WorldWideScience

Sample records for blood glucose self-monitoring

  1. [Blood glucose self monitoring].

    Science.gov (United States)

    Wascher, Thomas C; Stechemesser, Lars

    2016-04-01

    Self monitoring of blood glucose contributes to the integrated management of diabetes mellitus. It, thus, should be available for all patients with diabetes mellitus type-1 and type-2. Self monitoring of blood glucose improves patients safety, quality of life and glucose control. The current article represents the recommendations of the Austrian Diabetes Association for the use of blood glucose self monitoring according to current scientific evidence.

  2. Self-monitoring of blood glucose measurements and glycaemic ...

    African Journals Online (AJOL)

    Background. Intensive diabetes management requires intensive insulin treatment and self-monitoring of blood glucose (SMBG) measurements to obtain immediate information on the status of the blood glucose level and to obtain data for pattern analysis on which meal planning, insulin and lifestyle adjustments can be ...

  3. The experiences of diabetics on self-monitoring of blood glucose: a qualitative metasynthesis.

    Science.gov (United States)

    Chen, Chen-Mei; Chang Yeh, Mei

    2015-03-01

    To interpret, describe and analyse the results of various qualitative studies and comprehensively elucidate the self-monitoring of blood glucose experiences of diabetic patients, and to make recommendations based on these findings for clinical practices. Patients exhibited both positive and negative perceptions towards the self-monitoring of blood glucose. Numerous recent qualitative studies have explored the self-monitoring of blood glucose experiences of diabetic patients; however, no integrated results have been provided. Qualitative metasynthesis. A systematic literature search of English and Chinese databases was undertaken, covering the period between January 2004 and April 2014. The following databases were searched: CINAHL, PubMed, MEDLINE, Cochrane Library, Airiti library and PsycInfo. Seven studies were assessed in the final analysis; the Joanna Briggs Institute Qualitative Assessment and Review Instrument was used to evaluate these studies. The self-monitoring experiences of patients with diabetes were divided into five themes: perceived disease severity, effects on daily life, lifestyle adjustments after becoming aware of blood glucose levels, determining the meaning of self-monitoring, and the differences between diabetic patients who use and do not use insulin. Individual differences in blood glucose self-monitoring vary widely among diabetic patients. These differences result from personal cognition and feelings concerning blood glucose monitoring. Insights into and discussions regarding the self-monitoring of blood glucose experiences of diabetic patients enable health care professionals to understand the factors that influence the intentions of patients to perform self-monitoring of blood glucose and facilitate establishing customised self-monitoring of blood glucose treatment plans. Health care professionals must adopt flexible and individualised criteria to determine patient cognitive misconceptions, understand negative emotional reactions and

  4. Current concepts in blood glucose monitoring

    OpenAIRE

    Khadilkar, Kranti Shreesh; Bandgar, Tushar; Shivane, Vyankatesh; Lila, Anurag; Shah, Nalini

    2013-01-01

    Blood glucose monitoring has evolved over the last century. The concept of adequate glycemic control and minimum glycemic variability requires an ideal, accurate and reliable glucose monitoring system. The search for an ideal blood glucose monitoring system still continues. This review explains the various blood glucose monitoring systems with special focus on the monitoring systems like self- monitored blood glucose (SMBG) and continuous glucose monitoring system (CGMS). It also focuses on t...

  5. Current concepts in blood glucose monitoring.

    Science.gov (United States)

    Khadilkar, Kranti Shreesh; Bandgar, Tushar; Shivane, Vyankatesh; Lila, Anurag; Shah, Nalini

    2013-12-01

    Blood glucose monitoring has evolved over the last century. The concept of adequate glycemic control and minimum glycemic variability requires an ideal, accurate and reliable glucose monitoring system. The search for an ideal blood glucose monitoring system still continues. This review explains the various blood glucose monitoring systems with special focus on the monitoring systems like self- monitored blood glucose (SMBG) and continuous glucose monitoring system (CGMS). It also focuses on the newer concepts of blood glucose monitoring and their incorporation in routine clinical management of diabetes mellitus.

  6. Current concepts in blood glucose monitoring

    Science.gov (United States)

    Khadilkar, Kranti Shreesh; Bandgar, Tushar; Shivane, Vyankatesh; Lila, Anurag; Shah, Nalini

    2013-01-01

    Blood glucose monitoring has evolved over the last century. The concept of adequate glycemic control and minimum glycemic variability requires an ideal, accurate and reliable glucose monitoring system. The search for an ideal blood glucose monitoring system still continues. This review explains the various blood glucose monitoring systems with special focus on the monitoring systems like self- monitored blood glucose (SMBG) and continuous glucose monitoring system (CGMS). It also focuses on the newer concepts of blood glucose monitoring and their incorporation in routine clinical management of diabetes mellitus. PMID:24910827

  7. Current concepts in blood glucose monitoring

    Directory of Open Access Journals (Sweden)

    Kranti Shreesh Khadilkar

    2013-01-01

    Full Text Available Blood glucose monitoring has evolved over the last century. The concept of adequate glycemic control and minimum glycemic variability requires an ideal, accurate and reliable glucose monitoring system. The search for an ideal blood glucose monitoring system still continues. This review explains the various blood glucose monitoring systems with special focus on the monitoring systems like self- monitored blood glucose (SMBG and continuous glucose monitoring system (CGMS. It also focuses on the newer concepts of blood glucose monitoring and their incorporation in routine clinical management of diabetes mellitus.

  8. Self-care among patients enrolled in a self-monitoring blood glucose program

    Directory of Open Access Journals (Sweden)

    Vivian Saraiva Veras

    Full Text Available This cross-sectional study checks specific self-care activities of patients with diabetes mellitus enrolled in a self-monitoring blood glucose program from August to December 2012 in two Primary Health Care units in the interior of São Paulo, Brazil. The sample was composed of 74 female and male individuals, aged 18 years old or older. The Summary of Diabetes Self-Care Activities Questionnaire was used. It contains six dimensions: general diet, specific diet, physical activity, blood glucose monitoring, foot care, medication usage, plus three items about smoking. Eight out of the 15 self-care activities were within desirable levels, namely: healthy diet, not eating sweets, blood glucose testing and as frequently as recommended, drying between toes after washing feet, and taking medications (three items. The results enabled the identification of gaps in specific self-care activities among patients with diabetes mellitus.

  9. Perspectives of patients with non-insulin-treated type 2 diabetes on self-monitoring of blood glucose: A qualitative study.

    Science.gov (United States)

    Chen, Chen-Mei; Hung, Li-Chen; Chen, Yang-Lin; Yeh, Mei Chang

    2018-04-01

    To explore experiences of self-monitoring of blood glucose among patients with non-insulin-treated type 2 diabetes. Self-monitoring of blood glucose is essential to diabetes care and facilitates glycaemic control. Patients' perspectives of self-monitoring of blood glucose have seldom been discussed in the literature, and engagement in self-monitoring of blood glucose is consistently low. The descriptive phenomenological method was used. Purposive sampling was conducted to recruit participants from the endocrinology departments of medical institutions in Taiwan based on the following criteria: (i) having a medical diagnosis of type 2 diabetes, (ii) not being treated with insulin, (iii) having engaged in self-monitoring of blood glucose at least once within the preceding 6 months, (iv) being at least 20 years old and (v) not having any major mental or cognitive disorders. Data were collected in outpatient consultation rooms, the participants' homes and other settings where the participants felt secure and comfortable. In-depth interviews were conducted to collect data from 16 patients with diabetes. The participants perceived that lifestyle affected blood glucose levels and did not know how to handle high or low blood glucose levels. Their willingness to continue self-monitoring of blood glucose depended on whether healthcare professionals checked or discussed their blood glucose levels with them. The patients' knowledge regarding blood glucose variation and healthcare professionals' attitudes affected the patients' self-monitoring of blood glucose behaviours. The empirical findings illustrated self-monitoring of blood glucose experiences and recommended that healthcare professionals' closely attend to patients' requirements and responses to diabetes and incorporate the self-monitoring of blood glucose into therapy plans. Healthcare professionals should reinforce patients' knowledge on appropriate responses to high and low blood glucose levels, intervene

  10. Quality assessment of patients’ self-monitoring of blood glucose in community pharmacies

    Directory of Open Access Journals (Sweden)

    Kjome RL

    2010-03-01

    Full Text Available Objective: To evaluate diabetes patients’ self-monitoring of blood glucose using a community pharmacy-based quality assurance procedure, to investigate whether the procedure improved the quality of the patient performance of self monitoring of blood glucose, and to examine the opinions of the patients taking part in the study. Methods: The results of patient blood glucose measurements were compared to the results obtained with HemoCue Glucose 201+ by pharmacy employees in 16 Norwegian community pharmacies. Patient performance was monitored using an eight item checklist. Patients whose blood glucose measurements differed from pharmacy measurements by more than 20% were instructed in the correct use of their glucometer. The patients then re-measured their blood glucose. If the results were still outside the set limits, the control procedure was repeated with a new lot of glucometer strips, and then with a new glucometer. The patients returned for a follow-up visit after three months. Results: During the first visit, 5% of the 338 patients had measurements that deviated from pharmacy blood glucose values by more than 20% and user errors were observed for 50% of the patients. At the second visit, there was no significant change in the analytical quality of patient measurements, but the percentage of patients who made user errors had decreased to 29% (p < 0.001. Eighty-five percent of the patients reported that they used their blood glucose results to adjust medication, exercise or meals. Fifty-one percent of the patients reported a greater trust in their measurements after the second visit. Eighty percent of patients wished to have their measurements assessed yearly. Of these patients, 83% preferred to have the assessment done at the community pharmacy. Conclusion: A community pharmacy-based quality assessment procedure of patients’ self monitoring of blood glucose significantly reduced the number of user errors. The analytical quality of the

  11. Enhanced self-monitoring blood glucose in non-insulin requiring Type 2 diabetes: A qualitative study in primary care.

    Science.gov (United States)

    Brackney, Dana Elisabeth

    2018-03-31

    To contribute to both theoretical and practical understanding of the role of self-monitoring blood glucose for self-management by describing the experience of people with non-insulin requiring Type 2 diabetes in an enhanced structured self-monitoring blood glucose intervention. The complex context of self-monitoring blood glucose in Type 2 diabetes requires a deeper understanding of the clients' illness experience with structured self-monitoring of blood glucose. Clients' numeracy skills contribute to their response to blood glucose readings. Nurses' use of motivational interviewing to increase clients' regulatory self-efficacy is important to the theoretical perspective of the study. A qualitative descriptive study. A purposive sample of eleven adults recently (diabetes who had experienced a structured self-monitoring blood glucose intervention participated in this study. Audio recordings of semi-structured interviews and photos of logbooks were analyzed for themes using constant comparison and member checking. The illness experience states of Type 2 diabetes include 'Diagnosis', 'Behavior change', and 'Routine checking'. People check blood glucose to confirm their Type 2 diabetes diagnosis, to console their diabetes related fears, to create personal explanations of health behavior's impact on blood glucose, to activate behavior change and to congratulate their diabetes self-management efforts. These findings support the Transtheoretical model's stages of change and change processes. Blood glucose checking strengthens the relationships between theoretical concepts found in Diabetes Self-management Education-Support including: engagement, information sharing, and behavioral support. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  12. Self-monitoring of blood glucose versus self-monitoring of urine glucose in adults with newly diagnosed Type 2 diabetes receiving structured education: a cluster randomized controlled trial.

    Science.gov (United States)

    Dallosso, H M; Bodicoat, D H; Campbell, M; Carey, M E; Davies, M J; Eborall, H C; Hadjiconstantinou, M; Khunti, K; Speight, J; Heller, S

    2015-03-01

    To compare the effectiveness and acceptability of self-monitoring of blood glucose with self-monitoring of urine glucose in adults with newly diagnosed Type 2 diabetes. We conducted a multi-site cluster randomized controlled trial with practice-level randomization. Participants attended a structured group education programme, which included a module on self-monitoring using blood glucose or urine glucose monitoring. HbA1c and other biomedical measures as well as psychosocial data were collected at 6, 12 and 18 months. A total of 292 participants with Type 2 diabetes were recruited from 75 practices. HbA1c levels were significantly lower at 18 months than at baseline in both the blood monitoring group [mean (se) -12 (2) mmol/mol; -1.1 (0.2) %] and the urine monitoring group [mean (se) -13 (2) mmol/mol; -1.2 (0.2)%], with no difference between groups [mean difference adjusted for cluster effect and baseline value = -1 mmol/mol (95% CI -3, 2); -0.1% (95% CI -0.3, 0.2)]. Similar improvements were observed for the other biomedical outcomes, with no differences between groups. Both groups showed improvements in total treatment satisfaction, generic well-being, and diabetes-specific well-being, and had a less threatening view of diabetes, with no differences between groups at 18 months. Approximately one in five participants in the urine monitoring arm switched to blood monitoring, while those in the blood monitoring arm rarely switched (18 vs 1% at 18 months; P self-monitoring. © 2014 The Authors. Diabetic Medicine © 2014 Diabetes UK.

  13. Assessment of Knowledge of Self Blood Glucose Monitoring and Extent of Self Titration of Anti-Diabetic Drugs among Diabetes Mellitus Patients - A Cross Sectional, Community Based Study.

    Science.gov (United States)

    Krishnan, V; Thirunavukkarasu, J

    2016-03-01

    Self blood glucose monitoring is an important context of self care in the management of diabetes mellitus. All the guidelines must be followed while performing self blood glucose monitoring and tracking of values is essential to facilitate the physician while titrating the drugs and /or doses of anti diabetes medication. Self titration by patients following self monitoring must be discouraged. To assess the knowledge and practice of self blood glucose monitoring among diabetes patients and extent of self titration of anti diabetes medicines among diabetes patients based on self blood glucose monitoring. This pilot, cross-sectional, observational study was conducted using a validated questionnaire among adult male and female diabetes patients performing self blood glucose monitoring at home. Diabetes patients with complications and juvenile diabetes patients were excluded. Out of 153 patients surveyed, only 37 (24.1%) (20 males, 17 females) patients were aware and have been following self blood glucose monitoring appropriately. About 116 (75.8%) (64 males, 52 females) of patients were devoid of adequate knowledge and did not practice self blood glucose monitoring in a proper way. Ninety eight (64.05%) accepted that they self titrate their anti diabetic medicines based on self monitoring. Self monitoring of blood glucose should be encouraged and patients should be taught importance of following correct steps and tracking of self monitoring by physician or diabetes educator.

  14. The Relationship Between a Balanced Time Perspective and Self-monitoring of Blood Glucose Among People With Type 1 Diabetes.

    Science.gov (United States)

    Baird, Harriet M; Webb, Thomas L; Martin, Jilly; Sirois, Fuschia M

    2018-05-10

    Self-monitoring of blood glucose helps people with type 1 diabetes to maintain glycemic control and reduce the risk of complications. However, adherence to blood glucose monitoring is often suboptimal. Like many health behaviors, self-monitoring of blood glucose involves exerting effort in the present to achieve future benefits. As such, the present research explored whether individual differences in time perspective-specifically, the extent to which people have a balanced time perspective-are associated with the frequency with which people with type 1 diabetes monitor their blood glucose and, thus, maintain glycemic control. Adults with type 1 diabetes completed measures of time perspective, feelings associated with monitoring, attitudes toward monitoring, and trait self-control. Objective data regarding the frequency with which participants monitored their blood glucose levels and their long-term glycemic control were extracted from their medical records. Hierarchical regression analyses and tests of indirect effects (N = 129) indicated that having a more balanced time perspective was associated with more frequent monitoring of blood glucose and, as a result, better glycemic control. Further analyses (N = 158) also indicated that there was an indirect relationship between balanced time perspective and monitoring of blood glucose via the feelings that participants associated with monitoring and their subsequent attitudes toward monitoring. These findings point to the importance and relevance of time perspective for understanding health-related behavior and may help to inform interventions designed to promote self-monitoring of blood glucose in people with type 1 diabetes.

  15. Glucose monitoring technologies - complementary or competitive? Role of continuous glucose monitoring versus flash glucose monitoring versus self-monitoring of blood glucose

    Directory of Open Access Journals (Sweden)

    Jothydev Kesavadev

    2017-01-01

    Full Text Available We have numerous technologies that can help keep a close watch on an individual's glycaemic status and thereby assist in developing successful diabetes management strategies. For more than five decades, self-monitoring of blood glucose (SMBG has remained as the gold standard tool to manage glycaemic status and has gained huge acceptance. Rigorous research further led to the development of more and more advanced technologies such as continuous glucose monitoring and flash glucose monitoring. These novel technologies are more promising in terms of revealing the complete glycaemic picture and even more user-friendly than the already established blood glucosemetres. However, they are yet to achieve remarkable accuracy and performance. There will also be a subgroup of patients who will be using these technologies only occasionally and thus will definitely require SMBG at other times. Again, with regard to the retrospective ones, glucose data can be obtained only once they are downloaded to the system and hence, real-time values will still have to be procured with the help of an SMBG. In future when the accuracy and performance of these newer technologies become equal to that of glucometres, the glucometres might vanish. Until then, all these technologies will definitely go hand-in-hand and supplement each other than competing each other. All the related literature were retrieved from various databases including 'PubMed' and 'Cochrane Database of Systematic Reviews' using specific search terms that were relevant to the topics discussed this manuscript.

  16. Self-monitoring of blood glucose is associated with problem-solving skills in hyperglycemia and hypoglycemia.

    Science.gov (United States)

    Wang, Jing; Zgibor, Janice; Matthews, Judith T; Charron-Prochownik, Denise; Sereika, Susan M; Siminerio, Linda

    2012-01-01

    The purpose of this study was to examine the association between self-monitoring of blood glucose (SMBG) and problem-solving skills in response to detected hyperglycemia and hypoglycemia among patients with type 2 diabetes. Data were obtained from the American Association of Diabetes Educators Outcome System, implemented in 8 diabetes self-management education programs in western Pennsylvania. SMBG was measured by asking patients how often they checked, missed checking, or checked blood glucose later than planned. Problem-solving skill was measured by asking how often they modified their behaviors after detecting high or low blood glucose. Most patients checked their blood glucose at least once per day. However, when blood glucose was high or low, many of them reported doing nothing, and only some of them resolved the problem. There were significant associations between self-monitoring of blood glucose and problem-solving skills for hyperglycemia and hypoglycemia, after controlling for age, gender, ethnicity, education, and time since diagnosis. Patients reported poor problem-solving skills when detecting hyperglycemia and hypoglycemia via SMBG. Patients need to learn problem-solving skills along with SMBG training to achieve glycemic control.

  17. A signal processing application for evaluating self-monitoring blood glucose strategies in a software agent model.

    Science.gov (United States)

    Wang, Zhanle; Paranjape, Raman

    2015-07-01

    We propose the signal processing technique of calculating a cross-correlation function and an average deviation between the continuous blood glucose and the interpolation of limited blood glucose samples to evaluate blood glucose monitoring frequency in a self-aware patient software agent model. The diabetic patient software agent model [1] is a 24-h circadian, self-aware, stochastic model of a diabetic patient's blood glucose levels in a software agent environment. The purpose of this work is to apply a signal processing technique to assist patients and physicians in understanding the extent of a patient's illness using a limited number of blood glucose samples. A second purpose of this work is to determine an appropriate blood glucose monitoring frequency in order to have a minimum number of samples taken that still provide a good understanding of the patient's blood glucose levels. For society in general, the monitoring cost of diabetes is an extremely important issue, and these costs can vary tremendously depending on monitoring approaches and monitoring frequencies. Due to the cost and discomfort associated with blood glucose monitoring, today, patients expect monitoring frequencies specific to their health profile. The proposed method quantitatively assesses various monitoring protocols (from 6 times per day to 1 time per week) in nine predefined categories of patient agents in terms of risk factors of health status and age. Simulation results show that sampling 6 times per day is excessive, and not necessary for understanding the dynamics of the continuous signal in the experiments. In addition, patient agents in certain conditions only need to sample their blood glucose 1 time per week to have a good understanding of the characteristics of their blood glucose. Finally, an evaluation scenario is developed to visualize this concept, in which appropriate monitoring frequencies are shown based on the particular conditions of patient agents. This base line can

  18. Effect of self-monitoring of blood glucose on glycaemic outcome ...

    African Journals Online (AJOL)

    Background: Diabetes mellitus is a chronic metabolic disorder which leads to complications especially when not properly managed. The role of self-monitoring of blood glucose (SMBG) in type 2 diabetic patients using oral hypoglycaemic agents has been a source of controversy. Objective: The objective was to study the ...

  19. Perceptions of Caribbean type 2 diabetes patients on self-monitoring of blood glucose

    DEFF Research Database (Denmark)

    Ezenwaka, C. E.; Olukoga, A.; Onuoha, P.

    2012-01-01

    Context: The views of type 2 diabetes (T2DM) patients have not been considered in the debate on the role of self-monitoring of blood glucose (SMBG) in the management of T2DM. Objective: To assess the views of T2DM patients on SMBG. Methods: Two previously trained research assistants used a struct......Context: The views of type 2 diabetes (T2DM) patients have not been considered in the debate on the role of self-monitoring of blood glucose (SMBG) in the management of T2DM. Objective: To assess the views of T2DM patients on SMBG. Methods: Two previously trained research assistants used...

  20. Lived experience of blood glucose self-monitoring among pregnant women with gestational diabetes mellitus: a phenomenological research.

    Science.gov (United States)

    Youngwanichsetha, Sununta; Phumdoung, Sasitorn

    2017-10-01

    To explore and describe lived experience of blood glucose self-monitoring among pregnant Thai women with gestational diabetes mellitus. Self-monitoring of blood glucose is an essential practice among pregnant women with diabetes to prevent complications in pregnancy and the newborn infant. Phenomenological research was employed to understand lived experiences in glycemic control. Thirty participants were approached and interviewed using a semistructured interview guides. Qualitative data were analysed following Colaizzi's method. The findings revealed three themes: being worried about diabetes and blood testing, trying to control it and being patient for the child. Their worry comprised three dimensions: (1) wondering about the impacts of diabetes on the child, (2) concern about maternal health and (3) being worried about doing blood test. Trying to control diabetes was composed of three dimensions: (1) learning to test blood glucose, (2) being afraid of elevated blood sugar and (3) being aware of what to eat. Being patient for the child was composed of three dimensions: (1) overcoming food desires, (2) tolerating the fingerprick pain and (3) satisfaction with the outcomes. Women with gestational diabetes experienced being worried and afraid regarding blood glucose self-monitoring; however, they could overcome and tolerate this with some difficulties. These findings can be used to guide nursing practice in assessment of perception and response towards blood glucose self-monitoring in order to improve achievement of a good glycaemic control among pregnant women with gestational diabetes mellitus. © 2016 John Wiley & Sons Ltd.

  1. Effects of self-monitoring of blood glucose on diabetes control in a ...

    African Journals Online (AJOL)

    Methods:This study assessed the effect on diabetes control in patients who received glucometers and education ... Self-monitoring of blood glucose (SMBG) helps patients make ..... unhealthy eating habits could possibly be related to the low.

  2. Self-monitoring of blood glucose experiences of adults with type 2 diabetes.

    Science.gov (United States)

    Dlugasch, Lucie B; Ugarriza, Doris N

    2014-06-01

    The purpose of this study was to analyze the experiences of self-monitoring of blood glucose (SMBG) usage of adults with type 2 diabetes mellitus (T2DM) who are not using insulin. Nineteen adults were asked to describe their experiences with self-monitoring. Data were analyzed using the grounded theory method. The theory of "SMBG as a Cue in T2DM Self-Care" emerged from the data and is composed of four categories: (a) Engaging, (b) Checking, (c) Responding, and (d) Establishing a Pattern. Engaging marks the beginning. Frequent monitoring characterizes this stage. Checking involves evaluating and validating the blood glucose level. The most common item evaluated or validated was the effect of foods. Responding involves taking action or experiencing emotion. Actions taken centered on dietary changes. Emotions felt were dependent on the level and ranged from blame to happiness. Participants established a pattern and used SMBG regularly or sporadically. Frequency was based on obtaining "normal" patterns, the absence of symptoms, provider disinterest, and fingertip pain. Participants described many benefits and struggles when incorporating SMBG into their self-care. Information from this study could be used to develop effective guidelines for the use of SMBG in T2DM. ©2013 The Author(s) ©2013 American Association of Nurse Practitioners.

  3. What do professionals recommend regarding the frequency of self-monitoring of blood glucose?

    NARCIS (Netherlands)

    Hortensius, J.; Kleefstra, N.; Houweling, S. T.; van der Bijl, J. J.; Gans, R. O. B.; Bilo, H. J. G.

    Background: Patients' adherence to guidelines regarding self-monitoring of blood glucose (SMBG) is limited. However, there are no previous reports about the recommendations that are given in clinical practice concerning SMBG. The aim of this study was to investigate what healthcare providers

  4. Self-monitoring of blood glucose in diabetes mellitus: arguments for an individualized approach.

    Science.gov (United States)

    Nauck, Michael A; El-Ouaghlidi, Andrea; Vardarli, Irfan

    2009-09-01

    The utility of glucose self-monitoring in different types and stages of diabetes is controversial, as there is only sparse relevant evidence from randomized controlled clinical trials. In this analysis, the authors aim to develop individualized recommendations based on clinical needs and the available literature. The PubMed database was searched for articles that appeared up to 30 September 2008 containing the terms "measurement," "control","monitoring," and "hypoglycemia"; the retrieved articles were supplemented by other articles that were cited in them. A directed search was also made for the recommendations of the German, European, American, and international diabetological societies. Conclusions were then drawn about the useful modalities and extent of glucose self-monitoring on the basis of the clinical features of the major types of diabetes and the main treatment strategies for them. With the exception of intensified treatment strategies (which rely on blood-sugar regulation with insulin), only a few evidence-based recommendations can be derived from randomized clinical trials and meta-analyses. Nonetheless, a strategy for self-monitoring according to the patient's individual needs can be derived from the characteristics of therapeutic regimens: depending on the type of diabetes from which the patient suffers, the predicted number of glucometer strips required for self-monitoring will vary from almost none to roughly 400 per month. The decision to use glucose self-monitoring, as well as the type and extent of self-monitoring that will be used, should be based on the individual patient's type of diabetes, treatment regimen, and clinical characteristics. Like any other type of therapeutic intervention, self-monitoring should have a well-documented, rational justification.

  5. Practical approaches for self-monitoring of blood glucose: an Asia-Pacific perspective.

    Science.gov (United States)

    Chowdhury, Subhankar; Ji, Linong; Suwanwalaikorn, Sompongse; Yu, Neng-Chun; Tan, Eng Kiat

    2015-03-01

    Comprehensive glycemic control is necessary to improve outcomes and avoid complications in individuals with diabetes. Self-monitoring of blood glucose (SMBG) is a key enabler of glycemic assessment, providing real-time information that complements HbA1c monitoring and supports treatment optimization. However, SMBG is under-utilized by patients and physicians within the Asia-Pacific region, because of barriers such as the cost of monitoring supplies, lack of diabetes self-management skills, or concerns about the reliability of blood glucose readings. Practice recommendations in international and regional guidelines vary widely, and may not be detailed or specific enough to guide SMBG use effectively. This contributes to uncertainty among patients and physicians about how best to utilize this tool: when and how often to test, and what action(s) to take in response to high or low readings. In developing a practical SMBG regimen, the first step is to determine the recommended SMBG frequency and intensity needed to support the chosen treatment regimen. If there are practical obstacles to monitoring, such as affordability or access, physicians should identify the most important aspects of glycemic control to target for individual patients, and modify monitoring patterns accordingly. This consensus paper proposes a selection of structured, flexible SMBG patterns that can be tailored to the clinical, educational, behavioral, and financial requirements of individuals with diabetes.

  6. Promoting health and reducing costs: a role for reform of self-monitoring of blood glucose provision within the National Health Service.

    Science.gov (United States)

    Leigh, S; Idris, I; Collins, B; Granby, P; Noble, M; Parker, M

    2016-05-01

    To determine the cost-effectiveness of all options for the self-monitoring of blood glucose funded by the National Health Service, providing guidance for disinvestment and testing the hypothesis that advanced meter features may justify higher prices. Using data from the Health and Social Care Information Centre concerning all 8 340 700 self-monitoring of blood glucose-related prescriptions during 2013/2014, we conducted a cost-minimization analysis, considering both strip and lancet costs, including all clinically equivalent technologies for self-monitoring of blood glucose, as determined by the ability to meet ISO-15197:2013 guidelines for meter accuracy. A total of 56 glucose monitor, test strip and lancet combinations were identified, of which 38 met the required accuracy standards. Of these, the mean (range) net ingredient costs for test strips and lancets were £0.27 (£0.14-£0.32) and £0.04 (£0.02-£0.05), respectively, resulting in a weighted average of £0.28 (£0.18-£0.37) per test. Systems providing four or more advanced features were priced equal to those providing just one feature. A total of £12 m was invested in providing 42 million self-monitoring of blood glucose tests with systems that fail to meet acceptable accuracy standards, and efficiency savings of £23.2 m per annum are achievable if the National Health Service were to disinvest from technologies providing lesser functionality than available alternatives, but at a much higher price. The study uncovered considerable variation in the price paid by the National Health Service for self-monitoring of blood glucose, which could not be explained by the availability of advanced meter features. A standardized approach to self-monitoring of blood glucose prescribing could achieve significant efficiency savings for the National Health Service, whilst increasing overall utilisation and improving safety for those currently using systems that fail to meet acceptable standards for measurement accuracy

  7. Perspectives of patients with type 1 or insulintreated type 2 diabetes on self-monitoring of blood glucose : a qualitative study

    NARCIS (Netherlands)

    Hortensius, Johanna; Kars, Marijke C.; Wierenga, Willem S.; Kleefstra, Nanne; Bilo, Henk J. G.; van der Bijl, Jaap J.

    2012-01-01

    Background: Self-monitoring of blood glucose (SMBG), including self-regulation, is an important tool to achieve good glycemic control. However, many patients measure their glucose concentrations less often than is recommended. This study investigates patients' perspectives of SMBG and all relevant

  8. Self-Monitoring Using Continuous Glucose Monitors with Real-Time Feedback Improves Exercise Adherence in Individuals with Impaired Blood Glucose: A Pilot Study.

    Science.gov (United States)

    Bailey, Kaitlyn J; Little, Jonathan P; Jung, Mary E

    2016-03-01

    Exercise helps individuals with prediabetes or type 2 diabetes (T2D) manage their blood glucose (BG); however, exercise adherence in this population is dismal. In this pilot study we tested the efficacy of a self-monitoring group-based intervention using continuous glucose monitors (CGMs) at increasing exercise adherence in individuals with impaired BG. Thirteen participants with prediabetes or T2D were randomized to an 8-week standard care exercise program (CON condition) (n = 7) or self-monitoring exercise intervention (SM condition) (n = 6). Participants in the SM condition were taught how to self-monitor their exercise and BG, to goal set, and to use CGM to observe how exercise influences BG. We hypothesized that compared with the CON condition, using a real-time CGM would facilitate self-monitoring behavior, resulting in increased exercise adherence. Repeated-measures analysis of variance revealed significant Condition × Time interactions for self-monitoring (P goal setting (P = 0.01), and self-efficacy to self-monitor (P = 0.01), such that the SM condition showed greater increases in these outcomes immediately after the program and at the 1-month follow-up compared with the CON condition. The SM condition had higher program attendance rates (P = 0.03), and a greater proportion of participants reregistered for additional exercise programs (P = 0.048) compared with the CON condition. Participants in both conditions experienced improvements in health-related quality of life, waist circumference, and fitness (P values exercise behavior in individuals living with prediabetes or T2D.

  9. Accuracy and precision evaluation of seven self-monitoring blood glucose systems.

    Science.gov (United States)

    Kuo, Chih-Yi; Hsu, Cheng-Teng; Ho, Cheng-Shiao; Su, Ting-En; Wu, Ming-Hsun; Wang, Chau-Jong

    2011-05-01

    Self-monitoring blood glucose (SMBG) systems play a critical role in management of diabetes. SMBG systems should at least meet the minimal requirement of the World Health Organization's ISO 15197:2003. For tight glycemic control, a tighter accuracy requirement is needed. Seven SMBG systems were evaluated for accuracy and precision: Bionime Rightest(™) GM550 (Bionime Corp., Dali City, Taiwan), Accu-Chek(®) Performa (Roche Diagnostics, Indianapolis, IN), OneTouch(®) Ultra(®)2 (LifeScan Inc., Milpitas, CA), MediSense(®) Optium(™) Xceed (Abbott Diabetes Care Inc., Alameda, CA), Medisafe (TERUMO Corp., Tokyo, Japan), Fora(®) TD4227 (Taidac Technology Corp., Wugu Township, Taiwan), and Ascensia Contour(®) (Bayer HealthCare LLC, Mishawaka, IN). The 107 participants (44 men and 63 women) were between 23 and 91 years old. The analytical results of seven SMBG systems were compared with those of plasma analyzed with the hexokinase method (Olympus AU640, Olympus America Inc., Center Valley, PA). The imprecision of the seven blood glucose meters ranged from 1.1% to 4.7%. Three of the seven blood glucose meters (42.9%) fulfilled the minimum accuracy criteria of ISO 15197:2003. The mean absolute relative error value for each blood glucose meter was calculated and ranged from 6.5% to 12.0%. More than 40% of evaluated SMBG systems meet the minimal accuracy criteria requirement of ISO 15197:2003. However, considering tighter criteria for accuracy of ±15%, only the Bionime Rightest GM550 meets this requirement. Because SMBG systems play a critical role in management of diabetes, manufacturers have to strive to improve accuracy and precision and to ensure the good quality of blood glucose meters and test strips.

  10. Self-monitoring of blood glucose in patients with type 2 diabetes who are not using insulin.

    NARCIS (Netherlands)

    Welschen, L. M.; Bloemendal, E.; Nijpels, G.; Dekker, J. M.; Heine, R. J.; Stalman, W. A.; Bouter, L. M.

    2005-01-01

    BACKGROUND: Self-monitoring of blood glucose (SMBG) has been found to be effective for patients with type 1 diabetes and for patients with type 2 diabetes using insulin. There is much debate on the effectiveness of SMBG as a tool in the self-management for patients with type 2 diabetes who are not

  11. The business of self-monitoring of blood glucose: a market profile.

    Science.gov (United States)

    Hughes, Mark D

    2009-09-01

    The market for self-monitoring of blood glucose (SMBG) approached $8.8 billion worldwide in 2008. Yet despite dramatic double-digit growth in sales of SMBG products since 1980, the business is now facing declining prices and slower dollar growth. Given that SMBG meters and test strips are viewed by consumers and insurers as essentially generic products, it will be extremely challenging for new market entrants to displace well-entrenched existing competitors without a truly innovative technology. Also, in the face of declining glucose test strip prices, market expansion can only occur through identification of more of the undiagnosed diabetes population and convincing existing diabetes patients to adopt glucose testing or to test more frequently. Ultimately, a combination of technology innovations, patient education, and economic incentives may be needed to significantly expand the SMBG market and build sustainable long-term dollar growth for SMBG vendors. 2009 Diabetes Technology Society.

  12. Frequency and motives of blood glucose self-monitoring in type 1 diabetes

    DEFF Research Database (Denmark)

    Hansen, M V; Pedersen-Bjergaard, U; Heller, S R

    2009-01-01

    and demographic characteristics. METHODS: Cross-sectional Danish-British multicentre survey of 1076 consecutive patients with type 1 diabetes, who completed a detailed questionnaire on SMBG and related issues. The key variables were test frequency and motive. RESULTS: SMBG was performed daily by 39......AIMS: Recommendations for self-monitoring of blood glucose (SMBG) from the DCCT have not been implemented with the same rigour as recommendations for intensifying insulin therapy. We assessed the frequency of and motives for SMBG and compared SMBG behaviour with clinical, behavioural...

  13. Blood glucose self-monitoring patterns in Mexican Americans: further lessons from the Starr County Border Health Initiative.

    Science.gov (United States)

    Cuevas, Heather E; Brown, Sharon A; García, Alexandra A; Winter, Mary; Brown, Adama; Hanis, Craig L

    2015-02-01

    The purpose was to describe patterns of home self-monitoring of blood glucose (SMBG) in Mexican Americans with type 2 diabetes mellitus enrolled in a diabetes self-management education protocol. Research questions were as follows: (1) What were the patterns and rates of home glucose self-monitoring over the 6-month course of the study? (2) What were the differences in monitoring rates between experimental and control groups? (3) What were the relationships between rates of monitoring and glycosylated hemoglobin (A1C), gender, and years with diabetes? We used a randomized (by group) repeated-measures pretest/posttest control group design. Glucometer data from an experimental group (diabetes self-management education plus nurse case management) and a comparison group (diabetes self-management education only) were analyzed. Data were collected at baseline and at 3 and 6 months. Overall average SMBG rates were low. Experimental and control group monitoring levels were not significantly different. More females than males never monitored glucose values, but more females than males checked at least one time per week. Those participants who checked their glucose levels more than once per week had diabetes for a longer period of time. Rates of monitoring were not strongly associated with A1C levels at 3 and 6 months, but at 6 months A1C levels were statistically significantly different based on whether or not individuals monitored their glucose levels (P=0.03, n=71). SMBG rates were low in this study despite SMBG education and access to free glucometers and test strips. The lower rates of SMBG may reflect the effects of unexpected environmental challenges, but exact causes remain unclear. Reasons for low rates of SMBG need to be explored further, especially in underserved communities.

  14. Frequency and motives of blood glucose self-monitoring in type 1 diabetes

    DEFF Research Database (Denmark)

    Hansen, M.V.; Pedersen-Bjergaard, U.; Heller, S.R.

    2009-01-01

    AIMS: Recommendations for self-monitoring of blood glucose (SMBG) from the DCCT have not been implemented with the same rigour as recommendations for intensifying insulin therapy. We assessed the frequency of and motives for SMBG and compared SMBG behaviour with clinical, behavioural......% of the patients and less than weekly by 24%. Sixty-seven percent reported to perform routine testing, while the remaining 33% only tested when hypo- or hyperglycaemia was suspected. Age, gender, and level of diabetes-related concern were associated with test pattern. Reported frequencies of mild and severe...

  15. Comparison of lancing devices for self-monitoring of blood glucose regarding lancing pain.

    Science.gov (United States)

    Kocher, Serge; Tshiananga, J K Tshiang; Koubek, Richard

    2009-09-01

    Self-monitoring of blood glucose empowers diabetes patients to effectively control their blood glucose (BG) levels. A potential barrier to frequent BG controls is lancing pain, intrinsically linked to pricking the finger several times a day. In this study, we compared different state-of-the-art lancing devices from leading manufacturers regarding lancing pain, and we intended to identify lancing devices that are less painful. First, 165 subjects compared 6 different BG monitoring systems-consisting of a lancing device and a BG meter-at home for 36 days and at least 3 BG tests per day. Second, the subjects directly compared 6 different lancing devices-independent from a BG meter-in a laboratory setting. The test results were collected in questionnaires, and lancing pain was rated on a numerical rating scale. One hundred fifty-seven subjects were included in the analysis. Accu-Chek BG monitoring systems were significantly (p competitor BG monitoring systems and were rated by >50% of the subjects as "less painful" than competitor BG monitoring systems. Accu-Chek lancing devices were significantly (p competitor lancing devices and were rated by >60% of the subjects as "less painful" than competitor lancing devices. We found significant differences in lancing pain between lancing devices. Diabetes patients clearly preferred lancing devices that cause less lancing pain. In order to improve patient compliance with respect to an adequate glycemic control, the medical staff should preferentially prescribe lancing devices that cause less lancing pain. 2009 Diabetes Technology Society.

  16. A Model of Self-Monitoring Blood Glucose Measurement Error.

    Science.gov (United States)

    Vettoretti, Martina; Facchinetti, Andrea; Sparacino, Giovanni; Cobelli, Claudio

    2017-07-01

    A reliable model of the probability density function (PDF) of self-monitoring of blood glucose (SMBG) measurement error would be important for several applications in diabetes, like testing in silico insulin therapies. In the literature, the PDF of SMBG error is usually described by a Gaussian function, whose symmetry and simplicity are unable to properly describe the variability of experimental data. Here, we propose a new methodology to derive more realistic models of SMBG error PDF. The blood glucose range is divided into zones where error (absolute or relative) presents a constant standard deviation (SD). In each zone, a suitable PDF model is fitted by maximum-likelihood to experimental data. Model validation is performed by goodness-of-fit tests. The method is tested on two databases collected by the One Touch Ultra 2 (OTU2; Lifescan Inc, Milpitas, CA) and the Bayer Contour Next USB (BCN; Bayer HealthCare LLC, Diabetes Care, Whippany, NJ). In both cases, skew-normal and exponential models are used to describe the distribution of errors and outliers, respectively. Two zones were identified: zone 1 with constant SD absolute error; zone 2 with constant SD relative error. Goodness-of-fit tests confirmed that identified PDF models are valid and superior to Gaussian models used so far in the literature. The proposed methodology allows to derive realistic models of SMBG error PDF. These models can be used in several investigations of present interest in the scientific community, for example, to perform in silico clinical trials to compare SMBG-based with nonadjunctive CGM-based insulin treatments.

  17. Invasiveness as a barrier to self-monitoring of blood glucose in diabetes.

    Science.gov (United States)

    Wagner, Julie; Malchoff, Carl; Abbott, Gina

    2005-08-01

    This study investigated the degree to which the invasive characteristic of glucose monitoring is a barrier to self-monitoring of blood glucose (SMBG). A paper-and-pencil Measure of Invasiveness as a reason for Skipping SMBG (MISS) was created and administered to 339 people with diabetes. The correlations between MISS scores and actual SMBG frequency, percent adherence to SMBG recommendations, SMBG anxiety, SMBG burden, and knowledge of the importance of glycemic control for avoiding diabetes complications were each explored. On a scale of 0-28, the average MISS score was M = 4.3 (SD = 5.4, range 0-28). Fully 63% (nearly two-thirds) of respondents reported skipping SMBG because of the invasiveness of the procedure. MISS scores were negatively related to percent adherence to healthcare provider SMBG recommendations as measured by memory function of automated meters (Spearman's r= -0.47, P diabetes vascular complications. Invasiveness is a common and serious barrier to SMBG. These findings suggest that people with diabetes would perform SMBG more frequently and have improved quality of life with non-invasive SMBG.

  18. Factors associated to adherence to blood glucose self-monitoring in patients with diabetes treated with insulin. The dapa study.

    Science.gov (United States)

    Vidal Florc, Mercè; Jansà Morató, Margarita; Galindo Rubio, Mercedes; Penalba Martínez, Maite

    2018-02-01

    To assess adherence to self-monitoring of blood glucose and the main factors associated with it, particularly those related to self-perception of glycemia, in patients with diabetes on insulin therapy. An epidemiological, observational, prospective, multicenter study conducted in standard clinical practice in primary care, outpatient centers, and hospitals from different Spanish regions. Sociodemographic, clinical and treatment data were collected. Patients were considered adherent to self-monitoring if they performed the minimum number of controls recommended by the Spanish Society of Diabetes (SED). Adherence was shown in 61.6% of patients. Factors associated to adherence included treatment with less than three insulin injections daily (OR 2.678; 95% CI 2.048- 3.5029; p <0.001), presence of peripheral vascular disease (OR 1.529; 95% CI 1.077 - 2.171; p=0.018), alcohol abstinence (OR 1.442; 95% CI 1.118 - 1.858; p=0.005), and collection of the glucose test strips from the pharmacy (OR 1.275; 95% CI 1.026 - 1.584; p=0.028). Adequate self-perception of glycemia was found in 21.4% of patients. Our results show a suboptimal adherence to the recommended protocol for blood glucose self-monitoring in patients with diabetes on insulin therapy. Independent variables associated to good adherence were treatment with less than three insulin injections dailyu, presence of peripheral vascular disease, alcohol abstinence, and collection of glucose test strips from the pharmacy. Copyright © 2017 SEEN y SED. Publicado por Elsevier España, S.L.U. All rights reserved.

  19. Blood glucose control and monitoring in the critically ill

    NARCIS (Netherlands)

    van Hooijdonk, R.T.M.

    2015-01-01

    This thesis deals with blood glucose control and blood glucose monitoring in intensive care unit (ICU) patients: two important aspects of care for and monitoring of critically ill patients. While the precise targets of blood glucose control in ICU patients remain a matter of debate, currently many,

  20. Value of self-monitoring blood glucose pattern analysis in improving diabetes outcomes.

    Science.gov (United States)

    Parkin, Christopher G; Davidson, Jaime A

    2009-05-01

    Self-monitoring of blood glucose (SMBG) is an important adjunct to hemoglobin A1c (HbA1c) testing. This action can distinguish between fasting, preprandial, and postprandial hyperglycemia; detect glycemic excursions; identify and monitor resolution of hypoglycemia; and provide immediate feedback to patients about the effect of food choices, activity, and medication on glycemic control. Pattern analysis is a systematic approach to identifying glycemic patterns within SMBG data and then taking appropriate action based upon those results. The use of pattern analysis involves: (1) establishing pre- and postprandial glucose targets; (2) obtaining data on glucose levels, carbohydrate intake, medication administration (type, dosages, timing), activity levels and physical/emotional stress; (3) analyzing data to identify patterns of glycemic excursions, assessing any influential factors, and implementing appropriate action(s); and (4) performing ongoing SMBG to assess the impact of any therapeutic changes made. Computer-based and paper-based data collection and management tools can be developed to perform pattern analysis for identifying patterns in SMBG data. This approach to interpreting SMBG data facilitates rational therapeutic adjustments in response to this information. Pattern analysis of SMBG data can be of equal or greater value than measurement of HbA1c levels. 2009 Diabetes Technology Society.

  1. Color record in self-monitoring of blood glucose improves glycemic control by better self-management.

    Science.gov (United States)

    Nishimura, Akiko; Harashima, Shin-ichi; Honda, Ikumi; Shimizu, Yoshiyuki; Harada, Norio; Nagashima, Kazuaki; Hamasaki, Akihiro; Hosoda, Kiminori; Inagaki, Nobuya

    2014-07-01

    Color affects emotions, feelings, and behaviors. We hypothesized that color used in self-monitoring of blood glucose (SMBG) is helpful for patients to recognize and act on their glucose levels to improve glycemic control. Here, two color-indication methods, color record (CR) and color display (CD), were independently compared for their effects on glycemic control in less frequently insulin-treated type 2 diabetes. One hundred twenty outpatients were randomly allocated to four groups with 2×2 factorial design: CR or non-CR and CD or non-CD. Blood glucose levels were recorded in red or blue pencil in the CR arm, and a red or blue indicator light on the SMBG meter was lit in the CD arm, under hyperglycemia or hypoglycemia, respectively. The primary end point was difference in glycated hemoglobin (HbA1c) reduction in 24 weeks. Secondary end points were self-management performance change and psychological state change. HbA1c levels at 24 weeks were significantly decreased in the CR arm by -0.28% but were increased by 0.03% in the non-CR arm (P=0.044). In addition, diet and exercise scores were significantly improved in the CR arm compared with the non-CR arm. The exercise score showed significant improvement in the CD arm compared with the non-CD arm but without a significant difference in HbA1c reduction. Changes in psychological states were not altered between the arms. CR has a favorable effect on self-management performance without any influence on psychological stress, resulting in improved glycemic control in type 2 diabetes patients using less frequent insulin injection. Thus, active but not passive usage of color-indication methods by patients is important in successful SMBG.

  2. Predictors of Daily Blood Glucose Monitoring in Appalachian Ohio

    Science.gov (United States)

    Raffle, Holly; Ware, Lezlee J.; Ruhil, Anirudh V. S.; Hamel-Lambert, Jane; Denham, Sharon A.

    2012-01-01

    Objective: To determine factors contributing to successful diabetes self-management in Appalachia, as evidenced by daily blood glucose monitoring. Methods: A telephone survey (N = 3841) was conducted to assess health status and health care access. The current investigation is limited to the subset of this sample who report having diabetes (N =…

  3. Blood Glucose Monitoring Before and After Type 1 Diabetes Clinic Visits.

    Science.gov (United States)

    Driscoll, Kimberly A; Johnson, Suzanne Bennett; Wang, Yuxia; Wright, Nancy; Deeb, Larry C

    2017-12-23

    To determine patterns of blood glucose monitoring in children and adolescents with type 1 diabetes (T1D) before and after routine T1D clinic visits. Blood glucose monitoring data were downloaded at four consecutive routine clinic visits from children and adolescents aged 5-18 years. Linear mixed models were used to analyze patterns of blood glucose monitoring in patients who had at least 28 days of data stored in their blood glucose monitors. In general, the frequency of blood glucose monitoring decreased across visits, and younger children engaged in more frequent blood glucose monitoring. Blood glucose monitoring increased before the T1D clinic visits in younger children, but not in adolescents. It declined after the visit regardless of age. Members of the T1D care team need to consider that a T1D clinic visit may prompt an increase in blood glucose monitoring when making treatment changes and recommendations. Tailored interventions are needed to maintain that higher level of adherence across time. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society of Pediatric Psychology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  4. Parsimonious model for blood glucose level monitoring in type 2 diabetes patients.

    Science.gov (United States)

    Zhao, Fang; Ma, Yan Fen; Wen, Jing Xiao; DU, Yan Fang; Li, Chun Lin; Li, Guang Wei

    2014-07-01

    To establish the parsimonious model for blood glucose monitoring in patients with type 2 diabetes receiving oral hypoglycemic agent treatment. One hundred and fifty-nine adult Chinese type 2 diabetes patients were randomized to receive rapid-acting or sustained-release gliclazide therapy for 12 weeks. Their blood glucose levels were measured at 10 time points in a 24 h period before and after treatment, and the 24 h mean blood glucose levels were measured. Contribution of blood glucose levels to the mean blood glucose level and HbA1c was assessed by multiple regression analysis. The correlation coefficients of blood glucose level measured at 10 time points to the daily MBG were 0.58-0.74 and 0.59-0.79, respectively, before and after treatment (Pblood glucose levels measured at 6 of the 10 time points could explain 95% and 97% of the changes in MBG before and after treatment. The three blood glucose levels, which were measured at fasting, 2 h after breakfast and before dinner, of the 10 time points could explain 84% and 86% of the changes in MBG before and after treatment, but could only explain 36% and 26% of the changes in HbA1c before and after treatment, and they had a poorer correlation with the HbA1c than with the 24 h MBG. The blood glucose levels measured at fasting, 2 h after breakfast and before dinner truly reflected the change 24 h blood glucose level, suggesting that they are appropriate for the self-monitoring of blood glucose levels in diabetes patients receiving oral anti-diabetes therapy. Copyright © 2014 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  5. Systematic review and meta-analysis of the effectiveness of continuous glucose monitoring (CGM) on glucose control in diabetes

    OpenAIRE

    Poolsup, Nalinee; Suksomboon, Naeti; Kyaw, Aye Mon

    2013-01-01

    Diabetes mellitus is a chronic disease that necessitates continuing treatment and patient self-care education. Monitoring of blood glucose to near normal level without hypoglycemia becomes a challenge in the management of diabetes. Although self monitoring of blood glucose (SMBG) can provide daily monitoring of blood glucose level and help to adjust therapy, it cannot detect hypoglycemic unawareness and nocturnal hypoglycemia which occurred mostly in T1DM pediatrics. Continuous glucose monito...

  6. Electromagnetic Radiofrequency Radiation Emitted from GSM Mobile Phones Decreases the Accuracy of Home Blood Glucose Monitors

    Science.gov (United States)

    Mortazavi, SMJ; Gholampour, M; Haghani, M; Mortazavi, G; Mortazavi, AR

    2014-01-01

    Mobile phones are two-way radios that emit electromagnetic radiation in microwave range. As the number of mobile phone users has reached 6 billion, the bioeffects of exposure to mobile phone radiation and mobile phone electromagnetic interference with electronic equipment have received more attention, globally. As self-monitoring of blood glucose can be a beneficial part of diabetes control, home blood glucose testing kits are very popular. The main goal of this study was to investigate if radiofrequency radiation emitted from a common GSM mobile phone can alter the accuracy of home blood glucose monitors. Forty five female nondiabetic students aged 17-20 years old participated in this study. For Control-EMF group (30 students), blood glucose concentration for each individual was measured in presence and absence of radiofrequency radiation emitted by a common GSM mobile phone (HTC touch, Diamond 2) while the phone was ringing. For Control- Repeat group (15 students), two repeated measurements were performed for each participant in the absence of electromagnetic fields. The magnitude of the changes between glucose levels in two repeated measurements (|ΔC|) in Control-Repeat group was 1.07 ± 0.88 mg/dl while this magnitude for Control-EMF group was 7.53 ± 4.76 mg/dl (P electromagnetic interference in home blood glucose monitors. It can be concluded that electromagnetic interference from mobile phones has an adverse effect on the accuracy of home blood glucose monitors. We suggest that mobile phones should be used at least 50 cm away from home blood glucose monitors. PMID:25505778

  7. Evaluation of OneTouch Verio, a new blood glucose self-monitoring system for patients with diabetes

    DEFF Research Database (Denmark)

    Littman, Karin; Petersen, Eva R.B.; Pussinen, Christel

    2013-01-01

    (ADA) quality goals. Blood samples were collected and measured on the OneTouch Verio® by laboratory personnel and patients with diabetes (n = 91, randomized into groups receiving personal training or mail instructions for the OneTouch Verio® system). Results were compared to a validated routine method......, imprecision and bias were calculated. User-friendliness was evaluated with a questionnaire. Results. Quality specifications for blood glucose concentration monitoring systems according to ISO 15197 were fulfilled. The mean coefficients of variation (CV%) of repeatability was 3.4% when tested by laboratory...... personnel and within the goal of imprecision suggested by ADA. Mean CV% of repeatability for patient self-monitoring was 5.0% and 5.1% in the training- and the mail group, respectively. Total error was 6.4-10.0%. The OneTouch Verio® showed no hematocrit interference or variation between strip lots...

  8. Continuous Monitoring of Glucose for Type 1 Diabetes: A Health Technology Assessment.

    Science.gov (United States)

    2018-01-01

    Type 1 diabetes is a condition in which the pancreas produces little or no insulin. People with type 1 diabetes must manage their blood glucose levels by monitoring the amount of glucose in their blood and administering appropriate amounts of insulin via injection or an insulin pump. Continuous glucose monitoring may be beneficial compared to self-monitoring of blood glucose using a blood glucose meter. It provides insight into a person's blood glucose levels on a continuous basis, and can identify whether blood glucose levels are trending up or down. We conducted a health technology assessment, which included an evaluation of clinical benefit, value for money, and patient preferences related to continuous glucose monitoring. We compared continuous glucose monitoring with self-monitoring of blood glucose using a finger-prick and a blood glucose meter. We performed a systematic literature search for studies published since January 1, 2010. We created a Markov model projecting the lifetime horizon of adults with type 1 diabetes, and performed a budget impact analysis from the perspective of the health care payer. We also conducted interviews and focus group discussions with people who self-manage their type 1 diabetes or support the management of a child with type 1 diabetes. Twenty studies were included in the clinical evidence review. Compared with self-monitoring of blood glucose, continuous glucose monitoring improved the percentage of time patients spent in the target glycemic range by 9.6% (95% confidence interval 8.0-11.2) to 10.0% (95% confidence interval 6.75-13.25) and decreased the number of severe hypoglycemic events.Continuous glucose monitoring was associated with higher costs and small increases in health benefits (quality-adjusted life-years). Incremental cost-effectiveness ratios (ICERs) ranged from $592,206 to $1,108,812 per quality-adjusted life-year gained in analyses comparing four continuous glucose monitoring interventions to usual care

  9. Electromagnetic Radiofrequency Radiation Emitted from GSM Mobile Phones Decreases the Accuracy of Home Blood Glucose Monitors

    Directory of Open Access Journals (Sweden)

    SMJ Mortazavi

    2014-09-01

    Full Text Available Mobile phones are two-way radios that emit electromagnetic radiation in microwave range. As the number of mobile phone users has reached 6 billion, the bioeffects of exposure to mobile phone radiation and mobile phone electromagnetic interference with electronic equipment have received more attention, globally. As self-monitoring of blood glucose can be a beneficial part of diabetes control, home blood glucose testing kits are very popular. The main goal of this study was to investigate if radiofrequency radiation emitted from a common GSM mobile phone can alter the accuracy of home blood glucose monitors. Forty five female nondiabetic students aged 17-20 years old participated in this study. For Control-EMF group (30 students, blood glucose concentration for each individual was measured in presence and absence of radiofrequency radiation emitted by a common GSM mobile phone (HTC touch, Diamond 2 while the phone was ringing. For Control- Repeat group (15 students, two repeated measurements were performed for each participant in the absence of electromagnetic fields. The magnitude of the changes between glucose levels in two repeated measurements (ΔC in Control-Repeat group was 1.07 ± 0.88 mg/dl while this magnitude for Control-EMF group was 7.53 ± 4.76 mg/dl (P < 0.001, two-tailed test. To the best of our knowledge, this is the first study to assess the electromagnetic interference in home blood glucose monitors. It can be concluded that electromagnetic interference from mobile phones has an adverse effect on the accuracy of home blood glucose monitors. We suggest that mobile phones should be used at least 50 cm away from home blood glucose monitors.

  10. A history of continuous glucose monitors (CGMs) in self-monitoring of diabetes mellitus.

    Science.gov (United States)

    Olczuk, David; Priefer, Ronny

    Self-monitoring of glucose for individuals afflicted with diabetes mellitus has allowed patients to take control of their disease and thus directly affect the outcomes related to it. It has been almost a century since the first test to monitor one's sugar was developed; that being a urine test. The most well-known and prominent medical device for monitor blood glucose for individuals with diabetes are the finger-prick devices. This itself is an approximately 50year old technology. More recently has been the introduction of continuous glucose monitors (CGMs) which entered the market place in the last year of the 20th century. As this technology has been further refined and improved, limitations associated with it have decreased. The scope of this review is to present a brief history of CGMs, both with the development of these medical devices and the challenges/limitations that they have shown. Copyright © 2017 Diabetes India. Published by Elsevier Ltd. All rights reserved.

  11. Continuous Monitoring of Glucose for Type 1 Diabetes: A Health Technology Assessment

    Science.gov (United States)

    Vandersluis, Stacey; Kabali, Conrad; Djalalov, Sandjar; Gajic-Veljanoski, Olga; Wells, David; Holubowich, Corinne

    2018-01-01

    Background Type 1 diabetes is a condition in which the pancreas produces little or no insulin. People with type 1 diabetes must manage their blood glucose levels by monitoring the amount of glucose in their blood and administering appropriate amounts of insulin via injection or an insulin pump. Continuous glucose monitoring may be beneficial compared to self-monitoring of blood glucose using a blood glucose meter. It provides insight into a person's blood glucose levels on a continuous basis, and can identify whether blood glucose levels are trending up or down. Methods We conducted a health technology assessment, which included an evaluation of clinical benefit, value for money, and patient preferences related to continuous glucose monitoring. We compared continuous glucose monitoring with self-monitoring of blood glucose using a finger-prick and a blood glucose meter. We performed a systematic literature search for studies published since January 1, 2010. We created a Markov model projecting the lifetime horizon of adults with type 1 diabetes, and performed a budget impact analysis from the perspective of the health care payer. We also conducted interviews and focus group discussions with people who self-manage their type 1 diabetes or support the management of a child with type 1 diabetes. Results Twenty studies were included in the clinical evidence review. Compared with self-monitoring of blood glucose, continuous glucose monitoring improved the percentage of time patients spent in the target glycemic range by 9.6% (95% confidence interval 8.0–11.2) to 10.0% (95% confidence interval 6.75–13.25) and decreased the number of severe hypoglycemic events. Continuous glucose monitoring was associated with higher costs and small increases in health benefits (quality-adjusted life-years). Incremental cost-effectiveness ratios (ICERs) ranged from $592,206 to $1,108,812 per quality-adjusted life-year gained in analyses comparing four continuous glucose monitoring

  12. Comparison of the clinical information provided by the FreeStyle Navigator continuous interstitial glucose monitor versus traditional blood glucose readings.

    Science.gov (United States)

    McGarraugh, Geoffrey V; Clarke, William L; Kovatchev, Boris P

    2010-05-01

    The purpose of the analysis was to compare the clinical utility of data from traditional self-monitoring of blood glucose (SMBG) to that of continuous glucose monitoring (CGM). A clinical study of the clinical accuracy of the FreeStyle Navigator CGM System (Abbott Diabetes Care, Alameda, CA), which includes SMBG capabilities, was conducted by comparison to the YSI blood glucose analyzer (YSI Inc., Yellow Springs, OH) using 58 subjects with type 1 diabetes. The Continuous Glucose-Error Grid Analysis (CG-EGA) was used as the analytical tool. Using CG-EGA, the "clinically accurate," "benign errors," and "clinical errors" were 86.8%, 8.7%, and 4.5% for SMBG and 92.7%, 3.7%, and 3.6% for CGM, respectively. If blood glucose is viewed as a process in time, SMBG would provide accurate information about this process 86.8% of the time, whereas CGM would provide accurate information about this process 92.7% of the time (P glucose values than CGM, control of blood glucose involves a system in flux, and CGM provides more detailed insight into the dynamics of that system. In the normal and elevated glucose ranges, the additional information about the direction and rate of glucose change provided by the FreeStyle Navigator CGM System increases the ability to make correct clinical decisions when compared to episodic SMBG tests.

  13. Skin-like biosensor system via electrochemical channels for noninvasive blood glucose monitoring.

    Science.gov (United States)

    Chen, Yihao; Lu, Siyuan; Zhang, Shasha; Li, Yan; Qu, Zhe; Chen, Ying; Lu, Bingwei; Wang, Xinyan; Feng, Xue

    2017-12-01

    Currently, noninvasive glucose monitoring is not widely appreciated because of its uncertain measurement accuracy, weak blood glucose correlation, and inability to detect hyperglycemia/hypoglycemia during sleep. We present a strategy to design and fabricate a skin-like biosensor system for noninvasive, in situ, and highly accurate intravascular blood glucose monitoring. The system integrates an ultrathin skin-like biosensor with paper battery-powered electrochemical twin channels (ETCs). The designed subcutaneous ETCs drive intravascular blood glucose out of the vessel and transport it to the skin surface. The ultrathin (~3 μm) nanostructured biosensor, with high sensitivity (130.4 μA/mM), fully absorbs and measures the glucose, owing to its extreme conformability. We conducted in vivo human clinical trials. The noninvasive measurement results for intravascular blood glucose showed a high correlation (>0.9) with clinically measured blood glucose levels. The system opens up new prospects for clinical-grade noninvasive continuous glucose monitoring.

  14. Community nurses and self-management of blood glucose.

    Science.gov (United States)

    Abbott, S; Burns, J; Gleadell, A; Gunnell, C

    2007-01-01

    Self-monitoring of blood glucose (SMBG) is commonly recommended to patients with diabetes, although the rationale for this is unclear. This small research project was designed to explore the reasons why nurses working in the community recommend SMBG. Seven interviews were carried out with community nurses caring primarily for housebound patients. Those interviewed believed that a sound evidence-base supported the recommendation that patients test their blood, but not urine, for glucose levels. Though nurses believed in the importance of patient choice and empowerment, the scope for these was limited among housebound patients. There was no evidence that patients understood how to respond to test results, or that comprehensive care planning was normal practice. Although small, this study suggests that nurses working in community settings may need to update their knowledge. It also suggests that a national debate is necessary to disseminate better the evidence about SMBG, and its implications for nursing practice.

  15. Continuous non-invasive blood glucose monitoring by spectral image differencing method

    Science.gov (United States)

    Huang, Hao; Liao, Ningfang; Cheng, Haobo; Liang, Jing

    2018-01-01

    Currently, the use of implantable enzyme electrode sensor is the main method for continuous blood glucose monitoring. But the effect of electrochemical reactions and the significant drift caused by bioelectricity in body will reduce the accuracy of the glucose measurements. So the enzyme-based glucose sensors need to be calibrated several times each day by the finger-prick blood corrections. This increases the patient's pain. In this paper, we proposed a method for continuous Non-invasive blood glucose monitoring by spectral image differencing method in the near infrared band. The method uses a high-precision CCD detector to switch the filter in a very short period of time, obtains the spectral images. And then by using the morphological method to obtain the spectral image differences, the dynamic change of blood sugar is reflected in the image difference data. Through the experiment proved that this method can be used to monitor blood glucose dynamically to a certain extent.

  16. The effect of an instant hand sanitizer on blood glucose monitoring results.

    Science.gov (United States)

    Mahoney, John J; Ellison, John M; Glaeser, Danielle; Price, David

    2011-11-01

    People with diabetes mellitus are instructed to clean their skin prior to self-monitoring of blood glucose to remove any dirt or food residue that might affect the reading. Alcohol-based hand sanitizers have become popular when soap and water are not available. The aim of this study was to determine whether a hand sanitizer is compatible with glucose meter testing and effective for the removal of exogenous glucose. We enrolled 34 nonfasting subjects [14 male/20 female, mean ages 45 (standard deviation, 9.4)] years, 2 with diagnosed diabetes/32 without known diabetes]. Laboratory personnel prepared four separate fingers on one hand of each subject by (1) cleaning the second finger with soap and water and towel drying (i.e., control finger), (2) cleaning the third finger with an alcohol-based hand sanitizer, (3) coating the fourth finger with cola and allowing it to air dry, and (4) coating the fifth finger with cola and then cleaning it with the instant hand sanitizer after the cola had dried. Finger sticks were performed on each prepared finger and blood glucose was measured. Several in vitro studies were also performed to investigate the effectiveness of the hand sanitizer for removal of exogenous glucose.z Mean blood glucose values from fingers cleaned with instant hand sanitizer did not differ significantly from the control finger (p = .07 and .08, respectively) and resulted in 100% accurate results. Blood glucose data from the fourth (cola-coated) finger were substantially higher on average compared with the other finger conditions, but glucose data from the fifth finger (cola-coated then cleaned with hand sanitizer) was similar to the control finger. The data from in vitro experiments showed that the hand sanitizer did not adversely affect glucose meter results, but when an exogenous glucose interference was present, the effectiveness of the hand sanitizer on glucose bias (range: 6% to 212%) depended on the surface area and degree of dilution. In our study

  17. Development of Cell Phone Application for Blood Glucose Self-Monitoring Based on ISO/IEEE 11073 and HL7 CCD.

    Science.gov (United States)

    Park, Hyun Sang; Cho, Hune; Kim, Hwa Sun

    2015-04-01

    The objectives of this research were to develop and evaluate a cell phone application based on the standard protocol for personal health devices and the standard information model for personal health records to support effective blood glucose management and standardized service for patients with diabetes. An application was developed for Android 4.0.3. In addition, an IEEE 11073 Manager, Medical Device Encoding Rule, and Bluetooth Health Device Profile Connector were developed for standardized health communication with a glucometer, and a Continuity of Care Document (CCD) Composer and CCD Parser were developed for CCD document exchange. The developed application was evaluated by five healthcare professionals and 87 users through a questionnaire comprising the following variables: usage intention, effort expectancy, social influence, facilitating condition, perceived risk, and voluntariness. As a result of the evaluation of usability, it was confirmed that the developed application is useful for blood glucose self-monitoring by diabetic patients. In particular, the healthcare professionals stated their own views that the application is useful to observe the trends in blood glucose change through the automatic function which records a blood glucose level measured using Bluetooth function, and the function which checks accumulated records of blood glucose levels. Also, a result of the evaluation of usage intention was 3.52 ± 0.42 out of 5 points. The application developed by our research team was confirmed by the verification of healthcare professionals that accurate feedback can be provided to healthcare professionals during the management of diabetic patients or education for glucose management.

  18. New Criteria for Assessing the Accuracy of Blood Glucose Monitors meeting, October 28, 2011.

    Science.gov (United States)

    Walsh, John; Roberts, Ruth; Vigersky, Robert A; Schwartz, Frank

    2012-03-01

    Glucose meters (GMs) are routinely used for self-monitoring of blood glucose by patients and for point-of-care glucose monitoring by health care providers in outpatient and inpatient settings. Although widely assumed to be accurate, numerous reports of inaccuracies with resulting morbidity and mortality have been noted. Insulin dosing errors based on inaccurate GMs are most critical. On October 28, 2011, the Diabetes Technology Society invited 45 diabetes technology clinicians who were attending the 2011 Diabetes Technology Meeting to participate in a closed-door meeting entitled New Criteria for Assessing the Accuracy of Blood Glucose Monitors. This report reflects the opinions of most of the attendees of that meeting. The Food and Drug Administration (FDA), the public, and several medical societies are currently in dialogue to establish a new standard for GM accuracy. This update to the FDA standard is driven by improved meter accuracy, technological advances (pumps, bolus calculators, continuous glucose monitors, and insulin pens), reports of hospital and outpatient deaths, consumer complaints about inaccuracy, and research studies showing that several approved GMs failed to meet FDA or International Organization for Standardization standards in postapproval testing. These circumstances mandate a set of new GM standards that appropriately match the GMs' analytical accuracy to the clinical accuracy required for their intended use, as well as ensuring their ongoing accuracy following approval. The attendees of the New Criteria for Assessing the Accuracy of Blood Glucose Monitors meeting proposed a graduated standard and other methods to improve GM performance, which are discussed in this meeting report. © 2012 Diabetes Technology Society.

  19. Continuous glucose monitoring systems for type 1 diabetes mellitus

    NARCIS (Netherlands)

    Langendam, Miranda; Luijf, Yoeri M.; Hooft, Lotty; DeVries, J. Hans; Mudde, Aart H.; Scholten, Rob J. P. M.

    2012-01-01

    Background Self-monitoring of blood glucose is essential to optimise glycaemic control in type 1 diabetes mellitus. Continuous glucose monitoring (CGM) systems measure interstitial fluid glucose levels to provide semi-continuous information about glucose levels, which identifies fluctuations that

  20. Both the frequency of HbA1c testing and the frequency of self-monitoring of blood glucose predict metabolic control: A multicentre analysis of 15 199 adult type 1 diabetes patients from Germany and Austria.

    Science.gov (United States)

    Schwandt, A; Best, F; Biester, T; Grünerbel, A; Kopp, F; Krakow, D; Laimer, M; Wagner, C; Holl, R W

    2017-10-01

    The objective of this study was to examine the association between metabolic control and frequency of haemoglobin A 1c (HbA 1c ) measurements and of self-monitoring of blood glucose, as well as the interaction of both. Data of 15 199 adult type 1 diabetes patients registered in a standardized electronic health record (DPV) were included. To model the association between metabolic control and frequency of HbA 1c testing or of self-monitoring of blood glucose, multiple hierarchic regression models with adjustment for confounders were fitted. Tukey-Kramer test was used to adjust P values for multiple comparisons. Vuong test was used to compare non-nested models. The baseline variables of the study population were median age 19.9 [Q1; Q3: 18.4; 32.2] years and diabetes duration 10.4 [6.8; 15.7] years. Haemoglobin A 1c was 60.4 [51.5; 72.5] mmol/mol. Frequency of HbA 1c testing was 8.0 [5.0; 9.0] within 2 years, and daily self-monitoring of blood glucose frequency was 5.0 [4.0; 6.0]. After adjustment, a U-shaped association between metabolic control and frequency of HbA 1c testing was observed with lowest HbA 1c levels in the 3-monthly HbA 1c testing group. There was an inverse relationship between self-monitoring of blood glucose and HbA 1c with lower HbA 1c associated with highest frequency of testing (>6 daily measurements). Quarterly HbA 1c testing and frequent self-monitoring of blood glucose were associated with best metabolic control. The adjusted Vuong Z statistic suggests that metabolic control might be better explained by HbA 1c testing compared to self-monitoring of blood glucose (P < .0001). This research reveals the importance of quarterly clinical HbA 1c monitoring together with frequent self-monitoring of blood glucose in diabetes management to reach and maintain target HbA 1c . Copyright © 2017 John Wiley & Sons, Ltd.

  1. Development of a scale to measure adherence to self-monitoring of blood glucose with latent variable measurement.

    Science.gov (United States)

    Wagner, J A; Schnoll, R A; Gipson, M T

    1998-07-01

    Adherence to self-monitoring of blood glucose (SMBG) is problematic for many people with diabetes. Self-reports of adherence have been found to be unreliable, and existing paper-and-pencil measures have limitations. This study developed a brief measure of SMBG adherence with good psychometric properties and a useful factor structure that can be used in research and in practice. A total of 216 adults with diabetes responded to 30 items rated on a 9-point Likert scale that asked about blood monitoring habits. In part I of the study, items were evaluated and retained based on their psychometric properties. The sample was divided into exploratory and confirmatory halves. Using the exploratory half, items with acceptable psychometric properties were subjected to a principal components analysis. In part II of the study, structural equation modeling was used to confirm the component solution with the entire sample. Structural modeling was also used to test the relationship between these components. It was hypothesized that the scale would produce four correlated factors. Principal components analysis suggested a two-component solution, and confirmatory factor analysis confirmed this solution. The first factor measures the degree to which patients rely on others to help them test and thus was named "social influence." The second component measures the degree to which patients use physical symptoms of blood glucose levels to help them test and thus was named "physical influence." Results of the structural model show that the components are correlated and make up the higher-order latent variable adherence. The resulting 15-item scale provides a short, reliable way to assess patient adherence to SMBG. Despite the existence of several aspects of adherence, this study indicates that the construct consists of only two components. This scale is an improvement on previous measures of adherence because of its good psychometric properties, its interpretable factor structure, and its

  2. The accuracy of self monitoring blood glucose meter systems in ...

    African Journals Online (AJOL)

    Many patients were referred to Kololo polyclinic laboratory to have their blood glucose checked because the values obtained on the patients' glucose meter systems did not tally with familiar clinical signs and symptoms. This prompted an experimental set up to check glucose meter systems using a larger number of patients.

  3. Continuous Glucose Monitoring (CGM) or Blood Glucose Monitoring (BGM): Interactions and Implications.

    Science.gov (United States)

    Heinemann, Lutz

    2018-04-01

    At the 2017 10th annual International Conference on Advanced Technologies and Treatments for Diabetes (ATTD) in Paris, France, four speakers presented their perspectives on the roles of continuous glucose monitoring (CGM) and of blood glucose monitoring (BGM) in patient management within one symposium. These presentations included discussions of the differences in the accuracy of CGM and BGM, a clinical perspective on the physiological reasons behind differences in CGM and BGM values, and an overview of the impact of variations in device accuracy on patients with diabetes. Subsequently a short summary of these presentations is given, highlighting the value of good accuracy of BGM or CGM systems and the ongoing need for standardization. The important role of both BGM and CGM in patient management was a theme across all presentations.

  4. Skin-like biosensor system via electrochemical channels for noninvasive blood glucose monitoring

    OpenAIRE

    Chen, Yihao; Lu, Siyuan; Zhang, Shasha; Li, Yan; Qu, Zhe; Chen, Ying; Lu, Bingwei; Wang, Xinyan; Feng, Xue

    2017-01-01

    Currently, noninvasive glucose monitoring is not widely appreciated because of its uncertain measurement accuracy, weak blood glucose correlation, and inability to detect hyperglycemia/hypoglycemia during sleep. We present a strategy to design and fabricate a skin-like biosensor system for noninvasive, in situ, and highly accurate intravascular blood glucose monitoring. The system integrates an ultrathin skin-like biosensor with paper battery–powered electrochemical twin channels (ETCs). The ...

  5. Effects of self-monitoring of glucose in non-insulin treated patients with type 2 diabetes: design of the IN CONTROL-trial

    NARCIS (Netherlands)

    Malanda, U.L.; Bot, S.D.M.; Kostense, P.J.; Snoek, F.J.; Dekker, J.M.; Nijpels, M.G.A.A.M.

    2009-01-01

    or = 7.0%, and not using insulin will be recruited and randomized into 3 groups; Self-monitoring of Blood Glucose (SMBG), Self-monitoring of Urine Glucose (SMUG) and usual care (n = 200 per group). Participants are eligible if they have a known disease duration of over 1 year and have used SMBG or

  6. Assessment of three frequently used blood glucose monitoring devices in clinical routine.

    Science.gov (United States)

    Zueger, Thomas; Schuler, Vanessa; Stettler, Christoph; Diem, Peter; Christ, Emanuel R

    2012-07-12

    Self-monitoring of blood glucose plays an important role in the management of diabetes and has been shown to improve metabolic control. The use of blood glucose meters in clinical practice requires sufficient reliability to allow adequate treatment. Direct comparison of different blood glucose meters in clinical practice, independent of the manufactures is scarce. We, therefore, aimed to evaluate three frequently used blood glucose meters in daily clinical practice. Capillary blood glucose was measured simultaneous using the following glucose meters: Contour® (Bayer Diabetes Care, Zürich, Switzerland), Accu-Chek® aviva (Roche Diagnostics, Rotkreuz, Switzerland), Free-Style® lite (Abbott Diabetes Care, Baar, Switzerland). The reference method consisted of the HemoCue® Glucose 201+ System (HemoCue® AB, Ängelholm, Sweden) with plasma conversion. The devices were assessed by comparison of the Mean Absolute Relative Differences (MARD), the Clarke Error Grid Analysis (EGA) and the compliance with the International Organization of Standardization criteria (ISO 15197:2003). Capillary blood samples were obtained from 150 patients. MARD was 10.1 ± 0.65%, 7.0 ± 0.62% and 7.8 ± 0.48% for Contour®, Accu-Chek® and Free-Style®, respectively. EGA showed 99.3% (Contour®), 98.7% (Accu-Chek®) and 100% (Free-Style®) of all measurements in zone A and B (clinically acceptable). The ISO criteria were fulfilled by Accu-Chek® (95.3%) and Free-Style® (96%), but not by Contour® (92%). In the present study the three glucose meters provided good agreement with the reference and reliable results in daily clinical routine. Overall, the Free-Style® and Accu-Chek® device slightly outperformed the Contour® device.

