-week-old female nude mice were divided into six groups: Sham-operated mice treated with vehicle (Sham-Vehicle), OVX mice subjected to UCB-MSCs (OVX-MSC), or human dermal fibroblast (OVX-DFB) transplantation, ...

  12. A comparative study on nonviral genetic modifications in cord blood and bone marrow mesenchymal stem cells

    OpenAIRE

    Bakhshandeh, Behnaz; Soleimani, Masoud; Hafizi, Maryam; Ghaemi, Nasser

    2012-01-01

    The focus of both clinical and basic studies on stem cells is increasing due to their potentials in regenerative medicine and cell-based therapies. Recently stem cells have been genetically modified to enhance an existing character in or to bring a new property to them. However, accomplishment of declared goals requires detailed knowledge about their molecular characteristics which could be achieved by genetic modifications mostly through nonviral transfection strategies. Capable of different...

  13. Low immunogenicity of allogeneic human umbilical cord blood-derived mesenchymal stem cells in vitro and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Miyoung; Jeong, Sang Young; Ha, Jueun; Kim, Miyeon; Jin, Hye Jin; Kwon, Soon-Jae [Biomedical Research Institute, MEDIPOST Co., Ltd, Seoul 137-874 (Korea, Republic of); Chang, Jong Wook [Research Institute for Future Medicine Stem Cell and Regenerative Medicine Center, Samsung Medical Center, Seoul 137-710 (Korea, Republic of); Choi, Soo Jin; Oh, Wonil; Yang, Yoon Sun [Biomedical Research Institute, MEDIPOST Co., Ltd, Seoul 137-874 (Korea, Republic of); Kim, Jae-Sung [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul 139-709 (Korea, Republic of); Jeon, Hong Bae, E-mail: jhb@medi-post.co.kr [Biomedical Research Institute, MEDIPOST Co., Ltd, Seoul 137-874 (Korea, Republic of)

    2014-04-18

    Highlights: • hUCB-MSCs maintained low immunogenicity even after immune challenge in vitro. • Humanized NSG mice were established using human UCB CD34+ cells. • Repeated intravenous hUCB-MSC injection into mice did not lead to immune responses and adverse events. • Allogeneic hUCB-MSCs maintained low immunogenicity in vitro and in vivo. - Abstract: Evaluation of the immunogenicity of human mesenchymal stem cells (MSCs) in an allogeneic setting during therapy has been hampered by lack of suitable models due to technical and ethical limitations. Here, we show that allogeneic human umbilical cord blood derived-MSCs (hUCB-MSCs) maintained low immunogenicity even after immune challenge in vitro. To confirm these properties in vivo, a humanized mouse model was established by injecting isolated hUCB-derived CD34+ cells intravenously into immunocompromised NOD/SCID IL2γnull (NSG) mice. After repeated intravenous injection of human peripheral blood mononuclear cells (hPBMCs) or MRC5 cells into these mice, immunological alterations including T cell proliferation and increased IFN-γ, TNF-α, and human IgG levels, were observed. In contrast, hUCB-MSC injection did not elicit these responses. While lymphocyte infiltration in the lung and small intestine and reduced survival rates were observed after hPBMC or MRC5 transplantation, no adverse events were observed following hUCB-MSC introduction. In conclusion, our data suggest that allogeneic hUCB-MSCs have low immunogenicity in vitro and in vivo, and are therefore “immunologically safe” for use in allogeneic clinical applications.

  14. Low immunogenicity of allogeneic human umbilical cord blood-derived mesenchymal stem cells in vitro and in vivo

    International Nuclear Information System (INIS)

    Highlights: • hUCB-MSCs maintained low immunogenicity even after immune challenge in vitro. • Humanized NSG mice were established using human UCB CD34+ cells. • Repeated intravenous hUCB-MSC injection into mice did not lead to immune responses and adverse events. • Allogeneic hUCB-MSCs maintained low immunogenicity in vitro and in vivo. - Abstract: Evaluation of the immunogenicity of human mesenchymal stem cells (MSCs) in an allogeneic setting during therapy has been hampered by lack of suitable models due to technical and ethical limitations. Here, we show that allogeneic human umbilical cord blood derived-MSCs (hUCB-MSCs) maintained low immunogenicity even after immune challenge in vitro. To confirm these properties in vivo, a humanized mouse model was established by injecting isolated hUCB-derived CD34+ cells intravenously into immunocompromised NOD/SCID IL2γnull (NSG) mice. After repeated intravenous injection of human peripheral blood mononuclear cells (hPBMCs) or MRC5 cells into these mice, immunological alterations including T cell proliferation and increased IFN-γ, TNF-α, and human IgG levels, were observed. In contrast, hUCB-MSC injection did not elicit these responses. While lymphocyte infiltration in the lung and small intestine and reduced survival rates were observed after hPBMC or MRC5 transplantation, no adverse events were observed following hUCB-MSC introduction. In conclusion, our data suggest that allogeneic hUCB-MSCs have low immunogenicity in vitro and in vivo, and are therefore “immunologically safe” for use in allogeneic clinical applications

  15. Comparison of molecular profiles of human mesenchymal stem cells derived from bone marrow, umbilical cord blood, placenta and adipose tissue.

    Science.gov (United States)

    Heo, June Seok; Choi, Youjeong; Kim, Han-Soo; Kim, Hyun Ok

    2016-01-01

    Mesenchymal stem cells (MSCs) are clinically useful due to their capacity for self-renewal, their immunomodulatory properties and tissue regenerative potential. These cells can be isolated from various tissues and exhibit different potential for clinical applications according to their origin, and thus comparative studies on MSCs from different tissues are essential. In this study, we investigated the immunophenotype, proliferative potential, multilineage differentiation and immunomodulatory capacity of MSCs derived from different tissue sources, namely bone marrow, adipose tissue, the placenta and umbilical cord blood. The gene expression profiles of stemness-related genes [octamer-binding transcription factor 4 (OCT4), sex determining region Y-box (SOX)2, MYC, Krüppel-like factor 4 (KLF4), NANOG, LIN28 and REX1] and lineage‑related and differentiation stage-related genes [B4GALNT1 (GM2/GS2 synthase), inhibin, beta A (INHBA), distal-less homeobox 5 (DLX5), runt-related transcription factor 2 (RUNX2), proliferator‑activated receptor gamma (PPARG), CCAAT/enhancer-binding protein alpha (C/EBPA), bone morphogenetic protein 7 (BMP7) and SOX9] were compared using RT-PCR. No significant differences in growth rate, colony-forming efficiency and immunophenotype were observed. Our results demonstrated that MSCs derived from bone marrow and adipose tissue shared not only in vitro tri-lineage differentiation potential, but also gene expression profiles. While there was considerable inter-donor variation in DLX5 expression between MSCs derived from different tissues, its expression appears to be associated with the osteogenic potential of MSCs. Bone marrow-derived MSCs (BM-MSCs) significantly inhibited allogeneic T cell proliferation possibly via the high levels of the immunosuppressive cytokines, IL10 and TGFB1. Although MSCs derived from different tissues and fibroblasts share many characteristics, some of the marker genes, such as B4GALNT1 and DLX5 may be useful for

  16. Therapy for Cerebral Palsy by Human Umbilical Cord Blood Mesenchymal Stem Cells Transplantation Combined With Basic Rehabilitation Treatment

    Directory of Open Access Journals (Sweden)

    Che Zhang MD

    2015-03-01

    Full Text Available Background. Cerebral palsy (CP is the most common cause leading to childhood disability. Human umbilical cord blood mesenchymal stem cells (hUCB-MSCs transplantation is a promising alternative considering the safety and efficacy in current reports. This report represents a case of hUCB-MSCs transplantation combined with basic rehabilitation treatment beginning as early as age 6 months with follow-up as long as 5 years. Methods. A 6-year-old female patient was diagnosed with CP at age 6 months. The patient accepted 4 infusions of intravenous hUCB-MSCs in each course and received 4 courses of transplantation totally. A series of assessments were performed before the first transplantation, including laboratory tests, CDCC Infant Mental Development Scale, and Gross Motor Function Measure-88 (GMFM-88. Then annual assessments using the GMFM-88, Ashworth spasm assessment, and comprehensive function assessment scale were made in addition to the annual laboratory tests. In addition, electroencephalography and brain magnetic resonance imaging were conducted before transplantation and in the follow-up phase. Rehabilitation and safety follow-up have been ongoing for 5 years up to date. Results. There was no complaint about adverse effects during hospitalization or postoperative follow-up. Motor function recovered to normal level according to the evaluation of scales. Language function improved significantly. Linguistic rehabilitation therapy was enhanced for further improvement. Conclusions. The clinical application of hUC-MSCs combined with basic rehabilitation treatment was effective and safe for improving motor and comprehensive function in a patient with CP.

  17. Mesenchymal Stem Cells and Mononuclear Cells From Cord Blood: Cotransplantation Provides a Better Effect in Treating Myocardial Infarction.

    Science.gov (United States)

    Chen, Gecai; Yue, Aihuan; Yu, Hong; Ruan, Zhongbao; Yin, Yigang; Wang, Ruzhu; Ren, Yin; Zhu, Li

    2016-03-01

    The aim of this study was to evaluate the effect of cotransplanting mononuclear cells from cord blood (CB-MNCs) and mesenchymal stem cells (MSCs) as treatment for myocardial infarction (MI). Transplanting CD34+ cells or MSCs separately has been shown effective in treating MI, but the effect of cotransplanting CB-MNCs and MSCs is not clear. In this study, MSCs were separated by their adherence to the tissue culture. The morphology, immunophenotype, and multilineage potential of MSCs were analyzed. CB-MNCs were separated in lymphocyte separation medium 1.077. CD34+ cell count and viability were analyzed by flow cytometry. Infarcted male Sprague-Dawley rats in a specific-pathogen-free grade were divided into four treatment groups randomly: group I, saline; group II, CB-MNCs; group III, MSCs; and group IV, CB-MNCs plus MSCs. The saline, and CB-MNCs and/or MSCs were injected intramyocardially in infarcted rats. Their cardiac function was evaluated by echocardiography. The myocardial capillary density was analyzed by immunohistochemistry. Both cell types induced an improvement in the left ventricular cardiac function and increased tissue cell proliferation in myocardial tissue and neoangiogenesis. However, CB-MNCs plus MSCs were more effective in reducing the infarct size and preventing ventricular remodeling. Scar tissue was reduced significantly in the CB-MNCs plus MSCs group. MSCs facilitate engraftment of CD34+ cells and immunomodulation after allogeneic CD34+ cell transplantation. Cotransplanting MSCs and CB-MNCs might be more effective than transplanting MSCs or CB-MNCs separately for treating MI. This study contributes knowledge toward effective treatment strategies for MI.

  18. Human stromal (mesenchymal) stem cells

    DEFF Research Database (Denmark)

    Aldahmash, Abdullah; Zaher, Walid; Al-Nbaheen, May;

    2012-01-01

    Human stromal (mesenchymal) stem cells (hMSC) represent a group of non-hematopoietic stem cells present in the bone marrow stroma and the stroma of other organs including subcutaneous adipose tissue, placenta, and muscles. They exhibit the characteristics of somatic stem cells of self......-renewal and multi-lineage differentiation into mesoderm-type of cells, e.g., to osteoblasts, adipocytes, chondrocytes and possibly other cell types including hepatocytes and astrocytes. Due to their ease of culture and multipotentiality, hMSC are increasingly employed as a source for cells suitable for a number...

  19. Bioluminescence imaging of cord blood derived mesenchymal stem cell transplanatation into myocardium

    Energy Technology Data Exchange (ETDEWEB)

    Min, Jung Joon; Ahn, Young Keun; Moon, Sung Min; Lim, Sang Yup; Yun, Kyung Ho; Heo, Young Jun; Song, Ho Chun; Jeong, Myung Ho; Bom, Hee Seung [School of Medicine, Chonnam National University, Gwangju (Korea, Republic of)

    2004-07-01

    The conventional method of analyzing myocardial cell transplanation relies on postmortem histology. We sought to demonstrate the feasibility of longitudinal monitoring transplanted cell survival in living animals using optical imaging techniques. Umblical cord blood was collected upon delivery with informed consent. Umblical mononuclear cells were obtained by negative immuno-depletion of CD3, CD14, CD19, CD38, CD66b, and glycophorin- A positive cells, followed by Ficoll- Paque density gradient centrifugation, and plated in non-coated tissue culture flasks in expansion medium. Cells were allowed to adhere overnight, thereafter non-adherent cells were washed out with medium changes. After getting the MSCs, they were transfected [multiplicity of infection (MOl) = 40) with Ad-CMV-Fluc overnight. Rats (n=4) underwent intramyocardial injection of 5 x 10{sup 5} MSCs expressing firefly luciferase (Fluc) reporter gene. Optical bioluminescence imaging was performed using the charged-coupled device camera (Xenogen) from the 1st day of transplantion. Cardiac bioluminescence signals were present from 2nd day of transplantation. Cardiac signals were clearly present at day 2 (9.2x10{sup 3}p/s/cm{sup 2}/sr). The signal reduced from day 3. The locations, magnitude, and survival duration of cord blood derived MSCs were monitored noninvasively. With further development, molecular imaging studies should add critical insights into cardiac cell transplantation.

  20. Bioluminescence imaging of cord blood derived mesenchymal stem cell transplanatation into myocardium

    International Nuclear Information System (INIS)

    The conventional method of analyzing myocardial cell transplanation relies on postmortem histology. We sought to demonstrate the feasibility of longitudinal monitoring transplanted cell survival in living animals using optical imaging techniques. Umblical cord blood was collected upon delivery with informed consent. Umblical mononuclear cells were obtained by negative immuno-depletion of CD3, CD14, CD19, CD38, CD66b, and glycophorin- A positive cells, followed by Ficoll- Paque density gradient centrifugation, and plated in non-coated tissue culture flasks in expansion medium. Cells were allowed to adhere overnight, thereafter non-adherent cells were washed out with medium changes. After getting the MSCs, they were transfected [multiplicity of infection (MOl) = 40) with Ad-CMV-Fluc overnight. Rats (n=4) underwent intramyocardial injection of 5 x 105 MSCs expressing firefly luciferase (Fluc) reporter gene. Optical bioluminescence imaging was performed using the charged-coupled device camera (Xenogen) from the 1st day of transplantion. Cardiac bioluminescence signals were present from 2nd day of transplantation. Cardiac signals were clearly present at day 2 (9.2x103p/s/cm2/sr). The signal reduced from day 3. The locations, magnitude, and survival duration of cord blood derived MSCs were monitored noninvasively. With further development, molecular imaging studies should add critical insights into cardiac cell transplantation

  1. Comparison of articular cartilage repair with different hydrogel-human umbilical cord blood-derived mesenchymal stem cell composites in a rat model

    OpenAIRE

    Chung, Jun Young; Song, Minjung; Ha, Chul-Won; Kim, Jin-A; Lee, Choong-Hee; Park, Yong-Beom

    2014-01-01

    Introduction The present work was designed to explore the feasibility and efficacy of articular cartilage repair using composites of human umbilical cord blood derived mesenchymal stem cells (hUCB-MSCs) and four different hydrogels in a rat model. Methods Full-thickness articular cartilage defects were created at the trochlear groove of femur in both knees of rats. Composites of hUCB-MSCs and four different hydrogels (group A, 4% hyaluronic acid; group B, 3% alginate:30% pluronic (1:1, v/v); ...

  2. Xeno-free culture condition for human bone marrow and umbilical cord matrix-derived mesenchymal stem/stromal cells using human umbilical cord blood serum

    Science.gov (United States)

    Esmaeli, Azadeh; Moshrefi, Mojgan; Shamsara, Ali; Eftekhar-vaghefi, Seyed Hasan; Nematollahi-mahani, Seyed Noureddin

    2016-01-01

    Background: Fetal bovine serum (FBS) is widely used in cell culture laboratories, risk of zoonotic infections and allergic side effects create obstacles for its use in clinical trials. Therefore, an alternative supplement with proper inherent growth-promoting activities is demanded. Objective: To find FBS substitute, we tested human umbilical cord blood serum (hUCS) for proliferation of human umbilical cord matrix derived mesenchymal stem cells (hUC-MSCs) and human bone marrow-derived mesenchymal cells (hBM-MSCs). Materials and Methods: Umbilical cord blood of healthy neonates, delivered by Caesarian section, was collected and the serum was separated. hUC-MSCs and hBM-MSCs were isolated and characterized by assessment of cell surface antigens by flow cytometry, alkaline phosphatase activity and osteogenic/adipogenic differentiation potential. The cells were then cultured in Iscove's Modified Dulbecco's Medium (IMDM) by conventional methods in three preparations: 1- with hUCS, 2- with FBS, and 3- without serum supplements. Cell proliferation was measured using WST-1 assay, and cell viability was assessed by trypan blue staining. Results: The cells cultured in hUCS and FBS exhibited similar morphology and mesenchymal stem cells properties. WST-1 proliferation assay data showed no significant difference between the proliferation rate of either cells following hUCS and FBS supplementation. Trypan blue exclusion dye test also revealed no significant difference for viability between hUCS and FBS groups. A significant difference was detected between the proliferation rate of stem cells cultured in serum-supplemented medium compared with serum-free medium. Conclusion: Our results indicate that human umbilical cord serum can effectively support proliferation of hBM-MSCS and hUC-MSCs in vitro and can be used as an appropriate substitute for FBS, especially in clinical studies. PMID:27738658

  3. Mesenchymal Stem Cells and Tooth Engineering

    Institute of Scientific and Technical Information of China (English)

    Li Peng; Ling Ye; Xue-dong Zhou

    2009-01-01

    Tooth loss compromises human oral health. Although several prosthetic methods, such as artificial denture and dental implants, are clinical therapies to tooth loss problems, they are thought to have safety and usage time issues. Recently, tooth tissue engineering has attracted more and more attention. Stem cell based tissue engineering is thought to be a promising way to replace the missing tooth. Mesenchymal stem cells (MSCs) are multipotent stem cells which can differentiate into a variety of cell types. The potential MSCs for tooth regeneration mainly include stem cells from human exfoliated deciduous teeth (SHEDs), adult dental pulp stem cells (DPSCs), stem cells from the apical part of the papilla (SCAPs), stem cells from the dental follicle (DFSCs), periodontal ligament stem cells (PDLSCs) and bone marrow derived mesenchymal stem cells (BMSCs). This review outlines the recent progress in the mesenchymal stem cells used in tooth regeneration.

  4. Roles of db-cAMP, IBMX and RA in aspects of neural differentiation of cord blood derived mesenchymal-like stem cells.

    Directory of Open Access Journals (Sweden)

    Murni Tio

    Full Text Available Mesenchymal stem cells (MSCs have multilineage differentiation potential which includes cell lineages of the central nervous system; hence MSCs might be useful in the treatment of neurodegenerative diseases such as Parkinson's disease. Although mesenchymal stem cells have been shown to differentiate into the neural lineage, there is still little knowledge about the underlying mechanisms of differentiation particularly towards specialized neurons such as dopaminergic neurons. Here, we show that MSCs derived from human umbilical cord blood (MSC(hUCBs are capable of expressing tyrosine hydroxylase (TH and Nurr1, markers typically associated with DA neurons. We also found differential phosphorylation of TH isoforms indicating the presence of post-translational mechanisms possibly activating and modifying TH in MSC(hUCB. Furthermore, functional dissection of components in the differentiation medium revealed that dibutyryl-cAMP (db-cAMP, 3-isobutyl-1-methylxanthine (IBMX and retinoic acid (RA are involved in the regulation of Nurr1 and Neurofilament-L expression as well as in the differential phosphorylation of TH. We also demonstrate a possible inhibitory role of the protein kinase A signaling pathway in the phosphorylation of specific TH isoforms.

  5. Cord blood mesenchymal stem cells propel human dendritic cells to an intermediate maturation state and boost interleukin-12 production by mature dendritic cells.

    Science.gov (United States)

    van den Berk, Lieke C J; Roelofs, Helene; Huijs, Tonnie; Siebers-Vermeulen, Kim G C; Raymakers, Reinier A; Kögler, Gesine; Figdor, Carl G; Torensma, Ruurd

    2009-12-01

    Pathogen-derived entities force the tissue-resident dendritic cells (DCs) towards a mature state, followed by migration to the draining lymph node to present antigens to T cells. Bone marrow mesenchymal stem cells (MSCs) modulate the differentiation, maturation and function of DCs. In umbilical cord blood an immature MSC population was identified. Remarkably, these immature stem cells modulated DCs in a different way. Marker expression was unchanged during the differentiation of monocytes towards immature DCs (iDCs) when cocultured with cord blood MSC [unrestricted somatic stem cells (USSCs)]. The maturation to mature DCs (mDCs) was enhanced when DCs were co-cultured with USSC, as evidenced by the up-regulation of costimulatory molecules. Endocytosis of dextran by iDCs was hampered in the presence of USSCs, which is indicative for the maturation of iDCs. Despite this maturation, the migration of iDCs cocultured with USSCs appeared to be identical to iDCs cultured alone. However, USSCs increased the migration of mDCs towards CCL21 and boosted interleukin-12 production. So, USSCs mature iDCs, thereby redirecting the antigen-uptake phenotype towards a mature phenotype. Furthermore, DC maturation by lipopolysaccharide (LPS) or USSCs reflects two distinct pathways because migration was unaffected when iDCs were matured by coculture with USSCs, while it was strongly enhanced in the presence of LPS. DCs are able to discriminate the different MSC subtypes, resulting in diverse differentiation programmes.

  6. Preliminary evaluation of treatment efficacy of umbilical cord blood-derived mesenchymal stem cell-differentiated cardiac pro-genitor cells in a myocardial injury mouse model

    Directory of Open Access Journals (Sweden)

    Truc Le-Buu Pham

    2015-12-01

    Full Text Available Recently, stem cell therapy has been investigated as a strategy to prevent or reverse damage to heart tissue. Although the results of cell transplantation in animal models and patients with myocardial ischemia are promising, the selection of the appropriate cell type remains an issue that requires consideration. In this study, we aimed to evaluate the effect of cardiac progenitor cell transplantation in a mouse model of myocardial ischemia. The cardiac progenitor cells used for transplantation were differentiated from umbilical cord blood mesenchymal stem cells. Animal models injected with phosphate-buffered saline (PBS and healthy mice were used as controls. Cell grafting was assessed by changes in blood pressure and histological evaluation. After 14 days of transplantation, the results demonstrated that the blood pressure of transplanted mice was stable, similar to healthy mice, whereas it fluctuated in PBS-injected mice. Histological analysis showed that heart tissue had regenerated in transplanted mice, but remained damaged in PBS-injected mice. Furthermore, trichrome staining revealed that the transplanted mice did not generate significant amount of scar tissue compared with PBS-injected control mice. In addition, the cardiac progenitor cells managed to survive and integrate with local cells in cell-injected heart tissue 14 days after transplantation. Most importantly, the transplanted cells did not exhibit tumorigenesis. In conclusion, cardiac progenitor cell transplantation produced a positive effect in a mouse model of myocardial ischemia. [Biomed Res Ther 2015; 2(12.000: 435-445

  7. Mesenchymal stem cells for therapeutic purposes.

    Science.gov (United States)

    Sensebé, Luc; Bourin, Philippe

    2009-05-15

    Mesenchymal stem cells (MSC) are multipotent adult stem cells harboring a wide range of differentiations and non-human leukocyte antigen-restricted immunosuppressive properties that lead to an increasing use of MSC in immunomodulation and in regenerative medicine. To produce MSC, definitive standards are still lacking. Whatever the starting material used (e.g., bone marrow, adipose tissue, or cord blood), numerous parameters including cell plating density, number of passages, and culture medium, play a major role in the culture process and have to be determined. To date, the different production processes have been effective, and based on phenotypic analysis and differentiation potential, a first set of simple controls have been defined. However, controls of the final product should provide precise data on efficacy and safety. The next challenge will be to develop production processes that reach good manufacturing practices goals and to define more accurate control methods of cultivated MSC.

  8. Upregulation of PTEN in glioma cells by cord blood mesenchymal stem cells inhibits migration via downregulation of the PI3K/Akt pathway.

    Directory of Open Access Journals (Sweden)

    Venkata Ramesh Dasari

    Full Text Available BACKGROUND: PTEN (phosphatase and tensin homologue deleted on chromosome ten is a tumor suppressor gene implicated in a wide variety of human cancers, including glioblastoma. PTEN is a major negative regulator of the PI3K/Akt signaling pathway. Most human gliomas show high levels of activated Akt, whereas less than half of these tumors carry PTEN mutations or homozygous deletions. The unique ability of mesenchymal stem cells to track down tumor cells makes them as potential therapeutic agents. Based on this capability, new therapeutic approaches have been developed using mesenchymal stem cells to cure glioblastoma. However, molecular mechanisms of interactions between glioma cells and stem cells are still unknown. METHODOLOGY/PRINCIPAL FINDINGS: In order to study the mechanisms by which migration of glioma cells can be inhibited by the upregulation of the PTEN gene, we studied two glioma cell lines (SNB19 and U251 and two glioma xenograft cell lines (4910 and 5310 alone and in co-culture with human umbilical cord blood-derived mesenchymal stem cells (hUCBSC. Co-cultures of glioma cells showed increased expression of PTEN as evaluated by immunofluorescence and immunoblotting assays. Upregulation of PTEN gene is correlated with the downregulation of many genes including Akt, JUN, MAPK14, PDK2, PI3K, PTK2, RAS and RAF1 as revealed by cDNA microarray analysis. These results have been confirmed by reverse-transcription based PCR analysis of PTEN and Akt genes. Upregulation of PTEN resulted in the inhibition of migration capability of glioma cells under in vitro conditions. Also, wound healing capability of glioma cells was significantly inhibited in co-culture with hUCBSC. Under in vivo conditions, intracranial tumor growth was inhibited by hUCBSC in nude mice. Further, hUCBSC upregulated PTEN and decreased the levels of XIAP and Akt, which are responsible for the inhibition of tumor growth in the mouse brain. CONCLUSIONS/SIGNIFICANCE: Our studies

  9. Human Umbilical Cord Blood-Derived Mesenchymal Stem Cell Therapy Promotes Functional Recovery of Contused Rat Spinal Cord through Enhancement of Endogenous Cell Proliferation and Oligogenesis

    Directory of Open Access Journals (Sweden)

    Sang In Park

    2012-01-01

    Full Text Available Numerous studies have shown the benefits of mesenchymal stem cells (MSCs on the repair of spinal cord injury (SCI model and on behavioral improvement, but the underlying mechanisms remain unclear. In this study, to investigate possible mechanisms by which MSCs contribute to the alleviation of neurologic deficits, we examined the potential effect of human umbilical cord blood-derived MSCs (hUCB-MSCs on the endogenous cell proliferation and oligogenesis after SCI. SCI was injured by contusion using a weight-drop impactor and hUCB-MSCs were transplanted into the boundary zone of the injured site. Animals received a daily injection of bromodeoxyuridine (BrdU for 7 days after treatment to identity newly synthesized cells of ependymal and periependymal cells that immunohistochemically resembled stem/progenitor cells was evident. Behavior analysis revealed that locomotor functions of hUCB-MSCs group were restored significantly and the cavity volume was smaller in the MSCs-transplanted rats compared to the control group. In MSCs-transplanted group, TUNEL-positive cells were decreased and BrdU-positive cells were significantly increased rats compared with control group. In addition, more of BrdU-positive cells expressed neural stem/progenitor cell nestin and oligo-lineage cell such as NG2, CNPase, MBP and glial fibrillary acidic protein typical of astrocytes in the MSC-transplanted rats. Thus, endogenous cell proliferation and oligogenesis contribute to MSC-promoted functional recovery following SCI.

  10. Preclinical Evaluation of the Immunomodulatory Properties of Cardiac Adipose Tissue Progenitor Cells Using Umbilical Cord Blood Mesenchymal Stem Cells: A Direct Comparative Study

    Directory of Open Access Journals (Sweden)

    Isaac Perea-Gil

    2015-01-01

    Full Text Available Cell-based strategies to regenerate injured myocardial tissue have emerged over the past decade, but the optimum cell type is still under scrutiny. In this context, human adult epicardial fat surrounding the heart has been characterized as a reservoir of mesenchymal-like progenitor cells (cardiac ATDPCs with potential clinical benefits. However, additional data on the possibility that these cells could trigger a deleterious immune response following implantation are needed. Thus, in the presented study, we took advantage of the well-established low immunogenicity of umbilical cord blood-derived mesenchymal stem cells (UCBMSCs to comparatively assess the immunomodulatory properties of cardiac ATDPCs in an in vitro allostimulatory assay using allogeneic mature monocyte-derived dendritic cells (MDDCs. Similar to UCBMSCs, increasing amounts of seeded cardiac ATDPCs suppressed the alloproliferation of T cells in a dose-dependent manner. Secretion of proinflammatory cytokines (IL6, TNFα, and IFNγ was also specifically modulated by the different numbers of cardiac ATDPCs cocultured. In summary, we show that cardiac ATDPCs abrogate T cell alloproliferation upon stimulation with allogeneic mature MDDCs, suggesting that they could further regulate a possible harmful immune response in vivo. Additionally, UCBMSCs can be considered as valuable tools to preclinically predict the immunogenicity of prospective regenerative cells.

  11. Combination of autologous bone marrow mesenchymal stem cells and cord blood mononuclear cells in the treatment of chronic thoracic spinal cord injury in 27 cases

    Directory of Open Access Journals (Sweden)

    Lian-zhong WANG

    2012-08-01

    Full Text Available Objective To investigate and evaluate therapeutic effects of transplantation of autologous bone marrow mesenchymal stem cells in conjunction with cord blood mononuclear cells for late thoracic spinal cord injury. Methods Data from 27 patients with late thoracic spinal cord injury who received transplantation of autologous bone marrow mesenchymal stem cells in conjunction with cord blood mononuclear cells in Neurosurgery Department of 463rd Hospital of PLA between July 2006 and July 2008 were collected and analyzed. The full treatment course consisted of 4 consecutive injections at one week apart. Indicators for evaluation followed that of the American Spiral Injury Association (ASIA Impairment Scale (AIS grade, ASIA motor and sensory scores, ASIA visual analog score, and the Ashworth score. The follow-up period was 6 months. Evaluations were made 6 weeks and 6 months after the treatment. Results Improvement from AIS A to AIS B was found in 4 patients. In one patient, improvement from AIS A to AIS C and in one patient from AIS B to AIS C was found 6 weeks after the treatment. The AIS improvement rate was 22.2%. In one patient improvement from AIS A to AIS B was found after 6 months. The overall AIS improvement rate was 25.9%. ASIA baseline motor scores of lower extremties were 0.5±1.5, 1.7±2.9, 3.1±3.6 before the treatment, 6 weeks and 6 months after the treatment, respectively, and showed a statistically significant improvement (P < 0.05. ASIA sensory scores including light touch and pinprick were 66.6±13.7 and 67.0±13.6 respectively before treatment, and they became 68.8±14.4, 68.4±14.7 and 70.5±14.4, 70.2±14.4 six weeks and six months after the treatment. The changes were statistically significant (P < 0.05; Modified Ashworth Scale scores were 1.8±1.5, 1.6±1.2,1.1±0.8 respectively at baseline, 6 weeks and 6months after the treatment, and showed a statistically significant descending trend (P < 0.05. Conclusion Transplantation of

  12. Viability of mesenchymal stem cells during electrospinning

    Directory of Open Access Journals (Sweden)

    G. Zanatta

    2012-02-01

    Full Text Available Tissue engineering is a technique by which a live tissue can be re-constructed and one of its main goals is to associate cells with biomaterials. Electrospinning is a technique that facilitates the production of nanofibers and is commonly used to develop fibrous scaffolds to be used in tissue engineering. In the present study, a different approach for cell incorporation into fibrous scaffolds was tested. Mesenchymal stem cells were extracted from the wall of the umbilical cord and mononuclear cells from umbilical cord blood. Cells were re-suspended in a 10% polyvinyl alcohol solution and subjected to electrospinning for 30 min under a voltage of 21 kV. Cell viability was assessed before and after the procedure by exclusion of dead cells using trypan blue staining. Fiber diameter was observed by scanning electron microscopy and the presence of cells within the scaffolds was analyzed by confocal laser scanning microscopy. After electrospinning, the viability of mesenchymal stem cells was reduced from 88 to 19.6% and the viability of mononuclear cells from 99 to 8.38%. The loss of viability was possibly due to the high viscosity of the polymer solution, which reduced the access to nutrients associated with electric and mechanical stress during electrospinning. These results suggest that the incorporation of cells during fiber formation by electrospinning is a viable process that needs more investigation in order to find ways to protect cells from damage.

  13. A novel bispecific immunotoxin delivered by human bone marrow-derived mesenchymal stem cells to target blood vessels and vasculogenic mimicry of malignant gliomas

    Directory of Open Access Journals (Sweden)

    Zhang Y

    2015-06-01

    Full Text Available Yonghong Zhang,1,2 Xinlin Sun,1 Min Huang,1 Yiquan Ke,1 Jihui Wang,1 Xiao Liu1 1National Key Clinic Specialty, Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 2Department of Neurosurgery, First Hospital of Lanzhou University, Lanzhou, People’s Republic of China Background: In previous years, immunotoxins have been shown to be a greatly promising therapeutic tool for brain malignancies, such as gliomas. Human mesenchymal stem cells (hMSCs exhibit tropism to tumor tissue. However, the effect of bispecific immunotoxins in malignant gliomas is still unknown. The aim of this study was to investigate the function of bispecific immunotoxins in human malignant gliomas.Materials and methods: In the present study, the bispecific immunotoxin VEGF165-ephrin A1-PE38KDEL was established using deoxyribonucleic acid shuffling and cloning techniques. The VEGF165-ephrin A1-PE38KDEL was delivered by hMSCs to mouse malignant gliomas. The effects of the bispecific immunotoxins on glioma-derived blood vessels and vasculogenic mimicry to elucidate the molecular mechanisms underlying the antitumorigenic effects of immunotoxins were examined in vivo.Results: In vitro, transfected hMSCs significantly inhibited the cell viability of gliomas cell lines U87 and U251 in a dose-dependent manner compared with untransfected hMSCs (P<0.01. In vivo, the intratumoral injection of engineered hMSCs was effective at inhibiting tumor growth in a malignant glioma tumor model.Conclusion: The bispecific immunotoxin secreted from hMSCs acts as a novel strategy for improving treatment options for malignant gliomas in the clinic. Keywords: bispecific immunotoxin, human mesenchymal stem cells, ephrin A1, VEGF165, malignant glioma

  14. Mesenchymal Stem Cell-Based Therapy

    OpenAIRE

    Mundra, Vaibhav; Gerling, Ivan C.; Mahato, Ram I.

    2012-01-01

    Mesenchymal stem cells (MSCs) are multipotent adult stem cells which have self-renewal capacity and differentiation potential into several mesenchymal lineages including bones, cartilages, adipose tissues and tendons. MSCs may repair tissue injuries and prevent immune cell activation and proliferation. Immunomodulation and secretion of growth factors by MSCs have led to realizing the true potential of MSC-based cell therapy. The use of MSCs as immunomdulators has been explored in cell/organ t...

  15. Mesenchymal stem cells in regenerative rehabilitation

    OpenAIRE

    Nurkovic, Jasmin; Dolicanin, Zana; Mustafic, Fahrudin; Mujanovic, Rifat; Memic, Mensur; Grbovic, Vesna; Skevin, Aleksandra Jurisic; Nurkovic, Selmina

    2016-01-01

    [Purpose] Regenerative medicine and rehabilitation contribute in many ways to a specific plan of care based on a patient’s medical status. The intrinsic self-renewing, multipotent, regenerative, and immunosuppressive properties of mesenchymal stem cells offer great promise in the treatment of numerous autoimmune, degenerative, and graft-versus-host diseases, as well as tissue injuries. As such, mesenchymal stem cells represent a therapeutic fortune in regenerative medicine. The aim of this re...

  16. Mesenchymal Stem Cells in Cardiology.

    Science.gov (United States)

    White, Ian A; Sanina, Cristina; Balkan, Wayne; Hare, Joshua M

    2016-01-01

    Cardiovascular disease (CVD) accounts for more deaths globally than any other single disease. There are on average 1.5 million episodes of myocardial infarction (heart attack) each year in the United States alone with roughly one-third resulting in death. There is therefore a major need for developing new and effective strategies to promote cardiac repair. Intramyocardial transplantation of mesenchymal stem cells (MSCs) has emerged as a leading contender in the pursuit of clinical intervention and therapy. MSCs are potent mediators of cardiac repair and are therefore an attractive tool in the development of preclinical and clinical trials. MSCs are capable of secreting a large array of soluble factors, which have had demonstrated effects on pathogenic cardiac remolding, fibrosis, immune activation, and cardiac stem cell proliferation within the damaged heart. MSCs are also capable of differentiation into cardiomyocytes, endothelial cells, and vascular smooth muscle cells, although the relative contribution of trilineage differentiation and paracrine effectors on cardiac repair remains the subject of active investigation. PMID:27236666

  17. Mesenchymal stem cells in regenerative rehabilitation

    Science.gov (United States)

    Nurkovic, Jasmin; Dolicanin, Zana; Mustafic, Fahrudin; Mujanovic, Rifat; Memic, Mensur; Grbovic, Vesna; Skevin, Aleksandra Jurisic; Nurkovic, Selmina

    2016-01-01

    [Purpose] Regenerative medicine and rehabilitation contribute in many ways to a specific plan of care based on a patient’s medical status. The intrinsic self-renewing, multipotent, regenerative, and immunosuppressive properties of mesenchymal stem cells offer great promise in the treatment of numerous autoimmune, degenerative, and graft-versus-host diseases, as well as tissue injuries. As such, mesenchymal stem cells represent a therapeutic fortune in regenerative medicine. The aim of this review is to discuss possibilities, limitations, and future clinical applications of mesenchymal stem cells. [Subjects and Methods] The authors have identified and discussed clinically and scientifically relevant articles from PubMed that have met the inclusion criteria. [Results] Direct treatment of muscle injuries, stroke, damaged peripheral nerves, and cartilage with mesenchymal stem cells has been demonstrated to be effective, with synergies seen between cellular and physical therapies. Over the past few years, several researchers, including us, have shown that there are certain limitations in the use of mesenchymal stem cells. Aging and spontaneous malignant transformation of mesenchymal stem cells significantly affect the functionality of these cells. [Conclusion] Definitive conclusions cannot be made by these studies because limited numbers of patients were included. Studies clarifying these results are expected in the near future. PMID:27390452

  18. Rapid and efficient reprogramming of human fetal and adult blood CD34+ cells into mesenchymal stem cells with a single factor

    Institute of Scientific and Technical Information of China (English)

    Xianmei Meng; Rui-Jun Su; David J Baylink; Amanda Neises; Jason B Kiroyan; Wayne Yuk-Wai Lee; Kimberly J Payne

    2013-01-01

    The direct conversion of skin cells into somatic stem cells has opened new therapeutic possibilities in regenerative medicine.Here,we show that human induced mesenchymal stem cells (iMSCs) can be efficiently generated from cord blood (CB)-or adult peripheral blood (PB)-CD34+ cells by direct reprogramming with a single factor,OCT4.In the presence of a GSK3 inhibitor,16% of the OCT4-transduced CD34+ cells are converted into iMSCs within 2 weeks.Efficient direct reprogramming is achieved with both episomal vector-mediated transient OCT4 expression and lentiviral vector-mediated OCT4 transduction.The iMSCs express MSC markers,resemble bone marrow (BM)-MSCs in morphology,and possess in vitro multilineage differentiation capacity,yet have a greater proliferative capacity compared with BM-MSCs.Similar to BM-MSCs,the implanted iMSCs form bone and connective tissues,and are non-tumorigenic in mice.However,BM-MSCs do not,whereas iMSCs do form muscle fibers,indicating a potential functional advantage of iMSCs.In addition,we observed that a high level of OCT4 expression is required for the initial reprogramming and the optimal iMSC self-renewal,while a reduction of OCT4 expression is required for multilineage differentiation.Our method will contribute to the generation of patient-specific iMSCs,which could have applications in regenerative medicine.This discovery may also facilitate the development of strategies for direct conversion of blood cells into other types of cells of clinical importance.

  19. Treatment of foot disease in patients with type 2 diabetes mellitus using human umbilical cord blood mesenchymal stem cells: response and correction of immunological anomalies.

    Science.gov (United States)

    Li, Xiao-Yan; Zheng, Zhao-Hui; Li, Xue-Yi; Guo, Jian; Zhang, Yan; Li, Hui; Wang, Yang-Wei; Ren, Jun; Wu, Zhen-Biao

    2013-01-01

    This study was designed to evaluate the distribution of Tregs/Th17/Th1 cells in type 2 diabetic patients with foot disease before and after human umbilical cord blood mesenchymal stem cell (hUCB-MSCs) transplantation. Fifteen diabetic patients with foot disease under insulin therapy received hUCB-MSC transplantation. The hUCB-MSCs were directly injected into the quadriceps thigh muscles in patients with foot disease (cell quantity at 2 x 10⁶ per point). Physical attributes, blood cytokines, blood glucose and insulin dosage were evaluated before treatment and 1, 2, 4, 8, and 12 weeks thereafter. The ratios of Treg/Th17, Treg/Th1, and Th17/Th1 cells were measured using flow cytometry and their correlation with various cytokines (FoxP3, IL-17, INF-γ, C-RP, TNF-α, and VEGF) was scrutinized. Levels of blood glucose and insulin dosage were significantly reduced in all 15 patients following hUCB-MSC transplantation. The ratios of CD4⁺CD25(hi)FoxP3⁺ Treg/Th17 and CD4⁺CD25(hi)FoxP3⁺ Treg/Th1 cells were significantly increased 4 weeks after transplantation (p cells remained unchanged. Serum levels of VEGF peaked at 4 weeks following transplantation. Levels of C-RP and TNF-α were significantly reduced 4 weeks after transplantation. Intriguingly, the ratios of Treg/Th17 were positively correlated with VEGF levels, and were inversely correlated with plasma IL-6 levels. Our data indicated that immune disorders are associated with the development of type 2 diabetes and its complications. Levels of blood glucose and required insulin dosage were reduced after hUCB-MSC transplantation accompanied with improved clinical profiles in diabetic patients. These data favor a role for Treg cells in the onset and progression of T2D.

  20. Mesenchymal stem cells: A new diagnostic tool?

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Mesenchymal stem cells (MSCs) are progenitor cellscapable of self-renewal that can differentiate inmultiple tissues and, under specific and standardized culture conditions, expand in vitro with little phenotypicalterations. In recent years, preclinical andclinical studies have focused on MSC analysis andunderstanding the potential use of these cells as atherapy in a wide range of pathologies, and manyapplications have been tested. Clinical trials usingMSCs have been performed (e.g. , for cardiac events,stroke, multiple sclerosis, blood diseases, auto-immunedisorders, ischemia, and articular cartilage and bonepathologies), and for many genetic diseases, thesecells are considered an important resource. Consideringof the biology of MSCs, these cells may also be usefultools for understanding the physiopathology of differentdiseases, and they can be used to develop specificbiomarkers for a broad range of diseases. In thiseditorial, we discuss the literature related to the use ofMSCs for diagnostic applications and we suggest newtechnologies to improve their employment.

  1. Delivery of the Sox9 gene promotes chondrogenic differentiation of human umbilical cord blood-derived mesenchymal stem cells in an in vitro model

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Z.H. [Department of Otolaryngology - Head and Neck Surgery, The Second Hospital, Xi' an Jiaotong University, Xi' an (China); Li, X.L. [Department of Dermatology, The Second Hospital, Xi' an Jiaotong University, Xi' an (China); He, X.J. [Department of Orthopedics, The Second Hospital, Xi' an Jiaotong University, Xi' an (China); Wu, B.J.; Xu, M. [Department of Otolaryngology - Head and Neck Surgery, The Second Hospital, Xi' an Jiaotong University, Xi' an (China); Chang, H.M. [Department of Otolaryngology - Head and Neck Surgery, Affiliated Hospital of Xi' an Medical University, Xi' an (China); Zhang, X.H. [Department of Otolaryngology - Head and Neck Surgery, The Second Hospital, Xi' an Jiaotong University, Xi' an (China); Xing, Z. [Department of Clinical Dentistry, Faculty of Dentistry, Center for Clinical Dental Research, University of Bergen, Bergen (Norway); Jing, X.H.; Kong, D.M.; Kou, X.H.; Yang, Y.Y. [Department of Otolaryngology - Head and Neck Surgery, The Second Hospital, Xi' an Jiaotong University, Xi' an (China)

    2014-03-18

    SRY-related high-mobility-group box 9 (Sox9) gene is a cartilage-specific transcription factor that plays essential roles in chondrocyte differentiation and cartilage formation. The aim of this study was to investigate the feasibility of genetic delivery of Sox9 to enhance chondrogenic differentiation of human umbilical cord blood-derived mesenchymal stem cells (hUC-MSCs). After they were isolated from human umbilical cord blood within 24 h after delivery of neonates, hUC-MSCs were untreated or transfected with a human Sox9-expressing plasmid or an empty vector. The cells were assessed for morphology and chondrogenic differentiation. The isolated cells with a fibroblast-like morphology in monolayer culture were positive for the MSC markers CD44, CD105, CD73, and CD90, but negative for the differentiation markers CD34, CD45, CD19, CD14, or major histocompatibility complex class II. Sox9 overexpression induced accumulation of sulfated proteoglycans, without altering the cellular morphology. Immunocytochemistry demonstrated that genetic delivery of Sox9 markedly enhanced the expression of aggrecan and type II collagen in hUC-MSCs compared with empty vector-transfected counterparts. Reverse transcription-polymerase chain reaction analysis further confirmed the elevation of aggrecan and type II collagen at the mRNA level in Sox9-transfected cells. Taken together, short-term Sox9 overexpression facilitates chondrogenesis of hUC-MSCs and may thus have potential implications in cartilage tissue engineering.

  2. Combination of low O(2) concentration and mesenchymal stromal cells during culture of cord blood CD34(+) cells improves the maintenance and proliferative capacity of hematopoietic stem cells.

    Science.gov (United States)

    Hammoud, Mohammad; Vlaski, Marija; Duchez, Pascale; Chevaleyre, Jean; Lafarge, Xavier; Boiron, Jean-Michel; Praloran, Vincent; Brunet De La Grange, Philippe; Ivanovic, Zoran

    2012-06-01

    The physiological approach suggests that an environment associating the mesenchymal stromal cells (MSC) and low O(2) concentration would be most favorable for the maintenance of hematopoietic stem cells (HSCs) in course of ex vivo expansion of hematopoietic grafts. To test this hypothesis, we performed a co-culture of cord blood CD34(+) cells with or without MSC in presence of cytokines for 10 days at 20%, 5%, and 1.5% O(2) and assessed the impact on total cells, CD34(+) cells, committed progenitors (colony-forming cells-CFC) and stem cells activity (pre-CFC and Scid repopulating cells-SRC). Not surprisingly, the expansion of total cells, CD34(+) cells, and CFC was higher in co-culture and at 20% O(2) compared to simple culture and low O(2) concentrations, respectively. However, co-culture at low O(2) concentrations provided CD34(+) cell and CFC amplification similar to classical culture at 20% O(2) . Interestingly, low O(2) concentrations ensured a better pre-CFC and SRC preservation/expansion in co-culture. Indeed, SRC activity in co-culture at 1.5% O(2) was higher than in freshly isolated CD34(+) cells. Interleukin-6 production by MSC at physiologically low O(2) concentrations might be one of the factors mediating this effect. Our data demonstrate that association of co-culture and low O(2) concentration not only induces sufficient expansion of committed progenitors (with respect to the classical culture), but also ensures a better maintenance/expansion of hematopoietic stem cells (HSCs), pointing to the oxygenation as a physiological regulatory factor but also as a cell engineering tool.

  3. Mesenchymal stem cells in oral reconstructive surgery

    DEFF Research Database (Denmark)

    Jakobsen, C; Sørensen, J A; Kassem, M;

    2013-01-01

    This study evaluated clinical outcomes following intraoperative use of adult mesenchymal stem cells (MSCs) in various oral reconstructive procedures. PubMed was searched without language restrictions from 2000 to 2011 using the search words stem cell, oral surgery, tissue engineering, sinus lift...

  4. Cord blood mesenchymal stem cells propel human dendritic cells to an intermediate maturation state and boost interleukin-12 production by mature dendritic cells.

    NARCIS (Netherlands)

    Berk, L.C.J. van den; Roelofs, H.; Huijs, T.; Siebers-Vermeulen, K.G.C.; Raymakers, R.A.P.; Kogler, G.; Figdor, C.G.; Torensma, R.

    2009-01-01

    Pathogen-derived entities force the tissue-resident dendritic cells (DCs) towards a mature state, followed by migration to the draining lymph node to present antigens to T cells. Bone marrow mesenchymal stem cells (MSCs) modulate the differentiation, maturation and function of DCs. In umbilical cord

  5. Electrophysiological characterisation of human umbilical cord blood-derived mesenchymal stem cells induced by olfactory ensheathing cell-conditioned medium.

    Science.gov (United States)

    Zeng, Yu; Rong, Mingqiang; Liu, Yunsheng; Liu, Jingfang; Lu, Ming; Tao, Xiaoyu; Li, Zhenyan; Chen, Xin; Yang, Kui; Li, Chuntao; Liu, Zhixiong

    2013-12-01

    Umbilical cord blood-derived marrow stromal cells (UCB-MSCs) with high proliferation capacity and immunomodulatory properties are considered to be a good candidate for cell-based therapies. But until now, little work has been focused on the differentiation of UCB-MSCs. In this work, UCB-MSCs were demonstrated to be negative for CD34 and CD45 expression but positive for CD90 and CD105 expression. The gate values of UCB-MSCs for CD90 and CD105 were 99.3 and 98.6 %, respectively. Two weeks after treatment, the percentage of neuron-like cells differentiated from UCB-MSCs was increased to 84 ± 12 % in the experimental group [treated with olfactory ensheathing cells (OECs)-conditioned medium] and they were neuron-specific enolase positive; few neuron-like cells were found in the control group (without OECs-conditioned medium). Using whole-cell recording, sodium and potassium currents were recorded in UCB-MSCs after differentiation by OECs. Thus, human UCB-MSCs could be differentiated to neural cells by secreted secretion from OECs and exhibited electrophysiological properties similar to mature neurons after 2 weeks post-induction. These results imply that OECs can be used as a new strategy for stem cell differentiation and provide an alternative neurogenesis pathway for generating sufficient numbers of neural cells for cell therapy.

  6. Research Advancements in Porcine Derived Mesenchymal Stem Cells.

    Science.gov (United States)

    Bharti, Dinesh; Shivakumar, Sharath Belame; Subbarao, Raghavendra Baregundi; Rho, Gyu-Jin

    2016-01-01

    In the present era of stem cell biology, various animals such as Mouse, Bovine, Rabbit and Porcine have been tested for the efficiency of their mesenchymal stem cells (MSCs before their actual use for stem cell based application in humans. Among them pigs have many similarities to humans in the form of organ size, physiology and their functioning, therefore they have been considered as a valuable model system for in vitro studies and preclinical assessments. Easy assessability, few ethical issues, successful MSC isolation from different origins like bone marrow, skin, umbilical cord blood, Wharton's jelly, endometrium, amniotic fluid and peripheral blood make porcine a good model for stem cell therapy. Porcine derived MSCs (pMSCs have shown greater in vitro differentiation and transdifferention potential towards mesenchymal lineages and specialized lineages such as cardiomyocytes, neurons, hepatocytes and pancreatic beta cells. Immunomodulatory and low immunogenic profiles as shown by autologous and heterologous MSCs proves them safe and appropriate models for xenotransplantation purposes. Furthermore, tissue engineered stem cell constructs can be of immense importance in relation to various osteochondral defects which are difficult to treat otherwise. Using pMSCs successful treatment of various disorders like Parkinson's disease, cardiac ischemia, hepatic failure, has been reported by many studies. Here, in this review we highlight current research findings in the area of porcine mesenchymal stem cells dealing with their isolation methods, differentiation ability, transplantation applications and their therapeutic potential towards various diseases. PMID:26201864

  7. Turning Stem Cells into Mesenchymal Tissues

    OpenAIRE

    Tiziano Barberi; Willis, Lucy M.; Socci, Nicholas D.; Lorenz Studer

    2005-01-01

    BACKGROUND: Human embryonic stem cells provide access to the earliest stages of human development and may serve as a source of specialized cells for regenerative medicine. Thus, it becomes crucial to develop protocols for the directed differentiation of embryonic stem cells into tissue-restricted precursors. METHODS AND FINDINGS: Here, we present culture conditions for the derivation of unlimited numbers of pure mesenchymal precursors from human embryonic stem cells and demonstrate multilinea...

  8. Human umbilical cord blood-derived mesenchymal stem cells improve neuropathology and cognitive impairment in an Alzheimer's disease mouse model through modulation of neuroinflammation.

    Science.gov (United States)

    Lee, Hyun Ju; Lee, Jong Kil; Lee, Hyun; Carter, Janet E; Chang, Jong Wook; Oh, Wonil; Yang, Yoon Sun; Suh, Jun-Gyo; Lee, Byoung-Hee; Jin, Hee Kyung; Bae, Jae-Sung

    2012-03-01

    Human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSC) have a potential therapeutic role in the treatment of neurological disorders, but their current clinical usage and mechanism of action has yet to be ascertained in Alzheimer's disease (AD). Here we report that hUCB-MSC transplantation into amyloid precursor protein (APP) and presenilin1 (PS1) double-transgenic mice significantly improved spatial learning and memory decline. Furthermore, amyloid-β peptide (Aβ) deposition, β-secretase 1 (BACE-1) levels, and tau hyperphosphorylation were dramatically reduced in hUCB-MSC transplanted APP/PS1 mice. Interestingly, these effects were associated with reversal of disease-associated microglial neuroinflammation, as evidenced by decreased microglia-induced proinflammatory cytokines, elevated alternatively activated microglia, and increased anti-inflammatory cytokines. These findings lead us to suggest that hUCB-MSC produced their sustained neuroprotective effect by inducing a feed-forward loop involving alternative activation of microglial neuroinflammation, thereby ameliorating disease pathophysiology and reversing the cognitive decline associated with Aβ deposition in AD mice.

  9. Comparative Analysis of Human Mesenchymal Stem Cells from Bone Marrow, Adipose Tissue, and Umbilical Cord Blood as Sources of Cell Therapy

    Directory of Open Access Journals (Sweden)

    Yoon Sun Yang

    2013-09-01

    Full Text Available Various source-derived mesenchymal stem cells (MSCs have been considered for cell therapeutics in incurable diseases. To characterize MSCs from different sources, we compared human bone marrow (BM, adipose tissue (AT, and umbilical cord blood-derived MSCs (UCB-MSCs for surface antigen expression, differentiation ability, proliferation capacity, clonality, tolerance for aging, and paracrine activity. Although MSCs from different tissues have similar levels of surface antigen expression, immunosuppressive activity, and differentiation ability, UCB-MSCs had the highest rate of cell proliferation and clonality, and significantly lower expression of p53, p21, and p16, well known markers of senescence. Since paracrine action is the main action of MSCs, we examined the anti-inflammatory activity of each MSC under lipopolysaccharide (LPS-induced inflammation. Co-culture of UCB-MSCs with LPS-treated rat alveolar macrophage, reduced expression of inflammatory cytokines including interleukin-1α (IL-1α, IL-6, and IL-8 via angiopoietin-1 (Ang-1. Using recombinant Ang-1 as potential soluble paracrine factor or its small interference RNA (siRNA, we found that Ang-1 secretion was responsible for this beneficial effect in part by preventing inflammation. Our results demonstrate that primitive UCB-MSCs have biological advantages in comparison to adult sources, making UCB-MSCs a useful model for clinical applications of cell therapy.

  10. GDF-15 secreted from human umbilical cord blood mesenchymal stem cells delivered through the cerebrospinal fluid promotes hippocampal neurogenesis and synaptic activity in an Alzheimer's disease model.

    Science.gov (United States)

    Kim, Dong Hyun; Lee, Dahm; Chang, Eun Hyuk; Kim, Ji Hyun; Hwang, Jung Won; Kim, Ju-Yeon; Kyung, Jae Won; Kim, Sung Hyun; Oh, Jeong Su; Shim, Sang Mi; Na, Duk Lyul; Oh, Wonil; Chang, Jong Wook

    2015-10-15

    Our previous studies demonstrated that transplantation of human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) into the hippocampus of a transgenic mouse model of Alzheimer's disease (AD) reduced amyloid-β (Aβ) plaques and enhanced cognitive function through paracrine action. Due to the limited life span of hUCB-MSCs after their transplantation, the extension of hUCB-MSC efficacy was essential for AD treatment. In this study, we show that repeated cisterna magna injections of hUCB-MSCs activated endogenous hippocampal neurogenesis and significantly reduced Aβ42 levels. To identify the paracrine factors released from the hUCB-MSCs that stimulated endogenous hippocampal neurogenesis in the dentate gyrus, we cocultured adult mouse neural stem cells (NSCs) with hUCB-MSCs and analyzed the cocultured media with cytokine arrays. Growth differentiation factor-15 (GDF-15) levels were significantly increased in the media. GDF-15 suppression in hUCB-MSCs with GDF-15 small interfering RNA reduced the proliferation of NSCs in cocultures. Conversely, recombinant GDF-15 treatment in both in vitro and in vivo enhanced hippocampal NSC proliferation and neuronal differentiation. Repeated administration of hUBC-MSCs markedly promoted the expression of synaptic vesicle markers, including synaptophysin, which are downregulated in patients with AD. In addition, in vitro synaptic activity through GDF-15 was promoted. Taken together, these results indicated that repeated cisterna magna administration of hUCB-MSCs enhanced endogenous adult hippocampal neurogenesis and synaptic activity through a paracrine factor of GDF-15, suggesting a possible role of hUCB-MSCs in future treatment strategies for AD.

  11. Immunoregulation and human umbilical cord blood-derived mesenchymal stem cells transplantation%脐血间充质干细胞移植与免疫调节

    Institute of Scientific and Technical Information of China (English)

    焦保良; 王景川; 高炳华; 王新生

    2012-01-01

    BACKGROUND: Research in recent years suggests that the self-renewal and multi-directional differentiation potency of human umbilical cord blood derived mesenchymal stem cells (UCB-MSCs) offer basic condition to cell transplantation treatment. Moreover, their immunoloregulation function enormously expands the direction and limits cell transplantation treatment. OBJECTIVE: To retrospectively analyze the immunoloregulation and human UCB-MSCs transplantation. METHODS: The key word "umbilical cord blood-derived mesenchymal stem cells" was used to search in Pubmed database and CNKI database from January 2008 to June 2011 in English and Chinese using computer. The preliminary screening was made through reading the title and abstract. The articles with unrelated contents, repetitive and Meta analysis were excluded. 30 papers of pertinent literature to be published in the near future or published in the authority magazine were selected to review. RESULTS AND CONCLUSION: Human UCB-MSCs have the similar self-renewal and multi-directional differentiation potency with the bone marrow derived mesenchymal stem cells. Through cell transplantation technique, human UCB-MSCs show powerful potentiality in diabetes mellitus treatment, neural degeneration disease like Alzheimer's disease and Parkinson's disease and injury of nerve retreatment. Meanwhile, human UCB-MSCs have immunoregulatory ettects, they can lower immune reaction through down regulation of T-cells. We also get some advancements on several immunological diseases such as cell therapy of graft versus host disease and lupus nephritis.%背景:近年研究显示,脐血间充质干细胞的自我更新和多向分化潜能为细胞移植治疗提供了基础条件,而其免疫调节功能也极大地拓展了细胞治疗的方向和范围. 目的:就近期脐血间充质干细胞的免疫调节和细胞移植研究进行回顾分析. 摘要进行初筛,排除研究内容与此文无关的文献、重复性研究及Meta分析,

  12. MiRNAs and piRNAs from bone marrow mesenchymal stem cell extracellular vesicles induce cell survival and inhibit cell differentiation of cord blood hematopoietic stem cells: a new insight in transplantation.

    Science.gov (United States)

    De Luca, Luciana; Trino, Stefania; Laurenzana, Ilaria; Simeon, Vittorio; Calice, Giovanni; Raimondo, Stefania; Podestà, Marina; Santodirocco, Michele; Di Mauro, Lazzaro; La Rocca, Francesco; Caivano, Antonella; Morano, Annalisa; Frassoni, Francesco; Cilloni, Daniela; Del Vecchio, Luigi; Musto, Pellegrino

    2016-02-01

    Hematopoietic stem cells (HSC), including umbilical cord blood CD34+ stem cells (UCB-CD34+), are used for the treatment of several diseases. Although different studies suggest that bone marrow mesenchymal stem cells (BM-MSC) support hematopoiesis, the exact mechanism remains unclear. Recently, extracellular vesicles (EVs) have been described as a novel avenue of cell communication, which may mediate BM-MSC effect on HSC. In this work, we studied the interaction between UCB-CD34+ cells and BM-MSC derived EVs. First, by sequencing EV derived miRNAs and piRNAs we found that EVs contain RNAs able to influence UCB-CD34+ cell fate. Accordingly, a gene expression profile of UCB-CD34+ cells treated with EVs, identified about 100 down-regulated genes among those targeted by EV-derived miRNAs and piRNAs (e.g. miR-27b/MPL, miR-21/ANXA1, miR-181/EGR2), indicating that EV content was able to modify gene expression profile of receiving cells. Moreover, we demonstrated that UCB-CD34+ cells, exposed to EVs, significantly changed different biological functions, becoming more viable and less differentiated. UCB-CD34+ gene expression profile also identified 103 up-regulated genes, most of them codifying for chemokines, cytokines and their receptors, involved in chemotaxis of different BM cells, an essential function of hematopoietic reconstitution. Finally, the exposure of UCB-CD34+ cells to EVs caused an increased expression CXCR4, paralleled by an in vivo augmented migration from peripheral blood to BM niche in NSG mice. This study demonstrates the existence of a powerful cross talk between BM-MSC and UCB-CD34+ cells, mediated by EVs, providing new insight in the biology of cord blood transplantation.

  13. Mesenchymal stem cells targeting the GVHD

    Institute of Scientific and Technical Information of China (English)

    WANG Liang; ZHAO Robert ChunHua

    2009-01-01

    Acute graft-versus-host disease (GVHD) occurs after allogeneic hematopoietic stem cell transplant and is a reaction of donor immune cells against host tissues. About 35% -5% of hematopoietic stem cell transplant (HSCT) recipients will develop acute GVHD. It is associated with considerable morbidity and mortality, particularly in patients who do not respond to primary therapy, which usually consists of glucocorticoids(steroids). Most of the available second-line and third-line treatments for sterold-refractory acute GVHD induce severe immunodeficiency, which is commonly accompanied by lethal infectious complications. Mesenchymal stem cells (MSCs) have been shown to mediate immunomodulatory effects. The recently elucidated immunosuppreseive potential of mesenchymal stem cells has set the stage for their clinical testing as cellular immunosuppressants, MSCs have been used in patients with steroid-refractory acute GVHD, and encouraging responses have been obtained in many studies. The utility of MSCs for the treatment of GVHD is becoming clear.

