WorldWideScience

Sample records for blood gene expression

  1. Gene expression signature in peripheral blood detects thoracic aortic aneurysm.

    Directory of Open Access Journals (Sweden)

    Yulei Wang

    Full Text Available BACKGROUND: Thoracic aortic aneurysm (TAA is usually asymptomatic and associated with high mortality. Adverse clinical outcome of TAA is preventable by elective surgical repair; however, identifying at-risk individuals is difficult. We hypothesized that gene expression patterns in peripheral blood cells may correlate with TAA disease status. Our goal was to identify a distinct gene expression signature in peripheral blood that may identify individuals at risk for TAA. METHODS AND FINDINGS: Whole genome gene expression profiles from 94 peripheral blood samples (collected from 58 individuals with TAA and 36 controls were analyzed. Significance Analysis of Microarray (SAM identified potential signature genes characterizing TAA vs. normal, ascending vs. descending TAA, and sporadic vs. familial TAA. Using a training set containing 36 TAA patients and 25 controls, a 41-gene classification model was constructed for detecting TAA status and an overall accuracy of 78+/-6% was achieved. Testing this classifier on an independent validation set containing 22 TAA samples and 11 controls yielded an overall classification accuracy of 78%. These 41 classifier genes were further validated by TaqMan real-time PCR assays. Classification based on the TaqMan data replicated the microarray results and achieved 80% classification accuracy on the testing set. CONCLUSIONS: This study identified informative gene expression signatures in peripheral blood cells that can characterize TAA status and subtypes of TAA. Moreover, a 41-gene classifier based on expression signature can identify TAA patients with high accuracy. The transcriptional programs in peripheral blood leading to the identification of these markers also provide insights into the mechanism of development of aortic aneurysms and highlight potential targets for therapeutic intervention. The classifier genes identified in this study, and validated by TaqMan real-time PCR, define a set of promising potential

  2. Identification and validation of suitable endogenous reference genes for gene expression studies in human peripheral blood

    Directory of Open Access Journals (Sweden)

    Turner Renee J

    2009-08-01

    Full Text Available Abstract Background Gene expression studies require appropriate normalization methods. One such method uses stably expressed reference genes. Since suitable reference genes appear to be unique for each tissue, we have identified an optimal set of the most stably expressed genes in human blood that can be used for normalization. Methods Whole-genome Affymetrix Human 2.0 Plus arrays were examined from 526 samples of males and females ages 2 to 78, including control subjects and patients with Tourette syndrome, stroke, migraine, muscular dystrophy, and autism. The top 100 most stably expressed genes with a broad range of expression levels were identified. To validate the best candidate genes, we performed quantitative RT-PCR on a subset of 10 genes (TRAP1, DECR1, FPGS, FARP1, MAPRE2, PEX16, GINS2, CRY2, CSNK1G2 and A4GALT, 4 commonly employed reference genes (GAPDH, ACTB, B2M and HMBS and PPIB, previously reported to be stably expressed in blood. Expression stability and ranking analysis were performed using GeNorm and NormFinder algorithms. Results Reference genes were ranked based on their expression stability and the minimum number of genes needed for nomalization as calculated using GeNorm showed that the fewest, most stably expressed genes needed for acurate normalization in RNA expression studies of human whole blood is a combination of TRAP1, FPGS, DECR1 and PPIB. We confirmed the ranking of the best candidate control genes by using an alternative algorithm (NormFinder. Conclusion The reference genes identified in this study are stably expressed in whole blood of humans of both genders with multiple disease conditions and ages 2 to 78. Importantly, they also have different functions within cells and thus should be expressed independently of each other. These genes should be useful as normalization genes for microarray and RT-PCR whole blood studies of human physiology, metabolism and disease.

  3. Gene expression analysis in human breast cancer associated blood vessels.

    Directory of Open Access Journals (Sweden)

    Dylan T Jones

    Full Text Available Angiogenesis is essential for solid tumour growth, whilst the molecular profiles of tumour blood vessels have been reported to be different between cancer types. Although presently available anti-angiogenic strategies are providing some promise for the treatment of some cancers it is perhaps not surprisingly that, none of the anti-angiogenic agents available work on all tumours. Thus, the discovery of novel anti-angiogenic targets, relevant to individual cancer types, is required. Using Affymetrix microarray analysis of laser-captured, CD31-positive blood vessels we have identified 63 genes that are upregulated significantly (5-72 fold in angiogenic blood vessels associated with human invasive ductal carcinoma (IDC of the breast as compared with blood vessels in normal human breast. We tested the angiogenic capacity of a subset of these genes. Genes were selected based on either their known cellular functions, their enriched expression in endothelial cells and/or their sensitivity to anti-VEGF treatment; all features implicating their involvement in angiogenesis. For example, RRM2, a ribonucleotide reductase involved in DNA synthesis, was upregulated 32-fold in IDC-associated blood vessels; ATF1, a nuclear activating transcription factor involved in cellular growth and survival was upregulated 23-fold in IDC-associated blood vessels and HEX-B, a hexosaminidase involved in the breakdown of GM2 gangliosides, was upregulated 8-fold in IDC-associated blood vessels. Furthermore, in silico analysis confirmed that AFT1 and HEX-B also were enriched in endothelial cells when compared with non-endothelial cells. None of these genes have been reported previously to be involved in neovascularisation. However, our data establish that siRNA depletion of Rrm2, Atf1 or Hex-B had significant anti-angiogenic effects in VEGF-stimulated ex vivo mouse aortic ring assays. Overall, our results provide proof-of-principle that our approach can identify a cohort of

  4. Blood cell gene expression profiling in rheumatoid arthritis. Discriminative genes and effect of rheumatoid factor

    DEFF Research Database (Denmark)

    Bovin, Lone Frier; Rieneck, Klaus; Workman, Christopher;

    2004-01-01

    To study the pathogenic importance of the rheumatoid factor (RF) in rheumatoid arthritis (RA) and to identify genes differentially expressed in patients and healthy individuals, total RNA was isolated from peripheral blood mononuclear cells (PBMC) from eight RF-positive and six RF-negative RA...

  5. Blood cell gene expression profiling in rheumatoid arthritis - Discriminative genes and effect of rheumatoid factor

    DEFF Research Database (Denmark)

    Bovin, L.F.; Rieneck, K.; Workman, Christopher;

    2004-01-01

    To study the pathogenic importance of the rheumatoid factor (RF) in rheumatoid arthritis (RA) and to identify genes differentially expressed in patients and healthy individuals, total RNA was isolated from peripheral blood mononuclear cells (PBMC) from eight RF-positive and six RF-negative RA...

  6. Whole Blood Transcriptome Sequencing Reveals Gene Expression Differences between Dapulian and Landrace Piglets

    OpenAIRE

    Hu, Jiaqing; Yang, Dandan; Chen, Wei; Li, Chuanhao; Wang, Yandong; Zeng, Yongqing; Wang, Hui

    2016-01-01

    There is little genomic information regarding gene expression differences at the whole blood transcriptome level of different pig breeds at the neonatal stage. To solve this, we characterized differentially expressed genes (DEGs) in the whole blood of Dapulian (DPL) and Landrace piglets using RNA-seq (RNA-sequencing) technology. In this study, 83 DEGs were identified between the two breeds. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses identified immun...

  7. Blood cell gene expression profiling in rheumatoid arthritis. Discriminative genes and effect of rheumatoid factor

    DEFF Research Database (Denmark)

    Bovin, Lone Frier; Rieneck, Klaus; Workman, Christopher;

    2004-01-01

    To study the pathogenic importance of the rheumatoid factor (RF) in rheumatoid arthritis (RA) and to identify genes differentially expressed in patients and healthy individuals, total RNA was isolated from peripheral blood mononuclear cells (PBMC) from eight RF-positive and six RF-negative RA...... from all fourteen RA patients and healthy controls identified a subset of discriminative genes. These results were validated by real time reverse transcription polymerase chain reaction (RT-PCR) on another group of RA patients and healthy controls. This confirmed that the following genes had...

  8. Modular Analysis of Peripheral Blood Gene Expression in Rheumatoid Arthritis Captures Reproducible Gene Expression Changes in TNF Responders

    Science.gov (United States)

    Oswald, Michaela; Curran, Mark; Lamberth, Sarah; Townsend, Robert; Hamilton, Jennifer D.; Chernoff, David N.; Carulli, John; Townsend, Michael; Weinblatt, Michael; Kern, Marlena; Pond, Cassandra; Lee, Annette; Gregersen, Peter K.

    2015-01-01

    Objective To establish whether the analysis of whole blood gene expression can be useful in predicting or monitoring response to anti-TNF therapy in RA. Methods Whole blood RNA (PAXgene) was obtained at baseline and 14 weeks on three independent cohorts with a combined total of 250 patients with rheumatoid arthritis beginning anti-TNF therapy. We employed an approach to gene expression analysis that is based on gene expression “modules”. Results Good and Moderate Responders by EULAR criteria exhibited highly significant and consistent changes in multiple gene expression modules using a hyper geometric analysis after 14 weeks of therapy. Strikingly, non responders exhibited very little change in any modules, despite exposure to TNF blockade. These patterns of change were highly consistent across all three cohorts, indicating that immunological changes after TNF treatment are specific to the combination of both drug exposure and responder status. In contrast, modular patterns of gene expression did not exhibit consistent differences between responders and non-responders at baseline in the three cohorts. Conclusions These data provide evidence that using gene expression modules related to inflammatory disease may provide a valuable method for objective monitoring of the response of RA patients who are treated with TNF inhibitors. PMID:25371395

  9. Leukocyte count affects expression of reference genes in canine whole blood samples

    NARCIS (Netherlands)

    Piek, C.J.; Brinkhof, B.; Rothuizen, J.; Dekker, A.; Penning, L.C.

    2011-01-01

    Background The dog is frequently used as a model for hematologic human diseases. In this study the suitability of nine potential reference genes for quantitative RT-PCR studies in canine whole blood was investigated. Findings The expression of these genes was measured in whole blood samples of 263 i

  10. Data-driven asthma endotypes defined from blood biomarker and gene expression data

    Science.gov (United States)

    The diagnosis and treatment of childhood asthma is complicated by its mechanistically distinct subtypes (endotypes) driven by genetic susceptibility and modulating environmental factors. Clinical biomarkers and blood gene expression were collected from a stratified, cross-section...

  11. Obesity alters the expression profile of clock genes in peripheral blood mononuclear cells

    Science.gov (United States)

    Tahira, Kazunobu; Fukuda, Noboru; Aoyama, Takahiko; Tsunemi, Akiko; Matsumoto, Siroh; Nagura, Chinami; Matsumoto, Taro; Soma, Masayoshi; Shimba, Shigeki; Matsumoto, Yoshiaki

    2011-01-01

    Introduction The aim of this study was to investigate the association between the variation in expression profile of clock genes and obesity using peripheral blood mononuclear (PMN) cells. Material and methods The subjects comprised 10 obese patients and 10 healthy volunteers. Blood was collected at different time-points during the day and levels of blood sugar, IRI, adiponectin and leptin were determined. Peripheral blood mononuclear cells were sampled, and expression levels of brain and muscle Arnt-like protein-1 (BMAL1), Period (PER)1, PER2, Cryptochrome (CRY)1, CRY2, and REV-ERBα mRNA were quantified. Results During the day, the expression levels of BMAL1, CRY1, CRY2 and PER2 genes in PMN cells of the obese group were all significantly higher compared to those in the non-obese group. In addition, expression of BMAL1, CRY1, CRY2 and PER2 genes in PMN cells increased between 12:00 and 21:00 in the obese group. In PMN cells of both groups, PER1 gene expression showed a bimodal pattern, with high expression at 9:00 and 18:00. Conclusions Differences were observed in the expression profile variation of clock genes between the obese and non-obese groups. This study reveals the differences in clock gene expression profiles between obese and non-obese subjects, with evidence for two distinct chronotypes, and suggests a contribution of these chronotypes to fat accumulation in humans. PMID:22328874

  12. Altered gene expression in blood and sputum in COPD frequent exacerbators in the ECLIPSE cohort.

    Directory of Open Access Journals (Sweden)

    Dave Singh

    Full Text Available Patients with chronic obstructive pulmonary disease (COPD who are defined as frequent exacerbators suffer with 2 or more exacerbations every year. The molecular mechanisms responsible for this phenotype are poorly understood. We investigated gene expression profile patterns associated with frequent exacerbations in sputum and blood cells in a well-characterised cohort. Samples from subjects from the ECLIPSE COPD cohort were used; sputum and blood samples from 138 subjects were used for microarray gene expression analysis, while blood samples from 438 subjects were used for polymerase chain reaction (PCR testing. Using microarray, 150 genes were differentially expressed in blood (>±1.5 fold change, p≤0.01 between frequent compared to non-exacerbators. In sputum cells, only 6 genes were differentially expressed. The differentially regulated genes in blood included downregulation of those involved in lymphocyte signalling and upregulation of pro-apoptotic signalling genes. Multivariate analysis of the microarray data followed by confirmatory PCR analysis identified 3 genes that predicted frequent exacerbations; B3GNT, LAF4 and ARHGEF10. The sensitivity and specificity of these 3 genes to predict the frequent exacerbator phenotype was 88% and 33% respectively. There are alterations in systemic immune function associated with frequent exacerbations; down-regulation of lymphocyte function and a shift towards pro-apoptosis mechanisms are apparent in patients with frequent exacerbations.

  13. Altered gene expression in blood and sputum in COPD frequent exacerbators in the ECLIPSE cohort.

    Science.gov (United States)

    Singh, Dave; Fox, Steven M; Tal-Singer, Ruth; Bates, Stewart; Riley, John H; Celli, Bartolome

    2014-01-01

    Patients with chronic obstructive pulmonary disease (COPD) who are defined as frequent exacerbators suffer with 2 or more exacerbations every year. The molecular mechanisms responsible for this phenotype are poorly understood. We investigated gene expression profile patterns associated with frequent exacerbations in sputum and blood cells in a well-characterised cohort. Samples from subjects from the ECLIPSE COPD cohort were used; sputum and blood samples from 138 subjects were used for microarray gene expression analysis, while blood samples from 438 subjects were used for polymerase chain reaction (PCR) testing. Using microarray, 150 genes were differentially expressed in blood (>±1.5 fold change, p≤0.01) between frequent compared to non-exacerbators. In sputum cells, only 6 genes were differentially expressed. The differentially regulated genes in blood included downregulation of those involved in lymphocyte signalling and upregulation of pro-apoptotic signalling genes. Multivariate analysis of the microarray data followed by confirmatory PCR analysis identified 3 genes that predicted frequent exacerbations; B3GNT, LAF4 and ARHGEF10. The sensitivity and specificity of these 3 genes to predict the frequent exacerbator phenotype was 88% and 33% respectively. There are alterations in systemic immune function associated with frequent exacerbations; down-regulation of lymphocyte function and a shift towards pro-apoptosis mechanisms are apparent in patients with frequent exacerbations.

  14. Stimulated Gene Expression Profiles as a Blood Marker of Major Depressive Disorder

    NARCIS (Netherlands)

    Spijker, Sabine; Van Zanten, Jeroen S.; De Jong, Simone; Penninx, Brenda; van Dyck, Richard; Zitman, Frans G.; Smit, Jan H.; Ylstra, Bauke; Smit, August B.; Hoogendijk, Witte J. G.

    2010-01-01

    Background: Major depressive disorder (MDD) is a moderately heritable disorder with a high lifetime prevalence. At present, laboratory blood tests to support MDD diagnosis are not available. Methods: We used a classifier approach on blood gene expression profiles of a unique set of unmedicated subje

  15. Identification of Phosphoglycerate Kinase 1 (PGK1 as a reference gene for quantitative gene expression measurements in human blood RNA

    Directory of Open Access Journals (Sweden)

    Unger Elizabeth R

    2011-09-01

    Full Text Available Abstract Background Blood is a convenient sample and increasingly used for quantitative gene expression measurements with a variety of diseases including chronic fatigue syndrome (CFS. Quantitative gene expression measurements require normalization of target genes to reference genes that are stable and independent from variables being tested in the experiment. Because there are no genes that are useful for all situations, reference gene selection is an essential step to any quantitative reverse transcription-PCR protocol. Many publications have described appropriate genes for a wide variety of tissues and experimental conditions, however, reference genes that may be suitable for the analysis of CFS, or human blood RNA derived from whole blood as well as isolated peripheral blood mononuclear cells (PBMCs, have not been described. Findings Literature review and analyses of our unpublished microarray data were used to narrow down the pool of candidate reference genes to six. We assayed whole blood RNA from Tempus tubes and cell preparation tube (CPT-collected PBMC RNA from 46 subjects, and used the geNorm and NormFinder algorithms to select the most stable reference genes. Phosphoglycerate kinase 1 (PGK1 was one of the optimal normalization genes for both whole blood and PBMC RNA, however, additional genes differed for the two sample types; Ribosomal protein large, P0 (RPLP0 for PBMC RNA and Peptidylprolyl isomerase B (PPIB for whole blood RNA. We also show that the use of a single reference gene is sufficient for normalization when the most stable candidates are used. Conclusions We have identified PGK1 as a stable reference gene for use with whole blood RNA and RNA derived from PBMC. When stable genes are selected it is possible to use a single gene for normalization rather than two or three. Optimal normalization will improve the ability of results from PBMC RNA to be compared with those from whole blood RNA and potentially allows comparison of

  16. Investigation of variation in gene expression profiling of human blood by extended principle component analysis.

    Directory of Open Access Journals (Sweden)

    Qinghua Xu

    Full Text Available BACKGROUND: Human peripheral blood is a promising material for biomedical research. However, various kinds of biological and technological factors result in a large degree of variation in blood gene expression profiles. METHODOLOGY/PRINCIPAL FINDINGS: Human peripheral blood samples were drawn from healthy volunteers and analysed using the Human Genome U133Plus2 Microarray. We applied a novel approach using the Principle Component Analysis and Eigen-R(2 methods to dissect the overall variation of blood gene expression profiles with respect to the interested biological and technological factors. The results indicated that the predominating sources of the variation could be traced to the individual heterogeneity of the relative proportions of different blood cell types (leukocyte subsets and erythrocytes. The physiological factors like age, gender and BMI were demonstrated to be associated with 5.3% to 9.2% of the total variation in the blood gene expression profiles. We investigated the gene expression profiles of samples from the same donors but with different levels of RNA quality. Although the proportion of variation associated to the RNA Integrity Number was mild (2.1%, the significant impact of RNA quality on the expression of individual genes was observed. CONCLUSIONS: By characterizing the major sources of variation in blood gene expression profiles, such variability can be minimized by modifications to study designs. Increasing sample size, balancing confounding factors between study groups, using rigorous selection criteria for sample quality, and well controlled experimental processes will significantly improve the accuracy and reproducibility of blood transcriptome study.

  17. Laparotomy in mice induces blood cell expression of inflammatory and stress genes.

    Science.gov (United States)

    Ko, Fred; Isoda, Fumiko; Mobbs, Charles

    2015-04-01

    Surgical trauma induces immune and stress responses although its effects on postsurgical inflammatory and stress gene expression remain poorly characterized. This study sought to improve current scientific knowledge by investigating the effects of laparotomy on mouse blood cell inflammatory and stress gene expression. Three-month-old male C57BL/6J mice were subjected to 2% isoflurane or 2% isoflurane with laparotomy and sacrificed 4 h postintervention. Blood was collected and blood cell expression of 158 genes central to inflammatory and stress responses was assayed using quantitative polymerase chain reaction arrays. Mice subjected to isoflurane with laparotomy, compared with mice receiving isoflurane alone, had >2-fold upregulation of genes in inflammation (Osm, IL1rn, IL1b, and Csf1), oxidative stress (Hmox1), heat shock (Hspa1b), growth arrest (Cdkn1a), and DNA repair (Ugt1a2). These genes demonstrated similar expression patterns by Pearson correlation and cluster analysis. Thus, laparotomy induces coordinated, postsurgical blood cell expression of unique inflammatory and stress genes whose roles in influencing surgical outcomes need further investigation.

  18. Changes in winter depression phenotype correlate with white blood cell gene expression profiles : A combined metagene and gene ontology approach

    NARCIS (Netherlands)

    Bosker, Fokko J.; Terpstra, Peter; Gladkevich, Anatoliy V.; Dijck-Brouwer, D. A. Janneke; te Meerman, Gerard; Nolen, Willem A.; Schoevers, Robert A.; Meesters, Ybe

    2015-01-01

    In the present study we evaluate the feasibility of gene expression in white blood cells as a peripheral marker for winter depression. Sixteen patients with winter type seasonal affective disorder were included in the study. Blood was taken by venous puncture at three time points; in winter prior an

  19. Comparison of gene expression profiles of T cells in porcine colostrum and peripheral blood.

    Science.gov (United States)

    Ogawa, Shohei; Okutani, Mie; Tsukahara, Takamitsu; Nakanishi, Nobuo; Kato, Yoshihiro; Fukuta, Kikuto; Romero-Pérez, Gustavo A; Ushida, Kazunari; Inoue, Ryo

    2016-09-01

    OBJECTIVE To compare gene expression patterns of T cells in porcine colostrum and peripheral blood. ANIMALS 10 multiparous sows. PROCEDURES Cytotoxic and CD4-CD8 double-positive T cells were separated from porcine colostrum and peripheral blood. Total RNA was extracted. The cDNA prepared from RNA was amplified, labeled, fragmented, and competitively hybridized to DNA microarray slides. The DNA microarray data were validated by use of a real-time reverse-transcription PCR assay, and expression of the genes FOS, NFKBI, IFNG, CXCR6, CCR5, ITGB2, CCR7, and SELL was assessed. Finally, DNA microarray data were validated at the protein level by use of flow cytometry via expression of c-Fos and integrin β-2. RESULTS Evaluation of gene expression profiles indicated that in contrast to results for peripheral blood, numerous cell-signaling pathways might be activated in colostrum. Profile analysis also revealed that FOS and NFKBI (genes of transcription factors) were involved in most cell-signaling pathways and that expression of these genes was significantly higher in colostral T cells than in peripheral blood T cells. Furthermore, CCR7 and SELL (genes of T-cell differentiation markers) in colostral T cells had expression patterns extremely similar to those found in effector or effector memory T cells. CONCLUSIONS AND CLINICAL RELEVANCE All or most of the T cells in colostrum had an effector-like phenotype and thus were more activated than those in peripheral blood. This gene expression profile would enable T cells to migrate to mammary glands, be secreted in colostrum, and likely contribute to passive immunity provided by sows to newborn pigs.

  20. Sex hormones and gene expression signatures in peripheral blood from postmenopausal women - the NOWAC postgenome study

    Directory of Open Access Journals (Sweden)

    Rylander Charlotta

    2011-03-01

    Full Text Available Abstract Background Postmenopausal hormone therapy (HT influences endogenous hormone concentrations and increases the risk of breast cancer. Gene expression profiling may reveal the mechanisms behind this relationship. Our objective was to explore potential associations between sex hormones and gene expression in whole blood from a population-based, random sample of postmenopausal women Methods Gene expression, as measured by the Applied Biosystems microarray platform, was compared between hormone therapy (HT users and non-users and between high and low hormone plasma concentrations using both gene-wise analysis and gene set analysis. Gene sets found to be associated with HT use were further analysed for enrichment in functional clusters and network predictions. The gene expression matrix included 285 samples and 16185 probes and was adjusted for significant technical variables. Results Gene-wise analysis revealed several genes significantly associated with different types of HT use. The functional cluster analyses provided limited information on these genes. Gene set analysis revealed 22 gene sets that were enriched between high and low estradiol concentration (HT-users excluded. Among these were seven oestrogen related gene sets, including our gene list associated with systemic estradiol use, which thereby represents a novel oestrogen signature. Seven gene sets were related to immune response. Among the 15 gene sets enriched for progesterone, 11 overlapped with estradiol. No significant gene expression patterns were found for testosterone, follicle stimulating hormone (FSH or sex hormone binding globulin (SHBG. Conclusions Distinct gene expression patterns associated with sex hormones are detectable in a random group of postmenopausal women, as demonstrated by the finding of a novel oestrogen signature.

  1. Whole Blood Transcriptome Sequencing Reveals Gene Expression Differences between Dapulian and Landrace Piglets.

    Science.gov (United States)

    Hu, Jiaqing; Yang, Dandan; Chen, Wei; Li, Chuanhao; Wang, Yandong; Zeng, Yongqing; Wang, Hui

    2016-01-01

    There is little genomic information regarding gene expression differences at the whole blood transcriptome level of different pig breeds at the neonatal stage. To solve this, we characterized differentially expressed genes (DEGs) in the whole blood of Dapulian (DPL) and Landrace piglets using RNA-seq (RNA-sequencing) technology. In this study, 83 DEGs were identified between the two breeds. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses identified immune response and metabolism as the most commonly enriched terms and pathways in the DEGs. Genes related to immunity and lipid metabolism were more highly expressed in the DPL piglets, while genes related to body growth were more highly expressed in the Landrace piglets. Additionally, the DPL piglets had twofold more single nucleotide polymorphisms (SNPs) and alternative splicing (AS) than the Landrace piglets. These results expand our knowledge of the genes transcribed in the piglet whole blood of two breeds and provide a basis for future research of the molecular mechanisms underlying the piglet differences.

  2. Whole Blood Transcriptome Sequencing Reveals Gene Expression Differences between Dapulian and Landrace Piglets

    Directory of Open Access Journals (Sweden)

    Jiaqing Hu

    2016-01-01

    Full Text Available There is little genomic information regarding gene expression differences at the whole blood transcriptome level of different pig breeds at the neonatal stage. To solve this, we characterized differentially expressed genes (DEGs in the whole blood of Dapulian (DPL and Landrace piglets using RNA-seq (RNA-sequencing technology. In this study, 83 DEGs were identified between the two breeds. Gene Ontology (GO and Kyoto Encyclopedia of Genes and Genomes (KEGG pathway analyses identified immune response and metabolism as the most commonly enriched terms and pathways in the DEGs. Genes related to immunity and lipid metabolism were more highly expressed in the DPL piglets, while genes related to body growth were more highly expressed in the Landrace piglets. Additionally, the DPL piglets had twofold more single nucleotide polymorphisms (SNPs and alternative splicing (AS than the Landrace piglets. These results expand our knowledge of the genes transcribed in the piglet whole blood of two breeds and provide a basis for future research of the molecular mechanisms underlying the piglet differences.

  3. Expression patterns and action analysis of genes associated with blood coagulation responses during rat liver regeneration

    Institute of Scientific and Technical Information of China (English)

    Li-Feng Zhao; Wei-Min Zhang; Cun-Shuan Xu

    2006-01-01

    AIM:To study the blood coagulation response after partial hepatectomy (PH) at transcriptional level.METHODS:After PH of rats, the associated genes with blood coagulation were obtained through reference to the databases, and the gene expression changes in rat regenerating liver were analyzed by the Rat Genome 230 2.0 array.RESULTS: It was found that 107 genes were associated with liver regeneration. The initially and totally expressing gene numbers occurring in initiation phase of liver regeneration (0.5-4 h after PH), G0/G1 transition (4-6 h after PH), cell proliferation (6-66 h after PH), cell differentiation and structure-function reconstruction (66-168 h after PH) were 44, 11, 58, 7 and 44, 33,100, 71 respectively, showing that the associated genes were mainly triggered in the forepart and prophase, and worked at different phases. According to their expression similarity, these genes were classified into 5 groups:only up-, predominantly up-, only down-, predominantly down-, up- and down-regulation, involving 44, 8, 36,13 and 6 genes, respectively, and the total times of their up- and down-regulation expression were 342 and 253, respectively, demonstrating that the number of the up-regulated genes was more than that of the downregulated genes. Their time relevance was classified into 15 groups, showing that the cellular physiological and biochemical activities were staggered during liver regeneration. According to gene expression patterns,they were classified into 29 types, suggesting that their protein activities were diverse and complex during liver regeneration.CONCLUSION: The blood coagulation response is enhanced mainly in the forepart, prophase and anaphase of liver regeneration, in which the response in the forepart, prophase of liver regeneration can prevent the bleeding caused by partial hepatectomy, whereas that in the anaphase contributes to the structure-function reorganization of regenerating liver. In the process,107 genes associated with liver

  4. A gene co-expression network in whole blood of schizophrenia patients is independent of antipsychotic-use and enriched for brain-expressed genes

    DEFF Research Database (Denmark)

    de Jong, Simone; Boks, Marco P M; Fuller, Tova F;

    2012-01-01

    Despite large-scale genome-wide association studies (GWAS), the underlying genes for schizophrenia are largely unknown. Additional approaches are therefore required to identify the genetic background of this disorder. Here we report findings from a large gene expression study in peripheral blood...... of schizophrenia patients and controls. We applied a systems biology approach to genome-wide expression data from whole blood of 92 medicated and 29 antipsychotic-free schizophrenia patients and 118 healthy controls. We show that gene expression profiling in whole blood can identify twelve large gene co...... of these robustly defined disease modules is significantly enriched with brain-expressed genes and with genetic variants that were implicated in a GWAS study, which could imply a causal role in schizophrenia etiology. The most highly connected intramodular hub gene in this module (ABCF1), is located in...

  5. Gene Expression Differences in Peripheral Blood of Parkinson's Disease Patients with Distinct Progression Profiles.

    Directory of Open Access Journals (Sweden)

    Raquel Pinho

    Full Text Available The prognosis of neurodegenerative disorders is clinically challenging due to the inexistence of established biomarkers for predicting disease progression. Here, we performed an exploratory cross-sectional, case-control study aimed at determining whether gene expression differences in peripheral blood may be used as a signature of Parkinson's disease (PD progression, thereby shedding light into potential molecular mechanisms underlying disease development. We compared transcriptional profiles in the blood from 34 PD patients who developed postural instability within ten years with those of 33 patients who did not develop postural instability within this time frame. Our study identified >200 differentially expressed genes between the two groups. The expression of several of the genes identified was previously found deregulated in animal models of PD and in PD patients. Relevant genes were selected for validation by real-time PCR in a subset of patients. The genes validated were linked to nucleic acid metabolism, mitochondria, immune response and intracellular-transport. Interestingly, we also found deregulation of these genes in a dopaminergic cell model of PD, a simple paradigm that can now be used to further dissect the role of these molecular players on dopaminergic cell loss. Altogether, our study provides preliminary evidence that expression changes in specific groups of genes and pathways, detected in peripheral blood samples, may be correlated with differential PD progression. Our exploratory study suggests that peripheral gene expression profiling may prove valuable for assisting in prediction of PD prognosis, and identifies novel culprits possibly involved in dopaminergic cell death. Given the exploratory nature of our study, further investigations using independent, well-characterized cohorts will be essential in order to validate our candidates as predictors of PD prognosis and to definitively confirm the value of gene expression

  6. Differentially expressed genes in human peripheral blood as potential markers for statin response.

    Science.gov (United States)

    Won, Hong-Hee; Kim, Suk Ran; Bang, Oh Young; Lee, Sang-Chol; Huh, Wooseong; Ko, Jae-Wook; Kim, Hyung-Gun; McLeod, Howard L; O'Connell, Thomas M; Kim, Jong-Won; Lee, Soo-Youn

    2012-02-01

    There is a considerable inter-individual variation in response to statin therapy and one third of patients do not meet their treatment goals. We aimed to identify differentially expressed genes that might be involved in the effects of statin treatment and to suggest potential markers to guide statin therapy. Forty-six healthy Korean subjects received atorvastatin; their whole-genome expression profiles in peripheral blood were analyzed before and after atorvastatin administration in relation with changes in lipid profiles. The expression patterns of the differentially expressed genes were also compared with the data of familial hypercholesterolemia (FH) patients and controls. Pairwise comparison analyses revealed differentially expressed genes involved in diverse biological processes and molecular functions related with immune responses. Atorvastain mainly affected antigen binding, immune or inflammatory response including interleukin pathways. Similar expression patterns of the genes were observed in patients with FH and controls. The Charcol-Leyden crystal (CLC), CCR2, CX3CR1, LRRN3, FOS, LDLR, HLA-DRB1, ERMN, and TCN1 genes were significantly associated with cholesterol levels or statin response. Interestingly, the CLC gene, which was significantly altered by atorvastatin administration and differentially expressed between FH patients and controls, showed much bigger change in high-responsive group than in low-responsive group. We identified differentially expressed genes that might be involved in mechanisms underlying the known pleiotropic effects of atorvastatin, baseline cholesterol levels, and drug response. Our findings suggest CLC as a new candidate marker for statin response, and further validation is needed.

  7. Metallothionein 1 Isoform Gene Expression Induced by Cadmium in Human Peripheral Blood Lymphocytes

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    To study the gene expression of metallothionein 1 (MT-1) isoforms in human peripheral blood lymphocytes (HPBLs). Methods The expression of mRNA representing the seven active MT-1 genes was determined in HPBLs by quantitative RT-PCR before and after exposure to cadmium. Results Basal expressions of MT-1X, and MT-1A in HPBLs were similar to expression of housekeeping gene. In contrast, the basal gene expressions of MT-1H, 1F, 1E, and 1G were a little transcripts in human HPBLs. No signal was detected for MT-1B. There was a sex difference (P<0.05). in basal gene expression of MT-1E. The levels of gene expression of MT-1A, 1E, 1F, 1G, 1H, and 1X increased, but the level of MT-1B did not increase after exposure to cadmium. Conclusions Gene expressions of MT-1G, MT-1H, MT-1F, and MT-1X in HPBLs can be used as a potential biomarker of cadmium exposure.

  8. Catecholamine-related gene expression in blood correlates with tic severity in tourette syndrome

    NARCIS (Netherlands)

    Gunther, Joan; Tian, Yingfang; Stamova, Boryana; Lit, Lisa; Corbett, Blythe; Ander, Brad; Zhan, Xinhua; Jickling, Glen; Bos-Veneman, Netty; Liu, Da; Hoekstra, Pieter; Sharp, Frank

    2012-01-01

    Tourette syndrome (TS) is a heritable disorder characterized by tics that are decreased in some patients by treatment with alpha adrenergic agonists and dopamine receptor blockers. Thus, this study examines the relationship between catecholamine gene expression in blood and tic severity. TS diagnosi

  9. Expression profiling of solute carrier gene families at the blood-CSF barrier

    Directory of Open Access Journals (Sweden)

    Horace T.B. Ho

    2012-08-01

    Full Text Available The choroid plexus (CP is a highly vascularized tissue in the brain ventricles and acts as the blood-cerebrospinal fluid barrier (BCSFB. A main function of the CP is to secrete cerebrospinal fluid (CSF, which is accomplished by active transport of small ions and water from the blood side to the CSF side. The CP also supplies the brain with certain nutrients, hormones and metal ions, while removing metabolites and xenobiotics from the CSF. Numerous membrane transporters are expressed in the CP in order to facilitate the solute exchange between the blood and the CSF. The solute carrier (SLC superfamily represents a major class of transporters in the CP that constitutes the molecular mechanisms for CP function. Recently, we systematically and quantitatively examined Slc gene expression in 20 anatomically comprehensive brain areas in the adult mouse brain using high-quality in situ hybridization data generated by the Allen Brain Atlas. Here we focus our analysis on Slc gene expression at the BCSFB using previously obtained data. Of the 252 Slc genes present in the mouse brain, 202 Slc genes were found at detectable levels in the CP. Unsupervised hierarchical cluster analysis showed that the CP Slc gene expression pattern is substantially different from the other 19 analyzed brain regions. The majority of the Slc genes in the CP are expressed at low to moderate levels, whereas 28 Slc genes are present in the CP at the highest levels. These highly expressed Slc genes encode transporters involved in CSF secretion, energy production, and transport of nutrients, hormones, neurotransmitters, sulfate, and metal ions. In this review, the functional characteristics and potential importance of these Slc transporters in the CP are discussed, with particular emphasis on their localization and physiological functions at the BCSFB.

  10. Peripheral blood RNA gene expression profiling in illicit methcathinone users reveals effect on immune system

    Directory of Open Access Journals (Sweden)

    Katrin eSikk

    2011-08-01

    Full Text Available Methcathinone (ephedrone is relatively easily accessible for abuse. Its users develop an extrapyramidal syndrome and it is not known if this is caused by methcathinone itself, by side-ingredients (manganese, or both. In the present study we aimed to clarify molecular mechanisms underlying this condition. We analyzed whole genome gene expression patterns of peripheral blood from 20 methcathinone users and 20 matched controls. Gene expression profile data was analyzed by Bayesian modelling and functional annotation. In order to verify the genechip results we performed quantitative real-time (RT PCR in selected genes. 326 out of analyzed 28,869 genes showed statistically significant differential expression with FDR adjusted p-values below 0.05. Quantitative RT-PCR confirmed differential expression for the most of selected genes. Functional annotation and network analysis indicated that most of the genes were related to activation immunological disease, cellular movement and cardiovascular disease gene network (enrichment score 42. As HIV and HCV infections were confounding factors, we performed additional stratification of patients. A similar functional activation of the immunological disease pathway was evident when we compared patients according to the injection status (past versus current users, balanced for HIV and HCV infection. However, this difference was not large therefore the major effect was related to the HIV status of the patients. Mn-methcathinone abusers have blood transcriptional patterns mostly caused by their HIV and HCV infections.

  11. The Gene Expression Patterns of Peripheral Blood Mononuclear Cells in Patients with Systemic Lupus Erythematosus

    Institute of Scientific and Technical Information of China (English)

    LI Shouxin; JIANG Wei; HUANG Rui; WANG Xiaohui; LIU Wen; SHEN Shouyin

    2007-01-01

    This study examined the gene expression patterns of peripheral blood mononuclear cells (PBMCs) in patients with systemic lupus erythematosus (SLE) by using serial analysis of gene expression (SAGE) technology. Following the construction of serial analysis of gene expression (SAGE) library of PBMCs collected from 3 cases of familial SLE patients, a large scale of tag sequencing was performed. The data extracted from sequencing files was analyzed with SAGE 2000 V 4.5 software.The top 30 expressed genes of SLE patients were uploaded to http://david.niaid.nih. gov/david/ease.htm and the functional classification of genes was obtained. The differences among those expressed gene were analyzed by Chi-square tests. The results showed that a total of 1286 unique SAGE tags were identified from 1814 individual SAGE tags. Among the 1286 unique tags, 86.8% had single copy, and only 0.2% tags had more than 20 copies. And 68.4% of the tags matched known expressed sequences, 41.1% of which matched more than one known expressed sequence. About 31.6% of the tags had no match and could represent potentially novel genes. Approximately one third of the top 30 genes were ribosomal protein, and the rest were genes related to metabolism or with unknown functions. Eight tags were found to express differentially in SAGE library of SLE patients. This study draws a profile of gene expression patterns of PBMCs in patients with SLE. Comparison of SAGE database from PBMCs between normal individuals and SLE patients will help us to better understand the pathogenesis of SLE.

  12. Blood gene expression profiles suggest altered immune function associated with symptoms of generalized anxiety disorder.

    Science.gov (United States)

    Wingo, Aliza P; Gibson, Greg

    2015-01-01

    Prospective epidemiological studies found that generalized anxiety disorder (GAD) can impair immune function and increase risk for cardiovascular disease or events. Mechanisms underlying the physiological reverberations of anxiety, however, are still elusive. Hence, we aimed to investigate molecular processes mediating effects of anxiety on physical health using blood gene expression profiles of 336 community participants (157 anxious and 179 control). We examined genome-wide differential gene expression in anxiety, as well as associations between nine major modules of co-regulated transcripts in blood gene expression and anxiety. No significant differential expression was observed in women, but 631 genes were differentially expressed between anxious and control men at the false discovery rate of 0.1 after controlling for age, body mass index, race, and batch effect. Gene set enrichment analysis (GSEA) revealed that genes with altered expression levels in anxious men were involved in response of various immune cells to vaccination and to acute viral and bacterial infection, and in a metabolic network affecting traits of metabolic syndrome. Further, we found one set of 260 co-regulated genes to be significantly associated with anxiety in men after controlling for the relevant covariates, and demonstrate its equivalence to a component of the stress-related conserved transcriptional response to adversity profile. Taken together, our results suggest potential molecular pathways that can explain negative effects of GAD observed in epidemiological studies. Remarkably, even mild anxiety, which most of our participants had, was associated with observable changes in immune-related gene expression levels. Our findings generate hypotheses and provide incremental insights into molecular mechanisms mediating negative physiological effects of GAD.

  13. A meta-analysis of gene expression signatures of blood pressure and hypertension.

    Directory of Open Access Journals (Sweden)

    Tianxiao Huan

    2015-03-01

    Full Text Available Genome-wide association studies (GWAS have uncovered numerous genetic variants (SNPs that are associated with blood pressure (BP. Genetic variants may lead to BP changes by acting on intermediate molecular phenotypes such as coded protein sequence or gene expression, which in turn affect BP variability. Therefore, characterizing genes whose expression is associated with BP may reveal cellular processes involved in BP regulation and uncover how transcripts mediate genetic and environmental effects on BP variability. A meta-analysis of results from six studies of global gene expression profiles of BP and hypertension in whole blood was performed in 7017 individuals who were not receiving antihypertensive drug treatment. We identified 34 genes that were differentially expressed in relation to BP (Bonferroni-corrected p<0.05. Among these genes, FOS and PTGS2 have been previously reported to be involved in BP-related processes; the others are novel. The top BP signature genes in aggregate explain 5%-9% of inter-individual variance in BP. Of note, rs3184504 in SH2B3, which was also reported in GWAS to be associated with BP, was found to be a trans regulator of the expression of 6 of the transcripts we found to be associated with BP (FOS, MYADM, PP1R15A, TAGAP, S100A10, and FGBP2. Gene set enrichment analysis suggested that the BP-related global gene expression changes include genes involved in inflammatory response and apoptosis pathways. Our study provides new insights into molecular mechanisms underlying BP regulation, and suggests novel transcriptomic markers for the treatment and prevention of hypertension.

  14. A composite peripheral blood gene expression measure as a potential diagnostic biomarker in bipolar disorder

    DEFF Research Database (Denmark)

    Munkholm, Klaus; Peijs, L; Vinberg, M

    2015-01-01

    as a diagnostic and state biomarker in bipolar disorder. First, messenger RNA levels of 19 candidate genes were assessed in peripheral blood mononuclear cells of 37 rapid cycling bipolar disorder patients in different affective states (depression, mania and euthymia) during a 6-12-month period and in 40 age......- and gender-matched healthy control subjects. Second, a composite gene expression measure was constructed in the first half study sample and independently validated in the second half of the sample. We found downregulation of POLG and OGG1 expression in bipolar disorder patients compared with healthy control...... subjects. In patients with bipolar disorder, upregulation of NDUFV2 was observed in a depressed state compared with a euthymic state. The composite gene expression measure for discrimination between patients and healthy control subjects on the basis of 19 genes generated an area under the receiver...

  15. Whole blood gene expression in infants with respiratory syncytial virus bronchiolitis

    Directory of Open Access Journals (Sweden)

    Skjaeret Camilla

    2006-12-01

    Full Text Available Abstract Background Respiratory syncytial virus (RSV is a major cause of viral bronchiolitis in infants worldwide, and environmental, viral and host factors are all of importance for disease susceptibility and severity. To study the systemic host response to this disease we used the microarray technology to measure mRNA gene expression levels in whole blood of five male infants hospitalised with acute RSV, subtype B, bronchiolitis versus five one year old male controls exposed to RSV during infancy without bronchiolitis. The gene expression levels were further evaluated in a new experiment using quantitative real-time polymerase chain reaction (QRT-PCR both in the five infants selected for microarray and in 13 other infants hospitalised with the same disease. Results Among the 30 genes most differentially expressed by microarray nearly 50% were involved in immunological processes. We found the highly upregulated interferon, alpha-inducible protein 27 (IFI27 and the highly downregulated gene Charcot-Leyden crystal protein (CLC to be the two most differentially expressed genes in the microarray study. When performing QRT-PCR on these genes IFI27 was upregulated in all but one infant, and CLC was downregulated in all 18 infants, and similar to that given by microarray. Conclusion The gene IFI27 is upregulated and the gene CLC is downregulated in whole blood of infants hospitalised with RSV, subtype B, bronchiolitis and is not reported before. More studies are needed to elucidate the specificity of these gene expressions in association with host response to this virus in bronchiolitis of moderate severity.

  16. Expression of CD44v6 gene in normal human peripheral blood

    Institute of Scientific and Technical Information of China (English)

    Jian Song; Dong-Sheng Zhang; Jie Zheng

    2005-01-01

    AIM: To investigate if CD44v6 could be used as a molecular marker of cancer progression and metastasis through the detection of CD44v6 gene expression in normal human peripheral blood.METHODS: RNA was extracted from the peripheral blood mononuclear cells of 50 healthy donors, the expression of CD44v6 was investigated using reverse transcriptasepolymerase chain reaction (RT-PCR).RESULTS: CD44v6 mRNA was detected in 58% of healthy volunteers under the proper controls.CONCLUSION: Our results suggest that the measurement of CD44v6 expression in peripheral blood by RT-PCR is not suitable for detection of circulating tumor cells.

  17. A gene co-expression network in whole blood of schizophrenia patients is independent of antipsychotic-use and enriched for brain-expressed genes.

    Science.gov (United States)

    de Jong, Simone; Boks, Marco P M; Fuller, Tova F; Strengman, Eric; Janson, Esther; de Kovel, Carolien G F; Ori, Anil P S; Vi, Nancy; Mulder, Flip; Blom, Jan Dirk; Glenthøj, Birte; Schubart, Chris D; Cahn, Wiepke; Kahn, René S; Horvath, Steve; Ophoff, Roel A

    2012-01-01

    Despite large-scale genome-wide association studies (GWAS), the underlying genes for schizophrenia are largely unknown. Additional approaches are therefore required to identify the genetic background of this disorder. Here we report findings from a large gene expression study in peripheral blood of schizophrenia patients and controls. We applied a systems biology approach to genome-wide expression data from whole blood of 92 medicated and 29 antipsychotic-free schizophrenia patients and 118 healthy controls. We show that gene expression profiling in whole blood can identify twelve large gene co-expression modules associated with schizophrenia. Several of these disease related modules are likely to reflect expression changes due to antipsychotic medication. However, two of the disease modules could be replicated in an independent second data set involving antipsychotic-free patients and controls. One of these robustly defined disease modules is significantly enriched with brain-expressed genes and with genetic variants that were implicated in a GWAS study, which could imply a causal role in schizophrenia etiology. The most highly connected intramodular hub gene in this module (ABCF1), is located in, and regulated by the major histocompatibility (MHC) complex, which is intriguing in light of the fact that common allelic variants from the MHC region have been implicated in schizophrenia. This suggests that the MHC increases schizophrenia susceptibility via altered gene expression of regulatory genes in this network.

  18. Whole Blood Gene Expression Profiling in Preclinical and Clinical Cattle Infected with Atypical Bovine Spongiform Encephalopathy

    Science.gov (United States)

    Xerxa, Elena; Barbisin, Maura; Chieppa, Maria Novella; Krmac, Helena; Vallino Costassa, Elena; Vatta, Paolo; Simmons, Marion; Caramelli, Maria; Casalone, Cristina; Corona, Cristiano

    2016-01-01

    Prion diseases, such as bovine spongiform encephalopathies (BSE), are transmissible neurodegenerative disorders affecting humans and a wide variety of mammals. Variant Creutzfeldt-Jakob disease (vCJD), a prion disease in humans, has been linked to exposure to BSE prions. This classical BSE (cBSE) is now rapidly disappearing as a result of appropriate measures to control animal feeding. Besides cBSE, two atypical forms (named H- and L-type BSE) have recently been described in Europe, Japan, and North America. Here we describe the first wide-spectrum microarray analysis in whole blood of atypical BSE-infected cattle. Transcriptome changes in infected animals were analyzed prior to and after the onset of clinical signs. The microarray analysis revealed gene expression changes in blood prior to the appearance of the clinical signs and during the progression of the disease. A set of 32 differentially expressed genes was found to be in common between clinical and preclinical stages and showed a very similar expression pattern in the two phases. A 22-gene signature showed an oscillating pattern of expression, being differentially expressed in the preclinical stage and then going back to control levels in the symptomatic phase. One gene, SEL1L3, was downregulated during the progression of the disease. Most of the studies performed up to date utilized various tissues, which are not suitable for a rapid analysis of infected animals and patients. Our findings suggest the intriguing possibility to take advantage of whole blood RNA transcriptional profiling for the preclinical identification of prion infection. Further, this study highlighted several pathways, such as immune response and metabolism that may play an important role in peripheral prion pathogenesis. Finally, the gene expression changes identified in the present study may be further investigated as a fingerprint for monitoring the progression of disease and for developing targeted therapeutic interventions. PMID

  19. Whole Blood Gene Expression Profiling in Preclinical and Clinical Cattle Infected with Atypical Bovine Spongiform Encephalopathy.

    Science.gov (United States)

    Xerxa, Elena; Barbisin, Maura; Chieppa, Maria Novella; Krmac, Helena; Vallino Costassa, Elena; Vatta, Paolo; Simmons, Marion; Caramelli, Maria; Casalone, Cristina; Corona, Cristiano; Legname, Giuseppe

    2016-01-01

    Prion diseases, such as bovine spongiform encephalopathies (BSE), are transmissible neurodegenerative disorders affecting humans and a wide variety of mammals. Variant Creutzfeldt-Jakob disease (vCJD), a prion disease in humans, has been linked to exposure to BSE prions. This classical BSE (cBSE) is now rapidly disappearing as a result of appropriate measures to control animal feeding. Besides cBSE, two atypical forms (named H- and L-type BSE) have recently been described in Europe, Japan, and North America. Here we describe the first wide-spectrum microarray analysis in whole blood of atypical BSE-infected cattle. Transcriptome changes in infected animals were analyzed prior to and after the onset of clinical signs. The microarray analysis revealed gene expression changes in blood prior to the appearance of the clinical signs and during the progression of the disease. A set of 32 differentially expressed genes was found to be in common between clinical and preclinical stages and showed a very similar expression pattern in the two phases. A 22-gene signature showed an oscillating pattern of expression, being differentially expressed in the preclinical stage and then going back to control levels in the symptomatic phase. One gene, SEL1L3, was downregulated during the progression of the disease. Most of the studies performed up to date utilized various tissues, which are not suitable for a rapid analysis of infected animals and patients. Our findings suggest the intriguing possibility to take advantage of whole blood RNA transcriptional profiling for the preclinical identification of prion infection. Further, this study highlighted several pathways, such as immune response and metabolism that may play an important role in peripheral prion pathogenesis. Finally, the gene expression changes identified in the present study may be further investigated as a fingerprint for monitoring the progression of disease and for developing targeted therapeutic interventions.

  20. A practical platform for blood biomarker study by using global gene expression profiling of peripheral whole blood.

    Directory of Open Access Journals (Sweden)

    Ze Tian

    Full Text Available BACKGROUND: Although microarray technology has become the most common method for studying global gene expression, a plethora of technical factors across the experiment contribute to the variable of genome gene expression profiling using peripheral whole blood. A practical platform needs to be established in order to obtain reliable and reproducible data to meet clinical requirements for biomarker study. METHODS AND FINDINGS: We applied peripheral whole blood samples with globin reduction and performed genome-wide transcriptome analysis using Illumina BeadChips. Real-time PCR was subsequently used to evaluate the quality of array data and elucidate the mode in which hemoglobin interferes in gene expression profiling. We demonstrated that, when applied in the context of standard microarray processing procedures, globin reduction results in a consistent and significant increase in the quality of beadarray data. When compared to their pre-globin reduction counterparts, post-globin reduction samples show improved detection statistics, lowered variance and increased sensitivity. More importantly, gender gene separation is remarkably clearer in post-globin reduction samples than in pre-globin reduction samples. Our study suggests that the poor data obtained from pre-globin reduction samples is the result of the high concentration of hemoglobin derived from red blood cells either interfering with target mRNA binding or giving the pseudo binding background signal. CONCLUSION: We therefore recommend the combination of performing globin mRNA reduction in peripheral whole blood samples and hybridizing on Illumina BeadChips as the practical approach for biomarker study.

  1. Predicting Autism Spectrum Disorder Using Blood-based Gene Expression Signatures and Machine Learning

    Science.gov (United States)

    Oh, Dong Hoon; Kim, Il Bin; Kim, Seok Hyeon; Ahn, Dong Hyun

    2017-01-01

    Objective The aim of this study was to identify a transcriptomic signature that could be used to classify subjects with autism spectrum disorder (ASD) compared to controls on the basis of blood gene expression profiles. The gene expression profiles could ultimately be used as diagnostic biomarkers for ASD. Methods We used the published microarray data (GSE26415) from the Gene Expression Omnibus database, which included 21 young adults with ASD and 21 age- and sex-matched unaffected controls. Nineteen differentially expressed probes were identified from a training dataset (n=26, 13 ASD cases and 13 controls) using the limma package in R language (adjusted p value <0.05) and were further analyzed in a test dataset (n=16, 8 ASD cases and 8 controls) using machine learning algorithms. Results Hierarchical cluster analysis showed that subjects with ASD were relatively well-discriminated from controls. Based on the support vector machine and K-nearest neighbors analysis, validation of 19-DE probes with a test dataset resulted in an overall class prediction accuracy of 93.8% as well as a sensitivity and specificity of 100% and 87.5%, respectively. Conclusion The results of our exploratory study suggest that the gene expression profiles identified from the peripheral blood samples of young adults with ASD can be used to identify a biological signature for ASD. Further study using a larger cohort and more homogeneous datasets is required to improve the diagnostic accuracy. PMID:28138110

  2. Differential peripheral blood gene expression profile based on Her2 expression on primary tumors of breast cancer patients.

    Directory of Open Access Journals (Sweden)

    Oana Tudoran

    Full Text Available Breast cancer prognosis and treatment is highly dependent on the molecular features of the primary tumors. These tumors release specific molecules into the environment that trigger characteristic responses into the circulatory cells. In this study we investigated the expression pattern of 84 genes known to be involved in breast cancer signaling in the peripheral blood of breast cancer patients with ER-, PR- primary tumors. The patients were grouped according to Her2 expression on the primary tumors in Her2+ and Her2- cohorts. Transcriptional analysis revealed 15 genes to be differentially expressed between the two groups highlighting that Her2 signaling in primary tumors could be associated with specific blood gene expression. We found CCNA1 to be up-regulated, while ERBB2, RASSF1, CDH1, MKI67, GATA3, GLI1, SFN, PTGS2, JUN, NOTCH1, CTNNB1, KRT8, SRC, and HIC1 genes were down-regulated in the blood of triple negative breast cancer patients compared to Her2+ cohort. IPA network analysis predicts that the identified genes are interconnected and regulate each other. These genes code for cell cycle regulators, cell adhesion molecules, transcription factors or signal transducers that modulate immune signaling, several genes being also associated with cancer progression and treatment response. These results indicate an altered immune signaling in the peripheral blood of triple negative breast cancer patients. The involvement of the immune system is necessary in favorable treatment response, therefore these results could explain the low response rates observed for triple negative breast cancer patients.

  3. Gene Expression Patterns in Peripheral Blood Leukocytes in Patients with Recurrent Ciguatera Fish Poisoning: Preliminary Studies.

    Science.gov (United States)

    Lopez, Maria-Cecilia; Ungaro, Ricardo F; Baker, Henry V; Moldawer, Lyle L; Robertson, Alison; Abbott, Margaret; Roberts, Sparkle M; Grattan, Lynn M; Morris, J Glenn

    2016-07-01

    Ciguatera fish poisoning (ciguatera) is a common clinical syndrome in areas where there is dependence on tropical reef fish for food. A subset of patients develops recurrent and, in some instances, chronic symptoms, which may result in substantial disability. To identify possible biomarkers for recurrent/chronic disease, and to explore correlations with immune gene expression, peripheral blood leukocyte gene expression in 10 ciguatera patients (7 recurrent, 3 acute) from the U.S. Virgin Islands, and 5 unexposed Florida controls were evaluated. Significant differences in gene expression were noted when comparing ciguatera patients and controls; however, it was not possible to differentiate between patients with acute and recurrent disease, possibly due to the small sample sizes involved.

  4. A Gene Co-Expression Network in Whole Blood of Schizophrenia Patients Is Independent of Antipsychotic-Use and Enriched for Brain-Expressed Genes

    NARCIS (Netherlands)

    de Jong, Simone; Boks, Marco P. M.; Fuller, Tova F.; Strengman, Eric; Janson, Esther; de Kovel, Carolien G. F.; Ori, Anil P. S.; Vi, Nancy; Mulder, Flip; Blom, Jan Dirk; Glenthoj, Birte; Schubart, Chris D.; Cahn, Wiepke; Kahn, Rene S.; Horvath, Steve; Ophoff, Roel A.

    2012-01-01

    Despite large-scale genome-wide association studies (GWAS), the underlying genes for schizophrenia are largely unknown. Additional approaches are therefore required to identify the genetic background of this disorder. Here we report findings from a large gene expression study in peripheral blood of

  5. Data-driven asthma endotypes defined from blood biomarker and gene expression data.

    Directory of Open Access Journals (Sweden)

    Barbara Jane George

    Full Text Available The diagnosis and treatment of childhood asthma is complicated by its mechanistically distinct subtypes (endotypes driven by genetic susceptibility and modulating environmental factors. Clinical biomarkers and blood gene expression were collected from a stratified, cross-sectional study of asthmatic and non-asthmatic children from Detroit, MI. This study describes four distinct asthma endotypes identified via a purely data-driven method. Our method was specifically designed to integrate blood gene expression and clinical biomarkers in a way that provides new mechanistic insights regarding the different asthma endotypes. For example, we describe metabolic syndrome-induced systemic inflammation as an associated factor in three of the four asthma endotypes. Context provided by the clinical biomarker data was essential in interpreting gene expression patterns and identifying putative endotypes, which emphasizes the importance of integrated approaches when studying complex disease etiologies. These synthesized patterns of gene expression and clinical markers from our research may lead to development of novel serum-based biomarker panels.