  7. Remote Blood Glucose Monitoring in mHealth Scenarios: A Review

    Directory of Open Access Journals (Sweden)

    Giordano Lanzola

    2016-11-01

    Full Text Available Glucose concentration in the blood stream is a critical vital parameter and an effective monitoring of this quantity is crucial for diabetes treatment and intensive care management. Effective bio-sensing technology and advanced signal processing are therefore of unquestioned importance for blood glucose monitoring. Nevertheless, collecting measurements only represents part of the process as another critical task involves delivering the collected measures to the treating specialists and caregivers. These include the clinical staff, the patient’s significant other, his/her family members, and many other actors helping with the patient treatment that may be located far away from him/her. In all of these cases, a remote monitoring system, in charge of delivering the relevant information to the right player, becomes an important part of the sensing architecture. In this paper, we review how the remote monitoring architectures have evolved over time, paralleling the progress in the Information and Communication Technologies, and describe our experiences with the design of telemedicine systems for blood glucose monitoring in three medical applications. The paper ends summarizing the lessons learned through the experiences of the authors and discussing the challenges arising from a large-scale integration of sensors and actuators.

  8. Evaluation of 12 blood glucose monitoring systems for self-testing: system accuracy and measurement reproducibility.

    Science.gov (United States)

    Freckmann, Guido; Baumstark, Annette; Schmid, Christina; Pleus, Stefan; Link, Manuela; Haug, Cornelia

    2014-02-01

    Systems for self-monitoring of blood glucose (SMBG) have to provide accurate and reproducible blood glucose (BG) values in order to ensure adequate therapeutic decisions by people with diabetes. Twelve SMBG systems were compared in a standardized manner under controlled laboratory conditions: nine systems were available on the German market and were purchased from a local pharmacy, and three systems were obtained from the manufacturer (two systems were available on the U.S. market, and one system was not yet introduced to the German market). System accuracy was evaluated following DIN EN ISO (International Organization for Standardization) 15197:2003. In addition, measurement reproducibility was assessed following a modified TNO (Netherlands Organization for Applied Scientific Research) procedure. Comparison measurements were performed with either the glucose oxidase method (YSI 2300 STAT Plus™ glucose analyzer; YSI Life Sciences, Yellow Springs, OH) or the hexokinase method (cobas(®) c111; Roche Diagnostics GmbH, Mannheim, Germany) according to the manufacturer's measurement procedure. The 12 evaluated systems showed between 71.5% and 100% of the measurement results within the required system accuracy limits. Ten systems fulfilled with the evaluated test strip lot minimum accuracy requirements specified by DIN EN ISO 15197:2003. In addition, accuracy limits of the recently published revision ISO 15197:2013 were applied and showed between 54.5% and 100% of the systems' measurement results within the required accuracy limits. Regarding measurement reproducibility, each of the 12 tested systems met the applied performance criteria. In summary, 83% of the systems fulfilled with the evaluated test strip lot minimum system accuracy requirements of DIN EN ISO 15197:2003. Each of the tested systems showed acceptable measurement reproducibility. In order to ensure sufficient measurement quality of each distributed test strip lot, regular evaluations are required.

  9. Effects of self-monitoring of glucose on distress and self-efficacy in people with non-insulin-treated Type 2 diabetes: a randomized controlled trial.

    Science.gov (United States)

    Malanda, U L; Bot, S D M; Kostense, P J; Snoek, F J; Dekker, J M; Nijpels, G

    2016-04-01

    To investigate the effects of self-monitoring of glucose in blood or urine, on diabetes-specific distress and self-efficacy, compared with usual care in people with non-insulin-treated Type 2 diabetes mellitus. One hundred and eighty-one participants with non-insulin-treated Type 2 diabetes mellitus [diabetes duration ≥ 1 year, age 45-75 years, HbA1c ≥ 53.0 mmol/mol (7.0%), self-monitoring frequency self-monitoring (n = 60), urine self-monitoring (n = 59) or usual care (n = 62). Primary outcomes were between-group differences in diabetes-specific distress [Problem Areas in Diabetes scale (PAID)] and self-efficacy [Confidence in Diabetes Self-Care questionnaire (CIDS-2)] after 12 months. Secondary outcomes included changes in HbA1c , treatment satisfaction and depressive symptoms. There were no statistically significant between-group differences in changes in PAID and CIDS-2 after 12 months. Mean difference in PAID between blood monitoring and control was -2.2 [95% confidence interval (CI) -7.1 to 2.7], between urine monitoring and control was -0.9 (95% CI -4.4 to 2.5) and between blood monitoring and urine monitoring was -2.0 (95% CI -4.1 to 0.1). Mean difference in CIDS-2 between blood monitoring and control was 0.6 [95% CI (-2.0 to 2.1), between urine monitoring and control was 2.8 (95% CI -2.3 to 7.9)] and between blood monitoring and urine monitoring was -3.3 (95% CI -7.9 to 1.3). No statistically significant between-group differences in change in any of the secondary outcome measures were found. This study did not find statistical or clinical evidence for a long-term effect of self-monitoring of glucose in blood or urine on diabetes-specific distress and self-efficacy in people with moderately controlled non-insulin-treated Type 2 diabetes mellitus. (Current Controlled Trials ISRCTN84568563). © 2015 Diabetes UK.

  10. Effects of simulated altitude on blood glucose meter performance: implications for in-flight blood glucose monitoring.

    Science.gov (United States)

    Olateju, Tolu; Begley, Joseph; Flanagan, Daniel; Kerr, David

    2012-07-01

    Most manufacturers of blood glucose monitoring equipment do not give advice regarding the use of their meters and strips onboard aircraft, and some airlines have blood glucose testing equipment in the aircraft cabin medical bag. Previous studies using older blood glucose meters (BGMs) have shown conflicting results on the performance of both glucose oxidase (GOX)- and glucose dehydrogenase (GDH)-based meters at high altitude. The aim of our study was to evaluate the performance of four new-generation BGMs at sea level and at a simulated altitude equivalent to that used in the cabin of commercial aircrafts. Blood glucose measurements obtained by two GDH and two GOX BGMs at sea level and simulated altitude of 8000 feet in a hypobaric chamber were compared with measurements obtained using a YSI 2300 blood glucose analyzer as a reference method. Spiked venous blood samples of three different glucose levels were used. The accuracy of each meter was determined by calculating percentage error of each meter compared with the YSI reference and was also assessed against standard International Organization for Standardization (ISO) criteria. Clinical accuracy was evaluated using the consensus error grid method. The percentage (standard deviation) error for GDH meters at sea level and altitude was 13.36% (8.83%; for meter 1) and 12.97% (8.03%; for meter 2) with p = .784, and for GOX meters was 5.88% (7.35%; for meter 3) and 7.38% (6.20%; for meter 4) with p = .187. There was variation in the number of time individual meters met the standard ISO criteria ranging from 72-100%. Results from all four meters at both sea level and simulated altitude fell within zones A and B of the consensus error grid, using YSI as the reference. Overall, at simulated altitude, no differences were observed between the performance of GDH and GOX meters. Overestimation of blood glucose concentration was seen among individual meters evaluated, but none of the results obtained would have resulted in

  11. Evaluation of OneTouch Verio(®), a new blood glucose self-monitoring system for patients with diabetes

    DEFF Research Database (Denmark)

    Littmann, Karin; Petersen, Eva; Pussinen, Christel

    2013-01-01

    tested by laboratory personnel and within the goal of imprecision suggested by ADA. Mean CV% of repeatability for patient self-monitoring was 5.0% and 5.1% in the training- and the mail group, respectively. Total error was 6.4-10.0%. The OneTouch Verio(®) showed no hematocrit interference or variation...... Association (ADA) quality goals. Blood samples were collected and measured on the OneTouch Verio(®) by laboratory personnel and patients with diabetes (n = 91, randomized into groups receiving personal training or mail instructions for the OneTouch Verio(®) system). Results were compared to a validated...... between strip lots. Conclusion. The OneTouch Verio(®) displayed sufficient analytical quality and satisfactory user-friendliness. It is suitable for point-of-care testing of blood glucose concentration when handled by patients and healthcare professionals....

  12. Pseudohyperglycemia: Effects of Unwashed Hand after Fruit Peeling or Handling on Fingertips Blood Glucose Monitoring Results.

    Science.gov (United States)

    Olamoyegun, M A; Oloyede, T; Adewoye, O G; Abdulkarim, S O; Adeleke, A A

    2016-01-01

    Self-monitoring of blood glucose (SMBG) is an important component of management for diabetes mellitus (DM), especially in T1DM and T2DM patients who are on insulin therapy. Adequate blood glucose monitoring and prompt intervention are necessary to prevent blood glucose (BG) fluctuation and delay long-term diabetes complications. People with DM are advised to clean their hands before SMBG to remove any dirt or food residue that might affect the reading. The study tested the hypothesis that falsely elevated BG levels from fingertip occur after peeling or handling fruits in an unwashed hand. Fifty apparently healthy nondiabetes volunteers were enrolled. Capillary BG samples were collected from the fingertips after peeling or handling apple, orange, banana, watermelon, and pawpaw, followed by no hand washing for 1 h, cleaning the fingertip with alcohol swab once, five times, and washing hand thoroughly with tap water and drying. These samples were then analyzed with two different glucose meters. The mean BG values, measured from fingertip blood samples after peeling, and handling any of the fruits followed by no hand washing were significantly high, even after cleaning fingertip with a swab of alcohol once. However, there were no significant difference in BG levels measured after peeling and handling fruits followed by hand washing and the level of BG before peeling and handling fruits. Handling of peeled fruits with no hand washing with tap water is associated with overestimation of capillary BG (Pseudohyperglycemia) monitored with glucose meters.

  13. Recommending blood glucose monitors, a pharmacy perspective.

    Science.gov (United States)

    Carter, Alan

    2007-03-01

    Selection of what blood glucose monitoring system to utilize has become an issue for physicians, diabetes educators, pharmacists, and patients. The field of competing makes and models of blood glucose monitoring systems has become crowded, with manufacturers touting improvements in accuracy, ease of use/alternate site options, stored results capacity, software evaluation tools, and/or price point. Personal interviews of 12 pharmacists from community and academic practice settings about monitor preference, as well as results from a national survey of pharmacist recommendations, were compared to actual wholesale sales data to estimate the impact of such recommendations on final monitor selection by the patient. Accu-Chek monitors were recommended 34.65% of the time and represented 28.58% of sales, with a success rate of 82.48% of being the monitor selected. OneTouch monitors had 27.72% of recommendations but represented 31.43% of sales, indicating possible patient brand loyalty or formulary preference for that product. FreeStyle(R) monitors came in third for pharmacist recommendations and were selected by the patient 61.68% of the time when recommended. The category of "other monitor" choices was selected 60.89% of the time by patients given those suggestions. Included in the "other monitor" category was the new disposable monitor marketed as the Sidekick. Based on sales data provided, the Sidekick made up 2.87% of "other monitor" category sales, representing 68% of the "other monitor" segment. While patients frequently follow pharmacist monitoring system suggestions, the ultimate deciding factor is most often the final out-of-pocket cost to the patient. As a result, cost of supplies often becomes the most important determining factor in final monitor selection at the patient level. If the patient cannot afford to perform the recommended daily testing intervals, all other determining factors and suggestions become moot.

  14. Barriers and facilitators to self-monitoring of blood glucose in people with type 2 diabetes using insulin: a qualitative study

    Directory of Open Access Journals (Sweden)

    Ong WM

    2014-02-01

    Full Text Available Woon May Ong,1 Siew Siang Chua,1 Chirk Jenn Ng2 1Department of Pharmacy, 2University of Malaya Primary Care Research Group (UMPCRG, Department of Primary Care Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia Background: Self-monitoring of blood glucose (SMBG helps to improve glycemic control and empowerment of people with diabetes. It is particularly useful for people with diabetes who are using insulin as it facilitates insulin titration and detection of hypoglycemia. Despite this, the uptake of SMBG remains low in many countries, including Malaysia. Purpose: This study aimed to explore the barriers and facilitators to SMBG, in people with type 2 diabetes using insulin. Patients and methods: Qualitative methodology was employed to explore participants’ experience with SMBG. Semistructured, individual in-depth interviews were conducted on people with type 2 diabetes using insulin who had practiced SMBG, in the primary care clinic of a teaching hospital in Malaysia. Participants were purposively sampled from different age groups, ethnicity, education level, and level of glycemic control (as reflected by the glycated hemoglobin [HbA1c], to achieve maximum variation in sampling. All interviews were conducted using a topic guide and were audio-recorded, transcribed verbatim, checked, and analyzed using a thematic approach. Results: A total of 15 participants were interviewed, and thematic saturation was reached. The factors that influenced SMBG were mainly related to cost, participants' emotion, and the SMBG process. The barriers identified included: frustration related to high blood glucose reading; perception that SMBG was only for insulin titration; stigma; fear of needles and pain; cost of test strips and needles; inconvenience; unconducive workplace; and lack of motivation, knowledge, and self-efficacy. The facilitators were: experiencing hypoglycemic symptoms; desire to see the effects of dietary changes; desire to

  15. Screening of gingival crevicular blood glucose and capillary finger blood glucose in the diagnosis of diabetes

    Directory of Open Access Journals (Sweden)

    Alka S Waghmare

    2011-01-01

    Full Text Available Aim: The study aimed at obtaining glucose readings using gingival crevicular blood (GCB to screen for undiagnosed diabetes during routine dental visits. Materials and Methods: The present study included 50 patients who were divided into two groups, i.e. Group A and Group B, based on bleeding on probing at the site of collection of GCB. Group A participants had blood collected from sites having adequate bleeding on probing, whereas Group B participants had blood collected from sites with little bleeding on probing. GCB and capillary finger-stick blood (CFB] glucose readings were obtained using a self-monitoring glucometer. Statistical Analysis: Correlations between both the samples were done using Pearson′s correlation. Results: Group A patients′ correlations between GCB and CFB glucose readings were high, whereas in Group B patients, correlations between glucose readings were low. Conclusion: GCB can be an excellent source for screening diabetes during routine dental visits.

  16. Glucose monitoring as a guide to diabetes management. Critical subject review.

    OpenAIRE

    Koch, B.

    1996-01-01

    PURPOSE: To encourage a balanced approach to blood glucose monitoring in diabetes by a critical review of the history, power and cost of glucose testing. DATA SOURCES: The Cambridge Data Base was searched and was supplemented by a random review of other relevant sources, including textbooks, company pamphlets, and laboratory manuals. STUDY SELECTION: Keywords used were "glucosuria diagnosis," "blood glucose self-monitoring," "glycosylated hemoglobin," and "fructosamine" for the 10-year period...

  17. Evaluation of three glucometers for whole blood glucose measurements at the point of care in preterm or low-birth-weight infants.

    Science.gov (United States)

    Hwang, Joon Ho; Sohn, Yong-Hak; Chang, Seong-Sil; Kim, Seung Yeon

    2015-08-01

    We evaluated three blood glucose self-monitoring for measuring whole blood glucose levels in preterm and low-birth-weight infants. Between December 1, 2012 and March 31, 2013, 230 blood samples were collected from 50 newborns, who weighed, ≤2,300 g or were ≤36 weeks old, in the the neonatal intensive care unit of Eulji University Hospital. Three blood glucose self-monitoring (A: Precision Pcx, Abbott; B: One-Touch Verio, Johnson & Johnson; C: LifeScan SureStep Flexx, Johnson & Johnson) were used for the blood glucose measurements. The results were compared to those obtained using laboratory equipment (D: Advia chemical analyzer, Siemens Healthcare Diagnostics Inc.). The correlation coefficients between laboratory equipment and the three blood glucose self-monitoring (A, B, and C) were found to be 0.888, 0.884, and 0.900, respectively. For glucose levels≤60 mg/dL, the correlation coefficients were 0.674, 0.687, and 0.679, respectively. For glucose levels>60 mg/dL, the correlation coefficients were 0.822, 0.819, and 0.839, respectively. All correlation coefficients were statistically significant. And the values from the blood glucose self-monitoring were not significantly different from the value of the laboratory equipment , after correcting for each device's average value (P>0.05). When using laboratory equipment (blood glucose ≤60 mg/dL), each device had a sensitivity of 0.458, 0.604, and 0.688 and a specificity of 0.995, 0.989, and 0.989, respectively. Significant difference is not found between three blood glucose self-monitoring and laboratory equipment. But correlation between the measured values from blood glucose self-monitoring and laboratory equipment is lower in preterm or low-birth-weight infants than adults.

  18. Noninvasive Monitoring of Blood Glucose with Raman Spectroscopy.

    Science.gov (United States)

    Pandey, Rishikesh; Paidi, Santosh Kumar; Valdez, Tulio A; Zhang, Chi; Spegazzini, Nicolas; Dasari, Ramachandra Rao; Barman, Ishan

    2017-02-21

    not only addressed the physiological lag between the actual blood glucose and the measured interstitial fluid glucose values but also offered a powerful tool for predictive measurements of hypoglycemia. This framework has recently been extended to provide longitudinal tracking of glucose concentration without necessitating extensive a priori concentration information. These findings are advanced by the results of recent glucose tolerance studies in human subjects, which also hint at the need for designing nonlinear calibration models that can account for subject-to-subject variations in skin heterogeneity and hematocrit levels. Together, the emerging evidence underscores the promise of a blood withdrawal-free optical platform-featuring a combination of high-throughput Raman spectroscopic instrumentation and data analysis of subtle variations in spectral expression-for diabetes screening in the clinic and, ultimately, for personalized monitoring.

  19. Application of optical coherence tomography for noninvasive blood glucose monitoring during hyperglycemia

    Science.gov (United States)

    Larin, Kirill V.; Ashitkov, Taras V.; Motamedi, Massoud; Esenaliev, Rinat O.

    2003-10-01

    Approximately 14 million people in the USA and more than 140 million people worldwide suffer from Diabetes Mellitus. The current glucose sensing technique involves a finger puncture several times a day to obtain a droplet of blood for chemical analysis. Recently we proposed to use optical coherence tomography (OCT) for continuous noninvasive blood glucose sensing through skin. In this paper we tested the OCT technique for noninvasive monitoring of blood glucose concentration in lip tissue of New Zealand rabbits and Yucatan micropigs during glucose clamping experiments. Obtained results show good agreement with results obtained in skin studies, good correlation of changes in the OCT signal slope measured at the depth of 250 to 500 μm with changes in blood glucose concentration, and higher stability of the OCT data points than that obtained from skin.

  20. How much do diabetic patients know about self monitoring of their ...

    African Journals Online (AJOL)

    Conclusion: Although majority of the patients knew about self monitoring of their blood glucose, the practice of it was quite poor. SMBG especially using glucometers still needs to be emphasized and compliance advised. Keywords: Self monitoring of blood glucose (SMBG), Diabetes mellitus, Glucometer ...

  1. Detection of hypoglycemia with continuous interstitial and traditional blood glucose monitoring using the FreeStyle Navigator Continuous Glucose Monitoring System.

    Science.gov (United States)

    McGarraugh, Geoffrey; Bergenstal, Richard

    2009-03-01

    The objective of the analysis was to compare detection of hypoglycemic episodes (glucose 15 min) with the FreeStyle Navigator Continuous Glucose Monitoring System (FSN-CGM) (Abbott Diabetes Care, Alameda, CA) alarms to detection with traditional finger stick testing at an average frequency of eight tests per day. The performance of FSN-CGM alarms was evaluated in a clinic setting using 58 subjects with type 1 diabetes mellitus (T1DM) monitoring interstitial glucose concentration over a 5-day period compared to reference YSI measurements (instrument manufactured by YSI, Yellow Springs, OH) at 15-min intervals. Finger stick glucose testing was evaluated in the home environment with 91 subjects with TIDM monitoring with the blood glucose meter integrated into the FreeStyle Navigator (FSN-BG) over a 20-day period. The reference was FSN-CGM with results masked from the subjects. Blood glucose values glucose was <= 85 mg/dL 77.2% of the time. In the home environment, the average FSN-BG testing frequency was 7.9 tests per day. Hypoglycemia was verified within +/- 30 min by FSN-BG measurements <= 85 mg/dL at a rate of 27.5%. Even with a high rate of FSN-BG testing, hypoglycemia detected by FSN-CGM was verified by patients with T1DM very infrequently. A high rate of hypoglycemia detection with a moderate rate of unnecessary alarms can be attained using FSN-CGM.

  2. Effects of self-monitoring of glucose on distress and self-efficacy in people with non-insulin-treated Type 2 diabetes: a randomized controlled trial

    NARCIS (Netherlands)

    Malanda, U. L.; Bot, S. D. M.; Kostense, P. J.; Snoek, F. J.; Dekker, J. M.; Nijpels, G.

    2016-01-01

    To investigate the effects of self-monitoring of glucose in blood or urine, on diabetes-specific distress and self-efficacy, compared with usual care in people with non-insulin-treated Type 2 diabetes mellitus. One hundred and eighty-one participants with non-insulin-treated Type 2 diabetes mellitus

  3. Non-invasive blood glucose monitor based on spectroscopy using a smartphone.

    Science.gov (United States)

    Dantu, Vishnu; Vempati, Jagannadh; Srivilliputhur, Srinivasan

    2014-01-01

    Development of a novel method for non-invasive measurement of blood glucose concentration using smartphone is discussed. Our research work has three major contributions to society and science. First, we modified and extended the Beer-Lambert's law in physics to accommodate for multiple wavelengths. This extension can aid researchers who wish to perform optical spectroscopy. Second, we successfully developed a creative and non-invasive way for diabetic patients to measure glucose levels via a smartphone. Researchers and chemists can now use their smartphones to determine the absorbance and, therefore, concentration of a chemical. Third, we created an inexpensive way to perform optical spectroscopy by using a smartphone. Monitoring blood glucose using a smartphone application that simply uses equipment already available on smartphones will improve the lives of diabetic patients who can continuously check their blood glucose levels while avoiding the current inconvenient, unhygienic, and costly invasive glucose meters.

  4. [Design and implementation of real-time continuous glucose monitoring instrument].

    Science.gov (United States)

    Huang, Yonghong; Liu, Hongying; Tian, Senfu; Jia, Ziru; Wang, Zi; Pi, Xitian

    2017-12-01

    Real-time continuous glucose monitoring can help diabetics to control blood sugar levels within the normal range. However, in the process of practical monitoring, the output of real-time continuous glucose monitoring system is susceptible to glucose sensor and environment noise, which will influence the measurement accuracy of the system. Aiming at this problem, a dual-calibration algorithm for the moving-window double-layer filtering algorithm combined with real-time self-compensation calibration algorithm is proposed in this paper, which can realize the signal drift compensation for current data. And a real-time continuous glucose monitoring instrument based on this study was designed. This real-time continuous glucose monitoring instrument consisted of an adjustable excitation voltage module, a current-voltage converter module, a microprocessor and a wireless transceiver module. For portability, the size of the device was only 40 mm × 30 mm × 5 mm and its weight was only 30 g. In addition, a communication command code algorithm was designed to ensure the security and integrity of data transmission in this study. Results of experiments in vitro showed that current detection of the device worked effectively. A 5-hour monitoring of blood glucose level in vivo showed that the device could continuously monitor blood glucose in real time. The relative error of monitoring results of the designed device ranged from 2.22% to 7.17% when comparing to a portable blood meter.

  5. Raman Spectroscopy as a Promising Tool for Noninvasive Point-of-Care Glucose Monitoring

    NARCIS (Netherlands)

    Scholtes-Timmerman, M.J.; Bijlsma, S.; Fokkert, M.J.; Slingerland, R.; Veen, S.J.F. van

    2014-01-01

    Self-monitoring of glucose is important for managing diabetes. Noninvasive glucose monitors are not yet available, but patients would benefit highly from such a device. We present results that may lead to a novel, point-of-care noninvasive system to measure blood glucose based on Raman spectroscopy.

  6. Techniques of monitoring blood glucose during pregnancy for women with pre-existing diabetes.

    Science.gov (United States)

    Moy, Foong Ming; Ray, Amita; Buckley, Brian S; West, Helen M

    2017-06-11

    Self-monitoring of blood glucose (SMBG) is recommended as a key component of the management plan for diabetes therapy during pregnancy. No existing systematic reviews consider the benefits/effectiveness of various techniques of blood glucose monitoring on maternal and infant outcomes among pregnant women with pre-existing diabetes. The effectiveness of the various monitoring techniques is unclear. To compare techniques of blood glucose monitoring and their impact on maternal and infant outcomes among pregnant women with pre-existing diabetes. We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (30 November 2016), searched reference lists of retrieved studies and contacted trial authors. Randomised controlled trials (RCTs) and quasi-RCTs comparing techniques of blood glucose monitoring including SMBG, continuous glucose monitoring (CGM) or clinic monitoring among pregnant women with pre-existing diabetes mellitus (type 1 or type 2). Trials investigating timing and frequency of monitoring were also included. RCTs using a cluster-randomised design were eligible for inclusion but none were identified. Two review authors independently assessed study eligibility, extracted data and assessed the risk of bias of included studies. Data were checked for accuracy. The quality of the evidence was assessed using the GRADE approach. This review update includes at total of 10 trials (538) women (468 women with type 1 diabetes and 70 women with type 2 diabetes). The trials took place in Europe and the USA. Five of the 10 included studies were at moderate risk of bias, four studies were at low to moderate risk of bias, and one study was at high risk of bias. The trials are too small to show differences in important outcomes such as macrosomia, preterm birth, miscarriage or death of baby. Almost all the reported GRADE outcomes were assessed as being very low-quality evidence. This was due to design limitations in the studies, wide confidence intervals, small

  7. Optical coherence tomography for blood glucose monitoring in vitro through spatial and temporal approaches

    Science.gov (United States)

    De Pretto, Lucas Ramos; Yoshimura, Tania Mateus; Ribeiro, Martha Simões; Zanardi de Freitas, Anderson

    2016-08-01

    As diabetes causes millions of deaths worldwide every year, new methods for blood glucose monitoring are in demand. Noninvasive approaches may increase patient adherence to treatment while reducing costs, and optical coherence tomography (OCT) may be a feasible alternative to current invasive diagnostics. This study presents two methods for blood sugar monitoring with OCT in vitro. The first, based on spatial statistics, exploits changes in the light total attenuation coefficient caused by different concentrations of glucose in the sample using a 930-nm commercial OCT system. The second, based on temporal analysis, calculates differences in the decorrelation time of the speckle pattern in the OCT signal due to blood viscosity variations with the addition of glucose with data acquired by a custom built Swept Source 1325-nm OCT system. Samples consisted of heparinized mouse blood, phosphate buffer saline, and glucose. Additionally, further samples were prepared by diluting mouse blood with isotonic saline solution to verify the effect of higher multiple scattering components on the ability of the methods to differentiate glucose levels. Our results suggest a direct relationship between glucose concentration and both decorrelation rate and attenuation coefficient, with our systems being able to detect changes of 65 mg/dL in glucose concentration.

  8. Precision and costs of techniques for self-monitoring of serum glucose levels.

    OpenAIRE

    Chiasson, J. L.; Morrisset, R.; Hamet, P.

    1984-01-01

    The poor correlation between serum and urine glucose measurements has led to the development of new techniques for monitoring the blood glucose level in diabetic patients. Either a nurse or the patient can perform these tests, which involve spreading a single drop of blood onto a reagent strip. A colour change that is proportional to the serum glucose level can be read visually or with a reflectance meter. Evaluated against simultaneous serum glucose levels determined by the hospital biochemi...

  9. Glucose monitoring as a guide to diabetes management. Critical subject review.

    Science.gov (United States)

    Koch, B

    1996-06-01

    To encourage a balanced approach to blood glucose monitoring in diabetes by a critical review of the history, power and cost of glucose testing. The Cambridge Data Base was searched and was supplemented by a random review of other relevant sources, including textbooks, company pamphlets, and laboratory manuals. Keywords used were "glucosuria diagnosis," "blood glucose self-monitoring," "glycosylated hemoglobin," and "fructosamine" for the 10-year period ending 1992, restricted to English language and human. About 200 titles were retrieved and reviewed according to the author's judgment of relevance. "Snapshot tests" (venous and capillary blood glucose) and "memory tests" (urine glucose, glycated hemoglobin fractions and fructosamine) must be employed according to individual patients treatment goals. Day-to-day metabolic guidance is facilitated by capillary blood glucose testing for patients receiving insulin and by urine glucose testing for others. Capillary blood glucose testing is mandatory in cases of hypoglycemia unawareness (inability to sense hypoglycemia because of neuropathy) but is not a substitute for a knowledge of clinical hypoglycemia self-care. Criteria by reason (clinical judgement and cost effectiveness) must be separated from criteria by emotion (preoccupation with technology and marketing). No randomized studies show that any of these tests consistently improve clinical outcome. Optimal metabolic control and cost savings can be expected from a rational selection of tests.

  10. Twenty-four-hour variations in blood glucose level in Japanese type 2 diabetes patients based on continuous glucose monitoring.

    Science.gov (United States)

    Hajime, Maiko; Okada, Yosuke; Mori, Hiroko; Otsuka, Takashi; Kawaguchi, Mayuko; Miyazaki, Megumi; Kuno, Fumi; Sugai, Kei; Sonoda, Satomi; Tanaka, Kenichi; Kurozumi, Akira; Narisawa, Manabu; Torimoto, Keiichi; Arao, Tadashi; Tanaka, Yoshiya

    2018-01-01

    High fluctuations in blood glucose are associated with various complications. The correlation between glycated hemoglobin (HbA1c) level and fluctuations in blood glucose level has not been studied in Japanese patients with type 2 diabetes. In the present study, blood glucose profile stratified by HbA1c level was evaluated by continuous glucose monitoring (CGM) in Japanese type 2 diabetes patients. Our retrospective study included 294 patients with type 2 diabetes who were divided by HbA1c level into five groups (≥6.0 to level and CGM data was analyzed. The primary end-point was the difference in blood glucose fluctuations among the HbA1c groups. The mean blood glucose level increased significantly with increasing HbA1c (P trend  levels of maximum blood glucose, minimum blood glucose, each preprandial blood glucose, each postprandial maximum blood glucose, range of increase in postprandial glucose from pre-meal to after breakfast, the area under the blood concentration-time curve >180 mg/dL and percentage of the area under the blood concentration-time curve >180 mg/dL were higher with higher HbA1c. Mean glucose level and pre-breakfast blood glucose level were significant and independent determinants of HbA1c. In Japanese patients treated for type 2 diabetes, the mean amplitude of glycemic excursions did not correlate with HbA1c, making it difficult to assess blood glucose fluctuations using HbA1c. Parameters other than HbA1c are required to evaluate fluctuations in blood glucose level in patients receiving treatment for type 2 diabetes. © 2017 The Authors. Journal of Diabetes Investigation published by Asian Association for the Study of Diabetes (AASD) and John Wiley & Sons Australia, Ltd.

  11. Non-invasive blood glucose monitoring with Raman spectroscopy: prospects for device miniaturization

    International Nuclear Information System (INIS)

    Wróbel, M.S.

    2016-01-01

    The number of patients with diabetes has reached over 350 million, and still continues to increase. The need for regular blood glucose monitoring sparks the interest in the development of modern detection technologies. One of those methods, which allows for noninvasive measurements, is Raman spectroscopy. The ability of infrared light to penetrate deep into tissues allows for obtaining measurements through the skin without its perforation. This paper presents the limitations and possibilities of non-invasive blood glucose monitoring with Raman spectroscopy. Especially focusing on the possibilities for device miniaturization. Such device incorporates a Raman spectrometer, a fiber-optical probe, and a computing device (microcontroller, smartphone, etc.) which calculates the glucose concentration using specialized algorithms. Simplification of device design, as well as turbidity correction technique and a new proposed method of synchronized detection are described

  12. Monitoring of glucose levels in mouse blood with noninvasive optical methods

    International Nuclear Information System (INIS)

    Ullah, H; Ikram, M; Ahmed, E

    2014-01-01

    We report the quantification/monitoring of glucose levels in a blood sample using optical diffuse reflectance (ODR) underlying variations in optical parameters with a white light source (at peak wavelength ∼600 nm and range 450–850 nm) and in blood in vivo using M-mode optical coherence tomography (OCT) in terms of the translational diffusion coefficient (D T ). In the ODR experiments, we have investigated two types of mono-dispersive particles, i.e. polystyrene microspheres (PMSs) with diameters of 1.4 μm (variable concentrations) and 2.6 μm (fixed concentration) in a water phantom by observing changes in the reduced scattering coefficient. We believe that these differences in optical properties will be helpful for the understanding and optimal use of laser applications in blood glucometry without piercing the skin. In the OCT experiments, this idea of glucose monitoring was applied on an in vivo normal mouse without injection of glucose intravenously to provide the threshold levels by envisioning/identifying a blood vessel by speckle variance (SV-OCT) using a dorsal skinfold mouse windows chamber model. We report an average value of translation decorrelation time τ T = 41.18 ± 1.92 ms and D T = 8.90 × 10 −14  m 2  s −1 underlying the dynamic light scattering (DLS). Our results have a potential application in the quantification of higher glucose levels in vivo administrated intravenously. (paper)

  13. Influence of partial pressure of oxygen in blood samples on measurement performance in glucose-oxidase-based systems for self-monitoring of blood glucose.

    Science.gov (United States)

    Baumstark, Annette; Schmid, Christina; Pleus, Stefan; Haug, Cornelia; Freckmann, Guido

    2013-11-01

    Partial pressure of oxygen (pO2) in blood samples can affect blood glucose (BG) measurements, particularly in systems that employ the glucose oxidase (GOx) enzyme reaction on test strips. In this study, we assessed the impact of different pO2 values on the performance of five GOx systems and one glucose dehydrogenase (GDH) system. Two of the GOx systems are labeled by the manufacturers to be sensitive to increased blood oxygen content, while the other three GOx systems are not. Aliquots of 20 venous samples were adjusted to the following pO2 values: oxygen sensitive. © 2013 Diabetes Technology Society.

  14. Effects of self-monitoring of glucose in non-insulin treated patients with type 2 diabetes: design of the IN CONTROL-trial

    Directory of Open Access Journals (Sweden)

    Kostense Piet J

    2009-04-01

    Full Text Available Abstract Background Diabetes specific emotional problems interfere with the demanding daily management of living with type 2 diabetes mellitus (T2DM. Possibly, offering direct feedback on diabetes management may diminish the presence of diabetes specific emotional problems and might enhance the patients' belief they are able to manage their illness. It is hypothesized that self-monitoring of glucose in combination with an algorithm how and when to act will motivate T2DM patients to become more active participants in their own care leading to a decrease in diabetes related distress and an increased self-efficacy. Methods and design Six hundred patients with T2DM (45 ≤ 75 years who receive care in a structured diabetes care system, HbA1c ≥ 7.0%, and not using insulin will be recruited and randomized into 3 groups; Self-monitoring of Blood Glucose (SMBG, Self-monitoring of Urine Glucose (SMUG and usual care (n = 200 per group. Participants are eligible if they have a known disease duration of over 1 year and have used SMBG or SMUG less than 3 times in the previous year. All 3 groups will receive standardized diabetes care. The intervention groups will receive additional instructions on how to perform self-monitoring of glucose and how to interpret the results. Main outcome measures are changes in diabetes specific emotional distress and self-efficacy. Secondary outcome measures include difference in HbA1c, patient satisfaction, occurrence of hypoglycaemia, physical activity, costs of direct and indirect healthcare and changes in illness beliefs. Discussion The IN CONTROL-trial is designed to explore whether feedback from self-monitoring of glucose in T2DM patients who do not require insulin can affect diabetes specific emotional distress and increase self-efficacy. Based on the self-regulation model it is hypothesized that glucose self-monitoring feedback changes illness perceptions, guiding the patient to reduce emotional responses to

  15. Blood Glucose Monitoring Devices

    Science.gov (United States)

    ... are below 100 mg/dL before meals and fasting and are less than 140 mg/dL two hours after meals. People with diabetes should consult their doctor or health care provider to set appropriate blood glucose goals. ...

  16. Evaluation of three glucometers for whole blood glucose measurements at the point of care in preterm or low-birth-weight infants

    OpenAIRE

    Hwang, Joon Ho; Sohn, Yong-Hak; Chang, Seong-Sil; Kim, Seung Yeon

    2015-01-01

    Purpose We evaluated three blood glucose self-monitoring for measuring whole blood glucose levels in preterm and low-birth-weight infants. Methods Between December 1, 2012 and March 31, 2013, 230 blood samples were collected from 50 newborns, who weighed, ≤2,300 g or were ≤36 weeks old, in the the neonatal intensive care unit of Eulji University Hospital. Three blood glucose self-monitoring (A: Precision Pcx, Abbott; B: One-Touch Verio, Johnson & Johnson; C: LifeScan SureStep Flexx, Johnson &...

  17. Severe hypoglycemia, impaired awareness of hypoglycemia, and self-monitoring in adults with type 1 diabetes

    DEFF Research Database (Denmark)

    Hendrieckx, Crystal; Jenkins, A; Hagger, Virginia

    2017-01-01

    AIMS: To assess prevalence of severe hypoglycemia, awareness and symptoms of hypoglycemia, and their associations with self-monitoring of blood glucose. METHODS: Diabetes MILES-Australia Study participants completed validated questionnaires and study-specific items. RESULTS: Of 642 adults with ty...... autonomic symptoms, perceived at relatively low glucose levels. Frequent self-monitoring of blood glucose prompted early recognition and treatment of hypoglycemia, suggesting severe hypoglycemia risk can be minimized.......AIMS: To assess prevalence of severe hypoglycemia, awareness and symptoms of hypoglycemia, and their associations with self-monitoring of blood glucose. METHODS: Diabetes MILES-Australia Study participants completed validated questionnaires and study-specific items. RESULTS: Of 642 adults with type...

  18. Long-term blood glucose monitoring with implanted telemetry device in conscious and stress-free cynomolgus monkeys.

    Science.gov (United States)

    Wang, B; Sun, G; Qiao, W; Liu, Y; Qiao, J; Ye, W; Wang, H; Wang, X; Lindquist, R; Wang, Y; Xiao, Y-F

    2017-09-01

    Continuous blood glucose monitoring, especially long-term and remote, in diabetic patients or research is very challenging. Nonhuman primate (NHP) is an excellent model for metabolic research, because NHPs can naturally develop Type 2 diabetes mellitus (T2DM) similarly to humans. This study was to investigate blood glucose changes in conscious, moving-free cynomolgus monkeys (Macaca fascicularis) during circadian, meal, stress and drug exposure. Blood glucose, body temperature and physical activities were continuously and simultaneously recorded by implanted HD-XG telemetry device for up to 10 weeks. Blood glucose circadian changes in normoglycemic monkeys significantly differed from that in diabetic animals. Postprandial glucose increase was more obvious after afternoon feeding. Moving a monkey from its housing cage to monkey chair increased blood glucose by 30% in both normoglycemic and diabetic monkeys. Such increase in blood glucose declined to the pre-procedure level in 30 min in normoglycemic animals and >2 h in diabetic monkeys. Oral gavage procedure alone caused hyperglycemia in both normoglycemic and diabetic monkeys. Intravenous injection with the stress hormones, angiotensin II (2 μg/kg) or norepinephrine (0.4 μg/kg), also increased blood glucose level by 30%. The glucose levels measured by the telemetry system correlated significantly well with glucometer readings during glucose tolerance tests (ivGTT or oGTT), insulin tolerance test (ITT), graded glucose infusion (GGI) and clamp. Our data demonstrate that the real-time telemetry method is reliable for monitoring blood glucose remotely and continuously in conscious, stress-free, and moving-free NHPs with the advantages highly valuable to diabetes research and drug discovery.

  19. Blood glucose level reconstruction as a function of transcapillary glucose transport.

    Science.gov (United States)

    Koutny, Tomas

    2014-10-01

    A diabetic patient occasionally undergoes a detailed monitoring of their glucose levels. Over the course of a few days, a monitoring system provides a detailed track of their interstitial fluid glucose levels measured in their subcutaneous tissue. A discrepancy in the blood and interstitial fluid glucose levels is unimportant because the blood glucose levels are not measured continuously. Approximately five blood glucose level samples are taken per day, and the interstitial fluid glucose level is usually measured every 5min. An increased frequency of blood glucose level sampling would cause discomfort for the patient; thus, there is a need for methods to estimate blood glucose levels from the glucose levels measured in subcutaneous tissue. The Steil-Rebrin model is widely used to describe the relationship between blood and interstitial fluid glucose dynamics. However, we measured glucose level patterns for which the Steil-Rebrin model does not hold. Therefore, we based our research on a different model that relates present blood and interstitial fluid glucose levels to future interstitial fluid glucose levels. Using this model, we derived an improved model for calculating blood glucose levels. In the experiments conducted, this model outperformed the Steil-Rebrin model while introducing no additional requirements for glucose sample collection. In subcutaneous tissue, 26.71% of the calculated blood glucose levels had absolute values of relative differences from smoothed measured blood glucose levels less than or equal to 5% using the Steil-Rebrin model. However, the same difference interval was encountered in 63.01% of the calculated blood glucose levels using the proposed model. In addition, 79.45% of the levels calculated with the Steil-Rebrin model compared with 95.21% of the levels calculated with the proposed model had 20% difference intervals. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Explaining engagement in self-monitoring among participants of the DESMOND Self-monitoring Trial: a qualitative interview study.

    Science.gov (United States)

    Eborall, Helen C; Dallosso, Helen M; McNicol, Sarah; Speight, Jane; Khunti, Kamlesh; Davies, Melanie J; Heller, Simon R

    2015-10-01

    The Diabetes Education and Self-Management for Ongoing and Newly Diagnosed (DESMOND) Self-monitoring Trial reported that people with newly diagnosed type 2 diabetes attending community-based structured education and randomized to self-monitoring of blood glucose (SMBG) or urine monitoring had comparable improvements in biomedical outcomes, but differences in satisfaction with, and continued use of monitoring method, well-being and perceived threat from diabetes. To explore experiences of SMBG and urine monitoring following structured education. We specifically addressed the perceived usefulness of each monitoring method and the associated well-being. Qualitative semi-structured interviews with 18 adults with newly diagnosed type 2 diabetes participating in the DESMOND Self-monitoring Trial (SMBG, N=10; urine monitoring, N=8)~12 months into the trial. Analysis was informed by the constant comparative approach. Interviewees reported SMBG as accurate, convenient and useful. Declining use was explained by having established a pattern of managing blood glucose with less frequent monitoring or lack of feedback or encouragement from health care professionals. Many initially positive views of urine monitoring progressively changed due to perceived inaccuracy, leading some to switch to SMBG. Perceiving diabetes as less serious was attributable to lack of symptoms, treatment with diet alone and-in the urine-monitoring group-consistently negative readings. Urine monitoring also provided less visible evidence of diabetes and of the effect of behaviour on glucose. The findings highlight the importance for professionals of considering patients' preferences when using self-monitoring technologies, including how these change over time, when supporting the self-care behaviours of people with type 2 diabetes. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Rational use of blood glucose test strips for self-monitoring in patients with diabetes mellitus: Economic impact in the Portuguese healthcare system.

    Science.gov (United States)

    Risso, Teresa; Furtado, Cláudia

    2017-12-01

    Self-monitoring of blood glucose is important for diabetes management in insulin-treated patients, but its effectiveness in patients treated with oral glucose lowering drugs only is not fully supported by current evidence. This paper aims to characterise the prescription patterns of blood glucose test strips (BGTS) in Portugal and estimate the potential cost-savings from the rational use of BGTS. A retrospective analysis of the Portuguese database of electronic medical prescriptions to assess the patterns of BGTS prescription. The database was searched for prescription, from 01 January 2016 to 31 December 2016, of insulin and other antidiabetics, as well as the associated prescriptions of BGTS. 894,637 patients were prescribed antidiabetic medicines during 2016, 82.7% of which were prescribed oral glucose lowering drugs only. BGTS were prescribed to 456,179 patients, being more frequently prescribed in insulin-treated patients. Still, 42.8% of patients treated with oral glucose lowering drugs only were also prescribed BGTS, with large proportion of those being prescribed antidiabetic drugs with lower risk of causing hypoglycaemia and, even so, >200 BGTS/year. Several scenarios for a more rational use of BGTS were estimated to result in cost-savings of up to €9.5 million per year. BGTS were prescribed to more than a third of patients treated with oral glucose lowering drugs only, despite accumulating evidence of their limited effectiveness in this population, resulting in substantial economic burden to the healthcare system. Given the estimated potential cost-savings, rational use of BGTS should be encouraged in Portugal. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Self-monitored blood pressure: a role in clinical practice?

    Science.gov (United States)

    Padfield, Paul L

    2002-02-01

    Electronic self-monitoring of blood pressure is increasing in popularity and most international guidelines on the management of hypertension approve cautious use of the technique in the assessment of potentially hypertensive individuals. A recent editorial in the Archives of Internal Medicine suggested that it was "appropriate to encourage the widespread use of self recorded BP as an important adjunct to the clinical care of the patient with hypertension". Such a statement is based on increasing evidence that self-monitoring of blood pressure gives similar information to daytime ambulatory blood pressure -- a now well-established technology in the management of hypertension. Suggested strategies for the use of self-monitoring of blood pressure include monitoring in individuals whose clinical risk status is low enough that they need not necessarily be given medical therapy simply on the basis of a clinic pressure (i.e. at a 10 year risk of cardiovascular disease below 20%). The threshold for defining 'normotension/hypertension' is now regarded as being broadly similar for ABPM and SBPM and is set at 135/85 mmHg. In a recent meta-analysis of all available studies the average difference between these techniques, using the same patients, is -1.7/1.2 mmHg. There is some evidence that careful use of self-monitoring may improve blood pressure control in patients who are otherwise resistant to care. Self-monitoring of blood pressure has now been shown in at least one major prospective study to predict outcome better than clinic pressures and in that setting it now has equivalence to the use of ABPM. There remain issues regarding the availability of validated devices, the quality of training of patients in their use and the possibility that inaccurate recording might occur, either deliberately or by accident. Self-monitoring of blood pressure may well not give the same readings as carefully measured blood pressure by research nurses but its use is clearly superior to

  3. Measurement of glucose area under the curve using minimally invasive interstitial fluid extraction technology: evaluation of glucose monitoring concepts without blood sampling.

    Science.gov (United States)

    Sato, Toshiyuki; Okada, Seiki; Hagino, Kei; Asakura, Yoshihiro; Kikkawa, Yasuo; Kojima, Junko; Watanabe, Toshihiro; Maekawa, Yasunori; Isobe, Kazuki; Koike, Reona; Nakajima, Hiromu; Asano, Kaoru

    2011-12-01

    Monitoring postprandial hyperglycemia is crucial in treating diabetes, although its dynamics make accurate monitoring difficult. We developed a new technology for monitoring postprandial hyperglycemia using interstitial fluid (ISF) extraction technology without blood sampling. The glucose area under the curve (AUC) using this system was measured as accumulated ISF glucose (IG) with simultaneous calibration with sodium ions. The objective of this study was to evaluate this technological concept in healthy individuals. Minimally invasive ISF extraction technology (MIET) comprises two steps: pretreatment with microneedles and ISF accumulation over a specific time by contact with a solvent. The correlation between glucose and sodium ion levels using MIET was evaluated in 12 subjects with stable blood glucose (BG) levels during fasting. BG and IG time courses were evaluated in three subjects to confirm their relationship while BG was fluctuating. Furthermore, the accuracy of glucose AUC measurements by MIET was evaluated several hours after a meal in 30 subjects. A high correlation was observed between glucose and sodium ion levels when BG levels were stable (R=0.87), indicating that sodium ion is a good internal standard for calibration. The variation in IG and BG with MIET was similar, indicating that IG is an adequate substitute for BG. Finally, we showed a strong correlation (R=0.92) between IG-AUC and BG-AUC after a meal. These findings validate the adequacy of glucose AUC measurements using MIET. Monitoring glucose using MIET without blood sampling may be beneficial to patients with diabetes.

  4. Evaluation of Blood Glucose Meter Efficacy in an Antenatal Diabetes Clinic.

    Science.gov (United States)

    McGrath, Rachel T; Donnelly, Vanessa C; Glastras, Sarah J; Preda, Veronica A; Sheriff, Nisa; Ward, Peter; Hocking, Samantha L; Fulcher, Gregory R

    2016-02-01

    The optimal treatment of diabetes in pregnancy requires accurate measurement of blood glucose levels, in order to minimize adverse outcomes for both mother and neonate. Self-monitoring of blood glucose is routinely used to measure glycemic control and to assess whether treatment targets are being met; however, the accuracy of blood glucose meters in pregnancy is unclear. Pregnant women with gestational, type 1, or type 2 diabetes mellitus were eligible to participate. Nonfasting capillary blood glucose levels were measured in duplicate using the BGStar(®) (Sanofi, Sydney, Australia) and FreeStyle Lite(®) (Abbott, Sydney) blood glucose meters. Venous blood samples were collected and analyzed for plasma glucose, hematocrit, and glycated hemoglobin. Capillary blood glucose was compared with plasma glucose and further assessed according to International Organization for Standardization (ISO) 15197:2013 standards. One hundred ten women were recruited, providing 96 samples suitable for analysis. The mean ± SD laboratory plasma glucose level was 4.6 ± 1.4 mmol/L; the BGStar and FreeStyle Lite capillary blood glucose values were 5.3 ± 1.4 mmol/L and 5.0 ± 1.3 mmol/L, respectively. Both meters showed a positive bias (0.42 mmol/L for the FreeStyle Lite and 0.65 mmol/L for the BGStar). Furthermore, neither meter fulfilled the ISO 15197:2013 standards, and there was a nonsignificant improvement in meter performance at blood glucose levels of ≤4.2 mmol/L. Hematocrit did not affect the results of either blood glucose meter. Clarke Error Grid analysis demonstrated that approximately 70% of the results of both meters would lead to appropriate clinical action. The BGStar and FreeStyle Lite blood glucose meters did not meet ISO 15197:2013 recommendations for blood glucose monitoring systems when assessed in a population of women with diabetes in pregnancy. Clinicians should consider this difference in blood glucose readings when making diabetes

  5. Reliable glucose monitoring by ex-vivo blood microdialysis and infrared spectrometry for patients in critical care

    Science.gov (United States)

    Vahlsing, Thorsten; Delbeck, Sven; Budde, Janpeter; Ihrig, Dieter; Leonhardt, Steffen; Heise, H. Michael

    2017-02-01

    Blood glucose monitoring has been realised by biosensors in combination with micro-dialysis, using either subcutaneously or intravascularly implanted catheters. Another alternative is ex-vivo micro-dialysis of continuously sampled heparinized whole blood available from the patient even under critical care conditions. However, most devices suffer from inaccuracies due to variable recovery rates. Infrared spectrometry has been suggested for analyte quantification, since besides glucose other clinically relevant analytes can be simultaneously determined that are, e.g., important for intensive care patients. Perfusates with acetate and mannitol have been investigated as recovery markers (internal standards). In contrast to the previously used acetate, an almost linear dependency between mannitol loss and glucose recovery was observed for micro-dialysis of glucose spiked aqueous albumin solutions or porcine heparinized whole blood when testing flat membranes within a custom-made micro-dialysator. By this, a straightforward compensation of any dialysis recovery rate variation during patient monitoring is possible. The combination of microdialysis with infrared spectrometry provides a calibration-free assay for accurate continuous glucose monitoring, as reference spectra of dialysate components can be a-priori allocated.

  6. Randomized trial of technology-assisted self-monitoring of blood glucose by low-income seniors: improved glycemic control in type 2 diabetes mellitus.

    Science.gov (United States)

    Levine, Jason C; Burns, Edith; Whittle, Jeffrey; Fleming, Raymond; Knudson, Paul; Flax, Steve; Leventhal, Howard

    2016-12-01

    Self-monitoring of blood glucose (SMBG) has been recommended for people with type 2 diabetes mellitus. This trial tested an automated self-management monitor (ASMM) that reminds patients to perform SMBG, provides feedback on results of SMBG, and action tips for improved self-management. This delayed-start trial randomized participants to using the ASMM immediately (IG), or following a delay of 6 months (DG). Glycated hemoglobin (HgbA1c) level and survey data was collected at home visits every 3 months. 44 diabetic men and women, mean age 70, completed the 12-month trial. Baseline HgbA1c was 8.1 % ± 1.0, dropping to 7.3 ± 1.0 by 9 months, with a 3-month lag in the DG (F = 3.56, p = 0.004). Decrease in HgbA1c was significantly correlated to increased frequency of SMBG, R = 0.588, p better glycemic control. This type of technology may provide real-time feedback not only to patient users, but to the health care system, allowing better integration of provider recommendations with patient-centered action.

  7. Clinical assessment of blood glucose homeostasis in horses: comparison of a continuous glucose monitoring system with a combined intravenous glucose and insulin test protocol.

    Science.gov (United States)

    Johnson, P J; Wiedmeyer, C E; LaCarrubba, A; Messer, N T; Dingfelder, H A; Cogswell, A M; Amorim, J R R; Ganjam, V K

    2011-01-01

    The combined glucose-insulin test (CGIT) is helpful for evaluating insulin sensitivity. A continuous glucose monitoring system (CGMS) reports changes in interstitial glucose concentrations as they occur in the blood. Use of the CGMS minimizes animal contact and may be useful when performing a CGIT. Results obtained using a CGMS are useful for the evaluation of glucose responses during the evaluation of insulin sensitivity in equids. Seven mature, obese ponies. Ponies were equipped with CGMS for determination of interstitial glucose concentrations. Glucose (150 mg/kg, i.v.) and insulin (0.1 U/kg, i.v.) were administered and blood glucose concentrations determined at (minutes after time zero) 1, 5, 15, 25, 35, 45, 60, 75, 90, 105, and 120 with a hand-held glucometer. Blood chemistry results were compared with simultaneously obtained results using CGMS. Concordance coefficients determined for comparison of blood glucose concentrations determined by a hand-held glucometer and those determined by CGMS after the zero time point were 0.623, 0.764, 0.834, 0.854, and 0.818 (for delays of 0, 5, 10, 15, and 20 minutes, respectively). Interstitial glucose concentrations obtained by the CGMS compared favorably to blood glucose concentrations. CGMS may be useful for assessment of glucose dynamics in the CGIT. Copyright © 2010 by the American College of Veterinary Internal Medicine.

  8. The DiGEM trial protocol – a randomised controlled trial to determine the effect on glycaemic control of different strategies of blood glucose self-monitoring in people with type 2 diabetes [ISRCTN47464659

    Directory of Open Access Journals (Sweden)

    Goyder Elizabeth

    2005-06-01

    Full Text Available Abstract Background We do not yet know how to use blood glucose self-monitoring (BGSM most effectively in the self-management of type 2 diabetes treated with oral medication. Training in monitoring may be most effective in improving glycaemic control and well being when results are linked to behavioural change. Methods/design DiGEM is a three arm randomised parallel group trial set in UK general practices. A total of 450 patients with type 2 diabetes managed with lifestyle or oral glucose lowering medication are included. The trial compares effectiveness of three strategies for monitoring glycaemic control over 12 months (1 a control group with three monthly HbA1c measurements; interpreted with nurse-practitioner; (2 A self-testing of blood glucose group; interpreted with nurse- practitioner to inform adjustment of medication in addition to 1; (3 A self-monitoring of blood glucose group with personal use of results to interpret results in relation to lifestyle changes in addition to 1 and 2. The trial has an 80% power at a 5% level of significance to detect a difference in change in the primary outcome, HbA1c of 0.5% between groups, allowing for an attrition rate of 10%. Secondary outcome measures include health service costs, well-being, and the intervention effect in sub-groups defined by duration of diabetes, current management, health status at baseline and co-morbidity. A mediation analysis will explore the extent to which changes in beliefs about self-management of diabetes between experimental groups leads to changes in outcomes in accordance with the Common Sense Model of illness. The study is open and has recruited more than half the target sample. The trial is expected to report in 2007. Discussion The DiGEM intervention and trial design address weaknesses of previous research by use of a sample size with power to detect a clinically significant change in HbA1c, recruitment from a well-characterised primary care population, definition

  9. Age-Adjusted Percentage of Adults Aged 18 Years or Older with Diagnosed Diabetes Performing Daily Self-Monitoring of ...

    Science.gov (United States)

    ... Years or Older with Diagnosed Diabetes Performing Daily Self-Monitoring of Blood Glucose, United States, 1994–2010 From ... years or older with diagnosed diabetes performing daily self-monitoring of blood glucose increased by 27.9 points, ...

  10. Structured self monitoring of blood glucose in Iranian people with type 2 diabetes; A cost consequence analysis

    Directory of Open Access Journals (Sweden)

    Aghili Rokhsareh

    2012-09-01

    Full Text Available Abstract Background Self-Monitoring of Blood Glucose (SMBG is considered as a key factor in management of people with diabetes which is a growing and cost demanding health problem. The purpose of this study was to investigate the effect of comprehensive patient management using structured SMBG on metabolic control as well as its cost consequence analysis. Methods Sixty subjects were recruited in an observational study for a period of 6 months. They were provided with the ACCU-CHEK 360° View tool to fill in the values of the 7-point blood glucose profiles in three consecutive days during the study on a monthly basis. Changes in metabolic control were assessed by HbA1c and lipid profile measurement at the beginning and at the end of the study. In addition, cost consequence analysis was done considering different level of health care professionals with or without insurance coverage. The Average Cost Effectiveness Ratio (ACER as well as Cost saving analysis were calculated and compared. Results The analysis showed significant reduction in HbA1c during the 6-month period in all subjects (P = 0.000. Furthermore, a positive effect was observed on lipid profile. The cost of endocrinologist’s visit in private sector was estimated to be 265.76 USD while this figure was149.15 USD for general practitioner in public sector with insurance coverage. Total complications and mortality cost saving was 154.8 USD. The lowest ACER was calculated for intervention with general practitioner in public sector with insurance coverage. Conclusion Structured SMBG results in significant improvement of glycemic status. Moreover, it is more cost saving in public sector with insurance coverage. It seems that general practitioner visits with insurance coverage is the most affordable option for people with type 2 diabetes.

  11. Association between blood glucose level derived using the oral glucose tolerance test and glycated hemoglobin level.

    Science.gov (United States)

    Kim, Hyoung Joo; Kim, Young Geon; Park, Jin Soo; Ahn, Young Hwan; Ha, Kyoung Hwa; Kim, Dae Jung

    2016-05-01

    Glycated hemoglobin (HbA1c) is widely used as a marker of glycemic control. Translation of the HbA1c level to an average blood glucose level is useful because the latter figure is easily understood by patients. We studied the association between blood glucose levels revealed by the oral glucose tolerance test (OGTT) and HbA1c levels in a Korean population. A total of 1,000 subjects aged 30 to 64 years from the Cardiovascular and Metabolic Diseases Etiology Research Center cohort were included. Fasting glucose levels, post-load glucose levels at 30, 60, and 120 minutes into the OGTT, and HbA1c levels were measured. Linear regression of HbA1c with mean blood glucose levels derived using the OGTT revealed a significant correlation between these measures (predicted mean glucose [mg/dL] = 49.4 × HbA1c [%] - 149.6; R (2) = 0.54, p Glucose (ADAG) study and Diabetes Control and Complications Trial (DCCT) cohort. Discrepancies between our results and those of the ADAG study and DCCT cohort may be attributable to differences in the test methods used and the extent of insulin secretion. More studies are needed to evaluate the association between HbA1c and self monitoring blood glucose levels.

  12. Barriers to blood glucose monitoring in a multiethnic community.

    Science.gov (United States)

    Zgibor, Janice C; Simmons, David

    2002-10-01

    We studied a multiethnic community to determine factors associated with blood glucose monitoring (BGM) and to determine the independent association between barriers to diabetes care and BGM. A total of 323 participants (35.6% European, 32.2% Maori, and 32.2% Pacific Islander) from the South Auckland Diabetes Project (free of major complications by self-report) completed a qualitative survey to determine barriers to diabetes care. Five barriers to diabetes care categories were generated including internal psychological (self efficacy/health beliefs), external psychological (psychosocial environment), internal physical (comorbidities/side effects of treatment), external physical (finance/access to care), and educational (knowledge of diabetes/services) barriers. Characteristics associated with BGM greater than or equal to twice weekly were female sex, HbA(1c) >8%, higher diabetes knowledge scores, and insulin use. Multivariate analyses demonstrated that those reporting external physical barriers (OR 0.47, 95% CI 0.26-0.84), external psychological barriers (0.55, 0.30-1.0), and internal psychological barriers (0.56, 0.32-1.0) were less likely to perform BGM independent of ethnicity, insulin use, age, sex, diabetes knowledge, and glycemic control. Further multivariate analyses demonstrated that those reporting external physical barriers, particularly related to personal finance, were less likely to perform BGM. These data demonstrate that patient-reported barriers to diabetes care are associated with BGM, particularly in relation to financial, psychosocial, and self-efficacy issues. Understanding these barriers and overcoming them within the context of the patient's ethnic environment may lead to increased participation in self-care.

  13. Continuous glucose monitoring for patients with diabetes: an evidence-based analysis.

    Science.gov (United States)

    2011-01-01

    To determine the effectiveness and cost-effectiveness of continuous glucose monitoring combined with self-monitoring of blood glucose compared with self-monitoring of blood glucose alone in the management of diabetes. CONDITION AND TARGET POPULATION Diabetes is a chronic metabolic disorder that interferes with the body's ability to produce or effectively use insulin. In 2005, an estimated 816,000 Ontarians had diabetes representing 8.8% of the province's population. Type 1 or juvenile onset diabetes is a life-long disorder that commonly manifests in children and adolescents. It represents about 10% of the total diabetes population and involves immune-mediated destruction of insulin producing cells in the pancreas. The loss of these cells necessitates insulin therapy. Type 2 or "adult-onset" diabetes represents about 90% of the total diabetes population and is marked by a resistance to insulin or insufficient insulin secretion. The risk of developing type 2 diabetes increases with age, obesity and lack of physical activity. Approximately 30% of patients with type 2 diabetes eventually require insulin therapy. Continuous glucose monitors (CGM) measure glucose levels in the interstitial fluid surrounding skin cells. These measurements supplement conventional self monitoring of blood glucose (SMBG) by monitoring the glucose fluctuations continuously over a stipulated period of time, thereby identifying fluctuations that would not be identified with SMBG alone. To use a CGM, a sensor is inserted under the skin to measure glucose in the interstitial fluid. The sensor is wired to a transmitter. The device requires calibration using a capillary blood glucose measurement. Each sensor continuously measures glucose every 5-10 seconds averaging these values every 5 minutes and storing this data in the monitors memory. Depending on the device used, the algorithm in the device can measure glucose over a 3 or 6 day period using one sensor. After the 3 or 6 day period, a new

  14. Influence of Partial Pressure of Oxygen in Blood Samples on Measurement Performance in Glucose-Oxidase-Based Systems for Self-Monitoring of Blood Glucose

    Science.gov (United States)

    Baumstark, Annette; Schmid, Christina; Pleus, Stefan; Haug, Cornelia; Freckmann, Guido

    2013-01-01

    Background Partial pressure of oxygen (pO2) in blood samples can affect blood glucose (BG) measurements, particularly in systems that employ the glucose oxidase (GOx) enzyme reaction on test strips. In this study, we assessed the impact of different pO2 values on the performance of five GOx systems and one glucose dehydrogenase (GDH) system. Two of the GOx systems are labeled by the manufacturers to be sensitive to increased blood oxygen content, while the other three GOx systems are not. Methods Aliquots of 20 venous samples were adjusted to the following pO2 values: pO2 ~70 mmHg, which is considered to be similar to pO2 in capillary blood samples, and the mean BG result at pO2 pO2 pO2 ≥150 mmHg. For both pO2 levels, relative differences of all tested GOx systems were significant (p pO2 values pO2 variations lead to clinically relevant BG measurement deviations in GOx systems, even in GOx systems that are not labeled as being oxygen sensitive. PMID:24351177

  15. Glycemic load, exercise, and monitoring blood glucose (GEM): A paradigm shift in the treatment of type 2 diabetes mellitus.

    Science.gov (United States)

    Cox, Daniel J; Taylor, Ann G; Singh, Harsimran; Moncrief, Matthew; Diamond, Anne; Yancy, William S; Hegde, Shefali; McCall, Anthony L

    2016-01-01

    This preliminary RCT investigated whether an integrated lifestyle modification program that focuses on reducing postprandial blood glucose through replacing high with low glycemic load foods and increasing routine physical activities guided by systematic self-monitoring of blood glucose (GEM) could improve metabolic control of adults with type 2 diabetes mellitus, without compromising other physiological parameters. Forty-seven adults (mean age 55.3 years) who were diagnosed with type 2 diabetes mellitus for less than 5 years (mean 2.1 years), had HbA1c ≥ 7% (mean 8.4%) and were not taking blood glucose lowering medications, were randomized to routine care or five 1-h instructional sessions of GEM. Assessments at baseline and 6 months included a physical exam, metabolic and lipid panels, and psychological questionnaires. The GEM intervention led to significant improvements in HbA1c (decreasing from 8.4 to 7.4% [69-57 mmol/mol] compared with 8.3 to 8.3% [68-68 mmol/mol] for routine care; Interaction ptype 2 diabetes mellitus. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Can gingival crevicular blood be relied upon for assessment of blood glucose level?

    Science.gov (United States)

    Dwivedi, Shivani; Verma, Sharmila J; Shah, Monali; Jain, Kapil

    2014-11-01

    Diabetes mellitus (DM) is undiagnosed in approximately half of the patients actually suffering from the disease. In addition, the prevalence of DM is more than twice as high as in patients with periodontitis when compared to periodontally healthy subjects. Thus, a high number of patients with periodontitis may have undiagnosed DM. The purpose of the present study was to evaluate whether blood oozing from a gingival crevice during routine periodontal examination can be used for determining glucose levels. Observational cross-sectional studies were carried out in 75 patients (43 males and 32 females) with chronic periodontitis who were divided into two groups: Group I and Group II, respectively. Blood oozing from the gingival crevices of anterior teeth following periodontal probing was collected with the stick of glucose self-monitoring device, and the blood glucose levels were measured. At the same time, finger-prick blood was taken for glucometric analysis and subsequent readings were recorded. The patient's blood glucose values ranged from 74 to 256 mg/dl. The comparison between gingival crevicular blood and finger-prick blood showed a very strong correlation, with a t value of 3.97 (at P value = 0.001). The data from this study has shown that GCB collected during diagnostic periodontal examination can be an excellent source of blood for glucometric analysis.

  17. PROFESSIONAL FLASH CONTINUOUS GLUCOSE MONITORING WITH AMBULATORY GLUCOSE PROFILE REPORTING TO SUPPLEMENT A1C: RATIONALE AND PRACTICAL IMPLEMENTATION.

    Science.gov (United States)

    Hirsch, Irl B; Verderese, Carol A

    2017-11-01

    Recent consensus statements strongly advocate downloading and interpreting continuous glucose data for diabetes management in patients with type 1 or 2 diabetes. Supplementing periodic glycated hemoglobin (A1C) testing with intermittent continuous glucose monitoring (CGM) using a standardized report form known as the ambulatory glucose profile (AGP) is an evolving standard of care. The rationale for this approach and its implementation with a recently approved novel monitoring technology are explored. Search of the medical literature, professional guidelines, and real-world evidence guided this introduction of an integrative practice framework that uses AGP in conjunction with intermittent flash continuous glucose monitoring (FCGM) as a supplement to A1C testing. The combination of intermittent continuous glucose pattern analysis, standardized glucose metrics, and a readily interpretable data report has the potential to practically extend the recognized benefits of CGM to more patients and clarify the relationship between A1C and average glucose levels in individual cases. Novel FCGM technologies portend greater use of continuous forms of glucose monitoring and wider adoption of AGP report analysis. Additional formal and empirical evidence is needed to more fully characterize best practice. A1C = glycated hemoglobin; AGP = ambulatory glucose profile; CGM = continuous glucose monitoring; FCGM = flash continuous glucose monitoring; IQR = interquartile range; SMBG = self-monitoring of blood glucose.

  18. Clinical implication of blood glucose monitoring in general dental offices: the Ehime Dental Diabetes Study

    OpenAIRE

    Harase, Tadahiro; Nishida, Wataru; Hamakawa, Tomohiro; Hino, Satoshi; Shigematsu, Kenji; Kobayashi, Satoru; Sako, Hirofumi; Ito, Shirou; Murakami, Hajime; Nishida, Kei; Inoue, Hiroshi; Fujisawa, Masahito; Yoshizu, Hiroshi; Kawamura, Ryoichi; Takata, Yasunori

    2015-01-01

    Objective We examined whether general dentists can contribute to the detection of patients with undiagnosed diabetes and prediabetes by monitoring blood glucose in dental clinics. Research design and methods A total of 716 patients who visited clinics for dental treatment were enrolled and classified into 3 groups (mild, moderate, and severe) according to Kornman's criteria for periodontitis. The correlations between the casual blood glucose level, presence or absence of the history of diabet...

  19. A 3D paper-based enzymatic fuel cell for self-powered, low-cost glucose monitoring.

    Science.gov (United States)

    Fischer, Christopher; Fraiwan, Arwa; Choi, Seokheun

    2016-05-15

    In this work, we demonstrate a novel low-cost, self-powered paper-based biosensor for glucose monitoring. The device operating mechanism is based on a glucose/oxygen enzymatic fuel cell using an electrochemical energy conversion as a transducing element for glucose monitoring. The self-powered glucose biosensor features (i) a 3D origami paper-based structure for easy system integration onto paper, (ii) an air-cathode on paper for low-cost production and easy operation, and (iii) a screen printed chitosan/glucose oxidase anode for stable current generation as an analytical signal for glucose monitoring. The sensor showed a linear range of output current at 1-5mM glucose (R(2)=0.996) with a sensitivity of 0.02 µA mM(-1). The advantages offered by such a device, including a low cost, lack of external power sources/sophisticated external transducers, and the capacity to rapidly generate reliable results, are well suited for the clinical and social settings of the developing world. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Accuracy evaluation of contour next compared with five blood glucose monitoring systems across a wide range of blood glucose concentrations occurring in a clinical research setting.

    Science.gov (United States)

    Klaff, Leslie J; Brazg, Ronald; Hughes, Kristen; Tideman, Ann M; Schachner, Holly C; Stenger, Patricia; Pardo, Scott; Dunne, Nancy; Parkes, Joan Lee

    2015-01-01

    This study evaluated the accuracy of Contour(®) Next (CN; Bayer HealthCare LLC, Diabetes Care, Whippany, NJ) compared with five blood glucose monitoring systems (BGMSs) across a wide range of clinically occurring blood glucose levels. Subjects (n=146) were ≥ 18 years and had type 1 or type 2 diabetes. Subjects' glucose levels were safely lowered or raised to provide a wide range of glucose values. Capillary blood samples were tested on six BGMSs and a YSI glucose analyzer (YSI Life Sciences, Inc., Yellow Springs, OH) as the reference. Extreme glucose values were achieved by glucose modification of the blood sample. System accuracy was assessed by mean absolute difference (MAD) and mean absolute relative difference (MARD) across several glucose ranges, with glucose range (Abbott Diabetes Care, Inc., Alameda, CA), 2.77 mg/dL; OneTouch(®) Ultra(®) 2 (LifeScan, Inc., Milpitas, CA), 10.20 mg/dL; OneTouch(®) Verio(®) Pro (LifeScan, Inc.), 4.53 mg/dL; and Truetrack(®) (Nipro Diagnostics, Inc., Fort Lauderdale, FL), 11.08 mg/dL. The lowest MAD in the low glucose range, from CN, was statistically significantly lower than those of the other BGMSs with the exception of the FSL. CN also had a statistically significantly lower MARD than all other BGMSs in the low glucose range. In the overall glucose range (21-496 mg/dL), CN yielded the lowest MAD and MARD values, which were statistically significantly lower in comparison with the other BGMSs. When compared with other BGMSs, CN demonstrated the lowest mean deviation from the reference value (by MAD and MARD) across multiple glucose ranges.

  1. Glucose control in pregnant women with type 1 diabetes mellitus: Studies using a continuous glucose monitoring system

    NARCIS (Netherlands)

    Kerssen, Anneloes

    2005-01-01

    Pregnancy in women with type 1 diabetes mellitus is associated with neonatal morbidity. It is commonly agreed that the morbidity decreases when diabetic control is tightened. The most common methods for the determination of diabetic control are the self-monitoring of blood glucose levels (SMBG) and

  2. Evaluation of two methods of rapid blood-glucose monitoring by unskilled personnel during surgery

    DEFF Research Database (Denmark)

    Madsbad, S; Adelhøj, B; Bigler, Dennis Richard

    1984-01-01

    The accuracy of two rapid methods of blood-glucose monitoring without (Haemo-glucotest 1-44) and with a reflectance meter (Hypocount B) was compared using a laboratory method. The assessment was carried out by personnel with no previous experience in measuring blood glucose. Eighty-five percent...... of the 92 measurements obtained with the hypocount B were within +/- 20% of the laboratory glucose values. Using haemo-glucotest 1-44 strips, 74% of the readings were within +/- 20% of the reference laboratory values. For values below 5.5 mmol/l, there was a tendency for results to be too low, with 77......% of the readings below laboratory values -20%. All situations with severe hypoglycaemia were detected with both strips. The study also demonstrates the ineffectiveness of s.c. insulin regimens during surgery. Only 47% of the measured blood glucose values were within the range of 5.5-10 mmol/l and two of ten...

  3. Noninvasive glucose monitoring using saliva nano-biosensor

    Directory of Open Access Journals (Sweden)

    Wenjun Zhang

    2015-06-01

    Full Text Available Millions of people worldwide live with diabetes and several millions die from it each year. A noninvasive, painless method of glucose testing would highly improve compliance and glucose control while reducing complications and overall disease management costs. To provide accurate, low cost, and continuous glucose monitoring, we have developed a unique, disposable saliva nano-biosensor. More than eight clinical trials on real-time noninvasive salivary glucose monitoring were carried out on two healthy individuals (a 2–3 h-period for each trial, including both regular food and standard glucose beverage intake with more than 35 saliva samples obtained. Excellent clinical accuracy was revealed as compared to the UV Spectrophotometer. By measuring subjects’ salivary glucose and blood glucose in parallel, we found the two generated profiles share the same fluctuation trend but the correlation between them is individual dependent. There is a time lag between the peak glucose values from blood and from saliva. However, the correlation between the two glucose values at fasting is constant for each person enabling noninvasive diagnosis of diabetes through saliva instead of blood. Furthermore, a good correlation of glucose levels in saliva and in blood before and 2 h after glucose intake was observed. Glucose monitoring before and 2 h after meals is usually prescribed by doctors for diabetic patients. Thus, this disposable biosensor will be an alternative for real-time salivary glucose tracking at any time.

  4. Self-monitoring of blood glucose among patients with diabetes in Jordan: Perception, adherence, and influential factors.

    Science.gov (United States)

    Al-Keilani, Maha S; Almomani, Basima A; Al-Sawalha, Nour A; Shhabat, Batool A

    2017-04-01

    To investigate the self-monitoring of blood glucose (SMBG) adherence among Jordanian patients with diabetes and to identify the predictive factors. A cross-sectional survey was carried out in 18 hospitals and healthcare centers covering south, north, and middle of Jordan. All patients with diabetes attending endocrinology clinics from May to December, 2015 were approached. The questionnaires were distributed by trained pharmacists and were self-administered. A total of 1079 participants completed the survey. Only 59% of participants were SMBG adherent. Predictors of SMBG adherence were treatment regimen; insulin with oral hypoglycemic agents (p=0.044, CI 1.023-5.274, OR=2.323) or insulin only (p=0.005, CI 1.225-3.115, OR=1.953), and health education on how to use the SMBG meter (p<0.001, CI 10.538-32.497, OR=18.506). The frequency of SMBG was significantly associated with the treatment regimen, with patients who were taking oral hypoglycemic agents (p<0.001) or insulin therapy (p=0.004) tested more frequently as compared to others. Additionally, the frequency of testing was significantly associated with the reason of performing SMBG (p<0.001). Frequency of daily testing was the highest among patients who performed SMBG to know if they were hypoglycemic (48.9%) or hyperglycemic (48.0%), or to inform their doctors (28.4%). SMBG adherence was suboptimal. Predictors of SMBG adherence were treatment regimen and health education about the SMBG meter. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Simultaneous Monitoring of Glucose and Lactate by Self-powered Biosensor

    Directory of Open Access Journals (Sweden)

    Ankit Baingane

    2017-07-01

    Full Text Available A dual self-powered biosensing system integrated with energy amplification circuit is described, for simultaneously monitoring glucose and lactate. The self-powered biosensing system is based on the conventional enzymatic biofuel cell equipped with three 4 mm x 4 mm massively dense mesh network of multi-walled carbon nanotubes (MWCNTs bioelectrodes in parallel configuration. The bioelectrodes employed pyroquinoline quinone glucose dehydrogenase (PQQ-GDH as the biocatalyst for the glucose oxidation and D-Lactate dehydrogenase (D-LDH as the biocatalyst for lactate oxidation. A common laccase modified-MWCNTs bioelectrode served as the cathode for the reduction of molecular oxygen. Two charge pump circuits were coupled with 0.1 mF capacitors functioning as transducers. The advantages of employing capacitors were coupled with the efficient energy amplification of the charge pump circuit to amplify the power output from each of the biofuel and charge/discharge the corresponding capacitor. Under operating conditions, the open circuit voltages and short circuit current densities for 180 mg/dL glucose and 25 mM lactate were 339.2 mV and 228.75 µA/cm2 and 370 mV and 66.17 µA/cm2, respectively. The responses for glucose and lactate were linear up to 630 mg/dL and 30 mM with sensitivities of 20.11 Hz/ mM cm-2 and 9.869 Hz/ mM cm-2, respectively. The potential of the described system was demonstrated to provide stable voltage and current output that was capable of driving the charge pump circuit integrated with the capacitor for simultaneously monitoring glucose and lactate. These results were in good agreement with those previously reported.