  14. Proliferation and apoptosis property of mesenchymal stem cells derived from peripheral blood under the culture conditions of hypoxia and serum deprivation

    Institute of Scientific and Technical Information of China (English)

    FU Wei-li; JIA Zhu-qing; WANG Wei-ping; ZHANG Ji-ying; FU Xin; DUAN Xiao-ning; LEUNG Kevin Kar Ming; ZHOU Chun-yan; YU Jia-kuo

    2011-01-01

    Background The proliferation and apoptosis property of mesenchymal stem cells derived from peripheral blood (PB-MSCs) were investigated under hypoxia and serum deprivation conditions in vitro so as to evaluate the feasibility for autologous PB-MSCs applications in cartilage repair.Methods MSCs were mobilized into peripheral blood by granulocyte colony stimulating factor (G-CSF) and AMD3100.The blood samples were collected from central ear artery of rabbits.Adhered cells were obtained by erythrocyte lysis buffer and identified as MSCs by adherence to plastic,spindle shaped morphology,specific surface markers,differentiation abilities into osteoblasts,adipocytes and chondroblasts in vitro under appropriate conditions.MSCs were cultured in four groups at different oxygen tension (20% O2 and 2% O2),with or without 10% fetal bovine serum (FBS)conditions:20% O2 and 10% FBS complete medium (normal medium,N),20% O2 and serum deprivation medium (D),2% O2 and 10% FBS complete medium (hypoxia,H),2% O2 and serum deprivation (HD).Cell proliferation was determined by CCK-8 assay.Apoptosis was detected by Annexin V/Pl and terminal deoxynucleotide transferase dUTP nick end labeling (TUNEL) staining.Results Spindle-shaped adherent cells were effectively mobilized from peripheral blood by a combined administration of G-CSF plus AMD3100.These cells showed typical fibroblast-like phenotype similar to MSCs from bone marrow (BM-MSCs),and expressed a high level of typical MSCs markers CD29 and CD44,but lacked in the expression of hematopoietic markers CD45 and major histocompatibility complex Class Ⅱ (MHC Ⅱ).They could also differentiate into osteoblasts,adipocytes and chondroblasts in vitro under appropriate conditions.No significant morphological differences were found among the four groups.It was found that hypoxia could enhance proliferation of PB-MSCs regardless of serum concentration,but serum deprivation inhibited proliferation at the later stage of culture

  15. IFNγ and B7-H1 in the immunology of mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ Mesenchymal stem cells (MSCs) are found in multiple organs in the fetus,cord blood and adult tissues [1]. However, in adults, the bone marrow is the major source of these stem cells. MSCs surround the blood vessels of bone marrow and are also in contact with the trabeculae [2].

  16. Implication of NOD1 and NOD2 for the differentiation of multipotent mesenchymal stem cells derived from human umbilical cord blood.

    Directory of Open Access Journals (Sweden)

    Hyung-Sik Kim

    Full Text Available Toll-like receptors (TLRs and Nod-like receptors (NLRs are known to trigger an innate immune response against microbial infection. Although studies suggest that activation of TLRs modulate the function of mesenchymal stem cells (MSCs, little is known about the role of NLRs on the MSC function. In this study, we investigated whether NOD1 and NOD2 regulate the functions of human umbilical cord blood-derived MSCs (hUCB-MSCs. The genes of TLR2, TLR4, NOD1, and NOD2 were expressed in hUCB-MSCs. Stimulation with each agonist (Pam(3CSK(4 for TLR2, LPS for TLR4, Tri-DAP for NOD1, and MDP for NOD2 led to IL-8 production in hUCB-MSC, suggesting the expressed receptors are functional in hUCB-MSC. CCK-8 assay revealed that none of agonist influenced proliferation of hUCB-MSCs. We next examined whether TLR and NLR agonists affect osteogenic-, adipogenic-, and chondrogenic differentiation of hUCB-MSCs. Pam(3CSK(4 and Tri-DAP strongly enhanced osteogenic differentiation and ERK phosphorylation in hUCB-MSCs, and LPS and MDP also slightly did. Treatment of U0126 (MEK1/2 inhibitor restored osteogenic differentiation enhanced by Pam(3CSK(4. Tri-DAP and MDP inhibited adipogenic differentiation of hUCB-MSCs, but Pam(3CSK(4 and LPS did not. On chondrogenic differentiation, all TLR and NLR agonists could promote chondrogenesis of hUCB-MSCs with difference in the ability. Our findings suggest that NOD1 and NOD2 as well as TLRs are involved in regulating the differentiation of MSCs.

  17. Extracellular matrix gel is necessary for in vitro cultivation of insulin producing cells from human umbilical cord blood derived mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    GAO Feng; WU De-quan; HU Yan-hua; JIN Guang-xin

    2008-01-01

    Background Pancreatic islet cell transplantation is an effective approach to treat type 1 diabetes. However, this therapy is not widely used because of the severe shortage of transplantable donor islets. This study investigated whether mesenchymal stem cells (MSCs) derived from human umbilical cord blood (UCB) could be transdifferentiated into insulin producing cells in vitro and the role of extracellular matrix (ECM) gel in this procedure.Methods Human UCB samples were collected and MSCs were isolated. MSCs specific marker proteins were analyzed by a flow cytometer. The capacities of osteoblast and adipocyte to differentiate were tested. Differentiation into islet like cell was induced by a 15-day protocol with or without ECM gel. Pancreatic characteristics were evaluated with immunofluorescence, reverse transcription polymerase chain reaction (RT-PCR) and flow cytometry. Insulin content and release in response to glucose stimulation were detected with chemiluminescent immunoassay system.Results Sixteen MSCs were isolated from 42 term human UCB units (38%). Human UCB-MSCs expressed MSCs specific markers and could be induced in vitro into osteoblast and adipocyte. Islet like cell clusters appeared about 9 days after pancreatic differentiation in the inducing system with ECM gel. The insulin positive cells accounted for (25.2±3.4)% of the induced cells. The induced cells expressed islet related genes and hormones, but were not very responsive to glucose challenge. When MSCs were induced without ECM gel, clusters formation and secretion of functional islet proteins could not be observed.Conclusions Human UCB-MSCs can differentiate into islet like cells in vitro and ECM gel plays an important role in pancreatic endocrine cell maturation and formation of three dimensional structures.

  18. Transplantation of human umbilical cord blood-derived mesenchymal stem cells or their conditioned medium prevents bone loss in ovariectomized nude mice.

    Science.gov (United States)

    An, Jee Hyun; Park, Hyojung; Song, Jung Ah; Ki, Kyung Ho; Yang, Jae-Yeon; Choi, Hyung Jin; Cho, Sun Wook; Kim, Sang Wan; Kim, Seong Yeon; Yoo, Jeong Joon; Baek, Wook-Young; Kim, Jung-Eun; Choi, Soo Jin; Oh, Wonil; Shin, Chan Soo

    2013-03-01

    Umbilical cord blood (UCB) has recently been recognized as a new source of mesenchymal stem cells (MSCs) for use in stem cell therapy. We studied the effects of systemic injection of human UCB-MSCs and their conditioned medium (CM) on ovariectomy (OVX)-induced bone loss in nude mice. Ten-week-old female nude mice were divided into six groups: Sham-operated mice treated with vehicle (Sham-Vehicle), OVX mice subjected to UCB-MSCs (OVX-MSC), or human dermal fibroblast (OVX-DFB) transplantation, OVX mice treated with UCB-MSC CM (OVX-CM), zoledronate (OVX-Zol), or vehicle (OVX-Vehicle). Although the OVX-Vehicle group exhibited significantly less bone mineral density (BMD) gain compared with the Sham-Vehicle group, transplantation of hUCB-MSCs (OVX-MSC group) has effectively prevented OVX-induced bone mass attenuation. Notably, the OVX-CM group also showed BMD preservation comparable to the OVX-MSC group. In addition, microcomputed tomography analysis demonstrated improved trabecular parameters in both the OVX-MSC and OVX-CM groups compared to the OVX-Vehicle or OVX-DFB group. Histomorphometric analysis showed increased bone formation parameters, accompanied by increased serum procollagen type-I N-telopeptide levels in OVX-MSC and OVX-CM mice. However, cell-trafficking analysis failed to demonstrate engraftment of MSCs in bone tissue 48 h after cell infusion. In vitro, hUCB-MSC CM increased alkaline phosphatase (ALP) activity in human bone marrow-derived MSCs and mRNA expression of collagen type 1, Runx2, osterix, and ALP in C3H10T1/2 cells. Furthermore, hUCB-MSC CM significantly increased survival of osteocyte-like MLO-Y4 cells, while it inhibited osteoclastic differentiation. To summarize, transplantation of hUCB-MSCs could effectively prevent OVX-mediated bone loss in nude mice, which appears to be mediated by a paracrine mechanism rather than direct engraftment of the MSCs. PMID:23215868

  19. 不同培养基培养人脐血间充质干细胞的差异★%Differences of human umbilical cord blood-derived mesenchymal stem cells cultured in different media

    Institute of Scientific and Technical Information of China (English)

    赵霞; 路希敬; 刘国强; 徐敏; 邢健; 王椋; 丁慧芳

    2013-01-01

    BACKGROUND:The umbilical cord blood-derived mesenchymal stem cel s are the hot spot in the field of stem cel s, and there is no simple, effective culture method for the passage and amplification of umbilical cord blood-derived mesenchymal stem cel s. OBJECTIVE:To explore a better culture method of human umbilical cord blood-derived mesenchymal stem cel s in vitro with different media in the separation of mesenchymal stem cel s at a confluent status. METHODS:Human umbilical cord blood was sterilely col ected from ful-term deliveries scheduled for cesarean section. They were assigned randomly into five groups:low-glucose culture medium group, high-glucose culture medium group,α-culture medium group, low-glucose culture medium+stem cel factor group, low-glucose culture medium+human marrow mesenchymal stem cel s supernatant group. Al culture medium used was Dulbecco’s modIfied Eagle’s medium. The cord blood mononuclear cel s were isolated by lymphocyte separation medium. The monocytes of cord blood were inoculated into the culture medium containing 10%fetal bovine serum at 37 ℃ incubator with 0.05 volume fraction of CO2. Quantity and formation of cel s were observed with invert microscope, and surface antigenic features were analyzed with flow cytometry. RESULTS AND CONCLUSION:(1) Comparison on number of adherent cel s and survival rate of mesenchymal stem cel s cultured for 48 hours:Number of adherent cel s in the low-glucose culture medium+human marrow mesenchymal stem cel s supernatant group, and low-glucose culture medium+stem cel factor group were significantly increased (P<0.05), while the survival rate of cel s was also increased compared with low-glucose culture medium group, high-glucose culture medium group andα-culture medium group (P<0.05). (2) Comparison on growth status of mesenchymal stem cel s at different culture time points:Cel proliferation in the low-glucose culture medium+human marrow mesenchymal stem cel s supernatant group, and low

  20. Effects of bone marrow mesenchymal stem cells on hematopoietic recovery and acute graft-versus-host disease in murine allogeneic umbilical cord blood transplantation model.

    Science.gov (United States)

    Li, Zhen Yu; Wang, Chun Qing; Lu, Guang; Pan, Xiu Ying; Xu, Kai Lin

    2014-09-01

    To investigate the effect of bone marrow mesenchymal stem cells (MSC) on hematopoietic recovery and acute graft-versus-host disease (GVHD) in a murine allogeneic umbilical cord blood transplantation (allo-UCBT) model. MSCs were obtained from C57/BL mouse bone marrow. The MSC phenotypes were identified by flow cytometry (FCM), and their ability to differentiate into osteoblasts and adipocytes was tested. Once murine allo-UCBT and aGVHD models were established, mice were divided into five groups: (1) total body irradiation (TBI) group, each mouse receiving 0.3 ml sterile saline infusion after TBI and used as control; (2) UCB group, receiving 2 × 10(6) umbilical cord blood mononuclear cells (UCB-MNC) after TBI; (3) UCB+MSC group, receiving 2 × 10(6) UCB-MNC and 2 × 10(7) MSC after TBI; (4) UCB+SC group, receiving 2 × 10(6) UCB-MNC and 2 × 10(6) spleen cells after TBI; and (5) UCB+SC+MSC group, receiving 2 × 10(6) UCB-MNC, 2 × 10(7) MSC and 2 × 10(6) spleen cells after TBI. To evaluate the engraftment of HSC, the white blood cells, red blood cells, and platelets counts were tested at different time points after transplantation, and the ratio of chimerism was identified by FCM. The acute GVHD clinical scores, recipient mice survival, and the histopathological analyses were used to evaluate the effect of MSC on acute GVHD. MSCs were successfully obtained in vitro and FCM analysis showed that these cells are highly positive for CD90.2, CD44, and negative for CD34, CD45, and they are capable to differentiate into osteoblasts and adipocytes after being induced. Compared to UCB group, the UCB+MSC mice had shorter duration of myelosuppression and higher percentage of donor-derived cells which was up to 22.87 ± 4.3 % and the white blood cell (WBC), red blood cell (RBC), and platelet counts started to increase by day 6 after transplantation. Moreover, the average survival time for UCB+MSC mice was 25.0 ± 10.55 days, while for the UCB group it was 15.5 ± 12.50 days

  1. Chinese preparation Xuesaitong promotes the mobilization of bone marrow mesenchymal stem cells in rats with cerebral infarction

    OpenAIRE

    Bao-xia Zhang; Jin-sheng Zhang; Mei-mei Du; Xiao-ya Wang; Wei Li

    2016-01-01

    After cerebral ischemia, bone marrow mesenchymal stem cells are mobilized and travel from the bone marrow through peripheral circulation to the focal point of ischemia to initiate tissue regeneration. However, the number of bone marrow mesenchymal stem cells mobilized into peripheral circulation is not enough to exert therapeutic effects, and the method by which blood circulation is promoted to remove blood stasis influences stem cell homing. The main ingredient of Xuesaitong capsules is Pana...

  2. A SAGE View of Mesenchymal Stem Cells

    OpenAIRE

    Phinney, Donald G.

    2009-01-01

    Mesenchymal stem cells (MSCs) were initially defined by their capacity to differentiate into connective tissue cell lineages and support hematopoiesis. More recently, MSCs have demonstrated some degree of therapeutic efficacy in a broad range of diseases including neurological and auto-immune disorders, stroke, diabetes, and chronic inflammatory conditions. An emerging paradigm suggests that MSCs alter the tissue microenvironment via paracrine signaling to induce angiogenesis, alter immune ce...

  3. Osteogenic potential of sorted equine mesenchymal stem cell subpopulations

    OpenAIRE

    Radtke, Catherine L.; Nino-Fong, Rodolfo; Rodriguez-Lecompte, Juan Carlos; Esparza Gonzalez, Blanca P.; Stryhn, Henrik; McDuffee, Laurie A.

    2015-01-01

    The objectives of this study were to use non-equilibrium gravitational field-flow fractionation (GrFFF), an immunotag-less method of sorting mesenchymal stem cells (MSCs), to sort equine muscle tissue-derived mesenchymal stem cells (MMSCs) and bone marrow-derived mesenchymal stem cells (BMSC) into subpopulations and to carry out assays in order to compare their osteogenic capabilities. Cells from 1 young adult horse were isolated from left semitendinosus muscle tissue and from bone marrow asp...

  4. Mesenchymal Stem Cells in Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Olcay Ergurhan Kiroglu

    2015-03-01

    Full Text Available Neurodegenerative diseases are almost incurable, debilitating, and they might be fatal, because of limited neurogenesis in nervous system, presence of inhibitory substances and inhibition of recovery due to development of glial scar. Despite many treatment strategies of neurodegenerative diseases no full cure has been achieved. The successful results for mesenchymal stem cells applications on muscles, heart and liver diseases and the application of these cells to the damaged area in particular, hypoxia, inflammation and apoptosis promise hope of using them for neurodegenerative diseases. Mesenchymal stem cells applications constitute a vascular and neuronal phenotype in Parkinsons disease, Huntingtons disease, Amyotrophic lateral sclerosis and Alzheimers disease. Stem cells release bioactive agents that lead to suppression of local immune system, reduction of free radicals, increase in angiogenesis, inhibition of fibrosis, and apoptosis. In addition, tissue stem cells, increase neuronal healing, stimulate proliferation and differentiation. These findings show that stem cells might be a hope of a cure in the treatment of neurodegenerative diseases and intensive work on this issue should continue.

  5. Notch signaling: a novel regulating differentiation mechanism of human umbilical cord blood-derived mesenchymal stem cells into insulin-producing cells in vitro

    Institute of Scientific and Technical Information of China (English)

    HU Yan-hua; WU De-quan; GAO Feng; LI Guo-dong; ZHANG Xin-chen

    2010-01-01

    Background Human umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) could be induced to differentiate into insulin producing cells (IPCs) in vitro, which have good application potential in the cell replacement treatment of type-1 diabetes. However, the mechanisms regulating this differentiation have remained largely unknown. Notch signaling is critical in cell differentiation. This study investigated whether Notch signaling could regulate the IPCs differentiation of human UCB-MSCs. Methods Using an interfering Notch signaling protocol in vitro, we studied the role of Notch signaling in differentiation of human UCB-MSCs into IPCs. In a control group the induction took place without interfering Notch signaling. Results Human UCB-MSCs expressed the genes of Notch receptors (Notch 1 and Notch 2) and ligands (Jagged 1 and Deltalike 1). Human UCB-MSCs with over-expressing Notch signaling in differentiation resulted in the down-regulation of insulin gene level, proinsulin protein expression, and insulin-positive cells percentage compared with the control group. These results showed that over-expressing Notch signaling inhibited IPCs differentiation. Conversely, when Notch signaling was attenuated by receptor inhibitor, the induced cells increased on average by 3.06-fold (n=4, P<0.001) in insulin gene level, 2.60-fold (n=3, P <0.02) in proinsulin protein expression, and 1.62-fold (n=6, P <0.001) in the rate of IPCs compared with the control group. Notch signaling inhibition significantly promoted IPCs differentiation with about 40% of human UCB-MSCs that converted to IPCs, but these IPCs were not responsive to glucose challenge very well both in vitro and in vivo. Hence, further research has to be carried out in the future. Conclusions Notch signaling may be an important mechanism regulating IPCs differentiation of human UCB-MSCs in vitro and Notch signaling inhibition may be an efficient way to increase the number of IPCs, which may resolve the shortage of

  6. Safety in mesenchymal stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Matthie Robert

    2014-01-01

    Full Text Available To date, adult stem cell therapy has some achievements in the treatment of chronic disease. However, some risks in stem cell transplantation still serve as high barriers obstructing the pulling of these therapies into clinical use. Tumorigenecity is of almost concern after it is injected into patients. However, all clinical studies indexed in PubMed showed that there were no cases of tumor after transplantation. Especially in recent study published in Cell Death and Disease, Wang et al. (2013 showed that long-term cultured mesenchymal stem cells could develop the genomic mutations but cannot undergo malignant transformation. Moreover, the study also revealed these stem cells as capable of forming tumors. This commentary assesses the data generated to date, and discusses the conclusions drawn from various studies. [Biomed Res Ther 2014; 1(1.000: 21-24

  7. Mesenchymal stem cells targeting the GVHD

    Institute of Scientific and Technical Information of China (English)

    ZHAO; Robert; ChunHua

    2009-01-01

    Acute graft-versus-host disease(GVHD) occurs after allogeneic hematopoietic stem cell transplant and is a reaction of donor immune cells against host tissues.About 35%-50% of hematopoietic stem cell transplant(HSCT) recipients will develop acute GVHD.It is associated with considerable morbidity and mortality,particularly in patients who do not respond to primary therapy,which usually consists of glucocorticoids(steroids).Most of the available second-line and third-line treatments for steroid-refractory acute GVHD induce severe immunodeficiency,which is commonly accompanied by lethal infectious complications.Mesenchymal stem cells(MSCs) have been shown to mediate immunomodulatory effects.The recently elucidated immunosuppressive potential of mesenchymal stem cells has set the stage for their clinical testing as cellular immunosuppressants,MSCs have been used in patients with steroid-refractory acute GVHD,and encouraging responses have been obtained in many studies.The utility of MSCs for the treatment of GVHD is becoming clear.

  8. Immunophenotypic characterization of ovine mesenchymal stem cells.

    Science.gov (United States)

    Khan, Mohammad R; Chandrashekran, Anil; Smith, Roger K W; Dudhia, Jayesh

    2016-05-01

    The clinical potential of multipotent mesenchymal stem cells (MSCs) has led to the essential development of analytical tools such as antibodies against membrane-bound proteins for the immunophenotypic characterization of human and rodent cells. Such tools are frequently lacking for emerging large animal models like the sheep that have greater relevance for the study of human musculoskeletal diseases. The present study identified a set of commercial nonspecies specific monoclonal antibodies for the immunophenotypic characterization of ovine MSCs. A protocol combining the less destructive proteolytic activity of accutase and EDTA was initially developed for the detachment of cells from plastic with minimum loss of cell surface antigens. A range of commercially available antibodies against human or rodent MSC antigens were then tested in single and multistain-based assays for their cross-reactivity to bone marrow derived ovine MSCs. Antibody clones cross-reactive to ovine CD73 (96.9% ± 5.9), CD90 (99.6% ± 0.3), CD105 (99.1 ± 1.5), CD271 (97.7 ± 2.0), and MHC1 (94.0% ± 7.2) antigens were identified using previously reported CD29, CD44, and CD166 as positive controls. Multistaining analysis indicated the colocalization of these antigens on MSCs. Furthermore, antibody clones identified to cross-react against white blood cell antigens exhibited either negative (CD117 (0.1% ± 0.1)) or low (MHCII (10.5% ± 16.0); CD31 (14.6% ± 4.2), and CD45 (39.4% ± 31.8)) cross-reactivity with ovine MSCs. The validation of these antibody clones to sheep MSC antigens is essential for studies utilizing this large animal model for stem cell-based therapies. © 2016 International Society for Advancement of Cytometry. PMID:27077783

  9. Preparation and Biological Characteristics of Human Umbilical Cord Blood Mesenchymal Stem Cell Conditioned Medium%人脐带血间充质干细胞条件培养基的制备及其生物学特性

    Institute of Scientific and Technical Information of China (English)

    王帅帅; 沈霞; 崔桂云; 叶新春; 万美蓉

    2013-01-01

      目的探讨人脐带血(human umbilical cord blood,hUCB)来源间充质干细胞(mesenchymal stem cells,MSCs)条件培养基(conditioned medium,CM)的制备方法,并分析MSCs的旁分泌作用。方法无菌条件下收集足月健康新生儿的脐带血,经肝素抗凝,离心后分离、培养、传代hUCB-MSCs,用倒置显微镜观察不同时期细胞的生长情况和形态特征,并用酶标仪检测细胞增殖情况,待细胞融合达80%时更换培养基,再继续培养24h后收集培养上清液即为人脐带血间充质干细胞条件培养基(hUCB-MSCs-CM)。结果经过传代后,人脐带血间充质干细胞形态趋于均一,为梭形或成纤维样、体积较大、单个核,呈漩涡样生长,且增殖能力较强,能较好的制备出其条件培养基。结论能通过此方法成功制备人脐带血间充质干细胞条件培养基,其中含有MSCs旁分泌的各种生物活性因子,可以作为一种新的治疗来源应用于临床。%  Objective Discussion on human umbilical cord blood (hUCB)-derived mesenchymal stem cells (MSCs) conditioned medium (CM) of the preparation method, and analyses the paracrine action of MSCs. Method Collection of neonatal cord blood under sterile conditions, the anticoagulant heparin, after centrifugation separation, culture, passage of hUCB-MSCs, to observe the growth and morphological characteristics of different periods of cells by inverted microscope, And with the enzyme labeled cell proliferation detection instrument for cell fusion, up to 80%when changing the culture medium, and then continue to develop after 24 hours of culture supernatant was collected for human umbilical cord blood mesenchymal stem cell conditioned medium (hUCB-MSCs-CM). Results After passage, human umbilical cord blood mesenchymal stem cells tend to be homogeneous, fusiform or fibroblast-like, large volume, mononuclear, swirl like growth, and proliferation ability, can

  10. Transplantation of mesenchymal stem cells improves type 1 diabetes mellitus.

    Science.gov (United States)

    Li, Lisha; Li, Furong; Gao, Feng; Yang, Yali; Liu, Yuanyuan; Guo, Pingping; Li, Yulin

    2016-05-01

    Bone-marrow-derived stem cells can regenerate pancreatic tissue in a model of type 1 diabetes mellitus. Mesenchymal stem cells (MSCs) form the main part of bone marrow. We show that the intrapancreatic transplantation of MSCs elevates serum insulin and C-peptide, while decreasing blood glucose. MSCs engrafted into the damaged rat pancreas become distributed into the blood vessels, acini, ducts, and islets. Renascent islets, islet-like clusters, and a small number of MSCs expressing insulin protein have been observed in the pancreas of diabetic rats. Intrapancreatic transplantation of MSCs triggers a series of molecular and cellular events, including differentiation towards the pancreas directly and the provision of a niche to start endogenous pancreatic regeneration, which ameliorates hypoinsulinemia and hyperglycemia caused by streptozotocin. These data establish the many roles of MSCs in the restoration of the function of an injured organ. PMID:26650464

  11. Adult Mesenchymal Stem Cells and Radiation Injury.

    Science.gov (United States)

    Kiang, Juliann G

    2016-08-01

    Recent understanding of the cellular and molecular signaling activations in adult mesenchymal stem cells (MSCs) has provided new insights into their potential clinical applications, particularly for tissue repair and regeneration. This review focuses on these advances, specifically in the context of self-renewal for tissue repair and recovery after radiation injury. Thus far, MSCs have been characterized extensively and shown to be useful in mitigation and therapy for acute radiation syndrome and cognitive dysfunction. Use of MSCs for treating radiation injury alone or in combination with additional trauma is foreseeable. PMID:27356065

  12. The secretome of mesenchymal stem cells: potential implications for neuroregeneration.

    Science.gov (United States)

    Paul, Gesine; Anisimov, Sergey V

    2013-12-01

    Mesenchymal stem cells have shown regenerative properties in many tissues. This feature had originally been ascribed to their multipotency and thus their ability to differentiate into tissue-specific cells. However, many researchers consider the secretome of mesenchymal stem cells the most important player in the observed reparative effects of these cells. In this review, we specifically focus on the potential neuroregenerative effect of mesenchymal stem cells, summarize several possible mechanisms of neuroregeneration and list key factors mediating this effect. We illustrate examples of mesenchymal stem cell treatment in central nervous system disorders including stroke, neurodegenerative disorders (such as Parkinson's disease, Huntington's disease, multiple system atrophy and cerebellar ataxia) and inflammatory disease (such as multiple sclerosis). We specifically highlight studies where mesenchymal stem cells have entered clinical trials.

  13. Investigation of toxicity of various nanoparticles on cord originated mesenchymal stem cells

    OpenAIRE

    Ersöz, Melike; Allahverdiyev, Adil

    2015-01-01

    OBJECTIVE: Some of the commonly used stem cell components are bone marrow, adipose tissue, cord blood and cord matrix. Isolated cord derived using various methods (cord matrix ) high proliferation potential of mesenchymal stem cells can be applied to toxicity studies. The purpose of this study is to investigate the effect of the nanoparticles such as titanium dioxide, titanium silver, silver and zinc on mesencyhmal stem cells obtained from cord matrix in order to be used in tissue engineering.

  14. Modeling sarcomagenesis using multipotent mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    Rene Rodriguez; Ruth Rubio; Pablo Menendez

    2012-01-01

    Because of their unique properties,multipotent mesenchymal stem cells (MSCs) represent one of the most promising adult stem cells being used worldwide in a wide array of clinical applications.Overall,compelling evidence supports the long-term safety of ex vivo expanded human MSCs,which do not seem to transform spontaneously.However,experimental data reveal a link between MSCs and cancer,and MSCs have been reported to inhibit or promote tumor growth depending on yet undefined conditions.Interestingly,solid evidence based on transgenic mice and genetic intervention of MSCs has placed these cells as the most likely cell of origin for certain sarcomas.This research area is being increasingly explored to develop accurate MSC-based models of sarcomagenesis,which will be undoubtedly valuable in providing a better understanding about the etiology and pathogenesis of mesenchymal cancer,eventually leading to the development of more specific therapies directed against the sarcoma-initiating cell.Unfortunately,still little is known about the mechanisms underlying MSC transformation and further studies are required to develop bona fide sarcoma models based on human MSCs.Here,we comprehensively review the existing MSC-based models of sarcoma and discuss the most common mechanisms leading to tumoral transformation of MSCs and sarcomagenesis.

  15. Mesenchymal stem cells: cell biology and potential use in therapy

    DEFF Research Database (Denmark)

    Kassem, Moustapha; Kristiansen, Malthe; Abdallah, Basem M

    2004-01-01

    Mesenchymal stem cells are clonogenic, non-haematopoietic stem cells present in the bone marrow and are able to differentiate into multiple mesoderm-type cell lineages e.g. osteoblasts, chondrocytes, endothelial-cells and also non-mesoderm-type lineages e.g. neuronal-like cells. Several methods...... are currently available for isolation of the mesenchymal stem cells based on their physical and immunological characteristics. Because of the ease of their isolation and their extensive differentiation potential, mesenchymal stem cells are among the first stem cell types to be introduced in the clinic. Recent...... studies have demonstrated that the life span of mesenchymal stem cells in vitro can be extended by increasing the levels of telomerase expression in the cells and thus allowing culture of large number of cells needed for therapy. In addition, it has been shown that it is possible to culture the cells...

  16. Isolation and characterization of equine amnion mesenchymal stem cells

    OpenAIRE

    Coli, Alessandra; Nocchi, Francesca; Lamanna, Roberta; Iorio, Mariacarla; Lapi, Simone; Urciuoli, Patrizia; Scatena, Fabrizio; Giannessi, Elisabetta; Stornelli, Maria Rita; Passeri, Simona

    2011-01-01

    The amnion is a particular tissue whose cells show features of multipotent stem cells proposed for use in cellular therapy and regenerative medicine. From equine amnion collected after the foal birth we have isolated MSCs (mesenchymal stem cells), namely EAMSCs (equine amnion mesenchymal stem cells), from the mesoblastic layer. The cells were grown in α-MEM (α-modified minimum essential medium) and the effect of EGF (epidermal growth factor) supplementation was evaluated. To assess the growth...

  17. Mesenchymal stem cells and chronic renal artery stenosis.

    Science.gov (United States)

    Oliveira-Sales, Elizabeth B; Boim, Mirian A

    2016-01-01

    Renal artery stenosis is the main cause of renovascular hypertension and results in ischemic nephropathy characterized by inflammation, oxidative stress, microvascular loss, and fibrosis with consequent functional failure. Considering the limited number of strategies that effectively control renovascular hypertension and restore renal function, we propose that cell therapy may be a promising option based on the regenerative and immunosuppressive properties of stem cells. This review addresses the effects of mesenchymal stem cells (MSC) in an experimental animal model of renovascular hypertension known as 2 kidney-1 clip (2K-1C). Significant benefits of MSC treatment have been observed on blood pressure and renal structure of the stenotic kidney. The mechanisms involved are discussed.

  18. Ex vivo expansion of hematopoietic stem- and progenitor cells from cord blood in coculture with mesenchymal stroma cells from amnion, chorion, Wharton's jelly, amniotic fluid, cord blood, and bone marrow.

    Science.gov (United States)

    Klein, Caroline; Strobel, Julian; Zingsem, Jürgen; Richter, Richard H; Goecke, Tamme W; Beckmann, Matthias W; Eckstein, Reinhold; Weisbach, Volker

    2013-12-01

    In most cases, the amount of hematopoietic stem and progenitor cells (HSPCs) in a single cord blood (CB) unit is not sufficient for allogenic transplantation of adults. Therefore, two CB units are usually required. The ex vivo expansion of HSPCs from CB in coculture with mesenchymal stroma cells (MSCs) might be an alternative. It was investigated, whether bone marrow-derived MSCs, which have to be obtained in an invasive procedure, introduce a further donor and increases the risk of transmissible infectious diseases for the patient can be replaced by MSCs from amnion, chorion, Wharton's jelly, amniotic fluid, and CB, which can be isolated from placental tissue which is readily available when CB is sampled. In a two-step ex vivo coculture mononuclear cells from cryopreserved CB were cultured with different MSC-feederlayers in a medium supplemented with cytokines (stem cell factor, thrombopoietin [TPO], and granulocyte colony-stimulating factor). Expansion rates were analyzed as well, by long-term culture-initiating cell (LTC-IC) and colony-forming unit (CFU) assays, as by measuring CD34(+)- and CD45(+)-cells. Due to the comparably low number of 5×10(2) to 1×10(4) CD34(+)-cells per cm(2) MSC-monolayer, we observed comparably high expansion rates from 80 to 391,000 for CFU, 70 to 313,000 for CD34(+)-, and 200 to 352,000 for CD45(+)-cells. Expansion of LTC-IC was partly observed. Compared to the literature, we found a better expansion rate of CD34(+)-cells with MSCs from all different sources. This is probably due to the comparably low number of 5×10(2) to 1×10 CD34(+)-cells per cm(2) MSC-monolayer we used. Comparably, high expansion rates were observed from 80 to 391,000 for CFUs, 70 to 313,000 for CD34(+)-, and 200 to 352,000 for CD45(+)-cells. However, the expansion of CD34(+)-cells was significantly more effective with MSCs from bone marrow compared to MSCs from amnion, chorion, and Wharton's jelly. The comparison of MSCs from bone marrow with MSCs from CB and

  19. Mesenchymal stem cell therapy for nonmusculoskeletal diseases: emerging applications.

    Science.gov (United States)

    Kuo, Tom K; Ho, Jennifer H; Lee, Oscar K

    2009-01-01

    Mesenchymal stem cells are stem/progenitor cells originated from the mesoderm and can different into multiple cell types of the musculoskeletal system. The vast differentiation potential and the relative ease for culture expansion have established mesenchymal stem cells as the building blocks in cell therapy and tissue engineering applications for a variety of musculoskeletal diseases, including repair of fractures and bone defects, cartilage regeneration, treatment of osteonecrosis of the femoral head, and correction of genetic diseases such as osteogenesis imperfect. However, research in the past decade has revealed differentiation potentials of mesenchymal stem cells beyond lineages of the mesoderm, suggesting broader applications than originally perceived. In this article, we review the recent developments in mesenchymal stem cell research with respect to their emerging properties and applications in nonmusculoskeletal diseases. PMID:19523328

  20. Mechanical regulation of mesenchymal stem cell differentiation.

    Science.gov (United States)

    Steward, Andrew J; Kelly, Daniel J

    2015-12-01

    Biophysical cues play a key role in directing the lineage commitment of mesenchymal stem cells or multipotent stromal cells (MSCs), but the mechanotransductive mechanisms at play are still not fully understood. This review article first describes the roles of both substrate mechanics (e.g. stiffness and topography) and extrinsic mechanical cues (e.g. fluid flow, compression, hydrostatic pressure, tension) on the differentiation of MSCs. A specific focus is placed on the role of such factors in regulating the osteogenic, chondrogenic, myogenic and adipogenic differentiation of MSCs. Next, the article focuses on the cellular components, specifically integrins, ion channels, focal adhesions and the cytoskeleton, hypothesized to be involved in MSC mechanotransduction. This review aims to illustrate the strides that have been made in elucidating how MSCs sense and respond to their mechanical environment, and also to identify areas where further research is needed.

  1. Mesenchymal Stem Cells: Angels or Demons?

    Directory of Open Access Journals (Sweden)

    Rebecca S. Y. Wong

    2011-01-01

    Full Text Available Mesenchymal stem cells (MSCs have been used in cell-based therapy in various disease conditions such as graft-versus-host and heart diseases, osteogenesis imperfecta, and spinal cord injuries, and the results have been encouraging. However, as MSC therapy gains popularity among practitioners and researchers, there have been reports on the adverse effects of MSCs especially in the context of tumour modulation and malignant transformation. These cells have been found to enhance tumour growth and metastasis in some studies and have been related to anticancer-drug resistance in other instances. In addition, various studies have also reported spontaneous malignant transformation of MSCs. The mechanism of the modulatory behaviour and the tumorigenic potential of MSCs, warrant urgent exploration, and the use of MSCs in patients with cancer awaits further evaluation. However, if MSCs truly play a role in tumour modulation, they can also be potential targets of cancer treatment.

  2. Application of Nanoscaffolds in Mesenchymal Stem Cell-Based Therapy

    OpenAIRE

    Ghoraishizadeh, Saman; Ghorishizadeh, Afsoon; Ghoraishizadeh, Peyman; Daneshvar, Nasibeh; Boroojerdi, Mohadese Hashem

    2014-01-01

    Regenerative medicine is an alternative solution for organ transplantation. Stem cells and nanoscaffolds are two essential components in regenerative medicine. Mesenchymal stem cells (MSCs) are considered as primary adult stem cells with high proliferation capacity, wide differentiation potential, and immunosuppression properties which make them unique for regenerative medicine and cell therapy. Scaffolds are engineered nanofibers that provide suitable microenvironment for cell signalling whi...

  3. 2012478 Biological characteristics of bone marrow mesenchymal stem cells and JAK2 mutation in myeloproliferative neoplasms

    Institute of Scientific and Technical Information of China (English)

    田竑

    2012-01-01

    Objective To study the biological characteristics of bone marrow mesenchymal stem cells(BMSCs) and detect JAK2 mutation in BMSCs from myeloproliferative neoplasms(MPN) patients. Methods JAK2 V617F mutation and exon 12 mutation in 70 MPN patients’ blood or bone marrow samples were detected.

  4. Labeling and Imaging Mesenchymal Stem Cells with Quantum Dots

    Science.gov (United States)

    Mesenchymal stem cells (MSCs) are multipotent cells with the potential to differentiate into bone, cartilage, adipose and muscle cells. Adult derived MSCs are being actively investigated because of their potential to be utilized for therapeutic cell-based transplantation. Methods...

  5. Transplantation of autologous bone marrow-derived mesenchymal stem cells for traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    Jindou Jiang; Xingyao Bu; Meng Liu; Peixun Cheng

    2012-01-01

    Results from the present study demonstrated that transplantation of autologous bone marrow-derived mesenchymal stem cells into the lesion site in rat brain significantly ameliorated brain tissue pathological changes and brain edema, attenuated glial cell proliferation, and increased brain-derived neurotrophic factor expression. In addition, the number of cells double-labeled for 5-bromodeoxyuridine/glial fibrillary acidic protein and cells expressing nestin increased. Finally, blood vessels were newly generated, and the rats exhibited improved motor and cognitive functions. These results suggested that transplantation of autologous bone marrow-derived mesenchymal stem cells promoted brain remodeling and improved neurological functions following traumatic brain injury.

  6. Human umbilical cord blood mesenchymal stem cell transplantation for the treatment of hepatic cirrhosis in rats%人脐血间充质干细胞移植治疗大鼠肝硬化模型*

    Institute of Scientific and Technical Information of China (English)

    詹三华; 张鲁峰; 姚卫民; 杨明辉; 宋晓玲; 焦红亮

    2013-01-01

    BACKGROUND:Studies have shown that cord blood mesenchymal stem cel s can be induced into hepatocyte-like cel s in a specific environment, and the transplanted cel s can exercise the normal function of liver cel s. OBJECTIVE:To establish the rat model of hepatic cirrhosis induced with carbon tetrachloride, and to observe the therapeutic effect of umbilical cord blood mesenchymal stem cel transplantation on a rat model of hepatic cirrhosis. METHODS:Hepatic cirrhosis models were established through carbon tetrachloride inducing, then 20 rat models of hepatic cirrhosis were randomly divided into two groups. The control group was injected with 0.5 mL normal saline via the tail vein;the treatment group was injected with chloromethyl benzamide labeled umbilical cord blood mesenchymal stem cel suspension, and the number of the stem cel s was 1×106. After 2 weeks, al animals were sacrificed. Liver tissues were obtained for the histological observation and the venous blood was col ected to detected the liver function indicators. RESULTS AND CONCLUSION:The liver cel s of the hepatic cirrhosis models were loose and cloudy swel ing, part of the cel s were degenerated and necrosis, the structure of the hepatic lobule was vague, and several pseudolobules with different sizes were formed which meet the diagnostic criteria of hepatic cirrhosis. Compared with the control group, the level of serum albumin in the treatment group was significantly increased (P<0.05), while the levels of bilirubin and transaminases in the treatment group were significantly decreased (P<0.05). There were lots of red chloromethyl benzamide labeled umbilical cord blood mesenchymal stem cel s in the liver tissue of the treatment group. Human umbilical cord blood mesenchymal stem cel s can effectively improve the physiological function of hepatic cirrhosis through tail vein.%  背景:研究表明,脐血间充质干细胞可在特定环境下诱导为肝样细胞,移植入体内能行使正常肝

  7. Cryopreservation of Adipose-Derived Mesenchymal Stem Cells

    OpenAIRE

    Miyagi-Shiohira, Chika; Kurima, Kiyoto; Kobayashi, Naoya; Saitoh, Issei; Watanabe, Masami; Noguchi, Yasufumi; Matsushita,Masayuki; Noguchi,Hirofumi

    2015-01-01

    Mesenchymal stem cells (MSCs) have the potential to differentiate into cells of mesodermal origin such as osteoblasts, adipocytes, myocytes, and chondrocytes. They possess an immunosuppressive effect, which makes them a viable cell population for the cell-based therapy of treatment-resistant immune diseases. Adipose-derived mesenchymal stem cells (ASCs) have been demonstrated to have the ability to acquire the properties of subcutaneous adipose tissue particularly easily, and cryopreservation...

  8. Mesenchymal stem cell therapy for heart disease.

    Science.gov (United States)

    Gnecchi, Massimiliano; Danieli, Patrizia; Cervio, Elisabetta

    2012-08-19

    Mesenchymal stem cells (MSC) are adult stem cells with capacity for self-renewal and multi-lineage differentiation. Initially described in the bone marrow, MSC are also present in other organs and tissues. From a therapeutic perspective, because of their easy preparation and immunologic privilege, MSC are emerging as an extremely promising therapeutic agent for tissue regeneration and repair. Studies in animal models of myocardial infarction have demonstrated the ability of transplanted MSC to engraft and differentiate into cardiomyocytes and vascular cells. Most importantly, engrafted MSC secrete a wide array of soluble factors that mediate beneficial paracrine effects and may greatly contribute to cardiac repair. Together, these properties can be harnessed to both prevent and reverse remodeling in the ischemically injured ventricle. In proof-of-concept and phase I clinical trials, MSC therapy improved left ventricular function, induced reverse remodeling, and decreased scar size. In this review we will focus on the current understanding of MSC biology and MSC mechanism of action in cardiac repair. PMID:22521741

  9. Mesenchymal stem cells for clinical application.

    Science.gov (United States)

    Sensebé, L; Krampera, M; Schrezenmeier, H; Bourin, P; Giordano, R

    2010-02-01

    Mesenchymal Stem Cells/Multipotent Marrow Stromal Cells (MSC) are multipotent adult stem cells present in all tissues, as part of the perivascular population. As multipotent cells, MSCs can differentiate into different tissues originating from mesoderm ranging from bone and cartilage, to cardiac muscle. Conflicting data show that MSCs could be pluripotent and able to differentiate into tissues and cells of non-mesodermic origin as neurons or epithelial cells. Moreover, MSCs exhibit non-HLA restricted immunosuppressive properties. This wide range of properties leads to increasing uses of MSC for immunomodulation or tissue repair. Based on their immunosuppressive properties MSC are used particularly in the treatment of graft versus host disease, For tissue repair, MSCs can work by different ways from cell replacement to paracrine effects through the release of cytokines and to regulation of immune/inflammatory responses. In regenerative medicine, trials are in progress or planed for healing/repair of different tissue or organs as bone, cartilage, vessels, myocardium, or epithelia. Although it has been demonstrated that ex-vivo expansion processes using fetal bovine serum, recombinant growth factors (e.g. FGF2) or platelet lysate are feasible, definitive standards to produce clinical-grade MSC are still lacking. MSCs have to be produced according GMP and regulation constraints. For answering to the numerous challenges in this fast developing field of biology and medicine, integrative networks linking together research teams, cell therapy laboratories and clinical teams are needed.

  10. CD271 as a marker to identify mesenchymal stem cells fromdiverse sources before culture

    Institute of Scientific and Technical Information of China (English)

    María álvarez-Viejo; Yolanda Menéndez-Menéndez; Jesús Otero-Hernández

    2015-01-01

    Mesenchymal stem cells, due to their characteristicsare ideal candidates for cellular therapy. Currently,in culture these cells are defined by their adherenceto plastic, specific surface antigen expression andmultipotent differentiation potential. However, thein vivo identification of mesenchymal stem cells,before culture, is not so well established. Pre-cultureidentification markers would ensure higher purity thanthat obtained with selection based on adherence toplastic. Up until now, CD271 has been described asthe most specific marker for the characterization andpurification of human bone marrow mesenchymal stemcells. This marker has been shown to be specificallyexpressed by these cells. Thus, CD271 has beenproposed as a versatile marker to selectively isolatedand expand multipotent mesenchymal stem cells withboth immunosuppressive and lymphohematopoieticengraftment-promoting properties. This reviewfocuses on this marker, specifically on identificationof mesenchymal stem cells from different tissues.Literature revision suggests that CD271 should not bedefined as a universal marker to identify mesenchymalstem cells before culture from different sources. In thecase of bone marrow or adipose tissue, CD271 couldbe considered a quite suitable marker; however thismarker seems to be inadequate for the isolation ofmesenchymal stem cells from other tissues such asumbilical cord blood or wharton's jelly among others.

  11. Mesenchymal Stem Cell-Mediated Functional Tooth Regeneration in Swine

    OpenAIRE

    Wataru Sonoyama; Yi Liu; Dianji Fang; Takayoshi Yamaza; Byoung-Moo Seo; Chunmei Zhang; He Liu; Stan Gronthos; Cun-Yu Wang; Songlin Wang; Songtao Shi

    2006-01-01

    Mesenchymal stem cell-mediated tissue regeneration is a promising approach for regenerative medicine for a wide range of applications. Here we report a new population of stem cells isolated from the root apical papilla of human teeth (SCAP, stem cells from apical papilla). Using a minipig model, we transplanted both human SCAP and periodontal ligament stem cells (PDLSCs) to generate a root/periodontal complex capable of supporting a porcelain crown, resulting in normal tooth function. This wo...

  12. Telomere stability and telomerase in mesenchymal stem cells

    DEFF Research Database (Denmark)

    Serakinci, Nedime; Graakjaer, Jesper; Kølvrå, Steen

    2008-01-01

    Telomeres are repetitive genetic material that cap and thereby protect the ends of chromosomes. Each time a cell divides, telomeres get shorter. Telomere length is mainly maintained by telomerase. This enzyme is present in high concentrations in the embryonic stem cells and in fast growing...... embryonic cells, and declines with age. It is still unclear to what extent there is telomerase in adult stem cells, but since these are the founder cells of cells of all the tissues in the body, understanding the telomere dynamics and expression of telomerase in adult stem cells is very important....... In the present communication we focus on telomere expression and telomere length in stem cells, with a special focus on mesenchymal stem cells. We consider different mechanisms by which stem cells can maintain telomeres and also focus on the dynamics of telomere length in mesenchymal stem cells, both the overall...

  13. Mesenchymal stem cell-based therapy for type 1 diabetes.

    Science.gov (United States)

    Wu, Hao; Mahato, Ram I

    2014-03-01

    Diabetes has increasingly become a worldwide health problem, causing huge burden on healthcare system and economy. Type 1 diabetes (T1D), traditionally termed "juvenile diabetes" because of an early onset age, is affecting 5-10% of total diabetic population. Insulin injection, the predominant treatment for T1D, is effective to ameliorate the hyperglycemia but incompetent to relieve the autoimmunity and to regenerate lost islets. Islet transplantation, an experimental treatment for T1D, also suffers from limited supply of human islets and poor immunosuppression. The recent progress in regenerative medicine, especially stem cell therapy, has suggested several novel and potential cures for T1D. Mesenchymal stem cell (MSC) based cell therapy is among one of them. MSCs are a type of adult stem cells residing in bone marrow, adipose tissue, umbilical cord blood, and many other tissues. MSCs, with self-renewal potential and transdifferentiation capability, can be expanded in vitro and directed to various cell lineages with relatively less efforts. MSCs have well-characterized hypoimmunogenicity and immunomodulatory effect. All these features make MSCs attractive for treating T1D. Here, we review the properties of MSCs and some of the recent progress using MSCs as a new therapeutic in the treatment of T1D. We also discuss the strength and limitations of using MSC therapy in human trials.

  14. Mesenchymal stem cell therapy and lung diseases.

    Science.gov (United States)

    Akram, Khondoker M; Samad, Sohel; Spiteri, Monica; Forsyth, Nicholas R

    2013-01-01

    Mesenchymal stem cells (MSCs), a distinct population of adult stem cells, have amassed significant interest from both medical and scientific communities. An inherent multipotent differentiation potential offers a cell therapy option for various diseases, including those of the musculoskeletal, neuronal, cardiovascular and pulmonary systems. MSCs also secrete an array of paracrine factors implicated in the mitigation of pathological conditions through anti-inflammatory, anti-apoptotic and immunomodulatory mechanisms. The safety and efficacy of MSCs in human application have been confirmed through small- and large-scale clinical trials. However, achieving the optimal clinical benefit from MSC-mediated regenerative therapy approaches is entirely dependent upon adequate understanding of their healing/regeneration mechanisms and selection of appropriate clinical conditions. MSC-mediated acute alveolar injury repair. A cartoon depiction of an injured alveolus with associated inflammation and AEC apoptosis. Proposed routes of MSC delivery into injured alveoli could be by either intratracheal or intravenous routes, for instance. Following delivery a proposed mechanism of MSC action is to inhibit/reduce alveolar inflammation by abrogation of IL-1_-depenedent Tlymphocyte proliferation and suppression of TNF-_ secretion via macrophage activation following on from stimulation by MSC-secreted IL-1 receptor antagonist (IL-1RN). The inflammatory environment also stimulates MSC to secrete prostaglandin-E2 (PGE2) which can stimulate activated macrophages to secrete the anti-inflammatory cytokine IL-10. Inhibition of AEC apoptosis following injury can also be promoted via MSC stimulated up-regulation of the anti-apoptotic Bcl-2 gene. MSC-secreted KGF can stimulate AECII proliferation and migration propagating alveolar epithelial restitution. Alveolar structural engraftment of MSC is a rare event. PMID:22772131

  15. Therapeutic potential of mesenchymal stem cell-derived microvesicles.

    Science.gov (United States)

    Biancone, Luigi; Bruno, Stefania; Deregibus, Maria Chiara; Tetta, Ciro; Camussi, Giovanni

    2012-08-01

    Several studies have demonstrated that mesenchymal stem cells have the capacity to reverse acute and chronic kidney injury in different experimental models by paracrine mechanisms. This paracrine action may be accounted for, at least in part, by microvesicles (MVs) released from mesenchymal stem cells, resulting in a horizontal transfer of mRNA, microRNA and proteins. MVs, released as exosomes from the endosomal compartment, or as shedding vesicles from the cell surface, are now recognized as being an integral component of the intercellular microenvironment. By acting as vehicles for information transfer, MVs play a pivotal role in cell-to-cell communication. This exchange of information between the injured cells and stem cells has the potential to be bi-directional. Thus, MVs may either transfer transcripts from injured cells to stem cells, resulting in reprogramming of their phenotype to acquire specific features of the tissue, or conversely, transcripts could be transferred from stem cells to injured cells, restraining tissue injury and inducing cell cycle re-entry of resident cells, leading to tissue self-repair. Upon administration with a therapeutic regimen, MVs mimic the effect of mesenchymal stem cells in various experimental models by inhibiting apoptosis and stimulating cell proliferation. In this review, we discuss whether MVs released from mesenchymal stem cells have the potential to be exploited in novel therapeutic approaches in regenerative medicine to repair damaged tissues, as an alternative to stem cell-based therapy. PMID:22851627

  16. Viscoelastic behaviour of human mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Leong Kam W

    2008-07-01

    Full Text Available Abstract Background In this study, we have investigated the viscoelastic behaviour of individual human adult bone marrow-derived mesenchymal stem cells (hMSCs and the role of F-actin filaments in maintaining these properties, using micropipette aspiration technique together with a standard linear viscoelastic solid model. Results Under a room temperature of 20°C, the instantaneous and equilibrium Young's modulus, E0 and E∞, were found to be 886 ± 289 Pa and 372 ± 125 Pa, respectively, while the apparent viscosity, μ, was 2710 ± 1630 Pa·s. hMSCs treated with cytochalasin D up to 20 μM at 20°C registered significant drop of up to 84% in stiffness and increase of up to 255% in viscosity. At the physiological temperature of 37°C, E0 and E∞ have decreased by 42–66% whereas μ has increased by 95%, compared to the control. Majority of the hMSCs behave as viscoelastic solid with a rapid initial increase in aspiration length and it gradually levels out with time. Three other types of non-typical viscoelastic behavior of hMSCs were also seen. Conclusion hMSCs behave as viscoelastic solid. Its viscoelstic behaviour are dependent on the structural integrity of the F-actin filaments and temperature.

  17. Mesenchymal stem cells and inflammatory lung diseases.

    Science.gov (United States)

    Iyer, S S; Co, C; Rojas, M

    2009-03-01

    Mesenchymal stem cells (MSCs) are emerging as a therapeutic modality in various inflammatory disease states. A number of ongoing randomized Phase I/II clinical trials are evaluating the effects of allogeneic MSC infusion in patients with multiple sclerosis, graft-versus-host disease, Crohn's disease, and severe chronic myocardial ischemia. MSCs are also being considered as a potential therapy in patients with inflammatory lung diseases. Several studies, including our own, have demonstrated compelling benefits from the administration of MSCs in animal models of lung injury. These studies are leading to growing interest in the therapeutic use of MSCs in inflammatory lung diseases. In this Review, we describe how the immunoregulatory effects of MSCs can confer substantial protection in the setting of lung diseases such as acute lung injury, chronic obstructive pulmonary disease, asthma, and pulmonary hypertension. We also address potential pitfalls related to the therapeutic use of MSCs in fibrotic lung diseases such as idiopathic pulmonary fibrosis. In addition, we identify emerging areas for MSC- based therapies in modulating oxidative stress and in attenuating inflammation in alcohol-related acute lung injury. PMID:19352305

  18. Mesenchymal stem cells: from experiment to clinic

    Directory of Open Access Journals (Sweden)

    Otto William R

    2011-09-01

    Full Text Available Abstract There is currently much interest in adult mesenchymal stem cells (MSCs and their ability to differentiate into other cell types, and to partake in the anatomy and physiology of remote organs. It is now clear these cells may be purified from several organs in the body besides bone marrow. MSCs take part in wound healing by contributing to myofibroblast and possibly fibroblast populations, and may be involved in epithelial tissue regeneration in certain organs, although this remains more controversial. In this review, we examine the ability of MSCs to modulate liver, kidney, heart and intestinal repair, and we update their opposing qualities of being less immunogenic and therefore tolerated in a transplant situation, yet being able to contribute to xenograft models of human tumour formation in other contexts. However, such observations have not been replicated in the clinic. Recent studies showing the clinical safety of MSC in several pathologies are discussed. The possible opposing powers of MSC need careful understanding and control if their clinical potential is to be realised with long-term safety for patients.

  19. A Comparison of Culture Characteristics between Human Amniotic Mesenchymal Stem Cells and Dental Stem Cells

    OpenAIRE

    Yusoff, Nurul Hidayat; Alshehadat, Saaid Ayesh; Azlina, Ahmad; Kannan, Thirumulu Ponnuraj; Hamid, Suzina Sheikh Abdul

    2015-01-01

    In the past decade, the field of stem cell biology is of major interest among researchers due to its broad therapeutic potential. Stem cells are a class of undifferentiated cells that are able to differentiate into specialised cell types. Stem cells can be classified into two main types: adult stem cells (adult tissues) and embryonic stem cells (embryos formed during the blastocyst phase of embryological development). This review will discuss two types of adult mesenchymal stem cells, dental ...

  20. [Advances in the mechanism of mesenchymal stem cells in promoting wound healing].

    Science.gov (United States)

    Zhu, Wenjing; Sun, Haobo; Lyu, Guozhong

    2015-12-01

    Mesenchymal stem cells possess the ability of self-renewal and multiple differentiation potential, thus exert immunomodulatory effect during tissue repair. Mesenchymal stem cells can stimulate angiogenesis and promote tissue repair through transdifferentiation and secreting a variety of growth factors and cytokines. This review outlines the advances in the mechanism of mesenchymal stem cells in promoting wound healing, including alleviation of inflammatory response, induction of angiogenesis, and promotion of migration of mesenchymal stem cells to the site of tissue injury.

  1. Mesenchymal stem cell-mediated functional tooth regeneration in swine.

    Directory of Open Access Journals (Sweden)

    Wataru Sonoyama

    Full Text Available Mesenchymal stem cell-mediated tissue regeneration is a promising approach for regenerative medicine for a wide range of applications. Here we report a new population of stem cells isolated from the root apical papilla of human teeth (SCAP, stem cells from apical papilla. Using a minipig model, we transplanted both human SCAP and periodontal ligament stem cells (PDLSCs to generate a root/periodontal complex capable of supporting a porcelain crown, resulting in normal tooth function. This work integrates a stem cell-mediated tissue regeneration strategy, engineered materials for structure, and current dental crown technologies. This hybridized tissue engineering approach led to recovery of tooth strength and appearance.

  2. In vivo differentiation of human amniotic epithelial cells into cardiomyocyte-like cells and cell transplantation effect on myocardial infarction in rats: comparison with cord blood and adipose tissue-derived mesenchymal stem cells.

    Science.gov (United States)

    Fang, Cheng-Hu; Jin, Jiyong; Joe, Jun-Ho; Song, Yi-Sun; So, Byung-Im; Lim, Sang Moo; Cheon, Gi Jeong; Woo, Sang-Keun; Ra, Jeong-Chan; Lee, Young-Yiul; Kim, Kyung-Soo

    2012-01-01

    Human amniotic epithelial cells (h-AECs), which have various merits as a cell source for cell therapy, are known to differentiate into cardiomyocytes in vitro. However, the ability of h-AECs to differentiate into cardiomyocytes in vivo and their cell transplantation effects on myocardial infarction are still unknown. In this study, we assessed whether h-AECs could differentiate into cardiomyocytes in vivo and whether h-AECs transplantation can decrease infarct size and improve cardiac function, in comparison to transplantation of cord blood-derived mesenchymal stem cells (MSCs) or adipose tissue-derived MSCs. For our study, we injected h-AECs, cord blood-derived MSCs, adipose tissue-derived MSCs, and saline into areas of myocardial infarction in athymic nude rats. After 4 weeks, 3% of the surviving h-AECs expressed myosin heavy chain, a marker specific to the myocardium. Compared with the saline group, all cell-implanted groups showed a higher ejection fraction, lower infarct area by positron emission tomography and histology, and more abundant myocardial gene and protein expression in the infarct area. We showed that h-AECs can differentiate into cardiomyocyte-like cells, decrease infarct size, and improve cardiac function in vivo. The beneficial effects of h-AECs were comparable to those of cord blood and adipose tissue-derived MSCs. These results support the need for further studies of h-AECs as a cell source for myocardial regeneration due to their plentiful availability, low immunity, and lack of ethical issues related to their use.

  3. Human Blood-Vessel-Derived Stem Cells for Tissue Repair and Regeneration

    OpenAIRE

    Chien-Wen Chen; Mirko Corselli; Bruno Péault; Johnny Huard

    2012-01-01

    Multipotent stem/progenitor cells with similar developmental potentials have been independently identified from diverse human tissue/organ cultures. The increasing recognition of the vascular/perivascular origin of mesenchymal precursors suggested blood vessels being a systemic source of adult stem/progenitor cells. Our group and other laboratories recently isolated multiple stem/progenitor cell subsets from blood vessels of adult human tissues. Each of the three structural layers of blood ve...

  4. File list: His.Oth.20.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Oth.20.AllAg.Mesenchymal_stem_cells hg19 Histone Others Mesenchymal stem cells ...027442,SRX376722,SRX376723 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Oth.20.AllAg.Mesenchymal_stem_cells.bed ...

  5. File list: Oth.Oth.50.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Oth.50.AllAg.Mesenchymal_stem_cells hg19 TFs and others Others Mesenchymal stem...X1027439,SRX1027441,SRX1027449,SRX1027452,SRX1027451,SRX1027440 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Oth.50.AllAg.Mesenchymal_stem_cells.bed ...

  6. File list: DNS.Oth.10.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Oth.10.AllAg.Mesenchymal_stem_cells mm9 DNase-seq Others Mesenchymal stem cells... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Oth.10.AllAg.Mesenchymal_stem_cells.bed ...

  7. File list: His.Oth.05.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Oth.05.AllAg.Mesenchymal_stem_cells mm9 Histone Others Mesenchymal stem cells S...,SRX318103,SRX228666,SRX228665 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Oth.05.AllAg.Mesenchymal_stem_cells.bed ...

  8. File list: ALL.Oth.10.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Oth.10.AllAg.Mesenchymal_stem_cells hg19 All antigens Others Mesenchymal stem c...ttp://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Oth.10.AllAg.Mesenchymal_stem_cells.bed ...

  9. File list: ALL.Oth.05.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Oth.05.AllAg.Mesenchymal_stem_cells mm9 All antigens Others Mesenchymal stem ce...X228662,SRX228660,SRX228665,SRX228678,SRX228661 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Oth.05.AllAg.Mesenchymal_stem_cells.bed ...

  10. File list: ALL.Oth.20.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Oth.20.AllAg.Mesenchymal_stem_cells hg19 All antigens Others Mesenchymal stem c...ttp://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Oth.20.AllAg.Mesenchymal_stem_cells.bed ...

  11. File list: Unc.Oth.50.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Oth.50.AllAg.Mesenchymal_stem_cells mm9 Unclassified Others Mesenchymal stem ce...lls http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Oth.50.AllAg.Mesenchymal_stem_cells.bed ...

  12. File list: Pol.Oth.20.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Oth.20.AllAg.Mesenchymal_stem_cells hg19 RNA polymerase Others Mesenchymal stem... cells SRX1027436,SRX1027435,SRX1027434,SRX1027433 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Oth.20.AllAg.Mesenchymal_stem_cells.bed ...

  13. File list: His.Oth.50.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Oth.50.AllAg.Mesenchymal_stem_cells mm9 Histone Others Mesenchymal stem cells S...,SRX228669,SRX228666,SRX228664 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Oth.50.AllAg.Mesenchymal_stem_cells.bed ...

  14. File list: Oth.Oth.10.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Oth.10.AllAg.Mesenchymal_stem_cells mm9 TFs and others Others Mesenchymal stem ...cells SRX228677,SRX228676,SRX228679,SRX228678 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Oth.10.AllAg.Mesenchymal_stem_cells.bed ...

  15. File list: His.Oth.50.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Oth.50.AllAg.Mesenchymal_stem_cells hg19 Histone Others Mesenchymal stem cells ...76722,SRX376723,SRX1027442 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Oth.50.AllAg.Mesenchymal_stem_cells.bed ...

  16. File list: Unc.Oth.10.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Oth.10.AllAg.Mesenchymal_stem_cells mm9 Unclassified Others Mesenchymal stem ce...lls http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Oth.10.AllAg.Mesenchymal_stem_cells.bed ...

  17. File list: Unc.Oth.05.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Oth.05.AllAg.Mesenchymal_stem_cells mm9 Unclassified Others Mesenchymal stem ce...lls http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Oth.05.AllAg.Mesenchymal_stem_cells.bed ...

  18. File list: Unc.Oth.05.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Oth.05.AllAg.Mesenchymal_stem_cells hg19 Unclassified Others Mesenchymal stem c...ells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Oth.05.AllAg.Mesenchymal_stem_cells.bed ...

  19. File list: Unc.Oth.10.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Oth.10.AllAg.Mesenchymal_stem_cells hg19 Unclassified Others Mesenchymal stem c...ells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Oth.10.AllAg.Mesenchymal_stem_cells.bed ...

  20. File list: Unc.Oth.50.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Oth.50.AllAg.Mesenchymal_stem_cells hg19 Unclassified Others Mesenchymal stem c...ells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Oth.50.AllAg.Mesenchymal_stem_cells.bed ...

  1. File list: Oth.Oth.50.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Oth.50.AllAg.Mesenchymal_stem_cells mm9 TFs and others Others Mesenchymal stem ...cells SRX228677,SRX228679,SRX228676,SRX228678 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Oth.50.AllAg.Mesenchymal_stem_cells.bed ...

  2. File list: Pol.Oth.50.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Oth.50.AllAg.Mesenchymal_stem_cells hg19 RNA polymerase Others Mesenchymal stem... cells SRX1027436,SRX1027435,SRX1027434,SRX1027433 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Oth.50.AllAg.Mesenchymal_stem_cells.bed ...

  3. File list: ALL.Oth.50.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Oth.50.AllAg.Mesenchymal_stem_cells hg19 All antigens Others Mesenchymal stem c...ttp://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Oth.50.AllAg.Mesenchymal_stem_cells.bed ...