  6. Microfluidic isolation of leukocytes from whole blood for phenotype and gene expression analysis.

    Science.gov (United States)

    Sethu, Palaniappan; Moldawer, Lyle L; Mindrinos, Michael N; Scumpia, Philip O; Tannahill, Cynthia L; Wilhelmy, Julie; Efron, Philip A; Brownstein, Bernard H; Tompkins, Ronald G; Toner, Mehmet

    2006-08-01

    Technologies that enable the isolation of cell subtypes from small samples of complex populations will greatly facilitate the implementation of proteomics and genomics to human diseases. Transcriptome analysis of blood requires the depletion of contaminating erythrocytes. We report an automated microfluidic device to rapidly deplete erythrocytes from whole blood via deionized water lysis and to collect enriched leukocytes for phenotype and genomic analyses. Starting with blood from healthy subjects, we demonstrate the utility of this microfluidic cassette and lysis protocol to prepare unstimulated leukocytes, and leukocytes stimulated ex vivo with Staphylococcal enterotoxin B, which mimics some of the cellular effects seen in patients with severe bacterial infections. Microarrays are used to assess the global gene expression response to enterotoxin B. The results demonstrate that this system can isolate unactivated leukocytes from small blood samples without any significant loss, which permits more information to be obtained from subsequent analysis, and will be readily applicable to clinical settings.

  7. Whole blood gene expression profiling of neonates with confirmed bacterial sepsis

    Directory of Open Access Journals (Sweden)

    Paul Dickinson

    2015-03-01

    Full Text Available Neonatal infection remains a primary cause of infant morbidity and mortality worldwide and yet our understanding of how human neonates respond to infection remains incomplete. Changes in host gene expression in response to infection may occur in any part of the body, with the continuous interaction between blood and tissues allowing blood cells to act as biosensors for the changes. In this study we have used whole blood transcriptome profiling to systematically identify signatures and the pathway biology underlying the pathogenesis of neonatal infection. Blood samples were collected from neonates at the first clinical signs of suspected sepsis alongside age matched healthy control subjects. Here we report a detailed description of the study design, including clinical data collected, experimental methods used and data analysis workflows and which correspond with data in Gene Expression Omnibus (GEO data sets (GSE25504. Our data set has allowed identification of a patient invariant 52-gene classifier that predicts bacterial infection with high accuracy and lays the foundation for advancing diagnostic, prognostic and therapeutic strategies for neonatal sepsis.

  8. Gene expression profiles in peripheral blood mononuclear cells of SARS patients

    Institute of Scientific and Technical Information of China (English)

    Shi-Yan Yu; Yun-Wen Hu; Xiao-Ying Liu; Wei Xiong; Zhi-Tong Zhou; Zheng-Hong Yuan

    2005-01-01

    AIM: To investigate the role of inflammatory and anti-viral genes in the pathogenesis of SARS.METHODS: cDNA microarrays were used to screen the gene expression profiles of peripheral blood mononuclear cells (PBMCs) in two SARS patients (one in the acute severe phase and the other in the convalescent phase)and a healthy donor. In addition, real-time qualitative PCR was also performed to verify the reproducibility of the microarray results. The data were further analyzed.RESULTS: Many inflammatory and anti-viral genes were differentially expressed in SARS patients. Compared to the healthy control or the convalescent case, plenty of pro-inflammatory cytokines such as IL-1, TNF-α, IL-8, and MAPK signaling pathway were significantly upregulated in the acute severe case. However, anti-inflammatory agents such as IL-4 receptor, IL-13 receptor, IL-1Ra,and TNF-α-induced proteins 3 and 6 also increased dramatically in the acute severe case. On the contrary, a lot of IFN-stimulated genes like PKR, GBP-1 and 2, CXCL-10and 11, and JAK/STAT signal pathway were downregulated in the acute severe case compared to the convalescent case.CONCLUSION: Gene expression in SARS patients mirrors a host state of inflammation and anti-viral immunity at the transcription level, and understanding of gene expression profiles may make contribution to further studies of the SARS pathogenesis.

  9. Expression of candidate genes associated with obesity in peripheral white blood cells of Mexican children

    Science.gov (United States)

    Ulloa-Martínez, Marcela; Burguete-García, Ana I.; Murugesan, Selvasankar; Hoyo-Vadillo, Carlos; Cruz-Lopez, Miguel

    2016-01-01

    Introduction Obesity is a chronic, complex, and multifactorial disease, characterized by excess body fat. Diverse studies of the human genome have led to the identification of susceptibility genes that contribute to obesity. However, relatively few studies have addressed specifically the association between the level of expression of these genes and obesity. Material and methods We studied 160 healthy and obese unrelated Mexican children aged 6 to 14 years. We measured the transcriptional expression of 20 genes associated with obesity, in addition to the biochemical parameters, in peripheral white blood cells. The detection of mRNA levels was performed using the OpenArray Real-Time PCR System (Applied Biosystems). Results Obese children exhibited higher values of fasting glucose (p = 0.034), fasting insulin (p = 0.004), low-density lipoprotein (p = 0.006), triglycerides (p < 0.001), systolic blood pressure and diastolic blood pressure (p < 0.001), and lower values of high-density lipoprotein (p < 0.001) compared to lean children. Analysis of transcriptional expression data showed a difference for ADRB1 (p = 0.0297), ADIPOR1 (p = 0.0317), GHRL (p = 0.0060) and FTO (p = 0.0348) genes. Conclusions Our results suggest that changes in the expression level of the studied genes are involved in biological processes implicated in the development of childhood obesity. Our study contributes new perspectives for a better understanding of biological processes involved in obesity. The protocol was approved by the National Committee and Ethical Committee Board from the Mexican Social Security Institute (IMSS) (IMSS FIS/IMSS/PRIO/10/011). PMID:27695486

  10. Altered gene expression in schizophrenia: findings from transcriptional signatures in fibroblasts and blood.

    Directory of Open Access Journals (Sweden)

    Nadia Cattane

    Full Text Available Whole-genome expression studies in the peripheral tissues of patients affected by schizophrenia (SCZ can provide new insight into the molecular basis of the disorder and innovative biomarkers that may be of great utility in clinical practice. Recent evidence suggests that skin fibroblasts could represent a non-neural peripheral model useful for investigating molecular alterations in psychiatric disorders.A microarray expression study was conducted comparing skin fibroblast transcriptomic profiles from 20 SCZ patients and 20 controls. All genes strongly differentially expressed were validated by real-time quantitative PCR (RT-qPCR in fibroblasts and analyzed in a sample of peripheral blood cell (PBC RNA from patients (n = 25 and controls (n = 22. To evaluate the specificity for SCZ, alterations in gene expression were tested in additional samples of fibroblasts and PBCs RNA from Major Depressive Disorder (MDD (n = 16; n = 21, respectively and Bipolar Disorder (BD patients (n = 15; n = 20, respectively.Six genes (JUN, HIST2H2BE, FOSB, FOS, EGR1, TCF4 were significantly upregulated in SCZ compared to control fibroblasts. In blood, an increase in expression levels was confirmed only for EGR1, whereas JUN was downregulated; no significant differences were observed for the other genes. EGR1 upregulation was specific for SCZ compared to MDD and BD.Our study reports the upregulation of JUN, HIST2H2BE, FOSB, FOS, EGR1 and TCF4 in the fibroblasts of SCZ patients. A significant alteration in EGR1 expression is also present in SCZ PBCs compared to controls and to MDD and BD patients, suggesting that this gene could be a specific biomarker helpful in the differential diagnosis of major psychoses.

  11. Altered Gene Expression in Schizophrenia: Findings from Transcriptional Signatures in Fibroblasts and Blood

    Science.gov (United States)

    Cattane, Nadia; Minelli, Alessandra; Milanesi, Elena; Maj, Carlo; Bignotti, Stefano; Bortolomasi, Marco; Chiavetto, Luisella Bocchio; Gennarelli, Massimo

    2015-01-01

    Background Whole-genome expression studies in the peripheral tissues of patients affected by schizophrenia (SCZ) can provide new insight into the molecular basis of the disorder and innovative biomarkers that may be of great utility in clinical practice. Recent evidence suggests that skin fibroblasts could represent a non-neural peripheral model useful for investigating molecular alterations in psychiatric disorders. Methods A microarray expression study was conducted comparing skin fibroblast transcriptomic profiles from 20 SCZ patients and 20 controls. All genes strongly differentially expressed were validated by real-time quantitative PCR (RT-qPCR) in fibroblasts and analyzed in a sample of peripheral blood cell (PBC) RNA from patients (n = 25) and controls (n = 22). To evaluate the specificity for SCZ, alterations in gene expression were tested in additional samples of fibroblasts and PBCs RNA from Major Depressive Disorder (MDD) (n = 16; n = 21, respectively) and Bipolar Disorder (BD) patients (n = 15; n = 20, respectively). Results Six genes (JUN, HIST2H2BE, FOSB, FOS, EGR1, TCF4) were significantly upregulated in SCZ compared to control fibroblasts. In blood, an increase in expression levels was confirmed only for EGR1, whereas JUN was downregulated; no significant differences were observed for the other genes. EGR1 upregulation was specific for SCZ compared to MDD and BD. Conclusions Our study reports the upregulation of JUN, HIST2H2BE, FOSB, FOS, EGR1 and TCF4 in the fibroblasts of SCZ patients. A significant alteration in EGR1 expression is also present in SCZ PBCs compared to controls and to MDD and BD patients, suggesting that this gene could be a specific biomarker helpful in the differential diagnosis of major psychoses. PMID:25658856

  12. Diagnostic value of blood gene expression signatures in active tuberculosis in Thais: a pilot study.

    Science.gov (United States)

    Satproedprai, N; Wichukchinda, N; Suphankong, S; Inunchot, W; Kuntima, T; Kumpeerasart, S; Wattanapokayakit, S; Nedsuwan, S; Yanai, H; Higuchi, K; Harada, N; Mahasirimongkol, S

    2015-06-01

    Tuberculosis (TB) is a major global health problem. Routine laboratory tests or newly developed molecular detection are limited to the quality of sputum sample. Here we selected genes specific to TB by a minimum redundancy-maximum relevancy package using publicly available microarray data and determine level of selected genes in blood collected from a Thai TB cohort of 40 active TB patients, 38 healthy controls and 18 previous TB patients using quantitative real-time PCR. FCGR1A, FCGR1B variant 1, FCGR1B variant 2, APOL1, GBP5, PSTPIP2, STAT1, KCNJ15, MAFB and KAZN had significantly higher expression level in active TB individuals as compared with healthy controls and previous TB cases (P<0.01). A mathematical method was applied to calculate TB predictive score, which contains the level of expression of seven genes and this score can identify active TB cases with 82.5% sensitivity and 100% specificity as compared with conventional culture confirmation. In addition, TB predictive scores in active TB patients were reduced to normal after completion of standard short-course therapy, which was mostly in concordant with the disease outcome. These finding suggested that blood gene expression measurement and TB Sick Score could have potential value in terms of diagnosis of TB and anti-TB treatment monitoring.

  13. Gene expression signatures in the peripheral blood after radiosurgery of human cerebral arteriovenous malformations

    Energy Technology Data Exchange (ETDEWEB)

    Zabel-du Bois, Angelika [Dept. of Radiation Oncology, German Cancer Research Center, Heidelberg (Germany); Dept. of RadioOncology, Univ. of Heidelberg (Germany); Wagner-Ecker, Mechthild; Schwager, Christian; Wirkner, Ute; Huber, Peter E. [Dept. of Radiation Oncology, German Cancer Research Center, Heidelberg (Germany); Milker-Zabel, Stefanie; Debus, Juergen [Dept. of RadioOncology, Univ. of Heidelberg (Germany); Abdollahi, Amir [Dept. of Radiation Oncology, German Cancer Research Center, Heidelberg (Germany); Dept. of RadioOncology, Univ. of Heidelberg (Germany); Center of Cancer Systems Biology, Tufts Univ. School of Medicine, Boston, MA (United States)

    2010-02-15

    Purpose: To unravel biological mechanisms potentially resulting in the obliteration process after radiosurgery (RS) of human cerebral arteriovenous malformations (AVMs) by investigating molecular signatures on the transcriptomic level in peripheral blood of patients. Patients and Methods: Venous blood samples were obtained at definite points of time before and after RS. The samples were tested for radiation-induced changes regarding biological markers (mRNA) using cDNA and oligo-microarray technology. The corresponding expression profiles were correlated with clinical data and obliteration signs in radiologic imaging. Results: The proof of principle that RS outcome can be successfully correlated with transcriptomics of cellular blood components as disease parameter was demonstrated. The authors identified 76 differentially regulated genes (p < 0.001) after RS. Interestingly, in particular genes with known roles in antiangiogenic and procoagulative pathways were identified as potentially relevant. In particularly, the authors found a significant downregulation of neuropilin-2, protein C inhibitor and cyclin-dependent kinase 6. They also found that low pretreatment blood mRNA levels of TLR4 (toll-like receptor 4) and STAT3 (signal transducer and activator of transcription 3) correlated with fast obliteration of AVMs. Conclusion: The authors report on a novel technique for molecular biological analysis of blood from patients with cerebral AVM treated with RS. Differential regulation of genes in peripheral blood was successfully correlated with RS and time to obliteration of AVMs. The identified genes indicate a potential new methodology to monitor RS, which may result in an individualized therapy and optimized follow-up. (orig.)

  14. Peripheral blood mononuclear cell gene expression in healthy adults rapidly transported to high altitude

    Directory of Open Access Journals (Sweden)

    Herman NM

    2014-12-01

    Full Text Available Nicole M Herman,1 Diane E Grill,2 Paul J Anderson,1 Andrew D Miller,1 Jacob B Johnson,1 Kathy A O’Malley,1 Maile L Ceridon Richert,1 Bruce D Johnson1 1Department of Cardiovascular Diseases, 2Department of Biostatistics, Mayo Clinic Rochester, MN, USA Abstract: Although mechanisms of high altitude illness have been studied extensively, the processes behind the development of these conditions are still unclear. Few genome-wide studies on rapid exposure to high altitude have been performed. Each year, scientists and support workers are transferred by plane from McMurdo Station in Antarctica (sea level to the Amundsen-Scott South Pole Station at 2,835 meters. This uniform and rapid transfer to altitude provides a unique opportunity to study the effects of hypobaric hypoxia on gene expression that may help illustrate the body's adaptations to these conditions. We hypothesized that an extensive number of genes would change with rapid exposure to altitude and further expected that these genes would correspond to inflammatory pathways proposed as a mechanism in development of acute mountain sickness. Peripheral venous blood samples were drawn from 98 healthy subjects at sea level and again on day two at altitude. Microarray analysis was performed on these samples. In total, 1,118 probe sets with significant P-values and fold changes (90% upregulated were identified and entered into MetaCore™ software. Several pathways, including oxidative phosphorylation, cytoskeleton remodeling, and platelet aggregation, were significantly represented by the data set and all were upregulated. Many genes changed expression, and the vast majority of these increased. Increased metabolism in peripheral blood mononuclear cells suggests increased inflammatory activity. Keywords: peripheral blood mononuclear cells, microarray, gene expression, acute mountain sickness

  15. Shared signatures of social stress and aging in peripheral blood mononuclear cell gene expression profiles.

    Science.gov (United States)

    Snyder-Mackler, Noah; Somel, Mehmet; Tung, Jenny

    2014-10-01

    Chronic social stress is a predictor of both aging-related disease and mortality risk. Hence, chronic stress has been hypothesized to directly exacerbate the process of physiological aging. Here, we evaluated this hypothesis at the level of gene regulation. We compared two data sets of genome-wide gene expression levels in peripheral blood mononuclear cells (PBMCs): one that captured aging effects and another that focused on chronic social stress. Overall, we found that the direction, although not necessarily the magnitude, of significant gene expression changes tends to be shared between the two data sets. This overlap was observable at three levels: (i) individual genes; (ii) general functional categories of genes; and (iii) molecular pathways implicated in aging. However, we also found evidence that heterogeneity in PBMC composition limits the power to detect more extensive similarities, suggesting that our findings reflect an underestimate of the degree to which age and social stress influence gene regulation in parallel. Cell type-specific data on gene regulation will be important to overcome this limitation in the future studies.

  16. Gene Expression Profiling in Peripheral Blood Cells and Synovial Membranes of Patients with Psoriatic Arthritis.

    Directory of Open Access Journals (Sweden)

    Marzia Dolcino

    Full Text Available Psoriatic arthritis (PsA is an inflammatory arthritis whose pathogenesis is poorly understood; it is characterized by bone erosions and new bone formation. The diagnosis of PsA is mainly clinical and diagnostic biomarkers are not yet available. The aim of this work was to clarify some aspects of the disease pathogenesis and to identify specific gene signatures in paired peripheral blood cells (PBC and synovial biopsies of patients with PsA. Moreover, we tried to identify biomarkers that can be used in clinical practice.PBC and synovial biopsies of 10 patients with PsA were used to study gene expression using Affymetrix arrays. The expression values were validated by Q-PCR, FACS analysis and by the detection of soluble mediators.Synovial biopsies of patients showed a modulation of approximately 200 genes when compared to the biopsies of healthy donors. Among the differentially expressed genes we observed the upregulation of Th17 related genes and of type I interferon (IFN inducible genes. FACS analysis confirmed the Th17 polarization. Moreover, the synovial trascriptome shows gene clusters (bone remodeling, angiogenesis and inflammation involved in the pathogenesis of PsA. Interestingly 90 genes are modulated in both compartments (PBC and synovium suggesting that signature pathways in PBC mirror those of the inflamed synovium. Finally the osteoactivin gene was upregulared in both PBC and synovial biopsies and this finding was confirmed by the detection of high levels of osteoactivin in PsA sera but not in other inflammatory arthritides.We describe the first analysis of the trancriptome in paired synovial tissue and PBC of patients with PsA. This study strengthens the hypothesis that PsA is of autoimmune origin since the coactivity of IFN and Th17 pathways is typical of autoimmunity. Finally these findings have allowed the identification of a possible disease biomarker, osteoactivin, easily detectable in PsA serum.

  17. Differential Gene Expression of Primary Cultured Lymphatic and Blood Vascular Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Gregory M. Nelson

    2007-12-01

    Full Text Available Blood vascular endothelial cells (BECs and the developmentally related lymphatic endothelial cells (LECs create complementary, yet distinct vascular networks. Each endothelial cell type interacts with flowing fluid and circulating cells, yet each vascular system has evolved specialized gene expression programs and thus both cell types display different phenotypes. BECs and LECs express distinct genes that are unique to their specific vascular microenvironment. Tumors also take advantage of the molecules that are expressed in these vascular systems to enhance their metastatic potential. We completed transcriptome analyses on primary cultured LECs and BECs, where each comparative set was isolated from the same individual. Differences were resolved in the expression of several major categories, such as cell adhesion molecules (CAMs, cytokines, cytokine receptors. We have identified new molecules that are associated with BECs (e.g., claudin-9, CXCL11, neurexin-1, neurexin-2, the neuronal growth factor regulator-1 and LECs (e.g., claudin-7, CD58, hyaluronan and proteoglycan link protein 1 (HAPLN1, the poliovirus receptor-related 3 molecule that may lead to novel therapeutic treatments for diseases of lymphatic or blood vessels, including metastasis of cancer to lymph nodes or distant organs.

  18. Peripheral blood gene expression as a novel genomic biomarker in complicated sarcoidosis.

    Directory of Open Access Journals (Sweden)

    Tong Zhou

    Full Text Available Sarcoidosis, a systemic granulomatous syndrome invariably affecting the lung, typically spontaneously remits but in ~20% of cases progresses with severe lung dysfunction or cardiac and neurologic involvement (complicated sarcoidosis. Unfortunately, current biomarkers fail to distinguish patients with remitting (uncomplicated sarcoidosis from other fibrotic lung disorders, and fail to identify individuals at risk for complicated sarcoidosis. We utilized genome-wide peripheral blood gene expression analysis to identify a 20-gene sarcoidosis biomarker signature distinguishing sarcoidosis (n = 39 from healthy controls (n = 35, 86% classification accuracy and which served as a molecular signature for complicated sarcoidosis (n = 17. As aberrancies in T cell receptor (TCR signaling, JAK-STAT (JS signaling, and cytokine-cytokine receptor (CCR signaling are implicated in sarcoidosis pathogenesis, a 31-gene signature comprised of T cell signaling pathway genes associated with sarcoidosis (TCR/JS/CCR was compared to the unbiased 20-gene biomarker signature but proved inferior in prediction accuracy in distinguishing complicated from uncomplicated sarcoidosis. Additional validation strategies included significant association of single nucleotide polymorphisms (SNPs in signature genes with sarcoidosis susceptibility and severity (unbiased signature genes - CX3CR1, FKBP1A, NOG, RBM12B, SENS3, TSHZ2; T cell/JAK-STAT pathway genes such as AKT3, CBLB, DLG1, IFNG, IL2RA, IL7R, ITK, JUN, MALT1, NFATC2, PLCG1, SPRED1. In summary, this validated peripheral blood molecular gene signature appears to be a valuable biomarker in identifying cases with sarcoidoisis and predicting risk for complicated sarcoidosis.

  19. Finger stick blood collection for gene expression profiling and storage of tempus blood RNA tubes

    Science.gov (United States)

    Rinchai, Darawan; Anguiano, Esperanza; Nguyen, Phuong; Chaussabel, Damien

    2017-01-01

    With this report we aim to make available a standard operating procedure (SOP) developed for RNA stabilization of small blood volumes collected via a finger stick. The anticipation that this procedure may be improved through peer-review and/or readers public comments is another element motivating the publication of this SOP. Procuring blood samples from human subjects can, among other uses, enable assessment of the immune status of an individual subject via the profiling of RNA abundance using technologies such as real time PCR, NanoString, microarrays or RNA-sequencing. It is often desirable to minimize blood volumes and employ methods that are the least invasive and can be practically implemented outside of clinical settings. Finger stick blood samples are increasingly used for measurement of levels of pharmacological drugs and biological analytes. It is a simple and convenient procedure amenable for instance to field use or self-collection at home using a blood sample collection kit. Such methodologies should also enable the procurement of blood samples at high frequency for health or disease monitoring applications. PMID:28357036

  20. Reassessment of blood gene expression markers for the prognosis of relapsing-remitting multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Michael Hecker

    Full Text Available Despite considerable advances in the treatment of multiple sclerosis, current drugs are only partially effective. Most patients show reduced disease activity with therapy, but still experience relapses, increasing disability, and new brain lesions. Since there are no reliable clinical or biological markers of disease progression, long-term prognosis is difficult to predict for individual patients. We identified 18 studies that suggested genes expressed in blood as predictive biomarkers. We validated the prognostic value of those genes with three different microarray data sets comprising 148 patients in total. Using these data, we tested whether the genes were significantly differentially expressed between patients with good and poor courses of the disease. Poor progression was defined by relapses and/or increase of disability during a two-year follow-up, independent of the administered therapy. Of 110 genes that have been proposed as predictive biomarkers, most could not be confirmed in our analysis. However, the G protein-coupled membrane receptor GPR3 was expressed at significantly lower levels in patients with poor disease progression in all data sets. GPR3 has therefore a high potential to be a biomarker for predicting future disease activity. In addition, we examined the IL17 cytokines and receptors in more detail and propose IL17RC as a new, promising, transcript-based biomarker candidate. Further studies are needed to better understand the roles of these receptors in multiple sclerosis and its treatment and to clarify the utility of GPR3 and IL17RC expression levels in the blood as markers of long-term prognosis.

  1. Aggressive periodontitis and chronic arthritis: blood mononuclear cell gene expression and plasma protein levels of cytokines and cytokine inhibitors

    DEFF Research Database (Denmark)

    Sørensen, Lars K; Havemose-Poulsen, Anne; Bendtzen, Klaus

    2009-01-01

    BACKGROUND: Cytokines and cytokine inhibitors have been associated with many immunoinflammatory diseases. In the present study, we examined whether peripheral blood mononuclear cell (PBMC) gene expression mirrors the corresponding plasma levels of clinically important pro- and anti-inflammatory c......BACKGROUND: Cytokines and cytokine inhibitors have been associated with many immunoinflammatory diseases. In the present study, we examined whether peripheral blood mononuclear cell (PBMC) gene expression mirrors the corresponding plasma levels of clinically important pro- and anti...

  2. Rapid gene expression changes in peripheral blood lymphocytes upon practice of a comprehensive yoga program.

    Directory of Open Access Journals (Sweden)

    Su Qu

    Full Text Available One of the most common integrative medicine (IM modalities is yoga and related practices. Previous work has shown that yoga may improve wellness in healthy people and have benefits for patients. However, the mechanisms of how yoga may positively affect the mind-body system are largely unknown. Here we have assessed possible rapid changes in global gene expression profiles in the peripheral blood mononuclear cells (PBMCs in healthy people that practiced either a comprehensive yoga program or a control regimen. The experimental sessions included gentle yoga postures, breathing exercises, and meditation (Sudarshan Kriya and Related Practices--SK&P compared with a control regimen of a nature walk and listening to relaxing music. We show that the SK&P program has a rapid and significantly greater effect on gene expression in PBMCs compared with the control regimen. These data suggest that yoga and related practices result in rapid gene expression alterations which may be the basis for their longer term cell biological and higher level health effects.

  3. Rapid gene expression changes in peripheral blood lymphocytes upon practice of a comprehensive yoga program.

    Science.gov (United States)

    Qu, Su; Olafsrud, Solveig Mjelstad; Meza-Zepeda, Leonardo A; Saatcioglu, Fahri

    2013-01-01

    One of the most common integrative medicine (IM) modalities is yoga and related practices. Previous work has shown that yoga may improve wellness in healthy people and have benefits for patients. However, the mechanisms of how yoga may positively affect the mind-body system are largely unknown. Here we have assessed possible rapid changes in global gene expression profiles in the peripheral blood mononuclear cells (PBMCs) in healthy people that practiced either a comprehensive yoga program or a control regimen. The experimental sessions included gentle yoga postures, breathing exercises, and meditation (Sudarshan Kriya and Related Practices--SK&P) compared with a control regimen of a nature walk and listening to relaxing music. We show that the SK&P program has a rapid and significantly greater effect on gene expression in PBMCs compared with the control regimen. These data suggest that yoga and related practices result in rapid gene expression alterations which may be the basis for their longer term cell biological and higher level health effects.

  4. Diagnosis of partial body radiation exposure in mice using peripheral blood gene expression profiles.

    Directory of Open Access Journals (Sweden)

    Sarah K Meadows

    Full Text Available In the event of a terrorist-mediated attack in the United States using radiological or improvised nuclear weapons, it is expected that hundreds of thousands of people could be exposed to life-threatening levels of ionizing radiation. We have recently shown that genome-wide expression analysis of the peripheral blood (PB can generate gene expression profiles that can predict radiation exposure and distinguish the dose level of exposure following total body irradiation (TBI. However, in the event a radiation-mass casualty scenario, many victims will have heterogeneous exposure due to partial shielding and it is unknown whether PB gene expression profiles would be useful in predicting the status of partially irradiated individuals. Here, we identified gene expression profiles in the PB that were characteristic of anterior hemibody-, posterior hemibody- and single limb-irradiation at 0.5 Gy, 2 Gy and 10 Gy in C57Bl6 mice. These PB signatures predicted the radiation status of partially irradiated mice with a high level of accuracy (range 79-100% compared to non-irradiated mice. Interestingly, PB signatures of partial body irradiation were poorly predictive of radiation status by site of injury (range 16-43%, suggesting that the PB molecular response to partial body irradiation was anatomic site specific. Importantly, PB gene signatures generated from TBI-treated mice failed completely to predict the radiation status of partially irradiated animals or non-irradiated controls. These data demonstrate that partial body irradiation, even to a single limb, generates a characteristic PB signature of radiation injury and thus may necessitate the use of multiple signatures, both partial body and total body, to accurately assess the status of an individual exposed to radiation.

  5. X-ray-induced changes in the expression of inflammation-related genes in human peripheral blood.

    Science.gov (United States)

    Wang, Ping; Guo, Fei; Han, Lin; Wang, Xi'ai; Li, Jie; Guo, Yan; Lü, Yumin

    2014-10-27

    Using quantitative real-time polymerase chain reaction (PCR) array, we explored and compared the expression changes of inflammation-related genes in human peripheral blood irradiated with 0.5, 3, and 10 Gy doses of X-rays 24 h after exposure. Results indicated that the expression of 62 out of 84 genes was significantly altered after X-ray radiation. Among these 62 genes, 35 (such as TNFSF4) are known to be associated with radiation response, but others are novel. At a low radiation dose (0.5 Gy), 9 genes were up-regulated and 19 were down-regulated. With further increased dose to 3 Gy, 8 unique genes were up-regulated and 19 genes were down-regulated. We also identified 48 different genes that were differentially expressed significantly after 10 Gy of irradiation, and among these transcripts, up-regulated genes accounted for only one-third (16 genes) of the total. Of the 62 genes, 31 were significantly altered only at a specific dose, and a total of 10 genes were significantly expressed at all 3 doses. The dose- and time-dependent expression of CCL2 was confirmed by quantitative real-time reverse-transcription PCR. A number of candidate genes reported herein may be useful molecular biomarkers of radiation exposure in human peripheral blood.

  6. X-ray-Induced Changes in the Expression of Inflammation-Related Genes in Human Peripheral Blood

    Directory of Open Access Journals (Sweden)

    Ping Wang

    2014-10-01

    Full Text Available Using quantitative real-time polymerase chain reaction (PCR array, we explored and compared the expression changes of inflammation-related genes in human peripheral blood irradiated with 0.5, 3, and 10 Gy doses of X-rays 24 h after exposure. Results indicated that the expression of 62 out of 84 genes was significantly altered after X-ray radiation. Among these 62 genes, 35 (such as TNFSF4 are known to be associated with radiation response, but others are novel. At a low radiation dose (0.5 Gy, 9 genes were up-regulated and 19 were down-regulated. With further increased dose to 3 Gy, 8 unique genes were up-regulated and 19 genes were down-regulated. We also identified 48 different genes that were differentially expressed significantly after 10 Gy of irradiation, and among these transcripts, up-regulated genes accounted for only one-third (16 genes of the total. Of the 62 genes, 31 were significantly altered only at a specific dose, and a total of 10 genes were significantly expressed at all 3 doses. The dose- and time-dependent expression of CCL2 was confirmed by quantitative real-time reverse-transcription PCR. A number of candidate genes reported herein may be useful molecular biomarkers of radiation exposure in human peripheral blood.

  7. Gene networks in skeletal muscle following endurance exercise are co-expressed in blood neutrophils and linked with blood inflammation markers.

    Science.gov (United States)

    Broadbent, James A; Sampson, Dayle; Sabapathy, Surendran; Haseler, Luke J; Wagner, Karl-Heinz; Bulmer, Andrew Cameron; Peake, Jonathan M; Neubauer, Oliver

    2017-01-19

    It remains incompletely understood whether there is an association between the transcriptome profiles of skeletal muscle and blood leukocytes in response to exercise or other physiological stressors. We have previously analyzed the changes in the muscle and blood neutrophil transcriptome in eight trained men before and 3 h, 48 h and 96 h after 2 h cycling and running. Because we collected muscle and blood in the same individuals and under the same conditions, we were able to directly compare gene expression between the muscle and blood neutrophils. Applying weighted gene co-expression network analysis (WGCNA) as an advanced network-driven method to these original datasets enabled us to compare the muscle and neutrophil transcriptomes in a rigorous and systematic manner. Two gene networks were identified that were preserved between skeletal muscle and blood neutrophils, functionally related to mitochondria and post-translational processes. Strong preservation measures (Zsummary > 10) for both muscle-neutrophil gene networks were evident within the post-exercise recovery period. Muscle and neutrophil gene co-expression was strongly correlated in the mitochondria-related network (r = 0.97; p = 3.17E-2). We also identified multiple correlations between muscular gene sub-networks and exercise-induced changes in blood leukocyte counts, inflammation and muscle damage markers. These data reveal previously unidentified gene co-expression between skeletal muscle and blood neutrophils following exercise, showing the value of WGCNA to understand exercise physiology. Furthermore, these findings provide preliminary evidence in support of the notion that blood neutrophil gene networks may potentially help us to track physiological and pathophysiological changes in the muscle.

  8. Dynamic expression of leukocyte innate immune genes in whole blood from horses with lipopolysaccharide-induced acute systemic inflammation

    DEFF Research Database (Denmark)

    Vinther, Anne Mette L.; Skovgaard, Kerstin; Heegaard, Peter M. H.;

    2015-01-01

    inflammation was induced in 6 adult horses by the intravenous injection of 1 mu g lipopolysaccharide (LPS) per kg btw. Sixteen blood samples were collected for each horse at predetermined intervals and analyzed by reverse transcription quantitative real-time PCR. Post-induction expression levels for each gene......) and sepsis. Therefore, the aim of this study was to investigate the expression of 31 selected blood leukocyte immune genes in an equine model of acute systemic inflammation to identify significantly regulated genes and to describe their expression dynamics during a 24-h experimental period. Systemic...... expressions in blood leukocytes during equine acute LPS-induced systemic inflammation thoroughly characterized a highly regulated and dynamic innate immune response. These results provide new insights into the molecular mechanisms of equine systemic inflammation....

  9. Evidence of inflammatory immune signaling in chronic fatigue syndrome: A pilot study of gene expression in peripheral blood

    Directory of Open Access Journals (Sweden)

    Vernon Suzanne D

    2008-09-01

    Full Text Available Abstract Background Genomic profiling of peripheral blood reveals altered immunity in chronic fatigue syndrome (CFS however interpretation remains challenging without immune demographic context. The object of this work is to identify modulation of specific immune functional components and restructuring of co-expression networks characteristic of CFS using the quantitative genomics of peripheral blood. Methods Gene sets were constructed a priori for CD4+ T cells, CD8+ T cells, CD19+ B cells, CD14+ monocytes and CD16+ neutrophils from published data. A group of 111 women were classified using empiric case definition (U.S. Centers for Disease Control and Prevention and unsupervised latent cluster analysis (LCA. Microarray profiles of peripheral blood were analyzed for expression of leukocyte-specific gene sets and characteristic changes in co-expression identified from topological evaluation of linear correlation networks. Results Median expression for a set of 6 genes preferentially up-regulated in CD19+ B cells was significantly lower in CFS (p = 0.01 due mainly to PTPRK and TSPAN3 expression. Although no other gene set was differentially expressed at p Conclusion Dissection of blood microarray profiles points to B cell dysfunction with coordinated immune activation supporting persistent inflammation and antibody-mediated NK cell modulation of T cell activity. This has clinical implications as the CD19+ genes identified could provide robust and biologically meaningful basis for the early detection and unambiguous phenotyping of CFS.

  10. BloodSpot: a database of gene expression profiles and transcriptional programs for healthy and malignant haematopoiesis

    DEFF Research Database (Denmark)

    Bagger, Frederik Otzen; Sasivarevic, Damir; Hadi Sohi, Sina

    2016-01-01

    largely inaccessible. Current databases provide information about gene-expression but fail to answer key questions regarding co-regulation, genetic programs or effect on patient survival. To address these shortcomings, we present BloodSpot (www.bloodspot.eu), which includes and greatly extends our...... previously released database HemaExplorer, a database of gene expression profiles from FACS sorted healthy and malignant haematopoietic cells. A revised interactive interface simultaneously provides a plot of gene expression along with a Kaplan–Meier analysis and a hierarchical tree depicting...... the relationship between different cell types in the database. The database now includes 23 high-quality curated data sets relevant to normal and malignant blood formation and, in addition, we have assembled and built a unique integrated data set, BloodPool. Bloodpool contains more than 2000 samples assembled from...

  11. Maternal Whole Blood Gene Expression at 18 and 28 Weeks of Gestation Associated with Spontaneous Preterm Birth in Asymptomatic Women

    Science.gov (United States)

    Pennell, Craig E.; McDonald, Sheila W.; Vinturache, Angela E.; Xu, Jingxiong; Lee, Mary W. F.; Briollais, Laurent; Lyon, Andrew W.; Slater, Donna M.; Bocking, Alan D.; de Koning, Lawrence; Olson, David M.; Dolan, Siobhan M.; Tough, Suzanne C.; Lye, Stephen J.

    2016-01-01

    The heterogeneity of spontaneous preterm birth (SPTB) requires an interdisciplinary approach to determine potential predictive risk factors of early delivery. The aim of this study was to investigate maternal whole blood gene expression profiles associated with spontaneous preterm birth (SPTB, <37 weeks) in asymptomatic pregnant women. The study population was a matched subgroup of women (51 SPTBs, 114 term delivery controls) who participated in the All Our Babies community based cohort in Calgary (n = 1878). Maternal blood at 17–23 (sampling time point 1, T1) and 27–33 weeks of gestation (T2) were collected. Total RNA was extracted and microarray was performed on 326 samples (165 women). Univariate analyses determined significant clinical factors and differential gene expression associated with SPTB. Thirteen genes were validated using qRT-PCR. Three multivariate logistic models were constructed to identify gene expression at T1 (Model A), T2 (Model B), and gene expression fold change from T1 to T2 (Model C) associated with SPTB. All models were adjusted for clinical factors. Model C can predict SPTB with 65% sensitivity and 88% specificity in asymptomatic women after adjusting for history of abortion and anaemia (occurring before T2). Clinical data enhanced the sensitivity of the Models to predict SPTB. In conclusion, clinical factors and whole blood gene expression are associated with SPTB in asymptomatic women. An effective screening tool for SPTB during pregnancy would enable targeted preventive approaches and personalised antenatal care. PMID:27333071

  12. Stress associated gene expression in blood cells is related to outcome in radiotherapy treated head and neck cancer patients

    Directory of Open Access Journals (Sweden)

    Bøhn Siv K

    2012-09-01

    Full Text Available Abstract Background We previously observed that a radiotherapy-induced biochemical response in plasma was associated with favourable outcome in head and neck squamous carcinoma cancer (HNSCC patients. The aim of the present study was to compare stress associated blood cell gene expression between two sub-groups of HNSCC patients with different biochemical responses to radiotherapy. Methods Out of 87 patients (histologically verified, 10 biochemical ‘responders’ having a high relative increase in plasma oxidative damage and a concomitant decrease in plasma antioxidants during radiotherapy and 10 ‘poor-responders’ were selected for gene-expression analysis and compared using gene set enrichment analysis. Results There was a significant induction of stress-relevant gene-sets in the responders following radiotherapy compared to the poor-responders. The relevance of the involvement of similar stress associated gene expression for HNSCC cancer and radioresistance was verified using two publicly available data sets of 42 HNSCC cases and 14 controls (GEO GSE6791, and radiation resistant and radiation sensitive HNSCC xenografts (E-GEOD-9716. Conclusions Radiotherapy induces a systemic stress response, as revealed by induction of stress relevant gene expression in blood cells, which is associated to favourable outcome in a cohort of 87 HNSCC patients. Whether these changes in gene expression reflects a systemic effect or are biomarkers of the tumour micro-environmental status needs further study. Trial registration Raw data are available at ArrayExpress under accession number E-MEXP-2460.

  13. To what extent is blood a reasonable surrogate for brain in gene expression studies: estimation from mouse hippocampus and spleen

    Directory of Open Access Journals (Sweden)

    Matthew N Davies

    2009-10-01

    Full Text Available Microarrays are designed to measure genome-wide differences in gene expression. In cases where a tissue is not accessible for analysis (e.g. human brain, it is of interest to determine whether a second, accessible tissue could be used as a surrogate for transcription profiling. Surrogacy has applications in the study of behavioural and neurodegenerative disorders. Comparison between hippocampus and spleen mRNA obtained from a mouse recombinant inbred panel indicates a high degree of correlation between the tissues for genes that display a high heritability of expression level. This correlation is not limited to apparent expression differences caused by sequence polymorphisms in the target sequences and includes both cis and trans genetic effects. A tissue such as blood could therefore give surrogate information on expression in brain for a subset of genes, in particular those co-expressed between the two tissues, which have heritably varying expression.

  14. To What Extent is Blood a Reasonable Surrogate for Brain in Gene Expression Studies: Estimation from Mouse Hippocampus and Spleen.

    Science.gov (United States)

    Davies, Matthew N; Lawn, Sarah; Whatley, Steven; Fernandes, Cathy; Williams, Robert W; Schalkwyk, Leonard C

    2009-01-01

    Microarrays are designed to measure genome-wide differences in gene expression. In cases where a tissue is not accessible for analysis (e.g. human brain), it is of interest to determine whether a second, accessible tissue could be used as a surrogate for transcription profiling. Surrogacy has applications in the study of behavioural and neurodegenerative disorders. Comparison between hippocampus and spleen mRNA obtained from a mouse recombinant inbred panel indicates a high degree of correlation between the tissues for genes that display a high heritability of expression level. This correlation is not limited to apparent expression differences caused by sequence polymorphisms in the target sequences and includes both cis and trans genetic effects. A tissue such as blood could therefore give surrogate information on expression in brain for a subset of genes, in particular those co-expressed between the two tissues, which have heritably varying expression.

  15. Gene expression profiling in human peripheral blood mononuclear cells using high-density filter-based cDNA microarrays.

    Science.gov (United States)

    Walker, J; Rigley, K

    2000-05-26

    Microarray technology has provided the ability to analyse the expression profiles for thousands of genes in parallel. The need for highly specialised equipment to use certain types of microarrays has restricted the application of this technology to a small number of dedicated laboratories. High-density filter-based cDNA microarrays provide a low-cost option for performing high-throughput gene expression analysis. We have used a model system in which filter-based cDNA microarrays representing over 4000 known human genes were used to monitor the kinetics of gene expression in human peripheral blood mononuclear cells (PBMCs) stimulated with phytohaemagluttinin (PHA). Using software-based cluster analysis, we identified 104 genes that altered in expression levels in response to PHA stimulation of PBMCs and showed that there was a considerable overlap between genes with similar temporal expression profiles and similar functional roles. Comparison of microarray quantitation with quantitative PCR showed almost identical expression profiles for a number of genes. Coupled with the fact that our findings are in agreement with a large number of independent observations, we conclude that the use of filter-based cDNA microarrays is a valid and accurate method for high-throughput gene expression profiling.

  16. Examining Radiation-Induced In Vivo and In Vitro Gene Expression Changes of the Peripheral Blood in Different Laboratories for Biodosimetry Purposes: First RENEB Gene Expression Study.

    Science.gov (United States)

    Abend, M; Badie, C; Quintens, R; Kriehuber, R; Manning, G; Macaeva, E; Njima, M; Oskamp, D; Strunz, S; Moertl, S; Doucha-Senf, S; Dahlke, S; Menzel, J; Port, M

    2016-02-01

    The risk of a large-scale event leading to acute radiation exposure necessitates the development of high-throughput methods for providing rapid individual dose estimates. Our work addresses three goals, which align with the directive of the European Union's Realizing the European Network of Biodosimetry project (EU-RENB): 1. To examine the suitability of different gene expression platforms for biodosimetry purposes; 2. To perform this examination using blood samples collected from prostate cancer patients (in vivo) and from healthy donors (in vitro); and 3. To compare radiation-induced gene expression changes of the in vivo with in vitro blood samples. For the in vitro part of this study, EDTA-treated whole blood was irradiated immediately after venipuncture using single X-ray doses (1 Gy/min(-1) dose rate, 100 keV). Blood samples used to generate calibration curves as well as 10 coded (blinded) samples (0-4 Gy dose range) were incubated for 24 h in vitro, lysed and shipped on wet ice. For the in vivo part of the study PAXgene tubes were used and peripheral blood (2.5 ml) was collected from prostate cancer patients before and 24 h after the first fractionated 2 Gy dose of localized radiotherapy to the pelvis [linear accelerator (LINAC), 580 MU/min, exposure 1-1.5 min]. Assays were run in each laboratory according to locally established protocols using either microarray platforms (2 laboratories) or qRT-PCR (2 laboratories). Report times on dose estimates were documented. The mean absolute difference of estimated doses relative to the true doses (Gy) were calculated. Doses were also merged into binary categories reflecting aspects of clinical/diagnostic relevance. For the in vitro part of the study, the earliest report time on dose estimates was 7 h for qRT-PCR and 35 h for microarrays. Methodological variance of gene expression measurements (CV ≤10% for technical replicates) and interindividual variance (≤twofold for all genes) were low. Dose estimates based on

  17. Exhaustive exercise modifies different gene expression profiles and pathways in LPS-stimulated and un-stimulated whole blood cultures.

    Science.gov (United States)

    Abbasi, Asghar; Hauth, Melanie; Walter, Michael; Hudemann, Jens; Wank, Veit; Niess, Andreas M; Northoff, Hinnak

    2014-07-01

    Exhaustive exercise can interfere with immunity, causing transient immunosuppression and infections/inflammation in athletes. We used microarray technology to analyze the gene expression profiles of whole blood in short time (1h) LPS-stimulated and un-stimulated cultures drawn before, 30min after, 3h after and 24h after a half-marathon run. Four male and 4 female athletes participated. Exercise induced differential expression of genes known to be involved in innate immunity/inflammatory response, metabolic response, DNA methylation, apoptosis and regulation of brain function. Several genes with prominent anti-inflammatory function were up-regulated in un-stimulated cultures, including ARG-1, SOCS3, DUSP-1, ORMs, IRAK3, and GJB6. Some of these genes were also strongly up-regulated in LPS-stimulated cultures (ARG-1, ORM2, and GJB6). Some genes were strongly up-regulated through exercise in LPS-stimulated cultures, but not in un-stimulated cultures (TNIP3, PLAU, and HIVEP1). There was also a row of genes, which were strongly down-regulated by exercise in LPS-stimulated cultures, notably IFN-β1 and CXCL10. Exercise also significantly changed the expression of genes (OLIG2, TMEM106B) which are known to be related to brain function and expression of which has never been documented in peripheral blood. In summary, exhaustive exercise, in addition to modifying gene expression in un-stimulated cells, could also interfere with the early gene expression response to endotoxin. There was an anti-inflammatory bias of gene regulation by exercise, including genes involved in the negative regulation of TLRs signalling. The results of the present study demonstrate that some potentially important effects of exercise can only be detected in relation to pathogen stimulation.

  18. Cpt1a gene expression in peripheral blood mononuclear cells as an early biomarker of diet-related metabolic alterations

    KAUST Repository

    Diaz-Rua, Ruben

    2016-11-23

    Background: Research on biomarkers that provide early information about the development of future metabolic alterations is an emerging discipline. Gene expression analysis in peripheral blood mononuclear cells (PBMC) is a promising tool to identify subjects at risk of developing diet-related diseases.

  19. Predose and Postdose Blood Gene Expression Profiles Identify the Individuals Susceptible to Acetaminophen-Induced Liver Injury in Rats.

    Directory of Open Access Journals (Sweden)

    Xiaoyan Lu

    Full Text Available The extent of drug-induced liver injury (DILI can vary greatly between different individuals. Thus, it is crucial to identify susceptible population to DILI. The aim of this study was to determine whether transcriptomics analysis of predose and postdose rat blood would allow prediction of susceptible individuals to DILI using the widely applied analgesic acetaminophen (APAP as a model drug. Based on ranking in alanine aminotransferase levels, five most susceptible and five most resistant rats were identified as two sub-groups after APAP treatment. Predose and postdose gene expression profiles of blood samples from these rats were determined by microarray analysis. The expression of 158 genes innately differed in the susceptible rats from the resistant rats in predose data. In order to identify more reliable biomarkers related to drug responses for detecting individuals susceptibility to APAP-induced liver injury (AILI, the changes of these genes' expression posterior to APAP treatment were detected. Through the further screening method based on the trends of gene expression between the two sub-groups before and after drug treatment, 10 genes were identified as potential predose biomarkers to distinguish between the susceptible and resistant rats. Among them, four genes, Incenp, Rpgrip1, Sbf1, and Mmp12, were found to be reproducibly in real-time PCR with an independent set of animals. They were all innately higher expressed in resistant rats to AILI, which are closely related to cell proliferation and tissue repair functions. It indicated that rats with higher ability of cell proliferation and tissue repair prior to drug treatment might be more resistant to AILI. In this study, we demonstrated that combination of predose and postdose gene expression profiles in blood might identify the drug related inter-individual variation in DILI, which is a novel and important methodology for identifying susceptible population to DILI.

  20. Global gene expression by Bacillus anthracis during growth in mammalian blood.

    Science.gov (United States)

    Carlson, Paul E; Bourgis, Alexandra E T; Hagan, Ada K; Hanna, Philip C

    2015-11-01

    During the late stages of systemic anthrax, Bacillus anthracis grows rapidly in the host bloodstream. To identify potential genes necessary for this observed rapid growth, we defined the transcriptional profile of B. anthracis during in vitro growth in bovine blood. Genome-wide transcriptome analysis indicated that B. anthracis undergoes significant changes in its transcriptome profile during growth in blood, including the differential regulation of genes associated both with metabolism and known virulence factors. Collectively, these data provide a framework for future studies identifying specific B. anthracis factors required for growth in the mammalian bloodstream.

  1. BloodSpot: a database of gene expression profiles and transcriptional programs for healthy and malignant haematopoiesis

    DEFF Research Database (Denmark)

    Bagger, Frederik Otzen; Sasivarevic, Damir; Hadi Sohi, Sina;

    2016-01-01

    largely inaccessible. Current databases provide information about gene-expression but fail to answer key questions regarding co-regulation, genetic programs or effect on patient survival. To address these shortcomings, we present BloodSpot (www.bloodspot.eu), which includes and greatly extends our...... the relationship between different cell types in the database. The database now includes 23 high-quality curated data sets relevant to normal and malignant blood formation and, in addition, we have assembled and built a unique integrated data set, BloodPool. Bloodpool contains more than 2000 samples assembled from...

  2. In vivo expression of Salmonella enterica serotype Typhi genes in the blood of patients with typhoid fever in Bangladesh.

    Directory of Open Access Journals (Sweden)

    Alaullah Sheikh

    2011-12-01

    Full Text Available BACKGROUND: Salmonella enterica serotype Typhi is the cause of typhoid fever. It is a human-restricted pathogen, and few data exist on S. Typhi gene expression in humans. METHODOLOGY/PRINCIPAL FINDINGS: We applied an RNA capture and amplification technique, Selective Capture of Transcribed Sequences (SCOTS, and microarray hybridization to identify S. Typhi transcripts expressed in the blood of five humans infected with S. Typhi in Bangladesh. In total, we detected the expression of mRNAs for 2,046 S. Typhi genes (44% of the S. Typhi genome in human blood; expression of 912 genes was detected in all 5 patients, and expression of 1,100 genes was detected in 4 or more patients. Identified transcripts were associated with the virulence-associated PhoP regulon, Salmonella pathogenicity islands, the use of alternative carbon and energy sources, synthesis and transport of iron, thiamine, and biotin, and resistance to antimicrobial peptides and oxidative stress. The most highly represented group were genes currently annotated as encoding proteins designated as hypothetical, unknown, or unclassified. Of the 2,046 detected transcripts, 1,320 (29% of the S. Typhi genome had significantly different levels of detection in human blood compared to in vitro cultures; detection of 141 transcripts was significantly different in all 5 patients, and detection of 331 transcripts varied in at least 4 patients. These mRNAs encode proteins of unknown function, those involved in energy metabolism, transport and binding, cell envelope, cellular processes, and pathogenesis. We confirmed increased expression of a subset of identified mRNAs by quantitative-PCR. CONCLUSIONS/SIGNIFICANCE: We report the first characterization of bacterial transcriptional profiles in the blood of patients with typhoid fever. S. Typhi is an important global pathogen whose restricted host range has greatly inhibited laboratory studies. Our results suggest that S. Typhi uses a largely

  3. The Correlation-Base-Selection Algorithm for Diagnostic Schizophrenia Based on Blood-Based Gene Expression Signatures

    Science.gov (United States)

    Zhang, Hang; Xie, Ziyang; Yang, Yuwen; Zhao, Yizhen

    2017-01-01

    Microarray analysis of gene expression is often used to diagnose different types of disease. Many studies report remarkable achievements in nervous system disease. Clinical diagnosis of schizophrenia (SCZ) still depends on doctors' experience, which is unreliable and needs to be more objective and quantified. To solve this problem, we collected whole blood gene expression data from four studies, including 152 individuals with schizophrenia (SCZ) and 138 normal controls in different regions. The correlation-based feature selection (CFS, one of the machine learning methods) algorithm was applied in this study, and 103 significantly differentially expressed genes between patients and controls, called “feature genes,” were selected; then, a model for SCZ diagnosis was built. The samples were subdivided into 10 groups, and cross-validation showed that the model we constructed achieved nearly 100% classification accuracy. Mathematical evaluation of the datasets before and after data processing proved the effectiveness of our algorithm. Feature genes were enriched in Parkinson's disease, oxidative phosphorylation, and TGF-beta signaling pathways, which were previously reported to be associated with SCZ. These results suggest that the analysis of gene expression in whole blood by our model could be a useful tool for diagnosing SCZ. PMID:28280741

  4. Blood cell gene expression profiling in subjects with aggressive periodontitis and chronic arthritis

    DEFF Research Database (Denmark)

    Sørensen, Lars K; Poulsen, Anne Havemose; Sønder, Søren U

    2008-01-01

    with untreated localized aggressive periodontitis (LAgP) or generalized aggressive periodontitis (GAgP). Differentially expressed genes were validated in groups of subjects with LAgP, GAgP, juvenile idiopathic arthritis (JIA), or rheumatoid arthritis (RA) and controls. METHODS: Candidate genes were identified...

  5. Comparison of Gene Expression by Sheep and Human Blood Stimulated with the TLR4 Agonists Lipopolysaccharide and Monophosphoryl Lipid A.

    Directory of Open Access Journals (Sweden)

    Perenlei Enkhbaatar

    Full Text Available Animal models that mimic human biology are important for successful translation of basic science discoveries into the clinical practice. Recent studies in rodents have demonstrated the efficacy of TLR4 agonists as immunomodulators in models of infection. However, rodent models have been criticized for not mimicking important characteristics of the human immune response to microbial products. The goal of this study was to compare genomic responses of human and sheep blood to the TLR4 agonists lipopolysaccharide (LPS and monophosphoryl lipid A (MPLA.Venous blood, withdrawn from six healthy human adult volunteers (~ 28 years old and six healthy adult female sheep (~3 years old, was mixed with 30 μL of PBS, LPS (1μg/mL or MPLA (10μg/mL and incubated at room temperature for 90 minutes on a rolling rocker. After incubation, 2.5 mL of blood was transferred to Paxgene Blood RNA tubes. Gene expression analysis was performed using an Agilent Bioanalyzer with the RNA6000 Nano Lab Chip. Agilent gene expression microarrays were scanned with a G2565 Microarray Scanner. Differentially expressed genes were identified.11,431 human and 4,992 sheep probes were detected above background. Among them 1,029 human and 175 sheep genes were differentially expressed at a stringency of 1.5-fold change (p 1.5-fold changes in human samples. Genes of major inflammatory mediators, such as IL-1, IL-6 and IL-8, TNF alpha, NF-kappaB, ETS2, PTGS2, PTX3, CXCL16, KYNU, and CLEC4E were similarly (>2-fold upregulated by LPS and MPLA in both species.The genomic responses of peripheral blood to LPS and MPLA in sheep are quite similar to those observed in humans, supporting the use of the ovine model for translational studies that mimic human inflammatory diseases and the study of TLR-based immunomodulators.

  6. Dynamic expression of leukocyte innate immune genes in whole blood from horses with lipopolysaccharide-induced acute systemic inflammation

    DEFF Research Database (Denmark)

    Vinther, Anne Mette L.; Skovgaard, Kerstin; Heegaard, Peter M. H.;

    2015-01-01

    Background: In horses, insights into the innate immune processes in acute systemic inflammation are limited even though these processes may be highly important for future diagnostic and therapeutic advances in high-mortality disease conditions as the systemic inflammatory response syndrome (SIRS......) and sepsis. Therefore, the aim of this study was to investigate the expression of 31 selected blood leukocyte immune genes in an equine model of acute systemic inflammation to identify significantly regulated genes and to describe their expression dynamics during a 24-h experimental period. Systemic...... expressions in blood leukocytes during equine acute LPS-induced systemic inflammation thoroughly characterized a highly regulated and dynamic innate immune response. These results provide new insights into the molecular mechanisms of equine systemic inflammation....

  7. First trimester trophoblasts forming endothelial-like tubes in vitro emulate a 'blood vessel development' gene expression profile.

    Science.gov (United States)

    Highet, Amanda R; Buckberry, Sam; Mayne, Benjamin T; Khoda, Sultana M; Bianco-Miotto, Tina; Roberts, Claire T

    2016-07-01

    Extravillous cytotrophoblasts isolated from first trimester placenta, and immortalised cell lines derived from them, have the intrinsic ability to form endothelial-like tubes when cultured on Matrigel™ extracellular matrix. This in vitro tube formation may model placental angiogenesis and/or endovascular differentiation by trophoblasts. To interpret the relevance of this phenomenon to placental development, we used a gene expression microarray approach to identify which genes and pathways are associated with the tube-forming phenotype of HTR8/SVneo first trimester trophoblasts (HTR8-M), compared with HTR8/SVneo not forming tubes on plastic culture surface (HTR8-P). Furthermore, we used weighted gene co-expression network analysis (WGCNA) of microarray data to identify modules of co-expressed genes underlying the biological processes. There were 481 genes differentially expressed between HTR8-M and HTR8-P and these were significantly enriched for blood vessel development and related gene ontologies. WGCNA clustered the genes into 9 co-expression modules. One module was significantly associated with HTR8-M (p = 1.15E-05) and contained genes involved in actin cytoskeleton organization, cell migration and blood vessel development, consistent with tube formation on Matrigel. Another module was significantly associated with HTR8-P (p = 1.94E-05) and was enriched for genes involved in mitosis, consistent with proliferation by cells on plastic which do not differentiate. Up-regulation of angiogenesis and vascular development pathways in endovascular trophoblasts in vivo could underpin spiral artery remodelling processes, which are defective in preeclamptic pregnancies.

  8. Blood-Based Gene Expression Signatures of Infants and Toddlers with Autism

    Science.gov (United States)

    Glatt, Stephen J.; Tsuang, Ming T.; Winn, Mary; Chandler, Sharon D.; Collins, Melanie; Lopez, Linda; Weinfeld, Melanie; Carter, Cindy; Schork, Nicholas; Pierce, Karen; Courchesne, Eric

    2012-01-01

    Objective: Autism spectrum disorders (ASDs) are highly heritable neurodevelopmental disorders that onset clinically during the first years of life. ASD risk biomarkers expressed early in life could significantly impact diagnosis and treatment, but no transcriptome-wide biomarker classifiers derived from fresh blood samples from children with…

  9. Global gene expression analysis of peripheral blood mononuclear cells in rhesus monkey infants with CA16 infection-induced HFMD.