  6. The Rectangle Target Plot: A New Approach to the Graphical Presentation of Accuracy of Systems for Self-Monitoring of Blood Glucose.

    Science.gov (United States)

    Stephan, Peter; Schmid, Christina; Freckmann, Guido; Pleus, Stefan; Haug, Cornelia; Müller, Peter

    2015-10-09

    The measurement accuracy of systems for self-monitoring of blood glucose (SMBG) is usually analyzed by a method comparison in which the analysis results are displayed using difference plots or similar graphs. However, such plots become difficult to comprehend as the number of data points displayed increases. This article introduces a new approach, the rectangle target plot (RTP), which aims to provide a simplified and comprehensible visualization of accuracy data. The RTP is based on ISO 15197 accuracy evaluations of SMBG systems. Two-sided tolerance intervals for normally distributed data are calculated for absolute and relative differences at glucose concentrations Plotting these tolerance intervals generates a rectangle whose center indicates the systematic measurement difference of the investigated system relative to the comparison method. The size of the rectangle depends on the measurement variability. The RTP provides a means of displaying measurement accuracy data in a simple and comprehensible manner. The visualization is simplified by reducing the displayed information from typically 200 data points to just 1 rectangle. Furthermore, this allows data for several systems or several lots from 1 system to be displayed clearly and concisely in a single graph. © 2015 Diabetes Technology Society.

  7. Non Invasive Glucose Monitoring System Using Nanosensors

    Directory of Open Access Journals (Sweden)

    Rajasekaran C.

    2016-03-01

    Full Text Available The most existing future technology is an outcome of the fields of computer science, electronics and Biology. Health inequalities have become the focus of a number of descriptive and analytical studies. One of the health related problem is diabetes. Diabetes at its serious stage leads to blindness. Monitoring glucose level in blood is one preventive measure to check diabetes. Increase in Glucose is a common risk factor which leads to hyperglycemia, Hypoglycemia, heart attack, stokes and aneurysms. A glucose monitoring system continuously measures and monitors the glucose level in a patient’s blood. Normal blood glucose level of human is 70-110 milligram/deciliter. The level is maintained by using the secretion of insulin inside the body. When the insulin level gets increased it leads to hyperglycemia, and hypoglycemia when the level gets decreased. Hyperglycemia disease includes cataract,edema, hypertension, polyuria and polydipsia. Hypoglycemaia disease includes confusion, giddiness, unconsciousness, coma and death. The proposed system finds a new way for measuring the glucose level. The work uses Nanopellets which measure’s the glucose level, when the glucose level gets increased or decreased, it will be automatically get monitored and processed using microcontroller (MSP430G2553. The information is then send to the doctor through GSM.

  8. Self-monitoring and self-management: new interventions to improve blood pressure control.

    Science.gov (United States)

    McCartney, David E; McManus, Richard J

    2016-11-01

    This article reviews recent developments in self-monitoring and self-management of hypertension aimed at the improvement of blood pressure (BP) control. There is an increasing body of evidence examining the effects of self-monitoring on BP control. Several landmark studies in recent years have demonstrated clinically relevant benefit from self-monitoring based interventions. Self-management of BP with self-titration has shown particular promise, as has self-monitoring combined with intensive health-care led support. There is a lack of evidence on the benefits of self-monitoring for those with important comorbidity such as coronary heart disease, chronic kidney disease, diabetes and previous stroke, and future research should be directed towards this. There is a growing body of evidence supporting the use of self-monitoring along with additional intervention including telemonitoring and self-titration in improving BP control. Further research is needed to understand which patients are likely to benefit most and how this is best integrated with routine care.

  9. User Performance Evaluation of Four Blood Glucose Monitoring Systems Applying ISO 15197:2013 Accuracy Criteria and Calculation of Insulin Dosing Errors.

    Science.gov (United States)

    Freckmann, Guido; Jendrike, Nina; Baumstark, Annette; Pleus, Stefan; Liebing, Christina; Haug, Cornelia

    2018-04-01

    The international standard ISO 15197:2013 requires a user performance evaluation to assess if intended users are able to obtain accurate blood glucose measurement results with a self-monitoring of blood glucose (SMBG) system. In this study, user performance was evaluated for four SMBG systems on the basis of ISO 15197:2013, and possibly related insulin dosing errors were calculated. Additionally, accuracy was assessed in the hands of study personnel. Accu-Chek ® Performa Connect (A), Contour ® plus ONE (B), FreeStyle Optium Neo (C), and OneTouch Select ® Plus (D) were evaluated with one test strip lot. After familiarization with the systems, subjects collected a capillary blood sample and performed an SMBG measurement. Study personnel observed the subjects' measurement technique. Then, study personnel performed SMBG measurements and comparison measurements. Number and percentage of SMBG measurements within ± 15 mg/dl and ± 15% of the comparison measurements at glucose concentrations performed by lay-users. The study was registered at ClinicalTrials.gov (NCT02916576). Ascensia Diabetes Care Deutschland GmbH.

  10. Can the Accuracy of Home Blood Glucose Monitors be affected by the Received Signal Strength of 900 MHz GSM Mobile Phones?

    Science.gov (United States)

    Eslami, J; Ghafaripour, F; Mortazavi, S A R; Mortazavi, S M J; Shojaei-Fard, M B

    2015-12-01

    People who use home blood glucose monitors may use their mobile phones in the close vicinity of medical devices. This study is aimed at investigating the effect of the signal strength of 900 MHz GSM mobile phones on the accuracy of home blood glucose monitors. Sixty non-diabetic volunteer individuals aged 21 - 28 years participated in this study. Blood samples were analyzed for glucose level by using a common blood glucose monitoring system. Each blood sample was analyzed twice, within ten minutes in presence and absence of electromagnetic fields generated by a common GSM mobile phone during ringing. Blood samples were divided into 3 groups of 20 samples each. Group 1: exposure to mobile phone radiation with weak signal strength. Group2: exposure to mobile phone radiation with strong signal strength. Group3: exposure to a switched-on mobile phone with no signal strength. The magnitude of the changes in the first, second and third group between glucose levels of two measurements (׀ΔC׀) were 7.4±3.9 mg/dl, 10.2±4.5 mg/dl, 8.7±8.4 mg/dl respectively. The difference in the magnitude of the changes between the 1st and the 3rd groups was not statistically significant. Furthermore, the difference in the magnitude of the changes between the 2nd and the 3rd groups was not statistically significant. Findings of this study showed that the signal strength of 900 MHz GSM mobile phones cannot play a significant role in changing the accuracy of home blood glucose monitors.

  11. Optical coherence tomography for glucose monitoring in blood

    Science.gov (United States)

    Ullah, Hafeez; Hussain, Fayyaz; Ikram, Masroor

    2015-08-01

    In this review, we have discussed the potential application of the emerging imaging modality, i.e., optical coherence tomography (OCT) for glucose monitoring in biological tissues. OCT provides monitoring of glucose diffusion in different fibrous tissues like in sclera by determining the permeability rate with acceptable accuracy both in type 1 and in type 2 diabetes. The maximum precision of glucose measurement in Intralipid suspensions, for example, with the OCT technique yields the accuracy up to 4.4 mM for 10 % Intralipid and 2.2 mM for 3 % Intralipid.

  12. Impact of self-monitoring of blood glucose log reliability on long-term glycemic outcomes in children with type 1 diabetes

    Directory of Open Access Journals (Sweden)

    Chitra Selvan

    2017-01-01

    Full Text Available Introduction: Logbooks of self-monitoring of blood glucose (SMBG are useful in the modulation of insulin regimens, which aid in achieving glycemic control in type 1 diabetes mellitus (T1DM. However, discrepancies in SMBG charting may impede its utility. This study aimed to assess the accuracy of log entries and its impact on long-term glycemic control. Methods: SMBG in logbooks was compared with readings in glucometer memory and discrepancies between the two were evaluated in 101 children with T1DM. The relationship between these discrepancies and glycated hemoglobin (HbA1c over 44 months was assessed. Results: Errors in glucose charting were observed in 32.67% children. The most common observed error was omission (42.42%, followed by fabrication (27.27%, erroneous (18.18%, and others (12.12%. Age was not significantly different among children having accurate versus inaccurate SMBG logs. During follow-up of 44 months, children with accurate SMBG logs consistently had lower HbA1c as compared to children having inaccurate logs, which was statistically significant at 4, 16, 20, and 28 months' follow-up. The same was reflected in the proportion of children achieving HbA1c <7% and 7%–9%. Of the 14 children who had omissions, 9 had omission of high values only, 3 patients had omission of low values only, 1 had omission of both high and low values, and 1 had omission of normal values. Among logs with fabrication, parents were responsible in 2 of 9 incidents. In the remaining 7, it was the child himself/herself. Children with fabrication consistently had the highest HbA1c values among the different types of inaccurate blood glucose chartings, which was statistically significant at 32 and 36 months of follow-up. Conclusions: Reliability of SMBG logs is a significant problem among children with T1DM at our center. Children with accurate logs of SMBG readings were more likely to have better glycemic control on long-term follow-up.

  13. Design of a prospective clinical study on the agreement between the Continuous GlucoseMonitor, a novel device for CONTinuous ASSessment of blood GLUcose levels, and the RAPIDLab® 1265 blood gas analyser: The CONTASSGLU study

    OpenAIRE

    Zimmermann Johannes B; Lehmann Monika; Hofer Stefan; Hüsing Johannes; Alles Catharina; Werner Jens; Stiller Jürgen; Künnecke Wolfgang; Luntz Steffen; Motsch Johann; Weigand Markus A

    2012-01-01

    Abstract Background Although a device is needed to continuously measure blood glucose levels within an intensive care setting, and several large-scale prospective studies have shown that patients might benefit from intensive insulin, potassium, or glucose therapy during intensive care, no devices are currently available to continuously assess blood glucose levels in critically ill patients. We conceived the study described here to evaluate the clinical use of the Continuous Glucose Monitor (C...

  14. Performance of two updated blood glucose monitoring systems: an evaluation following ISO 15197:2013.

    Science.gov (United States)

    Pleus, Stefan; Baumstark, Annette; Rittmeyer, Delia; Jendrike, Nina; Haug, Cornelia; Freckmann, Guido

    2016-05-01

    Objective For patients with diabetes, regular self-monitoring of blood glucose (SMBG) is essential to ensure adequate glycemic control. Therefore, accurate and reliable blood glucose measurements with SMBG systems are necessary. The international standard ISO 15197 describes requirements for SMBG systems, such as limits within which 95% of glucose results have to fall to reach acceptable system accuracy. The 2013 version of this standard sets higher demands, especially regarding system accuracy, than the currently still valid edition. ISO 15197 can be applied by manufacturers to receive a CE mark for their system. Research design and methods This study was an accuracy evaluation following ISO 15197:2013 section 6.3 of two recently updated SMBG systems (Contour * and Contour TS; Bayer Consumer Care AG, Basel, Switzerland) with an improved algorithm to investigate whether the systems fulfill the requirements of the new standard. For this purpose, capillary blood samples of approximately 100 participants were measured with three test strip lots of both systems and deviations from glucose values obtained with a hexokinase-based comparison method (Cobas Integra † 400 plus; Roche Instrument Center, Rotkreuz, Switzerland) were determined. Percentages of values within the acceptance criteria of ISO 15197:2013 were calculated. This study was registered at clinicaltrials.gov (NCT02358408). Main outcome Both updated systems fulfilled the system accuracy requirements of ISO 15197:2013 as 98.5% to 100% of the results were within the stipulated limits. Furthermore, all results were within the clinically non-critical zones A and B of the consensus error grid for type 1 diabetes. Conclusions The technical improvement of the systems ensured compliance with ISO 15197 in the hands of healthcare professionals even in its more stringent 2013 version. Alternative presentation of system accuracy results in radar plots provides additional information with certain advantages. In addition

  15. Correlation of Salivary Glucose Level with Blood Glucose Level in Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Arati S. Panchbhai

    2012-07-01

    Full Text Available Objectives: There is alarming rise in number of people with diabetes mellitus over these years. If glucose in saliva is linked to glucose in blood it can be used to detect diabetes mellitus at an early stage. The present study is undertaken with the aim to assess the correlation of salivary glucose level with blood glucose level in people with diabetes mellitus. Material and Methods: For investigations, 2 sets of samples of people with diabetes and the age and sex matched non-diabetic subjects were recruited. The salivary glucose was analyzed in unstimulated whole saliva samples using glucose oxidase method. Pearson’s correlation coefficient test was applied to assess the correlation between salivary glucose level and blood glucose level. Results: The significant (P < 0.05 positive correlation of salivary glucose level and fasting blood glucose level was observed in people with uncontrolled diabetes in both the sets of samples.Conclusions: Although study suggests some potential for saliva as a marker in monitoring of diabetes mellitus, there are many aspects that need clarification before we reach to a conclusion.

  16. Can the Accuracy of Home Blood Glucose Monitors be affected by the Received Signal Strength of 900 MHz GSM Mobile Phones?

    Directory of Open Access Journals (Sweden)

    Eslami J.

    2015-12-01

    Full Text Available Background: People who use home blood glucose monitors may use their mobile phones in the close vicinity of medical devices. This study is aimed at investigating the effect of the signal strength of 900 MHz GSM mobile phones on the accuracy of home blood glucose monitors. Methods: Sixty non-diabetic volunteer individuals aged 21 - 28 years participated in this study. Blood samples were analyzed for glucose level by using a common blood glucose monitoring system. Each blood sample was analyzed twice, within ten minutes in presence and absence of electromagnetic fields generated by a common GSM mobile phone during ringing. Blood samples were divided into 3 groups of 20 samples each. Group 1: exposure to mobile phone radiation with weak signal strength. Group2: exposure to mobile phone radiation with strong signal strength. Group3: exposure to a switched–on mobile phone with no signal strength. Results: The magnitude of the changes in the first, second and third group between glucose levels of two measurements (׀ΔC׀ (were 7.4±3.9 mg/dl, 10.2±4.5 mg/ dl, 8.7±8.4 mg/dl respectively. The difference in the magnitude of the changes between the 1st and the 3rd groups was not statistically significant. Furthermore, the difference in the magnitude of the changes between the 2nd and the 3rd groups was not statistically significant. Conclusion: Findings of this study showed that the signal strength of 900 MHz GSM mobile phones cannot play a significant role in changing the accuracy of home blood glucose monitors.

  17. Can the Accuracy of Home Blood Glucose Monitors be affected by the Received Signal Strength of 900 MHz GSM Mobile Phones?

    Science.gov (United States)

    Eslami, J.; Ghafaripour, F.; Mortazavi, S.A.R.; Mortazavi, S.M.J.; Shojaei-fard, M.B.

    2015-01-01

    Background People who use home blood glucose monitors may use their mobile phones in the close vicinity of medical devices. This study is aimed at investigating the effect of the signal strength of 900 MHz GSM mobile phones on the accuracy of home blood glucose monitors. Methods Sixty non-diabetic volunteer individuals aged 21 - 28 years participated in this study. Blood samples were analyzed for glucose level by using a common blood glucose monitoring system. Each blood sample was analyzed twice, within ten minutes in presence and absence of electromagnetic fields generated by a common GSM mobile phone during ringing. Blood samples were divided into 3 groups of 20 samples each. Group 1: exposure to mobile phone radiation with weak signal strength. Group2: exposure to mobile phone radiation with strong signal strength. Group3: exposure to a switched–on mobile phone with no signal strength. Results The magnitude of the changes in the first, second and third group between glucose levels of two measurements (׀ΔC׀) were 7.4±3.9 mg/dl, 10.2±4.5 mg/dl, 8.7±8.4 mg/dl respectively. The difference in the magnitude of the changes between the 1st and the 3rd groups was not statistically significant. Furthermore, the difference in the magnitude of the changes between the 2nd and the 3rd groups was not statistically significant. Conclusion Findings of this study showed that the signal strength of 900 MHz GSM mobile phones cannot play a significant role in changing the accuracy of home blood glucose monitors. PMID:26688798

  18. Understanding self-monitoring of blood glucose among individuals with type 1 and type 2 diabetes: an information-motivation-behavioral skills analysis.

    Science.gov (United States)

    Fisher, William A; Kohut, Taylor; Schachner, Holly; Stenger, Patricia

    2011-01-01

    To evaluate self-monitoring of blood glucose (SMBG) information deficits, motivational obstacles, and behavioral skills limitations in individuals with type 1 and type 2 diabetes, and to assess the relationship of these deficits with SMBG frequency. Individuals with type 1 (n = 208; 103 male, 105 female) and type 2 (n = 218; 107 male, 111 female) diabetes participated in an online survey assessing SMBG information, motivation, behavioral skills, and behavior. A substantial proportion of participants scored as SMBG uninformed, unmotivated, and unskilled on specific assessment items. SMBG information, motivation, and behavioral skills deficits were significantly correlated with SMBG frequency, such that individuals with type 1 or type 2 diabetes, who were less informed, less motivated, and less behaviorally skilled, reported lower frequency of SMBG. Common and consequential SMBG information, motivation, and behavioral skills deficits were present, and patients with these gaps were less likely to test frequently. Clinical education focusing on relevant SMBG information, motivation to act, and behavioral skills for acting effectively may be a priority.

  19. Self-monitoring of Blood Glucose in Non-Insulin Treated Type 2 Diabetes (The SMBG Study): study protocol for a randomised controlled trial.

    Science.gov (United States)

    Parsons, Sharon; Luzio, Stephen; Bain, Stephen; Harvey, John; McKenna, Jillian; Khan, Atir; Rice, Sam; Watkins, Alan; Owens, David R

    2017-01-26

    The benefit of Self-monitoring of Blood Glucose (SMBG) in people with non-insulin treated type 2 diabetes remains unclear with inconsistent evidence from randomised controlled trials fuelling the continued debate. Lack of a consistent finding has been attributed to variations in study population and design, including the SMBG intervention. There is a growing consensus that structured SMBG, whereby the person with diabetes and health care provider are educated to detect patterns of glycaemic abnormality and take appropriate action according to the blood glucose profiles, can prove beneficial in terms of lowering HbA1c and improving overall well-being. Despite this, many national health agencies continue to issue guidelines restricting the use of SMBG in non-insulin treated type 2 diabetes. The SMBG Study is a 12 month, multi-centre, randomised controlled trial in people with type 2 diabetes not on insulin therapy who have poor glycaemic control (HbA1c ≥58 mmol/mol / 7.5%). The participants will be randomised into three comparative groups: Group 1 will act as a control group and receive their usual diabetes care; Group 2 will undertake structured SMBG with clinical review every 3 months; Group 3 will undertake structured SMBG with additional monthly telecare support from a trained study nurse. A total of 450 participants will be recruited from 16 primary and secondary care sites across Wales and England. The primary outcome measure will be HbA1c at 12 months with secondary measures to include weight, BMI, total cholesterol and HbA1c levels at 3, 6, 9 and 12 months. Participant well-being and attitude towards SMBG will be monitored throughout the course of the study. Recruitment began in December 2012 with the last participant visit due in September 2016. This study will attempt to answer the question of whether structured SMBG provides any benefits to people with poorly controlled type 2 diabetes who are not being treated with insulin. The data will also

  20. Four-Point Preprandial Self-Monitoring of Blood Glucose for the Assessment of Glycemic Control and Variability in Patients with Type 2 Diabetes Treated with Insulin and Vildagliptin

    Directory of Open Access Journals (Sweden)

    Andrea Tura

    2015-01-01

    Full Text Available The study explored the utility of four-point preprandial glucose self-monitoring to calculate several indices of glycemic control and variability in a study adding the DPP-4 inhibitor vildagliptin to ongoing insulin therapy. This analysis utilized data from a double-blind, randomized, placebo-controlled crossover study in 29 patients with type 2 diabetes treated with vildagliptin or placebo on top of stable insulin dose. During two 4-week treatment periods, self-monitoring of plasma glucose was undertaken at 4 occasions every day. Glucose values were used to assess several indices of glycemic control quality, such as glucose mean, GRADE, M-VALUE, hypoglycemia and hyperglycemia index, and indices of glycemic variability, such as standard deviation, CONGA, J-INDEX, and MAGE. We found that vildagliptin improved the glycemic condition compared to placebo: mean glycemic levels, and both GRADE and M-VALUE, were reduced by vildagliptin (P<0.01. Indices also showed that vildagliptin reduced glycemia without increasing the risk for hypoglycemia. Almost all indices of glycemic variability showed an improvement of the glycemic condition with vildagliptin (P<0.02, though more marked differences were shown by the more complex indices. In conclusion, the study shows that four-sample preprandial glucose self-monitoring is sufficient to yield information on the vildagliptin effects on glycemic control and variability.

  1. Hydrogel-based electrochemical sensor for non-invasive and continuous glucose monitoring

    Science.gov (United States)

    Park, Habeen; Lee, Ji-Young; Kim, Dong-Chul; Koh, Younggook; Cha, Junhoe

    2017-07-01

    Monitoring blood glucose level of diabetic patients is crucial in diabetes care from life threating complications. Selfmonitoring blood glucose (SMBG) that involves finger prick to draw blood samples into the measurement system is a widely-used method of routine measurement of blood glucose levels to date. SMBG includes, however, unavoidable pain problems resulting from the repetitive measurements. We hereby present a hydrogel-based electrochemical (H-EC) sensor to monitor the glucose level, non-invasively. Glucose oxidase (GOx) was immobilized in the disc-type hydroxyethyl methacrylate (HEMA) based hydrogel and kept intact in the hydrogel. Fast electron transfer mediated by Prussian blue (PB, hexacyanoferrate) generated efficient signal amplifications to facilitate the detection of the extracted glucose from the interstitial fluid. The linear response and the selectivity against glucose of the H-EC sensor were validated by chronoamperometry. For the practical use, the outcomes from the correlation of the extracted glucose concentration and the blood glucose value by on-body extraction, as well as the validation of the hydrogel-based electrochemical (H-EC) device, were applied to the on-body glucose monitoring.

  2. Recent advances in noninvasive glucose monitoring

    Directory of Open Access Journals (Sweden)

    So CF

    2012-06-01

    Full Text Available Chi-Fuk So,1 Kup-Sze Choi,1 Thomas KS Wong,2 Joanne WY Chung2,31Centre for Integrative Digital Health, School of Nursing, The Hong Kong Polytechnic University, Hong Kong, 2Department of Nursing and Health Sciences, Tung Wah College, Hong Kong, 3Department of Health and Physical Education, The Hong Kong Institute of Education, Hong KongAbstract: The race for the next generation of painless and reliable glucose monitoring for diabetes mellitus is on. As technology advances, both diagnostic techniques and equipment improve. This review describes the main technologies currently being explored for noninvasive glucose monitoring. The principle of each technology is mentioned; its advantages and limitations are then discussed. The general description and the corresponding results for each device are illustrated, as well as the current status of the device and the manufacturer; internet references for the devices are listed where appropriate. Ten technologies and eleven potential devices are included in this review. Near infrared spectroscopy has become a promising technology, among others, for blood glucose monitoring. Although some reviews have been published already, the rapid development of technologies and information makes constant updating mandatory. While advances have been made, the reliability and the calibration of noninvasive instruments could still be improved, and more studies carried out under different physiological conditions of metabolism, bodily fluid circulation, and blood components are needed.Keywords: noninvasive, glucose monitoring, diabetes mellitus, blood glucose measurement

  3. System Accuracy Evaluation of Four Systems for Self-Monitoring of Blood Glucose Following ISO 15197 Using a Glucose Oxidase and a Hexokinase-Based Comparison Method.

    Science.gov (United States)

    Link, Manuela; Schmid, Christina; Pleus, Stefan; Baumstark, Annette; Rittmeyer, Delia; Haug, Cornelia; Freckmann, Guido

    2015-04-14

    The standard ISO (International Organization for Standardization) 15197 is widely accepted for the accuracy evaluation of systems for self-monitoring of blood glucose (SMBG). Accuracy evaluation was performed for 4 SMBG systems (Accu-Chek Aviva, ContourXT, GlucoCheck XL, GlucoMen LX PLUS) with 3 test strip lots each. To investigate a possible impact of the comparison method on system accuracy data, 2 different established methods were used. The evaluation was performed in a standardized manner following test procedures described in ISO 15197:2003 (section 7.3). System accuracy was assessed by applying ISO 15197:2003 and in addition ISO 15197:2013 criteria (section 6.3.3). For each system, comparison measurements were performed with a glucose oxidase (YSI 2300 STAT Plus glucose analyzer) and a hexokinase (cobas c111) method. All 4 systems fulfilled the accuracy requirements of ISO 15197:2003 with the tested lots. More stringent accuracy criteria of ISO 15197:2013 were fulfilled by 3 systems (Accu-Chek Aviva, ContourXT, GlucoMen LX PLUS) when compared to the manufacturer's comparison method and by 2 systems (Accu-Chek Aviva, ContourXT) when compared to the alternative comparison method. All systems showed lot-to-lot variability to a certain degree; 2 systems (Accu-Chek Aviva, ContourXT), however, showed only minimal differences in relative bias between the 3 evaluated lots. In this study, all 4 systems complied with the evaluated test strip lots with accuracy criteria of ISO 15197:2003. Applying ISO 15197:2013 accuracy limits, differences in the accuracy of the tested systems were observed, also demonstrating that the applied comparison method/system and the lot-to-lot variability can have a decisive influence on accuracy data obtained for a SMBG system. © 2015 Diabetes Technology Society.

  4. Impact of partial pressure of oxygen in blood samples on the performance of systems for self-monitoring of blood glucose.

    Science.gov (United States)

    Schmid, Christina; Baumstark, Annette; Pleus, Stefan; Haug, Cornelia; Tesar, Martina; Freckmann, Guido

    2014-03-01

    The partial pressure of oxygen (pO2) in blood samples can affect glucose measurements with oxygen-sensitive systems. In this study, we assessed the influence of different pO2 levels on blood glucose (BG) measurements with five glucose oxidase (GOD) systems and one glucose dehydrogenase (GDH) system. All selected GOD systems were indicated by the manufacturers to be sensitive to increased oxygen content of the blood sample. Venous blood samples of 16 subjects (eight women, eight men; mean age, 52 years; three with type 1 diabetes, four with type 2 diabetes, and nine without diabetes) were collected. Aliquots of each sample were adjusted to the following pO2 values: ≤45 mm Hg, approximately 70 mm Hg, and ≥150 mm Hg. For each system, five consecutive measurements on each sample were performed using the same test strip lot. Relative differences between the mean BG value at a pO2 level of approximately 70 mm Hg, which was considered to be similar to pO2 values in capillary blood samples, and the mean BG value at pO2 levels ≤45 mm Hg and ≥150 mm Hg were calculated. The GOD systems showed mean relative differences between 11.8% and 44.5% at pO2 values ≤45 mm Hg and between -14.6% and -21.2% at pO2 values ≥150 mm Hg. For the GDH system, the mean relative differences were -0.3% and -0.2% at pO2 values ≤45 mm Hg and ≥150 mm Hg, respectively. The magnitude of the pO2 impact on BG measurements seems to vary among the tested oxygen-sensitive GOD systems. The pO2 range in which oxygen-sensitive systems operate well should be provided in the product information.

  5. Cost-effectiveness of G5 Mobile continuous glucose monitoring device compared to self-monitoring of blood glucose alone for people with type 1 diabetes from the Canadian societal perspective.

    Science.gov (United States)

    Chaugule, Shraddha; Graham, Claudia

    2017-11-01

    To evaluate the cost-effectiveness of real-time continuous glucose monitoring (CGM) compared to self-monitoring of blood glucose (SMBG) alone in people with type 1 diabetes (T1DM) using multiple daily injections (MDI) from the Canadian societal perspective. The IMS CORE Diabetes Model (v.9.0) was used to assess the long-term (50 years) cost-effectiveness of real-time CGM (G5 Mobile CGM System; Dexcom, Inc., San Diego, CA) compared with SMBG alone for a cohort of adults with poorly-controlled T1DM. Treatment effects and baseline characteristics of patients were derived from the DIAMOND randomized controlled clinical trial; all other assumptions and costs were sourced from published research. The accuracy and clinical effectiveness of G5 Mobile CGM is the same as the G4 Platinum CGM used in the DIAMOND randomized clinical trial. Base case assumptions included (a) baseline HbA1c of 8.6%, (b) change in HbA1c of -1.0% for CGM users vs -0.4% for SMBG users, and (c) disutilities of -0.0142 for non-severe hypoglycemic events (NSHEs) and severe hypoglycemic events (SHEs) not requiring medical intervention, and -0.047 for SHEs requiring medical resources. Treatment costs and outcomes were discounted at 1.5% per year. The incremental cost-effectiveness ratio for the base case G5 Mobile CGM vs SMBG was $33,789 CAD/quality-adjusted life-year (QALY). Sensitivity analyses showed that base case results were most sensitive to changes in percentage reduction in hypoglycemic events and disutilities associated with hypoglycemic events. The base case results were minimally impacted by changes in baseline HbA1c level, incorporation of indirect costs, changes in the discount rate, and baseline utility of patients. The results of this analysis demonstrate that G5 Mobile CGM is cost-effective within the population of adults with T1DM using MDI, assuming a Canadian willingness-to-pay threshold of $50,000 CAD per QALY.

  6. Accuracy of flash glucose monitoring and continuous glucose monitoring technologies: Implications for clinical practice.

    Science.gov (United States)

    Ajjan, Ramzi A; Cummings, Michael H; Jennings, Peter; Leelarathna, Lalantha; Rayman, Gerry; Wilmot, Emma G

    2018-02-01

    Continuous glucose monitoring and flash glucose monitoring technologies measure glucose in the interstitial fluid and are increasingly used in diabetes care. Their accuracy, key to effective glycaemic management, is usually measured using the mean absolute relative difference of the interstitial fluid sensor compared to reference blood glucose readings. However, mean absolute relative difference is not standardised and has limitations. This review aims to provide a consensus opinion on assessing accuracy of interstitial fluid glucose sensing technologies. Mean absolute relative difference is influenced by glucose distribution and rate of change; hence, we express caution on the reliability of comparing mean absolute relative difference data from different study systems and conditions. We also review the pitfalls associated with mean absolute relative difference at different glucose levels and explore additional ways of assessing accuracy of interstitial fluid devices. Importantly, much data indicate that current practice of assessing accuracy of different systems based on individualised mean absolute relative difference results has limitations, which have potential clinical implications. Healthcare professionals must understand the factors that influence mean absolute relative difference as a metric for accuracy and look at additional assessments, such as consensus error grid analysis, when evaluating continuous glucose monitoring and flash glucose monitoring systems in diabetes care. This in turn will ensure that management decisions based on interstitial fluid sensor data are both effective and safe.

  7. The options of the management of self-monitoring of blood glucose in primary health care centres by the diabetes nurses and patients.

    Science.gov (United States)

    Schöld, Anna-Karin; Ylikivelä, Rita; Lindström, Kjell; Östgren, Carl Johan; Grodzinsky, Ewa

    2013-07-01

    The aims of the present study were to investigate the diabetes nurse specialists (DNS) practice according to the local diabetic guideline, to study the DNSs' opinion of self-monitoring of blood glucose (SMBG) and prescription of test-strips, to investigate the patients' opinions and habits when using SMBG. Users of SMBG (n=533 patients') and all DNSs (n=25) were telephone interviewed. Only a few DNSs used local guidelines, the majority had their own prescribing strategy of SMBG. In conclusion, DNSs were aware of the guidelines but did not use them to support their decision regarding the reasons for prescribing SMBG or not. For diabetes patients, reassurance was the most important issue in having access to SMBG, despite the fact that one-third retested but did not change their behaviour and nearly 15% contacted their DNS for advice. Copyright © 2013 Primary Care Diabetes Europe. Published by Elsevier Ltd. All rights reserved.

  8. Evaluation of Hematocrit Influence on Self-Monitoring of Blood Glucose Based on ISO 15197:2013: Comparison of a Novel System With Five Systems With Different Hematocrit Ranges.

    Science.gov (United States)

    Hattemer, Andrew; Wardat, Sami

    2018-03-01

    ISO 15197:2013 recommends testing procedures and acceptance criteria for the evaluation of influence quantities such as hematocrit on measurement results with systems for self-monitoring of blood glucose (SMBG). In this study, hematocrit influence was evaluated for a novel SMBG system (system A) and five other systems with different hematocrit ranges based on ISO 15197:2013. Test procedures were performed with one test strip lot for each system. Each system was tested within the hematocrit range indicated in the manufacturer's labeling (system A: 10-65%, B: 15-65%, C: 20-60%, D: 35-60%, E: 30-60%, F: 30-55%). According to ISO 15197:2013, clause 6.4.2, venous blood samples were used for the evaluation of hematocrit influence. The evaluation was performed for three glucose concentration categories (30-50 mg/dL, 96-144 mg/dL, and 280-420 mg/dL). For each glucose concentration category, at least five different hematocrit levels were investigated. The novel system A and systems B, E, and F complied with the tested lot with the defined criteria and showed ≤10 mg/dL and ≤10% difference between the test sample and the respective control sample with a hematocrit value of 42% ± 2% for BG concentrations 10% difference at glucose concentrations ≥100 mg/dL. Remarkable hematocrit influence within the labeled hematocrit range was obtained in two systems with the tested reagent system lot. Adequate SMBG systems should be carefully chosen by patients and their health care professionals, particularly for patients with increased and decreased hematocrit values.

  9. Evaluation of the effects of insufficient blood volume samples on the performance of blood glucose self-test meters.

    Science.gov (United States)

    Pfützner, Andreas; Schipper, Christina; Ramljak, Sanja; Flacke, Frank; Sieber, Jochen; Forst, Thomas; Musholt, Petra B

    2013-11-01

    incomplete blood filling of glucose meter strips is often associated with inaccurate reading. These findings underline the importance of appropriate patient education on this aspect of blood glucose self-monitoring. © 2013 Diabetes Technology Society.

  10. Development of the Diabetes Technology Society Blood Glucose Monitor System Surveillance Protocol.

    Science.gov (United States)

    Klonoff, David C; Lias, Courtney; Beck, Stayce; Parkes, Joan Lee; Kovatchev, Boris; Vigersky, Robert A; Arreaza-Rubin, Guillermo; Burk, Robert D; Kowalski, Aaron; Little, Randie; Nichols, James; Petersen, Matt; Rawlings, Kelly; Sacks, David B; Sampson, Eric; Scott, Steve; Seley, Jane Jeffrie; Slingerland, Robbert; Vesper, Hubert W

    2016-05-01

    Inaccurate blood glucsoe monitoring systems (BGMSs) can lead to adverse health effects. The Diabetes Technology Society (DTS) Surveillance Program for cleared BGMSs is intended to protect people with diabetes from inaccurate, unreliable BGMS products that are currently on the market in the United States. The Surveillance Program will provide an independent assessment of the analytical performance of cleared BGMSs. The DTS BGMS Surveillance Program Steering Committee included experts in glucose monitoring, surveillance testing, and regulatory science. Over one year, the committee engaged in meetings and teleconferences aiming to describe how to conduct BGMS surveillance studies in a scientifically sound manner that is in compliance with good clinical practice and all relevant regulations. A clinical surveillance protocol was created that contains performance targets and analytical accuracy-testing studies with marketed BGMS products conducted by qualified clinical and laboratory sites. This protocol entitled "Protocol for the Diabetes Technology Society Blood Glucose Monitor System Surveillance Program" is attached as supplementary material. This program is needed because currently once a BGMS product has been cleared for use by the FDA, no systematic postmarket Surveillance Program exists that can monitor analytical performance and detect potential problems. This protocol will allow identification of inaccurate and unreliable BGMSs currently available on the US market. The DTS Surveillance Program will provide BGMS manufacturers a benchmark to understand the postmarket analytical performance of their products. Furthermore, patients, health care professionals, payers, and regulatory agencies will be able to use the results of the study to make informed decisions to, respectively, select, prescribe, finance, and regulate BGMSs on the market. © 2015 Diabetes Technology Society.

  11. Development of the Diabetes Technology Society Blood Glucose Monitor System Surveillance Protocol

    Science.gov (United States)

    Klonoff, David C.; Lias, Courtney; Beck, Stayce; Parkes, Joan Lee; Kovatchev, Boris; Vigersky, Robert A.; Arreaza-Rubin, Guillermo; Burk, Robert D.; Kowalski, Aaron; Little, Randie; Nichols, James; Petersen, Matt; Rawlings, Kelly; Sacks, David B.; Sampson, Eric; Scott, Steve; Seley, Jane Jeffrie; Slingerland, Robbert; Vesper, Hubert W.

    2015-01-01

    Background: Inaccurate blood glucsoe monitoring systems (BGMSs) can lead to adverse health effects. The Diabetes Technology Society (DTS) Surveillance Program for cleared BGMSs is intended to protect people with diabetes from inaccurate, unreliable BGMS products that are currently on the market in the United States. The Surveillance Program will provide an independent assessment of the analytical performance of cleared BGMSs. Methods: The DTS BGMS Surveillance Program Steering Committee included experts in glucose monitoring, surveillance testing, and regulatory science. Over one year, the committee engaged in meetings and teleconferences aiming to describe how to conduct BGMS surveillance studies in a scientifically sound manner that is in compliance with good clinical practice and all relevant regulations. Results: A clinical surveillance protocol was created that contains performance targets and analytical accuracy-testing studies with marketed BGMS products conducted by qualified clinical and laboratory sites. This protocol entitled “Protocol for the Diabetes Technology Society Blood Glucose Monitor System Surveillance Program” is attached as supplementary material. Conclusion: This program is needed because currently once a BGMS product has been cleared for use by the FDA, no systematic postmarket Surveillance Program exists that can monitor analytical performance and detect potential problems. This protocol will allow identification of inaccurate and unreliable BGMSs currently available on the US market. The DTS Surveillance Program will provide BGMS manufacturers a benchmark to understand the postmarket analytical performance of their products. Furthermore, patients, health care professionals, payers, and regulatory agencies will be able to use the results of the study to make informed decisions to, respectively, select, prescribe, finance, and regulate BGMSs on the market. PMID:26481642

  12. Accuracy evaluation of five blood glucose monitoring systems obtained from the pharmacy: a European multicenter study with 453 subjects

    NARCIS (Netherlands)

    Tack, C.J.; Pohlmeier, H.; Behnke, T.; Schmid, V.; Grenningloh, M.; Forst, T.; Pfutzner, A.

    2012-01-01

    BACKGROUND: This multicenter study was conducted to evaluate the performance of five recently introduced blood glucose (BG) monitoring (BGM) devices under daily routine conditions in comparison with the YSI (Yellow Springs, OH) 2300 Stat Plus glucose analyzer. METHODS: Five hundred one diabetes

  13. Clinical results from a noninvasive blood glucose monitor

    Science.gov (United States)

    Blank, Thomas B.; Ruchti, Timothy L.; Lorenz, Alex D.; Monfre, Stephen L.; Makarewicz, M. R.; Mattu, Mutua; Hazen, Kevin

    2002-05-01

    Non-invasive blood glucose monitoring has long been proposed as a means for advancing the management of diabetes through increased measurement and control. The use of a near-infrared, NIR, spectroscopy based methodology for noninvasive monitoring has been pursued by a number of groups. The accuracy of the NIR measurement technology is limited by challenges related to the instrumentation, the heterogeneity and time-variant nature of skin tissue, and the complexity of the calibration methodology. In this work, we discuss results from a clinical study that targeted the evaluation of individual calibrations for each subject based on a series of controlled calibration visits. While the customization of the calibrations to individuals was intended to reduce model complexity, the extensive requirements for each individual set of calibration data were difficult to achieve and required several days of measurement. Through the careful selection of a small subset of data from all samples collected on the 138 study participants in a previous study, we have developed a methodology for applying a single standard calibration to multiple persons. The standard calibrations have been applied to a plurality of individuals and shown to be persistent over periods greater than 24 weeks.

  14. Continuous glucose monitoring, oral glucose tolerance, and insulin - glucose parameters in adolescents with simple obesity.

    Science.gov (United States)

    El Awwa, A; Soliman, A; Al-Ali, M; Yassin, M; De Sanctis, V

    2012-09-01

    In obese adolescents pancreatic beta-cells may not be able to cope with insulin resistance leading to hyperglycemia and type2 diabetes (T2DM To assess oral glucose tolerance, 72-h continuous blood glucose concentrations (CGM) and calculate homeostatic model assessment (HOMA), and the quantitative insulin sensitivity check index (QUICKI) in 13 adolescents with simple obesity (BMI SDS=4 ± 1.06). OGTT performed in 13 obese adolescents (13.47 ± 3 years) revealed 3 cases (23%) with impaired fasting glucose (IFG: fasting glucose >5.6 mmol/L), 4 cases (30%) with impaired glucose tolerance (IGT: 2h blood glucose >7.8 continuous glucose monitoring system ( CGMS), IFG was detected in 4 cases, the maximum serum blood glucose (BG : 2h or more after meal) was >7.8 and 11.1 mmol/L (diabetes) in one case (7.6%). Five cases had a minimum BG recorded of 2.6 and QUICKI values obese adolescents, CGMS is superior to OGTT and HbA1C in detecting glycemic abnormalities, which appears to be secondary to insulin resistance.

  15. Institutional blood glucose monitoring system for hospitalized patients: an integral component of the inpatient glucose control program.

    Science.gov (United States)

    Boaz, Mona; Landau, Zohar; Matas, Zipora; Wainstein, Julio

    2009-09-01

    The ability to measure patient blood glucose levels at bedside in hospitalized patients and to transmit those values to a central database enables and facilitates glucose control and follow-up and is an integral component in the care of the hospitalized diabetic patient. The goal of this study was to evaluate the performance of an institutional glucometer employed in the framework of the Program for the Treatment of the Hospitalized Diabetic Patient (PTHDP) at E. Wolfson Medical Center, Holon, Israel. As part of the program to facilitate glucose control in hospitalized diabetic patients, an institutional glucometer was employed that permits uploading of data from stands located in each inpatient department and downloading of that data to a central hospital-wide database. Blood glucose values from hospitalized diabetic patients were collected from August 2007 to October 2008. The inpatient glucose control program was introduced gradually beginning January 2008. During the follow-up period, more than 150,000 blood glucose measures were taken. Mean glucose was 195.7 +/- 99.12 mg/dl during the follow-up period. Blood glucose values declined from 206 +/- 105 prior to PTHDP (August 2007-December 2007) to 186 +/- 92 after its inception (January 2008-October 2008). The decline was associated significantly with time (r = 0.11, p < 0.0001). The prevalence of blood glucose values lower than 60 mg/dl was 1.48% [95% confidence interval (CI) 0.36%] prior to vs 1.55% (95% CI 0.37%) following implementation of the PTHDP. Concomitantly, a significant increase in the proportion of blood glucose values between 80 and 200 mg/dl was observed, from 55.5% prior to program initiation vs 61.6% after program initiation (p < 0.0001). The present study was designed to observe changes in institution-wide glucose values following implementation of the PTHDP. Information was extracted from the glucometer system itself. Because the aforementioned study was not a clinical trial, we cannot rule out

  16. Continuous glucose monitoring systems for type 1 diabetes mellitus.

    Science.gov (United States)

    Langendam, Miranda; Luijf, Yoeri M; Hooft, Lotty; Devries, J Hans; Mudde, Aart H; Scholten, Rob J P M

    2012-01-18

    Self-monitoring of blood glucose is essential to optimise glycaemic control in type 1 diabetes mellitus. Continuous glucose monitoring (CGM) systems measure interstitial fluid glucose levels to provide semi-continuous information about glucose levels, which identifies fluctuations that would not have been identified with conventional self-monitoring. Two types of CGM systems can be defined: retrospective systems and real-time systems. Real-time systems continuously provide the actual glucose concentration on a display. Currently, the use of CGM is not common practice and its reimbursement status is a point of debate in many countries. To assess the effects of CGM systems compared to conventional self-monitoring of blood glucose (SMBG) in patients with diabetes mellitus type 1. We searched The Cochrane Library, MEDLINE, EMBASE and CINAHL for the identification of studies. Last search date was June 8, 2011. Randomised controlled trials (RCTs) comparing retrospective or real-time CGM with conventional self-monitoring of blood glucose levels or with another type of CGM system in patients with type 1 diabetes mellitus. Primary outcomes were glycaemic control, e.g. level of glycosylated haemoglobin A1c (HbA1c) and health-related quality of life. Secondary outcomes were adverse events and complications, CGM derived glycaemic control, death and costs. Two authors independently selected the studies, assessed the risk of bias and performed data-extraction. Although there was clinical and methodological heterogeneity between studies an exploratory meta-analysis was performed on those outcomes the authors felt could be pooled without losing clinical merit. The search identified 1366 references. Twenty-two RCTs meeting the inclusion criteria of this review were identified. The results of the meta-analyses (across all age groups) indicate benefit of CGM for patients starting on CGM sensor augmented insulin pump therapy compared to patients using multiple daily injections of

  17. Effect of Self-monitoring and Medication Self-titration on Systolic Blood Pressure in Hypertensive Patients at High Risk of Cardiovascular Disease

    OpenAIRE

    McManus, Richard J.; Mant, Jonathan; Haque, M. Sayeed; Bray, Emma P.; Bryan, Stirling; Greenfield, Sheila M.; Jones, Miren I.; Jowett, Sue; Little, Paul; Penaloza, Cristina; Schwartz, Claire; Shackleford, Helen; Shovelton, Claire; Varghese, Jinu; Williams, Bryan

    2014-01-01

    IMPORTANCE: Self-monitoring of blood pressure with self-titration of antihypertensives (self-management) results in lower blood pressure in patients with hypertension, but there are no data about patients in high-risk groups.\\ud \\ud OBJECTIVE: To determine the effect of self-monitoring with self-titration of antihypertensive medication compared with usual care on systolic blood pressure among patients with cardiovascular disease, diabetes, or chronic kidney disease.\\ud \\ud DESIGN, SETTING, AN...

  18. Self-Powered Implantable Skin-Like Glucometer for Real-Time Detection of Blood Glucose Level In Vivo

    Science.gov (United States)

    Zhang, Wanglinhan; Zhang, Linlin; Gao, Huiling; Yang, Wenyan; Wang, Shuai; Xing, Lili; Xue, Xinyu

    2018-06-01

    Implantable bioelectronics for analyzing physiological biomarkers has recently been recognized as a promising technique in medical treatment or diagnostics. In this study, we developed a self-powered implantable skin-like glucometer for real-time detection of blood glucose level in vivo. Based on the piezo-enzymatic-reaction coupling effect of GOx@ZnO nanowire, the device under an applied deformation can actively output piezoelectric signal containing the glucose-detecting information. No external electricity power source or battery is needed for this device, and the outputting piezoelectric voltage acts as both the biosensing signal and electricity power. A practical application of the skin-like glucometer implanted in mouse body for detecting blood glucose level has been simply demonstrated. These results provide a new technique path for diabetes prophylaxis and treatment.

  19. Development of a nanowire based titanium needle probe sensor for glucose monitoring

    Science.gov (United States)

    Deshpande, Devesh C.

    The need for continuous monitoring of various physiological functions such as blood glucose levels, neural functions and cholesterol levels has fostered the research and development of various schemes of biosensors to sense and help control the respective function. The needs of patients for sensors with minimal discomfort, longer life and better performance have necessitated the development towards smaller and more efficient sensors. In addition, the need for higher functionality from smaller sensors has led to the development of sensors with multiple electrodes, each electrode capable of sensing a different body function. Such multi-electrode sensors need to be fabricated using micro-fabrication processes in order to achieve precise control over the size, shape and placement of the electrodes. Multielectrode sensors fabricated using silicon and polymers have been demonstrated. One physiological function that attracts widespread interest is continuous glucose monitoring in our blood, since Diabetes affects millions of people all over the world. Significant deviations of blood glucose levels from the normal levels of 4-8 mM can cause fainting, coma and damage to the eyes, kidneys, nerves and blood vessels. For chronic patients, continuous monitoring of glucose levels is essential for accurate and timely treatment. A few continuous monitoring sensors are available in the market, but they have problems and cannot replace the strip type one-time glucose monitoring systems as yet. To address this need, large scale research efforts have been targeted towards continuous monitoring. The demand for higher accuracy and sensitivity has motivated researchers to evaluate the use of nanostructures in sensing. The large surface area-to-volume ratio of such structures could enable further miniaturization and push the detection limits, potentially enabling even single molecule detection. This research involved the development of a biocompatible titanium needle probe sensor for

  20. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... how often you should check and what your blood glucose levels should be. Checking your blood and then treating ... I Treat Hyperglycemia? You can often lower your blood glucose level by exercising. However, if your blood glucose is ...

  1. Correlation of salivary glucose level with blood glucose level in diabetes mellitus.

    Science.gov (United States)

    Gupta, Shreya; Nayak, Meghanand T; Sunitha, J D; Dawar, Geetanshu; Sinha, Nidhi; Rallan, Neelakshi Singh

    2017-01-01

    Saliva is a unique fluid, which is important for normal functioning of the oral cavity. Diabetes mellitus (DM) is a disease of absolute or relative insulin deficiency characterized by insufficient secretion of insulin by pancreatic beta-cells. The diagnosis of diabetes through blood is difficult in children, older adults, debilitated and chronically ill patients, so diagnosis by analysis of saliva can be potentially valuable as collection of saliva is noninvasive, easier and technically insensitive, unlike blood. The aim of the study was to correlate blood glucose level (BGL) and salivary glucose level (SGL) in DM patients. A cross-sectional study was conducted in 120 patients, who were categorized as 40 controlled diabetics, 40 uncontrolled diabetics and 40 healthy, age- and sex-matched individuals constituted the controls. The blood and unstimulated saliva samples were collected from the patients at the different intervals for fasting, random and postprandial levels. These samples were then subjected for analysis of glucose in blood and saliva using glucose oxidase/peroxidase reagent in HITACHI 902 (R) Automatic analyzer, and the results were recorded. The mean SGLs were higher in uncontrolled and controlled diabetic groups than in nondiabetic group. A highly statistically significant correlation was found between fasting saliva glucose and fasting blood glucose in all the groups. With increase in BGL, increase in SGL was observed in patients with diabetes suggesting that SGL can be used for monitoring glycemic level in DM.

  2. Using LSTMs to learn physiological models of blood glucose behavior.

    Science.gov (United States)

    Mirshekarian, Sadegh; Bunescu, Razvan; Marling, Cindy; Schwartz, Frank

    2017-07-01

    For people with type 1 diabetes, good blood glucose control is essential to keeping serious disease complications at bay. This entails carefully monitoring blood glucose levels and taking corrective steps whenever they are too high or too low. If blood glucose levels could be accurately predicted, patients could take proactive steps to prevent blood glucose excursions from occurring. However, accurate predictions require complex physiological models of blood glucose behavior. Factors such as insulin boluses, carbohydrate intake, and exercise influence blood glucose in ways that are difficult to capture through manually engineered equations. In this paper, we describe a recursive neural network (RNN) approach that uses long short-term memory (LSTM) units to learn a physiological model of blood glucose. When trained on raw data from real patients, the LSTM networks (LSTMs) obtain results that are competitive with a previous state-of-the-art model based on manually engineered physiological equations. The RNN approach can incorporate arbitrary physiological parameters without the need for sophisticated manual engineering, thus holding the promise of further improvements in prediction accuracy.

  3. Blood pressure self-monitoring in pregnancy (BuMP) feasibility study; a qualitative analysis of women's experiences of self-monitoring.

    Science.gov (United States)

    Hinton, Lisa; Tucker, Katherine L; Greenfield, Sheila M; Hodgkinson, James A; Mackillop, Lucy; McCourt, Christine; Carver, Trisha; Crawford, Carole; Glogowska, Margaret; Locock, Louise; Selwood, Mary; Taylor, Kathryn S; McManus, Richard J

    2017-12-19

    Hypertensive disorders in pregnancy are a leading cause of maternal and fetal morbidity worldwide. Raised blood pressure (BP) affects 10% of pregnancies worldwide, of which almost half develop pre-eclampsia. The proportion of pregnant women who have risk factors for pre-eclampsia (such as pre-existing hypertension, obesity and advanced maternal age) is increasing. Pre-eclampsia can manifest itself before women experience symptoms and can develop between antenatal visits. Incentives to improve early detection of gestational hypertensive disorders are therefore strong and self-monitoring of blood pressure (SMBP) in pregnancy might be one means to achieve this, whilst improving women's involvement in antenatal care. The Blood Pressure Self-Monitoring in Pregnancy (BuMP) study aimed to evaluate the feasibility and acceptability of SMBP in pregnancy. To understand women's experiences of SMBP during pregnancy, we undertook a qualitative study embedded within the BuMP observational feasibility study. Women who were at higher risk of developing hypertension and/or pre-eclampsia were invited to take part in a study using SMBP and also invited to take part in an interview. Semi-structured interviews were conducted at the women's homes in Oxfordshire and Birmingham with women who were self-monitoring their BP as part of the BuMP feasibility study in 2014. Interviews were conducted by a qualitative researcher and transcribed verbatim. A framework approach was used for analysis. Fifteen women agreed to be interviewed. Respondents reported general willingness to engage with monitoring their own BP, feeling that it could reduce anxiety around their health during pregnancy, particularly if they had previous experience of raised BP or pre-eclampsia. They felt able to incorporate self-monitoring into their weekly routines, although this was harder post-partum. Self-monitoring of BP made them more aware of the risks of hypertension and pre-eclampsia in pregnancy. Feelings of

  4. A 3-Month Randomized Controlled Pilot Trial of a Patient-Centered, Computer-Based Self-Monitoring System for the Care of Type 2 Diabetes Mellitus and Hypertension.

    Science.gov (United States)

    Or, Calvin; Tao, Da

    2016-04-01

    This study was performed to evaluate the effects of a patient-centered, tablet computer-based self-monitoring system for chronic disease care. A 3-month randomized controlled pilot trial was conducted to compare the use of a computer-based self-monitoring system in disease self-care (intervention group; n = 33) with a conventional self-monitoring method (control group; n = 30) in patients with type 2 diabetes mellitus and/or hypertension. The system was equipped with a 2-in-1 blood glucose and blood pressure monitor, a reminder feature, and video-based educational materials for the care of the two chronic diseases. The control patients were given only the 2-in-1 monitor for self-monitoring. The outcomes reported here included the glycated hemoglobin (HbA1c) level, fasting blood glucose level, systolic blood pressure, diastolic blood pressure, chronic disease knowledge, and frequency of self-monitoring. The data were collected at baseline and at 1-, 2-, and 3-month follow-up visits. The patients in the intervention group had a significant decrease in mean systolic blood pressure from baseline to 1 month (p computer-assisted and conventional disease self-monitoring appear to be useful to support/maintain blood pressure and diabetes control. The beneficial effects of the use of electronic self-care resources and support provided via mobile technologies require further confirmation in longer-term, larger trials.

  5. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Carbohydrate Counting Make Your Carbs Count Glycemic Index Low-Calorie Sweeteners Sugar and Desserts Fitness Exercise & Type ... Checking Your Blood Glucose A1C and eAG Hypoglycemia (Low blood glucose) Hyperglycemia (High blood glucose) Dawn Phenomenon ...

  6. Blood Glucose Determination

    DEFF Research Database (Denmark)

    Lippi, Giuseppe; Nybo, Mads; Cadamuro, Janne

    2018-01-01

    The measurement of fasting plasma glucose may be biased by a time-dependent decrease of glucose in blood tubes, mainly attributable to blood cell metabolism when glycolysis is not rapidly inhibited or blood cells cannot be rapidly separated from plasma. Although glycolysis inhibitors such as sodium...

  7. Clinical use of continuous glucose monitoring in adults with type 1 diabetes

    OpenAIRE

    Slattery, David; Choudhary, Pratik

    2017-01-01

    With the emphasis on intensive management of type 1 diabetes, data from studies support frequent monitoring of glucose levels to improve glycemic control and reduce glucose variability, which can be related to an increase in macro and microvascular complications. However, few perform capillary blood glucose that frequently. There are currently two available alternatives that this review will discuss, continuous glucose monitoring (CGM) and flash glucose monitoring. CGM has become an important...

  8. Noninvasive biosensor and wireless interrogating system for glucose in blood

    Science.gov (United States)

    Varadan, Vijay K.; Whitchurch, Ashwin K.; Sarukesi, K.

    2003-07-01

    Hypoglycemia-abnormal decrease in blood sugar-is a major obstacle in the management of diabetes and prevention of long-term complications, and it may impose serious effects on the brain, including impairment of memory and other cognitive functions. This paper presents the development of a non-invasive sensor with miniaturized telemetry device in a wrist-watch for monitoring glucose concentration in blood. The sensor concept is based on optical chirality of glucose level in the interstitial fluid. The wrist watch consists of a laser power source of the wavelength compatible with the glucose. A nanofilm with specific chirality is placed at the bottom of the watch. The light then passes through the film and illuminates a small area on the skin. It has been documented that there is certain concentration of sugar level is taken by the intertitial fluid from the blood stream and deposit a portion of it at the dead skin. The wrist-watch when in contact with the outer skin of the human will thus monitor the glucose concentration. A wireless monitoring system in the watch then downloads the data from the watch to a Palm or a laptop computer.

  9. Accuracy and User Performance Evaluation of a New, Wireless-enabled Blood Glucose Monitoring System That Links to a Smart Mobile Device.

    Science.gov (United States)

    Bailey, Timothy S; Wallace, Jane F; Pardo, Scott; Warchal-Windham, Mary Ellen; Harrison, Bern; Morin, Robert; Christiansen, Mark

    2017-07-01

    The new Contour ® Plus ONE blood glucose monitoring system (BGMS) features an easy-to-use, wireless-enabled blood glucose meter that links to a smart mobile device via Bluetooth ® connectivity and can sync with the Contour ™ Diabetes app on a smartphone or tablet. The accuracy of the new BGMS was assessed in 2 studies according to ISO 15197:2013 criteria. In Study 1 (laboratory study), fingertip capillary blood samples from 100 subjects were tested in duplicate using 3 test strip lots. In Study 2 (clinical study), 134 subjects with type 1 or type 2 diabetes enrolled at 2 clinical sites. BGMS results and YSI analyzer (YSI) reference results were compared for fingertip blood obtained by untrained subjects' self-testing and for study staff-obtained fingertip, subject palm, and venous results. In Study 1, 99.0% (594/600) of combined results for all 3 test strip lots fulfilled ISO 15197:2013 Section 6.3 accuracy criteria. In Study 2, 99.2% (133/134) of subject-obtained capillary fingertip results, 99.2% (133/134) of study staff-obtained fingertip results, 99.2% (125/126) of subject-obtained palm results, and 100% (132/132) of study staff-obtained venous results met ISO 15197:2013 Section 8 accuracy criteria. Moreover, 95.5% (128/134) of subject-obtained fingertip self-test results were within ±10 mg/dl (±0.6 mmol/L) or ±10% of the YSI reference result. Questionnaire results showed that most subjects found the BGMS easy to use. The BGMS exceeded ISO 15197:2013 accuracy criteria both in the laboratory and in a clinical setting when used by untrained subjects with diabetes.

  10. Gingival crevicular blood for screening of blood glucose level in patients with & without diabetes: a chair-side test.

    Science.gov (United States)

    Bhavsar, M V; Brahmbhatt, N A; Sahayata, V; Bhavsar, N V

    2016-05-01

    Diabetes is a pandemic disease with increasing prevalence and serious complications. Periodontitis being one of its presentation and is its sixth recognized complication. This study compares blood glucose levels in gingival crevicular blood of patients with and without diabetes elicited during routine periodontal probing and venous blood sample. Seventy patients with moderate gingivitis and periodontitis positive for bleeding on probing were chosen. All the subjects were divided in two groups, group I consisted of 35 diabetic and group II of 35 non-diabetic subjects. Blood from the gingiva of the most inflamed site was collected with the test strip of a glucose self-monitoring device, and the blood glucose levels were measured. At the same time, intravenous blood was collected for measurement in a laboratory glucose analyzer. Gingival index and probing pocket depth were evaluated for each subject at same time. The mean GCB levels and VB derived from all samples were 156.07 ± 49.23 mg dl(-1) and 156 ± 49.89 mg dl(-1) , respectively, for diabetic group and 90.80 ± 11.07 and 93.41 ± 9.30 for non-diabetic group. In both the groups, the difference between GCB and VB glucose levels was non-significant (P > 0.005). Highly significant correlation between GCB and VB (r = 0.972 for diabetic and r = 0.721 for non-diabetic) in both the groups was found. The data from this study show that GCB collected during diagnostic periodontal examination can be an excellent source for estimation of blood sugar or glucometric analysis. This technique is also suitable for routine screening of diabetic and early diagnosis of unknown diabetic cases. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Performance of a new test strip for freestyle blood glucose monitoring systems.

    Science.gov (United States)

    Lock, John Paul; Brazg, Ronald; Bernstein, Robert M; Taylor, Elizabeth; Patel, Mona; Ward, Jeanne; Alva, Shridhara; Chen, Ting; Welsh, Zoë; Amor, Walter; Bhogal, Claire; Ng, Ronald

    2011-01-01

    a new strip, designed to enhance the ease of use and minimize interference of non-glucose sugars, has been developed to replace the current FreeStyle (Abbott Diabetes Care, Alameda, CA) blood glucose test strip. We evaluated the performance of this new strip. laboratory evaluation included precision, linearity, dynamic range, effects of operating temperature, humidity, altitude, hematocrit, interferents, and blood reapplication. System accuracy, lay user performance, and ease of use for finger capillary blood testing and accuracy for venous blood testing were evaluated at clinics. Lay users also compared the speed and ease of use between the new strip and the current FreeStyle strip. for glucose concentrations blood glucose results obtained by lay users fell within ± 5, 10, and 15 mg/dL, respectively, of the reference. For glucose concentrations ≥75 mg/dL, 68%, 95%, 99%, and 99% of the lay user results fell within  ±  5%, 10%, 15%, and 20%, respectively, of the reference. Comparable accuracy was obtained in the venous blood study. Lay users found the new test strip easy to use and faster and easier to use than the current FreeStyle strip. The new strip maintained accuracy under various challenging conditions, including high concentrations of various interferents, sample reapplication up to 60 s, and extremes in hematocrit, altitude, and operating temperature and humidity. our results demonstrated excellent accuracy of the new FreeStyle test strip and validated the improvements in minimizing interference and enhancing ease of use.

  12. Continuous glucose monitoring for patients with type 1 diabetes and impaired awareness of hypoglycaemia (IN CONTROL): a randomised, open-label, crossover trial

    NARCIS (Netherlands)

    van Beers, Cornelis A. J.; DeVries, J. Hans; Kleijer, Susanne J.; Smits, Mark M.; Geelhoed-Duijvestijn, Petronella H.; Kramer, Mark H. H.; Diamant, Michaela; Snoek, Frank J.; Serné, Erik H.

    2016-01-01

    Patients with type 1 diabetes who have impaired awareness of hypoglycaemia have a three to six times increased risk of severe hypoglycaemia. We aimed to assess whether continuous glucose monitoring (CGM) improves glycaemia and prevents severe hypoglycaemia compared with self-monitoring of blood

  13. Application of optical lens of a CD writer for detecting the blood glucose semi-invasively

    Science.gov (United States)

    Meshram, N. D.; Dahikar, P. B.

    2014-10-01

    Recent technological advancements in the photonics industry have led to a resurgence of interest in optical glucose sensing and to realistic progress toward the development of an optical glucose sensor. Such a sensor has the potential to significantly improve the quality of life for the estimated 16 million diabetics in this country by making routine glucose measurements more convenient. Currently over 100 small companies and universities are working to develop noninvasive or minimally invasive glucose sensing technologies, and optical methods play a large role in these efforts. It has become overwhelmingly clear that frequent monitoring and tight control of blood sugar levels are requisite for effective management of Diabetes mellitus and reduction of the complications associated with this disease. The pain and trouble associated with current "finger-stick" methods for blood glucose monitoring result in decreased patient compliance and a failure to control blood sugar levels. Thus, the development of a convenient noninvasive blood glucose monitor holds the potential to significantly reduce the morbidity and mortality associated with Diabetes. A method and apparatus for noninvasive measurement of blood glucose concentration based on transilluminated laser beam via the Index Finger has been reported in this paper. This method depends on photodiode based laser operating at 632.8 nm wavelength. During measurement, the index finger is inserted into the glucose sensing unit, the transilluminated optical signal is converted into an electrical signal, compared with the reference electrical signal, and the obtained difference signal is processed by signal processing unit which presents the results in the form of blood glucose concentration. This method would enable the monitoring blood glucose level of the diabetic patient continuously, safely and noninvasively..

  14. Application of optical lens of a CD writer for detecting the blood glucose semi-invasively

    International Nuclear Information System (INIS)

    Meshram, N. D.; Dahikar, P. B.

    2014-01-01

    Recent technological advancements in the photonics industry have led to a resurgence of interest in optical glucose sensing and to realistic progress toward the development of an optical glucose sensor. Such a sensor has the potential to significantly improve the quality of life for the estimated 16 million diabetics in this country by making routine glucose measurements more convenient. Currently over 100 small companies and universities are working to develop noninvasive or minimally invasive glucose sensing technologies, and optical methods play a large role in these efforts. It has become overwhelmingly clear that frequent monitoring and tight control of blood sugar levels are requisite for effective management of Diabetes mellitus and reduction of the complications associated with this disease. The pain and trouble associated with current “finger-stick” methods for blood glucose monitoring result in decreased patient compliance and a failure to control blood sugar levels. Thus, the development of a convenient noninvasive blood glucose monitor holds the potential to significantly reduce the morbidity and mortality associated with Diabetes. A method and apparatus for noninvasive measurement of blood glucose concentration based on transilluminated laser beam via the Index Finger has been reported in this paper. This method depends on photodiode based laser operating at 632.8 nm wavelength. During measurement, the index finger is inserted into the glucose sensing unit, the transilluminated optical signal is converted into an electrical signal, compared with the reference electrical signal, and the obtained difference signal is processed by signal processing unit which presents the results in the form of blood glucose concentration. This method would enable the monitoring blood glucose level of the diabetic patient continuously, safely and noninvasively.

  15. Application of optical lens of a CD writer for detecting the blood glucose semi-invasively

    Energy Technology Data Exchange (ETDEWEB)

    Meshram, N. D., E-mail: meshramnileshsd@gmail.com [Mathuradas Mohota College of Sciences, Nagpur-440009 (India); Dahikar, P. B., E-mail: pbdahikar@rediffmail.com [Kamla Nehru Mahavidyalaya, Sakkardara Square, Nagpur-440009 (India)

    2014-10-15

    Recent technological advancements in the photonics industry have led to a resurgence of interest in optical glucose sensing and to realistic progress toward the development of an optical glucose sensor. Such a sensor has the potential to significantly improve the quality of life for the estimated 16 million diabetics in this country by making routine glucose measurements more convenient. Currently over 100 small companies and universities are working to develop noninvasive or minimally invasive glucose sensing technologies, and optical methods play a large role in these efforts. It has become overwhelmingly clear that frequent monitoring and tight control of blood sugar levels are requisite for effective management of Diabetes mellitus and reduction of the complications associated with this disease. The pain and trouble associated with current “finger-stick” methods for blood glucose monitoring result in decreased patient compliance and a failure to control blood sugar levels. Thus, the development of a convenient noninvasive blood glucose monitor holds the potential to significantly reduce the morbidity and mortality associated with Diabetes. A method and apparatus for noninvasive measurement of blood glucose concentration based on transilluminated laser beam via the Index Finger has been reported in this paper. This method depends on photodiode based laser operating at 632.8 nm wavelength. During measurement, the index finger is inserted into the glucose sensing unit, the transilluminated optical signal is converted into an electrical signal, compared with the reference electrical signal, and the obtained difference signal is processed by signal processing unit which presents the results in the form of blood glucose concentration. This method would enable the monitoring blood glucose level of the diabetic patient continuously, safely and noninvasively.

  16. Clinical value of Flash glucose monitoring in patients with type 1 diabetes treated with continuous subcutaneous insulin infusion.

    Science.gov (United States)

    Moreno-Fernandez, Jesus; Pazos-Couselo, Marcos; González-Rodriguez, Maria; Rozas, Pedro; Delgado, Manuel; Aguirre, Miguel; Garcia-Lopez, Jose Manuel

    2018-06-12

    To analyze the clinical impact of the Flash glucose monitoring system in patients with type 1 diabetes mellitus (T1DM) treated with continuous subcutaneous insulin infusion (CSII). A 24-week retrospective cohort study in CSII-treated T1DM patients exposed (1:1) to the Flash glucose monitoring system vs. self-monitoring of capillary blood glucose (SMBG). The primary outcome was the difference in hemoglobin A1c (HbA1c) levels between both groups at the end of the study. Thirty-six patients with a mean age of 38.2 years (range 22-55) and a mean T1DM duration of 20.9±7.8 years, treated with CSII for 7.1±5.4 years, were enrolled into the study. At the end of the study, mean HbA1c levels improved in patients in the Flash group (7.1±0.7 vs. 7.8±1.0, p=0.04). Only the Flash group showed a significant decrease in HbA1c levels of -0.4% (95% CI, -0.6, -0.2; p=0.004) during follow-up. Flash patients captured 93.9% of data through 17.8±9.9 scans daily. In fact, the Flash cohort showed a three-fold increase in daily self-monitoring of glucose, while daily frequency of SMBG decreased during the study (-1.8 tests/24h (95% CI -3, -0.7; p=0.01). No safety issues related to Flash use were recorded. The Flash glucose monitoring system is a novel approach to improve blood glucose control in CSII-treated T1DM patients. Randomized controlled trials are needed to assess the effectiveness of this system in CSII-treated T1DM patients. Copyright © 2018 SEEN y SED. Publicado por Elsevier España, S.L.U. All rights reserved.

  17. Effects of MDMA on blood glucose levels and brain glucose metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Soto-Montenegro, M.L.; Vaquero, J.J.; Garcia-Barreno, P.; Desco, M. [Hospital General Universitario Gregorio Maranon, Laboratorio de Imagen, Medicina Experimental, Madrid (Spain); Arango, C. [Hospital General Gregorio Maranon, Departamento de Psiquiatria, Madrid (Spain); Ricaurte, G. [Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD (United States)

    2007-06-15

    This study was designed to assess changes in glucose metabolism in rats administered single or repeated doses of MDMA. Two different experiments were performed: (1) A single-dose study with four groups receiving 20 mg/kg, 40 mg/kg, saline or heat, and (2) a repeated-dose study with two groups receiving three doses, at intervals of 2 h, of 5 mg/kg or saline. Rats were imaged using a dedicated small-animal PET scanner 1 h after single-dose administration or 7 days after repeated doses. Glucose metabolism was measured in 12 cerebral regions of interest. Rectal temperature and blood glucose were monitored. Peak body temperature was reached 1 h after MDMA administration. Blood glucose levels decreased significantly after MDMA administration. In the single-dose experiment, brain glucose metabolism showed hyperactivation in cerebellum and hypo-activation in the hippocampus, amygdala and auditory cortex. In the repeated-dose experiment, brain glucose metabolism did not show any significant change at day 7. These results are the first to indicate that MDMA has the potential to produce significant hypoglycaemia. In addition, they show that MDMA alters glucose metabolism in components of the motor, limbic and somatosensory systems acutely but not on a long-term basis. (orig.)

  18. Effects of MDMA on blood glucose levels and brain glucose metabolism

    International Nuclear Information System (INIS)

    Soto-Montenegro, M.L.; Vaquero, J.J.; Garcia-Barreno, P.; Desco, M.; Arango, C.; Ricaurte, G.

    2007-01-01

    This study was designed to assess changes in glucose metabolism in rats administered single or repeated doses of MDMA. Two different experiments were performed: (1) A single-dose study with four groups receiving 20 mg/kg, 40 mg/kg, saline or heat, and (2) a repeated-dose study with two groups receiving three doses, at intervals of 2 h, of 5 mg/kg or saline. Rats were imaged using a dedicated small-animal PET scanner 1 h after single-dose administration or 7 days after repeated doses. Glucose metabolism was measured in 12 cerebral regions of interest. Rectal temperature and blood glucose were monitored. Peak body temperature was reached 1 h after MDMA administration. Blood glucose levels decreased significantly after MDMA administration. In the single-dose experiment, brain glucose metabolism showed hyperactivation in cerebellum and hypo-activation in the hippocampus, amygdala and auditory cortex. In the repeated-dose experiment, brain glucose metabolism did not show any significant change at day 7. These results are the first to indicate that MDMA has the potential to produce significant hypoglycaemia. In addition, they show that MDMA alters glucose metabolism in components of the motor, limbic and somatosensory systems acutely but not on a long-term basis. (orig.)

  19. Design of a prospective clinical study on the agreement between the Continuous GlucoseMonitor, a novel device for CONTinuous ASSessment of blood GLUcose levels, and the RAPIDLab® 1265 blood gas analyser: The CONTASSGLU study.

    Science.gov (United States)

    Zimmermann, Johannes B; Lehmann, Monika; Hofer, Stefan; Hüsing, Johannes; Alles, Catharina; Werner, Jens; Stiller, Jürgen; Künnecke, Wolfgang; Luntz, Steffen; Motsch, Johann; Weigand, Markus A

    2012-09-22

    Although a device is needed to continuously measure blood glucose levels within an intensive care setting, and several large-scale prospective studies have shown that patients might benefit from intensive insulin, potassium, or glucose therapy during intensive care, no devices are currently available to continuously assess blood glucose levels in critically ill patients. We conceived the study described here to evaluate the clinical use of the Continuous Glucose Monitor (CGM) performed via a central vein, and to determine the impact of phenomena, such as drift and shift, on the agreement between the CGM and a RAPIDLab® 1265 blood gas analyser (BGA). In the CONTinuous ASSessment of blood GLUcose (CONTASSGLU) study, up to 130 patients under intensive care will be fitted with the CGM, an ex vivo device that continuously measures blood glucose and lactate levels. Readings from the device taken 8 h after initial placement and calibration will be compared with values measured by a BGA. For this study, we chose the BGA as it is an established standard point-of-care device, instead of the devices used in certified central laboratories. Nevertheless, we will also independently compare the results from the point-of-care BGA with those determined by a central laboratory-based device. Blood samples will be collected from each patient from the same site in which the CGM will measure blood glucose. Consequently, each participant will serve as their own control, and no randomisation is necessary. The 95% limits of agreement and the corresponding confidence intervals will be calculated and compared with a prespecified clinically acceptable relative difference of 20%. Several attempts have been made to develop a device to continuously measure blood glucose levels within an intensive care setting or to use the devices that were originally designed for diabetes management, as several of these devices are already available. However, none of these devices were successful in

  20. Design of a prospective clinical study on the agreement between the Continuous GlucoseMonitor, a novel device for CONTinuous ASSessment of blood GLUcose levels, and the RAPIDLab® 1265 blood gas analyser: The CONTASSGLU study

    Directory of Open Access Journals (Sweden)

    Zimmermann Johannes B

    2012-09-01

    Full Text Available Abstract Background Although a device is needed to continuously measure blood glucose levels within an intensive care setting, and several large-scale prospective studies have shown that patients might benefit from intensive insulin, potassium, or glucose therapy during intensive care, no devices are currently available to continuously assess blood glucose levels in critically ill patients. We conceived the study described here to evaluate the clinical use of the Continuous Glucose Monitor (CGM performed via a central vein, and to determine the impact of phenomena, such as drift and shift, on the agreement between the CGM and a RAPIDLab® 1265 blood gas analyser (BGA. Methods/design In the CONTinuous ASSessment of blood GLUcose (CONTASSGLU study, up to 130 patients under intensive care will be fitted with the CGM, an ex vivo device that continuously measures blood glucose and lactate levels. Readings from the device taken 8 h after initial placement and calibration will be compared with values measured by a BGA. For this study, we chose the BGA as it is an established standard point-of-care device, instead of the devices used in certified central laboratories. Nevertheless, we will also independently compare the results from the point-of-care BGA with those determined by a central laboratory-based device. Blood samples will be collected from each patient from the same site in which the CGM will measure blood glucose. Consequently, each participant will serve as their own control, and no randomisation is necessary. The 95% limits of agreement and the corresponding confidence intervals will be calculated and compared with a prespecified clinically acceptable relative difference of 20%. Discussion Several attempts have been made to develop a device to continuously measure blood glucose levels within an intensive care setting or to use the devices that were originally designed for diabetes management, as several of these devices are already

  1. Self-reported discrimination, diabetes distress, and continuous blood glucose in women with type 2 diabetes.

    Science.gov (United States)

    Wagner, Julie A; Tennen, Howard; Feinn, Richard; Osborn, Chandra Y

    2015-04-01

    We investigated whether self-reported racial discrimination was associated with continuous glucose levels and variability in individuals with diabetes, and whether diabetes distress mediated these associations. Seventy-four Black and White women with type 2 diabetes completed the Experience of Discrimination scale, a measure of lifetime racial discrimination, and the Problem Areas in Diabetes, a measure of diabetes distress. Participants wore a continuous glucose monitor for 24 h after 8 h of fasting, a standard meal, and a 4-h run in period. Higher discrimination predicted higher continuous mean glucose and higher standard deviation of glucose. For both mean and standard deviation of glucose, a race × discrimination interaction indicated a stronger relationship between discrimination and glucose for Whites than for Blacks. Diabetes distress mediated the discrimination-mean glucose relationship. Whites who report discrimination may be uniquely sensitive to distress. These preliminary findings suggest that racial discrimination adversely affects glucose control in women with diabetes, and does so indirectly through diabetes distress. Diabetes distress may be an important therapeutic target to reduce the ill effects of racial discrimination in persons with diabetes.