  4. Nanoscale Mechanical Stimulation of Human Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    H Nikukar

    2014-05-01

    We observed significant responses after 1 and 2-week stimulations in cell number, cell shapes and phenotypical markers. Microarray was performed for all groups. Cell count showed normal cell growth with stimulation. However, cell surface area, cell perimeter, and arboration after 1-week stimulation showed significant increases. Immunofluorescent studies have showed significant increase in osteocalcin production after stimulation. Conclusions: Nanoscale mechanical vibration showed significant changes in human mesenchymal stem cell behaviours. Cell morphology changed to become more polygonal and increased expression of the osteoblast markers were noted. These findings with gene regulation changes suggesting nanoscale mechanostimulation has stimulated osteoblastogenesis.  Keywords:  Mesenchymal, Nanoscale, Stem Cells.

  5. 体外诱导骨髓与脐血间充质干细胞向成骨细胞分化及其成骨活性的比较%Differentiation of bone marrow and umbilical cord blood mesenchymal stem cells into osteoblasts in vitro:comparison of their osteogenic potentials

    Institute of Scientific and Technical Information of China (English)

    邵帅; 周晨红; 徐丽丽

    2015-01-01

    背景:脐血与骨髓来源的间充质干细胞在一定诱导条件作用下均具有多向分化的能力。目的:比较脐血与骨髓来源间充质干细胞向成骨细胞诱导分化能力的差异。方法:采用密度梯度法分离培养人脐血间充质干细胞和骨髓间充质干细胞,当细胞汇合90%后胰蛋白酶消化传代,取第3代脐血间充质干细胞和骨髓间充质干细胞,以细胞密度为8×104/孔接种,当细胞达80%融合时,加入含体积分数为10%胎牛血清、0.1μmol/L地塞米松、50μmol/L维生素C、10 mmol/Lβ-甘油磷酸钠的低糖型DMEM成骨细胞诱导液培养。结果与结论:两种来源间充质干细胞的形态和生物学特性无明显差异,细胞表面均强表达CD44,CD29,不表达 CD34;两者均具有向成骨细胞诱导分化的潜能,稳定表达了成骨细胞标志性的产物碱性磷酸酶、骨矿化结节,而且两种细胞的成骨活性差异无显著性意义。结果表明脐血和成人骨髓来源间充质干细胞向成骨细胞诱导分化能力相似,均可作为骨组织工程的种子细胞。%BACKGROUND:Mesenchymal stem cels isolated from cord blood and bone marrow have multi-directional differentiation ability under a certain condition of induction. OBJECTIVE:To compare the difference of differentiation of umbilical cord blood and bone marrow mesenchymal stem cels into osteoblasts. METHODS:Human umbilical cord blood and bone marrow mesenchymal stem cels were isolated and cultured by density gradient method. When reached 90% confluency, mesenchymal stem cels were digested by trypsin for subculture. At the third passage, umbilical cord blood mesenchymal stem cels and bone marrow mesenchymal stem cels at 8×104/wel were incubated. When reached 80% confluency, cels were treated with low-glucose DMEM supplemented with 10% fetal bovine serum, 0.1 μmol/L dexamethasone, 50 μmol/L vitamin C and 10 mmol/L β-sodium glycerophosphate. RESULTS AND

  6. Immunomodulation by mesenchymal stem cells: Interplay between mesenchymal stem cells and regulatory lymphocytes

    Science.gov (United States)

    Ma, Oscar Ka-Fai; Chan, Koon Ho

    2016-01-01

    Mesenchymal stem cells (MSCs) possess immunomodulatory properties, which confer enormous potential for clinical application. Considerable evidence revealed their efficacy on various animal models of autoimmune diseases, such as multiple sclerosis, systemic lupus erythematosus and uveitis. MSCs elicit their immunomodulatory effects by inhibiting lymphocyte activation and proliferation, forbidding the secretion of proinflammatory cytokines, limiting the function of antigen presenting cells, and inducing regulatory T (Treg) and B (Breg) cells. The induction of Treg and Breg cells is of particular interest since Treg and Breg cells have significant roles in maintaining immune tolerance. Several mechanisms have been proposed regarding to the MSCs-mediated induction of Treg and Breg cells. Accordingly, MSCs induce regulatory lymphocytes through secretion of multiple pleiotropic cytokines, cell-to-cell contact with target cells and modulation of antigen-presenting cells. Here, we summarized how MSCs induce Treg and Breg cells to provoke immunosuppression.

  7. Immunomodulation by mesenchymal stem cells: Interplay between mesenchymal stem cells and regulatory lymphocytes.

    Science.gov (United States)

    Ma, Oscar Ka-Fai; Chan, Koon Ho

    2016-09-26

    Mesenchymal stem cells (MSCs) possess immunomodulatory properties, which confer enormous potential for clinical application. Considerable evidence revealed their efficacy on various animal models of autoimmune diseases, such as multiple sclerosis, systemic lupus erythematosus and uveitis. MSCs elicit their immunomodulatory effects by inhibiting lymphocyte activation and proliferation, forbidding the secretion of proinflammatory cytokines, limiting the function of antigen presenting cells, and inducing regulatory T (Treg) and B (Breg) cells. The induction of Treg and Breg cells is of particular interest since Treg and Breg cells have significant roles in maintaining immune tolerance. Several mechanisms have been proposed regarding to the MSCs-mediated induction of Treg and Breg cells. Accordingly, MSCs induce regulatory lymphocytes through secretion of multiple pleiotropic cytokines, cell-to-cell contact with target cells and modulation of antigen-presenting cells. Here, we summarized how MSCs induce Treg and Breg cells to provoke immunosuppression. PMID:27679683

  8. 脐血间充质干细胞靶向胃癌移植瘤的实验研究%Experimental study on the tropism of umbilical cord blood mesenchymal stem cells for gastric carcinoma xenografts

    Institute of Scientific and Technical Information of China (English)

    赵宝成; 王振军; 毛伟征; 安岗

    2011-01-01

    Objective To investigate the possibility of human umbilical cord blood mesenchymal stem cells' migrating to the gastric carcinoma xenografts. Methods Gastric cancer cells SGC-7901 were injected subcutaneously into one side of the inguinal groove in the hairless mice to establish the animal model.Gastric cancer-bearing mice were divided randomly into two groups and five in each group (n =5). Then mesenchymal stem cells and the fibroblast HFL-Ⅰ labeled with fluorescent dye SP-DiI were injected at the opposite side. Ten days later, the mice were put to death, and the gastric carcinoma xenografts, liver, spleen,lung and the tissue of injected point were obtained. Cryosections from frozen tissues were processed for fluorescent microscopy and the distribution of MSC and fibroblasts in different organs were observed. Adjacent sections were stained with HE. Results Human umbilical cord blood mesenchymal stem cells were mainly distributed in gastric carcinoma xenografts (0.0150±0.0079), but were found only a little in liver (0.0010±0.0005), spleen (0.0015±0.0012), lung (0.0014±0.0008) and injected point (0.0043±0.0039). Fibroblasts were mainly observed in the tissue of injected point, but none in other tissues (P <0.01). Conclusion Human umbilical cord blood mesenchymal stem cells have the tendency of migrating to tumor sites, suggesting that it can be hopefully used in the diagnosis and treatment of gastric cancer.%目的 探讨脐血间充质干细胞靶向胃癌的可能性.方法 将胃癌细胞SGC-7901注射到裸鼠腹股沟皮下,建立胃癌裸鼠模型,荷胃癌小鼠随机分为脐血间充质干细胞组与成纤维细胞组,每组5只(n=5).荧光染料SP-DiI染色人类脐血间充质干细胞及成纤维细胞,分组注射到对侧腹股沟皮下.10 d后处死裸鼠,取出肿瘤、注射部位、肝脏、脾脏和肺脏组织,连续切片分别制成冷冻切片和常规HE染色,荧光显微镜下观察冷冻切片中间充质干细胞和成纤维细

  9. Isolation and culture of umbilical vein mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    D.T. Covas

    2003-09-01

    Full Text Available Bone marrow contains a population of stem cells that can support hematopoiesis and can differentiate into different cell lines including adipocytes, osteocytes, chondrocytes, myocytes, astrocytes, and tenocytes. These cells have been denoted mesenchymal stem cells. In the present study we isolated a cell population derived from the endothelium and subendothelium of the umbilical cord vein which possesses morphological, immunophenotypical and cell differentiation characteristics similar to those of mesenchymal stem cells isolated from bone marrow. The cells were isolated from three umbilical cords after treatment of the umbilical vein lumen with collagenase. The cell population isolated consisted of adherent cells with fibroblastoid morphology which, when properly stimulated, gave origin to adipocytes and osteocytes in culture. Immunophenotypically, this cell population was found to be positive for the CD29, CD13, CD44, CD49e, CD54, CD90 and HLA-class 1 markers and negative for CD45, CD14, glycophorin A, HLA-DR, CD51/61, CD106, and CD49d. The characteristics described are the same as those presented by bone marrow mesenchymal stem cells. Taken together, these findings indicate that the umbilical cord obtained from term deliveries is an important source of mesenchymal stem cells that could be used in cell therapy protocols.

  10. Supernatant of Bone Marrow Mesenchymal Stromal Cells Induces Peripheral Blood Mononuclear Cells Possessing Mesenchymal Features

    OpenAIRE

    Hu, Gang; Xu, Jun-jun; Deng, Zhi-Hong; Feng, Jie; Jin, Yan

    2011-01-01

    Increasing evidence shows that some cells from peripheral blood fibroblast-like mononuclear cells have the capacity to differentiate into mesenchymal lineages. However, the insufficiency of these cells in the circulation challenges the cell isolation and subsequently limits the clinical application of these cells. In the present study, the peripheral blood mononuclear cells (pbMNCs) were isolated from wound animals and treated with the supernatant of bone marrow mesenchymal stromal cells (bmM...

  11. Derivation of multipotent mesenchymal precursors from human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    2005-06-01

    Full Text Available BACKGROUND: Human embryonic stem cells provide access to the earliest stages of human development and may serve as a source of specialized cells for regenerative medicine. Thus, it becomes crucial to develop protocols for the directed differentiation of embryonic stem cells into tissue-restricted precursors. METHODS AND FINDINGS: Here, we present culture conditions for the derivation of unlimited numbers of pure mesenchymal precursors from human embryonic stem cells and demonstrate multilineage differentiation into fat, cartilage, bone, and skeletal muscle cells. CONCLUSION: Our findings will help to elucidate the mechanism of mesoderm specification during embryonic stem cell differentiation and provide a platform to efficiently generate specialized human mesenchymal cell types for future clinical applications.

  12. Micropatterned 3-Dimensional Hydrogel System to Study Human Endothelial-Mesenchymal Stem Cell Interactions

    OpenAIRE

    Trkov, Sasa; Eng, George; Di Liddo, Rosa; Parnigotto, Pier Paolo; Vunjak-Novakovic, Gordana

    2010-01-01

    The creation of vascularized engineered tissues of clinically relevant size is a major challenge of tissue engineering. While it is known that endothelial and mural vascular cells are integral to the formation of stable blood vessels, the specific cell type and optimal conditions for engineered vascular networks are poorly understood. To this end, we investigated the vasculogenic potential of human mesenchymal stem cell (MSC) populations derived from three different sources: (i) bone marrow a...

  13. Infusion of Mesenchymal Stem Cells Ameliorates Hyperglycemia in Type 2 Diabetic Rats

    OpenAIRE

    Si, Yiling; Zhao, Yali; Hao, Haojie; Liu, Jiejie; Guo, Yelei; Mu, Yiming; Shen, Jing; Cheng, Yu; Fu, Xiaobing; Han, Weidong

    2012-01-01

    Infusion of mesenchymal stem cells (MSCs) has been shown to effectively lower blood glucose in diabetic individuals, but the mechanism involved could not be adequately explained by their potential role in promoting islet regeneration. We therefore hypothesized that infused MSCs might also contribute to amelioration of the insulin resistance of peripheral insulin target tissues. To test the hypothesis, we induced a diabetic rat model by high-fat diet/streptozotocin (STZ) administration, perfor...

  14. Impairment of mesenchymal stem cells derived from oral leukoplakia

    OpenAIRE

    Zhang, Zhihui; Song, Jiangyuan; Han, Ying; Mu, Dongdong; Su, Sha; Ji, Xiaoli; Liu, Hongwei

    2015-01-01

    Oral leukoplakia is one of the common precancerous lesions in oral mucosa. To compare the biological characteristics and regenerative capacities of mesenchymal stem cells (MSCs) from oral leukoplakia (epithelial hyperplasia and dysplasia) and normal oral mucosa, MSCs were isolated by enzyme digestion. Then these cells were identified by the expression of MSC related markers, STRO-1, CD105 and CD90, with the absent for the hematopoietic stem cell marker CD34 by flow cytometric detection. The s...

  15. Collagen scaffold remodeling by human mesenchymal stem cells

    OpenAIRE

    Han, SJ; Chan, BP

    2011-01-01

    Type I collagen has been widely used as scaffold for tissue engineering because of its excellent biocompatibility and negligible immunogenicity. We previously have developed a collagen microencapsulation technology entrapping many cells including human mesenchymal stem cells (hMSCs) in microspheres made of nanofibrous collagen meshwork. Nevertheless, little is understood about how stem cells interact with and remodel the collagen meshwork. This study aims to investigate collagen remodeling by...

  16. Immunomodulation by Mesenchymal Stem Cells in Veterinary Species

    OpenAIRE

    Carrade, Danielle D.; Borjesson, Dori L.

    2013-01-01

    Mesenchymal stem cells (MSC) are adult-derived multipotent stem cells that have been derived from almost every tissue. They are classically defined as spindle-shaped, plastic-adherent cells capable of adipogenic, chondrogenic, and osteogenic differentiation. This capacity for trilineage differentiation has been the foundation for research into the use of MSC to regenerate damaged tissues. Recent studies have shown that MSC interact with cells of the immune system and modulate their function. ...

  17. Isolation and culture of umbilical vein mesenchymal stem cells

    OpenAIRE

    D.T. Covas; J.L.C. Siufi; A.R.L. Silva; M. D. Orellana

    2003-01-01

    Bone marrow contains a population of stem cells that can support hematopoiesis and can differentiate into different cell lines including adipocytes, osteocytes, chondrocytes, myocytes, astrocytes, and tenocytes. These cells have been denoted mesenchymal stem cells. In the present study we isolated a cell population derived from the endothelium and subendothelium of the umbilical cord vein which possesses morphological, immunophenotypical and cell differentiation characteristics similar to tho...

  18. Transition of mesenchymal stem/stromal cells to endothelial cells

    NARCIS (Netherlands)

    M. Crisan (Mihaela)

    2013-01-01

    textabstractMesenchymal stem/stromal cells (MSCs) are heterogeneous. A fraction of these cells constitute multipotent cells that can self-renew and mainly give rise to mesodermal lineage cells such as adipocytes, osteocytes and chondrocytes. The ability of MSCs to differentiate into endothelial cell

  19. Mesenchymal stem cell therapy in proteoglycan induced arthritis

    NARCIS (Netherlands)

    Swart, J. F.; de Roock, S.; Hofhuis, F. M.; Rozemuller, H.; van den Broek, T.; Moerer, P.; Broere, F.; van Wijk, F.; Kuis, W.; Prakken, B. J.; Martens, a.c.m; Wulffraat, N. M.

    2015-01-01

    Objectives: To explore the immunosuppressive effect and mechanism of action of intraperitoneal (ip) and intra-articular (ia) mesenchymal stem cell (MSC) injection in proteoglycan induced arthritis (PGIA). Methods: MSC were administered ip or ia after establishment of arthritis. We used serial biolum

  20. Human mesenchymal stem cells: from basic biology to clinical applications

    DEFF Research Database (Denmark)

    Abdallah, B M; Kassem, M

    2008-01-01

    Mesenchymal stem cells (MSC) are a group of clonogenic cells present among the bone marrow stroma and capable of multilineage differentiation into mesoderm-type cells such as osteoblasts, adipocytes and chondrocytes. Due to their ease of isolation and their differentiation potential, MSC are bein...

  1. Adult Stromal (Skeletal, Mesenchymal) Stem Cells: Advances Towards Clinical Applications

    DEFF Research Database (Denmark)

    Kermani, Abbas Jafari; Harkness, Linda; Zaher, Walid;

    2014-01-01

    Mesenchymal Stem Cells (MSC) are non-hematopoietic adult stromal cells that reside in a perivascular niche in close association with pericytes and endothelial cells and possess self-renewal and multi-lineage differentiation capacity. The origin, unique properties, and therapeutic benefits of MSC ...

  2. Current view of mesenchymal stem cells biology (brief review

    Directory of Open Access Journals (Sweden)

    Maslova O. A.

    2012-06-01

    Full Text Available Although mesenchymal stem cells (MSC are in a focus of attention, some aspects of their biology are still unclear. This paper is a review of current research on MSC biology. The use of MSC in regenerative medicine is also briefly discussed.

  3. Mesenchymal Stem Cell Transplantation Attenuates Brain Injury After Neonatal Stroke

    NARCIS (Netherlands)

    van Velthoven, Cindy T. J.; Sheldon, R. Ann; Kavelaars, Annemieke; Derugin, Nikita; Vexler, Zinaida S.; Willemen, Hanneke L. D. M.; Maas, Mirjam; Heijnen, Cobi J.; Ferriero, Donna M.

    2013-01-01

    Background and Purpose-Brain injury caused by stroke is a frequent cause of perinatal morbidity and mortality with limited therapeutic options. Mesenchymal stem cells (MSC) have been shown to improve outcome after neonatal hypoxic-ischemic brain injury mainly by secretion of growth factors stimulati

  4. Autologous mesenchymal stem cells transplantation in adriamycin-induced cardiomyopathy

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jing; LI Geng-shan; LI Guo-cao; ZHOU Qing; LI Wen-qiang; XU Hong-xin

    2005-01-01

    @@ Recent studies have suggested benefits of mesenchymal stem cells (MSCs) transplantation for the regeneration of cardiac tissue and function improvement of regionally infracted myocardium, but its effects on global heart failure is still little known. This study suggested the capacity of MSCs to transdifferentiate to cardiac cells in a nonischemic cardiomyopathic setting, and the effect of the cells on heart function.

  5. Paracrine Molecules of Mesenchymal Stem Cells for Hematopoietic Stem Cell Niche

    OpenAIRE

    Tian Li; Yaojiong Wu

    2011-01-01

    Hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs) are both adult stem cells residing in the bone marrow. MSCs interact with HSCs, they stimulate and enhance the proliferation of HSCs by secreting regulatory molecules and cytokines, providing a specialized microenvironment for controlling the process of hematopoiesis. In this paper we discuss how MSCs contribute to HSC niche, maintain the stemness and proliferation of HSCs, and support HSC transplantation.

  6. Becoming a Blood Stem Cell Donor

    Medline Plus

    Full Text Available ... Find out why Close Becoming a Blood Stem Cell Donor NCIcancertopics Subscribe Subscribed Unsubscribe 351 351 Loading... ... considered becoming a bone marrow or blood stem cell donor? Follow this true story of a former ...

  7. Becoming a Blood Stem Cell Donor

    Medline Plus

    Full Text Available ... total__ Find out why Close Becoming a Blood Stem Cell Donor NCIcancertopics Subscribe Subscribed Unsubscribe 351 351 Loading... ... Ever considered becoming a bone marrow or blood stem cell donor? Follow this true story of a former ...

  8. Becoming a Blood Stem Cell Donor

    Medline Plus

    Full Text Available ... Find out why Close Becoming a Blood Stem Cell Donor NCIcancertopics Subscribe Subscribed Unsubscribe 352 352 Loading... ... considered becoming a bone marrow or blood stem cell donor? Follow this true story of a former ...

  9. Becoming a Blood Stem Cell Donor

    Medline Plus

    Full Text Available ... on Jul 19, 2011 Ever considered becoming a bone marrow or blood stem cell donor? Follow this true ... Institutes of Health Clinical Center in Bethesda, MD. Bone marrow transplantation (BMT) and peripheral blood stem cell transplantation ( ...

  10. Becoming a Blood Stem Cell Donor

    Medline Plus

    Full Text Available ... on Jul 19, 2011 Ever considered becoming a bone marrow or blood stem cell donor? Follow this ... Institutes of Health Clinical Center in Bethesda, MD. Bone marrow transplantation (BMT) and peripheral blood stem cell ...

  11. Becoming a Blood Stem Cell Donor

    Medline Plus

    Full Text Available ... total__ Find out why Close Becoming a Blood Stem Cell Donor NCIcancertopics Subscribe Subscribed Unsubscribe 361 361 Loading... ... Ever considered becoming a bone marrow or blood stem cell donor? Follow this true story of a former ...

  12. Becoming a Blood Stem Cell Donor

    Medline Plus

    Full Text Available ... total__ Find out why Close Becoming a Blood Stem Cell Donor NCIcancertopics Subscribe Subscribed Unsubscribe 350 350 Loading... ... Ever considered becoming a bone marrow or blood stem cell donor? Follow this true story of a former ...

  13. Glial origin of mesenchymal stem cells in a tooth model system

    NARCIS (Netherlands)

    Kaukua, Nina; Shahidi, Maryam Khatibi; Konstantinidou, Chrysoula; Dyachuk, Vyacheslav; Kaucka, Marketa; Furlan, Alessandro; An, Zhengwen; Wang, Longlong; Hultman, Isabell; Ahrlund-Richter, Lars; Blom, Hans; Brismar, Hjalmar; Lopes, Natalia Assaife; Pachnis, Vassilis; Suter, Ueli; Clevers, Hans; Thesleff, Irma; Sharpe, Paul; Ernfors, Patrik; Fried, Kaj; Adameyko, Igor

    2014-01-01

    Mesenchymal stem cells occupy niches in stromal tissues where they provide sources of cells for specialized mesenchymal derivatives during growth and repair. The origins of mesenchymal stem cells have been the subject of considerable discussion, and current consensus holds that perivascular cells fo

  14. Characterization of mesenchymal stem cells derived from equine adipose tissue

    OpenAIRE

    Carvalho, A.M.; A.L.M. Yamada; M.A. Golim; L.E.C. Álvarez; L.L. Jorge; M.L. Conceição; E. Deffune; C.A. Hussni; A.L.G. Alves

    2013-01-01

    Stem cell therapy has shown promising results in tendinitis and osteoarthritis in equine medicine. The purpose of this work was to characterize the adipose-derived mesenchymal stem cells (AdMSCs) in horses through (1) the assessment of the capacity of progenitor cells to perform adipogenic, osteogenic and chondrogenic differentiation; and (2) flow cytometry analysis using the stemness related markers: CD44, CD90, CD105 and MHC Class II. Five mixed-breed horses, aged 2-4 years-old were used to...

  15. Labeling of mesenchymal stem cells by bioconjugated quantum dots.

    Science.gov (United States)

    Shah, Bhranti S; Clark, Paul A; Moioli, Eduardo K; Stroscio, Michael A; Mao, Jeremy J

    2007-10-01

    Long-term labeling of stem cells during self-replication and differentiation benefits investigations of development and tissue regeneration. We report the labeling of human mesenchymal stem cells (hMSCs) with RGD-conjugated quantum dots (QDs) during self-replication, and multilineage differentiations into osteogenic, chondrogenic, and adipogenic cells. QD-labeled hMSCs remained viable as unlabeled hMSCs from the same subpopulation. These findings suggest the use of bioconjugated QDs as an effective probe for long-term labeling of stem cells.

  16. GATA2 regulates differentiation of bone marrow-derived mesenchymal stem cells

    OpenAIRE

    Kamata, Mayumi; Okitsu, Yoko; Fujiwara, Tohru; Kanehira, Masahiko; Nakajima, Shinji; Takahashi, Taro; Inoue, Ai; Fukuhara, Noriko; Onishi, Yasushi; Ishizawa, Kenichi; Shimizu, Ritsuko; Yamamoto, Masayuki; Harigae, Hideo

    2014-01-01

    The bone marrow microenvironment comprises multiple cell niches derived from bone marrow mesenchymal stem cells. However, the molecular mechanism of bone marrow mesenchymal stem cell differentiation is poorly understood. The transcription factor GATA2 is indispensable for hematopoietic stem cell function as well as other hematopoietic lineages, suggesting that it may maintain bone marrow mesenchymal stem cells in an immature state and also contribute to their differentiation. To explore this ...

  17. Epithelial and mesenchymal stem cells from the umbilical cord lining membrane.

    Science.gov (United States)

    Lim, Ivor J; Phan, Toan Thang

    2014-01-01

    mesenchymal and epithelial stem cells can be isolated from the umbilical cord lining membrane, usefully regenerating not only mesenchymal tissue, such as bone, cartilage, and cardiac and striated muscle, but also epithelial tissue, such as skin, cornea, and liver. Both mesenchymal and epithelial CLSCs are immune privileged and resist rejection. Clinically, CLSCs have proved effective in the treatment of difficult-to-heal human wounds, such as diabetic ulcers, recalcitrant chronic wounds, and even persistent epithelial defects of the cornea. Heart and liver regeneration has been shown to be successful in animal studies and await human trials. CLSCs have also been shown to be an effective feeder layer for cord blood hematopoietic stem cells and, more recently, has been recognized as an abundant and high-quality source of cells for iPSC production. Banking of CLSCs by cord blood banks in both private and public settings is now available in many countries, so that individuals may have their personal stores of CLSCs for future translational applications for both themselves and their families. Cord lining stem cells are strongly positioned to be the future of cell therapy and regenerative medicine. PMID:24636188

  18. Epithelial and mesenchymal stem cells from the umbilical cord lining membrane.

    Science.gov (United States)

    Lim, Ivor J; Phan, Toan Thang

    2014-01-01

    mesenchymal and epithelial stem cells can be isolated from the umbilical cord lining membrane, usefully regenerating not only mesenchymal tissue, such as bone, cartilage, and cardiac and striated muscle, but also epithelial tissue, such as skin, cornea, and liver. Both mesenchymal and epithelial CLSCs are immune privileged and resist rejection. Clinically, CLSCs have proved effective in the treatment of difficult-to-heal human wounds, such as diabetic ulcers, recalcitrant chronic wounds, and even persistent epithelial defects of the cornea. Heart and liver regeneration has been shown to be successful in animal studies and await human trials. CLSCs have also been shown to be an effective feeder layer for cord blood hematopoietic stem cells and, more recently, has been recognized as an abundant and high-quality source of cells for iPSC production. Banking of CLSCs by cord blood banks in both private and public settings is now available in many countries, so that individuals may have their personal stores of CLSCs for future translational applications for both themselves and their families. Cord lining stem cells are strongly positioned to be the future of cell therapy and regenerative medicine.

  19. Chinese preparation Xuesaitong promotes the mobilization of bone marrow mesenchymal stem cells in rats with cerebral infarction.

    Science.gov (United States)

    Zhang, Jin-Sheng; Zhang, Bao-Xia; Du, Mei-Mei; Wang, Xiao-Ya; Li, Wei

    2016-02-01

    After cerebral ischemia, bone marrow mesenchymal stem cells are mobilized and travel from the bone marrow through peripheral circulation to the focal point of ischemia to initiate tissue regeneration. However, the number of bone marrow mesenchymal stem cells mobilized into peripheral circulation is not enough to exert therapeutic effects, and the method by which blood circulation is promoted to remove blood stasis influences stem cell homing. The main ingredient of Xuesaitong capsules is Panax notoginseng saponins, and Xuesaitong is one of the main drugs used for promoting blood circulation and removing blood stasis. We established rat models of cerebral infarction by occlusion of the middle cerebral artery and then intragastrically administered Xuesaitong capsules (20, 40 and 60 mg/kg per day) for 28 successive days. Enzyme-linked immunosorbent assay showed that in rats with cerebral infarction, middle- and high-dose Xuesaitong significantly increased the level of stem cell factors and the number of CD117-positive cells in plasma and bone marrow and significantly decreased the number of CD54- and CD106-positive cells in plasma and bone marrow. The effect of low-dose Xuesaitong on these factors was not obvious. These findings demonstrate that middle- and high-dose Xuesaitong and hence Panax notoginseng saponins promote and increase the level and mobilization of bone marrow mesenchymal stem cells in peripheral blood. PMID:27073383

  20. Comparison of Gene Expression in Human Embryonic Stem Cells, hESC-Derived Mesenchymal Stem Cells and Human Mesenchymal Stem Cells

    OpenAIRE

    Romain Barbet; Isabelle Peiffer; Antoinette Hatzfeld; Pierre Charbord; Hatzfeld, Jacques A.

    2011-01-01

    We present a strategy to identify developmental/differentiation and plasma membrane marker genes of the most primitive human Mesenchymal Stem Cells (hMSCs). Using sensitive and quantitative TaqMan Low Density Arrays (TLDA) methodology, we compared the expression of 381 genes in human Embryonic Stem Cells (hESCs), hESC-derived MSCs ...

  1. 脐血干细胞移植对帕金森病大鼠旋转行为的影响%Effect of human umbilical cord blood mesenchymal stem cells transplantation on rotational behavior of Parkinson's disease rats

    Institute of Scientific and Technical Information of China (English)

    樊志刚; 刘芳

    2012-01-01

    背景:目前帕金森病的临床治疗还是以药物为主,细胞移植实验也多见于骨髓间充质干细胞,脐血来源干细胞移植能否改善帕金森病的旋转行为报道较少.目的:观察脐血间充质干细胞移植对帕金森病大鼠旋转行为的影响.方法:帕金森病模型大鼠随机分成实验组和对照组.实验组大鼠纹状体内植入用Hoechst33258标记的第4代脐血间充质干细胞,对照组注射PBS.此后每周腹腔注射阿扑吗啡以观察大鼠的旋转行为;并在移植后3,6,9周用免疫荧光双标法检测间充质干细胞的存活、迁移情况以及胶质纤维酸性蛋白、神经元特异性烯醇化酶、酪氨酸羟化酶和突触素的表达.结果与结论:移植脐血间充质干细胞后大鼠的旋转行为与对照组相比有明显改善(P < 0.05);间充质干细胞可在大鼠脑内存活,随时间延长迁移范围扩大,分布于纹状体、胼胝体和皮质;胶质纤维酸性蛋白、神经元特异性烯醇化酶、酪氨酸羟化酶都有表达,突触素无表达.结果可见移植脐血间充质干细胞后能明显改善帕金森病大鼠旋转行为,有望成为治疗帕金森病的种子细胞.%BACKGROUND: To date, the clinical treatment of Parkinson's disease (PD) mainly depends on drug, and as for celltransplantation experiment, bone marrow mesenchymal stem cells (BMSCs) transplantation is the common method. The reportsabout whether umbilical cord blood mesenchymal stem cells (UCBMSCs) transplantation can improve the rotational behavior arerare.OBJECTIVE: To explore the effect of human UCBMSCs transplantation on rotational behavior of PD rats.METHODS: The PD rat models were divided into the experimental group (n=20) and the control group (n=20). The fourthgeneration of MSCs were marked by Hoechst33258 and then transplanted into rat striatum in experimental group, and the rats incontrol group were given PBS. Apomorphine was injected intraperitoneally to examine the rotational

  2. 脐血间充质干细胞移植治疗低血糖昏迷1例%Umbilical cord blood mesenchymal stem cells transplantation for treating hypoglycemic coma in one case

    Institute of Scientific and Technical Information of China (English)

    李平; 周瑞; 晏小琼; 余勇飞; 阮清源

    2011-01-01

    背景:成体干细胞可以跨系跨胚层分化为所有的组织细胞类型,在特定的条件下,可分化为骨、软骨、脂肪、肌肉和神经细胞等,替代、修复已受损的组织、细胞,达到功能修复的目的.目的:观察脐血间充质干细胞治疗低血糖昏迷并发缺氧缺血性脑病的疗效.方法:对收治的1 例低血糖昏迷并发缺氧缺血性脑病及肺部感染的患者,给予抗自由基、营养神经、促醒、抗感染、康复理疗等综合治疗的同时,从静脉滴注进行脐血间充质干细胞治疗.观察住院期间意识恢复情况、脑电图、日常生活能力评分及随访结果.结果与结论:治疗近1个月后患者运动、认知功能明显恢复,复查脑电图可及a波,日常生活活动能力评分50分,70 d后随访,患者未出现不良反应,表明干细胞治疗近期疗效安全.提示脐血间充质干细胞治疗低血糖昏迷并发缺氧缺血性脑病安全有效.%BACKGROUND: Adult stem cells can differentiate into all kinds of cell type. Under special conditions, adult stem cells can differentiate into osteoblasts, chond rocytes, adipocytes, muscle cells and neural cells to replace and to repair damaged tissues and cells, to achieve functional recovery purposes.OBJECTIVE: To observe the effect of umbilical cord blood mesenchymal stem cells (UCB-MSCs) therapy in hypoglycemic coma combined with hypoxic ischemic encephalopathy.METHODS: One case of hypoglycemic coma combined with hypoxic ischemic encephalopathy and pulmonary infection was admitted. This patient received a combined treatment, including anti-free radical, nerve-nurturing, consciousness-regaining,anti-infective therapy, rehabilitation and physiotherapy. At the same time, we also gave him the UCB-MSCs therapy by intravenous infusion. The recovery of consciousness, electroencephalogram, activity of daily living and follow-up results were observed during hospital stay.RESULTS AND CONCLUSION: One month later, the

  3. The Role of Wharton’s Jelly Mesenchymal Stem Cells in Skin Reconstruction

    OpenAIRE

    Rostamzadeh; Anjomshoa; Kurd; Chai; Jahangiri; Nilforoushzadeh; Zare

    2015-01-01

    Context Stem cell therapy, especially in the segment of mesenchymal stem cells (MSCs), is one of the most promising areas of regenerative medicine. Evidence Acquisition According to research conducted by various researchers, Wharton’s Jelly mesenchymal stem cells (WJMSCs) have several advantages compared to others sources, in regenerative medicine: WJMSCs are more primary cells; WJMSCs can be easily isolated and without invasive p...

  4. Induction of mesenchymal stem cell chondrogenesis by polyacrylate substrates

    OpenAIRE

    Glennon-Alty, Laurence; Williams, Rachel; Dixon, Simon; Murray, Patricia

    2013-01-01

    Mesenchymal stem cells (MSCs) can generate chondrocytes in vitro, but typically need to be cultured as aggregates in the presence of transforming growth factor beta (TGF-β), which makes scale-up difficult. Here we investigated if polyacrylate substrates modelled on the functional group composition and distribution of the Arg-Gly-Asp (RGD) integrin-binding site could induce MSCs to undergo chondrogenesis in the absence of exogenous TGF-β. Within a few days of culture on the biomimetic polyacry...

  5. Safety of Mesenchymal Stem Cells for Clinical Application

    Directory of Open Access Journals (Sweden)

    Youwei Wang

    2012-01-01

    Full Text Available Mesenchymal stem cells (MSCs hold great promise as therapeutic agents in regenerative medicine and autoimmune diseases, based on their differentiation abilities and immunosuppressive properties. However, the therapeutic applications raise a series of questions about the safety of culture-expanded MSCs for human use. This paper summarized recent findings about safety issues of MSCs, in particular their genetic stability in long-term in vitro expansion, their cryopreservation, banking, and the role of serum in the preparation of MSCs.

  6. Mesenchymal stem cells (MSCs) as skeletal therapeutics–an update

    OpenAIRE

    Saeed, Hamid; Ahsan, Muhammad; Saleem, Zikria; Iqtedar, Mehwish; Islam, Muhammad; Danish, Zeeshan; Khan, Asif Manzoor

    2016-01-01

    Mesenchymal stem cells hold the promise to treat not only several congenital and acquired bone degenerative diseases but also to repair and regenerate morbid bone tissues. Utilizing MSCs, several lines of evidences advocate promising clinical outcomes in skeletal diseases and skeletal tissue repair/regeneration. In this context, both, autologous and allogeneic cell transfer options have been utilized. Studies suggest that MSCs are transplanted either alone by mixing with autogenous plasma/ser...

  7. Recruitment of Mesenchymal Stem Cells Into Prostate Tumors Promotes Metastasis

    OpenAIRE

    Jung, Younghun; Kim, Jin Koo; SHIOZAWA, YUSUKE; Wang, Jingcheng; Mishra, Anjali; Joseph, Jeena; Berry, Janice E.; McGee, Samantha; Lee, Eunsohl; Sun, Hongli; Wang, Jianhua; Jin, Taocong; Zhang, Honglai; Dai, Jinlu; Paul H Krebsbach

    2013-01-01

    Tumors recruit mesenchymal stem cells (MSCs) to facilitate healing, which induces their conversion into cancer-associated fibroblasts that facilitate metastasis. However, this process is poorly understood on the molecular level. Here we show that the CXCR6 ligand CXCL16 facilitates MSC or Very Small Embryonic-Like (VSEL) cells recruitment into prostate tumors. CXCR6 signaling stimulates the conversion of MSCs into cancer-associated fibroblasts, which secrete stromal-derived factor-1, also kno...

  8. Mesenchymal stem cell-derived exosomes facilitate nasopharyngeal carcinoma progression

    OpenAIRE

    Shi, Si; Zhang, Qicheng; Xia, Yunfei; You, Bo; Shan, Ying; Bao, Lili; Li, Li; You, Yiwen; Gu, Zhifeng

    2016-01-01

    Mesenchymal stem cells (MSCs), which are capable of differentiating into multiple cell types, are reported to exert multiple effects on tumor development. However, the relationship between MSCs and nasopharyngeal carcinoma (NPC) cells remains unclear. Exosomes are small membrane vesicles that can be released by several cell types, including MSCs. Exosomes, which can carry membrane and cytoplasmic constituents, have been described as participants in a novel mechanism of cell-to-cell communicat...

  9. Isolation, culture and biological characteristics of umbilical cord blood mesenchymal stem cells%脐血间充质干细胞的分离培养及生物学特性

    Institute of Scientific and Technical Information of China (English)

    孙国军; 赵文静; 陈曦; 叶冬霞; 李晶

    2011-01-01

    背景:脐血富含干细胞,刺激后进入细胞周期的速度以及自泌生长因子的能力均强于骨髓及外周血干细胞.目的:建立一种分离纯化、培养扩增脐血间充质干细胞的方法,并观察体外培养脐血间充质干细胞的生物学特性.方法:密度梯度离心,贴壁培养和消化时间控制相结合,分离纯化脐血间充质干细胞.观察细胞形态,绘制细胞生长曲线,应用流式细胞仪测定细胞周期,以免疫组织化学法(SP法)测定CD29,CD44,CD34.采用体积分数20%马血清诱导脐血间充质干细胞分化为脂肪细胞,以油红O染色鉴定;0.1 μmol/L地塞米松,10 mmol/L β-甘油磷酸钠和50 μmol/L抗坏血酸诱导脐血间充质干细胞分化为成骨细胞,以碱性磷酸酶染色鉴定.结果与结论:分离获得了高纯度贴壁生长的间充质干细胞,间充质干细胞呈梭形,细胞传代稳定,在体外连续传代培养9代,未发生形态学改变,无衰老征象.第3代间充质干细胞体外可以分化为脂肪细胞和成骨细胞.提示采用淋巴细胞分离液密度梯度离心,贴壁培养和消化时间控制相结合,可以获得纯度较高的脐血间充质干细胞,脐血间充质干细胞体外增殖和传代能力强.%BACKGROUND: Studies have found that cord blood contains a large member of hematopoietic stem cells and abundant mesenchymal stem cells.OBJECTIVE: To establish an isolating, culturing and proliferating method for human umbilical cord blood mesenchymal stem cells (HUMSCs) and then to observe cell biological characteristics in vitro.METHODS: HUMSCs were isolated and purified by density gradient centrifugation and adhering to the culture plastic. After successive subculture and amplification, the morphology was observed under microscope and the growth curve was drawn.Cell cycle was determined by flow cytometry; The expression of CD29, CD44 and CD34 in HUMSCs were detected by immunohistochemistry (SP); HUMSCs were induced to

  10. Mesenchymal stem cells in diabetes treatment: progress and perspectives

    Directory of Open Access Journals (Sweden)

    Yu CHENG

    2016-08-01

    Full Text Available Diabetes is a chronic metabolic disorder caused by relative or absolute insulin deficient or reduced sensitivity of target cells to insulin. Mesenchymal stem cells (MSCs are adult stem cells with multiple differentiation potential, self-renewable and immunoregulatory properties. Accumulating evidences from clinic or animal experiments recent years showed that MSCs infusion could ameliorate hyperglycemia in diabetes. The research progress of MSCs in diabetes treatment is summarized and a corresponding perspective is herewith proposed in present paper. DOI: 10.11855/j.issn.0577-7402.2016.07.16

  11. Intravenous transplantation of bone marrow mesenchymal stem cells promotes neural regeneration after traumatic brain injury

    OpenAIRE

    Anbari, Fatemeh; Khalili, Mohammad Ali; Bahrami, Ahmad Reza; Khoradmehr, Arezoo; Sadeghian, Fatemeh; Fesahat, Farzaneh; Nabi, Ali

    2014-01-01

    To investigate the supplement of lost nerve cells in rats with traumatic brain injury by intravenous administration of allogenic bone marrow mesenchymal stem cells, this study established a Wistar rat model of traumatic brain injury by weight drop impact acceleration method and administered 3 × 106 rat bone marrow mesenchymal stem cells via the lateral tail vein. At 14 days after cell transplantation, bone marrow mesenchymal stem cells differentiated into neurons and astrocytes in injured rat...

  12. Chitosan-collagen porous scaffold and bone marrow mesenchymal stem cell transplantation for ischemic stroke

    OpenAIRE

    Feng Yan; Wei Yue; Yue-lin Zhang; Guo-chao Mao; Ke Gao; Zhen-xing Zuo; Ya-jing Zhang; Hui Lu

    2015-01-01

    In this study, we successfully constructed a composite of bone marrow mesenchymal stem cells and a chitosan-collagen scaffold in vitro, transplanted either the composite or bone marrow mesenchymal stem cells alone into the ischemic area in animal models, and compared their effects. At 14 days after co-transplantation of bone marrow mesenchymal stem cells and the hitosan-collagen scaffold, neurological function recovered noticeably. Vascular endothelial growth factor expression and nestin-labe...

  13. Bone marrow mesenchymal stem cell therapy in ischemic stroke: mechanisms of action and treatment optimization strategies

    Directory of Open Access Journals (Sweden)

    Guihong Li

    2016-01-01

    Full Text Available Animal and clinical studies have confirmed the therapeutic effect of bone marrow mesenchymal stem cells on cerebral ischemia, but their mechanisms of action remain poorly understood. Here, we summarize the transplantation approaches, directional migration, differentiation, replacement, neural circuit reconstruction, angiogenesis, neurotrophic factor secretion, apoptosis, immunomodulation, multiple mechanisms of action, and optimization strategies for bone marrow mesenchymal stem cells in the treatment of ischemic stroke. We also explore the safety of bone marrow mesenchymal stem cell transplantation and conclude that bone marrow mesenchymal stem cell transplantation is an important direction for future treatment of cerebral ischemia. Determining the optimal timing and dose for the transplantation are important directions for future research.

  14. Bone marrow mesenchymal stem cell therapy in ischemic stroke: mechanisms of action and treatment optimization strategies

    Science.gov (United States)

    Li, Guihong; Yu, Fengbo; Lei, Ting; Gao, Haijun; Li, Peiwen; Sun, Yuxue; Huang, Haiyan; Mu, Qingchun

    2016-01-01

    Animal and clinical studies have confirmed the therapeutic effect of bone marrow mesenchymal stem cells on cerebral ischemia, but their mechanisms of action remain poorly understood. Here, we summarize the transplantation approaches, directional migration, differentiation, replacement, neural circuit reconstruction, angiogenesis, neurotrophic factor secretion, apoptosis, immunomodulation, multiple mechanisms of action, and optimization strategies for bone marrow mesenchymal stem cells in the treatment of ischemic stroke. We also explore the safety of bone marrow mesenchymal stem cell transplantation and conclude that bone marrow mesenchymal stem cell transplantation is an important direction for future treatment of cerebral ischemia. Determining the optimal timing and dose for the transplantation are important directions for future research.

  15. Mechanical unloading of bone in microgravity reduces mesenchymal and hematopoietic stem cell-mediated tissue regeneration

    Directory of Open Access Journals (Sweden)

    E.A. Blaber

    2014-09-01

    Full Text Available Mechanical loading of mammalian tissues is a potent promoter of tissue growth and regeneration, whilst unloading in microgravity can cause reduced tissue regeneration, possibly through effects on stem cell tissue progenitors. To test the specific hypothesis that mechanical unloading alters differentiation of bone marrow mesenchymal and hematopoietic stem cell lineages, we studied cellular and molecular aspects of how bone marrow in the mouse proximal femur responds to unloading in microgravity. Trabecular and cortical endosteal bone surfaces in the femoral head underwent significant bone resorption in microgravity, enlarging the marrow cavity. Cells isolated from the femoral head marrow compartment showed significant down-regulation of gene expression markers for early mesenchymal and hematopoietic differentiation, including FUT1(−6.72, CSF2(−3.30, CD90(−3.33, PTPRC(−2.79, and GDF15(−2.45, but not stem cell markers, such as SOX2. At the cellular level, in situ histological analysis revealed decreased megakaryocyte numbers whilst erythrocytes were increased 2.33 fold. Furthermore, erythrocytes displayed elevated fucosylation and clustering adjacent to sinuses forming the marrow–blood barrier, possibly providing a mechanistic basis for explaining spaceflight anemia. Culture of isolated bone marrow cells immediately after microgravity exposure increased the marrow progenitor's potential for mesenchymal differentiation into in-vitro mineralized bone nodules, and hematopoietic differentiation into osteoclasts, suggesting an accumulation of undifferentiated progenitors during exposure to microgravity. These results support the idea that mechanical unloading of mammalian tissues in microgravity is a strong inhibitor of tissue growth and regeneration mechanisms, acting at the level of early mesenchymal and hematopoietic stem cell differentiation.

  16. Umbilical cord mesenchymal stem cells: adjuvants for human cell transplantation.

    Science.gov (United States)

    Friedman, Robb; Betancur, Monica; Boissel, Laurent; Tuncer, Hande; Cetrulo, Curtis; Klingemann, Hans

    2007-12-01

    The Wharton's jelly of the umbilical cord is rich in mesenchymal stem cells (UC-MSCs) that fulfill the criteria for MSCs. Here we describe a novel, simple method of obtaining and cryopreserving UC-MSCs by extracting the Wharton's jelly from a small piece of cord, followed by mincing the tissue and cryopreserving it in autologous cord plasma to prevent exposure to allogeneic or animal serum. This direct freezing of cord microparticles without previous culture expansion allows the processing and freezing of umbilical cord blood (UCB) and UC-MSCs from the same individual on the same day on arrival in the laboratory. UC-MSCs produce significant concentrations of hematopoietic growth factors in culture and augment hematopoietic colony formation when co-cultured with UCB mononuclear cells. Mice undergoing transplantation with limited numbers of human UCB cells or CD34(+) selected cells demonstrated augmented engraftment when UC-MSCs were co-transplanted. We also explored whether UC-MSCs could be further manipulated by transfection with plasmid-based vectors. Electroporation was used to introduce cDNA and mRNA constructs for GFP into the UC-MSCs. Transfection efficiency was 31% for cDNA and 90% for mRNA. These data show that UC-MSCs represent a reliable, easily accessible, noncontroversial source of MSCs. They can be prepared and cryopreserved under good manufacturing practices (GMP) conditions and are able to enhance human hematopoietic engraftment in SCID mice. Considering their cytokine production and their ability to be easily transfected with plasmid-based vectors, these cells should have broad applicability in human cell-based therapies. PMID:18022578

  17. Immunological aspects of allogeneic and autologous mesenchymal stem cell therapies.

    Science.gov (United States)

    Hoogduijn, M J; Roemeling-van Rhijn, M; Korevaar, S S; Engela, A U; Weimar, W; Baan, C C

    2011-12-01

    Mesenchymal stem cells (MSCs) have potential for therapeutic application as an immunomodulatory and regenerative agent. The immunogenicity and survival of MSCs after infusion are, however, not clear and evidence suggests that allogeneic but also autologous MSCs disappear rapidly after infusion. This may be associated with the susceptibility of MSCs to lysis by natural killer (NK) cells, possibly a result of culture-induced stress. In the present study we examined whether NK cell-mediated lysis of MSCs could be inhibited by immunosuppressive drugs. Human MSCs were isolated from adipose tissue and expanded in culture. Peripheral blood mononuclear cells were activated with interleukin (IL)-2 (200 U/ml) and IL-15 (10 ng/ml) for 7 days. CD3(-)CD16(+)CD56(+) NK cells were then isolated by fluorescence-activated cell sorting and added to europium-labeled MSCs for 4 hr in the presence or absence of immunosuppressive drugs. Lysis of MSCs was determined by spectrophotometric measurement of europium release. Nonactivated NK cells were not capable of lysing MSCs. Cytokine-activated NK cells showed upregulated levels of granzyme B and perforin and efficiently lysed allogeneic and autologous MSCs. Addition of tacrolimus, rapamycin or sotrastaurin to the lysis assay did not inhibit MSC killing. Furthermore, preincubation of activated NK cells with the immunosuppressive drugs for 24 hr before exposure to MSCs had no effect on MSC lysis. Last, addition of the immunosuppressants before and during the activation of NK cells, reduced NK cell numbers but did not affect their capacity to lyse MSCs. We conclude that the immunosuppressive drugs tacrolimus, rapamycin, and sotrastaurin are not capable of inhibiting the lysis of allogeneic and autologous MSCs by activated NK cells. Other approaches to controlling lysis of MSCs should be investigated, as controlling lysis may determine the efficacy of MSC therapy. PMID:21732766

  18. Becoming a Blood Stem Cell Donor

    Medline Plus

    Full Text Available ... Institutes of Health Clinical Center in Bethesda, MD. Bone marrow transplantation (BMT) and peripheral blood stem cell transplantation (PBSCT) are most commonly used in the treatment of cancers like leukemia and lymphoma to restore stem cells ...

  19. Mesenchymal Stem Cells and Induced Pluripotent Stem Cells as Therapies for Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Juan Xiao

    2015-04-01

    Full Text Available Multiple sclerosis (MS is a chronic, autoimmune, inflammatory demyelinating disorder of the central nervous system that leads to permanent neurological deficits. Current MS treatment regimens are insufficient to treat the irreversible neurological disabilities. Tremendous progress in the experimental and clinical applications of cell-based therapies has recognized stem cells as potential candidates for regenerative therapy for many neurodegenerative disorders including MS. Mesenchymal stem cells (MSC and induced pluripotent stem cell (iPSCs derived precursor cells can modulate the autoimmune response in the central nervous system (CNS and promote endogenous remyelination and repair process in animal models. This review highlights studies involving the immunomodulatory and regenerative effects of mesenchymal stem cells and iPSCs derived cells in animal models, and their translation into immunomodulatory and neuroregenerative treatment strategies for MS.

  20. The Impact of Epigenetics on Mesenchymal Stem Cell Biology.

    Science.gov (United States)

    Ozkul, Yusuf; Galderisi, Umberto

    2016-11-01

    Changes in epigenetic marks are known to be important regulatory factors in stem cell fate determination and differentiation. In the past years, the investigation of the epigenetic regulation of stem cell biology has largely focused on embryonic stem cells (ESCs). Contrarily, less is known about the epigenetic control of gene expression during differentiation of adult stem cells (AdSCs). Among AdSCs, mesenchymal stem cells (MSCs) are the most investigated stem cell population because of their enormous potential for therapeutic applications in regenerative medicine and tissue engineering. In this review, we analyze the main studies addressing the epigenetic changes in MSC landscape during in vitro cultivation and replicative senescence, as well as follow osteocyte, chondrocyte, and adipocyte differentiation. In these studies, histone acetylation, DNA methylation, and miRNA expression are among the most investigated phenomena. We describe also epigenetic changes that are associated with in vitro MSC trans-differentiation. Although at the at initial stage, the epigenetics of MSCs promise to have profound implications for stem cell basic and applied research. J. Cell. Physiol. 231: 2393-2401, 2016. © 2016 Wiley Periodicals, Inc.

  1. The Impact of Epigenetics on Mesenchymal Stem Cell Biology.

    Science.gov (United States)

    Ozkul, Yusuf; Galderisi, Umberto

    2016-11-01

    Changes in epigenetic marks are known to be important regulatory factors in stem cell fate determination and differentiation. In the past years, the investigation of the epigenetic regulation of stem cell biology has largely focused on embryonic stem cells (ESCs). Contrarily, less is known about the epigenetic control of gene expression during differentiation of adult stem cells (AdSCs). Among AdSCs, mesenchymal stem cells (MSCs) are the most investigated stem cell population because of their enormous potential for therapeutic applications in regenerative medicine and tissue engineering. In this review, we analyze the main studies addressing the epigenetic changes in MSC landscape during in vitro cultivation and replicative senescence, as well as follow osteocyte, chondrocyte, and adipocyte differentiation. In these studies, histone acetylation, DNA methylation, and miRNA expression are among the most investigated phenomena. We describe also epigenetic changes that are associated with in vitro MSC trans-differentiation. Although at the at initial stage, the epigenetics of MSCs promise to have profound implications for stem cell basic and applied research. J. Cell. Physiol. 231: 2393-2401, 2016. © 2016 Wiley Periodicals, Inc. PMID:26960183

  2. Neural Differentiation of Human Umbilical Cord Mesenchymal Stem Cells by Cerebrospinal Fluid

    Directory of Open Access Journals (Sweden)

    Shirin FARIVAR*

    2015-01-01

    chick embryos. J Exp Zool A Comp Exp Biol 2004 Apr 1;301(4:280-9.Mitchell KE, Weiss ML. Matrix cells from Wharton’s jelly form neurons and glia. Stem Cells 2003;21(1:50-60.Marcus AJ, Woodbury D. Fetal stem cells from extra-embryonic tissues: do not discard. J Cell Mol Med 2008 Jun;12(3:730-42. doi: 10.1111/j.1582- 4934.2008.00221.x. Epub 2008 Jan 11.Miao Z, Jin J, Chen L, Zhu J, Huang W, Zhao J, Quian H, Zhang X. Isolation of mesenchymal stem cells from human placenta: comparison with human bone marrow mesenchymal stem cells. Cell Biol Int 2006 Sep;30(9:681-7. Epub 2006 Apr 22.In ‘tAnker PS, Scherjon SA, Kleijburg-van der Keur C, Noort WA, Claas FHJ, Willemze R, Fibbe WE, Kanhai HHH. Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood 2003;102(4:1548-49.Magatti M, De Munari S, Vertua E, Gibelli L, Wengler GS, Parolini O. Human amnion mesenchyme harbors cells with allogeneic T-cell suppression and stimulation capabilities. Stem Cells 2008 Jan;26(1:182-92. Epub 2007 Sep 27.Kang XQ, Zang WJ, Bao LJ, Li DL, Xu XL, Yu XJ. Differentiating characterization of human umbilical cord blood-derived mesenchymal stem cells in vitro. Cell Biol Int 2006 Jul;30(7:569-75. Epub 2006 Mar 6.Kern S, Eichler H, Stoeve J, Kluter H, Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 2006 May;24(5:1294-301. Epub 2006 Jan 12.Wagner W, Wein F, Seckinger A, Frankhauser M, Wirkner U, Krause U, et al. Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Exp Hematol 2005 Nov;33(11:1402-16.Jackson JS, Golding JP, Chapon C, Jones WA, Bhakoo KK: Homing of stem cells to sites of inflammatory brain injury after intracerebral and intravenous administration: a longitudinal imaging study. Stem Cell Res Ther 2010 Jun 15;1(2:17. doi: 10.1186/scrt17.Romanov YA, Svintsitskaya VA, Smirnov VN. Searching for alternative

  3. ¬Mesenchymal Stem Cell Fate: Applying Biomaterials for Control of Stem Cell Behaviour

    OpenAIRE

    Hilary Jane Anderson; Matthew John Dalby; Jugal eSahoo; Rein eUljin

    2016-01-01

    Mesenchymal Stem Cell Fate: Applying Biomaterials for Control of Stem Cell BehaviourHilary J Anderson1, Jugal Kishore Sahoo2, Rein V Ulijn2,3, Matthew J Dalby1*1 Centre for Cell Engineering, University of Glasgow, Glasgow, UK.2 Technology and Innovation centre, Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK. 3 Advanced Science Research Centre (ASRC) and Hunter College, City University of New York, NY 10031, NY, USA. Correspondence:*Hilary Andersonh.anderson...

  4. Generation of induced pluripotent stem cells from human mesenchymal stem cells of parotid gland origin

    OpenAIRE

    Yan, Xing; Xu, Nuo; Meng, Cen; Wang, Bianhong; Yuan, Jinghong; Wang, Caiyun; Li, Yang

    2016-01-01

    The technology to reprogram human somatic cells to pluripotent state allows the generation of patient-specific induced pluripotent stem cells (iPSCs) and holds a great promise for regenerative medicine and autologous transplantation. Here we, for the first time, identified mesenchymal stem cells isolated from parotid gland (hPMSCs) as a suitable candidate for iPSC production. In the present study, hPMSCs were isolated from parotid gland specimens in patients with squamous cell carcinoma of th...

  5. Pretreatment of Cardiac Stem Cells With Exosomes Derived From Mesenchymal Stem Cells Enhances Myocardial Repair

    OpenAIRE

    Zhang, Zhiwei; Yang, Junjie; Yan, Weiya; Li, Yangxin; Shen, Zhenya; Asahara, Takayuki

    2016-01-01

    Background Exosomes derived from mesenchymal stem cells (MSCs) were proved to boost cell proliferation and angiogenic potency. We explored whether cardiac stem cells (CSCs) preconditioned with MSC exosomes could survive and function better in a myocardial infarction model. Methods and Results DiI‐labeled exosomes were internalized with CSCs. They stimulated proliferation, migration, and angiotube formation of CSCs in a dose‐dependent manner. In a rat myocardial infarction model, MSC exosome–p...

  6. Mesenchymal stem cells as therapeutic delivery vehicles targeting tumor stroma

    DEFF Research Database (Denmark)

    Serakinci, Nedime; Christensen, Rikke; Sørensen, Flemming Brandt;

    2011-01-01

    The field of stem cell biology continues to evolve by characterization of further types of stem cells and by exploring their therapeutic potential for experimental and clinical applications. Human mesenchymal stem cells (hMSCs) are one of the most promising candidates simply because...... of their easiness of both ex vivo expansion in culture dishes and genetic manipulation. Despite many extensive isolation and expansion studies, relatively little has been done with regard to hMSCs' therapeutic potential. Although clinical trials using hMSCs are underway, their use in cancer therapy still needs...... better understanding and in vivo supporting data. The homing ability of hMSCs was investigated by creating a human xenograft model by transplanting an ovarian cancer cell line into immunocompromised mice. Then, genetically engineered hMSC-telo1 cells were injected through the tail vein...

  7. Mesenchymal stem cell subpopulations: phenotype, property and therapeutic potential.

    Science.gov (United States)

    Mo, Miaohua; Wang, Shan; Zhou, Ying; Li, Hong; Wu, Yaojiong

    2016-09-01

    Mesenchymal stem cells (MSC) are capable of differentiating into cells of multiple cell lineages and have potent paracrine effects. Due to their easy preparation and low immunogenicity, MSC have emerged as an extremely promising therapeutic agent in regenerative medicine for diverse diseases. However, MSC are heterogeneous with respect to phenotype and function in current isolation and cultivation regimes, which often lead to incomparable experimental results. In addition, there may be specific stem cell subpopulations with definite differentiation capacity toward certain lineages in addition to stem cells with multi-differentiation potential. Recent studies have identified several subsets of MSC which exhibit distinct features and biological activities, and enhanced therapeutic potentials for certain diseases. In this review, we give an overview of these subsets for their phenotypic, biological and functional properties. PMID:27141940

  8. Recent Advances in Hydroxyapatite Scaffolds Containing Mesenchymal Stem Cells.

    Science.gov (United States)

    Michel, John; Penna, Matthew; Kochen, Juan; Cheung, Herman

    2015-01-01

    Modern day tissue engineering and cellular therapies have gravitated toward using stem cells with scaffolds as a dynamic modality to aid in differentiation and tissue regeneration. Mesenchymal stem cells (MSCs) are one of the most studied stem cells used in combination with scaffolds. These cells differentiate along the osteogenic lineage when seeded on hydroxyapatite containing scaffolds and can be used as a therapeutic option to regenerate various tissues. In recent years, the combination of hydroxyapatite and natural or synthetic polymers has been studied extensively. Due to the interest in these scaffolds, this review will cover the wide range of hydroxyapatite containing scaffolds used with MSCs for in vitro and in vivo experiments. Further, in order to maintain a progressive scope of the field this review article will only focus on literature utilizing adult human derived MSCs (hMSCs) published in the last three years.

  9. Recent Advances in Hydroxyapatite Scaffolds Containing Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    John Michel

    2015-01-01

    Full Text Available Modern day tissue engineering and cellular therapies have gravitated toward using stem cells with scaffolds as a dynamic modality to aid in differentiation and tissue regeneration. Mesenchymal stem cells (MSCs are one of the most studied stem cells used in combination with scaffolds. These cells differentiate along the osteogenic lineage when seeded on hydroxyapatite containing scaffolds and can be used as a therapeutic option to regenerate various tissues. In recent years, the combination of hydroxyapatite and natural or synthetic polymers has been studied extensively. Due to the interest in these scaffolds, this review will cover the wide range of hydroxyapatite containing scaffolds used with MSCs for in vitro and in vivo experiments. Further, in order to maintain a progressive scope of the field this review article will only focus on literature utilizing adult human derived MSCs (hMSCs published in the last three years.

  10. Strategies to improve homing of mesenchymal stem cells for greater efficacy in stem cell therapy.

    Science.gov (United States)

    Naderi-Meshkin, Hojjat; Bahrami, Ahmad Reza; Bidkhori, Hamid Reza; Mirahmadi, Mahdi; Ahmadiankia, Naghmeh

    2015-01-01

    Stem/progenitor cell-based therapeutic approach in clinical practice has been an elusive dream in medical sciences, and improvement of stem cell homing is one of major challenges in cell therapy programs. Stem/progenitor cells have a homing response to injured tissues/organs, mediated by interactions of chemokine receptors expressed on the cells and chemokines secreted by the injured tissue. For improvement of directed homing of the cells, many techniques have been developed either to engineer stem/progenitor cells with higher amount of chemokine receptors (stem cell-based strategies) or to modulate the target tissues to release higher level of the corresponding chemokines (target tissue-based strategies). This review discusses both of these strategies involved in the improvement of stem cell homing focusing on mesenchymal stem cells as most frequent studied model in cellular therapies.