    Science.gov (United States)

    Song, Jie; Hu, Yajie; Hu, Yunguang; Wang, Jingjing; Zhang, Xiaolong; Wang, Lichun; Guo, Lei; Wang, Yancui; Ning, Ruotong; Liao, Yun; Zhang, Ying; Zheng, Huiwen; Shi, Haijing; He, Zhanlong; Li, Qihan; Liu, Longding

    2016-03-02

    Coxsackievirus A16 (CA16) is a dominant pathogen that results in hand, foot, and mouth disease and causes outbreaks worldwide, particularly in the Asia-Pacific region. However, the underlying molecular mechanisms remain unclear. Our previous study has demonstrated that the basic CA16 pathogenic process was successfully mimicked in rhesus monkey infant. The present study focused on the global gene expression changes in peripheral blood mononuclear cells of rhesus monkey infants with hand, foot, and mouth disease induced by CA16 infection at different time points. Genome-wide expression analysis was performed with Agilent whole-genome microarrays and established bioinformatics tools. Nine hundred and forty-eight significant differentially expressed genes that were associated with 5 gene ontology categories, including cell communication, cell cycle, immune system process, regulation of transcription and metabolic process were identified. Subsequently, the mapping of genes related to the immune system process by PANTHER pathway analysis revealed the predominance of inflammation mediated by chemokine and cytokine signaling pathways and the interleukin signaling pathway. Ultimately, co-expressed genes and their networks were analyzed. The results revealed the gene expression profile of the immune system in response to CA16 in rhesus monkey infants and suggested that such an immune response was generated as a result of the positive mobilization of the immune system. This initial microarray study will provide insights into the molecular mechanism of CA16 infection and will facilitate the identification of biomarkers for the evaluation of vaccines against this virus.

  10. The regulation of method of tonifying Qi and activating blood circulation in the related gene expressions after spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Xiao Fan; Li Zhang

    2016-01-01

    Spinal cord injury is a disease of high incidence and low cure rate without any ideal treatment. Among the complex pathological reactions, the post-injury abnormal expressions of many genes may be an important one. Method of tonifying Qi and activating blood circulation, which is one of the most important treatments of spinal cord injury in Traditional Chinese Medicine and has been used extensively in clinic, is proved to be effective in the treatment of spinal cord injury. Recently, many scholars have carried out a lot of studies in this filed and acquired notable achievements. The essay concludes mechanisms of the regulation of method of tonifying Qi and activating blood circulation in the related gene expressions after spinal cord injury to provide new thoughts and new methods for the treatment and study of spinal cord injury.

  11. Blood-based gene expression profiles models for classification of subsyndromal symptomatic depression and major depressive disorder.

    Science.gov (United States)

    Yi, Zhenghui; Li, Zezhi; Yu, Shunying; Yuan, Chengmei; Hong, Wu; Wang, Zuowei; Cui, Jian; Shi, Tieliu; Fang, Yiru

    2012-01-01

    Subsyndromal symptomatic depression (SSD) is a subtype of subthreshold depressive and also lead to significant psychosocial functional impairment as same as major depressive disorder (MDD). Several studies have suggested that SSD is a transitory phenomena in the depression spectrum and is thus considered a subtype of depression. However, the pathophysioloy of depression remain largely obscure and studies on SSD are limited. The present study compared the expression profile and made the classification with the leukocytes by using whole-genome cRNA microarrays among drug-free first-episode subjects with SSD, MDD, and matched controls (8 subjects in each group). Support vector machines (SVMs) were utilized for training and testing on candidate signature expression profiles from signature selection step. Firstly, we identified 63 differentially expressed SSD signatures in contrast to control (Pbiomarkers for SSD and MDD together, we selected top gene signatures from each group of pair-wise comparison results, and merged the signatures together to generate better profiles used for clearly classify SSD and MDD sets in the same time. In details, we tried different combination of signatures from the three pair-wise compartmental results and finally determined 48 gene expression signatures with 100% accuracy. Our finding suggested that SSD and MDD did not exhibit the same expressed genome signature with peripheral blood leukocyte, and blood cell-derived RNA of these 48 gene models may have significant value for performing diagnostic functions and classifying SSD, MDD, and healthy controls.

  12. Analysis of gene expression in white blood cells of cattle orally challenged with bovine amyloidotic spongiform encephalopathy.

    Science.gov (United States)

    Panelli, Simona; Strozzi, Francesco; Capoferri, Rossana; Barbieri, Ilaria; Martinelli, Nicola; Capucci, Lorenzo; Lombardi, Guerino; Williams, John L

    2011-01-01

    Bovine amyloidotic spongiform encephalopathy (BASE) is one of the recently discovered atypical forms of BSE, which is transmissible to primates, and may be the bovine equivalent of sporadic Creutzfeldt-Jacob disease (CJD) in humans. Although it is transmissible, it is unknown whether BASE is acquired through infection or arises spontaneously. In the present study, the gene expression of white blood cells (WBCs) from 5 cattle at 1 yr after oral BASE challenge was compared with negative controls using a custom microarray containing 43,768 unique gene probes. In total, 56 genes were found to be differentially expressed between BASE and control animals with a log fold change of 2 or greater. Of these, 39 were upregulated in BASE animals, while 17 were downregulated. The majority of these genes are related to immune function. In particular, BASE animals appeared to have significantly modified expression of genes linked to T- and B-cell development and activation, and to inflammatory responses. The potential impacts of these gene expression changes are described.

  13. Construction and expression of retroviruses encoding dual drug resistance genes in human umbilical cord blood CD34+ cells

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A series of retroviral vectors encoding human mdr1 gene alone as well as in combination with either human mgmt gene or human mutant Ser31-dhfr gene are engineered. The resultant retroviruses are used to transduce human umbilical cord blood CD34+ cells. It has been shown that expression of dual drug resistance genes in transduced cells confers a broad range of resistance to both kinds of corresponding drugs. These data suggest a rationale for the use of such double chemoresistance gene constructs in an in vivo model in which transduced hematopoietic cells will acquire multiple protection against the cytotoxic side effects of combination chemotherapy and may have future application in chemoprotection of normal tissues, thus killing tumor cells more effectively.

  14. Blood-Based Gene Expression Signatures of Autistic Infants and Toddlers

    Science.gov (United States)

    Glatt, Stephen J.; Tsuang, Ming T.; Winn, Mary; Chandler, Sharon D.; Collins, Melanie; Lopez, Linda; Weinfeld, Melanie; Carter, Cindy; Schork, Nicholas

    2013-01-01

    Objective Autism spectrum disorders (ASDs) are highly heritable neurodevelopmental disorders that onset clinically during the first years of life. ASD-risk biomarkers expressed early in life could significantly impact diagnosis and treatment, but no transcriptome-wide biomarker classifiers derived from fresh blood samples from children with autism have yet emerged. Method Using a community-based, prospective, longitudinal method, we identified 60 infants and toddlers at-risk for ASDs (autistic disorder and pervasive developmental disorder), 34 at-risk for language delay (LD), 17 at-risk for global developmental delay (DD), and 68 typically developing (TD) comparison children. Diagnoses were confirmed via longitudinal follow-up. Each child's mRNA expression profile in peripheral blood mononuclear cells (PBMCs) was determined by microarray. Results Potential ASD biomarkers were discovered in one half of the sample and used to build a classifier with high diagnostic accuracy in the remaining half of the sample. Conclusions The mRNA expression abnormalities reliably observed in PBMCs, which are safely and easily assayed in babies, offer the first potential peripheral blood-based early biomarker panel of risk for autism in infants and toddlers. Future work should verify these biomarkers and evaluate if they may also serve as indirect indices of deviant molecular neural mechanisms in autism. PMID:22917206

  15. Fruit and vegetable consumption and proinflammatory gene expression from peripheral blood mononuclear cells in young adults: a translational study

    Directory of Open Access Journals (Sweden)

    Puchau Blanca

    2010-05-01

    Full Text Available Abstract Background Fruits and vegetables are important sources of fiber and nutrients with a recognized antioxidant capacity, which could have beneficial effects on the proinflammatory status as well as some metabolic syndrome and cardiovascular disease features. The current study assessed the potential relationships of fruit and vegetable consumption with the plasma concentrations and mRNA expression values of some proinflammatory markers in young adults. Methods One-hundred and twenty healthy subjects (50 men/70 women; 20.8 ± 2.6 y; 22.3 ± 2.8 kg/m2 were enrolled. Experimental determinations included anthropometry, blood pressure and lifestyle features as well as blood biochemical and inflammatory measurements. The mRNA was isolated from peripheral blood mononuclear cells (PBMC and the gene expression concerning selected inflammatory markers was assessed by quantitative real-time PCR. Nutritional intakes were estimated by a validated semi-quantitative food-frequency questionnaire. Results The highest tertile of energy-adjusted fruit and vegetable consumption (>660 g/d was associated with lower plasma concentrations of C-reactive protein (CRP and homocysteine and with lower ICAM1, IL1R1, IL6, TNFα and NFκB1 gene expression in PBMC (P for trend ICAM1, TNFα and NFκB1 gene expression in PBMC showed a descending trend as increased fiber intake (>19.5 g/d from fruits and vegetables (P for trend 11.8 mmol/d of dietary total antioxidant capacity showed lower plasma CRP and mRNA values of ICAM1, IL1R1, IL6, TNFα and NFκB1 genes (P for trend Conclusion A higher fruit and vegetable consumption was independently associated not only with reduced CRP and homocysteine concentrations but also with a lower mRNA expression in PBMC of some relevant proinflammatory markers in healthy young adults.

  16. Blood-based gene expression profiles models for classification of subsyndromal symptomatic depression and major depressive disorder.

    Directory of Open Access Journals (Sweden)

    Zhenghui Yi

    Full Text Available Subsyndromal symptomatic depression (SSD is a subtype of subthreshold depressive and also lead to significant psychosocial functional impairment as same as major depressive disorder (MDD. Several studies have suggested that SSD is a transitory phenomena in the depression spectrum and is thus considered a subtype of depression. However, the pathophysioloy of depression remain largely obscure and studies on SSD are limited. The present study compared the expression profile and made the classification with the leukocytes by using whole-genome cRNA microarrays among drug-free first-episode subjects with SSD, MDD, and matched controls (8 subjects in each group. Support vector machines (SVMs were utilized for training and testing on candidate signature expression profiles from signature selection step. Firstly, we identified 63 differentially expressed SSD signatures in contrast to control (P< = 5.0E-4 and 30 differentially expressed MDD signatures in contrast to control, respectively. Then, 123 gene signatures were identified with significantly differential expression level between SSD and MDD. Secondly, in order to conduct priority selection for biomarkers for SSD and MDD together, we selected top gene signatures from each group of pair-wise comparison results, and merged the signatures together to generate better profiles used for clearly classify SSD and MDD sets in the same time. In details, we tried different combination of signatures from the three pair-wise compartmental results and finally determined 48 gene expression signatures with 100% accuracy. Our finding suggested that SSD and MDD did not exhibit the same expressed genome signature with peripheral blood leukocyte, and blood cell-derived RNA of these 48 gene models may have significant value for performing diagnostic functions and classifying SSD, MDD, and healthy controls.

  17. Analysis of Salmonella enterica serotype paratyphi A gene expression in the blood of bacteremic patients in Bangladesh.

    Directory of Open Access Journals (Sweden)

    Alaullah Sheikh

    Full Text Available BACKGROUND: Salmonella enterica serotype Paratyphi A is a human-restricted cause of paratyphoid fever, accounting for up to a fifth of all cases of enteric fever in Asia. METHODOLOGY/PRINCIPAL FINDINGS: In this work, we applied an RNA analysis method, Selective Capture of Transcribed Sequences (SCOTS, and cDNA hybridization-microarray technology to identify S. Paratyphi A transcripts expressed by bacteria in the blood of three patients in Bangladesh. In total, we detected 1,798 S. Paratyphi A mRNAs expressed in the blood of infected humans (43.9% of the ORFeome. Of these, we identified 868 in at least two patients, and 315 in all three patients. S. Paratyphi A transcripts identified in at least two patients encode proteins involved in energy metabolism, nutrient and iron acquisition, vitamin biosynthesis, stress responses, oxidative stress resistance, and pathogenesis. A number of detected transcripts are expressed from PhoP and SlyA-regulated genes associated with intra-macrophage survival, genes contained within Salmonella Pathogenicity Islands (SPIs 1-4, 6, 10, 13, and 16, as well as RpoS-regulated genes. The largest category of identified transcripts is that of encoding proteins with unknown function. When comparing levels of bacterial mRNA using in vivo samples collected from infected patients to samples from in vitro grown organisms, we found significant differences for 347, 391, and 456 S. Paratyphi A transcripts in each of three individual patients (approximately 9.7% of the ORFeome. Of these, expression of 194 transcripts (4.7% of ORFs was concordant in two or more patients, and 41 in all patients. Genes encoding these transcripts are contained within SPI-1, 3, 6 and 10, PhoP-regulated genes, involved in energy metabolism, nutrient acquisition, drug resistance, or uncharacterized genes. Using quantitative RT-PCR, we confirmed increased gene expression in vivo for a subset of these genes. CONCLUSION/SIGNIFICANCE: To our knowledge, we

  18. ANALYSIS OF GENE EXPRESSION IN BLOOD AS AN ADDITIONAL TOOL TO MONITOR METHOTREXATE THERAPY IN PATIENTS WITH RHEUMATOID ARTHRITIS

    Directory of Open Access Journals (Sweden)

    Elena Vasilyevna Chetina

    2013-01-01

    Full Text Available Objective. To assess the changes in clinical, immunological, X-ray indicators and expression of the mTOR (mammalian target of rapamycin genes, the key regulator of cell growth and proliferation; ULK1 (autophagy marker; р21 (cyclindependent kinase inhibitor; caspase 3 (indicator of apoptotic activity; MMP9 (matrix metalloproteinase 9 and cathepsin K, which participate in joint destruction, and proinflammatory cytokine TNFα (tumor necrosis factor α in blood of patients with rheumatoid arthritis (RA receiving methotrexate (MT therapy.Materials and Methods. Thirty-three RA patients (21 with positive and 12 with negative rheumatoid factor (RF, respectively; median age, 47.1 years and 28 healthy volunteers (median age, 45.1 years were examined. All patients have been receiving MT for 2 years. The clinical response was assessed according to the DAS28 score. ESR and the serum levels of anti-cyclic citrullinated peptide antibodies (ACPA, C-reactive protein (CRP, and RF were also determined. Degenerative changes in the joints were evaluated by X-ray examination. Gene expression was measured in peripheral blood cells using reverse transcriptase reaction and real-time polymerase chain reaction.Results. MT therapy considerably reduced the disease severity according to DAS28 score, as well as the number of swollen and painful joints both in seropositive (RF+ and seronegative (RF- RA patients. Ten patients reached remission by the end of the study. In (RF- RA patients, the absence of progression of joint destruction was accompanied by the absence of any significant changes in expression of MMP9 and cathepsin K, as well as a stronger suppression of TGFα (its expression became comparable to that in the control group. Patients who achieved remission showed a significant decrease in the expression level of the cathepsin K gene as compared to that at the start of the study. In (RF+ RA patients, MT therapy significantly reduced the clinical and

  19. ASSOCIATION OF BLOOD GENE EXPRESSIONS IN RHEUMATOID ARTHRITIS PATIENTS WITH CLINICAL AND LABORATORY PARAMETERS BEFORE AND AFTER METHOTREXATE THERAPY

    Directory of Open Access Journals (Sweden)

    E. V. Chetina

    2016-01-01

    Full Text Available The genes, the high basic expression of which indicates the efficiency of methotrexate (MTX therapy in relieving joint inflammation and destruction in patients with rheumatoid arthritis (RA, have been defined.Objective: to find an association between the initial expression of the genes: mTOR (mammalian target of rapamycin, a major regulator of cell growth and proliferation; ULK1 (an autophagy marker 1; p21 (a cyclin-dependent kinase inhibitor; kaspase-3 (an apoptosis activity indicator; MMP-9 (matrix metalloproteinase 9, and cathepsin K, which are involved in joint destruction, and the cytokines: TNF-α (tumor necrosis factor-α, TGFβ1 (transforming growth factor β1 and Runx2 (Runt-related transcription factor 2 in the blood of RA patients with disease activity and joint destruction before and after MTX therapy during 24 months.Subjects and methods. Forty patients (mean age, 47.5 years with RA lasting < 2 years and 26 healthy donors (mean age, 45.1 years were examined. All the patients took MTX for 2 years. A clinical response was assessed with disease activity score (DAS28; erythrocyte sedimentation rate and the serum levels of anti-cyclic citrullinated peptide antibodies (ACCPA, C-reactive protein (CRP, and rheumatoid factor (RF were also estimated. Joint destructive changes were assessed by radiography. Furthermore, blood and knee articular cartilage samples from 21 patients (mean age, 50.4 years with late-stage RA and cartilage samples from 25 healthy individuals were investigated. Gene expression in the cells of peripheral blood and cartilage was determined by real-time reverse transcriptase polymerase chain reaction.Results and discussion. MTX therapy considerably reduced disease activity assessed by DAS28, CRP levels, stiffness, tender and swollen joint counts (TJC and SJC; however, joint space (JS narrowing (JSN substantially increased compared with the baseline values. The expression of the ULK1, p21, MMP-9, cathepsin K genes, and

  20. Expression of multidrug resistance 1 gene and C3435T genetic polymorphism in peripheral blood of patients with intractable epilepsy

    Institute of Scientific and Technical Information of China (English)

    Xueping Zheng; Lan Tan; Jinghui Song; Yan Wang; Yanping Sun

    2008-01-01

    BACKGROUND: Increased expression of multidrug resistance 1 (MDR1) mRNA in peripheral blood of patients with intractable epilepsy is not due to epilepsy drugs, but epilepsy behavior. Monitoring MDR1 expression in peripheral blood is a target for MDR1 gene evaluation. OBJECTIVE: To investigate the influence of antiepileptic drugs and seizures on MDR expression in intractable epilepsy, and to analyze the genetic polymnrphisms of C3435T in the MDR1 gene. DESIGN, TIME AND SETTING: Factorial designs and comparative observations at the experimental center of the Affiliated Hospital of Qingdao Medical College, Qingdao University between October 2003 and October 2004. PARTICIPANTS: A total of 120 subjects were recruited from the epilepsy clinical department of the Affiliated Hospital of Qingdao Medical College. Four groups (n = 30) were classified according to statistical factorial design: intractable epilepsy, treatment response, no treatment, and normal control groups. METHODS: One-step semi-quantitative reverse-transcription polymerase chain reaction technology was used to test expressions of the MDR1 gene in 120 subjects. C3435T polymorphisms in intractable epilepsy group and normal control groups were analyzed by polymerase chain reaction-restriction fragment length polymorphism. MAIN OUTCOME MEASURES: Expression of MDR1 mRNA in the four groups, and C3435T genetic polymorphisms in intractable epilepsy and normal control groups. RESULTS: MDR1 gene expression was increased in the intractable epilepsy group, due to the factor seizures, but not the antiepileptic drugs. However, the interaction between the two factors was not statistically significant. Of the 30 subjects in the intractable epilepsy group, the following genotypes were exhibited: 3 (10%) C/C genotype, 9 (30%) C/T genotype, and 18 (60%) T/T genotype at the site of C3435T, while 4 (13%), 10 (33%), and 16 (53%) subjects were determined to express these genotypes in the normal control group, respectively. C and T

  1. A HUVEC line with a stable expression of the VEGF121 gene to achieve complete endothelialization of blood conduits.

    Science.gov (United States)

    Liu, L-S; Wei, D-H; Tang, C-K; Wang, G-X; Zhang, S-C; Yin, W-D; Yang, Y-Z; Legrand, A-P; Guidoin, R

    2007-01-01

    The purpose of this investigation was to establish monoclonal cell lines of HUVEC with the stable expression of the VEGF(121) gene. Such cells are likely to better adhere to the luminal surface of stents or grafts and to promote a complete endothelialization. The eukaryotic expression vector PCD(2)-VEGF(121) was transfected into cell lines of HUVEC mediated by lipofect AMINE. The positive clones were obtained by the screening of G(418). The transcription and expression of the VEGF gene were investigated by RT-PCR and immunocytochemistry, respectively. The experiment of Miles was applied for the assay of the biological activity of the protein of the VEGF produced by the HUVEC lines with transfected PCD(2)-VEGF(121). The growth curve was made for comparison with that of non-transfected HUVEC line cells. The positive clone cells from which transcripted the mRNA of VEGF(121) gene were obtained by RT-PCR. The positive results of the immunocytochemistry were found and the high biological activity of VEGF in the media was detected in the positive clone cells only. The time to achieve the multiplication of the positive clone cells by a factor of 2 was shorter than that of the non-transfected HUVEC line calculated from the growth curve. The HUVEC line of monoclonal cells with the stable expression of VEGF(121) gene has been established successfully and can be employed on the luminal surfaces of foreign blood conduits.

  2. Reprogramming of human peripheral blood monocytes to erythroid lineage by blocking of the PU-1 gene expression.

    Science.gov (United States)

    Nouri, Masoumeh; Deezagi, Abdolkhalegh; Ebrahimi, Marzieh

    2016-03-01

    In hematopoietic system development, PU.1 and GATA-1 as lineage-specific transcription factors (TF) are expressed in common myeloid progenitors. The cross antagonism between them ascertains gene expression programs of monocytic and erythroid cells, respectively. This concept in transdifferentiation approaches has not been well considered yet, especially in intralineage conversion systems. To demonstrate whether PU.1 suppression induces monocyte lineage conversion into red blood cells, a combination of three PU.1-specific siRNAs was implemented to knock down PU.1 gene expression and generate the balance in favor of GATA-1 expression to induce erythroid differentiation. For this purpose, monocytes were isolated from human peripheral blood and transfected by PU.1 siRNAs. In transfected monocytes, the rate of PU.1 expression in mRNA level was significantly decreased until 0.38 ± 0.118 when compared to untreated monocytes at 72 h (p value ≤0.05) which resulted in significant overexpression of GATA1 of 16.1 ± 0.343-fold compared to the untreated group (p value ≤0.01). Subsequently, overexpression of hemoglobin (α 13.26 ± 1.34-fold; p value≤0.0001) and β-globin (37.55 ± 16.56-fold; p value≤0.0001) was observed when compared to control groups. The results of western immunoblotting confirm those findings too. While, reduced expression of monocyte, CD14 gene, was observed in qRT-PCR and flow cytometry results. Our results suggest that manipulating the ratio of the two TFs in bifurcation differentiation pathways via applying siRNA technology can possibly change the cells' fate as a safe way for therapeutics application.

  3. CDNA microarray analysis of gene expression patterns in blood mononuclear cells of SLA-DRB1-defined Yorkshire pigs.

    Science.gov (United States)

    Nino-Soto, M I; Jozani, R J; Bridle, B; Mallard, B A

    2008-01-01

    Three lines of commercialYorkshire pigs with defined SLA-DRB1 alleles were developed at the University of Guelph for xenotransplantation and immune response studies. Two of the SLA-DRB1 alleles have been previously reported (SLA-DRB1*0502 and *0701), whereas the third one is a new allele. The influence of defined SLA-DRB1 alleles on transcriptional patterns of immune-related genes in blood mononuclear cells (BMCs) of pigs was explored using cDNA microarray. Microarray analysis showed significant differential expression of inflammatory genes in association with the various SLA-DRB1 alleles. A better understanding of the association between SLA genotypes and gene activity can increase the knowledge of the function of these molecules, as well as define new strategies to control animal health and optimize animal production.

  4. Effects of chronic ascariasis and trichuriasis on cytokine production and gene expression in human blood: a cross-sectional study.

    Directory of Open Access Journals (Sweden)

    Miguel Reina Ortiz

    2011-06-01

    Full Text Available BACKGROUND: Chronic soil-transmitted helminth (STH infections are associated with effects on systemic immune responses that could be caused by alterations in immune homeostasis. To investigate this, we measured the impact in children of STH infections on cytokine responses and gene expression in unstimulated blood. METHODOLOGY/PRINCIPAL FINDINGS: Sixty children were classified as having chronic, light, or no STH infections. Peripheral blood mononuclear cells were cultured in medium for 5 days to measure cytokine accumulation. RNA was isolated from peripheral blood and gene expression analysed using microarrays. Different infection groups were compared for the purpose of analysis: STH infection (combined chronic and light vs. uninfected groups and chronic STH infection (chronic vs. combined light and uninfected groups. The chronic STH infection effect was associated with elevated production of GM-CSF (P=0.007, IL-2 (P=0.03, IL-5 (P=0.01, and IL-10 (P=0.01. Data reduction suggested that chronic infections were primarily associated with an immune phenotype characterized by elevated IL-5 and IL-10, typical of a modified Th2-like response. Chronic STH infections were associated with the up-regulation of genes associated with immune homeostasis (IDO, P=0.03; CCL23, P=0.008, HRK, P=0.005, down-regulation of microRNA hsa-let-7d (P=0.01 and differential regulation of several genes associated with granulocyte-mediated inflammation (IL-8, down-regulated, P=0.0002; RNASE2, up-regulated, P=0.009; RNASE3, up-regulated, p=0.03. CONCLUSIONS/SIGNIFICANCE: Chronic STH infections were associated with a cytokine response indicative of a modified Th2 response. There was evidence that STH infections were associated with a pattern of gene expression suggestive of the induction of homeostatic mechanisms, the differential expression of several inflammatory genes and the down-regulation of microRNA has-let-7d. Effects on immune homeostasis and the development of a

  5. Novel type of red blood cell pyruvate kinase hyperactivity predicts a remote regulatory locus involved in PKLR gene expression.

    Science.gov (United States)

    van Oirschot, Brigitte Antoinette; Francois, Jerney Johanna Jeanette Maria; van Solinge, Wouter Willem; van Wesel, Annet Cornelia Wilhelmina; Rijksen, Gert; van Amstel, Hans Kristian Ploos; van Wijk, Richard

    2014-04-01

    Red blood cell pyruvate kinase (PK-R) is a key regulatory enzyme of red cell metabolism. Hereditary deficiency of PK-R is caused by mutations in the PKLR gene, leading to chronic nonspherocytic hemolytic anemia. In contrast to PK deficiency, inherited PK hyperactivity has also been described. This very rare abnormality of RBC metabolism has been documented in only two families and appears to be without clinical consequences. Thus far, it has been attributed to either a gain of function mutation in PKLR or to persistent expression of the fetal PK isozyme PK-M2 in mature red blood cells. We here report on a novel type of inherited PK hyperactivity that is characterized by solely increased expression of a kinetically normal PK-R. In line with the latter, no mutations were detected in PKLR. Mutations in regulatory regions as well as variations in PKLR copy number were also absent. In addition, linkage analysis suggested that PK hyperactivity segregated independently from the PKLR locus. We therefore postulate that the causative mutation resides in a novel yet-unidentified locus, and upregulates PKLR gene expression. Other mutations of the same locus may be involved in those cases of PK deficiency that fail to reveal mutations in PKLR.

  6. Whole-genome gene expression modifications associated with nitrosamine exposure and micronucleus frequency in human blood cells

    DEFF Research Database (Denmark)

    Hebels, Dennie G A J; Jennen, Danyel G J; van Herwijnen, Marcel H M;

    2011-01-01

    for analysing such potentially carcinogenic gene expression and MN formation events in target organs. To assess NOC exposure, urine samples were analysed for marker nitrosamines. NOC excretion levels and MN frequency were subsequently linked to peripheral blood transcriptomics. We demonstrated a significant...... association between MN frequency and urinary NOCs (r = 0.41, P = 0.025) and identified modifications in among others cytoskeleton remodeling, cell cycle, apoptosis and survival, signal transduction, immune response, G-protein signaling and development pathways, which indicate a response to NOC...

  7. Expression of TNF-alpha-dependent apoptosis-related genes in the peripheral blood of Malagasy subjects with tuberculosis.

    Directory of Open Access Journals (Sweden)

    Niaina Rakotosamimanana

    Full Text Available The majority of Mycobacterium tuberculosis (Mtb infections remain asymptomatic with only up to 10% progressing to clinical tuberculosis. However, the constituents of the effective "protective immunity" against tuberculosis responsible for containing most infections remain unknown. Evaluating gene transcriptional profiles in tuberculosis clinical cohorts is one approach to understanding the spectrum of tuberculosis progression. It is clear that apoptosis plays a role in the control of tuberculosis but the utility of apoptosis-related genes as surrogate markers of protection against tuberculosis has not been well investigated. To characterize potential surrogate markers that could discriminate different phases of the clinical tuberculosis spectrum, we investigated gene expression of several TNF-alpha dependent apoptotic genes (TNFR1, TNFR2, FLICE, FLIPs by real-time RT-PCR of peripheral blood cells from cohorts of individuals with active tuberculosis or potential exposure to tuberculosis. Newly diagnosed tuberculosis patients (n = 23, their close household contacts (n = 80, and community controls (n = 46 were tested at intervals over a period of up to two years. Latent infection or previous Mtb contact was assessed by ELISPOT and TST and complete blood counts were performed during the follow up. Results showed significant upregulation of FLIPs expression by infected individuals regardless of clinical status at entry to the study. A higher percentage of lymphocytes was found in the infected household contacts that remained healthy. In contrast, in individuals with active TB, a significant upregulation of TNFR2 expression, a significantly higher percentage of monocytes and a significantly decreased lymphocyte count were seen, compared to subjects that remained healthy. Moreover, the household contacts who subsequently developed signs of TB also had a significantly high number of monocytes. These data suggest tuberculosis may be

  8. Dexamethasone stimulated gene expression in peripheral blood indicates glucocorticoid-receptor hypersensitivity in job-related exhaustion.

    Science.gov (United States)

    Menke, Andreas; Arloth, Janine; Gerber, Markus; Rex-Haffner, Monika; Uhr, Manfred; Holsboer, Florian; Binder, Elisabeth B; Holsboer-Trachsler, Edith; Beck, Johannes

    2014-06-01

    Work-related stress can lead to various health problems ranging from job-related exhaustion to psychiatric and somatic diseases. Biomarkers of job-related exhaustion could help to improve our understanding of the biological mechanisms and might be useful to guide prevention and treatment strategies. The present study included 12 male cases suffering from job-related exhaustion and 12 matched healthy controls. Severity of exhaustion was assessed with the Maslach Burnout Inventory (MBI) and the Shirom-Melamed Burnout Measure (SMBM). Whole genome expression profiles derived from whole blood cells (baseline and following glucocorticoid-receptor (GR) stimulation with 1.5mg dexamethasone p.o.) and corresponding plasma cortisol levels were analyzed. All cases participated in regular aerobic exercise for 12 consecutive weeks and were then re-assessed at follow-up for exhaustion symptoms as well as for cortisol levels and gene expression profiles. At baseline, we found increased basal cortisol levels and an enhanced suppression of plasma cortisol concentrations following dexamethasone in cases suffering from job-related exhaustion. Gene expression analysis revealed that 1.6-fold more transcripts were significantly regulated by dexamethasone in cases as compared to controls. At follow-up after 12 weeks of regular exercise training which was accompanied by significantly improved exhaustion severity scores, cortisol levels and gene expression profiles of cases normalized to the levels observed in controls. In conclusion, we detected GR-induced neuroendocrine and gene expression changes in cases suffering from job-related exhaustion which are in line with an increased sensitivity of GR function. This GR dysregulation normalized with symptom recovery.

  9. Differential Gene Expression Profiles in Coronary Heart Disease Patients of Blood Stasis Syndrome in Traditional Chinese Medicine and Clinical Role of Target Gene

    Institute of Scientific and Technical Information of China (English)

    马晓娟; 殷惠军; 陈可冀

    2009-01-01

    Objective:To investigate the differential gene expression profiles in coronary heart disease(CHD) patients of blood-stasis syndrome(BSS) by oligonucleotide microarray technique,and the clinical significance of target gene.Methods:Subjects were assigned to CHD patients with BSS(n=8),CHD patients without BSS (n=8),and BSS patients without CHD(n=8) based on coronary angiography and the diagnostic criteria of BSS. The sex- and age-matched healthy volunteers(n=8) were enrolled as the control group.Venous bloo...

  10. Cpt1a gene expression in peripheral blood mononuclear cells as an early biomarker of diet-related metabolic alterations

    Directory of Open Access Journals (Sweden)

    Rubén Díaz-Rúa

    2016-11-01

    Full Text Available Background: Research on biomarkers that provide early information about the development of future metabolic alterations is an emerging discipline. Gene expression analysis in peripheral blood mononuclear cells (PBMC is a promising tool to identify subjects at risk of developing diet-related diseases. Objective: We analysed PBMC expression of key energy homeostasis-related genes in a time-course analysis in order to find out early markers of metabolic alterations due to sustained intake of high-fat (HF and high-protein (HP diets. Design: We administered HF and HP diets (4 months to adult Wistar rats in isocaloric conditions to a control diet, mainly to avoid overweight associated with the intake of hyperlipidic diets and, thus, to be able to characterise markers of metabolically obese normal-weight (MONW syndrome. PBMC samples were collected at different time points of dietary treatment and expression of relevant energy homeostatic genes analysed by real-time reverse transcription-polymerase chain reaction. Serum parameters related with metabolic syndrome, as well as fat deposition in liver, were also analysed. Results: The most outstanding results were those obtained for the expression of the lipolytic gene carnitine palmitoyltransferase 1a (Cpt1a. Cpt1a expression in PBMC increased after only 1 month of exposure to both unbalanced diets, and this increased expression was maintained thereafter. Interestingly, in the case of the HF diet, Cpt1a expression was altered even in the absence of increased body weight but correlated with alterations such as higher insulin resistance, alteration of serum lipid profile and, particularly, increased fat deposition in liver, a feature characteristic of metabolic syndrome, which was even observed in animals fed with HP diet. Conclusions: We propose Cpt1a gene expression analysis in PBMC as an early biomarker of metabolic alterations associated with MONW phenotype due to the intake of isocaloric HF diets, as

  11. Combined anti-tumor necrosis factor-α therapy and DMARD therapy in rheumatoid arthritis patients reduces inflammatory gene expression in whole blood compared to DMARD therapy alone

    Directory of Open Access Journals (Sweden)

    Carl K Edwards

    2012-12-01

    Full Text Available Periodic assessment of gene expression for diagnosis and monitoring in rheumatoid arthritis (RA may provide a readily available and useful method to detect subclinical disease progression and follow responses to therapy with disease modifying anti-rheumatic agents (DMARDs or anti-TNF-α therapy. We used quantitative real-time PCR to compare peripheral blood gene expression profiles in active ("unstable" RA patients on DMARDs, stable RA patients on DMARDs, and stable RA patients treated with a combination of a DMARD and an anti-TNF-α agent (infliximab or etanercept to healthy human controls. The expression of 48 inflammatory genes were compared between healthy controls (N=122, unstable DMARD patients (N=18, stable DMARD patients (N=26, and stable patients on combination therapy (N=20. Expression of 13 genes was very low or undetectable in all study groups. Compared to healthy controls, patients with unstable RA on DMARDs exhibited increased expression of 25 genes, stable DMARD patients exhibited increased expression of 14 genes and decreased expression of five genes, and combined therapy patients exhibited increased expression of six genes and decreased expression of 10 genes. These findings demonstrate that active RA is associated with increased expression of circulating inflammatory markers whereas increases in inflammatory gene expression are diminished in patients with stable disease on either DMARD or anti-TNF-α therapy. Furthermore, combination DMARD and anti-TNF-α therapy is associated with greater reductions in circulating inflammatory gene expression compared to DMARD therapy alone. These results suggest that assessment of peripheral blood gene expression may prove useful to monitor disease progression and response to therapy.

  12. Transgenic mosquitoes expressing a phospholipase A(2 gene have a fitness advantage when fed Plasmodium falciparum-infected blood.

    Directory of Open Access Journals (Sweden)

    Ryan C Smith

    Full Text Available BACKGROUND: Genetically modified mosquitoes have been proposed as an alternative strategy to reduce the heavy burden of malaria. In recent years, several proof-of-principle experiments have been performed that validate the idea that mosquitoes can be genetically modified to become refractory to malaria parasite development. RESULTS: We have created two transgenic lines of Anophelesstephensi, a natural vector of Plasmodium falciparum, which constitutively secrete a catalytically inactive phospholipase A2 (mPLA2 into the midgut lumen to interfere with Plasmodium ookinete invasion. Our experiments show that both transgenic lines expressing mPLA2 significantly impair the development of rodent malaria parasites, but only one line impairs the development of human malaria parasites. In addition, when fed on malaria-infected blood, mosquitoes from both transgenic lines are more fecund than non-transgenic mosquitoes. Consistent with these observations, cage experiments with mixed populations of transgenic and non-transgenic mosquitoes show that the percentage of transgenic mosquitoes increases when maintained on Plasmodium-infected blood. CONCLUSIONS: Our results suggest that the expression of an anti-Plasmodium effector gene gives transgenic mosquitoes a fitness advantage when fed malaria-infected blood. These findings have important implications for future applications of transgenic mosquito technology in malaria control.

  13. Feeding conditions control the expression of genes involved in sterol metabolism in peripheral blood mononuclear cells of normoweight and diet-induced (cafeteria) obese rats

    NARCIS (Netherlands)

    Caimari, A.; Oliver, P.; Rodenburg, W.; Keijer, J.; Palou, A.

    2010-01-01

    Peripheral blood mononuclear cells (PBMC) are easily obtainable cells from blood whose gene expression profiles have been proven to be highly robust in distinguishing a disease state from healthy state. Sterol metabolism is of physiological importance, and although its nutritional response in liver

  14. Senescence-Related Changes in Gene Expression of Peripheral Blood Mononuclear Cells from Octo/Nonagenarians Compared to Their Offspring

    Directory of Open Access Journals (Sweden)

    Amirah Abdul Rahman

    2013-01-01

    Full Text Available Mechanisms determining both functional rate of decline and the time of onset in aging remain elusive. Studies of the aging process especially those involving the comparison of long-lived individuals and young controls are fairly limited. Therefore, this research aims to determine the differential gene expression profile in related individuals from villages in Pahang, Malaysia. Genome-wide microarray analysis of 18 samples of peripheral blood mononuclear cells (PBMCs from two groups: octo/nonagenarians (80–99 years old and their offspring (50.2 ± 4.0 years old revealed that 477 transcripts were age-induced and 335 transcripts were age-repressed with fold changes ≥1.2 in octo/nonagenarians compared to offspring. Interestingly, changes in gene expression were associated with increased capacity for apoptosis (BAK1, cell cycle regulation (CDKN1B, metabolic process (LRPAP1, insulin action (IGF2R, and increased immune and inflammatory response (IL27RA, whereas response to stress (HSPA8, damage stimulus (XRCC6, and chromatin remodelling (TINF2 pathways were downregulated in octo/nonagenarians. These results suggested that systemic telomere maintenance, metabolism, cell signalling, and redox regulation may be important for individuals to maintain their healthy state with advancing age and that these processes play an important role in the determination of the healthy life-span.

  15. Investigation of Fasciculation and Elongation Protein ζ-1 (FEZ1 in Peripheral Blood Reveals Differences in Gene Expression in Patients with Schizophrenia

    Directory of Open Access Journals (Sweden)

    Vachev T.I.

    2015-06-01

    Full Text Available Schizophrenia (SZ is a chronic neuropsychiatric disorder characterized by affective, neuromorphological and cognitive impairment, deteriorated social functioning and psychosis with underlying molecular abnormalities, including gene expression changes. Observations have suggested that fasciculation and elongation protein ζ-1 (FEZ1 may be implicated in the pathogenesis of schizophrenia. Nevertheless, our current knowledge of the expression of FEZ1 in peripheral blood of schizophrenia patients remains unclear. The purpose of this study was to identify the characteristic gene expression patterns of FEZ1 in peripheral blood samples from schizophrenia patients. We performed quantitative reverse-transcriptase (qRT-PCR analysis using peripheral blood from drug-free schizophrenia patients (n = 29 and age and gender-matched general population controls (n = 24. For the identification of FEZ1 gene expression patterns, we applied a comparative threshold cycle (CT method. A statistically significant difference of FEZ1 mRNA level was revealed in schizophrenia subjects compared to healthy controls (p = 0.0034. To the best of our knowledge, this study is the first describing a down-regulation of FEZ1 gene expression in peripheral blood of patients with schizophrenia. Our results suggested a possible functional role of FEZ1 in the pathogenesis of schizophrenia and confirmed the utility of peripheral blood samples for molecular profiling of psychiatric disorders including schizophrenia. The current study describes FEZ1 gene expression changes in peripheral blood of patients with schizophrenia with significantly down-regulation of FEZ1 mRNA. Thus, our results provide support for a model of SZ pathogenesis that includes the effects of FEZ1 expression.

  16. The gene expression profile of peripheral blood mononuclear cells from EV71-infected rhesus infants and the significance in viral pathogenesis.

    Science.gov (United States)

    Zhang, Ying; Yang, Erxia; Pu, Jing; Liu, Longding; Che, Yanchun; Wang, Jingjing; Liao, Yun; Wang, Lichun; Ding, Dong; Zhao, Ting; Ma, Na; Song, Ming; Wang, Xi; Shen, Dong; Tang, Donghong; Huang, Hongtai; Zhang, Zhixiao; Chen, Dai; Feng, Mingfei; Li, Qihan

    2014-01-01

    Enterovirus 71 (EV71) is the major pathogen responsible for fatal hand, foot and mouth disease (HFMD). Our previous work reported on an EV71-infected rhesus monkey infant model that presented with histo-pathologic changes of the central nervous system (CNS) and lungs. This study is focused on the correlated modulation of gene expression in the peripheral blood mononuclear cells (PBMCs) from EV71-infected rhesus monkey infants. The expression of more than 500 functional genes associated with multiple pathways was modulated. The expression of genes associated with immune inflammatory responses was up-regulated during the period from days 4 to 10 post-infection. The expression of two genes (TAC1 and IL17A), which play major roles in inflammatory reactions, was remarkably up-regulated during the infection period. Furthermore, a higher expression level of the TAC1 gene was identified in the CNS compared to the lungs, but a high expression level of the IL-17A gene was observed in the lungs and not in the CNS. The results of this study suggest at least two facts about EV71 infection, which are that: the TAC1 gene that encodes substance P and neurokinin-A is present in both PBMCs and the hypothalamus; and the up-regulation of IL-17A is sustained in the peripheral blood.

  17. Study protocol: a randomised controlled trial investigating the effect of exercise training on peripheral blood gene expression in patients with stable angina

    Directory of Open Access Journals (Sweden)

    Crossman David C

    2010-10-01

    Full Text Available Abstract Background Exercise training has been shown to reduce angina and promote collateral vessel development in patients with coronary artery disease. However, the mechanism whereby exercise exerts these beneficial effects is unclear. There has been increasing interest in the use of whole genome peripheral blood gene expression in a wide range of conditions to attempt to identify both novel mechanisms of disease and transcriptional biomarkers. This protocol describes a study in which we will assess the effect of a structured exercise programme on peripheral blood gene expression in patients with stable angina, and correlate this with changes in angina level, anxiety, depression, and exercise capacity. Methods/Design Sixty patients with stable angina will be recruited and randomised 1:1 to exercise training or conventional care. Patients randomised to exercise training will attend an exercise physiology laboratory up to three times weekly for supervised aerobic interval training sessions of one hour in total duration. Patients will undergo assessments of angina, anxiety, depression, and peripheral blood gene expression at baseline, after six and twelve weeks of training, and twelve weeks after formal exercise training ceases. Discussion This study will provide comprehensive data on the effect of exercise training on peripheral blood gene expression in patients with angina. By correlating this with improvement in angina status we will identify candidate peripheral blood transcriptional markers predictive of improvements in angina level in response to exercise training. Trial Registration Clinicaltrials.gov identifier: NCT01147952

  18. Broadly altered gene expression in blood leukocytes in essential hypertension is absent during treatment

    NARCIS (Netherlands)

    Chon, H; Gaillard, CAJM; van der Meijden, BB; Dijstelbloem, HM; Kraaijenhagen, RJ; van Leenen, D; Holstege, FCP; Joles, JA; Bluyssen, HAR; Koomans, HA; Braam, B

    2004-01-01

    We assessed whether large-scale expression profiling of leukocytes of patients with essential hypertension reflects characteristics of systemic disease and whether such changes are responsive to antihypertensive therapy. Total RNA from leukocytes were obtained from untreated (n=6) and treated (n=6)

  19. Use of Gene Expression Profiles of Peripheral Blood Lymphocytes to Distinguish BRCA1 Mutation Carriers in High Risk Breast Cancer Families

    Directory of Open Access Journals (Sweden)

    Marie-Laure Vuillaume

    2009-01-01

    Full Text Available Mutations in two major genes, BRCA1 and BRCA2, account for up to 30% of families with hereditary breast cancer. Unfortunately, in most families there is little to indicate which gene should be targeted first for mutation screening, which is labor intensive, time consuming and often prohibitively expensive. As BRCA1 is a tumor suppressor gene involved in various cellular processes, heterozygous mutations could deregulate dependent pathways, such as DNA damage response, and disturb transcriptional activity of genes involved in the downstream signaling cascade. We investigated gene expression profiling in peripheral blood lymphocytes to evaluate this strategy for distinguishing BRCA1 mutation carriers from non-carriers. RNA from whole blood samples of 15 BRCA1 mutation carriers and 15 non-carriers from BRCA1 or BRCA2 families were hybridized to Agilent Technologies Whole Human Genome OligoMicroarrays (4 × 44 K multiplex format containing 41,000 unique human genes and transcripts. Gene expression data were analyzed with Welch’s t-tests and submitted to hierarchical clustering (GeneSpring GX software, Agilent Technologies. Statistical analysis revealed a slight tendency for 133 genes to be differentially expressed between BRCA1 mutation carriers and non-carriers. However, hierarchical clustering of these genes did not accurately discriminate BRCA1 mutation carriers from non-carriers. Expression variation for these genes according to BRCA1 mutation status was weak. In summary, microarray profiling of untreated whole blood does not appear to be informative in identifying breast cancer risk due to BRCA1 mutation.

  20. Ex vivo generated natural killer cells acquire typical natural killer receptors and display a cytotoxic gene expression profile similar to peripheral blood natural killer cells

    NARCIS (Netherlands)

    Lehmann, D.; Spanholtz, J.; Osl, M.; Tordoir, M.; Lipnik, K.; Bilban, M.; Schlechta, B.; Dolstra, H.; Hofer, E.

    2012-01-01

    Ex vivo differentiation systems of natural killer (NK) cells from CD34+ hematopoietic stem cells are of potential importance for adjuvant immunotherapy of cancer. Here, we analyzed ex vivo differentiation of NK cells from cord blood-derived CD34+ stem cells by gene expression profiling, real-time RT

  1. Differential expression of oxidative stress and inflammation related genes in peripheral blood mononuclear cells in response to a low-calorie diet: a nutrigenomics study.

    Science.gov (United States)

    Crujeiras, Ana B; Parra, Dolores; Milagro, Fermín I; Goyenechea, Estibaliz; Larrarte, Eider; Margareto, Javier; Martínez, J Alfredo

    2008-12-01

    Nutrigenomics is a new application of omics technologies in nutritional science. Nutrigenomics aims to identify molecular markers of diet-related diseases and mechanisms of interindividual variability in response to food. The aim of this study was to evaluate peripheral blood mononuclear cells (PBMC) as a model system and readily available source of RNA to discern gene expression signatures in relation to personalized therapy of obesity. PBMC were collected from obese men before and after an 8-week low-calorie diet (LCD) to lose weight. Changes in gene expression before and after the LCD were initially screened using a DNA-microarray platform and validated by qRT-PCR. Global gene expression analysis identified 385 differentially expressed transcripts after the LCD. Further analyses showed a decrease in some specific oxidative stress and inflammation genes. Interestingly, expression of these genes was directly related to body weight, while a lower IL8 gene expression was associated with higher fat mass decrease. Collectively, these observations suggest that PBMCs are a suitable RNA source and model system to perform nutrigenomics studies related to obesity and development of personalized dietary treatments. IL8 gene expression warrant further research as a putative novel biomarker of changes in body fat percentage in response to an LCD.

  2. THE EXPRESSION OF GENES ASSOCIATED WITH OSTEOBLAST DIFFERENTIATION AND THE MAMMALIAN TARGET OF RAPAMYCIN (mTOR IN THE BLOOD OF PATIENTS WITH OSTEOPOROSIS

    Directory of Open Access Journals (Sweden)

    E. V. Chetina

    2011-01-01

    Full Text Available Objective: to study an association of bone mineral density (BMD with the expression of genes associated with the proliferation, survival, and differentiation of osteocytes in the peripheral blood of postmenopausal women with osteoporosis (OP. Subjects and methods. Twenty-eight postmenopausal women with OP and 17 age-matched healthy women were examined. BMD was measured by X-ray absorptionmetry. Alkaline phosphatase activity and calcium and phosphorus levels in the blood were determined by conventional methods. RNA was isolated from the peripheral blood and used to estimate the gene expression, by using real-time polymerase chain reaction (RT-PCR. Results. The postmenopausal women with OP were observed to have a significant increase in the expression of ATG1 (serine-threonine kinase that is responsible for the generation of autophagic vacuoles as compared to the healthy controls, which suggests that autophagy develops in the blood cells of these patients. This was attended by a considerable reduction in the expression of the mTOR (the mammalian target of rapamycin gene, a regulator of protein synthesis and cell proliferation, and in that of the genes associated with the differentiation of osteoblasts: transforming growth factor β1 (TGF-β1, Runx 2 (Runt-related transcription factor 2 and total alkaline phosphatase (TAP, and the proinflammatory cytokines tumor necrosis factor-α (TNF-α and interleukin 1β (IL-1β. The expression of mTOR, TGF- β1, Runx2, and IL-1β genes was positively correlated with BMD in individual areas of the hip. On the contrary, that of ATG1 and TAP was correlated negatively with BMD in this area and positively with that in the spine. Although the expression of the genes in question was not correlated with the serum levels of phosphorus and calcium, that of TGF-β1 was positively related to TAP activity in postmenopausal women with OP. Conclusion. In postmenopausal women with OP, bone loss is accompanied by a significant

  3. Whole genome expression profiling of blood cells in ovarian cancer patients : prognostic impact of the CYP1B1, MTSS1, NCALD, and NOP14 genes

    OpenAIRE

    Isaksson, Helena S.; SORBE, BENGT; Nilsson, Torbjörn K.

    2014-01-01

    Ovarian cancer patients with different tumor stages and cell differentiation might be distinguished from each other by gene expression profiles in whole blood cell mRNA by the Affymetrix Human Gene 1.0 ST Array. We also examined if there is any association with other clinical variables, response to therapy, and residual tumor burden after surgery. Patients were divided into two groups, one with poor prognosis, advanced stage and poorly differentiated tumors (n = 22), and one group with good p...

  4. Characterization and differentiation of equine experimental local and early systemic inflammation by expression responses of inflammation-related genes in peripheral blood leukocytes

    DEFF Research Database (Denmark)

    Vinther, Anne Mette L; Heegaard, Peter M. H.; Skovgaard, Kerstin;

    2016-01-01

    and hematological/biochemical examinations were performed, and serial blood samples were analyzed by reverse transcription quantitative real-time PCR. Post-induction expression profiles of all genes were compared between study groups using principal component analysis (PCA) and hierarchical clustering. Moderate......, the aim of this study was to investigate the innate peripheral blood leukocyte (PBL) immune response to local inflammation in horses, and to compare this response with the PBL immune response during the early phase of acute systemic inflammation. Expression of 22 selected inflammation-related genes...... was measured in whole blood leukocytes from 6 horses in an experimental cross-over model of lipopolysaccharide- (LPS-) induced acute synovitis (3 μg LPS intraarticularly; locally inflamed [LI] horses) and endotoxemia (1 μg LPS/kg intravenously; systemically inflamed [SI] horses). Multiple clinical...

  5. Garlic accelerates red blood cell turnover and splenic erythropoietic gene expression in mice: evidence for erythropoietin-independent erythropoiesis.

    Directory of Open Access Journals (Sweden)

    Bünyamin Akgül

    Full Text Available Garlic (Allium sativum has been valued in many cultures both for its health effects and as a culinary flavor enhancer. Garlic's chemical complexity is widely thought to be the source of its many health benefits, which include, but are not limited to, anti-platelet, procirculatory, anti-inflammatory, anti-apoptotic, neuro-protective, and anti-cancer effects. While a growing body of scientific evidence strongly upholds the herb's broad and potent capacity to influence health, the common mechanisms underlying these diverse effects remain disjointed and relatively poorly understood. We adopted a phenotype-driven approach to investigate the effects of garlic in a mouse model. We examined RBC indices and morphologies, spleen histochemistry, RBC half-lives and gene expression profiles, followed up by qPCR and immunoblot validation. The RBCs of garlic-fed mice register shorter half-lives than the control. But they have normal blood chemistry and RBC indices. Their spleens manifest increased heme oxygenase 1, higher levels of iron and bilirubin, and presumably higher CO, a pleiotropic gasotransmitter. Heat shock genes and those critical for erythropoiesis are elevated in spleens but not in bone marrow. The garlic-fed mice have lower plasma erythropoietin than the controls, however. Chronic exposure to CO of mice on garlic-free diet was sufficient to cause increased RBC indices but again with a lower plasma erythropoietin level than air-treated controls. Furthermore, dietary garlic supplementation and CO treatment showed additive effects on reducing plasma erythropoietin levels in mice. Thus, garlic consumption not only causes increased energy demand from the faster RBC turnover but also increases the production of CO, which in turn stimulates splenic erythropoiesis by an erythropoietin-independent mechanism, thus completing the sequence of feedback regulation for RBC metabolism. Being a pleiotropic gasotransmitter, CO may be a second messenger for garlic

  6. The Temporal Program of Peripheral Blood Gene Expression in the Response of Nonhuman Primates to Ebola Hemorrhagic Fever

    Science.gov (United States)

    2007-08-28

    exhibited a highly homogeneous, time-dependent pattern of gene expression (Figure 1). Given the massive path- ologic changes, physiologic instability, and...compression. It is very likely that the observed gene expression patterns reflect many physiologic changes caused by systemic filoviral infection (for example...trafficking pathway. J Virol 2005, 79:547-553. 54. Simmons G, Wool-Lewis RJ, Baribaud F, Netter RC, Bates P: Ebola virus glycoproteins induce global

  7. Differential expression of 114 oxidative stressrelated genes in peripheral blood mononuclear cells of acute cerebral infarction patients A gene microarray experiment

    Institute of Scientific and Technical Information of China (English)

    Jing Yang; Fei Zhong; Mingshan Ren; Jiangming Zhao

    2010-01-01

    Previous studies have focused on the analysis of single or several function-related genes in oxidative stress;however,little information is available regarding altered expression of oxidative stress-related genes in the process of ischemia-reperfusion injury from microarray experiments.The aim of the present study was to investigate the changes in cell oxidative stress-and toxicity-related gene expression utilizing microarray screening in patients with acute cerebral infarction during cerebral ischemia-reperfusion injury.Of the included 114 genes,expression was significantly upregulated in eight genes,including three heat shock protein-related genes,one oxidative and metabolic stress-related gene,one cell growth arrest/senescence related gene,two apoptosis signal-related genes,and one DNA damage and repair related gene.Expression was significantly downregulated in four genes,including one cell proliferation/cancer related gene,two oxidative and metabolic stress-related genes and one DNA damage and repair related gene.The results demonstrated that cerebral ischemia-reperfusion injury in patients with acute cerebral infarction was affected by many genes including oxidative stress-,heat shock-,DNA damage and repair-,and apoptosis signal-related genes.Therefore,it could be suggested that cerebral ischemia-reperfusion injury may be subjected to complex genetic regulation mechanisms.

  8. Plasma fatty acid ratios affect blood gene expression profiles--a cross-sectional study of the Norwegian Women and Cancer Post-Genome Cohort.

    Science.gov (United States)

    Olsen, Karina Standahl; Fenton, Christopher; Frøyland, Livar; Waaseth, Marit; Paulssen, Ruth H; Lund, Eiliv

    2013-01-01

    High blood concentrations of n-6 fatty acids (FAs) relative to n-3 FAs may lead to a "physiological switch" towards permanent low-grade inflammation, potentially influencing the onset of cardiovascular and inflammatory diseases, as well as cancer. To explore the potential effects of FA ratios prior to disease onset, we measured blood gene expression profiles and plasma FA ratios (linoleic acid/alpha-linolenic acid, LA/ALA; arachidonic acid/eicosapentaenoic acid, AA/EPA; and total n-6/n-3) in a cross-section of middle-aged Norwegian women (n = 227). After arranging samples from the highest values to the lowest for all three FA ratios (LA/ALA, AA/EPA and total n-6/n-3), the highest and lowest deciles of samples were compared. Differences in gene expression profiles were assessed by single-gene and pathway-level analyses. The LA/ALA ratio had the largest impact on gene expression profiles, with 135 differentially expressed genes, followed by the total n-6/n-3 ratio (125 genes) and the AA/EPA ratio (72 genes). All FA ratios were associated with genes related to immune processes, with a tendency for increased pro-inflammatory signaling in the highest FA ratio deciles. Lipid metabolism related to peroxisome proliferator-activated receptor γ (PPARγ) signaling was modified, with possible implications for foam cell formation and development of cardiovascular diseases. We identified higher expression levels of several autophagy marker genes, mainly in the lowest LA/ALA decile. This finding may point to the regulation of autophagy as a novel aspect of FA biology which warrants further study. Lastly, all FA ratios were associated with gene sets that included targets of specific microRNAs, and gene sets containing common promoter motifs that did not match any known transcription factors. We conclude that plasma FA ratios are associated with differences in blood gene expression profiles in this free-living population, and that affected genes and pathways may influence the

  9. Plasma fatty acid ratios affect blood gene expression profiles--a cross-sectional study of the Norwegian Women and Cancer Post-Genome Cohort.