  2. Ex vivo changes in blood glucose levels seldom change blood glucose control algorithm recommendations

    NARCIS (Netherlands)

    de Groene, L.; Harmsen, R. E.; Binnekade, J. M.; Spronk, P. E.; Schultz, M. J.

    2010-01-01

    Background. Hyperglycemia and glycemic variabilities are associated with adverse outcomes in critically ill patients. Blood glucose control with insulin mandates an adequate and precise assessment of blood glucose levels. Blood glucose levels, however, can change ex vivo after sampling. The aim of

  3. Blood glucose monitoring during aerobic and anaerobic physical exercise using a new artificial pancreas system.

    Science.gov (United States)

    Quirós, Carmen; Bertachi, Arthur; Giménez, Marga; Biagi, Lyvia; Viaplana, Judith; Viñals, Clara; Vehí, Josep; Conget, Ignacio; Bondia, Jorge

    To assess an artificial pancreas system during aerobic (AeE) and anaerobic exercise (AnE). A pilot clinical trial on five subjects with type 1 diabetes (4 males) aged 37±10.9 years, diabetes diagnosed 21.2±12.2 years before, insulin pump users, and with a mean HbA 1c level of 7.8±0.5%. Every subject did three AeE and three AnE sessions. Blood glucose levels were monitored by the artificial pancreas system during exercise and up to four hours later. Before the start of exercise, 23g of carbohydrates were administered orally. The mean glucose level was 124.0±25.1mg/dL in the AeE studies and 152.1±34.1mg/dL in the AnE studies. Percent times in the different glucose ranges of 70-180, >180 and 18.6% and 75.9±27.6%; 7.7±18.4% and 23.2±28.0%; and 2.5±6.3% and 1.0±3.6% during the AeE and AnE sessions, respectively. Only six rescues with carbohydrates (15g) were required during the studies (4 in AeE and 2 in AnE). Total insulin dose during the five hours of the study was 3.1±1.0IU in the AeE studies and 3.5±1.3IU in the AnE studies. Blood glucose response to AeE and AnE exercise is different. The evaluated artificial pancreas system appeared to achieve effective and safe blood glucose control during exercise and up to four hours later. However, new control strategies that minimize patient intervention should be designed. Copyright © 2018 SEEN y SED. Publicado por Elsevier España, S.L.U. All rights reserved.

  4. Fluorescent blood glucose monitor by hemin-functionalized graphene quantum dots based sensing system

    Energy Technology Data Exchange (ETDEWEB)

    He, Yuezhen; Wang, Xiaoxun; Sun, Jian; Jiao, Shoufeng; Chen, Hongqi; Gao, Feng; Wang, Lun, E-mail: wanglun@mail.ahnu.edu.cn

    2014-01-31

    Graphical abstract: -- Highlights: •Hemin is assembled onto the surfaces of graphene quantum dots (GQDs). •With the aid of hemin, H{sub 2}O{sub 2} could quench the FL signal of GQDs obviously. •Based on this effect, a fluorescent platform is proposed for the sensing of glucose. •The proposed method provides a new pathway to explore practical application of GQDs. -- Abstract: In the present work, a highly sensitive and specific fluorescent biosensor for blood glucose monitoring is developed based on hemin-functionalized graphene quantum dots (GQDs) and glucose oxidase (GOx) system. The GQDs which are simply prepared by pyrolyzing citric acid exhibit strong fluorescence and good water-solubility. Due to the noncovalent assembly between hemin and GQDs, the addition of hemin can make hydrogen peroxide (H{sub 2}O{sub 2}) to destroy the passivated surface of GQDs, leading to significant fluorescence quenching of GQDs. Based on this effect, a novel fluorescent platform is proposed for the sensing of glucose. Under the optimized conditions, the linear range of glucose is from 9 to 300 μM, and the limit of detection is 0.1 μM. As unique properties of GQDs, the proposed biosensor is green, simple, cost-efficient, and it is successfully applied to the determination of glucose in human serum. In addition, the proposed method provides a new pathway to further design the biosensors based on the assembly of GQDs with hemin for detection of biomolecules.

  5. Evaluation of Postprandial Glucose Excursion Using a Novel Minimally Invasive Glucose Area-Under-the-Curve Monitoring System

    OpenAIRE

    Kuranuki, Sachi; Sato, Toshiyuki; Okada, Seiki; Hosoya, Samiko; Seko, Akinobu; Sugihara, Kaya; Nakamura, Teiji

    2013-01-01

    Objective: To develop a minimally invasive interstitial fluid extraction technology (MIET) to monitor postprandial glucose area under the curve (AUC) without blood sampling, we evaluated the accuracy of glucose AUC measured by MIET and compared with that by blood sampling after food intake. Methods: Interstitial fluid glucose AUC (IG-AUC) following consumption of 6 different types of foods was measured by MIET. MIET consisted of stamping microneedle arrays, placing hydrogel patches on the are...

  6. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Blood Pressure Physical Activity High Blood Glucose My Health Advisor Tools To Know Your Risk Alert Day ... DKA (Ketoacidosis) & Ketones Kidney Disease (Nephropathy) Gastroparesis Mental Health Step On Up Treatment & Care Blood Glucose Testing ...

  7. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... symptoms include the following: High blood glucose High levels of sugar in the urine Frequent urination Increased ... you should check and what your blood glucose levels should be. Checking your blood and then treating ...

  8. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... can often lower your blood glucose level by exercising. However, if your blood glucose is above 240 ... ketones. If you have ketones, do not exercise. Exercising when ketones are present may make your blood ...

  9. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Your Carbs Count Glycemic Index Low-Calorie Sweeteners Sugar and Desserts Fitness Exercise & Type 1 Diabetes Get ... the technical term for high blood glucose (blood sugar). High blood glucose happens when the body has ...

  10. Asymptotic tracking and disturbance rejection of the blood glucose regulation system.

    Science.gov (United States)

    Ashley, Brandon; Liu, Weijiu

    2017-07-01

    Type 1 diabetes patients need external insulin to maintain blood glucose within a narrow range from 65 to 108 mg/dl (3.6 to 6.0 mmol/l). A mathematical model for the blood glucose regulation is required for integrating a glucose monitoring system into insulin pump technology to form a closed-loop insulin delivery system on the feedback of the blood glucose, the so-called "artificial pancreas". The objective of this paper is to treat the exogenous glucose from food as a glucose disturbance and then develop a closed-loop feedback and feedforward control system for the blood glucose regulation system subject to the exogenous glucose disturbance. For this, a mathematical model for the glucose disturbance is proposed on the basis of experimental data, and then incorporated into an existing blood glucose regulation model. Because all the eigenvalues of the disturbance model have zero real parts, the center manifold theory is used to establish blood glucose regulator equations. We then use their solutions to synthesize a required feedback and feedforward controller to reject the disturbance and asymptotically track a constant glucose reference of 90  mg/dl. Since the regulator equations are nonlinear partial differential equations and usually impossible to solve analytically, a linear approximation solution is obtained. Our numerical simulations show that, under the linear approximate feedback and feedforward controller, the blood glucose asymptotically tracks its desired level of 90 mg/dl approximately. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Reproducibility and reliability of hypoglycaemic episodes recorded with Continuous Glucose Monitoring System (CGMS) in daily life

    DEFF Research Database (Denmark)

    Høi-Hansen, T; Pedersen-Bjergaard, U; Thorsteinsson, B

    2005-01-01

    AIM: Continuous glucose monitoring may reveal episodes of unrecognized hypoglycaemia. We evaluated reproducibility and reliability of hypoglycaemic episodes recorded in daily life by the Medtronic MiniMed Continuous Glucose Monitoring System (CGMS). METHODS: Twenty-nine adult patients with Type 1...... data were recalibrated generating four different CGMS data sets [left-A (left side of abdomen, calibration set A), left-B, right-A and right-B]. Agreement between CGMS data sets was evaluated during hypoglycaemic events, comparing CGMS readings = 2.2 mmol/l with nadir values from corresponding CGMS...... data sets. CGMS readings were also compared with independent self-monitored blood glucose (SMBG) values. RESULTS: With hypoglycaemia (CGMS readings = 2.2 mmol/l) in calibration set left-A, values below 3.5 mmol/l were present in 99% (95% CI: 95-100%) of samples in left-B, 91% (95% CI: 84...

  12. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Español Hyperglycemia (High Blood Glucose) Hyperglycemia is the technical term for high blood glucose (blood sugar). High ... We Are Research Leaders We Support Your Doctor Student Resources Patient Access to Research Research Resources Practice ...

  13. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... by Mail Close www.diabetes.org > Living With Diabetes > Treatment and Care > Blood Glucose Testing Share: Print Page ... and-how-tos, . In this section Living With Diabetes Treatment and Care Blood Glucose Testing Checking Your Blood ...

  14. Different methods and settings for glucose monitoring for gestational diabetes during pregnancy.

    Science.gov (United States)

    Raman, Puvaneswary; Shepherd, Emily; Dowswell, Therese; Middleton, Philippa; Crowther, Caroline A

    2017-10-29

    Incidence of gestational diabetes mellitus (GDM) is increasing worldwide. Blood glucose monitoring plays a crucial part in maintaining glycaemic control in women with GDM and is generally recommended by healthcare professionals. There are several different methods for monitoring blood glucose which can be carried out in different settings (e.g. at home versus in hospital). The objective of this review is to compare the effects of different methods and settings for glucose monitoring for women with GDM on maternal and fetal, neonatal, child and adult outcomes, and use and costs of health care. We searched the Cochrane Pregnancy and Childbirth Group Trials Register (30 September 2016) and reference lists of retrieved studies. Randomised controlled trials (RCTs) or quasi-randomised controlled trials (qRCTs) comparing different methods (such as timings and frequencies) or settings, or both, for blood glucose monitoring for women with GDM. Two authors independently assessed study eligibility, risk of bias, and extracted data. Data were checked for accuracy.We assessed the quality of the evidence for the main comparisons using GRADE, for:- primary outcomes for mothers: that is, hypertensive disorders of pregnancy; caesarean section; type 2 diabetes; and- primary outcomes for children: that is, large-for-gestational age; perinatal mortality; death or serious morbidity composite; childhood/adulthood neurosensory disability;- secondary outcomes for mothers: that is, induction of labour; perineal trauma; postnatal depression; postnatal weight retention or return to pre-pregnancy weight; and- secondary outcomes for children: that is, neonatal hypoglycaemia; childhood/adulthood adiposity; childhood/adulthood type 2 diabetes. We included 11 RCTs (10 RCTs; one qRCT) that randomised 1272 women with GDM in upper-middle or high-income countries; we considered these to be at a moderate to high risk of bias. We assessed the RCTs under five comparisons. For outcomes assessed using

  15. Educational intervention together with an on-line quality control program achieve recommended analytical goals for bedside blood glucose monitoring in a 1200-bed university hospital.

    Science.gov (United States)

    Sánchez-Margalet, Víctor; Rodriguez-Oliva, Manuel; Sánchez-Pozo, Cristina; Fernández-Gallardo, María Francisca; Goberna, Raimundo

    2005-01-01

    Portable meters for blood glucose concentrations are used at the patients bedside, as well as by patients for self-monitoring of blood glucose. Even though most devices have important technological advances that decrease operator error, the analytical goals proposed for the performance of glucose meters have been recently changed by the American Diabetes Association (ADA) to reach nurses in a 1200-bed University Hospital to achieve recommended analytical goals, so that we could improve the quality of diabetes care. We used portable glucose meters connected on-line to the laboratory after an educational program for nurses with responsibilities in point-of-care testing. We evaluated the system by assessing total error of the glucometers using high- and low-level glucose control solutions. In a period of 6 months, we collected data from 5642 control samples obtained by 14 devices (Precision PCx) directly from the control program (QC manager). The average total error for the low-level glucose control (2.77 mmol/l) was 6.3% (range 5.5-7.6%), and even lower for the high-level glucose control (16.66 mmol/l), at 4.8% (range 4.1-6.5%). In conclusion, the performance of glucose meters used in our University Hospital with more than 1000 beds not only improved after the intervention, but the meters achieved the analytical goals of the suggested ADA/National Academy of Clinical Biochemistry criteria for total error (<7.9% in the range 2.77-16.66 mmol/l glucose) and optimal total error for high glucose concentrations of <5%, which will improve the quality of care of our patients.

  16. The self-aware diabetic patient software agent model.

    Science.gov (United States)

    Wang, Zhanle; Paranjape, Raman

    2013-11-01

    This work presents a self-aware diabetic patient software agent for representing a human diabetic patient. To develop a 24h, stochastic and self-aware patient agent, we extend the original seminal work of Ackerman et al. [1] in creating a mathematical model of human blood glucose levels in three aspects. (1) We incorporate the stochastic and unpredictable effects of daily living. (2) The Ackerman model is extended into the period of night-time. (3) Patients' awareness of their own conditions is incorporated. Simulation results are quantitatively assessed to demonstrate the effectiveness of lifestyle management, such as adjusting the amount of food consumed, meal schedule, intensity of exercise and level of medication. In this work we show through the simulation that the average blood glucose can be reduced by as much as 51% due to careful lifestyle management. Self monitoring blood glucose is also quantitatively evaluated. The simulation results show that the average blood glucose is further dropped by 25% with the assistance of blood glucose samples. In addition, the blood glucose is perfectly controlled in the target range during the simulation period as a result of joint efforts of lifestyle management and self monitoring blood glucose. This study focuses on demonstrating how human patients' behavior, specifically lifestyle and self monitoring of blood glucose, affects blood glucose controls on a daily basis. This work does not focus on the insulin-glucose interaction of an individual human patient. Our conclusion is that this self-aware patient agent model is capable of adequately representing diabetic patients and of evaluating their dynamic behaviors. It can also be incorporated into a multi-agent system by introducing other healthcare components so that more interesting insights such as the healthcare quality, cost and performance can be observed. © 2013 Published by Elsevier Ltd.

  17. Continuous Blood Glucose Monitoring May Detect Carotid Occlusion Intolerance during Carotid Artery Stenting.

    Science.gov (United States)

    Hiramatsu, Ryo; Furuse, Motomasa; Yagi, Ryokichi; Ohmura, Tomohisa; Ohnishi, Hiroyuki; Ikeda, Naokado; Nonoguchi, Naosuke; Kawabata, Shinji; Miyachi, Shigeru; Kuroiwa, Toshihiko

    2018-02-05

    The frequency of the occurrence of adverse events associated with carotid artery stenting (CAS) is usually low, but serious adverse events such as cerebral hyperperfusion syndrome (CHS) may occur. Real-time monitoring is ideal for the early detection of adverse events during the surgical procedure. This study aimed to evaluate continuous blood glucose (BG) monitoring for the detection of adverse events during CAS. Forty patients undergoing scheduled CAS were prospectively enrolled. An artificial pancreas was used for continuous BG monitoring (once per minute), using venous blood extracted at a rate of 2 mL/hr during CAS. The primary endpoint was a correlation between BG change and adverse events. CAS was discontinued in 1 patient, and BG was not measured in 5 patients (12.5%) because of the inability to extract blood. Among 34 evaluable patients, no patient developed CHS, but 3 patients (9%) experienced carotid occlusion intolerance. During CAS, BG was significantly higher in patients with carotid occlusion intolerance (median: 5 mg/dL) than in patients without carotid occlusion intolerance (median: 0 mg/dL) (P = 0.0221). A cutoff BG value ≥4 mg/dL during CAS showed 50% sensitivity and 100% specificity for the detection of carotid occlusion intolerance. There was no significant correlation between BG change and other adverse events. BG elevation may help detect carotid occlusion intolerance although it is still unknown whether BG monitoring can detect CHS. Further studies should validate that a cutoff BG elevation value of ≥4 mg/dL during CAS indicates carotid occlusion intolerance. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Differential photoacoustic spectroscopy with continuous wave lasers for non-invasive blood glucose monitoring

    Science.gov (United States)

    Tanaka, Y.; Tajima, T.; Seyama, M.

    2018-02-01

    We propose a differential photoacoustic spectroscopy (PAS), wherein two wavelengths of light with the same absorbance are selected, and differential signal is linearized by one of the two signals for a non-invasive blood glucose monitoring. PAS has the possibility to overcome the strong optical scattering in tissue, but there are still remaining issues: the water background and instability due to the variation in acoustic resonance conditions. A change in sample solution temperature is one of the causes of the variation in acoustic resonance conditions. Therefore, in this study, we investigated the sensitivity against glucose concentration under the condition where the temperature of the sample water solution ranges 30 to 40 °C. The glucose concentration change is simulated by shifting the wavelength of irradiated laser light, which can effectively change optical absorption. The temperature also affects optical absorption and the acoustic resonance condition (acoustic velocity). A distributed-feedback (DFB) laser, tunable wavelength laser (TWL) and an acoustic sensor were used to obtain the differential PAS signal. The wavelength of the DFB laser was 1.382 μm, and that of TWL was switched from 1.600 to 1.610 μm to simulate the glucose concentration change. Optical absorption by glucose occurs at around 1.600 μm. The sensitivities against temperature are almost the same: 1.9 and 1.8 %/°C for 1.600 and 1.610 μm. That is, the glucose dependence across the whole temperature range remains constant. This implies that temperature correction is available.

  19. Trend Estimation of Blood Glucose Level Fluctuations Based on Data Mining

    Directory of Open Access Journals (Sweden)

    Masaki Yamaguchi

    2003-06-01

    Full Text Available We have fabricated calorie-calculating software that calculates and records the total calorific food intake by choosing a meal menu selected using a computer mouse. The purpose of this software was to simplify data collection throughout a person's normal life, even if they were inexperienced computer operators. Three portable commercial devices have also been prepared a blood glucose monitor, a metabolic rate monitor and a mobile-computer, and linked into the calorie-calculating software. Time-course changes of the blood glucose level, metabolic rate and food intake were measured using these devices during a 3 month period. Based on the data collected in this study we could predict blood glucose levels of the next morning (FBG by modeling using data mining. Although a large error rate was found for predicting the absolute value, conditions could be found that improved the accuracy of the predicting trends in blood glucose level fluctuations by up to 90 %. However, in order to further improve the accuracy of estimation it was necessary to obtain further details about the patients' life style or to optimise the input variables that were dependent on each patient rather than collecting data over longer periods.

  20. Evaluation of postprandial glucose excursion using a novel minimally invasive glucose area-under-the-curve monitoring system.

    Science.gov (United States)

    Kuranuki, Sachi; Sato, Toshiyuki; Okada, Seiki; Hosoya, Samiko; Seko, Akinobu; Sugihara, Kaya; Nakamura, Teiji

    2013-01-01

    To develop a minimally invasive interstitial fluid extraction technology (MIET) to monitor postprandial glucose area under the curve (AUC) without blood sampling, we evaluated the accuracy of glucose AUC measured by MIET and compared with that by blood sampling after food intake. Interstitial fluid glucose AUC (IG-AUC) following consumption of 6 different types of foods was measured by MIET. MIET consisted of stamping microneedle arrays, placing hydrogel patches on the areas, and calculating IG-AUC based on glucose levels in the hydrogels. Glycemic index (GI) was determined using IG-AUC and reference AUC measured by blood sampling. IG-AUC strongly correlated with reference AUC (R = 0.91), and GI determined using IG-AUC showed good correlation with that determined by reference AUC (R = 0.88). IG-AUC obtained by MIET can accurately predict the postprandial glucose excursion without blood sampling. In addition, feasibility of GI measurement by MIET was confirmed.

  1. Use of a real time continuous glucose monitoring system as an educational tool for patients with gestational diabetes.

    Science.gov (United States)

    Alfadhli, Eman; Osman, Eman; Basri, Taghreed

    2016-01-01

    Women with gestational diabetes mellitus (GDM) are required to control their blood glucose shortly after GDM diagnosis to minimize adverse pregnancy outcomes. A real time-continuous glucose monitoring system (RT-CGMS) provides the patient with continuous information about the alterations in levels of the blood glucose. This visibility may empower the patient to modify her lifestyle and engage in therapeutic management. The aim of this study was to determine whether a single application of RT-CGMS to pregnant women shortly after GDM diagnosis is useful as an educational and motivational tool. This study was a prospective open label randomized controlled study conducted at Maternity and Children Hospital, Medina, Saudi Arabia. A total of 130 pregnant women with GDM were randomised to either blood glucose self-monitor alone (SMBG group) (n = 62) or in addition to SMBG, patients wore a Guardian(®) REAL-Time Continuous Glucose Monitoring System (Medtronic MiniMed) once for 3-7 days, within 2 weeks of GDM diagnosis (RT-CGMS group) (n = 68). The primary outcomes were maternal glycemic control and pregnancy outcomes. Secondary outcomes were the changes in parameters of glucose variability, which includes mean sensor readings, standard deviation (SD) of blood glucose, and area under the curve for hyper and hypoglycaemia at the end of the RT-CGMS application. HbA1c, mean fasting and postprandial glucose levels were similar in both groups at the end of the pregnancy. Pregnancy outcomes were comparable. However, there was significant improvement in the parameters of glucose variability on the last day of sensor application; both mean glucose and the SD of mean glycaemia were reduced significantly; P = 0.016 and P = 0.034, respectively. The area under the curve for hyper and hypoglycaemia were improved, however, the results were not statistically significant. Although a single application of RT-CGMS shortly after GDM diagnosis is helpful as an educational tool, it

  2. Is Low Blood Glucose (Hypoglycemia) Dangerous?

    Science.gov (United States)

    ... pills. In general, hypoglycemia is defined as a blood glucose level below 70 mg/dl. Low blood glucose is ... glucose. Always carry carbohydrate foods for treatment. Check blood glucose levels again in 15 minutes, and repeat treatment if ...

  3. Blood glucose monitoring and glycemic control in adolescents with type 1 diabetes: meter downloads versus self-report.

    Science.gov (United States)

    Guilfoyle, Shanna M; Crimmins, Nancy A; Hood, Korey K

    2011-09-01

    Reported frequencies of blood glucose monitoring (BGM) by both adolescents and their caregivers serve as adherence proxies when meter downloads are not available. Yet, correlates of reported BGM frequencies and their predictive utility are understudied. To identify sociodemographic, psychological, and disease-specific correlates of reported BGM frequencies in adolescents with type 1 diabetes and to explore the predictive utility of BGM indices on glycemic control. Study participants included caregivers and adolescents with type 1 diabetes (N=143, 13-18 yr) receiving diabetes treatment at a tertiary care setting. At the initial visit, adolescents and caregivers reported on daily BGM frequencies. A sub-sample provided meter downloads. Adolescents also completed a depression inventory. Three months later, adolescents provided blood sampling for A1c assessment. Multivariate general linear modeling identified that older adolescent age and more depressive symptoms were associated with reports of less frequent BGM. Two stepwise multivariate regression models examined the predictive utility of BGM indices (i.e., adolescent-reported BGM, caregiver-reported BGM, meter download) on glycemic control. Caregiver-reported BGM frequency predicted glycemic control in the absence of meter download data (pmeter download data were the most robust predictor of glycemic control (pMeter downloads have the most robust association with glycemic control when contextual variables are considered. Caregiver-reported BGM frequencies can serve as reliable substitutes in the absence of meter download, but they may not be as reliable in adolescents with depressive symptoms. © 2011 John Wiley & Sons A/S.

  4. Continuous glucose monitoring in subcutaneous tissue using factory-calibrated sensors: a pilot study.

    Science.gov (United States)

    Hoss, Udo; Jeddi, Iman; Schulz, Mark; Budiman, Erwin; Bhogal, Claire; McGarraugh, Geoffrey

    2010-08-01

    Commercial continuous subcutaneous glucose monitors require in vivo calibration using capillary blood glucose tests. Feasibility of factory calibration, i.e., sensor batch characterization in vitro with no further need for in vivo calibration, requires a predictable and stable in vivo sensor sensitivity and limited inter- and intra-subject variation of the ratio of interstitial to blood glucose concentration. Twelve volunteers wore two FreeStyle Navigator (Abbott Diabetes Care, Alameda, CA) continuous glucose monitoring systems for 5 days in parallel for two consecutive sensor wears (four sensors per subject, 48 sensors total). Sensors from a prototype sensor lot with a low variability in glucose sensitivity were used for the study. Median sensor sensitivity values based on capillary blood glucose were calculated per sensor and compared for inter- and intra-subject variation. Mean absolute relative difference (MARD) calculation and error grid analysis were performed using a single calibration factor for all sensors to simulate factory calibration and compared to standard fingerstick calibration. Sensor sensitivity variation in vitro was 4.6%, which increased to 8.3% in vivo (P glucose monitoring is feasible with similar accuracy to standard fingerstick calibration. Additional data are required to confirm this result in subjects with diabetes.

  5. Transmission of hepatitis B virus among persons undergoing blood glucose monitoring in long-term-care facilities--Mississippi, North Carolina, and Los Angeles County, California, 2003-2004.

    Science.gov (United States)

    2005-03-11

    Regular monitoring of blood glucose levels is an important component of routine diabetes care. Capillary blood is typically sampled with the use of a fingerstick device and tested with a portable glucometer. Because of outbreaks of hepatitis B virus (HBV) infections associated with glucose monitoring, CDC and the Food and Drug Administration (FDA) have recommended since 1990 that fingerstick devices be restricted to individual use. This report describes three recent outbreaks of HBV infection among residents in long-term-care (LTC) facilities that were attributed to shared devices and other breaks in infection-control practices related to blood glucose monitoring. Findings from these investigations and previous reports suggest that recommendations concerning standard precautions and the reuse of fingerstick devices have not been adhered to or enforced consistently in LTC settings. The findings underscore the need for education, training, adherence to standard precautions, and specific infection-control recommendations targeting diabetes-care procedures in LTC settings.

  6. Mobile Diabetes Intervention Study of Patient Engagement and Impact on Blood Glucose: Mixed Methods Analysis.

    Science.gov (United States)

    Quinn, Charlene Connolly; Butler, Erin C; Swasey, Krystal K; Shardell, Michelle D; Terrin, Michael D; Barr, Erik A; Gruber-Baldini, Ann L

    2018-02-02

    Successful treatment of diabetes includes patient self-management behaviors to prevent or delay complications and comorbid diseases. On the basis of findings from large clinical trials and professional guidelines, diabetes education programs and health providers prescribe daily regimens of glucose monitoring, healthy eating, stress management, medication adherence, and physical activity. Consistent, long-term commitment to regimens is challenging. Mobile health is increasingly being used to assist patients with lifestyle changes and self-management behaviors between provider visits. The effectiveness of mobile health to improve diabetes outcomes depends on patient engagement with a technology, content, or interactions with providers. In the current analysis, we aimed to identify patient engagement themes in diabetes messaging with diabetes providers and determine if differences in engagement in the Mobile Diabetes Intervention Study (MDIS) influenced changes in glycated hemoglobin A 1c (HbA 1c ) over a 1-year treatment period (1.9% absolute decrease in the parent study). In the primary MDIS study, 163 patients were enrolled into 1 of 3 mobile intervention groups or a usual care control group based on their physician cluster randomization assignment. The control group received care from their physicians as usual. Participants in each intervention group had access to a patient portal where they could record monitoring values for blood glucose, blood pressure, medication changes, or other self-management information while also assigned to varying levels of physician access to patient data. Intervention participants could choose to send and receive messages to assigned certified diabetes educators with questions or updates through the secure Web portal. For this secondary analysis, patient engagement was measured using qualitative methods to identify self-care themes in 4109 patient messages. Mixed methods were used to determine the impact of patient engagement on

  7. Time-Series Analysis of Continuously Monitored Blood Glucose: The Impacts of Geographic and Daily Lifestyle Factors

    Directory of Open Access Journals (Sweden)

    Sean T. Doherty

    2015-01-01

    Full Text Available Type 2 diabetes is known to be associated with environmental, behavioral, and lifestyle factors. However, the actual impacts of these factors on blood glucose (BG variation throughout the day have remained relatively unexplored. Continuous blood glucose monitors combined with human activity tracking technologies afford new opportunities for exploration in a naturalistic setting. Data from a study of 40 patients with diabetes is utilized in this paper, including continuously monitored BG, food/medicine intake, and patient activity/location tracked using global positioning systems over a 4-day period. Standard linear regression and more disaggregated time-series analysis using autoregressive integrated moving average (ARIMA are used to explore patient BG variation throughout the day and over space. The ARIMA models revealed a wide variety of BG correlating factors related to specific activity types, locations (especially those far from home, and travel modes, although the impacts were highly personal. Traditional variables related to food intake and medications were less often significant. Overall, the time-series analysis revealed considerable patient-by-patient variation in the effects of geographic and daily lifestyle factors. We would suggest that maps of BG spatial variation or an interactive messaging system could provide new tools to engage patients and highlight potential risk factors.

  8. The Diabetes Assistant: A Smartphone-Based System for Real-Time Control of Blood Glucose

    Directory of Open Access Journals (Sweden)

    Patrick Keith-Hynes

    2014-11-01

    Full Text Available Type 1 Diabetes Mellitus (T1DM is an autoimmune disease in which the insulin-producing beta cells of the pancreas are destroyed and insulin must be injected daily to enable the body to metabolize glucose. Standard therapy for T1DM involves self-monitoring of blood glucose (SMBG several times daily with a blood glucose meter and injecting insulin via a syringe, pen or insulin pump. An “Artificial Pancreas” (AP is a closed-loop control system that uses a continuous glucose monitor (CGM, an insulin pump and an internal algorithm to automatically manage insulin infusion to keep the subject’s blood glucose within a desired range. Although no fully closed-loop AP systems are currently commercially available there are intense academic and commercial efforts to produce safe and effective AP systems. In this paper we present the Diabetes Assistant (DiAs, an ultraportable AP research platform designed to enable home studies of Closed Loop Control (CLC of blood glucose in subjects with Type 1 Diabetes Mellitus. DiAs consists of an Android (Google Inc., Mountain View, CA, USA smartphone equipped with communication, control and user interface software wirelessly connected to a continuous glucose monitor and insulin pump. The software consists of a network of mobile applications with well-defined Application Programming Interfaces (APIs running atop an enhanced version of Android with non-essential elements removed. CLC and safety applications receive real-time data from the CGM and pump, estimate the patient’s metabolic state and risk of hypo- and hyperglycemia, adjust the insulin infusion rate, raise alarms as needed and transmit de-identified data to a secure remote server. Some applications may be replaced by researchers wishing to conduct outpatient ambulatory studies of novel Closed Loop Control, Safety or User Interface modules. Over the past three years the DiAs platform has been used in a series of AP clinical trials sponsored by the National

  9. Evaluation of Postprandial Glucose Excursion Using a Novel Minimally Invasive Glucose Area-Under-the-Curve Monitoring System

    Directory of Open Access Journals (Sweden)

    Sachi Kuranuki

    2013-01-01

    Full Text Available Objective: To develop a minimally invasive interstitial fluid extraction technology (MIET to monitor postprandial glucose area under the curve (AUC without blood sampling, we evaluated the accuracy of glucose AUC measured by MIET and compared with that by blood sampling after food intake. Methods: Interstitial fluid glucose AUC (IG-AUC following consumption of 6 different types of foods was measured by MIET. MIET consisted of stamping microneedle arrays, placing hydrogel patches on the areas, and calculating IG-AUC based on glucose levels in the hydrogels. Glycemic index (GI was determined using IG-AUC and reference AUC measured by blood sampling. Results: IG-AUC strongly correlated with reference AUC (R = 0.91, and GI determined using IG-AUC showed good correlation with that determined by reference AUC (R = 0.88. Conclusions: IG-AUC obtained by MIET can accurately predict the postprandial glucose excursion without blood sampling. In addition, feasibility of GI measurement by MIET was confirmed.

  10. Improvement of HbA1c and stable weight loss 2 years after an outpatient treatment and teaching program for patients with type 2 diabetes without insulin therapy based on urine glucose self-monitoring

    Directory of Open Access Journals (Sweden)

    Müller N

    2012-03-01

    Full Text Available Nicolle Müller1, Daniela Stengel2, Christof Kloos1, Michael Ristow2, Gunter Wolf1, Ulrich A Müller11University Hospital of Jena, Department of Internal Medicine III, Jena, Germany; 2Friedrich-Schiller-University Jena, Institute of Nutrition, Department of Human Nutrition, Jena, GermanyObjective: Long-term outcomes after participation in a structured diabetes treatment and teaching program (DTTP for patients with diabetes without insulin use, primarily based upon postprandial urine glucose self-monitoring (UGSM.Methods: A total of 126 patients took part in the DTTP in a university outpatient department in 2004–2005. We re-evaluated 119 (94.4% at baseline and at 6 months, 12 months, and 24 months. Hemoglobin A1c (HbA1c was DCCT adjusted.Results: HbA1c decreased significantly 6 months after education from 7.33% (±1.59% to 6.89% (±0.98%; P = 0.001 versus baseline and was maintained for up to 12 months (7.02% ± 1.07%; P = 0.017 versus baseline as well as up to 24 months (6.96% ± 1.06%; P = 0.005 versus baseline. Weight decreased from 92.5 kg at baseline to 90.3 kg at 24 months (P = 0.014. A total of 36.5% of patients not on insulin therapy preferred UGSM, whereas 23.5% preferred blood glucose monitoring, at 24 months. Glucose control was similar in both groups at 24 months (HbA1c UGSM 7.03 versus blood glucose monitoring 6.97%; P = 0.807.Conclusion: Participation in the DTTP resulted in long-term behavior modification. HbA1c of patients without insulin met the target 24 months after the DTTP, irrespective of the type of glucose self-monitoring.Keywords: diabetes mellitus type 2, treatment and teaching program, patient education, HbA1c, body weight

  11. Challenges and perspectives in continuous glucose monitoring.

    Science.gov (United States)

    van Enter, Benjamin Jasha; von Hauff, Elizabeth

    2018-04-24

    Diabetes is a global epidemic that threatens the health and well-being of hundreds of millions of people. The first step in patient treatment is to monitor glucose levels. Currently this is most commonly done using enzymatic strips. This approach suffers from several limitations, namely it requires a blood sample and is therefore invasive, the quality and the stability of the enzymatic strips vary widely, and the patient is burdened by performing the measurement themselves. This results in dangerous fluctuations in glucose levels often going undetected. There is currently intense research towards new approaches in glucose detection that would enable non-invasive continuous glucose monitoring (CGM). In this review, we explore the state-of-the-art in glucose detection technologies. In particular, we focus on the physical mechanisms behind different approaches, and how these influence and determine the accuracy and reliability of glucose detection. We begin by reviewing the basic physical and chemical properties of the glucose molecule. Although these play a central role in detection, especially the anomeric ratio, they are surprisingly often overlooked in the literature. We then review state-of-the art and emerging detection methods. Finally, we survey the current market for glucometers. Recent results show that past challenges in glucose detection are now being overcome, thereby enabling the development of smart wearable devices for non-invasive continuous glucose monitoring. These new directions in glucose detection have enormous potential to improve the quality of life of millions of diabetics, as well as offer insight into the development, treatment and even prevention of the disease.

  12. Patient satisfaction and barriers to initiating real-time continuous glucose monitoring in early pregnancy in women with diabetes

    DEFF Research Database (Denmark)

    Secher, A L; Madsen, A B; Nielsen, Lene Ringholm

    2012-01-01

    of initial monitoring). Ten women (15%) did not wish to use continuous glucose monitoring again in pregnancy. Main causes behind early removal of continuous glucose monitoring were self-reported skin irritation, technical problems and continuous glucose monitoring inaccuracy. No differences were found......Aim: To evaluate self-reported satisfaction and barriers to initiating real-time continuous glucose monitoring in early pregnancy among women with pregestational diabetes. Methods: Fifty-four women with Type 1 diabetes and 14 women with Type 2 diabetes were offered continuous glucose monitoring...

  13. Relationship between metabolic control and self-monitoring of blood glucose in insulin-treated patients with diabetes mellitus.

    Science.gov (United States)

    Soto González, Alfonso; Quintela Fernández, Niurka; Pumar López, Alfonso; Darias Garzón, Ricardo; Rivas Fernández, Margarita; Barberá Comes, Gloria

    2015-05-01

    To assess the relationship between metabolic control (MC) and frequency of self-monitoring of blood glucose (SMBG) in insulin-treated patients with type 1 (T1DM) and type 2 (T2DM) diabetes mellitus, and to analyze the factors associated to MC. A multicenter, cross-sectional, observational study was conducted in which endocrinologists enrolled diabetic patients treated with insulin who used a glucometer. The cut-off value for MC was HbA1c ≤ 7%. Grade of acceptance of the glucometer was assessed using a visual analogue scale (VAS). A total of 341 patients (53.5% males) with a mean age (SD) 52.8 (16.3) years, mean HbA1c of 7.69% (1.25) and 128 (37.5%) with T1DM and 211 (61.9%) with T2DM were evaluable. SMBG was done by 86.1% at least once weekly. No relationship was seen between MC and SMBG (P=.678) in the overall sample or in the T1DM (P=.940) or T2DM (P=.343) subgroups. In the logistic regression model, hyperglycemic episodes (Exp-b [risk] 1.794, P=0.022), falsely elevated HbA1c values (Exp-b 3.182, P=.005), and VAS (Exp-b 1.269, P=.008) were associated to poor MC in the total sample. Hyperglycemic episodes (Exp-b 2.538, P=.004), falsely elevated HbA1c values (Exp-b 3.125, P=.012), and VAS (Exp-b 1.316, P=.026) were associated to poor MC in the T2DM subgroup, while body mass index (Exp-b 1.143, P=.046) was associated to poor MC in the T1DM subgroup. In this retrospective, non-controlled study on patients with DM treated with insulin who used a glucometer, no relationship was seen between the degree of metabolic control and frequency of use of the glucometer. Copyright © 2014 SEEN. Published by Elsevier España, S.L.U. All rights reserved.

  14. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... On Up Treatment & Care Blood Glucose Testing Medication Doctors, Nurses & More Oral Health & Hygiene Women A1C Insulin Pregnancy 8 Tips for ... is checking your blood glucose often. Ask your doctor how often you should ... associated with hyperglycemia. How Do I Treat Hyperglycemia? ...

  15. Data-driven analysis of blood glucose management effectiveness

    NARCIS (Netherlands)

    Nannings, B.; Abu-Hanna, A.; Bosman, R. J.

    2005-01-01

    The blood-glucose-level (BGL) of Intensive Care (IC) patients requires close monitoring and control. In this paper we describe a general data-driven analytical method for studying the effectiveness of BGL management. The method is based on developing and studying a clinical outcome reflecting the

  16. Study on the mechanism of human blood glucose concentration measuring using mid-infrared spectral analysis technology

    Science.gov (United States)

    Li, Xiang

    2016-10-01

    All forms of diabetes increase the risk of long-term complications. Blood glucose monitoring is of great importance for controlling diabetes procedure, preventing the complications and improving the patient's life quality. At present, the clinical blood glucose concentration measurement is invasive and could be replaced by noninvasive spectroscopy analytical techniques. The mid-infrared spectral region contains strong characteristic and well-defined absorption bands. Therefore, mid-infrared provides an opportunity for monitoring blood glucose invasively with only a few discrete bonds. Although the blood glucose concentration measurement using mid-infrared spectroscopy has a lot of advantages, the disadvantage is also obvious. The absorption in this infrared region is fundamental molecular group vibration. Absorption intensity is very strong, especially for biological molecules. In this paper, it figures out that the osmosis rate of glucose has a certain relationship with the blood glucose concentration. Therefore, blood glucose concentration could be measured indirectly by measuring the glucose exudate in epidermis layer. Human oral glucose tolerance tests were carried out to verify the correlation of glucose exudation in shallow layer of epidermis layer and blood glucose concentration. As it has been explained above, the mid-infrared spectral region contains well-defined absorption bands, the intensity of absorption peak around 1123 cm-1 was selected to measure the glucose and that around 1170 cm-1 was selected as reference. Ratio of absorption peak intensity was recorded for each set of measurement. The effect and importance of the cleaning the finger to be measured before spectrum measuring are discussed and also verified by experiment.

  17. A data driven nonlinear stochastic model for blood glucose dynamics.

    Science.gov (United States)

    Zhang, Yan; Holt, Tim A; Khovanova, Natalia

    2016-03-01

    The development of adequate mathematical models for blood glucose dynamics may improve early diagnosis and control of diabetes mellitus (DM). We have developed a stochastic nonlinear second order differential equation to describe the response of blood glucose concentration to food intake using continuous glucose monitoring (CGM) data. A variational Bayesian learning scheme was applied to define the number and values of the system's parameters by iterative optimisation of free energy. The model has the minimal order and number of parameters to successfully describe blood glucose dynamics in people with and without DM. The model accounts for the nonlinearity and stochasticity of the underlying glucose-insulin dynamic process. Being data-driven, it takes full advantage of available CGM data and, at the same time, reflects the intrinsic characteristics of the glucose-insulin system without detailed knowledge of the physiological mechanisms. We have shown that the dynamics of some postprandial blood glucose excursions can be described by a reduced (linear) model, previously seen in the literature. A comprehensive analysis demonstrates that deterministic system parameters belong to different ranges for diabetes and controls. Implications for clinical practice are discussed. This is the first study introducing a continuous data-driven nonlinear stochastic model capable of describing both DM and non-DM profiles. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  18. [Blood-sugar self control. A means for the diabetic of controlling his metabolic management. Quality control of a battery-run pocket size reflectometer (glucose-meter)].

    Science.gov (United States)

    Leidinger, F; Jörgens, V; Chantelau, E; Berchtold, P; Berger, M

    1980-07-26

    Home blood glucose monitoring by diabetic patients has recently been advocated as an effective means to improve metabolic control. The Glucocheck apparatus, a pocket-size battery-driven reflectance-meter (in Germany commercially available under the name Glucose-meter), has been evaluated for accuracy and practicability. In 450 blood glucose measurements, the variance between the values obtained using the Glucocheck apparatus and routine clinical laboratory procedures was +/- 11.7%. Especially in the low range of blood glucose concentrations, the Glucocheck method was very reliable. The quantitative precision of the Glucocheck method depends, however, quite considerably on the ability of the patient to use the apparatus correctly. In order to profit from Glucocheck in clinical practice, particular efforts to educate the patients in its use are necessary.

  19. Effect of intrapleural oxytocin injection on blood glucose level in rat (rattus norvegicous).

    Science.gov (United States)

    Dezhkam, Y; Dezhkam, N

    2014-01-01

    The effect of Oxytocin on energy metabolism is still question. The aim of the present study was to investigate the effect of exogenous oxytocin injection in different dose and timetable on blood glucose level in rat. In this study 16 adult female rats were divided into 2 groups (Treatment 1(T1) and Treatment 2(T2)). T1 with 8 adult female rats received 0.2 IU/Kg oxytocin via intrapleural (IP) and blood glucose level was tested at 0th, 20th, 40th and 60th min after injection by collecting the blood from jugular vein. In T2 eight female rats received 0.4 IU/kg oxytocin via IP taking blood glucose measure at the same minutes as T1. The experiment tested in three replicates. Blood glucose meter (Model: 3TMSO1G) was used with glucose smart blood glucose monitoring system to the measurement of blood glucose level in rats. Data were analyzed using the GLM procedure of SAS (SAS, version 9) PDIFF was used to compare least square means among treatments adjusting by tukey test. There were hypoglycemic tendency in the changes of the blood glucose level in both T1 and T2, 20th min after injection (88.79 ± 3.28, 68.58 ± 3.63, respectively), while in the remaining subjects (4th and 60th min) blood glucose level increased (115.54 ± 4, 79.7 ± 2.09 and 136.33 ± 5.8, 123.54 ± 0.9, respectively). These results showed that blood glucose level in T1 significantly higher than T2 (p blood glucose level very fast.

  20. Self-monitoring of blood pressure in hypertension: A systematic review and individual patient data meta-analysis.

    Directory of Open Access Journals (Sweden)

    Katherine L Tucker

    2017-09-01

    Full Text Available Self-monitoring of blood pressure (BP appears to reduce BP in hypertension but important questions remain regarding effective implementation and which groups may benefit most. This individual patient data (IPD meta-analysis was performed to better understand the effectiveness of BP self-monitoring to lower BP and control hypertension.Medline, Embase, and the Cochrane Library were searched for randomised trials comparing self-monitoring to no self-monitoring in hypertensive patients (June 2016. Two reviewers independently assessed articles for eligibility and the authors of eligible trials were approached requesting IPD. Of 2,846 articles in the initial search, 36 were eligible. IPD were provided from 25 trials, including 1 unpublished study. Data for the primary outcomes-change in mean clinic or ambulatory BP and proportion controlled below target at 12 months-were available from 15/19 possible studies (7,138/8,292 [86%] of randomised participants. Overall, self-monitoring was associated with reduced clinic systolic blood pressure (sBP compared to usual care at 12 months (-3.2 mmHg, [95% CI -4.9, -1.6 mmHg]. However, this effect was strongly influenced by the intensity of co-intervention ranging from no effect with self-monitoring alone (-1.0 mmHg [-3.3, 1.2], to a 6.1 mmHg (-9.0, -3.2 reduction when monitoring was combined with intensive support. Self-monitoring was most effective in those with fewer antihypertensive medications and higher baseline sBP up to 170 mmHg. No differences in efficacy were seen by sex or by most comorbidities. Ambulatory BP data at 12 months were available from 4 trials (1,478 patients, which assessed self-monitoring with little or no co-intervention. There was no association between self-monitoring and either lower clinic or ambulatory sBP in this group (clinic -0.2 mmHg [-2.2, 1.8]; ambulatory 1.1 mmHg [-0.3, 2.5]. Results for diastolic blood pressure (dBP were similar. The main limitation of this work was that

  1. Self-monitoring of blood pressure in hypertension: A systematic review and individual patient data meta-analysis.

    Science.gov (United States)

    Tucker, Katherine L; Sheppard, James P; Stevens, Richard; Bosworth, Hayden B; Bove, Alfred; Bray, Emma P; Earle, Kenneth; George, Johnson; Godwin, Marshall; Green, Beverly B; Hebert, Paul; Hobbs, F D Richard; Kantola, Ilkka; Kerry, Sally M; Leiva, Alfonso; Magid, David J; Mant, Jonathan; Margolis, Karen L; McKinstry, Brian; McLaughlin, Mary Ann; Omboni, Stefano; Ogedegbe, Olugbenga; Parati, Gianfranco; Qamar, Nashat; Tabaei, Bahman P; Varis, Juha; Verberk, Willem J; Wakefield, Bonnie J; McManus, Richard J

    2017-09-01

    Self-monitoring of blood pressure (BP) appears to reduce BP in hypertension but important questions remain regarding effective implementation and which groups may benefit most. This individual patient data (IPD) meta-analysis was performed to better understand the effectiveness of BP self-monitoring to lower BP and control hypertension. Medline, Embase, and the Cochrane Library were searched for randomised trials comparing self-monitoring to no self-monitoring in hypertensive patients (June 2016). Two reviewers independently assessed articles for eligibility and the authors of eligible trials were approached requesting IPD. Of 2,846 articles in the initial search, 36 were eligible. IPD were provided from 25 trials, including 1 unpublished study. Data for the primary outcomes-change in mean clinic or ambulatory BP and proportion controlled below target at 12 months-were available from 15/19 possible studies (7,138/8,292 [86%] of randomised participants). Overall, self-monitoring was associated with reduced clinic systolic blood pressure (sBP) compared to usual care at 12 months (-3.2 mmHg, [95% CI -4.9, -1.6 mmHg]). However, this effect was strongly influenced by the intensity of co-intervention ranging from no effect with self-monitoring alone (-1.0 mmHg [-3.3, 1.2]), to a 6.1 mmHg (-9.0, -3.2) reduction when monitoring was combined with intensive support. Self-monitoring was most effective in those with fewer antihypertensive medications and higher baseline sBP up to 170 mmHg. No differences in efficacy were seen by sex or by most comorbidities. Ambulatory BP data at 12 months were available from 4 trials (1,478 patients), which assessed self-monitoring with little or no co-intervention. There was no association between self-monitoring and either lower clinic or ambulatory sBP in this group (clinic -0.2 mmHg [-2.2, 1.8]; ambulatory 1.1 mmHg [-0.3, 2.5]). Results for diastolic blood pressure (dBP) were similar. The main limitation of this work was that significant

  2. Blood pressure self-monitoring in pregnancy: examining feasibility in a prospective cohort study.

    Science.gov (United States)

    Tucker, Katherine L; Taylor, Kathryn S; Crawford, Carole; Hodgkinson, James A; Bankhead, Clare; Carver, Tricia; Ewers, Elizabeth; Glogowska, Margaret; Greenfield, Sheila M; Ingram, Lucy; Hinton, Lisa; Khan, Khalid S; Locock, Louise; Mackillop, Lucy; McCourt, Christine; Pirie, Alexander M; Stevens, Richard; McManus, Richard J

    2017-12-28

    Raised blood pressure (BP) affects approximately 10% of pregnancies worldwide, and a high proportion of affected women develop pre-eclampsia. This study aimed to evaluate the feasibility of self-monitoring of BP in pregnancy in women at higher risk of pre-eclampsia. This prospective cohort study of self-monitoring BP in pregnancy was carried out in two hospital trusts in Birmingham and Oxford and thirteen primary care practices in Oxfordshire. Eligible women were those defined by the UK National Institute for Health and Care Excellence (NICE) guidelines as at higher risk of pre-eclampsia. A total of 201 participants were recruited between 12 and 16 weeks of pregnancy and were asked to take two BP readings twice daily three times a week through their pregnancy. Primary outcomes were recruitment, retention and persistence of self-monitoring. Study recruitment and retention were analysed with descriptive statistics. Survival analysis was used to evaluate the persistence of self-monitoring and the performance of self-monitoring in the early detection of gestational hypertension, compared to clinic BP monitoring. Secondary outcomes were the mean clinic and self-monitored BP readings and the performance of self-monitoring in the detection of gestational hypertension and pre-eclampsia compared to clinic BP. Of 201 women recruited, 161 (80%) remained in the study at 36 weeks or to the end of their pregnancy, 162 (81%) provided any home readings suitable for analysis, 148 (74%) continued to self-monitor at 20 weeks and 107 (66%) at 36 weeks. Self-monitored readings were similar in value to contemporaneous matched clinic readings for both systolic and diastolic BP. Of the 23 who developed gestational hypertension or pre-eclampsia and self-monitored, 9 (39%) had a raised home BP prior to a raised clinic BP. Self-monitoring of BP in pregnancy is feasible and has potential to be useful in the early detection of gestational hypertensive disorders but maintaining self-monitoring

  3. An artificial pancreas provided a novel model of blood glucose level variability in beagles.

    Science.gov (United States)

    Munekage, Masaya; Yatabe, Tomoaki; Kitagawa, Hiroyuki; Takezaki, Yuka; Tamura, Takahiko; Namikawa, Tsutomu; Hanazaki, Kazuhiro

    2015-12-01

    Although the effects on prognosis of blood glucose level variability have gained increasing attention, it is unclear whether blood glucose level variability itself or the manifestation of pathological conditions that worsen prognosis. Then, previous reports have not been published on variability models of perioperative blood glucose levels. The aim of this study is to establish a novel variability model of blood glucose concentration using an artificial pancreas. We maintained six healthy, male beagles. After anesthesia induction, a 20-G venous catheter was inserted in the right femoral vein and an artificial pancreas (STG-22, Nikkiso Co. Ltd., Tokyo, Japan) was connected for continuous blood glucose monitoring and glucose management. After achieving muscle relaxation, total pancreatectomy was performed. After 1 h of stabilization, automatic blood glucose control was initiated using the artificial pancreas. Blood glucose level varied for 8 h, alternating between the target blood glucose values of 170 and 70 mg/dL. Eight hours later, the experiment was concluded. Total pancreatectomy was performed for 62 ± 13 min. Blood glucose swings were achieved 9.8 ± 2.3 times. The average blood glucose level was 128.1 ± 5.1 mg/dL with an SD of 44.6 ± 3.9 mg/dL. The potassium levels after stabilization and at the end of the experiment were 3.5 ± 0.3 and 3.1 ± 0.5 mmol/L, respectively. In conclusion, the results of the present study demonstrated that an artificial pancreas contributed to the establishment of a novel variability model of blood glucose levels in beagles.

  4. Blood Glucose Levels and Problem Behavior

    Science.gov (United States)

    Valdovinos, Maria G.; Weyand, David

    2006-01-01

    The relationship between varying blood glucose levels and problem behavior during daily scheduled activities was examined. The effects that varying blood glucose levels had on problem behavior during daily scheduled activities were examined. Prior research has shown that differing blood glucose levels can affect behavior and mood. Results of this…

  5. Flash Glucose-Sensing Technology as a Replacement for Blood Glucose Monitoring for the Management of Insulin-Treated Type 2 Diabetes: a Multicenter, Open-Label Randomized Controlled Trial.

    Science.gov (United States)

    Haak, Thomas; Hanaire, Hélène; Ajjan, Ramzi; Hermanns, Norbert; Riveline, Jean-Pierre; Rayman, Gerry

    2017-02-01

    Glycemic control in participants with insulin-treated diabetes remains challenging. We assessed safety and efficacy of new flash glucose-sensing technology to replace self-monitoring of blood glucose (SMBG). This open-label randomized controlled study (ClinicalTrials.gov, NCT02082184) enrolled adults with type 2 diabetes on intensive insulin therapy from 26 European diabetes centers. Following 2 weeks of blinded sensor wear, 2:1 (intervention/control) randomization (centrally, using biased-coin minimization dependant on study center and insulin administration) was to control (SMBG) or intervention (glucose-sensing technology). Participants and investigators were not masked to group allocation. Primary outcome was difference in HbA1c at 6 months in the full analysis set. Prespecified secondary outcomes included time in hypoglycemia, effect of age, and patient satisfaction. Participants (n = 224) were randomized (149 intervention, 75 controls). At 6 months, there was no difference in the change in HbA1c between intervention and controls: -3.1 ± 0.75 mmol/mol, [-0.29 ± 0.07% (mean ± SE)] and -3.4 ± 1.04 mmol/mol (-0.31 ± 0.09%) respectively; p = 0.8222. A difference was detected in participants aged glucose-sensing technology use in type 2 diabetes with intensive insulin therapy results in no difference in HbA1c change and reduced hypoglycemia, thus offering a safe, effective replacement for SMBG. ClinicalTrials.gov identifier: NCT02082184. Abbott Diabetes Care.

  6. Performance of a new meter designed for assisted monitoring of blood glucose and point-of-care testing.

    Science.gov (United States)

    Macrury, Sandra; Srinivasan, Aparna; Mahoney, John J

    2013-03-01

    Blood glucose (BG) meters used for assisted monitoring of blood glucose (AMBG) require different attributes compared with meters designed for home use. These include safety considerations (i.e., minimized risk of blood-borne pathogen transmission), capability for testing multiple blood sample types, and enhanced performance specifications. The OneTouch® Verio™Pro+ BG meter is designed to incorporate all of these attributes. Meter accuracy was assessed in clinical studies with arterial, venous, and capillary blood samples with a hematocrit range of 22.9-59.8%. The effect of interferents, including anticoagulants, on accuracy was evaluated. The meter disinfection protocol was validated, and instructions for use and user acceptance of the system were assessed. A total of 97% (549/566) of BG measures from all blood sample types and 95.5% (191/200) of arterial blood samples were within ±12 mg/dl or 12.5% of reference measurements. The system was unaffected by 4 anticoagulants and 57 of 59 endogenous and exogenous compounds; it was affected by 2 compounds: pralidoxime iodide and xylose. Bleach wipes were sufficient to disinfect the meter. Users felt that the meter's quality control (QC) prompts would help them to comply with regulatory requirements. The meter provided accurate measurements of different blood samples over a wide hematocrit range and was not affected by 57 physiologic and therapeutic compounds. The QC prompts and specific infection-mitigating design further aid to make this meter system practical for AMBG in care facilities. © 2013 Diabetes Technology Society.

  7. Accuracy evaluation of five blood glucose monitoring systems obtained from the pharmacy: a European multicenter study with 453 subjects.

    Science.gov (United States)

    Tack, Cornelius; Pohlmeier, Harald; Behnke, Thomas; Schmid, Volkmar; Grenningloh, Marco; Forst, Thomas; Pfützner, Andreas

    2012-04-01

    This multicenter study was conducted to evaluate the performance of five recently introduced blood glucose (BG) monitoring (BGM) devices under daily routine conditions in comparison with the YSI (Yellow Springs, OH) 2300 Stat Plus glucose analyzer. Five hundred one diabetes patients with experience in self-monitoring of BG were randomized to use three of five different BGM devices (FreeStyle Lite® [Abbott Diabetes Care Inc., Alameda, CA], FreeStyle Freedom Lite [Abbott Diabetes Care], OneTouch® UltraEasy® [LifeScan Inc., Milpitas, CA], Accu-Chek® Aviva [Roche Diagnostics, Mannheim, Germany], and Contour® [Bayer Vital GmbH, Leverkusen, Germany]) in a daily routine setting. All devices and strips were purchased from local regular distribution sources (pharmacies, four strip lots per device). The patients performed the finger prick and the glucose measurement on their own. In parallel, a healthcare professional performed the glucose assessment with the reference method (YSI 2300 Stat Plus). The primary objective was the comparison of the mean absolute relative differences (MARD). Secondary objectives were compliance with the International Organization for Standardization (ISO) accuracy criteria under these routine conditions and Clarke and Parkes Error Grid analyses. MARD ranged from 4.9% (FreeStyle Lite) to 9.7% (OneTouch UltraEasy). The ISO 15197:2003 requirements were fulfilled by the FreeStyle Lite (98.8%), FreeStyle Freedom Lite (97.5%), and Accu-Chek Aviva (97.0%), but not by the Contour (92.4%) and OneTouch UltraEasy (91.1%). The number of values in Zone A of the Clarke Error Grid analysis was highest for the FreeStyle Lite (98.8%) and lowest for the OneTouch Ultra Easy (90.4%). FreeStyle Lite, FreeStyle Freedom Lite, and Accu-Chek Aviva performed very well in this study with devices and strips purchased through regular distribution channels, with the FreeStyle Lite achieving the lowest MARD in this investigation.

  8. Continuous glucose monitoring in acute coronary syndrome.

    Science.gov (United States)

    Rodríguez-Quintanilla, Karina Alejandra; Lavalle-González, Fernando Javier; Mancillas-Adame, Leonardo Guadalupe; Zapata-Garrido, Alfonso Javier; Villarreal-Pérez, Jesús Zacarías; Tamez-Pérez, Héctor Eloy

    2013-01-01

    Diabetes mellitus is an independent risk factor for cardiovascular disease. To compare the efficacy of devices for continuous glucose monitoring and capillary glucose monitoring in hospitalized patients with acute coronary syndrome using the following parameters: time to achieve normoglycemia, period of time in normoglycemia, and episodes of hypoglycemia. We performed a pilot, non-randomized, unblinded clinical trial that included 16 patients with acute coronary artery syndrome, a capillary or venous blood glucose ≥ 140 mg/dl, and treatment with a continuous infusion of fast acting human insulin. These patients were randomized into 2 groups: a conventional group, in which capillary measurement and recording as well as insulin adjustment were made every 4h, and an intervention group, in which measurement and recording as well as insulin adjustment were made every hour with a subcutaneous continuous monitoring system. Student's t-test was applied for mean differences and the X(2) test for qualitative variables. We observed a statistically significant difference in the mean time for achieving normoglycemia, favoring the conventional group with a P = 0.02. Continuous monitoring systems are as useful as capillary monitoring for achieving normoglycemia. Copyright © 2012 Instituto Nacional de Cardiología Ignacio Chávez. Published by Masson Doyma México S.A. All rights reserved.

  9. [Current status and recommendations on the use of continuous blood glucose monitoring systems in children and adolescents with type 1 diabetes mellitus].

    Science.gov (United States)

    Torres Lacruz, M; Barrio Castellanos, R; García Cuartero, B; Gómez Gila, A; González Casado, I; Hermoso López, F; Luzuriaga Tomás, C; Oyarzabal Irigoyen, M; Rica Etxebarria, I; Rodríguez Rigual, M

    2011-08-01

    Glucose monitoring methods have made great advances in the last decade with the appearance of the continuous glucose monitoring systems (CGMS) that measure the glucose levels in the interstitial liquid, providing information about glucose patterns and trends, but do not replace the self-monitoring of capillary glucose. Improvement in diabetes control using the CGMS depends on the motivation and training received by the patient and family and on the continuity in its use. Due to the development and widespread use of these systems in clinical practice, the diabetes group of the Sociedad Española de Endocrinología Pediátrica has drafted a document of consensus for their indication and use in children and adolescents. Only a limited number of trials have been performed in children and adolescent populations. More data are needed on the use of this technology in order to define the impact on metabolic control. Copyright © 2010 Asociación Española de Pediatría. Published by Elsevier Espana. All rights reserved.

  10. Tale of two sites: capillary versus arterial blood glucose testing in the operating room.

    Science.gov (United States)

    Akinbami, Felix; Segal, Scott; Schnipper, Jeffrey L; Stopfkuchen-Evans, Matthias; Mills, Jonathan; Rogers, Selwyn O

    2012-04-01

    Pre- and intraoperative glycemic control has been identified as a putative target to improve outcomes of surgical patients. Glycemic control requires frequent monitoring of blood glucose levels with appropriate adjustments. However, monitoring standards have been called into question, especially in cases in which capillary samples are used. Point-of-care testing (POCT) using capillary samples and glucometers has been noted to give relatively accurate results for critically ill patients. However, the package inserts of most glucometers warn that they should not be used for patients in shock. This has led clinicians to doubt their accuracy in the operating room. The accuracy of capillary samples when tested in patients undergoing surgical procedures has not been proven. This study aims to determine the accuracy of intraoperative blood glucose values using capillary samples relative to arterial samples. A prospective study was conducted by collecting paired capillary and arterial samples of patients undergoing major operations at a tertiary medical center from August 2009 to May 2011. Subjects were a convenience sample of patients who had arterial lines and needed glucose testing while undergoing the procedure. Precision Xceed Pro (Abbott) handheld glucometers were used to obtain the blood glucose values. Our primary outcome of interest was the degree of correlation between capillary and arterial blood glucose values or the degree to which arterial glucose levels can be predicted by capillary glucose samples. We used linear regression and the Student t tests for statistical analyses. Seventy-two-paired samples were collected. Of the cases, 54% were major abdominal operations, whereas 24% were vascular operations. The mean values ± standard deviation for glucose levels were 146 ± 35 mg/dL (capillary) and 147 ± 36 mg/dL (arterial). The mean time ± standard deviation between the collection of both samples was 3.5 ± 1.3 minutes. The regression coefficient showed a

  11. Achieving the same for less: improving mood depletes blood glucose for people with poor (but not good) emotion control.

    Science.gov (United States)

    Niven, Karen; Totterdell, Peter; Miles, Eleanor; Webb, Thomas L; Sheeran, Paschal

    2013-01-01

    Previous studies have found that acts of self-control like emotion regulation deplete blood glucose levels. The present experiment investigated the hypothesis that the extent to which people's blood glucose levels decline during emotion regulation attempts is influenced by whether they believe themselves to be good or poor at emotion control. We found that although good and poor emotion regulators were equally able to achieve positive and negative moods, the blood glucose of poor emotion regulators was reduced after performing an affect-improving task, whereas the blood glucose of good emotion regulators remained unchanged. As evidence suggests that glucose is a limited energy resource upon which self-control relies, the implication is that good emotion regulators are able to achieve the same positive mood with less cost to their self-regulatory resource. Thus, depletion may not be an inevitable consequence of engaging in emotion regulation.

  12. Elevated Hemoglobin A1C Levels Correlate with Blood Glucose Elevation in Diabetic Patients following Local Corticosteroid Injection in the Hand: A Prospective Study.

    Science.gov (United States)

    Kim, Nayoung; Schroeder, Jake; Hoffler, C Edward; Matzon, Jonas L; Lutsky, Kevin F; Beredjiklian, Pedro K

    2015-10-01

    Diabetic patients develop hand conditions that are managed with local corticosteroid injections. Injections can result in a transient elevation in serum glucose in diabetic patients. Hemoglobin A1c is the accepted measure of long-term plasma glucose control in diabetics (levels ≥7 percent reflect poor blood glucose control). The purpose of this study was to assess the relationship between hemoglobin A1c levels and increased blood glucose levels after corticosteroid injections. Twenty-five diabetic patients were evaluated prospectively. One milliliter containing 10 mg of triamcinolone acetonide was used. The most recent hemoglobin A1c level and normal average blood glucose levels were obtained. Glucose levels were obtained from patient recall of their daily blood glucose self- monitoring on the day of the injection. Postinjection blood glucose levels were recorded until levels returned to preinjection baseline. Twenty patients (80 percent) had elevation of their blood glucose level from baseline. No patient had elevated blood glucose levels after 5 days. Patients with hemoglobin A1c levels greater than or equal to 7 percent had a higher blood glucose elevation and maintained this for longer than those who had a lower hemoglobin A1c level. Patients in the higher hemoglobin A1c group also had a higher number of hyperglycemic events. There was a strong or moderate correlation between hemoglobin A1c and elevated blood glucose levels during days 1 to 4. Patients with hemoglobin A1c levels greater than or equal to 7 percent have elevations in blood glucose that are higher and last longer than patients with lower levels. Hemoglobin A1c levels can be used to roughly predict the degree of blood glucose elevation after corticosteroid injections into the hands of diabetic patients.

  13. Glucose Monitoring System Based on Osmotic Pressure Measurements

    Directory of Open Access Journals (Sweden)

    Alexandra LEAL

    2011-02-01

    Full Text Available This paper presents the design and development of a prototype sensor unit for implementation in a long-term glucose monitoring system suitable for estimating glucose levels in people suffering from diabetes mellitus. The system utilizes osmotic pressure as the sensing mechanism and consists of a sensor prototype that is integrated together with a pre-amplifier and data acquisition unit for both data recording and processing. The sensor prototype is based on an embedded silicon absolute pressure transducer and a semipermeable nanoporous membrane that is enclosed in the sensor housing. The glucose monitoring system facilitates the integration of a low power microcontroller that is combined with a wireless inductive powered communication link. Experimental verification have proven that the system is capable of tracking osmotic pressure changes using albumin as a model compound, and thereby show a proof of concept for novel long term tracking of blood glucose from remote sensor nodes.

  14. Improvement of Glycosylated Hemoglobin in Patients with Type 2 Diabetes Mellitus under Insulin Treatment by Reimbursement for Self-Monitoring of Blood Glucose

    Directory of Open Access Journals (Sweden)

    Young Shin Song

    2017-09-01

    Full Text Available BackgroundIn Korea, the costs associated with self-monitoring of blood glucose (SMBG for patients with type 2 diabetes mellitus (T2DM under insulin treatment have been reimbursed since November 2015. We investigated whether this new reimbursement program for SMBG has improved the glycemic control in the beneficiaries of this policy.MethodsAmong all adult T2DM patients with ≥3 months of reimbursement (n=854, subjects without any changes in anti-hyperglycemic agents during the study period were selected. The improvement of glycosylated hemoglobin (HbA1c was defined as an absolute reduction in HbA1c ≥0.6% or an HbA1c level at follow-up <7%.ResultsHbA1c levels significantly decreased from 8.5%±1.3% to 8.2%±1.2% during the follow-up (P<0.001 in all the study subjects (n=409. Among them, 35.5% (n=145 showed a significant improvement in HbA1c. Subjects covered under the Medical Aid system showed a higher prevalence of improvement in HbA1c than those with medical insurance (52.2% vs. 33.3%, respectively, P=0.012. In the improvement group, the baseline HbA1c (P<0.001, fasting C-peptide (P=0.016, and daily dose of insulin/body weight (P=0.024 showed significant negative correlations with the degree of HbA1c change. Multivariate analysis showed that subjects in the Medical Aid system were about 2.5-fold more likely to improve in HbA1c compared to those with medical insurance (odds ratio, 2.459; 95% confidence interval, 1.138 to 5.314; P=0.022.ConclusionThe reimbursement for SMBG resulted in a significant improvement in HbA1c in T2DM subjects using insulin, which was more prominent in subjects with poor glucose control at baseline or covered under the Medical Aid system.

  15. Control of Blood Glucose for People with Type 1 Diabetes: an in Vivo Study

    DEFF Research Database (Denmark)

    Boiroux, Dimitri; Schmidt, Signe; Duun-Henriksen, Anne Katrine

    2012-01-01

    Since continuous glucose monitoring (CGM) technology and insulin pumps have improved recent years, a strong interest in a closed-loop articial pancreas for people with type 1 diabetes has arisen. Presently, a fully automated controller of blood glucose must face many challenges, such as daily...... variations of patient's physiology and lack of accuracy of glucose sensors. In this paper we design and discuss an algorithm for overnight closed-loop control of blood glucose in people with type 1 diabetes. The algorithm is based on Model Predictive Control (MPC). We use an oset-free autoregressive model...

  16. Nanosensors and nanomaterials for monitoring glucose in diabetes.

    Science.gov (United States)

    Cash, Kevin J; Clark, Heather A

    2010-12-01

    Worldwide, diabetes is a rapidly growing problem that is managed at the individual level by monitoring and controlling blood glucose levels to minimize the negative effects of the disease. Because of limitations in diagnostic methods, significant research efforts are focused on developing improved methods to measure glucose. Nanotechnology has impacted these efforts by increasing the surface area of sensors, improving the catalytic properties of electrodes and providing nanoscale sensors. Here, we discuss developments in the past several years on both nanosensors that directly measure glucose and nanomaterials that improve glucose sensor function. Finally, we discuss challenges that must be overcome to apply these developments in the clinic. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. The optimal blood glucose level for critically ill adult patients.

    Science.gov (United States)

    Lv, Shaoning; Ross, Paul; Tori, Kathleen

    2017-09-01

    Glycaemic control is recognized as one of the important aspects in managing critically ill patients. Both hyperglycaemia and hypoglycaemia independently increase the risk of patient mortality. Hence, the identification of optimal glycaemic control is of paramount importance in the management of critically ill patients. The aim of this literature review is to examine the current status of glycaemic control in critically ill adult patients. This literature review will focus on randomized controlled trials comparing intensive insulin therapy to conventional insulin therapy, with an objective to identify optimal blood glucose level targets for critically ill adult patients. A literature review was conducted to identify large randomized controlled trials for the optimal targeted blood glucose level for critically ill adult patients published since 2000. A total of eight studies fulfilled the selection criteria of this review. With current human and technology resources, the results of the studies support commencing glycaemic control once the blood glucose level of critically ill patients reaches 10 mmol/L and maintaining this level between 8 mmol/L and 10 mmol/L. This literature review provides a recommendation for targeting the optimal blood glucose level for critically ill patients within moderate blood glucose level target range (8-10 mmol/L). The need for uniformed glucometrics for unbiased reporting and further research for optimal blood glucose target is required, especially in light of new technological advancements in closed-loop insulin delivery and monitoring devices. This literature review has revealed a need to call for consensus in the measurement and reporting of glycaemic control using standardized glucometrics. © 2017 British Association of Critical Care Nurses.

  18. Real-time continuous glucose monitoring shows high accuracy within 6 hours after sensor calibration: a prospective study.

    Directory of Open Access Journals (Sweden)

    Xiao-Yan Yue

    Full Text Available Accurate and timely glucose monitoring is essential in intensive care units. Real-time continuous glucose monitoring system (CGMS has been advocated for many years to improve glycemic management in critically ill patients. In order to determine the effect of calibration time on the accuracy of CGMS, real-time subcutaneous CGMS was used in 18 critically ill patients. CGMS sensor was calibrated with blood glucose measurements by blood gas/glucose analyzer every 12 hours. Venous blood was sampled every 2 to 4 hours, and glucose concentration was measured by standard central laboratory device (CLD and by blood gas/glucose analyzer. With CLD measurement as reference, relative absolute difference (mean±SD in CGMS and blood gas/glucose analyzer were 14.4%±12.2% and 6.5%±6.2%, respectively. The percentage of matched points in Clarke error grid zone A was 74.8% in CGMS, and 98.4% in blood gas/glucose analyzer. The relative absolute difference of CGMS obtained within 6 hours after sensor calibration (8.8%±7.2% was significantly less than that between 6 to 12 hours after calibration (20.1%±13.5%, p<0.0001. The percentage of matched points in Clarke error grid zone A was also significantly higher in data sets within 6 hours after calibration (92.4% versus 57.1%, p<0.0001. In conclusion, real-time subcutaneous CGMS is accurate in glucose monitoring in critically ill patients. CGMS sensor should be calibrated less than 6 hours, no matter what time interval recommended by manufacturer.

  19. Direct analysis of [6,6-(2)H2]glucose and [U-(13)C6]glucose dry blood spot enrichments by LC-MS/MS.

    Science.gov (United States)

    Coelho, Margarida; Mendes, Vera M; Lima, Inês S; Martins, Fátima O; Fernandes, Ana B; Macedo, M Paula; Jones, John G; Manadas, Bruno

    2016-06-01

    A liquid chromatography tandem mass spectrometry (LC-MS/MS) using multiple reaction monitoring (MRM) in a triple-quadrupole scan mode was developed and comprehensively validated for the determination of [6,6-(2)H2]glucose and [U-(13)C6]glucose enrichments from dried blood spots (DBS) without prior derivatization. The method is demonstrated with dried blood spots obtained from rats administered with a primed-constant infusion of [U-(13)C6]glucose and an oral glucose load enriched with [6,6-(2)H2]glucose. The sensitivity is sufficient for analysis of the equivalent to blood and the overall method was accurate and precise for the determination of DBS isotopic enrichments. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. A New, Wireless-enabled Blood Glucose Monitoring System That Links to a Smart Mobile Device: Accuracy and User Performance Evaluation.

    Science.gov (United States)

    Christiansen, Mark; Greene, Carmine; Pardo, Scott; Warchal-Windham, Mary Ellen; Harrison, Bern; Morin, Robert; Bailey, Timothy S

    2017-05-01

    These studies investigated the accuracy of the new Contour ® Next ONE blood glucose monitoring system (BGMS) that is designed to sync with the Contour™ Diabetes app on a smartphone or tablet. A laboratory study tested fingertip capillary blood samples from 100 subjects in duplicate using 3 test strip lots, based on ISO 15197:2013 Section 6.3 analytical accuracy standards. A clinical study assessed accuracy per ISO 15197:2013 Section 8 criteria. Subjects with (n = 333) or without (n = 43) diabetes and who had not used the BGMS previously were enrolled. Each subject performed a self-test using the BGMS, which was repeated by a site staff member. Alternate site tests and venipunctures were also performed for analysis. A questionnaire was provided to assess user feedback on ease of use. In the laboratory study, 100% (600/600) of combined results for all 3 test strip lots met ISO 15197:2013 Section 6.3 accuracy criteria. In the clinical study, among subjects with diabetes, 99.4% (327/329) of subject self-test results, 99.7% (331/332) of results obtained by study staff, 97.2% (309/318) of subject palm results, and 100% (330/330) of venous results met ISO 15197:2013 Section 8 accuracy criteria. Moreover, 97.6% (321/329) of subject self-test results were within ±10 mg/dl (±0.6 mmol/L) or ±10% of the YSI reference result. Questionnaire results indicated that most subjects considered the system easy to use. The BGMS exceeded ISO 15197:2013 accuracy criteria in the laboratory and in a clinical setting.

  1. Empirically establishing blood glucose targets to achieve HbA1c goals.

    Science.gov (United States)

    Wei, Nancy; Zheng, Hui; Nathan, David M

    2014-04-01

    OBJECTIVE To determine the average fasting, postprandial, and bedtime self-monitored blood glucose (SMBG) concentrations associated with specified HbA1c levels using data from the A1c-Derived Average Glucose (ADAG) study. RESEARCH DESIGN AND METHODS The ADAG study was a multicenter observational study that used continuous glucose monitoring and SMBG testing to determine the relationship between mean average glucose and HbA1c. We used the SMBG data from 470 of the ADAG study participants (237 with type 1 diabetes and 147 with type 2 diabetes) to determine the average fasting, premeal, 90-min postmeal, and bedtime blood glucose (BG) for predefined target HbA1c groups between 5.5 and 8.5% (37-69 mmol/mol). t Tests were used to compare mean BG values between type 1 and type 2 diabetes groups. RESULTS The average fasting BG needed to achieve predefined HbA1c target levels of 5.5-6.49% (37-47 mmol/mol), 6.5-6.99% (48-52 mmol/mol), 7.0-7.49% (52-58 mmol/mol), 7.5-7.99% (58-64 mmol/mol), and 8.0-8.5% (64-69 mmol/mol) were 122 mg/dL with 95% CI 117-127, 142 mg/dL (135-150), 152 mg/dL (143-162), 167 mg/dL (157-177), and 178 mg/dL (164-192), respectively. Postmeal BG to achieve the HbA1c level of 6.5-6.99% (48-52 mmol/mol) and 7.0-7.49% (52-58 mmol/mol) were 139 mg/dL (134-144) and 152 mg/dL (147-157), respectively. Bedtime BG was 153 mg/dL (145-161) and 177 mg/dL (166-188), respectively. CONCLUSIONS We have determined the average BG at premeal, postmeal, and bedtime to achieve a variety of HbA1c targets. These results, based on empirical data, will help patients and providers set realistic day-to-day SMBG targets to achieve individualized HbA1c goals.