  11. Repair of calvarial defects with human umbilical cord blood derived mesenchymal stem cells and demineralized bone matrix in athymic rats%人脐血间充质干细胞修复颅骨缺损的实验研究

    Institute of Scientific and Technical Information of China (English)

    刘广鹏; 李宇琳; 孙剑; 崔磊; 张文杰; 曹谊林

    2010-01-01

    Objective To investigate the feasibility of using human umbilical cord blood derived mesenchymal stem cells (UCB-MSCs) and demineralized bone matrix (DBM) scaffolds to repair critical-sized calvarial defects in athymic rats. Methods Human UCB-MSCs were isolated, expanded and osteogenically induced in vitro. Osteogenic differentiation of UCB-MSCs was evaluated by Alizarin Red staining and measurement of calcium content respectively, and then the cells were seeded onto DBM scaffolds. Bilateral full-thickness defects (5 mm in diameter) of parietal bone were created in an athymic rat model. The defects were either repaired with UCB-MSC/DBM constructs (experimental group) or with DBM scaffolds alone (control group). Animals were harvested at 6 and 12 weeks post-implantation respectively, and defect repair was evaluated with gross observation, micro-CT measurement and histological analysis. Results Micro-CT showed that new bone was formed in the experimental group at 6 weeks post-implantation, while no sign of new bone formation was observed in the control group. At 12 weeks post-transplantation, scaffolds had been degraded almost completely in both sides. It was shown that an average of (78.19±6.45)% of each defect volume had been repaired in experimental side; while in the control side, only limited bone formed at the periphery of the defect. Histological examination revealed that the defect was repaired by trabecular bone tissue in experimental side at 12 weeks, while only fibrous connection was observed in the control group. Conclusions Tissue-engineered bone composed of osteogenically-induced human UCB-MSCs on DBM scaffolds could successfully repair the critical-sized calvarial defects in athymic rat models.%目的 应用人脐血间充质干细胞(umbilical cord blood derived mesenchymal stem cells,UCB-MSCs)复合脱钙骨材料构建组织工程化骨,修复裸大鼠颅骨标准缺损.方法 体外扩增培养、成骨诱导人UCB-MSCs,采用Alizarin Red染色

  12. The role of mesenchymal stem cells and serotonin in the development of experimental pancreatitis.

    Science.gov (United States)

    Lazebnic, L B; Lychkova, A E; Knyazev, O V

    2013-08-01

    Pancreatitis was modeled before and after preliminary transplantation of stem cells and serotonin. It was demonstrated that transplantation of mesenchymal stem cells and activation of serotoninergic system prevent the development of pancreatitis. PMID:24143388

  13. Supernatant of Bone Marrow Mesenchymal Stromal Cells Induces Peripheral Blood Mononuclear Cells Possessing Mesenchymal Features

    Directory of Open Access Journals (Sweden)

    Gang Hu, Jun-jun Xu, Zhi-hong Deng, Jie Feng, Yan Jin

    2011-01-01

    Full Text Available Increasing evidence shows that some cells from peripheral blood fibroblast-like mononuclear cells have the capacity to differentiate into mesenchymal lineages. However, the insufficiency of these cells in the circulation challenges the cell isolation and subsequently limits the clinical application of these cells. In the present study, the peripheral blood mononuclear cells (pbMNCs were isolated from wound animals and treated with the supernatant of bone marrow mesenchymal stromal cells (bmMSCs. Results showed these pbMNCs were fibroblast-like, had stromal morphology, were negative for CD34 and CD45, but positive for Vimentin and Collagen I, and had the multipotency to differentiate into adipocytes and osteoblasts. We named these induced peripheral blood-derived mesenchymal stromal cells (ipbMSCs. Skin grafts in combination with ipbMSCs and collagen I were applied for wound healing, and results revealed ipbMSC exhibited similar potency and effectiveness in the promotion of wound healing to the bmMSCs. Hereafter, we speculate that the mixture of growth factors and chemokines secreted by bmMSCs may play an important roles in the induction of the proliferation and mesenchymal differentiation of mononuclear cells. Our results are clinically relevant because it provide a new method for the acquisition of MSCs which can be used as a candidate for the wound repair.

  14. Recruitment of Mesenchymal Stem Cells Into Prostate Tumors Promotes Metastasis

    Science.gov (United States)

    Jung, Younghun; Kim, Jin Koo; Shiozawa, Yusuke; Wang, Jingcheng; Mishra, Anjali; Joseph, Jeena; Berry, Janice E.; McGee, Samantha; Lee, Eunsohl; Sun, Hongli; Wang, Jianhua; Jin, Taocong; Zhang, Honglai; Dai, Jinlu; Krebsbach, Paul H.; Keller, Evan T.; Pienta, Kenneth J.; Taichman, Russell S.

    2013-01-01

    Tumors recruit mesenchymal stem cells (MSCs) to facilitate healing, which induces their conversion into cancer-associated fibroblasts that facilitate metastasis. However, this process is poorly understood on the molecular level. Here we show that the CXCR6 ligand CXCL16 facilitates MSC or Very Small Embryonic-Like (VSEL) cells recruitment into prostate tumors. CXCR6 signaling stimulates the conversion of MSCs into cancer-associated fibroblasts, which secrete stromal-derived factor-1, also known as CXCL12. CXCL12 expressed by cancer-associated fibroblasts then binds to CXCR4 on tumor cells and induces an epithelial to mesenchymal transition, which ultimately promotes metastasis to secondary tumor sites. Our results provide the molecular basis for MSC recruitment into tumors and how this process leads to tumor metastasis. PMID:23653207

  15. Mesenchymal stem cells in tissue repairing and regeneration: Progress and future

    Directory of Open Access Journals (Sweden)

    Jiafei Xi

    2013-07-01

    Full Text Available The presence of mesenchymal progenitor cells within bone marrow has been known since the late nineteenth century. To date, mesenchymal stem cells (MSCs have been isolated from several different connective tissues, such as adipose tissue, muscle, placenta, umbilical cord matrix, blood, liver, and dental pulp. Bone marrow, however, is still one of the major sources of MSCs for preclinical and clinical research. MSCs were first evaluated for regenerative applications and have since been shown to directly influence the immune system and to promote neovascularization of ischemic tissues. These observations have prompted a new era of MSC transplantation as a treatment for various diseases. In this review, we summarize the important studies that have investigated the use of MSCs as a therapeutic agent for regenerative medicine, immune disorders, cancer, and gene therapy. Furthermore, we discuss the mechanisms involved in MSC-based therapies and clinical-grade MSC manufacturing.

  16. Research Progress of Medicinal Herbs for Blood-activating and Stasis-dissolving Regulation of Bone Marrow Mesenchymal Stem Cells Paracrine for Promoting Revascularization%活血化瘀法调控骨髓间充质干细胞旁分泌促血管再生研究述评

    Institute of Scientific and Technical Information of China (English)

    范慧慧; 许二平

    2013-01-01

    目的:探讨活血化瘀中药调控骨髓间充质干细胞旁分泌促血管再生的作用机制.方法:总结近年来关于血管再生研究现状,从中医“生新”等理论出发,分析活血化瘀中药促进血管再生的机制.结果:根据前期的研究基础,认为活血化瘀中药可促进血管再生,并提出了研究思路和方法以及探讨其作用机制的指标.结论:活血化瘀中药通过调控骨髓间充质干细胞旁分泌可促进血管再生.%Objective:To explore the research mechanisms of medicinal herbs for blood-activating and stasis-dissolving regulation of bone marrow mesenchymal stem cells paracrine for promoting revascularization. Methods: Research status of revascularization was summarized , and the mechanism of medical herbs for blood-activating and stasis-dissolving for promoting revascularization was analyzed from theTCM theory of "producing new blood" to start. Results:Medicinal herbs for blood-activating and stasis-dissolving were considered to promote revascularization based on research foundations in early stage, and the research thinkings, methods and indexes to study its mechanisms were proposed. Conclusion: Medicinal herbs for blood-activating and stasis-dissolving can promote revascularization through regulation of bone marrow mesenchymal stem cells paracrine.

  17. Study on differentiation of mesenchymal stem cells derived from human umbilical cord blood into insulin secreting cells%人脐血间充质干细胞向胰岛素分泌细胞分化的研究

    Institute of Scientific and Technical Information of China (English)

    迟作华; 陆琰; 张洹

    2008-01-01

    目的 探讨脐血间充质干细胞(MSC)向胰岛素分泌细胞分化的潜能及其分化诱导条件.方法 分离脐血有核细胞,将其置于MesencultTM培养基中进行培养,并利用贴壁法进行纯化、扩增.扩增后的脐血MSC用表皮生长因子(EGF)、β-巯基乙醇和高糖进行诱导.采用RT-PCR、胰岛素免疫细胞化学染色方法对诱导后的细胞进行鉴定,定量检测胰岛素分泌水平及其对葡萄糖刺激的反应性;移植到链脲佐菌素诱导的糖尿病小鼠体内,观测其在体内的降糖作用.结果 诱导后细胞形态发生明显变化,细胞变圆且聚集成团;RT-PCR分析显示,细胞表达部分胰岛相关基因;细胞的胰岛素免疫细胞化学染色为阳性;而且细胞能分泌少量[(0.37±0.06)mU/L]胰岛素,并对糖刺激具有反应性,刺激指数为1.76;诱导后的细胞移植能降低糖尿病小鼠的血糖.结论 脐血MSC具有向胰岛素分泌细胞分化的潜能.%Objective To investigate the differential potential of mesenchymal stem cells(MSCs) derived from human umbilical cord blood (hUCB) into insulin-secreting cells and its inducing condition. Methods UCB nucleated cells (NCs) were isolated and cultured in MesencuhTM media. The obtained UCB MSC were purified by adherence method and expanded. Then they were induced with epidermal growth factor (EGF), B-mercaptoethanol and high concentration of glucose. The induced cells were identified by RT-PCR. Intracellular insulin was examined by immunocytochemistry. The quantity of insulin secretion and glucosesimulated insulin release were examined by chemiluminescence immtmoassay. The induced cells were also transplanted into renal subcapsular space of STZ-induced hyperglycemic mice to observe the in vivo lowering effect on hyperglycemia. Results The induced cells morphologically became round and were gathering into a mass. The expression of some genes related to pancreatic islet was found by RT-PCR. Chemiluminescence immunoassay

  18. Differentiation of human mesenchymal stem cell spheroids under microgravity conditions

    Directory of Open Access Journals (Sweden)

    Cerwinka Wolfgang H

    2012-06-01

    Full Text Available Abstract To develop and characterize a novel cell culture method for the generation of undifferentiated and differentiated human mesenchymal stem cell 3D structures, we utilized the RWV system with a gelatin-based scaffold. 3 × 106 cells generated homogeneous spheroids and maximum spheroid loading was accomplished after 3 days of culture. Spheroids cultured in undifferentiated spheroids of 3 and 10 days retained expression of CD44, without expression of differentiation markers. Spheroids cultured in adipogenic and osteogenic differentiation media exhibited oil red O staining and von Kossa staining, respectively. Further characterization of osteogenic lineage, showed that 10 day spheroids exhibited stronger calcification than any other experimental group corresponding with significant expression of vitamin D receptor, alkaline phosphatase, and ERp60 . In conclusion this study describes a novel RWV culture method that allowed efficacious engineering of undifferentiated human mesenchymal stem cell spheroids and rapid osteogenic differentiation. The use of gelatin scaffolds holds promise to design implantable stem cell tissue of various sizes and shapes for future regenerative treatment.

  19. Multilineage Potential Research of Bovine Amniotic Fluid Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Yuhua Gao

    2014-02-01

    Full Text Available The use of amnion and amniotic fluid (AF are abundant sources of mesenchymal stem cells (MSCs that can be harvested at low cost and do not pose ethical conflicts. In human and veterinary research, stem cells derived from these tissues are promising candidates for disease treatment, specifically for their plasticity, their reduced immunogenicity, and high anti-inflammatory potential. This work aimed to obtain and characterize bovine amniotic fluid mesenchymal stem cells (AFMSC. The bovine AF from the amniotic cavity of pregnant gilts in the early stages of gestation (3- and 4-m-old bovine embryos was collected. AFMSCs exhibit a fibroblastic-like morphology only starting from the fourth passage, being heterogeneous during the primary culture. Immunofluorescence results showed that AFMSCs were positive for β-integrin, CD44, CD73 and CD166, but negative for CD34, CD45. Meanwhile, AFMSCs expressed ES cell markers, such as Oct4, and when appropriately induced, are capable of differentiating into ectodermal and mesodermal lineages. This study reinforces the emerging importance of these cells as ideal tools in veterinary medicine; future studies aimed at a deeper evaluation of their immunological properties will allow a better understanding of their role in cellular therapy.

  20. Transplantation of placenta-derived mesenchymal stem cell-induced neural stem cells to treat spinal cord injur y

    Institute of Scientific and Technical Information of China (English)

    Zhi Li; Wei Zhao; Wei Liu; Ye Zhou; Jingqiao Jia; Lifeng Yang

    2014-01-01

    Because of their strong proliferative capacity and multi-potency, placenta-derived mesenchymal stem cells have gained interest as a cell source in the ifeld of nerve damage repair. In the present study, human placenta-derived mesenchymal stem cells were induced to differentiate into neural stem cells, which were then transplanted into the spinal cord after local spinal cord injury in rats. The motor functional recovery and pathological changes in the injured spinal cord were observed for 3 successive weeks. The results showed that human placenta-derived mesenchymal stem cells can differentiate into neuron-like cells and that induced neural stem cells contribute to the resto-ration of injured spinal cord without causing transplant rejection. Thus, these cells promote the recovery of motor and sensory functions in a rat model of spinal cord injury. Therefore, human placenta-derived mesenchymal stem cells may be useful as seed cells during the repair of spinal cord injury.

  1. File list: InP.Oth.05.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Oth.05.AllAg.Mesenchymal_stem_cells mm9 Input control Others Mesenchymal stem c...ells SRX318104,SRX318102,SRX228663,SRX228662,SRX228660,SRX228661 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Oth.05.AllAg.Mesenchymal_stem_cells.bed ...

  2. File list: NoD.Oth.20.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Oth.20.AllAg.Mesenchymal_stem_cells hg19 No description Others Mesenchymal stem...RX302072,ERX302066,ERX302075,ERX302074 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Oth.20.AllAg.Mesenchymal_stem_cells.bed ...

  3. File list: NoD.Oth.10.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Oth.10.AllAg.Mesenchymal_stem_cells hg19 No description Others Mesenchymal stem...RX302073,ERX302070,ERX302072,ERX302074 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Oth.10.AllAg.Mesenchymal_stem_cells.bed ...

  4. File list: NoD.Oth.05.AllAg.Mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Oth.05.AllAg.Mesenchymal_stem_cells mm9 No description Others Mesenchymal stem ...cells SRX694677,SRX694678 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Oth.05.AllAg.Mesenchymal_stem_cells.bed ...

  5. File list: InP.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 Input control C...ardiovascular Umbilical cord-derived mesenchymal stem cells SRX831247,SRX831246 http://dbarchive.bioscienced...bc.jp/kyushu-u/hg19/assembled/InP.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  6. File list: His.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 Histone Cardiov...ascular Umbilical cord-derived mesenchymal stem cells SRX831250,SRX831253,SRX831254,SRX831248,SRX831252,SRX8.../hg19/assembled/His.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  7. File list: DNS.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 DNase-seq Cardi...ovascular Umbilical cord-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  8. File list: NoD.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 No description ...Cardiovascular Umbilical cord-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19.../assembled/NoD.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  9. File list: DNS.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 DNase-seq Cardi...ovascular Umbilical cord-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  10. File list: Pol.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 RNA polymerase ...Cardiovascular Umbilical cord-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19.../assembled/Pol.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  11. File list: Pol.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 RNA polymerase ...Cardiovascular Umbilical cord-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19.../assembled/Pol.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  12. File list: Pol.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 RNA polymerase ...Cardiovascular Umbilical cord-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19.../assembled/Pol.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  13. File list: Unc.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 Unclassified Ca...rdiovascular Umbilical cord-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/a...ssembled/Unc.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  14. File list: ALL.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 All antigens Ca...rdiovascular Umbilical cord-derived mesenchymal stem cells SRX831253,SRX831250,SRX831252,SRX831249,SRX831251...biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  15. File list: Unc.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 Unclassified Ca...rdiovascular Umbilical cord-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/a...ssembled/Unc.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  16. File list: NoD.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 No description ...Cardiovascular Umbilical cord-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19.../assembled/NoD.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  17. File list: ALL.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 All antigens Ca...rdiovascular Umbilical cord-derived mesenchymal stem cells SRX831250,SRX831253,SRX831254,SRX831248,SRX831252...biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  18. File list: Oth.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 TFs and others ...Cardiovascular Umbilical cord-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19.../assembled/Oth.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  19. File list: Oth.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 TFs and others ...Cardiovascular Umbilical cord-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19.../assembled/Oth.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  20. File list: His.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 Histone Cardiov...ascular Umbilical cord-derived mesenchymal stem cells SRX831253,SRX831250,SRX831249,SRX831252,SRX831258,SRX8.../hg19/assembled/His.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  1. File list: NoD.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 No description ...Cardiovascular Umbilical cord-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19.../assembled/NoD.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  2. File list: Oth.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 TFs and others ...Cardiovascular Umbilical cord-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19.../assembled/Oth.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  3. File list: His.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 Histone Cardiov...ascular Umbilical cord-derived mesenchymal stem cells SRX831249,SRX831250,SRX831253,SRX831252,SRX831254,SRX8.../hg19/assembled/His.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  4. File list: DNS.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 DNase-seq Cardi...ovascular Umbilical cord-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  5. File list: ALL.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 All antigens Ca...rdiovascular Umbilical cord-derived mesenchymal stem cells SRX831253,SRX831250,SRX831249,SRX831252,SRX831247...biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  6. File list: Pol.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 RNA polymerase ...Cardiovascular Umbilical cord-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19.../assembled/Pol.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  7. File list: InP.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 Input control C...ardiovascular Umbilical cord-derived mesenchymal stem cells SRX831247,SRX831246 http://dbarchive.bioscienced...bc.jp/kyushu-u/hg19/assembled/InP.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  8. File list: Unc.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 Unclassified Ca...rdiovascular Umbilical cord-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/a...ssembled/Unc.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  9. File list: Unc.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 Unclassified Ca...rdiovascular Umbilical cord-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/a...ssembled/Unc.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  10. File list: ALL.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 All antigens Ca...rdiovascular Umbilical cord-derived mesenchymal stem cells SRX831249,SRX831250,SRX831253,SRX831252,SRX831247...biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  11. File list: InP.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 Input control C...ardiovascular Umbilical cord-derived mesenchymal stem cells SRX831247,SRX831246 http://dbarchive.bioscienced...bc.jp/kyushu-u/hg19/assembled/InP.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  12. File list: Oth.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 TFs and others ...Cardiovascular Umbilical cord-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19.../assembled/Oth.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  13. File list: NoD.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 No description ...Cardiovascular Umbilical cord-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19.../assembled/NoD.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  14. File list: InP.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 Input control C...ardiovascular Umbilical cord-derived mesenchymal stem cells SRX831247,SRX831246 http://dbarchive.bioscienced...bc.jp/kyushu-u/hg19/assembled/InP.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  15. Human bone-marrow-derived mesenchymal stem cells

    DEFF Research Database (Denmark)

    Kassem, Moustapha; Abdallah, Basem M

    2008-01-01

    Mesenchymal stem cells (MSC) are a group of cells present in bone-marrow stroma and the stroma of various organs with the capacity for mesoderm-like cell differentiation into, for example, osteoblasts, adipocytes, and chondrocytes. MSC are being introduced in the clinic for the treatment...... of a variety of clinical conditions. The aim of this review is to provide an update regarding the biology of MSC, their identification and culture, and mechanisms controlling their proliferation and differentiation. We also review the current status of their clinical use. Areas in which research is needed...

  16. Mesenchymal stem cell therapy for acute radiation syndrome.

    Science.gov (United States)

    Fukumoto, Risaku

    2016-01-01

    Acute radiation syndrome affects military personnel and civilians following the uncontrolled dispersal of radiation, such as that caused by detonation of nuclear devices and inappropriate medical treatments. Therefore, there is a growing need for medical interventions that facilitate the improved recovery of victims and patients. One promising approach may be cell therapy, which, when appropriately implemented, may facilitate recovery from whole body injuries. This editorial highlights the current knowledge regarding the use of mesenchymal stem cells for the treatment of acute radiation syndrome, the benefits and limitations of which are under investigation. Establishing successful therapies for acute radiation syndrome may require using such a therapeutic approach in addition to conventional approaches. PMID:27182446

  17. Neurogenic Bladder Repair Using Autologous Mesenchymal Stem Cells.

    Science.gov (United States)

    Mahajan, Pradeep V; Subramanian, Swetha; Danke, Amit; Kumar, Anand

    2016-01-01

    The normal function of the urinary bladder is to store and expel urine in a coordinated, controlled fashion, the activity of which is regulated by the central and peripheral nervous systems. Neurogenic bladder is a term applied to a malfunctioning urinary bladder due to neurologic dysfunction or insult emanating from internal or external trauma, disease, or injury. This report describes a case of neurogenic bladder following laminectomy procedure and long-standing diabetes mellitus with neuropathy treated with autologous cellular therapy. The differentiation potential and paracrine effects of mesenchymal stem cells on bladder function have been highlighted. PMID:27656308

  18. Chitosan-collagen porous scaffold and bone marrow mesenchymal stem cell transplantation for ischemic stroke

    Directory of Open Access Journals (Sweden)

    Feng Yan

    2015-01-01

    Full Text Available In this study, we successfully constructed a composite of bone marrow mesenchymal stem cells and a chitosan-collagen scaffold in vitro, transplanted either the composite or bone marrow mesenchymal stem cells alone into the ischemic area in animal models, and compared their effects. At 14 days after co-transplantation of bone marrow mesenchymal stem cells and the hitosan-collagen scaffold, neurological function recovered noticeably. Vascular endothelial growth factor expression and nestin-labeled neural precursor cells were detected in the ischemic area, surrounding tissue, hippocampal dentate gyrus and subventricular zone. Simultaneously, a high level of expression of glial fibrillary acidic protein and a low level of expression of neuron-specific enolase were visible in BrdU-labeled bone marrow mesenchymal stem cells. These findings suggest that transplantation of a composite of bone marrow mesenchymal stem cells and a chitosan-collagen scaffold has a neuroprotective effect following ischemic stroke.

  19. Chitosan-collagen porous scaffold and bone marrow mesenchymal stem cell transplantation for ischemic stroke

    Institute of Scientific and Technical Information of China (English)

    Feng Yan; Wei Yue; Yue-lin Zhang; Guo-chao Mao; Ke Gao; Zhen-xing Zuo; Ya-jing Zhang; Hui Lu

    2015-01-01

    In this study, we successfully constructed a composite of bone marrow mesenchymal stem cells and a chitosan-collagen scaffoldin vitro, transplanted either the composite or bone marrow mesenchymal stem cells alone into the ischemic area in animal models, and compared their effects. At 14 days after co-transplantation of bone marrow mesenchymal stem cells and the hi-tosan-collagen scaffold, neurological function recovered noticeably. Vascular endothelial growth factor expression and nestin-labeled neural precursor cells were detected in the ischemic area, surrounding tissue, hippocampal dentate gyrus and subventricular zone. Simultaneously, a high level of expression of glial ifbrillary acidic protein and a low level of expression of neuron-spe-ciifc enolase were visible in BrdU-labeled bone marrow mesenchymal stem cells. These ifndings suggest that transplantation of a composite of bone marrow mesenchymal stem cells and a chi-tosan-collagen scaffold has a neuroprotective effect following ischemic stroke.

  20. Immunoregulatory effects of bone marrow-derived mesenchymal stem cells in the nasal polyp microenvironment.

    Science.gov (United States)

    Pezato, Rogério; de Almeida, Danilo Cândido; Bezerra, Thiago Freire; Silva, Fernando de Sá; Perez-Novo, Claudina; Gregório, Luís Carlos; Voegels, Richard Louis; Câmara, Niels Olsen; Bachert, Claus

    2014-01-01

    Nasal polyposis is a severe, chronic inflammatory condition of the paranasal sinuses and is frequently associated with asthma and aspirin sensitivity. Mesenchymal stem cells exhibit a potent immunosuppressive effect in several inflammatory conditions, and their role in nasal polyposis remains little explored. Hence, we investigated whether bone marrow-derived mesenchymal stem cells could modulate cell phenotype in the nasal polyp milieu. After coculture with mesenchymal stem cells, the frequency of these inflammatory cells was found to decrease. Furthermore, mesenchymal stem cells promoted strong inhibition of CD4+ and CD8+ T cell proliferation, increased the frequency of CD4+CD25+Foxp3 T cells, and changed the global cytokine profile from an inflammatory to an anti-inflammatory response. We believe that mesenchymal stem cells may be a very useful adjunct for investigation of the inflammatory process in nasal polyposis, contributing to better understanding of the inflammatory course of this condition. PMID:24707116

  1. Immunoregulatory Effects of Bone Marrow-Derived Mesenchymal Stem Cells in the Nasal Polyp Microenvironment

    Directory of Open Access Journals (Sweden)

    Rogério Pezato

    2014-01-01

    Full Text Available Nasal polyposis is a severe, chronic inflammatory condition of the paranasal sinuses and is frequently associated with asthma and aspirin sensitivity. Mesenchymal stem cells exhibit a potent immunosuppressive effect in several inflammatory conditions, and their role in nasal polyposis remains little explored. Hence, we investigated whether bone marrow-derived mesenchymal stem cells could modulate cell phenotype in the nasal polyp milieu. After coculture with mesenchymal stem cells, the frequency of these inflammatory cells was found to decrease. Furthermore, mesenchymal stem cells promoted strong inhibition of CD4+ and CD8+ T cell proliferation, increased the frequency of CD4+CD25+Foxp3 T cells, and changed the global cytokine profile from an inflammatory to an anti-inflammatory response. We believe that mesenchymal stem cells may be a very useful adjunct for investigation of the inflammatory process in nasal polyposis, contributing to better understanding of the inflammatory course of this condition.

  2. Blood-Forming Stem Cell Transplants

    Science.gov (United States)

    ... Health Professionals Questions to Ask about Your Treatment Research Blood-Forming Stem Cell Transplants On This Page What are bone marrow ... are evaluating BMT and PBSCT in clinical trials (research studies) for the treatment ... are the donor’s stem cells matched to the patient’s stem cells in allogeneic ...

  3. Becoming a Blood Stem Cell Donor

    Medline Plus

    Full Text Available ... Institutes of Health Clinical Center in Bethesda, MD. Bone marrow transplantation (BMT) and peripheral blood stem cell transplantation (PBSCT) ... Medicine Clinics 225,676 views 6:18 Alicia's bone marrow donation - Duration: 8:33. ... Peripheral Blood Stem Cell Transplant - Duration: 15:50. Dartmouth-Hitchcock 2,764 views ...

  4. Tumourigenicity and radiation resistance of mesenchymal stem cells

    DEFF Research Database (Denmark)

    D'Andrea, Filippo Peder; Horsman, Michael Robert; Kassem, Moustapha;

    2012-01-01

    Background. Cancer stem cells are believed to be more radiation resistant than differentiated tumour cells of the same origin. It is not known, however, whether normal nontransformed adult stem cells share the same radioresistance as their cancerous counterpart. Material and methods. Nontumourige......Background. Cancer stem cells are believed to be more radiation resistant than differentiated tumour cells of the same origin. It is not known, however, whether normal nontransformed adult stem cells share the same radioresistance as their cancerous counterpart. Material and methods....... Nontumourigenic (TERT4) and tumourigenic (TRET20) cell lines, from an immortalised mesenchymal stem cell line, were grown in culture prior to irradiation and gene expression analysis. Radiation resistance was measured using a clonogenic assay. Differences in gene expression between the two cell lines, both under...... nontreated and irradiated conditions, were assessed with microarrays (Affymetrix Human Exon 1.0 ST array). The cellular functions affected by the altered gene expressions were assessed through gene pathway mapping (Ingenuity Pathway Analysis). Results. Based on the clonogenic assay the nontumourigenic cell...

  5. Mesenchymal Stem Cell Therapy in Diabetes Mellitus: Progress and Challenges

    Directory of Open Access Journals (Sweden)

    Nagwa El-Badri

    2013-01-01

    Full Text Available Advanced type 2 diabetes mellitus is associated with significant morbidity and mortality due to cardiovascular, nervous, and renal complications. Attempts to cure diabetes mellitus using islet transplantation have been successful in providing a source for insulin secreting cells. However, limited donors, graft rejection, the need for continued immune suppression, and exhaustion of the donor cell pool prompted the search for a more sustained source of insulin secreting cells. Stem cell therapy is a promising alternative for islet transplantation in type 2 diabetic patients who fail to control hyperglycemia even with insulin injection. Autologous stem cell transplantation may provide the best outcome for those patients, since autologous cells are readily available and do not entail prolonged hospital stays or sustained immunotoxic therapy. Among autologous adult stem cells, mesenchymal stem cells (MSCs therapy has been applied with varying degrees of success in both animal models and in clinical trials. This review will focus on the advantages of MSCs over other types of stem cells and the possible mechanisms by which MSCs transplant restores normoglycemia in type 2 diabetic patients. Sources of MSCs including autologous cells from diabetic patients and the use of various differentiation protocols in relation to best transplant outcome will be discussed.

  6. Mesenchymal stem cells: a new trend for cell therapy

    Institute of Scientific and Technical Information of China (English)

    Xin WEI; Xue YANG; Zhi-peng HAN; Fang-fang QU; Li SHAO; Yu-fang SHI

    2013-01-01

    Mesenchymal stem cells (MSCs),the major stem cells for cell therapy,have been used in the clinic for approximately 10 years.From animal models to clinical trials,MSCs have afforded promise in the treatment of numerous diseases,mainly tissue injury and immune disorders.In this review,we summarize the recent opinions on methods,timing and cell sources for MSC administration in clinical applications,and provide an overview of mechanisms that are significant in MSC-mediated therapies.Although MSCs for cell therapy have been shown to be safe and effective,there are still challenges that need to be tackled before their wide application in the clinic.

  7. Effects of Oxidative Stress on Mesenchymal Stem Cell Biology

    Science.gov (United States)

    2016-01-01

    Mesenchymal stromal/stem cells (MSCs) are multipotent stem cells present in most fetal and adult tissues. Ex vivo culture-expanded MSCs are being investigated for tissue repair and immune modulation, but their full clinical potential is far from realization. Here we review the role of oxidative stress in MSC biology, as their longevity and functions are affected by oxidative stress. In general, increased reactive oxygen species (ROS) inhibit MSC proliferation, increase senescence, enhance adipogenic but reduce osteogenic differentiation, and inhibit MSC immunomodulation. Furthermore, aging, senescence, and oxidative stress reduce their ex vivo expansion, which is critical for their clinical applications. Modulation of sirtuin expression and activity may represent a method to reduce oxidative stress in MSCs. These findings have important implications in the clinical utility of MSCs for degenerative and immunological based conditions. Further study of oxidative stress in MSCs is imperative in order to enhance MSC ex vivo expansion and in vivo engraftment, function, and longevity. PMID:27413419

  8. Bone-Marrow-Derived Mesenchymal Stem Cells for Organ Repair

    Directory of Open Access Journals (Sweden)

    Ming Li

    2013-01-01

    Full Text Available Mesenchymal stem cells (MSCs are prototypical adult stem cells with the capacity for self-renewal and differentiation with a broad tissue distribution. MSCs not only differentiate into types of cells of mesodermal lineage but also into endodermal and ectodermal lineages such as bone, fat, cartilage and cardiomyocytes, endothelial cells, lung epithelial cells, hepatocytes, neurons, and pancreatic islets. MSCs have been identified as an adherent, fibroblast-like population and can be isolated from different adult tissues, including bone marrow (BM, umbilical cord, skeletal muscle, and adipose tissue. MSCs secrete factors, including IL-6, M-CSF, IL-10, HGF, and PGE2, that promote tissue repair, stimulate proliferation and differentiation of endogenous tissue progenitors, and decrease inflammatory and immune reactions. In this paper, we focus on the role of BM-derived MSCs in organ repair.

  9. Therapeutic Implications of Mesenchymal Stem Cells in Liver Injury

    Directory of Open Access Journals (Sweden)

    Maria Ausiliatrice Puglisi

    2011-01-01

    Full Text Available Mesenchymal stem cells (MSCs, represent an attractive tool for the establishment of a successful stem-cell-based therapy of liver diseases. A number of different mechanisms contribute to the therapeutic effects exerted by MSCs, since these cells can differentiate into functional hepatic cells and can also produce a series of growth factors and cytokines able to suppress inflammatory responses, reduce hepatocyte apoptosis, regress liver fibrosis, and enhance hepatocyte functionality. To date, the infusion of MSCs or MSC-conditioned medium has shown encouraging results in the treatment of fulminant hepatic failure and in end-stage liver disease in experimental settings. However, some issues under debate hamper the use of MSCs in clinical trials. This paper summarizes the biological relevance of MSCs and the potential benefits and risks that can result from translating the MSC research to the treatment of liver diseases.

  10. Hepatogenic differentiation of human mesenchymal stem cells from adipose tissue in comparison with bone marrow mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    Raquel Taléns-Visconti; Ana Bonora; Ramiro Jover; Vicente Mirabet; Francisco Carbonell; José Vicente Castell; María José Gómez-Lechón

    2006-01-01

    AIM: To investigate and compare the hepatogenic transdifferentiation of adipose tissue-derived stem cells (ADSC) and bone marrow-derived mesenchymal stem cells (BMSC) in vitro. Transdifferentiation of BMSC into hepatic cells in vivo has been described. Adipose tissue represents an accessible source of ADSC, with similar characteristics to BMSC.METHODS: BMSCs were obtained from patients undergoing total hip arthroplasty and ADSC from human adipose tissue obtained from lipectomy. Cells were grown in medium containing 15% human serum. Cultures were serum deprived for 2 d before cultivating under similar pro-hepatogenic conditions to those of liver development using a 2-step protocol with sequential addition of growth factors, cytokines and hormones. Hepatic differentiation was RT-PCR-assessed and liver-marker genes were immunohistochemically analysed.RESULTS: BMSC and ADSC exhibited a fibroblastic morphology that changed to a polygonal shape when cells differentiated. Expression of stem cell marker Thy1 decreased in differentiated ADSC and BMSC. However, the expression of the hepatic markers, albumin and CYPs increased to a similar extent in differentiated BMSC and ADSC. Hepatic gene activation could be attributed to increased liver-enriched transcription factors (C/EBPβ and HNF4α), as demonstrated by adenoviral expression vectors.CONCLUSION: Mesenchymal stem cells can be induced to hepatogenic transdifferentiation in vitro. ADSCs have a similar hepatogenic differentiation potential to BMSC,but a longer culture period and higher proliferation capacity. Therefore, adipose tissue may be an ideal source of large amounts of autologous stem cells, and may become an alternative for hepatocyte regeneration, liver cell transplantation or preclinical drug testing.

  11. Nicorandil enhances the efficacy of mesenchymal stem cell therapy in isoproterenol-induced heart failure in rats.

    Science.gov (United States)

    Mohamed, Sarah S; Ahmed, Lamiaa A; Attia, Wael A; Khattab, Mahmoud M

    2015-12-01

    Stem cell transplantation has emerged as a promising technique for regenerative medicine in cardiovascular therapeutics. However, the results have been less than optimal. The aim of the present study was to investigate whether nicorandil could offer an additional benefit over bone marrow-derived mesenchymal stem cell therapy in isoproterenol-induced myocardial damage and its progression to heart failure in rats. Isoproterenol was injected subcutaneously for 2 consecutive days at doses of 85 and 170 mg/kg/day, respectively. Nicorandil (3 mg/kg/day) was then given orally with or without a single intravenous bone marrow-derived mesenchymal stem cell administration. Electrocardiography and echocardiography were recorded 2 weeks after the beginning of treatment. Rats were then sacrificed and the ventricle was isolated for estimation of tumor necrosis factor-alpha, vascular endothelial growth factor and transforming growth factor-beta. Moreover, protein expressions of caspase-3, connexin-43 as well as endothelial and inducible nitric oxide synthases were evaluated. Finally, histological studies of myocardial fibrosis and blood vessel density were performed and cryosections were done for estimation cell homing. Combined nicorandil/bone marrow-derived mesenchymal stem cell therapy provided an additional improvement compared to cell therapy alone toward reducing isoproterenol-induced cardiac hypertrophy, fibrosis and inflammation. Notably, combined therapy induced significant increase in angiogenesis and cell homing and prevented isoproterenol-induced changes in contractility and apoptotic markers. In conclusion, combined nicorandil/bone marrow-derived mesenchymal stem cell therapy was superior to cell therapy alone toward preventing isoproterenol-induced heart failure in rats through creation of a supportive environment for mesenchymal stem cells.

  12. Induction of mesenchymal stem cell chondrogenesis by polyacrylate substrates.

    Science.gov (United States)

    Glennon-Alty, Laurence; Williams, Rachel; Dixon, Simon; Murray, Patricia

    2013-04-01

    Mesenchymal stem cells (MSCs) can generate chondrocytes in vitro, but typically need to be cultured as aggregates in the presence of transforming growth factor beta (TGF-β), which makes scale-up difficult. Here we investigated if polyacrylate substrates modelled on the functional group composition and distribution of the Arg-Gly-Asp (RGD) integrin-binding site could induce MSCs to undergo chondrogenesis in the absence of exogenous TGF-β. Within a few days of culture on the biomimetic polyacrylates, both mouse and human MSCs, and a mesenchymal-like mouse-kidney-derived stem cell line, began to form multi-layered aggregates and started to express the chondrocyte-specific markers, Sox9, collagen II and aggrecan. Moreover, collagen II tended to be expressed in the centre of the aggregates, similarly to developing limb buds in vivo. Surface analysis of the substrates indicated that those with the highest surface amine content were most effective at promoting MSC chondrogenesis. These results highlight the importance of surface group functionality and the distribution of those groups in the design of substrates to induce MSC chondrogenesis. PMID:23237986

  13. Cryopreservation of Adipose-Derived Mesenchymal Stem Cells.

    Science.gov (United States)

    Miyagi-Shiohira, Chika; Kurima, Kiyoto; Kobayashi, Naoya; Saitoh, Issei; Watanabe, Masami; Noguchi, Yasufumi; Matsushita, Masayuki; Noguchi, Hirofumi

    2015-12-17

    Mesenchymal stem cells (MSCs) have the potential to differentiate into cells of mesodermal origin such as osteoblasts, adipocytes, myocytes, and chondrocytes. They possess an immunosuppressive effect, which makes them a viable cell population for the cell-based therapy of treatment-resistant immune diseases. Adipose-derived mesenchymal stem cells (ASCs) have been demonstrated to have the ability to acquire the properties of subcutaneous adipose tissue particularly easily, and cryopreservation is currently performed as a routine method for preserving ASCs to safely acquire large numbers of cells. However, many studies have reported that cellular activity after freezing and thawing may be affected by the solutions used for cryopreservation. Dimethyl sulfoxide (DMSO) is commonly used as a cryopreservation medium as it diffuses into the cell through the plasma membrane and protects the cells from the damage caused by freezing. As substitutes for DMSO or animal-derived serum, cell banker series, polyvinylpyrrolidone (PVP), sericin and maltose, and methyl cellulose (MC) have been investigated for their clinical applications. It is critical to develop a reliable cell cryopreservation protocol for regenerative medicine using MSCs. PMID:26858903

  14. Mesenchymal stem cell and osteoarthritis: a literature review

    Directory of Open Access Journals (Sweden)

    Zhaleh Shariati Sarabi

    2016-04-01

    Full Text Available The most common disease in the aged population is osteoarthritis (OA that is resulting in progressive dysfunction following isolated cartilage injuries, subchondral bone remodeling, tissue loss, marginal osteophytes, and loss of joint space. Mesenchymal stem cells (MSCs are multipotent stem cells; they are able to produce many or all joint tissues. Bone marrow and adipose tissue are rich sources of mesenchymal cells that are useful for the reconstruction of injured tissues such as bone, cartilage, or cardiac muscle. Recently, some studies have been performed on the use of the direct intra-articular injection of mononuclear cells (MNCs and MSCs as potential therapeutic targets in OA. In this review, the history of MSCs in the treatment of OA are explained. Injection of Bone Marrow Aspirates Concentrate (BMAC has significantly improved both joint pain and function in radiologic findings; some studies suggested that the injection would be even more effective in early to moderate phases of OA. Injection of MSCs in combination with growth factors may be better solution for the treatment.

  15. Mesenchymal stem cells: Emerging mechanisms of immunomodulation and therapy

    Institute of Scientific and Technical Information of China (English)

    Justin; D; Glenn; Katharine; A; Whartenby

    2014-01-01

    Mesenchymal stem cells(MSCs) are a pleiotropic population of cells that are self-renewing and capable of differentiating into canonical cells of the mesenchyme, including adipocytes, chondrocytes, and osteocytes. They employ multi-faceted approaches to maintain bone marrow niche homeostasis and promote wound healing during injury. Biomedical research has long sought to exploit their pleiotropic properties as a basis for cell therapy for a variety of diseases and to facilitate hematopoietic stem cell establishment and stromal reconstruction in bone marrow transplantation. Early results demonstrated their usage as safe, and there was little host response to these cells. The discovery of their immunosuppressive functions ushered in a new interest in MSCs as a promising therapeutic tool to suppress inflammation and down-regulate pathogenic immune responses in graft-versus-host and autoimmune diseases such as multiple sclerosis, autoimmune diabetes, and rheumatoid arthritis. MSCs produce a large number of soluble and membrane-bound factors, some of which inhibit immune responses. However, the full range of MSC-mediated immune-modulation remains incompletely understood, as emerging reports also reveal that MSCs can adopt an immunogenic phenotype, stimulate immune cells, and yield seemingly contradictory results in experimental animal models of inflammatory disease. The present review describes the large body of literature that has been accumulated on the fascinating biology of MSCs and their complex effects on immune responses.

  16. Cell therapy of congenital corneal diseases with umbilical mesenchymal stem cells: lumican null mice.

    Directory of Open Access Journals (Sweden)

    Hongshan Liu

    Full Text Available BACKGROUND: Keratoplasty is the most effective treatment for corneal blindness, but suboptimal medical conditions and lack of qualified medical personnel and donated cornea often prevent the performance of corneal transplantation in developing countries. Our study aims to develop alternative treatment regimens for congenital corneal diseases of genetic mutation. METHODOLOGY/PRINCIPAL FINDINGS: Human mesenchymal stem cells isolated from neonatal umbilical cords were transplanted to treat thin and cloudy corneas of lumican null mice. Transplantation of umbilical mesenchymal stem cells significantly improved corneal transparency and increased stromal thickness of lumican null mice, but human umbilical hematopoietic stem cells failed to do the same. Further studies revealed that collagen lamellae were re-organized in corneal stroma of lumican null mice after mesenchymal stem cell transplantation. Transplanted umbilical mesenchymal stem cells survived in the mouse corneal stroma for more than 3 months with little or no graft rejection. In addition, these cells assumed a keratocyte phenotype, e.g., dendritic morphology, quiescence, expression of keratocyte unique keratan sulfated keratocan and lumican, and CD34. Moreover, umbilical mesenchymal stem cell transplantation improved host keratocyte functions, which was verified by enhanced expression of keratocan and aldehyde dehydrogenase class 3A1 in lumican null mice. CONCLUSIONS/SIGNIFICANCE: Umbilical mesenchymal stem cell transplantation is a promising treatment for congenital corneal diseases involving keratocyte dysfunction. Unlike donated corneas, umbilical mesenchymal stem cells are easily isolated, expanded, stored, and can be quickly recovered from liquid nitrogen when a patient is in urgent need.

  17. Propofol promotes spinal cord injury repair by bone marrow mesenchymal stem cell transplantation

    Institute of Scientific and Technical Information of China (English)

    Ya-jing Zhou; Jian-min Liu; Shu-ming Wei; Yun-hao Zhang; Zhen-hua Qu; Shu-bo Chen

    2015-01-01

    Propofol is a neuroprotective anesthetic. Whether propofol can promote spinal cord injury repair by bone marrow mesenchymal stem cells remains poorly understood. We used rats to investigate spinal cord injury repair using bone marrow mesenchymal stem cell transplantation combined with propofol administrationvia the tail vein. Rat spinal cord injury was clearly alleviated; a large number of newborn non-myelinated and myelinated nerve ifbers appeared in the spinal cord, the numbers of CM-Dil-labeled bone marrow mesenchymal stem cells and lfuorogold-labeled nerve ifbers were increased and hindlimb motor function of spinal cord-injured rats was mark-edly improved. These improvements were more prominent in rats subjected to bone marrow mesenchymal cell transplantation combined with propofol administration than in rats receiving monotherapy. These results indicate that propofol can enhance the therapeutic effects of bone marrow mesenchymal stem cell transplantation on spinal cord injury in rats.

  18. Propofol promotes spinal cord injury repair by bone marrow mesenchymal stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Ya-jing Zhou

    2015-01-01

    Full Text Available Propofol is a neuroprotective anesthetic. Whether propofol can promote spinal cord injury repair by bone marrow mesenchymal stem cells remains poorly understood. We used rats to investigate spinal cord injury repair using bone marrow mesenchymal stem cell transplantation combined with propofol administration via the tail vein. Rat spinal cord injury was clearly alleviated; a large number of newborn non-myelinated and myelinated nerve fibers appeared in the spinal cord, the numbers of CM-Dil-labeled bone marrow mesenchymal stem cells and fluorogold-labeled nerve fibers were increased and hindlimb motor function of spinal cord-injured rats was markedly improved. These improvements were more prominent in rats subjected to bone marrow mesenchymal cell transplantation combined with propofol administration than in rats receiving monotherapy. These results indicate that propofol can enhance the therapeutic effects of bone marrow mesenchymal stem cell transplantation on spinal cord injury in rats.

  19. The systemic influence of platelet-derived growth factors on bone marrow mesenchymal stem cells in fracture patients

    OpenAIRE

    Tan, Hiang Boon; Giannoudis, Peter V.; Boxall, Sally A; McGonagle, Dennis; Jones, Elena

    2015-01-01

    Background Fracture healing is a complex process regulated by a variety of cells and signalling molecules which act both locally and systemically. The aim of this study was to investigate potential changes in patients’ mesenchymal stem cells (MSCs) in the iliac crest (IC) bone marrow (BM) and in peripheral blood (PB) in relation to the severity of trauma and to correlate them with systemic changes reflective of inflammatory and platelet responses following fracture. Methods ICBM samples were ...

  20. Clinical application of mesenchymal stem cells for aseptic bone necrosis

    Directory of Open Access Journals (Sweden)

    Tomoki Aoyama

    2008-11-01

    Full Text Available Since 2007, we had started clinical trial using mesenchymal stem cell (MSCs for the treatment of aseptic bone necrosis as a first clinical trial permitted by Japanese Health, Labour and Welfare Ministry.Aseptic bone necrosis of the femoral head commonly occurs in patients with two to four decades, causing severe musculoskeletal disability. Although its diagnosis is easy with X-ray and MRI, there has been no gold standard invented for treatment of this disease. MSCs represent a stem cell population in adult tissues that can be isolated and expanded in culture, and differentiate into cells with different nature. Combination with β-tri-calcium phosphate and vascularized bone graft, we succeeded to treat bone necrosis of the femoral head.Regenerative medicine using stem cells is hopeful and shed a light on intractable disease. To become widespread, Basic, Translational, Application, and Developmental study is needed.? From an experience of cell therapy using MSCs, we started to research induced pluripotent stem cell (iPS for clinical application.

  1. A Biological Pacemaker Restored by Autologous Transplantation of Bone Marrow Mesenchymal Stem Cells

    Institute of Scientific and Technical Information of China (English)

    REN Xiao-qing; PU Jie-lin; ZHANG Shu; MENG Liang; WANG Fang-zheng

    2008-01-01

    Objective:To restore cardiac autonomic pace function by autologous transplantation and committed differentiation of bone marrow mesenchymal stem cells, and explore the technique for the treatment of sick sinus syndrome. Methods:Mesenchymal stem cells isolated from canine bone marrow were culture-expanded and differentiated in vitro by 5-azacytidine. The models of sick sinus syndrome in canines were established by ablating sinus node with radio-frequency technique. Differentiated mesenchymal stem cells labeled by BrdU were autologously transplanted into sinus node area through direct injection. The effects of autologous transplantation of mesenchymal stem cells on cardiac autonomic pace function in sick sinus syndrome models were evaluated by electrocardiography, pathologic and immunohistochemical staining technique.Results:There was distinct improvement on pace function of sick sinus syndrome animal models while differentiated mesenchymal stem cells were auto-transplanted into sinus node area. Mesenchymal stem cells transplanted in sinus node area were differentiated into similar sinus node cells and endothelial cells in vivo, and established gap junction with native cardiomyocytes. Conclusion:The committed-induced mesenchymal stem cells transplanted into sinus node area can differentiate into analogous sinus node cells and improve pace function in canine sick sinus syndrome models.

  2. Myogenic differentiation of mesenchymal stem cells for muscle regeneration in urinary tract

    Institute of Scientific and Technical Information of China (English)

    YANG Bin; ZHENG Jun-hua; ZHANG Yuan-yuan

    2013-01-01

    Objective This article was to review the current status of adult mesenchymal stem cells transplantation for muscle regeneration in urinary tract and propose the future prospect in this field.Data sources The data used in this review were mainly obtained from articles listed in Medline and PubMed (2000-2013).The search terms were "mesenchymal stem cells","bladder","stress urinary incontinence" and "tissue engineering".Study selection Articles regarding the adult mesenchymal stem cells for tissue engineering of bladder and stress urinary incontinence were selected and reviewed.Results Adult mesenchymal stem cells had been identified and well characterized in human bone marrow,adipose tissue,skeletal muscle and urine,and demonstrated the capability of differentiating into smooth muscle cells and skeletal muscle cells under myogenic differentiation conditions in vitro.Multiple preclinical and clinical studies indicated that adult mesenchymal stem cells could restore and maintain the structure and function of urinary muscle tissues after transplanted,and potentially improve the quality of life in patients.Conclusions Smooth or skeletal myogenic differentiation of mesenchymal stem cells with regenerative medicine technology may provide a novel approach for muscle regeneration and tissue repair in urinary tract.The long-term effect and safety of mesenchymal stem cell transplantation should be further evaluated before this approach becomes widely used in patients.

  3. Mesenchymal stem cell therapy for osteoarthritis: current perspectives

    Directory of Open Access Journals (Sweden)

    Wyles CC

    2015-08-01

    Full Text Available Cody C Wyles,1 Matthew T Houdek,2 Atta Behfar,3 Rafael J Sierra,21Mayo Medical School, 2Department of Orthopedic Surgery, 3Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USAAbstract: Osteoarthritis (OA is a painful chronic condition with a significant impact on quality of life. The societal burden imposed by OA is increasing in parallel with the aging population; however, no therapies have demonstrated efficacy in preventing the progression of this degenerative joint disease. Current mainstays of therapy include activity modification, conservative pain management strategies, weight loss, and if necessary, replacement of the affected joint. Mesenchymal stem cells (MSCs are a multipotent endogenous population of progenitors capable of differentiation to musculoskeletal tissues. MSCs have a well-documented immunomodulatory role, managing the inflammatory response primarily through paracrine signaling. Given these properties, MSCs have been proposed as a potential regenerative cell therapy source for patients with OA. Research efforts are focused on determining the ideal source for derivation, as MSCs are native to several tissues. Furthermore, optimizing the mode of delivery remains a challenge both for appropriate localization of MSCs and for directed guidance toward stemming the local inflammatory process and initiating a regenerative response. Scaffolds and matrices with growth factor adjuvants may prove critical in this effort. The purpose of this review is to summarize the current state of MSC-based therapeutics for OA and discuss potential barriers that must be overcome for successful implementation of cell-based therapy as a routine treatment strategy in orthopedics.Keywords: mesenchymal stem cell, osteoarthritis, treatment, regenerative medicine, cell therapy

  4. Differentiation within autologous fibrin scaffolds of porcine dermal cells with the mesenchymal stem cell phenotype

    Energy Technology Data Exchange (ETDEWEB)

    Puente, Pilar de la, E-mail: pilardelapuentegarcia@gmail.com [Tissue Bank, San Francisco Clinic Foundation, Av./Facultad 51, 5°, 24004 León (Spain); Ludeña, Dolores [Pathology Service, University Hospital of Salamanca, P/San Vicente 58-182, 37007 Salamanca (Spain); López, Marta; Ramos, Jennifer; Iglesias, Javier [Tissue Bank, San Francisco Clinic Foundation, Av./Facultad 51, 5°, 24004 León (Spain)

    2013-02-01

    Porcine mesenchymal stem cells (pMSCs) are an attractive source of cells for tissue engineering because their properties are similar to those of human stem cells. pMSCs can be found in different tissues but their dermal origin has not been studied in depth. Additionally, MSCs differentiation in monolayer cultures requires subcultured cells, and these cells are at risk of dedifferentiation when implanting them into living tissue. Following this, we attempted to characterize the MSCs phenotype of porcine dermal cells and to evaluate their cellular proliferation and differentiation in autologous fibrin scaffolds (AFSs). Dermal biopsies and blood samples were obtained from 12 pigs. Dermal cells were characterized by flow cytometry. Frozen autologous plasma was used to prepare AFSs. pMSC differentiation was studied in standard structures (monolayers and pellets) and in AFSs. The pMSCs expressed the CD90 and CD29 markers of the mesenchymal lineage. AFSs afforded adipogenic, osteogenic and chondrogenic differentiation. The porcine dermis can be proposed to be a good source of MSCs with adequate proliferative capacity and a suitable expression of markers. The pMSCs also showed optimal proliferation and differentiation in AFSs, such that these might serve as a promising autologous and implantable material for use in tissue engineering. -- Highlights: ► Low fibrinogen concentration provides a suitable matrix for cell migration and differentiation. ► Autologous fibrin scaffolds is a promising technique in tissue engineering. ► Dermal cells are an easily accessible mesenchymal stem cell source. ► Fibrin scaffolds afforded adipogenic, osteogenic and chondrogenic differentiation.

  5. Instant stem cell therapy: Characterization and concentration of human mesenchymal stem cells in vitro

    OpenAIRE

    Kasten, P; I Beyen; Egermann, M.; AJ Suda; AA Moghaddam; Zimmermann, G; R Luginbühl

    2008-01-01

    In regenerative medicine, there is an approach to avoid expansion of the mesenchymal stem cell (MSC) before implantation. The aim of this study was to compare methods for instant MSC therapy by use of a portable, automatic and closed system centrifuge that allows for the concentration of MSCs. The main outcome measures were the amount of MSCs per millilitre of bone marrow (BM), clusters of differentiation (CD), proliferation and differentiation capacities of the MSC. A volume reduction protoc...

  6. [Bone and Stem Cells. The mechanism of osteogenic differentiation from mesenchymal stem cell].

    Science.gov (United States)

    Ohata, Yasuhisa; Ozono, Keiichi

    2014-04-01

    Osteoblasts and osteocytes originate from pluripotent mesenchymal stem cells. Mesenchymal stem cells commit to osteogenic lineage and differentiate into mature osteoblasts and osteocytes through osteoprogenitor cells and preosteoblasts in response to multiple stimuli. The osteoblast commitment, differentiation, and functions are governed by several transcription factors. Among these transcription factors, runt-related transcription factor 2 (Runx2) is a crucial factor in osteoblast differentiation and controls bone formation. Differentiation toward these osteogenic lineage is controlled by a multitude of cytokines including WNTs, bone morphogenetic protein (BMP) , transforming growth factor-β (TGF-β) , hedgehog, parathyroid hormone (PTH) /parathyroid hormone related protein (PTHrP) , insulin-like growth factor-1 (IGF-1) , fibroblast growth factor (FGF) , and Notch. Although regulation of Runx2 activity is a point of convergence of many of the signal transduction routes, there is also a high degree of cross-talk between these pathways. Thus, the combined action of the signal transduction pathways induced by some cytokines determines the commitment and differentiation of mesenchymal stem cells toward the osteogenic lineage. PMID:24681495

  7. Advances of mesenchymal stem cells derived from bone marrow and dental tissue in craniofacial tissue engineering.

    Science.gov (United States)

    Yang, Maobin; Zhang, Hongming; Gangolli, Riddhi

    2014-05-01

    Bone and dental tissues in craniofacial region work as an important aesthetic and functional unit. Reconstruction of craniofacial tissue defects is highly expected to ensure patients to maintain good quality of life. Tissue engineering and regenerative medicine have been developed in the last two decades, and been advanced with the stem cell technology. Bone marrow derived mesenchymal stem cells are one of the most extensively studied post-natal stem cell population, and are widely utilized in cell-based therapy. Dental tissue derived mesenchymal stem cells are a relatively new stem cell population that isolated from various dental tissues. These cells can undergo multilineage differentiation including osteogenic and odontogenic differentiation, thus provide an alternative source of mesenchymal stem cells for tissue engineering. In this review, we discuss the important issues in mesenchymal stem cell biology including the origin and functions of mesenchymal stem cells, compare the properties of these two types of mesenchymal cells, update recent basic research and clinic applications in this field, and address important future challenges.

  8. Therapeutic Use of Stem Cell Transplantation for Cell Replacement or Cytoprotective Effect of Microvesicle Released from Mesenchymal Stem Cell

    OpenAIRE

    Choi, Moonhwan; Ban, Taehyun; Rhim, TaiYoun

    2014-01-01

    Idiopathic pulmonary fibrosis (IPF) is the most common and severe type of idiopathic interstitial pneumonias (IIP), and which is currently no method was developed to restore normal structure and function. There are several reports on therapeutic effects of adult stem cell transplantations in animal models of pulmonary fibrosis. However, little is known about how mesenchymal stem cell (MSC) can repair the IPF. In this study, we try to provide the evidence to show that transplanted mesenchymal ...

  9. 脐带血间充质干细胞移植对大鼠脑创伤的影响%Effect of transplantation of umbilical cord blood mesenchymal stem cells on traumatic brain injury in rats

    Institute of Scientific and Technical Information of China (English)

    张鹏; 宋来君; 杨波

    2010-01-01

    目的 探讨脐带血间充质于细胞(CB-MSC)移植对脑创伤大鼠的治疗作用及其在体内分化为神经元样细胞的可行性.方法 健康Wistar大鼠采用随机数字表法分为3组:(1)损伤组,开颅钻孔打击脑组织不移植细胞;(2)移植对照组,开颅创伤脑组织后在创伤区注射生理盐水1.25μ;(3)CB-MSC移植组,开颅创伤脑组织后在创伤区注射含CB-MSC混悬液.每组各18只.CB-MSC从脐带血中分离、培养得到,采用BrdU标记.分别于移植后3 d及10 d进行大鼠行为学评分,2周和4周行Y迷宫试验.移植后2周和5周对植人脑内的CB-MSC进行免疫组织化学检测,镜下观察胶质纤维酸性蛋白(GFAP)和神经元特异性烯醇化酶(NSE)阳性细胞.结果移植后10d 3组大鼠行为学评分差异有统计学意义(p<0.05),移植后2周和4周大鼠学习、记忆评分差异亦有有统计学意义(P<0.05).移植后2周和5周在CB-MSC移植组细胞移植区均发现BrdU-GFAP和BrdU-NSE阳性细胞,其他2组均未发现.结论 CB-MSC移植可促进大鼠脑创伤恢复,提高学习和记忆能力,CB-MSC在体内可以向神经元样细胞分化.%Objective To investigate the feasibility of human umbilical cord blood mesenchymal stem cells (CB-MSCs) in differentiating into neural-like cells and the effect of CB-MSC transplantation on traumatic brain injury in rats. Methods Healthy Wistar rats were induced into model with experimental traumatic brain injury by drilling and hitting their brain tissue, and then, they were randomized into 3 groups (n=18): model group, control group (injured models + injecting 1.25 μL saline) and CB-MSC transplantation group (injured model + injecting CB-MSC suspension). CB-MSC were derived from separated umbilical cord blood, cultured, marked with BrdU and injected into injured area of rats in the CB-MSC transplantation group. The motor function scale was performed 3 and 10 d after the transplantation, and Y maze test was employed to observe the

  10. 间质干细胞对SLE患者外周血T细胞的免疫抑制作用%Immunosuppressive effects of mesenchymal stem cells on peripheral blood T lymphocytes from patients with systemic lupus erythematosus

    Institute of Scientific and Technical Information of China (English)

    殷玉俊; 李晶; 裘影影; 汤郁; 尤海燕; 费晓明; 许文荣

    2009-01-01

    Objective To investigate the immunoregulatory effects of mesenchymal stem cells (MSCs)on peripheral blood T lymphocytes from patients with systemic lupus erythematosus(SLE)in vitro and their potential mechanism.Methods MSCs were isolated from the bone marrow of 3 healthy human volunteers,cultivated and identified.Under phytohemagglutinin(PHA)stimulating,peripheral blood T lymphocytes from 8 patients with SLE were treated with MSCs with the T lymphocyte/MSC ratio being 50:1 in group B and 5:1 in group C or without MSCs(group A).MTT assay was used to detect the proliferation of T lymphocytes.flow cytometry to analyze the expressions of surface markers CD152 and CD28 on T lymphocytes.and real time PCR to measure the mRNA expressions of interleukin-6 and interferon-γ,in the T lymphocytes.Results MSCs could markedly inhibit the proliferation of T lymphocytcs.The proliferation of T lymphocytes expressed as absorbance value at 570 nm was 0.484±0.032 in group B.0.308±0.025 in group C,significantly lower than that in group A(0.765±0.036,both P<0.05),and significant difference was also observed between group C and B(P<0.05).In the case of the percentage of CD28 positive T lymphocytes.group B and C were significantly lower than group A(60.39%±3.92%and 45.05%±3.46%vs 74.73%±3.74%,both P<0.05),and group B significantly differed from group C(P<0.05).MSCs had no obvious effect on the expression of CD152 on T lymphocytes,but significantly suppressed the mRNA expression of interleukin-6 and interferon-γ(both P<0.05).and the suppressive effect was enhanced with the incrgase in MSC count.ConclusionsMSCs exert an immunosuppressive effect on T lymphocytes from patients with SLE,likely through inhibiting the proliferation,CD28 expression,interleukin-6 and interferon-γ mRNA expression of T lymphocytes.%目的 探讨体外骨髓间质干细胞(MSC)对SLE患者外周血T淋巴细胞(T细胞)的免疫调节作用及可能机制.方法 分离培养健康人骨髓MSC并鉴

  11. Mesenchymal Stem Cells for Cardiac Regeneration: Translation to Bedside Reality

    Directory of Open Access Journals (Sweden)

    Mohammad T. Elnakish

    2012-01-01

    Full Text Available Cardiovascular disease (CVD is the leading cause of death worldwide. According to the World Health Organization (WHO, an estimate of 17.3 million people died from CVDs in 2008 and by 2030, the number of deaths is estimated to reach almost 23.6 million. Despite the development of a variety of treatment options, heart failure management has failed to inhibit myocardial scar formation and replace the lost cardiomyocyte mass with new functional contractile cells. This shortage is complicated by the limited ability of the heart for self-regeneration. Accordingly, novel management approaches have been introduced into the field of cardiovascular research, leading to the evolution of gene- and cell-based therapies. Stem cell-based therapy (aka, cardiomyoplasty is a rapidly growing alternative for regenerating the damaged myocardium and attenuating ischemic heart disease. However, the optimal cell type to achieve this goal has not been established yet, even after a decade of cardiovascular stem cell research. Mesenchymal stem cells (MSCs in particular have been extensively investigated as a potential therapeutic approach for cardiac regeneration, due to their distinctive characteristics. In this paper, we focus on the therapeutic applications of MSCs and their transition from the experimental benchside to the clinical bedside.

  12. Characterization of mesenchymal stem cells derived from equine adipose tissue

    Directory of Open Access Journals (Sweden)

    A.M. Carvalho

    2013-08-01

    Full Text Available Stem cell therapy has shown promising results in tendinitis and osteoarthritis in equine medicine. The purpose of this work was to characterize the adipose-derived mesenchymal stem cells (AdMSCs in horses through (1 the assessment of the capacity of progenitor cells to perform adipogenic, osteogenic and chondrogenic differentiation; and (2 flow cytometry analysis using the stemness related markers: CD44, CD90, CD105 and MHC Class II. Five mixed-breed horses, aged 2-4 years-old were used to collect adipose tissue from the base of the tail. After isolation and culture of AdMSCs, immunophenotypic characterization was performed through flow cytometry. There was a high expression of CD44, CD90 and CD105, and no expression of MHC Class II markers. The tri-lineage differentiation was confirmed by specific staining: adipogenic (Oil Red O, osteogenic (Alizarin Red, and chondrogenic (Alcian Blue. The equine AdMSCs are a promising type of adult progenitor cell for tissue engineering in veterinary medicine.

  13. Guidance of mesenchymal stem cells on fibronectin structured hydrogel films.

    Directory of Open Access Journals (Sweden)

    Annika Kasten

    Full Text Available Designing of implant surfaces using a suitable ligand for cell adhesion to stimulate specific biological responses of stem cells will boost the application of regenerative implants. For example, materials that facilitate rapid and guided migration of stem cells would promote tissue regeneration. When seeded on fibronectin (FN that was homogeneously immmobilized to NCO-sP(EO-stat-PO, which otherwise prevents protein binding and cell adhesion, human mesenchymal stem cells (MSC revealed a faster migration, increased spreading and a more rapid organization of different cellular components for cell adhesion on fibronectin than on a glass surface. To further explore, how a structural organization of FN controls the behavior of MSC, adhesive lines of FN with varying width between 10 µm and 80 µm and spacings between 5 µm and 20 µm that did not allow cell adhesion were generated. In dependance on both line width and gaps, cells formed adjacent cell contacts, were individually organized in lines, or bridged the lines. With decreasing sizes of FN lines, speed and directionality of cell migration increased, which correlated with organization of the actin cytoskeleton, size and shape of the nuclei as well as of focal adhesions. Together, defined FN lines and gaps enabled a fine tuning of the structural organization of cellular components and migration. Microstructured adhesive substrates can mimic the extracellular matrix in vivo and stimulate cellular mechanisms which play a role in tissue regeneration.