    Directory of Open Access Journals (Sweden)

    Karina Standahl Olsen

    Full Text Available High blood concentrations of n-6 fatty acids (FAs relative to n-3 FAs may lead to a "physiological switch" towards permanent low-grade inflammation, potentially influencing the onset of cardiovascular and inflammatory diseases, as well as cancer. To explore the potential effects of FA ratios prior to disease onset, we measured blood gene expression profiles and plasma FA ratios (linoleic acid/alpha-linolenic acid, LA/ALA; arachidonic acid/eicosapentaenoic acid, AA/EPA; and total n-6/n-3 in a cross-section of middle-aged Norwegian women (n = 227. After arranging samples from the highest values to the lowest for all three FA ratios (LA/ALA, AA/EPA and total n-6/n-3, the highest and lowest deciles of samples were compared. Differences in gene expression profiles were assessed by single-gene and pathway-level analyses. The LA/ALA ratio had the largest impact on gene expression profiles, with 135 differentially expressed genes, followed by the total n-6/n-3 ratio (125 genes and the AA/EPA ratio (72 genes. All FA ratios were associated with genes related to immune processes, with a tendency for increased pro-inflammatory signaling in the highest FA ratio deciles. Lipid metabolism related to peroxisome proliferator-activated receptor γ (PPARγ signaling was modified, with possible implications for foam cell formation and development of cardiovascular diseases. We identified higher expression levels of several autophagy marker genes, mainly in the lowest LA/ALA decile. This finding may point to the regulation of autophagy as a novel aspect of FA biology which warrants further study. Lastly, all FA ratios were associated with gene sets that included targets of specific microRNAs, and gene sets containing common promoter motifs that did not match any known transcription factors. We conclude that plasma FA ratios are associated with differences in blood gene expression profiles in this free-living population, and that affected genes and pathways may

  10. Gene expression analysis in pregnant women and their infants identifies unique fetal biomarkers that circulate in maternal blood

    Science.gov (United States)

    The discovery of fetal mRNA transcripts in the maternal circulation holds great promise for noninvasive prenatal diagnosis. To identify potential fetal biomarkers, we studied whole blood and plasma gene transcripts that were common to 9 term pregnant women and their newborns but absent or reduced in...

  11. Expression Changes of Serotonin Receptor Gene Subtype 5HT3a in Peripheral Blood Mononuclear Cells from Schizophrenic Patients Treated with Haloperidol and Olanzapin

    Directory of Open Access Journals (Sweden)

    Gholam Reza Shariati

    2009-09-01

    Full Text Available Serotonin receptors are involved in pathophysiology of schizophrenia and may mediate other neurotransmitter effects. We investigated serotonin receptors gene expression in peripheral blood mononuclear cells (PBMC of naïve schizophrenic patients, before and after treatment. Also serotonin receptor gene expression was compared in two treatment groups including Haloperidol and Olanzapine. The PBMC was separated from whole blood by Ficoll-hypaque. The total cellular RNA was extracted and the cDNA was synthesized. This process was followed by real-time PCR using primer pairs specific for 5HT3a serotonin receptor mRNA and beta-actin as internal control. The results showed the presence of subtype of serotonin receptor in lymphocytes. Serotonin gene expression showed significant changes in Olanzapine treatment group which correlated with Clinical Global Impression (CGI score improvement. In conclusion, the present study has shown that human PBMC express serotonin receptors 5HT3a. Moreover, clinical symptom improvement of Olanzapin may be demonstrated by a change in serotonin receptor gene expression.

  12. 4-1BB gene expression in peripheral blood mononuclear cells from orthotopic liver transplant recipients with graft acceptance

    Institute of Scientific and Technical Information of China (English)

    万云乐; 郑树森; 贾长库; 杨家印; 金晓凌; 赵志成

    2003-01-01

    Objective To investigate the gene expression of 4-1BB in peripheral blood mononuclear cells (PBMCs) and the possible significance of the 4-1BB pathway after clinical orthotopic liver transplantation (OLT). Methods 4-1BB mRNA levels in PBMCs from 22 OLT patients were analyzed by RT-PCR. 4-1BB protein expressed on the surface of CD4+ and CD8+ T cells were detected by flow cytometry, and visualized with direct immunofluorescence and confocal fluorescence microscopy. Patients with primary liver cancer (PLC) and healthy volunteers served as controls. Six cases of recently performed liver transplantation were also observed in this study.Results 4-1BB mRNA was detected in PBMCs from both liver transplant patients with long-term graft acceptance (22 cases) and from transplant patients on day 1 to day 3 post-transplantation (6 cases), but was not found in PBMCs from transplant patients on day 7 to day 30 post-transplantation (6 cases). 4-1BB mRNA was also not found in samples from 8 of the healthy controls and 7 of the PLC patients, though very low expression was detected in the other 4 healthy volunteers and 6 PLC patients. Simultaneously, 4-1BB protein was expressed at nearly undetectable levels on CD4+ and CD8+ T cells from healthy controls, PLC patients, as well as OLT patients within the first month post-transplantation (6 cases). However, 4-1BB expression was found on the surface of CD4+ and CD8+ T cells from liver transplant patients with long-term graft acceptance. Direct immunofluorescent staining and confocal fluorescence microscopy clearly revealed evidence of 4-1BB protein on cell membranes of CD4+ and CD8+ T cells from liver transplant patients with long-term graft acceptance. Simultaneously, a significantly higher percentage of CD3+ CD25+ T cells were found in liver transplant patients with long-term graft acceptance group as compared with the healthy control group (P<0.05). The expression of 4-1BB protein on T cells did not correlate with the survival

  13. Expression of Caspase-1 Gene Transcript Variant mRNA in Peripheral Blood Mononuclear Cells of Patients with Primary Gout in Different TCM Syndromes

    Science.gov (United States)

    Dang, Wan-Tai; Xu, Dan; Xie, Wen-Guang; Zhou, Jing-Guo

    2015-01-01

    A large number of studies have shown that cysteinyl aspartate specific protease-1 (CASP1) played an important role in the inflammatory response of primary gout, but the decreased expression of different CASP1 transcript variant could inhibit the activation of IL-1β. Our study mainly analyzed the expression level and function of CASP1 gene transcript variant mRNA in peripheral blood mononuclear cells of patients with gout in different TCM syndromes. The expression of CASP1 gene transcript variant and IL-1β mRNA in PBMCs were detected in patients with PG [acute phase (AP: 44 cases); nonacute phase (NAP: 52 cases)] and healthy controls (HC: 30 cases) by reverse transcription-polymerase chain reaction and/or real-time quantitative polymerase chain reaction. The expressions of plasma IL-1β in patients with PG and HC were detected by enzyme-linked immunosorbent assay. Dysregulated expression of the CASP1 gene and its transcript variant, plasma proinflammatory cytokines in all patients with primary gout in different TCM syndromes, correlation analysis showed that there was negative correlation between the expression of CASP1-gamma gene transcript variant mRNA and IL-1β protein in APPG group. The study suggested that CASP1 gene and its transcript variant may play a critical role in the inflammatory response of patients with PG in different phases and TCM syndromes. PMID:26557856

  14. Expression of Caspase-1 Gene Transcript Variant mRNA in Peripheral Blood Mononuclear Cells of Patients with Primary Gout in Different TCM Syndromes

    Directory of Open Access Journals (Sweden)

    Wan-Tai Dang

    2015-01-01

    Full Text Available A large number of studies have shown that cysteinyl aspartate specific protease-1 (CASP1 played an important role in the inflammatory response of primary gout, but the decreased expression of different CASP1 transcript variant could inhibit the activation of IL-1β. Our study mainly analyzed the expression level and function of CASP1 gene transcript variant mRNA in peripheral blood mononuclear cells of patients with gout in different TCM syndromes. The expression of CASP1 gene transcript variant and IL-1β mRNA in PBMCs were detected in patients with PG [acute phase (AP: 44 cases; nonacute phase (NAP: 52 cases] and healthy controls (HC: 30 cases by reverse transcription-polymerase chain reaction and/or real-time quantitative polymerase chain reaction. The expressions of plasma IL-1β in patients with PG and HC were detected by enzyme-linked immunosorbent assay. Dysregulated expression of the CASP1 gene and its transcript variant, plasma proinflammatory cytokines in all patients with primary gout in different TCM syndromes, correlation analysis showed that there was negative correlation between the expression of CASP1-gamma gene transcript variant mRNA and IL-1β protein in APPG group. The study suggested that CASP1 gene and its transcript variant may play a critical role in the inflammatory response of patients with PG in different phases and TCM syndromes.

  15. Differential Gene Expression of BRCA1,ERBB2 and TP53 biomarkers between Human Breast Tissue and Peripheral Blood Samples of Breast Cancer.

    Science.gov (United States)

    Zghair, Abdulrazzaq Neamah; Sinha, Deepak Kumar; Kassim, Arkan; Alfaham, Mohmmad; Sharma, Anil K

    2016-01-01

    Breast cancer is a most common malignancy especially in Iraqi women accounting for high morbidity and mortality. Mutations in BRCA1 gene is one of the important genetic predisposing factors inbreast cancer. Similarly ERBB2 and TP53 are also key prognostic markers in breast cancer treatment.We were interested to explore the gene expression profiles of BRCA1, ERBB2 and TP53 in breast cancer women patients from Iraq so as to assess the potential of such markers in breast cancer treatment. The mRNA levels were significantly over-expressed in tumor tissues in comparison to normal ones with p values (pTP53 and benign tissue samples as well. However in blood samples, no considerable expression of these markers was observed. Out of three selected genes, ERBB2 expression was significantly expressed in comparison to BRCA1 and TP53 in cancer tissue. Mutation analysis of BRCA1, ERBB2 and TP53 has been made to find out the region most susceptible to mutations in these genes The BRCA1 exon 11, ERBB2 16 and TP53 exon 5 displayed increased chances of having mutations. We can conclude from the study that differential gene expression of BRCA1, ERBB2 and TP53 at mRNA levels may act as a diagnostic marker of circulating tumor cells having important prognostic value in breast cancer patients.

  16. Huntington’s disease blood and brain show a common gene expression pattern and share an immune signature with Alzheimer’s disease

    Science.gov (United States)

    Hensman Moss, Davina J.; Flower, Michael D.; Lo, Kitty K.; Miller, James R. C.; van Ommen, Gert-Jan B.; ’t Hoen, Peter A. C.; Stone, Timothy C.; Guinee, Amelia; Langbehn, Douglas R.; Jones, Lesley; Plagnol, Vincent; van Roon-Mom, Willeke M. C.; Holmans, Peter; Tabrizi, Sarah J.

    2017-01-01

    There is widespread transcriptional dysregulation in Huntington’s disease (HD) brain, but analysis is inevitably limited by advanced disease and postmortem changes. However, mutant HTT is ubiquitously expressed and acts systemically, meaning blood, which is readily available and contains cells that are dysfunctional in HD, could act as a surrogate for brain tissue. We conducted an RNA-Seq transcriptomic analysis using whole blood from two HD cohorts, and performed gene set enrichment analysis using public databases and weighted correlation network analysis modules from HD and control brain datasets. We identified dysregulated gene sets in blood that replicated in the independent cohorts, correlated with disease severity, corresponded to the most significantly dysregulated modules in the HD caudate, the most prominently affected brain region, and significantly overlapped with the transcriptional signature of HD myeloid cells. High-throughput sequencing technologies and use of gene sets likely surmounted the limitations of previously inconsistent HD blood expression studies. Our results suggest transcription is disrupted in peripheral cells in HD through mechanisms that parallel those in brain. Immune upregulation in HD overlapped with Alzheimer’s disease, suggesting a common pathogenic mechanism involving macrophage phagocytosis and microglial synaptic pruning, and raises the potential for shared therapeutic approaches. PMID:28322270

  17. Expression of the sFLT1 gene in cord blood cells is associated to maternal arsenic exposure and decreased birth weight

    DEFF Research Database (Denmark)

    Remy, Sylvie; Govarts, Eva; Bruckers, Liesbeth;

    2014-01-01

    with changes in expression of the sFLT1 (soluble fms-like tyrosine kinase-1) gene in cord blood cells in girls. The protein product of sFLT1 is a scavenger of vascular endothelial growth factor (VEGF) in the extracellular environment and plays a key role in the inhibition of placental angiogenesis. In terms......There is increasing epidemiologic evidence that arsenic exposure in utero is associated with adverse pregnancy outcomes and may contribute to long-term health effects. These effects may occur at low environmental exposures but the underlying molecular mechanism is not clear. We collected cord blood...

  18. Expression map of the human exome in CD34+ cells and blood cells: increased alternative splicing in cell motility and immune response genes.

    Directory of Open Access Journals (Sweden)

    Sylvie Tondeur

    Full Text Available BACKGROUND: Hematopoietic cells are endowed with very specific biological functions, including cell motility and immune response. These specific functions are dramatically altered during hematopoietic cell differentiation, whereby undifferentiated hematopoietic stem and progenitor cells (HSPC residing in bone marrow differentiate into platelets, red blood cells and immune cells that exit into the blood stream and eventually move into lymphoid organs or inflamed tissues. The contribution of alternative splicing (AS to these functions has long been minimized due to incomplete knowledge on AS events in hematopoietic cells. PRINCIPAL FINDINGS: Using Human Exon ST 1.0 microarrays, the entire exome expression profile of immature CD34+ HSPC and mature whole blood cells was mapped, compared to a collection of solid tissues and made freely available as an online exome expression atlas (Amazonia Exon! : http://amazonia.transcriptome.eu/exon.php. At a whole transcript level, HSPC strongly expressed EREG and the pluripotency marker DPPA4. Using a differential splicing index scheme (dsi, a list of 849 transcripts differentially expressed between hematopoietic cells and solid tissues was computed, that included NEDD9 and CD74. Some of these genes also underwent alternative splicing events during hematopoietic differentiation, such as INPP4B, PTPLA or COMMD6, with varied contribution of CD3+ T cells, CD19+ B cells, CD14+ or CD15+ myelomonocytic populations. Strikingly, these genes were significantly enriched for genes involved in cell motility, cell adhesion, response to wounding and immune processes. CONCLUSION: The relevance and the precision provided by this exon expression map highlights the contribution of alternative splicing to key feature of blood cells differentiation and function.

  19. A role for prostaglandins in rapid cycling suggested by episode-specific gene expression shifts in peripheral blood mononuclear cells

    DEFF Research Database (Denmark)

    Gurvich, Artem; Begemann, Martin; Dahm, Liane

    2014-01-01

    of prostaglandin synthesis-related genes in rapid cycling was first proposed. METHODS: Psychopathological follow-up of the reported case was performed under cessation of celecoxib treatment. In a prospective observational study, patients with bipolar disorder (n = 47; of these, four had rapid cycling......-gated ion channel 7 (P2RX7). RESULTS: The follow-up of our original case of a patient with rapid cycling who had shown impressive psychopathological improvement under celecoxib revealed complete loss of this effect upon discontinuation of the COX2 inhibitor. Episode-specific gene expression measurements...... with bipolar disorder and the 97 monopolar depressed patients, emphasizing the advantages of the rapid cycling condition with its rapid and frequent shifts for identification of gene expression changes. CONCLUSIONS: This study supports a role for prostaglandins in rapid cycling and advocates the cyclooxygenase...

  20. Effects of Chinese herbs capable of replenishing qi,nourishing yin and activating blood circulation and their compatibility on differentially expressed genes of ischemic myocardium

    Institute of Scientific and Technical Information of China (English)

    YIN HuiJun; GUO ChunYu; SHI DaZhuo

    2009-01-01

    This study was conducted to investigate the effects of Chinese herbs capable of replenishing qi,nourishing yin and activating blood circulation and their compatibility on differentially expressed genes of ischemic myocardium which were selected from differential expression profile we had established before,and to explore the underlying mechanism. The acute myocardial infarction (AMI) model was established by ligating the left anterior descending (LAD) coronary artery,then the model rats were randomly divided into the model group,the Metoprolol group,the replenishing qi nourishing yin (RN)group,the activating blood circulation (AB) group,and the replenishing qi,nourishing yin and activating blood circulation (RA) group. In addition,the normal group and the sham group were set up. The rats of medication groups were administered by intragastric gavage with corresponding drugs on the second day after operations,and the rats of the normal group and the sham group were given normal saline as the same time.Then the ischemic hearts were harvested on the 8th day after operation. The myocardial pathomorphological changes were observed under a light microscope. The mRNA changes of target genes such as COX5a and ATP5e were detected using Real-time fluorescence quantitative PCR (Q-PCR),and the activities of related enzymes were detected by colorimetric assay. The main results were as follows:the histological changes were observed by HE staining,and cardiocyte swelling,inflammatory cell infiltration and cytolysis were showed in regional ischemic myocardium of the model group,while the pathomorphological changes in all medication groups did not show obvious changes.Two genes related to energy metabolism,COX5a and ATP5e,were selected as the target genes which were down-regulated at the mRNA level in the medication groups. The activities of correlative functional enzymes also decreased in the RA group compared to that in the model group accordingly (P<0.05). The results indicated

  1. Thermal stress induces changes in gene expression and blood parameters in high and low feed efficiency meat quail.

    Science.gov (United States)

    Gasparino, Eliane; Voltolini, Débora Marques; Del Vesco, Ana Paula; Marcato, Simara Marcia; Zancanela, Vittor; de Oliveira Grieser, Daiane; de Souza Khatlab, Angélica; Guimarães, Simone Eliza Facioni; de Oliveira Neto, Adhemar Rodriges

    2015-05-01

    In this study, we analysed markers of stress, plasma creatinine and T3 content, and insulin-like growth factor I (IGF-I), growth hormone receptor (GHR), uncoupling protein (UCP), adenine nucleotide translocase (ANT) and cytochrome c oxidase subunit III (COX III) mRNA expression in the liver and muscle of high (0.22 g/g) and low (0.14 g/g) feed efficiency (FE) meat quail at three different air temperatures, comfortable, heat and cold stress, for 24 h. High FE quail presented higher plasma T3 and lower creatinine levels. IGF-I mRNA expression was higher in the livers of high FE quail than in the livers of low FE quail under both comfortable and cold stress conditions. In the muscle, regardless of the environment, high FE birds showed higher IGF-I mRNA expression. High FE birds also showed higher GHR mRNA expression under comfortable conditions. Regarding the environment, higher expression was observed in birds at comfortable conditions, and lower expression in birds under heat stress. UCP mRNA expression in the liver was lower in high FE birds and higher under heat stress compared with the other conditions. Low and high FE birds showed greater ANT mRNA expression in the muscle under cold stress. Greater mRNA COX III expressions were observed in the liver and muscle of quails under comfortable conditions. Our results suggest that temperature affects the expression of genes related to growth and mitochondrial energy production, and quail with different FEs respond differently to environmental stimuli. In comfortable conditions, high FE animals show higher IGF-I mRNA expression and plasma T3 and lower creatinine content.

  2. Expression of the Blood-Group-Related Gene B4galnt2 Alters Susceptibility to Salmonella Infection.

    Directory of Open Access Journals (Sweden)

    Philipp Rausch

    2015-07-01

    Full Text Available Glycans play important roles in host-microbe interactions. Tissue-specific expression patterns of the blood group glycosyltransferase β-1,4-N-acetylgalactosaminyltransferase 2 (B4galnt2 are variable in wild mouse populations, and loss of B4galnt2 expression is associated with altered intestinal microbiota. We hypothesized that variation in B4galnt2 expression alters susceptibility to intestinal pathogens. To test this, we challenged mice genetically engineered to express different B4galnt2 tissue-specific patterns with a Salmonella Typhimurium infection model. We found B4galnt2 intestinal expression was strongly associated with bacterial community composition and increased Salmonella susceptibility as evidenced by increased intestinal inflammatory cytokines and infiltrating immune cells. Fecal transfer experiments demonstrated a crucial role of the B4galnt2-dependent microbiota in conferring susceptibility to intestinal inflammation, while epithelial B4galnt2 expression facilitated epithelial invasion of S. Typhimurium. These data support a critical role for B4galnt2 in gastrointestinal infections. We speculate that B4galnt2-specific differences in host susceptibility to intestinal pathogens underlie the strong signatures of balancing selection observed at the B4galnt2 locus in wild mouse populations.

  3. Expression of the Blood-Group-Related Gene B4galnt2 Alters Susceptibility to Salmonella Infection.

    Science.gov (United States)

    Rausch, Philipp; Steck, Natalie; Suwandi, Abdulhadi; Seidel, Janice A; Künzel, Sven; Bhullar, Kirandeep; Basic, Marijana; Bleich, Andre; Johnsen, Jill M; Vallance, Bruce A; Baines, John F; Grassl, Guntram A

    2015-07-01

    Glycans play important roles in host-microbe interactions. Tissue-specific expression patterns of the blood group glycosyltransferase β-1,4-N-acetylgalactosaminyltransferase 2 (B4galnt2) are variable in wild mouse populations, and loss of B4galnt2 expression is associated with altered intestinal microbiota. We hypothesized that variation in B4galnt2 expression alters susceptibility to intestinal pathogens. To test this, we challenged mice genetically engineered to express different B4galnt2 tissue-specific patterns with a Salmonella Typhimurium infection model. We found B4galnt2 intestinal expression was strongly associated with bacterial community composition and increased Salmonella susceptibility as evidenced by increased intestinal inflammatory cytokines and infiltrating immune cells. Fecal transfer experiments demonstrated a crucial role of the B4galnt2-dependent microbiota in conferring susceptibility to intestinal inflammation, while epithelial B4galnt2 expression facilitated epithelial invasion of S. Typhimurium. These data support a critical role for B4galnt2 in gastrointestinal infections. We speculate that B4galnt2-specific differences in host susceptibility to intestinal pathogens underlie the strong signatures of balancing selection observed at the B4galnt2 locus in wild mouse populations.

  4. Race-related differences in antibody responses to the inactivated influenza vaccine are linked to distinct pre-vaccination gene expression profiles in blood.

    Science.gov (United States)

    Kurupati, Raj; Kossenkov, Andrew; Haut, Larissa; Kannan, Senthil; Xiang, Zhiquan; Li, Yan; Doyle, Susan; Liu, Qin; Schmader, Kenneth; Showe, Louise; Ertl, Hildegund

    2016-09-27

    We conducted a 5-year study analyzing antibody and B cell responses to the influenza A virus components of the inactivated influenza vaccine, trivalent (IIV3) or quadrivalent (IIV4) in younger (aged 35-45) and aged (≥65 years of age) Caucasian and African American individuals. Antibody titers to the two influenza A virus strains, distribution of circulating B cell subsets and the blood transcriptome were tested at baseline and after vaccination while expression of immunoregulatory markers on B cells were analyzed at baseline. African Americans mounted higher virus neutralizing and IgG antibody responses to the H1N1 component of IIV3 or 4 compared to Caucasians. African Americans had higher levels of circulating B cell subsets compared to Caucasians. Expression of two co-regulators, i.e., programmed death (PD)-1 and the B and T cell attenuator (BTLA) were differentially expressed in the two cohorts. Race-related differences were caused by samples from younger African Americans, while results obtained with samples of aged African Americans were similar to those of aged Caucasians. Gene expression profiling by Illumina arrays revealed highly significant differences in 1368 probes at baseline between Caucasians and African Americans although samples from both cohorts showed comparable changes in transcriptome following vaccination. Genes differently expressed between samples from African Americans and Caucasians regardless of age were enriched for myeloid genes, while the transcripts that differed in expression between younger African Americans and younger Caucasians were enriched for those specific for B-cells.

  5. Modulation of Chemokine Gene Expression in CD133 Cord Blood-Derived Human Mast Cells by Cyclosporin A and Dexamethasone

    DEFF Research Database (Denmark)

    Holm, Mette; Kvistgaard, Helene; Dahl, Christine;

    2006-01-01

    We have recently developed a protocol for generating huge numbers of mature and functional mast cells from in vitro differentiated umbilical cord blood cells. Using CD133 as a positive selection marker to isolate haematopoietic progenitors we routinely expand the number of recovered cells at least...... 150-fold, which vastly exceeds the yields of conventional protocols using CD34(+) cells as a source of progenitors. Taking advantage of the large quantities of in vitro differentiated mast cells, here we assess at the levels of transcription and translation the kinetics of chemokine gene induction...... following receptor mediated mast cell activation or following pharmacological activation of specific signal transduction cascades that become activated upon classical FcepsilonRI receptor crosslinking. We demonstrate that chemokine genes encoding IL-8, MCP-1, MIP-1alpha, and MIP-1beta are induced...

  6. Characterization of transcriptional networks in blood stem and progenitor cells using high-throughput single-cell gene expression analysis.

    Science.gov (United States)

    Moignard, Victoria; Macaulay, Iain C; Swiers, Gemma; Buettner, Florian; Schütte, Judith; Calero-Nieto, Fernando J; Kinston, Sarah; Joshi, Anagha; Hannah, Rebecca; Theis, Fabian J; Jacobsen, Sten Eirik; de Bruijn, Marella F; Göttgens, Berthold

    2013-04-01

    Cellular decision-making is mediated by a complex interplay of external stimuli with the intracellular environment, in particular transcription factor regulatory networks. Here we have determined the expression of a network of 18 key haematopoietic transcription factors in 597 single primary blood stem and progenitor cells isolated from mouse bone marrow. We demonstrate that different stem/progenitor populations are characterized by distinctive transcription factor expression states, and through comprehensive bioinformatic analysis reveal positively and negatively correlated transcription factor pairings, including previously unrecognized relationships between Gata2, Gfi1 and Gfi1b. Validation using transcriptional and transgenic assays confirmed direct regulatory interactions consistent with a regulatory triad in immature blood stem cells, where Gata2 may function to modulate cross-inhibition between Gfi1 and Gfi1b. Single-cell expression profiling therefore identifies network states and allows reconstruction of network hierarchies involved in controlling stem cell fate choices, and provides a blueprint for studying both normal development and human disease.

  7. Genes That Influence Blood Pressure

    Science.gov (United States)

    ... Influence Blood Pressure Gene Linked to Optimism and Self-Esteem Designing New Diabetes Drugs Connect with Us Subscribe to get NIH Research Matters by email RSS Feed Facebook Email us Mailing Address: NIH Research Matters Bldg. ...

  8. Circulating blood leukocyte gene expression profiles: Effects of the Ames dwarf mutation on pathways related to immunity and inflammation

    OpenAIRE

    Dhahbi, Joseph; Li, Xichen; Tran, Tim; Masternak, Michal M.; Bartke, Andrzej

    2007-01-01

    Aging is associated with a decline of immune competence and an increase in markers of inflammation. There is considerable evidence that inflammatory processes play a role in aging and the determination of lifespan. Hypopituitary Ames dwarf mice have extended longevity and exhibit many symptoms of delayed aging, although various aspects of immune function are suppressed in the mutants. In the present study, the expression of genes related to immunity and inflammation was compared in peripheral...

  9. Decreased Expression of Innate Immunity-Related Genes in Peripheral Blood Mononuclear Cells from Patients with IgG4-Related Disease.

    Directory of Open Access Journals (Sweden)

    Akio Nakajima

    Full Text Available IgG4-related disease (IgG4-RD is a new clinical entity of unknown etiology characterized by elevated serum IgG4 and tissue infiltration by IgG4-positive plasma cells. Although aberrancies in acquired immune system functions, including increases in Th2 and Treg cytokines observed in patients with IgG4-RD, its true etiology remains unclear. To investigate the pathogenesis of IgG4-RD, this study compared the expression of genes related to innate immunity in patients with IgG4-RD and healthy controls.Peripheral blood mononuclear cells (PBMCs were obtained from patients with IgG4-RD before and after steroid therapy and from healthy controls. Total RNA was extracted and DNA microarray analysis was performed in two IgG4-RD patients to screen for genes showing changes in expression. Candidate genes were validated by real-time RT-PCR in 27 patients with IgG4-RD and 13 healthy controls.DNA microarray analysis identified 21 genes that showed a greater than 3-fold difference in expression between IgG4-RD patients and healthy controls and 30 genes that showed a greater than 3-fold change in IgG4-RD patients following steroid therapy. Candidate genes related to innate immunity, including those encoding Charcot-Leyden crystal protein (CLC, membrane-spanning 4-domain subfamily A member 3 (MS4A3, defensin alpha (DEFA 3 and 4, and interleukin-8 receptors (IL8R, were validated by real-time RT-PCR. Expression of all genes was significantly lower in IgG4-RD patients than in healthy controls. Steroid therapy significantly increased the expression of DEFA3, DEFA4 and MS4A3, but had no effect on the expression of CLC, IL8RA and IL8RB.The expression of genes related to allergy or innate immunity, including CLC, MS4A3, DEFA3, DEFA4, IL8RA and IL8RB, was lower in PBMCs from patients with IgG4-RD than from healthy controls. Although there is the limitation in the number of patients applied in DNA microarray, impaired expression of genes related to innate immunity may be

  10. Postpartal immunometabolic gene network expression and function in blood neutrophils are altered in response to prepartal energy intake and postpartal intramammary inflammatory challenge.

    Science.gov (United States)

    Moyes, K M; Graugnard, D E; Khan, M J; Mukesh, M; Loor, J J

    2014-01-01

    The effect of over-feeding energy prepartum on blood polymorphonuclear neutrophil (PMN) response remains unclear. Cows fed controlled (CON; 1.34Mcal/kg of dry matter) or excess energy (OVE; 1.62Mcal/kg dry matter) during the dry period (~45d before expected calving date) received an intramammary (IM) challenge with Escherichia coli lipopolysaccharide (LPS) during the postpartal period to determine the effects of IM LPS and prepartal diet on the expression of key genes associated with immunometabolic response in blood PMN. Feed intake and daily milk yield were recorded throughout the study period. At 7d in milk (DIM), all cows received LPS (200µg) into 1 rear mammary quarter. Blood PMN were isolated at 7, 14, and 30 DIM, as well as before (0h) and after (12h) IM LPS challenge for gene expression analysis using quantitative real time PCR. Phagocytosis capabilities in vitro were assessed at 7, 14, and 30 DIM. Data were analyzed using the MIXED procedure of SAS with repeated measures. No differences in feed intake and milk yield were observed between OVE- and CON-fed cows. As expected, IM LPS challenge altered the expression of genes associated with the immune response (e.g., 1.9- and 1.8-fold for SELL and TLR2, respectively), metabolism (e.g., 1.8- and -1.8-fold for LDHA and SLC2A1, respectively), and transcription (e.g., 1.1- and 1.7-fold for NCOR1 and PPARD, respectively). At 12h postchallenge, an upregulation of TLR2 (1.8-fold), HIF1A (1.9-fold), and NFKB1 (1.5-fold) was observed for OVE rather than CON. At 7 DIM, S100A9 tended (2.2-fold) to be upregulated for OVE rather than CON. At 14 DIM, OVE resulted in lower PMN phagocytosis and an upregulation of NCOR2 (1.6-fold) and RXRA (1.9-fold) compared with CON-fed cows. At 30 DIM, an upregulation of MPO (3.5-fold) and PLA2G4A (1.5-fold) and a tendency for RXRA (1.7-fold) was observed for OVE- rather than CON-fed cows. Our results suggest that IM LPS challenge altered gene expression associated with metabolism in PMN

  11. Gene expression profiles of cryopreserved CD34{sup +} human umbilical cord blood cells are related to their bone marrow reconstitution abilities in mouse xenografts

    Energy Technology Data Exchange (ETDEWEB)

    Sudo, Kazuhiro [Cell Engineering Division, RIKEN BioResource Center, Tsukuba (Japan); Yasuda, Jun, E-mail: yasuda-jun@umin.ac.jp [Omics Science Center, RIKEN, Yokohama (Japan); Department of Cell Biology, The JFCR-Cancer Institute (Japan); Nakamura, Yukio, E-mail: yukionak@brc.riken.jp [Cell Engineering Division, RIKEN BioResource Center, Tsukuba (Japan)

    2010-07-09

    Human umbilical cord blood (UCB) cells are an alternative source of hematopoietic stem cells for treatment of leukemia and other diseases. It is very difficult to assess the quality of UCB cells in the clinical situation. Here, we sought to assess the quality of UCB cells by transplantation to immunodeficient mice. Cryopreserved CD34{sup +} UCB cells from twelve different human donors were transplanted into sublethally irradiated NOD/shi-scid Jic mice. In parallel, the gene expression profiles of the UCB cells were determined from oligonucleotide microarrays. UCB cells from three donors failed to establish an engraftment in the host mice, while the other nine succeeded to various extents. Gene expression profiling indicated that 71 genes, including HOXB4, C/EBP-{beta}, and ETS2, were specifically overexpressed and 23 genes were suppressed more than 2-fold in the successful UCB cells compared to those that failed. Functional annotation revealed that cell growth and cell cycle regulators were more abundant in the successful UCB cells. Our results suggest that hematopoietic ability may vary among cryopreserved UCB cells and that this ability can be distinguished by profiling expression of certain sets of genes.

  12. Over-Expression of Dopamine D2 Receptor and Inwardly Rectifying Potassium Channel Genes in Drug-Naive Schizophrenic Peripheral Blood Lymphocytes as Potential Diagnostic Markers

    Directory of Open Access Journals (Sweden)

    Ágnes Zvara

    2005-01-01

    Full Text Available Schizophrenia is one of the most common neuropsychiatric disorders affecting nearly 1% of the human population. Current diagnosis of schizophrenia is based on complex clinical symptoms. The use of easily detectable peripheral molecular markers could substantially help the diagnosis of psychiatric disorders. Recent studies showed that peripheral blood lymphocytes (PBL express subtypes of D1 and D2 subclasses of dopamine receptors. Recently, dopamine receptor D3 (DRD3 was found to be over-expressed in schizophrenic PBL and proposed to be a diagnostic and follow-up marker for schizophrenia. In this study we screened PBL of 13 drug-naive/drug-free schizophrenic patients to identify additional markers of schizophrenia. One of the benefits of our study is the use of blood samples of non-medicated, drug-naive patients. This excludes the possibility that changes detected in gene expression levels might be attributed to the medication rather than to the disorder itself. Among others, genes for dopamine receptor D2 (DRD2 and the inwardly rectifying potassium channel (Kir2.3 were found to be over-expressed in microarray analysis. Increased mRNA levels were confirmed by quantitative real-time PCR (QRT-PCR using the SybrGreen method and dual labeled TaqMan probes. The use of both molecular markers allows a more rapid and precise prediction of schizophrenia and might help find the optimal medication for schizophrenic patients.

  13. Over-expression of dopamine D2 receptor and inwardly rectifying potassium channel genes in drug-naive schizophrenic peripheral blood lymphocytes as potential diagnostic markers.

    Science.gov (United States)

    Zvara, Agnes; Szekeres, György; Janka, Zoltán; Kelemen, János Z; Cimmer, Csongor; Sántha, Miklós; Puskás, László G

    2005-01-01

    Schizophrenia is one of the most common neuropsychiatric disorders affecting nearly 1% of the human population. Current diagnosis of schizophrenia is based on complex clinical symptoms. The use of easily detectable peripheral molecular markers could substantially help the diagnosis of psychiatric disorders. Recent studies showed that peripheral blood lymphocytes (PBL) express subtypes of D1 and D2 subclasses of dopamine receptors. Recently, dopamine receptor D3 (DRD3) was found to be over-expressed in schizophrenic PBL and proposed to be a diagnostic and follow-up marker for schizophrenia. In this study we screened PBL of 13 drug-naive/drug-free schizophrenic patients to identify additional markers of schizophrenia. One of the benefits of our study is the use of blood samples of non-medicated, drug-naive patients. This excludes the possibility that changes detected in gene expression levels might be attributed to the medication rather than to the disorder itself. Among others, genes for dopamine receptor D2 (DRD2) and the inwardly rectifying potassium channel (Kir2.3) were found to be over-expressed in microarray analysis. Increased mRNA levels were confirmed by quantitative real-time PCR (QRT-PCR) using the SybrGreen method and dual labeled TaqMan probes. The use of both molecular markers allows a more rapid and precise prediction of schizophrenia and might help find the optimal medication for schizophrenic patients.

  14. MicroRNAs miR-17 and miR-20a inhibit T cell activation genes and are under-expressed in MS whole blood.

    Directory of Open Access Journals (Sweden)

    Mathew B Cox

    Full Text Available It is well established that Multiple Sclerosis (MS is an immune mediated disease. Little is known about what drives the differential control of the immune system in MS patients compared to unaffected individuals. MicroRNAs (miRNAs are small non-coding nucleic acids that are involved in the control of gene expression. Their potential role in T cell activation and neurodegenerative disease has recently been recognised and they are therefore excellent candidates for further studies in MS. We investigated the transcriptome of currently known miRNAs using miRNA microarray analysis in peripheral blood samples of 59 treatment naïve MS patients and 37 controls. Of these 59, 18 had a primary progressive, 17 a secondary progressive and 24 a relapsing remitting disease course. In all MS subtypes miR-17 and miR-20a were significantly under-expressed in MS, confirmed by RT-PCR. We demonstrate that these miRNAs modulate T cell activation genes in a knock-in and knock-down T cell model. The same T cell activation genes are also up-regulated in MS whole blood mRNA, suggesting these miRNAs or their analogues may provide useful targets for new therapeutic approaches.

  15. Whole blood gene expression profiles to assess pathogenesis and disease severity in infants with respiratory syncytial virus infection.

    Directory of Open Access Journals (Sweden)

    Asuncion Mejias

    2013-11-01

    Full Text Available BACKGROUND: Respiratory syncytial virus (RSV is the leading cause of viral lower respiratory tract infection (LRTI and hospitalization in infants. Mostly because of the incomplete understanding of the disease pathogenesis, there is no licensed vaccine, and treatment remains symptomatic. We analyzed whole blood transcriptional profiles to characterize the global host immune response to acute RSV LRTI in infants, to characterize its specificity compared with influenza and human rhinovirus (HRV LRTI, and to identify biomarkers that can objectively assess RSV disease severity. METHODS AND FINDINGS: This was a prospective observational study over six respiratory seasons including a cohort of infants hospitalized with RSV (n = 135, HRV (n = 30, and influenza (n = 16 LRTI, and healthy age- and sex-matched controls (n = 39. A specific RSV transcriptional profile was identified in whole blood (training cohort, n = 45 infants; Dallas, Texas, US and validated in three different cohorts (test cohort, n = 46, Dallas, Texas, US; validation cohort A, n = 16, Turku, Finland; validation cohort B, n = 28, Columbus, Ohio, US with high sensitivity (94% [95% CI 87%-98%] and specificity (98% [95% CI 88%-99%]. It classified infants with RSV LRTI versus HRV or influenza LRTI with 95% accuracy. The immune dysregulation induced by RSV (overexpression of neutrophil, inflammation, and interferon genes, and suppression of T and B cell genes persisted beyond the acute disease, and immune dysregulation was greatly impaired in younger infants (<6 mo. We identified a genomic score that significantly correlated with outcomes of care including a clinical disease severity score and, more importantly, length of hospitalization and duration of supplemental O2. CONCLUSIONS: Blood RNA profiles of infants with RSV LRTI allow specific diagnosis, better understanding of disease pathogenesis, and assessment of disease severity. This study opens new avenues

  16. ASGR1 and ASGR2, the Genes that Encode the Asialoglycoprotein Receptor (Ashwell Receptor, Are Expressed in Peripheral Blood Monocytes and Show Interindividual Differences in Transcript Profile

    Directory of Open Access Journals (Sweden)

    Rebecca Louise Harris

    2012-01-01

    Full Text Available Background. The asialoglycoprotein receptor (ASGPR is a hepatic receptor that mediates removal of potentially hazardous glycoconjugates from blood in health and disease. The receptor comprises two proteins, asialoglycoprotein receptor 1 and 2 (ASGR1 and ASGR2, encoded by the genes ASGR1 and ASGR2. Design and Methods. Using reverse transcription amplification (RT-PCR, expression of ASGR1 and ASGR2 was investigated in human peripheral blood monocytes. Results. Monocytes were found to express ASGR1 and ASGR2 transcripts. Correctly spliced transcript variants encoding different isoforms of ASGR1 and ASGR2 were present in monocytes. The profile of transcript variants from both ASGR1 and ASGR2 differed among individuals. Transcript expression levels were compared with the hepatocyte cell line HepG2 which produces high levels of ASGPR. Monocyte transcripts were 4 to 6 orders of magnitude less than in HepG2 but nonetheless readily detectable using standard RT-PCR. The monocyte cell line THP1 gave similar results to monocytes harvested from peripheral blood, indicating it may provide a suitable model system for studying ASGPR function in this cell type. Conclusions. Monocytes transcribe and correctly process transcripts encoding the constituent proteins of the ASGPR. Monocytes may therefore represent a mobile pool of the receptor, capable of reaching sites remote from the liver.

  17. Alzheimer's disease susceptibility variants in the MS4A6A gene are associated with altered levels of MS4A6A expression in blood.

    Science.gov (United States)

    Proitsi, Petroula; Lee, Sang Hyuck; Lunnon, Katie; Keohane, Aoife; Powell, John; Troakes, Claire; Al-Sarraj, Safa; Furney, Simon; Soininen, Hilkka; Kłoszewska, Iwona; Mecocci, Patrizia; Tsolaki, Magda; Vellas, Bruno; Lovestone, Simon; Hodges, Angela

    2014-02-01

    An increased risk of developing Alzheimer's disease (AD) has previously been found to be associated with variants at the MS4A6A locus. We sought to identify which genes and transcripts in this region have altered expression in AD and mild cognitive impairment (MCI) and are influenced by the AD risk variant(s), as a first step to understanding the molecular basis of AD susceptibility at this locus. Common variants located within highly expressed MS4A6A transcripts were significantly associated with AD and MS4A6A expression levels in blood from MCI and AD subjects (p < 0.05, rs610932, rs7232, rs583791). More copies of the protective (minor) allele were associated with lower MS4A6A expression of each transcript (e.g., p = 0.019; rs610932-total MS4A6A). Furthermore, in heterozygous AD subjects, relative expression of the protective allele of V4-MS4A6A transcripts was lower (p < 0.008). Irrespective of genotype, MS4A6A transcripts were increased in blood from people with AD (p < 0.003), whereas lower expression of full length V1-MS4A6A (p = 0.002) and higher expression of V4-MS4A6A (p = 1.8 × 10(-4)) were observed in MCI, relative to elderly controls. The association between genotype and expression was less consistent in brain, although BA9 did have a similar genotype association with V4-MS4A6A transcripts as in blood. MS4A6A transcripts were widely expressed in tissues and cells, with the exception of V4-MS4A6A, which was not expressed in neuronal cells. Together these results suggest that high levels of MS4A6A in emerging AD pathology are detrimental. Persons with MCI may lower MS4A6A expression to minimize detrimental disease associated MS4A6A activity. However, those with the susceptibility allele appear unable to decrease expression sufficiently, which may explain their increased risk for developing AD. Inhibiting MS4A6A may therefore promote a more neuroprotective phenotype, although further work is needed to establish whether this is the case.

  18. Identification of cord blood-derived mesenchymal stem/stromal cell populations with distinct growth kinetics, differentiation potentials, and gene expression profiles.

    Science.gov (United States)

    Markov, Vladimir; Kusumi, Kenro; Tadesse, Mahlet G; William, Dilusha A; Hall, Dorian M; Lounev, Vitali; Carlton, Arlene; Leonard, Jay; Cohen, Rick I; Rappaport, Eric F; Saitta, Biagio

    2007-02-01

    Phenotypic heterogeneity has been observed among mesenchymal stem/stromal cell (MSC) populations, but specific genes associated with this variability have not been defined. To study this question, we analyzed two distinct isogenic MSC populations isolated from umbilical cord blood (UCB1 and UCB2). The use of isogenic populations eliminated differences contributed by genetic background. We characterized these UCB MSCs for cell morphology, growth kinetics, immunophenotype, and potential for differentiation. UCB1 displayed faster growth kinetics, higher population doublings, and increased adipogenic lineage differentiation compared to UCB2. However, osteogenic differentiation was stronger for the UCB2 population. To identify MSC-specific genes and developmental genes associated with observed phenotypic differences, we performed expression analysis using Affymetrix microarrays and compared them to bone marrow (BM) MSCs. We compared UCB1, UCB2, and BM and identified distinct gene expression patterns. Selected clusters were analyzed demonstrating that genes of multiple developmental pathways, such as transforming growth factor-beta (TGF-beta) and wnt genes, and markers of early embryonic stages and mesodermal differentiation displayed significant differences among the MSC populations. In undifferentiated UCB1 cells, multiple genes were significantly up-regulated (p < 0.0001): peroxisome proliferation activated receptor gamma (PPARG), which correlated with adipogenic differentiation capacities, hepatocyte growth factor (HGF), and stromal-derived factor 1 (SDF1/CXCL12), which could both potentially contribute to the higher growth kinetics observed in UCB1 cells. Overall, the results confirmed the presence of two distinct isogenic UCB-derived cell populations, identified gene profiles useful to distinguish MSC types with different lineage differentiation potentials, and helped clarify the heterogeneity observed in these cells.

  19. Skeletal muscle-specific expression of human blood coagulation factor Ⅸ rescues factor Ⅸ deficiency mouse by AAV-mediated gene transfer

    Institute of Scientific and Technical Information of China (English)

    赖立辉; 陈立; 卢大儒; 王琪; 高啸波; 邱信芳; Jerry; L.Hsueh; 薛京伦; 王健民; 周虹

    1999-01-01

    The efficacy of recombinant adeno-associated virus (AAV) vector to deliver and express human blood clotting factor DC (hFIX) gene in skeletal muscle of coagulation factor IX deficiency mouse strain (FactorIX-knockout) is e-valuated. The muscle creatine kinase enhancer (MCK) and βactin promoter ((3A) were used to drive the hFIX minigene (hFIXml), which was flanked by AAV inverted terminal repeats (ITRs). Following intramuscular injection of high liter (2.5 x 1011 vector genomes/mL) of AAV, increased hFIX expression (256 ng/mL of plasma) was achieved. The time course of hFIX expression demonstrated that the expression level gradually increased over a period of two weeks before anti-hFIX antibodies developed in mouse circulating plasma. Those results provided a promising evidence that rAAV-me-diated gene transfer and skeletal muscle-specific expression of hFIX is a feasible strategy for treating patients for hemophilia B.

  20. Alteration of RH gene structure and expression in human dCCee and DCW-red blood cells: phenotypic homozygosity versus genotypic heterozygosity.

    Science.gov (United States)

    Huang, C H

    1996-09-15

    This report describes a comparative study on the dCCee and DCW-red blood cells devoid of RhD and CcEe antigens, respectively. Southern blots showed that the two variants carried opposite deletions in the D and non-D (CcEe) genes. Rh haplotyping and exon polymerase chain reaction (PCR) assay indicated that the deletions did not extend beyond the 5' region upstream from exon 1 or the 3' region downstream from exon 10 of the respective genes. This was confirmed by finding intact promoters and 3' untranslated regions in both D and non-D genes in each variant. Reverse transcriptase-PCR and cDNA sequencing showed the expression of two transcripts in each cell type. In dCCee cells, one transcript was the regular Ce form and the other occurred as a D-Ce-D hybrid whose Ce sequence spanned exons 2 through 9. In DCW-cells, the two transcripts were derived from reversely arranged hybrid genes, ie, the CW-D gene was formed by fusion of CW exon 1 with D exons 2 through 10, whereas the reverse product was formed by fusion of D exons 1 through 9 with non-D exon 10. These results indicated that DNA deletion and recombination had occurred in either cis or trans configuration and involved both RH loci in the dCCee or DCW-genome. Identification of such compound alterations correlates the genotypes with phenotypes and explains the lost Rh antigenic expression. A reinvestigation of gene organization also led to the reassignment of several 5' and 3' splice sites. Together, this study not only shows the complexity of Rh phenotypic diversity, but also points to the importance of concurrent analysis of genomic structure and transcript expression in deciphering the underlying genetic mechanisms.

  1. Molecular structure of the prothoracicotropic hormone gene in the northern house mosquito, Culex pipiens, and its expression analysis in association with diapause and blood feeding.

    Science.gov (United States)

    Zhang, Q; Denlinger, D L

    2011-04-01

    We cloned the gene that encodes prothoracicotropic hormone (PTTH) in the northern house mosquito, Culex pipiens, and investigated its expression profile in short-day (diapause-destined) and long-day (nondiapause-destined) individuals from the fourth-instar larval stage to 2 months of adulthood, as well as after a blood meal. The deduced C. pipiens PTTH (Cupip-PTTH) amino acid sequence contains seven cysteines with a specific spacing pattern. Sequence alignment suggests that Cupip-PTTH is 23% identical to Drosophila melanogaster PTTH, but is ≥59% identical to the PTTHs of other mosquitoes. Cupip-PTTH has structural characteristics similar to those of Bombyx mori PTTH and some vertebrate nerve growth factors with cysteine-knot motifs. PTTH transcripts exhibit a daily cycling profile during the final (fourth) larval instar, with peak abundance occurring late in the scotophase. The fourth-larval instar stage is one day longer in short-day larvae than in long-day larvae, resulting in larger larvae and adults. This additional day of larval development is associated with one extra PTTH cycle. No cycling was observed in pupae, but PTTH transcripts were slightly higher in short-day pupae than in long-day pupae throughout much of the pupal stage. PTTH expression persisted at a nearly constant level in diapausing adult females for the first month but then dropped by ∼50%, while expression decreased at the beginning of adulthood in nondiapausing females and then remained at a low level as long as the females were denied a blood meal. However, when nondiapausing females were offered a blood meal, PTTH transcripts rose approximately 7 fold in 2 h and remained elevated for 24 h. A few diapausing females (∼10%) will take a blood meal when placed in close proximity to a host, but much of the blood is ejected and such meals do not result in mature eggs. Yet, elevated PTTH mRNA expression was also observed in diapausing females that were force fed. Our results thus point to

  2. Small ncRNA Expression-Profiling of Blood from Hemophilia A Patients Identifies miR-1246 as a Potential Regulator of Factor 8 Gene.

    Directory of Open Access Journals (Sweden)

    Tewarit Sarachana

    Full Text Available Hemophilia A (HA is a bleeding disorder caused by deficiency of functional plasma clotting factor VIII (FVIII. Genetic mutations in the gene encoding FVIII (F8 have been extensively studied. Over a thousand different mutations have been reported in the F8 gene. These span a diverse range of mutation types, namely, missense, splice-site, deletions of single and multiple exons, inversions, etc. There is nonetheless evidence that other molecular mechanisms, in addition to mutations in the gene encoding the FVIII protein, may be involved in the pathobiology of HA. In this study, global small ncRNA expression profiling analysis of whole blood from HA patients, and controls, was performed using high-throughput ncRNA microarrays. Patients were further sub-divided into those that developed neutralizing-anti-FVIII antibodies (inhibitors and those that did not. Selected differentially expressed ncRNAs were validated by quantitative reverse transcription-polymerase chain reaction (qRT-PCR analysis. We identified several ncRNAs, and among them hsa-miR-1246 was significantly up-regulated in HA patients. In addition, miR-1246 showed a six-fold higher expression in HA patients without inhibitors. We have identified an miR-1246 target site in the noncoding region of F8 mRNA and were able to confirm the suppressory role of hsa-miR-1246 on F8 expression in a stable lymphoblastoid cell line expressing FVIII. These findings suggest several testable hypotheses vis-à-vis the role of nc-RNAs in the regulation of F8 expression. These hypotheses have not been exhaustively tested in this study as they require carefully curated clinical samples.

  3. Epithelial Expression of Human ABO Blood Group Genes Is Dependent upon a Downstream Regulatory Element Functioning through an Epithelial Cell-specific Transcription Factor, Elf5.

    Science.gov (United States)

    Sano, Rie; Nakajima, Tamiko; Takahashi, Yoichiro; Kubo, Rieko; Kobayashi, Momoko; Takahashi, Keiko; Takeshita, Haruo; Ogasawara, Kenichi; Kominato, Yoshihiko

    2016-10-21

    The human ABO blood group system is of great importance in blood transfusion and organ transplantation. The ABO system is composed of complex carbohydrate structures that are biosynthesized by A- and B-transferases encoded by the ABO gene. However, the mechanisms regulating ABO gene expression in epithelial cells remain obscure. On the basis of DNase I-hypersensitive sites in and around ABO in epithelial cells, we prepared reporter plasmid constructs including these sites. Subsequent luciferase assays and histone modifications indicated a novel positive regulatory element, designated the +22.6-kb site, downstream from ABO, and this was shown to enhance ABO promoter activity in an epithelial cell-specific manner. Expression of ABO and B-antigen was reduced in gastric cancer KATOIII cells by biallelic deletion of the +22.6-kb site using the CRISPR/Cas9 system. Electrophoretic mobility shift assay and chromatin immunoprecipitation assay demonstrated that the site bound to an epithelial cell-specific transcription factor, Elf5. Mutation of the Ets binding motifs to abrogate binding of this factor reduced the regulatory activity of the +22.6-kb site. Furthermore, ELF5 knockdown with shRNA reduced both endogenous transcription from ABO and B-antigen expression in KATOIII cells. Thus, Elf5 appeared to be involved in the enhancer potential of the +22.6-kb site. These results support the contention that ABO expression is dependent upon a downstream positive regulatory element functioning through a tissue-restricted transcription factor, Elf5, in epithelial cells.

  4. Gene Expression Omnibus (GEO)

    Data.gov (United States)

    U.S. Department of Health & Human Services — Gene Expression Omnibus is a public functional genomics data repository supporting MIAME-compliant submissions of array- and sequence-based data. Tools are provided...

  5. Expression of Werner and Bloom syndrome genes is differentially regulated by in vitro HIV-1 infection of peripheral blood mononuclear cells.

    Science.gov (United States)

    Bordi, L; Amendola, A; Ciccosanti, F; Abbate, I; Camilloni, G; Capobianchi, M R

    2004-11-01

    In HIV infection, continuous immune activation leads to accelerated ageing of the adaptive immune system, similar to that observed in elderly people. We investigated the expression of WRN and BLM (genes involved in disorders characterized by premature ageing, genomic instability and cancer predisposition) in peripheral blood mononuclear cells (PBMC) activated in vitro with phytohaemagglutinin (PHA) and infected with different HIV-1 strains. The steady state levels of mRNA were analysed by reverse transcription-polymerase chain reaction (RT-PCR), and protein expression was assayed using immunocytochemistry and Western blot techniques. In uninfected PBMC, PHA stimulation induced an increase in BLM mRNA and protein expression, while WRN expression remained virtually unchanged. When PBMC were infected in vitro with a lymphotropic HIV-1 strain, the level of BLM mRNA showed a peak at 24 h of infection, followed by a decline to uninfected culture levels. A similar result failed to be seen using an R5-tropic HIV-1 strain. In accordance with mRNA expression, in HIV-infected cultures PBMC were stained more frequently and more intensely by a BLM-specific antibody as compared to uninfected cultures, staining peaking at 24. Conversely, WRN expression was not modulated by HIV-1. The proportion of cells showing BLM up-regulation, established by immunocytochemical staining, was much greater than the proportion of productively infected PBMC, as established by proviral DNA measurement. This result indicates that BLM up-regulation is probably a result of an indirect bystander cell effect. Activation of the BLM gene in infected PBMC suggests that premature ageing could be a further immunopathogenetic mechanism involved in HIV-induced immunodeficiency, and points to a possible new candidate target for innovative therapeutic intervention.

  6. Increased expression of TLR-2, COX-2, and SOD-2 genes in the peripheral blood leukocytes of opisthorchiasis patients induced by Opisthorchis viverrini antigen.

    Science.gov (United States)

    Yongvanit, Puangrat; Thanan, Raynoo; Pinlaor, Somchai; Sithithaworn, Paiboon; Loilome, Watcharin; Namwat, Nisana; Techasen, Anchalee; Dechakhamphu, Somkid

    2012-05-01

    Re-infection with liver fluke, Opisthorchis viverrini, increases proinflammatory molecules involved in inflammation-mediated disease and carcinogenesis in an animal model. To clarify whether these genes respond to parasite antigen in peripheral blood leukocytes (PBL) of opisthorchiasis patients, we examined the transcriptional level of oxidant-generating (toll-like receptor 2 (TLR-2), nuclear factor-kappa B (NF-KB), and cyclooxygenase 2 (COX-2)), anti-oxidant-generating (manganese superoxide dismutase 2 (SOD-2) and catalase (CAT)), proinflammatory cytokine (interleukin (IL)-1β), and anti-inflammatory cytokine (IL-10), in PBL exposed to parasite antigen in O. viverrini-infected patients compared with healthy individuals in an in vitro experiment. After O. viverrini antigen-treated PBL, quantitative RT-PCR analysis revealed that increased expression of cytokines and oxidant-generating genes in PBL was similar between O. viverrini-infected and healthy groups. Interestingly, compared with healthy subjects, increase of TLR-2, COX-2, and SOD-2 and decreased CAT mRNA expression levels were observed in O. viverrini-infected group. The results indicate that O. viverrini antigen induces upregulation of TLR-2, COX-2, and SOD-2 and downregulation of CAT genes in opisthorchiasis patients, suggesting that imbalance of oxidant/anti-oxidant transcripts during re-infection may be involved in the inflammatory-driven carcinogenesis. These molecules may be used as the chemopreventive target for intervention of opisthorchiasis patients in an endemic area.

  7. Network analysis of gene expression in peripheral blood identifies mTOR and NF-κB pathways involved in antipsychotic-induced extrapyramidal symptoms.

    Science.gov (United States)

    Mas, S; Gassó, P; Parellada, E; Bernardo, M; Lafuente, A

    2015-10-01

    To identify the candidate genes for pharmacogenetic studies of antipsychotic (AP)-induced extrapyramidal symptoms (EPS), we propose a systems biology analytical approach, based on protein-protein interaction network construction and functional annotation analysis, of changes in gene expression (Human Genome U219 Array Plate) induced by treatment with risperidone or paliperidone in peripheral blood. 12 AP-naïve patients with first-episode psychosis participated in the present study. Our analysis revealed that, in response to AP treatment, constructed networks were enriched for different biological processes in patients without EPS (ubiquitination, protein folding and adenosine triphosphate (ATP) metabolism) compared with those presenting EPS (insulin receptor signaling, lipid modification, regulation of autophagy and immune response). Moreover, the observed differences also involved specific pathways, such as anaphase promoting complex /cdc20, prefoldin/CCT/triC and ATP synthesis in no-EPS patients, and mammalian target of rapamycin and NF-κB kinases in patients with EPS. Our results showing different patterns of gene expression in EPS patients, offer new and valuable markers for pharmacogenetic studies.

  8. Immune challenge by intraperitoneal administration of lipopolysaccharide directs gene expression in distinct blood-brain barrier cells toward enhanced prostaglandin E(2) signaling.