  2. Professional flash continuous glucose monitoring as a supplement to A1C in primary care.

    Science.gov (United States)

    Hirsch, Irl B

    2017-11-01

    Decreasing glycated hemoglobin (A1C) is the primary goal of current diabetes management due to intervention studies in type 1 and type 2 diabetes associating levels <7.0% (53 mmol/mol) with lower complication risk. Strategic self-monitoring of blood glucose (SMBG) is also recommended to achieve greater time in range, with fewer extremes of hypo- or hyperglycemia. Unlike A1C, SMBG can distinguish among fasting, prandial, and postprandial hyperglycemia; uncover glycemic variability, including potentially dangerous hypoglycemia; and provide feedback to patients about the effects of behavior and medication on glycemic control. However, it has the drawback of capturing only static glucose readings and users are often dependent on time-pressed clinicians to interpret numerous data points. A novel flash continuous glucose monitoring (FCGM) device used for a single 2-week period with a readily interpretable data report know as the ambulatory glucose profile (AGP) has the potential to overcome limitations of conventional technologies, with less cost and greater convenience. This review summarizes the rationale for using intermittent FCGM as a supplement to A1C in primary care, and provides a stepwise approach to interpreting the AGP visual display for efficient individualized therapy.

  3. Proposed Application of Fast Fourier Transform in Near Infra Red Based Non Invasive Blood Glucose Monitoring System

    Science.gov (United States)

    Jenie, R. P.; Iskandar, J.; Kurniawan, A.; Rustami, E.; Syafutra, H.; Nurdin, N. M.; Handoyo, T.; Prabowo, J.; Febryarto, R.; Rahayu, M. S. K.; Damayanthi, E.; Rimbawan; Sukandar, D.; Suryana, Y.; Irzaman; Alatas, H.

    2017-03-01

    Worldwide emergence of glycaemic status related health disorders, such as diabetes and metabolic syndrome, is growing in alarming rate. The objective was to propose new methods for non invasive blood glucose level measurement system, based on implementation of Fast Fourier Transform methods. This was an initial-lab-scale-research. Data on non invasive blood glucose measurement are referred from Scopus, Medline, and Google Scholar, from 2011 until 2016, and was used as design references, combined with in house verification. System was developed in modular fashion, based on aforementioned compiled references. Several preliminary tests to understand relationship between LED and photo-diode responses have been done. Several references were used as non invasive blood glucose measurement tools design basis. Solution is developed in modular fashion. we have proven different sensor responses to water and glucose. Human test for non invasive blood glucose level measurement system is needed.

  4. Fabrication of glucose biosensor for whole blood based on Au/hyperbranched polyester nanoparticles multilayers by antibiofouling and self-assembly technique

    International Nuclear Information System (INIS)

    Sun, Chong; Chen, Xiaohan; Han, Qiaorong; Zhou, Min; Mao, Chun; Zhu, Qinshu; Shen, Jian

    2013-01-01

    Highlight: •A novel method for detection of glucose in whole blood has been developed. •The method based on antibiofouling and self-assembly technology was investigated. •The antibiofouling technique utilized for sensor is significant for diagnostics. -- Abstract: Acknowledging the benefits of hyperbranched polymers and their nanoparticles, herein we report the design and synthesis of sulfonic acid group functionalized hydroxyl-terminated hyperbranched polyester (H30-SO 3 H) nanoparticles and their biomedical application. The H30-SO 3 H nanoparticles were characterized by transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy and proton nuclear magnetic resonance spectroscopy ( 1 H NMR). The good hemocompatibility of H30-SO 3 H nanoparticles was also investigated by coagulation tests, complement activation and platelet activation. The novel glucose biosensor was fabricated by immobilizing the positively charged Au nanoparticles, H30-SO 3 H nanoparticles and glucose oxidase (GOx) onto the surface of glassy carbon electrode (GCE). It can be applied in whole blood directly, which was based on the good hemocompatibility and antibiofouling property of H30-SO 3 H nanoparticles. The biosensor had good electrocatalytic activity toward glucose with a wide linear range (0.2–20 mM), a low detection limit 1.2 × 10 −5 M in whole blood and good anti-interference property. The development of materials science will offer a novel platform for application to substance detection in whole blood

  5. Fabrication of glucose biosensor for whole blood based on Au/hyperbranched polyester nanoparticles multilayers by antibiofouling and self-assembly technique

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Chong [Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023 (China); Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Chen, Xiaohan; Han, Qiaorong [Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023 (China); Zhou, Min [Department of Vascular Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008 (China); Mao, Chun, E-mail: maochun127@yahoo.cn [Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023 (China); Zhu, Qinshu [Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023 (China); Shen, Jian, E-mail: jshen@njnu.edu.cn [Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023 (China)

    2013-05-07

    Highlight: •A novel method for detection of glucose in whole blood has been developed. •The method based on antibiofouling and self-assembly technology was investigated. •The antibiofouling technique utilized for sensor is significant for diagnostics. -- Abstract: Acknowledging the benefits of hyperbranched polymers and their nanoparticles, herein we report the design and synthesis of sulfonic acid group functionalized hydroxyl-terminated hyperbranched polyester (H30-SO{sub 3}H) nanoparticles and their biomedical application. The H30-SO{sub 3}H nanoparticles were characterized by transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy and proton nuclear magnetic resonance spectroscopy ({sup 1}H NMR). The good hemocompatibility of H30-SO{sub 3}H nanoparticles was also investigated by coagulation tests, complement activation and platelet activation. The novel glucose biosensor was fabricated by immobilizing the positively charged Au nanoparticles, H30-SO{sub 3}H nanoparticles and glucose oxidase (GOx) onto the surface of glassy carbon electrode (GCE). It can be applied in whole blood directly, which was based on the good hemocompatibility and antibiofouling property of H30-SO{sub 3}H nanoparticles. The biosensor had good electrocatalytic activity toward glucose with a wide linear range (0.2–20 mM), a low detection limit 1.2 × 10{sup −5} M in whole blood and good anti-interference property. The development of materials science will offer a novel platform for application to substance detection in whole blood.

  6. Continuous tissue glucose monitoring correlates with measurement of intermittent capillary glucose in patients with distributive shock.

    Science.gov (United States)

    Ballesteros, D; Martínez, Ó; Blancas Gómez-Casero, R; Martín Parra, C; López Matamala, B; Estébanez, B; Chana, M

    2015-10-01

    Intermittent glycemic measurements in patients admitted to the intensive care unit (ICU) can result in episodes of severe hypoglycemia or in a poor control of glycemia range. We designed a study to assess accuracy and reliability of continuous monitoring of tissue glucose for patients with distributive shock. Consecutive patients admitted to the ICU with a diagnosis of distributive shock and the need of insulin infusion for glycemic control were included in the study. These patients were implanted a Continuous Glucose Control Monitoring System (CGMS) with the sensor inserted subcutaneously into the abdominal wall. CGMS values were recorded every 5min. Capillary glucose (CG) was monitored for adjusting insulin perfusion according to the ICU protocol. Correlation between both methods was assessed. A total of 11,673 CGMS and 348 CG values were recorded. In five patients, CGMS failed to detect tissue glucose. A glucose value <3.33mmol/l (<60mg/dl) was observed in 3.6% of CGMS and in 0.29% CG values. 295 pairs of measurements were included in the statistical analysis for correlation assessment. The intraclass correlation coefficient was 0.706. The Pearson correlation coefficient was 0.71 (p<0.0001, 95% CI 0.65-0.76). The mean of differences between both measurement methods was 0.22mmol/l (3.98mg/dl) (95% CI 0.66-7.31). When the Continuous Glucose Control Monitoring System (CGMS) is able to obtain data (75% of the patients), there is correlation between the values obtained by this method and capillary blood glucose in patients with distributive shock. CGMS can detect more episodes of glycemic excursions outside the normal range than intermittent capillary glucose monitoring. Variables that may impair glucose metabolism and peripheral soft tissues perfusion could impair CGMS measurements. Copyright © 2014 Elsevier España, S.L.U. and SEMICYUC. All rights reserved.

  7. Use of self-monitoring tools in a clinic sample of adults with type 2 diabetes.

    Science.gov (United States)

    Tanenbaum, Molly L; Bhatt, Harikrashna B; Thomas, Valerie A; Wing, Rena R

    2017-06-01

    Self-monitoring is an effective strategy for chronic disease management; many readily available mobile applications allow tracking of diabetes-related health behaviors but their use has not yet been integrated into routine clinical care. How patients engage with these applications in the real world is not well understood. The specific aim of this study is to survey adults with type 2 diabetes (T2D) regarding self-monitoring behaviors, including mobile application use. In 2015, we surveyed an adult diabetes clinic population (n = 96) regarding self-monitoring behaviors: diet, physical activity, weight, and blood glucose. Self-monitoring with any method ranged from 20-90 %. About half of the participants owned smartphones; few had mobile applications. The most common app-tracked behavior was physical activity, then weight and diet. Despite numerous available mobile health-tracking applications, few T2D adults from our sample used them, though many reported self-monitoring with other methods.

  8. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... blood glucose High levels of sugar in the urine Frequent urination Increased thirst Part of managing your ... glucose is above 240 mg/dl, check your urine for ketones. If you have ketones, do not ...

  9. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Complications DKA (Ketoacidosis) & Ketones Kidney Disease (Nephropathy) Gastroparesis Mental Health Step On Up Treatment & Care Blood Glucose ... glucose) Dawn Phenomenon Checking for Ketones Tight Diabetes Control donate en -- A Future Without Diabetes - a-future- ...

  10. Determination of Blood Glucose Concentration by Using Wavelet Transform and Neural Networks

    Directory of Open Access Journals (Sweden)

    Vajravelu Ashok

    2013-03-01

    Full Text Available Background: Early and non-invasive determination of blood glucose level is of great importance. We aimed to present a new technique to accurately infer the blood glucose concentration in peripheral blood flow using non-invasive optical monitoring system.Methods: The data for the research were obtained from 900 individuals. Of them, 750 people had diabetes mellitus (DM. The system was designed using a helium neon laser source of 632.8 nm wavelength with 5mW power, photo detectors and digital storage oscilloscope. The laser beam was directed through a single optical fiber to the index finger and the scattered beams were collected by the photo detectors placed circumferentially to the transmitting fiber. The received signals were filtered using band pass filter and finally sent to a digital storage oscilloscope. These signals were then decomposed into approximation and detail coefficients using modified Haar Wavelet Transform. Back propagation neural and radial basis functions were employed for the prediction of blood glucose concentration.Results: The data of 450 patients were randomly used for training, 225 for testing and the rest for validation. The data showed that outputs from radial basis function were nearer to the clinical value. Significant variations could be seen from signals obtained from patients with DM and those without DM.Conclusion: The proposed non-invasive optical glucose monitoring system is able to predict the glucose concentration by proving that there is a definite variation in hematological distribution between patients with DM and those without DM.

  11. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... and Learning About Prediabetes Type 2 Diabetes Risk Test Lower Your Risk Healthy Eating Overweight Smoking High Blood Pressure Physical Activity High Blood Glucose My Health ...

  12. Salivary glucose in monitoring glycaemia in patients with type 1 diabetes mellitus: a systematic review.

    Science.gov (United States)

    Naing, Cho; Mak, Joon Wah

    2017-01-01

    Incidence of type 1 diabetes mellitus is increasing worldwide. Monitoring glycaemia is essential for control of diabetes mellitus. Conventional blood-based measurement of glucose requires venepuncture or needle prick, which is not free from pain and risk of infection. The non-invasiveness, ease and low-cost in collection made saliva an attractive alternative sample. The objective of this review was to systematically review the evidence on the relationship between salivary glucose level and blood glucose level in monitoring glycaemia in patients with type 1 diabetes mellitus. We searched studies which evaluate salivary glucose levels and serum glycaemia in type 1 diabetes mellitus in electronic databases of MEDLINE, EMBASE, Ovid and Google Scholar. We selected the eligible studies, following the inclusion criteria set for this review. Due to heterogeneity of studies, we conducted qualitative synthesis of studies. Ten observational studies were included in this review, including a total of 321 cases and 323 controls with ages between 3 and 61 years and the majority were males (62%). Two studies were done exclusively on children below 17 years old. The significant difference between salivary glucose levels in type 1 diabetes mellitus and controls were reported in 6 studies with 8 data sets. Five studies with 7 datasets reported the correlation coefficient between salivary glucose and blood glucose in patients with diabetes. Findings suggest that salivary glucose concentrations may be helpful in monitoring glycaemia in type 1 diabetes mellitus. However, the utility of using salivary glucose level to monitor glycaemia should be evaluated in future well designed, prospective studies with adequate number of participants with type 1 diabetes mellitus.

  13. Comparison of Glucose Area Under the Curve Measured Using Minimally Invasive Interstitial Fluid Extraction Technology with Continuous Glucose Monitoring System in Diabetic Patients

    OpenAIRE

    Uemura, Mei

    2017-01-01

    Background: Continuous glucose monitoring (CGM) is reported to be a useful technique, but difficult or inconvenient for some patients and institutions. We are developing a glucose area under the curve (AUC) monitoring system without blood sampling using a minimally invasive interstitial fluid extraction technology (MIET). Here we evaluated the accuracy of interstitial fluid glucose (IG) AUC measured by MIET in patients with diabetes for an extended time interval and the potency of detecting h...

  14. Comparison of Glucose Area Under the Curve Measured Using Minimally Invasive Interstitial Fluid Extraction Technology with Continuous Glucose Monitoring System in Diabetic Patients

    OpenAIRE

    Mei Uemura; Yutaka Yano; Toshinari Suzuki; Taro Yasuma; Toshiyuki Sato; Aya Morimoto; Samiko Hosoya; Chihiro Suminaka; Hiromu Nakajima; Esteban C. Gabazza; Yoshiyuki Takei

    2017-01-01

    Background Continuous glucose monitoring (CGM) is reported to be a useful technique, but difficult or inconvenient for some patients and institutions. We are developing a glucose area under the curve (AUC) monitoring system without blood sampling using a minimally invasive interstitial fluid extraction technology (MIET). Here we evaluated the accuracy of interstitial fluid glucose (IG) AUC measured by MIET in patients with diabetes for an extended time interval and the potency of detecting hy...

  15. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... and Learning About Prediabetes Type 2 Diabetes Risk Test Lower Your Risk Healthy Eating Overweight Smoking High Blood Pressure Physical Activity High Blood Glucose My Health Advisor Tools ...

  16. On preventive blood pressure self-monitoring at home

    DEFF Research Database (Denmark)

    Verdezoto, Nervo; Grönvall, Erik

    2015-01-01

    for self-measuring, the importance of interpretation, understanding and health awareness, sharing self-monitoring information for prevention, various motivational factors, the role of the doctor in prevention, and the home as a distributed information space. An awareness of these aspects can help designers......, to understand existing challenges, and uncover opportunities for self-monitoring technologies to support preventive healthcare activities among older adults. From our study, several important aspects emerged to consider when designing preventive self-monitoring technology, such as the complexity of guidelines...... how these aspects can both inform people engaged in Quantified Self activities and designers alike, and the tools and approaches that have sprung from the so-called Quantified Self movement...

  17. Real-time continuous glucose monitoring during labour and delivery in women with Type 1 diabetes — observations from a randomized controlled trial

    DEFF Research Database (Denmark)

    Cordua, S; Secher, A L; Ringholm, L

    2013-01-01

    To explore whether real-time continuous glucose monitoring during labour and delivery supplementary to hourly self-monitored plasma glucose in women with Type 1 diabetes reduces the prevalence of neonatal hypoglycaemia.......To explore whether real-time continuous glucose monitoring during labour and delivery supplementary to hourly self-monitored plasma glucose in women with Type 1 diabetes reduces the prevalence of neonatal hypoglycaemia....

  18. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Diagnosing Diabetes and Learning About Prediabetes Type 2 Diabetes Risk Test Lower Your Risk Healthy Eating Overweight Smoking High Blood Pressure Physical Activity High Blood Glucose My Health Advisor ...

  19. The performance of flash glucose monitoring in critically ill patients with diabetes.

    Science.gov (United States)

    Ancona, Paolo; Eastwood, Glenn M; Lucchetta, Luca; Ekinci, Elif I; Bellomo, Rinaldo; Mårtensson, Johan

    2017-06-01

    Frequent glucose monitoring may improve glycaemic control in critically ill patients with diabetes. We aimed to assess the accuracy of a novel subcutaneous flash glucose monitor (FreeStyle Libre [Abbott Diabetes Care]) in these patients. We applied the FreeStyle Libre sensor to the upper arm of eight patients with diabetes in the intensive care unit and obtained hourly flash glucose measurements. Duplicate recordings were obtained to assess test-retest reliability. The reference glucose level was measured in arterial or capillary blood. We determined numerical accuracy using Bland- Altman methods, the mean absolute relative difference (MARD) and whether the International Organization for Standardization (ISO) and Clinical and Laboratory Standards Institute Point of Care Testing (CLSI POCT) criteria were met. Clarke error grid (CEG) and surveillance error grid (SEG) analyses were used to determine clinical accuracy. We compared 484 duplicate flash glucose measurements and observed a Pearson correlation coefficient of 0.97 and a coefficient of repeatability of 1.6 mmol/L. We studied 185 flash readings paired with arterial glucose levels, and 89 paired with capillary glucose levels. Using the arterial glucose level as the reference, we found a mean bias of 1.4 mmol/L (limits of agreement, -1.7 to 4.5 mmol/L). The MARD was 14% (95% CI, 12%-16%) and the proportion of measurements meeting ISO and CLSI POCT criteria was 64.3% and 56.8%, respectively. The proportions of values within a low-risk zone on CEG and SEG analyses were 97.8% and 99.5%, respectively. Using capillary glucose levels as the reference, we found that numerical and clinical accuracy were lower. The subcutaneous FreeStyle Libre blood glucose measurement system showed high test-retest reliability and acceptable accuracy when compared with arterial blood glucose measurement in critically ill patients with diabetes.

  20. The association between Western and Prudent dietary patterns and fasting blood glucose levels in type 2 diabetes and normal glucose metabolism in older Australian adults.

    Science.gov (United States)

    Walsh, Erin I; Jacka, Felice N; Butterworth, Peter; Anstey, Kaarin J; Cherbuin, Nicolas

    2017-06-01

    High blood glucose and type 2 diabetes are associated with a range of adverse health and cognitive outcomes. One factor that contributes to high blood glucose and type 2 diabetes is dietary intake. This study investigated the relationship between dietary patterns, fasting blood glucose and diabetes status in a sample of 209 participants aged 60-65. Blood plasma glucose was measured from venous blood samples. Individual Prudent and Western dietary patterns were estimated from a self-completed food frequency questionnaire. The relationship between dietary patterns, diabetes, and blood glucose was assessed via general linear model analyses controlling for age, sex, height, and total caloric intake. Results indicated that there was no association between Prudent diet and fasting blood glucose levels, or type 2 diabetes. In contrast, an individual in the upper tertile for Western dietary score had a significantly higher risk of having diabetes than an individual in the lower tertile for Western dietary score. However, there was no significant association between Western diet and fasting blood glucose. Western diet may be associated with type 2 diabetes through mechanisms beyond impacting blood plasma glucose directly. The fact that the association between Western diet and type 2 diabetes remained even when total caloric intake was controlled for highlights the need for policy and population health interventions targeting the reduction of unhealthy food consumption.

  1. Blood Glucose Levels Following Intra-Articular Steroid Injections in Patients with Diabetes: A Systematic Review.

    Science.gov (United States)

    Choudhry, M N; Malik, R A; Charalambous, Charalambos Panayiotou

    2016-03-22

    Parenterally administered steroids have been shown to affect the metabolism of glucose and to cause abnormal blood glucose levels in diabetic patients. These abnormal blood glucose levels in diabetic patients raise concerns that intra-articular steroid injections also may affect blood glucose levels. We performed a systematic review of studies examining the effect of intra-articular steroid injections on blood glucose levels in patients with diabetes mellitus. A literature search of the PubMed, EMBASE, AMED, and CINAHL databases using all relevant keywords and phrases revealed 532 manuscripts. After the application of inclusion criteria, seven studies with a total of seventy-two patients were analyzed. All studies showed a rise in blood glucose levels following intra-articular steroid injection. Four of the seven studies showed a substantial increase in blood glucose. Peak values reached as high as 500 mg/dL. The peak increase in blood glucose did not occur immediately following intra-articular steroid injection, and in some cases it took several days to occur. In many patients, post-injection hyperglycemia occurred within twenty-four to seventy-two hours. Intra-articular steroid injections may cause hyperglycemia in patients with diabetes mellitus, and patients should be warned of this complication. Diabetic patients should be advised to regularly monitor their blood glucose levels for up to a week after injection and should seek medical advice if safe thresholds are breached. Therapeutic Level IV. See Instructions for Authors for a complete description of levels of evidence.

  2. A technology roadmap of smart biosensors from conventional glucose monitoring systems.

    Science.gov (United States)

    Shende, Pravin; Sahu, Pratiksha; Gaud, Ram

    2017-06-01

    The objective of this review article is to focus on technology roadmap of smart biosensors from a conventional glucose monitoring system. The estimation of glucose with commercially available devices involves analysis of blood samples that are obtained by pricking finger or extracting blood from the forearm. Since pain and discomfort are associated with invasive methods, the non-invasive measurement techniques have been investigated. The non-invasive methods show advantages like non-exposure to sharp objects such as needles and syringes, due to which there is an increase in testing frequency, improved control of glucose concentration and absence of pain and biohazard materials. This review study is aimed to describe recent invasive techniques and major noninvasive techniques, viz. biosensors, optical techniques and sensor-embedded contact lenses for glucose estimation.

  3. Scale Space Methods for Analysis of Type 2 Diabetes Patients' Blood Glucose Values

    Directory of Open Access Journals (Sweden)

    Stein Olav Skrøvseth

    2011-01-01

    Full Text Available We describe how scale space methods can be used for quantitative analysis of blood glucose concentrations from type 2 diabetes patients. Blood glucose values were recorded voluntarily by the patients over one full year as part of a self-management process, where the time and frequency of the recordings are decided by the patients. This makes a unique dataset in its extent, though with a large variation in reliability of the recordings. Scale space and frequency space techniques are suited to reveal important features of unevenly sampled data, and useful for identifying medically relevant features for use both by patients as part of their self-management process, and provide useful information for physicians.

  4. Successful microsurgical lip replantation: Monitoring venous congestion by blood glucose measurements in the replanted lip

    Directory of Open Access Journals (Sweden)

    Kazufumi Tachi

    2018-03-01

    Full Text Available Replantation of an amputated lip using microvascular anastomosis is the best option for restoration of the defect. However, the amputated region often lacks veins with appropriate diameters for microvascular anastomoses and typically necessitates both postoperative exsanguination using medicinal leeches and a blood transfusion. We present a case of the successful replantation of an avulsed lip in which postoperative congestion was evaluated objectively by measuring blood glucose levels in the replanted region. The patient presented to our hospital with an upper lip avulsion that was caused by a dog bite. The lip was replanted by the microvascular anastomoses of one artery and two veins using interposed vein grafts. The replanted lip showed signs of congestion on postoperative day one; exsanguination using medicinal leeches was attempted, while blood glucose levels were measured every three hours. Critical congestion, which did not occur in this patient, was defined as a blood glucose level lower than 40 mg/dL. Lip replantation was successful without any complications in this patient.

  5. Assessing sensor accuracy for non-adjunct use of continuous glucose monitoring.

    Science.gov (United States)

    Kovatchev, Boris P; Patek, Stephen D; Ortiz, Edward Andrew; Breton, Marc D

    2015-03-01

    The level of continuous glucose monitoring (CGM) accuracy needed for insulin dosing using sensor values (i.e., the level of accuracy permitting non-adjunct CGM use) is a topic of ongoing debate. Assessment of this level in clinical experiments is virtually impossible because the magnitude of CGM errors cannot be manipulated and related prospectively to clinical outcomes. A combination of archival data (parallel CGM, insulin pump, self-monitoring of blood glucose [SMBG] records, and meals for 56 pump users with type 1 diabetes) and in silico experiments was used to "replay" real-life treatment scenarios and relate sensor error to glycemic outcomes. Nominal blood glucose (BG) traces were extracted using a mathematical model, yielding 2,082 BG segments each initiated by insulin bolus and confirmed by SMBG. These segments were replayed at seven sensor accuracy levels (mean absolute relative differences [MARDs] of 3-22%) testing six scenarios: insulin dosing using sensor values, threshold, and predictive alarms, each without or with considering CGM trend arrows. In all six scenarios, the occurrence of hypoglycemia (frequency of BG levels ≤50 mg/dL and BG levels ≤39 mg/dL) increased with sensor error, displaying an abrupt slope change at MARD =10%. Similarly, hyperglycemia (frequency of BG levels ≥250 mg/dL and BG levels ≥400 mg/dL) increased and displayed an abrupt slope change at MARD=10%. When added to insulin dosing decisions, information from CGM trend arrows, threshold, and predictive alarms resulted in improvement in average glycemia by 1.86, 8.17, and 8.88 mg/dL, respectively. Using CGM for insulin dosing decisions is feasible below a certain level of sensor error, estimated in silico at MARD=10%. In our experiments, further accuracy improvement did not contribute substantively to better glycemic outcomes.

  6. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... breast cancer and AIDS combined. Your gift today will help us get closer to curing diabetes and ... blood and then treating high blood glucose early will help you avoid problems associated with hyperglycemia. How ...

  7. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Risk Test Lower Your Risk Healthy Eating Overweight Smoking High Blood Pressure Physical Activity High Blood Glucose ... Diabetes Meal Plans Create Your Plate Gluten Free Diets Meal Planning for Vegetarian Diets Cook with Heart- ...

  8. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Risk Test Lower Your Risk Healthy Eating Overweight Smoking High Blood Pressure Physical Activity High Blood Glucose ... Index Low-Calorie Sweeteners Sugar and Desserts Fitness Exercise & Type 1 Diabetes Get Started Safely Get And ...

  9. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Risk Test Lower Your Risk Healthy Eating Overweight Smoking High Blood Pressure Physical Activity High Blood Glucose ... Clinical Practice Guidelines Patient Education Materials Scientific Sessions Journals for Professionals Professional Books Patient Access to Research ...

  10. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Risk Test Lower Your Risk Healthy Eating Overweight Smoking High Blood Pressure Physical Activity High Blood Glucose ... Day in the Life of Diabetes Famous People Working to Stop Diabetes Common Terms Diabetes Statistics Infographics ...

  11. Relative accuracy of the BD Logic and FreeStyle blood glucose meters.

    Science.gov (United States)

    2007-04-01

    The BD Logic((R)) (Becton, Dickinson and Co., Franklin Lakes, NJ) and FreeStyle((R)) (Abbott Diabetes Care, Alameda, CA) meters are used to transmit data directly to insulin pumps for calculation of insulin doses and to calibrate continuous glucose sensors as well as to monitor blood glucose levels. The accuracy of the two meters was evaluated in two inpatient studies conducted by the Diabetes Research in Children Network (DirecNet). In both studies, meter glucose measurements made with either venous or capillary blood were compared with reference glucose measurements made by the DirecNet Central Laboratory at the University of Minnesota using a hexokinase enzymatic method. The BD Logic tended to read lower than the laboratory reference regardless of whether venous (median difference = -9 mg/dL) or capillary blood (median difference = -7 mg/dL) was used. This resulted in lower accuracy of the BD Logic compared with the FreeStyle meter based on the median relative absolute difference (RAD) for both venous blood (median RAD, 9% vs. 5%, P blood (median RAD, 11% vs. 6%, P = 0.008). The greatest discrepancy in the performance of the two meters was at higher reference glucose values. Accuracy was not significantly different when the reference was < or = 70 mg/dL. The BD Logic meter is less accurate than the FreeStyle meter.

  12. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Test Lower Your Risk Healthy Eating Overweight Smoking High Blood Pressure Physical Activity High Blood Glucose My Health Advisor Tools To Know Your Risk Alert Day Diabetes Basics Home Symptoms Diagnosis America's Diabetes Challenge Type ...

  13. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... your blood and then treating high blood glucose early will help you avoid problems associated with hyperglycemia. ... to detect hyperglycemia so you can treat it early — before it gets worse. If you're new ...

  14. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Risk Healthy Eating Overweight Smoking High Blood Pressure Physical Activity High Blood Glucose My Health Advisor Tools To ... Email: Sign Up Thank you for signing up ' + ' '); $('.survey-form').show(); }, success: function (data) { $('#survey-errors').remove(); $('. ...

  15. Clinical Use of Continuous Glucose Monitoring in Adults with Type 1 Diabetes.

    Science.gov (United States)

    Slattery, David; Choudhary, Pratik

    2017-05-01

    With the emphasis on intensive management of type 1 diabetes, data from studies support frequent monitoring of glucose levels to improve glycemic control and reduce glucose variability, which can be related to an increase in macro and microvascular complications. However, few perform capillary blood glucose that frequently. There are currently two available alternatives that this review will discuss, continuous glucose monitoring (CGM) and flash glucose monitoring. CGM has become an important diagnostic and therapeutic option in optimizing diabetes management. CGM systems are now more accurate, smaller, and easier to use compared to original models. Randomized controlled trials (RCTs) have demonstrated that CGM can improve Hemoglobin A1c (HbA1C) and reduce glucose variability in both continuous subcutaneous insulin infusion and multiple daily injection users. When used in an automated "insulin-suspend" system, reduced frequency of hypoglycemia and shorter time spent in hypoglycemic range have been demonstrated. Despite the potential benefits CGM has to offer in clinical practice, concerns exist on the accuracy of these devices and patient compliance with therapy, which may prevent the true clinical benefit of CGM being achieved, as observed in RCTs. Flash glucose monitoring systems FreeStyle ® Libre™ (Abbott Diabetes Care, Alameda, CA) are as accurate as many CGM systems available and have the added benefit of being factory calibrated. Studies have shown that flash glucose monitoring systems are very well tolerated by patients and effectively reduce glucose variability, increasing time in range.

  16. Evaluation of the agreement among three handheld blood glucose meters and a laboratory blood analyzer for measurement of blood glucose concentration in Hispaniolan Amazon parrots (Amazona ventralis).

    Science.gov (United States)

    Acierno, Mark J; Mitchell, Mark A; Schuster, Patricia J; Freeman, Diana; Sanchez-Migallon Guzman, David; Tully, Thomas N

    2009-02-01

    To determine the degree of agreement between 3 commercially available point-of-care blood glucose meters and a laboratory analyzer for measurement of blood glucose concentrations in Hispaniolan Amazon parrots (Amazona ventralis). 20 healthy adult Hispaniolan Amazon parrots. A 26-gauge needle and 3-mL syringe were used to obtain a blood sample (approx 0.5 mL) from a jugular vein of each parrot. Small volumes of blood (0.6 to 1.5 microL) were used to operate each of the blood glucose meters, and the remainder was placed into lithium heparin microtubes and centrifuged. Plasma was harvested and frozen at -30 degrees C. Within 5 days after collection, plasma samples were thawed and plasma glucose concentrations were measured by means of the laboratory analyzer. Agreement between pairs of blood glucose meters and between each blood glucose meter and the laboratory analyzer was evaluated by means of the Bland-Altman method, and limits of agreement (LOA) were calculated. None of the results of the 3 blood glucose meters agreed with results of the laboratory analyzer. Each point-of-care blood glucose meter underestimated the blood glucose concentration, and the degree of negative bias was not consistent (meter A bias, -94.9 mg/dL [LOA, -148.0 to -41.7 mg/dL]; meter B bias, -52 mg/dL [LOA, -107.5 to 3.5 mg/dL]; and meter C bias, -78.9 mg/dL [LOA, -137.2 to -20.6 mg/dL]). On the basis of these results, use of handheld blood glucose meters in the diagnosis or treatment of Hispaniolan Amazon parrots and other psittacines cannot be recommended.

  17. Cook and Chill: Effect of Temperature on the Performance of Nonequilibrated Blood Glucose Meters.

    Science.gov (United States)

    Deakin, Sherine; Steele, Dominic; Clarke, Sarah; Gribben, Cathryn; Bexley, Anne-Marie; Laan, Remmert; Kerr, David

    2015-08-20

    Exposure to extreme temperature can affect the performance of blood glucose monitoring systems. The aim was to determine the non-equilibrated performance of these systems at extreme high and low temperatures that can occur in daily life. The performances of 5 test systems, (1) Abbott FreeStyle Freedom Lite, (2) Roche AccuChek Aviva, (3) Bayer Contour, (4) LifeScan OneTouch Verio, and (5) Sanofi BG Star, were compared after "cooking" (50°C for 1 hour) or "chilling" (-5°C for 1 hour) with room temperature controls (23°C) using whole blood with glucose concentrations of 50, 100, and 200 mg/dl. The equilibration period (time from the end of incubation to when the test system is operational) was between 1 and 8 minutes, and each test system took between 15 and 30 minutes after incubation to obtain stable measurements at room temperature. Incubating the strips at -5°C or 50°C had little effect on the glucose measurement, whereas incubating the meters introduced bias in performance between 0 and 15 minutes but not subsequently, compared to room temperature controls and at all 3 glucose levels. Compensating technologies embedded within blood glucose monitoring systems studied here perform well at extreme temperatures. People with diabetes need to be alerted to this feature to avoid perceptions of malperformance of their devices and the possible inability to get blood glucose readings on short notice (eg, during time of suspected rapid change or before an unplanned meal). © 2015 Diabetes Technology Society.

  18. Cutpoints for screening blood glucose concentrations in healthy senior cats.

    Science.gov (United States)

    Reeve-Johnson, Mia K; Rand, Jacquie S; Vankan, Dianne; Anderson, Stephen T; Marshall, Rhett; Morton, John M

    2017-12-01

    Objectives The objectives of this study were to determine the reference interval for screening blood glucose in senior cats, to apply this to a population of obese senior cats, to compare screening and fasting blood glucose, to assess whether screening blood glucose is predicted by breed, body weight, body condition score (BCS), behaviour score, fasting blood glucose and/or recent carbohydrate intake and to assess its robustness to changes in methodology. Methods The study included a total of 120 clinically healthy client-owned cats aged 8 years and older of varying breeds and BCSs. Blood glucose was measured at the beginning of the consultation from an ear/paw sample using a portable glucose meter calibrated for cats, and again after physical examination from a jugular sample. Fasting blood glucose was measured after overnight hospitalisation and fasting for 18-24 h. Results The reference interval upper limit for screening blood glucose was 189 mg/dl (10.5 mmol/l). Mean screening blood glucose was greater than mean fasting glucose. Breed, body weight, BCS, behaviour score, fasting blood glucose concentration and amount of carbohydrate consumed 2-24 h before sampling collectively explained only a small proportion of the variability in screening blood glucose. Conclusions and relevance Screening blood glucose measurement represents a simple test, and cats with values from 117-189 mg/dl (6.5-10.5 mmol/l) should be retested several hours later. Cats with initial screening blood glucose >189 mg/dl (10.5 mmol/l), or a second screening blood glucose >116 mg/dl (6.4 mmol/l) several hours after the first, should have fasting glucose and glucose tolerance measured after overnight hospitalisation.

  19. Optimization of a Liquid Crystal-based Sensory Platform for Monitoring Enzymatic Glucose Oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Yibin; Jang, Chang-Hyun [Gachon University, Seongnam (Korea, Republic of)

    2016-05-15

    Managing glucose levels in human blood is extremely important for the treatment of diabetes. Here, an innovative sensory strategy has been developed to monitor the enzymatic activities of glucose and glucose oxidase by using confined liquid crystal (LC) birefringent droplet patterns. Acidic products released during the glucose oxidation process lead to a slight decrease in the pH of aqueous systems that can be monitored by pH-sensitive LC materials. Of the existing pH-sensitive LC materials, dodecanoic acid-doped 4-cyano-4'-pentylbiphenyl is inexpensive and easily adjusted to satisfy the 7.4 ± 0.05 pH requirement of human blood. Moreover, the orientational alignment of capillary-confined pH-responsive LCs can be disrupted at the aqueous/LC interface following a slight decrease in the critical pH of aqueous reaction systems, which results in an optical signal that can be observed with the naked eye by using polarizing optical microscopy. Based on the stable LC droplet patterns generated by the cylindrical confinement system, the functionalized LCs can selectively detect glucose at concentrations as low as 0.1 pM. This study further advances the previously reported LC-based glucose monitoring systems by reducing production costs and instituting a smarter LC sensory design. This improved system shows potential for the use in clinical bioassay applications.

  20. Clinical assessment of the accuracy of blood glucose measurement devices.

    Science.gov (United States)

    Pfützner, Andreas; Mitri, Michael; Musholt, Petra B; Sachsenheimer, Daniela; Borchert, Marcus; Yap, Andrew; Forst, Thomas

    2012-04-01

    Blood glucose meters for patient self-measurement need to comply with the accuracy standards of the ISO 15197 guideline. We investigated the accuracy of the two new blood glucose meters BG*Star and iBG*Star (Sanofi-Aventis) in comparison to four other competitive devices (Accu-Chek Aviva, Roche Diagnostics; FreeStyle Freedom Lite, Abbott Medisense; Contour, Bayer; OneTouch Ultra 2, Lifescan) at different blood glucose ranges in a clinical setting with healthy subjects and patients with type 1 and type 2 diabetes. BGStar and iBGStar are employ dynamic electrochemistry, which is supposed to result in highly accurate results. The study was performed on 106 participants (53 female, 53 male, age (mean ± SD): 46 ± 16 years, type 1: 32 patients, type 2: 34 patients, and 40 healthy subjects). Two devices from each type and strips from two different production lots were used for glucose assessment (∼200 readings/meter). Spontaneous glucose assessments and glucose or insulin interventions under medical supervision were applied to perform measurements in the different glucose ranges in accordance with the ISO 15197 requirements. Sample values 400 mg/dL were prepared by laboratory manipulations. The YSI glucose analyzer (glucose oxidase method) served as the standard reference method which may be considered to be a limitation in light of glucose hexokinase-based meters. For all devices, there was a very close correlation between the glucose results compared to the YSI reference method results. The correlation coefficients were r = 0.995 for BGStar and r = 0.992 for iBGStar (Aviva: 0.995, Freedom Lite: 0.990, Contour: 0.993, Ultra 2: 0.990). Error-grid analysis according to Parkes and Clarke revealed both 100% of the readings to be within the clinically acceptable areas (Clarke: A + B with BG*Star (100 + 0), Aviva (97 + 3), and Contour (97 + 3); and 99.5% with iBG*Star (97.5 + 2), Freedom Lite (98 + 1.5), and Ultra 2 (97.5 + 2

  1. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Test Lower Your Risk Healthy Eating Overweight Smoking High Blood Pressure Physical Activity High Blood Glucose My Health Advisor ... Chat Closed engagement en -- Have Type 2 Diabetes? - 2017-03-lwt2d-en.html Have Type 2 Diabetes? ...

  2. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Research & Practice Ways to Give Close Are You at Risk? Home Prevention Diagnosing Diabetes and Learning About Prediabetes Type 2 Diabetes Risk Test Lower Your Risk Healthy Eating Overweight Smoking High Blood Pressure Physical Activity High Blood Glucose ...

  3. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Overweight Smoking High Blood Pressure Physical Activity High Blood Glucose My Health Advisor Tools To Know Your Risk Alert Day Diabetes Basics Home Symptoms Diagnosis America's Diabetes Challenge Type 1 Type 2 Facts About Type 2 Enroll ...

  4. Relationship between fluctuations in glucose levels measured by continuous glucose monitoring and vascular endothelial dysfunction in type 2 diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Torimoto Keiichi

    2013-01-01

    Full Text Available Abstract Background Fluctuations in blood glucose level cause endothelial dysfunction and play a critical role in onset and/or progression of atherosclerosis. We hypothesized that fluctuation in blood glucose levels correlate with vascular endothelial dysfunction and that this relationship can be assessed using common bedside medical devices. Methods Fluctuations in blood glucose levels were measured over 24 hours by continuous glucose monitoring (CGM on admission day 2 in 57 patients with type 2 diabetes mellitus. The reactive hyperemia index (RHI, an index of vascular endothelial function, was measured using peripheral arterial tonometry (EndoPAT on admission day 3. Results The natural logarithmic-scaled RHI (L_RHI correlated with SD (r=−0.504; PPP=0.001 and percentage of time ≥200 mg/dl (r=−0.292; P=0.028. In 12 patients with hypoglycemia, L_RHI also correlated with the percentage of time at hypoglycemia (r=−0.589; P=0.044. L_RHI did not correlate with HbA1c or fasting plasma glucose levels. Furthermore, L_RHI did not correlate with LDL cholesterol, HDL cholesterol, and triglyceride levels or with systolic and diastolic blood pressures. Finally, multivariate analysis identified MAGE as the only significant determinant of L_RHI. Conclusions Fluctuations in blood glucose levels play a significant role in vascular endothelial dysfunction in type 2 diabetes. Trial registration UMIN000007581

  5. Impact of flash glucose monitoring on hypoglycaemia in adults with type 1 diabetes managed with multiple daily injection therapy: a pre-specified subgroup analysis of the IMPACT randomised controlled trial.

    Science.gov (United States)

    Oskarsson, Per; Antuna, Ramiro; Geelhoed-Duijvestijn, Petronella; Krӧger, Jens; Weitgasser, Raimund; Bolinder, Jan

    2018-03-01

    Evidence for the effectiveness of interstitial glucose monitoring in individuals with type 1 diabetes using multiple daily injection (MDI) therapy is limited. In this pre-specified subgroup analysis of the Novel Glucose-Sensing Technology and Hypoglycemia in Type 1 Diabetes: a Multicentre, Non-masked, Randomised Controlled Trial' (IMPACT), we assessed the impact of flash glucose technology on hypoglycaemia compared with capillary glucose monitoring. This multicentre, prospective, non-masked, RCT enrolled adults from 23 European diabetes centres. Individuals were eligible to participate if they had well-controlled type 1 diabetes (diagnosed for ≥5 years), HbA 1c ≤ 58 mmol/mol [7.5%], were using MDI therapy and on their current insulin regimen for ≥3 months, reported self-monitoring of blood glucose on a regular basis (equivalent to ≥3 times/day) for ≥2 months and were deemed technically capable of using flash glucose technology. Individuals were excluded if they were diagnosed with hypoglycaemia unawareness, had diabetic ketoacidosis or myocardial infarction in the preceding 6 months, had a known allergy to medical-grade adhesives, used continuous glucose monitoring (CGM) within the previous 4 months or were currently using CGM or sensor-augmented pump therapy, were pregnant or planning pregnancy or were receiving steroid therapy for any disorders. Following 2 weeks of blinded (to participants and investigator) sensor wear by all participants, participants with sensor data for more than 50% of the blinded wear period (or ≥650 individual sensor results) were randomly assigned, in a 1:1 ratio by a central interactive web response system (IWRS) using the biased-coin minimisation method, to flash sensor-based glucose monitoring (intervention group) or self-monitoring of capillary blood glucose (control group). The control group had two further 14 day blinded sensor-wear periods at the 3 and 6 month time points. Participants, investigators and

  6. Social Inclusion Predicts Lower Blood Glucose and Low-Density Lipoproteins in Healthy Adults.

    Science.gov (United States)

    Floyd, Kory; Veksler, Alice E; McEwan, Bree; Hesse, Colin; Boren, Justin P; Dinsmore, Dana R; Pavlich, Corey A

    2017-08-01

    Loneliness has been shown to have direct effects on one's personal well-being. Specifically, a greater feeling of loneliness is associated with negative mental health outcomes, negative health behaviors, and an increased likelihood of premature mortality. Using the neuroendocrine hypothesis, we expected social inclusion to predict decreases in both blood glucose levels and low-density lipoproteins (LDLs) and increases in high-density lipoproteins (HDLs). Fifty-two healthy adults provided self-report data for social inclusion and blood samples for hematological tests. Results indicated that higher social inclusion predicted lower levels of blood glucose and LDL, but had no effect on HDL. Implications for theory and practice are discussed.

  7. Non-invasive method to detect the changes of glucose concentration in whole blood using photometric technique.

    Science.gov (United States)

    Rajan, Shiny Amala Priya; Towe, Bruce C

    2014-01-01

    A non-invasive method is developed to monitor rapid changes in blood glucose levels in diabetic patients. The system depends on an optical cell built with a LED that emits light of wavelength 535nm, which is a peak absorbance of hemoglobin. As the glucose concentration in blood decreases, its osmolarity also decreases and the Red Blood Cells (RBCs) swell and decrease the path length absorption coefficient. Decreasing absorption coefficient increases the transmission of light through the whole blood. The system was tested with a constructed optical cell that held whole blood in a capillary tube. As expected the light transmitted to the photodiode increases with decreasing glucose concentration. The average response time of the system was between 30-40 seconds.

  8. Sensing interstitial glucose to nudge active lifestyles (SIGNAL): feasibility of combining novel self-monitoring technologies for persuasive behaviour change.

    Science.gov (United States)

    Whelan, Maxine E; Kingsnorth, Andrew P; Orme, Mark W; Sherar, Lauren B; Esliger, Dale W

    2017-10-08

    Increasing physical activity (PA) reduces the risk of developing diabetes, highlighting the role of preventive medicine approaches. Changing lifestyle behaviours is difficult and is often predicated on the assumption that individuals are willing to change their lifestyles today to reduce the risk of developing disease years or even decades later. The self-monitoring technologies tested in this study will present PA feedback in real time, parallel with acute physiological data. Presenting the immediate health benefits of being more physically active may help enact change by observing the immediate consequences of that behaviour. The present study aims to assess user engagement with the self-monitoring technologies in individuals at moderate-to-high risk of developing type 2 diabetes. 45 individuals with a moderate-to-high risk, aged ≥40 years old and using a compatible smartphone, will be invited to take part in a 7-week protocol. Following 1 week of baseline measurements, participants will be randomised into one of three groups: group 1- glucose feedback followed by biobehavioural feedback (glucose plus PA); group 2-PA feedback followed by biobehavioural feedback; group 3-biobehavioural feedback. A PA monitor and a flash glucose monitor will be deployed during the intervention. Participants will wear both devices throughout the intervention but blinded to feedback depending on group allocation. The primary outcome is the level of participant engagement and will be assessed by device use and smartphone usage. Feasibility will be assessed by the practicality of the technology and screening for diabetes risk. Semistructured interviews will be conducted to explore participant experiences using the technologies. ISRCTN17545949. Registered on 15/05/2017. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  9. Correlation between blood glucose levels and salivary glucose levels with oral ulcer in diabetic patients

    Directory of Open Access Journals (Sweden)

    Fildzah Rahman

    2016-06-01

    Full Text Available Diabetes Mellitus (DM is a syndrome in metabolism of carbohydrates which indicated by the increased level of blood glucose and also may increase salivary glucose levels. Oral ulcer has been frequently recognized in diabetic patients, which can be due to increased glucose in oral fluids and immune dysfunction. This study aimed to determine the correlation of blood glucose levels and salivary glucose levels with oral ulcer in diabetic patients. Analytic observational study was carried out through the determination of blood glucose levels just by way of strip using a glucometer and salivary glucose levels with the method "GOD-PAP test enzymatic colorimetric". Oral ulcer was determined in presenting ulcer on 30 patients with DM. The results showed r = 0.228, which is higher salivary glucose levels followed by high levels of blood glucose, and intraoral examination of oral ulcer found in the whole sample and the most location commonly found in buccal mucosa and lingual. It was concluded that there is a correlation between blood glucose levels and salivary glucose levels, and glucose levels affect the occurrence of oral ulcer in patients with DM

  10. In vivo Microscopic Photoacoustic Spectroscopy for Non-Invasive Glucose Monitoring Invulnerable to Skin Secretion Products.

    Science.gov (United States)

    Sim, Joo Yong; Ahn, Chang-Geun; Jeong, Eun-Ju; Kim, Bong Kyu

    2018-01-18

    Photoacoustic spectroscopy has been shown to be a promising tool for non-invasive blood glucose monitoring. However, the repeatability of such a method is susceptible to changes in skin condition, which is dependent on hand washing and drying due to the high absorption of infrared excitation light to the skin secretion products or water. In this paper, we present a method to meet the challenges of mid-infrared photoacoustic spectroscopy for non-invasive glucose monitoring. By obtaining the microscopic spatial information of skin during the spectroscopy measurement, the skin region where the infrared spectra is insensitive to skin condition can be locally selected, which enables reliable prediction of the blood glucose level from the photoacoustic spectroscopy signals. Our raster-scan imaging showed that the skin condition for in vivo spectroscopic glucose monitoring had significant inhomogeneities and large variability in the probing area where the signal was acquired. However, the selective localization of the probing led to a reduction in the effects of variability due to the skin secretion product. Looking forward, this technology has broader applications not only in continuous glucose monitoring for diabetic patient care, but in forensic science, the diagnosis of malfunctioning sweat pores, and the discrimination of tumors extracted via biopsy.

  11. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... You at Risk? Home Prevention Diagnosing Diabetes and Learning About Prediabetes Type 2 Diabetes Risk Test Lower Your Risk Healthy Eating Overweight Smoking High Blood Pressure Physical Activity High Blood Glucose My Health Advisor Tools To Know Your Risk Alert Day Diabetes Basics ...

  12. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Risk Healthy Eating Overweight Smoking High Blood Pressure Physical Activity High Blood Glucose My Health Advisor Tools ... Complications DKA (Ketoacidosis) & Ketones Kidney Disease ... than planned or exercised less than planned. You have stress from an illness, such as a cold or flu. You have ...

  13. In-situ monitoring of blood glucose level for dialysis machine by AAA-battery-size ATR Fourier spectroscopy

    Science.gov (United States)

    Hosono, Satsuki; Sato, Shun; Ishida, Akane; Suzuki, Yo; Inohara, Daichi; Nogo, Kosuke; Abeygunawardhana, Pradeep K.; Suzuki, Satoru; Nishiyama, Akira; Wada, Kenji; Ishimaru, Ichiro

    2015-07-01

    For blood glucose level measurement of dialysis machines, we proposed AAA-battery-size ATR (Attenuated total reflection) Fourier spectroscopy in middle infrared light region. The proposed one-shot Fourier spectroscopic imaging is a near-common path and spatial phase-shift interferometer with high time resolution. Because numerous number of spectral data that is 60 (= camera frame rare e.g. 60[Hz]) multiplied by pixel number could be obtained in 1[sec.], statistical-averaging improvement realize high-accurate spectral measurement. We evaluated the quantitative accuracy of our proposed method for measuring glucose concentration in near-infrared light region with liquid cells. We confirmed that absorbance at 1600[nm] had high correlations with glucose concentrations (correlation coefficient: 0.92). But to measure whole-blood, complex light phenomenon caused from red blood cells, that is scattering and multiple reflection or so, deteriorate spectral data. Thus, we also proposed the ultrasound-assisted spectroscopic imaging that traps particles at standing-wave node. Thus, if ATR prism is oscillated mechanically, anti-node area is generated around evanescent light field on prism surface. By elimination complex light phenomenon of red blood cells, glucose concentration in whole-blood will be quantify with high accuracy. In this report, we successfully trapped red blood cells in normal saline solution with ultrasonic standing wave (frequency: 2[MHz]).

  14. A fine pointed glucose oxidase immobilized electrode for low-invasive amperometric glucose monitoring.

    Science.gov (United States)

    Li, Jiang; Koinkar, Pankaj; Fuchiwaki, Yusuke; Yasuzawa, Mikito

    2016-12-15

    A low invasive type glucose sensor, which has a sensing region at the tip of a fine pointed electrode, was developed for continuous glucose monitoring. Platinum-iridium alloy electrode with a surface area of 0.045mm(2) was settled at the middle of pointed PEEK (Polyetheretherketone) tubing and was employed as sensing electrode. Electrodeposition of glucose oxidase in the presence of surfactant, Triton X-100, was performed for high-density enzyme immobilization followed by the electropolymerization of o-phenylenediamine for the formation of functional entrapping and permselective polymer membrane. Ag/AgCl film was coated on the surface of PEEK tubing as reference electrode. Amperometric responses of the prepared sensors to glucose were measured at a potential of 0.60V (vs. Ag/AgCl). The prepared electrode showed the sensitivity of 2.55μA/cm(2) mM with high linearity of 0.9986, within the glucose concentration range up to 21mM. The detection limit (S/N=3) was determined to be 0.11mM. The glucose sensor properties were evaluated in phosphate buffer solution and in vivo monitoring by the implantation of the sensors in rabbit, while conventional needle type sensors as a reference were used. The results showed that change in output current of the proposed sensor fluctuated similar with one in output current of the conventional needle type sensors, which was also in similar accordance with actual blood sugar level measured by commercially glucose meter. One-point calibration method was used to calibrate the sensor output current. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Change in blood glucose level in rats after immobilization

    Science.gov (United States)

    Platonov, R. D.; Baskakova, G. M.; Chepurnov, S. A.

    1981-01-01

    Experiments were carried out on male white rats divided into four groups. In group one the blood glucose level was determined immediately after immobilization. In the other three groups, two hours following immobilization, the blood glucose level was determined every 20 minutes for 3 hours 40 minutes by the glucose oxidase method. Preliminary immobilization for 2 hours removed the increase in the blood glucose caused by the stress reaction. By the 2nd hour of immobilization in the presence of continuing stress, the blood glucose level stabilized and varied within 42 + or - 5.5 and 47 + or - 8.1 mg %. Within 2 hours after the immobilization, the differences in the blood glucose level of the rats from the control groups were statistically insignificant.

  16. A systematic approach for the accurate non-invasive estimation of blood glucose utilizing a novel light-tissue interaction adaptive modelling scheme

    Science.gov (United States)

    Rybynok, V. O.; Kyriacou, P. A.

    2007-10-01

    Diabetes is one of the biggest health challenges of the 21st century. The obesity epidemic, sedentary lifestyles and an ageing population mean prevalence of the condition is currently doubling every generation. Diabetes is associated with serious chronic ill health, disability and premature mortality. Long-term complications including heart disease, stroke, blindness, kidney disease and amputations, make the greatest contribution to the costs of diabetes care. Many of these long-term effects could be avoided with earlier, more effective monitoring and treatment. Currently, blood glucose can only be monitored through the use of invasive techniques. To date there is no widely accepted and readily available non-invasive monitoring technique to measure blood glucose despite the many attempts. This paper challenges one of the most difficult non-invasive monitoring techniques, that of blood glucose, and proposes a new novel approach that will enable the accurate, and calibration free estimation of glucose concentration in blood. This approach is based on spectroscopic techniques and a new adaptive modelling scheme. The theoretical implementation and the effectiveness of the adaptive modelling scheme for this application has been described and a detailed mathematical evaluation has been employed to prove that such a scheme has the capability of extracting accurately the concentration of glucose from a complex biological media.

  17. A systematic approach for the accurate non-invasive estimation of blood glucose utilizing a novel light-tissue interaction adaptive modelling scheme

    Energy Technology Data Exchange (ETDEWEB)

    Rybynok, V O; Kyriacou, P A [City University, London (United Kingdom)

    2007-10-15

    Diabetes is one of the biggest health challenges of the 21st century. The obesity epidemic, sedentary lifestyles and an ageing population mean prevalence of the condition is currently doubling every generation. Diabetes is associated with serious chronic ill health, disability and premature mortality. Long-term complications including heart disease, stroke, blindness, kidney disease and amputations, make the greatest contribution to the costs of diabetes care. Many of these long-term effects could be avoided with earlier, more effective monitoring and treatment. Currently, blood glucose can only be monitored through the use of invasive techniques. To date there is no widely accepted and readily available non-invasive monitoring technique to measure blood glucose despite the many attempts. This paper challenges one of the most difficult non-invasive monitoring techniques, that of blood glucose, and proposes a new novel approach that will enable the accurate, and calibration free estimation of glucose concentration in blood. This approach is based on spectroscopic techniques and a new adaptive modelling scheme. The theoretical implementation and the effectiveness of the adaptive modelling scheme for this application has been described and a detailed mathematical evaluation has been employed to prove that such a scheme has the capability of extracting accurately the concentration of glucose from a complex biological media.

  18. A systematic approach for the accurate non-invasive estimation of blood glucose utilizing a novel light-tissue interaction adaptive modelling scheme

    International Nuclear Information System (INIS)

    Rybynok, V O; Kyriacou, P A

    2007-01-01

    Diabetes is one of the biggest health challenges of the 21st century. The obesity epidemic, sedentary lifestyles and an ageing population mean prevalence of the condition is currently doubling every generation. Diabetes is associated with serious chronic ill health, disability and premature mortality. Long-term complications including heart disease, stroke, blindness, kidney disease and amputations, make the greatest contribution to the costs of diabetes care. Many of these long-term effects could be avoided with earlier, more effective monitoring and treatment. Currently, blood glucose can only be monitored through the use of invasive techniques. To date there is no widely accepted and readily available non-invasive monitoring technique to measure blood glucose despite the many attempts. This paper challenges one of the most difficult non-invasive monitoring techniques, that of blood glucose, and proposes a new novel approach that will enable the accurate, and calibration free estimation of glucose concentration in blood. This approach is based on spectroscopic techniques and a new adaptive modelling scheme. The theoretical implementation and the effectiveness of the adaptive modelling scheme for this application has been described and a detailed mathematical evaluation has been employed to prove that such a scheme has the capability of extracting accurately the concentration of glucose from a complex biological media

  19. Development of Chemically Amplified Optical Sensors for Continuous Blood Glucose Monitoring Final Report CRADA No. TSB-1162-95

    Energy Technology Data Exchange (ETDEWEB)

    Lane, Stephen M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Univ. of California, Livermore, CA (United States); Mastrototaro, John J. [Minimed Technologies, Inc., Sylmar, CA (United States)

    2018-01-22

    Diabetes is a chronic disease that affects 14 million people in the U.S. and more than 110 million people worldwide. Each year in this country 27,000 diabetic patients become blind, 15,000 have kidney failure, and over 54,000 have peripheral limb amputations. In 1992, total healthcare costs in the U.S. for diabetes were more than $105 billion, approximately 15% of our healthcare budget. Conventional therapy for the most severe form of diabetes, insulin-dependent diabetes mellitus (IDDM) or Type I diabetes, is to administer one or two injections per day of various forms of insulin while monitoring blood glucose levels twice or three times daily with commercial glucometers that require blood samples. Near normal blood sugar levels (glycemic control) is difficult to achieve with conventional therapy. In the fall of 1993, the results of the 10-year $165 million Diabetes Control and Complications Trial (DCCT) were published which showed that intensive insulin management would lead to dramatically fewer cases of retinopathy (which leads to blindness), nephropathy (which leads to kidney failure), and neuropathy (which can lead to limb amputations) [New England Journal of Medicine, Vo1239, No.14 977-986 (1993)]. If existing commercial insulin pumps could be combined with a continuous glucose sensor, a more physiological and fine-tuned therapy could be provided - in effect, an artificial biomechanical pancreas would be available. Existing research suggested that such a development would dramatically improve glucose control, thus greatly reducing morbidity and mortality from this disease. MiniMed Technologies in Sylmar, CA, identified a number of optically based sensor strategies as well as candidate chemical reactions that could be used to implement a minimally invasive opto-chemical glucose sensor. LLNL evaluated these sensor strategies and chemical reactions. These evaluations were the first steps leading to development of a sensor of considerable importance that could

  20. Blood Glucose Monitoring as a Teaching Tool for Endocrinology: A New Perspective

    Science.gov (United States)

    Moats, Robert K., II

    2009-01-01

    The education of new allied health professionals and nurses in proper endocrine evaluation and care has become critical in recent years, especially considering the greatly increased prevalence of diabetes in adults and children. The evaluation of blood glucose levels in human volunteers over time is a powerful teaching tool for endocrinology that…

  1. Correlation of Salivary Glucose Level with Blood Glucose Level in Diabetes Mellitus

    OpenAIRE

    Arati S. Panchbhai

    2012-01-01

    ABSTRACT Objectives There is alarming rise in number of people with diabetes mellitus over these years. If glucose in saliva is linked to glucose in blood it can be used to detect diabetes mellitus at an early stage. The present study is undertaken with the aim to assess the correlation of salivary glucose level with blood glucose level in people with diabetes mellitus. Material and Methods For investigations, 2 sets of samples of people with diabetes and the age and sex matched non-diabetic ...

  2. Effect of self-monitoring and medication self-titration on systolic blood pressure in hypertensive patients at high risk of cardiovascular disease: the TASMIN-SR randomized clinical trial.

    Science.gov (United States)

    McManus, Richard J; Mant, Jonathan; Haque, M Sayeed; Bray, Emma P; Bryan, Stirling; Greenfield, Sheila M; Jones, Miren I; Jowett, Sue; Little, Paul; Penaloza, Cristina; Schwartz, Claire; Shackleford, Helen; Shovelton, Claire; Varghese, Jinu; Williams, Bryan; Hobbs, F D Richard; Gooding, Trevor; Morrey, Ian; Fisher, Crispin; Buckley, David

    2014-08-27

    Self-monitoring of blood pressure with self-titration of antihypertensives (self-management) results in lower blood pressure in patients with hypertension, but there are no data about patients in high-risk groups. To determine the effect of self-monitoring with self-titration of antihypertensive medication compared with usual care on systolic blood pressure among patients with cardiovascular disease, diabetes, or chronic kidney disease. A primary care, unblinded, randomized clinical trial involving 552 patients who were aged at least 35 years with a history of stroke, coronary heart disease, diabetes, or chronic kidney disease and with baseline blood pressure of at least 130/80 mm Hg being treated at 59 UK primary care practices was conducted between March 2011 and January 2013. Self-monitoring of blood pressure combined with an individualized self-titration algorithm. During the study period, the office visit blood pressure measurement target was 130/80 mm Hg and the home measurement target was 120/75 mm Hg. Control patients received usual care consisting of seeing their health care clinician for routine blood pressure measurement and adjustment of medication if necessary. The primary outcome was the difference in systolic blood pressure between intervention and control groups at the 12-month office visit. Primary outcome data were available from 450 patients (81%). The mean baseline blood pressure was 143.1/80.5 mm Hg in the intervention group and 143.6/79.5 mm Hg in the control group. After 12 months, the mean blood pressure had decreased to 128.2/73.8 mm Hg in the intervention group and to 137.8/76.3 mm Hg in the control group, a difference of 9.2 mm Hg (95% CI, 5.7-12.7) in systolic and 3.4 mm Hg (95% CI, 1.8-5.0) in diastolic blood pressure following correction for baseline blood pressure. Multiple imputation for missing values gave similar results: the mean baseline was 143.5/80.2 mm Hg in the intervention group vs 144.2/79.9 mm Hg in the control group, and

  3. The Performance and Usability of a Factory-Calibrated Flash Glucose Monitoring System

    OpenAIRE

    Bailey, Timothy; Bode, Bruce W.; Christiansen, Mark P.; Klaff, Leslie J.; Alva, Shridhara

    2015-01-01

    Abstract Introduction: The purpose of the study was to evaluate the performance and usability of the FreeStyle? Libre? Flash glucose monitoring system (Abbott Diabetes Care, Alameda, CA) for interstitial glucose results compared with capillary blood glucose results. Materials and Methods: Seventy-two study participants with type 1 or type 2 diabetes were enrolled by four U.S. clinical sites. A sensor was inserted on the back of each upper arm for up to 14 days. Three factory-only calibrated s...

  4. Blood glucose kinetics and physiological changes in a type 1 diabetic finisher of the Ultraman triathlon: a case study.

    Science.gov (United States)

    Bach, Christopher W; Baur, Daniel A; Hyder, William S; Ormsbee, Michael J

    2017-05-01

    To investigate the blood glucose kinetics and physiological effects experienced by a type 1 diabetic (T1D) finisher of a 3-day, multi-stage ultra endurance triathlon consisting of a 10 km swim and 144.8 km bike (stage 1), a 275.4 km bike (stage 2), and an 84.4 km run (stage 3). The athlete self-monitored blood glucose (SMBG) levels via fingerstick blood draw and hand-held glucometer. Researchers evaluated blood glucose kinetics via a continuous glucose monitoring device. The athlete maintained normal dietary and insulin patterns before, during and after competition daily. Weight and body composition were measured via bioelectrical impedance and select biomarkers were measured in blood. The athlete spent 73.0, 3.4, and 15.1% of during race time in a hyperglycemic state (≥130 mg dL -1 ) during stages 1, 2, and 3, respectively, and 0.0, 78.6, and 33.6% in a hypoglycemic state (≤80 mg dL -1 ). Nocturnal glycemic levels showed the athlete spent 86.1, 83.0, and 84.8% of sleep in a hyperglycemic state during nights 1, 2, and 3, respectively, and 9.0, 0.0, and 0.0% in a hypoglycemic state. From pre- to post-race, body weight (73.2 to 76.9 kg) and total body water increased (49.2-51.6 kg). In addition, there were dramatic increases in creatine kinase (271.7-9252.8 µ L -1 ), cortisol (137.1-270.2 pg mL -1 ), CRP (188.3-8046.9 ng mL -1 ), and aldosterone (449.1-1679.6 pg mL -1 ). It is possible for a T1D athlete to complete a multi-stage ultraendurance triathlon and maintain glycemic control using SMBG methods. In addition, a T1D athlete participating in an ultraendurance triathlon results in substantial changes in body composition, hormones, and muscle damage.

  5. Novel glucose-sensing technology and hypoglycaemia in type 1 diabetes: a multicentre, non-masked, randomised controlled trial.

    Science.gov (United States)

    Bolinder, Jan; Antuna, Ramiro; Geelhoed-Duijvestijn, Petronella; Kröger, Jens; Weitgasser, Raimund

    2016-11-05

    Tight control of blood glucose in type 1 diabetes delays onset of macrovascular and microvascular diabetic complications; however, glucose levels need to be closely monitored to prevent hypoglycaemia. We aimed to assess whether a factory-calibrated, sensor-based, flash glucose-monitoring system compared with self-monitored glucose testing reduced exposure to hypoglycaemia in patients with type 1 diabetes. In this multicentre, prospective, non-masked, randomised controlled trial, we enrolled adult patients with well controlled type 1 diabetes (HbA 1c ≤58 mmol/mol [7·5%]) from 23 European diabetes centres. After 2 weeks of all participants wearing the blinded sensor, those with readings for at least 50% of the period were randomly assigned (1:1) to flash sensor-based glucose monitoring (intervention group) or to self-monitoring of blood glucose with capillary strips (control group). Randomisation was done centrally using the biased-coin minimisation method dependent on study centre and type of insulin administration. Participants, investigators, and study staff were not masked to group allocation. The primary outcome was change in time in hypoglycaemia (diabetes spent in hypoglycaemia. Future studies are needed to assess the effectiveness of this technology in patients with less well controlled diabetes and in younger age groups. Abbott Diabetes Care. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Blood-Brain Glucose Transfer: Repression in Chronic Hyperglycemia

    Science.gov (United States)

    Gjedde, Albert; Crone, Christian

    1981-10-01

    Diabetic patients with increased plasma glucose concentrations may develop cerebral symptoms of hypoglycemia when their plasma glucose is rapidly lowered to normal concentrations. The symptoms may indicate insufficient transport of glucose from blood to brain. In rats with chronic hyperglycemia the maximum glucose transport capacity of the blood-brain barrier decreased from 400 to 290 micromoles per 100 grams per minute. When plasma glucose was lowered to normal values, the glucose transport rate into brain was 20 percent below normal. This suggests that repressive changes of the glucose transport mechanism occur in brain endothelial cells in response to increased plasma glucose.

  7. Intracerebroventricular Kainic Acid-Induced Damage Affects Blood Glucose Level in d-glucose-fed Mouse Model.

    Science.gov (United States)

    Kim, Chea-Ha; Hong, Jae-Seung

    2015-03-01

    We have previously reported that the intracerebroventricular (i.c.v.) administration of kainic acid (KA) results in significant neuronal damage on the hippocampal CA3 region. In this study, we examined possible changes in the blood glucose level after i.c.v. pretreatment with KA. The blood glucose level was elevated at 30 min, began to decrease at 60 min and returned to normal at 120 min after D-glucose-feeding. We found that the blood glucose level in the KA-pretreated group was higher than in the saline-pretreated group. The up-regulation of the blood glucose level in the KA-pretreated group was still present even after 1~4 weeks. The plasma corticosterone and insulin levels were slightly higher in the KA-treated group. Corticosterone levels decreased whereas insulin levels were elevated when mice were fed with D-glucose. The i.c.v. pretreatment with KA for 24 hr caused a significant reversal of D-glucose-induced down-regulation of corticosterone level. However, the insulin level was enhanced in the KA-pretreated group compared to the vehicle-treated group when mice were fed with D-glucose. These results suggest that KA-induced alterations of the blood glucose level are related to cell death in the CA3 region whereas the up-regulation of blood glucose level in the KA-pretreated group appears to be due to a reversal of D-glucose feeding-induced down-regulation of corticosterone level.

  8. Evaluation of a combined blood glucose monitoring and gaming system (Didget®) for motivation in children, adolescents, and young adults with type 1 diabetes.

    Science.gov (United States)

    Klingensmith, Georgeanna J; Aisenberg, Javier; Kaufman, Francine; Halvorson, Mary; Cruz, Eric; Riordan, Mary Ellen; Varma, Chandrasekhar; Pardo, Scott; Viggiani, Maria T; Wallace, Jane F; Schachner, Holly C; Bailey, Timothy

    2013-08-01

    The purpose of this study was to assess the performance and acceptability of a blood glucose meter coupled with a gaming system for children, adolescents, and young adults with type 1 diabetes. During an in-clinic visit, duplicate blood samples were tested by subjects (N = 147; aged 5-24 yr) and health care providers (HCPs) to evaluate the accuracy and precision of the Didget® system. Subjects' meter results were compared against Yellow Springs Instruments (YSI) reference results and HCP results using least squares regression and error grid analyses. Precision was measured by average within-subject and within-HCP coefficient of variation (CV). During the home-use component of this study, subjects (n = 58) tested their blood glucose at least two to three times daily for 3-5 d to evaluate routine use of the system. Subjects' meter results showed significant correlations with both YSI (r(2) = 0.94; p motivating, and helpful for building good blood glucose monitoring habits. Most HCPs agreed that the system fulfilled a need in diabetes management. In conclusion, the Didget® system was precise and clinically accurate in the hands of children, adolescents, and young adults with type 1 diabetes. © 2011 John Wiley & Sons A/S.

  9. Prospective Study of Fasting Blood Glucose and Intracerebral Hemorrhagic Risk.

    Science.gov (United States)

    Jin, Cheng; Li, Guohong; Rexrode, Kathryn M; Gurol, Mahmut E; Yuan, Xiaodong; Hui, Ying; Ruan, Chunyu; Vaidya, Anand; Wang, Yanxiu; Wu, Shouling; Gao, Xiang

    2018-01-01

    Although diabetes mellitus is an established independent risk factor for ischemic stroke, the association between fasting blood glucose and intracerebral hemorrhage (ICH) is limited and inconsistent. The objective of the current study was to examine the potential impact of long-term fasting blood glucose concentration on subsequent risk of ICH. This prospective study included 96 110 participants of the Kailuan study, living in Kailuan community, Tangshan city, China, who were free of cardiovascular diseases and cancer at baseline (2006). Fasting blood glucose concentration was measured in 2006, 2008, 2010, and 2012. Updated cumulative average fasting blood glucose concentration was used as primary exposure of the current study. Incident ICH from 2006 to 2015 was confirmed by review of medical records. During 817 531 person-years of follow-up, we identified 755 incident ICH cases. The nadir risk of ICH was observed at fasting blood glucose concentration of 5.3 mmol/L. The adjusted hazard ratios and their 95% confidence intervals (CIs) of ICH were 1.59 (95% CI, 1.26-2.02) for diabetes mellitus or fasting blood glucose ≥7.00 mmol/L, 1.31 (95% CI, 1.02-1.69) for impaired fasting blood glucose (fasting blood glucose, 6.10-6.99 mmol/L), 0.98 (95% CI, 0.78-1.22) for fasting blood glucose 5.60 to 6.09 mmol/L, and 2.04 (95% CI, 1.23-3.38) for hypoglycemia (fasting blood glucose, fasting blood glucose 4.00 to 5.59 mmol/L. The results persisted after excluding individuals who used hypoglycemic, aspirin, antihypertensive agents, or anticoagulants, and those with intracerebral hemorrhagic cases occurred in the first 2 years of follow-up. In this large community-based cohort, low (fasting blood glucose concentrations were associated with higher risk of incident ICH, relative to fasting blood glucose concentrations of 4.00 to 6.09 mmol/L. © 2017 American Heart Association, Inc.

  10. Non-invasive Blood Glucose Quantification Using a Hybrid Sensor

    Directory of Open Access Journals (Sweden)

    Sundararajan JAYAPAL

    2009-02-01

    Full Text Available Diabetes Mellitus is a group of metabolic diseases characterized by high blood sugar (glucose levels which result from defects in insulin secretion. It is very important for the diabetics and normal people to have a correct blood glucose level. The HbA1c test is the most preferred test by renowned doctors for glucose quantification. But this test is an invasive one. At present, there are many available techniques for this purpose but these are mostly invasive or minimally non-invasive and most of these are under research. Among the different methods available, the photo acoustic (PA methods provide a reliable solution since the acoustical energy loss is much less compared to the optical or other techniques. Here a novel framework is presented for blood glucose level measurement using a combination of the HbA1c test and a PA method to get an absolutely consistent and precise, non-invasive technique. The setup uses a pulsed laser diode with pulse duration of 5-15 ns and at a repetition rate of 10 Hz as the source. The detector setup is based on the piezoelectric detection. It consists of a ring detector that includes two double ring sensors that are attached to the ring shaped module that can be worn around the finger. The major aim is to detect the photo acoustic signals from the glycated hemoglobin with the least possible error. The proposed monitoring system is designed with extreme consideration to precision and compatibility with the other computing devices. The results obtained in this research have been studied and analyzed by comparing these with those of in-vitro techniques like the HPLC. The comparison has been plotted and it shows a least error. The results also show a positive drive for using this concept as a basis for future extension in quantifying the other blood components.

  11. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Complications Neuropathy Foot Complications DKA (Ketoacidosis) & Ketones Kidney Disease (Nephropathy) Gastroparesis Mental Health Step On Up Treatment & Care Blood Glucose Testing Medication Doctors, Nurses & More ...

  12. Chaos based blood glucose noninvasive measurement: new concept and custom study

    Directory of Open Access Journals (Sweden)

    Cui Li

    2017-01-01

    Full Text Available Background. Non invasive monitoring of Blood Glucose (BG has been a challenge calling for new accurate and fast measurement methods. Objective. To propose new concept of chaos based BG non invasive test aiming at personal customization requirements. Methods. First to build the compact RC model of tissue BG through impedance precision measuring Kit, then to simulate and soft-test BG by Boolean chaotic Codec circuits in soft tool Multisim 13.0, The third to capture the chaotic decoding outputs with the Kit plus PC in calculated signatures of resistor and phase of the tested impedance at the subjects’ left wrist in synchronous test by Bayer BG meter. Results. All in controlled trials of Bayer BG meter, the chaotic BG modelling had gained three new compared formulae in merits of errors less than 1mmol/L and latency less than 1minute. Conclusion. During further verification of this chaotic test paradigm, the opened logic route of above methods will boost measurement experts’ confidence in overcoming future problems of blood glucose monitoring in vivo.

  13. Diabetic self care practices in rural Mysuru, Southern Karnataka, India - A need for Diabetes Self Management Educational (DSME) program.

    Science.gov (United States)

    Srinath, K M; Basavegowda, Madhu; Tharuni, Nandarula Sai

    2017-11-01

    Diabetes and its complications are the leading cause of morbidity and mortality in the world. Self care has emerged as a crucial element in the management of diabetes and a key factor associated with the quality of diabetic care. The purpose of the study was to assess the self care activities of patients with Type II diabetes mellitus in a rural area of Mysuru district. A community based cross sectional descriptive study was carried out among 400 diabetic patients in rural Mysore. Self care Activities (Diet, exercise, self blood glucose monitoring, medication, foot care, smoking) were assessed using a pre designed and tested questionnaire. Relevant descriptive analysis like percentages is carried out using SPSS version 22.0. Most of the diabetic patients had good compliance for medication (92.5%), followed by 72% for diabetic diet. Only 27.75% of the diabetic patients participated in walking, 24.25% practised foot care, blood glucose monitoring by 24.75% and only 25.5% of them were current smokers. The rural diabetic patients are more adherent and compliant to medication and diabetic diet and less compliant to physical activity, foot care and self glucose monitoring. Copyright © 2016. Published by Elsevier Ltd.

  14. Cost calculation for a flash glucose monitoring system for UK adults with type 1 diabetes mellitus receiving intensive insulin treatment.