  14. Becoming a Blood Stem Cell Donor

    Medline Plus

    Full Text Available ... Queue __count__/__total__ Find out why Close Becoming a Blood Stem Cell Donor NCIcancertopics Subscribe Subscribed Unsubscribe ... later? Sign in to add this video to a playlist. Sign in Share More Report Need to ...

  15. Therapeutic Potential of Mesenchymal Stem Cells in Regenerative Medicine

    Directory of Open Access Journals (Sweden)

    Devang M. Patel

    2013-01-01

    Full Text Available Mesenchymal stem cells (MSCs are stromal cells that have the ability to self-renew and also exhibit multilineage differentiation into both mesenchymal and nonmesenchymal lineages. The intrinsic properties of these cells make them an attractive candidate for clinical applications. MSCs are of keen interest because they can be isolated from a small aspirate of bone marrow or adipose tissues and can be easily expanded in vitro. Moreover, their ability to modulate immune responses makes them an even more attractive candidate for regenerative medicine as allogeneic transplant of these cells is feasible without a substantial risk of immune rejection. MSCs secrete various immunomodulatory molecules which provide a regenerative microenvironment for a variety of injured tissues or organ to limit the damage and to increase self-regulated tissue regeneration. Autologous/allogeneic MSCs delivered via the bloodstream augment the titers of MSCs that are drawn to sites of tissue injury and can accelerate the tissue repair process. MSCs are currently being tested for their potential use in cell and gene therapy for a number of human debilitating diseases and genetic disorders. This paper summarizes the current clinical and nonclinical data for the use of MSCs in tissue repair and potential therapeutic role in various diseases.

  16. Femtosecond laser pulses for chemical-free embryonic and mesenchymal stem cell differentiation

    Science.gov (United States)

    Mthunzi, Patience; Dholakia, Kishan; Gunn-Moore, Frank

    2011-10-01

    Owing to their self renewal and pluripotency properties, stem cells can efficiently advance current therapies in tissue regeneration and/or engineering. Under appropriate culture conditions in vitro, pluripotent stem cells can be primed to differentiate into any cell type some examples including neural, cardiac and blood cells. However, there still remains a pressing necessity to answer the biological questions concerning how stem cell renewal and how differentiation programs are operated and regulated at the genetic level. In stem cell research, an urgent requirement on experimental procedures allowing non-invasive, marker-free observation of growth, proliferation and stability of living stem cells under physiological conditions exists. Femtosecond (fs) laser pulses have been reported to non-invasively deliver exogenous materials, including foreign genetic species into both multipotent and pluripotent stem cells successfully. Through this multi-photon facilitated technique, directly administering fs laser pulses onto the cell plasma membrane induces transient submicrometer holes, thereby promoting cytosolic uptake of the surrounding extracellular matter. To display a chemical-free cell transfection procedure that utilises micro-litre scale volumes of reagents, we report for the first time on 70 % transfection efficiency in ES-E14TG2a cells using the enhanced green fluorescing protein (EGFP) DNA plasmid. We also show how varying the average power output during optical transfection influences cell viability, proliferation and cytotoxicity in embryonic stem cells. The impact of utilizing objective lenses of different numerical aperture (NA) on the optical transfection efficiency in ES-E14TG2a cells is presented. Finally, we report on embryonic and mesenchymal stem cell differentiation. The produced specialized cell types could thereafter be characterized and used for cell based therapies.

  17. Mesenchymal stem cells protect from hypoxia-induced alveolar epithelial-mesenchymal transition.

    Science.gov (United States)

    Uzunhan, Yurdagül; Bernard, Olivier; Marchant, Dominique; Dard, Nicolas; Vanneaux, Valérie; Larghero, Jérôme; Gille, Thomas; Clerici, Christine; Valeyre, Dominique; Nunes, Hilario; Boncoeur, Emilie; Planès, Carole

    2016-03-01

    Administration of bone marrow-derived human mesenchymal stem cells (hMSC) reduces lung inflammation, fibrosis, and mortality in animal models of lung injury, by a mechanism not completely understood. We investigated whether hMSC would prevent epithelial-mesenchymal transition (EMT) induced by hypoxia in primary rat alveolar epithelial cell (AEC). In AEC cultured on semipermeable filters, prolonged hypoxic exposure (1.5% O2 for up to 12 days) induced phenotypic changes consistent with EMT, i.e., a change in cell morphology, a decrease in transepithelial resistance (Rte) and in the expression of epithelial markers [zonula occludens-1 (ZO-1), E-cadherin, AQP-5, TTF-1], together with an increase in mesenchymal markers [vimentin, α-smooth muscle actin (α-SMA)]. Expression of transcription factors driving EMT such as SNAIL1, ZEB1, and TWIST1 increased after 2, 24, and 48 h of hypoxia, respectively. Hypoxia also induced TGF-β1 mRNA expression and the secretion of active TGF-β1 in apical medium, and the expression of connective tissue growth factor (CTGF), two inducers of EMT. Coculture of AEC with hMSC partially prevented the decrease in Rte and in ZO-1, E-cadherin, and TTF-1 expression, and the increase in vimentin expression induced by hypoxia. It also abolished the increase in TGF-β1 expression and in TGF-β1-induced genes ZEB1, TWIST1, and CTGF. Finally, incubation with human recombinant KGF at a concentration similar to what was measured in hMSC-conditioned media restored the expression of TTF-1 and prevented the increase in TWIST1, TGF-β1, and CTGF in hypoxic AEC. Our results indicate that hMSC prevent hypoxia-induced alveolar EMT through the paracrine modulation of EMT signaling pathways and suggest that this effect is partly mediated by KGF. PMID:26702148

  18. 脐血间充质干细胞分离扩增及向成骨与脂肪细胞的分化%Isolation,proliferation,and osteoblast and lipoblast differentiation of human umbilical cord blood mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    田新; 唐柳平; 肖萍; 符仁义; 袁天柱; 陈宏

    2008-01-01

    BACKGROUND: Compared with bone marrow-derived mesenchymal stem cells (MSCs),human umbilical cord blood (hUCB)-MSCs possess many advantages,including easy acquirement,low immunogenicity,able to tolerance a higher degree of HLA-matching inconsistency,and with higher purity.OBJECTIVE: To analyze the method and condition for in vitro isolation,purification,proliferation,and osteoblast and lipoblast differentiation of hUCB-MSCs.DESIGN,TIME AND SETTING: The present observational experiment was performed in the Key National Laboratory of Biological Treatment,Huaxi Hospital,Sichuan University (i.e.,Institute of Stem Cells and Tissue EngIneering) between September 2004 and November 2005.MATERIALS: Neonatal cord blood at gestational age 37 to 40 weeks.METHODS: hUCB-MSCs were collected in aseptic condition,isolated by density gradient centrifugation,sedimenting red cells with methylcellulose followed by density gradient centrifugation,or immunomagnetic beads negative technique of CD34+.Theisolated MSCs were used to carry on plastic adherent culture in L-DMEM +10% fetal bovine serum (FBS) or MesencultTM medium +10% FBS.The third passage of cells were used for surface antigen determination by flow cytometry and induced to differentiate towards osteoblasts and lipoblasts.MAIN OUTCOME MEASURES: ①Identification of hUCB-MSCs.②Confirmation of hUCB-MSC differentiation by alizarin red and oil red staining.RESULTS: The mononuclear cells isolated by sedimented and centrifuged way cultured in MesencultTM medium +10% FBS were most available.Obvious colonies appeared in the third passage.The cells obtained by only centrifugation in density gradient were hard to form colony,and those isolated by immunomagnetic beads were hard to culture.The surface antigens of these colony cells presented CD29,CD59,and CD71,hut did not express CD34,CD45,and HLA-DR,and so on.After alizarin red staining,osteoblast-differentiating colony cell cytoplasm exhibited mineralized matrices.After old red staining

  19. Immunomodulatory functions of mesenchymal stem cells and possible mechanisms.

    Science.gov (United States)

    Wang, Qing; Ding, Gang; Xu, Xin

    2016-09-01

    In addition to their well-studied self-renewal capabilities and multipotent differentiation properties, mesenchymal stem cells (MSCs) have been reported to possess profound immunomodulatory functions both in vitro and in vivo. More and more studies have shown that MSCs are capable of interacting closely with almost all subsets of immune cells, such as T cells, B cells, dendritic cells, natural killer cells, macrophages, and neutrophils etc. The immunomodulatory property of MSCs may shed light on the treatment of a variety of autoimmune and inflammation-related diseases. In this article, we will review the studies on the immunomodulatory and anti-inflammatory functions of MSCs and the mechanisms responsible for the interaction between immune cells and MSCs, which could improve the development of promising approaches for cell-mediated immune therapies. PMID:26932157

  20. Circulating mesenchymal stem cells and their clinical implications

    Directory of Open Access Journals (Sweden)

    Liangliang Xu

    2014-01-01

    Full Text Available Circulating mesenchymal stem cells (MSCs is a new cell source for tissue regeneration and tissue engineering. The characteristics of circulating MSCs are similar to those of bone marrow-derived MSCs (BM-MSCs, but they exist at a very low level in healthy individuals. It has been demonstrated that MSCs are able to migrate to the sites of injury and that they have some distinct genetic profiles compared to BM-MSCs. The current review summaries the basic knowledge of circulating MSCs and their potential clinical applications, such as mobilizing the BM-MSCs into circulation for therapy. The application of MSCs to cure a broad spectrum of diseases is promising, such as spinal cord injury, cardiovascular repair, bone and cartilage repair. The current review also discusses the issues of using of allogeneic MSCs for clinical therapy.

  1. Good manufacturing practices production of mesenchymal stem/stromal cells.

    Science.gov (United States)

    Sensebé, Luc; Bourin, Philippe; Tarte, Karin

    2011-01-01

    Because of their multi/pluripotency and immunosuppressive properties mesenchymal stem/stromal cells (MSCs) are important tools for treating immune disorders and for tissue repair. The increasing use of MSCs has led to production processes that need to be in accordance with Good Manufacturing Practice (GMP). In cellular therapy, safety remains one of the main concerns and refers to donor validation, choice of starting material, processes, and the controls used, not only at the batch release level but also during the development of processes. The culture processes should be reproducible, robust, and efficient. Moreover, they should be adapted to closed systems that are easy to use. Implementing controls during the manufacturing of clinical-grade MSCs is essential. The controls should ensure microbiological safety but also avoid potential side effects linked to genomic instability driving transformation and senescence or decrease of cell functions (immunoregulation, differentiation potential). In this rapidly evolving field, a new approach to controls is needed.

  2. Mesenchymal stem cells as a therapeutic tool to treat sepsis

    Institute of Scientific and Technical Information of China (English)

    Eleuterio Lombardo; Tom van der Poll; Olga DelaRosa; Wilfried Dalemans

    2015-01-01

    Sepsis is a clinical syndrome caused by a deregulatedhost response to an infection. Sepsis is the mostfrequent cause of death in hospitalized patients.Although knowledge of the pathogenesis of sepsishas increased substantially during the last decades,attempts to design effective and specific therapiestargeting components of the derailed host responsehave failed. Therefore, there is a dramatic need fornew and mechanistically alternative therapies to treatthis syndrome. Based on their immunomodulatoryproperties, adult mesenchymal stem or stromal cells(MSCs) can be a novel therapeutic tool to treat sepsis.Indeed, MSCs reduce mortality in experimental modelsof sepsis by modulating the deregulated inflammatoryresponse against bacteria through the regulation ofmultiple inflammatory networks, the reprogrammingof macrophages and neutrophils towards a more antiinflammatoryphenotype and the release of antimicrobialpeptides. This report will review the currentknowledge on the effects of MSC treatment in preclinicalexperimental small animal models of sepsis.

  3. Regeneration of the vocal fold using autologous mesenchymal stem cells.

    Science.gov (United States)

    Kanemaru, Shin-Ichi; Nakamura, Tatsuo; Omori, Koichi; Kojima, Hisayoshi; Magrufov, Akhmar; Hiratsuka, Yasuyuki; Hirano, Shigeru; Ito, Juichi; Shimizu, Yasuhiko

    2003-11-01

    The aim of this study was to regenerate the injured vocal fold by means of selective cultured autologous mesenchymal stem cells (MSCs). Eight adult beagle dogs were used for this experiment. Selective incubation of MSCs from bone marrow was done. These MSCs were submitted to 3-dimensional incubation in 1% hydrochloric acid atelocollagen. Three-dimensional incubated MSCs were injected into the left vocal fold, and atelocollagen only was injected into the right vocal fold of the same dog as a control. Four days after injection, the posterior parts of the vocal folds were incised. The regeneration of the vocal fold was estimated by morphological and histologic evaluations. Our results showed that 3-dimensional incubated MSCs were useful in the regeneration of the injured vocal fold. This study shows that damaged tissues such as an injured vocal fold would be able to be regenerated by tissue engineering. PMID:14653358

  4. Mesenchymal stem cells reduce the irradiation induced lung injury

    International Nuclear Information System (INIS)

    Objective: To evaluate the role of mesenchymal stem cells (MSCs) derived from mouse bone and embryo dorsal aorta (DA) area in the treatment of irradiation induced lung injury of mouse model. Methods: The mice were divided into four groups as normal control group, irradiation group,bone MSCs treatment group and DA MSCs treatment group. Immunohistochemical Analysis of lung tissue was observed after 9 months of treatment. Results: Fibrosis and alveolar infiltration were scored in each group. The score for fibrosis and alveolar is 0. 17 in normal control group, 2 in irradiation group, 1 in bone MSCs treat group and 1.38 in DA MSCs treat group. Conclusion: The extent of irradiation Induced Lung Injury could be reduced thorough the treatment of MSCs derived from mouse bone and embryos dorsal aorta ( DA ) area. (authors)

  5. Prenatal transplantation of mesenchymal stem cells to treat osteogenesis imperfecta.

    Directory of Open Access Journals (Sweden)

    Jerry KY Chan

    2014-10-01

    Full Text Available Osteogenesis Imperfecta (OI can be a severe disorder that can be diagnosed before birth. Transplantation of mesenchymal stem cells (MSC has the potential to improve the bone structure, growth and fracture healing. In this review we give an introduction to OI and MSC, and the basis for prenatal and postnatal transplantation in OI. We also summarize the two patients with OI who has received prenatal and postnatal transplantation of MSC.The findings suggest that prenatal transplantation of allogeneic MSC in OI is safe. The cell therapy is of likely clinical benefit with improved linear growth, mobility and reduced fracture incidence. Unfortunately, the effect is transient. For this reason postnatal booster infusions using same-donor MSC have been performed with clinical benefit, and without any adverse events.So far there is limited experience in this specific field and proper studies are required to accurately conclude on clinical benefits of MSC transplantation to treat OI.

  6. Glucocorticoids induce autophagy in rat bone marrow mesenchymal stem cells

    DEFF Research Database (Denmark)

    Wang, L.; Fan, J.; Lin, Y. S.;

    2015-01-01

    Glucocorticoidinduced osteoporosis (GIOP) is a widespread clinical complication following glucocorticoid therapy. This irreversible damage to boneforming and resorbing cells is essential in the pathogenesis of osteoporosis. Autophagy is a physiological process involved in the regulation of cells...... and their responses to diverse stimuli, however, the role of autophagy in glucocorticoidinduced damage to bone marrow mesenchymal stem cells (BMSCs) remains unclear. The current study confirmed that glucocorticoid administration impaired the proliferation of BMSCs. Transmission electron microscopy......, immunohistochemistry and western blot analysis detected autophagy in vitro and in GIOP model rats (in vivo). With the addition of the autophagy inhibitor 3methyladenine, the proliferative ability of BMSCs was further reduced, while the number of apoptotic BMSCs was significantly increased. The data suggests...

  7. Mesenchymal stem cell ingrowth and differentiation on coralline hydroxyapatite scaffolds

    DEFF Research Database (Denmark)

    Mygind, Tina; Stiehler, Maik; Baatrup, Anette;

    2007-01-01

    Culture of osteogenic cells on a porous scaffold could offer a new solution to bone grafting using autologous human mesenchymal stem cells (hMSC) from the patient. We compared coralline hydroxyapatite scaffolds with pore sizes of 200 and 500 microm for expansion and differentiation of hMSCs. We...... polymerase chain reaction for 10 osteogenic markers. The 500-microm scaffolds had increased proliferation rates and accommodated a higher number of cells (shown by DNA content, scanning electron microscopy and fluorescence microscopy). Thus the porosity of a 3D microporous biomaterial may be used to steer h......MSC in a particular direction. We found that dynamic spinner flask cultivation of hMSC/scaffold constructs resulted in increased proliferation, differentiation and distribution of cells in scaffolds. Therefore, spinner flask cultivation is an easy-to-use inexpensive system for cultivating hMSCs on small...

  8. Mesenchymal Stem Cells as Immunomodulators in a Vascularized Composite Allotransplantation

    Directory of Open Access Journals (Sweden)

    Yur-Ren Kuo

    2012-01-01

    Full Text Available Vascularized composite allotransplantations (VCAs are not routinely performed for tissue reconstruction because of the potentially harmful adverse effects associated with lifelong administration of immunosuppressive agents. Researchers have been eagerly seeking alternative methods that circumvent the long-term use of immunosuppressants. Mesenchymal stem cells (MSCs show promise as an immunomodulatory therapeutic agent and are currently being tested in preclinical and clinical settings as therapies for autoimmune disorders or transplant rejection. The mechanisms by which MSCs modulate the immune response are still under thorough investigation, but these most likely involve expression of local factors influencing T-cell regulation, modulation of cytokine expression (e.g., IL-10, TGF-β, TNF-, INF-γ, etc., and interactions with dendritic or antigen presenting cells. In this paper, we summarize the current understanding of immunomodulation achieved by MSC therapies and introduce a possible outline for future clinical applications in VCA.

  9. Patterns of amino acid metabolism by proliferating human mesenchymal stem cells

    NARCIS (Netherlands)

    Higuera, G.A.; Schop, D.; Spitters, T.W.; Dijkhuizen, R.; Bracke, M.; Bruijn, J.D.; Martens, D.E.; Karperien, M.; Boxtel, van A.J.B.; Blitterswijk, van C.A.

    2012-01-01

    The nutritional requirements of stem cells have not been determined; in particular, the amino acid metabolism of stem cells is largely unknown. In this study, we investigated the amino acid metabolism of human mesenchymal stem cells (hMSCs), with focus on two questions: Which amino acids are consume

  10. Transformation of human mesenchymal stem cells in radiation carcinogenesis: long-term effect of ionizing radiation

    DEFF Research Database (Denmark)

    Christensen, Rikke; Alsner, Jan; Sørensen, Flemming Brandt;

    2008-01-01

    Increasing evidence on cancer stem cells suggest that stem cells are susceptive to carcinogenesis and consequently can be the origin of many cancers. We have recently established a telomerase-transduced human mesenchymal stem cell line and subsequently irradiated this in order to achieve malignant...

  11. Mesenchymal stem cells are highly resistant to sulfur mustard.

    Science.gov (United States)

    Schmidt, Annette; Scherer, Michael; Thiermann, Horst; Steinritz, Dirk

    2013-12-01

    The effect of sulfur mustard (SM) to the direct injured tissues of the skin, eyes and airways is well investigated. Little is known about the effect of SM to mesenchymal stem cells (MSC). However, this is an interesting aspect. Comparing the clinical picture of SM it is known today that MSC play an important role e.g. in chronic impaired wound healing. Therefore we wanted to get an understanding about how SM affects MSC and if these findings might become useful to get a better understanding of the effect of sulfur mustard gas with respect to skin wounds. We used mesenchymal stem cells, isolated from femoral heads from healthy donors and treated them with a wide range of SM to ascertain the dose-response-curve. With the determined inhibitory concentrations IC1 (1μM), IC5 (10μM), IC10 (20μM) and IC25 (40μM) we did further investigations. We analyzed the migratory ability and the differentiation capacity under influence of SM. Already very low concentrations of SM demonstrated a strong effect to the migratory activity whereas the differentiation capacity seemed not to be affected. Putting these findings together it seems to be likely that a link between MSC and the impaired wound healing after SM exposure might exist. Same as in patients with chronic impaired wound healing MSC had shown a reduced migratory activity. The fact that MSC are able to tolerate very high concentrations of SM and still do not lose their differentiation capacity may reveal new ways of treating wounds caused by sulfur mustard. PMID:23933411

  12. Comparison of therapeutic characteristics of islet cell transplantation simultaneous with pancreatic mesenchymal stem cell transplantation in rats with Type 1 diabetes mellitus.

    Science.gov (United States)

    Unsal, Ilknur Ozturk; Ginis, Zeynep; Pinarli, Ferda Alparslan; Albayrak, Aynur; Cakal, Erman; Sahin, Mustafa; Delibasi, Tuncay

    2015-06-01

    Although, pancreas islet call transplantation is a new, promising method for type 1 diabetic patients, it remains as an experimental procedure applied in selected patients. The present study aimed to investigate effect of pancreatic mesenchymal stem cell transplantation simultaneous with islet cell transplantation on islet liveliness and thus on the treatment of diabetes in type 1 diabetic rats. The study used Wistar Albino Rats and was performed in a total of four groups [control (G1), mesenchymal stem cell (G2), islet (G3) and islet + mesencymal stem cell (G4)] each including 8 rats. Blood glucose level of the rats, in which diabetes model has been created using streptozotocin, was measured after 72 h. Blood samples were obtained from the rats 30 days after transplantation and then, their livers and pancreases were kept in 10% formaldehyde and the experiment was ended. Following staining with H&E, they were morphologically evaluated under a light microscope. Change in mean blood glucose level was statistically significant in G3 and G4 versus G1 and G2 (p = 0.001, p cells in the pancreases of the rats was higher in G4; difference between the groups was statistically significant (p cells together with mesenchymal stem cells showed beneficial effects in terms of prolonging survival of islet grafts suggesting that transplantation of mesenchymal stem cells together with islet cells during clinical islet transplantation may be beneficial in increasing the number of noninsulin-dependent patients in Type 1 diabetes.

  13. Time related variations in stem cell harvesting of umbilical cord blood

    OpenAIRE

    Gianluigi Mazzoccoli; Giuseppe Miscio; Andrea Fontana; Massimiliano Copetti; Massimo Francavilla; Alberto Bosi; Federico Perfetto; Alice Valoriani; Angelo De Cata; Michele Santodirocco; Angela Totaro; Rosa Rubino; Lazzaro di Mauro; Roberto Tarquini

    2016-01-01

    Umbilical cord blood (UCB) contains hematopoietic stem cells and multipotent mesenchymal cells useful for treatment in malignant/nonmalignant hematologic-immunologic diseases and regenerative medicine. Transplantation outcome is correlated with cord blood volume (CBV), number of total nucleated cells (TNC), CD34+ progenitor cells and colony forming units in UCB donations. Several studies have addressed the role of maternal/neonatal factors associated with the hematopoietic reconstruction pote...

  14. Methods of isolation, expansion, differentiating induction and preservation of human umbilical cord mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    LI Dong-rui; CAI Jian-hui

    2012-01-01

    Objective This literature review aims to summarize the methods of isolation,expansion,differentiation and preservation of human umbilical cord mesenchymal stem cells (hUCMSCs),for comprehensive understanding and practical use in preclinical research and clinical trials.Data sources All the literature reviewed was published over the last 10 years and is listed in PubMed and Chinese National Knowledge Infrastructure (CNKI).Studies were retrieved using the key word "human umbilical cord mesenchymal stem cells".Results Explants culture and enzymatic digestion are two methods to isolate hUCMSCs from WJ and there are modifications to improve these methods.Culture conditions may affect the expansion and differentiating orientations of hUCMSCs.In addition,hUCMSCs can maintain their multi-potential effects after being properly frozen and thawed.Conclusion Considering their multi-potential,convenient and non-invasive accessibility,low immunogenicity and the reported therapeutic effects in several different preclinical animal models,hUCMSCs have immense scope in regeneration medicine as a substitute for MSCs derived from bone marrow or umbilical cord blood.

  15. Effects of human umbilical cord mesenchymal stem cells therapy on CD61,CD62P and CD54 in elderly patients with old myocardial infarction

    Institute of Scientific and Technical Information of China (English)

    李侠

    2013-01-01

    Objective To study the effects of human umbilical cord mesenchymal stem cells (hUCM-SCs) therapy on peripheral blood CD61,CD62P and CD54 in elderly patients with old myocardial infarction.Methods From July2010 to August 2012,30 elderly patients with old myocardial infarction were randomly selected.Patients were

  16. Evaluation of Proliferation and Development of Mesenchymal Stem Cell on Nanoporous PLLA Membrane Scaffold

    Directory of Open Access Journals (Sweden)

    MH Porghara

    2015-08-01

    Conclusion: Due to the biodegradable and non-toxic properties of nano PLLA membrane, it could increase the adhesion and proliferation of mesenchymal stem cells and these effects will exacerbated over time.

  17. Study on phenotypic and cytogenetic characteristics of bone marrow mesenchymal stem cells in myelodysplastic syndromes

    Institute of Scientific and Technical Information of China (English)

    宋陆茜

    2013-01-01

    Objective To investigate phenotype,cell differentiation and cytogenetic properties of bone marrow(BM) mesenchymal stem cells(MSC)separated from the myelodysplastic syndrome(MDS) patients,and to analyze cytogenetic

  18. Intravenous transplantation of bone marrow mesenchymal stem cells promotes neural regeneration after traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    Fatemeh Anbari; Mohammad Ali Khalili; Ahmad Reza Bahrami; Arezoo Khoradmehr; Fatemeh Sadeghian; Farzaneh Fesahat; Ali Nabi

    2014-01-01

    To investigate the supplement of lost nerve cells in rats with traumatic brain injury by intrave-nous administration of allogenic bone marrow mesenchymal stem cells, this study established a Wistar rat model of traumatic brain injury by weight drop impact acceleration method and ad-ministered 3 × 106 rat bone marrow mesenchymal stem cells via the lateral tail vein. At 14 days after cell transplantation, bone marrow mesenchymal stem cells differentiated into neurons and astrocytes in injured rat cerebral cortex and rat neurological function was improved significant-ly. These findings suggest that intravenously administered bone marrow mesenchymal stem cells can promote nerve cell regeneration in injured cerebral cortex, which supplement the lost nerve cells.

  19. Chondrogenic potential of human adult mesenchymal stem cells is independent of age or osteoarthritis etiology

    NARCIS (Netherlands)

    Scharstuhl, A.; Schewe, B.; Benz, K.; Gaissmaier, C.; Bühring, H.J.; Stoop, R.

    2007-01-01

    Osteoarthritis (OA) is a multifactorial disease strongly correlated with history of joint trauma, joint dysplasia, and advanced age. Mesenchymal stem cells (MSCs) are promising cells for biological cartilage regeneration. Conflicting data have been published concerning the availability of MSCs from

  20. Acetylcholine secretion by motor neuron-like cells from umbilical cord mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    Xueyuan Liu; Dehua Li; Dong Jiang; Yan Fang

    2013-01-01

    Umbilical cord mesenchymal stem cel s were isolated by a double enzyme digestion method. The third passage of umbilical cord mesenchymal stem cel s was induced with heparin and/or basic fi-broblast growth factor. Results confirmed that cel morphology did not change after induction with basic fibroblast growth factor alone. However, neuronal morphology was visible, and microtu-bule-associated protein-2 expression and acetylcholine levels increased fol owing induction with heparin alone or heparin combined with basic fibroblast growth factor. Hb9 and choline acetyl-transferase expression was high fol owing inductive with heparin combined with basic fibroblast growth factor. Results indicate that the inductive effect of basic fibroblast growth factor alone was not obvious. Heparin combined with basic fibroblast growth factor noticeably promoted the differen-tiation of umbilical cord mesenchymal stem cel s into motor neuron-like cel s. Simultaneously, um-bilical cord mesenchymal stem cel s could secrete acetylcholine.

  1. Imaging gene expression in human mesenchymal stem cells: from small to large animals

    DEFF Research Database (Denmark)

    Willmann, Jürgen K; Paulmurugan, Ramasamy; Rodriguez-Porcel, Martin;

    2009-01-01

    To evaluate the feasibility of reporter gene imaging in implanted human mesenchymal stem cells (MSCs) in porcine myocardium by using clinical positron emission tomography (PET)-computed tomography (CT) scanning....

  2. Citalopram increases the differentiation efifcacy of bone marrow mesenchymal stem cells into neuronal-like cells

    Institute of Scientific and Technical Information of China (English)

    Javad Verdi; Seyed Abdolreza Mortazavi-Tabatabaei; Shiva Sharif; Hadi Verdi; Alireza Shoae-Hassani

    2014-01-01

    Several studies have demonstrated that selective serotonin reuptake inhibitor antidepressants can promote neuronal cell proliferation and enhance neuroplasticity both in vitro and in vivo. It is hypothesized that citalopram, a selective serotonin reuptake inhibitor, can promote the neuronal differentiation of adult bone marrow mesenchymal stem cells. Citalopram strongly enhanced neuronal characteristics of the cells derived from bone marrow mesenchymal stem cells. The rate of cell death was decreased in citalopram-treated bone marrow mesenchymal stem cells than in control cells in neurobasal medium. In addition, the cumulative population doubling level of the citalopram-treated cells was signiifcantly increased compared to that of control cells. Also BrdU incorporation was elevated in citalopram-treated cells. These ifndings suggest that citalopram can improve the neuronal-like cell differentiation of bone marrow mesenchymal stem cells by increasing cell proliferation and survival while maintaining their neuronal characteristics.

  3. Mesenchymal stem cell therapy in lung disorders: pathogenesis of lung diseases and mechanism of action of mesenchymal stem cell.

    Science.gov (United States)

    Inamdar, Ajinkya C; Inamdar, Arati A

    2013-10-01

    Lung disorders such as asthma, acute respiratory distress syndrome (ARDS), chronic obstructive lung disease (COPD), and interstitial lung disease (ILD) show a few common threads of pathogenic mechanisms: inflammation, aberrant immune activity, infection, and fibrosis. Currently no modes of effective treatment are available for ILD or emphysema. Being anti-inflammatory, immunomodulatory, and regenerative in nature, the administration of mesenchymal stem cells (MSCs) has shown the capacity to control immune dysfunction and inflammation in the lung. The intravenous infusion of MSCs, the common mode of delivery, is followed by their entrapment in lung vasculature before MSCs reach to other organ systems thus indicating the feasible and promising approach of MSCs therapy for lung diseases. In this review, we discuss the mechanistic basis for MSCs therapy for asthma, ARDS, COPD, and ILD. PMID:23992090

  4. Chondroitinase ABC plus bone marrow mesenchymal stem cells for repair of spinal cord injury☆

    OpenAIRE

    Zhang, Chun; He, Xijing; Li, Haopeng; Wang, Guoyu

    2013-01-01

    As chondroitinase ABC can improve the hostile microenvironment and cell transplantation is proven to be effective after spinal cord injury, we hypothesized that their combination would be a more effective treatment option. At 5 days after T8 spinal cord crush injury, rats were injected with bone marrow mesenchymal stem cell suspension or chondroitinase ABC 1 mm from the edge of spinal cord damage zone. Chondroitinase ABC was first injected, and bone marrow mesenchymal stem cell suspension was...

  5. Propofol promotes spinal cord injury repair by bone marrow mesenchymal stem cell transplantation

    OpenAIRE

    Ya-jing Zhou; Jian-min Liu; Shu-ming Wei; Yun-hao Zhang; Zhen-hua Qu; Shu-bo Chen

    2015-01-01

    Propofol is a neuroprotective anesthetic. Whether propofol can promote spinal cord injury repair by bone marrow mesenchymal stem cells remains poorly understood. We used rats to investigate spinal cord injury repair using bone marrow mesenchymal stem cell transplantation combined with propofol administration via the tail vein. Rat spinal cord injury was clearly alleviated; a large number of newborn non-myelinated and myelinated nerve fibers appeared in the spinal cord, the numbers of CM-Dil-l...

  6. Citalopram increases the differentiation efficacy of bone marrow mesenchymal stem cells into neuronal-like cells

    OpenAIRE

    Verdi, Javad; Mortazavi-Tabatabaei, Seyed AbdolReza; Sharif, Shiva; Verdi, Hadi; Shoae-Hassani, Alireza

    2014-01-01

    Several studies have demonstrated that selective serotonin reuptake inhibitor antidepressants can promote neuronal cell proliferation and enhance neuroplasticity both in vitro and in vivo. It is hypothesized that citalopram, a selective serotonin reuptake inhibitor, can promote the neuronal differentiation of adult bone marrow mesenchymal stem cells. Citalopram strongly enhanced neuronal characteristics of the cells derived from bone marrow mesenchymal stem cells. The rate of cell death was d...

  7. Human amnion mesenchymal stem cells promote proliferation and osteogenic differentiation in human bone marrow mesenchymal stem cells.

    Science.gov (United States)

    Wang, Yuli; Yin, Ying; Jiang, Fei; Chen, Ning

    2015-02-01

    Human amnion mesenchymal stem cells (HAMSCs) can be obtained from human amniotic membrane, a highly abundant and readily available tissue. HAMSC sources present fewer ethical issues, have low immunogenicity, anti-inflammatory properties, considerable advantageous characteristics, and are considered an attractive potential treatment material in the field of regenerative medicine. We used a co-culture system to determine whether HAMSCs could promote osteogenesis in human bone marrow mesenchymal stem cells (HBMSCs). We isolated HAMSCs from discarded amnion samples and collected them using pancreatin/collagenase digestion. We cultured HAMSCs and HBMSCSs in basal medium. Activity of alkaline phosphatase (ALP), an early osteogenesis marker, was increased in the co-culture system compared to the control single cultures, which we also confirmed by ALP staining. We used immunofluorescence testing to investigate the effects of co-culturing with HAMSCs on HBMSC proliferation, which revealed that the co-culturing enhanced EdU expression in HBMSCs. Western blotting and quantitative real-time PCR indicated that co-culturing promoted osteogenesis in HBMSCs. Furthermore, Alizarin red S staining revealed that extracellular matrix calcium levels in mineralized nodule formation produced by the co-cultures were higher than that in the controls. Using the same co-culture system, we further observed the effects of HAMSCs on osteogenic differentiation in primary osteoblasts by Western blotting, which better addressed the mechanism for HAMSCs in bone regeneration. The results showed HAMSCs are osteogenic and not only play a role in promoting HBMSC proliferation and osteogenic differentiation but also in osteoblasts, laying the foundation for new regenerative medicine methods.

  8. Eccentric exercise facilitates mesenchymal stem cell appearance in skeletal muscle.

    Directory of Open Access Journals (Sweden)

    M Carmen Valero

    Full Text Available Eccentric, or lengthening, contractions result in injury and subsequently stimulate the activation and proliferation of satellite stem cells which are important for skeletal muscle regeneration. The discovery of alternative myogenic progenitors in skeletal muscle raises the question as to whether stem cells other than satellite cells accumulate in muscle in response to exercise and contribute to post-exercise repair and/or growth. In this study, stem cell antigen-1 (Sca-1 positive, non-hematopoetic (CD45⁻ cells were evaluated in wild type (WT and α7 integrin transgenic (α7Tg mouse muscle, which is resistant to injury yet liable to strain, 24 hr following a single bout of eccentric exercise. Sca-1⁺CD45⁻ stem cells were increased 2-fold in WT muscle post-exercise. The α7 integrin regulated the presence of Sca-1⁺ cells, with expansion occurring in α7Tg muscle and minimal cells present in muscle lacking the α7 integrin. Sca-1⁺CD45⁻ cells isolated from α7Tg muscle following exercise were characterized as mesenchymal-like stem cells (mMSCs, predominantly pericytes. In vitro multiaxial strain upregulated mMSC stem cells markers in the presence of laminin, but not gelatin, identifying a potential mechanistic basis for the accumulation of these cells in muscle following exercise. Transplantation of DiI-labeled mMSCs into WT muscle increased Pax7⁺ cells and facilitated formation of eMHC⁺DiI⁻ fibers. This study provides the first demonstration that mMSCs rapidly appear in skeletal muscle in an α7 integrin dependent manner post-exercise, revealing an early event that may be necessary for effective repair and/or growth following exercise. The results from this study also support a role for the α7 integrin and/or mMSCs in molecular- and cellular-based therapeutic strategies that can effectively combat disuse muscle atrophy.

  9. Clinical Applications of Mesenchymal Stem Cells in Chronic Diseases

    Directory of Open Access Journals (Sweden)

    Andrea Farini

    2014-01-01

    Full Text Available Extraordinary progress in understanding several key features of stem cells has been made in the last ten years, including definition of the niche, and identification of signals regulating mobilization and homing as well as partial understanding of the mechanisms controlling self-renewal, commitment, and differentiation. This progress produced invaluable tools for the development of rational cell therapy protocols that have yielded positive results in preclinical models of genetic and acquired diseases and, in several cases, have entered clinical experimentation with positive outcome. Adult mesenchymal stem cells (MSCs are nonhematopoietic cells with multilineage potential to differentiate into various tissues of mesodermal origin. They can be isolated from bone marrow and other tissues and have the capacity to extensively proliferate in vitro. Moreover, MSCs have also been shown to produce anti-inflammatory molecules which can modulate humoral and cellular immune responses. Considering their regenerative potential and immunoregulatory effect, MSC therapy is a promising tool in the treatment of degenerative, inflammatory, and autoimmune diseases. It is obvious that much work remains to be done to increase our knowledge of the mechanisms regulating development, homeostasis, and tissue repair and thus to provide new tools to implement the efficacy of cell therapy trials.

  10. Genetic Engineering of Mesenchymal Stem Cells for Regenerative Medicine.

    Science.gov (United States)

    Nowakowski, Adam; Walczak, Piotr; Janowski, Miroslaw; Lukomska, Barbara

    2015-10-01

    Mesenchymal stem cells (MSCs), which can be obtained from various organs and easily propagated in vitro, are one of the most extensively used types of stem cells and have been shown to be efficacious in a broad set of diseases. The unique and highly desirable properties of MSCs include high migratory capacities toward injured areas, immunomodulatory features, and the natural ability to differentiate into connective tissue phenotypes. These phenotypes include bone and cartilage, and these properties predispose MSCs to be therapeutically useful. In addition, MSCs elicit their therapeutic effects by paracrine actions, in which the metabolism of target tissues is modulated. Genetic engineering methods can greatly amplify these properties and broaden the therapeutic capabilities of MSCs, including transdifferentiation toward diverse cell lineages. However, cell engineering can also affect safety and increase the cost of therapy based on MSCs; thus, the advantages and disadvantages of these procedures should be discussed. In this review, the latest applications of genetic engineering methods for MSCs with regenerative medicine purposes are presented.

  11. Mesenchymal Stem Cells Derived from Dental Pulp: A Review.

    Science.gov (United States)

    Ledesma-Martínez, Edgar; Mendoza-Núñez, Víctor Manuel; Santiago-Osorio, Edelmiro

    2016-01-01

    The mesenchymal stem cells of dental pulp (DPSCs) were isolated and characterized for the first time more than a decade ago as highly clonogenic cells that were able to generate densely calcified colonies. Now, DPSCs are considered to have potential as stem cell source for orthopedic and oral maxillofacial reconstruction, and it has been suggested that they may have applications beyond the scope of the stomatognathic system. To date, most studies have shown that, regardless of their origin in third molars, incisors, or exfoliated deciduous teeth, DPSCs can generate mineralized tissue, an extracellular matrix and structures type dentin, periodontal ligament, and dental pulp, as well as other structures. Different groups worldwide have designed and evaluated new efficient protocols for the isolation, expansion, and maintenance of clinically safe human DPSCs in sufficient numbers for various therapeutics protocols and have discussed the most appropriate route of administration, the possible contraindications to their clinical use, and the parameters to be considered for monitoring their clinical efficacy and proper biological source. At present, DPSC-based therapy is promising but because most of the available evidence was obtained using nonhuman xenotransplants, it is not a mature technology. PMID:26779263

  12. Mesenchymal Stem Cells Derived from Dental Pulp: A Review

    Directory of Open Access Journals (Sweden)

    Edgar Ledesma-Martínez

    2016-01-01

    Full Text Available The mesenchymal stem cells of dental pulp (DPSCs were isolated and characterized for the first time more than a decade ago as highly clonogenic cells that were able to generate densely calcified colonies. Now, DPSCs are considered to have potential as stem cell source for orthopedic and oral maxillofacial reconstruction, and it has been suggested that they may have applications beyond the scope of the stomatognathic system. To date, most studies have shown that, regardless of their origin in third molars, incisors, or exfoliated deciduous teeth, DPSCs can generate mineralized tissue, an extracellular matrix and structures type dentin, periodontal ligament, and dental pulp, as well as other structures. Different groups worldwide have designed and evaluated new efficient protocols for the isolation, expansion, and maintenance of clinically safe human DPSCs in sufficient numbers for various therapeutics protocols and have discussed the most appropriate route of administration, the possible contraindications to their clinical use, and the parameters to be considered for monitoring their clinical efficacy and proper biological source. At present, DPSC-based therapy is promising but because most of the available evidence was obtained using nonhuman xenotransplants, it is not a mature technology.

  13. The sensitivity of human mesenchymal stem cells to ionizing radiation

    International Nuclear Information System (INIS)

    Purpose: Recent studies have shown that mesenchymal stem cells (MSCs) obtained from bone marrow transplantation patients originate from the host. This clinical observation suggests that MSCs in their niches could be resistant to irradiation. However, the biologic responses of bone marrow MSCs to irradiation have rarely been described in the literature. Methods and Materials: In this study, human bone marrow-derived, clonally expanded MSCs were used to investigate their sensitivity to irradiation in vitro, and the cellular mechanisms that may facilitate resistance to irradiation. The human lung cancer cell line A549 and the breast cancer cell line HCC1937 were used as controls for radiosensitivity; the former line has been shown to be radioresistant and the latter radiosensitive. We then examined their in vitro biologic changes and sensitivities to radiation therapy. Results: Our results suggest that MSCs are characterized as resistant to irradiation. Several cellular mechanisms were demonstrated that may facilitate resistance to irradiation: ATM protein phosphorylation, activation of cell-cycle checkpoints, double-strand break repair by homologous recombination and nonhomologous end joining (NHEJ), and the antioxidant capacity for scavenging reactive oxygen species. Conclusions: As demonstrated, MSCs possess a better antioxidant reactive oxygen species-scavenging capacity and active double-strand break repair to facilitate their radioresistance. These findings provide a better understanding of radiation-induced biologic responses in MSCs and may lead to the development of better strategies for stem cell treatment and cancer therapy

  14. Genetic Engineering of Mesenchymal Stem Cells for Regenerative Medicine.

    Science.gov (United States)

    Nowakowski, Adam; Walczak, Piotr; Janowski, Miroslaw; Lukomska, Barbara

    2015-10-01

    Mesenchymal stem cells (MSCs), which can be obtained from various organs and easily propagated in vitro, are one of the most extensively used types of stem cells and have been shown to be efficacious in a broad set of diseases. The unique and highly desirable properties of MSCs include high migratory capacities toward injured areas, immunomodulatory features, and the natural ability to differentiate into connective tissue phenotypes. These phenotypes include bone and cartilage, and these properties predispose MSCs to be therapeutically useful. In addition, MSCs elicit their therapeutic effects by paracrine actions, in which the metabolism of target tissues is modulated. Genetic engineering methods can greatly amplify these properties and broaden the therapeutic capabilities of MSCs, including transdifferentiation toward diverse cell lineages. However, cell engineering can also affect safety and increase the cost of therapy based on MSCs; thus, the advantages and disadvantages of these procedures should be discussed. In this review, the latest applications of genetic engineering methods for MSCs with regenerative medicine purposes are presented. PMID:26140302

  15. Mesenchymal stem cell therapy for osteoarthritis: current perspectives.

    Science.gov (United States)

    Wyles, Cody C; Houdek, Matthew T; Behfar, Atta; Sierra, Rafael J

    2015-01-01

    Osteoarthritis (OA) is a painful chronic condition with a significant impact on quality of life. The societal burden imposed by OA is increasing in parallel with the aging population; however, no therapies have demonstrated efficacy in preventing the progression of this degenerative joint disease. Current mainstays of therapy include activity modification, conservative pain management strategies, weight loss, and if necessary, replacement of the affected joint. Mesenchymal stem cells (MSCs) are a multipotent endogenous population of progenitors capable of differentiation to musculoskeletal tissues. MSCs have a well-documented immunomodulatory role, managing the inflammatory response primarily through paracrine signaling. Given these properties, MSCs have been proposed as a potential regenerative cell therapy source for patients with OA. Research efforts are focused on determining the ideal source for derivation, as MSCs are native to several tissues. Furthermore, optimizing the mode of delivery remains a challenge both for appropriate localization of MSCs and for directed guidance toward stemming the local inflammatory process and initiating a regenerative response. Scaffolds and matrices with growth factor adjuvants may prove critical in this effort. The purpose of this review is to summarize the current state of MSC-based therapeutics for OA and discuss potential barriers that must be overcome for successful implementation of cell-based therapy as a routine treatment strategy in orthopedics.

  16. Impairment of mesenchymal stem cells derived from oral leukoplakia.

    Science.gov (United States)

    Zhang, Zhihui; Song, Jiangyuan; Han, Ying; Mu, Dongdong; Su, Sha; Ji, Xiaoli; Liu, Hongwei

    2015-01-01

    Oral leukoplakia is one of the common precancerous lesions in oral mucosa. To compare the biological characteristics and regenerative capacities of mesenchymal stem cells (MSCs) from oral leukoplakia (epithelial hyperplasia and dysplasia) and normal oral mucosa, MSCs were isolated by enzyme digestion. Then these cells were identified by the expression of MSC related markers, STRO-1, CD105 and CD90, with the absent for the hematopoietic stem cell marker CD34 by flow cytometric detection. The self-renewal ability of MSCs from oral leukoplakia was enhanced, while the multipotent differentiation was descended, compared with MSCs from normal oral mucosa. Fibrin gel was used as a carrier for MSCs transplanted into immunocompromised mice to detect their regenerative capacity. The regenerative capacities of MSCs from oral leukoplakia became impaired partly. Collagen IV (Col IV) and matrix metalloproteinases-9 (MMP-9) were selected to analyze the potential mechanism for the functional changes of MSCs from oral leukoplakia by immunochemical and western blot analysis. The expression of Col IV was decreased and that of MMP-9 was increased by MSCs with the progression of oral leukoplakia, especially in MSCs from epithelial dysplasia. The imbalance between regenerative and metabolic self-regulatory functions of MSCs from oral leukoplakia may be related to the progression of this premalignant disorder.

  17. Mesenchymal stromal cells and hematopoietic stem cell transplantation.

    Science.gov (United States)

    Bernardo, Maria Ester; Fibbe, Willem E

    2015-12-01

    Mesenchymal stromal cells (MSCs) comprise a heterogeneous population of multipotent cells that can be isolated from various human tissues and culture-expanded ex vivo for clinical use. Due to their immunoregulatory properties and their ability to secrete growth factors, MSCs play a key role in the regulation of hematopoiesis and in the modulation of immune responses against allo- and autoantigens. In light of these properties, MSCs have been employed in clinical trials in the context of hematopoietic stem cell transplantation (HSCT) to facilitate engraftment of hematopoietic stem cells (HSCs) and to prevent graft failure, as well as to treat steroid-resistant acute graft-versus-host disease (GvHD). The available clinical evidence derived from these studies indicates that MSC administration is safe. Moreover, promising preliminary results in terms of efficacy have been reported in some clinical trials, especially in the treatment of acute GvHD. In this review we critically discuss recent advances in MSC therapy by reporting on the most relevant studies in the field of HSCT.

  18. Suitability of human mesenchymal stem cells for gene therapy depends on the expansion medium

    International Nuclear Information System (INIS)

    Great hope is set in the use of mesenchymal stem cells for gene therapy and regenerative medicine. Since the frequency of this subpopulation of stem cells in bone marrow is low, mesenchymal stem cells are expanded ex vivo and manipulated prior to experimental or clinical use. Different methods for isolation and expansion are available, but the particular effect on the stem cell character is unclear. While the isolation of mesenchymal stem cells by density centrifugation followed by selection of the plastic adherent fraction is frequently used, the composition of expansion media differs. Thus, in the present study we cultured mesenchymal stem cells isolated from five healthy young volunteers in three widely used expansion media and performed a detailed analysis of the effect on morphology, proliferation, clonogenicity, passaging, differentiation and senescence. By this way we clearly show that the type of expansion medium used determines the stem cell character and time of senescence which is critical for future gene therapeutic and regenerative approaches using mesenchymal stem cells

  19. The hematopoietic growth factor "erythropoietin" enhances the therapeutic effect of mesenchymal stem cells in Alzheimer's disease.

    Science.gov (United States)

    Khairallah, M I; Kassem, L A; Yassin, N A; El Din, M A Gamal; Zekri, M; Attia, M

    2014-01-01

    Alzheimer's disease is a neurodegenerative disorder clinically characterized by cognitive dysfunction and by deposition of amyloid plaques, neurofibrillary tangles in the brain. The study investigated the therapeutic effect of combined mesenchymal stem cells and erythropoietin on Alzheimer's disease. Five groups of mice were used: control group, Alzheimer's disease was induced in four groups by a single intraperitoneal injection of 0.8 mg kg(-1) lipopolysaccharide and divided as follows: Alzheimer's disease group, mesenchymal stem cells treated group by injecting mesenchymal stem cells into the tail vein (2 x 10(6) cells), erythropoietin treated group (40 microg kg(-1) b.wt.) injected intraperitoneally 3 times/week for 5 weeks and mesenchymal stem cells and erythropoietin treated group. Locomotor activity and memory were tested using open field and Y-maze. Histological, histochemical, immunohistochemical studies, morphometric measurements were examined in brain sections of all groups. Choline transferase activity, brain derived neurotrophic factor expression and mitochondrial swellings were assessed in cerebral specimens. Lipopolysaccharide decreased locomotor activity, memory, choline transferase activity and brain derived neurotrophic factor. It increased mitochondrial swelling, apoptotic index and amyloid deposition. Combined mesenchymal stem cells and erythropoietin markedly improved all these parameters. This study proved the effective role of mesenchymal stem cells in relieving Alzheimer's disease symptoms and manifestations; it highlighted the important role of erythropoietin in the treatment of Alzheimer's disease.

  20. Use of FK506 and bone marrow mesenchymal stem cells for rat hind limb allografts

    Institute of Scientific and Technical Information of China (English)

    Youxin Song; Zhujun Wang; Zhixue Wang; Hong Zhang; Xiaohui Li; Bin Chen

    2012-01-01

    Dark Agouti rat donor hind limbs were orthotopically transplanted into Lewis rat recipients to verify the effects of bone marrow mesenchymal stem cells on neural regeneration and functional recovery of allotransplanted limbs in the microenvironment of immunotolerance. bone marrow mesenchymal stem cells were intramuscularly (gluteus maximus) injected with FK506 (tacrolimus) daily, and were transplanted to the injured nerves. Results indicated that the allograft group not receiving therapy showed severe rejection, with transplanted limbs detaching at 10 days after transplantation with complete necrosis. The number of myelinated axons and Schwann cells in the FK506 and FK506 + bone marrow mesenchymal stem cells groups were significantly increased. We observed a lesser degree of gastrocnemius muscle degeneration, and increased polymorphic fibers along with other pathological changes in the FK506 + bone marrow mesenchymal stem cells group. The FK506 + bone marrow mesenchymal stem cells group showed significantly better recovery than the autograft and FK506 groups. The results demonstrated that FK506 improved the immune microenvironment. FK506 combined with bone marrow mesenchymal stem cells significantly promoted sciatic nerve regeneration, and improved sensory recovery and motor function in hind limb allotransplant.

  1. Cardiac differentiation and electrophysiology characteristics of bone marrow mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    LIU Bo-wu; AI Shi-yi; L(U) An-lin; HOU Jing; HUANG Wei; LI Yao; HOU Zhao-lei; HOU Hong; DA Jing; YANG Na

    2012-01-01

    Objective To review the progress of cardiac differentiation and electrophysiological characteristics of bone marrow mesenchymal stem cells.Data sources The databases of PubMed,Springer Link,Science Direct and CNKI were retrieved for papers published from January 2000 to January 2012 with the key words of “bone marrow mesenchymal stem cells,cardiac or heart,electrophysiology or electrophysiological characteristics”.Study selection The articles concerned cardiac differentiation and electrophysiological characteristics of bone marrow mesenchymal stem cells were collected.After excluding papers that study purposes are not coincident with this review or contents duplicated,56 papers were internalized at last.Results For the treatment of myocardial infarction and myocardiac disease,the therapeutic effects of transplantation of bone marrow mesenchymal stem cells which have the ability to develop into functional myocardial cells by lots of methods have been proved by many researches.But the arrhythmogenic effect on ventricles affer transplantation of bone marrow mesenchymal stem cells derived myocardial cells is still controversial in animal models.Certainly,the low differentiation efficiency and heterogeneous development of electricial function could be the most important risk for proarrhythmia.Conclusion Many studies of cardiac differentiation of bone marrow mesenchymal stem cells have paid attention to improve the cardiac differentiation rate,and the electrophysiology characteristics of the differentiated cells should be concerned for the risk for proarrhythmia as well.

  2. Glial cell derived neurotrophic factor induces spermatogonial stem cell marker genes in chicken mesenchymal stem cells.

    Science.gov (United States)

    Boozarpour, Sohrab; Matin, Maryam M; Momeni-Moghaddam, Madjid; Dehghani, Hesam; Mahdavi-Shahri, Naser; Sisakhtnezhad, Sajjad; Heirani-Tabasi, Asieh; Irfan-Maqsood, Muhammad; Bahrami, Ahmad Reza

    2016-06-01

    Mesenchymal stem cells (MSCs) are known with the potential of multi-lineage differentiation. Advances in differentiation technology have also resulted in the conversion of MSCs to other kinds of stem cells. MSCs are considered as a suitable source of cells for biotechnology purposes because they are abundant, easily accessible and well characterized cells. Nowadays small molecules are introduced as novel and efficient factors to differentiate stem cells. In this work, we examined the potential of glial cell derived neurotrophic factor (GDNF) for differentiating chicken MSCs toward spermatogonial stem cells. MSCs were isolated and characterized from chicken and cultured under treatment with all-trans retinoic acid (RA) or glial cell derived neurotrophic factor. Expression analysis of specific genes after 7days of RA treatment, as examined by RT-PCR, proved positive for some germ cell markers such as CVH, STRA8, PLZF and some genes involved in spermatogonial stem cell maintenance like BCL6b and c-KIT. On the other hand, GDNF could additionally induce expression of POU5F1, and NANOG as well as other genes which were induced after RA treatment. These data illustrated that GDNF is relatively more effective in diverting chicken MSCs towards Spermatogonial stem cell -like cells in chickens and suggests GDNF as a new agent to obtain transgenic poultry, nevertheless, exploitability of these cells should be verified by more experiments.

  3. Adipose Tissue-Derived Mesenchymal Stem Cells as a New Host Cell in Latent Leishmaniasis

    OpenAIRE

    Allahverdiyev, Adil M; Bagirova, Melahat; Elcicek, Serhat; Koc, Rabia Cakir; Baydar, Serap Yesilkir; Findikli, Necati; Oztel, Olga N.

    2011-01-01

    Some protozoan infections such as Toxoplasma, Cryptosporidium, and Plasmodium can be transmitted through stem cell transplantations. To our knowledge, so far, there is no study about transmission of Leishmania parasites in stem cell transplantation and interactions between parasites and stem cells in vitro. Therefore, the aim of this study was to investigate the interaction between different species of Leishmania parasites and adipose tissue-derived mesenchymal stem cells (ADMSCs). ADMSCs hav...

  4. Stem and progenitor cells in biostructure of blood vessel walls

    Directory of Open Access Journals (Sweden)

    Krzysztof Korta

    2013-09-01

    Full Text Available Development of vascular and hematopoietic systems during organogenesis occurs at the same time. During vasculogenesis, a small part of cells does not undergo complete differentiation but stays on this level, “anchored” in tissue structures described as stem cell niches. The presence of blood vessels within tissue stem cell niches is typical and led to identification of niches and ensures that they are functioning. The three-layer biostructure of vessel walls for artery and vein, tunica: intima, media and adventitia, for a long time was defined as a mechanical barrier between vessel light and the local tissue environment. Recent findings from vascular biology studies indicate that vessel walls are dynamic biostructures, which are equipped with stem and progenitor cells, described as vascular wall-resident stem cells/progenitor cells (VW-SC/PC. Distinct zones for vessel wall harbor heterogeneous subpopulations of VW-SC/PC, which are described as “subendothelial or vasculogenic zones”. Recent evidence from in vitro and in vivo studies show that prenatal activity of stem and progenitor cells is not only limited to organogenesis but also exists in postnatal life, where it is responsible for vessel wall homeostasis, remodeling and regeneration. It is believed that VW-SC/PC could be engaged in progression of vascular disorders and development of neointima. We would like to summarize current knowledge about mesenchymal and progenitor stem cell phenotype with special attention to distribution and biological properties of VW-SC/PC in biostructures of intima, media and adventitia niches. It is postulated that in the near future, niches for VW-SC/PC could be a good source of stem and progenitor cells, especially in the context of vessel tissue bioengineering as a new alternative to traditional revascularization therapies.

  5. Function of mesenchymal stem cells following loading of gold nanotracers

    Directory of Open Access Journals (Sweden)

    et al

    2011-02-01

    Full Text Available Laura M Ricles1, Seung Yun Nam1,2, Konstantin Sokolov3,1, Stanislav Y Emelianov1,3, Laura J Suggs11Department of Biomedical Engineering, 2Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, USA; 3Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USABackground: Stem cells can differentiate into multiple cell types, and therefore can be used for cellular therapies, including tissue repair. However, the participation of stem cells in tissue repair and neovascularization is not well understood. Therefore, implementing a noninvasive, long-term imaging technique to track stem cells in vivo is needed to obtain a better understanding of the wound healing response. Generally, we are interested in developing an imaging approach to track mesenchymal stem cells (MSCs in vivo after delivery via a polyethylene glycol modified fibrin matrix (PEGylated fibrin matrix using MSCs loaded with gold nanoparticles as nanotracers. The objective of the current study was to assess the effects of loading MSCs with gold nanoparticles on cellular function.Methods: In this study, we utilized various gold nanoparticle formulations by varying size and surface coatings and assessed the efficiency of cell labeling using darkfield microscopy. We hypothesized that loading cells with gold nanotracers would not significantly alter cell function due to the inert and biocompatible characteristics of gold. The effect of nanoparticle loading on cell viability and cytotoxicity was analyzed using a LIVE/DEAD stain and an MTT assay. The ability of MSCs to differentiate into adipocytes and osteocytes after nanoparticle loading was also examined. In addition, nanoparticle loading and retention over time was assessed using inductively coupled plasma mass spectrometry (ICP-MS.Conclusion: Our results demonstrate that loading MSCs with gold nanotracers does not alter cell function and, based on the ICP

  6. Immortalized mesenchymal stem cells: an alternative to primary mesenchymal stem cells in neuronal differentiation and neuroregeneration associated studies

    Directory of Open Access Journals (Sweden)

    Gong Min

    2011-11-01

    Full Text Available Abstract Background Mesenchymal stem cells (MSCs can be induced to differentiate into neuronal cells under appropriate cellular conditions and transplanted in brain injury and neurodegenerative diseases animal models for neuroregeneration studies. In contrast to the embryonic stem cells (ESCs, MSCs are easily subject to aging and senescence because of their finite ability of self-renewal. MSCs senescence seriously affected theirs application prospects as a promising tool for cell-based regenerative medicine and tissue engineering. In the present study, we established a reversible immortalized mesenchymal stem cells (IMSCs line by using SSR#69 retrovirus expressing simian virus 40 large T (SV40T antigen as an alternative to primary MSCs. Methods The retroviral vector SSR#69 expressing simian virus 40 large T (SV40T antigen was used to construct IMSCs. IMSCs were identified by flow cytometry to detect cell surface makers. To investigate proliferation and differentiation potential of IMSCs, cell growth curve determination and mesodermal trilineage differentiation tests were performed. Neuronal differentiation characteristics of IMSCs were detected in vitro. Before IMSCs transplantation, we excluded its tumorigenicity in nude mice firstly. The Morris water maze tests and shuttle box tests were performed five weeks after HIBD models received cells transplantation therapy. Results In this study, reversible IMSCs were constructed successfully and had the similar morphology and cell surface makers as primary MSCs. IMSCs possessed better ability of proliferation and anti-senescence compared with primary MSCs, while maintained multilineage differentiation capacity. Neural-like cells derived from IMSCs had similar expressions of neural-specific genes, protein expression patterns and resting membrane potential (RMP compared with their counterparts derived from primary MSCs. There was no bump formation in nude mice subcutaneously injected with IMSCs. IMSCs

  7. Transplanted Human Umbilical Cord Mesenchymal Stem Cells Facilitate Lesion Repair in B6.Fas Mice

    Directory of Open Access Journals (Sweden)

    Guang-ping Ruan

    2014-01-01

    Full Text Available Background. Systemic lupus erythematosus (SLE is a multisystem disease that is characterized by the appearance of serum autoantibodies. No effective treatment for SLE currently exists. Methods. We used human umbilical cord mesenchymal stem cell (H-UC-MSC transplantation to treat B6.Fas mice. Results. After four rounds of cell transplantation, we observed a statistically significant decrease in the levels of mouse anti-nuclear, anti-histone, and anti-double-stranded DNA antibodies in transplanted mice compared with controls. The percentage of CD4+CD25+Foxp3+ T cells in mouse peripheral blood significantly increased after H-UC-MSC transplantation. Conclusions. The results showed that H-UC-MSCs could repair lesions in B6.Fas mice such that all of the relevant disease indicators in B6.Fas mice were restored to the levels observed in normal C57BL/6 mice.

  8. Bone marrow mesenchymal stem cells repair spinal cord ischemia/reperfusion injury by promoting axonal growth and anti-autophagy

    OpenAIRE

    Yin, Fei; Meng, Chunyang; Lu, Rifeng; Li, Lei; Zhang, Ying; Chen, Hao; Qin, Yonggang; Guo, Li

    2014-01-01

    Bone marrow mesenchymal stem cells can differentiate into neurons and astrocytes after transplantation in the spinal cord of rats with ischemia/reperfusion injury. Although bone marrow mesenchymal stem cells are known to protect against spinal cord ischemia/reperfusion injury through anti-apoptotic effects, the precise mechanisms remain unclear. In the present study, bone marrow mesenchymal stem cells were cultured and proliferated, then transplanted into rats with ischemia/reperfusion injury...

  9. Transplantation of neurotrophin-3-transfected bone marrow mesenchymal stem cells for the repair of spinal cord injury

    OpenAIRE

    Dong, Yuzhen; Yang, Libin; Yang, Lin; Zhao, Hongxing; Zhang, Chao; Wu, Dapeng

    2014-01-01

    Bone marrow mesenchymal stem cell transplantation has been shown to be therapeutic in the repair of spinal cord injury. However, the low survival rate of transplanted bone marrow mesenchymal stem cells in vivo remains a problem. Neurotrophin-3 promotes motor neuron survival and it is hypothesized that its transfection can enhance the therapeutic effect. We show that in vitro transfection of neurotrophin-3 gene increases the number of bone marrow mesenchymal stem cells in the region of spinal ...

  10. Differentiation of rat marrow mesenchymal stem cells into pancreatic islet beta-cells

    Institute of Scientific and Technical Information of China (English)

    Li-Bo Chen; Xiao-Bing Jiang; Lian Yang

    2004-01-01

    AIM: To explore the possibility of marrow mesenchymal stem cells (MSC)in vitro differentiating into functional isletlike cells and to test the diabetes therapeutic potency of Islet-like cells.METHODS: Rat MSCs were isolated from Wistar rats and cultured. Passaged MSCs were induced to differentiate into islet-like cells under following conditions: pre-induction with L-DMEM including 10 mmol/L nicotinamide+1 mmol/L β-mercaptoethanol+200 mL/L fetal calf serum (FSC) for 24 h,followed by induction with serum free H-DMEM solution including 10 mmol/L nicotinamide+ 1 mmol/L,β-mercaptoethanol for 10 h. Differentiated cells were observed under inverse microscopy, insulin and nestin expressed in differentiated cells were detected with immunocytochemistry. Insulin excreted from differentiated cells was tested with radioimmunoassay. Rat diabetic models were made to test in vivo function of differentiated MSCs.RESULTS: Typical islet -like clustered cells were observed.Insulin mRNA and protein expressions were positive in differentiated cells, and nestin could be detected in predifferentiated cells. Insulin excreted from differentiated MSCs (446.93±102.28 IU/L) was much higher than that from pre-differentiated MSCs (2.45±0.81 IU/L (P<0.01).Injected differentiated MSCs cells could down-regulate glucose level in diabetic rats.CONCLUSION: Islet-like functional cells can be differentiated from marrow mesenchymal stem cells, which may be a new procedure for clinical diabetes stem -cell therapy, these cells can control blood glucose level in diabetic rats. MSCs may play an important role in diabetes therapy by islet differentiation and transplantation.