    Science.gov (United States)

    Vasilache, Ana Maria; Qian, Hong; Blomqvist, Anders

    2015-08-01

    The cells constituting the blood-brain barrier are critical for the transduction of peripheral immune signals to the brain, but hitherto no comprehensive analysis of the signaling events that occur in these cells in response to a peripheral inflammatory stimulus has been performed. Here, we examined the inflammatory transcriptome in blood-brain barrier cells, including endothelial cells, pericytes, and perivascular macrophages, which were isolated by fluorescent-activated cell sorting, from non-immune-challenged mice and from mice stimulated by bacterial wall lipopolysaccharide. We show that endothelial cells and perivascular macrophages display distinct transcription profiles for inflammatory signaling and respond in distinct and often opposing ways to the immune stimulus. Thus, endothelial cells show induced PGE2 synthesis and transport with attenuation of PGE2 catabolism, increased expression of cytokine receptors and down-stream signaling molecules, and downregulation of adhesion molecules. In contrast, perivascular macrophages show downregulation of the synthesis of prostanoids other than PGE2 and of prostaglandin catabolism, but upregulation of interleukin-6 synthesis. Pericytes were largely unresponsive to the immune stimulation, with the exception of downregulation of proteins involved in pericyte-endothelial cell communication. While the endothelial cells account for most of the immune-induced gene expression changes in the blood-brain barrier, the response of the endothelial cells occurs in a concerted manner with that of the perivascular cells to elevate intracerebral levels of PGE2, hence emphasizing the critical role of PGE2 in immune-induced signal transduction across the blood-brain barrier.

  9. Expression of the sFLT1 gene in cord blood cells is associated to maternal arsenic exposure and decreased birth weight.

    Directory of Open Access Journals (Sweden)

    Sylvie Remy

    Full Text Available There is increasing epidemiologic evidence that arsenic exposure in utero is associated with adverse pregnancy outcomes and may contribute to long-term health effects. These effects may occur at low environmental exposures but the underlying molecular mechanism is not clear. We collected cord blood samples of 183 newborns to identify associations between arsenic levels and birth anthropometric parameters in an area with very low arsenic exposure. Our core research aim was to screen for transcriptional marks that mechanistically explain these associations. Multiple regression analyses showed that birth weight decreased with 47 g (95% CI: 16-78 g for an interquartile range increase of 0.99 μg/L arsenic. The model was adjusted for child's sex, maternal smoking during pregnancy, gestational age, and parity. Higher arsenic concentrations and reduced birth weight were positively associated with changes in expression of the sFLT1 (soluble fms-like tyrosine kinase-1 gene in cord blood cells in girls. The protein product of sFLT1 is a scavenger of vascular endothelial growth factor (VEGF in the extracellular environment and plays a key role in the inhibition of placental angiogenesis. In terms of fetal development, inhibition of placental angiogenesis leads to impaired nutrition and hence to growth retardation. Various genes related to DNA methylation and oxidative stress showed also changed expression in relation to arsenic exposure but were not related to birth outcome parameters. In conclusion, this study suggests that increased expression of sFLT1 is an intermediate marker that points to placental angiogenesis as a pathway linking prenatal arsenic exposure to reduced birth weight.

  10. Effects of spironolactone on human blood mononuclear cells: mineralocorticoid receptor independent effects on gene expression and late apoptosis induction

    DEFF Research Database (Denmark)

    Sønder, Søren Ulrik Salling; Mikkelsen, Marianne; Rieneck, Klaus

    2006-01-01

    , including immunoinflammatory response genes and apoptosis and antiapoptosis genes. Apoptosis was evident in CD3-, CD14- and CD19-positive cells, but only after 18 h of exposure to SPIR. 4 The transcriptional network involving the differentially regulated genes was examined and the results indicate that SPIR...

  11. Gene Expression Status and Methylation Pattern in Promoter of P15INK4b and P16INK4a in Cord Blood CD34+ Stem Cells

    Directory of Open Access Journals (Sweden)

    Mehdi Azad

    2013-07-01

    : Specific predifferentiation expression of P15INK4b and P16INK4a genes along with reduction in their expression after erythroid differentiation indicated animportant role for these two genes in biology of CD34+ cells in primary stages and before differentiation. In addition, both genes are capable of epigenetic modifications due to the structure of their promoters.

  12. Redox maintenance and concerted modulation of gene expression and signaling pathways by a nanoformulation of curcumin protects peripheral blood mononuclear cells against gamma radiation.

    Science.gov (United States)

    Soltani, Behrooz; Ghaemi, Nasser; Sadeghizadeh, Majid; Najafi, Farhood

    2016-09-25

    Exposure to ionizing radiation (IR) could be detrimental to health. Oxidative stress, DNA damage, and inflammation are implicated in radiation damage. Curcumin, a natural polyphenol, has remarkable antioxidant, anti-inflammation and anticarcinogenic properties and is reported to protect cells and organisms against gamma-rays. We have recently enhanced solubility of curcumin via a novel dendrosomal nanoformulation (DNC). The objective of this study was to assess the potential efficacy of this nanoformulation in protecting human peripheral blood mononuclear cells (PBMC) against gamma-radiation. IR-induced damage was evident in reactive oxygen species, antioxidant enzymes activities, glutathione, lipid peroxidation, and viability assays. Treatment by DNC, showing superiority to curcumin, effectively counteracted these effects and reduced DNA damage as determined via 8-OHdG levels and lipid peroxidation as measured by the level of TBARS (as well as lipid hydroperoxides and 8-isoprostane). PBMC pretreatment by DNC prior to irradiation proved effective as well. Uptake kinetics revealed enhanced uptake of DNC compared to curcumin, particularly after irradiation. DNC suppressed IR-induced NF-κB activation 18 h post-irradiation. It induced Nrf2 binding activity early after irradiation which was sustained to 18 h. Gene expression analysis of a chosen set of radiation response genes in irradiated PBMC revealed a similar profile for DNA damage response and repair genes including FDXR, XPC, DDB2, and GADD45 in DNC-treated cells compared to IR control. However, in response to radiation, an altered profile of expression was noticed for CDKN1A (p21), MDM2, IFNG, and BBC3 (PUMA) genes after DNC treatment.

  13. Characterization and differentiation of equine experimental local and early systemic inflammation by expression responses of inflammation-related genes in peripheral blood leukocytes

    DEFF Research Database (Denmark)

    Vinther, Anne Mette L; Heegaard, Peter M. H.; Skovgaard, Kerstin;

    2016-01-01

    Local inflammation may progress into systemic inflammation. To increase our understanding of the basic immunological processes during transition of equine local inflammation into a systemic state, investigation into the equine systemic immune response to local inflammation is warranted. Therefore......, the aim of this study was to investigate the innate peripheral blood leukocyte (PBL) immune response to local inflammation in horses, and to compare this response with the PBL immune response during the early phase of acute systemic inflammation. Expression of 22 selected inflammation-related genes...... synovitis and mild systemic inflammation of approximately 24 h duration was confirmed by clinical and paraclinical observations in LI and SI horses, respectively. In the LI group, samples obtained 3-16 h post-injection showed distinct clustering in the PCA compared with baseline levels, indicating...

  14. A transcription factor map as revealed by a genome-wide gene expression analysis of whole-blood mRNA transcriptome in multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Carlos Riveros

    Full Text Available BACKGROUND: Several lines of evidence suggest that transcription factors are involved in the pathogenesis of Multiple Sclerosis (MS but complete mapping of the whole network has been elusive. One of the reasons is that there are several clinical subtypes of MS and transcription factors that may be involved in one subtype may not be in others. We investigate the possibility that this network could be mapped using microarray technologies and contemporary bioinformatics methods on a dataset derived from whole blood in 99 untreated MS patients (36 Relapse Remitting MS, 43 Primary Progressive MS, and 20 Secondary Progressive MS and 45 age-matched healthy controls. METHODOLOGY/PRINCIPAL FINDINGS: We have used two different analytical methodologies: a non-standard differential expression analysis and a differential co-expression analysis, which have converged on a significant number of regulatory motifs that are statistically overrepresented in genes that are either differentially expressed (or differentially co-expressed in cases and controls (e.g., V$KROX_Q6, p-value <3.31E-6; V$CREBP1_Q2, p-value <9.93E-6, V$YY1_02, p-value <1.65E-5. CONCLUSIONS/SIGNIFICANCE: Our analysis uncovered a network of transcription factors that potentially dysregulate several genes in MS or one or more of its disease subtypes. The most significant transcription factor motifs were for the Early Growth Response EGR/KROX family, ATF2, YY1 (Yin and Yang 1, E2F-1/DP-1 and E2F-4/DP-2 heterodimers, SOX5, and CREB and ATF families. These transcription factors are involved in early T-lymphocyte specification and commitment as well as in oligodendrocyte dedifferentiation and development, both pathways that have significant biological plausibility in MS causation.

  15. Differences in B7 and CD28 family gene expression in the peripheral blood between newly diagnosed young-onset and adult-onset type 1 diabetes patients.

    Science.gov (United States)

    Pruul, K; Kisand, K; Alnek, K; Metsküla, K; Reimand, K; Heilman, K; Peet, A; Varik, K; Peetsalu, M; Einberg, Ü; Tillmann, V; Uibo, R

    2015-09-05

    Type-1 diabetes (T1D) is a heterogeneous autoimmune disease, and there are pathogenetic differences between young- and adult-onset T1D patients. We hypothesized that the expressions of genes involved in costimulatory immune system pathways in peripheral blood are differently regulated in young- and adult-onset T1D. Study group I consisted of 80 children, adolescents, and young adults (age range 1.4-21.4 y; 31 controls and 49 T1D patients). Study group II consisted of 48 adults (age range 22.0-78.4 y; 30 controls and 18 T1D patients). The mRNA expression levels of CD86, CD28, CD25, CD226, CD40, BTLA, GITR, PDCD1, FoxP3, TGF-β, ICOS, sCTLA4, flCTLA4, and CD80 were measured in peripheral blood. Genetic polymorphisms (HLA haplotypes; rs231806, rs231775, and rs3087243 in CTLA4; rs763361 in CD226; and rs706778 in CD25) and T1D-associated autoantibodies were analyzed. In group I, there was significantly lower expression of CD226 in T1D patients than in the controls. In group II, there were significantly higher expression levels of CD86 and TGF-β in T1D patients than in the controls. In the T1D patients in group I, the upregulated CD80 expression correlated with the expression of both CTLA4 splice variants (sCTLA4 and flCTLA4). In contrast, in group II, upregulated CD86 correlated with TGF-β and CD25. In group I, the inhibitory CD80-CTLA4 pathway was activated, whereas, in group II, the activation CD86-CD28 pathway and TGF-β production were activated. These results emphasize the differences between young-onset and adult-onset T1D in the regulation of costimulatory pathways. These differences should be considered when developing novel treatments for T1D.

  16. Promoter Region Hypermethylation and mRNA Expression of MGMT and p16 Genes in Tissue and Blood Samples of Human Premalignant Oral Lesions and Oral Squamous Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Vikram Bhatia

    2014-01-01

    Full Text Available Promoter methylation and relative gene expression of O6-methyguanine-DNA-methyltransferase (MGMT and p16 genes were examined in tissue and blood samples of patients with premalignant oral lesions (PMOLs and oral squamous cell carcinoma (OSCC. Methylation-specific PCR and reverse transcriptase PCR were performed in 146 tissue and blood samples from controls and patients with PMOLs and OSCC. In PMOL group, significant promoter methylation of MGMT and p16 genes was observed in 59% (P=0.0010 and 57% (P=0.0016 of tissue samples, respectively, and 39% (P=0.0135 and 33% (P=0.0074 of blood samples, respectively. Promoter methylation of both genes was more frequent in patients with OSCC, that is, 76% (P=0.0001 and 82% (P=0.0001 in tissue and 57% (P=0.0002 and 70% (P=0.0001 in blood, respectively. Significant downregulation of MGMT and p16 mRNA expression was observed in both tissue and blood samples from patients with PMOLs and OSCC. Hypermethylation-induced transcriptional silencing of MGMT and p16 genes in both precancer and cancer suggests important role of these changes in progression of premalignant state to malignancy. Results support use of blood as potential surrogate to tissue samples for screening or diagnosing PMOLs and early OSCC.

  17. Promoter region hypermethylation and mRNA expression of MGMT and p16 genes in tissue and blood samples of human premalignant oral lesions and oral squamous cell carcinoma.

    Science.gov (United States)

    Bhatia, Vikram; Goel, Madhu Mati; Makker, Annu; Tewari, Shikha; Yadu, Alka; Shilpi, Priyanka; Kumar, Sandeep; Agarwal, S P; Goel, Sudhir K

    2014-01-01

    Promoter methylation and relative gene expression of O(6)-methyguanine-DNA-methyltransferase (MGMT) and p16 genes were examined in tissue and blood samples of patients with premalignant oral lesions (PMOLs) and oral squamous cell carcinoma (OSCC). Methylation-specific PCR and reverse transcriptase PCR were performed in 146 tissue and blood samples from controls and patients with PMOLs and OSCC. In PMOL group, significant promoter methylation of MGMT and p16 genes was observed in 59% (P = 0.0010) and 57% (P = 0.0016) of tissue samples, respectively, and 39% (P = 0.0135) and 33% (P = 0.0074) of blood samples, respectively. Promoter methylation of both genes was more frequent in patients with OSCC, that is, 76% (P = 0.0001) and 82% (P = 0.0001) in tissue and 57% (P = 0.0002) and 70% (P = 0.0001) in blood, respectively. Significant downregulation of MGMT and p16 mRNA expression was observed in both tissue and blood samples from patients with PMOLs and OSCC. Hypermethylation-induced transcriptional silencing of MGMT and p16 genes in both precancer and cancer suggests important role of these changes in progression of premalignant state to malignancy. Results support use of blood as potential surrogate to tissue samples for screening or diagnosing PMOLs and early OSCC.

  18. Integrative analyses of hepatic differentially expressed genes and blood biomarkers during the peripartal period between dairy cows overfed or restricted-fed energy prepartum.

    Directory of Open Access Journals (Sweden)

    Khuram Shahzad

    Full Text Available Using published dairy cattle liver transcriptomics dataset along with novel blood biomarkers of liver function, metabolism, and inflammation we have attempted an integrative systems biology approach applying the classical functional enrichment analysis using DAVID, a newly-developed Dynamic Impact Approach (DIA, and an upstream gene network analysis using Ingenuity Pathway Analysis (IPA. Transcriptome data was generated from experiments evaluating the impact of prepartal plane of energy intake [overfed (OF or restricted (RE] on liver of dairy cows during the peripartal period. Blood biomarkers uncovered that RE vs. OF led to greater prepartal liver distress accompanied by a low-grade inflammation and larger proteolysis (i.e., higher haptoglobin, bilirubin, and creatinine. Post-partum the greater bilirubinaemia and lipid accumulation in OF vs. RE indicated a large degree of liver distress. The re-analysis of microarray data revealed that expression of >4,000 genes was affected by diet × time. The bioinformatics analysis indicated that RE vs. OF cows had a liver with a greater lipid and amino acid catabolic capacity both pre- and post-partum while OF vs. RE cows had a greater activation of pathways/functions related to triglyceride synthesis. Furthermore, RE vs. OF cows had a larger (or higher capacity to cope with ER stress likely associated with greater protein synthesis/processing, and a higher activation of inflammatory-related functions. Liver in OF vs. RE cows had a larger cell proliferation and cell-to-cell communication likely as a response to the greater lipid accumulation. Analysis of upstream regulators indicated a pivotal role of several lipid-related transcription factors (e.g., PPARs, SREBPs, and NFE2L2 in priming the liver of RE cows to better face the early postpartal metabolic and inflammatory challenges. An all-encompassing dynamic model was proposed based on the findings.

  19. Integrative Analyses of Hepatic Differentially Expressed Genes and Blood Biomarkers during the Peripartal Period between Dairy Cows Overfed or Restricted-Fed Energy Prepartum

    Science.gov (United States)

    Shahzad, Khuram; Bionaz, Massimo; Trevisi, Erminio; Bertoni, Giuseppe; Rodriguez-Zas, Sandra L.; Loor, Juan J.

    2014-01-01

    Using published dairy cattle liver transcriptomics dataset along with novel blood biomarkers of liver function, metabolism, and inflammation we have attempted an integrative systems biology approach applying the classical functional enrichment analysis using DAVID, a newly-developed Dynamic Impact Approach (DIA), and an upstream gene network analysis using Ingenuity Pathway Analysis (IPA). Transcriptome data was generated from experiments evaluating the impact of prepartal plane of energy intake [overfed (OF) or restricted (RE)] on liver of dairy cows during the peripartal period. Blood biomarkers uncovered that RE vs. OF led to greater prepartal liver distress accompanied by a low-grade inflammation and larger proteolysis (i.e., higher haptoglobin, bilirubin, and creatinine). Post-partum the greater bilirubinaemia and lipid accumulation in OF vs. RE indicated a large degree of liver distress. The re-analysis of microarray data revealed that expression of >4,000 genes was affected by diet × time. The bioinformatics analysis indicated that RE vs. OF cows had a liver with a greater lipid and amino acid catabolic capacity both pre- and post-partum while OF vs. RE cows had a greater activation of pathways/functions related to triglyceride synthesis. Furthermore, RE vs. OF cows had a larger (or higher capacity to cope with) ER stress likely associated with greater protein synthesis/processing, and a higher activation of inflammatory-related functions. Liver in OF vs. RE cows had a larger cell proliferation and cell-to-cell communication likely as a response to the greater lipid accumulation. Analysis of upstream regulators indicated a pivotal role of several lipid-related transcription factors (e.g., PPARs, SREBPs, and NFE2L2) in priming the liver of RE cows to better face the early postpartal metabolic and inflammatory challenges. An all-encompassing dynamic model was proposed based on the findings. PMID:24914544

  20. Optimal Route for Human Umbilical Cord Blood-Derived Mesenchymal Stem Cell Transplantation to Protect Against Neonatal Hyperoxic Lung Injury: Gene Expression Profiles and Histopathology.

    Directory of Open Access Journals (Sweden)

    Dong Kyung Sung

    Full Text Available The aim of this study was to determine the optimal route of mesenchymal stem cell (MSC transplantation. To this end, gene expression profiling was performed to compare the effects of intratracheal (i.t. versus intravenous (i.v. MSC administration. Furthermore, the therapeutic efficacy of each route to protect against neonatal hyperoxic lung injury was also determined. Newborn Sprague-Dawley rats were exposed to hyperoxia (90% oxygen from birth for 14 days. Human umbilical cord blood-derived MSCs labeling with PKH26 were transplanted through either the i.t. (5×10(5 or i.v. (2×10(6 route at postnatal day (P 5. At P14, lungs were harvested for histological, biochemical and microarray analyses. Hyperoxic conditions induced an increase in the mean linear intercept and mean alveolar volume (MAV, indicative of impaired alveolarization. The number of ED-1 positive cells was significantly decreased by both i.t. and i.v. transplantations. However, i.t. administration of MSCs resulted in a greater decrease in MAV and ED-1 positive cells compared to i.v. administration. Moreover, the number of TUNEL-positive cells was significantly decreased in the i.t. group, but not in the i.v. group. Although the i.t. group received only one fourth of the number of MSCs that the i.v. group did, a significantly higher number of donor cell-derived red PKH 26 positivity were recovered in the i.t. group. Hyperoxic conditions induced the up regulation of genes associated with the inflammatory response, such as macrophage inflammatory protein-1 α, tumor necrosis factor-α and inter leukin-6; genes associated with cell death, such as p53 and caspases; and genes associated with fibrosis, such as connective tissue growth factor. In contrast, hyperoxic conditions induced the dwon-regulation of vascular endothelial growth factor and hepatocyte growth factor. These hyperoxia-induced changes in gene expression were decreased in the i.t. group, but not in the i.v. group. Thus

  1. A New Synthetic Compound, 2-OH, Enhances Interleukin-2 and Interferon-γ Gene Expression in Human Peripheral Blood Mononuclear Cells

    Directory of Open Access Journals (Sweden)

    Woan-Fang Tzeng

    2009-07-01

    Full Text Available A new synthetic compound, 6-hydroxy-2-tosylisoquinolin-1(2H-one (2-OH, was selected for immunopharmacological activity tests. The effects of 2-OH on human peripheral blood mononuclear cell (PBMC proliferation were determined by tritiated thymidine uptake. Compared to phytohemagglutinin (PHA; 5 μg/mL stimulation, 2-OH significantly enhanced PBMC proliferation in a dose-dependent manner. The 50% enhancement activity (EC50 for 2-OH was 4.4±0.1 μM. In addition, effects of 2-OH on interleukin-2 (IL-2 and interferon-γ (IFN-γ production in PBMC were determined by enzyme immunoassay. Results demonstrated that 2-OH stimulated IL-2 and IFN-γ production in PBMC. Data from reverse transcription-polymerase chain reaction (RT-PCR and real-time PCR indicated that IL-2 and IFN-γ mRNA expression in PBMC could be induced by 2-OH. Therefore, 2-OH enhanced IL-2 and IFN-γ production in PBMC by modulation their gene expression. We suggest that 2-OH may be an immunomodulatory agent.

  2. Genotoxicity of doxorubicin in F344 rats by combining the comet assay, flow-cytometric peripheral blood micronucleus test, and pathway-focused gene expression profiling.

    Science.gov (United States)

    Manjanatha, Mugimane G; Bishop, Michelle E; Pearce, Mason G; Kulkarni, Rohan; Lyn-Cook, Lascelles E; Ding, Wei

    2014-01-01

    Doxorubicin (DOX) is an antineoplastic drug effective against many human malignancies. DOX's clinical efficacy is greatly limited because of severe cardiotoxicity. To evaluate if DOX is genotoxic in the heart, ~7-week-old, male F344 rats were administered intravenously 1, 2, and 3 mg/kg bw DOX at 0, 24, 48, and 69 hr and the Comet assays in heart, liver, kidney, and testis and micronucleus (MN) assay in the peripheral blood (PB) erythrocytes using flow cytometry were conducted. Rats were euthanized at 72 hr and PB was removed for the MN assay and single cells were isolated from multiple tissues for the Comet assays. None of the doses of DOX induced a significant DNA damage in any of the tissues examined by the alkaline Comet assay. Contrastingly, the glycosylase enzymes-modified Comet assay showed a significant dose dependent increase in the oxidative DNA damage in the cardiac tissue (P ≤ 0.05). In the liver, only the top dose induced significant increase in the oxidative DNA damage (P ≤ 0.05). The histopathology showed no severe cardiotoxicity but non-neoplastic lesions were present in both untreated and treated samples. A severe toxicity likely occurred in the bone marrow because no viable reticulocytes could be screened for the MN assay. Gene expression profiling of the heart tissues showed a significant alteration in the expression of 11 DNA damage and repair genes. These results suggest that DOX is genotoxic in the heart and the DNA damage may be induced primarily via the production of reactive oxygen species.

  3. Sieving treatment biomarkers from blood gene-expression profiles: a pharmacogenomic update on two types of multiple sclerosis therapy.

    Science.gov (United States)

    Goertsches, Robert H; Zettl, Uwe K; Hecker, Michael

    2011-03-01

    Interferon-β (IFN-β) and glatiramer acetate are routinely used to inhibit disease activity in multiple sclerosis, but their mechanisms of action are incompletely understood. Individual treatment responses vary and candidate molecular markers that predict them have yet to be established. Why some patients respond poorly to a certain treatment while others respond well is addressed by the pharmacogenomic approach, which postulates that the molecular response to treatment correlates with the clinical effects, and thus seeks biological markers to estimate prognosis, guide therapy, comprehend the drugs' mechanisms of action and offer insights into disease pathogenesis. A poor clinical response can be owing to genetic variants in drug receptors or signaling components, or the appearance of neutralizing antibodies that interfere with the drug's binding efficacy. Independently, such mechanisms could lead to inadequate, that is to say unchanged, molecular responses, or exceedingly increased or decreased changes. By means of DNA microarray studies, various research groups endeavour to establish a clinically relevant relationship between the biological response to these drugs and treatment effects. Molecular profiles obtained in this way differ in the pattern and number of modulated genes, suggesting the existence of an individual 'drug-response fingerprint'. To further unravel the underlying regulatory interaction structure of the genes responsive to these immunotherapies represents a daunting but inevitable task. In this article, we focus on longitudinal ex vivo transcriptomic studies in multiple sclerosis and its therapy. We will discuss recurrently reported biomarker candidates, emphasizing those of immunologically meaning, and review studies with network module outputs.

  4. Differential expression of Werner and Bloom syndrome genes in the peripheral blood of HIV-1 infected patients.

    Science.gov (United States)

    Bordi, Licia; Gioia, Cristiana; Lalle, Eleonora; Piselli, Pierluca; Poccia, Fabrizio; Capobianchi, Maria R; Amendola, Alessandra

    2007-02-01

    Human immunodeficiency virus (HIV)-induced immunodeficiency and immune-system aging share some analogies. Since Werner (WRN) and Bloom (BLM) helicases are crucial in cell repair and aging, their peripheral blood mononuclear cells (PBMC) mRNA levels were compared in HIV-1 infected patients and in normal donors. The mean levels of WRN mRNA were 3.7-fold higher in PBMCs from HIV-1 infected individuals in comparison to healthy donors, whereas BLM mRNA mean levels were slightly higher, although not significantly. WRN increase was positively correlated to CD4 and CD8 T-cell numbers, and also the percentage of naive T lymphocytes, and was observed also in T-cell subsets. Interestingly, a general trend toward increased WRN mRNA levels in individuals with lower viral load was observed, without association with patient age, time of seroconversion, and on/off antiretroviral therapy regimen. On the whole, this study shows that WRN and BLM are differentially modulated in HIV infection, as WRN--but not BLM--is significantly increased, suggesting that mechanisms different from defect or loss of helicase function, observed in WRN and BLM syndromes, may be at the basis of T-cell aging in HIV infection.

  5. Effects of a healthy Nordic diet on gene expression changes in peripheral blood mononuclear cells in response to an oral glucose tolerance test in subjects with metabolic syndrome

    DEFF Research Database (Denmark)

    Leder, Lena; Kolehmainen, Marjukka; Narverud, Ingunn;

    2016-01-01

    BACKGROUND: Diet has a great impact on the risk of developing features of metabolic syndrome (MetS), type 2 diabetes mellitus (T2DM), and cardiovascular diseases (CVD). We evaluated whether a long-term healthy Nordic diet (ND) can modify the expression of inflammation and lipid metabolism......-related genes in peripheral blood mononuclear cells (PBMCs) during a 2-h oral glucose tolerance test (OGTT) in individuals with MetS. METHODS: A Nordic multicenter randomized dietary study included subjects (n = 213) with MetS, randomized to a ND group or a control diet (CD) group applying an isocaloric study...... protocol. In this sub-study, we included subjects (n = 89) from three Nordic centers: Kuopio (n = 26), Lund (n = 30), and Oulu (n = 33) with a maximum weight change of ±4 kg, high-sensitivity C-reactive protein concentration ≤10 mg L(-1), and baseline body mass index

  6. Tumor-specific gene expression patterns with gene expression profiles

    Institute of Scientific and Technical Information of China (English)

    RUAN Xiaogang; LI Yingxin; LI Jiangeng; GONG Daoxiong; WANG Jinlian

    2006-01-01

    Gene expression profiles of 14 common tumors and their counterpart normal tissues were analyzed with machine learning methods to address the problem of selection of tumor-specific genes and analysis of their differential expressions in tumor tissues. First, a variation of the Relief algorithm, "RFE_Relief algorithm" was proposed to learn the relations between genes and tissue types. Then, a support vector machine was employed to find the gene subset with the best classification performance for distinguishing cancerous tissues and their counterparts. After tissue-specific genes were removed, cross validation experiments were employed to demonstrate the common deregulated expressions of the selected gene in tumor tissues. The results indicate the existence of a specific expression fingerprint of these genes that is shared in different tumor tissues, and the hallmarks of the expression patterns of these genes in cancerous tissues are summarized at the end of this paper.

  7. Influence of SkQ1 on Expression of Nrf2 Gene, ARE-Controlled Genes of Antioxidant Enzymes and Their Activity in Rat Blood Leukocytes under Oxidative Stress.

    Science.gov (United States)

    Vnukov, V V; Gutsenko, O I; Milutina, N P; Kornienko, I V; Ananyan, A A; Danilenko, A O; Panina, S B; Plotnikov, A A; Makarenko, M S

    2015-12-01

    The study demonstrated that oxidative stress induced by hyperoxia (0.5 MPa for 90 min) resulted in reduction of mRNA levels of transcription factor Nrf2 and Nrf2-induced genes encoding antioxidant enzymes (SOD1, CAT, GPx4) in peripheral blood leukocytes of rats. The changes in gene expression profiles under hyperoxia were accompanied by disbalance of activity of antioxidant enzymes in the leukocytes, namely activation of superoxide dismutase and inhibition of catalase, glutathione peroxidase, and glutathione-S-transferase. Pretreatment of rats with SkQ1 (50 nmol/kg for five days) significantly increased mRNA levels of transcription factor Nrf2 and Nrf2-induced genes encoding antioxidant enzymes SOD2 and GPx4 and normalized the transcriptional activity of the SOD1 and CAT genes in the leukocytes in hyperoxia-induced oxidative stress. At the same time, the activity of catalase and glutathione peroxidase was increased, and the activity of superoxide dismutase and glutathione-S-transferase returned to the control level. It is hypothesized that protective effect of SkQ1 in hyperoxia-induced oxidative stress can be realized via a direct antioxidant property and the stimulation of the Keap1/Nrf2 redox-sensitive signaling system.

  8. Effect of Essential Oils of Peppermint, Lemon, Thyme and Ajwain on Performance, Blood Metabolites and Hepatic lipogenic Gene Expression of Broilers

    Directory of Open Access Journals (Sweden)

    Farhad Samadian

    2016-04-01

    Full Text Available Intoduction Essential oils (EOs are important aromatic components of herbs and spices which are complex mixtures of secondary plant metabolites consisting of low-boiling-phenylpropenes and terpenes. Their biological activities have been known and utilized since ancient times in perfumery, food preservation, flavoring, and medicine. Some of their biological activities include antibacterial, antifungal, anti-oxidant and anti-inflammatory effects. The ban on the use of antibiotics as growth promoters has stimulated the search for alternative feed supplements in animal production. EOs have received attention in recent years as potential ‘natural’ alternatives for replacing antibiotic growth promoters (AGPs in animal diets due to their positive impact on growth performance and welfare. A number of studies have been carried out to investigate the effects of EOs on broiler performance rather than the physiological effects, but the results have not been consistent (or constant. The purpose of this study was to investigate the effects of four essential oils (Thymus vulgaris, Mentha piperita, Citrus lemon, Carum copticom on growth performance, some of the serum biochemistry parameters and lipogenic gene expression in broiler chickens. Materials and Methods A total of 312, 1-day-old broiler chicks were allocated in completely randomized design to 13 groups with 6 replicate cages per treatment. After 2-day adjustment with the basal diet, the birds were randomly assigned to the corresponding experimental diets supplemented with 0 (Control, 50, 100 and 150 mg/kg diet essential oils extracted from Crum capticum, Thymus vulgaris, Mentha piperita and Cirtus lemon. The basal diet composed of maize–soybean meal prepared in our laboratory and all birds had free access to water for the entire period. Food intake and BW were recorded to determine growth performance and feed: gain ratio. At the end of the experiment (42 day blood samples (6 samples per treatment

  9. Fluid Mechanics, Arterial Disease, and Gene Expression.

    Science.gov (United States)

    Tarbell, John M; Shi, Zhong-Dong; Dunn, Jessilyn; Jo, Hanjoong

    2014-01-01

    This review places modern research developments in vascular mechanobiology in the context of hemodynamic phenomena in the cardiovascular system and the discrete localization of vascular disease. The modern origins of this field are traced, beginning in the 1960s when associations between flow characteristics, particularly blood flow-induced wall shear stress, and the localization of atherosclerotic plaques were uncovered, and continuing to fluid shear stress effects on the vascular lining endothelial) cells (ECs), including their effects on EC morphology, biochemical production, and gene expression. The earliest single-gene studies and genome-wide analyses are considered. The final section moves from the ECs lining the vessel wall to the smooth muscle cells and fibroblasts within the wall that are fluid me chanically activated by interstitial flow that imposes shear stresses on their surfaces comparable with those of flowing blood on EC surfaces. Interstitial flow stimulates biochemical production and gene expression, much like blood flow on ECs.

  10. Influence of simulated microgravity on clock genes expression rhythmicity and underlying blood circulating miRNAs-mRNA co-expression regulatory mechanism in C57BL/6J mice

    Science.gov (United States)

    Lv, Ke; Qu, Lina

    Purpose: It is vital for astronauts to maintain the optimal alertness and neurobehavioral function. Among various factors that exist in the space flight and long-duration mission environment, gravity changes may probably an essential environmental factor to interfere with internal circadian rhythms homeostasis and sleep quality, but the underlying mechanism is unclear. Mammals' biological clock is controlled by the suprachiasmatic nucleus (SCN), and peripheral organs adjust their own rhythmicity with the central signals. Nevertheless,the mechanism underlying this synchronizition process is still unknown. microRNAs (miRNAs) are about 19~22nt long regulatory RNAs that serve as critical modulators of post-transcriptional gene regulation. Recently, circulating miRNAs were found to have the regulatory role between cells and peripheral tissues, besides its function inside the cells. This study aims to investigate the regulatory signal transduction role of miRNAs between SCN and peripheral biological clock effecter tissues and to further decipher the mechanism of circadian disturbance under microgravity. Method: Firstly, based on the assumption that severe alterations in the expression of genes known to be involved in circadian rhythms may affect the expression of other genes, the labeled cDNA from liver and suprachiasmatic nucleus (SCN) of clock-knockout mice and control mice in different time points were cohybridized to microarrays. The fold change exceeding 2 (FC>2) was used to identify genes with altered expression levels in the knockout mice compared with control mice. Secondly, male C57BL/6J mice at 8 weeks of age were individually caged and acclimatized to the laboratory conditions (12h light/dark cycle) before being used for continuous core body temperature and activity monitoring. The mice were individually caged and tail suspended using a strip of adhesive surgical tape attached to a chain hanging from a pulley. Peripheral blood and liver tissues collection

  11. Analysis of blood stem cell activity and cystatin gene expression in a mouse model presenting a chromosomal deletion encompassing Csta and Stfa2l1.

    Science.gov (United States)

    Bilodeau, Mélanie; MacRae, Tara; Gaboury, Louis; Laverdure, Jean-Philippe; Hardy, Marie-Pierre; Mayotte, Nadine; Paradis, Véronique; Harton, Sébastien; Perreault, Claude; Sauvageau, Guy

    2009-10-19

    The cystatin protein superfamily is characterized by the presence of conserved sequences that display cysteine protease inhibitory activity (e.g., towards cathepsins). Type 1 and 2 cystatins are encoded by 25 genes of which 23 are grouped in 2 clusters localized on mouse chromosomes 16 and 2. The expression and essential roles of most of these genes in mouse development and hematopoiesis remain poorly characterized. In this study, we describe a set of quantitative real-time PCR assays and a global expression profile of cystatin genes in normal mouse tissues. Benefiting from our collection of DelES embryonic stem cell clones harboring large chromosomal deletions (to be reported elsewhere), we selected a clone in which a 95-kb region of chromosome 16 is missing (Del(16qB3Delta/+)). In this particular clone, 2 cystatin genes, namely Csta and Stfa2l1 are absent along with 2 other genes (Fam162a, Ccdc58) and associated intergenic regions. From this line, we established a new homozygous mutant mouse model (Del(16qB3Delta/16qB3Delta)) to assess the in vivo biological functions of the 2 deleted cystatins. Stfa2l1 gene expression is high in wild-type fetal liver, bone marrow, and spleen, while Csta is ubiquitously expressed. Homozygous Del(16qB3Delta/16qB3Delta) animals are phenotypically normal, fertile, and not overtly susceptible to spontaneous or irradiation-induced tumor formation. The hematopoietic stem and progenitor cell activity in these mutant mice are also normal. Interestingly, quantitative real-time PCR expression profiling reveals a marked increase in the expression levels of Stfa2l1/Csta phylogenetically-related genes (Stfa1, Stfa2, and Stfa3) in Del(16qB3Delta/16qB3Delta) hematopoietic tissues, suggesting that these candidate genes might be contributing to compensatory mechanisms. Overall, this study presents an optimized approach to globally monitor cystatin gene expression as well as a new mouse model deficient in Stfa2l1/Csta genes, expanding the

  12. Anti-aging Decoction Influence Kidney Aging-concerned Gene Expression of Rats of Blood Stasis%抗衰汤对血瘀证大鼠肾脏衰老相关基因表达的影响

    Institute of Scientific and Technical Information of China (English)

    何赛萍; 徐莉

    2011-01-01

    [目的]探讨血瘀与衰老的相关性、抗衰汤抗衰老的分子生物学机制,以利中药抗衰老制剂的开发.[方法]使用基因芯片技术,确定血瘀影响的衰老基因表达,并考核抗衰汤对血瘀证大鼠衰老相关基因表达谱的影响.[结果]确定16个基因为与血瘀相关的衰老基因,但其表达水平受到抗衰汤用药的影响.[结论]抗衰汤对与血瘀相关的衰老基因有明显地调控作用,血瘀是导致衰老的关键因素之一.%[Objective] To explore relativity between blood stasis and aging, molecular mechanism of Anti-aging Decoction, for development of anti-aging TCM preparation. [Method] Apply gene chip technology, define aging gene expression affected by blood stasis, check the influence of Anti-aging Decoction on senile rats' concerned gene expression spectrum. [Result] It defines that 16 genes are related with aging, while the expression level is influenced with Anti-aging Decoction application. [Conclusion] Anti-aging Decoction has marked regulation to senile gene related with blood stasis; blood stasis is one key factor of senium.

  13. Over-Expression of Dopamine D2 Receptor and Inwardly Rectifying Potassium Channel Genes in Drug-Naive Schizophrenic Peripheral Blood Lymphocytes as Potential Diagnostic Markers

    OpenAIRE

    Ágnes Zvara; György Szekeres; Zoltán Janka; Kelemen, János Z.; Csongor Cimmer; Miklós Sántha; Puskás, László G.

    2005-01-01

    Schizophrenia is one of the most common neuropsychiatric disorders affecting nearly 1% of the human population. Current diagnosis of schizophrenia is based on complex clinical symptoms. The use of easily detectable peripheral molecular markers could substantially help the diagnosis of psychiatric disorders. Recent studies showed that peripheral blood lymphocytes (PBL) express subtypes of D1 and D2 subclasses of dopamine receptors. Recently, dopamine receptor D3 (DRD3) was found to be over-exp...

  14. Sickle red cells as danger signals on proinflammatory gene expression, leukotriene B4 and interleukin-1 beta production in peripheral blood mononuclear cell.

    Science.gov (United States)

    Pitanga, Thassila N; Oliveira, Ricardo R; Zanette, Dalila L; Guarda, Caroline C; Santiago, Rayra P; Santana, Sanzio S; Nascimento, Valma M L; Lima, Jonilson B; Carvalho, Graziele Q; Maffili, Vitor V; Carvalho, Magda O S; Alcântara, Luiz C J; Borges, Valéria M; Goncalves, Marilda S

    2016-07-01

    This study tested the hypothesis that sickle red blood cell (SS-RBC) induce Toll-like receptors (TLR) and Nod-like receptor family, pyrin domain containing 3 (NLRP3)- inflammasome expression in peripheral blood mononuclear cells (PBMC). TLR and NLRP3 inflammasome could contribute to the maintenance of the inflammatory status in sickle cell anemia (SCA) patients, since SS-RBC act as danger signals activating these pathways. In this study, first, we evaluated TLR (2, 4, 5 and 9), NLRP3, Caspase-1, interleukin (IL)-1β and IL-18 expression in PBMC freshly isolated from SCA patients (SS-PBMC) in comparison with PBMC from healthy individuals (AA-PBMC). In the second moment, we investigated whether SS-RBC could interfere with the expression of these molecules in PBMC from healthy donor, in the absence or presence of hydroxyurea (HU) in vitro. TLRs and NLRP3 inflammasome expression were investigated by qPCR. IL-1β, Leukotriene-B4 (LTB4) and nitrite production were measured in PBMC (from healthy donor) culture supernatants. TLR2, TLR4, TLR5, NLRP3 and IL-1β were highly expressed in SS-PBMC when compared to AA-PBMC. Additionally, SS-RBC induced TLR9, NLRP3, Caspase-1, IL-1β and IL-18 expression and induced IL-1β, LTB4 and nitrite production in PBMC cultures. HU did not prevent TLR and NLRP3 inflammasome expression, but increased TLR2 and IL-18 expression and reduced nitrite production. In conclusion, our data suggest that TLR and inflammasome complexes may be key inducers of inflammation in SCA patients, probably through SS-RBC; also, HU does not prevent NLRP3 inflammasome- and TLR-dependent inflammation, indicating the need to develop new therapeutic strategies to SCA patients that act with different mechanisms of those observed for HU.

  15. Histamine and histamine-receptor antagonists modify gene expression and biosynthesis of interferon gamma in peripheral human blood mononuclear cells and in CD19-depleted cell subsets

    NARCIS (Netherlands)

    Horváth, B V; Szalai, C; Mándi, Y; László, V; Radvány, Z; Darvas, Z; Falus, A

    1999-01-01

    The effect of histamine and histamine antagonists was examined on gene expression and biosynthesis of bacterial endotoxin (LPS) induced interferon gamma (IFNgamma) both in human peripheral mononuclear cells (PMBC) and in T-cell enriched fractions. We found, that histamine inhibited the LPS induced t

  16. Combined anti-tumor necrosis factor-alpha therapy and DMARD therapy in rheumatoid arthritis patients reduces inflammatory gene expression in whole blood compared to DMARD therapy alone

    NARCIS (Netherlands)

    Edwards, C.K., 3rd; Green, J.S.; Volk, H.D.; Schiff, M.; Kotzin, B.L.; Mitsuya, H.; Kawaguchi, T.; Sakata, K.M.; Cheronis, J.; Trollinger, D.; Bankaitis-Davis, D.; Dinarello, C.A.; Norris, D.A.; Bevilacqua, M.P.; Fujita, M.; Burmester, G.R.

    2012-01-01

    Periodic assessment of gene expression for diagnosis and monitoring in rheumatoid arthritis (RA) may provide a readily available and useful method to detect subclinical disease progression and follow responses to therapy with disease modifying anti-rheumatic agents (DMARDs) or anti-TNF-alpha therapy

  17. Gene expression changes in peripheral blood mononuclear cells from patients with metabolic syndrome after acute intake of phenol-rich virgin olive oil

    Science.gov (United States)

    Some studies have shown that acute intake of high-phenol virgin olive oil reduces pro-inflammatory, pro-oxidant and pro-thrombotic states, but it remains unclear if the effects attributed to its phenolic fraction are exerted at the transcriptional level in vivo. Gene expression microarray analysis w...

  18. Early gene expression changes with rush immunotherapy

    Directory of Open Access Journals (Sweden)

    Barnett Sherry

    2011-09-01

    Full Text Available Abstract Background To examine whether whole genome expression profiling could reveal changes in mRNA expression of peripheral blood mononuclear cells (PBMC from allergic patients undergoing rush immunotherapy (RIT that might be manifest within the first few months of treatment. Methods For this study, PBMC from three allergic patients undergoing RIT were assessed at four timepoints: prior to RIT, at 1 week and 7 week post-RIT, during build-up and at 4 months, after establishment of a maintenance dose. PBMC mRNA gene expression changes over time were determined by oligonucleotide microarrays using the Illumina Human-6 BeadChip Platform, which simultaneously interrogates expression profiles of > 47,000 transcripts. Differentially expressed genes were identified using well-established statistical analysis for microarrays. In addition, we analyzed peripheral blood basophil high-affinity IgE receptor (Fc epsilon RI expression and T-regulatory cell frequency as detected by expression of CD3+CD4+CD25bright cells at each timepoint using flow cytometry. Results In comparing the initial 2 timepoints with the final 2 timepoints and analyzing for genes with ≥1.5-fold expression change (p less than or equal to 0.05, BH-FDR, we identified 507 transcripts. At a 2-fold change (p less than or equal to 0.05, BH-FDR, we found 44 transcripts. Of these, 28 were up-regulated and 16 were down-regulated genes. From these datasets, we have identified changes in immunologically relevant genes from both the innate and adaptive response with upregulation of expressed genes for molecules including IL-1β, IL-8, CD40L, BTK and BCL6. At the 4 month timepoint, we noted a downward trend in Fc epsilon RI expression in each of the three patients and increased allergen-specific IgG4 levels. No change was seen in the frequency of peripheral T-regulatory cells expressed over the four timepoints. Conclusions We observed significant changes in gene expression early in peripheral

  19. The flow of gene expression.

    Science.gov (United States)

    Misteli, Tom

    2004-03-01

    Gene expression is a highly interconnected multistep process. A recent meeting in Iguazu Falls, Argentina, highlighted the need to uncover both the molecular details of each single step as well as the mechanisms of coordination among processes in order to fully understand the expression of genes.

  20. Effects of breed and harvest age on feed intake, growth, carcass traits, blood metabolites, and lipogenic gene expression in Boer and Kiko goats.

    Science.gov (United States)

    Solaiman, S; Min, B R; Gurung, N; Behrends, J; McElhenney, W

    2012-07-01

    The objectives of this experiment were to determine the effects of 2 different breeds (BR), Boer and Kiko, and 4 post-weaning harvest ages (HA; Days 0, 29, 56, and 85) on growth, carcass traits, blood metabolites, and lipogenic gene expression. Forty-eight goat (Capra hircus) kids (BW = 23.9 ± 1.50 kg; 3 to 4 mo) were used in a 2 × 4 factorial arrangement of treatments. Goats were stratified by BW within BR and randomly assigned to 4 HA. Kids were born between March 15 and April 7 to purebred does, and were represented by at least 3 purebred sires within each BR. They were fed a grain/hay (80:20) diet once per day. At designated HA, randomly pre-assigned goats (n = 6) from each BR were transported to the Meat Science Lab at Mississippi State University, Starkville, MS, and were harvested. There were no interactions (P > 0.10) between BR and HA. Boer tended (P = 0.08) to have greater initial BW, final BW (P = 0.05), and G/F ratio (P = 0.05). Although the 80:20 grain/hay diet was reinforced by adjusting DMI, both BR had similar total DMI, Boer kept that ratio, while Kiko consumed more (P = 0.001) hay (70:30, grain/hay) and had more (P = 0.001) DMI when expressed as g/kg BW. Boer tended to have greater transportation shrink (P = 0.07), HCW (P = 0.08), and cold carcass weights (CCW; P = 0.08), with greater (P = 0.001) carcass fat. No differences (P > 0.10) were observed in carcass shrink, dressing percentage, 12th rib fat thickness, and LM area between the 2 BR. When expressed as percentage empty BW, carcass bone was similar (P = 0.25), whereas muscle percentage (P = 0.02) was greater for Kiko and fat percentage was greater (P = 0.001) for Boer. Fat as a percentage of CCW remained relatively similar (P > 0.10) for both BR for the 2nd and 3rd HA. Differences were more evident (P = 0.01) at the 4th HA. Boer reached targeted harvest weight (29 kg) at the 3rd HA, while fat deposition continued (P = 0.01) during the 4th HA. Breed had no effect (P > 0.10) on meat color (L

  1. Ascidian gene-expression profiles

    OpenAIRE

    Jeffery, William R.

    2002-01-01

    With the advent of gene-expression profiling, a large number of genes can now be investigated simultaneously during critical stages of development. This approach will be particularly informative in studies of ascidians, basal chordates whose genomes and embryology are uniquely suited for mapping developmental gene networks.

  2. Gene expression profiling of human erythroid progenitors by micro-serial analysis of gene expression.

    Science.gov (United States)

    Fujishima, Naohito; Hirokawa, Makoto; Aiba, Namiko; Ichikawa, Yoshikazu; Fujishima, Masumi; Komatsuda, Atsushi; Suzuki, Yoshiko; Kawabata, Yoshinari; Miura, Ikuo; Sawada, Ken-ichi

    2004-10-01

    We compared the expression profiles of highly purified human CD34+ cells and erythroid progenitor cells by micro-serial analysis of gene expression (microSAGE). Human CD34+ cells were purified from granulocyte colony-stimulating factor-mobilized blood stem cells, and erythroid progenitors were obtained by cultivating these cells in the presence of stem cell factor, interleukin 3, and erythropoietin. Our 10,202 SAGE tags allowed us to identify 1354 different transcripts appearing more than once. Erythroid progenitor cells showed increased expression of LRBA, EEF1A1, HSPCA, PILRB, RANBP1, NACA, and SMURF. Overexpression of HSPCA was confirmed by real-time polymerase chain reaction analysis. MicroSAGE revealed an unexpected preferential expression of several genes in erythroid progenitor cells in addition to the known functional genes, including hemoglobins. Our results provide reference data for future studies of gene expression in various hematopoietic disorders, including myelodysplastic syndrome and leukemia.

  3. Effects of a healthy Nordic diet on gene expression changes in peripheral blood mononuclear cells in response to an oral glucose tolerance test in subjects with metabolic syndrome

    DEFF Research Database (Denmark)

    Leder, Lena; Kolehmainen, Marjukka; Narverud, Ingunn;

    2016-01-01

    BACKGROUND: Diet has a great impact on the risk of developing features of metabolic syndrome (MetS), type 2 diabetes mellitus (T2DM), and cardiovascular diseases (CVD). We evaluated whether a long-term healthy Nordic diet (ND) can modify the expression of inflammation and lipid metabolism...... protocol. In this sub-study, we included subjects (n = 89) from three Nordic centers: Kuopio (n = 26), Lund (n = 30), and Oulu (n = 33) with a maximum weight change of ±4 kg, high-sensitivity C-reactive protein concentration ≤10 mg L(-1), and baseline body mass index ..., and the mRNA gene expression analysis was measured by quantitative real-time polymerase chain reaction (qPCR). We analyzed the mRNA expression changes of 44 genes before and after a 2hOGTT at the beginning and the end of the intervention. RESULTS: The healthy ND significantly down-regulated the expression...

  4. Genes Expressed in Human Tumor Endothelium

    Science.gov (United States)

    St. Croix, Brad; Rago, Carlo; Velculescu, Victor; Traverso, Giovanni; Romans, Katharine E.; Montgomery, Elizabeth; Lal, Anita; Riggins, Gregory J.; Lengauer, Christoph; Vogelstein, Bert; Kinzler, Kenneth W.

    2000-08-01

    To gain a molecular understanding of tumor angiogenesis, we compared gene expression patterns of endothelial cells derived from blood vessels of normal and malignant colorectal tissues. Of over 170 transcripts predominantly expressed in the endothelium, 79 were differentially expressed, including 46 that were specifically elevated in tumor-associated endothelium. Several of these genes encode extracellular matrix proteins, but most are of unknown function. Most of these tumor endothelial markers were expressed in a wide range of tumor types, as well as in normal vessels associated with wound healing and corpus luteum formation. These studies demonstrate that tumor and normal endothelium are distinct at the molecular level, a finding that may have significant implications for the development of anti-angiogenic therapies.

  5. Human Lacrimal Gland Gene Expression

    Science.gov (United States)

    Aakalu, Vinay Kumar; Parameswaran, Sowmya; Maienschein-Cline, Mark; Bahroos, Neil; Shah, Dhara; Ali, Marwan; Krishnakumar, Subramanian

    2017-01-01

    Background The study of human lacrimal gland biology and development is limited. Lacrimal gland tissue is damaged or poorly functional in a number of disease states including dry eye disease. Development of cell based therapies for lacrimal gland diseases requires a better understanding of the gene expression and signaling pathways in lacrimal gland. Differential gene expression analysis between lacrimal gland and other embryologically similar tissues may be helpful in furthering our understanding of lacrimal gland development. Methods We performed global gene expression analysis of human lacrimal gland tissue using Affymetrix ® gene expression arrays. Primary data from our laboratory was compared with datasets available in the NLM GEO database for other surface ectodermal tissues including salivary gland, skin, conjunctiva and corneal epithelium. Results The analysis revealed statistically significant difference in the gene expression of lacrimal gland tissue compared to other ectodermal tissues. The lacrimal gland specific, cell surface secretory protein encoding genes and critical signaling pathways which distinguish lacrimal gland from other ectodermal tissues are described. Conclusions Differential gene expression in human lacrimal gland compared with other ectodermal tissue types revealed interesting patterns which may serve as the basis for future studies in directed differentiation among other areas. PMID:28081151

  6. In vitro effects of Escherichia coli lipopolysaccharide on the function and gene expression of neutrophils isolated from the blood of dairy cows.

    Science.gov (United States)

    Revelo, X S; Waldron, M R

    2012-05-01

    The objectives of this study were to investigate the effect of Escherichia coli lipopolysaccharide (LPS) on the function of bovine neutrophils (PMNL) collected from mid lactation cows and determine the differential effects of LPS on gene expression of PMNL purified from early and mid lactation cows. The PMNL from mid lactation cows (187±13 d postpartum) were incubated with 0, 1, 25, and 50 μg/mL of LPS for 120 min, and the generation of reactive oxygen species (ROS), PMNL extracellular traps (NET), chemotaxis, and killing of Staphylococcus aureus were determined. Incubation of PMNL with 25 μg/mL of LPS increased intracellular ROS by 79% in mitogen-stimulated PMNL. Addition of 50 μg/mL of LPS enhanced intracellular ROS by nonstimulated and stimulated PMNL by 184 and 154%, respectively. Nonstimulated PMNL incubated with 25 and 50 μg/mL of LPS had a 105% increase in NET. Addition of LPS had no effect on subsequent PMNL chemotaxis or killing of Staph. aureus. To examine the effect of LPS on the expression of genes involved in PMNL function and cytokine production, mRNA was purified from PMNL isolated from mid lactation (146±2 postpartum; n=10) and early lactation cows (7 d postpartum; n=10), after a 120-min incubation with 0 or 50 μg/mL of LPS. Amounts of interleukin-8 (IL-8), tumor necrosis factor (TNF), bactericidal/permeability-increasing protein (BPI), myeloperoxidase (MPO), superoxide dismutase 2 (SOD2), NADPH oxidase 4 (NOX4), Cytochrome b-245, α polypeptide (CYBA), histone H2A/1 (H2A/1), and histone H2B-like (H2B) mRNA were determined relative to that of β-actin by real-time quantitative PCR. Regardless of stage of lactation, PMNL incubated with 50 μg/mL of LPS had 537 and 45% higher mRNA contents of IL-8 and SOD2 compared with 0 μg/mL LPS, respectively. In addition, LPS augmented the expression of TNF, BPI, and CYBA (2,908, 59, and 158% compared with controls, respectively) only in PMNL from mid lactation cows. Addition of LPS did not affect m

  7. Shuffling Yeast Gene Expression Data

    CERN Document Server

    Bilke, S

    2000-01-01

    A new method to sort gene expression patterns into functional groups is presented. The method is based on a sorting algorithm using a non-local similarity score, which takes all other patterns in the dataset into account. The method is therefore very robust with respect to noise. Using the expression data for yeast, we extract information about functional groups. Without prior knowledge of parameters the cell cycle regulated genes in yeast can be identified. Furthermore a second, independent cell clock is identified. The capability of the algorithm to extract information about signal flow in the regulatory network underlying the expression patterns is demonstrated.

  8. Cyclic di-GMP modulates gene expression in Lyme disease spirochetes at the tick-mammal interface to promote spirochete survival during the blood meal and tick-to-mammal transmission.

    Science.gov (United States)

    Caimano, Melissa J; Dunham-Ems, Star; Allard, Anna M; Cassera, Maria B; Kenedy, Melisha; Radolf, Justin D

    2015-08-01

    Borrelia burgdorferi, the Lyme disease spirochete, couples environmental sensing and gene regulation primarily via the Hk1/Rrp1 two-component system (TCS) and Rrp2/RpoN/RpoS pathways. Beginning with acquisition, we reevaluated the contribution of these pathways to spirochete survival and gene regulation throughout the enzootic cycle. Live imaging of B. burgdorferi caught in the act of being acquired revealed that the absence of RpoS and the consequent derepression of tick-phase genes impart a Stay signal required for midgut colonization. In addition to the behavioral changes brought on by the RpoS-off state, acquisition requires activation of cyclic di-GMP (c-di-GMP) synthesis by the Hk1/Rrp1 TCS; B. burgdorferi lacking either component is destroyed during the blood meal. Prior studies attributed this dramatic phenotype to a metabolic lesion stemming from reduced glycerol uptake and utilization. In a head-to-head comparison, however, the B. burgdorferi Δglp mutant had a markedly greater capacity to survive tick feeding than B. burgdorferi Δhk1 or Δrrp1 mutants, establishing unequivocally that glycerol metabolism is only one component of the protection afforded by c-di-GMP. Data presented herein suggest that the protective response mediated by c-di-GMP is multifactorial, involving chemotactic responses, utilization of alternate substrates for energy generation and intermediary metabolism, and remodeling of the cell envelope as a means of defending spirochetes against threats engendered during the blood meal. Expression profiling of c-di-GMP-regulated genes through the enzootic cycle supports our contention that the Hk1/Rrp1 TCS functions primarily, if not exclusively, in ticks. These data also raise the possibility that c-di-GMP enhances the expression of a subset of RpoS-dependent genes during nymphal transmission.

  9. Gene expression in colorectal cancer

    DEFF Research Database (Denmark)

    Birkenkamp-Demtroder, Karin; Christensen, Lise Lotte; Olesen, Sanne Harder

    2002-01-01

    Understanding molecular alterations in colorectal cancer (CRC) is needed to define new biomarkers and treatment targets. We used oligonucleotide microarrays to monitor gene expression of about 6,800 known genes and 35,000 expressed sequence tags (ESTs) on five pools (four to six samples in each p...... with a high frequency of loss of heterozygosity. The genes and ESTs presented in this study encode new potential tumor markers as well as potential novel therapeutic targets for prevention or therapy of CRC.......Understanding molecular alterations in colorectal cancer (CRC) is needed to define new biomarkers and treatment targets. We used oligonucleotide microarrays to monitor gene expression of about 6,800 known genes and 35,000 expressed sequence tags (ESTs) on five pools (four to six samples in each...... pool) of total RNA from left-sided sporadic colorectal carcinomas. We compared normal tissue to carcinoma tissue from Dukes' stages A-D (noninvasive to distant metastasis) and identified 908 known genes and 4,155 ESTs that changed remarkably from normal to tumor tissue. Based on intensive filtering 226...