    Science.gov (United States)

    Hellmund, Richard; Weitgasser, Raimund; Blissett, Deirdre

    2018-04-01

    To estimate the costs associated with a flash glucose monitoring system as a replacement for routine self-monitoring of blood glucose (SMBG) in patients with type 1 diabetes mellitus (T1DM) using intensive insulin, from a UK National Health Service (NHS) perspective. The base-case cost calculation was created using the maximum frequency of glucose monitoring recommended by the 2015 National Institute for Health and Care Excellence guidelines (4-10 tests per day). Scenario analyses considered SMBG at the frequency observed in the IMPACT clinical trial (5.6 tests per day) and at the frequency of flash monitoring observed in a real-world analysis (16 tests per day). A further scenario included potential costs associated with severe hypoglycaemia. In the base case, the annual cost per patient using flash monitoring was £234 (19%) lower compared with routine SMBG (10 tests per day). In scenario analyses, the annual cost per patient of flash monitoring compared with 5.6 and 16 SMBG tests per day was £296 higher and £957 lower, respectively. The annual cost of severe hypoglycaemia for flash monitoring users was estimated to be £221 per patient, compared with £428 for routine SMBG users (based on 5.6 tests/day), corresponding to a reduction in costs of £207. The flash monitoring system has a modest impact on glucose monitoring costs for the UK NHS for patients with T1DM using intensive insulin. For people requiring frequent tests, flash monitoring may be cost saving, especially when taking into account potential reductions in the rate of severe hypoglycaemia. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  15. COMPARISON OF THE RESULTS OF BLOOD GLUCOSE SELFMONITORING AND CONTINUOUS GLUCOSE MONITORING IN PREGNANT WOMEN WITH PREVIOUS DIABETES MELLITUS

    Directory of Open Access Journals (Sweden)

    A. V. Dreval'

    2015-01-01

    Full Text Available Background: Pregnancy is one of the indications for continuous glucose monitoring (CGM. The data on its efficiency in pregnant women are contradictory.Aim: To compare the results of blood glucose self-monitoring (SMBG and CGM in pregnant women with previous diabetes mellitus.Materials and methods: We performed a cross-sectional comparative study of glycemia in 18 pregnant women with previous type 1 (87.8% of patients and type 2 diabetes (22.2% of patients with various degrees of glycemic control. Their age was 27.7 ± 4.9 year. At study entry, the patients were at 17.2 ± 6.1 weeks of gestation. CGM and SMBG were performed in and by all patients for the duration of 5.4 ± 1.5 days. Depending on their HbA1c levels, all patients were divided into two groups: group 1 – 12 women with the HbA1c above the target (8.5 ± 1%, and group 2 – 6 women with the HbA1c levels within the target (5.6 ± 0.3%.Results: According to SMBG results, women from group 2 had above-the-target glycemia levels before breakfast, at 1 hour after breakfast and at bedtime: 6.2 ± 1.6, 8.7 ± 2.1, and 5.7 ± 1.9 mmol/L, respectively. According to CGM, patients from group 1 had higher postprandial glycemia than those from group 2 (8.0 ± 2.1 and 6.9 ± 1.8 mmol/L, respectively, p = 0.03. The analysis of glycemia during the day time revealed significant difference between the groups only at 1 hour after dinner (7.1 ± 1.4 mmol/L in group 1 and 5.8 ± 0.9 mmol/L in group 2, р = 0.041 and the difference was close to significant before lunch (6.0 ± 2.2 mmol/L in group 1 and 4.8 ± 1.0 mmol/L in group 2, р = 0.053. Comparison of SMBG and CGM results demonstrated significant difference only at one timepoint (at 1 hour after lunch and only in group 1: median glycemia was 7.4 [6.9; 8.1] mmol/L by SMBG and 6 [5.4; 6.6] mmol/L by CGM measurement (р = 0.001. Lower median values by CGM measurement could be explained by averaging of three successive measurements carried out in the

  16. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... EXPO Volunteer Opportunities Sponsorship and Exhibit Opportunities Camp ... when ketones are present may make your blood glucose level go even higher. You'll need to work with your doctor ...

  17. Blood Glucose Levels in Diabetic Patients Following Corticosteroid Injections into the Subacromial Space of the Shoulder.

    Science.gov (United States)

    Aleem, Alexander W; Syed, Usman Ali M; Nicholson, Thema; Getz, Charles L; Namdari, Surena; Beredjiklian, Pedro K; Abboud, Joseph A

    2017-09-01

    Corticosteroid injections are used to treat a variety of orthopedic conditions with the goal of decreasing pain and inflammation. Administration of systemic or local corticosteroids risks temporarily increasing blood glucose levels, especially diabetic patients. The purpose of this study is to quantify the effects of corticosteroid injections on blood glucose levels in diabetic patients with shoulder pathology. Diabetic patients who regularly monitored their blood glucose levels and were indicated for a subacromial corticosteroid injection were included in this prospective investigation. The typical normal morning fasting glucose and most recent hemoglobin A1c level was recorded for each patient. After injection, patients were contacted daily to confirm their fasting morning glucose level for 10 days post-injection. Seventeen consecutive patients were enrolled. Patients with hemoglobin A1c of patients' glucose levels returned to near baseline levels around post-injection day 8, while poorly controlled patients levels remained elevated. Similarly, insulin-dependent diabetic patients had an average increase in fasting glucose level of 99 mg/dL versus 50 mg/dL in non-insulin-dependent diabetic patients ( P patients with well-controlled diabetes experience smaller elevations and faster return to baseline glucose levels than patients with poor control. Insulin dependent diabetics experienced similar findings as patients with poor control. Future studies are needed to evaluate dosing to optimize the risks of blood glucose elevation while maintaining therapeutic benefit.

  18. Continuous glucose monitoring and HbA1c in the evaluation of glucose metabolism in children at high risk for type 1 diabetes mellitus.

    Science.gov (United States)

    Helminen, Olli; Pokka, Tytti; Tossavainen, Päivi; Ilonen, Jorma; Knip, Mikael; Veijola, Riitta

    2016-10-01

    Continuous glucose monitoring (CGM) parameters, self-monitored blood glucose (SMBG), HbA1c and oral glucose tolerance test (OGTT) were studied during preclinical type 1 diabetes mellitus. Ten asymptomatic children with multiple (⩾2) islet autoantibodies (cases) and 10 age and sex-matched autoantibody-negative controls from the Type 1 Diabetes Prediction and Prevention (DIPP) Study were invited to 7-day CGM with Dexcom G4 Platinum Sensor. HbA1c and two daily SMBG values (morning and evening) were analyzed. Five-point OGTTs were performed and carbohydrate intake was assessed by food records. The matched pairs were compared with the paired sample t-test. The cases showed higher mean values and higher variation in glucose levels during CGM compared to the controls. The time spent ⩾7.8mmol/l was 5.8% in the cases compared to 0.4% in the controls (p=0.040). Postprandial CGM values were similar except after the dinner (6.6mmol/l in cases vs. 6.1mmol/l in controls; p=0.023). When analyzing the SMBG values higher mean level, higher evening levels, as well as higher variation were observed in the cases when compared to the controls. HbA1c was significantly higher in the cases [5.7% (39mmol/mol) vs. 5.3% (34mmol/mol); p=0.045]. No differences were observed in glucose or C-peptide levels during OGTT. Daily carbohydrate intake was slightly higher in the cases (254.2g vs. 217.7g; p=0.034). Glucose levels measured by CGM and SMBG are useful indicators of dysglycemia during preclinical type 1 diabetes mellitus. Increased evening glucose values seem to be common in children with preclinical type 1 diabetes mellitus. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Monitoring and managing mothers with gestational diabetes mellitus: a nursing perspective

    Directory of Open Access Journals (Sweden)

    Berry DC

    2015-10-01

    Full Text Available Diane C Berry,1 Quinetta B Johnson,2,3 Alison M Stuebe2,3 1The University of North Carolina School of Nursing, 2Women's Primary Health Care, The University of North Carolina School of Medicine, Division of Maternal Fetal Medicine, 3The University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC, USA Abstract: Women diagnosed with gestational diabetes mellitus (GDM must work in partnership with their health care team to improve both maternal and fetal outcomes. This team may include physicians, midwives, nurse practitioners, physician assistants, registered nurses, certified diabetes educators, and registered dietitians. Management should include medical nutrition therapy, self-monitoring of blood glucose with tight control, and exercise to prevent postprandial hyperglycemia. Approximately 80% of women diagnosed with GDM are well controlled with medical nutrition therapy, self-monitoring of blood glucose, and exercise; however, approximately 20% require medication to bring their blood glucose levels under control during pregnancy. The risk of developing type 2 diabetes mellitus decreases dramatically for women who engage in interventions to lose weight postpartum, improve their nutrition and increase their physical activity. Therefore, postpartum women with GDM should be retested and reclassified at 6 weeks postpartum and strongly encouraged to lose weight through proper nutrition and exercise. Keywords: gestational diabetes mellitus, medical nutrition therapy, self-monitoring of blood glucose, exercise, medication, type 2 diabetes

  20. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Care Blood Glucose Testing Medication Doctors, Nurses & More Oral ... someone new is diagnosed. Diabetes causes more deaths a year than breast cancer and AIDS combined. Your gift today will help ...

  1. Comparison of Glucose Area Under the Curve Measured Using Minimally Invasive Interstitial Fluid Extraction Technology with Continuous Glucose Monitoring System in Diabetic Patients.

    Science.gov (United States)

    Uemura, Mei; Yano, Yutaka; Suzuki, Toshinari; Yasuma, Taro; Sato, Toshiyuki; Morimoto, Aya; Hosoya, Samiko; Suminaka, Chihiro; Nakajima, Hiromu; Gabazza, Esteban C; Takei, Yoshiyuki

    2017-08-01

    Continuous glucose monitoring (CGM) is reported to be a useful technique, but difficult or inconvenient for some patients and institutions. We are developing a glucose area under the curve (AUC) monitoring system without blood sampling using a minimally invasive interstitial fluid extraction technology (MIET). Here we evaluated the accuracy of interstitial fluid glucose (IG) AUC measured by MIET in patients with diabetes for an extended time interval and the potency of detecting hyperglycemia using CGM data as a reference. Thirty-eight inpatients with diabetes undergoing CGM were enrolled. MIET comprised a pretreatment step using a plastic microneedle array and glucose accumulation step with a hydrogel patch, which was placed on two sites from 9:00 AM to 5:00 PM or from 10:00 PM to 6:00 AM. IG AUC was calculated by accumulated glucose extracted by hydrogel patches using sodium ion as standard. A significant correlation was observed between the predicted AUC by MIET and CGM in daytime (r=0.76) and nighttime (r=0.82). The optimal cutoff for the IG AUC value of MIET to predict hyperglycemia over 200 mg/dL measured by CGM for 8 hours was 1,067.3 mg·hr/dL with 88.2% sensitivity and 81.5% specificity. We showed that 8-hour IG AUC levels using MIET were valuable in estimating the blood glucose AUC without blood sampling. The results also supported the concept of using this technique for evaluating glucose excursion and for screening hyperglycemia during 8 hours in patients with diabetes at any time of day. Copyright © 2017 Korean Diabetes Association

  2. Comparison of Glucose Area Under the Curve Measured Using Minimally Invasive Interstitial Fluid Extraction Technology with Continuous Glucose Monitoring System in Diabetic Patients

    Directory of Open Access Journals (Sweden)

    Mei Uemura

    2017-07-01

    Full Text Available BackgroundContinuous glucose monitoring (CGM is reported to be a useful technique, but difficult or inconvenient for some patients and institutions. We are developing a glucose area under the curve (AUC monitoring system without blood sampling using a minimally invasive interstitial fluid extraction technology (MIET. Here we evaluated the accuracy of interstitial fluid glucose (IG AUC measured by MIET in patients with diabetes for an extended time interval and the potency of detecting hyperglycemia using CGM data as a reference.MethodsThirty-eight inpatients with diabetes undergoing CGM were enrolled. MIET comprised a pretreatment step using a plastic microneedle array and glucose accumulation step with a hydrogel patch, which was placed on two sites from 9:00 AM to 5:00 PM or from 10:00 PM to 6:00 AM. IG AUC was calculated by accumulated glucose extracted by hydrogel patches using sodium ion as standard. ResultsA significant correlation was observed between the predicted AUC by MIET and CGM in daytime (r=0.76 and nighttime (r=0.82. The optimal cutoff for the IG AUC value of MIET to predict hyperglycemia over 200 mg/dL measured by CGM for 8 hours was 1,067.3 mg·hr/dL with 88.2% sensitivity and 81.5% specificity.ConclusionWe showed that 8-hour IG AUC levels using MIET were valuable in estimating the blood glucose AUC without blood sampling. The results also supported the concept of using this technique for evaluating glucose excursion and for screening hyperglycemia during 8 hours in patients with diabetes at any time of day.

  3. Nanotechnology in glucose monitoring: advances and challenges in the last 10 years.

    Science.gov (United States)

    Scognamiglio, Viviana

    2013-09-15

    In the last decades, a wide multitude of research activity has been focused on the development of biosensors for glucose monitoring, devoted to overcome the challenges associated with smart analytical performances with commercial implications. Crucial issues still nowadays elude biosensors to enter the market, such as sensitivity, stability, miniaturisation, continuous and in situ monitoring in a complex matrix. A noteworthy tendency of biosensor technology is likely to push towards nanotechnology, which allows to reduce dimensions at the nanoscale, consenting the construction of arrays for high throughput analysis with the integration of microfluidics, and enhancing the performance of the biological components by using new nanomaterials. This review aims to highlight current trends in biosensors for glucose monitoring based on nanotechnology, reporting widespread representative examples of the recent approaches for nanobiosensors over the past 10 years. Progress in nanotechnology for the development of biosensing systems for blood glucose level monitoring will be discussed, in view of their design and construction on the bases of the new materials offered by nanotechnology. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. A Disposable Tear Glucose Biosensor—Part 4

    Science.gov (United States)

    Engelschall, Erica; Lan, Kenneth; Shah, Pankti; Saez, Neil; Maxwell, Stephanie; Adamson, Teagan; Abou-Eid, Michelle; McAferty, Kenyon; Patel, Dharmendra R.; Cook, Curtiss B.

    2014-01-01

    Objective: A prototype tear glucose (TG) sensor was tested in New Zealand white rabbits to assess eye irritation, blood glucose (BG) and TG lag time, and correlation with BG. Methods: A total of 4 animals were used. Eye irritation was monitored by Lissamine green dye and analyzed using image analysis software. Lag time was correlated with an oral glucose load while recording TG and BG readings. Correlation between TG and BG were plotted against one another to form a correlation diagram, using a Yellow Springs Instrument (YSI) and self-monitoring of blood glucose as the reference measurements. Finally, TG levels were calculated using analytically derived expressions. Results: From repeated testing carried over the course of 12 months, little to no eye irritation was detected. TG fluctuations over time visually appeared to trace the same pattern as BG with an average lag times of 13 minutes. TG levels calculated from the device current measurements ranged from 4 to 20 mg/dL and correlated linearly with BG levels of 75-160 mg/dL (TG = 0.1723 BG = 7.9448 mg/dL; R2 = .7544). Conclusion: The first steps were taken toward preliminary development of a sensor for self-monitoring of tear glucose (SMTG). No conjunctival irritation in any of the animals was noted. Lag time between TG and BG was found to be noticeable, but a quantitative modeling to correlate lag time in this study is unnecessary. Measured currents from the sensors and the calculated TG showed promising correlation to BG levels. Previous analytical bench marking showed BG and TG levels consistent with other literature. PMID:24876546

  5. An Integrated Glucose Sensor with an All-Solid-State Sodium Ion-Selective Electrode for a Minimally Invasive Glucose Monitoring System

    Directory of Open Access Journals (Sweden)

    Junko Kojima

    2015-06-01

    Full Text Available We developed a minimally invasive glucose monitoring system that uses a microneedle to permeate the skin surface and a small hydrogel to accumulate interstitial fluid glucose. The measurement of glucose and sodium ion levels in the hydrogel is required for estimating glucose levels in blood; therefore, we developed a small, enzyme-fixed glucose sensor with a high-selectivity, all-solid-state, sodium ion-selective electrode (ISE integrated into its design. The glucose sensor immobilized glucose oxidase showed a good correlation between the glucose levels in the hydrogels and the reference glucose levels (r > 0.99, and exhibited a good precision (coefficient of variation = 2.9%, 0.6 mg/dL. In the design of the sodium ISEs, we used the insertion material Na0.33MnO2 as the inner contact layer and DD16C5 exhibiting high Na+/K+ selectivity as the ionophore. The developed sodium ISE exhibited high selectivity (\\( \\log \\,k^{pot}_{Na,K} = -2.8\\ and good potential stability. The sodium ISE could measure 0.4 mM (10−3.4 M sodium ion levels in the hydrogels containing 268 mM (10−0.57 M KCl. The small integrated sensor (ϕ < 10 mm detected glucose and sodium ions in hydrogels simultaneously within 1 min, and it exhibited sufficient performance for use as a minimally invasive glucose monitoring system.

  6. Association Between Exercise and Blood Glucose Levels In Diabetic Patients

    Directory of Open Access Journals (Sweden)

    Eryna Laili Putri

    2017-02-01

    Full Text Available Diabetes Mellitus (DM is a chronic disease with high prevalence, associated with various debilitating complications and can decreases the quality of life in people with it. It is important for people with DM to doing exercise to control the stability of their blood glucose levels. The purpose of this study was to finding out the association between frequency, duration, and intensity of exercise with average blood glucose levels in people with DM. This was an observational study that used case control design. Data obtained from interview with 20 samples from case group and 20 samples from control group, that had been chosen with systematic random sampling technique. Dependent variable of this study was the average blood glucose levels and independents variables were frequency, duration, intensity, and the kind of exercise. This study used Chi Square test 3 × 2 contingency tables to finding out the association and risk of dependent variable with independent variables,. The results showed that exercise factors that associated to average blood glucose levels were duration of exercise (p = 0.022 and intensity of exercise (p = 0.021. The frequency of exercise does not associated to average blood glucose levels (p = 0.340. Diabetic patients who did not do any exercise have the risk of having uncontrolled blood glucose levels. The conclusion was duration and intensity of exercise related significantly to blood glucose levels. By doing exercise three times a week for 30 minutes or more can decreases the risk of uncontrolled blood glucose levels in people with DM. Keywords: Diabetes mellitus, exercise, average blood glucose levels

  7. Quantifying temporal glucose variability in diabetes via continuous glucose monitoring: mathematical methods and clinical application.

    Science.gov (United States)

    Kovatchev, Boris P; Clarke, William L; Breton, Marc; Brayman, Kenneth; McCall, Anthony

    2005-12-01

    Continuous glucose monitors (CGMs) collect detailed blood glucose (BG) time series, which carry significant information about the dynamics of BG fluctuations. In contrast, the methods for analysis of CGM data remain those developed for infrequent BG self-monitoring. As a result, important information about the temporal structure of the data is lost during the translation of raw sensor readings into clinically interpretable statistics and images. The following mathematical methods are introduced into the field of CGM data interpretation: (1) analysis of BG rate of change; (2) risk analysis using previously reported Low/High BG Indices and Poincare (lag) plot of risk associated with temporal BG variability; and (3) spatial aggregation of the process of BG fluctuations and its Markov chain visualization. The clinical application of these methods is illustrated by analysis of data of a patient with Type 1 diabetes mellitus who underwent islet transplantation and with data from clinical trials. Normative data [12,025 reference (YSI device, Yellow Springs Instruments, Yellow Springs, OH) BG determinations] in patients with Type 1 diabetes mellitus who underwent insulin and glucose challenges suggest that the 90%, 95%, and 99% confidence intervals of BG rate of change that could be maximally sustained over 15-30 min are [-2,2], [-3,3], and [-4,4] mg/dL/min, respectively. BG dynamics and risk parameters clearly differentiated the stages of transplantation and the effects of medication. Aspects of treatment were clearly visualized by graphs of BG rate of change and Low/High BG Indices, by a Poincare plot of risk for rapid BG fluctuations, and by a plot of the aggregated Markov process. Advanced analysis and visualization of CGM data allow for evaluation of dynamical characteristics of diabetes and reveal clinical information that is inaccessible via standard statistics, which do not take into account the temporal structure of the data. The use of such methods improves the

  8. Tumor blood flow and pH changes after glucose administration

    International Nuclear Information System (INIS)

    Thistlethwaite, A.J.; Tupchong, L.; Leeper, D.B.

    1987-01-01

    The authors used a laser doppler technique to correlate blood flow changes with pH changes in human tumors after glucose ingestion. Three PTs with large superficial tumors ingested 100 gm glucose. A 21g needle pH electrode (Micro-electrodes, Inc.) and a 21g ''Laserflo'' fiberoptic laser doppler blood flow probe (TSI, Minneapolis, MN) were used at the same location. Blood glucose was measured by finger stick every 7.5 min. One PT with a squamous cell CA with extensive necrosis had only a small increase in blood glucose and an increase in tumor pH. Blood flow readings were within 6.4-18.4ml/100g/min. Another PT with a squamous CA had a drop in tumor pH (7.46 to 7.05) as blood glucose increased from 85 to 137 mg/dl by 55 min. Blood flow remained in a range of 7.7-13.8 ml/100g/min with a mean of 11.4. The third PT with a sarcoma had tumor pH and blood glucose measurements on two occasions, with similar results. Blood glucose rose from approx. 100 to 150 mg/dl by 52.5 min with a drop in tumor pH from approx. 7.4 to 7.25. On the second trial, tumor blood flow was measured and, while erratic (6.4-24.9ml/100g/min), decreased by approx. 50%. These preliminary data show that the laser doppler blood flow technique is quite sensitive to movement artifact and interference by free hemoglobin. Currently, it is inconclusive whether blood flow is altered with blood glucose and tumor pH changes. Further studies may prove this to be a valuable tool in predicting tumor response to hyperthermia

  9. Validation of the Oregon Scientific BPU 330 for self-monitoring of blood pressure according to the International Protocol

    Directory of Open Access Journals (Sweden)

    Li Li

    2008-10-01

    Full Text Available Li Li1, XinYu Zhang1, ChunHong Yan1, QingXiang Liang21Biomedical Engineering Lab, Faculty of Information Engineering, ShenZhen University, ShenZhen, China; 2Bao An People’s Hospital, ShenZhen, ChinaObjective: Extensive marketing of devices for self-measurement of blood pressure has created a need for purchasers to be able to satisfy themselves that such devices have been evaluated according to agreed criteria. The Oregon Scientific BPU 330 blood pressure monitor is an electronic device for upper arm measurement. This study assessed the accuracy of the Oregon Scientific BPU 330 blood pressure monitor according to the International Protocol by the Working Group on Blood Pressure Monitoring of the European Society of Hypertension for validation of blood pressure measuring devices.Method: 52 participants over 30 years of age were studied in the validation. Nine blood pressure measurements were taken alternately with a mercury sphygmomanometer by two observers, and by the supervisor, using the BPU 330 device. A total of 33 participants were selected for the analysis. The validation was divided into two phases. Phase 1 included 15 participants. If the device passed phase 1, 18 more participants were included. The 99 pairs of measurements were compared according to the International Protocol. The device was given a pass/fail recommendation based on its accuracy compared with the mercury standard (within 5, 10, and 15 mmHg, as well as the number met in the ranges specified by the International Protocol.Results: The mean and standard deviation of the difference between the mean of the observers and the BPU 330 device were 1.7 ± 4.7 mmHg and 2.8 ± 3.9 mmHg for systolic blood pressure (SBP and diastolic blood pressure (DBP, respectively. In phase 1, the device passed with a total of 33, 43, and 44 SBP readings; 38, 44, and 45 DBP readings were within 5, 10, and 15 mmHg, respectively. In phase 2.1, 81, 95, and 96 for SBP, and 83, 95, and 98 for DBP

  10. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Disease (Nephropathy) Gastroparesis Mental Health Step On Up Treatment & Care Blood Glucose Testing Medication Doctors, Nurses & More ... us get closer to curing diabetes and better treatments for those living with diabetes. Other Ways to ...

  11. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Know Your Rights Employment Discrimination Health Care Professionals Law Enforcement Driver's License For Lawyers Food & Fitness Home ... symptoms include the following: High blood glucose High levels of sugar in the urine Frequent urination Increased ...

  12. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Ketoacidosis) & Ketones Kidney Disease (Nephropathy) Gastroparesis Mental Health Step On Up Treatment & Care Blood Glucose Testing Medication ... Learning at Camp Find a Camp Fundraising Events Step Out Walk to Stop Diabetes Tour de Cure ...

  13. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... to Give Close Are You at Risk? Home Prevention Diagnosing Diabetes and Learning About Prediabetes Type 2 ... Disease (Nephropathy) Gastroparesis Mental Health Step On Up Treatment & Care Blood Glucose Testing Medication Doctors, Nurses & More ...

  14. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Nephropathy) Gastroparesis Mental Health Step On Up Treatment & Care Blood Glucose Testing Medication Doctors, Nurses & More Oral ... 2 Diabetes Know Your Rights Employment Discrimination Health Care Professionals Law Enforcement Driver's License For Lawyers Food & ...

  15. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... blood glucose level go even higher. You'll need to work with your doctor to find the ... lead to ketoacidosis. Ketoacidosis is life-threatening and needs immediate treatment. Symptoms include: Shortness of breath Breath ...

  16. Blood-Brain Glucose Transfer in Alzheimer's disease

    DEFF Research Database (Denmark)

    Gejl, Michael; Brock, Birgitte; Egefjord, Lærke

    2017-01-01

    There are fewer than normal glucose transporters at the blood-brain barrier (BBB) in Alzheimer's disease (AD). When reduced expression of transporters aggravates the symptoms of AD, the transporters become a potential target of therapy. The incretin hormone GLP-1 prevents the decline of cerebral...... metabolic rate for glucose (CMRglc) in AD, and GLP-1 may serve to raise transporter numbers. We hypothesized that the GLP-1 analog liraglutide would prevent the decline of CMRglc in AD by raising blood-brain glucose transfer, depending on the duration of disease. We randomized 38 patients with AD...

  17. Smart point-of-care systems for molecular diagnostics based on nanotechnology: whole blood glucose analysis

    Science.gov (United States)

    Devadhasan, Jasmine P.; Kim, Sanghyo

    2015-07-01

    Complementary metal oxide semiconductor (CMOS) image sensors are received great attention for their high efficiency in biological applications. The present work describes a CMOS image sensor-based whole blood glucose monitoring system through a point-of-care (POC) approach. A simple poly-ethylene terephthalate (PET) film chip was developed to carry out the enzyme kinetic reaction at various concentrations of blood glucose. In this technique, assay reagent was adsorbed onto amine functionalized silica (AFSiO2) nanoparticles in order to achieve glucose oxidation on the PET film chip. The AFSiO2 nanoparticles can immobilize the assay reagent with an electrostatic attraction and eased to develop the opaque platform which was technically suitable chip to analyze by the camera module. The oxidized glucose then produces a green color according to the glucose concentration and is analyzed by the camera module as a photon detection technique. The photon number decreases with increasing glucose concentration. The simple sensing approach, utilizing enzyme immobilized AFSiO2 nanoparticle chip and assay detection method was developed for quantitative glucose measurement.

  18. Discussion on the establishment of blood glucose fluctuation animal models

    OpenAIRE

    Chun-Liu Gai; Jing-Ru Zhao; Xiao-Long Chen

    2014-01-01

    AIM: To provide the experimental basis for the in vivo study of blood glucose fluctuation injury mechanism, through intraperitoneal injection of glucose to establish blood glucose fluctuation animal models and to simulate blood glucose fluctuation of patients with diabetes.METHODS: Rats were randomly divided into four groups: normal control group(NC), normal fluctuation group(NF), diabetes mellitus group(DM)and diabetes fluctuation group(DF). Diabetic models were induced through intraperitone...

  19. Performance of strip-based glucose meters and cassette-based blood gas analyzer for monitoring glucose levels in a surgical intensive care setting.

    Science.gov (United States)

    Claerhout, Helena; De Prins, Martine; Mesotten, Dieter; Van den Berghe, Greet; Mathieu, Chantal; Van Eldere, Johan; Vanstapel, Florent

    2016-01-01

    We verified the analytical performance of strip-based handheld glucose meters (GM) for prescription use, in a comparative split-sample protocol using blood gas samples from a surgical intensive care unit (ICU). Freestyle Precision Pro (Abbott), StatStrip Connectivity Meter (Nova), ACCU-CHEK Inform II (Roche) were evaluated for recovery/linearity, imprecision/repeatability. The GMs and the ABL90 (Radiometer) blood gas analyzer (BGA) were tested for relative accuracy vs. the comparator hexokinase glucose-6-phosphate-dehydrogenase (HK/G6PDH) assay on a Cobas c702 analyzer (Roche). Recovery of spiked glucose was linear up to 19.3 mmol/L (347 mg/dL) with a slope of 0.91-0.94 for all GMs. Repeatability estimated by pooling duplicate measurements on samples below (n=9), in (n=51) or above (n=80) the 4.2-5.9 mM (74-106 mg/dL) range were for Freestyle Precision Pro: 4.2%, 4.0%, 3.6%; StatStrip Connectivity Meter: 4.0%, 4.3%, 4.5%; and ACCU-CHEK Inform II: 1.4%, 2.5%, 3.5%. GMs were in agreement with the comparator method. The BGA outperformed the GMs, with a MARD of 3.9% compared to 6.5%, 5.8% and 4.4% for the FreeStyle, StatStrip and ACCU-CHEK, respectively. Zero % of the BGA results deviated more than the FDA 10% criterion as compared to 9.4%, 3.7% and 2.2% for the FreeStyle, StatStrip and ACCU-CHEK, respectively. For all GMs, icodextrin did not interfere. Variation in the putative influence factors hematocrit and O2 tension could not explain observed differences with the comparator method. GMs quantified blood glucose in whole blood at about the 10% total error criterion, proposed by the FDA for prescription use.

  20. Impact of sodium–glucose cotransporter 2 inhibitors on blood pressure

    Directory of Open Access Journals (Sweden)

    Reed JW

    2016-10-01

    Full Text Available James W Reed Morehouse School of Medicine, Atlanta, GA, USA Abstract: SGLT2 inhibitors are glucose-lowering agents used to treat type 2 diabetes mellitus (T2DM. These agents target the kidney to promote urinary glucose excretion, resulting in improved blood glucose control. SGLT2-inhibitor therapy is also associated with weight loss and blood pressure (BP lowering. Hypertension is a common comorbidity in patients with T2DM, and is associated with excess morbidity and mortality. This review summarizes data on the effect of SGLT2 inhibitors marketed in the US (namely canagliflozin, dapagliflozin, or empagliflozin on BP in patients with T2DM. Boolean searches were conducted that included terms related to BP or hypertension with terms for SGLT2 inhibitors, canagliflozin, dapagliflozin, or empagliflozin using PubMed, Google, and Google Scholar. Data from numerous randomized controlled trials of SGLT2 inhibitors in patients with T2DM demonstrated clinically relevant reductions in both systolic and diastolic BP, assessed via seated office measurements and 24-hour ambulatory BP monitoring. Observed BP lowering was not associated with compensatory increases in heart rate. Circadian BP rhythm was also maintained. The mechanism of SGLT2 inhibitor-associated BP reduction is not fully understood, but is assumed to be related to osmotic diuresis and natriuresis. Other factors that may also contribute to BP reduction include SGLT2 inhibitor-associated decreases in body weight and reduced arterial stiffness. Local inhibition of the renin–angiotensin–aldosterone system secondary to increased delivery of sodium to the juxtaglomerular apparatus during SGLT2 inhibition has also been postulated. Although SGLT2 inhibitors are not indicated as BP-lowering agents, the modest decreases in systolic and diastolic BP observed with SGLT2 inhibitors may provide an extra clinical advantage for the majority of patients with T2DM, in addition to improving blood glucose

  1. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Text Size: A A A Listen En Español Hyperglycemia (High Blood Glucose) Hyperglycemia is the technical term ... body can't use insulin properly. What Causes Hyperglycemia? A number of things can cause hyperglycemia: If ...

  2. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... around 4:00 a.m. to 5:00 a.m.). What are the Symptoms of Hyperglycemia? The signs and symptoms include the following: High blood glucose High levels of sugar in the urine Frequent urination Increased ...

  3. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... and Care > Blood Glucose Testing Share: Print Page Text Size: A A A Listen En Español Hyperglycemia ( ... compact USB drives that can carry a person's full medical record for use in an emergency. How ...

  4. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... for Association Events Messaging Tools Recruiting Advocates Local Market Planning Training Webinars News & Events Advocacy News Call ... Care > Blood Glucose Testing Share: Print Page Text Size: A A A Listen En Español Hyperglycemia (High ...

  5. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Complications DKA (Ketoacidosis) & Ketones Kidney Disease (Nephropathy) Gastroparesis Mental Health Step On Up Treatment & Care Blood Glucose Testing Medication Doctors, Nurses & More Oral Health & Hygiene Women A1C Insulin Pregnancy 8 Tips for Caregivers Health ...

  6. Hematocrit correction does not improve glucose monitor accuracy in the assessment of neonatal hypoglycemia.

    Science.gov (United States)

    Wang, Li; Sievenpiper, John L; de Souza, Russell J; Thomaz, Michele; Blatz, Susan; Grey, Vijaylaxmi; Fusch, Christoph; Balion, Cynthia

    2013-08-01

    The lack of accuracy of point of care (POC) glucose monitors has limited their use in the diagnosis of neonatal hypoglycemia. Hematocrit plays an important role in explaining discordant results. The objective of this study was to to assess the effect of hematocrit on the diagnostic performance of Abbott Precision Xceed Pro (PXP) and Nova StatStrip (StatStrip) monitors in neonates. All blood samples ordered for laboratory glucose measurement were analyzed using the PXP and StatStrip and compared with the laboratory analyzer (ABL 800 Blood Gas analyzer [ABL]). Acceptable error targets were ±15% for glucose monitoring and ±5% for diagnosis. A total of 307 samples from 176 neonates were analyzed. Overall, 90% of StatStrip and 75% of PXP values met the 15% error limit and 45% of StatStrip and 32% of PXP values met the 5% error limit. At glucose concentrations ≤4 mmol/L, 83% of StatStrip and 79% of PXP values met the 15% error limit, while 37% of StatStrip and 38% of PXP values met the 5% error limit. Hematocrit explained 7.4% of the difference between the PXP and ABL whereas it accounted for only 0.09% of the difference between the StatStrip and ABL. The ROC analysis showed the screening cut point with the best performance for identifying neonatal hypoglycemia was 3.2 mmol/L for StatStrip and 3.3 mmol/L for PXP. Despite a negligible hematocrit effect for the StatStrip, it did not achieve recommended error limits. The StatStrip and PXP glucose monitors remain suitable only for neonatal hypoglycemia screening with confirmation required from a laboratory analyzer.

  7. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Up Treatment & Care Blood Glucose Testing Medication Doctors, Nurses & More Oral Health & Hygiene Women A1C Insulin Pregnancy ... de Cure Women's Series Do-It-Yourself Fundraising Become a Volunteer American Diabetes Month® American Diabetes Association ...

  8. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... In Memory In Honor Become a Member En Español Type 1 Type 2 About Us Online Community ... Page Text Size: A A A Listen En Español Hyperglycemia (High Blood Glucose) Hyperglycemia is the technical ...

  9. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... A A A Listen En Español Hyperglycemia (High Blood Glucose) Hyperglycemia is the technical term for high ... function (data) { $('#survey-errors').remove(); $('.survey-form .form-group .survey-alert-wrap').remove(); if (data.submitSurveyResponse.success == ' ...

  10. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Complications DKA (Ketoacidosis) & Ketones Kidney Disease (Nephropathy) Gastroparesis Mental Health Step On Up Treatment & Care Blood Glucose Testing ... Living With Diabetes Recently Diagnosed Treatment & Care Complications Health ... EXPOs Awareness Programs Wellness Lives Here Become a Member American ...

  11. Fasting Blood Glucose Levels in Different Haemoglobin Genotypes ...

    African Journals Online (AJOL)

    For the different Hb genotypes (HBAA, HBAS, HBSC and HBSS) the following mean fasting blood glucose levels were obtained respectively: 71.9±8.Omg/dl 73.4±7.4mgldl, 94.7±6.Imgldl and 94.6±5.9mgldl. There was a significant difference between the mean fasting blood glucose concentrations of blood groups O,A,B and ...

  12. AMERICAN ASSOCIATION OF CLINICAL ENDOCRINOLOGISTS AND AMERICAN COLLEGE OF ENDOCRINOLOGY 2018 POSITION STATEMENT ON INTEGRATION OF INSULIN PUMPS AND CONTINUOUS GLUCOSE MONITORING IN PATIENTS WITH DIABETES MELLITUS.

    Science.gov (United States)

    Grunberger, George; Handelsman, Yehuda; Bloomgarden, Zachary T; Fonseca, Vivian A; Garber, Alan J; Haas, Richard A; Roberts, Victor L; Umpierrez, Guillermo E

    2018-03-01

    This document represents the official position of the American Association of Clinical Endocrinologists and American College of Endocrinology. Where there are no randomized controlled trials or specific U.S. FDA labeling for issues in clinical practice, the participating clinical experts utilized their judgment and experience. Every effort was made to achieve consensus among the committee members. Position statements are meant to provide guidance, but they are not to be considered prescriptive for any individual patient and cannot replace the judgment of a clinician. AACE/ACE Task Force on Integration of Insulin Pumps and Continuous Glucose Monitoring in the Management of Patients With Diabetes Mellitus Chair George Grunberger, MD, FACP, FACE Task Force Members Yehuda Handelsman, MD, FACP, FNLA, MACE Zachary T. Bloomgarden, MD, MACE Vivian A. Fonseca, MD, FACE Alan J. Garber, MD, PhD, FACE Richard A. Haas, MD, FACE Victor L. Roberts, MD, MBA, FACP, FACE Guillermo E. Umpierrez, MD, CDE, FACP, FACE Abbreviations: AACE = American Association of Clinical Endocrinologists ACE = American College of Endocrinology A1C = glycated hemoglobin BGM = blood glucose monitoring CGM = continuous glucose monitoring CSII = continuous subcutaneous insulin infusion DM = diabetes mellitus FDA = Food & Drug Administration MDI = multiple daily injections T1DM = type 1 diabetes mellitus T2DM = type 2 diabetes mellitus SAP = sensor-augmented pump SMBG = self-monitoring of blood glucose STAR 3 = Sensor-Augmented Pump Therapy for A1C Reduction phase 3 trial.

  13. Development of blood extraction system designed by female mosquito's blood sampling mechanism for bio-MEMS

    Science.gov (United States)

    Tsuchiya, Kazuyoshi; Nakanishi, Naoyuki; Nakamachi, Eiji

    2005-02-01

    A compact and wearable wristwatch type Bio-MEMS such as a health monitoring system (HMS) to detect blood sugar level for diabetic patient, was newly developed. The HMS consists of (1) a indentation unit with a microneedle to generate the skin penetration force using a shape memory alloy(SMA) actuator, (2) a pumping unit using a bimorph PZT piezoelectric actuator to extract the blood and (3) a gold (Au) electrode as a biosensor immobilized GOx and attached to the gate electrode of MOSFET to detect the amount of Glucose in extracted blood. GOx was immobilized on a self assembled spacer combined with an Au electrode by the cross-link method using BSA as an additional bonding material. The device can extract blood in a few microliter through a painless microneedle with the negative pressure by deflection of the bimorph PZT piezoelectric actuator produced in the blood chamber, by the similar way the female mosquito extracts human blood with muscle motion to flex or relax. The performances of the liquid sampling ability of the pumping unit through a microneedle (3.8mm length, 100μm internal diameter) using the bimorph PZT piezoelectric microactuator were measured. The blood extraction micro device could extract human blood at the speed of 2μl/min, and it is enough volume to measure a glucose level, compared to the amount of commercial based glucose level monitor. The electrode embedded in the blood extraction device chamber could detect electrons generated by the hydrolysis of hydrogen peroxide produced by the reaction between GOx and glucose in a few microliter extracted blood, using the constant electric current measurement system of the MOSFET type hybrid biosensor. The output voltage for the glucose diluted in the chamber was increased lineally with increase of the glucose concentration.

  14. Impact of Diet Composition on Blood Glucose Regulation.

    Science.gov (United States)

    Russell, Wendy R; Baka, Athanasia; Björck, Inger; Delzenne, Nathalie; Gao, Dan; Griffiths, Helen R; Hadjilucas, Ellie; Juvonen, Kristiina; Lahtinen, Sampo; Lansink, Mirian; Loon, Luc Van; Mykkänen, Hannu; Östman, Elin; Riccardi, Gabriele; Vinoy, Sophie; Weickert, Martin O

    2016-01-01

    Nutritional management of blood glucose levels is a strategic target in the prevention and management of type 2 diabetes mellitus (T2DM). To implement such an approach, it is essential to understand the effect of food on glycemic regulation and on the underlying metabolic derangements. This comprehensive review summarizes the results from human dietary interventions exploring the impact of dietary components on blood glucose levels. Included are the major macronutrients; carbohydrate, protein and fat, micronutrient vitamins and minerals, nonnutrient phytochemicals and additional foods including low-calorie sweeteners, vinegar, and alcohol. Based on the evidence presented in this review, it is clear that dietary components have significant and clinically relevant effects on blood glucose modulation. An integrated approach that includes reducing excess body weight, increased physical activity along with a dietary regime to regulate blood glucose levels will not only be advantages in T2DM management, but will benefit the health of the population and limit the increasing worldwide incidence of T2DM.

  15. Comparision between bed side testing of blood glucose by glucometer vs centralized testing in a tertiary care hospital.

    Science.gov (United States)

    Baig, Ayaz; Siddiqui, Imran; Jabbar, Abdul; Azam, Syed Iqbal; Sabir, Salman; Alam, Shahryar; Ghani, Farooq

    2007-01-01

    To determine the accuracy, turnaround time and cost effectiveness of bedside monitoring of blood glucose levels by non-laboratory health care workers and centralized testing of blood glucose by automated analyzer in a tertiary care hospital. The study was conducted in Section of Chemical Pathology, Department of Pathology and Microbiology and Section of Endocrinology Department of Medicine, Aga Khan University and Hospital Karachi, from April 2005 to March 2006. One hundred and ten patients were included in the study. The blood glucose levels were analyzed on glucometer (Precision Abbott) by finger stick, using Biosensor Technology. At the same time venous blood was obtained to analyze glucose in clinical laboratory on automated analyzer (SYNCHRON CX7) by glucose oxidase method. We observed good correlation between bed side glucometer and laboratory automated analyzer for glucose values between 3.3 mmol/L (60 mg/dl) and 16.7 (300 mg/dl). A significant difference was observed for glucose values less than 3.3 mmol/L (p = 0.002) and glucose values more than 16.67 mmol/l (p = 0.049). Mean Turnaround time for glucometer and automated analyzer were 0.08 hours and 2.49 hours respectively. The cost of glucose testing with glucometer was 48.8% lower than centralized lab based testing. Bedside glucometer testing, though less expensive does not have good accuracy in acutely ill patient with either very high or very low blood glucose levels.

  16. Alanine aminotransferase is associated with an adverse nocturnal blood glucose profile in individuals with normal glucose regulation.

    Directory of Open Access Journals (Sweden)

    Jian Zhou

    Full Text Available OBJECTIVE: Although the association between alanine aminotransferase (ALT levels and risk of type 2 diabetes is well-studied, the effects of slightly increased ALT levels within the normal range on the temporal normal glucose profile remains poorly understood. METHODS: A total of 322 Chinese subjects without impaired glucose tolerance or previous diagnoses of diabetes were recruited for study from 10 hospitals in urban areas across China. All subjects wore a continuous glucose monitoring (CGM system for three consecutive days. The diurnal (06∶00-20∶00 and nocturnal (20∶00-06∶00 mean blood glucose (MBG levels were calculated. Subjects were stratified by ALT quartile level and correlation analyses were performed. RESULTS: The median ALT level was 17 IU/L, and subjects with ALT ≥17 IU/L had higher nocturnal MBG level than those with ALT 0.05. Multivariate stepwise regression analysis of elevated nocturnal MBG identified increased HOMA-IR, elevated ALT levels, and decreased homeostatic model assessment of ß-cell function as independent factors (all, P<0.05. CONCLUSIONS: Mildly elevated ALT levels, within the normal range, are associated with unfavorable nocturnal glucose profiles in Chinese subjects with normal glucose regulation.

  17. Short-term use of continuous glucose monitoring system adds to glycemic control in young type 1 diabetes mellitus patients in the long run: A clinical trial

    Directory of Open Access Journals (Sweden)

    Bukara-Radujković Gordana

    2011-01-01

    Full Text Available Background/Aim. Balancing strict glycemic control with setting realistic goals for each individual child and family can optimize growth, ensure normal pubertal development and emotional maturation, and control long term complications in children with type 1 diabetes (T1DM. The aim of this study was to evaluate the efficacy of short-term continuous glucose monitoring system (CGMS application in improvement of glycemic control in pediatric type 1 diabetes mellitus (T1DM patients. Methods. A total of 80 pediatric T1DM patients were randomly assigned into the experimental and the control group. The experimental group wore CGMS sensor for 72 hours at the beginning of the study. Self-monitored blood glucose (SMBG levels and hemoglobin A1c (HbA1c levels were obtained for both groups at baseline, and at 3 and 6 months. Results. There was a significant improvement in HbA1c (p < 0.001, in both the experimental and the control group, without a significant difference between the groups. Nevertheless, after 6 months the improvement of mean glycemia was noticed only in the experimental group. This finding was accompanied with a decrease in the number of hyperglycemic events and no increase in the number of hypoglycemic events in the experimental group. Conclusions. The results suggest that the CGMS can be considered as a valuable tool in treating pediatric T1DM patients, however further research is needed to more accurately estimate to what extent, if any, it outperforms intensive self-monitoring of blood glucose.

  18. Continuous Glucose Monitoring in Newborn Infants

    Science.gov (United States)

    Thomas, Felicity; Signal, Mathew; Harris, Deborah L.; Weston, Philip J.; Harding, Jane E.; Shaw, Geoffrey M.

    2014-01-01

    Neonatal hypoglycemia is common and can cause serious brain injury. Continuous glucose monitoring (CGM) could improve hypoglycemia detection, while reducing blood glucose (BG) measurements. Calibration algorithms use BG measurements to convert sensor signals into CGM data. Thus, inaccuracies in calibration BG measurements directly affect CGM values and any metrics calculated from them. The aim was to quantify the effect of timing delays and calibration BG measurement errors on hypoglycemia metrics in newborn infants. Data from 155 babies were used. Two timing and 3 BG meter error models (Abbott Optium Xceed, Roche Accu-Chek Inform II, Nova Statstrip) were created using empirical data. Monte-Carlo methods were employed, and each simulation was run 1000 times. Each set of patient data in each simulation had randomly selected timing and/or measurement error added to BG measurements before CGM data were calibrated. The number of hypoglycemic events, duration of hypoglycemia, and hypoglycemic index were then calculated using the CGM data and compared to baseline values. Timing error alone had little effect on hypoglycemia metrics, but measurement error caused substantial variation. Abbott results underreported the number of hypoglycemic events by up to 8 and Roche overreported by up to 4 where the original number reported was 2. Nova results were closest to baseline. Similar trends were observed in the other hypoglycemia metrics. Errors in blood glucose concentration measurements used for calibration of CGM devices can have a clinically important impact on detection of hypoglycemia. If CGM devices are going to be used for assessing hypoglycemia it is important to understand of the impact of these errors on CGM data. PMID:24876618

  19. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... Complications DKA (Ketoacidosis) & Ketones Kidney Disease (Nephropathy) Gastroparesis Mental Health Step On Up Treatment & Care Blood Glucose Testing ... Pinterest Youtube Instagram Diabetes Stops Here Blog Online Community Site ... Day Prediabetes My Health Advisor Tools to Know Your Risk Diabetes Basics ...

  20. [The association between early blood glucose fluctuation and prognosis in critically ill patients].

    Science.gov (United States)

    Tang, Jian; Gu, Qin

    2012-01-01

    To investigate the association between early blood glucose level fluctuation and prognosis of critically ill patients. A retrospective study involving 95 critically ill patients in intensive care unit (ICU) was conducted. According to the 28-day outcome after admission to ICU, the patients were divided into nonsurvivors (43 cases) and survivors (52 cases), and the blood glucose level in them was monitored in the first 72 hours. Blood glucose concentration at admission (BGadm), mean blood glucose level (MBG), hyperglycemia index (HGI), glycemic lability index (GLI), incidence of hypoglycemia and total dosage of intravenous insulin for each patient were compared. The index as an independent risk factor of mortality was determined by multivariate logistic regression analysis and the predictor value by comparing the area under the receiver operating characteristic curve (ROC curve, AUC) of each index. The BGadm (mmol/L), MBG (mmol/L), HGI and the incidence of hypoglycemia showed no significant differences between nonsurvivors and survivors [BGadm: 9.87 ± 4.48 vs. 9.26 ± 3.07, MBG: 8.59 ± 1.23 vs. 8.47 ± 1.01, HGI(6.0): 2.45 ± 0.94 vs. 1.68 ± 1.05, HGI(8.3): 0.84 ± 0.70 vs. 0.68 ± 0.51, the incidence of hypoglycemia: 9.30% vs. 5.77%, all P > 0.05], but acute physiology and chronic health evaluation II (APACHE II ) score, GLI and the total dosage of intravenous insulin (U) were significantly higher in nonsurvivors than survivors [APACHE II score: 23 ± 6 vs. 19 ± 6, GLI: 56.96 (65.43) vs. 23.87 (41.62), the total dosage of intravenous insulin: 65.5 (130.5) vs. 12.5 (90.0), all P curve was plotted, the AUC of APACHE II score and GLI was respectively 0.69 and 0.71, and there was no significant difference (P > 0.05). Early fluctuation of blood glucose is a significant independent risk factor of mortality in critically ill patients. Control the early fluctuation of blood glucose concentration might improve the patients' outcome.

  1. Effect of cholera toxin administered supraspinally or spinally on the blood glucose level in pain and d-glucose fed animal models.

    Science.gov (United States)

    Sim, Yun-Beom; Park, Soo-Hyun; Kang, Yu-Jung; Kim, Sung-Su; Kim, Chea-Ha; Kim, Su-Jin; Jung, Jun-Sub; Ryu, Ohk-Hyun; Choi, Moon-Gi; Choi, Seong-Soo; Suh, Hong-Won

    2013-04-01

    In the present study, the effect of intrathecal (i.t.) or intracerebroventricular (i.c.v.) administration with cholera toxin (CTX) on the blood glucose level was examined in ICR mice. The i.t. treatment with CTX alone for 24 h dose-dependently increased the blood glucose level. However, i.c.v. treatment with CTX for 24 h did not affect the blood glucose level. When mice were orally fed with D-glucose (2 g/kg), the blood glucose level reached to a maximum level at 30 min and almost returned to the control level at 120 min after D-glucose feeding. I.c.v. pretreatment with CTX increased the blood glucose level in a potentiative manner, whereas i.t. pretreatment with CTX increased the blood glucose level in an additive manner in a D-glucose fed group. In addition, the blood glucose level was increased in formalin-induced pain animal model. I.c.v. pretreatment with CTX enhanced the blood glucose level in a potentiative manner in formalin-induced pain animal model. On the other hand, i.t. pretreatment with CTX increased the blood glucose level in an additive manner in formalin-induced pain animal model. Our results suggest that CTX administered supraspinally or spinally differentially modulates the regulation of the blood glucose level in D-glucose fed model as well as in formalin-induced pain model.

  2. Overnight Control of Blood Glucose in People with Type 1 Diabetes

    DEFF Research Database (Denmark)

    Boiroux, Dimitri; Duun-Henriksen, Anne Katrine; Schmidt, Signe

    2012-01-01

    In this paper, we develop and test a Model Predictive Controller (MPC) for overnight stabilization of blood glucose in people with type 1 diabetes. The controller uses glucose measurements from a continuous glucose monitor (CGM) and its decisions are implemented by a continuous subcutaneous insulin...... infusion (CSII) pump. Based on a priori patient information, we propose a systematic method for computation of the model parameters in the MPC. Safety layers improve the controller robustness and reduce the risk of hypoglycemia. The controller is evaluated in silico on a cohort of 100 randomly generated...... patients with a representative intersubject variability. This cohort is simulated overnight with realistic variations in the insulin sensitivities and needs. Finally, we provide results for the first tests of this controller in a real clinic....

  3. Successful microsurgical lip replantation: Monitoring venous congestion by blood glucose measurements in the replanted lip

    OpenAIRE

    Kazufumi Tachi; Masanori Mori; Reiko Tsukuura; Rintaro Hirai

    2018-01-01

    Replantation of an amputated lip using microvascular anastomosis is the best option for restoration of the defect. However, the amputated region often lacks veins with appropriate diameters for microvascular anastomoses and typically necessitates both postoperative exsanguination using medicinal leeches and a blood transfusion. We present a case of the successful replantation of an avulsed lip in which postoperative congestion was evaluated objectively by measuring blood glucose levels in the...

  4. Blood Glucose, Insulin and Inorganic Phosphorus in Healthy and Ketotic Dairy Cows after Intravenous Infusion of Glucose Solution

    Directory of Open Access Journals (Sweden)

    Radojica Djoković

    2009-01-01

    Full Text Available The aim of the present study was to determine the degree of blood glucose utilization by peripheral tissue on the basis of changes in blood concentrations of glucose, insulin and inorganic phosphorus in healthy (n = 10 and ketotic cows (n = 10 after intravenous infusion of glucose solution. Blood samples were taken in both groups of examined cows at the following time intervals: just before (time 0 and 30, 60, 120, 180 and 240 min after intravenous infusion of a total of 500 ml of 50% of glucose solution. Glucose and insulin blood serum values in both groups of cows increased significantly within 30 and 60 min of the experiment (p p p < 0.05 in the blood value of inorganic phosphorus in ketotic cows compared to the healthy ones. This is linked with the active entry of glucose into the glucolytic pathway of peripheral tissues. It can thus be concluded that there is a higher degree of blood glucose utilization by peripheral tissues in ketotic cows.

  5. Relationship between blood glucose levels and muscle strength in ...

    African Journals Online (AJOL)

    Relationship between blood glucose levels and muscle strength in rural South African ... African Journal for Physical Activity and Health Sciences ... left handgrip and fasting blood glucose after adjusting for age, gender and family history of ...

  6. Effects of blood glucose, blood lipids and blood pressure control on recovery of patients with gastric cancer complicated with metabolic syndrome after radical gastrectomy.

    Science.gov (United States)

    Sun, Li; Zhou, Pingping; Hua, Qingli; Jin, Changming; Guo, Chunling; Song, Bing

    2018-06-01

    This study aimed to investigate the effects of blood glucose, blood lipids and blood pressure control on recovery of patients with gastric cancer complicated with metabolic syndrome (MS) after radical gastrectomy. A total of 150 patients with gastric cancer, who were treated in Daqing Longnan Hospital from November, 2015 to May, 2017, were enrolled in this study. The patients were divided into the MS group (80 cases) and non-MS group (70 cases). Patients in the MS group were given corresponding drugs to control blood pressure, blood lipids and blood glucose, while patients in the non-MS group were not treated with those drugs. Patients in the MS group were divided into the normal and abnormal groups according to the levels of blood glucose, blood lipids and blood pressure. Moreover, occurrences of complications were compared between the normal and abnormal groups. Before surgery, blood glucose, blood lipids and blood pressure in the MS group were significantly higher than those in the non-MS group (pblood glucose, blood lipids and blood pressure of the MS group decreased significantly compared to those before operation (pblood glucose, 2 h postprandial blood glucose, glycosylated hemoglobin, total triglycerides (TGs), LDL, mean blood pressure and BMI (pblood glucose, blood lipids and blood pressure in patients with gastric cancer complicated with MS after radical gastrectomy can reduce the incidence of postoperative complications and promote postoperative recovery.

  7. Blood glucose response to pea fiber

    DEFF Research Database (Denmark)

    Hamberg, O; Rumessen, J J; Gudmand-Høyer, E

    1989-01-01

    Two new fiber types, pea fiber (PF) and sugar beet fiber (BF), were compared with wheat bran (WB) to investigate the effect on postprandial blood glucose and serum insulin responses in normal subjects. The control meal consisted of 150 g ground beef mixed with 50 g glucose and 20 g lactulose. Onl...

  8. The effect of food with different glycaemic index on the blood glucose level

    Directory of Open Access Journals (Sweden)

    Lenka Kouřimská

    2015-08-01

    Full Text Available Blood glucose levels are affected by many factors including the type of foods consumed, processing technology and cooking method. Hormone insulin lowers blood glucose to its constant level, while glucagon, growth hormone, adrenalin and glucocorticoids have the opposite effect. High steepness of the blood glucose level rise after meals may be unfavourable for the organism. Sugars are transferred into the blood at different speeds according to the type of food. Therefore the aim of this study was to confirm experimentally the effect of food on blood glucose levels in men and women of different ages. Two types of low, medium and high-glycaemic index (GI foods were given to 4 men and 4 women of different age (from 35 to 65 years. All volunteers were healthy, slightly overweight, and without any regular sporting activity. None of them had any idea about their daily carbohydrates consumption and what the term glycaemic index meant. The volunteers came to the GI determination fasted in the morning. Their rise in blood glucose level was monitored by glucometer before the meal and after 1 and 2 hours of the consumption of baked potatoes (GI 85, white bread bun (GI 70, boiled potatoes (GI 64, rye bread (GI 62, potato dumplings (GI 52 and white cooked spaghetti (GI 41. Fasting blood sugar levels of volunteers highly depended on their age (p <0.0001 and gender (p <0.0001. The blood glucose values increased with age and were higher in men than in women. Significant influence of food GI on blood glucose levels in both men and women in all the age categories was observed (p <0.0001. An interaction between age and gender was also statistically highly significant (p <0.0001. One hour after consuming food the blood glucose values were significantly different from the values of fasting (p = 0.0035. The differences of these values did not depend on the age (p = 0.0574 and sex (p = 0.8256 of volunteers, but there was a significant difference on the GI value of food

  9. Sensing of Salivary Glucose Using Nano-Structured Biosensors.

    Science.gov (United States)

    Du, Yunqing; Zhang, Wenjun; Wang, Ming L

    2016-03-17

    The anxiety and pain associated with frequent finger pricking has always been troublesome for diabetics measuring blood glucose (BG) in their daily lives. For this reason, a reliable glucose monitoring system that allows noninvasive measurements is highly desirable. Our main objective is to develop a biosensor that can detect low-level glucose in saliva (physiological range 0.5-20 mg/dL). Salivary glucose (SG) sensors were built using a layer-by-layer self-assembly of single-walled carbon nanotubes, chitosan, gold nanoparticles, and glucose oxidase onto a screen-printed platinum electrode. An electrochemical method was utilized for the quantitative detection of glucose in both buffer solution and saliva samples. A standard spectrophotometric technique was used as a reference method to validate the glucose content of each sample. The disposable glucose sensors have a detection limit of 0.41 mg/dL, a sensitivity of 0.24 μA·s·dL·mg(-1), a linear range of 0.5-20 mg/dL in buffer solution, and a response time of 30 s. A study of 10 healthy subjects was conducted, and SG levels between 1.1 to 10.1 mg/dL were successfully detected. The results revealed that the noninvasive SG monitoring could be an alternative for diabetes self-management at home. This paper is not intended to replace regular BG tests, but to study SG itself as an indicator for the quality of diabetes care. It can potentially help patients control and monitor their health conditions, enabling them to comply with prescribed treatments for diabetes.

  10. Quantitative influence of risk factors on blood glucose level.

    Science.gov (United States)

    Chen, Songjing; Luo, Senlin; Pan, Limin; Zhang, Tiemei; Han, Longfei; Zhao, Haixiu

    2014-01-01

    The aim of this study is to quantitatively analyze the influence of risk factors on the blood glucose level, and to provide theory basis for understanding the characteristics of blood glucose change and confirming the intervention index for type 2 diabetes. The quantitative method is proposed to analyze the influence of risk factors on blood glucose using back propagation (BP) neural network. Ten risk factors are screened first. Then the cohort is divided into nine groups by gender and age. According to the minimum error principle, nine BP models are trained respectively. The quantitative values of the influence of different risk factors on the blood glucose change can be obtained by sensitivity calculation. The experiment results indicate that weight is the leading cause of blood glucose change (0.2449). The second factors are cholesterol, age and triglyceride. The total ratio of these four factors reaches to 77% of the nine screened risk factors. And the sensitivity sequences can provide judgment method for individual intervention. This method can be applied to risk factors quantitative analysis of other diseases and potentially used for clinical practitioners to identify high risk populations for type 2 diabetes as well as other disease.

  11. Proportional Insulin Infusion in Closed-Loop Control of Blood Glucose

    NARCIS (Netherlands)

    Grasman, Johan; Callender, Hannah L.; Mensink, Marco; Pietropaolo, Massimo

    2017-01-01

    A differential equation model is formulated that describes the dynamics of glucose concentration in blood circulation. The model accounts for the intake of food, expenditure of calories and the control of glucose levels by insulin and glucagon. These and other hormones affect the blood glucose level

  12. Accuracy of Handheld Blood Glucose Meters at High Altitude

    NARCIS (Netherlands)

    de Mol, Pieter; Krabbe, Hans G.; de Vries, Suzanna T.; Fokkert, Marion J.; Dikkeschei, Bert D.; Rienks, Rienk; Bilo, Karin M.; Bilo, Henk J. G.

    2010-01-01

    Background: Due to increasing numbers of people with diabetes taking part in extreme sports (e. g., high-altitude trekking), reliable handheld blood glucose meters (BGMs) are necessary. Accurate blood glucose measurement under extreme conditions is paramount for safe recreation at altitude. Prior

  13. Patients' blood pressure knowledge, perceptions and monitoring practices in community pharmacies.

    Science.gov (United States)

    Lam, Jennifer Y; Guirguis, Lisa M

    2010-07-01

    Hypertension is a modifiable risk factor for cardiovascular disease. Despite this, patients often cannot or inaccurately estimate their risk factors. IN ORDER TO IMPROVE PHARMACIST INTERVENTIONS, WE SOUGHT TO: 1) find out patients' knowledge about blood pressure (BP) and their self-monitoring behaviors and 2) identify the relationships between these two elements. Specifically, if evaluation of BP control were related to knowledge of one's BP level and self-monitoring habits, and if knowledge of one's target and BP level varied with monitoring habits. Final year pharmacy students were trained and interviewed patients in community pharmacies as a required exercise in their pharmacy clerkship. Each student recruited a convenience sample of 5-10 patients who were on hypertension medication, and surveyed them regarding their BP targets, recent BP levels as well as monthly and home BP monitoring practices. One third of the 449 patients interviewed were able to report a blood pressure target with 26% reporting a JNC 7 recognized target. Three quarters of patients who reported a blood pressure target were able to report a blood pressure level, with 12% being at their self-reported target. Roughly two thirds of patients perceived their BP to be "about right", and slightly less than a third thought it to be "high". Sixty percent of patients monitor their BP monthly, but less than 50% of patients practice home BP monitoring. This study along with others before it point to the knowledge and self-management gaps in patients with chronic conditions. Furthermore, pharmacy students were able to use a brief intervention to screen patients during routine care. Pharmacists can help improve patient understanding and promote increased self-management through regular BP monitoring.

  14. Measuring Blood Glucose Concentrations in Photometric Glucometers Requiring Very Small Sample Volumes.

    Science.gov (United States)

    Demitri, Nevine; Zoubir, Abdelhak M

    2017-01-01

    Glucometers present an important self-monitoring tool for diabetes patients and, therefore, must exhibit high accuracy as well as good usability features. Based on an invasive photometric measurement principle that drastically reduces the volume of the blood sample needed from the patient, we present a framework that is capable of dealing with small blood samples, while maintaining the required accuracy. The framework consists of two major parts: 1) image segmentation; and 2) convergence detection. Step 1 is based on iterative mode-seeking methods to estimate the intensity value of the region of interest. We present several variations of these methods and give theoretical proofs of their convergence. Our approach is able to deal with changes in the number and position of clusters without any prior knowledge. Furthermore, we propose a method based on sparse approximation to decrease the computational load, while maintaining accuracy. Step 2 is achieved by employing temporal tracking and prediction, herewith decreasing the measurement time, and, thus, improving usability. Our framework is tested on several real datasets with different characteristics. We show that we are able to estimate the underlying glucose concentration from much smaller blood samples than is currently state of the art with sufficient accuracy according to the most recent ISO standards and reduce measurement time significantly compared to state-of-the-art methods.

  15. The modulatory role of spinally located histamine receptors in the regulation of the blood glucose level in d-glucose-fed mice.

    Science.gov (United States)

    Sim, Yun-Beom; Park, Soo-Hyun; Kim, Sung-Su; Kim, Chea-Ha; Kim, Su-Jin; Lim, Su-Min; Jung, Jun-Sub; Ryu, Ohk-Hyun; Choi, Moon-Gi; Suh, Hong-Won

    2014-02-01

    The possible roles of spinal histamine receptors in the regulation of the blood glucose level were studied in ICR mice. Mice were intrathecally (i.t.) treated with histamine 1 (H1) receptor agonist (2-pyridylethylamine) or antagonist (cetirizine), histamine 2 (H2) receptor agonist (dimaprit) or antagonist (ranitidine), histamine 3 (H3) receptor agonist (α-methylhistamine) or antagonist (carcinine) and histamine 4 (H4) receptor agonist (VUF 8430) or antagonist (JNJ 7777120), and the blood glucose level was measured at 30, 60 and 120 min after i.t. administration. The i.t. injection with α-methylhistamine, but not carcinine slightly caused an elevation of the blood glucose level. In addition, histamine H1, H2, and H4 receptor agonists and antagonists did not affect the blood glucose level. In D-glucose-fed model, i.t. pretreatment with cetirizine enhanced the blood glucose level, whereas 2-pyridylethylamine did not affect. The i.t. pretreatment with dimaprit, but not ranitidine, enhanced the blood glucose level in D-glucose-fed model. In addition, α-methylhistamine, but not carcinine, slightly but significantly enhanced the blood glucose level D-glucose-fed model. Finally, i.t. pretreatment with JNJ 7777120, but not VUF 8430, slightly but significantly increased the blood glucose level. Although histamine receptors themselves located at the spinal cord do not exert any effect on the regulation of the blood glucose level, our results suggest that the activation of spinal histamine H2 receptors and the blockade of spinal histamine H1 or H3 receptors may play modulatory roles for up-regulation and down-regulation, respectively, of the blood glucose level in D-glucose fed model.

  16. Managing your blood sugar

    Science.gov (United States)

    Hyperglycemia - control; Hypoglycemia - control; Diabetes - blood sugar control; Blood glucose - managing ... sugar ( hypoglycemia ) Recognize and treat high blood sugar ( hyperglycemia ) Plan healthy meals Monitor your blood sugar (glucose) ...

  17. Impact of sodium–glucose cotransporter 2 inhibitors on blood pressure

    Science.gov (United States)

    Reed, James W

    2016-01-01

    SGLT2 inhibitors are glucose-lowering agents used to treat type 2 diabetes mellitus (T2DM). These agents target the kidney to promote urinary glucose excretion, resulting in improved blood glucose control. SGLT2-inhibitor therapy is also associated with weight loss and blood pressure (BP) lowering. Hypertension is a common comorbidity in patients with T2DM, and is associated with excess morbidity and mortality. This review summarizes data on the effect of SGLT2 inhibitors marketed in the US (namely canagliflozin, dapagliflozin, or empagliflozin) on BP in patients with T2DM. Boolean searches were conducted that included terms related to BP or hypertension with terms for SGLT2 inhibitors, canagliflozin, dapagliflozin, or empagliflozin using PubMed, Google, and Google Scholar. Data from numerous randomized controlled trials of SGLT2 inhibitors in patients with T2DM demonstrated clinically relevant reductions in both systolic and diastolic BP, assessed via seated office measurements and 24-hour ambulatory BP monitoring. Observed BP lowering was not associated with compensatory increases in heart rate. Circadian BP rhythm was also maintained. The mechanism of SGLT2 inhibitor-associated BP reduction is not fully understood, but is assumed to be related to osmotic diuresis and natriuresis. Other factors that may also contribute to BP reduction include SGLT2 inhibitor-associated decreases in body weight and reduced arterial stiffness. Local inhibition of the renin–angiotensin–aldosterone system secondary to increased delivery of sodium to the juxtaglomerular apparatus during SGLT2 inhibition has also been postulated. Although SGLT2 inhibitors are not indicated as BP-lowering agents, the modest decreases in systolic and diastolic BP observed with SGLT2 inhibitors may provide an extra clinical advantage for the majority of patients with T2DM, in addition to improving blood glucose control. PMID:27822054

  18. Ghrelin administered spinally increases the blood glucose level in mice.

    Science.gov (United States)

    Sim, Yun-Beom; Park, Soo-Hyun; Kim, Sung-Su; Kim, Chea-Ha; Kim, Su-Jin; Lim, Su-Min; Jung, Jun-Sub; Suh, Hong-Won

    2014-04-01

    Ghrelin is known as a regulator of the blood glucose homeostasis and food intake. In the present study, the possible roles of ghrelin located in the spinal cord in the regulation of the blood glucose level were investigated in ICR mice. We found that intrathecal (i.t.) injection with ghrelin (from 1 to 10 μg) caused an elevation of the blood glucose level. In addition, i.t. pretreatment with YIL781 (ghrelin receptor antagonist; from 0.1 to 5 μg) markedly attenuated ghrelin-induced hyperglycemic effect. The plasma insulin level was increased by ghrelin. The enhanced plasma insulin level by ghrelin was reduced by i.t. pretreatment with YIL781. However, i.t. pretreatment with glucagon-like peptide-1 (GLP-1; 5 μg) did not affect the ghrelin-induced hyperglycemia. Furthermore, i.t. administration with ghrelin also elevated the blood glucose level, but in an additive manner, in d-glucose-fed model. Our results suggest that the activation of ghrelin receptors located in the spinal cord plays important roles for the elevation of the blood glucose level. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Comparing the Efficacy of a Mobile Phone-Based Blood Glucose Management System With Standard Clinic Care in Women With Gestational Diabetes: Randomized Controlled Trial.

    Science.gov (United States)

    Mackillop, Lucy; Hirst, Jane Elizabeth; Bartlett, Katy Jane; Birks, Jacqueline Susan; Clifton, Lei; Farmer, Andrew J; Gibson, Oliver; Kenworthy, Yvonne; Levy, Jonathan Cummings; Loerup, Lise; Rivero-Arias, Oliver; Ming, Wai-Kit; Velardo, Carmelo; Tarassenko, Lionel

    2018-03-20

    2.63 [SD 1.71] readings per day in the intervention and control groups, respectively; Pcare costs between the two groups, with a mean cost difference of the intervention group compared to control of -£1044 (95% CI -£2186 to £99). There were no unexpected adverse outcomes. Remote blood glucocse monitoring in women with GDM is safe. We demonstrated superior data capture using GDm-health. Although glycemic control and maternal and neonatal outcomes were similar, women preferred this model of care. Further studies are required to explore whether digital health solutions can promote desired self-management lifestyle behaviors and dietetic adherence, and influence maternal and neonatal outcomes. Digital blood glucose monitoring may provide a scalable, practical method to address the growing burden of GDM around the world. ClinicalTrials.gov NCT01916694; https://clinicaltrials.gov/ct2/show/NCT01916694 (Archived by WebCite at http://www.webcitation.org/6y3lh2BOQ). ©Lucy Mackillop, Jane Elizabeth Hirst, Katy Jane Bartlett, Jacqueline Susan Birks, Lei Clifton, Andrew J Farmer, Oliver Gibson, Yvonne Kenworthy, Jonathan Cummings Levy, Lise Loerup, Oliver Rivero-Arias, Wai-Kit Ming, Carmelo Velardo, Lionel Tarassenko. Originally published in JMIR Mhealth and Uhealth (http://mhealth.jmir.org), 20.03.2018.

  20. Comparison of blood glucose test strips in the detection of neonatal hypoglycaemia

    OpenAIRE

    Wilkins, B H; Kalra, D

    1982-01-01

    Blood glucose levels were estimated in 101 neonatal blood samples using three glucose test strip methods and the results compared with those from a laboratory. BM-test-glycemie 20-800 test strips and Reflotest-hypoglycemie test strips gave a rapid and reliable estimate of blood glucose level in the range 0-8 mmol/l (0-140 mg/100 ml). Dextrostix test strips tended to overestimate all blood glucose levels.

  1. [Glucose-monitoring neurons of the medial ventrolateral prefrontal (orbitofrontal) cortex are involved in the maintenance of homeostasis].

    Science.gov (United States)

    Szabó, István; Hormay, Edina; Csetényi, Bettina; Nagy, Bernadett; Karádi, Zoltán

    2017-05-01

    The medial orbitofrontal cortex is involved in the regulation of feeding and metabolism. Little is known, however, about the role of local glucose-monitoring neurons in these processes, and our knowledge is also poor about characteristics of these cells. The functional significance of these chemosensory neurons was to be elucidated. Electrophysiology, by the multibarreled microelectrophoretic technique, and metabolic investigations, after streptozotocin induced selective destruction of the chemosensory neurons, were employed. Fifteen percent of the neurons responded to glucose, and these chemosensory cells displayed differential neurotransmitter and taste sensitivities. In acute glucose tolerance test, at the 30th and 60th minutes, blood glucose level in the streptozotocin-treated rats was significantly higher than that in the controls. The plasma triglyceride concentrations were also higher in the streptozotocin-treated group. Glucose-monitoring neurons of the medial orbitofrontal cortex integrate internal and external environmental signals, and monitor metabolic processes, thus, are indispensable to maintain the healthy homeostasis. Orv Hetil. 2017; 158(18): 692-700.

  2. Low Blood Glucose (Hypoglycemia)

    Science.gov (United States)

    ... 24 hours after the activity. Drinking too much alcohol without enough food Alcohol makes it harder for your body to keep ... t eaten in a while. The effects of alcohol can also keep you from feeling the ... able to eat as much or keep food down, which can cause low blood glucose. Learn ...

  3. Nocturnal hypoglycemia identified by a continuous glucose monitoring system in patients with primary adrenal insufficiency (Addison's Disease).

    Science.gov (United States)

    Meyer, Gesine; Hackemann, Annika; Reusch, Juergen; Badenhoop, Klaus

    2012-05-01

    Hypoglycemia can be a symptom in patients with Addison's disease. The common regimen of replacement therapy with oral glucocorticoids results in unphysiological low cortisol levels in the early morning, the time of highest insulin sensitivity. Therefore patients with Addison's disease are at risk for unrecognized and potentially severe nocturnal hypoglycemia also because of a disturbed counterregulatory function. Use of a continuous glucose monitoring system (CGMS) could help to adjust hydrocortisone treatment and to avoid nocturnal hypoglycemia in these patients. Thirteen patients with Addison's disease were screened for hypoglycemia wearing a CGMS for 3-5 days. In one patient we identified a hypoglycemic episode at 3:45 a.m. with a blood glucose level of 46 mg/dL, clearly beneath the 95% tolerance interval of minimal glucose levels between 2 and 4 a.m. (53.84 mg/dL). After the hydrocortisone replacement scheme was changed, the minimum blood glucose level between 2 and 4 a.m. normalized to 87 mg/dL. Continuous glucose monitoring can detect nocturnal hypoglycemia in patients with primary adrenal insufficiency and hence prevent in these patients an impaired quality of life and even serious adverse effects.

  4. Patients' and clinicians' views on the optimum schedules for self-monitoring of blood pressure: a qualitative focus group and interview study.

    Science.gov (United States)

    Grant, Sabrina; Hodgkinson, James A; Milner, Siobhan L; Martin, Una; Tompson, Alice; Hobbs, Fd Richard; Mant, Jonathan; McManus, Richard J; Greenfield, Sheila M

    2016-11-01

    Self-monitoring of blood pressure is common but guidance on how it should be carried out varies and it is currently unclear how such guidance is viewed. To explore patients' and healthcare professionals' (HCPs) views and experiences of the use of different self-monitoring regimens to determine what is acceptable and feasible, and to inform future recommendations. Thirteen focus groups and four HCP interviews were held, with a total of 66 participants (41 patients and 25 HCPs) from primary and secondary care with and without experience of self-monitoring. Standard and shortened self-monitoring protocols were both considered. Focus groups and interviews were recorded, transcribed verbatim, and analysed using the constant comparative method. Patients generally supported structured schedules but with sufficient flexibility to allow adaptation to individual routine. They preferred a shorter (3-day) schedule to longer (7-day) regimens. Although HCPs could describe benefits for patients of using a schedule, they were reluctant to recommend a specific schedule. Concerns surrounded the use of different schedules for diagnosis and subsequent monitoring. Appropriate education was seen as vital by all participants to enable a self-monitoring schedule to be followed at home. There is not a 'one size fits all approach' to developing the optimum protocol from the perspective of users and those implementing it. An approach whereby patients are asked to complete the minimum number of readings required for accurate blood pressure estimation in a flexible manner seems most likely to succeed. Informative advice and guidance should incorporate such flexibility for patients and professionals alike. © British Journal of General Practice 2016.

  5. Personality traits, self-care behaviours and glycaemic control in Type 2 diabetes

    DEFF Research Database (Denmark)

    Skinner, T. C.; Bruce, D. G.; Davis, T. M.E.

    2014-01-01

    Aims: To determine whether the personality traits of conscientiousness and agreeableness are associated with self-care behaviours and glycaemia in Type 2 diabetes. Methods: The Big Five Inventory personality traits Agreeableness, Conscientiousness, Extraversion, Neuroticism and Openness were...... modelling was used to determine whether personality was associated with BMI, smoking, self-monitoring of blood glucose and medication taking. Multivariable regression was used to investigate which traits were independently associated with these self-care behaviours and HbA1c. Results: Patients with higher......, longer diabetes duration, diabetes treatment, self-monitoring of blood glucose (negatively) and less medication taking (P ≤ 0.009), but no personality trait added to the model. Conclusions: Although there was no independent association between personality traits and HbA1c, the relationship between high...