  11. Células-tronco mesenquimais Mesenchymal stem cell

    Directory of Open Access Journals (Sweden)

    Betânia Souza Monteiro

    2010-02-01

    Full Text Available Dentre todas as células-tronco estudadas até o presente momento, as mesenquimais (MSC destacam-se por sua elevada plasticidade, podendo originar tecidos mesodermais e não mesodermais. Além disso, possuem características imunomoduladoras e imunossupressoras que ampliam as possibilidades de utilização terapêutica. As MSC secretam uma grande variedade de citocinas pró e anti-inflamatórias e fatores de crescimento e, por meio dessas moléculas bioativas, proporcionam a modulação da resposta inflamatória, o restabelecimento do suprimento vascular e a reparação adequada do tecido, contribuindo para a homeostasia tissular e imunológica sob condições fisiológicas. Também podem induzir as demais células presentes no nicho tecidual a secretarem outros fatores solúveis que estimulam a diferenciação dessas células indiferenciadas, favorecendo o processo de reparação. A terapia celular com MSC é uma alternativa terapêutica promissora, porém a compreensão da biologia dessas células ainda é uma ciência em formação. Este artigo tem por objetivo realizar uma breve revisão sobre as células mesenquimais indiferenciadas.Of all the stem cells studied so far, the mesenchymal stem cells (MSC stand out for their high plasticity and capacity of generating mesodermal and non-mesodermal tissues. In addition, immunomodulatory and immunosuppressive features that expand possibilities for therapeutic use are present in these cells. A variety of pro and anti-inflammatory cytokines and growth factors are secrete for MSC and provide a modulation of inflammatory response, re-establishment of vascular supply and adequate repair of the tissue, contributing to tissue homeostasis under physiologic conditions. Therefore, they can induce secretion of soluble factors that stimulate their differentiation by other cells present at the niche's tissue, promoting the repair process. Cell therapy using MSC is a promises therapeutic alternative, but

  12. Stemness Evaluation of Mesenchymal Stem Cells from Placentas According to Developmental Stage: Comparison to Those from Adult Bone Marrow

    OpenAIRE

    Sung, Hwa Jung; Hong, Soon Cheol; Yoo, Ji Hyun; Oh, Jee Hyun; Shin, Hye Jin; Choi, In Young; Ahn, Ki Hoon; Kim, Sun Haeng; Park, Yong; Kim, Byung Soo

    2010-01-01

    This study was done to evaluate the stemness of human mesenchymal stem cells (hMSCs) derived from placenta according to the development stage and to compare the results to those from adult bone marrow (BM). Based on the source of hMSCs, three groups were defined: group I included term placentas, group II included first-trimester placentas, and group III included adult BM samples. The stemness was evaluated by the proliferation capacity, immunophenotypic expression, mesoderm differentiation, e...

  13. Mesenchymal Stem Cells Retain Their Defining Stem Cell Characteristics After Exposure to Ionizing Radiation

    International Nuclear Information System (INIS)

    Purpose: Mesenchymal stem cells (MSCs) have the ability to migrate to lesion sites and undergo differentiation into functional tissues. Although this function may be important for tissue regeneration after radiation therapy, the influence of ionizing radiation (IR) on cellular survival and the functional aspects of differentiation and stem cell characteristics of MSCs have remained largely unknown. Methods and Materials: Radiation sensitivity of human primary MSCs from healthy volunteers and primary human fibroblast cells was examined, and cellular morphology, cell cycle effects, apoptosis, and differentiation potential after exposure to IR were assessed. Stem cell gene expression patterns after exposure to IR were studied using gene arrays. Results: MSCs were not more radiosensitive than human primary fibroblasts, whereas there were considerable differences regarding radiation sensitivity within individual MSCs. Cellular morphology, cytoskeletal architecture, and cell motility were not markedly altered by IR. Even after high radiation doses up to 10 Gy, MSCs maintained their differentiation potential. Compared to primary fibroblast cells, MSCs did not show an increase in irradiation-induced apoptosis. Gene expression analyses revealed an upregulation of various genes involved in DNA damage response and DNA repair, but expression of established MSC surface markers appeared only marginally influenced by IR. Conclusions: These data suggest that human MSCs are not more radiosensitive than differentiated primary fibroblasts. In addition, upon photon irradiation, MSCs were able to retain their defining stem cell characteristics both on a functional level and regarding stem cell marker expression

  14. Mesenchymal Stem Cells Retain Their Defining Stem Cell Characteristics After Exposure to Ionizing Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Nicolay, Nils H., E-mail: n.nicolay@dkfz.de [Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg (Germany); Department of Molecular and Radiation Oncology, German Cancer Research Center, Heidelberg (Germany); Sommer, Eva; Lopez, Ramon; Wirkner, Ute [Department of Molecular and Radiation Oncology, German Cancer Research Center, Heidelberg (Germany); Trinh, Thuy [Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg (Germany); Department of Molecular and Radiation Oncology, German Cancer Research Center, Heidelberg (Germany); Sisombath, Sonevisay [Department of Molecular and Radiation Oncology, German Cancer Research Center, Heidelberg (Germany); Debus, Jürgen [Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg (Germany); Ho, Anthony D.; Saffrich, Rainer [Department of Hematology and Oncology, Heidelberg University Hospital, Heidelberg (Germany); Huber, Peter E. [Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg (Germany); Department of Molecular and Radiation Oncology, German Cancer Research Center, Heidelberg (Germany)

    2013-12-01

    Purpose: Mesenchymal stem cells (MSCs) have the ability to migrate to lesion sites and undergo differentiation into functional tissues. Although this function may be important for tissue regeneration after radiation therapy, the influence of ionizing radiation (IR) on cellular survival and the functional aspects of differentiation and stem cell characteristics of MSCs have remained largely unknown. Methods and Materials: Radiation sensitivity of human primary MSCs from healthy volunteers and primary human fibroblast cells was examined, and cellular morphology, cell cycle effects, apoptosis, and differentiation potential after exposure to IR were assessed. Stem cell gene expression patterns after exposure to IR were studied using gene arrays. Results: MSCs were not more radiosensitive than human primary fibroblasts, whereas there were considerable differences regarding radiation sensitivity within individual MSCs. Cellular morphology, cytoskeletal architecture, and cell motility were not markedly altered by IR. Even after high radiation doses up to 10 Gy, MSCs maintained their differentiation potential. Compared to primary fibroblast cells, MSCs did not show an increase in irradiation-induced apoptosis. Gene expression analyses revealed an upregulation of various genes involved in DNA damage response and DNA repair, but expression of established MSC surface markers appeared only marginally influenced by IR. Conclusions: These data suggest that human MSCs are not more radiosensitive than differentiated primary fibroblasts. In addition, upon photon irradiation, MSCs were able to retain their defining stem cell characteristics both on a functional level and regarding stem cell marker expression.

  15. Derivation of Stromal (Skeletal, Mesenchymal) Stem-like cells from Human Embryonic Stem Cells

    DEFF Research Database (Denmark)

    Mahmood, Amer; Harkness, Linda; Abdallah, Basem;

    2012-01-01

    Derivation of bone forming cells (osteoblasts) from human embryonic stem cells (hESC) is a pre-requisite for their use in clinical applications. However, there is no standard protocol for differentiating hESC into osteoblastic cells. The aim of this study was to identify the emergence of a human...... stromal (mesenchymal, skeletal) stem cell (hMSC)-like population, known to be osteoblastic cell precursors and to test their osteoblastic differentiation capacity in ex vivo cultures and in vivo. We cultured hESC in a feeder-free environment using serum replacement and as suspension aggregates (embryoid...... bodies; hEBs). Over a 20 day developmental period, the hEBs demonstrated increasing enrichment for cells expressing hMSC markers: CD29, CD44, CD63, CD56, CD71, CD73, CD105, CD106 and CD166 as revealed by immunohistochemical staining and flow cytometry (FACS) analysis. Ex vivo differentiation of h...

  16. Visual bone marrow mesenchymal stem cell transplantation in the repair of spinal cord injury

    Directory of Open Access Journals (Sweden)

    Rui-ping Zhang

    2015-01-01

    Full Text Available An important factor in improving functional recovery from spinal cord injury using stem cells is maximizing the number of transplanted cells at the lesion site. Here, we established a contusion model of spinal cord injury by dropping a weight onto the spinal cord at T 7-8 . Superparamagnetic iron oxide-labeled bone marrow mesenchymal stem cells were transplanted into the injured spinal cord via the subarachnoid space. An outer magnetic field was used to successfully guide the labeled cells to the lesion site. Prussian blue staining showed that more bone marrow mesenchymal stem cells reached the lesion site in these rats than in those without magnetic guidance or superparamagnetic iron oxide labeling, and immunofluorescence revealed a greater number of complete axons at the lesion site. Moreover, the Basso, Beattie and Bresnahan (BBB locomotor rating scale scores were the highest in rats with superparamagnetic labeling and magnetic guidance. Our data confirm that superparamagnetic iron oxide nanoparticles effectively label bone marrow mesenchymal stem cells and impart sufficient magnetism to respond to the external magnetic field guides. More importantly, superparamagnetic iron oxide-labeled bone marrow mesenchymal stem cells can be dynamically and non-invasively tracked in vivo using magnetic resonance imaging. Superparamagnetic iron oxide labeling of bone marrow mesenchymal stem cells coupled with magnetic guidance offers a promising avenue for the clinical treatment of spinal cord injury.

  17. visual bone marrow mesenchymal stem cell transplantation in the repair of spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Rui-ping Zhang; Cheng Xu; Yin Liu; Jian-ding Li; Jun Xie

    2015-01-01

    An important factor in improving functional recovery from spinal cord injury using stem cells is maximizing the number of transplanted cells at the lesion site. Here, we established a contusion model of spinal cord injury by dropping a weight onto the spinal cord at T7–8. Superparamagnet-ic iron oxide-labeled bone marrow mesenchymal stem cells were transplanted into the injured spinal cordvia the subarachnoid space. An outer magnetic ifeld was used to successfully guide the labeled cells to the lesion site. Prussian blue staining showed that more bone marrow mesen-chymal stem cells reached the lesion site in these rats than in those without magnetic guidance or superparamagnetic iron oxide labeling, and immunolfuorescence revealed a greater number of complete axons at the lesion site. Moreover, the Basso, Beattie and Bresnahan (BBB) locomotor rating scale scores were the highest in rats with superparamagnetic labeling and magnetic guid-ance. Our data conifrm that superparamagnetic iron oxide nanoparticles effectively label bone marrow mesenchymal stem cells and impart sufficient magnetism to respond to the external magnetic ifeld guides. More importantly, superparamagnetic iron oxide-labeled bone marrow mesenchymal stem cells can be dynamically and non-invasively trackedin vivo using magnetic resonance imaging. Superparamagnetic iron oxide labeling of bone marrow mesenchymal stem cells coupled with magnetic guidance offers a promising avenue for the clinical treatment of spinal cord injury.

  18. 12 hours after cerebral ischemia is the optimal time for bone marrow mesenchymal stem cell transplantation

    Institute of Scientific and Technical Information of China (English)

    Seyed Mojtaba Hosseini; Mohammad Farahmandnia; Zahra Razi; Somayeh Delavarifar; Benafsheh Shakibajahromi

    2015-01-01

    Cell therapy using stem cell transplantation against cerebral ischemia has been reported. However, it remains controversial regarding the optimal time for cell transplantation and the transplantation route. Rat models of cerebral ischemia were established by occlusion of the middle cerebral artery. At 1, 12 hours, 1, 3, 5 and 7 days after cerebral ischemia, bone marrow mesenchymal stem cells were injected via the tail vein. At 28 days after cerebral ischemia, rat neurological function was evaluated using a 6-point grading scale and the pathological change of ischemic cerebral tissue was observed by hematoxylin-eosin staining. Under the lfuorescence microscope, the migration of bone marrow mesenchymal stem cells was examined by PKH labeling. Caspase-3 activity was measured using spectrophotometry. The optimal neurological function recovery, lowest degree of ischemic cerebral damage, greatest number of bone marrow mesenchymal stem cells migrating to peri-ischemic area, and lowest caspase-3 activity in the ischemic cerebral tissue were observed in rats that underwent bone marrow mesenchymal stem cell transplantation at 12 hours after cerebral ischemia. These ifndings suggest that 12 hours after cerebral ischemia is the optimal time for tail vein injection of bone marrow mesenchymal stem cell transplantation against cerebral ischemia, and the strongest neuroprotective effect of this cell therapy appears at this time.

  19. 12 hours after cerebral ischemia is the optimal time for bone marrow mesenchymal stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Seyed Mojtaba Hosseini

    2015-01-01

    Full Text Available Cell therapy using stem cell transplantation against cerebral ischemia has been reported. However, it remains controversial regarding the optimal time for cell transplantation and the transplantation route. Rat models of cerebral ischemia were established by occlusion of the middle cerebral artery. At 1, 12 hours, 1, 3, 5 and 7 days after cerebral ischemia, bone marrow mesenchymal stem cells were injected via the tail vein. At 28 days after cerebral ischemia, rat neurological function was evaluated using a 6-point grading scale and the pathological change of ischemic cerebral tissue was observed by hematoxylin-eosin staining. Under the fluorescence microscope, the migration of bone marrow mesenchymal stem cells was examined by PKH labeling. Caspase-3 activity was measured using spectrophotometry. The optimal neurological function recovery, lowest degree of ischemic cerebral damage, greatest number of bone marrow mesenchymal stem cells migrating to peri-ischemic area, and lowest caspase-3 activity in the ischemic cerebral tissue were observed in rats that underwent bone marrow mesenchymal stem cell transplantation at 12 hours after cerebral ischemia. These findings suggest that 12 hours after cerebral ischemia is the optimal time for tail vein injection of bone marrow mesenchymal stem cell transplantation against cerebral ischemia, and the strongest neuroprotective effect of this cell therapy appears at this time.

  20. Factors affecting directional migration of bone marrow mesenchymal stem cells to the injured spinal cord

    Institute of Scientific and Technical Information of China (English)

    Peng Xia; Su Pan; Jieping Cheng; Maoguang Yang; Zhiping Qi; Tingting Hou; Xiaoyu Yang

    2014-01-01

    Microtubule-associated protein 1B plays an important role in axon guidance and neuronal migration. In the present study, we sought to discover the mechanisms underlying microtu-bule-associated protein 1B mediation of axon guidance and neuronal migration. We exposed bone marrow mesenchymal stem cells to okadaic acid or N-acetyl-D-erythro-sphingosine (an inhibitor and stimulator, respectively, of protein phosphatase 2A) for 24 hours. The expression of the phosphorylated form of type I microtubule-associated protein 1B in the cells was greater after exposure to okadaic acid and lower after N-acetyl-D-erythro-sphingosine. We then injected the bone marrow mesenchymal stem cells through the ear vein into rabbit models of spinal cord contusion. The migration of bone marrow mesenchymal stem cells towards the injured spinal cord was poorer in cells exposed to okadaic acid-and N-acetyl-D-erythro-sphingosine than in non-treated bone marrow mesenchymal stem cells. Finally, we blocked phosphatidylinosi-tol 3-kinase (PI3K) and extracellular signal-regulated kinase 1/2 (ERK1/2) pathways in rabbit bone marrow mesenchymal stem cells using the inhibitors LY294002 and U0126, respectively. LY294002 resulted in an elevated expression of phosphorylated type I microtubule-associated protein 1B, whereas U0126 caused a reduction in expression. The present data indicate that PI3K and ERK1/2 in bone marrow mesenchymal stem cells modulate the phosphorylation of micro-tubule-associated protein 1B via a cross-signaling network, and affect the migratory efifciency of bone marrow mesenchymal stem cells towards injured spinal cord.

  1. Tissue distribution and engraftment of human mesenchymal stem cells immortalized by human telomerase reverse transcriptase gene

    DEFF Research Database (Denmark)

    Bentzon, J F; Stenderup, K; Hansen, F D;

    2005-01-01

    Engraftment of mesenchymal stem cells (MSC) in peripheral tissues for replenishing of local stem cell function has been proposed as a therapeutic approach to degenerative diseases. We have previously reported the development of an immortalized human telomerase reverse transcriptase transduced MSC...

  2. Radiation response of mesenchymal stem cells derived from bone marrow and human pluripotent stem cells

    International Nuclear Information System (INIS)

    Mesenchymal stem cells (MSCs) isolated from human pluripotent stem cells are comparable with bone marrow-derived MSCs in their function and immunophenotype. The purpose of this exploratory study was comparative evaluation of the radiation responses of mesenchymal stem cells derived from bone marrow- (BMMSCs) and from human embryonic stem cells (hESMSCs). BMMSCs and hESMSCs were irradiated at 0 Gy (control) to 16 Gy using a linear accelerator commonly used for cancer treatment. Cells were harvested immediately after irradiation, and at 1 and 5 days after irradiation. Cell cycle analysis, colony forming ability (CFU-F), differentiation ability, and expression of osteogenic-specific runt-related transcription factor 2 (RUNX2), adipogenic peroxisome proliferator-activated receptor gamma (PPARγ), oxidative stress-specific dismutase-1 (SOD1) and Glutathione peroxidase (GPX1) were analyzed. Irradiation arrested cell cycle progression in BMMSCs and hESMSCs. Colony formation ability of irradiated MSCs decreased in a dose-dependent manner. Irradiated hESMSCs showed higher adipogenic differentiation compared with BMMSCs, together with an increase in the adipogenic PPARγ expression. PPARγ expression was upregulated as early as 4 h after irradiation, along with the expression of SOD1. More than 70% downregulation was found in Wnt3A, Wnt4, Wnt7A, Wnt10A and Wnt11 in BMMSCs, but not in hESMSCs. hESMSCs are highly proliferative but radiosensitive compared with BMMSCs. Increased PPARγ expression relative to RUNX2 and downregulation of Wnt ligands in irradiated MSCs suggest Wnt mediated the fate determination of irradiated MSCs. (author)

  3. Controversial results of therapy with mesenchymal stem cells in the acute phase of canine distemper disease.

    Science.gov (United States)

    Pinheiro, A O; Cardoso, M T; Vidane, A S; Casals, J B; Passarelli, D; Alencar, A L F; Sousa, R L M; Fantinato-Neto, P; Oliveira, V C; Lara, V M; Ambrósio, C E

    2016-01-01

    Distemper disease is an infectious disease reported in several species of domestic and wild carnivores. The high mortality rate of animals infected with canine distemper virus (CDV) treated with currently available therapies has driven the study of new efficacious treatments. Mesenchymal stem cell (MSC)-based therapy is a promising therapeutic option for many degenerative, hereditary, and inflammatory diseases. Therefore, the aim of this study was to characterize stem cells derived from the canine fetal olfactory epithelium and to assess the systemic response of animals infected with CDV to symptomatic therapy and treatment with MSCs. Eight domestic mongrel dogs (N = 8) were divided into two groups: support group (SG) (N = 5) and support group + cell therapy (SGCT) (N = 3), which were monitored over 15 days. Blood samples were collected on days 0, 6, 9, 12, and 15 to assess blood count and serum biochemistry (urea, creatinine, alanine transferase, alkaline phosphatase, gamma-glutamyl transferase, total protein, albumin, and globulin), and urine samples were obtained on days 0 and 15 for urinary evaluation (urine I). The results showed a high mortality rate (SG = 4 and SGCT = 2), providing inadequate data on the clinical course of CDV infection. MSC therapy resulted in no significant improvement when administered during the acute phase of canine distemper disease, and a prevalence of animals with high mortality rate was found in both groups due to the severity of symptoms. PMID:27323085

  4. In vitro differentiation of human adipose-derived mesenchymal stem cells into endothelial-like cells

    Institute of Scientific and Technical Information of China (English)

    GUAN Lidong; SHI Shuangshuang; PEI Xuetao; LI Shaoqing; WANG Yunfang; YUE Huimin; LIU Daqing; HE Lijuan; BAI Cixian; YAN Fang; NAN Xue

    2006-01-01

    The neovascularization of ischemic tissue is a crucial initial step for the functional rehabilitation and wound healing. However, the short of seed cell candidate for the foundation of vascular network is still a big issue. Human adipose tissue derived mesenchymal stem cells (hADSCs), which possess multilineage potential, are capable of adipogenic, osteogenic, and chondrogenic differentiation. We examined whether this kind of stem cells could differentiate into endothelial-like cells and participate in blood vessel formation, and whether they could be used as an ideal cell source for therapeutic angiogenesis in ischemic diseases or vascularization of tissue constructs. The results showed that hADSCs, grown under appropriately induced conditions, displayed characteristics similar to those of vessel endothelium. The differentiated cells expressed endothelial cell markers CD34 and vWF, and had high metabolism of acetylated low-density lipoprotein and prostacyclin. In addition, the induced cells were able to form tube-like structures when cultured on matrigel. Our data indicated that induced hADSCs could exhibit characteristics of endothelial cells. Therefore, these cells, as a source of human endothelial cells, may find many applications in such realms as engineering blood vessels, endothelial cell transplantation for myocardial regeneration, and induction of angiogenesis for treatment of regional ischemia.

  5. Mesenchymal Stem Cell (MSC) Aggregate Formation in vivo

    Science.gov (United States)

    Bartosh, Thomas J.; Ylostalo, Joni H.

    2016-01-01

    Human mesenchymal stem/progenitor cells (MSCs) isolated from various adult tissues show remarkable therapeutic potential and are being employed in clinical trials for the treatment of numerous diseases (Prockop et al., 2010). While routes of cell administration vary, profound beneficial effects of MSCs in animal models have been observed following intraperitoneal injections of the cells (Roddy et al., 2011). Similar to MSC spheres formed in culture under conditions where attachment to plastic is not permitted (Bartosh et al., 2010), MSCs injected into the peritoneum of mice spontaneously aggregate into 3D sphere-like structures (Bartosh et al., 2013). During the process of sphere assembly and compaction, MSCs upregulate expression of numerous therapeutic anti-inflammatory and immune modulatory factors. Here we describe the method we previously used for the generation of human bone marrow-derived MSC aggregates/spheres in vivo (Bartosh et al., 2013). By tagging the MSCs with green fluorescent protein (GFP), the aggregates formed can be easily visualized, collected and analyzed for changes in cellular properties and interactions with host immune cells.

  6. Immunomodulatory effect of Mesenchymal Stem Cells on B cells

    Directory of Open Access Journals (Sweden)

    Marcella eFranquesa

    2012-07-01

    Full Text Available The research on T cell immunosuppression therapies has attracted most of the attention in clinical transplantation. However, B cells and humoral immune responses are increasingly acknowledged as crucial mediators of chronic allograft rejection. Indeed, humoral immune responses can lead to renal allograft rejection even in patients whose cell-mediated immune responses are well controlled. On the other hand, newly studied B cell subsets with regulatory effects have been linked to tolerance achievement in transplantation. Better understanding of the regulatory and effector B cell responses may therefore lead to new therapeutic approaches.Mesenchymal Stem Cells (MSC are arising as a potent therapeutic tool in transplantation due to their regenerative and immunomodulatory properties. The research on MSCs has mainly focused on their effects on T cells and although data regarding the modulatory effects of MSCs on alloantigen-specific humoral response in humans is scarce, it has been demonstrated that MSCs significantly affect B cell functioning. In the present review we will analyze and discuss the results in this field.

  7. Mesenchymal stem cells: potential in treatment of neurodegenerative diseases.

    Science.gov (United States)

    Tanna, Tanmay; Sachan, Vatsal

    2014-01-01

    Mesenchymal Stem Cells or Marrow Stromal Cells (MSCs) have long been viewed as a potent tool for regenerative cell therapy. MSCs are easily accessible from both healthy donor and patient tissue and expandable in vitro on a therapeutic scale without posing significant ethical or procedural problems. MSC based therapies have proven to be effective in preclinical studies for graft versus host disease, stroke, myocardial infarction, pulmonary fibrosis, autoimmune disorders and many other conditions and are currently undergoing clinical trials at a number of centers all over the world. MSCs are also being extensively researched as a therapeutic tool against neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic Lateral Sclerosis (ALS), Huntington's disease (HD) and Multiple Sclerosis (MS). MSCs have been discussed with regard to two aspects in the context of neurodegenerative diseases: their ability to transdifferentiate into neural cells under specific conditions and their neuroprotective and immunomodulatory effects. When transplanted into the brain, MSCs produce neurotrophic and growth factors that protect and induce regeneration of damaged tissue. Additionally, MSCs have also been explored as gene delivery vehicles, for example being genetically engineered to over express glial-derived or brain-derived neurotrophic factor in the brain. Clinical trials involving MSCs are currently underway for MS, ALS, traumatic brain injuries, spinal cord injuries and stroke. In the present review, we explore the potential that MSCs hold with regard to the aforementioned neurodegenerative diseases and the current scenario with reference to the same.

  8. Mesenchymal stem cells for the treatment of neurodegenerative disease.

    Science.gov (United States)

    Joyce, Nanette; Annett, Geralyn; Wirthlin, Louisa; Olson, Scott; Bauer, Gerhard; Nolta, Jan A

    2010-11-01

    Mesenchymal stem cells/marrow stromal cells (MSCs) present a promising tool for cell therapy, and are currently being tested in US FDA-approved clinical trials for myocardial infarction, stroke, meniscus injury, limb ischemia, graft-versus-host disease and autoimmune disorders. They have been extensively tested and proven effective in preclinical studies for these and many other disorders. There is currently a great deal of interest in the use of MSCs to treat neurodegenerative diseases, in particular for those that are fatal and difficult to treat, such as Huntington's disease and amyotrophic lateral sclerosis. Proposed regenerative approaches to neurological diseases using MSCs include cell therapies in which cells are delivered via intracerebral or intrathecal injection. Upon transplantation into the brain, MSCs promote endogenous neuronal growth, decrease apoptosis, reduce levels of free radicals, encourage synaptic connection from damaged neurons and regulate inflammation, primarily through paracrine actions. MSCs transplanted into the brain have been demonstrated to promote functional recovery by producing trophic factors that induce survival and regeneration of host neurons. Therapies will capitalize on the innate trophic support from MSCs or on augmented growth factor support, such as delivering brain-derived neurotrophic factor or glial-derived neurotrophic factor into the brain to support injured neurons, using genetically engineered MSCs as the delivery vehicles. Clinical trials for MSC injection into the CNS to treat traumatic brain injury and stroke are currently ongoing. The current data in support of applying MSC-based cellular therapies to the treatment of neurodegenerative disorders are discussed.

  9. Expression of Neural Markers by Undifferentiated Rat Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Dana Foudah

    2012-01-01

    Full Text Available The spontaneous expression of neural markers by mesenchymal stem cells (MSCs has been considered to be a demonstration of MSCs’ predisposition to differentiate towards neural lineages. In view of their application in cell therapy for neurodegenerative diseases, it is very important to deepen the knowledge about this distinctive biological property of MSCs. In this study, we evaluated the expression of neuronal and glial markers in undifferentiated rat MSCs (rMSCs at different culture passages (from early to late. rMSCs spontaneously expressed neural markers depending on culture passage, and they were coexpressed or not with the neural progenitor marker nestin. In contrast, the number of rMSCs expressing mesengenic differentiation markers was very low or even completely absent. Moreover, rMSCs at late culture passages were not senescent cells and maintained the MSC immunophenotype. However, their differentiation capabilities were altered. In conclusion, our results support the concept of MSCs as multidifferentiated cells and suggest the existence of immature and mature neurally fated rMSC subpopulations. A possible correlation between specific MSC subpopulations and specific neural lineages could optimize the use of MSCs in cell transplantation therapy for the treatment of neurological diseases.

  10. Mesenchymal Stem Cells Subpopulations: Application for Orthopedic Regenerative Medicine

    Science.gov (United States)

    Camacho-Morales, Alberto

    2016-01-01

    Research on mesenchymal stem cells (MSCs) continues to progress rapidly. Nevertheless, the field faces several challenges, such as inherent cell heterogeneity and the absence of unique MSCs markers. Due to MSCs' ability to differentiate into multiple tissues, these cells represent a promising tool for new cell-based therapies. However, for tissue engineering applications, it is critical to start with a well-defined cell population. Additionally, evidence that MSCs subpopulations may also feature distinct characteristics and regeneration potential has arisen. In this report, we present an overview of the identification of MSCs based on the expression of several surface markers and their current tissue sources. We review the use of MSCs subpopulations in recent years and the main methodologies that have addressed their isolation, and we emphasize the most-used surface markers for selection, isolation, and characterization. Next, we discuss the osteogenic and chondrogenic differentiation from MSCs subpopulations. We conclude that MSCs subpopulation selection is not a minor concern because each subpopulation has particular potential for promoting the differentiation into osteoblasts and chondrocytes. The accurate selection of the subpopulation advances possibilities suitable for preclinical and clinical studies and determines the safest and most efficacious regeneration process. PMID:27725838

  11. Human Mesenchymal Stem Cell Morphology and Migration on Microtextured Titanium

    Science.gov (United States)

    Banik, Brittany L.; Riley, Thomas R.; Platt, Christina J.; Brown, Justin L.

    2016-01-01

    The implant used in spinal fusion procedures is an essential component to achieving successful arthrodesis. At the cellular level, the implant impacts healing and fusion through a series of steps: first, mesenchymal stem cells (MSCs) need to adhere and proliferate to cover the implant; second, the MSCs must differentiate into osteoblasts; third, the osteoid matrix produced by the osteoblasts needs to generate new bone tissue, thoroughly integrating the implant with the vertebrate above and below. Previous research has demonstrated that microtextured titanium is advantageous over smooth titanium and PEEK implants for both promoting osteogenic differentiation and integrating with host bone tissue; however, no investigation to date has examined the early morphology and migration of MSCs on these surfaces. This study details cell spreading and morphology changes over 24 h, rate and directionality of migration 6–18 h post-seeding, differentiation markers at 10 days, and the long-term morphology of MSCs at 7 days, on microtextured, acid-etched titanium (endoskeleton), smooth titanium, and smooth PEEK surfaces. The results demonstrate that in all metrics, the two titanium surfaces outperformed the PEEK surface. Furthermore, the rough acid-etched titanium surface presented the most favorable overall results, demonstrating the random migration needed to efficiently cover a surface in addition to morphologies consistent with osteoblasts and preosteoblasts. PMID:27243001

  12. [Immunoregulatory role of mesenchymal stem cells in bone reparation processes].

    Science.gov (United States)

    Zubov, D O

    2008-01-01

    Bone marrow contains mesenchymal stem cells (MSC) including osteoblast progenitor cells. When culturedunder conditions promoting an osteoblastic phenotype,MSC proliferate to form colonies that produce alkaline phosphatase and, subsequently, a mature osteoblastic phenotype. Transplantation of cultured autologous MSC to patients with non-healing bone fractures gives a good result leading to complete bone fracture consolidation. The aim of the study is to determine a quantitative production of IL-1beta, IL-2, IL-4, IL-6, IL-8 and TNF-alpha by cultured uncommitted and committed osteogenic MSC. The results showed that the cytokine profile consisting of IL-1beta, IL-2, IL-4, IL-6, IL-8 and TNF-alpha is secreted by cultured MSC. The secretion of IL-1beta and IL-2 by cultured MSC together with hyper production of IL-6 (up to 276.5 pg/ml, pactivators of bone resorption, inflammation and some immunological reactions in the process of altered osteoreparation. PMID:18756772

  13. Clopidogrel Enhances Mesenchymal Stem Cell Proliferation Following Periodontitis.

    Science.gov (United States)

    Coimbra, L S; Steffens, J P; Alsadun, S; Albiero, M L; Rossa, C; Pignolo, R J; Spolidorio, L C; Graves, D T

    2015-12-01

    Bone formation is dependent on the differentiation of osteoblasts from mesenchymal stem cells (MSCs). In addition to serving as progenitors, MSCs reduce inflammation and produce factors that stimulate tissue formation. Upon injury, MSCs migrate to the periodontium, where they contribute to regeneration. We examined the effect of clopidogrel and aspirin on MSCs following induction of periodontitis in rats by placement of ligatures. We showed that after the removal of ligatures, which induces resolution of periodontal inflammation, clopidogrel had a significant effect on reducing the inflammatory infiltrate. It also increased the number of osteoblasts and MSCs. Mechanistically, the latter was linked to increased proliferation of MSCs in vivo and in vitro. When given prior to inducing periodontitis, clopidogrel had little effect on MSC or osteoblasts numbers. Applying aspirin before or after induction of periodontitis did not have a significant effect on the parameters measured. These results suggest that clopidogrel may have a positive effect on MSCs in conditions where a reparative process has been initiated.

  14. PPAR-γ Signaling Crosstalk in Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Ichiro Takada

    2010-01-01

    Full Text Available Peroxisome proliferator-activated receptor-gamma (PPAR-γ is a member of the nuclear receptor (NR superfamily of ligand-activated transcriptional factors. Among other functions, PPAR-γ acts as a key regulator of the adipogenesis. Since several cytokines (IL-1, TNF-α, TGF-β had been known to inhibit adipocyte differentiation in mesenchymal stem cells (MSCs, we examined the effect of these cytokines on the transactivation function of PPAR-γ. We found that the TNF-α/IL-1-activated TAK1/TAB1/NIK (NFκB-inducible kinase signaling cascade inhibited both the adipogenesis and Tro-induced transactivation by PPAR-γ by blocking the receptor binding to the cognate DNA response elements. Furthermore, it has been shown that the noncanonical Wnts are expressed in MSCs and that Wnt-5a was capable to inhibit transactivation by PPAR-γ. Treatment with Wnt5a-activated NLK (nemo-like kinase induced physical association of the endogenous NLK and H3K9 histone methyltransferase (SETDB1 protein complexes with PPAR-γ. This resulted in histoneH3K9 tri-methylation at PPAR-γ target gene promoters. Overall, our data show that cytokines and noncanonical Wnts play a crucial role in modulation of PPAR-γ regulatory function in its target cells and tissues.

  15. The Role of Mesenchymal Stem Cell in Cancer Development

    Directory of Open Access Journals (Sweden)

    Hiroshi eYagi

    2013-11-01

    Full Text Available The role of mesenchymal stem cells (MSCs in cancer development is still controversial. MSCs may promote tumor progression through immune modulation, but other tumor suppressive effects of MSCs have also been described. The discrepancy between these results may arise from issues related to different tissue sources, individual donor variability, and injection timing of MSCs. The expression of critical receptors such as Toll-like receptor (TLR is variable at each time point of treatment, which may also determine the effects of MSCs on tumor progression. However, factors released from malignant cells, as well as surrounding tissues and the vasculature, are still regarded as a black box. Thus, it is still difficult to clarify the specific role of MSCs in cancer development. Whether MSCs support or suppress tumor progression is currently unclear, but it is clear that systemically administered MSCs can be recruited and migrate toward tumors. These findings are important because they can be used as a basis for initiating studies to explore the incorporation of engineered MSCs as novel anti-tumor carriers, for the development of tumor-targeted therapies.

  16. Mesenchymal Stem Cells Respond to Hypoxia by Increasing Diacylglycerols.

    Science.gov (United States)

    Lakatos, Kinga; Kalomoiris, Stefanos; Merkely, Béla; Nolta, Jan A; Fierro, Fernando A

    2016-02-01

    Mesenchymal stem cells (MSC) are currently being tested clinically for a plethora of conditions, with most approaches relying on the secretion of paracrine signals by MSC to modulate the immune system, promote wound healing, and induce angiogenesis. Hypoxia has been shown to affect MSC proliferation, differentiation, survival and secretory profile. Here, we investigate changes in the lipid composition of human bone marrow-derived MSC after exposure to hypoxia. Using mass spectrometry, we compared the lipid profiles of MSC derived from five different donors, cultured for two days in either normoxia (control) or hypoxia (1% oxygen). Hypoxia induced a significant increase of total triglycerides, fatty acids and diacylglycerols (DG). Remarkably, reduction of DG levels using the phosphatidylcholine-specific phospholipase C inhibitor D609 inhibited the secretion of VEGF and Angiopoietin-2, but increased the secretion of interleukin-8, without affecting significantly their respective mRNA levels. Functionally, incubation of MSC in hypoxia with D609 inhibited the potential of the cells to promote migration of human endothelial cells in a wound/scratch assay. Hence, we show that hypoxia induces in MSC an increase of DG that may affect the angiogenic potential of these cells. PMID:26212931

  17. Mesenchymal stem cells (MSCs) as skeletal therapeutics - an update.

    Science.gov (United States)

    Saeed, Hamid; Ahsan, Muhammad; Saleem, Zikria; Iqtedar, Mehwish; Islam, Muhammad; Danish, Zeeshan; Khan, Asif Manzoor

    2016-01-01

    Mesenchymal stem cells hold the promise to treat not only several congenital and acquired bone degenerative diseases but also to repair and regenerate morbid bone tissues. Utilizing MSCs, several lines of evidences advocate promising clinical outcomes in skeletal diseases and skeletal tissue repair/regeneration. In this context, both, autologous and allogeneic cell transfer options have been utilized. Studies suggest that MSCs are transplanted either alone by mixing with autogenous plasma/serum or by loading onto repair/induction supportive resorb-able scaffolds. Thus, this review is aimed at highlighting a wide range of pertinent clinical therapeutic options of MSCs in the treatment of skeletal diseases and skeletal tissue regeneration. Additionally, in skeletal disease and regenerative sections, only the early and more recent preclinical evidences are discussed followed by all the pertinent clinical studies. Moreover, germane post transplant therapeutic mechanisms afforded by MSCs have also been conversed. Nonetheless, assertive use of MSCs in the clinic for skeletal disorders and repair is far from a mature therapeutic option, therefore, posed challenges and future directions are also discussed. Importantly, for uniformity at all instances, term MSCs is used throughout the review. PMID:27084089

  18. Mesenchymal stem cells and cancer: friends or enemies?

    Science.gov (United States)

    Hong, In-Sun; Lee, Hwa-Yong; Kang, Kyung-Sun

    2014-10-01

    There is increasing evidence that mesenchymal stem cells (MSCs) have the ability to migrate and engraft into tumor sites and exert stimulatory effects on cancer cell growth, invasion and even metastasis through direct and/or indirect interaction with tumor cells. However, these pro-tumorigenic effects of MSCs are still being discovered and may even involve opposing effects. MSCs can be friends or enemies of cancer cells: they may stimulate tumor development by regulating immune surveillance, growth, and angiogenesis. On the other hand, they may inhibit tumor growth by inhibiting survival signaling such as Wnt and Akt pathway. MSCs have also been proposed as an attractive candidate for the delivery of anti-tumor agents, owing to their ability to home into tumor sites and to secrete cytokines. Detailed information about the mutual interactions between tumor cells and MSCs will undoubtedly lead to safer and more effective clinical therapy for tumors. In this article, we summarize a number of findings to provide current information on the potential roles of MSCs in tumor development; we then discuss the therapeutic potential of engineered MSCs to reveal any meaningful clinical applications.

  19. Pattern Recognition Receptors as modulators of Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Olga eDelaRosa

    2012-07-01

    Full Text Available Mesenchymal stem cells (MSCs have differentiation and immunomodulatory properties that make them interesting tools for the treatment of degenerative disorders, allograft rejection or inflammatory and autoimmune diseases. Biological properties of MSCs can be modulated by the inflammatory microenvironment they face at the sites of injury or inflammation. Indeed, MSCs do not constitutively exert their immunomodulating properties but have to be primed by inflammatory mediators released from immune cells and inflamed tissue. A polarization process, mediated by pattern recognition receptors (PRRs, towards either an anti-inflammatory or a pro-inflammatory phenotype has been described for MSCs. PRRs, including Toll-like receptors (TLRs and NOD-like receptors (NLRs, have been linked to allograft rejection and the perpetuation of chronic inflammatory diseases (e.g. Crohn´s disease, rheumatoid arthritis through the recognition of conserved pathogen-derived components or endogenous ligands (danger signals produced upon injury. Interest in understanding the effects of PRR activation on MSCs has greatly increased in the last few years since MSCs will likely encounter PRRs ligands at sites of injury, and it has been proven that the activation of PRRs in MSCs can modulate their function and therapeutic effect.

  20. Mesenchymal stem cell-based therapy in kidney transplantation.

    Science.gov (United States)

    Chen, Cheng; Hou, Jianquan

    2016-01-01

    Kidney transplantation is the best treatment for end-stage renal disease, but its implementation is limited by organ shortage and immune rejection. Side effects of current immunosuppressive drugs, such as nephrotoxicity, opportunistic infection, and tumorigenic potential, influence long-term graft outcomes. In recent years, continued research and subsequent discoveries concerning the properties and potential utilization of mesenchymal stem cells (MSCs) have aroused considerable interest and expectations. Biological characteristics of MSCs, including multi-lineage differentiation, homing potential, paracrine effect and immunomodulation, have opened new horizons for applications in kidney transplantation. However, many studies have shown that the biological activity of MSCs depends on internal inflammatory conditions, and the safety and efficacy of the clinical application of MSCs remain controversial. This review summarizes the findings of a large number of studies and aims to provide an objective viewpoint based on a comprehensive analysis of the presently established benefits and obstacles of implementing MSC-based therapy in kidney transplantation, and to promote its clinical translation. PMID:26852923

  1. Mesenchymal stem cells for treatment of aortic aneurysms

    Institute of Scientific and Technical Information of China (English)

    Aika; Yamawaki-Ogata; Ryotaro; Hashizume; Xian-Ming; Fu; Akihiko; Usui; Yuji; Narita

    2014-01-01

    An aortic aneurysm(AA) is a silent but life-threatening disease that involves rupture. It occurs mainly in aging and severe atherosclerotic damage of the aortic wall. Even though surgical intervention is effective to prevent rupture, surgery for the thoracic and thoraco-abdom-inal aorta is an invasive procedure with high mortality and morbidity. Therefore, an alternative strategy for treatment of AA is required. Recently, the molecular pathology of AA has been clarified. AA is caused by an imbalance between the synthesis and degradation of extracellular matrices in the aortic wall. Chronic inflam-mation enhances the degradation of matrices directly and indirectly, making control of the chronic inflamma-tion crucial for aneurysmal development. Meanwhile, mesenchymal stem cells(MSCs) are known to be ob-tained from an adult population and to differentiate into various types of cells. In addition, MSCs have not only the potential anti-inflammatory and immunosuppres-sive properties but also can be recruited into damagedtissue. MSCs have been widely used as a source for celltherapy to treat various diseases involving graft-versus-host disease, stroke, myocardial infarction, and chronicinflammatory disease such as Crohn’s disease clinically.Therefore, administration of MSCs might be availableto treat AA using anti-inflammatory and immnosup-pressive properties. This review provides a summary ofseveral studies on "Cell Therapy for Aortic Aneurysm"including our recent data, and we also discuss the pos-sibility of this kind of treatment.

  2. mTOR and the differentiation of mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    Xinxin Xiang; Jing Zhao; Geyang Xu; Yin Li; Weizhen Zhang

    2011-01-01

    The mammalian target of rapamycin (mTOR), an evolutionarily conserved serine-threonine protein kinase,belongs to the phosphoinositide 3-kinase (PI3K)-related kinase family, which contains a lipid kinase-like domain within their C-terminal region. Recent studies have revealed that mTOR as a critical intracellular molecule can sense the extracellular energy status and regulate the cell growth and proliferation in a variety of cells and tissues. This review summarizes our current understanding about the effects of mTOR on cell differentiation and tissue development, with an emphasis on the lineage determination of mesenchymal stem cells, mTOR can promote adipogenesis in white adipocytes, brown adipocytes, and muscle satellite cells, while rapamycin inhibits the adipogenic function of mTOR. mTOR signaling may function to affect osteoblast proliferation and differentiation, however, rapamycin has been reported to either inhibit or promote osteogenesis. Although the precise mechanism remains unclear, mTOR is indispensable for myogenesis. Depending on the cell type, rapamycin has been reported to inhibit, promote, or have no effect on myogenesis.

  3. Allogeneic Mesenchymal Stem Cell Treatment Induces Specific Alloantibodies in Horses

    Directory of Open Access Journals (Sweden)

    Sean D. Owens

    2016-01-01

    Full Text Available Background. It is unknown whether horses that receive allogeneic mesenchymal stem cells (MSCs injections develop specific humoral immune response. Our goal was to develop and validate a flow cytometric MSC crossmatch procedure and to determine if horses that received allogeneic MSCs in a clinical setting developed measurable antibodies following MSC administration. Methods. Serum was collected from a total of 19 horses enrolled in 3 different research projects. Horses in the 3 studies all received unmatched allogeneic MSCs. Bone marrow (BM or adipose tissue derived MSCs (ad-MSCs were administered via intravenous, intra-arterial, intratendon, or intraocular routes. Anti-MSCs and anti-bovine serum albumin antibodies were detected via flow cytometry and ELISA, respectively. Results. Overall, anti-MSC antibodies were detected in 37% of the horses. The majority of horses (89% were positive for anti-bovine serum albumin (BSA antibodies prior to and after MSC injection. Finally, there was no correlation between the amount of anti-BSA antibody and the development of anti-MSC antibodies. Conclusion. Anti allo-MSC antibody development was common; however, the significance of these antibodies is unknown. There was no correlation between either the presence or absence of antibodies and the percent antibody binding to MSCs and any adverse reaction to a MSC injection.

  4. Mechanisms of mesenchymal stem/stromal cell function.

    Science.gov (United States)

    Spees, Jeffrey L; Lee, Ryang Hwa; Gregory, Carl A

    2016-01-01

    The past decade has seen an explosion of research directed toward better understanding of the mechanisms of mesenchymal stem/stromal cell (MSC) function during rescue and repair of injured organs and tissues. In addition to delineating cell-cell signaling and molecular controls for MSC differentiation, the field has made particular progress in defining several other mechanisms through which administered MSCs can promote tissue rescue/repair. These include: 1) paracrine activity that involves secretion of proteins/peptides and hormones; 2) transfer of mitochondria by way of tunneling nanotubes or microvesicles; and 3) transfer of exosomes or microvesicles containing RNA and other molecules. Improved understanding of MSC function holds great promise for the application of cell therapy and also for the development of powerful cell-derived therapeutics for regenerative medicine. Focusing on these three mechanisms, we discuss MSC-mediated effects on immune cell responses, cell survival, and fibrosis and review recent progress with MSC-based or MSC-derived therapeutics. PMID:27581859

  5. Oxidative stress induces senescence in human mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Brandl, Anita [Department of Anesthesiology, University Medical Center Regensburg, Franz-Josef-Strauss-Allee 11, 93042 Regensburg (Germany); Meyer, Matthias; Bechmann, Volker [Department of Trauma Surgery, University Medical Center Regensburg, Franz-Josef-Strauss-Allee 11, 93042 Regensburg (Germany); Nerlich, Michael [Department of Anesthesiology, University Medical Center Regensburg, Franz-Josef-Strauss-Allee 11, 93042 Regensburg (Germany); Angele, Peter, E-mail: Peter.Angele@klinik.uni-regensburg.de [Department of Trauma Surgery, University Medical Center Regensburg, Franz-Josef-Strauss-Allee 11, 93042 Regensburg (Germany)

    2011-07-01

    Mesenchymal stem cells (MSCs) contribute to tissue repair in vivo and form an attractive cell source for tissue engineering. Their regenerative potential is impaired by cellular senescence. The effects of oxidative stress on MSCs are still unknown. Our studies were to investigate into the proliferation potential, cytological features and the telomere linked stress response system of MSCs, subject to acute or prolonged oxidant challenge with hydrogen peroxide. Telomere length was measured using the telomere restriction fragment assay, gene expression was determined by rtPCR. Sub-lethal doses of oxidative stress reduced proliferation rates and induced senescent-morphological features and senescence-associated {beta}-galactosidase positivity. Prolonged low dose treatment with hydrogen peroxide had no effects on cell proliferation or morphology. Sub-lethal and prolonged low doses of oxidative stress considerably accelerated telomere attrition. Following acute oxidant insult p21 was up-regulated prior to returning to initial levels. TRF1 was significantly reduced, TRF2 showed a slight up-regulation. SIRT1 and XRCC5 were up-regulated after oxidant insult and expression levels increased in aging cells. Compared to fibroblasts and chondrocytes, MSCs showed an increased tolerance to oxidative stress regarding proliferation, telomere biology and gene expression with an impaired stress tolerance in aged cells.

  6. Mesenchymal Stem Cells Subpopulations: Application for Orthopedic Regenerative Medicine

    Directory of Open Access Journals (Sweden)

    Vanessa Pérez-Silos

    2016-01-01

    Full Text Available Research on mesenchymal stem cells (MSCs continues to progress rapidly. Nevertheless, the field faces several challenges, such as inherent cell heterogeneity and the absence of unique MSCs markers. Due to MSCs’ ability to differentiate into multiple tissues, these cells represent a promising tool for new cell-based therapies. However, for tissue engineering applications, it is critical to start with a well-defined cell population. Additionally, evidence that MSCs subpopulations may also feature distinct characteristics and regeneration potential has arisen. In this report, we present an overview of the identification of MSCs based on the expression of several surface markers and their current tissue sources. We review the use of MSCs subpopulations in recent years and the main methodologies that have addressed their isolation, and we emphasize the most-used surface markers for selection, isolation, and characterization. Next, we discuss the osteogenic and chondrogenic differentiation from MSCs subpopulations. We conclude that MSCs subpopulation selection is not a minor concern because each subpopulation has particular potential for promoting the differentiation into osteoblasts and chondrocytes. The accurate selection of the subpopulation advances possibilities suitable for preclinical and clinical studies and determines the safest and most efficacious regeneration process.

  7. Mesenchymal stem cell printing and process regulated cell properties.

    Science.gov (United States)

    Snyder, Jessica; Rin Son, Ae; Hamid, Qudus; Wang, Chengyang; Lui, Yigong; Sun, Wei

    2015-01-01

    This topical review with original analysis and empirical results compares cell sensitivity to physical stress during printing. The objective is to frame a reproducible causation between printing environment and printed cell morphology, viability and phenotype stability. Content includes: (1) a topical review classifies the overlap between physical stress vectors during printing and mesenchymal stem cell sensitivities. (2) Original flow analysis frames the feasible range of stress duration and intensity during manufacturing. (3) Preliminary empirical results define cell properties as a function of minimum, mean and maximum stress conditions. The review and analytical characterization serve as an essential precursor to interpret surprising empirical results. Results identify key cell properties are stress-dependent and controllable based on printing process parameter selection. Printing's minimum stress condition preserves cell viability. The maximum stress increases heterogeneity of cell response, induces inelastic ultra-structural distortion of the cell membrane and chromatin, and increases necrotic subpopulations post-printing. The review, analysis and preliminary results support the feasibility of modulating cell properties during fabrication by prescriptively tuning the stress environment. The process control over cell morphology, health and the rate of differentiation is both a direct result of strain during printing and an in-direct result of increased distress signaling from necrotic sub-populations. PMID:26696405

  8. [Mesenchymal stem cells - The challenge of a good therapeutic product].

    Science.gov (United States)

    Sensebé, Luc; Bourin, Philippe

    2011-03-01

    Mesenchymal stem cells (or stromal cells) have been initially characterized in bone marrow, but since, they have been identified in almost every tissue. Their multiple properties, namely differentiative capacity, production of cytokines and trophic molecules, and their immunosuppressive potential undoubtedly offer many therapeutic advantages, both for regenerative medecine or to relieve immune or inflammatory diseases. This is illustrated by the high number (> 100) of ongoing clinical trials with these cells. However, a prerequsite for their safe use in clinics is to guarantee that their production meet the good manufacturing practices, and that the final product is validated by adequate controls. It is thus quite a challenge to move from procedures defined for a research use to large scale production that fits with the national and international rules in terms of standardisation and controls. This underlines the importance of developping interacting networks between research teams, physicians and the industrial R&D departments. This fruitful collaboration will ensure the definition of appropriate and safe procedures for a successful therapeutic application.

  9. Expansion of Human Mesenchymal Stem Cells in a Microcarrier Bioreactor.

    Science.gov (United States)

    Tsai, Ang-Chen; Ma, Teng

    2016-01-01

    Human mesenchymal stem cells (hMSCs) are considered as a primary candidate in cell therapy owing to their self-renewability, high differentiation capabilities, and secretions of trophic factors. In clinical application, a large quantity of therapeutically competent hMSCs is required that cannot be produced in conventional petri dish culture. Bioreactors are scalable and have the capacity to meet the production demand. Microcarrier suspension culture in stirred-tank bioreactors is the most widely used method to expand anchorage dependent cells in a large scale. Stirred-tank bioreactors have the potential to scale up and microcarriers provide the high surface-volume ratio. As a result, a spinner flask bioreactor with microcarriers has been commonly used in large scale expansion of adherent cells. This chapter describes a detailed culture protocol for hMSC expansion in a 125 mL spinner flask using microcarriers, Cytodex I, and a procedure for cell seeding, expansion, metabolic sampling, and quantification and visualization using microculture tetrazolium (MTT) reagent. PMID:27032950

  10. Generation of Insulin-Producing Human Mesenchymal Stem Cells Using Recombinant Adeno-Associated Virus

    OpenAIRE

    Kim, Jeong Hwan; Park, Si-Nae; Suh, Hwal

    2007-01-01

    The purpose of current experiment is the generation of insulin-producing human mesenchymal stem cells as therapeutic source for the cure of type 1 diabetes. Type 1 diabetes is generally caused by insulin deficiency accompanied by the destruction of islet β-cells. In various trials for the treatment of type 1 diabetes, cell-based gene therapy using stem cells is considered as one of the most useful candidate for the treatment. In this experiment, human mesenchymal stem cells were transduced wi...

  11. Equal modulation of endothelial cell function by four distinct tissue-specific mesenchymal stem cells.

    Science.gov (United States)

    Lin, Ruei-Zeng; Moreno-Luna, Rafael; Zhou, Bin; Pu, William T; Melero-Martin, Juan M

    2012-09-01

    Mesenchymal stem cells (MSCs) can generate multiple end-stage mesenchymal cell types and constitute a promising population of cells for regenerative therapies. Additionally, there is increasing evidence supporting other trophic activities of MSCs, including the ability to enable formation of vasculature in vivo. Although MSCs were originally isolated from the bone marrow, the presence of these cells in the stromal vascular fraction of multiple adult tissues has been recently recognized. However, it is unknown whether the capacity to modulate vasculogenesis is ubiquitous to all MSCs regardless of their tissue of origin. Here, we demonstrated that tissue-resident MSCs isolated from four distinct tissues have equal capacity to modulate endothelial cell function, including formation of vascular networks in vivo. MSCs were isolated from four murine tissues, including bone marrow, white adipose tissue, skeletal muscle, and myocardium. In culture, all four MSC populations secreted a plethora of pro-angiogenic factors that unequivocally induced proliferation, migration, and tube formation of endothelial colony-forming cells (ECFCs). In vivo, co-implantation of MSCs with ECFCs into mice generated an extensive network of blood vessels with ECFCs specifically lining the lumens and MSCs occupying perivascular positions. Importantly, there were no differences among all four MSCs evaluated. Our studies suggest that the capacity to modulate the formation of vasculature is a ubiquitous property of all MSCs, irrespective of their original anatomical location. These results validate multiple tissues as potential sources of MSCs for future cell-based vascular therapies.

  12. Mesenchymal stem cells as a therapeutic tool in tissue and organ regeneration

    Directory of Open Access Journals (Sweden)

    Anna Bajek

    2011-01-01

    Full Text Available Tissue engineering is an interdisciplinary field that offers new opportunities for regeneration of diseased and damaged tissue with the use of many different cell types,including adult stem cells. In tissue engineering and regenerative medicine the most popular are mesenchymal stem cells (MSCs isolated from bone marrow. Bone marrow mesenchymal stem cells are a potential source of progenitor cells for osteoblasts, chondroblasts, adipocytes, skeletal muscles and cardiomyocytes. It has also been shown that these cells can differentiate into ecto- and endodermal cells, e.g. neuronal cells, glial cells, keratinocytes and hepatocytes. The availability of autologous MSCs, their proliferative potential and multilineage differentiation capacity make them an excellent tool for tissue engineering and regenerative medicine. The aim of this publication is to present characteristic and biological properties of mesenchymal stem cells isolated from bone marrow.

  13. The Role of Wharton’s Jelly Mesenchymal Stem Cells in Skin Reconstruction

    Directory of Open Access Journals (Sweden)

    Rostamzadeh

    2015-06-01

    Full Text Available Context Stem cell therapy, especially in the segment of mesenchymal stem cells (MSCs, is one of the most promising areas of regenerative medicine. Evidence Acquisition According to research conducted by various researchers, Wharton’s Jelly mesenchymal stem cells (WJMSCs have several advantages compared to others sources, in regenerative medicine: WJMSCs are more primary cells; WJMSCs can be easily isolated and without invasive procedures; WJMSCs have no ethical problems; WJMSCs are more cost effective than other sources of MSCs. Also, WJMSCs were demonstrated to express stem cell mesenchymal markers. Results Similar to bone marrow MSCs, WJMSCs express major histocompatibility complex (MHC class I molecules. Conclusions Although the aforementioned challenges must still be addressed, the potential of WJMSCs in skin regenerative clinical treatments is promising.

  14. The HPB-AML-I cell line possesses the properties of mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Tatsumi Eiji

    2010-12-01

    Full Text Available Abstract Background In spite of its establishment from the peripheral blood of a case with acute myeloid leukemia (AML-M1, HPB-AML-I shows plastic adherence with spindle-like morphology. In addition, lipid droplets can be induced in HPB-AML-I cells by methylisobutylxanthine, hydrocortisone, and indomethacin. These findings suggest that HPB-AML-I is similar to mesenchymal stem cells (MSCs or mesenchymal stromal cells rather than to hematopoietic cells. Methods To examine this possibility, we characterized HPB-AML-I by performing cytochemical, cytogenetic, and phenotypic analyses, induction of differentiation toward mesenchymal lineage cells, and mixed lymphocyte culture analysis. Results HPB-AML-I proved to be negative for myeloperoxidase, while surface antigen analysis disclosed that it was positive for MSC-related antigens, such as CD29, CD44, CD55, CD59, and CD73, but not for CD14, CD19, CD34, CD45, CD90, CD105, CD117, and HLA-DR. Karyotypic analysis showed the presence of complicated abnormalities, but no reciprocal translocations typically detected in AML cases. Following the induction of differentiation toward adipocytes, chondrocytes, and osteocytes, HPB-AML-I cells showed, in conjunction with extracellular matrix formation, lipid accumulation, proteoglycan synthesis, and alkaline phosphatase expression. Mixed lymphocyte culture demonstrated that CD3+ T-cell proliferation was suppressed in the presence of HPB-AML-I cells. Conclusions We conclude that HPB-AML-I cells appear to be unique neoplastic cells, which may be derived from MSCs, but are not hematopoietic progenitor cells.

  15. Addition of Adipose-Derived Stem Cells to Mesenchymal Stem Cell Sheets Improves Bone Formation at an Ectopic Site

    Directory of Open Access Journals (Sweden)

    Zhifa Wang

    2016-02-01

    Full Text Available To determine the effect of adipose-derived stem cells (ADSCs added to bone marrow-derived mesenchymal stem cell (MSC sheets on bone formation at an ectopic site. We isolated MSCs and ADSCs from the same rabbits. We then prepared MSC sheets for implantation with or without ADSCs subcutaneously in the backs of severe combined immunodeficiency (SCID mice. We assessed bone formation at eight weeks after implantation by micro-computed tomography and histological analysis. In osteogenic medium, MSCs grew to form multilayer sheets containing many calcium nodules. MSC sheets without ADSCs formed bone-like tissue; although neo-bone and cartilage-like tissues were sparse and unevenly distributed by eight weeks after implantation. In comparison, MSC sheets with ADSCs promoted better bone regeneration as evidenced by the greater density of bone, increased mineral deposition, obvious formation of blood vessels, large number of interconnected ossified trabeculae and woven bone structures, and greater bone volume/total volume within the composite constructs. Our results indicate that although sheets of only MSCs have the potential to form tissue engineered bone at an ectopic site, the addition of ADSCs can significantly increase the osteogenic potential of MSC sheets. Thus, the combination of MSC sheets with ADSCs may be regarded as a promising therapeutic strategy to stimulate bone regeneration.

  16. Mesenchymal Stem Cell-Like Cells Derived from Mouse Induced Pluripotent Stem Cells Ameliorate Diabetic Polyneuropathy in Mice

    Directory of Open Access Journals (Sweden)

    Tatsuhito Himeno

    2013-01-01

    Full Text Available Background. Although pathological involvements of diabetic polyneuropathy (DPN have been reported, no dependable treatment of DPN has been achieved. Recent studies have shown that mesenchymal stem cells (MSCs ameliorate DPN. Here we demonstrate a differentiation of induced pluripotent stem cells (iPSCs into MSC-like cells and investigate the therapeutic potential of the MSC-like cell transplantation on DPN. Research Design and Methods. For induction into MSC-like cells, GFP-expressing iPSCs were cultured with retinoic acid, followed by adherent culture for 4 months. The MSC-like cells, characterized with flow cytometry and RT-PCR analyses, were transplanted into muscles of streptozotocin-diabetic mice. Three weeks after the transplantation, neurophysiological functions were evaluated. Results. The MSC-like cells expressed MSC markers and angiogenic/neurotrophic factors. The transplanted cells resided in hindlimb muscles and peripheral nerves, and some transplanted cells expressed S100β in the nerves. Impairments of current perception thresholds, nerve conduction velocities, and plantar skin blood flow in the diabetic mice were ameliorated in limbs with the transplanted cells. The capillary number-to-muscle fiber ratios were increased in transplanted hindlimbs of diabetic mice. Conclusions. These results suggest that MSC-like cell transplantation might have therapeutic effects on DPN through secreting angiogenic/neurotrophic factors and differentiation to Schwann cell-like cells.

  17. Mesenchymal stem cell like (MSCl) cells generated from human embryonic stem cells support pluripotent cell growth

    Energy Technology Data Exchange (ETDEWEB)

    Varga, Nora [Membrane Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest (Hungary); Vereb, Zoltan; Rajnavoelgyi, Eva [Department of Immunology, Medical and Health Science Centre, University of Debrecen, Debrecen (Hungary); Nemet, Katalin; Uher, Ferenc; Sarkadi, Balazs [Membrane Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest (Hungary); Apati, Agota, E-mail: apati@kkk.org.hu [Membrane Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest (Hungary)

    2011-10-28

    Highlights: Black-Right-Pointing-Pointer MSC like cells were derived from hESC by a simple and reproducible method. Black-Right-Pointing-Pointer Differentiation and immunosuppressive features of MSCl cells were similar to bmMSC. Black-Right-Pointing-Pointer MSCl cells as feeder cells support the undifferentiated growth of hESC. -- Abstract: Mesenchymal stem cell like (MSCl) cells were generated from human embryonic stem cells (hESC) through embryoid body formation, and isolated by adherence to plastic surface. MSCl cell lines could be propagated without changes in morphological or functional characteristics for more than 15 passages. These cells, as well as their fluorescent protein expressing stable derivatives, efficiently supported the growth of undifferentiated human embryonic stem cells as feeder cells. The MSCl cells did not express the embryonic (Oct4, Nanog, ABCG2, PODXL, or SSEA4), or hematopoietic (CD34, CD45, CD14, CD133, HLA-DR) stem cell markers, while were positive for the characteristic cell surface markers of MSCs (CD44, CD73, CD90, CD105). MSCl cells could be differentiated toward osteogenic, chondrogenic or adipogenic directions and exhibited significant inhibition of mitogen-activated lymphocyte proliferation, and thus presented immunosuppressive features. We suggest that cultured MSCl cells can properly model human MSCs and be applied as efficient feeders in hESC cultures.