  10. Exit of pediatric pre-B acute lymphoblastic leukaemia cells from the bone marrow to the peripheral blood is not associated with cell maturation or alterations in gene expression

    Directory of Open Access Journals (Sweden)

    Wiebe Thomas

    2008-08-01

    Full Text Available Abstract Background Childhood pre-B acute lymphoblastic leukemia (ALL is a bone marrow (BM derived disease, which often disseminates out of the BM cavity, where malignant cells to a variable degree can be found circulating in the peripheral blood (PB. Normal pre-B cells are absolutely dependent on BM stroma for survival and differentiation. It is not known whether transformed pre-B ALL cells retain any of this dependence, which possibly could impact on drug sensitivity or MRD measurements. Results Pre-B ALL cells, highly purified by a novel method using surface expression of CD19 and immunoglobulin light chains, from BM and PB show a very high degree of similarity in gene expression patterns, with differential expression of vascular endothelial growth factor (VEGF as a notable exception. In addition, the cell sorting procedure revealed that in 2 out of five investigated patients, a significant fraction of the malignant cells had matured beyond the pre-B cell stage. Conclusion The transition of ALL cells from the BM into the circulation does not demand, or result in, major changes of gene expression pattern. This might indicate an independence of BM stroma on the part of transformed pre-B cells, which contrasts with that of their normal counterparts.

  11. Zipf's Law in Gene Expression

    CERN Document Server

    Furusawa, C; Furusawa, Chikara; Kaneko, Kunihiko

    2002-01-01

    Using data from gene expression databases on various organisms and tissues, including yeast, nematodes, human normal and cancer tissues, and embryonic stem cells, we found that the abundances of expressed genes exhibit a power-law distribution with an exponent close to -1, i.e., they obey Zipf's law. Furthermore, by simulations of a simple model with an intra-cellular reaction network, we found that Zipf's law of chemical abundance is a universal feature of cells where such a network optimizes the efficiency and faithfulness of self-reproduction. These findings provide novel insights into the nature of the organization of reaction dynamics in living cells.

  12. Zipf's Law in Gene Expression

    Science.gov (United States)

    Furusawa, Chikara; Kaneko, Kunihiko

    2003-02-01

    Using data from gene expression databases on various organisms and tissues, including yeast, nematodes, human normal and cancer tissues, and embryonic stem cells, we found that the abundances of expressed genes exhibit a power-law distribution with an exponent close to -1; i.e., they obey Zipf’s law. Furthermore, by simulations of a simple model with an intracellular reaction network, we found that Zipf’s law of chemical abundance is a universal feature of cells where such a network optimizes the efficiency and faithfulness of self-reproduction. These findings provide novel insights into the nature of the organization of reaction dynamics in living cells.

  13. Correction of gene expression data

    DEFF Research Database (Denmark)

    Darbani Shirvanehdeh, Behrooz; Stewart, C. Neal, Jr.; Noeparvar, Shahin;

    2014-01-01

    This report investigates for the first time the potential inter-treatment bias source of cell number for gene expression studies. Cell-number bias can affect gene expression analysis when comparing samples with unequal total cellular RNA content or with different RNA extraction efficiencies...... an analytical approach to examine the suitability of correction methods by considering the inter-treatment bias as well as the inter-replicate variance, which allows use of the best correction method with minimum residual bias. Analyses of RNA sequencing and microarray data showed that the efficiencies...

  14. Expression of Sirts gene in peripheral blood mononuclear cells of patients with coronary heart disease%冠心病患者单个核细胞Sirts基因表达的研究

    Institute of Scientific and Technical Information of China (English)

    李海玲; 彭文辉; 王珂; 闻国富; 李伟明; 徐亚伟

    2011-01-01

    Objective To detect Sirts gene expression in peripheral blood mononuclear cells(PBMC) of patients with coronary heart disease. Methods Total RNA was isolated from PBMC of patients with coronary heart disease and healthy subjects (controls), the coding region of Sirtl to Sirt7 was amplified by RT-PCR. The expression of Sirts was detected by agarose gel electrophoresis, quantitative real-time PCR. The statistical analysis was performed with SPSS 13. 0 software. Results The expression of Sirtl gene in coronary heart disease patients was significantly lower than that of controls (0.75 ±0. 088 vs 1. 05 ±0. 099, P =0. 034). Sirtl gene expression was negatively correlated with TC, TG, FPG, LDL and ApoA levels of patients and positively correlated with HDL levels; while Sirtl expression was positively correlated with HDL. FPG levels were negatively correlated with Sirt5, Sirt6 and Sirt7 gene expression. Conclusion Coronary heart diseases were likely to associate with lowSirts gene expression in PBMC of patients.%目的 观察冠心病患者外周血单个核细胞Sirts基因的表达.方法 利用RT-PCR从冠心痛患者及正常对照组外周血单个核细胞总RNA中扩增出包含Sirts编码区的片段;利用琼脂糖凝胶电泳、实时定量PCR及SPSS分析软件来检测冠心病病例组与对照组单个核细胞Sirts基因表达的区别,以及Sirts基因表达与冠心病危险因子的相关性.结果 冠心痛组外周血单个核细胞Sirt1基因的表达(0.75±0.088)明显低于对照组(1.05±0.099),差异有统计学意义(P=0.034).Sirt1表达与TC、TG、FPG、LDL、ApoA成明显负相关,与HDL成正相关;Sirt2表达与HDL成正相关;Sirt5、Sirt6、Sirt7表达与FPG成负相关(P值均<0.05).结论 外周血单个核细胞中Sirts基因的低表达与冠心痛的发病存在相关性.

  15. Aberrant Gene Expression in Acute Myeloid Leukaemia

    DEFF Research Database (Denmark)

    Bagger, Frederik Otzen

    model to investigate the role of telomerase in AML, we were able to translate the observed effect into human AML patients and identify specific genes involved, which also predict survival patterns in AML patients. During these studies we have applied methods for investigating differentially expressed......Summary Acute Myeloid Leukaemia (AML) is an aggressive cancer of the bone marrow, affecting formation of blood cells during haematopoiesis. This thesis presents investigation of AML using mRNA gene expression profiles (GEP) of samples extracted from the bone marrow of healthy and diseased subjects....... Here GEPs from purified healthy haematopoietic populations, with different levels of differentiation, form the basis for comparison with diseased samples. We present a mathematical transformation of mRNA microarray data to make it possible to compare AML samples, carrying expanded aberrant...

  16. Homeobox gene expression in Brachiopoda

    DEFF Research Database (Denmark)

    Altenburger, Andreas; Martinez, Pedro; Wanninger, Andreas

    2011-01-01

    The molecular control that underlies brachiopod ontogeny is largely unknown. In order to contribute to this issue we analyzed the expression pattern of two homeobox containing genes, Not and Cdx, during development of the rhynchonelliform (i.e., articulate) brachiopod Terebratalia transversa. Not...

  17. Vascular Gene Expression: A Hypothesis

    Directory of Open Access Journals (Sweden)

    Angélica Concepción eMartínez-Navarro

    2013-07-01

    Full Text Available The phloem is the conduit through which photoassimilates are distributed from autotrophic to heterotrophic tissues and is involved in the distribution of signaling molecules that coordinate plant growth and responses to the environment. Phloem function depends on the coordinate expression of a large array of genes. We have previously identified conserved motifs in upstream regions of the Arabidopsis genes, encoding the homologs of pumpkin phloem sap mRNAs, displaying expression in vascular tissues. This tissue-specific expression in Arabidopsis is predicted by the overrepresentation of GA/CT-rich motifs in gene promoters. In this work we have searched for common motifs in upstream regions of the homologous genes from plants considered to possess a primitive vascular tissue (a lycophyte, as well as from others that lack a true vascular tissue (a bryophyte, and finally from chlorophytes. Both lycophyte and bryophyte display motifs similar to those found in Arabidopsis with a significantly low E-value, while the chlorophytes showed either a different conserved motif or no conserved motif at all. These results suggest that these same genes are expressed coordinately in non- vascular plants; this coordinate expression may have been one of the prerequisites for the development of conducting tissues in plants. We have also analyzed the phylogeny of conserved proteins that may be involved in phloem function and development. The presence of CmPP16, APL, FT and YDA in chlorophytes suggests the recruitment of ancient regulatory networks for the development of the vascular tissue during evolution while OPS is a novel protein specific to vascular plants.

  18. A large-scale electrophoresis- and chromatography-based determination of gene expression profiles in bovine brain capillary endothelial cells after the re-induction of blood-brain barrier properties

    Directory of Open Access Journals (Sweden)

    Duban-Deweer Sophie

    2010-11-01

    Full Text Available Abstract Background Brain capillary endothelial cells (BCECs form the physiological basis of the blood-brain barrier (BBB. The barrier function is (at least in part due to well-known proteins such as transporters, tight junctions and metabolic barrier proteins (e.g. monoamine oxidase, gamma glutamyltranspeptidase and P-glycoprotein. Our previous 2-dimensional gel proteome analysis had identified a large number of proteins and revealed the major role of dynamic cytoskeletal remodelling in the differentiation of bovine BCECs. The aim of the present study was to elaborate a reference proteome of Triton X-100-soluble species from bovine BCECs cultured in the well-established in vitro BBB model developed in our laboratory. Results A total of 215 protein spots (corresponding to 130 distinct proteins were identified by 2-dimensional gel electrophoresis, whereas over 350 proteins were identified by a shotgun approach. We classified around 430 distinct proteins expressed by bovine BCECs. Our large-scale gene expression analysis enabled the correction of mistakes referenced into protein databases (e.g. bovine vinculin and constitutes valuable evidence for predictions based on genome annotation. Conclusions Elaboration of a reference proteome constitutes the first step in creating a gene expression database dedicated to capillary endothelial cells displaying BBB characteristics. It improves of our knowledge of the BBB and the key proteins in cell structures, cytoskeleton organization, metabolism, detoxification and drug resistance. Moreover, our results emphasize the need for both appropriate experimental design and correct interpretation of proteome datasets.

  19. MicroRNA Expression in Alzheimer Blood Mononuclear Cells

    Directory of Open Access Journals (Sweden)

    Hyman M. Schipper

    2007-01-01

    Full Text Available Various coding genes representing multiple functional categories are downregulated in blood mononuclear cells (BMC of patients with sporadic Alzheimer disease (AD. Noncoding microRNAs (miRNA regulate gene expression by degrading messages or inhibiting translation. Using BMC as a paradigm for the study of systemic alterations in AD, we investigated whether peripheral miRNA expression is altered in this condition. MicroRNA levels were assessed using the microRNA microarray (MMChip containing 462 human miRNA, and the results validated by real time PCR. Sixteen AD patients and sixteen normal elderly controls (NEC were matched for ethnicity, age, gender and education. The expression of several BMC miRNAs was found to increase in AD relative to NEC levels, and may differ between AD subjects bearing one or two APOE4 alleles. As compared to NEC, miRNAs signifi cantly upregulated in AD subjects and confi rmed by qPCR were miR-34a and 181b. Predicted target genes downregulated in Alzheimer BMC that correlated with the upregulated miRNAs were largely represented in the functional categories of Transcription/Translation and Synaptic Activity. Several miRNAs targeting the same genes were within the functional category of Injury response/Redox homeostasis. Taken together, induction of microRNA expression in BMC may contribute to the aberrant systemic decline in mRNA levels in sporadic AD.

  20. Regulatory systems for hypoxia-inducible gene expression in ischemic heart disease gene therapy.

    Science.gov (United States)

    Kim, Hyun Ah; Rhim, Taiyoun; Lee, Minhyung

    2011-07-18

    Ischemic heart diseases are caused by narrowed coronary arteries that decrease the blood supply to the myocardium. In the ischemic myocardium, hypoxia-responsive genes are up-regulated by hypoxia-inducible factor-1 (HIF-1). Gene therapy for ischemic heart diseases uses genes encoding angiogenic growth factors and anti-apoptotic proteins as therapeutic genes. These genes increase blood supply into the myocardium by angiogenesis and protect cardiomyocytes from cell death. However, non-specific expression of these genes in normal tissues may be harmful, since growth factors and anti-apoptotic proteins may induce tumor growth. Therefore, tight gene regulation is required to limit gene expression to ischemic tissues, to avoid unwanted side effects. For this purpose, various gene expression strategies have been developed for ischemic-specific gene expression. Transcriptional, post-transcriptional, and post-translational regulatory strategies have been developed and evaluated in ischemic heart disease animal models. The regulatory systems can limit therapeutic gene expression to ischemic tissues and increase the efficiency of gene therapy. In this review, recent progresses in ischemic-specific gene expression systems are presented, and their applications to ischemic heart diseases are discussed.

  1. Gene Expression in Trypanosomatid Parasites

    Directory of Open Access Journals (Sweden)

    Santiago Martínez-Calvillo

    2010-01-01

    Full Text Available The parasites Leishmania spp., Trypanosoma brucei, and Trypanosoma cruzi are the trypanosomatid protozoa that cause the deadly human diseases leishmaniasis, African sleeping sickness, and Chagas disease, respectively. These organisms possess unique mechanisms for gene expression such as constitutive polycistronic transcription of protein-coding genes and trans-splicing. Little is known about either the DNA sequences or the proteins that are involved in the initiation and termination of transcription in trypanosomatids. In silico analyses of the genome databases of these parasites led to the identification of a small number of proteins involved in gene expression. However, functional studies have revealed that trypanosomatids have more general transcription factors than originally estimated. Many posttranslational histone modifications, histone variants, and chromatin modifying enzymes have been identified in trypanosomatids, and recent genome-wide studies showed that epigenetic regulation might play a very important role in gene expression in this group of parasites. Here, we review and comment on the most recent findings related to transcription initiation and termination in trypanosomatid protozoa.

  2. Obesity in aging exacerbates blood-brain barrier disruption, neuroinflammation, and oxidative stress in the mouse hippocampus: effects on expression of genes involved in beta-amyloid generation and Alzheimer's disease.

    Science.gov (United States)

    Tucsek, Zsuzsanna; Toth, Peter; Sosnowska, Danuta; Gautam, Tripti; Mitschelen, Matthew; Koller, Akos; Szalai, Gabor; Sonntag, William E; Ungvari, Zoltan; Csiszar, Anna

    2014-10-01

    There is growing evidence that obesity has deleterious effects on the brain and cognitive function in the elderly population. However, the specific mechanisms through which aging and obesity interact to promote cognitive decline remain unclear. To test the hypothesis that aging exacerbates obesity-induced cerebromicrovascular damage and neuroinflammation, we compared young (7 months) and aged (24 months) high fat diet-fed obese C57BL/6 mice. Aging exacerbated obesity-induced systemic inflammation and blood-brain barrier disruption, as indicated by the increased circulating levels of proinflammatory cytokines and increased presence of extravasated immunoglobulin G in the hippocampus, respectively. Obesity-induced blood-brain barrier damage was associated with microglia activation, upregulation of activating Fc-gamma receptors and proinflammatory cytokines, and increased oxidative stress. Treatment of cultured primary microglia with sera derived from aged obese mice resulted in significantly more pronounced microglia activation and oxidative stress, as compared with treatment with young sera. Serum-induced activation and oxidative stress were also exacerbated in primary microglia derived from aged animals. Hippocampal expression of genes involved in regulation of the cellular amyloid precursor protein-dependent signaling pathways, beta-amyloid generation, and the pathogenesis of tauopathy were largely unaffected by obesity in aged mice. Collectively, obesity in aging is associated with a heightened state of systemic inflammation, which exacerbates blood-brain barrier disruption. The resulting neuroinflammation and oxidative stress in the mouse hippocampus likely contribute to the significant cognitive decline observed in aged obese animals.

  3. Classification with binary gene expressions

    OpenAIRE

    Tuna, Salih; Niranjan, Mahesan

    2009-01-01

    Microarray gene expression measurements are reported, used and archived usually to high numerical precision. However, properties of mRNA molecules, such as their low stability and availability in small copy numbers, and the fact that measurements correspond to a population of cells, rather than a single cell, makes high precision meaningless. Recent work shows that reducing measurement precision leads to very little loss of information, right down to binary levels. In this paper we show how p...

  4. Expression of HOX C homeobox genes in lymphoid cells.

    Science.gov (United States)

    Lawrence, H J; Stage, K M; Mathews, C H; Detmer, K; Scibienski, R; MacKenzie, M; Migliaccio, E; Boncinelli, E; Largman, C

    1993-08-01

    The class I homeobox genes located in four clusters in mammalian genomes (HOX A, HOX B, HOX C, and HOX D) appear to play a major role in fetal development. Previous surveys of homeobox gene expression in human leukemic cell lines have shown that certain HOX A genes are expressed only in myeloid cell lines, whereas HOX B gene expression is largely restricted to cells with erythroid potential. We now report a survey of the expression patterns of 9 homeobox genes from the HOX C locus in a panel of 24 human and 7 murine leukemic cell lines. The most striking observation is the lymphoid-specific pattern of expression of HOX C4, located at the 3' end of the locus. A major transcript of 1.9 kilobases is observed in both T-cell and B-cell lines. HOX C4 expression is also detected in normal human marrow and peripheral blood lymphocytes, but not in mature granulocytes or monocytes. HOX C8 is also expressed in human lymphoid cells but is expressed in other blood cell types as well. However, the HOX C8 transcript pattern is lineage specific. These data, in conjunction with earlier findings, suggest that homeobox gene expression influences lineage determination during hematopoiesis.

  5. The Gene Expression Omnibus database

    Science.gov (United States)

    Clough, Emily; Barrett, Tanya

    2016-01-01

    The Gene Expression Omnibus (GEO) database is an international public repository that archives and freely distributes high-throughput gene expression and other functional genomics data sets. Created in 2000 as a worldwide resource for gene expression studies, GEO has evolved with rapidly changing technologies and now accepts high-throughput data for many other data applications, including those that examine genome methylation, chromatin structure, and genome–protein interactions. GEO supports community-derived reporting standards that specify provision of several critical study elements including raw data, processed data, and descriptive metadata. The database not only provides access to data for tens of thousands of studies, but also offers various Web-based tools and strategies that enable users to locate data relevant to their specific interests, as well as to visualize and analyze the data. This chapter includes detailed descriptions of methods to query and download GEO data and use the analysis and visualization tools. The GEO homepage is at http://www.ncbi.nlm.nih.gov/geo/. PMID:27008011

  6. Antisense expression increases gene expression variability and locus interdependency

    OpenAIRE

    Xu, Zhenyu; Wei, Wu; Gagneur, Julien; Clauder-Münster, Sandra; Smolik, Miłosz; Huber, Wolfgang; Steinmetz, Lars M.

    2011-01-01

    Genome-wide transcription profiling has revealed extensive expression of non-coding RNAs antisense to genes, yet their functions, if any, remain to be understood. In this study, we perform a systematic analysis of sense–antisense expression in response to genetic and environmental changes in yeast. We find that antisense expression is associated with genes of larger expression variability. This is characterized by more ‘switching off' at low levels of expression for genes with antisense compa...

  7. Gene expression analysis identifies global gene dosage sensitivity in cancer

    DEFF Research Database (Denmark)

    Fehrmann, Rudolf S. N.; Karjalainen, Juha M.; Krajewska, Malgorzata;

    2015-01-01

    expression. We reanalyzed 77,840 expression profiles and observed a limited set of 'transcriptional components' that describe well-known biology, explain the vast majority of variation in gene expression and enable us to predict the biological function of genes. On correcting expression profiles...... for these components, we observed that the residual expression levels (in 'functional genomic mRNA' profiling) correlated strongly with copy number. DNA copy number correlated positively with expression levels for 99% of all abundantly expressed human genes, indicating global gene dosage sensitivity. By applying...

  8. Identification of four soybean reference genes for gene expression normalization

    Science.gov (United States)

    Gene expression analysis requires the use of reference genes stably expressed independently of specific tissues or environmental conditions. Housekeeping genes (e.g., actin, tubulin, ribosomal, polyubiquitin and elongation factor 1-alpha) are commonly used as reference genes with the assumption tha...

  9. Characterization of two heat shock proteins (Hsp70/Hsc70) from grass carp (Ctenopharyngodon idella): evidence for their differential gene expression, protein synthesis and secretion in LPS-challenged peripheral blood lymphocytes.

    Science.gov (United States)

    Zhang, Anying; Zhou, Xiaofei; Wang, Xinyan; Zhou, Hong

    2011-06-01

    Two cDNAs, encoding the stress-inducible 70-kDa heat shock protein (Hsp70) and the constitutively expressed 70-kDa heat shock cognate protein (Hsc70), were isolated from grass carp. The Hsp70 and Hsc70 cDNAs were 2250 bp and 2449 bp in length and contained 1932 bp and 1953 bp open reading frames, respectively. Tissue distribution results showed that Hsp70/Hsc70 was highly expressed in gill, kidney, head kidney and peripheral blood lymphocytes (PBLs). Using grass carp PBLs as a cell model, effects of lipopolysaccharide (LPS) on the mRNA and protein levels of Hsp70/Hsc70 were examined. In this case, LPS increased the mRNA expression of Hsp70 in a time- and dose-dependent manner, but had no effect on Hsc70 mRNA expression. In agreement with this, LPS elevated the intracellular Hsp70 markedly, but not the Hsc70 protein levels in parallel experiments. Furthermore, Hsp70 protein was also detected in culture medium. Moreover, inhibition of LPS on Hsp70 release in a time-dependent manner was observed, indicating that there may be a dynamic balance between Hsp70 stores and Hsp70 release in grass carp PBLs following exposure to LPS. Taken together, these results not only shed new insights into the different regulations of LPS on Hsp70/Hsc70 gene expression, protein synthesis and release, but also provide a basis for further study on the functional role of Hsp70 in fish immune response.

  10. 90K (MAC-2 BP) gene expression in breast cancer and evidence for the production of 90K by peripheral-blood mononuclear cells

    DEFF Research Database (Denmark)

    Fusco, O; Querzoli, P; Nenci, I;

    1998-01-01

    The tumor-derived antigen 90K (Mac-2 BP) is a widely expressed, secreted glycoprotein found in the serum of healthy individuals and at elevated levels in the serum of patients with breast cancer and other types of cancer. The precise function of 90K, particularly in the context of tumor......RNA expression and overexpression of c-erbB2/Neu receptor kinase, a marker of poor prognosis for patients with breast cancer. There was no significant difference between the groups with respect to tumor size, number of involved axillary lymph nodes, hormone-receptor status, p53 expression or proliferation...

  11. Genes influencing circadian differences in blood pressure in hypertensive mice.

    Directory of Open Access Journals (Sweden)

    Francine Z Marques

    Full Text Available Essential hypertension is a common multifactorial heritable condition in which increased sympathetic outflow from the central nervous system is involved in the elevation in blood pressure (BP, as well as the exaggerated morning surge in BP that is a risk factor for myocardial infarction and stroke in hypertensive patients. The Schlager BPH/2J mouse is a genetic model of hypertension in which increased sympathetic outflow from the hypothalamus has an important etiological role in the elevation of BP. Schlager hypertensive mice exhibit a large variation in BP between the active and inactive periods of the day, and also show a morning surge in BP. To investigate the genes responsible for the circadian variation in BP in hypertension, hypothalamic tissue was collected from BPH/2J and normotensive BPN/3J mice at the 'peak' (n = 12 and 'trough' (n = 6 of diurnal BP. Using Affymetrix GeneChip® Mouse Gene 1.0 ST Arrays, validation by quantitative real-time PCR and a statistical method that adjusted for clock genes, we identified 212 hypothalamic genes whose expression differed between 'peak' and 'trough' BP in the hypertensive strain. These included genes with known roles in BP regulation, such as vasopressin, oxytocin and thyrotropin releasing hormone, as well as genes not recognized previously as regulators of BP, including chemokine (C-C motif ligand 19, hypocretin and zinc finger and BTB domain containing 16. Gene ontology analysis showed an enrichment of terms for inflammatory response, mitochondrial proton-transporting ATP synthase complex, structural constituent of ribosome, amongst others. In conclusion, we have identified genes whose expression differs between the peak and trough of 24-hour circadian BP in BPH/2J mice, pointing to mechanisms responsible for diurnal variation in BP. The findings may assist in the elucidation of the mechanism for the morning surge in BP in essential hypertension.

  12. Genes influencing circadian differences in blood pressure in hypertensive mice.

    Science.gov (United States)

    Marques, Francine Z; Campain, Anna E; Davern, Pamela J; Yang, Yee Hwa J; Head, Geoffrey A; Morris, Brian J

    2011-04-26

    Essential hypertension is a common multifactorial heritable condition in which increased sympathetic outflow from the central nervous system is involved in the elevation in blood pressure (BP), as well as the exaggerated morning surge in BP that is a risk factor for myocardial infarction and stroke in hypertensive patients. The Schlager BPH/2J mouse is a genetic model of hypertension in which increased sympathetic outflow from the hypothalamus has an important etiological role in the elevation of BP. Schlager hypertensive mice exhibit a large variation in BP between the active and inactive periods of the day, and also show a morning surge in BP. To investigate the genes responsible for the circadian variation in BP in hypertension, hypothalamic tissue was collected from BPH/2J and normotensive BPN/3J mice at the 'peak' (n = 12) and 'trough' (n = 6) of diurnal BP. Using Affymetrix GeneChip® Mouse Gene 1.0 ST Arrays, validation by quantitative real-time PCR and a statistical method that adjusted for clock genes, we identified 212 hypothalamic genes whose expression differed between 'peak' and 'trough' BP in the hypertensive strain. These included genes with known roles in BP regulation, such as vasopressin, oxytocin and thyrotropin releasing hormone, as well as genes not recognized previously as regulators of BP, including chemokine (C-C motif) ligand 19, hypocretin and zinc finger and BTB domain containing 16. Gene ontology analysis showed an enrichment of terms for inflammatory response, mitochondrial proton-transporting ATP synthase complex, structural constituent of ribosome, amongst others. In conclusion, we have identified genes whose expression differs between the peak and trough of 24-hour circadian BP in BPH/2J mice, pointing to mechanisms responsible for diurnal variation in BP. The findings may assist in the elucidation of the mechanism for the morning surge in BP in essential hypertension.

  13. MRI of Transgene Expression: Correlation to Therapeutic Gene Expression

    Directory of Open Access Journals (Sweden)

    Tomotsugu Ichikawa

    2002-01-01

    Full Text Available Magnetic resonance imaging (MRI can provide highresolution 3D maps of structural and functional information, yet its use of mapping in vivo gene expression has only recently been explored. A potential application for this technology is to noninvasively image transgene expression. The current study explores the latter using a nonregulatable internalizing engineered transferrin receptor (ETR whose expression can be probed for with a superparamagnetic Tf-CLIO probe. Using an HSV-based amplicon vector system for transgene delivery, we demonstrate that: 1 ETR is a sensitive MR marker gene; 2 several transgenes can be efficiently expressed from a single amplicon; 3 expression of each transgene results in functional gene product; and 4 ETR gene expression correlates with expression of therapeutic genes when the latter are contained within the same amplicon. These data, taken together, suggest that MRI of ETR expression can serve as a surrogate for measuring therapeutic transgene expression.

  14. Expression analysis of ETS1 gene in peripheral blood mononuclear cells with systemic lupus erythematosus by real-time reverse transcription PCR

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    @@ To the editor: Systemic lupus erythematosus (SLE) is a prototypic autoimmune disease with complex genetic inheritance.l In recent years, genome-wide association studies (GWAS) had further provided novel insights into the genetics background of SLE by identifying multiple susceptibility genes in different ethnic populations.

  15. Correlating Expression Data with Gene Function Using Gene Ontology

    Institute of Scientific and Technical Information of China (English)

    LIU,Qi; DENG,Yong; WANG,Chuan; SHI,Tie-Liu; LI,Yi-Xue

    2006-01-01

    Clustering is perhaps one of the most widely used tools for microarray data analysis. Proposed roles for genes of unknown function are inferred from clusters of genes similarity expressed across many biological conditions.However, whether function annotation by similarity metrics is reliable or not and to what extent the similarity in gene expression patterns is useful for annotation of gene functions, has not been evaluated. This paper made a comprehensive research on the correlation between the similarity of expression data and of gene functions using Gene Ontology. It has been found that although the similarity in expression patterns and the similarity in gene functions are significantly dependent on each other, this association is rather weak. In addition, among the three categories of Gene Ontology, the similarity of expression data is more useful for cellular component annotation than for biological process and molecular function. The results presented are interesting for the gene functions prediction research area.

  16. Whole Genome Expression in Peripheral-Blood Samples of Workers Professionally Exposed to Polycyclic Aromatic Hydrocarbons

    OpenAIRE

    Wu, Ming-Tsang; Lee, Tzu-Chi; Su, Hung-Ju; Huang, Jie-Len; Peng, Chiung-Yu; Wang, Weihsin; Chou, Ting-Yu; Lin, Ming-Yen; Lin, Wen-Yi; Huang, Chia-Tsuan; Pan, Chih-Hong; Ho, Chi-Kung

    2011-01-01

    This study aims to examine global gene expression profiles before and after the work-shift among coke-oven workers (COW). COW work six consecutive days and then take two days off. Two blood and urine samples in each worker were collected before starting to work after two-days off and end-of-shift in the sixth-day work in 2009. Altered gene expressions (ratio of gene expression levels between end-of-shift and pre-shift work) were performed by Human OneArray expression system which probes ∼30,0...

  17. Mapping the genetic architecture of gene regulation in whole blood.

    Directory of Open Access Journals (Sweden)

    Katharina Schramm

    Full Text Available BACKGROUND: We aimed to assess whether whole blood expression quantitative trait loci (eQTLs with effects in cis and trans are robust and can be used to identify regulatory pathways affecting disease susceptibility. MATERIALS AND METHODS: We performed whole-genome eQTL analyses in 890 participants of the KORA F4 study and in two independent replication samples (SHIP-TREND, N = 976 and EGCUT, N = 842 using linear regression models and Bonferroni correction. RESULTS: In the KORA F4 study, 4,116 cis-eQTLs (defined as SNP-probe pairs where the SNP is located within a 500 kb window around the transcription unit and 94 trans-eQTLs reached genome-wide significance and overall 91% (92% of cis-, 84% of trans-eQTLs were confirmed in at least one of the two replication studies. Different study designs including distinct laboratory reagents (PAXgene™ vs. Tempus™ tubes did not affect reproducibility (separate overall replication overlap: 78% and 82%. Immune response pathways were enriched in cis- and trans-eQTLs and significant cis-eQTLs were partly coexistent in other tissues (cross-tissue similarity 40-70%. Furthermore, four chromosomal regions displayed simultaneous impact on multiple gene expression levels in trans, and 746 eQTL-SNPs have been previously reported to have clinical relevance. We demonstrated cross-associations between eQTL-SNPs, gene expression levels in trans, and clinical phenotypes as well as a link between eQTLs and human metabolic traits via modification of gene regulation in cis. CONCLUSIONS: Our data suggest that whole blood is a robust tissue for eQTL analysis and may be used both for biomarker studies and to enhance our understanding of molecular mechanisms underlying gene-disease associations.

  18. Blood-Brain Barrier Deterioration and Hippocampal Gene Expression in Polymicrobial Sepsis: An Evaluation of Endothelial MyD88 and the Vagus Nerve.

    Directory of Open Access Journals (Sweden)

    Gerard Honig

    Full Text Available Systemic infection can initiate or exacerbate central nervous system (CNS pathology, even in the absence of overt invasion of bacteria into the CNS. Recent epidemiological studies have demonstrated that human survivors of sepsis have an increased risk of long-term neurocognitive decline. There is thus a need for improved understanding of the physiological mechanisms whereby acute sepsis affects the CNS. In particular, MyD88-dependent activation of brain microvascular endothelial cells and a resulting loss of blood-brain barrier integrity have been proposed to play an important role in the effects of systemic inflammation on the CNS. Signaling through the vagus nerve has also been considered to be an important component of CNS responses to systemic infection. Here, we demonstrate that blood-brain barrier permeabilization and hippocampal transcriptional responses during polymicrobial sepsis occur even in the absence of MyD88-dependent signaling in cerebrovascular endothelial cells. We further demonstrate that these transcriptional responses can occur without vagus nerve input. These results suggest that redundant signals mediate CNS responses in sepsis. Either endothelial or vagus nerve activation may be individually sufficient to transmit systemic inflammation to the central nervous system. Transcriptional activation in the forebrain in sepsis may be mediated by MyD88-independent endothelial mechanisms or by non-vagal neuronal pathways.

  19. Expression of hHR21sp gene by peripheral blood and hematopoietic cells of normal subjects and Fanconi anemia patients%FA贫血病人造血细胞hHR21sp基因表达的研究

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective The radiation sensitive gene rad 21 of Schizosaccharomyces pombe is involved in the repair of double-stranded breaks in DNA and is essential for mitotic growth. The hHR21sp gene is its human homologue. In an attempt to investigate the role of hHR21sp in DNA repair, we studied the effects of UV and γ-ray irradiation on hHR21sp gene expression in normal human peripheral blood cells, and non-iradiated peripheral and bone marrow cells from Fanconi anemia (FA) patients who have shown DNA repair deficiency.Methods Total steady state RNA was extracted from peripheral blood cells and bone marrow. RNA transcripts were quantified after RT-PCR and Southern blot, phosphoimmage and autoradiogram analysis. The results were compared with control groups. Results hHR21sp expression was significantly increased from 3h to 9h after UV irradiation in peripheral blood cells from normal subjects at doses of 40-80j/m2 (P<0.05). hHR21sp was also up-regulated by γ-ray irradiation at 6h to 9h at dose of 1 to 5Gy (P<0.01), which was more significant than the UV irradiation. In the non-irradiated FA patient group, hHR21sp expression was decreased in bone marrow hematopoietic cells (P<0.05). After activation by PHA and IL-2, there was still a significant depression in expression by the FA patients peripheral blood cells compared with control groups (P<0.05). Conclusion hHR21sp was up-regulated at doses and times irradiated at the range tested in normal peripheral blood cells, and is more affected by γ-ray irradiation than UV irradiation. FA patient bone marrow hematopoietic cells and peripheral blood mononuclear cells showed down-regulation of hHR21sp expression. The results imply that defects in DNA repair via hHR21sp expression may play an important role in the pathogenesis of FA syndrome.%目的检测UV和γ辐射对正常人外周血单核细胞的hHR21sp基因转录表达水平及hHR21sp在范可尼贫血(Fanconis Anemia FA)骨髓造血细胞和激活后的外周血单核

  20. Garlic Influences Gene Expression In Vivo and In Vitro.

    Science.gov (United States)

    Charron, Craig S; Dawson, Harry D; Novotny, Janet A

    2016-02-01

    There is a large body of preclinical research aimed at understanding the roles of garlic and garlic-derived preparations in the promotion of human health. Most of this research has targeted the possible functions of garlic in maintaining cardiovascular health and in preventing and treating cancer. A wide range of outcome variables has been used to investigate the bioactivity of garlic, ranging from direct measures of health status such as cholesterol concentrations, blood pressure, and changes in tumor size and number, to molecular and biochemical measures such as mRNA gene expression, protein concentration, enzyme activity, and histone acetylation status. Determination of how garlic influences mRNA gene expression has proven to be a valuable approach to elucidating the mechanisms of garlic bioactivity. Preclinical studies investigating the health benefits of garlic far outnumber human studies and have made frequent use of mRNA gene expression measurement. There is an immediate need to understand mRNA gene expression in humans as well. Although safety and ethical constraints limit the types of available human tissue, peripheral whole blood is readily accessible, and measuring mRNA gene expression in whole blood may provide a unique window to understanding how garlic intake affects human health.

  1. Biosynthetic basis of incompatible histo-blood group A antigen expression

    DEFF Research Database (Denmark)

    David, L; Leitao, D; Sobrinho-Simoes, M

    1993-01-01

    , we have screened 31 cases of gastric tumors of phenotype O for the expression of blood group A gene-defined glycosyltransferase by immunohistology on frozen sections using newly developed monoclonal antibodies to the transferases. Three cases were positive, and transferase expression was confirmed...

  2. The expression of p53 gene in peripheral blood lymphocyte of acute Kawasaki disease%p53基因与川崎病患者淋巴细胞凋亡关系探讨

    Institute of Scientific and Technical Information of China (English)

    易岂建; 杨锡强; 李成荣; 张远维; 王莉佳

    2001-01-01

    目的:进一步探讨川崎病(KD)急性期患者外周血淋巴细胞凋亡延迟的机理。方法:采用斑点杂交(Dot-blot)检测淋巴细胞p53基因mRNA表达水平;流式细胞仪(FCM)检测p53蛋白质表达阳性细胞百分率。结果:KD患者外周血淋巴细胞p53基因mRNA和p53蛋白质表达水平降低,与正常儿童比较差异显著(P<0.005);当给予静脉注射免疫球蛋白(IVIG)治疗后或加入抗IL-6单抗培养时,外周血淋巴细胞p53基因mRNA和P53蛋白质表达水平提高。结论:KD急性期患者外周血淋巴细胞p53基因表达水平降低,其原因可能与本病患者异常升高的IL-6有关。p53基因具有促进细胞凋亡的作用,KD患者外周血淋巴细胞凋亡延迟可能与高浓度IL-6抑制p53基因的表达有关。%Objective: To further explore the mechanism of inhibited apoptosis of peripheral blood mononuclear cell (PBMC) in acute Kawasaki disease(KD). Methods: The expression level of p53 gene mRNA was determined by dot-blot; p53 protein positive cell percentage was detected by flow cytometry (FCM). Results:The expression of p53 gene mRNA and p53 protein in acute KD patients were decreased(P<0.001), but increased after treating with intravenous immunoglobulin(IVIG) in vivo or adding anti-IL-6 monoantibody(mAb)into PBMC culture in vitro. Conclusion. The decreased expression of p53 gene mRNA and p53 protein may be associated with the high concentration of IL-6 in KD patients, p53 gene expression could induce lymphocyte apoptosis. Thus, the expression of p53 gene inhibited by the increased IL-6 production might be related to delaying or depressing apoptosis of PBMC in KD.

  3. Validation of commonly used reference genes for sleep-related gene expression studies

    Directory of Open Access Journals (Sweden)

    Castro Rosa MRPS

    2009-05-01

    Full Text Available Abstract Background Sleep is a restorative process and is essential for maintenance of mental and physical health. In an attempt to understand the complexity of sleep, multidisciplinary strategies, including genetic approaches, have been applied to sleep research. Although quantitative real time PCR has been used in previous sleep-related gene expression studies, proper validation of reference genes is currently lacking. Thus, we examined the effect of total or paradoxical sleep deprivation (TSD or PSD on the expression stability of the following frequently used reference genes in brain and blood: beta-actin (b-actin, beta-2-microglobulin (B2M, glyceraldehyde-3-phosphate dehydrogenase (GAPDH, and hypoxanthine guanine phosphoribosyl transferase (HPRT. Results Neither TSD nor PSD affected the expression stability of all tested genes in both tissues indicating that b-actin, B2M, GAPDH and HPRT are appropriate reference genes for the sleep-related gene expression studies. In order to further verify these results, the relative expression of brain derived neurotrophic factor (BDNF and glycerol-3-phosphate dehydrogenase1 (GPD1 was evaluated in brain and blood, respectively. The normalization with each of four reference genes produced similar pattern of expression in control and sleep deprived rats, but subtle differences in the magnitude of expression fold change were observed which might affect the statistical significance. Conclusion This study demonstrated that sleep deprivation does not alter the expression stability of commonly used reference genes in brain and blood. Nonetheless, the use of multiple reference genes in quantitative RT-PCR is required for the accurate results.

  4. Mitochondrial genes are altered in blood early in Alzheimer's disease.

    Science.gov (United States)

    Lunnon, Katie; Keohane, Aoife; Pidsley, Ruth; Newhouse, Stephen; Riddoch-Contreras, Joanna; Thubron, Elisabeth B; Devall, Matthew; Soininen, Hikka; Kłoszewska, Iwona; Mecocci, Patrizia; Tsolaki, Magda; Vellas, Bruno; Schalkwyk, Leonard; Dobson, Richard; Malik, Afshan N; Powell, John; Lovestone, Simon; Hodges, Angela

    2017-01-07

    Although mitochondrial dysfunction is a consistent feature of Alzheimer's disease in the brain and blood, the molecular mechanisms behind these phenomena are unknown. Here we have replicated our previous findings demonstrating reduced expression of nuclear-encoded oxidative phosphorylation (OXPHOS) subunits and subunits required for the translation of mitochondrial-encoded OXPHOS genes in blood from people with Alzheimer's disease and mild cognitive impairment. Interestingly this was accompanied by increased expression of some mitochondrial-encoded OXPHOS genes, namely those residing closest to the transcription start site of the polycistronic heavy chain mitochondrial transcript (MT-ND1, MT-ND2, MT-ATP6, MT-CO1, MT-CO2, MT-C03) and MT-ND6 transcribed from the light chain. Further we show that mitochondrial DNA copy number was unchanged suggesting no change in steady-state numbers of mitochondria. We suggest that an imbalance in nuclear and mitochondrial genome-encoded OXPHOS transcripts may drive a negative feedback loop reducing mitochondrial translation and compromising OXPHOS efficiency, which is likely to generate damaging reactive oxygen species.

  5. A longitudinal study of gene expression in healthy individuals

    Directory of Open Access Journals (Sweden)

    Tessier Michel

    2009-06-01

    Full Text Available Abstract Background The use of gene expression in venous blood either as a pharmacodynamic marker in clinical trials of drugs or as a diagnostic test requires knowledge of the variability in expression over time in healthy volunteers. Here we defined a normal range of gene expression over 6 months in the blood of four cohorts of healthy men and women who were stratified by age (22–55 years and > 55 years and gender. Methods Eleven immunomodulatory genes likely to play important roles in inflammatory conditions such as rheumatoid arthritis and infection in addition to four genes typically used as reference genes were examined by quantitative reverse transcription-polymerase chain reaction (qRT-PCR, as well as the full genome as represented by Affymetrix HG U133 Plus 2.0 microarrays. Results Gene expression levels as assessed by qRT-PCR and microarray were relatively stable over time with ~2% of genes as measured by microarray showing intra-subject differences over time periods longer than one month. Fifteen genes varied by gender. The eleven genes examined by qRT-PCR remained within a limited dynamic range for all individuals. Specifically, for the seven most stably expressed genes (CXCL1, HMOX1, IL1RN, IL1B, IL6R, PTGS2, and TNF, 95% of all samples profiled fell within 1.5–2.5 Ct, the equivalent of a 4- to 6-fold dynamic range. Two subjects who experienced severe adverse events of cancer and anemia, had microarray gene expression profiles that were distinct from normal while subjects who experienced an infection had only slightly elevated levels of inflammatory markers. Conclusion This study defines the range and variability of gene expression in healthy men and women over a six-month period. These parameters can be used to estimate the number of subjects needed to observe significant differences from normal gene expression in clinical studies. A set of genes that varied by gender was also identified as were a set of genes with elevated

  6. DNA methylation and gene expression of HIF3A

    DEFF Research Database (Denmark)

    Main, Ailsa Maria; Gillberg, Linn; Jacobsen, Anna Louisa;

    2016-01-01

    from 48 families, from whom we had SAT and muscle biopsies. DNA methylation of four CpG sites in the HIF3A promoter was analyzed in the blood and SAT by pyrosequencing, and HIF3A gene expression was analyzed in SAT and muscle by qPCR. An index of whole-body insulin sensitivity was estimated from oral....... Interestingly, HIF3A expression in SAT, but not in muscle, associated negatively with BMI and whole-body insulin resistance. We found a significant effect of familiality on HIF3A methylation levels in the blood and HIF3A expression levels in skeletal muscle. CONCLUSIONS: Our findings are in line...... individuals, and whether HIF3A gene expression in SAT and skeletal muscle biopsies showed associations with BMI and insulin resistance. Furthermore, we aimed to investigate gender specificity and heritability of these traits. METHODS: We studied 137 first-degree relatives of type 2 diabetes (T2D) patients...

  7. Tissue-Based Microarray Expression of Genes Predictive of Metastasis in Uveal Melanoma and Differentially Expressed in Metastatic Uveal Melanoma

    Directory of Open Access Journals (Sweden)

    Hakan Demirci

    2013-01-01

    Full Text Available Purpose: To screen the microarray expression of CDH1, ECM1, EIF1B, FXR1, HTR2B, ID2, LMCD1, LTA4H, MTUS1, RAB31, ROBO1, and SATB1 genes which are predictive of primary uveal melanoma metastasis, and NFKB2, PTPN18, MTSS1, GADD45B, SNCG, HHIP, IL12B, CDK4, RPLP0, RPS17, RPS12 genes that are differentially expressed in metastatic uveal melanoma in normal whole human blood and tissues prone to metastatic involvement by uveal melanoma. Methods: We screened the GeneNote and GNF BioGPS databases for microarray analysis of genes predictive of primary uveal melanoma metastasis and those differentially expressed in metastatic uveal melanoma in normal whole blood, liver, lung and skin. Results: Microarray analysis showed expression of all 22 genes in normal whole blood, liver, lung and skin, which are the most common sites of metastases. In the GNF BioGPS database, data for expression of the HHIP gene in normal whole blood and skin was not complete. Conclusions: Microarray analysis of genes predicting systemic metastasis of uveal melanoma and genes differentially expressed in metastatic uveal melanoma may not be used as a biomarker for metastasis in whole blood, liver, lung, and skin. Their expression in tissues prone to metastasis may suggest that they play a role in tropism of uveal melanoma metastasis to these tissues.

  8. Methods for monitoring multiple gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Berka, Randy (Davis, CA); Bachkirova, Elena (Davis, CA); Rey, Michael (Davis, CA)

    2012-05-01

    The present invention relates to methods for monitoring differential expression of a plurality of genes in a first filamentous fungal cell relative to expression of the same genes in one or more second filamentous fungal cells using microarrays containing Trichoderma reesei ESTs or SSH clones, or a combination thereof. The present invention also relates to computer readable media and substrates containing such array features for monitoring expression of a plurality of genes in filamentous fungal cells.

  9. Methods for monitoring multiple gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Berka, Randy; Bachkirova, Elena; Rey, Michael

    2013-10-01

    The present invention relates to methods for monitoring differential expression of a plurality of genes in a first filamentous fungal cell relative to expression of the same genes in one or more second filamentous fungal cells using microarrays containing Trichoderma reesei ESTs or SSH clones, or a combination thereof. The present invention also relates to computer readable media and substrates containing such array features for monitoring expression of a plurality of genes in filamentous fungal cells.

  10. Genetic and epigenetic alterations of the blood group ABO gene in oral squamous cell carcinoma

    DEFF Research Database (Denmark)

    Gao, Shan; Worm, Jesper; Guldberg, Per;

    2004-01-01

    Loss of histo-blood group A and B antigen expression is a frequent event in oral carcinomas and is associated with decreased activity of glycosyltransferases encoded by the ABO gene. We examined 30 oral squamous cell carcinomas for expression of A and B antigens and glycosyltransferases. We also ...

  11. Parental vitamin deficiency affects the embryonic gene expression of immune-, lipid transport- and apolipoprotein genes

    Science.gov (United States)

    Skjærven, Kaja H.; Jakt, Lars Martin; Dahl, John Arne; Espe, Marit; Aanes, Håvard; Hamre, Kristin; Fernandes, Jorge M. O.

    2016-10-01

    World Health Organization is concerned for parental vitamin deficiency and its effect on offspring health. This study examines the effect of a marginally dietary-induced parental one carbon (1-C) micronutrient deficiency on embryonic gene expression using zebrafish. Metabolic profiling revealed a reduced 1-C cycle efficiency in F0 generation. Parental deficiency reduced the fecundity and a total of 364 genes were differentially expressed in the F1 embryos. The upregulated genes (53%) in the deficient group were enriched in biological processes such as immune response and blood coagulation. Several genes encoding enzymes essential for the 1-C cycle and for lipid transport (especially apolipoproteins) were aberrantly expressed. We show that a parental diet deficient in micronutrients disturbs the expression in descendant embryos of genes associated with overall health, and result in inherited aberrations in the 1-C cycle and lipid metabolism. This emphasises the importance of parental micronutrient status for the health of the offspring.

  12. cis sequence effects on gene expression

    Directory of Open Access Journals (Sweden)

    Jacobs Kevin

    2007-08-01

    Full Text Available Abstract Background Sequence and transcriptional variability within and between individuals are typically studied independently. The joint analysis of sequence and gene expression variation (genetical genomics provides insight into the role of linked sequence variation in the regulation of gene expression. We investigated the role of sequence variation in cis on gene expression (cis sequence effects in a group of genes commonly studied in cancer research in lymphoblastoid cell lines. We estimated the proportion of genes exhibiting cis sequence effects and the proportion of gene expression variation explained by cis sequence effects using three different analytical approaches, and compared our results to the literature. Results We generated gene expression profiling data at N = 697 candidate genes from N = 30 lymphoblastoid cell lines for this study and used available candidate gene resequencing data at N = 552 candidate genes to identify N = 30 candidate genes with sufficient variance in both datasets for the investigation of cis sequence effects. We used two additive models and the haplotype phylogeny scanning approach of Templeton (Tree Scanning to evaluate association between individual SNPs, all SNPs at a gene, and diplotypes, with log-transformed gene expression. SNPs and diplotypes at eight candidate genes exhibited statistically significant (p cis sequence effects in our study, respectively. Conclusion Based on analysis of our results and the extant literature, one in four genes exhibits significant cis sequence effects, and for these genes, about 30% of gene expression variation is accounted for by cis sequence variation. Despite diverse experimental approaches, the presence or absence of significant cis sequence effects is largely supported by previously published studies.

  13. Unraveling the regulatory mechanisms underlying tissue-dependent genetic variation of gene expression

    NARCIS (Netherlands)

    Fu, Jingyuan; Wolfs, Marcel G M; Deelen, Patrick; Westra, Harm Jan; Fehrmann, Rudolf S N; te Meerman, Gerhardus; Buurman, Wim A; Rensen, Sander S M; Groen, Hendricus; Weersma, Rinse K; van den Berg, Leonard H; Veldink, Jan; Ophoff, Roel A; Snieder, Harold; van Heel, David; Jansen, Ritsert C; Hofker, Marten H; Wijmenga, Cisca; Franke, Lude

    2012-01-01

    It is known that genetic variants can affect gene expression, but it is not yet completely clear through what mechanisms genetic variation mediate this expression. We therefore compared the cis-effect of single nucleotide polymorphisms (SNPs) on gene expression between blood samples from 1,240 human

  14. Synthetic promoter libraries- tuning of gene expression

    DEFF Research Database (Denmark)

    Hammer, Karin; Mijakovic, Ivan; Jensen, Peter Ruhdal

    2006-01-01

    The study of gene function often requires changing the expression of a gene and evaluating the consequences. In principle, the expression of any given gene can be modulated in a quasi-continuum of discrete expression levels but the traditional approaches are usually limited to two extremes: gene...... knockout and strong overexpression. However, applications such as metabolic optimization and control analysis necessitate a continuous set of expression levels with only slight increments in strength to cover a specific window around the wildtype expression level of the studied gene; this requirement can...... be met by using promoter libraries. This approach generally consists of inserting a library of promoters in front of the gene to be studied, whereby the individual promoters might deviate either in their spacer sequences or bear slight deviations from the consensus sequence of a vegetative promoter. Here...

  15. Candidate genes of hypertension with defective environmental expression

    Institute of Scientific and Technical Information of China (English)

    SUNYULIN; JOHANNETREMBLAY; 等

    1995-01-01

    Previous studies in our laboratory have demonstrated that the thermosensitivity locus cosegregates with blood pressure and that the elevated expression and restriction fragment length polymorphism of HSP70 gene are associated with hypertension.Cell protection against environmental stressors such as heat and chemicals is often accompanied by up-regulated expression of a wide spectrum of heat shock genes(HSP).To further investigate the interrelation between HSP expression and blood pressure regulation,we employed an effective method of cloning 2 potential hypertension-related HSPs.Synthetic oligonucleotides corresponding either to a highly-conserved region of the known HSP family or a repetitive sequence in the proteinencoding gene were used as target primers for polymerase chain reaction(PCR).cDNA prepared from heat-stressed and non-stressed vascular smooth muscle cells(VSMC)of Brown Norway rats(BN.1x)and spontaneously hypertensive rats(SHRp) respectively served as template in the reaction.The PCR products were subsequently analyzed in a single-stranded conformational polymorphism(SSCP) electrophoresing system.Differential gene expression in BN.1x and SHRp was seen on autoradiographs of SSCP gel by comparing the migration patterns of PCR-amplified DNA fragments.Using this technique,we also found that HSP27 and a new member of the large HSP gene family were differentially expressed in BN.1x and SHRp VSMC.

  16. Modulation of gene expression made easy

    DEFF Research Database (Denmark)

    Solem, Christian; Jensen, Peter Ruhdal

    2002-01-01

    A new approach for modulating gene expression, based on randomization of promoter (spacer) sequences, was developed. The method was applied to chromosomal genes in Lactococcus lactis and shown to generate libraries of clones with broad ranges of expression levels of target genes. In one example...... beta-glucuronidase, resulting in an operon structure in which both genes are transcribed from a common promoter. We show that there is a linear correlation between the expressions of the two genes, which facilitates screening for mutants with suitable enzyme activities. In a second example, we show......, overexpression was achieved by introducing an additional gene copy into a phage attachment site on the chromosome. This resulted in a series of strains with phosphofructokinase activities from 1.4 to 11 times the wild-type activity level. In this example, the pfk gene was cloned upstream of a gusA gene encoding...

  17. Selection of the suitable reference genes for gene expression analysis of human peripheral blood from patients with colorectal cancer%结直肠癌患者外周血基因表达分析中参照基因的选择

    Institute of Scientific and Technical Information of China (English)

    杜玉珍; 彭伟; 高锋

    2011-01-01

    Objective To select the suitable endogenous reference genes in peripheral blood from patients with colorectal cancer for gene expression analysis.Methods The expressions of candidate reference genes ( ACTB,GAPDH, GUSB, UBC, B2M, PBGD and 18S rRNA) were determined in peripheral blood of 8 healthy subjects and 8 patients with colorectal cancer by real-time relative quantitative reverse transcription polymerase chain reaction ( RTPCR) dilution method.The stability of candidate reference genes was analyzed by geNorm and NormFinder software programs and t test.The suitable reference genes were analyzed.Results By geNorm software, ACTB, GAPDH and GUSB were identified as the stable and reliable reference genes.By NormFinder algorithms, GAPDH was the stable reference gene, which was followed by B2M, ACTB and GUSB.The candidate reference genes were GAPDH and B2M.All candidate reference genes showed statistical significance in the expression between the patients and the healthy subjects except ACTB, GUSB and UBC.Conclusions The housekeeping genes of ACTB and GUSB are the suitable reference genes in peripheral blood from patients with colorectal cancer for expression analysis, while PBGD and 18S rRNA are not reliable.%目的 筛选结直肠癌患者全血样本的合适内参照基因.方法 以ACTB、GAPDH、GUSB、UBC、B2M、PBGD和18S rRNA为候选基因,用实时相对定量逆转录聚合酶链反应(RT-PCR)稀释法检测其在8例结直肠癌患者和8名健康人全血中的表达水平,再用geNorm和NormFinder程序及两样本均数t检验评价候选参照基因的稳定性,探寻应用于结直肠癌患者全血基因表达检测的合适参照基因.结果 geNorm评估发现,最适合的参照基因是ACTB、GAPDH和GUSB;NormFinder计算结果 认为GAPDH稳定性最好,B2M、ACTB和GUSB次之,推荐的参照基因组合是GAPDH和B2M;候选基因表达水平的组间比较(结直肠癌组和健康组)发现,除ACTB、GUSB和UBC之外,其他候选参照基因

  18. Gene turnover in the avian globin gene families and evolutionary changes in hemoglobin isoform expression.

    Science.gov (United States)

    Opazo, Juan C; Hoffmann, Federico G; Natarajan, Chandrasekhar; Witt, Christopher C; Berenbrink, Michael; Storz, Jay F

    2015-04-01

    The apparent stasis in the evolution of avian chromosomes suggests that birds may have experienced relatively low rates of gene gain and loss in multigene families. To investigate this possibility and to explore the phenotypic consequences of variation in gene copy number, we examined evolutionary changes in the families of genes that encode the α- and β-type subunits of hemoglobin (Hb), the tetrameric α2β2 protein responsible for blood-O2 transport. A comparative genomic analysis of 52 bird species revealed that the size and membership composition of the α- and β-globin gene families have remained remarkably constant during approximately 100 My of avian evolution. Most interspecific variation in gene content is attributable to multiple independent inactivations of the α(D)-globin gene, which encodes the α-chain subunit of a functionally distinct Hb isoform (HbD) that is expressed in both embryonic and definitive erythrocytes. Due to consistent differences in O2-binding properties between HbD and the major adult-expressed Hb isoform, HbA (which incorporates products of the α(A)-globin gene), recurrent losses of α(D)-globin contribute to among-species variation in blood-O2 affinity. Analysis of HbA/HbD expression levels in the red blood cells of 122 bird species revealed high variability among lineages and strong phylogenetic signal. In comparison with the homologous gene clusters in mammals, the low retention rate for lineage-specific gene duplicates in the avian globin gene clusters suggests that the developmental regulation of Hb synthesis in birds may be more highly conserved, with orthologous genes having similar stage-specific expression profiles and similar functional properties in disparate taxa.

  19. Gene Expression Patterns in Ovarian Carcinomas

    Science.gov (United States)

    Schaner, Marci E.; Ross, Douglas T.; Ciaravino, Giuseppe; Sørlie, Therese; Troyanskaya, Olga; Diehn, Maximilian; Wang, Yan C.; Duran, George E.; Sikic, Thomas L.; Caldeira, Sandra; Skomedal, Hanne; Tu, I-Ping; Hernandez-Boussard, Tina; Johnson, Steven W.; O'Dwyer, Peter J.; Fero, Michael J.; Kristensen, Gunnar B.; Børresen-Dale, Anne-Lise; Hastie, Trevor; Tibshirani, Robert; van de Rijn, Matt; Teng, Nelson N.; Longacre, Teri A.; Botstein, David; Brown, Patrick O.; Sikic, Branimir I.

    2003-01-01

    We used DNA microarrays to characterize the global gene expression patterns in surface epithelial cancers of the ovary. We identified groups of genes that distinguished the clear cell subtype from other ovarian carcinomas, grade I and II from grade III serous papillary carcinomas, and ovarian from breast carcinomas. Six clear cell carcinomas were distinguished from 36 other ovarian carcinomas (predominantly serous papillary) based on their gene expression patterns. The differences may yield insights into the worse prognosis and therapeutic resistance associated with clear cell carcinomas. A comparison of the gene expression patterns in the ovarian cancers to published data of gene expression in breast cancers revealed a large number of differentially expressed genes. We identified a group of 62 genes that correctly classified all 125 breast and ovarian cancer specimens. Among the best discriminators more highly expressed in the ovarian carcinomas were PAX8 (paired box gene 8), mesothelin, and ephrin-B1 (EFNB1). Although estrogen receptor was expressed in both the ovarian and breast cancers, genes that are coregulated with the estrogen receptor in breast cancers, including GATA-3, LIV-1, and X-box binding protein 1, did not show a similar pattern of coexpression in the ovarian cancers. PMID:12960427

  20. Microanalysis of gene expression in cultured cells

    NARCIS (Netherlands)

    E. van der Veer (Eveliene)

    1982-01-01

    textabstractIn this thesis two aspects of gene expression in cultured cells have been studied: the heterogeneity in gene expression in relation with the development and application of microchemical techniques for the prenatal diagnosis of inborn errors of metabolism and the possibility of inducing g

  1. Arabidopsis gene expression patterns during spaceflight

    Science.gov (United States)

    Paul, A.-L.; Ferl, R. J.