  6. Socioeconomic disparities in type 2 diabetes mellitus prevalence and self-management behaviors in rural southwest China.

    Science.gov (United States)

    Le, Cai; Rong, Su; Dingyun, You; Wenlong, Cui

    2016-11-01

    This study examines how socioeconomic factors are associated with prevalence and self-management of diabetes among ethnic minority groups in the rural Yunnan province, which has the most ethnic minority groups per province in southwest China. A cross-sectional survey was carried out in 2014 in a rural southwest population consisting of 5532 consenting individuals aged ⩾35years. Information about participants' demographic characteristics, as well as diabetes diagnosis, treatment, and self-management behaviors, were obtained using a standard questionnaire. Fasting blood sugar levels were recorded for each individual. A socioeconomic position (SEP) index was constructed using principal component analysis. The age-standardized prevalence of diabetes in the study population was 4.8%. In persons with diabetes, 23.1% regularly self-monitored blood glucose, 43.2% adhered to taking prescribed anti-diabetic drugs or insulin injections, and 63.1% took at least one measure to control blood glucose. Individual educational level was found to be negatively associated with the prevalence of diabetes, whereas individuals with greater household assets and higher SEP were more likely to be suffered from diabetes. Persons with diabetes with greater household assets, higher level of education, and higher SEP had a greater probability of regularly self-monitoring blood glucose, compliance to prescribed medicines, and taking measures to control diabetes. Access to medical services was positively associated with regularly self-monitoring blood glucose and compliance to prescribed medicines. Socioeconomic disparities in diabetes prevalence and self-management do exist. Future interventions to further control diabetes and improve diabetes management must be tailored to address socioeconomic factors. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Prediction Methods for Blood Glucose Concentration

    DEFF Research Database (Denmark)

    “Recent Results on Glucose–Insulin Predictions by Means of a State Observer for Time-Delay Systems” by Pasquale Palumbo et al. introduces a prediction model which in real time predicts the insulin concentration in blood which in turn is used in a control system. The method is tested in simulation...... EEG signals to predict upcoming hypoglycemic situations in real-time by employing artificial neural networks. The results of a 30-day long clinical study with the implanted device and the developed algorithm are presented. The chapter “Meta-Learning Based Blood Glucose Predictor for Diabetic......, but the insulin amount is chosen using factors that account for this expectation. The increasing availability of more accurate continuous blood glucose measurement (CGM) systems is attracting much interest to the possibilities of explicit prediction of future BG values. Against this background, in 2014 a two...

  8. Institutional point-of-care glucometer identifies population trends in blood glucose associated with war.

    Science.gov (United States)

    Boaz, Mona; Matas, Zipora; Chaimy, Tova; Landau, Zohar; Bar Dayan, Yosefa; Berlovitz, Yitzhak; Wainstein, Julio

    2013-11-01

    Acute physiological stress has been shown to impair glucose homeostasis. War is a period of acute psychological stress, and its effect on glucose control is unknown. In this study random point-of-care (POC) glucose levels were measured using an automated, institutional glucometer in hospitalized adult patients prior to versus during the Israeli Pillar of Defense campaign (November 7-10, 2012). Random POC glucose values measured with the institutional blood glucose monitoring system were obtained 1 week prior to the Pillar of Defense campaign (November 7-10, 2012) and compared with values to those obtained during the first 4 days of the war (November 14-17, 2012). In total, 3,573 POC glucose measures were included: 1,865 during the pre-war period and 1,708 during the campaign. POC glucose measures were significantly higher during the war compared with the week preceding the war: 9.7±4.7 versus 9.3±4.2 mmol/L (P=0.02). In a general linear model, period (pre-war vs. during war) persisted as a significant predictor of POC glucose even after controlling for age, sex, and department type (internal medicine vs. surgical). Acute stress, such as a wartime situation, is associated with a significant increase in random blood glucose values in a population of hospitalized adults. Long-term follow-up of the individuals hospitalized during these two periods can reveal differences in morbidity and mortality trends.

  9. Elevated 1-h post-challenge plasma glucose levels in subjects with normal glucose tolerance or impaired glucose tolerance are associated with whole blood viscosity.

    Science.gov (United States)

    Marini, Maria Adelaide; Fiorentino, Teresa Vanessa; Andreozzi, Francesco; Mannino, Gaia Chiara; Perticone, Maria; Sciacqua, Angela; Perticone, Francesco; Sesti, Giorgio

    2017-08-01

    It has been suggested that glucose levels ≥155 mg/dl at 1-h during an oral glucose tolerance test (OGTT) may predict development of type 2 diabetes and cardiovascular events among adults with normal glucose tolerance (NGT 1 h-high). Studies showed a link between increased blood viscosity and type 2 diabetes. However, whether blood viscosity is associated with dysglycemic conditions such as NGT 1 h-high, impaired glucose tolerance (IGT) or impaired fasting glucose (IFG) is unsettled. 1723 non-diabetic adults underwent biochemical evaluation and OGTT. A validated formula based on hematocrit and total plasma proteins was employed to estimate whole blood viscosity. Subjects were categorized into NGT with 1 h glucose h-low), NGT-1 h-high, IFG and/or IGT. Hematocrit and blood viscosity values appeared significantly higher in individuals with NGT 1 h-high, IFG and/or IGT as compared to NGT 1 h-low subjects. Blood viscosity was significantly correlated with age, waist circumference, blood pressure, HbA1c, fasting, 1- and 2-h post-challenge insulin levels, total cholesterol and low-density lipoprotein, triglycerides, fibrinogen, white blood cell, and inversely correlated with high-density lipoprotein and insulin sensitivity. Of the four glycemic parameters, 1-h post-challenge glucose showed the strongest correlation with blood viscosity (β = 0.158, P h post-challenge plasma glucose. They also suggest that a subgroup of NGT individuals with 1-h post-challenge plasma >155 mg/dl have increased blood viscosity comparable to that observed in subjects with IFG and/or IGT.

  10. Continuous glucose monitoring in newborn infants: how do errors in calibration measurements affect detected hypoglycemia?

    OpenAIRE

    Thomas, Felicity Louise; Signal, Mathew; Harris, Deborah L.; Weston, Philip J.; Harding, Jane E.; Shaw, Geoffrey M.; Chase, J. Geoffrey

    2014-01-01

    Neonatal hypoglycemia is common and can cause serious brain injury. Continuous glucose monitoring (CGM) could improve hypoglycemia detection, while reducing blood glucose (BG) measurements. Calibration algorithms use BG measurements to convert sensor signals into CGM data. Thus, inaccuracies in calibration BG measurements directly affect CGM values and any metrics calculated from them. The aim was to quantify the effect of timing delays and calibration BG measurement errors on hypoglycemia me...

  11. Acute effect of glucose on cerebral blood flow, blood oxygenation, and oxidative metabolism.

    Science.gov (United States)

    Xu, Feng; Liu, Peiying; Pascual, Juan M; Xiao, Guanghua; Huang, Hao; Lu, Hanzhang

    2015-02-01

    While it is known that specific nuclei of the brain, for example hypothalamus, contain glucose-sensing neurons thus their activity is affected by blood glucose level, the effect of glucose modulation on whole-brain metabolism is not completely understood. Several recent reports have elucidated the long-term impact of caloric restriction on the brain, showing that animals under caloric restriction had enhanced rate of tricarboxylic acid cycle (TCA) cycle flux accompanied by extended life span. However, acute effect of postprandial blood glucose increase has not been addressed in detail, partly due to a scarcity and complexity of measurement techniques. In this study, using a recently developed noninvasive MR technique, we measured dynamic changes in global cerebral metabolic rate of O2 (CMRO2 ) following a 50 g glucose ingestion (N = 10). A time dependent decrease in CMRO2 was observed, which was accompanied by a reduction in oxygen extraction fraction (OEF) with unaltered cerebral blood flow (CBF). At 40 min post-ingestion, the amount of CMRO2 reduction was 7.8 ± 1.6%. A control study without glucose ingestion was performed (N = 10), which revealed no changes in CMRO2 , CBF, or OEF, suggesting that the observations in the glucose study was not due to subject drowsiness or fatigue after staying inside the scanner. These findings suggest that ingestion of glucose may alter the rate of cerebral metabolism of oxygen in an acute setting. © 2014 Wiley Periodicals, Inc.

  12. A Meta-Analysis of Blood Glucose Effects on Human Decision Making

    DEFF Research Database (Denmark)

    Orquin, Jacob L.; Kurzban, Robert

    2016-01-01

    identified 42 studies relating to 4 dimensions of decision making: willingness to pay, willingness to work, time discounting, and decision style. We did not find a uniform influence of blood glucose on decision making. Instead, we found that low levels of blood glucose increase the willingness to pay...... and willingness to work when a situation is food related, but decrease willingness to pay and work in all other situations. Low levels of blood glucose increase the future discount rate for food; that is, decision makers become more impatient, and to a lesser extent increase the future discount rate for money....... Low levels of blood glucose also increase the tendency to make more intuitive rather than deliberate decisions. However, this effect was only observed in situations unrelated to food. We conclude that blood glucose has domain-specific effects, influencing decision making differently depending...

  13. SELF CARE MANAGEMENT-HOLISTIC PSYCHOSPIRITUAL CARE ON INDEPENDENCE, GLUCOSE LEVEL, AND HBA1C OF TYPE 2 DIABETES MELLITUS PATIENT

    Directory of Open Access Journals (Sweden)

    Kusnanto Kusnanto

    2017-04-01

    Full Text Available Introduction: Diabetes mellitus is a kind of incurable chronic disease that actually manageable. The global prevalence tends to increase due to less self management of the disease and the impact of it was health condition declines physically, psychologically, socially, and spiritually. There were so many interventions implemented but failed to give positive improvement in patient's holistic condition which is lead to complications. The purpose of this research was to improve patient independency in managing the disease and to explain changes in blood glucose and HbA1C levels through self care management-holistic psychospiritual care model. Method: Patient newly diagnose with type 2 diabetes mellitus at Public Health Centre Kebonsari was selected with purposive sampling and divided into two groups. Each group contains 25 patients. Intervention group was given self care management model development with self diabetes management module. The intervention was given  five times in three months. Before and after intervention patient was observed for blood glucose level of 2 hours before and after meal, and also HbA1C level. Questionnaire was given to patient. The data then analyzed using wilcoxon, mann whitney, and student-t test. Result: The result of this research showed patient with type 2 diabetes have independency improvement and lower blood glucose level of 2 hours before and after meal and also decreased HbA1C after intervention. Discussion: Self Care Management-Holistic Psychospiritual Care Model improves patient independency in managing their disease, lowering blood glucose and HbA1C levels.

  14. Umbilical cord blood glucose levels in full-term newborns

    Directory of Open Access Journals (Sweden)

    A. L. Karpova

    2014-01-01

    Full Text Available The purpose of the investigation was to determine the umbilical cord venous blood level of glucose in full-term newborns and its relationship to the mode of delivery. The investigation included 102 full-term newborn infants, including 33 and 69 babies born via cesar-ean and vaginal delivery, respectively. Umbilical cord serum glucose levels were determined by the glucose oxidase test using a Sap-phire-400 biochemical analyzer. In healthy full-term newborns, the mean umbilical cord blood glucose levels were 4,29±0,88 mmol/1 (minimum, 2,9 mmol/1 and maximum, 5,9 mmol/1. In the babies born via cesarean delivery, the umbilical cord blood concentration of glucose was ascertained to be significantly lower than in those born vaginally (3,84+0,71 mmol/1 versus 4,51+0,87 mmol/1; /><0,0001. Abdominal delivery can be apparently considered to be a risk factor for hypoglycemia in neonatal infants.

  15. Prognostic value of low blood glucose at the presentation of E. coli bacteremia.

    Science.gov (United States)

    Alamgir, Shamsuddin; Volkova, Natalia B; Peterson, Michael W

    2006-11-01

    Septicemia is the tenth leading cause of death in the United States, and Escherichia coli is the most common isolate in blood cultures. Low blood glucose is a known complication of sepsis. The prognostic role of low blood glucose in E. coli bacteremia is unknown. The study's objective was to identify the incidence of low blood glucose at the presentation of E. coli bacteremia and determine its influence on prognosis and outcome. A retrospective cohort study was conducted in university-affiliated community hospitals. Subjects were consecutive patients diagnosed with E. coli bacteremia between 1997 and 2003. We identified 1060 patients with documented E. coli bacteremia. We excluded 105 patients who were younger than 18 years old or pregnant. We recorded demographic characteristics, discharge diagnosis, and outcome. Among the 955 patients with E. coli bacteremia, the average age was 64+/-19.4 years. Overall, 4.6% had documented low blood glucose (blood glucose <70 mg/dL) at presentation. The incidence of low blood glucose was the same in diabetic and nondiabetic patients. Patients with low blood glucose had a 4.7 times higher risk of death compared to patients with non-low blood glucose. Race, age, sex, and diabetes had no influence on survival. Gastrointestinal and genitourinary sources for E. coli bacteremia were more commonly associated with low blood glucose (P <.001). The study was limited to E. coli-positive blood cultures and to the one hospital system. Low blood glucose is present at the onset of E. coli bacteremia in 4.6% of patients. This represents a potentially large number of patients because E. coli is the most common blood culture isolate. Low blood glucose predicts poor outcome, especially in patients with abnormal hepatic and renal function. Low blood glucose should be considered an early clinical sign of E. coli bacteremia and aggressive therapy should be instituted to potentially save lives.

  16. Repeated Plyometric Exercise Attenuates Blood Glucose in Healthy Adults.

    Science.gov (United States)

    Barillas, Saldiam R; Watkins, Casey M; Wong, Megan A; Dobbs, Ian J; Archer, David C; Munger, Cameron N; Galpin, Andrew J; Coburn, Jared W; Brown, Lee E

    2017-01-01

    Plyometric exercise is popular in commercial exercise programs aiming to maximize energy expenditure for weight loss. However, the effect of plyometric exercise on blood glucose is unknown. The purpose of this study was to investigate the effect of relatively high intensity plyometric exercise on blood glucose. Thirteen subjects (6 females age= 21.8 ± 1.0 yrs.; height= 163.7 ± 7.8 cm; mass= 60.8 ± 6.7 kg and 7 males age= 22.0 ± 2.6 yrs.; height= 182.3 ± 3.6 cm; mass= 87.4 ± 12.5 kg) volunteered to participate. Subjects completed two random conditions on two separate days, consisting of either five sets of 10 maximal effort countermovement squat jumps (SJ) with 50 seconds' rest between sets or quiet sitting (SIT) for the time equated to the SJ duration (~4min). Immediately after each condition, subjects drank 75g of anhydrous glucose (CHO) in 100ml of water. Blood glucose measurements were taken via finger prick pre and immediately post SJ or SIT, and 5, 15, 30, and 60 min post. A 2×6 (condition × time) ANOVA revealed a significant interaction where SJ blood glucose was lower at 15 (114.0 ± 14.6 mg/dl) and 30 (142.1 ± 22.5 mg/dl) min compared to SIT (15min 130.8 ± 14.0 mg/dl and 30min 159.3 ± 21.0 mg/dl). The current plyometric protocol attenuated CHO-induced blood glucose at 15 and 30 min. This may be due to increased physiological stress applied to the muscles, thus increasing muscular glucose uptake.

  17. Accuracy of a real-time continuous glucose monitoring system in children with septic shock: A pilot study

    OpenAIRE

    Prabhudesai, Sumant; Kanjani, Amruta; Bhagat, Isha; Ravikumar, Karnam G.; Ramachandran, Bala

    2015-01-01

    Aims: The aim of this prospective, observational study was to determine the accuracy of a real-time continuous glucose monitoring system (CGMS) in children with septic shock. Subjects and Methods: Children aged 30 days to 18 years admitted to the Pediatric Intensive Care Unit with septic shock were included. A real-time CGMS sensor was used to obtain interstitial glucose readings. CGMS readings were compared statistically with simultaneous laboratory blood glucose (BG). Results: Nineteen chil...

  18. Detection of glycemic abnormalities in adolescents with beta thalassemia using continuous glucose monitoring and oral glucose tolerance in adolescents and young adults with β-thalassemia major: Pilot study

    Directory of Open Access Journals (Sweden)

    Ashraf T Soliman

    2013-01-01

    Full Text Available Background: Both insulin deficiency and resistance are reported in patients with β-thalassemia major (BTM. The use of continuous blood glucose monitoring (CGM, among the different methods for early detection of glycemic abnormalities, has not been studied thoroughly in these adolescents. Materials and Methods: To assess the oralglucose tolerance (OGT and 72-h continuous glucose concentration by the continuous glucose monitoring system (CGMS and calculate homeostatic model assessment (HOMA, and the quantitative insulin sensitivity check index (QUICKI was conducted in 16 adolescents with BTM who were receiving regular blood transfusions every 2-4 weeks and iron-chelation therapy since early childhood. Results: Sixteen adolescents with BTM (age: 19.75 ± 3 years were investigated. Using OGTT, (25% had impaired fasting blood (plasma glucose concentration (BG (>5.6 mmol/L. 2-h after the glucose load, one of them had BG = 16.2 mmol/L (diabetic and two had impaired glucose tolerance (IGT (BG > 7.8 and 11.1 mmol/L and 9 with IGT (56%. HOMA and QUICKI revealed levels 0.33 (0.36 ± 0.03, respectively, ruling out significant insulin resistance in these adolescents. There was a significant negative correlation between the β-cell function (B% on one hand and the fasting and the 2-h BG (r=−0.6, and − 0.48, P < 0.01, respectively on the other hand. Neither fasting serum insulin nor c-peptide concentrations were correlated with fasting BG or ferritin levels. The average and maximum blood glucose levels during CGM were significantly correlated with the fasting BG (r = 0.68 and 0.39, respectively, with P < 0.01 and with the BG at 2-hour after oral glucose intake (r = 0.87 and 0.86 respectively, with P < 0.001. Ferritin concentrations were correlated with the fasting BG and the 2-h blood glucose levels in the OGTT (r = 0.52, and r = 0.43, respectively, P < 0.01 as well as with the average BG recorded by CGM (r = 0.75, P < 0.01. Conclusion: CGM has proven to

  19. Patients’ blood pressure knowledge, perceptions and monitoring practices in community pharmacies

    Directory of Open Access Journals (Sweden)

    Lam JY

    2010-09-01

    Full Text Available Hypertension is a modifiable risk factor for cardiovascular disease. Despite this, patients often cannot or inaccurately estimate their risk factors.Objectives: In order to improve pharmacist interventions, we sought to: 1 find out patients’ knowledge about blood pressure (BP and their self- monitoring behaviors and 2 identify the relationships between these two elements. Specifically, if evaluation of BP control were related to knowledge of one’s BP level and self-monitoring habits, and if knowledge of one’s target and BP level varied with monitoring habits. Methods: Final year pharmacy students were trained and interviewed patients in community pharmacies as a required exercise in their pharmacy clerkship. Each student recruited a convenience sample of 5-10 patients who were on hypertension medication, and surveyed them regarding their BP targets, recent BP levels as well as monthly and home BP monitoring practices. Results: One third of the 449 patients interviewed were able to report a blood pressure target with 26% reporting a JNC 7 recognized target. Three quarters of patients who reported a blood pressure target were able to report a blood pressure level, with 12% being at their self- reported target. Roughly two thirds of patients perceived their BP to be “about right”, and slightly less than a third thought it to be “high”. Sixty percent of patients monitor their BP monthly, but less than 50% of patients practice home BP monitoring. Conclusions: This study along with others before it point to the knowledge and self-management gaps in patients with chronic conditions. Furthermore, pharmacy students were able to use a brief intervention to screen patients during routine care. Pharmacists can help improve patient understanding and promote increased self-management through regular BP monitoring.

  20. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... You At Risk? Diabetes Basics Living with Diabetes Food & Fitness In My Community Advocacy Research & Practice Ways to Give Close Are You at Risk? Home ... work with your doctor to find the safest way for you to lower your blood glucose ... down on the amount of food you eat might also help. Work with your ...

  1. Standardization versus customization of glucose reporting.

    Science.gov (United States)

    Rodbard, David

    2013-05-01

    Bergenstal et al. (Diabetes Technol Ther 2013;15:198-211) described an important approach toward standardization of reporting and analysis of continuous glucose monitoring and self-monitoring of blood glucose (SMBG) data. The ambulatory glucose profile (AGP), a composite display of glucose by time of day that superimposes data from multiple days, is perhaps the most informative and useful of the many graphical approaches to display glucose data. However, the AGP has limitations; some variations are desirable and useful. Synchronization with respect to meals, traditionally used in glucose profiles for SMBG data, can improve characterization of postprandial glucose excursions. Several other types of graphical display are available, and recently developed ones can augment the information provided by the AGP. There is a need to standardize the parameters describing glycemic variability and cross-validate the available computer programs that calculate glycemic variability. Clinical decision support software can identify and prioritize clinical problems, make recommendations for modifications of therapy, and explain its justification for those recommendations. The goal of standardization is challenging in view of the diversity of clinical situations and of computing and display platforms and software. Standardization is desirable but must be done in a manner that permits flexibility and fosters innovation.

  2. Facilitated transport of glucose from blood to brain in man and the effect of moderate hypoglycaemia on cerebral glucose utilization

    International Nuclear Information System (INIS)

    Blomqvist, G.; Widen, L.; Hellstrand, E.; Gutniak, M.; Grill, V.

    1991-01-01

    The effect of steady-state moderate hypoglycaemia on human brain homeostasis has been studied with positron emission tomography using D-glucose 11 C(ul) as tracer. To rule out any effects of insulin, the plasma insulin concentration was maintained at the same level under normo- and hypoglycaemic conditions. Reduction of blood glucose by 55% increased the glucose clearance through the blood-brain barrier by 50% and reduced brain glucose consumption by 40%. Blood flow was not affected. The results are consistent with facilitated transport of glucose from blood to brain in humans. The maximal transport rate of glucose from blood to brain was found to be 62±19 (mean±SEM) μmol hg -1 min -1 , and the half-saturation constant was found to be 4.1±3.2 mM. (orig.)

  3. Effect of levulose containing sweets on blood and salivary glucose levels.

    Science.gov (United States)

    Subramaniam, Priya; K L, Girish Babu; Gona, Harsha

    2015-06-01

    It is common that many diabetic patients crave for sweets which are normally prohibited. To satisfy their desire to have sweets, alternative sweeteners have been introduced to provide sweetness to some items of their diabetic diet. To (1) assess the effect of sweets containing levulose on glucose levels in blood and saliva, and (2) compare it with effect of sweets containing sucrose on blood and saliva levels of glucose. The study consisted of 20 healthy participants, aged 17-20 years. Two sweet preparations of 36 g each were selected for the study. One preparation was sweetened with levulose (diabetic sweet; Group I) and the other with sucrose (regular sweet; Group II). Blood sugar and salivary glucose levels were estimated before and after the consumption of diabetic and regular sweets. The mean increase in salivary glucose level was lower in Group I than in Group II. Similarly, increase in blood glucose levels in Group I was lower and highly significant. In comparison with regular sweets, consumption of levulose containing sweet resulted in significantly lower blood and salivary glucose levels.

  4. Glucose concentration in capillary blood of dairy cows obtained by a minimally invasive lancet technique and determined with three different hand-held devices

    OpenAIRE

    Mair, B.; Drillich, M.; Klein-J?bstl, D.; Kanz, P.; Borchardt, S.; Meyer, L.; Schwendenwein, I.; Iwersen, M.

    2016-01-01

    Background Dairy cows have a massive demand for glucose at the onset of lactation. A poor adaption to this period leads to an excessive negative energy balance with an increased risk for ketosis and impaired animal health and production. Besides the measurement of ketones, analysing the glucose concentration in blood is reported as helpful instrument for diagnosis and differentiation of ketosis. Monitoring metabolic parameters requires multiple blood sampling. In other species, new blood samp...

  5. Glucose metabolism in diabetic blood vessels

    International Nuclear Information System (INIS)

    Brown, B.J.; Crass, M.F. III

    1986-01-01

    Since glycolysis appears to be coupled to active ion transport in vascular smooth muscle, alterations in glucose metabolism may contribute to cellular dysfunction and angiopathy in diabetes. Uptake and utilization of glucose were studied in perfused blood vessels in which pulsatile flow and perfusion pressure were similar to those measured directly in vivo. Thoracic aortae isolated from 8-wk alloxan diabetic (D) and nondiabetic control rabbits were cannulated, tethered, and perfused with oxygenated buffer containing 7 or 25 mM glucose and tracer amounts of glucose-U -14 C. Norepinephrine (NE) (10 -6 M) and/or insulin (I) (150 μU/ml) and albumin (0.2%) were added. NE-induced tension development increased glucose uptake 39% and 14 CO 2 and lactate production 2.3-fold. With 7 mM glucose, marked decreases in glucose uptake (74%), 14 CO 2 (68%), lactate (30%), total tissue glycogen (75%), and tissue phospholipids (70%) were observed in D. Addition of I or elevation of exogenous glucose to 25 mM normalized glucose uptake, but had differential effects on the pattern of substrate utilization. Thus, in D, there was a marked depression of vascular glucose metabolism that was partially reversed by addition of low concentrations of insulin or D levels of glucose

  6. Emotionally arousing pictures increase blood glucose levels and enhance recall.

    Science.gov (United States)

    Blake, T M; Varnhagen, C K; Parent, M B

    2001-05-01

    Arousal enhances memory in human participants and this enhancing effect is likely due to the release of peripheral epinephrine. As epinephrine does not readily enter the brain, one way that peripheral epinephrine may enhance memory is by increasing circulating blood glucose levels. The present study investigated the possibility that emotionally arousing color pictures would improve memory and elevate blood glucose levels in human participants. Blood glucose levels were measured before, 15 min, and 30 min after male university students viewed 60 emotionally arousing or relatively neutral pictures. Participants viewed each picture for 6 s and then had 10 s to rate the arousal (emotional intensity) and valence (pleasantness) of each picture. A free-recall memory test was given 30 min after the last picture was viewed. Although the emotionally arousing and neutral picture sets were given comparable valence ratings, participants who viewed the emotionally arousing pictures rated the pictures as being more arousing, recalled more pictures, and had higher blood glucose levels after viewing the pictures than did participants who viewed the neutral pictures. These findings indicate that emotionally arousing pictures increase blood glucose levels and enhance memory, and that this effect is not due to differences in the degree of pleasantness of the stimuli. These findings support the possibility that increases in circulating blood glucose levels in response to emotional arousal may be part of the biological mechanism that allows emotional arousal to enhance memory. Copyright 2001 Academic Press.

  7. Quantify Glucose Level in Freshly Diabetic's Blood by Terahertz Time-Domain Spectroscopy

    Science.gov (United States)

    Chen, Hua; Chen, Xiaofeng; Ma, Shihua; Wu, Xiumei; Yang, Wenxing; Zhang, Weifeng; Li, Xiao

    2018-04-01

    We demonstrate the capability of terahertz (THz) time-domain spectroscopy (TDS) to quantify glucose level in ex vivo freshly diabetic's blood. By investigating the THz spectra of different human blood, we find out THz absorption coefficients reflect a high sensitivity to the glucose level in blood. With a quantitative analysis of 70 patients, we demonstrate that the THz absorption coefficients and the blood glucose levels perform a linear relationship. A comparative experiment between THz measurement and glucometers is also conducted with another 20 blood samples, and the results confirm that the relative error is as less as 15%. Our ex vivo human blood study indicates that THz technique has great potential application to diagnose blood glucose level in clinical practice.

  8. Noninvasive measurement of blood glucose level using mid-infrared quantum cascade lasers

    Science.gov (United States)

    Yoshioka, Kiriko; Kino, Saiko; Matsuura, Yuji

    2017-04-01

    For non-invasive measurement of blood glucose level, attenuated total reflection (ATR) absorption spectroscopy system using a QCL as a light source was developed. The results of measurement of glucose solutions showed that the system had a sensitivity that was enough for blood glucose measurement. In-vivo measurement using the proposed system based on QCL showed that there was a correlation between absorptions measured with human lips and blood glucose level.

  9. Early Glucose Derangement Detected by Continuous Glucose Monitoring and Progression of Liver Fibrosis in Nonalcoholic Fatty Liver Disease: An Independent Predictive Factor?

    Science.gov (United States)

    Schiaffini, Riccardo; Liccardo, Daniela; Alisi, Anna; Benevento, Danila; Cappa, Marco; Cianfarani, Stefano; Nobili, Valerio

    2016-01-01

    Glucose derangement has been reported to increase oxidative stress, one of the most important factors underlying the progression of hepatic fibrosis in adults with nonalcoholic fatty liver disease (NAFLD). To date, careful evaluation of the glucose profile in pediatric NAFLD has not been performed. A total of 30 severely obese children (15 males; mean age 12.87 ± 2.19 years) with biopsy-proven NAFLD were enrolled in this study from September to December 2013. All patients underwent anthropometric and laboratory evaluation, including the oral glucose tolerance test (OGTT) and continuous glucose monitoring (CGM). Our study reveals some differences between OGTT and CGM in detecting NAFLD children with impaired fasting glucose (IFG) and impaired glucose tolerance (IGT). OGTT showed 2 (6.67%) patients with IFG and 1 (3.34%) with IGT, while CGM showed 5 (16.67%) patients with IFG and 6 (20%) with IGT. The daily blood glucose profile positively correlated with the baseline blood glucose (r = 0.39, p = 0.04) and the homeostatic model assessment (r = 0.56, p = 0.05). A positive correlation between hyperglycemia and liver fibrosis was found (r = 0.65, p < 0.05). Mean glucose values (F3-F4 group: 163.2 ± 35.92 mg/dl vs. F1 group: 136.58 ± 46.83 mg/dl and F2 group: 154.12 ± 22.51 mg/dl) and the difference between the minimum and maximum blood glucose levels (F3-F4 group: 110.21 ± 25.26 mg/dl vs. F1 group: 91.67 ± 15.97 mg/dl and F2 group: 92 ± 15.48 mg/dl) were significantly (p < 0.05) higher in the F3-F4 group compared to the F1 and F2 groups. Glucose profile derangement as detected by CGM is associated with the severity of hepatic fibrosis in children with NAFLD. © 2015 S. Karger AG, Basel.

  10. Effect of Cholera Toxin Administered Supraspinally or Spinally on the Blood Glucose Level in Pain and D-Glucose Fed Animal Models

    OpenAIRE

    Sim, Yun-Beom; Park, Soo-Hyun; Kang, Yu-Jung; Kim, Sung-Su; Kim, Chea-Ha; Kim, Su-Jin; Jung, Jun-Sub; Ryu, Ohk-Hyun; Choi, Moon-Gi; Choi, Seong-Soo; Suh, Hong-Won

    2013-01-01

    In the present study, the effect of intrathecal (i.t.) or intracerebroventricular (i.c.v.) administration with cholera toxin (CTX) on the blood glucose level was examined in ICR mice. The i.t. treatment with CTX alone for 24 h dose-dependently increased the blood glucose level. However, i.c.v. treatment with CTX for 24 h did not affect the blood glucose level. When mice were orally fed with D-glucose (2 g/kg), the blood glucose level reached to a maximum level at 30 min and almost returned to...

  11. A Study on the Correlation between Cord Blood Glucose Level and the Apgar Score.

    Science.gov (United States)

    Khan, Kalyan; Saha, Ashis Ranjan

    2013-02-01

    The study of the biochemical parameters of cord blood acts as a mirror, which usually reflects the neonatal status. The widely used system for the evaluation of a neonate is the Apgar score. There is no comprehensive published data which has established the association between the cord blood glucose level and the Apgar score. Similarly, there is also no well accepted reference range of the cord blood glucose level. The main objectives of the present study was to ascertain any adverse effects of an abnormal cord blood glucose level on the neonatal status and to find out a standard reference level of glucose in cord blood. The cord blood glucose estimation was done by using the glucose oxidase peroxidase method and the statistical analysis was performed by using the SPSS, version 16 software. In the present study, the cord blood glucose level was found to have no correlation with the Apgar scores which were calculated at both one minute and five minutes after birth. It was also found that for the foetus to be free from any obvious complication, the cord blood glucose level had to be around 87 mg/dl. The fluctuations in the maternal glucose levels are weakly associated with the glucose level in the cord blood.

  12. Accuracy Evaluation of 19 Blood Glucose Monitoring Systems Manufactured in the Asia-Pacific Region: A Multicenter Study.

    Science.gov (United States)

    Yu-Fei, Wang; Wei-Ping, Jia; Ming-Hsun, Wu; Miao-O, Chien; Ming-Chang, Hsieh; Chi-Pin, Wang; Ming-Shih, Lee

    2017-09-01

    System accuracy of current blood glucose monitors (BGMs) in the market has already been evaluated extensively, yet mostly focused on European and North American manufacturers. Data on BGMs manufactured in the Asia-Pacific region remain to be established. In this study, we sought to assess the accuracy performance of 19 BGMs manufactured in the Asia-pacific region. A total of 19 BGMs were obtained from local pharmacies in China. The study was conducted at three hospitals located in the Asia-Pacific region. Measurement results of each system were compared with results of the reference instrument (YSI 2300 PLUS Glucose Analyzer), and accuracy evaluation was performed in accordance to the ISO 15197:2003 and updated 2015 guidelines. Radar plots, which is a new method, are described herein to visualize the analytical performance of the 19 BGMs evaluated. Consensus error grid is a tool for evaluating the clinical significance of the results. The 19 BGMs resulted in a satisfaction rate between 83.5% and 100.0% within ISO 15197:2003 error limits, and between 71.3% and 100.0% within EN ISO 15197:2015 (ISO 15197:2013) error limits. Of the 19 BGMs evaluated, 12 met the minimal accuracy requirement of the ISO 15197:2003 standard, whereas only 4 met the tighter EN ISO 15197:2015 (ISO 15197:2013) requirements. Accuracy evaluation of BGMs should be performed regularly to maximize patient safety.

  13. Comparison of glucose concentration and glucose absorption from the GI-tract in pigs in whole blood and in plasma

    DEFF Research Database (Denmark)

    Theil, Peter Kappel; Jørgensen, Henry; Larsen, Torben

    2010-01-01

    using a biosensitive electrode (Exp. 1) or a standard colourimetric method (Exp. 2). In general, glucose measured in whole blood was 7-11% lower than in plasma at low glucose levels (3.5-5 mM), whereas the methods agreed well at high glucose levels (10-14 mM). Evaluation of the regression lines between......The present investigation was undertaken to compare glucose absorption from the gastro-intestinal tract quantified in either whole blood or plasma using the arterio-venous differences and portal blood flow measurements. Pigs were surgically modified with catheters in the portal vein...... three different diets with similar contents of starch (470-506 g/kg DM). The diets in both studies differed regarding amount and solubility of fibre. Blood samples were collected repeatedly 0-10 h after morning feeding. Glucose was measured in whole blood using a glucometer (Accu-Chek®) and in plasma...

  14. The Correlation of Hemoglobin A1c to Blood Glucose

    OpenAIRE

    Sikaris, Ken

    2009-01-01

    The understanding that hemoglobin A1c (HbA1c) represents the average blood glucose level of patients over the previous 120 days underlies the current management of diabetes. Even in making such a statement, we speak of “average blood glucose” as though “blood glucose” were itself a simple idea. When we consider all the blood glucose forms—arterial versus venous versus capillary, whole blood versus serum versus fluoride-preserved plasma, fasting versus nonfasting—we can start to see that this ...

  15. Home blood pressure monitoring and self-titration of antihypertensive medications: Proposed patient selection criteria.

    Science.gov (United States)

    Hill, James R

    2016-05-01

    Recent studies have demonstrated that home blood pressure monitoring (HBPM), coupled with self-titration of medications is a viable intervention to control hypertension. There are currently no established criteria to evaluate patients for inclusion in such a program. The purpose of this discussion is to propose criteria for determining if a patient is appropriate to participate in a program of HBPM and self-titration. Inclusion criteria for two self-titration trials were examined, and additional factors in clinical practice were identified and discussed. Additional selection criteria were proposed to support the decision to enroll a patient in an antihypertensive self-titration program. Inclusion criteria from self-titration trials provide a reasonable starting point for choosing appropriate patients in clinical practice, but additional research is necessary. Adaptation of these criteria and consideration of the identified factors can be used to develop decision support instruments. Such instruments should be evaluated for effectiveness and reliability prior to use in clinical practice. HBPM combined with self-titration is an effective patient-centered approach for hypertension management. Decision support instruments to determine appropriate patients are necessary for safe and effective use in clinical practice. ©2015 American Association of Nurse Practitioners.

  16. Insulin-coated gold nanoparticles as a new concept for personalized and adjustable glucose regulation

    Science.gov (United States)

    Shilo, Malka; Berenstein, Peter; Dreifuss, Tamar; Nash, Yuval; Goldsmith, Guy; Kazimirsky, Gila; Motiei, Menachem; Frenkel, Dan; Brodie, Chaya; Popovtzer, Rachela

    2015-12-01

    Diabetes mellitus is a chronic metabolic disease, characterized by high blood glucose levels, affecting millions of people around the world. Currently, the main treatment for diabetes requires multiple daily injections of insulin and self-monitoring of blood glucose levels, which markedly affect patients' quality of life. In this study we present a novel strategy for controlled and prolonged glucose regulation, based on the administration of insulin-coated gold nanoparticles (INS-GNPs). We show that both intravenous and subcutaneous injection of INS-GNPs into a mouse model of type 1 diabetes decreases blood glucose levels for periods over 3 times longer than free insulin. We further showed that conjugation of insulin to GNPs prevented its rapid degradation by the insulin-degrading-enzyme, and thus allows controlled and adjustable bio-activity. Moreover, we assessed different sizes and concentrations of INS-GNPs, and found that both parameters have a critical effect in vivo, enabling specific adjustment of blood glucose levels. These findings have the potential to improve patient compliance in diabetes mellitus.

  17. Enhancing the accuracy of subcutaneous glucose sensors: a real-time deconvolution-based approach.

    Science.gov (United States)

    Guerra, Stefania; Facchinetti, Andrea; Sparacino, Giovanni; Nicolao, Giuseppe De; Cobelli, Claudio

    2012-06-01

    Minimally invasive continuous glucose monitoring (CGM) sensors can greatly help diabetes management. Most of these sensors consist of a needle electrode, placed in the subcutaneous tissue, which measures an electrical current exploiting the glucose-oxidase principle. This current is then transformed to glucose levels after calibrating the sensor on the basis of one, or more, self-monitoring blood glucose (SMBG) samples. In this study, we design and test a real-time signal-enhancement module that, cascaded to the CGM device, improves the quality of its output by a proper postprocessing of the CGM signal. In fact, CGM sensors measure glucose in the interstitium rather than in the blood compartment. We show that this distortion can be compensated by means of a regularized deconvolution procedure relying on a linear regression model that can be updated whenever a pair of suitably sampled SMBG references is collected. Tests performed both on simulated and real data demonstrate a significant accuracy improvement of the CGM signal. Simulation studies also demonstrate the robustness of the method against departures from nominal conditions, such as temporal misplacement of the SMBG samples and uncertainty in the blood-to-interstitium glucose kinetic model. Thanks to its online capabilities, the proposed signal-enhancement algorithm can be used to improve the performance of CGM-based real-time systems such as the hypo/hyper glycemic alert generators or the artificial pancreas.

  18. Rice (Oryza sativa japonica) Albumin Suppresses the Elevation of Blood Glucose and Plasma Insulin Levels after Oral Glucose Loading.

    Science.gov (United States)

    Ina, Shigenobu; Ninomiya, Kazumi; Mogi, Takashi; Hase, Ayumu; Ando, Toshiki; Matsukaze, Narumi; Ogihara, Jun; Akao, Makoto; Kumagai, Hitoshi; Kumagai, Hitomi

    2016-06-22

    The suppressive effect of rice albumin (RA) of 16 kDa on elevation of blood glucose level after oral loading of starch or glucose and its possible mechanism were examined. RA suppressed the increase in blood glucose levels in both the oral starch tolerance test and the oral glucose tolerance test. The blood glucose concentrations 15 min after the oral administration of starch were 144 ± 6 mg/dL for control group and 127 ± 4 mg/dL for RA 200 mg/kg BW group, while those after the oral administration of glucose were 157 ± 7 mg/dL for control group and 137 ± 4 mg/dL for RA 200 mg/kg BW group. However, in the intraperitoneal glucose tolerance test, no significant differences in blood glucose level were observed between RA and the control groups, indicating that RA suppresses the glucose absorption from the small intestine. However, RA did not inhibit the activity of mammalian α-amylase. RA was hydrolyzed to an indigestible high-molecular-weight peptide (HMP) of 14 kDa and low-molecular-weight peptides by pepsin and pancreatin. Furthermore, RA suppressed the glucose diffusion rate through a semipermeable membrane like dietary fibers in vitro. Therefore, the indigestible HMP may adsorb glucose and suppress its absorption from the small intestine.

  19. Nocturnal continuous glucose monitoring

    DEFF Research Database (Denmark)

    Bay, Christiane; Kristensen, Peter Lommer; Pedersen-Bjergaard, Ulrik

    2013-01-01

    Abstract Background: A reliable method to detect biochemical nocturnal hypoglycemia is highly needed, especially in patients with recurrent severe hypoglycemia. We evaluated reliability of nocturnal continuous glucose monitoring (CGM) in patients with type 1 diabetes at high risk of severe...

  20. Analytical Performance Requirements for Systems for Self-Monitoring of Blood Glucose With Focus on System Accuracy: Relevant Differences Among ISO 15197:2003, ISO 15197:2013, and Current FDA Recommendations.

    Science.gov (United States)

    Freckmann, Guido; Schmid, Christina; Baumstark, Annette; Rutschmann, Malte; Haug, Cornelia; Heinemann, Lutz

    2015-07-01

    In the European Union (EU), the ISO (International Organization for Standardization) 15197 standard is applicable for the evaluation of systems for self-monitoring of blood glucose (SMBG) before the market approval. In 2013, a revised version of this standard was published. Relevant revisions in the analytical performance requirements are the inclusion of the evaluation of influence quantities, for example, hematocrit, and some changes in the testing procedures for measurement precision and system accuracy evaluation, for example, number of test strip lots. Regarding system accuracy evaluation, the most important change is the inclusion of more stringent accuracy criteria. In 2014, the Food and Drug Administration (FDA) in the United States published their own guidance document for the premarket evaluation of SMBG systems with even more stringent system accuracy criteria than stipulated by ISO 15197:2013. The establishment of strict accuracy criteria applicable for the premarket evaluation is a possible approach to further improve the measurement quality of SMBG systems. However, the system accuracy testing procedure is quite complex, and some critical aspects, for example, systematic measurement difference between the reference measurement procedure and a higher-order procedure, may potentially limit the apparent accuracy of a given system. Therefore, the implementation of a harmonized reference measurement procedure for which traceability to standards of higher order is verified through an unbroken, documented chain of calibrations is desirable. In addition, the establishment of regular and standardized post-marketing evaluations of distributed test strip lots should be considered as an approach toward an improved measurement quality of available SMBG systems. © 2015 Diabetes Technology Society.

  1. Self-monitoring blood pressure in patients with hypertension: an internet-based survey of UK GPs.

    Science.gov (United States)

    Fletcher, Benjamin R; Hinton, Lisa; Bray, Emma P; Hayen, Andrew; Hobbs, Fd Richard; Mant, Jonathan; Potter, John F; McManus, Richard J

    2016-11-01

    Previous research suggests that most GPs in the UK use self-monitoring of blood pressure (SMBP) to monitor the control of hypertension rather than for diagnosis. This study sought to assess current practice in the use of self-monitoring and any changes in practice following more recent guideline recommendations. To survey the views and practice of UK GPs in 2015 with regard to SMBP and compare them with a previous survey carried out in 2011. Web-based survey of a regionally representative sample of 300 UK GPs. GPs completed an online questionnaire concerning the use of SMBP in the management of hypertension. Analyses comprised descriptive statistics, tests for between-group differences (z, Wilcoxon signed-rank, and χ 2 tests), and multivariate logistic regression. Results were available for 300 GPs (94% of those who started the survey). GPs reported using self-monitoring to diagnose hypertension (169/291; 58%; 95% confidence interval (CI) = 52 to 64) and to monitor control (245/291; 84%; 95% CI = 80 to 88), the former having significantly increased since 2011 (from 37%; 95% CI = 33 to 41; Pmonitoring for control. More than half of GPs used higher systolic thresholds for diagnosis (118/169; 70%; 95% CI = 63 to 77) and treatment (168/225; 75%; 95% CI = 69 to 80) than recommended in guidelines, and under half (120/289; 42%; 95% CI = 36 to 47) adjusted the SMBP results to guide treatment decisions. Since new UK national guidance in 2011, GPs are more likely to use SMBP to diagnose hypertension. However, significant proportions of GPs continue to use non-standard diagnostic and monitoring thresholds. The use of out-of-office methods to improve the accuracy of diagnosis is unlikely to be beneficial if suboptimal thresholds are used. © British Journal of General Practice 2016.

  2. Influence of the blood glucose level on the development of retinopathy of prematurity in extremely premature children.

    Science.gov (United States)

    Nicolaeva, Galina V; Sidorenko, Evgenyj I; Iosifovna, Amkhanitskaya Lyubov

    2015-01-01

    To investigate the influence of the blood glucose level on the development of retinopathy of prematurity (ROP) in extremely premature infants. Sixty-four premature infants with a gestational age of less than 30 weeks and a birth weight of less than 1500 g were included in the study. Children without ROP were allocated to Group 1 (n=14, gestational age 28.6 ± 1.4 weeks, birth weight 1162 ± 322 g), and children with spontaneous regression of ROP were allocated to Group 2 (n=32, gestational age 26.5 ± 1.2 weeks, birth weight 905 ± 224 g). Children with progressive ROP who underwent laser treatment were included in Group 3 (n=18, gestational age 25.4 ± 0.7 weeks, birth weight 763 ± 138 g). The glucose level in the capillary blood of the premature infants was monitored daily during the first 3 weeks of life. A complete ophthalmological screening was performed from the age of 1 month. The nonparametric signed-rank Wilcoxon-Mann-Whitney test was used for statistical analysis. The mean blood glucose level was 7.43 ± 2.6 mmol/L in Group 1, 7.8 ± 2.7 mmol/L in Group 2, and 6.7 ± 2.6 mmol/L in Group 3. There were no significant differences in the blood glucose levels between children with and without ROP, and also between children with spontaneously regressing ROP and progressive ROP (p>0.05). Additionally, there were no significant differences in the blood glucose levels measured at the first, second, and third weeks of life (p>0.05). The blood glucose level is not related to the development of ROP nor with its progression or regression. The glycemic level cannot be considered as a risk factor for ROP, but reflects the severity of newborns' somatic condition and morphofunctional immaturity.

  3. Blood glucose control in the intensive care unit: benefits and risks.

    Science.gov (United States)

    Gunst, Jan; Van den Berghe, Greet

    2010-01-01

    Abnormal blood glucose levels are common during critical illness and are associated with outcomes that correspond to a J-shaped curve, the lowest risk associated with normoglycemia. Three proof-of-concept randomized-controlled-trials performed in the surgical, medical, and pediatric intensive care units of the Leuven University Hospital in Belgium demonstrated that maintaining strict age-adjusted normal fasting levels of glycemia (80-110 mg/dl in adults, 70-100 mg/dl in children, 50-80 mg/dl in infants) with intensive insulin therapy reduced morbidity and mortality as compared with tolerating stress hyperglycemia as a potentially beneficial response. Recently, concern has risen about the safety of this intervention, as a multicenter adult study reported an, as yet unexplained, increased mortality with targeting normoglycemia as compared with an intermediate blood glucose level of around 140 mg/dl. This apparent contradiction may be explained by several methodological differences among studies, comprising, among others, different glucose target ranges in the control groups, different feeding policies, and variable accuracy of tools used for glucose measurement and insulin infusion. Hence, efficacy and safety of intensive insulin therapy may be affected by patient-related and ICU setting-related variables. Therefore, no single optimal blood glucose target range for ICU patients can be advocated. It appears safe not to embark on targeting "age-normal" levels in intensive care units (ICUs) that are not equipped to accurately and frequently measure blood glucose, and have not acquired extensive experience with intravenous insulin administration using a customized guideline. A simple fallback position could be to control blood glucose levels as close to normal as possible without evoking unacceptable blood glucose fluctuations, hypoglycemia, and hypokalemia.

  4. Work related stress and blood glucose levels.

    Science.gov (United States)

    Sancini, A; Ricci, S; Tomei, F; Sacco, C; Pacchiarotti, A; Nardone, N; Ricci, P; Suppi, A; De Cesare, D P; Anzelmo, V; Giubilati, R; Pimpinella, B; Rosati, M V; Tomei, G

    2017-01-01

    The aim of the study is to evaluate work-related subjective stress in a group of workers on a major Italian company in the field of healthcare through the administration of a valid "questionnaire-tool indicator" (HSE Indicator Tool), and to analyze any correlation between stress levels taken from questionnaire scores and blood glucose values. We studied a final sample consisting of 241 subjects with different tasks. The HSE questionnaire - made up of 35 items (divided into 7 organizational dimensions) with 5 possible answers - has been distributed to all the subjects in occasion of the health surveillance examinations provided by law. The questionnaire was then analyzed using its specific software to process the results related to the 7 dimensions. These results were compared using the Pearson correlation and multiple linear regression with the blood glucose values obtained from each subject. From the analysis of the data the following areas resulted critical, in other words linked to an intermediate (yellow area) or high (red area) condition of stress: sustain from managers, sustain from colleagues, quality of relationships and professional changes. A significant positive correlation (p work stress can be statistically associated with increased levels of blood glucose.

  5. Discrete Blood Glucose Control in Diabetic Göttingen Minipigs

    Directory of Open Access Journals (Sweden)

    Berno J.E. Misgeld

    2016-07-01

    Full Text Available Despite continuous research effort, patients with type 1 diabetes mellitus (T1D experience difficulties in daily adjustments of their blood glucose concentrations. New technological developments in the form of implanted intravenous infusion pumps and continuous blood glucose sensors might alleviate obstacles for the automatic adjustment of blood glucose concentration. These obstacles consist, for example, of large time-delays and insulin storage effects for the subcutaneous/interstitial route. Towards the goal of an artificial pancreas, we present a novel feedback controller approach that combines classical loop-shaping techniques with gain-scheduling and modern H ∞ -robust control approaches. A disturbance rejection design is proposed in discrete frequency domain based on the detailed model of the diabetic Göttingen minipig. The model is trimmed and linearised over a large operating range of blood glucose concentrations and insulin sensitivity values. Controller parameters are determined for each of these operating points. A discrete H ∞ loop-shaping compensator is designed to increase robustness of the artificial pancreas against general coprime factor uncertainty. The gain scheduled controller uses subcutaneous insulin injection as a control input and determines the controller input error from intravenous blood glucose concentration measurements, where parameter scheduling is achieved by an estimator of the insulin sensitivity parameter. Thus, only one controller stabilises a family of animal models. The controller is validated in silico with a total number of five Göttingen Minipig models, which were previously obtained by experimental identification procedures. Its performance is compared with an experimentally tested switching PI-controller.

  6. Effect of buspirone: An anxiolytic drug on blood glucose in humans

    OpenAIRE

    Ojha, S. K.; Nandave, M.; Sharma, C.

    2006-01-01

    The present study investigated the effect of an antianxiety drug, buspirone on blood glucose and plasma insulin level concerning the role of 5-HT1A receptors in blood glucose regulation in healthy humans. Twelve healthy male volunteers were administered single oral doses of buspirone (10 mg) or placebo, in a randomized, crossover way, followed by oral glucose load (75 gm in 200 ml) at reported Tmax i.e. the time of peak plasma concentration of the respective administered drug. The blood sampl...

  7. String Bean Juice Decreases Blood Glucose Level Patients with Diabetes Mellitus

    OpenAIRE

    Harmayetty, Harmayetty; Krisnana, Ilya; Anisa, Faida

    2009-01-01

    Introduction: Type 2 diabetes mellitus is deficiency of insulin and caused by decreases of insulin receptor or bad quality of insulin. As a result, insulin hormone does not work effectively in blood glucose regulation. String bean juice contains thiamin and fiber may regulate blood glucose level. The aim of this study was to analyze the effect of string bean juice to decrease blood glucose level of patients with type 2 diabetes mellitus. Method: This study employed a quasy-experimental pre-po...

  8. High Blood Glucose: What It Means and How To Treat It

    Science.gov (United States)

    ... People who do not have diabetes typically have fasting plasma blood glucose levels that run under 100 ... blood glucose? Be sure to drink plenty of water. It is recommended to drink a minimum of ...

  9. Accuracy of a Flash Glucose Monitoring System in Diabetic Dogs.

    Science.gov (United States)

    Corradini, S; Pilosio, B; Dondi, F; Linari, G; Testa, S; Brugnoli, F; Gianella, P; Pietra, M; Fracassi, F

    2016-07-01

    A novel flash glucose monitoring system (FGMS) (FreeStyle Libre, Abbott, UK) was recently developed for humans. It continuously measures the interstitial glucose (IG) concentrations for 14 days. To assess the clinical and analytical accuracy of the FGMS in diabetic dogs. Ten client-owned diabetic dogs on insulin treatment. Prospective and observational study. The FGMS was placed on the neck for up to 14 days. During the 1st-2nd, 6-7th, and 13-14th days from application, the IG measurements were compared with the plasma (EDTA) glucose (PG) concentrations analyzed by a reference hexokinase based method. The application and the use of the FGMS were apparently painless, easy, and well tolerated by all dogs. Mild erythema at the site of the application was found in 5/10 dogs at the end of the wearing period. A good correlation between IG and PG concentrations (rho = 0.94; P blood glucose concentrations. Mean ± standard deviation difference from the reference method was 2.3 ± 46.8 mg/dL. The FGMS is easy to use and is accurate for IG glucose measurement in diabetic dogs. Copyright © 2016 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  10. A self-powered glucose biosensor based on pyrolloquinoline quinone glucose dehydrogenase and bilirubin oxidase operating under physiological conditions.

    Science.gov (United States)

    Kulkarni, Tanmay; Slaughter, Gymama

    2017-07-01

    A novel biosensing system capable of simultaneously sensing glucose and powering portable electronic devices such as a digital glucometer is described. The biosensing system consists of enzymatic glucose biofuel cell bioelectrodes functionalized with pyrolloquinoline quinone glucose dehydrogenase (PQQ-GDH) and bilirubin oxidase (BOD) at the bioanode and biocathode, respectively. A dual-stage power amplification circuit is integrated with the single biofuel cell to amplify the electrical power generated. In addition, a capacitor circuit was incorporated to serve as the transducer for sensing glucose. The open circuit voltage of the optimized biofuel cell reached 0.55 V, and the maximum power density achieved was 0.23 mW/ cm 2 at 0.29 V. The biofuel cell exhibited a sensitivity of 0.312 mW/mM.cm 2 with a linear dynamic range of 3 mM - 20 mM glucose. The overall self-powered glucose biosensor is capable of selectively screening against common interfering species, such as ascorbate and urate and exhibited an operational stability of over 53 days, while maintaining 90 % of its activity. These results demonstrate the system's potential to replace the current glucose monitoring devices that rely on external power supply, such as a battery.

  11. HBA1C AND MEAN GLUCOSE DERIVED FROM SHORT-TERM CONTINUOUS GLUCOSE MONITORING ASSESSMENT DO NOT CORRELATE IN PATIENTS WITH HBA1C >8.

    Science.gov (United States)

    Yamada, Eijiro; Okada, Shuichi; Nakajima, Yasuyo; Bastie, Claire C; Vatish, Manu; Tagaya, Yuko; Osaki, Aya; Shimoda, Yoko; Shibusawa, Ryo; Saito, Tsugumichi; Okamura, Takashi; Ozawa, Atsushi; Yamada, Masanobu

    2017-01-01

    Optimum therapy for patients with diabetes depends on both acute and long-term changes in plasma glucose, generally assessed by glycated hemoglobin (HbA1c) levels. However, the correlation between HbA1c and circulating glucose has not been fully determined. Therefore, we carefully examined this correlation when glucose levels were assessed by continuous glucose monitoring (CGM). Fifty-one patients (70% female, 30% male) were examined; among them were 28 with type 1 diabetes and 23 with type 2 diabetes. Clinically determined HbA1c levels were compared with blood glucose determined by CGM during a short time period. Changes in HbA1c levels up to 8.0% showed a clear and statistically strong correlation (R = 0.6713; PHbA1c and CGM-assessed glucose levels in our patient population when HbA1c was >8.0%. Short-term CGM appears to be a good clinical indicator of long-term glucose control (HbA1c levels); however, cautions should be taken while interpreting CGM data from patients with HbA1c levels >8.0%. Over- or underestimation of the actual mean glucose from CGM data could potentially increase the risks of inappropriate treatment. As such, our results indicate that a more accurate analysis of CGM data might be useful to adequately tailor clinical treatments. ADAG = A1c-Derived Average Glucose CGM = continuous glucose monitoring %CV = percent coefficient of variation HbA1c = glycated hemoglobin.

  12. Blood glucose control for patients with acute coronary syndromes in Qatar.

    Science.gov (United States)

    Wilby, Kyle John; Elmekaty, Eman; Abdallah, Ibtihal; Habra, Masa; Al-Siyabi, Khalid

    2016-01-01

    Blood glucose is known to be elevated in patients presenting with acute coronary syndromes. However a gap in knowledge exists regarding effective management strategies once admitted to acute care units. It is also unknown what factors (if any) predict elevated glucose values during initial presentation. OBJECTIVES of the study were to characterize blood glucose control in patients admitted to the cardiac care unit (CCU) in Qatar and to determine predictive factors associated with high glucose levels (>10 mmol/l) on admission to the CCU. All data for this study were obtained from the CCU at Heart Hospital in Doha, Qatar. A retrospective chart review was completed for patients admitted to the CCU in Qatar from October 1st, 2012 to March 31st, 2013, of which 283 were included. Baseline characteristics (age, gender, nationality, medical history, smoking status, type of acute coronary syndrome), capillary and lab blood glucose measurements, and use of insulin were extracted. Time spent in glucose ranges of 10 mmol/1 was calculated manually. Univariate and multivariate logistic regression were performed to assess factors associated with high glucose on admission. The primary analysis was completed with capillary data and a sensitivity analysis was completed using laboratory data. Blood glucose values measured on admission and throughout length of stay in the CCU. Capillary blood glucose data showed majority of time was spent in the range of >10 mmol/l (41.95%), followed by 4-8 mmol/l (35.44%), then 8-10 mmol/l (21.45%), and finally 10 mmol/l on admission (p < 0.05) in a univariate analysis but only diabetes remained significant in a multivariate model (OR 23.3; 95% CI, 11.5-47.3). Diabetes predicts high glucose values on hospital admission for patients with ACS and patients are not being adequately controlled throughout CCU stay.

  13. Glucose Pump Test can be Used to Measure Blood Flow Rate of ...

    African Journals Online (AJOL)

    2018-02-07

    Feb 7, 2018 ... Blood flow rates of AV fistula can be affected by osmotic and oncotic pressures of blood and arterial blood pressures. Sodium, glucose, hemoglobin, and albumin are significant effectors, created osmotic and oncotic pressures [Table 3]. Blood levels of hemoglobin. (Hb), albumin, sodium (Na), and glucose ...

  14. Continuous glucose monitoring system and new era of early diagnosis of diabetes in high risk groups

    Directory of Open Access Journals (Sweden)

    Ashraf Soliman

    2014-01-01

    Full Text Available Continuous glucose monitoring (CGM systems are an emerging technology that allows frequent glucose measurements to monitor glucose trends in real time. Their use as a diagnostic tool is still developing and appears to be promising. Combining intermittent glucose self-monitoring (SGM and CGM combines the benefits of both. Significant improvement in the treatment modalities that may prevent the progress of prediabetes to diabetes have been achieved recently and dictates screening of high risk patients for early diagnosis and management of glycemic abnormalities. The use of CGMS in the diagnosis of early dysglycemia (prediabetes especially in high risk patients appears to be an attractive approach. In this review we searched the literature to investigate the value of using CGMS as a diagnostic tool compared to other known tools, namely oral glucose tolerance test (OGTT and measurement of glycated hemoglobin (HbA1C in high risk groups. Those categories of patients include adolescents and adults with obesity especially those with family history of type 2 diabetes mellitus, polycystic ovary syndrome (PCO, gestational diabetes, cystic fibrosis, thalassemia major, acute coronary syndrome (ACS, and after renal transplantation. It appears that the ability of the CGMS for frequently monitoring (every 5 min glucose changes during real-life settings for 3 to 5 days stretches the chance to detect more glycemic abnormalities during basal and postprandial conditions compared to other short-timed methods.

  15. Correlation between high blood IL-6 level, hyperglycemia, and glucose control in septic patients.

    Science.gov (United States)

    Nakamura, Masataka; Oda, Shigeto; Sadahiro, Tomohito; Watanabe, Eizo; Abe, Ryuzo; Nakada, Taka-Aki; Morita, Yasumasa; Hirasawa, Hiroyuki

    2012-12-12

    The aim of the present study was to investigate the relationship between the blood IL-6 level, the blood glucose level, and glucose control in septic patients. This retrospective observational study in a general ICU of a university hospital included a total of 153 patients with sepsis, severe sepsis, or septic shock who were admitted to the ICU between 2005 and 2010, stayed in the ICU for 7 days or longer, and did not receive steroid therapy prior to or after ICU admission. The severity of stress hyperglycemia, status of glucose control, and correlation between those two factors in these patients were investigated using the blood IL-6 level as an index of hypercytokinemia. A significant positive correlation between blood IL-6 level and blood glucose level on ICU admission was observed in the overall study population (n = 153; r = 0.24, P = 0.01), and was stronger in the nondiabetic subgroup (n = 112; r = 0.42, P glucose control (blood glucose level blood IL-6 level on ICU admission (P blood IL-6 level after ICU admission remained significantly higher and the 60-day survival rate was significantly lower in the failed glucose control group than in the successful glucose control group (P blood IL-6 level was correlated with hyperglycemia and with difficulties in glucose control in septic patients. These results suggest the possibility that hypercytokinemia might be involved in the development of hyperglycemia in sepsis, and thereby might affect the success of glucose control.

  16. A label-free fiber-optic Turbidity Affinity Sensor (TAS) for continuous glucose monitoring.

    Science.gov (United States)

    Dutt-Ballerstadt, Ralph; Evans, Colton; Pillai, Arun P; Gowda, Ashok

    2014-11-15

    In this paper, we describe the concept of a novel implantable fiber-optic Turbidity Affinity Sensor (TAS) and report on the findings of its in-vitro performance for continuous glucose monitoring. The sensing mechanism of the TAS is based on glucose-specific changes in light scattering (turbidity) of a hydrogel suspension consisting of small particles made of crosslinked dextran (Sephadex G100), and a glucose- and mannose-specific binding protein - Concanavalin A (ConA). The binding of ConA to Sephadex particles results in a significant turbidity increase that is much greater than the turbidity contribution by the individual components. The turbidity of the TAS was measured by determining the intensity of light passing through the suspension enclosed within a small semi-permeable hollow fiber (OD: 220 μm, membrane thickness: 20 μm, molecular weight cut-off: 10 kDa) using fiber optics. The intensity of measured light of the TAS was proportional to the glucose concentration over the concentration range from 50mg/dL to 400mg/dL in PBS and whole blood at 37°C (R>0.96). The response time was approximately 4 min. The stability of the glucose response of the TAS decreased only slightly (by 20%) over an 8-day study period at 37°C. In conclusion, this study demonstrated proof-of-concept of the TAS for interstitial glucose monitoring. Due to the large signal amplitude of the turbidity change, and the lack of need for wavelength-specific emission and excitation filters, a very small, robust and compact TAS device with an extremely short optical pathlength could be feasibly designed and implemented for in-vivo glucose monitoring in people with diabetes. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Evaluation of a Novel Glucose Area Under the Curve (AUC Monitoring System: Comparison with the AUC by Continuous Glucose Monitoring

    Directory of Open Access Journals (Sweden)

    Satoshi Ugi

    2016-07-01

    Full Text Available BackgroundManagement of postprandial hyperglycemia is a key aspect in diabetes treatment. We developed a novel system to measure glucose area under the curve (AUC using minimally invasive interstitial fluid extraction technology (MIET for simple monitoring of postprandial glucose excursions. In this study, we evaluated the relationship between our system and continuous glucose monitoring (CGM by comparing glucose AUC obtained using MIET with that obtained using CGM for a long duration.MethodsTwenty diabetic inpatients wearing a CGM system were enrolled. For MIET measurement, a plastic microneedle array was applied to the skin as pretreatment, and hydrogels were placed on the pretreated area to collect interstitial fluid. Hydrogels were replaced every 2 or 4 hours and AUC was predicted on the basis of glucose and sodium ion levels.ResultsAUC predicted by MIET correlated well with that measured by CGM (r=0.93. Good performances of both consecutive 2- and 4-hour measurements were observed (measurement error: 11.7%±10.2% for 2 hours and 11.1%±7.9% for 4 hours, indicating the possibility of repetitive measurements up to 8 hours. The influence of neither glucose fluctuation nor average glucose level over the measurement accuracy was observed through 8 hours.ConclusionOur system showed good relationship with AUC values from CGM up to 8 hours, indicating that single pretreatment can cover a large portion of glucose excursion in a day. These results indicated possibility of our system to contribute to convenient monitoring of glucose excursions for a long duration.

  18. Evaluation of a Novel Glucose Area Under the Curve (AUC) Monitoring System: Comparison with the AUC by Continuous Glucose Monitoring.

    Science.gov (United States)

    Ugi, Satoshi; Maegawa, Hiroshi; Morino, Katsutaro; Nishio, Yoshihiko; Sato, Toshiyuki; Okada, Seiki; Kikkawa, Yasuo; Watanabe, Toshihiro; Nakajima, Hiromu; Kashiwagi, Atsunori

    2016-08-01

    Management of postprandial hyperglycemia is a key aspect in diabetes treatment. We developed a novel system to measure glucose area under the curve (AUC) using minimally invasive interstitial fluid extraction technology (MIET) for simple monitoring of postprandial glucose excursions. In this study, we evaluated the relationship between our system and continuous glucose monitoring (CGM) by comparing glucose AUC obtained using MIET with that obtained using CGM for a long duration. Twenty diabetic inpatients wearing a CGM system were enrolled. For MIET measurement, a plastic microneedle array was applied to the skin as pretreatment, and hydrogels were placed on the pretreated area to collect interstitial fluid. Hydrogels were replaced every 2 or 4 hours and AUC was predicted on the basis of glucose and sodium ion levels. AUC predicted by MIET correlated well with that measured by CGM (r=0.93). Good performances of both consecutive 2- and 4-hour measurements were observed (measurement error: 11.7%±10.2% for 2 hours and 11.1%±7.9% for 4 hours), indicating the possibility of repetitive measurements up to 8 hours. The influence of neither glucose fluctuation nor average glucose level over the measurement accuracy was observed through 8 hours. Our system showed good relationship with AUC values from CGM up to 8 hours, indicating that single pretreatment can cover a large portion of glucose excursion in a day. These results indicated possibility of our system to contribute to convenient monitoring of glucose excursions for a long duration.

  19. A Participatory Randomized Controlled Trial in Knowledge Translation (KT) to Promote the Adoption of Self-Monitoring of Blood Glucose for Type 2 Diabetes Mellitus Patients in An Urban District of Thailand.

    Science.gov (United States)

    Suriyawongpaisal, Paibul; Tansirisithikul, Rassamee; Sakulpipat, Thida; Charoensuk, Phikul; Aekplakorn, Wichai

    2016-02-01

    To examine effectiveness of self-monitoring of blood glucose (SMBG) in glycemic control for poor control diabetes patients, and test whether the glycemic outcome for those with the 7-point SMBG was better than those with 5-point SMBG or usual care. Randomized-controlled trial (RCT) of patients with type 2 diabetes mellitus aged 30 years or older HbA1c > 7. Patients were randomly allocated to one of three groups; 7-point SMBG 5-point SBMG and control group. Differences in HbA1c at 6 months and baseline were compared among groups. A total of 191 patients with poor control of diabetes were included. Compared with baseline, at 6 months, average change in HbAlc among control, 7-point, and 5-point SMBG were -0.38, -0.87, and -0.99 (p = 0.04), respectively. The corresponding percentages of patients with reduced HbA1c were 57.1%, 77.6% and 75.5%, respectively (p = 0.03). Using different cut-off values for HbA1c (patients among the 3 groups, yet the differences were not statistically significant. Reductions in body weight were observed in both SMBG groups but not in the control group. Using RCT on participatory basis, SMBG with individual dietary counseling was effective in short term. Further engagement with the provider team, the patients/care takers and the health care financing agency to integrate SMBG in the care protocol for poor control diabetes should be considered.

  20. Personal discovery in diabetes self-management: Discovering cause and effect using self-monitoring data.

    Science.gov (United States)

    Mamykina, Lena; Heitkemper, Elizabeth M; Smaldone, Arlene M; Kukafka, Rita; Cole-Lewis, Heather J; Davidson, Patricia G; Mynatt, Elizabeth D; Cassells, Andrea; Tobin, Jonathan N; Hripcsak, George

    2017-12-01

    To outline new design directions for informatics solutions that facilitate personal discovery with self-monitoring data. We investigate this question in the context of chronic disease self-management with the focus on type 2 diabetes. We conducted an observational qualitative study of discovery with personal data among adults attending a diabetes self-management education (DSME) program that utilized a discovery-based curriculum. The study included observations of class sessions, and interviews and focus groups with the educator and attendees of the program (n = 14). The main discovery in diabetes self-management evolved around discovering patterns of association between characteristics of individuals' activities and changes in their blood glucose levels that the participants referred to as "cause and effect". This discovery empowered individuals to actively engage in self-management and provided a desired flexibility in selection of personalized self-management strategies. We show that discovery of cause and effect involves four essential phases: (1) feature selection, (2) hypothesis generation, (3) feature evaluation, and (4) goal specification. Further, we identify opportunities to support discovery at each stage with informatics and data visualization solutions by providing assistance with: (1) active manipulation of collected data (e.g., grouping, filtering and side-by-side inspection), (2) hypotheses formulation (e.g., using natural language statements or constructing visual queries), (3) inference evaluation (e.g., through aggregation and visual comparison, and statistical analysis of associations), and (4) translation of discoveries into actionable goals (e.g., tailored selection from computable knowledge sources of effective diabetes self-management behaviors). The study suggests that discovery of cause and effect in diabetes can be a powerful approach to helping individuals to improve their self-management strategies, and that self-monitoring data can

  1. Investigation of the Blood Glucose Lowering Potential of the Jamaican Momordica charantia (Cerasee) Fruit in Sprague-Dawley Rats

    Science.gov (United States)

    Burnett, A; McKoy, M-L; Singh, P

    2015-01-01

    ABSTRACT The Momordica charantia (MC) fruit has been documented to possess antidiabetic properties. However, these studies were not without controversy surrounding the blood glucose-lowering ability and the mechanism of action in diabetes therapy. In an effort to evaluate such claims in the Jamaican MC species known as cerasee, aqueous extracts of the unripe fruit were studied in normal and diabetic rats. Normal male Sprague-Dawley rats were divided into groups (n = 6) orally administered distilled water, 10% dimethyl sulfoxide (DMSO) solution, the aqueous extract (400 mg/kg body weight) and glibenclamide (15 mg/kg body weight), respectively prior to assessment of fasting blood glucose (FBG) concentration. The oral glucose tolerance test (OGTT) was conducted in normoglycaemic rats orally administered distilled water, 10% DMSO solution, glibenclamide (15 mg/kg body weight) or aqueous extracts of the fruit (200 and 400 mg/kg body weight). Blood glucose concentration was also monitored in streptozotocin-induced diabetic rats administered the aqueous extract (250 mg/kg body weight) or water vehicle after an overnight fast. The aqueous extracts showed no hypoglycaemic or antidiabetic activity. However, the administration of the aqueous extracts (200 and 400 mg/kg body weight) resulted in significant improvement in glucose tolerance of glucose-primed normoglycaemic rats during the OGTT. These data suggest that the glucose-lowering mechanism of the Jamaican MC fruit species likely involves altered glucose absorption across the gastrointestinal tract. PMID:26624580

  2. Waist circumference as a predictor for blood glucose levels in adults

    Directory of Open Access Journals (Sweden)

    Shinta L Hardiman

    2016-02-01

    Full Text Available Anthropometric indexes such as body mass index (BMI, waist circumference (WC, hip ciucumference (HC, and waist–hip ratio (WHR, are all useful anthropometric measurements to provide important information on blood glucose concentrations. The aim of this study was to determine different anthropometric measurements, in particular BMI, waist circumference, hip circumference and waist-to-hip ratio, in their ability to predict the blood glucose levels in men and women 40 to 60. A cross-sectional study was conducted on a sample of 44 men and 127 women aged 40 to 50 who lived in Cipete Selatan subdistrict, South Jakarta. Blood glucose levels was assessed and anthropometric measurements comprising BMI, WC, HC, WHR were collected. Multiple linear regression analysis was used to determine the best predictor for blood glucose levels. The study showed that the prevalence of DM type 2 was 25.7% and the prevalence was higher in men (40.9% compared to women (23.5%. The significant predictive variables in the simple regression analysis were age and waist circumference. Multiple linear regression showed that after adjustment for age, WC was positively associated with blood glucose levels. Standardized a value was 0.172 (p=0.026. WC predict blood glucose levels, beyond that explained by traditional diabetic risk factors and BMI. These findings provide support for the recommendation that WC be a routine measure for identification of diabetes mellitus type 2 in men and women aged 40 to 60 years.

  3. [Effects of blood glucose control on glucose variability and clinical outcomes in patients with severe acute pancreatitis in intensive care unit].

    Science.gov (United States)

    Wu, Jing; Sun, Qiuhong; Yang, Hua

    2015-05-19

    To explore the effects of blood glucose control on glucose variability and clinical outcomes in patients with severe acute pancreatitis in intensive care unit (ICU). A total of 72 ICU patients with severe acute pancreatitis were recruited and divided randomly into observation and control groups (n = 36 each). Both groups were treated conventionally. And the observation group achieved stable blood glucose at 6.1-8.3 mmol/L with intensive glucose control. The length of ICU and hospital stays, ICU mortality rate, transit operative rate, concurrent infection rate, admission blood glucose, glycosylated hemoglobin, mean insulin dose, mean blood glucose, blood glucose value standard deviation (GLUSD), glycemic liability index (GLUGLI) and mean amplitude of glycemic excursion (GLUMAGE) of two groups were compared. At the same time, the relationship between blood glucose variability, ICU mortality rate and its predictive value were analyzed by correlation analysis and receiver operating characteristic curve (ROC). The lengths of ICU and hospital stays of observation group were all significantly less than those of the control group [(11.7 ± 9.9) vs (15.9 ± 8.02) days, (21.8 ± 10.8) vs (28.2 ± 12.7) days, P blood glucose value and GLUSD of observation group were significantly lower than those of control group [(7.4 ± 1.1) vs (9.6 ± 1.2), (1.8 ± 1.0) vs (2.5 ± 1.3) mmol/L]. The differences were statistically significant (P curve analysis showed that, AUC of GLUGLI was 0.748 and 95% CI 0.551-0.965 (P glucose control in patients with severe acute pancreatitis helps reduce the blood sugar fluctuations, lower the risks of infectious complications and promote the patient rehabilitation. And GLUGLI is positively correlated with ICU mortality rate. It has good predictive values.

  4. Low blood glucose precipitates spike-and-wave activity in genetically predisposed animals.

    Science.gov (United States)

    Reid, Christopher A; Kim, Tae Hwan; Berkovic, Samuel F; Petrou, Steven

    2011-01-01

    Absence epilepsies are common, with a major genetic contribution to etiology. Certain environmental factors can influence absence occurrence but a complete understanding of absence precipitation is lacking. Herein we investigate if lowering blood glucose increases spike-wave activity in mouse models with varying seizure susceptibility. Three mouse models were used: an absence seizure model based on the knockin of a human GABA(A) γ2(R43Q) mutation (DBA(R43Q)), the spike-wave discharge (SWD)-prone DBA/2J strain, and the seizure resistant C57Bl/6 strain. Electrocorticography (ECoG) studies were recorded to determine SWDs during hypoglycemia induced by insulin or overnight fasting. An insulin-mediated reduction in blood glucose levels to 4 mm (c.a. 40% reduction) was sufficient to double SWD occurrence in the DBA(R43Q) model and in the SWD-prone DBA/2J mouse strain. Larger reductions in blood glucose further increased SWDs in both these models. However, even with large reductions in blood glucose, no discharges were observed in the seizure-resistant C57Bl/6 mouse strain. Injection of glucose reversed the impact of insulin on SWDs in the DBA(R43Q) model, supporting a reduction in blood glucose as the modulating influence. Overnight fasting reduced blood glucose levels to 4.5 mm (c.a. 35% reduction) and, like insulin, caused a doubling in occurrence of SWDs. Low blood glucose can precipitate SWDs in genetically predisposed animal models and should be considered as a potential environmental risk factor in patients with absence epilepsy. Wiley Periodicals, Inc. © 2010 International League Against Epilepsy.

  5. Exogenous glucagon-like peptide-1 attenuates glucose absorption and reduces blood glucose concentration after small intestinal glucose delivery in critical illness.