  18. The Three-Dimensional Collagen Scaffold Improves the Stemness of Rat Bone Marrow Mesenchymal Stem Cells

    Institute of Scientific and Technical Information of China (English)

    Sufang Han; Yannan Zhao; Zhifeng Xiao; Jin Han; Bing Chen; Lei Chen; Jianwu Dai

    2012-01-01

    Mesenchymal stem cells (MSCs) show the great promise for the treatment of a variety of diseases because of their self-renewal and multipotential abilities.MSCs are generally cultured on two-dimensional (2D) substrate in vitro.There are indications that they may simultaneously lose their stemness and multipotentiality as the result of prolonged 2D culture.In this study,we used three-dimensional (3D) collagen scaffolds as rat MSCs carrier and compared the properties of MSCs on 3D collagen scaffolds with monolayer cultured MSCs.The results demonstrated that collagen scaffolds were suitable for rat MSCs adherence and proliferation.More importantly,compared to MSCs under 2D culture,3D MSCs significantly maintained higher expression levels of stemness genes (Oct4,Sox2,Rex-1 and Nanog),yielded high frequencies of colony-forming units-fibroblastic (CFU-F) and showed enhanced osteogenic and adipogenic differentiation efficiency upon induction.Thus,3D collagen scaffolds may be beneficial for expanding rat MSCs while maintaining the stem cell properties in vitro.

  19. 骨髓间充质干细胞移植改善糖尿病肾病大鼠血糖及尿总蛋白%Transplantation of bone marrow mesenchymal stem cells to improve blood glucose and urinary total protein levels in diabetic nephropathy rats

    Institute of Scientific and Technical Information of China (English)

    杜俊文; 吴韬; 张坤; 苏白玉; 卢彩萍; 王伟超; 雷琳; 郭静霞

    2016-01-01

    背景:糖尿病肾病防治的基本措施包括有效控制血糖、控制血压、抑制肾素-血管紧张素系统和调脂治疗等,但往往无法获得理想的效果。目的:探讨骨髓间充质干细胞移植糖尿病肾病大鼠的血糖及尿总蛋白改善情况。方法:45只SD大鼠随机分为3组,每组15只,分别设为正常对照组、糖尿病肾病组和干细胞移植组。糖尿病肾病组和干细胞移植组一次性腹腔注射链脲佐菌素60 mg/kg制备糖尿病肾病模型,正常对照组注射相同剂量的柠檬酸-柠檬酸钠缓冲液,造模后将2×106(200μL)骨髓间充质干细胞直接注射到干细胞移植组大鼠左心室,首次移植后7 d进行第2次移植。正常对照组和糖尿病肾病组心内注射相同剂量的无血清L-DMEM培养基。治疗后1,4,8周检测3组大鼠的尿总蛋白和血糖。结果与结论:①治疗后1,4,8周:干细胞移植组以及糖尿病肾病组的血糖及尿总蛋白水平均显著高于对照组(P0.05)。④实验结果表明,骨髓间充质干细胞移植治疗糖尿病肾病大鼠可以在短时间内获得良好的治疗效果,显著改善大鼠的血糖及尿总蛋白水平,但长期治疗效果不佳。%BACKGROUND:Common strategies for preventing diabetic nephropathy include effective control of blood sugar and blood pressure, inhibition of the rennin-angiotensin system and lipid-lowering therapy, but it is often difficult to get the desired results. OBJECTIVE:To investigate the effect of transplantation of bone marrow mesenchymal stem cels on levels of blood glucose and urinary total protein in diabetic nephropathy rats. METHODS: Forty-five Sprague-Dawley rats were randomly divided into three groups (n=15 per group): normal control group, diabetic nephropathy group and stem cel transplantation group. Rats in the diabetic nephropathy and stem cel transplantation groups were given single use of 60 mg/kg streptozotocin to make

  20. Transplantation of bone marrow mesenchymal stem cells to improve blood glucose and urinary total protein levels in diabetic nephropathy rats%骨髓间充质干细胞移植改善糖尿病肾病大鼠血糖及尿总蛋白

    Institute of Scientific and Technical Information of China (English)

    杜俊文; 吴韬; 张坤; 苏白玉; 卢彩萍; 王伟超; 雷琳; 郭静霞

    2016-01-01

    BACKGROUND:Common strategies for preventing diabetic nephropathy include effective control of blood sugar and blood pressure, inhibition of the rennin-angiotensin system and lipid-lowering therapy, but it is often difficult to get the desired results. OBJECTIVE:To investigate the effect of transplantation of bone marrow mesenchymal stem cels on levels of blood glucose and urinary total protein in diabetic nephropathy rats. METHODS: Forty-five Sprague-Dawley rats were randomly divided into three groups (n=15 per group): normal control group, diabetic nephropathy group and stem cel transplantation group. Rats in the diabetic nephropathy and stem cel transplantation groups were given single use of 60 mg/kg streptozotocin to make diabetic nephropathy models. The same dose of citric acid-sodium citrate buffer was injected in the normal control group. After modeling, 200μL of bone marrow mesenchymal stem cel solution (2×106) was injected into the left ventricle of rats in the stem cel transplantation group, and then at 7 days after the first transplantation, the cel transplantation was conducted again. The same dose of serum-free L-DMEM was injected intracardialy into the rats in the normal control and diabetic nephropathy groups. Levels of urinary total protein and blood glucose were detected. RESULTS AND CONCLUSION:At 1, 4, 8 weeks after treatment, the urinary total protein and blood glucose levels were significantly higher in the stem cel transplantation group and diabetic nephropathy group than the normal control group (P 0.05). These findings indicate that bone marrow mesenchymal stem cel transplantation in diabetic nephropathy rats can get good results in a short period, significantly improve the blood glucose and urinary total protein levels, but the long-term treatment effect is poor.%背景:糖尿病肾病防治的基本措施包括有效控制血糖、控制血压、抑制肾素-血管紧张素系统和调脂治疗等,但往往无法获得理想的效果

  1. Becoming a Blood Stem Cell Donor

    Medline Plus

    Full Text Available ... blood stem cell (PBSC) donor, explains the donation process - Duration: 3:28. Be The Match 23,393 ... Copyright Creators Advertise Developers +YouTube Terms Privacy Policy & Safety Send feedback Try something new! Loading... Working... Sign ...

  2. Becoming a Blood Stem Cell Donor

    Medline Plus

    Full Text Available ... be donors at http://www.marrow.org . Category Science & Technology License Standard YouTube License Show more Show ... Monks 3,700 views 4:41 Stem Cell Basics - How Blood is Made. - Duration: 10:58. Vernon ...

  3. Dorsal root ganglion neurons promote proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    Pei-xun Zhang; Xiao-rui Jiang; Lei Wang; Fang-min Chen; Lin Xu; Fei Huang

    2015-01-01

    Preliminary animal experiments have conifrmed that sensory nerve ifbers promote osteoblast differentiation, but motor nerve ifbers have no promotion effect. Whether sensory neurons pro-mote the proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells remains unclear. No results at the cellular level have been reported. In this study, dorsal root ganglion neurons (sensory neurons) from Sprague-Dawley fetal rats were co-cultured with bone marrow mesenchymal stem cells transfected with green lfuorescent protein 3 weeks after osteo-genic differentiationin vitro, while osteoblasts derived from bone marrow mesenchymal stem cells served as the control group. The rat dorsal root ganglion neurons promoted the prolifera-tion of bone marrow mesenchymal stem cell-derived osteoblasts at 3 and 5 days of co-culture, as observed by lfuorescence microscopy. The levels of mRNAs for osteogenic differentiation-re-lated factors (including alkaline phosphatase, osteocalcin, osteopontin and bone morphogenetic protein 2) in the co-culture group were higher than those in the control group, as detected by real-time quantitative PCR. Our ifndings indicate that dorsal root ganglion neurons promote the proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells, which pro-vides a theoretical basis forin vitro experiments aimed at constructing tissue-engineered bone.

  4. In vitro cardiomyogenic potential of human umbilical vein-derived mesenchymal stem cells

    International Nuclear Information System (INIS)

    Cardiomyocyte loss in the ischemically injured human heart often leads to irreversible defects in cardiac function. Recently, cellular cardiomyoplasty with mesenchymal stem cells, which are multipotent cells with the ability to differentiate into specialized cells under appropriate stimuli, has emerged as a new approach for repairing damaged myocardium. In the present study, the potential of human umbilical cord-derived mesenchymal stem cells to differentiate into cells with characteristics of cardiomyocyte was investigated. Mesenchymal stem cells were isolated from endothelial/subendothelial layers of the human umbilical cords using a method similar to that of human umbilical vein endothelial cell isolation. Isolated cells were characterized by transdifferentiation ability to adipocytes and osteoblasts, and also with flow cytometry analysis. After treatment with 5-azacytidine, the human umbilical cord-derived mesenchymal stem cells were morphologically transformed into cardiomyocyte-like cells and expressed cardiac differentiation markers. During the differentiation, cells were monitored by a phase contrast microscope and their morphological changes were demonstrated. Immunostaining of the differentiated cells for sarcomeric myosin (MF20), desmin, cardiac troponin I, and sarcomeric α-actinin was positive. RT-PCR analysis showed that these differentiated cells express cardiac-specific genes. Transmission electron microscopy revealed a cardiomyocyte-like ultrastructure and typical sarcomers. These observations confirm that human umbilical cord-derived mesenchymal stem cells can be chemically transformed into cardiomyocytes and can be considered as a source of cells for cellular cardiomyoplasty

  5. Bone marrow mesenchymal stem cell transplantation combined with core decompression and bone grafting in the repair of osteonecrosis of femoral head

    Institute of Scientific and Technical Information of China (English)

    Zhang Yang; Wang Nan; Yang Li-feng; Ma Ji; Li Zhi

    2015-01-01

    BACKGROUND: Core decompression alone for osteonecrosis of femoral head easily causes fovea of femoral head and colapse of inner microstructure. Therefore, autologous bone is needed for filing and supporting. Moreover, bone marrow stem cel transplantation can decrease the incidence of femoral head colapse. OBJECTIVE:To discuss the clinical effects of core decompression and bone grafting combined with autotransplantation of bone marrow mesenchymal stem cels for osteonecrosis of femoral head. METHODS: A total of 33 patients were treated by core decompression and bone grafting combined with autotransplantation of bone marrow mesenchymal stem cels in the Fourth Department of Bone Surgery, Central Hospital Affiliated to Shenyang Medical Colege in China from December 2012 to May 2013. RESULTS AND CONCLUSION:After the treatment by core decompression and bone grafting combined with autotransplantation of bone marrow mesenchymal stem cels, Harris hip function score increased and pain disappeared in patients with osteonecrosis of femoral head. They could do various labors. Radiographs or CT examination displayed normal femoral head in 30 hips, accounting for 79%. Pain significantly reduced. Normal or slight limp walking was found in 15 hips, accounting for 40%. There were 35 hips in patients, whose walking distance was extended, accounting for 92%. 24 hips dysfunction was improved markedly, accounting for 63%. Al results suggested that core decompression and bone grafting combined with autotransplantation of bone marrow mesenchymal stem cels improved the local blood supply of femoral head, and played a positive role in promoting the necrotic bone absorption and bone repairing.

  6. Isolation and Culture of Rabbit Marrow-derived Mesenchymal Stem Cells

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    1 IntroductionRepair of tissues like bone, cartilage, muscle, etc., is a tough problem in clinical treatment. The recent research show that there are plenty of mesenchymal stem cells (MSCs) in myeloid tissue besides hemopoietic stem cells(HSCs).Just as the pluripotential hemopoietic stem cell can give bone marrow tissue excellent hemopoietic ability and maintain the metabolism of, MSCs can give potential repair ability to bone, cartilage tissue injury~([1]).But compared with the HSCs, the content of MSCs in...

  7. Stiffening of Human Mesenchymal Stem Cell Spheroid Microenvironments Induced by Incorporation of Gelatin Microparticles

    OpenAIRE

    Baraniak, Priya R.; Cooke, Marissa T; Saeed, Rabbia; Kinney, Melissa A.; Krista M Fridley; McDevitt, Todd C.

    2012-01-01

    Culturing multipotent adult mesenchymal stem cells as 3D aggregates augments their differentiation potential and paracrine activity. One caveat of stem cell spheroids, though, can be the limited diffusional transport barriers posed by the inherent 3D structure of the multicellular aggregates. In order to circumvent such limitations, polymeric microparticles have been incorporated into stem cell aggregates as a means to locally control the biochemical and physical properties of the 3D microenv...

  8. Effects of Hypoxia and Chitosan on Equine Umbilical Cord-Derived Mesenchymal Stem Cells

    OpenAIRE

    Griffon, D. J.; Cho, J.; Wagner, J. R.; Charavaryamath, C.; Wei, J.; Wagoner Johnson, A.

    2016-01-01

    Chitosan opens new perspectives in regenerative medicine as it enhances the properties of mesenchymal stem cells (MSCs) through formation of spheroids. Hypoxia has also been proposed to enhance stemness and survival of MSCs after in vivo implantation. These characteristics are relevant to the development of an off-the-shelf source of allogenic cells for regenerative therapy of tendinopathies. Umbilical cord-derived MSCs (UCM-MSCs) offer an abundant source of immature and immunoprivileged stem...

  9. Generation of Breast Cancer Stem Cells through Epithelial-Mesenchymal Transition

    OpenAIRE

    Anne-Pierre Morel; Marjory Lièvre; Clémence Thomas; George Hinkal; Stéphane Ansieau; Alain Puisieux

    2008-01-01

    Recently, two novel concepts have emerged in cancer biology: the role of so-called "cancer stem cells" in tumor initiation, and the involvement of an epithelial-mesenchymal transition (EMT) in the metastatic dissemination of epithelial cancer cells. Using a mammary tumor progression model, we show that cells possessing both stem and tumorigenic characteristics of "cancer stem cells" can be derived from human mammary epithelial cells following the activation of the Ras-MAPK pathway. The acquis...

  10. Heterogeneous Differentiation of Human Mesenchymal Stem Cells in Response to Extended Culture in Extracellular Matrices

    OpenAIRE

    Jose A Santiago; Pogemiller, Ryan; Ogle, Brenda M.

    2009-01-01

    Extracellular matrix proteins (ECMs) guide differentiation of adult stem cells, but the temporal distribution of differentiation (i.e., heterogeneity) in a given population has not been investigated. We tested the effect of individual ECM proteins on lineage commitment of human bone marrow–derived mesenchymal stem cells (MSCs) over time. We exposed stem cell populations to ECM proteins representing the primary tissue structures of the body (i.e., collagens type I, III, IV; laminin; and fibron...

  11. Regenerative Effects of Mesenchymal Stem Cells: Contribution of Muse Cells, a Novel Pluripotent Stem Cell Type that Resides in Mesenchymal Cells

    Directory of Open Access Journals (Sweden)

    Mari Dezawa

    2012-11-01

    Full Text Available Mesenchymal stem cells (MSCs are easily accessible and safe for regenerative medicine. MSCs exert trophic, immunomodulatory, anti-apoptotic, and tissue regeneration effects in a variety of tissues and organs, but their entity remains an enigma. Because MSCs are generally harvested from mesenchymal tissues, such as bone marrow, adipose tissue, or umbilical cord as adherent cells, MSCs comprise crude cell populations and are heterogeneous. The specific cells responsible for each effect have not been clarified. The most interesting property of MSCs is that, despite being adult stem cells that belong to the mesenchymal tissue lineage, they are able to differentiate into a broad spectrum of cells beyond the boundary of mesodermal lineage cells into ectodermal or endodermal lineages, and repair tissues. The broad spectrum of differentiation ability and tissue-repairing effects of MSCs might be mediated in part by the presence of a novel pluripotent stem cell type recently found in adult human mesenchymal tissues, termed multilineage-differentiating stress enduring (Muse cells. Here we review recently updated studies of the regenerative effects of MSCs and discuss their potential in regenerative medicine.

  12. Regenerative Effects of Mesenchymal Stem Cells: Contribution of Muse Cells, a Novel Pluripotent Stem Cell Type that Resides in Mesenchymal Cells.

    Science.gov (United States)

    Wakao, Shohei; Kuroda, Yasumasa; Ogura, Fumitaka; Shigemoto, Taeko; Dezawa, Mari

    2012-11-08

    Mesenchymal stem cells (MSCs) are easily accessible and safe for regenerative medicine. MSCs exert trophic, immunomodulatory, anti-apoptotic, and tissue regeneration effects in a variety of tissues and organs, but their entity remains an enigma. Because MSCs are generally harvested from mesenchymal tissues, such as bone marrow, adipose tissue, or umbilical cord as adherent cells, MSCs comprise crude cell populations and are heterogeneous. The specific cells responsible for each effect have not been clarified. The most interesting property of MSCs is that, despite being adult stem cells that belong to the mesenchymal tissue lineage, they are able to differentiate into a broad spectrum of cells beyond the boundary of mesodermal lineage cells into ectodermal or endodermal lineages, and repair tissues. The broad spectrum of differentiation ability and tissue-repairing effects of MSCs might be mediated in part by the presence of a novel pluripotent stem cell type recently found in adult human mesenchymal tissues, termed multilineage-differentiating stress enduring (Muse) cells. Here we review recently updated studies of the regenerative effects of MSCs and discuss their potential in regenerative medicine.

  13. Role of Wnt-5a in the Determination of Human Mesenchymal Stem Cells into Preadipocytes*

    OpenAIRE

    Bilkovski, Roman; Schulte, Dominik M.; Oberhauser, Frank; Gomolka, Matthias; Udelhoven, Michael; Hettich, Moritz M.; Roth, Bernhard; Heidenreich, Axel; Gutschow, Christian; Krone, Wilhelm; Laudes, Matthias

    2009-01-01

    Increasing adipocyte size as well as numbers is important in the development of obesity and type 2 diabetes, with adipocytes being generated from mesenchymal precursor cells. This process includes the determination of mesenchymal stem cells (MSC) into preadipocytes (PA) and the differentiation of PA into mature fat cells. Although the process of differentiation has been highly investigated, the determination in humans is poorly understood. In this study, we compared human MSC and human commit...

  14. Umbilical Cord-Derived Mesenchymal Stem Cells Relieve Hindlimb Ischemia through Enhancing Angiogenesis in Tree Shrews

    Directory of Open Access Journals (Sweden)

    Cunping Yin

    2016-01-01

    Full Text Available Hindlimb ischemia is still a clinical problem with high morbidity and mortality. Patients suffer from consequent rest pain, ulcers, cool limbs, and even amputation. Angiogenesis is a promising target for the treatment of ischemic limbs, providing extra blood for the ischemic region. In the present study, we investigated the role of umbilical cord-derived mesenchymal stem cells (UC-MSCs in regulating angiogenesis and relieving hindlimb ischemia. UC-MSCs were isolated from the umbilical cord of tree shrews. Angiography results showed that UC-MSCs injection significantly promoted angiogenesis in tree shrews. Moreover, the ankle brachial index, transcutaneous oxygen pressure, blood perfusion, and capillary/muscle fiber ratio were all markedly increased by the application of UC-MSCs. In addition, the conditioned culture of human umbilical vein endothelial cells using medium collected from UC-MSCs showed higher expression of angiogenic markers and improved migration ability. In short, the isolated UC-MSCs notably contributed to restoring blood supply and alleviating the symptoms of limb ischemia through enhancing angiogenesis.

  15. Distribution and differentiation of mesenchymal stem cells in tumor tissue

    Institute of Scientific and Technical Information of China (English)

    ZHAO Hai-feng; CHEN Jun; XU Zhi-shun; ZHANG Ke-qin

    2009-01-01

    Background Tumor has an ability to become enriched in mesenchymal stem cells (MSCs) and of guiding MSCs to migrate to tumor tissue. But there are lack of relevant reports on the distribution and differentiation of MSCs in tumor tissue and the effect on tumor growth after MSCs engrafted in tumor tissue. In this study, we observed the distribution of bone marrow MSCs in tumor tissue and the possibility of MSCs differentiating into myofibroblast under the induction of local tumor microenvironment.Methods Twenty-four New Zealand rabbits were randomly classified into the control group and the test group. MSCs were isolated and cultured for each animal, vx-2 tumor tissue was transplanted under the bladder mucosa of each animal. One week after the transplantation, the self F2 passage MSCs marked by 4',6-diamidino-2-phenylindole were transplanted into tumor tissue in the test group while only Dulbecco's modified Eagle's medium-low glucose was infused into the control group. Ultrasonography was performed for each animal 1,2, 3 and 4 week(s) after the vx-2 tumor mass was transplanted. The maximum bladder tumor diameter of each animal was recorded and the mean value of each group was calculated. One animal from each group was sacrificed in the third week and the remaining animals in the fourth week to observe the tumor development. Another animal treated the same as the test group was sacrificed to observe the distribution of MSCs in tumor tissue one week after self MSCs transplantation. Immunofluorescence was used to trace MSCs in tumor tissue. The double labeling immunofluorescence for α-smooth muscle actin (α-SMA) and vimentin was performed to identify whether the MSCs can differentiate into myofibroblast.Results The ultrasonography showed no tumor mass one week after the vx-2 tumor mass transplantation. The mean maximum tumor diameter of the control group and test group was (0.70±0.14) cm and (0.78±0.14) cm, respectively, and there was no significant difference (t=1

  16. Irradiation sensitivity of human and porcine mesenchymal stem cells

    International Nuclear Information System (INIS)

    Surgical resection, chemotherapy, radiotherapy, and combinations thereof are a plethora of possible treatment modalities of head and neck malignancies. Treatment regimens including radiotherapy however put jaws at risk of subsequent osteoradionecrosis. Besides cancer cells, irradiation impacts on all tissue-inherent cells, including mesenchymal stem cells (MSCs). Since it is the bone and bone marrow MSC, which contributes to bone regeneration through proliferation and osteogenic differentiation of its progeny, the influence of irradiation on MSC viability and the respective differentiation capacity appears to be critical. However to date, only a few reports picked MSCs role out as a pivotal topic. As a first attempt, we irradiated human bone derived MSC in vitro. With increasing doses the cells self-renewal capabilities were greatly reduced. Notably however, the mitotically stalled cells were still capable of differentiating into osteoblasts and preadipocytes. Next, the mandibles of Sus scrofa domestica were irradiated with a total dose of 18 Gy. At different time points post radiatio, MSCs were isolated from bone autopsies. In comparison between irradiated and non- irradiated samples, no significant differences regarding the proliferation and osteogenic differentiation potential of tissue specific MSC became apparent Therefore, pig mandibles were irradiated with doses of 9 and 18 Gy, and MSCs were isolated immediately afterwards. No significant differences between the untreated and bone irradiated with 9 Gy with respect of proliferation and osteogenic differentiation were observed. Cells isolated from 18 Gy irradiated specimens exhibited a greatly reduced osteogenic differentiation capacity, and during the first two weeks proliferation rates of explanted cells were greatly diminished. Thereafter, cells recovered and showed proliferation behaviour comparable to control samples. These results imply that MSCs can cope with irradiation up to relatively high doses

  17. Defining human mesenchymal stem cell efficacy in vivo.

    Science.gov (United States)

    Bonfield, Tracey L; Nolan Koloze, Mary T; Lennon, Donald P; Caplan, Arnold I

    2010-01-01

    Allogeneic human mesenchymal stem cells (hMSCs) can suppress graft versus host disease (GvHD) and have profound anti-inflammatory and regenerative capacity in stroke, infarct, spinal cord injury, meniscus regeneration, tendinitis, acute renal failure, and heart disease in human and animal models of disease. There is significant clinical hMSC variability in efficacy and the ultimate response in vivo. The challenge in hMSC based therapy is defining the efficacy of hMSC in vivo. Models which may provide insight into hMSC bioactivity in vivo would provide a means to distinguish hMSCs for clinical utility. hMSC function has been described as both regenerative and trophic through the production of bioactive factors. The regenerative component involves the multi-potentiality of hMSC progenitor differentiation. The secreted factors generated by the hMSCs are milieu and injury specific providing unique niches for responses in vivo. These bioactive factors are anti-scarring, angiogenic, anti-apoptotic as well as regenerative. Further, from an immunological standpoint, hMSC's can avoid host immune response, providing xenographic applications. To study the in vivo immuno-regulatory effectiveness of hMSCs, we used the ovalbumin challenge model of acute asthma. This is a quick 3 week in vivo pulmonary inflammation model with readily accessible ways of measuring effectiveness of hMSCs. Our data show that there is a direct correlation between the traditional ceramic cube score to hMSCs attenuation of cellular recruitment due to ovalbumin challenge. The results from these studies verify the in vivo immuno-modulator effectiveness of hMSCs and support the potential use of the ovalbumin model as an in vivo model of hMSC potency and efficacy. Our data also support future directions toward exploring hMSCs as an alternative therapeutic for the treatment of airway inflammation associated with asthma. PMID:20974000

  18. Secretion of immunoregulatory cytokines by mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    Dobroslav; Kyurkchiev; Ivan; Bochev; Ekaterina; Ivanova-Todorova; Milena; Mourdjeva; Tsvetelina; Oreshkova; Kalina; Belemezova; Stanimir; Kyurkchiev

    2014-01-01

    According to the minimal criteria of the International Society of Cellular Therapy, mesenchymal stem cells(MSCs) are a population of undifferentiated cells defined by their ability to adhere to plastic surfaces when cultured under standard conditions, express a certain panel of phenotypic markers and can differentiate into osteogenic, chondrogenic and adipogenic lineages when cultured in specific inducing media. In parallel with their major role as undifferentiated cell reserves, MSCs have immunomodulatory functions which are exerted by direct cell-to-cell contacts, secretion of cytokines and/or by a combination of both mechanisms. There are no convincing data about a principal difference in the profile of cytokines secreted by MSCs isolated from different tissue sources, although some papers report some quantitative but not qualitative differences in cytokine secretion. The present review focuses on the basic cytokines secreted by MSCs as described in the literature by which the MSCs exert immunodulatory effects. It should be pointed out that MSCs themselves are objects of cytokine regulation. Hypothetical mechanisms by which the MSCs exert their immunoregulatory effects are also discussed in this review. These mechanisms may either influence the target immune cells directly or indirectly by affecting the activities of predominantly dendritic cells. Chemokines are also discussed as participants in this process by recruiting cells of the immune systems and thus making them targets of immunosuppression. This review aims to present and discuss the published data and the personal experience of the authors regarding cytokines secreted by MSCs and their effects on the cells of the immune system.

  19. Defining human mesenchymal stem cell efficacy in vivo

    Directory of Open Access Journals (Sweden)

    Lennon Donald P

    2010-10-01

    Full Text Available Abstract Allogeneic human mesenchymal stem cells (hMSCs can suppress graft versus host disease (GvHD and have profound anti-inflammatory and regenerative capacity in stroke, infarct, spinal cord injury, meniscus regeneration, tendinitis, acute renal failure, and heart disease in human and animal models of disease. There is significant clinical hMSC variability in efficacy and the ultimate response in vivo. The challenge in hMSC based therapy is defining the efficacy of hMSC in vivo. Models which may provide insight into hMSC bioactivity in vivo would provide a means to distinguish hMSCs for clinical utility. hMSC function has been described as both regenerative and trophic through the production of bioactive factors. The regenerative component involves the multi-potentiality of hMSC progenitor differentiation. The secreted factors generated by the hMSCs are milieu and injury specific providing unique niches for responses in vivo. These bioactive factors are anti-scarring, angiogenic, anti-apoptotic as well as regenerative. Further, from an immunological standpoint, hMSC's can avoid host immune response, providing xenographic applications. To study the in vivo immuno-regulatory effectiveness of hMSCs, we used the ovalbumin challenge model of acute asthma. This is a quick 3 week in vivo pulmonary inflammation model with readily accessible ways of measuring effectiveness of hMSCs. Our data show that there is a direct correlation between the traditional ceramic cube score to hMSCs attenuation of cellular recruitment due to ovalbumin challenge. The results from these studies verify the in vivo immuno-modulator effectiveness of hMSCs and support the potential use of the ovalbumin model as an in vivo model of hMSC potency and efficacy. Our data also support future directions toward exploring hMSCs as an alternative therapeutic for the treatment of airway inflammation associated with asthma.

  20. Mesenchymal stem cells and collagen patches for anteriorcruciate ligament repair

    Institute of Scientific and Technical Information of China (English)

    Benjamin Gantenbein; Neha Gadhari; Samantha CW Chan; Sandro Kohl; Sufian S Ahmad

    2015-01-01

    AIM To investigate collagen patches seeded withmesenchymal stem cells (MSCs) and/or tenocytes (TCs)with regards to their suitability for anterior cruciateligament (ACL) repair.METHODS: Dynamic intraligamentary stabilizationutilizes a dynamic screw system to keep ACL remnantsin place and promote biological healing, supplementedby collagen patches. How these scaffolds interact withcells and what type of benefit they provide has not yetbeen investigated in detail. Primary ACL-derived TCsand human bone marrow derived MSCs were seededonto two different types of 3D collagen scaffolds,Chondro-Gide? (CG) and Novocart? (NC). Cells wereseeded onto the scaffolds and cultured for 7 d eitheras a pure populations or as "premix" containing a 1:1ratio of TCs to MSCs. Additionally, as controls, cells wereseeded in monolayers and in co-cultures on both sidesof porous high-density membrane inserts (0.4 μm). Weanalyzed the patches by real time polymerase chainreaction, glycosaminoglycan (GAG), DNA and hydroxyproline(HYP) content. To determine cell spreadingand adherence in the scaffolds microscopic imagingtechniques, i.e. , confocal laser scanning microscopy(cLSM) and scanning electron microscopy (SEM), wereapplied.RESULTS: CLSM and SEM imaging analysis confirmedcell adherence onto scaffolds. The metabolic cellactivity revealed that patches promote adherenceand proliferation of cells. The most dramatic increasein absolute metabolic cell activity was measuredfor CG samples seeded with tenocytes or a 1:1 cellpremix. Analysis of DNA content and cLSM imagingalso indicated MSCs were not proliferating as nicely astenocytes on CG. The HYP to GAG ratio significantlychanged for the premix group, resulting from a slightlylower GAG content, demonstrating that the cells aremodifying the underlying matrix. Real-time quantitative Gantenbein B et al . Mesenchymal stem cells for ACL repair polymerase chain reaction data indicated that MSCs

  1. Placenta Mesenchymal Stem Cell Derived Exosomes Confer Plasticity on Fibroblasts.

    Science.gov (United States)

    Tooi, Masayuki; Komaki, Motohiro; Morioka, Chikako; Honda, Izumi; Iwasaki, Kengo; Yokoyama, Naoki; Ayame, Hirohito; Izumi, Yuichi; Morita, Ikuo

    2016-07-01

    Mesenchymal stem cell (MSC)-conditioned medium (MSC-CM) has been reported to enhance wound healing. Exosomes contain nucleic acids, proteins, and lipids, and function as an intercellular communication vehicle for mediating some paracrine effects. However, the function of MSC-derived exosomes (MSC-exo) remains elusive. In this study, we isolated human placenta MSC (PlaMSC)-derived exosomes (PlaMSC-exo) and examined their function in vitro. PlaMSCs were isolated from human term placenta using enzymatic digestion. PlaMSC-exo were prepared from the conditioned medium of PlaMSC (PlaMSC-CM) by ultracentrifugation. The expression of stemness-related genes, such as OCT4 and NANOG, in normal adult human dermal fibroblasts (NHDF) after incubation with PlaMSC-exo was measured by real-time reverse transcriptase PCR analysis (real-time PCR). The effect of PlaMSC-exo on OCT4 transcription activity was assessed using Oct4-EGFP reporter mice-derived dermal fibroblasts. The stimulating effects of PlaMSC-exo on osteoblastic and adipocyte-differentiation of NHDF were evaluated by alkaline phosphatase (ALP), and Alizarin red S- and oil red O-staining, respectively. The expression of osteoblast- and adipocyte-related genes was also assessed by real-time PCR. The treatment of NHDF with PlaMSC-exo significantly upregulated OCT4 and NANOG mRNA expression. PlaMSC-exo also enhanced OCT4 transcription. The NHDF treated with PlaMSC-exo exhibited osteoblastic and adipocyte-differentiation in osteogenic and adipogenic induction media. PlaMSC-exo increase the expression of OCT4 and NANOG mRNA in fibroblasts. As a result, PlaMSC-exo influence the differentiation competence of fibroblasts to both osteoblastic and adipocyte-differentiation. It shows a new feature of MSCs and the possibility of clinical application of MSC-exo. J. Cell. Biochem. 117: 1658-1670, 2016. © 2015 Wiley Periodicals, Inc. PMID:26640165

  2. Migration capacity of human umbilical cord mesenchymal stem cells towards glioma in vivo*

    Institute of Scientific and Technical Information of China (English)

    Cungang Fan; Dongliang Wang; Qingjun Zhang; Jingru Zhou

    2013-01-01

    High-grade glioma is the most common malignant primary brain tumor in adults. The poor prognosis of glioma, combined with a resistance to currently available treatments, necessitates the ment of more effective tumor-selective therapies. Stem cel-based therapies are emerging as novel cel-based delivery vehicle for therapeutic agents. In the present study, we successful y isolated human umbilical cord mesenchymal stem cel s by explant culture. The human umbilical cord senchymal stem cel s were adherent to plastic surfaces, expressed specific surface phenotypes of mesenchymal stem cel s as demonstrated by flow cytometry, and possessed multi-differentiation potentials in permissive induction media in vitro. Furthermore, human umbilical cord mesenchymal stem cel s demonstrated excel ent glioma-specific targeting capacity in established rat glioma models after intratumoral injection or contralateral ventricular administration in vivo. The excellent glioma-specific targeting ability and extensive intratumoral distribution of human umbilical cord mesenchymal stem cel s indicate that they may serve as a novel cel ular vehicle for delivering the-rapeutic molecules in glioma therapy.

  3. Mesenchymal stem cells transplantation mildly ameliorates experimental diabetic nephropathy in rats

    Institute of Scientific and Technical Information of China (English)

    ZHOU Hong; TIAN Hao-ming; LONG Yang; ZHANG Xiang-xun; ZHONG Li; DENG Li; CHEN Xiao-he; LI Xiu-qun

    2009-01-01

    Background Diabetic nephropathy is a common complication of diabetes mellitus.This study aimed to explore whether mesenchymal stem cells(MSCs)transplantation could attenuate diabetic nephropathy in experimental diabetic rats.Methods Sprague-Dawley rats received a single intraperitoneal injection of streptozotocin(STZ)(60 mg/kg).Diabetic rats were randomized to four groups:diabetes control group(DC),ciclosporin A group(CsA),MSC group,and MSC+CsA group(MSCA).Bone marrow mesenchymal stern cells were cultured,identified and labeled by 5-bromo-2'-deoxyuridine(BrdU)in vitro.Then they were transplanted to diabetic rats via introcardiac infusion.Ciclosporin A was administered daily at 5 mg/kg.At 1,2,4,8 weeks after transplantation,random blood glucose,urine albumin/creatinine ratio(Alb/Cr),endogenous creatinine clearance rate and renal mass index were tested.Renal morphology and labeled cells were examined.Results Cultured MSCs expressed mesenchymal cell phenotype,and could be multidifferentiated to osteogenic and adipogenic cells.Labeled MSCs could be detected in the kidney of nephropathic rats,mainly in renal interstitium,but they did not propagate after engrafting in kidney.Over the course of the experiment,MSCA group showed a significant decrease in blood glucose compared with MSC group,CsA group and DC group(P<0.05,respectively).The Alb/Cr in MSCA group and MSC group were significantly lower than CsA group and DC group(P<0.05).And the Alb/Cr in MSCA group showed a significant decrease compared with MSC group(0.74 vs 0.84,P<0.05).There was a significant difference in renal mass index between the MSCA group and DC group(5.66 vs 6.37,P<0.05).No significant difference was found in creatinine clearance rate among 4 groups(P>0.05).Treatment with MSC+CsA significantly ameliorated the morphology of diabetic kidney.Conclusion MSC could mildly ameliorate diabetic nephropathy by decreasing blood glucose,Alb/Cr ratio and renal mass index.

  4. Gene expression profiles of human bone marrow derived mesenchymal stem cells and tendon cells

    Institute of Scientific and Technical Information of China (English)

    胡庆柳; 朴英杰; 邹飞

    2003-01-01

    Objective To study the gene expression profiles of human bone marrow derived mesenchymal stem cells and tendon cells.Methods Total RNA extracted from human bone marrow derived mesenchymal stem cells and tendon cells underwent reverse transcription, and the products were labeled with α-32P dCTP. The cDNA probes of total RNA were hybridized to cDNA microarray with 1176 genes, and then the signals were analyzed by AtlasImage analysis software Version 1.01a.Results Fifteen genes associated with cell proliferation and signal transduction were up-regulated, and one gene that takes part in cell-to-cell adhesion was down-regulated in tendon cells.Conclusion The 15 up-regulated and one down-regulated genes may be beneficial to the orientational differentiation of mesenchymal stem cells into tendon cells.

  5. Umbilical cord mesenchymal stem cell transplantation for the treatment of Duchenne muscular dystrophy

    Institute of Scientific and Technical Information of China (English)

    Xiaofeng Yang; Yanxiang Wu; Xinping Liu; Yifeng Xu; Naiwu Lü; Yibin Zhang; Hongmei Wang; Xin Lü; Jiping Cui; Jinxu Zhou; Hong Shan

    2011-01-01

    Due to their relative abundance, stable biological properties and excellent reproductive activity,umbilical cord mesenchymal stem cells have previously been utilized for the treatment of Duchenne muscular dystrophy, which is a muscular atrophy disease. Three patients who were clinically and pathologically diagnosed with Duchenne muscular dystrophy were transplanted with umbilical cord mesenchymal stem cells by intravenous infusion, in combination with multi-point intramuscular injection. They were followed up for 12 months after cell transplantation. Results showed that clinical symptoms significantly improved, daily living activity and muscle strength were enhanced,the sero-enzyme, electromyogram, and MRI scans showed improvement, and dystrophin was expressed in the muscle cell membrane. Hematoxylin-eosin staining of a muscle biopsy revealed that muscle fibers were well arranged, fibrous degeneration was alleviated, and fat infiltration was improved. These pieces of evidence suggest that umbilical cord mesenchymal stem cell transplantation can be considered as a new regimen for Duchenne muscular dystrophy.

  6. Characterization of neural stemness status through the neurogenesis process for bone marrow mesenchymal stem cells.

    Science.gov (United States)

    Mohammad, Maeda H; Al-Shammari, Ahmed M; Al-Juboory, Ahmad Adnan; Yaseen, Nahi Y

    2016-01-01

    The in vitro isolation, identification, differentiation, and neurogenesis characterization of the sources of mesenchymal stem cells (MSCs) were investigated to produce two types of cells in culture: neural cells and neural stem cells (NSCs). These types of stem cells were used as successful sources for the further treatment of central nervous system defects and injuries. The mouse bone marrow MSCs were used as the source of the stem cells in this study. β-Mercaptoethanol (BME) was used as the main inducer of the neurogenesis pathway to induce neural cells and to identify NSCs. Three types of neural markers were used: nestin as the immaturation stage marker, neurofilament light chain as the early neural marker, and microtubule-associated protein 2 as the maturation marker through different time intervals in the neurogenesis process starting from the MSCs, (as undifferentiated cells), NSCs, production stages, and toward neuron cells (as differentiated cells). The results of different exposure times to BME of the neural markers analysis done by immunocytochemistry and real time-polymerase chain reaction helped us to identify the exact timing for the neural stemness state. The results showed that the best exposure time that may be used for the production of NSCs was 6 hours. The best maintenance media for NSCs were also identified. Furthermore, we optimized exposure to BME with different times and concentrations, which could be an interesting way to modulate specific neuronal differentiation and obtain autologous neuronal phenotypes. This study was able to characterize NSCs in culture under differentiation for neurogenesis in the pathway of the neural differentiation process by studying the expressed neural genes and the ability to maintain these NSCs in culture for further differentiation in thousands of functional neurons for the treatment of brain and spinal cord injuries and defects. PMID:27143939

  7. Notch signaling: targeting cancer stem cells and epithelial-to-mesenchymal transition

    Directory of Open Access Journals (Sweden)

    Espinoza I

    2013-09-01

    Full Text Available Ingrid Espinoza,1,2 Radhika Pochampally,1,2 Fei Xing,1 Kounosuke Watabe,1,3 Lucio Miele1,4 1Cancer Institute, 2Department of Biochemistry, 3Department of Microbiology, 4Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA Abstract: Notch signaling is an evolutionarily conserved pathway involved in cell fate control during development, stem cell self-renewal, and postnatal tissue differentiation. Roles for Notch in carcinogenesis, the biology of cancer stem cells, tumor angiogenesis, and epithelial-to-mesenchymal transition (EMT have been reported. This review describes the role of Notch in the “stemness” program in cancer cells and in metastases, together with a brief update on the Notch inhibitors currently under investigation in oncology. These agents may be useful in targeting cancer stem cells and to reverse the EMT process. Keywords: Notch signaling, EMT, cancer stem cells, mesenchymal stem cells, metastases, Notch inhibitors

  8. Towards Personalized Regenerative Cell Therapy: Mesenchymal Stem Cells Derived from Human Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Lin, Lin; Bolund, Lars; Luo, Yonglun

    2016-01-01

    Mesenchymal stem cells (MSCs) are adult stem cells with the capacity of self-renewal and multilineage differentiation, and can be isolated from several adult tissues. However, isolating MSCs from adult tissues for cell therapy is hampered by the invasive procedure, the rarity of the cells and their attenuated proliferation capacity when cultivated and expanded in vitro. Human MSCs derived from induced pluripotent stem cells (iPSC-MSCs) have now evolved as a promising alternative cell source for MSCs and regenerative medicine. Several groups, including ours, have reported successful derivation of functional iPSC-MSCs and applied these cells in MSC-based therapeutic testing. Still, the current experience and understanding of iPSC-MSCs with respect to production methods, safety and efficacy are primitive. In this review, we highlight the methodological progress in iPSC-MSC research, describing the importance of choosing the right sources of iPSCs, iPSC reprogramming methods, iPSC culture systems, embryoid body intermediates, pathway inhibitors, basal medium, serum, growth factors and culture surface coating. We also highlight some progress in the application of iPSC-MSCs in direct cell therapy, tissue engineering and gene therapy.

  9. Stem cells for hepatic regeneration: the role of adipose tissue derived mesenchymal stem cells.

    Science.gov (United States)

    Ishikawa, Tetsuya; Banas, Agnieszka; Hagiwara, Keitaro; Iwaguro, Hideki; Ochiya, Takahiro

    2010-06-01

    Severe hepatic dysfunctions including hepatic cirrhosis and hepatocarcinoma are life-threatening conditions for which effective medical treatments are needed. With the only effective treatment to date being orthotropic liver transplantation, alternative approaches are needed because of the limited number of donors and the possibility of immune-rejection. One alternative is regenerative medicine, which holds promise for the development of a cell-based therapy enabling hepatic regeneration through transplantation of adipose tissue-derived mesenchymal stem cells (AT-MSCs) or hepatocyte-like cells generated from AT-MSCs. When compared with embryonic stem (ES) cells and induced pluripotent stem (iPS) cells, the use of AT-MSCs as regenerative cells would be advantageous in regard to ethical and safety issues since AT-MSCs are somatic cells and have the potential to be used without in vitro culture. These autologous cells are immuno-compatible and exhibit controlled differentiation and multi-functional abilities and do not undergo post-transplantation rejection or unwanted differentiation such as formation of teratomas. AT-MSC-based therapies may provide a novel approach for hepatic regeneration and hepatocyte differentiation and thereby support hepatic function in diseased individuals.

  10. Plasticity between Epithelial and Mesenchymal States Unlinks EMT from Metastasis-Enhancing Stem Cell Capacity

    Science.gov (United States)

    Beerling, Evelyne; Seinstra, Daniëlle; de Wit, Elzo; Kester, Lennart; van der Velden, Daphne; Maynard, Carrie; Schäfer, Ronny; van Diest, Paul; Voest, Emile; van Oudenaarden, Alexander; Vrisekoop, Nienke; van Rheenen, Jacco

    2016-01-01

    Summary Forced overexpression and/or downregulation of proteins regulating epithelial-to-mesenchymal transition (EMT) has been reported to alter metastasis by changing migration and stem cell capacity of tumor cells. However, these manipulations artificially keep cells in fixed states, while in vivo cells may adapt transient and reversible states. Here, we have tested the existence and role of epithelial-mesenchymal plasticity in metastasis of mammary tumors without artificially modifying EMT regulators. In these tumors, we found by intravital microscopy that the motile tumor cells have undergone EMT, while their epithelial counterparts were not migratory. Moreover, we found that epithelial-mesenchymal plasticity renders any EMT-induced stemness differences, as reported previously, irrelevant for metastatic outgrowth, because mesenchymal cells that arrive at secondary sites convert to the epithelial state within one or two divisions, thereby obtaining the same stem cell potential as their arrived epithelial counterparts. We conclude that epithelial-mesenchymal plasticity supports migration but additionally eliminates stemness-enhanced metastatic outgrowth differences. PMID:26947068

  11. Plasticity between Epithelial and Mesenchymal States Unlinks EMT from Metastasis-Enhancing Stem Cell Capacity

    Directory of Open Access Journals (Sweden)

    Evelyne Beerling

    2016-03-01

    Full Text Available Forced overexpression and/or downregulation of proteins regulating epithelial-to-mesenchymal transition (EMT has been reported to alter metastasis by changing migration and stem cell capacity of tumor cells. However, these manipulations artificially keep cells in fixed states, while in vivo cells may adapt transient and reversible states. Here, we have tested the existence and role of epithelial-mesenchymal plasticity in metastasis of mammary tumors without artificially modifying EMT regulators. In these tumors, we found by intravital microscopy that the motile tumor cells have undergone EMT, while their epithelial counterparts were not migratory. Moreover, we found that epithelial-mesenchymal plasticity renders any EMT-induced stemness differences, as reported previously, irrelevant for metastatic outgrowth, because mesenchymal cells that arrive at secondary sites convert to the epithelial state within one or two divisions, thereby obtaining the same stem cell potential as their arrived epithelial counterparts. We conclude that epithelial-mesenchymal plasticity supports migration but additionally eliminates stemness-enhanced metastatic outgrowth differences.

  12. Mesenchymal traits are selected along with stem features in breast cancer cells grown as mammospheres

    Science.gov (United States)

    Borgna, Silvia; Armellin, Michela; di Gennaro, Alessandra; Maestro, Roberta; Santarosa, Manuela

    2012-01-01

    Increasing evidence indicates that invasive properties of breast cancers rely on gain of mesenchymal and stem features, which has suggested that the dual targeting of these phenotypes may represent an appealing therapeutic strategy. It is known that the fraction of stem cells can be enriched by culturing breast cancer cells as mammospheres (MS), but whether these pro-stem conditions favor also the expansion of cells provided of mesenchymal features is still undefined. In the attempt to shed light on this issue, we compared the phenotypes of a panel of 10 breast cancer cell lines representative of distinct subtypes (luminal, HER2-positive, basal-like and claudin-low), grown in adherent conditions and as mammospheres. Under MS-proficient conditions, the increment in the fraction of stem-like cells was associated to upregulation of the mesenchymal marker Vimentin and downregulation of the epithelial markers expressed by luminal cells (E-cadherin, KRT18, KRT19, ESR1). Luminal cells tended also to upregulate the myoepithelial marker CD10. Taken together, our data indicate that MS-proficient conditions do favor mesenchymal/myoepithelial features, and indicate that the use of mammospheres as an in vitro tumor model may efficiently allow the exploitation of therapeutic approaches aimed at targeting aggressive tumors that have undergone epithelial-to-mesenchymal transition. PMID:23095640

  13. Spontaneous transformation of adult mesenchymal stem cells from cynomolgus macaques in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Zhenhua [Cell Therapy Center, Xuanwu Hospital, Capital Medical University, Beijing (China); Key Laboratory of Neurodegeneration, Ministry of Education, Beijing (China); Department of Anatomy, Anhui Medical University, Hefei, 230032 (China); Wang, Jiayin; Zhu, Wanwan; Guan, Yunqian; Zou, Chunlin [Cell Therapy Center, Xuanwu Hospital, Capital Medical University, Beijing (China); Key Laboratory of Neurodegeneration, Ministry of Education, Beijing (China); Chen, Zhiguo, E-mail: chenzhiguo@gmail.com [Cell Therapy Center, Xuanwu Hospital, Capital Medical University, Beijing (China); Key Laboratory of Neurodegeneration, Ministry of Education, Beijing (China); Stanford Institute for Stem Cell Biology and Regenerative Medicine and Department of Neurosurgery, Stanford, CA (United States); Zhang, Y. Alex, E-mail: yaz@bjsap.org [Cell Therapy Center, Xuanwu Hospital, Capital Medical University, Beijing (China); Key Laboratory of Neurodegeneration, Ministry of Education, Beijing (China)

    2011-12-10

    Mesenchymal stem cells (MSCs) have shown potential clinical utility in cell therapy and tissue engineering, due to their ability to proliferate as well as to differentiate into multiple lineages, including osteogenic, adipogenic, and chondrogenic specifications. Therefore, it is crucial to assess the safety of MSCs while extensive expansion ex vivo is a prerequisite to obtain the cell numbers for cell transplantation. Here we show that MSCs derived from adult cynomolgus monkey can undergo spontaneous transformation following in vitro culture. In comparison with MSCs, the spontaneously transformed mesenchymal cells (TMCs) display significantly different growth pattern and morphology, reminiscent of the characteristics of tumor cells. Importantly, TMCs are highly tumorigenic, causing subcutaneous tumors when injected into NOD/SCID mice. Moreover, no multiple differentiation potential of TMCs is observed in vitro or in vivo, suggesting that spontaneously transformed adult stem cells may not necessarily turn into cancer stem cells. These data indicate a direct transformation of cynomolgus monkey MSCs into tumor cells following long-term expansion in vitro. The spontaneous transformation of the cultured cynomolgus monkey MSCs may have important implications for ongoing clinical trials and for models of oncogenesis, thus warranting a more strict assessment of MSCs prior to cell therapy. -- Highlights: Black-Right-Pointing-Pointer Spontaneous transformation of cynomolgus monkey MSCs in vitro. Black-Right-Pointing-Pointer Transformed mesenchymal cells lack multipotency. Black-Right-Pointing-Pointer Transformed mesenchymal cells are highly tumorigenic. Black-Right-Pointing-Pointer Transformed mesenchymal cells do not have the characteristics of cancer stem cells.

  14. Spontaneous transformation of adult mesenchymal stem cells from cynomolgus macaques in vitro

    International Nuclear Information System (INIS)

    Mesenchymal stem cells (MSCs) have shown potential clinical utility in cell therapy and tissue engineering, due to their ability to proliferate as well as to differentiate into multiple lineages, including osteogenic, adipogenic, and chondrogenic specifications. Therefore, it is crucial to assess the safety of MSCs while extensive expansion ex vivo is a prerequisite to obtain the cell numbers for cell transplantation. Here we show that MSCs derived from adult cynomolgus monkey can undergo spontaneous transformation following in vitro culture. In comparison with MSCs, the spontaneously transformed mesenchymal cells (TMCs) display significantly different growth pattern and morphology, reminiscent of the characteristics of tumor cells. Importantly, TMCs are highly tumorigenic, causing subcutaneous tumors when injected into NOD/SCID mice. Moreover, no multiple differentiation potential of TMCs is observed in vitro or in vivo, suggesting that spontaneously transformed adult stem cells may not necessarily turn into cancer stem cells. These data indicate a direct transformation of cynomolgus monkey MSCs into tumor cells following long-term expansion in vitro. The spontaneous transformation of the cultured cynomolgus monkey MSCs may have important implications for ongoing clinical trials and for models of oncogenesis, thus warranting a more strict assessment of MSCs prior to cell therapy. -- Highlights: ► Spontaneous transformation of cynomolgus monkey MSCs in vitro. ► Transformed mesenchymal cells lack multipotency. ► Transformed mesenchymal cells are highly tumorigenic. ► Transformed mesenchymal cells do not have the characteristics of cancer stem cells.

  15. Human umbilical cord-derived mesenchymal stem cells can secrete insulin in vitro and in vivo.

    Science.gov (United States)

    Boroujeni, Zahra Niki; Aleyasin, Ahmad

    2014-01-01

    Diabetes mellitus is characterized by autoimmune destruction of pancreatic beta cells, leading to decreased insulin production. Differentiation of mesenchymal stem cells (MSCs) into insulin-producing cells offers novel ways of diabetes treatment. MSCs can be isolated from the human umbilical cord tissue and differentiate into insulin-secreting cells. Human umbilical cord-derived stem cells (hUDSCs) were obtained after birth, selected by plastic adhesion, and characterized by flow cytometric analysis. hUDSCs were transduced with nonintegrated lentivirus harboring PDX1 (nonintegrated LV-PDX1) and was cultured in differentiation medium in 21 days. Pancreatic duodenum homeobox protein-1 (PDX1) is a transcription factor in pancreatic development. Significant expressions of PDX1, neurogenin3 (Ngn3), glucagon, glucose transporter2 (Glut2), and somatostatin were detected by quantitative RT-PCR (P treatment of diabetic rats and could decrease the blood glucose level from 400 mg/dL to a normal level in 4 days. In conclusion, our results demonstrated that hUDSCs are able to differentiate into insulin-producing cells by transduction with nonintegrated LV-PDX1. These hUDSCs(PDX1+) have the potential to be used as a viable resource in cell-based gene therapy of type 1 diabetes.

  16. Neurogenic plasticity of mesenchymal stem cell, an alluring cellular replacement for traumatic brain injury.

    Science.gov (United States)

    Pati, Soumya; Muthuraju, Sangu; Hadi, Raisah Ab; Huat, Tee Jong; Singh, Shailja; Maletic-Savatic, Mirjana; Abdullah, Jafri Malin; Jaafar, Hasnan

    2016-01-01

    Traumatic brain injury (TBI) imposes horrendous neurophysiological alterations leading to most devastating forms of neuro-disability. Which includes impaired cognition, distorted locomotors activity and psychosomatic disability in both youths and adults. Emerging evidence from recent studies has identified mesenchymal stem cells (MSCs) as one of the promising category of stem cells having excellent neuroregenerative capability in TBI victims. Some of the clinical and animal studies reported that MSCs transplantation could cure neuronal damage as well as improve cognitive and locomotors behaviors in TBI. However, mechanism behind their broad spectrum neuroregenerative potential in TBI has not been reviewed yet. Therefore, in the present article, we present a comprehensive data on the important attributes of MSCs, such as neurotransdifferentiation, neuroprotection, axonal repair and plasticity, maintenance of blood-brain integrity, reduction of reactive oxygen species (ROS) and immunomodulation. We have reviewed in detail the crucial neurogenic capabilities of MSCs in vivo and provided consolidated knowledge regarding their cellular remodeling in TBI for future therapeutic implications. PMID:26763886

  17. Applications of Mesenchymal Stem Cells and Neural Crest Cells in Craniofacial Skeletal Research

    Directory of Open Access Journals (Sweden)

    Satoru Morikawa

    2016-01-01

    Full Text Available Craniofacial skeletal tissues are composed of tooth and bone, together with nerves and blood vessels. This composite material is mainly derived from neural crest cells (NCCs. The neural crest is transient embryonic tissue present during neural tube formation whose cells have high potential for migration and differentiation. Thus, NCCs are promising candidates for craniofacial tissue regeneration; however, the clinical application of NCCs is hindered by their limited accessibility. In contrast, mesenchymal stem cells (MSCs are easily accessible in adults, have similar potential for self-renewal, and can differentiate into skeletal tissues, including bones and cartilage. Therefore, MSCs may represent good sources of stem cells for clinical use. MSCs are classically identified under adherent culture conditions, leading to contamination with other cell lineages. Previous studies have identified mouse- and human-specific MSC subsets using cell surface markers. Additionally, some studies have shown that a subset of MSCs is closely related to neural crest derivatives and endothelial cells. These MSCs may be promising candidates for regeneration of craniofacial tissues from the perspective of developmental fate. Here, we review the fundamental biology of MSCs in craniofacial research.

  18. Effects of high glucose on mesenchymal stem cell proliferation and differentiation

    DEFF Research Database (Denmark)

    Li, Yu-Ming; Schilling, Tatjana; Benisch, Peggy;

    2007-01-01

    High glucose (HG) concentrations impair cellular functions and induce apoptosis. Exposition of mesenchymal stem cells (MSC) to HG was reported to reduce colony forming activity and induce premature senescence. We characterized the effects of HG on human MSC in vitro using telomerase-immortalized ......High glucose (HG) concentrations impair cellular functions and induce apoptosis. Exposition of mesenchymal stem cells (MSC) to HG was reported to reduce colony forming activity and induce premature senescence. We characterized the effects of HG on human MSC in vitro using telomerase...

  19. Characterization and Differentiation into Adipocytes and Myocytes of Porcine Bone Marrow Mesenchymal Stem Cells

    Institute of Scientific and Technical Information of China (English)

    DU Min-qing; WANG Song-bo; JIANG Qing-yan; HUANG Yue-qin; LU Nai-Sheng; SHU Gang; ZHU Xiao-tong; WANG Li-na; GAO Ping; XI Qian-yun; ZHANG Yong-liang

    2014-01-01

    Bone marrow mesenchymal stem cells (BMSCs) could differentiate into various cell types including adipocytes and myocytes, which had important scientiifc signiifcance not only in the ifeld of tissue regeneration, but also in the ifeld of agricultural science. In an attempt to exhibit the characterization and differentiation into adipocytes and myocytes of porcine BMSCs, we isolated and puriifed porcine BMSCs by red blood cell lysis method and percoll gradient centrifugation. The puriifed cells presented a stretched ifbroblast-like phenotype when adhered to the culture plate. The results of lfow cytometry analysis and immunofluorescence staining demonstrated that the isolated cells were positive for mesenchymal surface markers CD29, CD44 and negative for hematopoietic markers CD45 and the adhesion molecules CD31. Cells were induced to differentiate into adipocytes with adipogenic medium containing insulin, dexamethasone, oleate and octanoate. Oil Red O staining demonstrated that the porcine BMSCs successfully differentiated to adipocytes. Moreover, the ifndings of real-time PCR and Western blotting indicated that the induced cells expressed adipogenic marker genes (PPAR-γ, C/EBP-α, perilipin, aP2) mRNA or proteins (PPAR-γ, perilipin, aP2). On the other hand, porcine BMSCs were induced into myoctyes with myogenic medium supplemented with 5-azacytidine, basic ifbroblast growth factor, chick embryo extract and horse serum. Morphological observation by hochest 33342 staining showed that the induced cells presented as multi-nucleus muscular tube structure. And myogenic marker genes (Myf5, desmin) mRNA or proteins (Myf5, MyoD, myogenin, desmin) were found in the induced cells. In addition, the results of immunolfuorescence staining revealed that myogenic marker (Myf5, MyoD, myogenin, desmin, S-MyHC) proteins was positive in the induced cells. Above all, these results suggested that the isolated porcine BMSCs were not only consistent with the characterization of

  20. Biological conduits combining bone marrow mesenchymal stem cells and extracellular matrix to treat long-segment sciatic nerve defects

    Directory of Open Access Journals (Sweden)

    Yang Wang

    2015-01-01

    Full Text Available The transplantation of polylactic glycolic acid conduits combining bone marrow mesenchymal stem cells and extracellular matrix gel for the repair of sciatic nerve injury is effective in some respects, but few data comparing the biomechanical factors related to the sciatic nerve are available. In the present study, rabbit models of 10-mm sciatic nerve defects were prepared. The rabbit models were repaired with autologous nerve, a polylactic glycolic acid conduit + bone marrow mesenchymal stem cells, or a polylactic glycolic acid conduit + bone marrow mesenchymal stem cells + extracellular matrix gel. After 24 weeks, mechanical testing was performed to determine the stress relaxation and creep parameters. Following sciatic nerve injury, the magnitudes of the stress decrease and strain increase at 7,200 seconds were largest in the polylactic glycolic acid conduit + bone marrow mesenchymal stem cells + extracellular matrix gel group, followed by the polylactic glycolic acid conduit + bone marrow mesenchymal stem cells group, and then the autologous nerve group. Hematoxylin-eosin staining demonstrated that compared with the polylactic glycolic acid conduit + bone marrow mesenchymal stem cells group and the autologous nerve group, a more complete sciatic nerve regeneration was found, including good myelination, regularly arranged nerve fibers, and a completely degraded and resorbed conduit, in the polylactic glycolic acid conduit + bone marrow mesenchymal stem cells + extracellular matrix gel group. These results indicate that bridging 10-mm sciatic nerve defects with a polylactic glycolic acid conduit + bone marrow mesenchymal stem cells + extracellular matrix gel construct increases the stress relaxation under a constant strain, reducing anastomotic tension. Large elongations under a constant physiological load can limit the anastomotic opening and shift, which is beneficial for the regeneration and functional reconstruction of sciatic nerve. Better

  1. Instant stem cell therapy: Characterization and concentration of human mesenchymal stem cells in vitro

    Directory of Open Access Journals (Sweden)

    P Kasten

    2008-10-01

    Full Text Available In regenerative medicine, there is an approach to avoid expansion of the mesenchymal stem cell (MSC before implantation. The aim of this study was to compare methods for instant MSC therapy by use of a portable, automatic and closed system centrifuge that allows for the concentration of MSCs. The main outcome measures were the amount of MSCs per millilitre of bone marrow (BM, clusters of differentiation (CD, proliferation and differentiation capacities of the MSC. A volume reduction protocol was compared to the traditional laboratory methods of isolation using a Ficoll gradient and native BM. Fifty millilitres of BM were obtained from haematologically healthy male Caucasians (n=10, age 8 to 49 years. The number of colony forming units-fibroblast (CFU-F/ml BM was highest in the centrifuge volume reduction protocol, followed by the native BM (not significant, the centrifuge Ficoll (p=0.042 and the manual Ficoll procedure (p=0.001. The MSC of all groups could differentiate into the mesenchymal lineages without significant differences between the groups. The CD pattern was identical for all groups: CD13+; CD 44+; CD73 +; CD90+; CD105+; HLA-A,B,C+; CD14-; CD34-; CD45-; CD271-; HLA-DR-. In a further clinical pilot study (n=5 with 297 ml BM (SD 18.6, the volume reduction protocol concentrated the MSC by a factor of 14: there were 1.08 x 102 MSC/ml BM (standard deviation (SD 1.02 x 102 before concentration, 14.8 x 102 MSC/ ml BM (SD 12.4 x 102 after concentration, and on average 296 x 102 MSC (SD 248.9 x 102, range 86.4-691.5 x 102 were available for MSC therapy. The volume reduction protocol of the closed centrifuge allows for the highest concentration of the MSC, and therefore, is a promising candidate for instant stem cell therapy.

  2. Overexpression of microRNA-124 promotes the neuronal differentiation of bone marrow-derived mesenchymal stem cells

    OpenAIRE

    Zou, Defeng; Chen, Yi; Han, Yaxin; Lv, Chen; Tu, Guanjun

    2014-01-01

    microRNAs (miRNAs) play an important regulatory role in the self-renewal and differentiation of stem cells. In this study, we examined the effects of miRNA-124 (miR-124) overexpression in bone marrow-derived mesenchymal stem cells. In particular, we focused on the effect of overexpression on the differentiation of bone marrow-derived mesenchymal stem cells into neurons. First, we used GeneChip technology to analyze the expression of miRNAs in bone marrow-derived mesenchymal stem cells, neural...

  3. Autism Spectrum Disorders: Is Mesenchymal Stem Cell Personalized Therapy the Future?

    Directory of Open Access Journals (Sweden)

    Dario Siniscalco

    2012-01-01

    Full Text Available Autism and autism spectrum disorders (ASDs are heterogeneous neurodevelopmental disorders. They are enigmatic conditions that have their origins in the interaction of genes and environmental factors. ASDs are characterized by dysfunctions in social interaction and communication skills, in addition to repetitive and stereotypic verbal and nonverbal behaviours. Immune dysfunction has been confirmed with autistic children. There are no defined mechanisms of pathogenesis or curative therapy presently available. Indeed, ASDs are still untreatable. Available treatments for autism can be divided into behavioural, nutritional, and medical approaches, although no defined standard approach exists. Nowadays, stem cell therapy represents the great promise for the future of molecular medicine. Among the stem cell population, mesenchymal stem cells (MSCs show probably best potential good results in medical research. Due to the particular immune and neural dysregulation observed in ASDs, mesenchymal stem cell transplantation could offer a unique tool to provide better resolution for this disease.