    The exposure of Arabidopsis thaliana (Arabidopsis) plants to spaceflight environments resulted in the differential expression of hundreds of genes. A 5 day mission on orbiter Columbia in 1999 (STS-93) carried transgenic Arabidopsis plants engineered with a transgene composed of the alcohol dehydrogenase (Adh) gene promoter linked to the β -Glucuronidase (GUS) reporter gene. The plants were used to evaluate the effects of spaceflight on two fronts. First, expression patterns visualized with the Adh/GUS transgene were used to address specifically the possibility that spaceflight induces a hypoxic stress response, and to assess whether any spaceflight response was similar to control terrestrial hypoxia-induced gene expression patterns. (Paul et al., Plant Physiol. 2001, 126:613). Second, genome-wide patterns of native gene expression were evaluated utilizing the Affymetrix ATH1 GeneChip? array of 8,000 Arabidopsis genes. As a control for the veracity of the array analyses, a selection of genes identified with the arrays was further characterized with quantitative Real-Time RT PCR (ABI - TaqmanTM). Comparison of the patterns of expression for arrays of hybridized with RNA isolated from plants exposed to spaceflight compared to the control arrays revealed hundreds of genes that were differentially expressed in response to spaceflight, yet most genes that are hallmarks of hypoxic stress were unaffected. These results will be discussed in light of current models for plant responses to the spaceflight environment, and with regard to potential future flight opportunities.

  2. Expression of STK39 in peripheral blood of hypertension patients and the relationship between its genetic polymorphism and blood pressure.

    Science.gov (United States)

    Li, B; Yang, M; Liu, J W

    2015-01-01

    This study investigated the STK39 expression in peripheral blood of hypertension patients and the relation between its genetic polymorphism and blood pressure. The observation group comprised of 42 primary hypertension patients admitted to our hospital, and the control group comprised of 30 healthy individuals who underwent physical examination in our hospital during the same period. Fasting venous blood was collected from both groups in the morning to determine the STK39 mRNA and protein levels in peripheral blood using quantitative real-time PCR and western blot. STK39 gene SNP (rs6433027) was sequenced using PCR and its genetic variation was analyzed. The relationship between STK39 protein level, genetic variation, and diastolic and systolic blood pressure was also analyzed. The observation group showed increased STK39 mRNA and protein levels in peripheral blood compared to the control group, and the difference was statistically significant (P blood pressure (P blood pressure (P hypertension patients with genetic variation, which is related to the blood pressure.

  3. Gene set analysis for longitudinal gene expression data

    Directory of Open Access Journals (Sweden)

    Piepho Hans-Peter

    2011-07-01

    Full Text Available Abstract Background Gene set analysis (GSA has become a successful tool to interpret gene expression profiles in terms of biological functions, molecular pathways, or genomic locations. GSA performs statistical tests for independent microarray samples at the level of gene sets rather than individual genes. Nowadays, an increasing number of microarray studies are conducted to explore the dynamic changes of gene expression in a variety of species and biological scenarios. In these longitudinal studies, gene expression is repeatedly measured over time such that a GSA needs to take into account the within-gene correlations in addition to possible between-gene correlations. Results We provide a robust nonparametric approach to compare the expressions of longitudinally measured sets of genes under multiple treatments or experimental conditions. The limiting distributions of our statistics are derived when the number of genes goes to infinity while the number of replications can be small. When the number of genes in a gene set is small, we recommend permutation tests based on our nonparametric test statistics to achieve reliable type I error and better power while incorporating unknown correlations between and within-genes. Simulation results demonstrate that the proposed method has a greater power than other methods for various data distributions and heteroscedastic correlation structures. This method was used for an IL-2 stimulation study and significantly altered gene sets were identified. Conclusions The simulation study and the real data application showed that the proposed gene set analysis provides a promising tool for longitudinal microarray analysis. R scripts for simulating longitudinal data and calculating the nonparametric statistics are posted on the North Dakota INBRE website http://ndinbre.org/programs/bioinformatics.php. Raw microarray data is available in Gene Expression Omnibus (National Center for Biotechnology Information with

  4. FARO server: Meta-analysis of gene expression by matching gene expression signatures to a compendium of public gene expression data

    DEFF Research Database (Denmark)

    Manijak, Mieszko P.; Nielsen, Henrik Bjørn

    2011-01-01

    BACKGROUND: Although, systematic analysis of gene annotation is a powerful tool for interpreting gene expression data, it sometimes is blurred by incomplete gene annotation, missing expression response of key genes and secondary gene expression responses. These shortcomings may be partially...... circumvented by instead matching gene expression signatures to signatures of other experiments. FINDINGS: To facilitate this we present the Functional Association Response by Overlap (FARO) server, that match input signatures to a compendium of 242 gene expression signatures, extracted from more than 1700...

  5. The effect of 17β-estradiol on gene expression of calcitonin gene-related peptide and some pro-inflammatory mediators in peripheral blood mononuclear cells from patients with pure menstrual migraine

    Directory of Open Access Journals (Sweden)

    Azam Karkhaneh

    2015-09-01

    Results:Treatment with 17β-estradiol had a biphasic effect on expression of CGRP. We found that 17β-estradiol treatment at pharmacological dose significantly increases mRNA expression of CGRP in both groups (P

  6. The functional landscape of mouse gene expression

    Directory of Open Access Journals (Sweden)

    Zhang Wen

    2004-12-01

    Full Text Available Abstract Background Large-scale quantitative analysis of transcriptional co-expression has been used to dissect regulatory networks and to predict the functions of new genes discovered by genome sequencing in model organisms such as yeast. Although the idea that tissue-specific expression is indicative of gene function in mammals is widely accepted, it has not been objectively tested nor compared with the related but distinct strategy of correlating gene co-expression as a means to predict gene function. Results We generated microarray expression data for nearly 40,000 known and predicted mRNAs in 55 mouse tissues, using custom-built oligonucleotide arrays. We show that quantitative transcriptional co-expression is a powerful predictor of gene function. Hundreds of functional categories, as defined by Gene Ontology 'Biological Processes', are associated with characteristic expression patterns across all tissues, including categories that bear no overt relationship to the tissue of origin. In contrast, simple tissue-specific restriction of expression is a poor predictor of which genes are in which functional categories. As an example, the highly conserved mouse gene PWP1 is widely expressed across different tissues but is co-expressed with many RNA-processing genes; we show that the uncharacterized yeast homolog of PWP1 is required for rRNA biogenesis. Conclusions We conclude that 'functional genomics' strategies based on quantitative transcriptional co-expression will be as fruitful in mammals as they have been in simpler organisms, and that transcriptional control of mammalian physiology is more modular than is generally appreciated. Our data and analyses provide a public resource for mammalian functional genomics.

  7. Rumen-protected conjugated linoleic acid supplementation to dairy cows in late pregnancy and early lactation: effects on milk composition, milk yield, blood metabolites and gene expression in liver

    Directory of Open Access Journals (Sweden)

    Meyer Heinrich HD

    2010-02-01

    Full Text Available Abstract Background Conjugated linoleic acid (CLA is a collective term for isomers of octadecadienoic acid with conjugated double-bond system. Thus, it was the objective to investigate whether milk composition and metabolic key parameters are affected by adding CLA to the diet of dairy cows in the first four weeks of lactation. Methods A study was carried out with five primiparous cows fed a CLA supplemented diet compared to five primiparous cows without CLA supplementation. CLA supplemented cows received 7.5 g CLA/day (i.e. 50% cis(c9,trans(t11- and 50% t10,c12-CLA starting two weeks before expected calving and 20 g CLA/day (i.e. 50% c9,t11- and 50% t10,c12-CLA throughout day 1 to 28 of lactation. Results The CLA supplement was insufficiently accepted by the animals: only 61.5% of the intended amount was ingested. Fed CLA were detectable in milk fat, whereas contents of c9,t11-CLA and t10,c12-CLA in milk fat were higher for CLA supplemented cows compared to the control group. On average over the entire treatment period, there was a decrease of saturated fatty acids (FA in milk fat of CLA supplemented cows, combined with a higher content of monounsaturated and trans FA. Our study revealed no significant effects of c9,t11- and t10,c12-CLA supplementation either on milk yield and composition or on metabolic key parameters in blood. Furthermore the experiment did not indicate significant effects of c9,t11- and t10,c12-CLA-supplementation on gene expression of peroxisome proliferator-activated receptor-alpha (PPARα, PPARγ, sterol regulatory element-binding protein-1 and tumor necrosis factor-alpha in liver tissue. Conclusions Feeding c9,t11- and t10,c12-CLA during the first weeks after calving did not affect metabolic key parameters of blood serum or milk composition of fresh cows. Milk fatty acid composition was changed by feeding c9,t11- and t10,c12-CLA resulting in higher contents of these isomers in milk fat. High contents of long chain FA in

  8. Gene expression changes in patients with fulminant type 1 diabetes

    Institute of Scientific and Technical Information of China (English)

    WANG Zhen; ZHENG Chao; TAN Yu-yu; LI Yi-jun; YANG Lin; HUANG Gan; LIN Jian; ZHOU Zhi-guang

    2011-01-01

    Background Fulminant type 1 diabetes (F1D) is a complex disease.Microarray analysis was used to identify gene expression changes and obtain understanding of the underlying mechanisms.Methods Microarray analysis was performed on peripheral blood mononuclear cells from six F1D patients and six matched healthy subjects.Real-time polymerase chain reaction was used to verify the differentially expressed genes.NK cell activity was detected by methyl thiazoleterazolium assay.Results Microarray analysis identified 759 genes differing in expression between F1D patients and controls at a false discovery rate of 0.05.Expression of TLR9,ELF4 and IL1RAP were verified and consistent with changes in microarray results.NK cell activity was decreased in F1D.With use of a knowledge base,differentially expressed genes could be placed within different pathways with predicted functions including interleukin-1,and tumor necrosis factor-α signaling.Conclusions These results identify several genes indicating possible mechanisms in F1D.NK cell dysfunction resulting from changes in expression of TLR9,ELF4 and IL1RAP,and pathways of interleukin-1 and tumor necrosis factor-α signaling might be involved in F1D through inducing β-cell dysfunction.

  9. Differential gene expression during Trypanosoma cruzi metacyclogenesis

    Directory of Open Access Journals (Sweden)

    Marco Aurelio Krieger

    1999-09-01

    Full Text Available The transformation of epimastigotes into metacyclic trypomastigotes involves changes in the pattern of expressed genes, resulting in important morphological and functional differences between these developmental forms of Trypanosoma cruzi. In order to identify and characterize genes involved in triggering the metacyclogenesis process and in conferring to metacyclic trypomastigotes their stage specific biological properties, we have developed a method allowing the isolation of genes specifically expressed when comparing two close related cell populations (representation of differential expression or RDE. The method is based on the PCR amplification of gene sequences selected by hybridizing and subtracting the populations in such a way that after some cycles of hybridization-amplification genes specific to a given population are highly enriched. The use of this method in the analysis of differential gene expression during T. cruzi metacyclogenesis (6 hr and 24 hr of differentiation and metacyclic trypomastigotes resulted in the isolation of several clones from each time point. Northern blot analysis showed that some genes are transiently expressed (6 hr and 24 hr differentiating cells, while others are present in differentiating cells and in metacyclic trypomastigotes. Nucleotide sequencing of six clones characterized so far showed that they do not display any homology to gene sequences available in the GeneBank.

  10. Multivariate search for differentially expressed gene combinations

    Directory of Open Access Journals (Sweden)

    Klebanov Lev

    2004-10-01

    Full Text Available Abstract Background To identify differentially expressed genes, it is standard practice to test a two-sample hypothesis for each gene with a proper adjustment for multiple testing. Such tests are essentially univariate and disregard the multidimensional structure of microarray data. A more general two-sample hypothesis is formulated in terms of the joint distribution of any sub-vector of expression signals. Results By building on an earlier proposed multivariate test statistic, we propose a new algorithm for identifying differentially expressed gene combinations. The algorithm includes an improved random search procedure designed to generate candidate gene combinations of a given size. Cross-validation is used to provide replication stability of the search procedure. A permutation two-sample test is used for significance testing. We design a multiple testing procedure to control the family-wise error rate (FWER when selecting significant combinations of genes that result from a successive selection procedure. A target set of genes is composed of all significant combinations selected via random search. Conclusions A new algorithm has been developed to identify differentially expressed gene combinations. The performance of the proposed search-and-testing procedure has been evaluated by computer simulations and analysis of replicated Affymetrix gene array data on age-related changes in gene expression in the inner ear of CBA mice.

  11. Gene Expression Profiling in Porcine Fetal Thymus

    Institute of Scientific and Technical Information of China (English)

    Yanjiong Chen; Shengbin Li; Lin Ye; Jianing Geng; Yajun Deng; Songnian Hu

    2003-01-01

    obtain an initial overview of gene diversity and expression pattern in porcinethymus, 11,712 ESTs (Expressed Sequence Tags) from 100-day-old porcine thymus(FTY) were sequenced and 7,071 cleaned ESTs were used for gene expressionanalysis. Clustered by the PHRAP program, 959 contigs and 3,074 singlets wereobtained. Blast search showed that 806 contigs and 1,669 singlets (totally 5,442ESTs) had homologues in GenBank and 1,629 ESTs were novel. According to theGene Ontology classification, 36.99% ESTs were cataloged into the gene expressiongroup, indicating that although the functional gene (18.78% in defense group) ofthymus is expressed in a certain degree, the 100-day-old porcine thymus still existsin a developmental stage. Comparative analysis showed that the gene expressionpattern of the 100-day-old porcine thymus is similar to that of the human infantthymus.

  12. Phytochrome-regulated Gene Expression

    Institute of Scientific and Technical Information of China (English)

    Peter H. Quail

    2007-01-01

    Identification of all genes involved in the phytochrome (phy)-mediated responses of plants to their light environment is an important goal in providing an overall understanding of light-regulated growth and development. This article highlights and integrates the central findings of two recent comprehensive studies in Arabidopsis that have identified the genome-wide set of phy-regulated genes that respond rapidly to red-light signals upon first exposure of dark-grown seedlings, and have tested the functional relevance to normal seedling photomorphogenesis of an initial subset of these genes. The data: (a) reveal considerable complexity in the channeling of the light signals through the different phy-family members (phyA to phyE) to responsive genes; (b) identify a diversity of transcription-factor-encoding genes as major early, if not primary, targets of phy signaling, and, therefore, as potentially important regulators in the transcriptional-network hierarchy; and (c) identify auxin-related genes as the dominant class among rapidly-regulated, hormone-related genes. However, reverse-genetic functional profiling of a selected subset of these genes reveals that only a limited fraction are necessary for optimal phy-induced seedling deetiolation.

  13. Nucleosome repositioning underlies dynamic gene expression.

    Science.gov (United States)

    Nocetti, Nicolas; Whitehouse, Iestyn

    2016-03-15

    Nucleosome repositioning at gene promoters is a fundamental aspect of the regulation of gene expression. However, the extent to which nucleosome repositioning is used within eukaryotic genomes is poorly understood. Here we report a comprehensive analysis of nucleosome positions as budding yeast transit through an ultradian cycle in which expression of >50% of all genes is highly synchronized. We present evidence of extensive nucleosome repositioning at thousands of gene promoters as genes are activated and repressed. During activation, nucleosomes are relocated to allow sites of general transcription factor binding and transcription initiation to become accessible. The extent of nucleosome shifting is closely related to the dynamic range of gene transcription and generally related to DNA sequence properties and use of the coactivators TFIID or SAGA. However, dynamic gene expression is not limited to SAGA-regulated promoters and is an inherent feature of most genes. While nucleosome repositioning occurs pervasively, we found that a class of genes required for growth experience acute nucleosome shifting as cells enter the cell cycle. Significantly, our data identify that the ATP-dependent chromatin-remodeling enzyme Snf2 plays a fundamental role in nucleosome repositioning and the expression of growth genes. We also reveal that nucleosome organization changes extensively in concert with phases of the cell cycle, with large, regularly spaced nucleosome arrays being established in mitosis. Collectively, our data and analysis provide a framework for understanding nucleosome dynamics in relation to fundamental DNA-dependent transactions.

  14. Changes in skeletal muscle gene expression following clenbuterol administration

    Directory of Open Access Journals (Sweden)

    McIntyre Lauren M

    2006-12-01

    Full Text Available Abstract Background Beta-adrenergic receptor agonists (BA induce skeletal muscle hypertrophy, yet specific mechanisms that lead to this effect are not well understood. The objective of this research was to identify novel genes and physiological pathways that potentially facilitate BA induced skeletal muscle growth. The Affymetrix platform was utilized to identify gene expression changes in mouse skeletal muscle 24 hours and 10 days after administration of the BA clenbuterol. Results Administration of clenbuterol stimulated anabolic activity, as indicated by decreased blood urea nitrogen (BUN; P P Conclusion Global evaluation of gene expression after administration of clenbuterol identified changes in gene expression and overrepresented functional categories of genes that may regulate BA-induced muscle hypertrophy. Changes in mRNA abundance of multiple genes associated with myogenic differentiation may indicate an important effect of BA on proliferation, differentiation, and/or recruitment of satellite cells into muscle fibers to promote muscle hypertrophy. Increased mRNA abundance of genes involved in the initiation of translation suggests that increased levels of protein synthesis often associated with BA administration may result from a general up-regulation of translational initiators. Additionally, numerous other genes and physiological pathways were identified that will be important targets for further investigations of the hypertrophic effect of BA on skeletal muscle.

  15. Gene expression in primate liver during viral hemorrhagic fever

    Directory of Open Access Journals (Sweden)

    Bryant Joseph

    2009-02-01

    Full Text Available Abstract Background Rhesus macaques infected with lymphocytic choriomeningitis virus (LCMV provide a model for human Lassa fever. Disease begins with flu-like symptoms and progresses rapidly with fatal consequences. Previously, we profiled the blood transcriptome of LCMV-infected monkeys (M. Djavani et al J. Virol. 2007 showing distinct pre-viremic and viremic stages that discriminated virulent from benign infections. In the present study, changes in liver gene expression from macaques infected with virulent LCMV-WE were compared to gene expression in uninfected monkeys as well as to monkeys that were infected but not diseased. Results Based on a functional pathway analysis of differentially expressed genes, virulent LCMV-WE had a broader effect on liver cell function than did infection with non-virulent LCMV-Armstrong. During the first few days after infection, LCMV altered expression of genes associated with energy production, including fatty acid and glucose metabolism. The transcriptome profile resembled that of an organism in starvation: mRNA for acetyl-CoA carboxylase, a key enzyme of fatty acid synthesis was reduced while genes for enzymes in gluconeogenesis were up-regulated. Expression was also altered for genes associated with complement and coagulation cascades, and with signaling pathways involving STAT1 and TGF-β. Conclusion Most of the 4500 differentially expressed transcripts represented a general response to both virulent and mild infections. However, approximately 250 of these transcripts had significantly different expression in virulent infections as compared to mild infections, with approximately 30 of these being differentially regulated during the pre-viremic stage of infection. The genes that are expressed early and differently in mild and virulent disease are potential biomarkers for prognosis and triage of acute viral disease.

  16. Gene therapy during cardiac surgery: role of surgical technique to minimize collateral organ gene expression.

    Science.gov (United States)

    Katz, Michael G; Swain, JaBaris D; Fargnoli, Anthony S; Bridges, Charles R

    2010-12-01

    Effective gene therapy for heart failure has not yet been achieved clinically. The aim of this study is to quantitatively assess the cardiac isolation efficiency of the molecular cardiac surgery with recirculating delivery (MCARD™) and to evaluate its efficacy as a means to limit collateral organ gene expression. 10(14) genome copies (GC) of recombinant adeno-associated viral vector 6 encoding green fluorescent protein under control of the cytomegalovirus promoter was delivered to the nine arrested sheep hearts. Blood samples were assessed using real-time quantitative polymerase chain reaction (RT QPCR). Collateral organ gene expression was assessed at four-weeks using immunohistochemical staining. The blood vector GC concentration in the cardiac circuit during complete isolation trended from 9.59±0.73 to 9.05±0.65 (log GC/cm(3)), and no GC were detectable in the systemic circuit (P800-fold (P99% isolation efficiency. Conversely, incomplete isolation resulted in equalization of vector GC concentration in the circuits, leading to robust collateral organ gene expression. MCARD™ is an efficient, clinically translatable myocardial delivery platform for cardiac specific gene therapy. The cardiac surgical techniques utilized are critically important to limit collateral organ gene expression.

  17. Gene expression profile of sprinter's muscle.

    Science.gov (United States)

    Yoshioka, M; Tanaka, H; Shono, N; Shindo, M; St-Amand, J

    2007-12-01

    We have characterized the global gene expression profile in left vastus lateralis muscles of sprinters and sedentary men. The gene expression profile was analyzed by using serial analysis of gene expression (SAGE) method. The abundantly expressed transcripts in the sprinter's muscle were mainly involved in contraction and energy metabolism, whereas six transcripts were corresponding to potentially novel transcripts. Thirty-eight transcripts were differentially expressed between the sprinter and sedentary individuals. Moreover, sprinters showed higher expressions of both uncharacterized and potentially novel transcripts. Sprinters also highly expressed seven transcripts, such as glycine-rich protein, myosin heavy polypeptide (MYH) 2, expressed sequence tag similar to (EST) fructose-bisphosphate aldolase 1 isoform A (ALDOA), glyceraldehyde-3-phosphate dehydrogenase and ATP synthase F0 subunit 6. On the other hand, 20 transcripts such as MYH1, tropomyosin 2 and 3, troponin C slow, C2 fast, I slow, T1 slow and T3 fast, myoglobin, creatine kinase, ALDOA, glycogen phosphorylase, cytochrome c oxidase II and III, and NADH dehydrogenase 1 and 2 showed lower expression levels in the sprinters than the sedentary controls. The current study has characterized the global gene expressions in sprinters and identified a number of transcripts that can be subjected to further mechanistic analysis.

  18. Identification of Suitable Reference Genes for Peripheral Blood Mononuclear Cell Subset Studies in Multiple Sclerosis

    DEFF Research Database (Denmark)

    Oturai, D B; Søndergaard, H B; Börnsen, L;

    2016-01-01

    Quantitative real-time PCR (qPCR) involves the need of a proper standard for normalizing the gene expression data. Different studies have shown the validity of reference genes to vary greatly depending on tissue, cell subsets and experimental context. This study aimed at the identification...... of suitable reference genes for qPCR studies using different peripheral blood cell subsets (whole blood (WB) cells, peripheral blood mononuclear cells (PBMCs) and PBMC subsets (CD4(+) T cells, CD8(+) T cells, NK cells, monocytes, B cells and dendritic cells) from healthy controls (HC), patients with relapsing...... stable combination for analyses of cell subsets between HC and RRMS patients, while the combination of UBC and YWHAZ was superior for analysis of cell subsets between HC, RRMS and RRMS-IFN-β groups. GAPDH was generally unsuitable for blood cell subset studies in multiple sclerosis. In conclusion, we...

  19. Characterization of changes in gene expression and biochemical pathways at low levels of benzene exposure

    NARCIS (Netherlands)

    Thomas, Reuben; Hubbard, Alan E.; McHale, Cliona M.; Zhang, Luoping; Rappaport, Stephen M.; Lan, Qing; Rothman, Nathaniel; Vermeulen, Roel; Guyton, Kathryn Z.; Jinot, Jennifer; Sonawane, Babasaheb R.; Smith, Martyn T.

    2014-01-01

    Benzene, a ubiquitous environmental pollutant, causes acute myeloid leukemia (AML). Recently, through transcriptome profiling of peripheral blood mononuclear cells (PBMC), we reported dose-dependent effects of benzene exposure on gene expression and biochemical pathways in 83 workers exposed across

  20. Transcriptional profiling of whole blood identifies a unique 5-gene signature for myelofibrosis and imminent myelofibrosis transformation

    DEFF Research Database (Denmark)

    Hasselbalch, Hans Carl; Skov, Vibe; Stauffer Larsen, Thomas

    2014-01-01

    selectively and highly deregulated in myelofibrosis patients. Gene expression microarray studies have been performed on whole blood from 69 patients with myeloproliferative neoplasms. Amongst the top-20 of the most upregulated genes in PMF compared to controls, we identified 5 genes (DEFA4, ELA2, OLFM4, CTSG...

  1. Regulation of meiotic gene expression in plants

    Directory of Open Access Journals (Sweden)

    Adele eZhou

    2014-08-01

    Full Text Available With the recent advances in genomics and sequencing technologies, databases of transcriptomes representing many cellular processes have been built. Meiotic transcriptomes in plants have been studied in Arabidopsis thaliana, rice (Oryza sativa, wheat (Triticum aestivum, petunia (Petunia hybrida, sunflower (Helianthus annuus, and maize (Zea mays. Studies in all organisms, but particularly in plants, indicate that a very large number of genes are expressed during meiosis, though relatively few of them seem to be required for the completion of meiosis. In this review, we focus on gene expression at the RNA level and analyze the meiotic transcriptome datasets and explore expression patterns of known meiotic genes to elucidate how gene expression could be regulated during meiosis. We also discuss mechanisms, such as chromatin organization and non-coding RNAs, that might be involved in the regulation of meiotic transcription patterns.

  2. Expression of polarity genes in human cancer.

    Science.gov (United States)

    Lin, Wan-Hsin; Asmann, Yan W; Anastasiadis, Panos Z

    2015-01-01

    Polarity protein complexes are crucial for epithelial apical-basal polarity and directed cell migration. Since alterations of these processes are common in cancer, polarity proteins have been proposed to function as tumor suppressors or oncogenic promoters. Here, we review the current understanding of polarity protein functions in epithelial homeostasis, as well as tumor formation and progression. As most previous studies focused on the function of single polarity proteins in simplified model systems, we used a genomics approach to systematically examine and identify the expression profiles of polarity genes in human cancer. The expression profiles of polarity genes were distinct in different human tissues and classified cancer types. Additionally, polarity expression profiles correlated with disease progression and aggressiveness, as well as with identified cancer types, where specific polarity genes were commonly altered. In the case of Scribble, gene expression analysis indicated its common amplification and upregulation in human cancer, suggesting a tumor promoting function.

  3. Evidence of the role of tick subolesin in gene expression

    Directory of Open Access Journals (Sweden)

    Blouin Edmour F

    2008-08-01

    Full Text Available Abstract Background Subolesin is an evolutionary conserved protein that was discovered recently in Ixodes scapularis as a tick protective antigen and has a role in tick blood digestion, reproduction and development. In other organisms, subolesin orthologs may be involved in the control of developmental processes. Because of the profound effect of subolesin knockdown in ticks and other organisms, we hypothesized that subolesin plays a role in gene expression, and therefore affects multiple cellular processes. The objective of this study was to provide evidence for the role of subolesin in gene expression. Results Two subolesin-interacting proteins were identified and characterized by yeast two-hybrid screen, co-affinity purification and RNA interference (RNAi. The effect of subolesin knockdown on the tick gene expression pattern was characterized by microarray analysis and demonstrated that subolesin RNAi affects the expression of genes involved in multiple cellular pathways. The analysis of subolesin and interacting protein sequences identified regulatory motifs and predicted the presence of conserved protein kinase C (PKC phosphorylation sites. Conclusion Collectively, these results provide evidence that subolesin plays a role in gene expression in ticks.

  4. Developmental gene expression profiles of the human pathogen Schistosoma japonicum

    Directory of Open Access Journals (Sweden)

    McManus Donald P

    2009-03-01

    Full Text Available Abstract Background The schistosome blood flukes are complex trematodes and cause a chronic parasitic disease of significant public health importance worldwide, schistosomiasis. Their life cycle is characterised by distinct parasitic and free-living phases involving mammalian and snail hosts and freshwater. Microarray analysis was used to profile developmental gene expression in the Asian species, Schistosoma japonicum. Total RNAs were isolated from the three distinct environmental phases of the lifecycle – aquatic/snail (eggs, miracidia, sporocysts, cercariae, juvenile (lung schistosomula and paired but pre-egg laying adults and adult (paired, mature males and egg-producing females, both examined separately. Advanced analyses including ANOVA, principal component analysis, and hierarchal clustering provided a global synopsis of gene expression relationships among the different developmental stages of the schistosome parasite. Results Gene expression profiles were linked to the major environmental settings through which the developmental stages of the fluke have to adapt during the course of its life cycle. Gene ontologies of the differentially expressed genes revealed a wide range of functions and processes. In addition, stage-specific, differentially expressed genes were identified that were involved in numerous biological pathways and functions including calcium signalling, sphingolipid metabolism and parasite defence. Conclusion The findings provide a comprehensive database of gene expression in an important human pathogen, including transcriptional changes in genes involved in evasion of the host immune response, nutrient acquisition, energy production, calcium signalling, sphingolipid metabolism, egg production and tegumental function during development. This resource should help facilitate the identification and prioritization of new anti-schistosome drug and vaccine targets for the control of schistosomiasis.

  5. Optimal Reference Genes for Gene Expression Normalization in Trichomonas vaginalis.

    Science.gov (United States)

    dos Santos, Odelta; de Vargas Rigo, Graziela; Frasson, Amanda Piccoli; Macedo, Alexandre José; Tasca, Tiana

    2015-01-01

    Trichomonas vaginalis is the etiologic agent of trichomonosis, the most common non-viral sexually transmitted disease worldwide. This infection is associated with several health consequences, including cervical and prostate cancers and HIV acquisition. Gene expression analysis has been facilitated because of available genome sequences and large-scale transcriptomes in T. vaginalis, particularly using quantitative real-time polymerase chain reaction (qRT-PCR), one of the most used methods for molecular studies. Reference genes for normalization are crucial to ensure the accuracy of this method. However, to the best of our knowledge, a systematic validation of reference genes has not been performed for T. vaginalis. In this study, the transcripts of nine candidate reference genes were quantified using qRT-PCR under different cultivation conditions, and the stability of these genes was compared using the geNorm and NormFinder algorithms. The most stable reference genes were α-tubulin, actin and DNATopII, and, conversely, the widely used T. vaginalis reference genes GAPDH and β-tubulin were less stable. The PFOR gene was used to validate the reliability of the use of these candidate reference genes. As expected, the PFOR gene was upregulated when the trophozoites were cultivated with ferrous ammonium sulfate when the DNATopII, α-tubulin and actin genes were used as normalizing gene. By contrast, the PFOR gene was downregulated when the GAPDH gene was used as an internal control, leading to misinterpretation of the data. These results provide an important starting point for reference gene selection and gene expression analysis with qRT-PCR studies of T. vaginalis.

  6. Differential neutrophil gene expression in early bovine pregnancy

    Directory of Open Access Journals (Sweden)

    Kizaki Keiichiro

    2013-02-01

    Full Text Available Abstract Background In food production animals, especially cattle, the diagnosis of gestation is important because the timing of gestation directly affects the running of farms. Various methods have been used to detect gestation, but none of them are ideal because of problems with the timing of detection or the accuracy, simplicity, or cost of the method. A new method for detecting gestation, which involves assessing interferon-tau (IFNT-stimulated gene expression in peripheral blood leukocytes (PBL, was recently proposed. PBL fractionation methods were used to examine whether the expression profiles of various PBL populations could be used as reliable diagnostic markers of bovine gestation. Methods PBL were collected on days 0 (just before artificial insemination, 7, 14, 17, 21, and 28 of gestation. The gene expression levels of the PBL were assessed with microarray analysis and/or quantitative real-time reverse transcription (q PCR. PBL fractions were collected by flow cytometry or density gradient cell separation using Histopaque 1083 or Ficoll-Conray solutions. The expression levels of four IFNT-stimulated genes, interferon-stimulated protein 15 kDa (ISG15, myxovirus-resistance (MX 1 and 2, and 2′-5′-oligoadenylate synthetase (OAS1, were then analyzed in each fraction through day 28 of gestation using qPCR. Results Microarray analysis detected 72 and 28 genes in whole PBL that were significantly higher on days 14 and 21 of gestation, respectively, than on day 0. The upregulated genes included IFNT-stimulated genes. The expression levels of these genes increased with the progression of gestation until day 21. In flow cytometry experiments, on day 14 the expression levels of all of the genes were significantly higher in the granulocyte fraction than in the other fractions. Their expression gradually decreased through day 28 of gestation. Strong correlations were observed between the expression levels of the four genes in the granulocyte

  7. Gene expression profiling in autoimmune diseases

    DEFF Research Database (Denmark)

    Bovin, Lone Frier; Brynskov, Jørn; Hegedüs, Laszlo;

    2007-01-01

    A central issue in autoimmune disease is whether the underlying inflammation is a repeated stereotypical process or whether disease specific gene expression is involved. To shed light on this, we analysed whether genes previously found to be differentially regulated in rheumatoid arthritis (RA...

  8. Gene Expression Profiles of Inflammatory Myopathies

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2002-11-01

    Full Text Available The simultaneous expression of 10,000 genes was measured, using Affymetrix GeneChip microarrays, in muscle specimens from 45 patients with various myopathies (dystrophy, congenital myopathy, and inflammatory myopathy examined at Brigham and Women’s Hospital, and Children’s Hospital, Harvard Medical School, Boston, MA.

  9. Inferring gene networks from discrete expression data

    KAUST Repository

    Zhang, L.

    2013-07-18

    The modeling of gene networks from transcriptional expression data is an important tool in biomedical research to reveal signaling pathways and to identify treatment targets. Current gene network modeling is primarily based on the use of Gaussian graphical models applied to continuous data, which give a closedformmarginal likelihood. In this paper,we extend network modeling to discrete data, specifically data from serial analysis of gene expression, and RNA-sequencing experiments, both of which generate counts of mRNAtranscripts in cell samples.We propose a generalized linear model to fit the discrete gene expression data and assume that the log ratios of the mean expression levels follow a Gaussian distribution.We restrict the gene network structures to decomposable graphs and derive the graphs by selecting the covariance matrix of the Gaussian distribution with the hyper-inverse Wishart priors. Furthermore, we incorporate prior network models based on gene ontology information, which avails existing biological information on the genes of interest. We conduct simulation studies to examine the performance of our discrete graphical model and apply the method to two real datasets for gene network inference. © The Author 2013. Published by Oxford University Press. All rights reserved.

  10. Perspectives: Gene Expression in Fisheries Management

    Science.gov (United States)

    Nielsen, Jennifer L.; Pavey, Scott A.

    2010-01-01

    Functional genes and gene expression have been connected to physiological traits linked to effective production and broodstock selection in aquaculture, selective implications of commercial fish harvest, and adaptive changes reflected in non-commercial fish populations subject to human disturbance and climate change. Gene mapping using single nucleotide polymorphisms (SNPs) to identify functional genes, gene expression (analogue microarrays and real-time PCR), and digital sequencing technologies looking at RNA transcripts present new concepts and opportunities in support of effective and sustainable fisheries. Genomic tools have been rapidly growing in aquaculture research addressing aspects of fish health, toxicology, and early development. Genomic technologies linking effects in functional genes involved in growth, maturation and life history development have been tied to selection resulting from harvest practices. Incorporating new and ever-increasing knowledge of fish genomes is opening a different perspective on local adaptation that will prove invaluable in wild fish conservation and management. Conservation of fish stocks is rapidly incorporating research on critical adaptive responses directed at the effects of human disturbance and climate change through gene expression studies. Genomic studies of fish populations can be generally grouped into three broad categories: 1) evolutionary genomics and biodiversity; 2) adaptive physiological responses to a changing environment; and 3) adaptive behavioral genomics and life history diversity. We review current genomic research in fisheries focusing on those that use microarrays to explore differences in gene expression among phenotypes and within or across populations, information that is critically important to the conservation of fish and their relationship to humans.

  11. PERT: a method for expression deconvolution of human blood samples from varied microenvironmental and developmental conditions.

    Directory of Open Access Journals (Sweden)

    Wenlian Qiao

    Full Text Available The cellular composition of heterogeneous samples can be predicted using an expression deconvolution algorithm to decompose their gene expression profiles based on pre-defined, reference gene expression profiles of the constituent populations in these samples. However, the expression profiles of the actual constituent populations are often perturbed from those of the reference profiles due to gene expression changes in cells associated with microenvironmental or developmental effects. Existing deconvolution algorithms do not account for these changes and give incorrect results when benchmarked against those measured by well-established flow cytometry, even after batch correction was applied. We introduce PERT, a new probabilistic expression deconvolution method that detects and accounts for a shared, multiplicative perturbation in the reference profiles when performing expression deconvolution. We applied PERT and three other state-of-the-art expression deconvolution methods to predict cell frequencies within heterogeneous human blood samples that were collected under several conditions (uncultured mono-nucleated and lineage-depleted cells, and culture-derived lineage-depleted cells. Only PERT's predicted proportions of the constituent populations matched those assigned by flow cytometry. Genes associated with cell cycle processes were highly enriched among those with the largest predicted expression changes between the cultured and uncultured conditions. We anticipate that PERT will be widely applicable to expression deconvolution strategies that use profiles from reference populations that vary from the corresponding constituent populations in cellular state but not cellular phenotypic identity.

  12. PERT: a method for expression deconvolution of human blood samples from varied microenvironmental and developmental conditions.

    Science.gov (United States)

    Qiao, Wenlian; Quon, Gerald; Csaszar, Elizabeth; Yu, Mei; Morris, Quaid; Zandstra, Peter W

    2012-01-01

    The cellular composition of heterogeneous samples can be predicted using an expression deconvolution algorithm to decompose their gene expression profiles based on pre-defined, reference gene expression profiles of the constituent populations in these samples. However, the expression profiles of the actual constituent populations are often perturbed from those of the reference profiles due to gene expression changes in cells associated with microenvironmental or developmental effects. Existing deconvolution algorithms do not account for these changes and give incorrect results when benchmarked against those measured by well-established flow cytometry, even after batch correction was applied. We introduce PERT, a new probabilistic expression deconvolution method that detects and accounts for a shared, multiplicative perturbation in the reference profiles when performing expression deconvolution. We applied PERT and three other state-of-the-art expression deconvolution methods to predict cell frequencies within heterogeneous human blood samples that were collected under several conditions (uncultured mono-nucleated and lineage-depleted cells, and culture-derived lineage-depleted cells). Only PERT's predicted proportions of the constituent populations matched those assigned by flow cytometry. Genes associated with cell cycle processes were highly enriched among those with the largest predicted expression changes between the cultured and uncultured conditions. We anticipate that PERT will be widely applicable to expression deconvolution strategies that use profiles from reference populations that vary from the corresponding constituent populations in cellular state but not cellular phenotypic identity.

  13. 应用基因芯片技术检测中国成年肥胖者外周血的基因表达谱%Peripheral blood (g)ene expression profile of Chinese adult obesities by (g)ene chip technique

    Institute of Scientific and Technical Information of China (English)

    龚海洋; 高京宏; 王琦

    2008-01-01

    BACKGROUND: Obesity has become the most common and costly metabolic problem in the world, and the genetic and environmental effects on the generation of obesity have become one of the focus factors in obesity research. Gene-chips have been reported as a useful tool in human adipose tissue research. OBJECTIVE: To determine the peripheral blood gene expression profile of Chinese adult obesities by gene chip technique for the first time. DESIGN: Randomized controlled observation. SETTING: Beijing University of Traditional Chinese Medicine. PARTICIPANTS: The experiment was performed at the Basic Medical College of Beijing University of Traditional Chinese Medicine between August 2003 and May 2004. Five obese patients, 4 males and 1 female, aged (21.4±0.9) years and three non-obese persons, 2 males and 1 female, aged (26.0±5.3) years were selected by the international body mass index (BMI) standard. The written informed consent was obtained from all subjects, and the research was approved by the medical ethical committee of Beijing University of Traditional Chinese Medicine. METHODS: Total RNA was extracted from peripheral blood, amplified and labeled. The quality and quantity of the processed samples were checked by Test3 array. The gene expression profiles were monitored by U133A set. The data was analyzed statistically, and the gene symbols with significant difference were searched in Gene BANK database. MAIN OUTCOME MEASURES: Gene expression signal. RESULTS: Compared with non-obese adults, 66 genes showed up-regulated expression and 28 genes showed down-regulated, of which 11 genes were up-regulated above twofold, and 6 genes were down-regulated above twofold. The results demonstrated that HLA-DQAI (human leucocytic antigens), CRAT, MAPKSI3 and DKFZP434N1923 genes were up-regulated above 4 fold, and HLA-DQA1 gene was even up-regulated above 20 fold. CONCLUSION: Significant differences in peripheral blood gene expression profiles in Chinese adult obesities are

  14. Insulin gene: organisation, expression and regulation.

    Science.gov (United States)

    Dumonteil, E; Philippe, J

    1996-06-01

    Insulin, a major hormone of the endocrine pancreas, plays a key role in the control of glucose homeostasis. This review discusses the mechanisms of cell-specific expression and regulation of the insulin gene. Whereas expression is restricted to islet beta-cells in adults, the insulin gene is more widely expressed at several embryonic stages, although the role of extrapancreatic expression is still unclear. beta-cell-specific expression relies on the interactions of 5'-flanking sequence motifs of the promoter with a number of ubiquitous and islet-specific transcription factors. IEF1 and IPF-1, by their binding to the E and A boxes, respectively, of the insulin gene promoter, appear to be the major determinants of beta-cell-specific expression. IEF1 is a heterodimer of the basic helix-loop-helix family of transcription factors, whereas IPF-1 belongs to the homeodomain-containing family. beta-cell specific determinants are conserved throughout evolution, although the human insulin gene 5'-flanking sequence also contains a polymorphic minisatellite which is unique to primates and may play a role in insulin gene regulation. Glucose modulates insulin gene transcription, with multiple elements of the promoter involved in glucose responsiveness. Remarkably, IPF-1 and IEF1 are involved in both beta-cell-specific expression and glucose regulation of the insulin gene. cAMP also regulates insulin gene transcription through a CRE, in response to various hormonal stimuli. On the whole, recent studies have provided a better understanding of beta-cell differentiation and function.

  15. Gene expression studies using microarrays

    NARCIS (Netherlands)

    Burgess, Janette

    2001-01-01

    1. The rapid progression of the collaborative sequencing programmes that are unravelling the complete genome sequences of many organisms are opening pathways for new approaches to gene analysis. As the sequence data become available, the bottleneck in biological research will shift to understanding

  16. Application of multidisciplinary analysis to gene expression.

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xuefel (University of New Mexico, Albuquerque, NM); Kang, Huining (University of New Mexico, Albuquerque, NM); Fields, Chris (New Mexico State University, Las Cruces, NM); Cowie, Jim R. (New Mexico State University, Las Cruces, NM); Davidson, George S.; Haaland, David Michael; Sibirtsev, Valeriy (New Mexico State University, Las Cruces, NM); Mosquera-Caro, Monica P. (University of New Mexico, Albuquerque, NM); Xu, Yuexian (University of New Mexico, Albuquerque, NM); Martin, Shawn Bryan; Helman, Paul (University of New Mexico, Albuquerque, NM); Andries, Erik (University of New Mexico, Albuquerque, NM); Ar, Kerem (University of New Mexico, Albuquerque, NM); Potter, Jeffrey (University of New Mexico, Albuquerque, NM); Willman, Cheryl L. (University of New Mexico, Albuquerque, NM); Murphy, Maurice H. (University of New Mexico, Albuquerque, NM)

    2004-01-01

    Molecular analysis of cancer, at the genomic level, could lead to individualized patient diagnostics and treatments. The developments to follow will signal a significant paradigm shift in the clinical management of human cancer. Despite our initial hopes, however, it seems that simple analysis of microarray data cannot elucidate clinically significant gene functions and mechanisms. Extracting biological information from microarray data requires a complicated path involving multidisciplinary teams of biomedical researchers, computer scientists, mathematicians, statisticians, and computational linguists. The integration of the diverse outputs of each team is the limiting factor in the progress to discover candidate genes and pathways associated with the molecular biology of cancer. Specifically, one must deal with sets of significant genes identified by each method and extract whatever useful information may be found by comparing these different gene lists. Here we present our experience with such comparisons, and share methods developed in the analysis of an infant leukemia cohort studied on Affymetrix HG-U95A arrays. In particular, spatial gene clustering, hyper-dimensional projections, and computational linguistics were used to compare different gene lists. In spatial gene clustering, different gene lists are grouped together and visualized on a three-dimensional expression map, where genes with similar expressions are co-located. In another approach, projections from gene expression space onto a sphere clarify how groups of genes can jointly have more predictive power than groups of individually selected genes. Finally, online literature is automatically rearranged to present information about genes common to multiple groups, or to contrast the differences between the lists. The combination of these methods has improved our understanding of infant leukemia. While the complicated reality of the biology dashed our initial, optimistic hopes for simple answers from

  17. Gene expression profiling: can we identify the right target genes?

    Directory of Open Access Journals (Sweden)

    J. E. Loyd

    2008-12-01

    Full Text Available Gene expression profiling allows the simultaneous monitoring of the transcriptional behaviour of thousands of genes, which may potentially be involved in disease development. Several studies have been performed in idiopathic pulmonary fibrosis (IPF, which aim to define genetic links to the disease in an attempt to improve the current understanding of the underlying pathogenesis of the disease and target pathways for intervention. Expression profiling has shown a clear difference in gene expression between IPF and normal lung tissue, and has identified a wide range of candidate genes, including those known to encode for proteins involved in extracellular matrix formation and degradation, growth factors and chemokines. Recently, familial pulmonary fibrosis cohorts have been examined in an attempt to detect specific genetic mutations associated with IPF. To date, these studies have identified families in which IPF is associated with mutations in the gene encoding surfactant protein C, or with mutations in genes encoding components of telomerase. Although rare and clearly not responsible for the disease in all individuals, the nature of these mutations highlight the importance of the alveolar epithelium in disease pathogenesis and demonstrate the potential for gene expression profiling in helping to advance the current understanding of idiopathic pulmonary fibrosis.

  18. Gene regulation of anthocyanin biosynthesis in two blood-flesh peach (Prunus persica (L.) Batsch) cultivars during fruit development.

    Science.gov (United States)

    Jiao, Yun; Ma, Rui-juan; Shen, Zhi-jun; Yan, Juan; Yu, Ming-liang

    2014-09-01

    The blood-flesh peach has become popular in China due to its attractive anthocyanin-induced pigmentation and antioxidant properties. In this study, we investigated the molecular mechanisms underlying anthocyanin accumulation by examining the expression of nine genes of the anthocyanin biosynthesis pathway found in the peach mesocarp. Expression was measured at six developmental stages in fruit of two blood-flesh and one white-flesh peach cultivars, using quantitative reverse transcription polymerase chain reaction (qRT-PCR). Results show that the expression of the chalcone synthase (CHS) gene was closely related to anthocyanin accumulation in both of the blood-flesh peaches. In the white-flesh peach, we found that the transcription level of phenylalanine ammonia-lyase (PAL) during fruit development was much lower than that in the blood-flesh peach, even though all other genes of the anthocyanin biosynthesis pathway were highly expressed, suggesting that the PAL gene may be limiting in anthocyanin production in the white-flesh peach. Moreover, the transcription levels of the CHS and UDP-glucose-flavonoid 3-O-glucosyltransferase (UFGT) genes were markedly up-regulated at three days after bag removal (DABR) in the blood-flesh peach, suggesting that CHS and UFGT are the key genes in the process of anthocyanin biosynthesis for both of the blood-flesh peaches. The present study will be of great help in improving understanding of the molecular mechanisms involved in anthocyanin accumulation in blood-flesh peaches.

  19. Regulation of immunoglobulin gene rearrangement and expression.

    Science.gov (United States)

    Taussig, M J; Sims, M J; Krawinkel, U

    1989-05-01

    The molecular genetic events leading to Ig expression and their control formed the topic of a recent EMBO workshop. This report by Michael Taussig, Martin Sims and Ulrich Krawinkel discusses contributions dealing with genes expressed in early pre-B cells, the mechanism of rearrangement, aberrant rearrangements seen in B cells of SCID mice, the feedback control of rearrangement as studied in transgenic mice, the control of Ig expression at the transcriptional and post-transcriptional levels, and class switching.

  20. ASPECTS OF CYCLON AND BDNF GENE EXPRESSION IN SCHIZOPHRENIA PATIENTS

    Directory of Open Access Journals (Sweden)

    Rinaldo Shishkov

    2012-08-01

    Full Text Available The pathogenesis of the schizophrenic illness is still not fully elucidated. Many studies have been conducted revealing different aspects but may be the studies of greatest significance are studying the genetic aspects of expression of trophic factors and enzymes associated with nervous system development and plasticity. In this relation we aimed at measuring the Cyclon and BDNF genes expression in blood of patients suffering from schizophrenia and to test for correlation between them. Our result did not reveal correlation in spite of their connection with the disease

  1. Noise minimization in eukaryotic gene expression.

    Directory of Open Access Journals (Sweden)

    Hunter B Fraser

    2004-06-01

    Full Text Available All organisms have elaborate mechanisms to control rates of protein production. However, protein production is also subject to stochastic fluctuations, or "noise." Several recent studies in Saccharomyces cerevisiae and Escherichia coli have investigated the relationship between transcription and translation rates and stochastic fluctuations in protein levels, or more generally, how such randomness is a function of intrinsic and extrinsic factors. However, the fundamental question of whether stochasticity in protein expression is generally biologically relevant has not been addressed, and it remains unknown whether random noise in the protein production rate of most genes significantly affects the fitness of any organism. We propose that organisms should be particularly sensitive to variation in the protein levels of two classes of genes: genes whose deletion is lethal to the organism and genes that encode subunits of multiprotein complexes. Using an experimentally verified model of stochastic gene expression in S. cerevisiae, we estimate the noise in protein production for nearly every yeast gene, and confirm our prediction that the production of essential and complex-forming proteins involves lower levels of noise than does the production of most other genes. Our results support the hypothesis that noise in gene expression is a biologically important variable, is generally detrimental to organismal fitness, and is subject to natural selection.

  2. Gene expression profiling of solitary fibrous tumors.

    Directory of Open Access Journals (Sweden)

    François Bertucci

    Full Text Available BACKGROUND: Solitary fibrous tumors (SFTs are rare spindle-cell tumors. Their cell-of-origin and molecular basis are poorly known. They raise several clinical problems. Differential diagnosis may be difficult, prognosis is poorly apprehended by histoclinical features, and no effective therapy exists for advanced stages. METHODS: We profiled 16 SFT samples using whole-genome DNA microarrays and analyzed their expression profiles with publicly available profiles of 36 additional SFTs and 212 soft tissue sarcomas (STSs. Immunohistochemistry was applied to validate the expression of some discriminating genes. RESULTS: SFTs displayed whole-genome expression profiles more homogeneous and different from STSs, but closer to genetically-simple than genetically-complex STSs. The SFTs/STSs comparison identified a high percentage (∼30% of genes as differentially expressed, most of them without any DNA copy number alteration. One of the genes most overexpressed in SFTs encoded the ALDH1 stem cell marker. Several upregulated genes and associated ontologies were also related to progenitor/stem cells. SFTs also overexpressed genes encoding therapeutic targets such as kinases (EGFR, ERBB2, FGFR1, JAK2, histone deacetylases, or retinoic acid receptors. Their overexpression was found in all SFTs, regardless the anatomical location. Finally, we identified a 31-gene signature associated with the mitotic count, containing many genes related to cell cycle/mitosis, including AURKA. CONCLUSION: We established a robust repertoire of genes differentially expressed in SFTs. Certain overexpressed genes could provide new diagnostic (ALDH1A1, prognostic (AURKA and/or therapeutic targets.

  3. Soybean physiology and gene expression during drought.

    Science.gov (United States)

    Stolf-Moreira, R; Medri, M E; Neumaier, N; Lemos, N G; Pimenta, J A; Tobita, S; Brogin, R L; Marcelino-Guimarães, F C; Oliveira, M C N; Farias, J R B; Abdelnoor, R V; Nepomuceno, A L

    2010-10-05

    Soybean genotypes MG/BR46 (Conquista) and BR16, drought-tolerant and -sensitive, respectively, were compared in terms of morphophysiological and gene-expression responses to water stress during two stages of development. Gene-expression analysis showed differential responses in Gmdreb1a and Gmpip1b mRNA expression within 30 days of water-deficit initiation in MG/BR46 (Conquista) plants. Within 45 days of initiating stress, Gmp5cs and Gmpip1b had relatively higher expression. Initially, BR16 showed increased expression only for Gmdreb1a, and later (45 days) for Gmp5cs, Gmdefensin and Gmpip1b. Only BR16 presented down-regulated expression of genes, such as Gmp5cs and Gmpip1b, 30 days after the onset of moisture stress, and Gmgols after 45 days of stress. The faster perception of water stress in MG/BR46 (Conquista) and the better maintenance of up-regulated gene expression than in the sensitive BR16 genotype imply mechanisms by which the former is better adapted to tolerate moisture deficiency.

  4. Alternative-splicing-mediated gene expression

    Science.gov (United States)

    Wang, Qianliang; Zhou, Tianshou

    2014-01-01

    Alternative splicing (AS) is a fundamental process during gene expression and has been found to be ubiquitous in eukaryotes. However, how AS impacts gene expression levels both quantitatively and qualitatively remains to be fully explored. Here, we analyze two common models of gene expression, each incorporating a simple splice mechanism that a pre-mRNA is spliced into two mature mRNA isoforms in a probabilistic manner. In the constitutive expression case, we show that the steady-state molecular numbers of two mature mRNA isoforms follow mutually independent Poisson distributions. In the bursting expression case, we demonstrate that the tail decay of the steady-state distribution for both mature mRNA isoforms that in general are not mutually independent can be characterized by the product of mean burst size and splicing probability. In both cases, we find that AS can efficiently modulate both the variability (measured by variance) and the noise level of the total mature mRNA, and in particular, the latter is always lower than the noise level of the pre-mRNA, implying that AS always reduces the noise. These results altogether reveal that AS is a mechanism of efficiently controlling the gene expression noise.

  5. The human BDNF gene: peripheral gene expression and protein levels as biomarkers for psychiatric disorders

    Science.gov (United States)

    Cattaneo, A; Cattane, N; Begni, V; Pariante, C M; Riva, M A

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) regulates the survival and growth of neurons, and influences synaptic efficiency and plasticity. The human BDNF gene consists of 11 exons, and distinct BDNF transcripts are produced through the use of alternative promoters and splicing events. The majority of the BDNF transcripts can be detected not only in the brain but also in the blood cells, although no study has yet investigated the differential expression of BDNF transcripts at the peripheral level. This review provides a description of the human BDNF gene structure as well as a summary of clinical and preclinical evidence supporting the role of BDNF in the pathogenesis of psychiatric disorders. We will discuss several mechanisms as possibly underlying BDNF modulation, including epigenetic mechanisms. We will also discuss the potential use of peripheral BDNF as a biomarker for psychiatric disorders, focusing on the factors that can influence BDNF gene expression and protein levels. Within this context, we have also characterized, for we believe the first time, the expression of BDNF transcripts in the blood, with the aim to provide novel insights into the molecular mechanisms and signaling that may regulate peripheral BDNF gene expression levels. PMID:27874848

  6. Lithium ions induce prestalk-associated gene expression and inhibit prespore gene expression in Dictyostelium discoideum

    NARCIS (Netherlands)

    Peters, Dorien J.M.; Lookeren Campagne, Michiel M. van; Haastert, Peter J.M. van; Spek, Wouter; Schaap, Pauline

    1989-01-01

    We investigated the effect of Li+ on two types of cyclic AMP-regulated gene expression and on basal and cyclic AMP-stimulated inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) levels. Li+ effectively inhibits cyclic AMP-induced prespore gene expression, half-maximal inhibition occurring at about 2mM-LiCl.

  7. Gene expression profiles in skeletal muscle after gene electrotransfer

    DEFF Research Database (Denmark)

    Hojman, Pernille; Zibert, John R; Gissel, Hanne;

    2007-01-01

    with the control muscles. Most interestingly, no changes in the expression of proteins involved in inflammatory responses or muscle regeneration was detected, indicating limited muscle damage and regeneration. Histological analysis revealed structural changes with loss of cell integrity and striation pattern......BACKGROUND: Gene transfer by electroporation (DNA electrotransfer) to muscle results in high level long term transgenic expression, showing great promise for treatment of e.g. protein deficiency syndromes. However little is known about the effects of DNA electrotransfer on muscle fibres. We have......) followed by a long low voltage pulse (LV, 100 V/cm, 400 ms); a pulse combination optimised for efficient and safe gene transfer. Muscles were transfected with green fluorescent protein (GFP) and excised at 4 hours, 48 hours or 3 weeks after treatment. RESULTS: Differentially expressed genes were...

  8. Gene expression analysis of flax seed development

    Directory of Open Access Journals (Sweden)

    Sharpe Andrew

    2011-04-01

    Full Text Available Abstract Background Flax, Linum usitatissimum L., is an important crop whose seed oil and stem fiber have multiple industrial applications. Flax seeds are also well-known for their nutritional attributes, viz., omega-3 fatty acids in the oil and lignans and mucilage from the seed coat. In spite of the importance of this crop, there are few molecular resources that can be utilized toward improving seed traits. Here, we describe flax embryo and seed development and generation of comprehensive genomic resources for the flax seed. Results We describe a large-scale generation and analysis of expressed sequences in various tissues. Collectively, the 13 libraries we have used provide a broad representation of genes active in developing embryos (globular, heart, torpedo, cotyledon and mature stages seed coats (globular and torpedo stages and endosperm (pooled globular to torpedo stages and genes expressed in flowers, etiolated seedlings, leaves, and stem tissue. A total of 261,272 expressed sequence tags (EST (GenBank accessions LIBEST_026995 to LIBEST_027011 were generated. These EST libraries included transcription factor genes that are typically expressed at low levels, indicating that the depth is adequate for in silico expression analysis. Assembly of the ESTs resulted in 30,640 unigenes and 82% of these could be identified on the basis of homology to known and hypothetical genes from other plants. When compared with fully sequenced plant genomes, the flax unigenes resembled poplar and castor bean more than grape, sorghum, rice or Arabidopsis. Nearly one-fifth of these (5,152 had no homologs in sequences reported for any organism, suggesting that this category represents genes that are likely unique to flax. Digital analyses revealed gene expression dynamics for the biosynthesis of a number of important seed constituents during seed development. Conclusions We have developed a foundational database of expressed sequences and collection of plasmid

  9. Brain Gene Expression Signatures From Cerebrospinal Fluid Exosome RNA Profiling

    Science.gov (United States)

    Zanello, S. B.; Stevens, B.; Calvillo, E.; Tang, R.; Gutierrez Flores, B.; Hu, L.; Skog, J.; Bershad, E.