    Science.gov (United States)

    Miller, Asaf; Deane, Adam M; Plummer, Mark P; Cousins, Caroline E; Chapple, Lee-Anne S; Horowitz, Michael; Chapman, Marianne J

    2017-03-01

    To evaluate the effect of exogenous glucagonlike peptide-1 (GLP-1) on small intestinal glucose absorption and blood glucose concentrations during critical illness. A prospective, blinded, placebo-controlled, cross-over, randomised trial in a mixed medical-surgical adult intensive care unit, with 12 mechanically ventilated critically ill patients, who were suitable for receiving small intestinal nutrient. On consecutive days, in a randomised order, participants received intravenous GLP-1 (1.2 pmol/ kg/min) or placebo (0.9% saline) as a continuous infusion over 270 minutes. After 6 hours of fasting, intravenous infusions of GLP-1 or placebo began at T = -30 min (in which T = time), with the infusion maintained at a constant rate until study completion at T = 240 min. At T = 0 min, a 100 mL bolus of mixed liquid nutrient meal (1 kcal/mL) containing 3 g of 3-O-methyl-D-gluco-pyranose (3-OMG), a marker of glucose absorption, was administered directly into the small intestine, via a post-pyloric catheter, over 6 minutes. Blood samples were taken at regular intervals for the measurement of plasma glucose and 3-OMG concentrations. Intravenous GLP-1 attenuated initial small intestinal glucose absorption (mean area under the curve [AUC] 0-30 for 3-OMG: GLP-1 group, 4.4 mmol/L/min [SEM, 0.9 mmol/L/min] v placebo group, 6.5 mmol/L/min [SEM, 1.0 mmol/L/min]; P = 0.01), overall small intestinal glucose absorption (mean AUC 0-240 for 3-OMG: GLP-1, 68.2 mmol/L/ min [SEM, 4.7 mmol/L/min] v placebo, 77.7 mmol/L/min [SEM, 4.4 mmol/lLmin]; P = 0.02), small intestinal glucose absorption and overall blood glucose concentration (mean AUC 0-240 for blood glucose: GLP-1, 2062 mmol/L/min [SEM, 111 mmol/L/min] v placebo 2328 mmol/L/min [SEM, 145 mmol/L/min]; P = 0.005). Short-term administration of exogenous GLP-1 reduces small intestinal glucose absorption for up to 4 hours during critical illness. This is likely to be an additional mechanism for the glucose-lowering effect of this agent.

  6. Hypoglycemia in type 2 diabetes patients treated with insulin: the advantages of continuous glucose monitoring

    Directory of Open Access Journals (Sweden)

    Vadim Valer'evich Klimontov

    2014-03-01

    Full Text Available Aims.  To determine the incidence and risk factors for hypoglycemia in elderly insulin-treated type 2 diabetes mellitus (T2DM patients by means of continuous glucose monitoring (CGM. Materials and Methods.  We observed seventy-six hospitalized patients with T2DM, aged 65 to 79 years. Treatment with basal insulin (n=36, premixed insulin (n=12 or basal-bolus insulin regimen (n=28 was followed by metformin (n=44, glimepiride (n=14 and dipeptidyl peptidase-4 inhibitors (n=14. 2-days CGM with retrospective data analysis was performed in all patients. During CGM, three fasting and three 2-h postprandial finger-prick glucose values were obtained daily with portable glucose meter. Results.  Hypoglycemia (identified as blood glucose

  7. Improving management and effectiveness of home blood pressure monitoring: a qualitative UK primary care study.

    Science.gov (United States)

    Grant, Sabrina; Greenfield, Sheila M; Nouwen, Arie; McManus, Richard J

    2015-11-01

    Self-monitoring blood pressure (SMBP) is becoming an increasingly prevalent practice in UK primary care, yet there remains little conceptual understanding of why patients with hypertension engage in self-monitoring. To identify psychological factors or processes prompting the decision to self-monitor blood pressure. A qualitative study of patients previously participating in a survey study about SMBP from four general practices in the West Midlands. Taped and transcribed in-depth interviews with 16 patients (6 currently monitoring, 2 used to self-monitor, and 8 had never self-monitored). Thematic analysis was undertaken. Three main themes emerged: 'self' and 'living with hypertension' described the emotional element of living with an asymptomatic condition; 'self-monitoring behaviour and medication' described overall views about self-monitoring, current practice, reasons for monitoring, and the impact on medication adherence; and 'the GP-patient transaction' described the power relations affecting decisions to self-monitor. Self-monitoring was performed by some as a protective tool against the fears of a silent but serious condition, whereas others self-monitor simply out of curiosity. People who self-monitored tended not to discuss this with their nurse or GP, partly due to perceiving minimal or no interest from their clinician about home monitoring, and partly due to fear of being prescribed additional medication. The decision to self-monitor appeared often to be an individual choice with no schedule or systems to integrate it with other medical care. Better recognition by clinicians that patients are self-monitoring, perhaps utilising the results in shared decision-making, might help integrate it into daily practice. © British Journal of General Practice 2015.

  8. Investigation on the correlationship between plasma homocysteine and blood glucose, insulin levels in patients with type 2 diabetes mellitus

    International Nuclear Information System (INIS)

    Ma Zhongwei

    2005-01-01

    Objective: To explore the correlationship between plasma homocysteine and blood glucose, insulin levels in patients with type 2 diabetes mellitus. Methods: Plasma homocysteine (with ELISA), blood glucose (with hexokinase method) and insulin (with RIA) levels were measured in 66 patients with type 2 diabetes mellitus as well as in 35 controls. Results: Plasma homocysteine levels in the diabetic patients (n=66) were significantly higher than those in controls (P<0.01), especially in those patients complicated with nephropathy (n=32). The homocysteine levels were positively correlated with those of blood glucose and insulin (r=0.3515, r=0.3486, both P<0.01). Conclusion: Plasma homocysteine is an independent risk factor for vascular diseases. The levels of plasma cysteine are significantly increased in patients with type 2 diabetes mellitus, especially in those complicated with nephropathy. Therefore, monitoring of plasma homocysteine level changes is clinically useful. (authors)

  9. The Effects of Blood Glucose Levels on Cognitive Performance: A Review of the Literature

    Science.gov (United States)

    Feldman, Jolene; Barshi, Immanuel

    2007-01-01

    The purpose of this review paper is to discuss the research literature on the effects of blood glucose levels on executive and non-executive functions in humans. The review begins with a brief description of blood glucose, how it has been studied, previous syntheses of prior studies, and basic results regarding the role of blood glucose on cognitive functioning. The following sections describe work that investigated the effect of blood glucose on both non-executive and executive functions (e.g., sensory processing, psychomotor functioning, attention, vigilance, memory, language and communication, judgement and decision-making, and complex task performance). Within each section, summaries of the findings and challenges to the literature are included. Measurement conversions of blood glucose levels, blood glucose values, and associated symptoms are depicted. References to the types of tests used to investigate blood glucose and cognitive performance are provided. For more detailed descriptions of references within (and in addition to) this paper, an annotated bibliography is also provided. Several moderator variables including individual differences and contextual variables related to the effects of blood glucose levels on performance (e.g., age, gender, time of day, familiarity with the task and symptom awareness, expectancy effects, dose dependent effects, time dependent effects, task specific effects, rising and falling blood glucose levels, and speed and/or accuracy trade-offs) are addressed later in the paper. Some suggestions for future experimental methodologies are also made.

  10. Monitoring arterio-venous differences of glucose and lactate in the anesthetized rat with or without brain damage with ultrafiltration and biosensor technology

    NARCIS (Netherlands)

    Leegsma-Vogt, G; Venema, K; Postema, F; Korf, J

    2001-01-01

    Continuous monitoring of arterio-venous glucose and lactate differences may serve as a diagnostic tool to assess normal brain function and brain pathology. We describe a method and some results obtained with arterio-venous measurements of glucose and lactate in the blood of the

  11. Regional brain glucose metabolism and blood flow in streptozocin-induced diabetic rats

    International Nuclear Information System (INIS)

    Jakobsen, J.; Nedergaard, M.; Aarslew-Jensen, M.; Diemer, N.H.

    1990-01-01

    Brain regional glucose metabolism and regional blood flow were measured from autoradiographs by the uptake of [ 3 H]-2-deoxy-D-glucose and [ 14 C]iodoantipyrine in streptozocin-induced diabetic (STZ-D) rats. After 2 days of diabetes, glucose metabolism in the neocortex, basal ganglia, and white matter increased by 34, 37, and 8%, respectively, whereas blood flow was unchanged. After 4 mo, glucose metabolism in the same three regions was decreased by 32, 43, and 60%. This reduction was paralleled by a statistically nonsignificant reduction in blood flow in neocortex and basal ganglia. It is suggested that the decrease of brain glucose metabolism in STZ-D reflects increased ketone body oxidation and reduction of electrochemical work

  12. Depletion of norepinephrine of the central nervous system Down-regulates the blood glucose level in d-glucose-fed and restraint stress models.

    Science.gov (United States)

    Park, Soo-Hyun; Kim, Sung-Su; Lee, Jae-Ryeong; Sharma, Naveen; Suh, Hong-Won

    2016-05-04

    DSP-4[N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride] is a neurotoxin that depletes norepinephrine. The catecholaminergic system has been implicated in the regulation of blood glucose level. In the present study, the effect of DSP-4 administered intracerebroventricularly (i.c.v.) or intrathecally (i.t.) on blood glucose level was examined in d-glucose-fed and restraint stress mice models. Mice were pretreated once i.c.v. or i.t. with DSP-4 (10-40μg) for 3days, and d-glucose (2g/kg) was fed orally. Blood glucose level was measured 0 (prior to glucose feeding or restraint stress), 30, 60, and 120min after d-glucose feeding or restraint stress. The i.c.v. or i.t. pretreatment with DSP-4 attenuated blood glucose level in the d-glucose-fed model. Plasma corticosterone level was downregulated in the d-glucose-fed model, whereas plasma insulin level increased in the d-glucose-fed group. The i.c.v. or i.t. pretreatment with DSP-4 reversed the downregulation of plasma corticosterone induced by feeding d-glucose. In addition, the d-glucose-induced increase in plasma insulin was attenuated by the DSP-4 pretreatment. Furthermore, i.c.v. or i.t. pretreatment with DSP-4 reduced restraint stress-induced increases in blood glucose levels. Restraint stress increased plasma corticosterone and insulin levels. The i.c.v. pretreatment with DSP-4 attenuated restraint stress-induced plasma corticosterone and insulin levels. Our results suggest that depleting norepinephrine at the supraspinal and spinal levels appears to be responsible for downregulating blood glucose levels in both d-glucose-fed and restraint stress models. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Self-monitoring of blood pressure during pregnancy

    DEFF Research Database (Denmark)

    Lihme, Frederikke F; Madsen, Mette E; Lykke, Jacob A

    2017-01-01

    arterial blood pressure (MAP) and were compared using the paired sample t-test. Mean values and differences of systolic and diastolic pressure were plotted in Bland-Altman plots to test the agreement of the measurements. Finally, a mean evaluation score was calculated. RESULTS: One hundred pregnant women...... and instructed each participant in correct measurement and then took three measurements on both arms. The participant then repeated the measurements and filled an evaluation questionnaire. We used a validated semiautomatic device for all measurements. Mean values were calculated for systolic, diastolic and mean...... were included in the study. Mean values of systolic, diastolic and MAP were 110.6, 69.7 and 83.3 mmHg, respectively, as assessed by the hospital staff. The corresponding self-measurements were 111.4, 70.2 and 83.9 mmHg, respectively. Mean differences between hospital and self-measurements were 0.79 mm...

  14. Oral glucose tolerance test and continuous glucose monitoring to assess diabetes development in cystic fibrosis patients.

    Science.gov (United States)

    Clemente León, María; Bilbao Gassó, Laura; Moreno-Galdó, Antonio; Campos Martorrell, Ariadna; Gartner Tizzano, Silvia; Yeste Fernández, Diego; Carrascosa Lezcano, Antonio

    2018-01-01

    Patients with cystic fibrosis (CF) undergo a slow and progressive process toward diabetes. Oral glucose tolerance test (OGTT) is recommended to diagnose impaired glucose levels in these patients. Continuous glucose monitoring (CGM) measures glucose profiles under real-life conditions. To compare OGTT and CGM results in CF patients. Paired OGTT and 6-day CGM profiles (146.2±9.1h/patient) were performed in 30 CF patients aged 10-18 years. According to OGTT, 14 patients had normal glucose tolerance (NGT), 14 abnormal glucose tolerance (AGT), and two cystic fibrosis-related diabetes (CFRD). In 27 patients (13 NGT, 13 AGT, 1 CFRD), CGM showed glucose values ranging from 140 to 200mg/dL during similar monitoring times (2%-14% with NGT, 1%-16.9% with AGT, and 3% with CFRD). Glucose peak levels ≥200mg/dL were seen in seven patients (3 NGT, 3 AGT, 1 CFRD). According to CGM, two patients had all glucose values under 140mg/dL (1 NGT, 1 AGT). Seventeen patients had glucose levels ranging from 140 to 200mg/dL (10 NGT, 6 AGT, 1 CFRD). Ten patients (3 NGT, 7 AGT) had glucose values ≥200mg/dL for ≤1% of the monitoring time and one (CFRD) for >1% of the monitoring time. OGTT results did not agree with those of the CGM. CGM allows for diagnosis of glucose changes not detected by OGTT. Such changes may contribute to optimize pre-diabetes management in CF patients. Copyright © 2017 SEEN y SED. Publicado por Elsevier España, S.L.U. All rights reserved.

  15. Blood glucose level prediction based on support vector regression using mobile platforms.

    Science.gov (United States)

    Reymann, Maximilian P; Dorschky, Eva; Groh, Benjamin H; Martindale, Christine; Blank, Peter; Eskofier, Bjoern M

    2016-08-01

    The correct treatment of diabetes is vital to a patient's health: Staying within defined blood glucose levels prevents dangerous short- and long-term effects on the body. Mobile devices informing patients about their future blood glucose levels could enable them to take counter-measures to prevent hypo or hyper periods. Previous work addressed this challenge by predicting the blood glucose levels using regression models. However, these approaches required a physiological model, representing the human body's response to insulin and glucose intake, or are not directly applicable to mobile platforms (smart phones, tablets). In this paper, we propose an algorithm for mobile platforms to predict blood glucose levels without the need for a physiological model. Using an online software simulator program, we trained a Support Vector Regression (SVR) model and exported the parameter settings to our mobile platform. The prediction accuracy of our mobile platform was evaluated with pre-recorded data of a type 1 diabetes patient. The blood glucose level was predicted with an error of 19 % compared to the true value. Considering the permitted error of commercially used devices of 15 %, our algorithm is the basis for further development of mobile prediction algorithms.

  16. Changes in blood glucose and salivary cortisol are not necessary for arousal to enhance memory in young or older adults.

    Science.gov (United States)

    Gore, Jane B; Krebs, Desiree L; Parent, Marise B

    2006-06-01

    Emotional arousal enhances memory, and this memory-enhancing effect may involve neurochemicals released by arousal, such as glucose and cortisol. Physiological consequences of arousal change with age, and these changes may contribute to age-related memory decline. The present study examined whether emotionally arousing pictures would affect glucose and cortisol levels and enhance memory in young and older adults. Blood glucose and salivary cortisol were measured once before and six times after young and old adults viewed either 60 highly arousing or 60 relatively neutral pictures. Recall for the stimuli was measured 75 min later. The results indicated that recall was impaired in older adults. Arousal as measured by self-report enhanced recall in both young and older adults. However, arousal did not affect glucose or cortisol levels in either group. These findings demonstrate that changes in blood glucose or salivary cortisol levels are not necessary for arousal to enhance memory.

  17. Multiple functional attributes of glucose-monitoring neurons in the medial orbitofrontal (ventrolateral prefrontal) cortex.

    Science.gov (United States)

    Szabó, István; Hormay, Edina; Csetényi, Bettina; Nagy, Bernadett; Lénárd, László; Karádi, Zoltán

    2018-02-01

    Multiple functional attributes of glucose-monitoring neurons in the medial orbitofrontal (ventrolateral prefrontal) cortex. NEUROSCI BIOBEHAV REV 73(1) XXX-XXX, 2017.- Special chemosensory cells, the glucose-monitoring (GM) neurons, reportedly involved in the central feeding control, exist in the medial orbitofrontal (ventrolateral prefrontal) cortex (mVLPFC). Electrophysiological, metabolic and behavioral studies reveal complex functional attributes of these cells and raise their homeostatic significance. Single neuron recordings, by means of the multibarreled microelectrophoretic technique, elucidate differential sensitivities of limbic forebrain neurons in the rat and the rhesus monkey to glucose and other chemicals, whereas gustatory stimulations demonstrate their distinct taste responsiveness. Metabolic examinations provide evidence for alteration of blood glucose level in glucose tolerance test and elevation of plasma triglyceride concentration after destruction of the local GM cells by streptozotocin (STZ). In behavioral studies, STZ microinjection into the mVLPFC fails to interfere with the acquisition of saccharin conditioned taste avoidance, does cause, however, taste perception deficit in taste reactivity tests. Multiple functional attributes of GM neurons in the mVLPFC, within the frame of the hierarchically organized central GM neuronal network, appear to play important role in the maintenance of the homeostatic balance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Effect of pertussis toxin pretreated centrally on blood glucose level induced by stress.

    Science.gov (United States)

    Suh, Hong-Won; Sim, Yun-Beom; Park, Soo-Hyun; Sharma, Naveen; Im, Hyun-Ju; Hong, Jae-Seung

    2016-09-01

    In the present study, we examined the effect of pertussis toxin (PTX) administered centrally in a variety of stress-induced blood glucose level. Mice were exposed to stress after the pretreatment of PTX (0.05 or 0.1 µg) i.c.v. or i.t. once for 6 days. Blood glucose level was measured at 0, 30, 60 and 120 min after stress stimulation. The blood glucose level was increased in all stress groups. The blood glucose level reached at maximum level after 30 min of stress stimulation and returned to a normal level after 2 h of stress stimulation in restraint stress, physical, and emotional stress groups. The blood glucose level induced by cold-water swimming stress was gradually increased up to 1 h and returned to the normal level. The intracerebroventricular (i.c.v.) or intrathecal (i.t.) pretreatment with PTX, a Gi inhibitor, alone produced a hypoglycemia and almost abolished the elevation of the blood level induced by stress stimulation. The central pretreatment with PTX caused a reduction of plasma insulin level, whereas plasma corticosterone level was further up-regulated in all stress models. Our results suggest that the hyperglycemia produced by physical stress, emotional stress, restraint stress, and the cold-water swimming stress appear to be mediated by activation of centrally located PTX-sensitive G proteins. The reduction of blood glucose level by PTX appears to due to the reduction of plasma insulin level. The reduction of blood glucose level by PTX was accompanied by the reduction of plasma insulin level. Plasma corticosterone level up-regulation by PTX in stress models may be due to a blood glucose homeostatic mechanism.

  19. Gingival crevicular blood: As a non-invasive screening tool for diabetes mellitus in dental clinics

    Directory of Open Access Journals (Sweden)

    Neema Shetty

    2013-01-01

    Full Text Available Background: A high number of patients with periodontitis may have undiagnosed diabetes. Self-monitoring devices provide a simple method for rapid monitoring of the glucose level in the blood by utilizing a blood sample from the finger, but this method requires a needle puncture to obtain blood. It is possible that gingival crevicular blood (GCB from routine periodontal probing may be a source of blood for glucose measurements. Aim: To establish whether GCB can be used as a non-invasive diagnostic aid in screening for diabetes mellitus during routine periodontal examination. Materials and Methods: The study involved 50 diabetics and 50 non-diabetics, with an age range of 26-66 years. Both diabetic and non-diabetic patients had moderate to severe gingivitis with at least one tooth in the maxillary anterior region showing bleeding upon probing. The Gingival Index and Oral Hygiene Index-Simplified were recorded. Blood oozing from the gingival sulcus/pocket following periodontal pocket probing was collected using a capillary tube and transferred to the test stick of a glucose self-monitoring device (Accu-Chek, Roche Diagnostic, Germany in patients with comparable gingival and oral hygiene status. This value was compared with the peripheral fingerstick blood glucose (PFBG value, which was obtained by pricking the finger tip at the same visit. Statistical analysis was performed using Pearson′s correlation coefficient. Result: There was no statistically significant difference between the gingival crevicular blood glucose (GCBG values and the PFBG values in both the diabetic (P = 0.129, NS and the non-diabetic (P = 0.503, NS groups. Karl Pearson′s product-moment correlation coefficient was calculated, which showed a positive correlation between the two measurements in the diabetic (r = 0.943 as well as the non-diabetic (r = 0.926 groups. Conclusion: The results suggest that GCB can be used as a non-invasive diagnostic aid in screening for diabetes

  20. BioRadioTransmitter: a self-powered wireless glucose-sensing system.

    Science.gov (United States)

    Hanashi, Takuya; Yamazaki, Tomohiko; Tsugawa, Wakako; Ikebukuro, Kazunori; Sode, Koji

    2011-09-01

    Although an enzyme fuel cell can be utilized as a glucose sensor, the output power generated is too low to power a device such as a currently available transmitter and operating system, and an external power source is required for operating an enzyme-fuel-cell-based biosensing system. We proposed a novel biosensor that we named BioCapacitor, in which a capacitor serves as a transducer. In this study, we constructed a new BioCapacitor-based system with an added radio-transmitter circuit and a miniaturized enzyme fuel cell. A miniaturized direct-electron-transfer-type compartmentless enzyme fuel cell was constructed with flavin adenine dinucleotide-dependent glucose dehydrogenase complex-based anode and a bilirubin-oxidase-based cathode. For construction of a BioRadioTransmitter wireless sensing system, a capacitor, an ultra-low-voltage charge-pump-integrated circuit, and Hartley oscillator circuit were connected to the miniaturized enzyme fuel cell. A radio-receiver circuit, comprising two field-effect transistors and a coil as an antenna, was used to amplify the signal generated from the biofuel cells. Radio wave signals generated by the BioRadioTransmitter were received, amplified, and converted from alternate to direct current by the radio receiver. When the capacitor discharges in the presence of glucose, the BioRadioTransmitter generates a radio wave, which is monitored by a radio receiver connected wirelessly to the sensing device. Magnitude of the radio wave transmission frequency change observed at the radio receiver was correlated to glucose concentration in the fuel cells. We constructed a stand-alone, self-powered, wireless glucose-sensing system called a BioRadioTransmitter by using a radio transmitter in which the radio wave transmission frequency changes with the glucose concentration in the fuel cell. The BioRadioTransmitter is a significant advance toward construction of an implantable continuous glucose monitor. © 2011 Diabetes Technology Society.

  1. The modulatory role of alpha-melanocyte stimulating hormone administered spinally in the regulation of blood glucose level in d-glucose-fed and restraint stress mouse models.

    Science.gov (United States)

    Sim, Yun-Beom; Park, Soo-Hyun; Kim, Sung-Su; Lim, Su-Min; Jung, Jun-Sub; Suh, Hong-Won

    2014-08-01

    Alpha-melanocyte stimulating hormone (α-MSH) is known as a regulator of the blood glucose homeostasis and food intake. In the present study, the possible roles of α-MSH located in the spinal cord in the regulation of the blood glucose level were investigated in d-glucose-fed and immobilization stress (IMO) mouse models. We found in the present study that intrathecal (i.t.) injection with α-MSH alone did not affect the blood glucose level. However, i.t. administration with α-MSH reduced the blood glucose level in d-glucose-fed model. The plasma insulin level was increased in d-glucose-fed model and was further increased by α-MSH, whereas α-MSH did not affect plasma corticosterone level in d-glucose-fed model. In addition, i.t. administration with glucagon alone enhanced blood glucose level and, i.t. injection with glucagon also increased the blood glucose level in d-glucose-fed model. In contrasted to results observed in d-glucose-fed model, i.t. treatment with α-MSH caused enhancement of the blood glucose level in IMO model. The plasma insulin level was increased in IMO model. The increased plasma insulin level by IMO was reduced by i.t. treatment with α-MSH, whereas i.t. pretreatment with α-MSH did not affect plasma corticosterone level in IMO model. Taken together, although spinally located α-MSH itself does not alter the blood glucose level, our results suggest that the activation of α-MSH system located in the spinal cord play important modulatory roles for the reduction of the blood glucose level in d-glucose fed model whereas α-MSH is responsible for the up-regulation of the blood glucose level in IMO model. The enhancement of insulin release may be responsible for modulatory action of α-MSH in down-regulation of the blood glucose in d-glucose fed model whereas reduction of insulin release may be responsible for modulatory action of α-MSH in up-regulation of the blood glucose in IMO model. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Screening of Glucose-6-Phosphate Dehydrogenase Deficiency in Cord Blood

    Directory of Open Access Journals (Sweden)

    Can Acipayam

    2014-02-01

    Aim: Glucose-6-phosphate dehydrogenase deficiency is an important factor in etiology of pathologic neonatal jaundice. The aim of this study was to indicate the significance of screening glucose-6-phosphate dehydrogenase deficiency in the cord blood of neonates and the frequency of this deficiency in the etiology of neonatal hyperbilirubinemia. Material and Method: The study was performed consecutive 1015 neonates were included. Five hundred fifty six (54.8% of them were male and 459 (45.2% were female. The following parameters were recorded: Gender, birth weight, birth height, head circumference and gestational age. The glucose-6-phosphate dehydrogenase level of neonates were measured with quantitative method in cord blood. Also, hemoglobine, hematocrite, red blood cell count and blood group were measured. The following parameters were recorded in cases with jaundice: exchange transfusion, phototherapy, physiologic and pathologic jaundice, peak bilirubin day, maximum bilirubin level, total bilirubin level at the first day of jaundice, beginning time of jaundice. Results: Enzyme deficiency was detected in 133 (13.1% of neonates and 76 (57% of them were male, 57 (43% were female. Significant difference was detected in low glucose-6-phosphate dehydrogenase enzyme level with jaundice group for total bilirubin level at the first day of jaundice, maximum total bilirubin level and pathologic jaundice (p<0.05. Discussion: The ratio of glucose-6-phosphate dehydrogenase deficiency was found in Edirne in this study and this ratio was higher than other studies conducted in our country. For this reason, glucose-6-phosphate dehydrogenase enzyme level in cord blood of neonates should be measured routinely and high risk neonates should be followed up for hyperbilirubinemia and parents should be informed in our region.

  3. [Influence of an infusion of 5- or 20% glucose solution on blood glucose and inorganic phosphate concentrations in dairy cows].

    Science.gov (United States)

    Aldaek, T A A; Failing, K; Wehrend, A; Klymiuk, M C

    2011-01-01

    The study was performed to evaluate the influence of an intravenous infusion of 5% and 20% dextrose solution on the plasma concentration of glucose and inorganic phosphate in healthy, dairy cows. Ten healthy, lactating, nonpregnant 3 to 6 year-old Holstein-Friesian cows were included in this investigation. The daily milk yield was 20.3±2.7 liters. Blood plasma concentrations of inorganic phosphate and glucose were determined before, during, immediately and 60 minutes after infusion of 0.9% physiological saline, 5% or 20% dextrose solution. A statistically significant influence of dextrose infusion on blood glucose concentration was observed. After 20% dextrose infusion (200 g dextrose) the blood glucose concentration increased by approximately 13.26 mmol/l. The administration of 5% dextrose solution (50 g dextrose) yielded an increase of blood glucose concentration by 3.31 mmol/l. There was no significant correlation between plasma inorganic phosphate concentrations and infusion of 0.9% saline, 5% or 20% dextrose solution. Intravenous administration of 1000 ml of 5% or 20% dextrose solution does not induce a lasting plasma phosphate reduction and is suitable for elevating the blood glucose concentration.

  4. A Meta-Analysis of Blood Glucose Effects on Human Decision Making

    DEFF Research Database (Denmark)

    Orquin, Jacob L.; Kurzban, Robert

    2016-01-01

    The academic and public interest in blood glucose and its relationship to decision making has been increasing over the last decade. To investigate and evaluate competing theories about this relationship, we conducted a psychometric meta-analysis on the effect of blood glucose on decision making. We...... and willingness to work when a situation is food related, but decrease willingness to pay and work in all other situations. Low levels of blood glucose increase the future discount rate for food; that is, decision makers become more impatient, and to a lesser extent increase the future discount rate for money...

  5. Glucose transporter of the human brain and blood-brain barrier

    International Nuclear Information System (INIS)

    Kalaria, R.N.; Gravina, S.A.; Schmidley, J.W.; Perry, G.; Harik, S.I.

    1988-01-01

    We identified and characterized the glucose transporter in the human cerebral cortex, cerebral microvessels, and choroid plexus by specific D-glucose-displaceable [3H]cytochalasin B binding. The binding was saturable, with a dissociation constant less than 1 microM. Maximal binding capacity was approximately 7 pmol/mg protein in the cerebral cortex, approximately 42 pmol/mg protein in brain microvessels, and approximately 27 pmol/mg protein in the choroid plexus. Several hexoses displaced specific [3H]cytochalasin B binding to microvessels in a rank-order that correlated well with their known ability to cross the blood-brain barrier; the only exception was 2-deoxy-D-glucose, which had much higher affinity for the glucose transporter than the natural substrate, D-glucose. Irreversible photoaffinity labeling of the glucose transporter of microvessels with [3H]cytochalasin B, followed by solubilization and polyacrylamide gel electrophoresis, labeled a protein band with an average molecular weight of approximately 55,000. Monoclonal and polyclonal antibodies specific to the human erythrocyte glucose transporter immunocytochemically stained brain blood vessels and the few trapped erythrocytes in situ, with minimal staining of the neuropil. In the choroid plexus, blood vessels did not stain, but the epithelium reacted positively. We conclude that human brain microvessels are richly endowed with a glucose transport moiety similar in molecular weight and antigenic characteristics to that of human erythrocytes and brain microvessels of other mammalian species

  6. Understanding Challenges and Opportunities of Preventive Blood Pressure Self-Monitoring at Home

    DEFF Research Database (Denmark)

    Grönvall, Erik; Verdezoto, Nervo

    2013-01-01

    methods to understand existing challenges and uncover opportunities of self-monitoring technologies to support preventive healthcare activities among older adults. Emerging challenges from our study were: rule complexity for self-measuring, reliability of measurements, interpretation, understanding...... to support people’s preventive self-monitoring needs compared with existing solutions. Furthermore, supporting the active and informed citizen can improve older adult’s care abilities, awareness and activation towards preventive care....

  7. Comparison of vildagliptin twice daily vs. sitagliptin once daily using continuous glucose monitoring (CGM: Crossover pilot study (J-VICTORIA study

    Directory of Open Access Journals (Sweden)

    Sakamoto Masaya

    2012-08-01

    Full Text Available Abstract Background No previous studies have compared the DPP-4 inhibitors vildagliptin and sitagliptin in terms of blood glucose levels using continuous glucose monitoring (CGM and cardiovascular parameters. Methods Twenty patients with type 2 diabetes mellitus were randomly allocated to groups who received vildagliptin then sitagliptin, or vice versa. Patients were hospitalized at 1 month after starting each drug, and CGM was used to determine: 1 mean (± standard deviation 24-hour blood glucose level, 2 mean amplitude of glycemic excursions (MAGE, 3 fasting blood glucose level, 4 highest postprandial blood glucose level and time, 5 increase in blood glucose level after each meal, 6 area under the curve (AUC for blood glucose level ≥180 mg/dL within 3 hours after each meal, and 7 area over the curve (AOC for daily blood glucose level Results The mean 24-hour blood glucose level was significantly lower in patients taking vildagliptin than sitagliptin (142.1 ± 35.5 vs. 153.2 ± 37.0 mg/dL; p = 0.012. In patients taking vildagliptin, MAGE was significantly lower (110.5 ± 33.5 vs. 129.4 ± 45.1 mg/dL; p = 0.040, the highest blood glucose level after supper was significantly lower (206.1 ± 40.2 vs. 223.2 ± 43.5 mg/dL; p = 0.015, the AUC (≥180 mg/dL within 3 h was significantly lower after breakfast (484.3 vs. 897.9 mg/min/dL; p = 0.025, and urinary CPR level was significantly higher (97.0 ± 41.6 vs. 85.2 ± 39.9 μg/day; p = 0.008 than in patients taking sitagliptin. There were no significant differences in plasma HbA1c, GA, 1,5AG, IRI, CPR, BNP, or PAI-1 levels between patients taking vildagliptin and sitagliptin. Conclusions CGM showed that mean 24-h blood glucose, MAGE, highest blood glucose level after supper, and hyperglycemia after breakfast were significantly lower in patients with type 2 diabetes mellitus taking vildagliptin than those taking sitagliptin. There

  8. Behavioral Self-Regulation in Adolescents with Type 1 Diabetes: Negative Affectivity and Blood Glucose Symptom Perception.

    Science.gov (United States)

    Wiebe, Deborah J.; And Others

    1994-01-01

    Adolescents who were more internally focused were more able to discern which symptoms actually covaried with blood glucose (BG) fluctuations; those with higher trait anxiety tended to misattribute non-diabetes-related symptoms to BG levels. Interactions suggested those who both attend to internal physical sensations and experience-heightened…

  9. The Performance and Usability of a Factory-Calibrated Flash Glucose Monitoring System.

    Science.gov (United States)

    Bailey, Timothy; Bode, Bruce W; Christiansen, Mark P; Klaff, Leslie J; Alva, Shridhara

    2015-11-01

    The purpose of the study was to evaluate the performance and usability of the FreeStyle(®) Libre™ Flash glucose monitoring system (Abbott Diabetes Care, Alameda, CA) for interstitial glucose results compared with capillary blood glucose results. Seventy-two study participants with type 1 or type 2 diabetes were enrolled by four U.S. clinical sites. A sensor was inserted on the back of each upper arm for up to 14 days. Three factory-only calibrated sensor lots were used in the study. Sensor glucose measurements were compared with capillary blood glucose (BG) results (approximately eight per day) obtained using the BG meter built into the reader (BG reference) and with the YSI analyzer (Yellow Springs Instrument, Yellow Springs, OH) reference tests at three clinic visits (32 samples per visit). Sensor readings were masked to the participants. The accuracy of the results was demonstrated against capillary BG reference values, with 86.7% of sensor results within Consensus Error Grid Zone A. The percentage of readings within Consensus Error Grid Zone A on Days 2, 7, and 14 was 88.4%, 89.2%, and 85.2%, respectively. The overall mean absolute relative difference was 11.4%. The mean lag time between sensor and YSI reference values was 4.5±4.8 min. Sensor accuracy was not affected by factors such as body mass index, age, type of diabetes, clinical site, insulin administration, or hemoglobin A1c. Interstitial glucose measurements with the FreeStyle Libre system were found to be accurate compared with capillary BG reference values, with accuracy remaining stable over 14 days of wear and unaffected by patient characteristics.

  10. [Predictors of mean blood glucose control and its variability in diabetic hospitalized patients].

    Science.gov (United States)

    Sáenz-Abad, Daniel; Gimeno-Orna, José Antonio; Sierra-Bergua, Beatriz; Pérez-Calvo, Juan Ignacio

    2015-01-01

    This study was intended to assess the effectiveness and predictors factors of inpatient blood glucose control in diabetic patients admitted to medical departments. A retrospective, analytical cohort study was conducted on patients discharged from internal medicine with a diagnosis related to diabetes. Variables collected included demographic characteristics, clinical data and laboratory parameters related to blood glucose control (HbA1c, basal plasma glucose, point-of-care capillary glucose). The cumulative probability of receiving scheduled insulin regimens was evaluated using Kaplan-Meier analysis. Multivariate regression models were used to select predictors of mean inpatient glucose (MHG) and glucose variability (standard deviation [GV]). The study sample consisted of 228 patients (mean age 78.4 (SD 10.1) years, 51% women). Of these, 96 patients (42.1%) were treated with sliding-scale regular insulin only. Median time to start of scheduled insulin therapy was 4 (95% CI, 2-6) days. Blood glucose control measures were: MIG 181.4 (SD 41.7) mg/dL, GV 56.3 (SD 22.6). The best model to predict MIG (R(2): .376; P<.0001) included HbA1c (b=4.96; P=.011), baseline plasma glucose (b=.056; P=.084), mean capillary blood glucose in the first 24hours (b=.154; P<.0001), home treatment (versus oral agents) with basal insulin only (b=13.1; P=.016) or more complex (pre-mixed insulin or basal-bolus) regimens (b=19.1; P=.004), corticoid therapy (b=14.9; P=.002), and fasting on admission (b=10.4; P=.098). Predictors of inpatient blood glucose control which should be considered in the design of DM management protocols include home treatment, HbA1c, basal plasma glucose, mean blood glucose in the first 24hours, fasting, and corticoid therapy. Copyright © 2014 SEEN. Published by Elsevier España, S.L.U. All rights reserved.

  11. Variations of blood glucose in cancer patients during chemotherapy

    African Journals Online (AJOL)

    2016-05-23

    May 23, 2016 ... Purpose: The aim of this study was to analyze the blood glucose (BG) variations in cancer patients .... cancer, brain tumor, cervical cancer, and leukemia were the ... excess glucose supply for these glucose‑hungry cells and it.

  12. Changes in blood glucose among trained normoglycemic adults during a mini-trampoline exercise session.

    Science.gov (United States)

    Martins Cunha, Raphael; Raiana Bentes, Mariana; Araújo, Victor H; DA Costa Souza, Mayara C; Vasconcelos Noleto, Marcelo; Azevedo Soares, Ademar; Machado Lehnen, Alexandre

    2016-12-01

    Blood glucose changes response during and after exercise are modulated by the postabsorptive state, intensity and duration of exercise, and the level of physical fitness as well. This study focused on the idea that high-intensity interval exercise, as mini-trampoline class, can reduce blood glucose. Thus, we examined acute changes in blood glucose among trained normoglycemic adults during a mini-trampoline exercise session. Twenty-four normoglycemic adult subjects were enrolled in the study. After physical assessment they were randomly assigned to either the experimental (N.=12) or the control group (N.=12). The experimental group performed a 50-minute session of moderate-to-high intensity (70 to 85% HRmax) exercise on a mini-trampoline commonly used in fitness classes. The control group did not perform any exercise, and all procedures were otherwise similar to the experimental group. Capillary blood glucose was measured before and every 15 minutes during the exercise session. The effects of exercise on blood glucose levels (group; time; and group interaction) were estimated using a generalized estimating equation (GEE) followed by Bonferroni's post-hoc Test (Ptrampoline can be used for reducing blood glucose levels and thus can potentially control blood glucose.

  13. Age-related memory impairments due to reduced blood glucose responses to epinephrine.

    Science.gov (United States)

    Morris, Ken A; Chang, Qing; Mohler, Eric G; Gold, Paul E

    2010-12-01

    Increases in blood glucose levels are an important component of the mechanisms by which epinephrine enhances memory formation. The present experiments addressed the hypothesis that a dysfunction in the blood glucose response to circulating epinephrine contributes to age-related memory impairments. Doses of epinephrine and glucagon that significantly increased blood glucose levels in young adult rats were far less effective at doing so in 2-year-old rats. In young rats, epinephrine and glucose were about equally effective in enhancing memory and in prolonging post-training release of acetylcholine in the hippocampus. However, glucose was more effective than epinephrine in enhancing both memory and acetylcholine release in aged rats. These results suggest that an uncoupling between circulating epinephrine and glucose levels in old rats may lead to an age-related reduction in the provision of glucose to the brain during training. This in turn may contribute to age-related changes in memory and neural plasticity. Copyright © 2008 Elsevier Inc. All rights reserved.

  14. Fasting blood glucose and haemoglobin concentrations of healthy ...

    African Journals Online (AJOL)

    Menstruation is associated with loss of blood monthly in women of reproductive age. In some women this physiological phenomenon is also associated with some complaints such as menstrual pain, vomiting, and tiredness. We investigated the fasting blood glucose concentration and hemoglobin concentration before and ...

  15. Influence of the blood glucose level on the development of retinopathy of prematurity in extremely premature children

    Directory of Open Access Journals (Sweden)

    Galina V. Nicolaeva

    2015-08-01

    Full Text Available ABSTRACTPurpose:To investigate the influence of the blood glucose level on the development of retinopathy of prematurity (ROP in extremely premature infants.Methods:Sixty-four premature infants with a gestational age of less than 30 weeks and a birth weight of less than 1500 g were included in the study. Children without ROP were allocated to Group 1 (n=14, gestational age 28.6 ± 1.4 weeks, birth weight 1162 ± 322 g, and children with spontaneous regression of ROP were allocated to Group 2 (n=32, gestational age 26.5 ± 1.2 weeks, birth weight 905 ± 224 g. Children with progressive ROP who underwent laser treatment were included in Group 3 (n=18, gestational age 25.4 ± 0.7 weeks, birth weight 763 ± 138 g. The glucose level in the capillary blood of the premature infants was monitored daily during the first 3 weeks of life. A complete ophthalmological screening was performed from the age of 1 month. The nonparametric signed-rank Wilcoxon-Mann-Whitney test was used for statistical analysis.Results:The mean blood glucose level was 7.43 ± 2.6 mmol/L in Group 1, 7.8 ± 2.7 mmol/L in Group 2, and 6.7 ± 2.6 mmol/L in Group 3. There were no significant differences in the blood glucose levels between children with and without ROP, and also between children with spontaneously regressing ROP and progressive ROP (p>0.05. Additionally, there were no significant differences in the blood glucose levels measured at the first, second, and third weeks of life (p>0.05.Conclusion:The blood glucose level is not related to the development of ROP nor with its progression or regression. The glycemic level cannot be considered as a risk factor for ROP, but reflects the severity of newborns’ somatic condition and morphofunctional immaturity.

  16. Glycated haemoglobin may in future be reported as estimated mean blood glucose concentration--secondary publication

    DEFF Research Database (Denmark)

    Borg, R.; Nerup, J.; Nathan, D.M.

    2009-01-01

    Glycated haemoglobin (HbA 1c ) is widely used to determine levels of chronic glycaemia, to judge the adequacy of diabetes treatment and to adjust therapy. HbA 1c results are expressed as the percentage of HbA that is glycated. Day-to-day management is guided by self-monitoring of capillary glucose...

  17. Peculiarities of the Continuous Glucose Monitoring Data Stream and Their Impact on Developing Closed-Loop Control Technology

    OpenAIRE

    Kovatchev, Boris; Clarke, William

    2008-01-01

    Therapeutic advances in type 1 diabetes (T1DM) are currently focused on developing a closed-loop control system using a continuous glucose monitor (CGM), subcutaneous insulin delivery, and a control algorithm. Because a CGM assesses blood glucose indirectly (and therefore often inaccurately), it limits the effectiveness of the controller. In order to improve the quality of CGM data, a series of analyses are suggested. These analyses evaluate and compensate for CGM errors, assess risks associa...

  18. Use of home blood-pressure monitoring in the detection, treatment and surveillance of hypertension.

    Science.gov (United States)

    Manning, Gillian; Donnelly, Richard

    2005-11-01

    Use of home blood-pressure monitoring is increasing but the technique and the equipment have limitations. We provide an overview of recent evidence in this rapidly evolving field. Home blood-pressure monitoring is an acceptable method for screening patients for hypertension. There is increasing evidence supporting the predictive power of home blood pressure for stroke risk even in the general population. The identification of white-coat and masked hypertension remains an important role for home blood-pressure monitoring. Unvalidated equipment and poor patient technique are major concerns. The purchase of devices needs to be linked to a simple patient-education programme, which is perhaps an opportunity for collaboration between healthcare providers and commercial companies. Devices that store the blood-pressure measurements in the memory are preferred to ensure accuracy of reporting. Data-transmission systems providing automatic storage, transmission and reporting of blood pressure, direct involvement of the patient and potentially a reduced number of hospital/general practitioner visits, offer significant advantages. To reduce patient anxiety, overuse of home blood-pressure monitoring should be avoided but there is the potential for self-modification of treatment, subject to certain safeguards. Self-monitoring of blood pressure is developing rapidly, linked to increasing awareness of the impact of reducing high blood pressure on public health and the marketing/advertising strategies used to sell automatic devices. Home blood-pressure monitoring has a role in the detection and management of blood pressure, but not at the expense of careful blood-pressure measurement in the office and adherence to national guidelines.

  19. Correlation between glucose concentrations in serum, plasma, and whole blood measured by a point-of-care glucometer and serum glucose concentration measured by an automated biochemical analyzer for canine and feline blood samples.

    Science.gov (United States)

    Tauk, Barbara S; Drobatz, Kenneth J; Wallace, Koranda A; Hess, Rebecka S

    2015-06-15

    To investigate the correlation between glucose concentrations in serum, plasma, and whole blood measured by a point-of-care glucometer (POCG) and serum glucose concentration measured by a biochemical analyzer. Prospective clinical study. 96 blood samples from 80 dogs and 90 blood samples from 65 cats. Serum, plasma, and whole blood were obtained from each blood sample. The glucose concentrations in serum, plasma, and whole blood measured by a POCG were compared with the serum glucose concentration measured by a biochemical analyzer by use of the Lin concordance correlation coefficient (ρc) and Bland-Altman plots. For both canine and feline samples, glucose concentrations in serum and plasma measured by the POCG were more strongly correlated with the serum glucose concentration measured by the biochemical analyzer (ρc, 0.98 for both canine serum and plasma; ρc, 0.99 for both feline serum and plasma) than was that in whole blood (ρc, 0.62 for canine samples; ρc, 0.90 for feline samples). The mean difference between the glucose concentrations determined by the biochemical analyzer and the POCG in serum, plasma, and whole blood was 0.4, 0.3, and 31 mg/dL, respectively, for canine samples and 7, 6, and 32 mg/dL, respectively, for feline samples. Results indicated that use of a POCG to measure glucose concentrations in serum or plasma may increase the accuracy and reliability of diagnostic and treatment decisions associated with glucose homeostasis disorders in dogs and cats.

  20. Why control blood glucose levels?

    Science.gov (United States)

    Rossini, A A

    1976-03-01

    The controversy as to the relationship between the degree of control of diabetes and the progression of the complications of the disease has not been solved. However, in this review, various studies suggesting a relationship between the metabolic abnormality and the diabetic complications are examined. The disadvantages of the uncontrolled diabetes mellitus can be divided into two major categories-short-term and long-term. The short-term disadvantages of controlled diabetes mellitus include the following: (1) ketoacidosis and hyperosmolar coma; (2) intracellular dehydration; (3) electrolyte imbalance; (4) decreased phagocytosis; (5) immunologic and lymphocyte activity; (6) impairment of wound healing; and (7) abnormality of lipids. The long-term disadvantages of uncontrolled diabetes melitus include the following: (1) nephropathy; (2) neuropathy; (3) retinopathy; (4) cataract formation; (5) effect on perinatal mortality; (6) complications of vascular disease; and (7) the evaluation of various clinical studies suggesting the relationship of elevated blood glucose levels and complications of diabetes mellitus. It is suggested that until the question of control can absolutely be resolved, the recommendation is that the blood glucose levels should be controlled as close to the normal as possible.

  1. Efficacy of Additional Canagliflozin Administration to Type 2 Diabetes Patients Receiving Insulin Therapy: Examination of Diurnal Glycemic Patterns Using Continuous Glucose Monitoring (CGM).

    Science.gov (United States)

    Matsumura, Mihoko; Nakatani, Yuki; Tanka, Seiichi; Aoki, Chie; Sagara, Masaaki; Yanagi, Kazunori; Suzuki, Kunihiro; Aso, Yoshimasa

    2017-08-01

    The efficacy of administering a sodium-glucose cotransporter 2 inhibitor during insulin therapy has not been established. In this study, we examined its effects based on diurnal glycemic patterns using continuous glucose monitoring (CGM). The subjects were 15 patients who had received insulin therapy for 1 year or more. A CGM device was attached to all subjects for 1 week. The administration of canagliflozin at 100 mg was started 4 days after attachment. The mean glucose concentrations, standard deviation (SD), mean amplitude of glycemic excursions (MAGE), mean of daily difference of blood glucose (MODD), and area under the curve (AUC) (≥180, glucose concentrations decreased from 161.1 to 139.1 mg/dL (P AUC of ≥180, i.e., the total area of blood glucose levels at or above 180 on the blood glucose curve of CGM, decreased from 339.1 to 113.6 mg/dL (P AUC of blood glucose levels below 70 on the blood glucose curve of CGM, slightly decreased from 1.6 to 0.3 mg/dL (P = 0.08). The total number of basal insulin units decreased from 128 to 76, and that of bolus insulin decreased from 266 to 154; the dose of insulin could be markedly decreased. In addition, the mean 8-OHdG level decreased from 11.4 to 10.8 ng/mg Cre (P blood glucose changes in type 2 diabetes using insulin. In addition, the results suggest its antioxidant actions. University Hospital Medical Information Network (UMIN no. 000019429).

  2. Effectiveness of Continuous Glucose Monitoring for Managing Type-1 Diabetic Patients and Barrier to Its Use: A Quasi Interventional Trial

    Directory of Open Access Journals (Sweden)

    Hassan M. Al-Musa

    2018-04-01

    Full Text Available Background: Type-1 diabetes is one of the largest endocrine and metabolic health issues among children and young adults. Diabetes mellitus is associated with many long-term complications. Aim and Objectives: To compare outcomes in groups monitored either by real time continuous glucose monitoring or by Self Monitoring of Blood Glucose (SMBG; 3-4 blood glucose measurements per day. Also we studied barrier for the use of CMG. Material and Methods: It is a prospective quasi experimental controlled trial at diabetic center in Abha, KSA. Out of 307 patients registered, 60 T1DM patients agreed to participate; out of them 30 patients were enrolled in intervention cohort, they used CGM sensor continuously while 30 patients were in the control group they used SMBG. All were followed for 6 months; HbA1c was measured at 3 and 6 months. Barrier to use of sensor was evaluated with a questionnaire. Results: At baseline no significant difference was observed in the average HbA1c between the groups (10.57 % vs 10.73 %. HbA1c reduction compared to baseline levels in the intervention cohort was 2.15% and 2.36% at 3 and 6 months. In control group, HbA1c reduced to 1.07% and 1.22% at 3 and 6 months showing significant difference (p=0.002 and p=0.001 at 3 and 6 months. Younger patients age <20 years had significantly better reduction of HbA1c (2.28% vs 1.27%, p=0.015 and 2.47% vs 1.98%, p=0.004 at 3 and 6 months. The hypoglycemic events were statistically reduced in the intervention group (p<0.001 and also the ketoacidosis and hospital admissions (20.0% vs, 3.3%, p<0.001. Conclusion: We found that the use of CGM sensor was associated with significant HbA1c reductions and improved glycaemic control.

  3. Comparison of a Point-of-Care Glucometer and a Laboratory Autoanalyzer for Measurement of Blood Glucose Concentrations in Domestic Pigeons ( Columba livia domestica).

    Science.gov (United States)

    Mohsenzadeh, Mahdieh Sadat; Zaeemi, Mahdieh; Razmyar, Jamshid; Azizzadeh, Mohammad

    2015-09-01

    Biochemical analysis is necessary for diagnosis and monitoring of diseases in birds; however, the small volume of blood that can be safely obtained from small avian species often limits laboratory diagnostic testing. Consequently, a suitable methodology requiring only a small volume of blood must be used. This study was designed to compare blood glucose concentrations in domestic pigeons ( Columba livia domestica) as measured by a commercial, handheld, human glucometer and a standard autoanalyzer. During the first phase of the study, whole blood samples obtained from 30 domestic pigeons were used to measure the blood glucose concentration with a glucometer, the packed cell volume (PCV), and the total erythrocyte count (nRBC). Plasma separated from the each sample was then used to obtain the plasma glucose concentration with the autoanalyzer. During the second phase of the study, 30 pigeons were assigned to 2 equal groups (n = 15). Hypoglycemia or hyperglycemia was induced in each group by intravenous injection of insulin or glucose, respectively. Blood was collected and processed, and glucose concentrations, PCV, and nRBC were measured as previously described. Linear-regression models demonstrated a significant relationship between results measured by the glucometer and autoanalyzer results from normoglycemic (correlation coefficient [R] = 0.43, P = .02), hypoglycemic (R = 0.95; P < .001), and hyperglycemic (R = 0.81; P < .001) birds. The results of this study suggest that we can predict the real blood-glucose concentration of pigeons by using results obtained by a glucometer.

  4. Continuous Glucose Monitoring in the Cardiac ICU: Current Use and Future Directions.

    Science.gov (United States)

    Scrimgeour, Laura A; Potz, Brittany A; Sellke, Frank W; Abid, M Ruhul

    2017-11-01

    Perioperative glucose control is highly important, particularly for patients undergoing cardiac surgery. Variable glucose levels before, during and after cardiac surgery lead to increased post-operative complications and patient mortality. [1] Current methods for intensive monitoring and treating hyperglycemia in the Intensive Care Unit (ICU) usually involve hourly glucose monitoring and continuous intravenous insulin infusions. With the advent of more accurate subcutaneous glucose monitoring systems, the role of improved glucose control with newer systems deserves consideration for widespread adoption.

  5. Wireless connection of continuous glucose monitoring system to the electronic patient record

    Science.gov (United States)

    Murakami, Alexandre; Gutierrez, Marco A.; Lage, Silvia G.; Rebelo, Marina S.; Granja, Luiz A. R.; Ramires, Jose A. F.

    2005-04-01

    The control of blood sugar level (BSL) at near-normal levels has been documented to reduce both acute and chronic complications of diabetes mellitus. Recent studies suggested, the reduction of mortality in a surgical intensive care unit (ICU), when the BSL are maintained at normal levels. Despite of the benefits appointed by these and others clinical studies, the strict BSL control in critically ill patients suffers from some difficulties: a) medical staff need to measure and control the patient"s BSL using blood sample at least every hour. This is a complex and time consuming task; b) the inaccuracy of standard capillary glucose monitoring (fingerstick) in hypotensive patients and, if frequently used to sample arterial or venous blood, may lead to excess phlebotomy; c) there is no validated procedure for continuously monitoring of BSL levels. This study used the MiniMed CGMS in ill patients at ICU to send, in real-time, BSL values to a Web-Based Electronic Patient Record. The BSL values are parsed and delivered through a wireless network as an HL7 message. The HL7 messages with BSL values are collected, stored into the Electronic Patient Record and presented into a bed-side monitor at the ICU together with other relevant patient information.

  6. Comparison of vildagliptin twice daily vs. sitagliptin once daily using continuous glucose monitoring (CGM): Crossover pilot study (J-VICTORIA study)

    Science.gov (United States)

    2012-01-01

    Background No previous studies have compared the DPP-4 inhibitors vildagliptin and sitagliptin in terms of blood glucose levels using continuous glucose monitoring (CGM) and cardiovascular parameters. Methods Twenty patients with type 2 diabetes mellitus were randomly allocated to groups who received vildagliptin then sitagliptin, or vice versa. Patients were hospitalized at 1 month after starting each drug, and CGM was used to determine: 1) mean (± standard deviation) 24-hour blood glucose level, 2) mean amplitude of glycemic excursions (MAGE), 3) fasting blood glucose level, 4) highest postprandial blood glucose level and time, 5) increase in blood glucose level after each meal, 6) area under the curve (AUC) for blood glucose level ≥180 mg/dL within 3 hours after each meal, and 7) area over the curve (AOC) for daily blood glucose level vildagliptin than sitagliptin (142.1 ± 35.5 vs. 153.2 ± 37.0 mg/dL; p = 0.012). In patients taking vildagliptin, MAGE was significantly lower (110.5 ± 33.5 vs. 129.4 ± 45.1 mg/dL; p = 0.040), the highest blood glucose level after supper was significantly lower (206.1 ± 40.2 vs. 223.2 ± 43.5 mg/dL; p = 0.015), the AUC (≥180 mg/dL) within 3 h was significantly lower after breakfast (484.3 vs. 897.9 mg/min/dL; p = 0.025), and urinary CPR level was significantly higher (97.0 ± 41.6 vs. 85.2 ± 39.9 μg/day; p = 0.008) than in patients taking sitagliptin. There were no significant differences in plasma HbA1c, GA, 1,5AG, IRI, CPR, BNP, or PAI-1 levels between patients taking vildagliptin and sitagliptin. Conclusions CGM showed that mean 24-h blood glucose, MAGE, highest blood glucose level after supper, and hyperglycemia after breakfast were significantly lower in patients with type 2 diabetes mellitus taking vildagliptin than those taking sitagliptin. There were no significant differences in BNP and PAI-1 levels between patients taking vildagliptin and

  7. Assessment of Blood Glucose Regulation and Safety of Resistant Starch Formula-Based Diet in Healthy Normal and Subjects With Type 2 Diabetes.

    Science.gov (United States)

    Lin, Chia-Hung; Chang, Daw-Ming; Wu, Da-Jen; Peng, Hui-Yu; Chuang, Lee-Ming

    2015-08-01

    To evaluate the effects of the new resistant starch (RS) formula, PPB-R-203, on glucose homeostasis in healthy subjects and subjects with type 2 diabetes.A cohort consisting of 40 healthy participants received test and control diets and was checked for up to 3 hours post-meal. A randomized, 2-regimen, cross-over, comparative study was conducted in 44 subjects with type 2 diabetes and glycemic control was assessed with a continuous glucose monitoring system.In healthy participants, serum glucose values and incremental areas under the glucose curves (AUC) were significantly lower in the PPB-R-203 than the control group (P blood glucose concentrations for subjects on the control regimen were higher than those for subjects on the PPB-R-203-based regimen (7.9 ± 1.7, 95% confidence interval [CI] 7.4-8.4 vs 7.4 ± 1.6, 95% CI 6.9-7.9 mmol/L, respectively; P = 0.023). AUCs for total blood glucose and hyperglycemia (glucose >10 mmol/L) were also reduced for subjects on the PPB-R-203-based regimen as compared with those on control regimen (total blood glucose: 16.2 ± 4.0, 95% CI 14.9-17.4 vs 18.7 ± 4.0, 95% CI 17.6-20.1, P AUC measurements for hypoglycemia (glucose glucose excursion.

  8. Effects of short term changes in the blood glucose level on the autofluorescence lifetime of the human retina in healthy volunteers

    Science.gov (United States)

    Klemm, Matthias; Nagel, Edgar; Schweitzer, Dietrich; Schramm, Stefan; Haueisen, Jens

    2016-03-01

    Purpose: Fluorescence lifetime imaging ophthalmoscopy (FLIO) provides in vivo metabolic mapping of the ocular fundus. Changes in FLIO have been found in e.g. diabetes patients. The influence of short term metabolic changes caused by blood glucose level changes on is unknown. Aim of this work is the detection of short-term changes in fundus autofluorescence lifetime during an oral glucose tolerance test. Methods: FLIO was performed in 10 healthy volunteers (29+/-4 years, fasting for 12h) using a scanning laser ophthalmoscope (30° fundus, 34μm resolution, excitation with 473nm diode laser with 70 ps pulses at 80 MHz repetition rate, detection in two spectral channels 500-560nm (ch1) and 560-720nm (ch2) using the timecorrelated single photon counting method). The blood glucose level (BGL) was measured by an Accu-Chek® Aviva self-monitoring device. Before and after a glucose drink (300ml solution, containing 75g of glucose (Accu-Chek® Dextrose O.G.T.), BGL and FLIO were measured every 15min. The FLIMX software package was applied to compute the average fluorescence lifetime τ on the inner ring of the ETDRS grid using a modified 3-exponential approach. Results: The results are given as mean +/- standard deviation over all volunteers in ch1. Baseline measurement: BGL: 5.3+/-0.4 mmol/l, τ1: 49+/-6ps. A significant reduction (α=5% Wilcoxon rank-sum test) in τ1 is detected after 15min (BGL: 8.4+/-1.1 mmol/l, τ1: 44+/-5ps) and after 90min (BGL: 6.3+/-1.4 mmol/l, τ1: 41+/-5ps). Results of ch2 show smaller reductions in the fluorescence lifetimes over time.

  9. High blood sugar

    Science.gov (United States)

    ... Alternative Names Hyperglycemia - self care; High blood glucose - self care; Diabetes - high blood sugar References American Diabetes Association. Standards of medical care in diabetes - 2017: 4. Lifestyle management and 6. Glycemic targets. Diabetes Care . 2017;40( ...

  10. Wearable Contact Lens Biosensors for Continuous Glucose Monitoring Using Smartphones.

    Science.gov (United States)

    Elsherif, Mohamed; Hassan, Mohammed Umair; Yetisen, Ali K; Butt, Haider

    2018-05-17

    Low-cost, robust, and reusable continuous glucose monitoring systems that can provide quantitative measurements at point-of-care settings is an unmet medical need. Optical glucose sensors require complex and time-consuming fabrication processes, and their readouts are not practical for quantitative analyses. Here, a wearable contact lens optical sensor was created for the continuous quantification of glucose at physiological conditions, simplifying the fabrication process and facilitating smartphone readouts. A photonic microstructure having a periodicity of 1.6 μm was printed on a glucose-selective hydrogel film functionalized with phenylboronic acid. Upon binding with glucose, the microstructure volume swelled, which modulated the periodicity constant. The resulting change in the Bragg diffraction modulated the space between zero- and first-order spots. A correlation was established between the periodicity constant and glucose concentration within 0-50 mM. The sensitivity of the sensor was 12 nm mM -1 , and the saturation response time was less than 30 min. The sensor was integrated with commercial contact lenses and utilized for continuous glucose monitoring using smartphone camera readouts. The reflected power of the first-order diffraction was measured via a smartphone application and correlated to the glucose concentrations. A short response time of 3 s and a saturation time of 4 min was achieved in the continuous monitoring mode. Glucose-sensitive photonic microstructures may have applications in point-of-care continuous monitoring devices and diagnostics at home settings.

  11. The effectiveness of continuous subcutaneous insulin pumps with continuous glucose monitoring in outpatient adolescents with type 1 diabetes: A systematic review.

    Science.gov (United States)

    Matsuda, Erin; Brennan, Patricia

    2012-01-01

    The review question is: Are metabolic outcomes improved in outpatient adolescents (aged 13 to 19 years) with type 1 diabetes on a Continuous Subcutaneous Insulin Infusion (CSII) when continuous glucose monitoring is used, compared to self-glucose monitoring alone? Type 1 diabetes is the most common childhood paediatric disease, characterised by impairment of insulin producing βeta-cells in the pancreas. Internationally, there is variation in the incidence of type 1 diabetes in paediatric patients. According to the Center for Disease Control and Prevention (CDC) and the SEARCH for Diabetes in Youth Study Group, the overall incidence rate of this autoimmune disease is 24.3/100,000 in those 19 years of age . Annually, more than 15,000 children and adolescents are diagnosed in the United States (US) . From 1990 to 1999, the World Health Organization (WHO) launched the Multinational Project for Childhood Diabetes (DIAMOND), which was tasked with assessing type 1 diabetes in those 14 years or younger worldwide . Finland was discovered to have the highest age-adjusted incidence at 40.9 cases per 100,000/year. The lowest age-adjusted incidence is in China and Venezuela at 0.1 cases per 100,000/year. Globally, the largest increase in incidence is in those aged 10 to 14 years . This systematic review will focus on adolescent patients with type 1 diabetes, aged 13 to 19 years who manage their diabetes with an insulin pump.Patients with type 1 diabetes mellitus typically present with a history of polydipsia, polyuria, polyphagia, and weight loss . Initial findings include hyperglycemia, glycosuria, and ketones in the blood or urine . In 2009, the International Expert Committee deemed a haemoglobin A1C (glycosylated haemoglobin) of 6.5% or higher to be the standard for diagnosis . The American Diabetes Association (ADA) as well as the International Diabetes Federation and the European Association Study of Diabetes (EASD) accept this measure as the diagnostic tool for diabetes

  12. Cotransplantation of Mesenchymal Stem Cells and Immature Dendritic Cells Potentiates the Blood Glucose Control of Islet Allografts

    Directory of Open Access Journals (Sweden)

    Guanghui Long

    2017-01-01

    Full Text Available Background. Transplantation of islets is a promising alternative to treat type 1 diabetes (T1D, but graft rejection is the major obstacle to its application in clinical practice. We evaluated the effects of mesenchymal stem cells (MSCs and immature dendritic cells (imDCs on islet transplantation in diabetic model. Methods. The streptozotocin T1D model was established in BABL/c mice. Rat islets were isolated and identified with dithizone (DTZ staining. MSCs and imDCs were isolated from bone marrow of syngenic mice. Islets, alone or along with MSCs and/or imDCs, were transplanted to the left kidney capsule of diabetic mice. The blood glucose levels and glycosylated hemoglobin levels after transplantation were monitored. Results. Cotransplantation significantly decreased blood glucose and glycosylated hemoglobin levels in the diabetes mice. Transplantation of 200 islets + 2 × 105 MSCs + 2 × 105 imDCs could not only restore normal blood glucose levels, but also significantly prolong graft survival for 12.6±3.48 days. Conclusions. Cotransplantation of allogenic islets with imDCs and/or MSCs can significantly promote graft survival, reverse hyperglycemia, and effectively control the glycosylated hemoglobin levels.

  13. Comparison of accuracy and safety of the SEVEN and the Navigator continuous glucose monitoring systems.

    Science.gov (United States)

    Garg, Satish K; Smith, James; Beatson, Christie; Lopez-Baca, Benita; Voelmle, Mary; Gottlieb, Peter A

    2009-02-01

    This study evaluated the accuracy and safety of two continuous glucose monitoring (CGM) systems, the SEVEN (DexCom, San Diego, CA) and the Navigator (Abbott Diabetes Care, Alameda, CA), with the YSI laboratory measurements of blood glucose (blood glucose meter manufactured by YSI, Yellow Springs, OH), when worn concurrently in adults with type 1 diabetes. Fourteen subjects with type 1 diabetes, 33 +/- 6 (mean +/- SD) years old, were enrolled in this study. All subjects wore both sensors concurrently over three consecutive 5-day CGM sessions (15-day wear). On Days 5, 10, and 15, subjects participated in an 8-h in-clinic session where measurements from the CGM systems were collected and compared with YSI measurements every 15 min. At the end of Day 5 and 10 in-clinic sessions, the sensors were removed, and new sensors were inserted for the following CGM session despite the SEVEN system's recommended use for up to 7 days. The mean absolute relative difference (ARD) for the two CGM devices versus YSI was not different: 16.8% and 16.1% for SEVEN and Navigator, respectively (P = 0.38). In the hypoglycemic region (YSI value blood glucose (SMBG) values. Thirteen additional Navigator replacement devices were issued compared to two for the SEVEN. A total of three versus 14 skin reactions were reported with the SEVEN and Navigator insertion area, respectively. Glucose measurements with the SEVEN and Navigator were found to be similar compared with YSI and SMBG measurements, with the exception of the hypoglycemic range where the SEVEN performed better. However, the Navigator caused more skin area reactions.

  14. [PROGNOSTIC SIGNIFICANCE OF CHANGES OF BLOOD GLUCOSE LEVEL IN PATIENTS WITH THORACOABDOMINAL INJURIES.

    Science.gov (United States)

    Sorokin, E P; Ponomarev, S V; Shilyaeva, Ye V; Bel'skih, Ye A; Gritsan, A I

    2016-07-01

    Background Currently, one of the causes of high morbidity and mortality is injuries. Predict the outcome of injuries - it is an important task of the treating physician. Trauma is a stress factor so to predict the outcome, you can use markers of stress, the most accessible ofwhich is blood glucose. to reveal the dynamics of the relationship between blood glucose levels and the outlook for the life ofpatients with thoracoabdominal injuries. A retrospective analysis of medical records of hospitalized patients were divided into two groups, depending on the outlook for the life of (favorable or unfavorable), and each of the groups - into two subgroups according to the presence or absence of signs of intoxication at admission. The subgroups were calculated and compared the mean blood glucose levels at different hours of hospital treatment. It was found that the average blood glucose levels at various hours of hospital stay were significantly higher in patients with poor outcome. The most noticeable was the difference in the first days of hospital treatment. Signs of intoxication was associated with lower values of glucose and a tendency to hypoglycaemia. In addition, among patients with high blood glucose ( 8 mg / dL) was observed over deaths in the first day of hospital stay. High blood glucose levels ( 8,0 mmol / L) in the first day of hospital treatment is a predictor ofpoor outcome in patients with thoracoabdominal injuries.

  15. Effect of blood glucose level on 18F-FDG PET/CT imaging

    International Nuclear Information System (INIS)

    Tan Haibo; Lin Xiangtong; Guan Yihui; Zhao Jun; Zuo Chuantao; Hua Fengchun; Tang Wenying

    2008-01-01

    Objective: The aim of this study was to investigate the effect of blood glucose level on the image quality of 18 F-fluorodeoxyglucose (FDG) PET/CT imaging. Methods: Eighty patients referred to the authors' department for routine whole-body 18 F-FDG PET/CT check up were recruited into this study. The patients were classified into 9 groups according to their blood glucose level: normal group avg and SUV max ) of liver on different slices. SPSS 12.0 was used to analyse the data. Results: (1) There were significant differences among the 9 groups in image quality scores and image noises (all P avg and SUV max : 0.60 and 0.33, P<0.05). Conclusions: The higher the blood glucose level, the worse the image quality. When the blood glucose level is more than or equal to 12.0 mmol/L, the image quality will significantly degrade. (authors)

  16. Toward CMOS image sensor based glucose monitoring.

    Science.gov (United States)

    Devadhasan, Jasmine Pramila; Kim, Sanghyo

    2012-09-07

    Complementary metal oxide semiconductor (CMOS) image sensor is a powerful tool for biosensing applications. In this present study, CMOS image sensor has been exploited for detecting glucose levels by simple photon count variation with high sensitivity. Various concentrations of glucose (100 mg dL(-1) to 1000 mg dL(-1)) were added onto a simple poly-dimethylsiloxane (PDMS) chip and the oxidation of glucose was catalyzed with the aid of an enzymatic reaction. Oxidized glucose produces a brown color with the help of chromogen during enzymatic reaction and the color density varies with the glucose concentration. Photons pass through the PDMS chip with varying color density and hit the sensor surface. Photon count was recognized by CMOS image sensor depending on the color density with respect to the glucose concentration and it was converted into digital form. By correlating the obtained digital results with glucose concentration it is possible to measure a wide range of blood glucose levels with great linearity based on CMOS image sensor and therefore this technique will promote a convenient point-of-care diagnosis.

  17. Photoacoustic determination of glucose concentration in whole blood by a near-infrared laser diode

    Science.gov (United States)

    Zhao, Zuomin; Myllylae, Risto A.

    2001-06-01

    The near-infrared photoacoustic technique is recognized as a potential method for the non-invasive determination of human glucose, because near-infrared light can incident a few millimeters into human tissue, where it produces an acoustic wave capable of carrying information about the composition of the tissue. This paper demonstrates a photoacoustic glucose measurement in a blood sample as a step toward a non-invasive measurement. The experimental apparatus consists of a near-infrared laser diode operating with 4 micro joules pulse energy at 905 nm, a roller pump connected to a silicon plastic tube and a cuvette for circulating the blood sample. In addition, the apparatus comprises a PZT piezoelectric transducer integrated with a battery-powered preamplifier to receive the photoacoustic signal. During the experiment, a glucose solution is mixed into a human blood sample to change its concentration. Although the absorption coefficient of glucose is much smaller than that of blood in the near-infrared region, the osmotic and hydrophilic properties of glucose decrease the reduced scattering coefficient of blood caused by the dissolved glucose surrounding the blood cells. This changes the distribution of the absorbed optical energy in blood, which, in turn, produces a change in the photoacoustic signal. Our experiment demonstrates that signal amplitudes in fresh and stored blood samples in crease about 7% and 10%, respectively, when the glucose concentration reaches the upper limit of the physiological region (500 mg/dl).

  18. Glucose Transporters at the Blood-Brain Barrier: Function, Regulation and Gateways for Drug Delivery.

    Science.gov (United States)

    Patching, Simon G

    2017-03-01

    Glucose transporters (GLUTs) at the blood-brain barrier maintain the continuous high glucose and energy demands of the brain. They also act as therapeutic targets and provide routes of entry for drug delivery to the brain and central nervous system for treatment of neurological and neurovascular conditions and brain tumours. This article first describes the distribution, function and regulation of glucose transporters at the blood-brain barrier, the major ones being the sodium-independent facilitative transporters GLUT1 and GLUT3. Other GLUTs and sodium-dependent transporters (SGLTs) have also been identified at lower levels and under various physiological conditions. It then considers the effects on glucose transporter expression and distribution of hypoglycemia and hyperglycemia associated with diabetes and oxygen/glucose deprivation associated with cerebral ischemia. A reduction in glucose transporters at the blood-brain barrier that occurs before the onset of the main pathophysiological changes and symptoms of Alzheimer's disease is a potential causative effect in the vascular hypothesis of the disease. Mutations in glucose transporters, notably those identified in GLUT1 deficiency syndrome, and some recreational drug compounds also alter the expression and/or activity of glucose transporters at the blood-brain barrier. Approaches for drug delivery across the blood-brain barrier include the pro-drug strategy whereby drug molecules are conjugated to glucose transporter substrates or encapsulated in nano-enabled delivery systems (e.g. liposomes, micelles, nanoparticles) that are functionalised to target glucose transporters. Finally, the continuous development of blood-brain barrier in vitro models is important for studying glucose transporter function, effects of disease conditions and interactions with drugs and xenobiotics.

  19. CONTINUOUS GLUCOSE MONITORING: A CONSENSUS CONFERENCE OF THE AMERICAN ASSOCIATION OF CLINICAL ENDOCRINOLOGISTS AND AMERICAN COLLEGE OF ENDOCRINOLOGY.

    Science.gov (United States)

    Fonseca, Vivian A; Grunberger, George; Anhalt, Henry; Bailey, Timothy S; Blevins, Thomas; Garg, Satish K; Handelsman, Yehuda; Hirsch, Irl B; Orzeck, Eric A; Roberts, Victor Lawrence; Tamborlane, William

    2016-08-01

    Barriers to continuous glucose monitoring (CGM) use continue to hamper adoption of this valuable technology for the management of diabetes. The American Association of Clinical Endocrinologists and the American College of Endocrinology convened a public consensus conference February 20, 2016, to review available CGM data and propose strategies for expanding CGM access. Conference participants agreed that evidence supports the benefits of CGM in type 1 diabetes and that these benefits are likely to apply whenever intensive insulin therapy is used, regardless of diabetes type. CGM is likely to reduce healthcare resource utilization for acute and chronic complications, although real-world analyses are needed to confirm potential cost savings and quality of life improvements. Ongoing technological advances have improved CGM accuracy and usability, but more innovations in human factors, data delivery, reporting, and interpretation are needed to foster expanded use. The development of a standardized data report using similar metrics across all devices would facilitate clinician and patient understanding and utilization of CGM. Expanded CGM coverage by government and private payers is an urgent need. CGM improves glycemic control, reduces hypoglycemia, and may reduce overall costs of diabetes management. Expanding CGM coverage and utilization is likely to improve the health outcomes of people with diabetes. A1C = glycated hemoglobin AACE = American Association of Clinical Endocrinologists ACE = American College of Endocrinology ASPIRE = Automation to Simulate Pancreatic Insulin Response CGM = continuous glucose monitoring HRQOL = health-related quality of life ICER = incremental cost-effectiveness ratio JDRF = Juvenile Diabetes Research Foundation MARD = mean absolute relative difference MDI = multiple daily injections QALY = quality-adjusted life years RCT = randomized, controlled trial SAP = sensor-augmented pump SMBG = self-monitoring of blood glucose STAR = Sensor

  20. Is self-monitoring of blood glucose effective in improving glycaemic control in type 2 diabetes without insulin treatment: a meta-analysis of randomised controlled trials

    Science.gov (United States)

    Zhu, Hongmei; Zhu, Yanan; Leung, Siu-wai

    2016-01-01

    Objective The present study aimed to verify the effectiveness of self-monitoring of blood glucose (SMBG) in patients with non-insulin-treated type 2 diabetes (T2D). Methods A comprehensive literature search was conducted in PubMed, Cochrane Library, Web of Science, ScienceDirect and ClinicalTrials.gov from their respective inception dates to 26 October 2015. Eligible randomised controlled trials (RCTs) were included according to prespecified criteria. The quality of the included RCTs was evaluated according to the Cochrane risk of bias tool, and the evidence quality of meta-analyses was assessed by the Grading of Recommendation, Assessment, Development, and Evaluation (GRADE) criteria. A meta-analysis of primary and secondary outcome measures was performed. Sensitivity and subgroup analyses were carried out to evaluate the robustness and heterogeneity of the findings. Begg's and Egger's tests were used to quantify publication biases. Results A total of 15 RCTs, comprising 3383 patients with non-insulin-treated T2D, met the inclusion criteria. The SMBG intervention improved glycated haemoglobin (HbA1c) (mean difference −0.33; 95% CI −0.45 to −0.22; p=3.0730e−8; n=18), body mass index (BMI; −0.65; −1.18 to −0.12; p=0.0164; n=9) and total cholesterol (TC; −0.12; −0.20 to −0.04; p=0.0034; n=8) more effectively than the control in overall effect. The sensitivity analysis revealed little difference in overall effect, indicating the robustness of the results. SMBG moderated HbA1c levels better than the control in all subgroup analyses. Most of the RCTs had high risk of bias in blinding, while the overall quality of evidence for HbA1c was moderate according to the GRADE criteria. Publication bias was moderate for BMI. Conclusions SMBG improved HbA1c levels in the short term (≤6-month follow-up) and long term (≥12-month follow-up) in patients with T2D who were not using insulin. Trial registration number CRD42015019099. PMID:27591016