  4. Therapeutic Use of Stem Cell Transplantation for Cell Replacement or Cytoprotective Effect of Microvesicle Released from Mesenchymal Stem Cell

    Science.gov (United States)

    Choi, Moonhwan; Ban, Taehyun; Rhim, Taiyoun

    2014-01-01

    Idiopathic pulmonary fibrosis (IPF) is the most common and severe type of idiopathic interstitial pneumonias (IIP), and which is currently no method was developed to restore normal structure and function. There are several reports on therapeutic effects of adult stem cell transplantations in animal models of pulmonary fibrosis. However, little is known about how mesenchymal stem cell (MSC) can repair the IPF. In this study, we try to provide the evidence to show that transplanted mesenchymal stem cells directly replace fibrosis with normal lung cells using IPF model mice. As results, transplanted MSC successfully integrated and differentiated into type II lung cell which express surfactant protein. In the other hand, we examine the therapeutic effects of microvesicle treatment, which were released from mesenchymal stem cells. Though the therapeutic effects of MV treatment is less than that of MSC treatment, MV treat-ment meaningfully reduced the symptom of IPF, such as collagen deposition and inflammation. These data suggest that stem cell transplantation may be an effective strategy for the treatment of pulmonary fibrosis via replacement and cytoprotective effect of microvesicle released from MSCs. PMID:24598998

  5. Superparamagnetic iron oxide nanoparticles label human bone marrow and umbilical cord mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    Ma Yan; Zhang De-qing; Chen Le; Wang Jian; Zhang Xue; Hou Yan; Bi Xiao-juan; Yang Rong; Hu An-hua

    2012-01-01

      BACKGROUND: Nowadays, it is becoming more and more important to optimize safety of human derived cel s, label cel s efficiently and track cel s after cel s transplantation both in basic research and clinic application. OBJECTIVE: To compare the cel viability, labeling efficiency and imaging effect of the T2* weight image (WI) magnetic resonance (MR) between the human bone marrow and umbilical cord derived mesenchymal stem cel s labeled with the superparamaganetic iron oxide nanoparticles, as wel as to optimize their treatment efficiency. METHODS: The third generation of human bone marrow and umbilical cord derived mesenchymal stem cel s were cultured, and labeled with 5-30 mg/L Feridex Ⅳ and protamine sulfate. RESULTS AND CONCLUSION: The viability of human bone marrow mesenchymal stromal cel s was similar with human umbilical cord derived mesenchymal stem cel s (P >0.05). There was no significant difference of labeling rate between the bone marrow msenchymal stem cel s labeled with 5-30 mg/L Feridex Ⅳ(P >0.05); while there was significant difference of labeling rate between the umbilical cord derived mesenchymal stem cel s labeled with 5 mg/L Feridex Ⅳ and 20 and 30 mg/L Feridex Ⅳ(P <0.05); the positive labeling rate of umbilical cord derived mesenchymal stem cel s was lower than that of bone marrow msenchymal stem cel s after labeled with 10 mg/L FeridexⅣ(P <0.05). When two sources of cel s were labeled with Feridex Ⅳ more than 2 mg/L, the iron oxide particles were found in the cel suspension and could not be removed by elution and filtration. The signal intensity from 3.0T MR GRE T2*WI scan was decreased with the increasing of Feridex Ⅳ concentration in both cel types. It is safe and effective to label the two tissue-derived mesenchymal stem cel s with 10 mg/L Feridex Ⅳ-protamine sulfate complex, and can be observed with T2*WI MR.

  6. Stemness gene expression profile analysis in human umbilical cord mesenchymal stem cells.

    Science.gov (United States)

    Meng, Ming-Yao; Pang, Wei; Jiang, Li-Hong; Liu, Yun-Hong; Wei, Chuan-Yu; Xie, Yan-Hua; Yu, Hai-Dong; Hou, Zong-Liu

    2012-06-01

    Umbilical cord mesenchymal stem cells (UC-MSCs) have several advantages for clinical therapy: the material is easily obtainable, the donation procedure is painless and there is low risk of viral contamination. UC-MSCs play important roles in tissue regeneration, tissue damage repair, autoimmune disease and graft-versus-host disease. In this study, we investigated the normal mRNA expression profile of UC-MSCs, and analyzed the candidate proteins responsible for the signaling pathway that may affect the differentiation characteristics of UC-MSCs. UC-MSCs were isolated by mincing UC samples into fragments and placing them in growth medium in a six-well plate. The immunophenotype characteristics and multilineage differentiation potential of the UC-MSCs were measured by flow cytometry and immunohistochemical assays. In addition, the pathway-focused gene expression profile of UC-MSCs was compared with those of normal or tumorous cells by realtime quantitative polymerase chain reaction. We successfully isolated and cultured UC-MSCs and analyzed the appropriate surface markers and their capacity for osteogenic, adipogenic and neural differentiation. In total, 168 genes focusing on signal pathways were examined. We found that the expression levels of some genes were much higher or lower than those of control cells, either normal or tumorous. UC-MSCs exhibit a unique mRNA expression profile of pathway-focused genes, especially some stemness genes, which warrants further investigation. PMID:22728706

  7. All-trans retinoic acid promotes smooth muscle cell differentiation of rabbit bone marrow-derived mesenchymal stem cells*

    OpenAIRE

    Su, Zhong-yuan; Ying LI; Zhao, Xiao-Li; Zhang, Ming

    2010-01-01

    Bone marrow-derived mesenchymal stem cells are multipotent stem cells, an attractive resource for regenerative medicine. Accumulating evidence suggests that all-trans retinoic acid plays a key role in the development and differentiation of smooth muscle cells. In the present study, we demonstrate, for the first time, that rabbit bone marrow-derived mesenchymal stem cells differentiate into smooth muscle cells upon the treatment with all-trans retinoic acid. All-trans retinoic acid increased t...

  8. Expression of mesenchymal stem cell marker CD90 on dermal sheath cells of the anagen hair follicle in canine species

    OpenAIRE

    Gargiulo, A.M.; Pedini, V.; C. Dall’Aglio; Ceccarelli, P.; L. Pascucci; F Mercati

    2009-01-01

    The dermal sheath (DS) of the hair follicle is comprised by fibroblast-like cells and extends along the follicular epithelium, from the bulb up to the infundibulum. From this structure, cells with stem characteristics were isolated: they have a mesenchymal origin and express CD90 protein, a typical marker of mesenchymal stem cells. It is not yet really clear in which region of hair follicle these cells are located but some experimental evidence suggests that dermal stem cells are localized pr...

  9. Human mesenchymal stem cells towards non-alcoholic steatohepatitis in an immunodeficient mouse model

    International Nuclear Information System (INIS)

    Non-alcoholic steatohepatitis (NASH) is a frequent clinical picture characterised by hepatic inflammation, lipid accumulation and fibrosis. When untreated, NASH bears a high risk of developing liver cirrhosis and consecutive hepatocellular carcinoma requiring liver transplantation in its end-stage. However, donor organ scarcity has prompted the search for alternatives, of which hepatocyte or stem cell-derived hepatocyte transplantation are regarded auspicious options of treatment. Mesenchymal stem cells (MSC) are able to differentiate into hepatocyte-like cells and thus may represent an alternative cell source to primary hepatocytes. In addition these cells feature anti-inflammatory and pro-regenerative characteristics, which might favour liver recovery from NASH. The aim of this study was to investigate the potential benefit of hepatocyte-like cells derived from human bone marrow MSC in a mouse model of diet-induced NASH. Seven days post-transplant, human hepatocyte-like cells were found in the mouse liver parenchyma. Triglyceride depositions were lowered in the liver but restored to normal in the blood. Hepatic inflammation was attenuated as verified by decreased expression of the acute phase protein serum amyloid A, inflammation-associated markers (e.g. lipocalin 2), as well as the pro-inflammatory cytokine TNFα. Moreover, the proliferation of host hepatocytes that indicate the regenerative capacity in livers receiving cell transplants was enhanced. Transplantation of MSC-derived human hepatocyte-like cells corrects NASH in mice by restoring triglyceride depositions, reducing inflammation and augmenting the regenerative capacity of the liver. - Highlights: • First time to show NASH in an immune-deficient mouse model. • Human MSC attenuate NASH and improve lipid homeostasis. • MSC act anti-fibrotic and augment liver regeneration by stimulation of proliferation. • Pre-clinical assessment of human MSC for stem cell-based therapy of NASH

  10. Human mesenchymal stem cells towards non-alcoholic steatohepatitis in an immunodeficient mouse model

    Energy Technology Data Exchange (ETDEWEB)

    Winkler, Sandra, E-mail: sandra.pelz@medizin.uni-leipzig.de [Applied Molecular Hepatology Laboratory, Department of Visceral, Transplantation, Thoracic and Vascular Surgery, University Hospital Leipzig, Liebigstraße 21, D-04103 Leipzig (Germany); Borkham-Kamphorst, Erawan, E-mail: ekamphorst@ukaachen.de [Institute of Clinical Chemistry and Pathobiochemistry, RWTH University Hospital Aachen, Pauwelsstraße 30, D-52074 Aachen (Germany); Stock, Peggy, E-mail: peggy.stock@medizin.uni-leipzig.de [Applied Molecular Hepatology Laboratory, Department of Visceral, Transplantation, Thoracic and Vascular Surgery, University Hospital Leipzig, Liebigstraße 21, D-04103 Leipzig (Germany); Brückner, Sandra, E-mail: sandra.brueckner@medizin.uni-leipzig.de [Applied Molecular Hepatology Laboratory, Department of Visceral, Transplantation, Thoracic and Vascular Surgery, University Hospital Leipzig, Liebigstraße 21, D-04103 Leipzig (Germany); Dollinger, Matthias, E-mail: matthias.dollinger@uniklinik-ulm.de [Department for Internal Medicine I, University Hospital Ulm, Albert-Einstein-Allee 23, D-89081 Ulm (Germany); Weiskirchen, Ralf, E-mail: rweiskirchen@ukaachen.de [Institute of Clinical Chemistry and Pathobiochemistry, RWTH University Hospital Aachen, Pauwelsstraße 30, D-52074 Aachen (Germany); Christ, Bruno, E-mail: bruno.christ@medizin.uni-leipzig.de [Applied Molecular Hepatology Laboratory, Department of Visceral, Transplantation, Thoracic and Vascular Surgery, University Hospital Leipzig, Liebigstraße 21, D-04103 Leipzig (Germany); Translational Centre for Regenerative Medicine (TRM), University of Leipzig, Leipzig (Germany)

    2014-08-15

    Non-alcoholic steatohepatitis (NASH) is a frequent clinical picture characterised by hepatic inflammation, lipid accumulation and fibrosis. When untreated, NASH bears a high risk of developing liver cirrhosis and consecutive hepatocellular carcinoma requiring liver transplantation in its end-stage. However, donor organ scarcity has prompted the search for alternatives, of which hepatocyte or stem cell-derived hepatocyte transplantation are regarded auspicious options of treatment. Mesenchymal stem cells (MSC) are able to differentiate into hepatocyte-like cells and thus may represent an alternative cell source to primary hepatocytes. In addition these cells feature anti-inflammatory and pro-regenerative characteristics, which might favour liver recovery from NASH. The aim of this study was to investigate the potential benefit of hepatocyte-like cells derived from human bone marrow MSC in a mouse model of diet-induced NASH. Seven days post-transplant, human hepatocyte-like cells were found in the mouse liver parenchyma. Triglyceride depositions were lowered in the liver but restored to normal in the blood. Hepatic inflammation was attenuated as verified by decreased expression of the acute phase protein serum amyloid A, inflammation-associated markers (e.g. lipocalin 2), as well as the pro-inflammatory cytokine TNFα. Moreover, the proliferation of host hepatocytes that indicate the regenerative capacity in livers receiving cell transplants was enhanced. Transplantation of MSC-derived human hepatocyte-like cells corrects NASH in mice by restoring triglyceride depositions, reducing inflammation and augmenting the regenerative capacity of the liver. - Highlights: • First time to show NASH in an immune-deficient mouse model. • Human MSC attenuate NASH and improve lipid homeostasis. • MSC act anti-fibrotic and augment liver regeneration by stimulation of proliferation. • Pre-clinical assessment of human MSC for stem cell-based therapy of NASH.

  11. Visual bone marrow mesenchymal stem cell transplantation in the repair of spinal cord injury

    OpenAIRE

    Rui-ping Zhang; Cheng Xu; Yin Liu; Jian-ding Li; Jun Xie

    2015-01-01

    An important factor in improving functional recovery from spinal cord injury using stem cells is maximizing the number of transplanted cells at the lesion site. Here, we established a contusion model of spinal cord injury by dropping a weight onto the spinal cord at T 7-8 . Superparamagnetic iron oxide-labeled bone marrow mesenchymal stem cells were transplanted into the injured spinal cord via the subarachnoid space. An outer magnetic field was used to successfully guide the labeled cells to...

  12. Pelvic Organ Distribution of Mesenchymal Stem Cells Injected Intravenously after Simulated Childbirth Injury in Female Rats

    OpenAIRE

    Michelle Cruz; Charuspong Dissaranan; Anne Cotleur; Matthew Kiedrowski; Marc Penn; Margot Damaser

    2011-01-01

    The local route of stem cell administration utilized presently in clinical trials for stress incontinence may not take full advantage of the capabilities of these cells. The goal of this study was to evaluate if intravenously injected mesenchymal stem cells (MSCs) home to pelvic organs after simulated childbirth injury in a rat model. Female rats underwent either vaginal distension (VD) or sham VD. All rats received 2 million GFP-labeled MSCs intravenously 1 hour after injury. Four or 10 days...

  13. Cardiogenic and Myogenic Gene Expression in Mesenchymal Stem Cells After 5-Azacytidine Treatment

    OpenAIRE

    Aungkura Supokawej; Pakpoom Kheolamai; Kuneerat Nartprayut; Yaowalak U-pratya; Sirikul Manochantr; Methichit Chayosumrit; Surapol Issaragrisil

    2013-01-01

    Objective: 5-Azacytidine is a hypomethylating agent that is used for the treatment of myelodysplastic syndrome. This histone modifier is widely employed and plays a nonspecific role in influencing the differentiation capability of stem cells. The ability of bone marrow mesenchymal stem cells to differentiate into cardiomyocyte- and myocyte-like cells after exposure to 3 different doses of 5-azacytidine has been evaluated and compared. The aim of the study was to optimize the effective dose of...

  14. Mesenchymal Stem Cells in Immune-Mediated Bone Marrow Failure Syndromes

    OpenAIRE

    Maria-Christina Kastrinaki; Konstantia Pavlaki; Batsali, Aristea K.; Elisavet Kouvidi; Irene Mavroudi; Charalampos Pontikoglou; Papadaki, Helen A

    2013-01-01

    Immune-mediated bone marrow failure syndromes (BMFS) are characterized by ineffective marrow haemopoiesis and subsequent peripheral cytopenias. Ineffective haemopoiesis is the result of a complex marrow deregulation including genetic, epigenetic, and immune-mediated alterations in haemopoietic stem/progenitor cells, as well as abnormal haemopoietic-to-stromal cell interactions, with abnormal release of haemopoietic growth factors, chemokines, and inhibitors. Mesenchymal stem/stromal cells (MS...

  15. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche

    OpenAIRE

    Méndez-Ferrer, Simón; Michurina, Tatyana V.; Ferraro, Francesca; Amin R Mazloom; MacArthur, Ben D; Lira, Sergio A.; Scadden, David T.; Ma’ayan, Avi; Enikolopov, Grigori N.; Frenette, Paul S.

    2010-01-01

    The cellular constituents forming the haematopoietic stem cell (HSC) niche in the bone marrow are unclear, with studies implicating osteoblasts, endothelial and perivascular cells. Here we demonstrate that mesenchymal stem cells (MSCs), identified using nestin expression, constitute an essential HSC niche component. Nestin+ MSCs contain all the bone-marrow colony-forming-unit fibroblastic activity and can be propagated as non-adherent ‘mesenspheres’ that can self-renew and expand in serial tr...

  16. 12 hours after cerebral ischemia is the optimal time for bone marrow mesenchymal stem cell transplantation

    OpenAIRE

    Seyed Mojtaba Hosseini; Mohammad Farahmandnia; Zahra Razi; Somayeh Delavarifar; Benafsheh Shakibajahromi

    2015-01-01

    Cell therapy using stem cell transplantation against cerebral ischemia has been reported. However, it remains controversial regarding the optimal time for cell transplantation and the transplantation route. Rat models of cerebral ischemia were established by occlusion of the middle cerebral artery. At 1, 12 hours, 1, 3, 5 and 7 days after cerebral ischemia, bone marrow mesenchymal stem cells were injected via the tail vein. At 28 days after cerebral ischemia, rat neurological function was eva...

  17. BONE MARROW MESENCHYMAL STEM CELLS ARE PROGENITORS IN VITRO FOR INNER EAR HAIR CELLS

    OpenAIRE

    Jeon, Sang-Jun; Oshima, Kazuo; Heller, Stefan; Edge, Albert S. B.

    2006-01-01

    Stem cells have been demonstrated in the inner ear but they do not spontaneously divide to replace damaged sensory cells. Mesenchymal stem cells (MSC) from bone marrow have been reported to differentiate into multiple lineages including neurons, and we therefore asked whether MSCs could generate sensory cells. Overexpression of the prosensory transcription factor, Math1, in sensory epithelial precursor cells induced expression of myosin VIIa, espin, Brn3c, p27Kip, and jagged2, indicating diff...

  18. Stem cells of the suture mesenchyme in craniofacial bone development, repair and regeneration

    OpenAIRE

    Maruyama, Takamitsu; Jeong, Jaeim; Sheu, Tzong-jen; Hsu, Wei

    2016-01-01

    The suture mesenchyme serves as a growth centre for calvarial morphogenesis and has been postulated to act as the niche for skeletal stem cells. Aberrant gene regulation causes suture dysmorphogenesis resulting in craniosynostosis, one of the most common craniofacial deformities. Owing to various limitations, especially the lack of suture stem cell isolation, reconstruction of large craniofacial bone defects remains highly challenging. Here we provide the first evidence for an Axin2-expressin...

  19. Tissue-based Identification of Stem Cells and Epithelial-to-Mesenchymal Transition in Breast Cancer

    OpenAIRE

    Anwar, Talha; Kleer, Celina G.

    2013-01-01

    Pathologists have recognized breast cancer heterogeneity for decades, but its causes were unknown. In recent years, basic science and translational studies have demonstrated that cancer stem cells contribute to the heterogeneous histological and functional characteristics of breast cancer. Even more recently, the ability of breast epithelial cells to undergo an epithelial to mesenchymal (EMT) transition has been linked to the acquisition of stem cells properties, and enhanced tumor invasion, ...

  20. Mesenchymal Stem Cell-Derived Extracellular Vesicles Promote Angiogenesis: Potencial Clinical Application

    OpenAIRE

    Merino-González, Consuelo; Zuñiga, Felipe A.; Escudero, Carlos; Ormazabal, Valeska; Reyes, Camila; Nova-Lamperti, Estefanía; Salomón, Carlos; Aguayo, Claudio

    2016-01-01

    Mesenchymal stem cells (MSCs) are adult multipotent stem cells that are able to differentiate into multiple specialized cell types including osteocytes, adipocytes, and chondrocytes. MSCs exert different functions in the body and have recently been predicted to have a major clinical/therapeutic potential. However, the mechanisms of self-renewal and tissue regeneration are not completely understood. It has been shown that the biological effect depends mainly on its paracrine action. Furthermor...

  1. Advances in mesenchymal stem cell-based strategies for cartilage repair and regeneration.

    Science.gov (United States)

    Toh, Wei Seong; Foldager, Casper Bindzus; Pei, Ming; Hui, James Hoi Po

    2014-10-01

    Significant research efforts have been undertaken in the last decade in the development of stem cell-based therapies for cartilage repair. Among the various stem cell sources, mesenchymal stem cells (MSCs) demonstrate great promise and clinical efficacy in cartilage regeneration. With a deeper understanding of stem cell biology, new therapeutics and new bioengineering approaches have emerged and showed potential for further developments. Of note, there has been a paradigm shift in applying MSCs for tissue regeneration from the use of stem cells for transplantation to the use of stem cell-derived matrix and secretome components as therapeutic tools and agents for cartilage regeneration. In this review, we will discuss the emerging role of MSCs in cartilage regeneration and the most recent advances in development of stem cell-based therapeutics for cartilage regeneration.

  2. Mesenchymal stem cells from rat olfactory bulbs can differentiate into cells with cardiomyocyte characteristics.

    Science.gov (United States)

    Huang, Yuahn-Sieh; Li, I-Hsun; Chueh, Sheau-Huei; Hueng, Dueng-Yuan; Tai, Ming-Cheng; Liang, Chang-Min; Lien, Shiu-Bii; Sytwu, Huey-Kang; Ma, Kuo-Hsing

    2015-12-01

    Mesenchymal stromal/stem cells (MSCs) are widely distributed in different tissues such as bone marrow, adipose tissues, peripheral blood, umbilical cord and amnionic fluid. Recently, MSC-like cells were also found to exist in rat olfactory bulb and are capable of inducing differentiation into mesenchymal lineages - osteocytes, chondrocytes and adipocytes. However, whether these cells can differentiate into myocardial cells is not known. In this study, we examined whether olfactory bulb-derived MSCs could differentiate into myocardial cells in vitro. Fibroblast-like cells isolated from the olfactory bulb of neonatal rats were grown under four conditions: no treatment; in the presence of growth factors (neuregulin-1, bFGF and forskolin); co-cultured with cardiomyocytes; and co-cultured with cardiomyocytes plus neuregulin-1, bFGF and forskolin. Cell differentiation into myocardial cells was monitored by RT-PCR, light microscopy immunofluorescence, western blot analysis and contractile response to pharmacological treatments. The isolated olfactory bulb-derived fibroblast-like cells expressed CD29, CD44, CD90, CD105, CD166 but not CD34 and CD45, consistent with the characteristics of MSCs. Long cylindical cells that spontaneously contracted were only observed following 7 days of co-culture of MSCs with rat cardiomyocytes plus neuregulin-1, bFGF and forskolin. RT-PCR and western blot analysis indicated that the cylindrical cells expressed myocardial markers, such as Nkx2.5, GATA4, sarcomeric α-actinin, cardiac troponin I, cardiac myosin heavy chain, atrial natriuretic peptide and connexin 43. They also contained sarcomeres and gap junction and were sensitive to pharmacological treatments (adrenal and cholinergic agonists and antagonists). These findings indicate that rat olfactory bulb-derived fibroblast-like cells with MSC characteristics can differentiate into myocardial-like cells.

  3. Quantifying in vitro growth and metabolism kinetics of human mesenchymal stem cells using a mathematical model

    NARCIS (Netherlands)

    Higuera-Sierra, G.; Schop, D.; Janssen, F.; Dijkhuizen-Radersma, R.; Boxtel, van A.J.B.; Blitterswijk, van C.A.

    2009-01-01

    Better quantitative understanding of human mesenchymal stem cells (hMSCs) metabolism is needed to identify, understand, and subsequently optimize the processes in expansion of hMSCs in vitro. For this purpose, we analyzed growth of hMSCs in vitro with a mathematical model based on the mass balances

  4. Quantifying In Vitro Growth and Metabolism Kinetics of Human Mesenchymal Stem Cells Using a Mathematical Model

    NARCIS (Netherlands)

    Higuera, Gustavo; Schop, Deborah; Janssen, Frank; Dijkhuizen-Radersma, van Riemke; Boxtel, van Ton; Blitterswijk, van Clemens A.

    2009-01-01

    Better quantitative understanding of human mesenchymal stem cells (hMSCs) metabolism is needed to identify, understand, and subsequently optimize the processes in expansion of hMSCs in vitro. For this purpose, we analyzed growth of hMSCs in vitro with a mathematical model based on the mass balances

  5. Enhanced adipogenic differentiation of bovine bone marrow-derived mesenchymal stem cells

    Science.gov (United States)

    Until now, the isolation and characterization of bovine bone marrow-derived mesenchymal stem cells (bBM-MSCs) have not been established, which prompted us to optimize the differentiation protocol for bBM-MSCs. In this study, bBM-MSCs were freshly isolated from three 6-month-old cattle and used for p...

  6. Human bone marrow mesenchymal stem cell transplantation attenuates axonal injur y in stroke rats

    Institute of Scientific and Technical Information of China (English)

    Yi Xu; Shiwei Du; Xinguang Yu; Xiao Han; Jincai Hou; Hao Guo

    2014-01-01

    Previous studies have shown that transplantation of human bone marrow mesenchymal stem cells promotes neural functional recovery after stroke, but the neurorestorative mechanisms remain largely unknown. We hypothesized that functional recovery of myelinated axons may be one of underlying mechanisms. In this study, an ischemia/reperfusion rat model was established using the middle cerebral artery occlusion method. Rats were used to test the hypothesis that in-travenous transplantation of human bone marrow mesenchymal stem cells through the femoral vein could exert neuroprotective effects against cerebral ischemia via a mechanism associated with the ability to attenuate axonal injury. The results of behavioral tests, infarction volume analysis and immunohistochemistry showed that cerebral ischemia caused severe damage to the myelin sheath and axons. After rats were intravenously transplanted with human bone marrow mesenchymal stem cells, the levels of axon and myelin sheath-related proteins, including mi-crotubule-associated protein 2, myelin basic protein, and growth-associated protein 43, were elevated, infarct volume was decreased and neural function was improved in cerebral ischemic rats. These ifndings suggest that intravenously transplanted human bone marrow mesenchymal stem cells promote neural function. Possible mechanisms underlying these beneifcial effects in-clude resistance to demyelination after cerebral ischemia, prevention of axonal degeneration, and promotion of axonal regeneration.

  7. Interaction between adipose tissue-derived mesenchymal stem cells and regulatory T-cells

    NARCIS (Netherlands)

    A.U. Engela (Anja); C.C. Baan (Carla); A. Peeters (Anna); W. Weimar (Willem); M.J. Hoogduijn (Martin)

    2013-01-01

    textabstractMesenchymal stem cells (MSCs) exhibit immunosuppressive capabilities, which have evoked interest in their application as cell therapy in transplant patients. So far it has been unclear whether allogeneic MSCs and host regulatory T-cells (Tregs) functionally influence each other. We inves

  8. Intranasal mesenchymal stem cell treatment for neonatal brain damage : long-term cognitive and sensorimotor improvement

    NARCIS (Netherlands)

    Donega, Vanessa; van Velthoven, Cindy T J; Nijboer, Cora H; van Bel, Frank; Kas, Martien J H; Kavelaars, Annemieke; Heijnen, Cobi J

    2013-01-01

    Mesenchymal stem cell (MSC) administration via the intranasal route could become an effective therapy to treat neonatal hypoxic-ischemic (HI) brain damage. We analyzed long-term effects of intranasal MSC treatment on lesion size, sensorimotor and cognitive behavior, and determined the therapeutic wi

  9. Characterization of lipid metabolism in insulin-sensitive adipocytes differentiated from immortalized human mesenchymal stem cells

    DEFF Research Database (Denmark)

    Prawitt, Janne; Niemeier, Andreas; Kassem, Moustapha;

    2008-01-01

    There is a great demand for cell models to study human adipocyte function. Here we describe the adipogenic differentiation of a telomerase-immortalized human mesenchymal stem cell line (hMSC-Tert) that maintains numerous features of terminally differentiated adipocytes even after prolonged...

  10. Mesenchymal Stem Cell Therapy for Protection and Repair of Injured Vital Organs

    NARCIS (Netherlands)

    van Poll, D.; Parekkadan, B.; Rinkes, I. H. M. Borel; Tilles, A. W.; Yarmush, M. L.

    2008-01-01

    Recently there has been a paradigm shift in what is considered to be the therapeutic promise of mesenchymal stem cells (MSCs) in diseases of vital organs. Originally, research focused on MSCs as a source of regenerative cells by differentiation of transplanted cells into lost cell types. It is now c

  11. Mesenchymal Stem Cell Therapy for the Treatment of Vocal Fold Scarring

    DEFF Research Database (Denmark)

    Wingstrand, Vibe Lindeblad; Grønhøj Larsen, Christian; Jensen, David H;

    2016-01-01

    the biomechanical properties of injured vocal folds. This study evaluated the biomechanical effects of mesenchymal stem cell therapy for the treatment of vocal fold scarring. DATA SOURCES: PubMed, Embase, the Cochrane Library and Google Scholar were searched. METHODS: Controlled studies that assessed...

  12. Airway Delivery of Mesenchymal Stem Cells Prevents Arrested Alveolar Growth in Neonatal Lung Injury in Rats

    OpenAIRE

    van Haaften, Timothy; Byrne, Roisin; Bonnet, Sebastien; Rochefort, Gael Y.; Akabutu, John; Bouchentouf, Manaf; Rey-Parra, Gloria J.; Galipeau, Jacques; Haromy, Alois; Eaton, Farah; Chen, Ming; Hashimoto, Kyoko; Abley, Doris; Korbutt, Greg; Archer, Stephen L.

    2009-01-01

    Rationale: Bronchopulmonary dysplasia (BPD) and emphysema are characterized by arrested alveolar development or loss of alveoli; both are significant global health problems and currently lack effective therapy. Bone marrow–derived mesenchymal stem cells (BMSCs) prevent adult lung injury, but their therapeutic potential in neonatal lung disease is unknown.

  13. Cerebral transplantation of encapsulated mesenchymal stem cells improves cellular pathology after experimental traumatic brain injury

    DEFF Research Database (Denmark)

    Heile, Anna M B; Wallrapp, Christine; Klinge, Petra M;

    2009-01-01

    PURPOSE: "Naked" human mesenchymal stem cells (MSC) are neuro-protective in experimental brain injury (TBI). In a controlled cortical impact (CCI) rat model, we investigated whether encapsulated MSC (eMSC) act similarly, and whether efficacy is augmented using cells transfected to produce the neu...

  14. Recent advances in mesenchymal stem cell immunomodulation: the role of microvesicles.

    Science.gov (United States)

    Fierabracci, Alessandra; Del Fattore, Andrea; Luciano, Rosa; Muraca, Marta; Teti, Anna; Muraca, Maurizio

    2015-01-01

    Mesenchymal stem cells are the most widely used cell phenotype for therapeutic applications, the main reasons being their well-established abilities to promote regeneration of injured tissues and to modulate immune responses. Efficacy was reported in the treatment of several animal models of inflammatory and autoimmune diseases and, in clinical settings, for the management of disorders such as GVHD, systemic lupus erythematosus, multiple sclerosis, and inflammatory bowel disease. The effects of mesenchymal stem cells are believed to be largely mediated by paracrine signals, and several secreted molecules have been identified as contributors to the net biological effect. Recently, it has been recognized that bioactive molecules can be shuttled from cell to cell packed in microvesicles, tiny portions of cytoplasm surrounded by a membrane. Coding and noncoding RNAs are also carried in such microvesicles, transferring relevant biological activity to target cells. Several reports indicate that the regenerative effect of mesenchymal stem cells can be reproduced by microvesicles isolated from their culture medium. More recent evidence suggests that the immunomodulatory effects of mesenchymal stem cells are also at least partially mediated by secreted microvesicles. These findings allow better understanding of the mechanisms involved in cell-to-cell interaction and may have interesting implications for the development of novel therapeutic tools in place of the parent cells.

  15. Tumour microenvironment and radiation response in sarcomas originating from tumourigenic human mesenchymal stem cells

    DEFF Research Database (Denmark)

    D'Andrea, Filippo Peder; Safwat, Akmal Ahmed; Burns, Jorge S.;

    2012-01-01

    Background: Resistance to radiation therapy remains a serious impediment to cancer therapy. We previously reported heterogeneity for clonogenic survival when testing in vitro radiation resistance among single cell derived clones from a human mesenchymal cancer stem cell model (hMSC). Here we aimed...

  16. The effect of marrow mesenchymal stem cell transplantation on pulmonary fibrosis in rats

    Institute of Scientific and Technical Information of China (English)

    黄坤

    2012-01-01

    Objective To study the possible mechanisms of marrow mesenchymal stem cells(MSC) in therapy of bleomycin(BLM)-induced pulmonary fibrosis in rats. Methods Fifty-four female Wistar rats were randomly divided into a control group,a BLM group and a MSC group. The control group receivel intratracheal normal

  17. Stiffening of Human Mesenchymal Stem Cell Spheroid Microenvironments Induced by Incorporation of Gelatin Microparticles

    Science.gov (United States)

    Baraniak, Priya R.; Cooke, Marissa T.; Saeed, Rabbia; Kinney, Melissa A.; Fridley, Krista M.; McDevitt, Todd C.

    2012-01-01

    Culturing multipotent adult mesenchymal stem cells as 3D aggregates augments their differentiation potential and paracrine activity. One caveat of stem cell spheroids, though, can be the limited diffusional transport barriers posed by the inherent 3D structure of the multicellular aggregates. In order to circumvent such limitations, polymeric microparticles have been incorporated into stem cell aggregates as a means to locally control the biochemical and physical properties of the 3D microenvironment. However, the introduction of biomaterials to the 3D stem cell microenvironment could alter the mechanical forces sensed by cells within aggregates, which in turn could impact various cell behaviors and overall spheroid mechanics. Therefore, the objective of this study was to determine the acute effects of biomaterial incorporation within mesenchymal stem cell spheroids on aggregate structure and mechanical properties. The results of this study demonstrate that although gelatin microparticle incorporation results in similar multi-cellular organization within human mesenchymal stem cell spheroids, the introduction of gelatin materials significantly impacts spheroid mechanical properties. The marked differences in spheroid mechanics induced by microparticle incorporation may hold major implications for in vitro directed differentiation strategies and offer a novel route to engineer the mechanical properties of tissue constructs ex vivo. PMID:22658155

  18. In vitro mesenchymal stem cell response to a CO2 laser modified polymeric material.

    Science.gov (United States)

    Waugh, D G; Hussain, I; Lawrence, J; Smith, G C; Cosgrove, D; Toccaceli, C

    2016-10-01

    With an ageing world population it is becoming significantly apparent that there is a need to produce implants and platforms to manipulate stem cell growth on a pharmaceutical scale. This is needed to meet the socio-economic demands of many countries worldwide. This paper details one of the first ever studies in to the manipulation of stem cell growth on CO2 laser surface treated nylon 6,6 highlighting its potential as an inexpensive platform to manipulate stem cell growth on a pharmaceutical scale. Through CO2 laser surface treatment discrete changes to the surfaces were made. That is, the surface roughness of the nylon 6,6 was increased by up to 4.3μm, the contact angle was modulated by up to 5° and the surface oxygen content increased by up to 1atom %. Following mesenchymal stem cell growth on the laser treated samples, it was identified that CO2 laser surface treatment gave rise to an enhanced response with an increase in viable cell count of up to 60,000cells/ml when compared to the as-received sample. The effect of surface parameters modified by the CO2 laser surface treatment on the mesenchymal stem cell response is also discussed along with potential trends that could be identified to govern the mesenchymal stem cell response. PMID:27287173

  19. Sox10 Regulates Stem/Progenitor and Mesenchymal Cell States in Mammary Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Christopher Dravis

    2015-09-01

    Full Text Available To discover mechanisms that mediate plasticity in mammary cells, we characterized signaling networks that are present in the mammary stem cells responsible for fetal and adult mammary development. These analyses identified a signaling axis between FGF signaling and the transcription factor Sox10. Here, we show that Sox10 is specifically expressed in mammary cells exhibiting the highest levels of stem/progenitor activity. This includes fetal and adult mammary cells in vivo and mammary organoids in vitro. Sox10 is functionally relevant, as its deletion reduces stem/progenitor competence whereas its overexpression increases stem/progenitor activity. Intriguingly, we also show that Sox10 overexpression causes mammary cells to undergo a mesenchymal transition. Consistent with these findings, Sox10 is preferentially expressed in stem- and mesenchymal-like breast cancers. These results demonstrate a signaling mechanism through which stem and mesenchymal states are acquired in mammary cells and suggest therapeutic avenues in breast cancers for which targeted therapies are currently unavailable.

  20. Human mesenchymal stem cells elevate CD4+CD25+CD127low/- regulatory T cells of asthmatic patients via heme oxygenase-1.

    Science.gov (United States)

    Li, Jian-guo; Zhuan-sun, Yong-xun; Wen, Bing; Wu, Hao; Huang, Feng-ting; Ghimire, Hridaya bibhu; Ran, Pi-xin

    2013-09-01

    Up-regulation of CD4+CD25+CD127low/- regulatory T cells (Tregs) is a new target in the treatment of asthma. Human bone marrow mesenchymal stem cells can up-regulate CD4+CD25+CD127low/- regulatory T cells in vitro, meanwhile, heme oxygenase-1 (HO-1) plays an important role in the development and maintenance of CD4+CD25+ regulatory T cells. However the mechanism has not yet been adequately understood. Hence, we wondered what effect of Heme Oxygenase-1 made on regulation of CD4+CD25+CD127low/- regulatory T cells mediated by mesenchymal stem cells. Peripheral blood mononuclear cells isolated from asthmatic patients and healthy controls were co-cultured with human bone marrow mesenchymal stem cells which were pretreated with Hemin (the revulsive of Heme Oxygenase-1), Protoporphyrin Ⅸ zinc (the inhibitor of Heme Oxygenase-1) and saline. The expression of Heme Oxygenase-1 in MSCs was enhanced by Hemin and inhibited by Protoporphyrin  zinc in vitro. Overexpression of Heme Oxygenase-1 elevated the proportion of CD4+CD25+CD127low/- regulatory T cells in CD4+ T cells, meanwhile, inhibition of Heme Oxygenase-1 decreased the proportion of CD4+CD25+CD127low/- regulatory T cells in CD4+ T cells as compared with mesenchymal stem cells alone. Taken together, these data demonstrated that Heme Oxygenase-1 contributed to the up-regulation of CD4+CD25+CD127low/- regulatory T cells mediated by mesenchymal stem cells in asthma.  PMID:23893806

  1. Impact of Mesenchymal Stem Cell secreted PAI-1 on colon cancer cell migration and proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Hogan, Niamh M. [Discipline of Surgery, School of Medicine, National University of Ireland, Galway (Ireland); Joyce, Myles R. [Department of Colorectal Surgery, University College Hospital, Galway (Ireland); Murphy, J. Mary; Barry, Frank P.; O’Brien, Timothy [Regenerative Medicine Institute, National University of Ireland, Galway (Ireland); Kerin, Michael J. [Discipline of Surgery, School of Medicine, National University of Ireland, Galway (Ireland); Dwyer, Roisin M., E-mail: roisin.dwyer@nuigalway.ie [Discipline of Surgery, School of Medicine, National University of Ireland, Galway (Ireland)

    2013-06-14

    Highlights: •MSCs were directly co-cultured with colorectal cancer (CRC) cells on 3D scaffolds. •MSCs influence CRC protein/gene expression, proliferation and migration. •We report a significant functional role of MSC-secreted PAI-1 in colon cancer. -- Abstract: Mesenchymal Stem Cells are known to engraft and integrate into the architecture of colorectal tumours, with little known regarding their fate following engraftment. This study aimed to investigate mediators of Mesenchymal Stem Cell (MSC) and colon cancer cell (CCC) interactions. Mesenchymal Stem Cells and colon cancer cells (HT29 and HCT-116) were cultured individually or in co-culture on 3-dimensional scaffolds. Conditioned media containing all secreted factors was harvested at day 1, 3 and 7. Chemokine secretion and expression were analyzed by Chemi-array, ELISA (Macrophage migration inhibitory factor (MIF), plasminogen activator inhibitor type 1 (PAI-1)) and RQ-PCR. Colon cancer cell migration and proliferation in response to recombinant PAI-1, MSCs and MSCs + antibody to PAI-1 was analyzed using Transwell inserts and an MTS proliferation assay respectively. Chemi-array revealed secretion of a wide range of factors by each cell population, including PAI-1and MIF. ELISA analysis revealed Mesenchymal Stem Cells to secrete the highest levels of PAI-1 (MSC mean 10.6 ng/mL, CCC mean 1.01 ng/mL), while colon cancer cells were the principal source of MIF. MSC-secreted PAI-1 stimulated significant migration of both CCC lines, with an antibody to the chemokine shown to block this effect (67–88% blocking,). A cell-line dependant effect on CCC proliferation was shown for Mesenchymal Stem Cell-secreted PAI-1 with HCT-116 cells showing decreased proliferation at all concentrations, and HT29 cells showing increased proliferation in the presence of higher PAI-1 levels. This is the first study to identify PAI-1 as an important mediator of Mesenchymal Stem Cell/colon cancer cell interactions and highlights the

  2. Comparisons of Differentiation Potential in Human Mesenchymal Stem Cells from Wharton’s Jelly, Bone Marrow, and Pancreatic Tissues

    Directory of Open Access Journals (Sweden)

    Shih-Yi Kao

    2015-01-01

    Full Text Available Background. Type 1 diabetes mellitus results from autoimmune destruction of β-cells. Insulin-producing cells (IPCs differentiated from mesenchymal stem cells (MSCs in human tissues decrease blood glucose levels and improve survival in diabetic rats. We compared the differential ability and the curative effect of IPCs from three types of human tissue to determine the ideal source of cell therapy for diabetes. Methods. We induced MSCs from Wharton’s jelly (WJ, bone marrow (BM, and surgically resected pancreatic tissue to differentiate into IPCs. The in vitro differential function of these IPCs was compared by insulin-to-DNA ratios and C-peptide levels after glucose challenge. In vivo curative effects of IPCs transplanted into diabetic rats were monitored by weekly blood glucose measurement. Results. WJ-MSCs showed better proliferation and differentiation potential than pancreatic MSCs and BM-MSCs. In vivo, WJ-IPCs significantly reduced blood glucose levels at first week after transplantation and maintained significant decrease till week 8. BM-IPCs reduced blood glucose levels at first week but gradually increased since week 3. In resected pancreas-IPCs group, blood glucose levels were significantly reduced till two weeks after transplantation and gradually increased since week 4. Conclusion. WJ-MSCs are the most promising stem cell source for β-cell regeneration in diabetes treatment.

  3. Lipopolysaccharide-activated microglial-induced neuroglial cell differentiation in bone marrow mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    Xiaoguang Luo; Chunlin Ge; Yan Ren; Hongmei Yu; Zhe Wu; Qiushuang Wang; Chaodong Zhang

    2008-01-01

    BACKGROUND: Microglia are very sensitive to environmental changes, often becoming activated by pathological conditions. Activated microglia can exert a dual role in injury and repair in various diseases of the central nervous system, including cerebral ischemia, Parkinson's disease, and Alzheimer's disease. OBJECTIVE: An immortal microglial cell line, BV2, was treated with varying concentrations of lipopolysaccharide (LPS) to induce a pathological situation. Supernatant was harvested and incubated with bone marrow mesenchymal stem cells and, concomitantly, bone marrow mesenchymal stem cell differentiation was observed. DESIGN: A controlled observation, in vitro experiment. SETTING: Department of Neurology, First Affiliated Hospital of China Medical University. MATERIALS: Five male 2-3-week-old Sprague Dawley rats were purchased from Animal Laboratory Center of China Medical University and included in this study. The protocol was performed in accordance with ethical guidelines for the use and care of animals. The microglial cell line BV2 was produced by Cell Research Institute of Chinese Academy of Sciences. LPS was produced by Sigma Company, USA. METHODS: This study was performed in the Central Laboratory of China Medical University from September 2006 to March 2007. Rat femoral and tibial bone marrow was collected for separation and primary culture of bone marrow mesenchymal stem cells. Bone marrow mesenchymal stem cell cultures were divided into 5 groups: control group, non-activated group, as well as low-, medium-, and high-dose LPS groups. In the control group, bone marrow mesenchymal stem cells were cultured with Dulbecco's modified Eagle's medium (DMEM) supplemented with fetal bovine serum (volume fraction 0.1). In the non-activated group, bone marrow mesenchymal stem cells were incubated with non-activated BV2 supernatant. In the low-, medium-, and high-dose LPS groups, bone marrow mesenchymal stem cells were incubated with LPS (0.01, 0.1 and 1

  4. Therapeutic effect of bone marrow mesenchymal stem cells on cold stress induced changes in the hippocampus of rats

    OpenAIRE

    Kumar, Saravana Kumar Sampath; Perumal, Saraswathi; Rajagopalan, Vijayaraghavan

    2014-01-01

    The present study aims to evaluate the effect of bone marrow mesenchymal stem cells on cold stress induced neuronal changes in hippocampal CA1 region of Wistar rats. Bone marrow mesenchymal stem cells were isolated from a 6-week-old Wistar rat. Bone marrow from adult femora and tibia was collected and mesenchymal stem cells were cultured in minimal essential medium containing 10% heat-inactivated fetal bovine serum and were sub-cultured. Passage 3 cells were analyzed by flow cytometry for pos...

  5. Neuronal-like cell differentiation of non-adherent bone marrow cell-derived mesenchymal stem cells

    OpenAIRE

    Wu, Yuxin; Zhang, Jinghan; Ben, Xiaoming

    2013-01-01

    Non-adherent bone marrow cell-derived mesenchymal stem cells from C57BL/6J mice were separated and cultured using the “pour-off” method. Non-adherent bone marrow cell-derived mesenchymal stem cells developed colony-forming unit-fibroblasts, and could be expanded by supplementation with epidermal growth factor. Immunocytochemistry showed that the non-adherent bone marrow cell-derived mesenchymal stem cells exposed to basic fibroblast growth factor/epidermal growth factor/nerve growth factor ex...

  6. Platelet-rich fibrin-induced bone marrow mesenchymal stem cell differentiation into osteoblast-like cells and neural cells

    Institute of Scientific and Technical Information of China (English)

    Qi Li; Yajun Geng; Lei Lu; Tingting Yang; Mingrui Zhang; Yanmin Zhou

    2011-01-01

    Bone marrow mesenchymal stem cells were allowed to develop for 14 days in a platelet-rich fibrin environment. Results demonstrated that platelet-rich fibrin significantly promoted bone marrow mesenchymal stem cell proliferation. In addition, there was a dose-dependent increase in Runt-related transcription factor-2 and bone morphogenetic protein-2 mRNA expression, as well as neuron-specific enolase and glial acidic protein. Results showed that platelet-rich fibrin promoted bone marrow mesenchymal stem cell proliferation and differentiation of osteoblastlike cells and neural cells in a dose-dependent manner.

  7. Tumorigenic heterogeneity in cancer stem cells evolved from long-term cultures of telomerase-immortalized human mesenchymal stem cells

    DEFF Research Database (Denmark)

    Burns, Jorge S; Abdallah, Basem M; Guldberg, Per;

    2005-01-01

    Long-term cultures of telomerase-transduced adult human mesenchymal stem cells (hMSC) may evolve spontaneous genetic changes leading to tumorigenicity in immunodeficient mice (e.g., hMSC-TERT20). We wished to clarify whether this unusual phenotype reflected a rare but dominant subpopulation...... or if the stem cell origin allowed most cells to behave as cancer stem cells. Cultures of the hMSC-TERT20 strain at population doubling 440 were highly clonogenic (94%). From 110 single-cell clones expanded by 20 population doublings, 6 underwent detailed comparison. Like the parental population, each clone had...... tumorigenicity correlated with good viability plus capillary morphogenesis on serum starvation and high cyclin D1 expression. Thus, hMSC-TERT20 clones represent cancer stem cells with hierarchical tumorigenicity, providing new models to explore the stem cell hypothesis for cancer....

  8. Overexpression of microRNA-124 promotes the neuronal differentiation of bone marrow-derived mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    Defeng Zou; Yi Chen; Yaxin Han; Chen Lv; Guanjun Tu

    2014-01-01

    microRNAs (miRNAs) play an important regulatory role in the self-renewal and differentiation of stem cells. In this study, we examined the effects of miRNA-124 (miR-124) overexpression in bone marrow-derived mesenchymal stem cells. In particular, we focused on the effect of overexpression on the differentiation of bone marrow-derived mesenchymal stem cells into neurons. First, we used GeneChip technology to analyze the expression of miRNAs inbone marrow-derived mesen-chymal stem cells, neural stem cells and neurons. miR-124 expression was substantially reduced inbone marrow-derived mesenchymal stem cells compared with the other cell types. We con-structed a lentiviral vector overexpressing miR-124 and transfected it intobone marrow-derived mesenchymal stem cells. Intracellular expression levels of the neuronal early markersβ-III tu-bulin and microtubule-associated protein-2 were signiifcantly increased, and apoptosis induced by oxygen and glucose deprivation was reduced in transfected cells. After miR-124-transfected bone marrow-derived mesenchymal stem cells were transplanted into the injured rat spinal cord, a large number of cells positive for the neuronal marker neurofilament-200 were observed in the transplanted region. The Basso-Beattie-Bresnahan locomotion scores showed that the motor function of the hind limb of rats with spinal cord injury was substantially improved. These re-sults suggest that miR-124 plays an important role in the differentiation ofbone marrow-derived mesenchymal stem cells into neurons. Our ifndings should facilitate the development of novel strategies for enhancing the therapeutic efifcacy ofbone marrow-derived mesenchymal stem cell transplantation for spinal cord injury.

  9. Derivation of Lung Epithelium from Human Cord Blood–derived Mesenchymal Stem Cells

    OpenAIRE

    Sueblinvong, Viranuj; Loi, Roberto; Eisenhauer, Philip L.; Bernstein, Ira M.; Suratt, Benjamin T.; Spees, Jeffrey L.; Weiss, Daniel J.

    2007-01-01

    Rationale: Recent studies have suggested that both embryonic stem cells and adult bone marrow stem cells can participate in the regeneration and repair of diseased adult organs, including the lungs. However, the extent of airway epithelial remodeling with adult marrow stem cells is low, and there are no available in vivo data with embryonic stem cells. Human umbilical cord blood contains both hematopoietic and nonhematopoietic stem cells, which have been used clinically as an alternative to b...

  10. Mesenchymal Stem Cells Isolated from Adipose and Other Tissues: Basic Biological Properties and Clinical Applications

    Directory of Open Access Journals (Sweden)

    Hakan Orbay

    2012-01-01

    Full Text Available Mesenchymal stem cells (MSCs are adult stem cells that were initially isolated from bone marrow. However, subsequent research has shown that other adult tissues also contain MSCs. MSCs originate from mesenchyme, which is embryonic tissue derived from the mesoderm. These cells actively proliferate, giving rise to new cells in some tissues, but remain quiescent in others. MSCs are capable of differentiating into multiple cell types including adipocytes, chondrocytes, osteocytes, and cardiomyocytes. Isolation and induction of these cells could provide a new therapeutic tool for replacing damaged or lost adult tissues. However, the biological properties and use of stem cells in a clinical setting must be well established before significant clinical benefits are obtained. This paper summarizes data on the biological properties of MSCs and discusses current and potential clinical applications.

  11. The Potential for Resident Lung Mesenchymal Stem Cells to Promote Functional Tissue Regeneration: Understanding Microenvironmental Cues

    Directory of Open Access Journals (Sweden)

    Susan M. Majka

    2012-10-01

    Full Text Available Tissue resident mesenchymal stem cells (MSCs are important regulators of tissue repair or regeneration, fibrosis, inflammation, angiogenesis and tumor formation. Bone marrow derived mesenchymal stem cells (BM-MSCs and endothelial progenitor cells (EPC are currently being considered and tested in clinical trials as a potential therapy in patients with such inflammatory lung diseases including, but not limited to, chronic lung disease, pulmonary arterial hypertension (PAH, pulmonary fibrosis (PF, chronic obstructive pulmonary disease (COPD/emphysema and asthma. However, our current understanding of tissue resident lung MSCs remains limited. This review addresses how environmental cues impact on the phenotype and function of this endogenous stem cell pool. In addition, it examines how these local factors influence the efficacy of cell-based treatments for lung diseases.

  12. The potential for resident lung mesenchymal stem cells to promote functional tissue regeneration: understanding microenvironmental cues.

    Science.gov (United States)

    Foronjy, Robert F; Majka, Susan M

    2012-12-01

    Tissue resident mesenchymal stem cells (MSCs) are important regulators of tissue repair or regeneration, fibrosis, inflammation, angiogenesis and tumor formation. Bone marrow derived mesenchymal stem cells (BM-MSCs) and endothelial progenitor cells (EPC) are currently being considered and tested in clinical trials as a potential therapy in patients with such inflammatory lung diseases including, but not limited to, chronic lung disease, pulmonary arterial hypertension (PAH), pulmonary fibrosis (PF), chronic obstructive pulmonary disease (COPD)/emphysema and asthma. However, our current understanding of tissue resident lung MSCs remains limited. This review addresses how environmental cues impact on the phenotype and function of this endogenous stem cell pool. In addition, it examines how these local factors influence the efficacy of cell-based treatments for lung diseases. PMID:23626909

  13. Human umbilical cord mesenchymal stem cells and the treatment of spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    CAO Fu-jiang; FENG Shi-qing

    2009-01-01

    Objective To review the recent studies about human umbilical cord mesenchymal stem cells (hUCMSCs) and advances in the treatment of spinal cord injury, Data sources Published articles (1983-2007) about hUCMSCs and spinal cord injury were selected using Medline. Study selection Articles selected were relevant to development of mesenchymal stem cells (MSCs) for transplantation in spinal cord injury therapy. Of 258 originally identifiied arises 51 were selected that specifically addressed the stated purpose. Results Recent work has revealed that hUCMSCs share most of the characteristics with MSCs derived from bone marrow and are more appropriate to transplantation for cell based therapies. Conclusions Human umbilical cord could be regarded as a source of MSCs for experimental and clinical needs. In addition, as a peculiar source of stem cells, hUCMSCs may play an important role in the treatment of spinal cord injury.

  14. Protocols for in vitro Differentiation of Human Mesenchymal Stem Cells into Osteogenic, Chondrogenic and Adipogenic Lineages.

    Science.gov (United States)

    Ciuffreda, Maria Chiara; Malpasso, Giuseppe; Musarò, Paola; Turco, Valentina; Gnecchi, Massimiliano

    2016-01-01

    Mesenchymal stem cells (MSC) possess high plasticity and the potential to differentiate into several different cell types; this characteristic has implications for cell therapy and reparative biotechnologies. MSC have been originally isolated from the bone marrow (BM-MSC), but they have been found also in other tissues such as adipose tissue, cord blood, synovium, skeletal muscle, and lung. MSC are able to differentiate in vitro and in vivo into several cell types such as bone, osteocytes, chondrocytes, adipocytes, and skeletal myocytes, just to name a few.During the last two decades, an increasing number of studies have proven the therapeutic potential of MSC for the treatment of neurodegenerative diseases, spinal cord and brain injuries, cardiovascular diseases, diabetes mellitus, and diseases of the skeleton. Their immuno-privileged profile allows both autologous and allogeneic use. For all these reasons, the scientific appeal of MSC is constantly on the rise.The identity of MSC is currently based on three main criteria: plastic-adherence capacity, defined epitope profile, and capacity to differentiate in vitro into osteocytes, chondrocytes, and adipocytes. Here, we describe standard protocols for the differentiation of BM-MSC into the osteogenic, chondrogenic, and adipogenic lineages. PMID:27236670

  15. Mesenchymal stem cells protect against the tissue fibrosis of ketamine-induced cystitis in rat bladder.

    Science.gov (United States)

    Kim, Aram; Yu, Hwan Yeul; Heo, Jinbeom; Song, Miho; Shin, Jung-Hyun; Lim, Jisun; Yoon, Soo-Jung; Kim, YongHwan; Lee, Seungun; Kim, Seong Who; Oh, Wonil; Choi, Soo Jin; Shin, Dong-Myung; Choo, Myung-Soo

    2016-01-01

    Abuse of the hallucinogenic drug ketamine promotes the development of lower urinary tract symptoms that resemble interstitial cystitis. The pathophysiology of ketamine-induced cystitis (KC) is largely unknown and effective therapies are lacking. Here, using a KC rat model, we show the therapeutic effects of human umbilical cord-blood (UCB)-derived mesenchymal stem cells (MSCs). Daily injection of ketamine to Sprague-Dawley rats for 2-weeks resulted in defective bladder function, indicated by irregular voiding frequency, increased maximum contraction pressure, and decreased intercontraction intervals and bladder capacity. KC bladders were characterized by severe mast-cell infiltration, tissue fibrosis, apoptosis, upregulation of transforming growth factor-β signaling related genes, and phosphorylation of Smad2 and Smad3 proteins. A single administration of MSCs (1 × 10(6)) into bladder tissue not only significantly ameliorated the aforementioned bladder voiding parameters, but also reversed the characteristic histological and gene-expression alterations of KC bladder. Treatment with the antifibrotic compound N-acetylcysteine also alleviated the symptoms and pathological characteristics of KC bladder, indicating that the antifibrotic capacity of MSC therapy underlies its benefits. Thus, this study for the first-time shows that MSC therapy might help to cure KC by protecting against tissue fibrosis in a KC animal model and provides a foundation for clinical trials of MSC therapy. PMID:27481042

  16. Performance-enhanced mesenchymal stem cells via intracellular delivery of steroids

    Science.gov (United States)

    Ankrum, James A.; Dastidar, Riddhi G.; Ong, Joon Faii; Levy, Oren; Karp, Jeffrey M.

    2014-04-01

    Inadequate immunomodulatory potency of mesenchymal stem cells (MSC) may limit their therapeutic efficacy. We report glucocorticoid steroids augment MSC expression and activity of indoleamine-2,3-dioxygenase (IDO), a primary mediator of MSC immunomodulatory function. This effect depends on signaling through the glucocorticoid receptor and is mediated through up-regulation of FOXO3. Treatment of MSCs with glucocorticoids, budesonide or dexamethasone, enhanced IDO expression following IFN-γ stimulation in multiple donors and was able to restore IDO expression in over-passaged MSCs. As IDO enhancement was most notable when cells were continuously exposed to budesonide, we engineered MSC with budesonide loaded PLGA microparticles. MSC efficiently internalized budesonide microparticles and exhibited 4-fold enhanced IDO activity compared to budesonide preconditioned and naïve MSC, resulting in a 2-fold improvement in suppression of stimulated peripheral blood mononuclear cells in an IDO-dependent manner. Thus, the augmentation of MSC immune modulation may abrogate challenges associated with inadequate potency and enhance their therapeutic efficacy.

  17. Exosomes Derived from Human Umbilical Cord Mesenchymal Stem Cells Relieve Acute Myocardial Ischemic Injury

    Directory of Open Access Journals (Sweden)

    Yuanyuan Zhao

    2015-01-01

    Full Text Available This study is aimed at investigating whether human umbilical cord mesenchymal stem cell- (hucMSC- derived exosomes (hucMSC-exosomes have a protective effect on acute myocardial infarction (AMI. Exosomes were characterized under transmission electron microscopy and the particles of exosomes were further examined through nanoparticle tracking analysis. Exosomes (400 μg protein were intravenously administrated immediately following ligation of the left anterior descending (LAD coronary artery in rats. Cardiac function was evaluated by echocardiography and apoptotic cells were counted using TUNEL staining. The cardiac fibrosis was assessed using Masson’s trichrome staining. The Ki67 positive cells in ischemic myocardium were determined using immunohistochemistry. The effect of hucMSC-exosomes on blood vessel formation was evaluated through tube formation and migration of human umbilical vein endothelial cells (EA.hy926 cells. The results indicated that ligation of the LAD coronary artery reduced cardiac function and induced cardiomyocyte apoptosis. Administration of hucMSC-exosomes significantly improved cardiac systolic function and reduced cardiac fibrosis. Moreover, hucMSC-exosomes protected myocardial cells from apoptosis and promoted the tube formation and migration of EA.hy926 cells. It is concluded that hucMSC-exosomes improved cardiac systolic function by protecting myocardial cells from apoptosis and promoting angiogenesis. These effects of hucMSC-exosomes might be associated with regulating the expression of Bcl-2 family.

  18. Mesenchymal Stem Cells from Patients with Rheumatoid Arthritis Display Impaired Function in Inhibiting Th17 Cells

    Directory of Open Access Journals (Sweden)

    Yue Sun

    2015-01-01

    Full Text Available Mesenchymal stem cells (MSCs possess multipotent and immunomodulatory properties and are suggested to be involved in the pathogenesis of immune-related diseases. This study explored the function of bone marrow MSCs from rheumatoid arthritis (RA patients, focusing on immunomodulatory effects. RA MSCs showed decreased proliferative activity and aberrant migration capacity. No significant differences were observed in cytokine profiles between RA and control MSCs. The effects of RA MSCs on proliferation of peripheral blood mononuclear cells (PBMCs and distribution of specific CD4+ T cell subtypes (Th17, Treg, and Tfh cells were investigated. RA MSCs appeared to be indistinguishable from controls in suppressing PBMC proliferation, decreasing the proportion of Tfh cells, and inducing the polarization of Treg cells. However, the capacity to inhibit Th17 cell polarization was impaired in RA MSCs, which was related to the low expression of CCL2 in RA MSCs after coculture with CD4+ T cells. These findings indicated that RA MSCs display defects in several important biological activities, especially the capacity to inhibit Th17 cell polarization. These functionally impaired MSCs may contribute to the development of RA disease.

  19. Adiponectin Isoforms and Leptin Impact on Rheumatoid Adipose Mesenchymal Stem Cells Function

    Directory of Open Access Journals (Sweden)

    Urszula Skalska

    2016-01-01

    Full Text Available Adiponectin and leptin have recently emerged as potential risk factors in rheumatoid arthritis (RA pathogenesis. In this study we evaluated the effects of adiponectin and leptin on immunomodulatory function of adipose mesenchymal stem cells (ASCs derived from infrapatellar fat pad of RA patients. ASCs were stimulated with leptin, low molecular weight (LMW and high/middle molecular weight (HMW/MMW adiponectin isoforms. The secretory activity of ASCs and their effect on rheumatoid synovial fibroblasts (RA-FLS and peripheral blood mononuclear cells (PBMCs from healthy donors have been analysed. RA-ASCs secreted spontaneously TGFβ, IL-6, IL-1Ra, PGE2, IL-8, and VEGF. Secretion of all these factors was considerably upregulated by HMW/MMW adiponectin, but not by LMW adiponectin and leptin. Stimulation with HMW/MMW adiponectin partially abolished proproliferative effect of ASC-derived soluble factors on RA-FLS but did not affect IL-6 secretion in FLS cultures. ASCs pretreated with HMW/MMW adiponectin maintained their anti-inflammatory function towards PBMCs, which was manifested by moderate PBMCs proliferation inhibition and IL-10 secretion induction. We have proved that HMW/MMW adiponectin stimulates secretory potential of rheumatoid ASCs but does not exert strong impact on ASCs function towards RA-FLS and PBMCs.

  20. Patient-Specific Age: The Other Side of the Coin in Advanced Mesenchymal Stem Cell Therapy.

    Science.gov (United States)

    Schimke, Magdalena M; Marozin, Sabrina; Lepperdinger, Günter

    2015-01-01

    Multipotential mesenchymal stromal cells (MSC) are present as a rare subpopulation within any type of stroma in the body of higher animals. Prominently, MSC have been recognized to reside in perivascular locations, supposedly maintaining blood vessel integrity. During tissue damage and injury, MSC/pericytes become activated, evade from their perivascular niche and are thus assumed to support wound healing and tissue regeneration. In vitro MSC exhibit demonstrated capabilities to differentiate into a wide variety of tissue cell types. Hence, many MSC-based therapeutic approaches have been performed to address bone, cartilage, or heart regeneration. Furthermore, prominent studies showed efficacy of ex vivo expanded MSC to countervail graft-vs.-host-disease. Therefore, additional fields of application are presently conceived, in which MSC-based therapies potentially unfold beneficial effects, such as amelioration of non-healing conditions after tendon or spinal cord injury, as well as neuropathies. Working along these lines, MSC-based scientific research has been forged ahead to prominently occupy the clinical stage. Aging is to a great deal stochastic by nature bringing forth changes in an individual fashion. Yet, is aging of stem cells or/and their corresponding niche considered a determining factor for outcome and success of clinical therapies? PMID:26696897