    2016-01-01

    While the Visual Impairment and Intracranial Pressure (VIIP) syndrome observations have focused on ocular symptoms, spaceflight has been also associated with a number of other performance and neurologic signs, such as headaches, cognitive changes, vertigo, nausea, sleep/circadian disruption and mood alterations, which, albeit likely multifactorial, can also result from elevation of intracranial pressure (ICP). We therefore hypothesize that these various symptoms are caused by disturbances in the neurophysiology of the brain structures and are correlated with molecular markers in the cerebrospinal fluid (CSF) as indicators of neurophysiological changes. Exosomes are 30-200 nm microvesicles shed into all biofluids, including blood, urine, and CSF, carrying a highly rich source of intact protein and RNA cargo. Exosomes have been identified in human CSF, and their proteome and RNA pool is a potential new reservoir for biomarker discovery in neurological disorders. The purpose of this study is to investigate changes in brain gene expression via exosome analysis in patients suffering from ICP elevation of varied severity (idiopathic intracranial hypertension -IIH), a condition which shares some of the neuroophthalmological features of VIIP, as a first step toward obtaining evidence suggesting that cognitive function and ICP levels can be correlated with biomarkers in the CSF. Our preliminary work, reported last year, validated the exosomal technology applicable to CSF analysis and demonstrated that it was possible to obtain gene expression evidence of inflammation processes in traumatic brain injury patients. We are now recruiting patients with suspected IIH requiring lumbar puncture at Baylor College of Medicine. Both CSF (5 ml) and human plasma (10 ml) are being collected in order to compare the pattern of differentially expressed genes observed in CSF and in blood. Since blood is much more accessible than CSF, we would like to determine whether plasma biomarkers for

  10. Gene expression profiles in irradiated cancer cells

    Science.gov (United States)

    Minafra, L.; Bravatà, V.; Russo, G.; Ripamonti, M.; Gilardi, M. C.

    2013-07-01

    Knowledge of the molecular and genetic mechanisms underlying cellular response to radiation may provide new avenues to develop innovative predictive tests of radiosensitivity of tumours and normal tissues and to improve individual therapy. Nowadays very few studies describe molecular changes induced by hadrontherapy treatments, therefore this field has to be explored and clarified. High-throughput methodologies, such as DNA microarray, allow us to analyse mRNA expression of thousands of genes simultaneously in order to discover new genes and pathways as targets of response to hadrontherapy. Our aim is to elucidate the molecular networks involved in the sensitivity/resistance of cancer cell lines subjected to hadrontherapy treatments with a genomewide approach by using cDNA microarray technology to identify gene expression profiles and candidate genes responsible of differential cellular responses.

  11. Gene expression profiles in irradiated cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Minafra, L.; Bravatà, V.; Russo, G.; Ripamonti, M.; Gilardi, M. C. [IBFM CNR - LATO, Cefalù, Segrate (Italy)

    2013-07-26

    Knowledge of the molecular and genetic mechanisms underlying cellular response to radiation may provide new avenues to develop innovative predictive tests of radiosensitivity of tumours and normal tissues and to improve individual therapy. Nowadays very few studies describe molecular changes induced by hadrontherapy treatments, therefore this field has to be explored and clarified. High-throughput methodologies, such as DNA microarray, allow us to analyse mRNA expression of thousands of genes simultaneously in order to discover new genes and pathways as targets of response to hadrontherapy. Our aim is to elucidate the molecular networks involved in the sensitivity/resistance of cancer cell lines subjected to hadrontherapy treatments with a genomewide approach by using cDNA microarray technology to identify gene expression profiles and candidate genes responsible of differential cellular responses.

  12. Sequencing and Gene Expression Analysis of Leishmania tropica LACK Gene.

    Directory of Open Access Journals (Sweden)

    Nour Hammoudeh

    2014-12-01

    Full Text Available Leishmania Homologue of receptors for Activated C Kinase (LACK antigen is a 36-kDa protein, which provokes a very early immune response against Leishmania infection. There are several reports on the expression of LACK through different life-cycle stages of genus Leishmania, but only a few of them have focused on L.tropica.The present study provides details of the cloning, DNA sequencing and gene expression of LACK in this parasite species. First, several local isolates of Leishmania parasites were typed in our laboratory using PCR technique to verify of Leishmania parasite species. After that, LACK gene was amplified and cloned into a vector for sequencing. Finally, the expression of this molecule in logarithmic and stationary growth phase promastigotes, as well as in amastigotes, was evaluated by Reverse Transcription-PCR (RT-PCR technique.The typing result confirmed that all our local isolates belong to L.tropica. LACK gene sequence was determined and high similarity was observed with the sequences of other Leishmania species. Furthermore, the expression of LACK gene in both promastigotes and amastigotes forms was confirmed.Overall, the data set the stage for future studies of the properties and immune role of LACK gene products.

  13. Extracting expression modules from perturbational gene expression compendia

    Directory of Open Access Journals (Sweden)

    Van Dijck Patrick

    2008-04-01

    Full Text Available Abstract Background Compendia of gene expression profiles under chemical and genetic perturbations constitute an invaluable resource from a systems biology perspective. However, the perturbational nature of such data imposes specific challenges on the computational methods used to analyze them. In particular, traditional clustering algorithms have difficulties in handling one of the prominent features of perturbational compendia, namely partial coexpression relationships between genes. Biclustering methods on the other hand are specifically designed to capture such partial coexpression patterns, but they show a variety of other drawbacks. For instance, some biclustering methods are less suited to identify overlapping biclusters, while others generate highly redundant biclusters. Also, none of the existing biclustering tools takes advantage of the staple of perturbational expression data analysis: the identification of differentially expressed genes. Results We introduce a novel method, called ENIGMA, that addresses some of these issues. ENIGMA leverages differential expression analysis results to extract expression modules from perturbational gene expression data. The core parameters of the ENIGMA clustering procedure are automatically optimized to reduce the redundancy between modules. In contrast to the biclusters produced by most other methods, ENIGMA modules may show internal substructure, i.e. subsets of genes with distinct but significantly related expression patterns. The grouping of these (often functionally related patterns in one module greatly aids in the biological interpretation of the data. We show that ENIGMA outperforms other methods on artificial datasets, using a quality criterion that, unlike other criteria, can be used for algorithms that generate overlapping clusters and that can be modified to take redundancy between clusters into account. Finally, we apply ENIGMA to the Rosetta compendium of expression profiles for

  14. Gene Expression by PBMC in Primary Sclerosing Cholangitis: Evidence for Dysregulation of Immune Mediated Genes

    Directory of Open Access Journals (Sweden)

    Christopher A. Aoki

    2006-01-01

    Full Text Available Primary sclerosing cholangitis (PSC is a chronic disease of the bile ducts characterized by an inflammatory infiltrate and obliterative fibrosis. The precise role of the immune system in the pathogenesis of PSC remains unknown. We used RNA microarray analysis to identify immune-related genes and pathways that are differentially expressed in PSC. Messenger RNA (mRNA from peripheral blood mononuclear cells (PBMC was isolated from both patients with PSC and age and sex matched healthy controls. Samples from 5 PSC patients and 5 controls were analyzed by microarray and based upon rigorous statistical analysis of the data, relevant genes were chosen for confirmation by RT-PCR in 10 PSC patients and 10 controls. Using unsupervised hierarchical clustering, gene expression in PSC was statistically different from our control population. Interestingly, genes within the IL-2 receptor beta, IL-6 and MAP Kinase pathways were found to be differently expressed in patients with PSC compared to controls. Further, individual genes, TNF-α induced protein 6 (TNFaip6 and membrane-spanning 4-domains, subfamily A (ms4a were found to be upregulated in PSC while similar to Mothers against decapentaplegic homolog 5 (SMAD 5 was downregulated. In conclusion, several immune-related pathways and genes were differentially expressed in PSC compared to control patients, giving further evidence that this disease is systemic and immune-mediated.

  15. Understanding gene expression in coronary artery disease through global profiling, network analysis and independent validation of key candidate genes

    Indian Academy of Sciences (India)

    Prathima Arvind; Shanker Jayashree; Srikarthika Jambunathan; Jiny Nair; Vijay V. Kakkar

    2015-12-01

    Molecular mechanism underlying the patho-physiology of coronary artery disease (CAD) is complex. We used global expression profiling combined with analysis of biological network to dissect out potential genes and pathways associated with CAD in a representative case–control Asian Indian cohort. We initially performed blood transcriptomics profiling in 20 subjects, including 10 CAD patients and 10 healthy controls on the Agilent microarray platform. Data was analysed with Gene Spring Gx12.5, followed by network analysis using David v 6.7 and Reactome databases. The most significant differentially expressed genes from microarray were independently validated by real time PCR in 97 cases and 97 controls. A total of 190 gene transcripts showed significant differential expression (fold change > 2, P < 0.05) between the cases and the controls of which 142 genes were upregulated and 48 genes were downregulated. Genes associated with inflammation, immune response, cell regula- tion, proliferation and apoptotic pathways were enriched, while inflammatory and immune response genes were displayed as hubs in the network, having greater number of interactions with the neighbouring genes. Expression of 1/2/3, 8, 1, 2, 69, , , 4, 42, 58, and 42 genes were independently validated; 1/2/3 and 8 showed >8-fold higher expression in cases relative to the controls implying their important role in CAD. In conclusion, global gene expression profiling combined with network analysis can help in identifying key genes and pathways for CAD.

  16. Visualizing Gene Expression In Situ

    Energy Technology Data Exchange (ETDEWEB)

    Burlage, R.S.

    1998-11-02

    Visualizing bacterial cells and describing their responses to the environment are difficult tasks. Their small size is the chief reason for the difficulty, which means that we must often use many millions of cells in a sample in order to determine what the average response of the bacteria is. However, an average response can sometimes mask important events in bacterial physiology, which means that our understanding of these organisms will suffer. We have used a variety of instruments to visualize bacterial cells, all of which tell us something different about the sample. We use a fluorescence activated cell sorter to sort cells based on the fluorescence provided by bioreporter genes, and these can be used to select for particular genetic mutations. Cells can be visualized by epifluorescent microscopy, and sensitive photodetectors can be added that allow us to find a single bacterial cell that is fluorescent or bioluminescent. We have also used standard photomultipliers to examine cell aggregates as field bioreporter microorganisms. Examples of each of these instruments show how our understanding of bacterial physiology has changed with the technology.

  17. Argudas: arguing with gene expression information

    CERN Document Server

    McLeod, Kenneth; Burger, Albert

    2010-01-01

    In situ hybridisation gene expression information helps biologists identify where a gene is expressed. However, the databases that republish the experimental information are often both incomplete and inconsistent. This paper examines a system, Argudas, designed to help tackle these issues. Argudas is an evolution of an existing system, and so that system is reviewed as a means of both explaining and justifying the behaviour of Argudas. Throughout the discussion of Argudas a number of issues will be raised including the appropriateness of argumentation in biology and the challenges faced when integrating apparently similar online biological databases.

  18. Optogenetics for gene expression in mammalian cells.

    Science.gov (United States)

    Müller, Konrad; Naumann, Sebastian; Weber, Wilfried; Zurbriggen, Matias D

    2015-02-01

    Molecular switches that are controlled by chemicals have evolved as central research instruments in mammalian cell biology. However, these tools are limited in terms of their spatiotemporal resolution due to freely diffusing inducers. These limitations have recently been addressed by the development of optogenetic, genetically encoded, and light-responsive tools that can be controlled with the unprecedented spatiotemporal precision of light. In this article, we first provide a brief overview of currently available optogenetic tools that have been designed to control diverse cellular processes. Then, we focus on recent developments in light-controlled gene expression technologies and provide the reader with a guideline for choosing the most suitable gene expression system.

  19. [Imprinting genes and it's expression in Arabidopsis].

    Science.gov (United States)

    Zhang, Hong-Yu; Xu, Pei-Zhou; Yang, Hua; Wu, Xian-Jun

    2010-07-01

    Genomic imprinting refers to the phenomenon that the expression of a gene copy depends on its parent of origin. The Arabidopsis imprinted FIS (Fertilisation-independent seed) genes, mea, fis2, and fie, play essential roles in the repression of central cell and the regulation of early endosperm development. fis mutants display two phenotypes: autonomous diploid endosperm development when fertilization is absent and un-cellularised endosperm formation when fertilization occurs. The FIS Polycomb protein complex including the above three FIS proteins catalyzes histone H3 K27 tri-methylation on target loci. DME (DEMETER), a DNA glycosylase, and AtMET1 (Methyltransferase1), a DNA methyltransferase, are involved in the regulation of imprinted expression of both mea and fis2. This review summarizes the studies on the Arabidopsis imprinted FIS genes and other related genes. Recent works have shown that the insertion of transposons may affect nearby gene expression, which may be the main driving force behind the evolution of genomic imprinting. This summary covers the achievements on Arabidopsis imprinted genes will provide important information for studies on genomic imprinting in the important crops such as rice and maize.

  20. Designing genes for successful protein expression.

    Science.gov (United States)

    Welch, Mark; Villalobos, Alan; Gustafsson, Claes; Minshull, Jeremy

    2011-01-01

    DNA sequences are now far more readily available in silico than as physical DNA. De novo gene synthesis is an increasingly cost-effective method for building genetic constructs, and effectively removes the constraint of basing constructs on extant sequences. This allows scientists and engineers to experimentally test their hypotheses relating sequence to function. Molecular biologists, and now synthetic biologists, are characterizing and cataloging genetic elements with specific functions, aiming to combine them to perform complex functions. However, the most common purpose of synthetic genes is for the expression of an encoded protein. The huge number of different proteins makes it impossible to characterize and catalog each functional gene. Instead, it is necessary to abstract design principles from experimental data: data that can be generated by making predictions followed by synthesizing sequences to test those predictions. Because of the degeneracy of the genetic code, design of gene sequences to encode proteins is a high-dimensional problem, so there is no single simple formula to guarantee success. Nevertheless, there are several straightforward steps that can be taken to greatly increase the probability that a designed sequence will result in expression of the encoded protein. In this chapter, we discuss gene sequence parameters that are important for protein expression. We also describe algorithms for optimizing these parameters, and troubleshooting procedures that can be helpful when initial attempts fail. Finally, we show how many of these methods can be accomplished using the synthetic biology software tool Gene Designer.

  1. Selection of reference genes for RT-qPCR studies in blood of beluga whales (Delphinapterus leucas

    Directory of Open Access Journals (Sweden)

    I-Hua Chen

    2016-03-01

    Full Text Available Reverse transcription quantitative PCR (RT-qPCR is used for research in gene expression, and it is vital to choose appropriate housekeeping genes (HKGs as reference genes to obtain correct results. The purpose of this study is to determine stably expressed HKGs in blood of beluga whales (Delphinapterus leucas that can be the appropriate reference genes in relative quantification in gene expression research. Sixty blood samples were taken from four beluga whales. Thirteen candidate HKGs (ACTB, B2M, GAPDH, HPRT1, LDHB, PGK1, RPL4, RPL8, RPL18, RPS9, RPS18, TFRC, YWHAZ were tested using RT-qPCR. The stability values of the HKGs were determined by four different algorithms. Comprehensive analysis of the results revealed that RPL4, PGK1 and ACTB are strongly recommended for use in future RT-qPCR studies in beluga blood samples. This research provides recommendation of reference gene selection, which may contribute to further mRNA relative quantification research in the peripheral blood leukocytes in captive cetaceans. The gene expression assessment of the immune components in blood have the potential to serve as an important approach to evaluating cetacean health influenced by environmental insults.

  2. Sequence and gene expression evolution of paralogous genes in willows.

    Science.gov (United States)

    Harikrishnan, Srilakshmy L; Pucholt, Pascal; Berlin, Sofia

    2015-12-22

    Whole genome duplications (WGD) have had strong impacts on species diversification by triggering evolutionary novelties, however, relatively little is known about the balance between gene loss and forces involved in the retention of duplicated genes originating from a WGD. We analyzed putative Salicoid duplicates in willows, originating from the Salicoid WGD, which took place more than 45 Mya. Contigs were constructed by de novo assembly of RNA-seq data derived from leaves and roots from two genotypes. Among the 48,508 contigs, 3,778 pairs were, based on fourfold synonymous third-codon transversion rates and syntenic positions, predicted to be Salicoid duplicates. Both copies were in most cases expressed in both tissues and 74% were significantly differentially expressed. Mean Ka/Ks was 0.23, suggesting that the Salicoid duplicates are evolving by purifying selection. Gene Ontology enrichment analyses showed that functions related to DNA- and nucleic acid binding were over-represented among the non-differentially expressed Salicoid duplicates, while functions related to biosynthesis and metabolism were over-represented among the differentially expressed Salicoid duplicates. We propose that the differentially expressed Salicoid duplicates are regulatory neo- and/or subfunctionalized, while the non-differentially expressed are dose sensitive, hence, functionally conserved. Multiple evolutionary processes, thus drive the retention of Salicoid duplicates in willows.

  3. The TRANSFAC system on gene expression regulation.

    Science.gov (United States)

    Wingender, E; Chen, X; Fricke, E; Geffers, R; Hehl, R; Liebich, I; Krull, M; Matys, V; Michael, H; Ohnhäuser, R; Prüss, M; Schacherer, F; Thiele, S; Urbach, S

    2001-01-01

    The TRANSFAC database on transcription factors and their DNA-binding sites and profiles (http://www.gene-regulation.de/) has been quantitatively extended and supplemented by a number of modules. These modules give information about pathologically relevant mutations in regulatory regions and transcription factor genes (PathoDB), scaffold/matrix attached regions (S/MARt DB), signal transduction (TRANSPATH) and gene expression sources (CYTOMER). Altogether, these distinct database modules constitute the TRANSFAC system. They are accompanied by a number of program routines for identifying potential transcription factor binding sites or for localizing individual components in the regulatory network of a cell.

  4. Blood pressure loci identified with a gene-centric array.

    Science.gov (United States)

    Johnson, Toby; Gaunt, Tom R; Newhouse, Stephen J; Padmanabhan, Sandosh; Tomaszewski, Maciej; Kumari, Meena; Morris, Richard W; Tzoulaki, Ioanna; O'Brien, Eoin T; Poulter, Neil R; Sever, Peter; Shields, Denis C; Thom, Simon; Wannamethee, Sasiwarang G; Whincup, Peter H; Brown, Morris J; Connell, John M; Dobson, Richard J; Howard, Philip J; Mein, Charles A; Onipinla, Abiodun; Shaw-Hawkins, Sue; Zhang, Yun; Davey Smith, George; Day, Ian N M; Lawlor, Debbie A; Goodall, Alison H; Fowkes, F Gerald; Abecasis, Gonçalo R; Elliott, Paul; Gateva, Vesela; Braund, Peter S; Burton, Paul R; Nelson, Christopher P; Tobin, Martin D; van der Harst, Pim; Glorioso, Nicola; Neuvrith, Hani; Salvi, Erika; Staessen, Jan A; Stucchi, Andrea; Devos, Nabila; Jeunemaitre, Xavier; Plouin, Pierre-François; Tichet, Jean; Juhanson, Peeter; Org, Elin; Putku, Margus; Sõber, Siim; Veldre, Gudrun; Viigimaa, Margus; Levinsson, Anna; Rosengren, Annika; Thelle, Dag S; Hastie, Claire E; Hedner, Thomas; Lee, Wai K; Melander, Olle; Wahlstrand, Björn; Hardy, Rebecca; Wong, Andrew; Cooper, Jackie A; Palmen, Jutta; Chen, Li; Stewart, Alexandre F R; Wells, George A; Westra, Harm-Jan; Wolfs, Marcel G M; Clarke, Robert; Franzosi, Maria Grazia; Goel, Anuj; Hamsten, Anders; Lathrop, Mark; Peden, John F; Seedorf, Udo; Watkins, Hugh; Ouwehand, Willem H; Sambrook, Jennifer; Stephens, Jonathan; Casas, Juan-Pablo; Drenos, Fotios; Holmes, Michael V; Kivimaki, Mika; Shah, Sonia; Shah, Tina; Talmud, Philippa J; Whittaker, John; Wallace, Chris; Delles, Christian; Laan, Maris; Kuh, Diana; Humphries, Steve E; Nyberg, Fredrik; Cusi, Daniele; Roberts, Robert; Newton-Cheh, Christopher; Franke, Lude; Stanton, Alice V; Dominiczak, Anna F; Farrall, Martin; Hingorani, Aroon D; Samani, Nilesh J; Caulfield, Mark J; Munroe, Patricia B

    2011-12-09

    Raised blood pressure (BP) is a major risk factor for cardiovascular disease. Previous studies have identified 47 distinct genetic variants robustly associated with BP, but collectively these explain only a few percent of the heritability for BP phenotypes. To find additional BP loci, we used a bespoke gene-centric array to genotype an independent discovery sample of 25,118 individuals that combined hypertensive case-control and general population samples. We followed up four SNPs associated with BP at our p < 8.56 × 10(-7) study-specific significance threshold and six suggestively associated SNPs in a further 59,349 individuals. We identified and replicated a SNP at LSP1/TNNT3, a SNP at MTHFR-NPPB independent (r(2) = 0.33) of previous reports, and replicated SNPs at AGT and ATP2B1 reported previously. An analysis of combined discovery and follow-up data identified SNPs significantly associated with BP at p < 8.56 × 10(-7) at four further loci (NPR3, HFE, NOS3, and SOX6). The high number of discoveries made with modest genotyping effort can be attributed to using a large-scale yet targeted genotyping array and to the development of a weighting scheme that maximized power when meta-analyzing results from samples ascertained with extreme phenotypes, in combination with results from nonascertained or population samples. Chromatin immunoprecipitation and transcript expression data highlight potential gene regulatory mechanisms at the MTHFR and NOS3 loci. These results provide candidates for further study to help dissect mechanisms affecting BP and highlight the utility of studying SNPs and samples that are independent of those studied previously even when the sample size is smaller than that in previous studies.

  5. PROGNOSTIC IMPACT OF WT-1 GENE EXPRESSION IN EGYPTIAN CHILDREN WITH ACUTE LYMPHOBLASTIC LEUKEMIA

    Directory of Open Access Journals (Sweden)

    Adel Abd Elhaleim Hagag

    2016-01-01

    Full Text Available Background: Acute lymphoblastic leukemia (ALL is the most common childhood cancer representing 23% of pediatric cancers. Wilms' tumor -1 gene has is a novel prognostic factor, minimal residual disease marker and therapeutic target in acute leukemia. Aim of the work: The aim of this work was to study the impact of WT-1 gene expression in prognosis of Egyptian children with ALL. Patients and methods: This study was conducted on 40 children with newly diagnosed ALL who were subjected to full history taking, thorough clinical examination and laboratory investigations including; complete blood count, LDH, BM aspiration, cytochemistry, immunophenotyping, assessment of WT-1 Gene by real time PCR in BM samples at time of diagnosis. Results: Positive WT-1 gene expression was found in 22 cases (55% and negative expression in 18 cases (45%. Positive WT-1 gene expression group (n=22 includes 14 males and 8 females with mean age at presentation of 5.261 ± 0.811 while negative WT-1 gene expression group (n=18 includes 12 males and 6 females with mean age at diagnosis of 9.669 ± 3.731 with significantly older age in negative WT-1 gene expression group but no significant differences between positive and negative WT-1 gene expression groups regarding sex and clinical presentations. There were no significant differences in platelets and WBCs counts, hemoglobin and LDH levels and number of peripheral blood and BM blast cells at diagnosis between positive and negative WT-1 gene expression groups but after induction therapy there were significantly lower BM blast cells in positive WT-1 gene expression group. There were no statistically significant differences between positive and negative WT-1 gene expression groups regarding immunophenotyping. There were significantly higher relapse and death rates and lower rates of CR, DFS and OAS in negativeWT-1 gene expression group.MRD at end of induction therapy was found in 14 cases out of 40 patients. There was

  6. Impact of methoxyacetic acid on mouse Leydig cell gene expression

    Directory of Open Access Journals (Sweden)

    Waxman David J

    2010-06-01

    Full Text Available Abstract Background Methoxyacetic acid (MAA is the active metabolite of the widely used industrial chemical ethylene glycol monomethyl ether, which is associated with various developmental and reproductive toxicities, including neural toxicity, blood and immune disorders, limb degeneration and testicular toxicity. Testicular toxicity is caused by degeneration of germ cells in association with changes in gene expression in both germ cells and Sertoli cells of the testis. This study investigates the impact of MAA on gene expression in testicular Leydig cells, which play a critical role in germ cell survival and male reproductive function. Methods Cultured mouse TM3 Leydig cells were treated with MAA for 3, 8, and 24 h and changes in gene expression were monitored by genome-wide transcriptional profiling. Results A total of 3,912 MAA-responsive genes were identified. Ingenuity Pathway analysis identified reproductive system disease, inflammatory disease and connective tissue disorder as the top biological functions affected by MAA. The MAA-responsive genes were classified into 1,366 early responders, 1,387 mid-responders, and 1,138 late responders, based on the time required for MAA to elicit a response. Analysis of enriched functional clusters for each subgroup identified 106 MAA early response genes involved in transcription regulation, including 32 genes associated with developmental processes. 60 DNA-binding proteins responded to MAA rapidly but transiently, and may contribute to the downstream effects of MAA seen for many mid and late response genes. Genes within the phosphatidylinositol/phospholipase C/calcium signaling pathway, whose activity is required for potentiation of nuclear receptor signaling by MAA, were also enriched in the set of early MAA response genes. In contrast, many of the genes responding to MAA at later time points encode membrane proteins that contribute to cell adhesion and membrane signaling. Conclusions These findings

  7. Identification of genes expressed during myocardial development

    Institute of Scientific and Technical Information of China (English)

    陈小圆; 陈健宏; 张碧琪; 梁瑛; 梁平

    2003-01-01

    Objective To identify genes expressed in the fetal heart that are potentially important for myocardial development and cardiomyocyte proliferation.Methods mRNAs from fetal (29 weeks) and adult cardiomyocytes were use for suppression subtractive hybridization (SSH). Both forward (fetal as tester) and reverse (adult as driver) subtractions were performed. Clones confirmed by dot-blot analysis to be differentially expressed were sequenced and analyzed.Results Differential expressions were detected for 39 out of 96 (41%) clones on forward subtraction and 24 out of 80 (30%) clones on reverse. For fetal dominating genes, 28 clones matched to 10 known genes (COL1A2, COL3A1, endomucin, HBG1, HBG2, PCBP2, LOC51144, TGFBI, vinculin and PND), 9 clones to 5 cDNAs of unknown functions (accession AK021715, AF085867, AB040948, AB051460 and AB051512) and 2 clones had homology to hEST sequences. For the reverse subtraction, all clones showed homology to mitochondrial transcripts.Conclusions We successfully applied SSH to detect those genes differentially expressed in fetal cardiac myocytes, some of which have not been shown relative to myocardial development.

  8. Differential expression of cell adhesion genes

    DEFF Research Database (Denmark)

    Stein, Wilfred D; Litman, Thomas; Fojo, Tito;

    2005-01-01

    that compare cells grown in suspension to similar cells grown attached to one another as aggregates have suggested that it is adhesion to the extracellular matrix of the basal membrane that confers resistance to apoptosis and, hence, resistance to cytotoxins. The genes whose expression correlates with poor...

  9. The Low Noise Limit in Gene Expression.

    Directory of Open Access Journals (Sweden)

    Roy D Dar

    Full Text Available Protein noise measurements are increasingly used to elucidate biophysical parameters. Unfortunately noise analyses are often at odds with directly measured parameters. Here we show that these inconsistencies arise from two problematic analytical choices: (i the assumption that protein translation rate is invariant for different proteins of different abundances, which has inadvertently led to (ii the assumption that a large constitutive extrinsic noise sets the low noise limit in gene expression. While growing evidence suggests that transcriptional bursting may set the low noise limit, variability in translational bursting has been largely ignored. We show that genome-wide systematic variation in translational efficiency can-and in the case of E. coli does-control the low noise limit in gene expression. Therefore constitutive extrinsic noise is small and only plays a role in the absence of a systematic variation in translational efficiency. These results show the existence of two distinct expression noise patterns: (1 a global noise floor uniformly imposed on all genes by expression bursting; and (2 high noise distributed to only a select group of genes.

  10. Cluster Analysis of Gene Expression Data

    CERN Document Server

    Domany, E

    2002-01-01

    The expression levels of many thousands of genes can be measured simultaneously by DNA microarrays (chips). This novel experimental tool has revolutionized research in molecular biology and generated considerable excitement. A typical experiment uses a few tens of such chips, each dedicated to a single sample - such as tissue extracted from a particular tumor. The results of such an experiment contain several hundred thousand numbers, that come in the form of a table, of several thousand rows (one for each gene) and 50 - 100 columns (one for each sample). We developed a clustering methodology to mine such data. In this review I provide a very basic introduction to the subject, aimed at a physics audience with no prior knowledge of either gene expression or clustering methods. I explain what genes are, what is gene expression and how it is measured by DNA chips. Next I explain what is meant by "clustering" and how we analyze the massive amounts of data from such experiments, and present results obtained from a...

  11. Gene Expression Commons: an open platform for absolute gene expression profiling.

    Directory of Open Access Journals (Sweden)

    Jun Seita

    Full Text Available Gene expression profiling using microarrays has been limited to comparisons of gene expression between small numbers of samples within individual experiments. However, the unknown and variable sensitivities of each probeset have rendered the absolute expression of any given gene nearly impossible to estimate. We have overcome this limitation by using a very large number (>10,000 of varied microarray data as a common reference, so that statistical attributes of each probeset, such as the dynamic range and threshold between low and high expression, can be reliably discovered through meta-analysis. This strategy is implemented in a web-based platform named "Gene Expression Commons" (https://gexc.stanford.edu/ which contains data of 39 distinct highly purified mouse hematopoietic stem/progenitor/differentiated cell populations covering almost the entire hematopoietic system. Since the Gene Expression Commons is designed as an open platform, investigators can explore the expression level of any gene, search by expression patterns of interest, submit their own microarray data, and design their own working models representing biological relationship among samples.

  12. Regulation of methane genes and genome expression

    Energy Technology Data Exchange (ETDEWEB)

    John N. Reeve

    2009-09-09

    At the start of this project, it was known that methanogens were Archaeabacteria (now Archaea) and were therefore predicted to have gene expression and regulatory systems different from Bacteria, but few of the molecular biology details were established. The goals were then to establish the structures and organizations of genes in methanogens, and to develop the genetic technologies needed to investigate and dissect methanogen gene expression and regulation in vivo. By cloning and sequencing, we established the gene and operon structures of all of the “methane” genes that encode the enzymes that catalyze methane biosynthesis from carbon dioxide and hydrogen. This work identified unique sequences in the methane gene that we designated mcrA, that encodes the largest subunit of methyl-coenzyme M reductase, that could be used to identify methanogen DNA and establish methanogen phylogenetic relationships. McrA sequences are now the accepted standard and used extensively as hybridization probes to identify and quantify methanogens in environmental research. With the methane genes in hand, we used northern blot and then later whole-genome microarray hybridization analyses to establish how growth phase and substrate availability regulated methane gene expression in Methanobacterium thermautotrophicus ΔH (now Methanothermobacter thermautotrophicus). Isoenzymes or pairs of functionally equivalent enzymes catalyze several steps in the hydrogen-dependent reduction of carbon dioxide to methane. We established that hydrogen availability determine which of these pairs of methane genes is expressed and therefore which of the alternative enzymes is employed to catalyze methane biosynthesis under different environmental conditions. As were unable to establish a reliable genetic system for M. thermautotrophicus, we developed in vitro transcription as an alternative system to investigate methanogen gene expression and regulation. This led to the discovery that an archaeal protein

  13. Regulation of noise in gene expression.

    Science.gov (United States)

    Sanchez, Alvaro; Choubey, Sandeep; Kondev, Jane

    2013-01-01

    The biochemical processes leading to the synthesis of new proteins are random, as they typically involve a small number of diffusing molecules. They lead to fluctuations in the number of proteins in a single cell as a function of time and to cell-to-cell variability of protein abundances. These in turn can lead to phenotypic heterogeneity in a population of genetically identical cells. Phenotypic heterogeneity may have important consequences for the development of multicellular organisms and the fitness of bacterial colonies, raising the question of how it is regulated. Here we review the experimental evidence that transcriptional regulation affects noise in gene expression, and discuss how the noise strength is encoded in the architecture of the promoter region. We discuss how models based on specific molecular mechanisms of gene regulation can make experimentally testable predictions for how changes to the promoter architecture are reflected in gene expression noise.

  14. Autism and increased paternal age related changes in global levels of gene expression regulation.

    Directory of Open Access Journals (Sweden)

    Mark D Alter

    Full Text Available A causal role of mutations in multiple general transcription factors in neurodevelopmental disorders including autism suggested that alterations in global levels of gene expression regulation might also relate to disease risk in sporadic cases of autism. This premise can be tested by evaluating for changes in the overall distribution of gene expression levels. For instance, in mice, variability in hippocampal-dependent behaviors was associated with variability in the pattern of the overall distribution of gene expression levels, as assessed by variance in the distribution of gene expression levels in the hippocampus. We hypothesized that a similar change in variance might be found in children with autism. Gene expression microarrays covering greater than 47,000 unique RNA transcripts were done on RNA from peripheral blood lymphocytes (PBL of children with autism (n = 82 and controls (n = 64. Variance in the distribution of gene expression levels from each microarray was compared between groups of children. Also tested was whether a risk factor for autism, increased paternal age, was associated with variance. A decrease in the variance in the distribution of gene expression levels in PBL was associated with the diagnosis of autism and a risk factor for autism, increased paternal age. Traditional approaches to microarray analysis of gene expression suggested a possible mechanism for decreased variance in gene expression. Gene expression pathways involved in transcriptional regulation were down-regulated in the blood of children with autism and children of older fathers. Thus, results from global and gene specific approaches to studying microarray data were complimentary and supported the hypothesis that alterations at the global level of gene expression regulation are related to autism and increased paternal age. Global regulation of transcription, thus, represents a possible point of convergence for multiple etiologies of autism and other

  15. Keeping the blood flowing—plasminogen activator genes and feeding behavior in vampire bats

    Science.gov (United States)

    Tellgren-Roth, Åsa; Dittmar, Katharina; Massey, Steven E.; Kemi, Cecilia; Tellgren-Roth, Christian; Savolainen, Peter; Lyons, Leslie A.; Liberles, David A.

    2009-01-01

    The blood feeding vampire bats emerged from New World leaf-nosed bats that fed on fruit and insects. Plasminogen activator, a serine protease that regulates blood coagulation, is known to be expressed in the saliva of Desmodus rotundus (common vampire bat) and is thought to be a key enzyme for the emergence of blood feeding in vampire bats. To better understand the evolution of this biological function, we studied the plasminogen activator (PA) genes from all vampire bat species in light of their feeding transition to bird and subsequently mammalian blood. We include the rare species Diphylla ecaudata and Diaemus youngi, where plasminogen activator had not previously been studied and demonstrate that PA gene duplication observed in Desmodus is not essential to the vampire phenotype, but relates to the emergence of predominant mammalian blood feeding in this species. Plasminogen activator has evolved through gene duplication, domain loss, and sequence evolution leading to change in fibrin-specificity and susceptibility to plasminogen activator inhibitor-1. Before undertaking this study, only the four plasminogen activator isoforms from Desmodus were known. The evolution of vampire bat plasminogen activators can now be linked phylogenetically to the transition in feeding behavior among vampire bat species from bird to mammalian blood.

  16. Gene Expression in the Human Endolymphatic Sac

    DEFF Research Database (Denmark)

    Møller, Martin Nue; Kirkeby, Svend; Vikeså, Jonas;

    2015-01-01

    of fresh human endolymphatic sac tissue samples. METHODS: Twelve tissue samples of the human endolymphatic sac were obtained during translabyrinthine surgery for vestibular schwannoma. Microarray technology was used to investigate tissue sample expression of solute carrier family genes, using adjacent dura......a1 sodium-bicarbonate transporter, SLC9a2 sodium-hydrogen transporter, SLC12a3 thiazide-sensitive Na-Cl transporter, and SLC34a2 sodium-phosphate transporter. CONCLUSIONS: Several important ion transporters of the SLC family are expressed in the human endolymphatic sac, including Pendrin......OBJECTIVES/HYPOTHESIS: The purpose of the present study is to explore, demonstrate, and describe the expression of genes related to the solute carrier (SLC) molecules of ion transporters in the human endolymphatic sac. STUDY DESIGN: cDNA microarrays and immunohistochemistry were used for analyses...

  17. Gene expression profiles of autophagy-related genes in multiple sclerosis.

    Science.gov (United States)

    Igci, Mehri; Baysan, Mehmet; Yigiter, Remzi; Ulasli, Mustafa; Geyik, Sirma; Bayraktar, Recep; Bozgeyik, İbrahim; Bozgeyik, Esra; Bayram, Ali; Cakmak, Ecir Ali

    2016-08-15

    Multiple sclerosis (MS) is an imflammatory disease of central nervous system caused by genetic and environmental factors that remain largely unknown. Autophagy is the process of degradation and recycling of damaged cytoplasmic organelles, macromolecular aggregates, and long-lived proteins. Malfunction of autophagy contributes to the pathogenesis of neurological diseases, and autophagy genes may modulate the T cell survival. We aimed to examine the expression levels of autophagy-related genes. The blood samples of 95 unrelated patients (aged 17-65years, 37 male, 58 female) diagnosed as MS and 95 healthy controls were used to extract the RNA samples. After conversion to single stranded cDNA using polyT priming: the targeted genes were pre-amplified, and 96×78 (samples×primers) qRT-PCR reactions were performed for each primer pair on each sample on a 96.96 array of Fluidigm BioMark™. Compared to age- and sex-matched controls, gene expression levels of ATG16L2, ATG9A, BCL2, FAS, GAA, HGS, PIK3R1, RAB24, RGS19, ULK1, FOXO1, HTT were significantly altered (false discovery rategenes may affect protein levels, which in turn would influence the activity of autophagy, or most probably, those genes might be acting independent of autophagy and contributing to MS pathogenesis as risk factors. The indeterminate genetic causes leading to alterations in gene expressions require further analysis.

  18. Gene-gene interaction and functional impact of polymorphisms on innate immune genes in controlling Plasmodium falciparum blood infection level.

    Directory of Open Access Journals (Sweden)

    Madhumita Basu

    Full Text Available Genetic variations in toll-like receptors and cytokine genes of the innate immune pathways have been implicated in controlling parasite growth and the pathogenesis of Plasmodium falciparum mediated malaria. We previously published genetic association of TLR4 non-synonymous and TNF-α promoter polymorphisms with P.falciparum blood infection level and here we extend the study considerably by (i investigating genetic dependence of parasite-load on interleukin-12B polymorphisms, (ii reconstructing gene-gene interactions among candidate TLRs and cytokine loci, (iii exploring genetic and functional impact of epistatic models and (iv providing mechanistic insights into functionality of disease-associated regulatory polymorphisms. Our data revealed that carriage of AA (P = 0.0001 and AC (P = 0.01 genotypes of IL12B 3'UTR polymorphism was associated with a significant increase of mean log-parasitemia relative to rare homozygous genotype CC. Presence of IL12B+1188 polymorphism in five of six multifactor models reinforced its strong genetic impact on malaria phenotype. Elevation of genetic risk in two-component models compared to the corresponding single locus and reduction of IL12B (2.2 fold and lymphotoxin-α (1.7 fold expressions in patients'peripheral-blood-mononuclear-cells under TLR4Thr399Ile risk genotype background substantiated the role of Multifactor Dimensionality Reduction derived models. Marked reduction of promoter activity of TNF-α risk haplotype (C-C-G-G compared to wild-type haplotype (T-C-G-G with (84% and without (78% LPS stimulation and the loss of binding of transcription factors detected in-silico supported a causal role of TNF-1031. Significantly lower expression of IL12B+1188 AA (5 fold and AC (9 fold genotypes compared to CC and under-representation (P = 0.0048 of allele A in transcripts of patients' PBMCs suggested an Allele-Expression-Imbalance. Allele (A+1188C dependent differential stability (2 fold of IL12B-transcripts upon

  19. Regulation of methane genes and genome expression

    Energy Technology Data Exchange (ETDEWEB)

    John N. Reeve

    2009-09-09

    At the start of this project, it was known that methanogens were Archaeabacteria (now Archaea) and were therefore predicted to have gene expression and regulatory systems different from Bacteria, but few of the molecular biology details were established. The goals were then to establish the structures and organizations of genes in methanogens, and to develop the genetic technologies needed to investigate and dissect methanogen gene expression and regulation in vivo. By cloning and sequencing, we established the gene and operon structures of all of the “methane” genes that encode the enzymes that catalyze methane biosynthesis from carbon dioxide and hydrogen. This work identified unique sequences in the methane gene that we designated mcrA, that encodes the largest subunit of methyl-coenzyme M reductase, that could be used to identify methanogen DNA and establish methanogen phylogenetic relationships. McrA sequences are now the accepted standard and used extensively as hybridization probes to identify and quantify methanogens in environmental research. With the methane genes in hand, we used northern blot and then later whole-genome microarray hybridization analyses to establish how growth phase and substrate availability regulated methane gene expression in Methanobacterium thermautotrophicus ΔH (now Methanothermobacter thermautotrophicus). Isoenzymes or pairs of functionally equivalent enzymes catalyze several steps in the hydrogen-dependent reduction of carbon dioxide to methane. We established that hydrogen availability determine which of these pairs of methane genes is expressed and therefore which of the alternative enzymes is employed to catalyze methane biosynthesis under different environmental conditions. As were unable to establish a reliable genetic system for M. thermautotrophicus, we developed in vitro transcription as an alternative system to investigate methanogen gene expression and regulation. This led to the discovery that an archaeal protein

  20. Polymorphism Analysis and In Vitro Expression of RANTES Genes

    Institute of Scientific and Technical Information of China (English)

    曾庆平; 杨瑞仪; 冯丽玲; 符林春

    2001-01-01

    Objective: To clone, sequence and express the primate β-chemokine RANTES genes, hRANTES from H. sapiens and mRANTES from M. Mulatta, in order to explore the possibility of AIDS gene therapy.Methods: hRANTES and mRANTES were amplified by reverse transcription-polymerase chain reaction (RT-PCR)from RNAs extracted from phytoagglutinin (PHA)-activated peripheral blood lymphocytes. hRANTES was cloned,sequenced and expressed in vitro, and mRANTES was directly sequenced for homology comparison.Results: An expected 276 bp fragment was obtained in both amplifications, and sequence data demonstrated a relatively high homology among different copies of hRANTES (97%),and hRANTES was up to 95.6% homologous to mRANTES.When compared with RANTES from other mammals,hRANTES gave rise to a homology ranging from 77% to 86%.The cloned hRANTES was expressed in vitro and a positive signal of RANTES was detected by dot blotting.Conclusion: The full-length of hRANTES sequence was submitted to GenBank and had been released. Our mRANTES sequence is first reported and not yet appeared in GenBank.The successful cloning and expression of hRANTES will provide a basis for AIDS gene therapy in the future.

  1. Gene expression analysis of interferon-beta treatment in multiple sclerosis

    DEFF Research Database (Denmark)

    Sellebjerg, F.; Datta, P.; Larsen, J.;

    2008-01-01

    by treatment with IFN-beta. We use DNA microarrays to study gene expression in 10 multiple sclerosis (MS) patients who began de novo treatment with IFN-beta. After the first injection of IFN-beta, the expression of 74 out of 3428 genes changed at least two-fold and statistically significantly (after Bonferroni...... correction). In contrast, we observed no persisting effects of IFN-beta on gene expression. Among the most strongly induced genes was MXA, which has been used in previous biomarker studies in MS. In addition, the study identified the induction of LGALS9 and TCIR1G, involved in negative regulation of T helper......Treatment with interferon-beta (IFN-beta) induces the expression of hundreds of genes in blood mononuclear cells, and the expression of several genes has been proposed as a marker of the effect of treatment with IFN-beta. However, to date no molecules have been identified that are stably induced...

  2. Mosquito Passage Dramatically Changes var Gene Expression in Controlled Human Plasmodium falciparum Infections.

    Science.gov (United States)

    Bachmann, Anna; Petter, Michaela; Krumkamp, Ralf; Esen, Meral; Held, Jana; Scholz, Judith A M; Li, Tao; Sim, B Kim Lee; Hoffman, Stephen L; Kremsner, Peter G; Mordmüller, Benjamin; Duffy, Michael F; Tannich, Egbert

    2016-04-01

    Virulence of the most deadly malaria parasite Plasmodium falciparum is linked to the variant surface antigen PfEMP1, which is encoded by about 60 var genes per parasite genome. Although the expression of particular variants has been associated with different clinical outcomes, little is known about var gene expression at the onset of infection. By analyzing controlled human malaria infections via quantitative real-time PCR, we show that parasite populations from 18 volunteers expressed virtually identical transcript patterns that were dominated by the subtelomeric var gene group B and, to a lesser extent, group A. Furthermore, major changes in composition and frequency of var gene transcripts were detected between the parental parasite culture that was used to infect mosquitoes and Plasmodia recovered from infected volunteers, suggesting that P. falciparum resets its var gene expression during mosquito passage and starts with the broad expression of a specific subset of var genes when entering the human blood phase.

  3. Red blood cell PK deficiency: An update of PK-LR gene mutation database.

    Science.gov (United States)

    Canu, Giulia; De Bonis, Maria; Minucci, Angelo; Capoluongo, Ettore

    2016-03-01

    Pyruvate kinase (PK) deficiency is known as being the most common cause of chronic nonspherocytic hemolytic anemia (CNSHA). Clinical PK deficiency is transmitted as an autosomal recessive trait, that can segregate neither in homozygous or in a compound heterozygous modality, respectively. Two PK genes are present in mammals: the pyruvate kinase liver and red blood cells (PK-LR) and the pyruvate kinase muscle (PK-M), of which only the first encodes for the isoenzymes normally expressed in the red blood cells (R-type) and in the liver (L-type). Several reports have been published describing a large variety of genetic defects in PK-LR gene associated to CNSHA. Herein, we present a review of about 250 published mutations and six polymorphisms in PK-LR gene with the corresponding clinical and molecular data. We consulted the PubMed website for searching mutations and papers, along with two main databases: the Leiden Open Variation Database (LOVD, https://grenada.lumc.nl/LOVD2/mendelian_genes/home.php?select_db=PKLR) and Human Gene Mutation Database (HGMD, http://www.hgmd.cf.ac.uk/ac/gene.php?gene=PKLR) for selecting, reviewing and listing the annotated PK-LR gene mutations present in literature. This paper is aimed to provide useful information to clinicians and laboratory professionals regarding overall reported PK-LR gene mutations, also giving the opportunity to harmonize data regarding PK-deficient individuals.

  4. Topological features in cancer gene expression data.

    Science.gov (United States)

    Lockwood, S; Krishnamoorthy, B

    2015-01-01

    We present a new method for exploring cancer gene expression data based on tools from algebraic topology. Our method selects a small relevant subset from tens of thousands of genes while simultaneously identifying nontrivial higher order topological features, i.e., holes, in the data. We first circumvent the problem of high dimensionality by dualizing the data, i.e., by studying genes as points in the sample space. Then we select a small subset of the genes as landmarks to construct topological structures that capture persistent, i.e., topologically significant, features of the data set in its first homology group. Furthermore, we demonstrate that many members of these loops have been implicated for cancer biogenesis in scientific literature. We illustrate our method on five different data sets belonging to brain, breast, leukemia, and ovarian cancers.

  5. Coevolution of gene expression among interacting proteins

    Energy Technology Data Exchange (ETDEWEB)

    Fraser, Hunter B.; Hirsh, Aaron E.; Wall, Dennis P.; Eisen,Michael B.

    2004-03-01

    Physically interacting proteins or parts of proteins are expected to evolve in a coordinated manner that preserves proper interactions. Such coevolution at the amino acid-sequence level is well documented and has been used to predict interacting proteins, domains, and amino acids. Interacting proteins are also often precisely coexpressed with one another, presumably to maintain proper stoichiometry among interacting components. Here, we show that the expression levels of physically interacting proteins coevolve. We estimate average expression levels of genes from four closely related fungi of the genus Saccharomyces using the codon adaptation index and show that expression levels of interacting proteins exhibit coordinated changes in these different species. We find that this coevolution of expression is a more powerful predictor of physical interaction than is coevolution of amino acid sequence. These results demonstrate previously uncharacterized coevolution of gene expression, adding a different dimension to the study of the coevolution of interacting proteins and underscoring the importance of maintaining coexpression of interacting proteins over evolutionary time. Our results also suggest that expression coevolution can be used for computational prediction of protein protein interactions.

  6. Expression level of miR-155 in peripheral blood

    Institute of Scientific and Technical Information of China (English)

    Yu-Hui Zhang; Liang-Hua Xia; Jia-Mei Jin; Ming Zong; Ming Chen; Bo Zhang

    2015-01-01

    Objective:To investigate the relationship between the expression level of miR-155 and the severity of coronary lesion, and explore the action mechanism.Methods: Peripheral blood mononuclear cells (PBMC) were isolated form blood simple from patients with acute myocardial infarction (AMI), unstable angina (UAP), stable angina (SAP) and chest pain syndrome (CPS). RT-PCR was performed to analysis the expression level of miR-155 in peripheral blood mononuclear cells, plasma and RAW264.7 macrophagocyte. MTT was used to analyze the cell viability of OxLDL treated RAW264.7 macrophagocyte.Results: The expression level of miR-155 in blood sample from coronary heart disease patients was much lower than in the blood sample of non-coronary heart disease (P<0.05). The level of miR-155 in PBMCs was much higher in the blood sample from CPS group than the other three group, and the level of miR-155 in plasma was higher in the CPS group than in the UAP and the AMI group, the difference was statistically significant (P<0.05). The expression level of miR-155 in PBMCs is positively associated with the level in the plasma (r=0.861,P=0.000). OxLDL can induce the expression of miR-155 in RAW264.7 macrophagocyte, decrease the cell viability of RAW264.7 macrophagocyte, and with the concentration and the treatment time of OxLDL increased, the effort become more obvious. The inhibition effort of OxLDL to RAW264.7 macrophagocyte with high miR-155 expression is much lower than the control group, and it is statistically significant after treated for 12, 24 and 48 h.Conclusions: miR-155 plays a protective role in the progression of atherosclerosis, and it may be achieved by reducing the apoptosis effort of OxLDL to RAW264.7 macrophagocyte.

  7. Transcriptome-Level Signatures in Gene Expression and Gene Expression Variability during Bacterial Adaptive Evolution

    Science.gov (United States)

    Erickson, Keesha E.; Otoupal, Peter B.

    2017-01-01

    ABSTRACT Antibiotic-resistant bacteria are an increasingly serious public health concern, as strains emerge that demonstrate resistance to almost all available treatments. One factor that contributes to the crisis is the adaptive ability of bacteria, which exhibit remarkable phenotypic and gene expression heterogeneity in order to gain a survival advantage in damaging environments. This high degree of variability in gene expression across biological populations makes it a challenging task to identify key regulators of bacterial adaptation. Here, we research the regulation of adaptive resistance by investigating transcriptome profiles of Escherichia coli upon adaptation to disparate toxins, including antibiotics and biofuels. We locate potential target genes via conventional gene expression analysis as well as using a new analysis technique examining differential gene expression variability. By investigating trends across the diverse adaptation conditions, we identify a focused set of genes with conserved behavior, including those involved in cell motility, metabolism, membrane structure, and transport, and several genes of unknown function. To validate the biological relevance of the observed changes, we synthetically perturb gene expression using clustered regularly interspaced short palindromic repeat (CRISPR)-dCas9. Manipulation of select genes in combination with antibiotic treatment promotes adaptive resistance as demonstrated by an increased degree of antibiotic tolerance and heterogeneity in MICs. We study the mechanisms by which identified genes influence adaptation and find that select differentially variable genes have the potential to impact metabolic rates, mutation rates, and motility. Overall, this work provides evidence for a complex nongenetic response, encompassing shifts in gene expression and gene expression variability, which underlies adaptive resistance. IMPORTANCE Even initially sensitive bacteria can rapidly thwart antibiotic treatment

  8. [Gene transfer in human hematopoietic stem cells isolated from peripheral blood].

    Science.gov (United States)

    Mannoni, P

    1996-01-01

    To insert a new genetic information by gene transfer into haemopoietic stem cells would result in expression of the transgene in progenitors and progeny of cell blood lineages. If successfull, such an approach would open interesting prospectives in the field of experimental research and in the possibility to treat genetic defects affecting blood lineages such as immune deficiencies (ADA, SCID, AIDS) or enzymes defects. Moreover progenitors could be engineered to become more resistant to chemotherapy or oncogenic process. Many parameters and technical problems are still involved in this issue, including identification, isolation and selection of the most primitive progenitors, and search for the most efficient vectors to insert new genes into the target cells. So far retroviral vectors have been shown to be the most effective but search for better vectors are still underway. Peripheral blood stem cells isolated from patients stimulated by cytokines and/or chemotherapy appear interesting target cells for genetic manipulations aimed to correct an acquired or genetic defect.

  9. Gene expression regulation in roots under drought.

    Science.gov (United States)

    Janiak, Agnieszka; Kwaśniewski, Mirosław; Szarejko, Iwona

    2016-02-01

    Stress signalling and regulatory networks controlling expression of target genes are the basis of plant response to drought. Roots are the first organs exposed to water deficiency in the soil and are the place of drought sensing. Signalling cascades transfer chemical signals toward the shoot and initiate molecular responses that lead to the biochemical and morphological changes that allow plants to be protected against water loss and to tolerate stress conditions. Here, we present an overview of signalling network and gene expression regulation pathways that are actively induced in roots under drought stress. In particular, the role of several transcription factor (TF) families, including DREB, AP2/ERF, NAC, bZIP, MYC, CAMTA, Alfin-like and Q-type ZFP, in the regulation of root response to drought are highlighted. The information provided includes available data on mutual interactions between these TFs together with their regulation by plant hormones and other signalling molecules. The most significant downstream target genes and molecular processes that are controlled by the regulatory factors are given. These data are also coupled with information about the influence of the described regulatory networks on root traits and root development which may translate to enhanced drought tolerance. This is the first literature survey demonstrating the gene expression regulatory machinery that is induced by drought stress, presented from the perspective of roots.

  10. Expression of MTLC gene in gastric carcinoma

    Institute of Scientific and Technical Information of China (English)

    Guang-Bin Qiu; Li-Guo Gong; Dong-Mei Hao; Zhi-Hong Zhen; Kai-Lai Sun

    2003-01-01

    AIM: To investigate the expression of c-myc target from laryngeal cancer cells (MTLC) gene in gastric carcinoma (GC)tissues and the effect of MTLC over-expression on gastric carcinoma cell line BGC823.METHODS: RT-PCR was performed to determine the expression of MTLC mRNA in GC and matched control tissues.BGC823 cells were transfected with an expression vector pcDNA3.1-MTLC by liposome and screened by G418. Growth of cells expressing MTLC was observed daily by manual counting. Apoptotic cells were determined by TdT-mediated dUTP nick-end labeling (TUNEL) assay.RESULTS: The expression of MTLC mRNAs was downregulated in 9(60%) of 15 cases of GC tissues. The growth rates of the BGC823 cells expressing MTLC were indistinguishable from that of control cells. A marked acceleration of apoptosis was observed in MTLC-expressing cells.CONCLUSION: MTLC was down-regulated in the majority of GC tissues and could promote apoptosis of GC cell lines,which suggests that MTLC may play an important role in the carcinogenesis of gastric carcinoma.

  11. Gene expression profiling in glomeruli of diabetic nephropathy rat.

    Science.gov (United States)

    Zhang, Qian; Xiao, Xinhua; Li, Ming; Li, Wenhui; Yu, Miao; Zhang, Huabing; Sun, Xiaofang; Mao, Lili; Xiang, Hongding

    2012-08-01

    Diabetic nephropathy (DN) remains the most common cause of end-stage renal disease (ESRD) as the burden of diabetes increases worldwide. To find improved intervention strategies for this disease, it is necessary to investigate the molecular mechanisms involved. To obtain more insight into processes that lead to DN, mRNA expression profiles of diabetic and normal glomeruli from rat kidneys were compared. Rats were divided into a control group and a DN group randomly. The DN group was injected with streptozotocin. Fasting blood glucose (FBG) and weight were measured monthly. On the 12th week, blood samples were collected and analyzed for plasma creatinine and blood urea nitrogen (BUN). Glomeruli were isolated and Illumina Rat Ref-12 V1.0 Expression Beadchip gene array was performed. Quantitative realtime polymerase chain reaction (Q-RT-PCR) was used to confirm the results of gene array for a selected number of genes. We found FBG, 24-h urinary albumin, serum creatinine and BUN were significantly increased, while urinary creatinine and body weight were significantly decreased in the DN group. Glomeruli from the DN group had 624 genes with differential expression. DAVID (Database for Annotation, Visualization and integrated Discovery) analysis showed that the three most enriched terms were 'cytosol' (GO:0005829), 'translational elongation' (GO:0006414) and 'mitochondion' (GO:0005739). Those genes could be mapped to eight pathways. The most common type of enriched pathway was related to 'extracellular matrix (ECM)-receptor interaction'. Other pathways included those for 'ribosome', 'focal adhesion', 'oxidative phosphorylation', 'transforming growth factor (TGF)-beta signaling pathway', 'Parkinson's disease', 'Alzheimer's disease' and 'renin-angiotensin system'. Q-RT-PCR verified that Atp5b (F1-ATPase beta subunit), Col1a1 (collagen type 1 alpha 1), Cox6c (cytochrome c oxidase subunit VIc), Ndufs3 (NADH dehydrogenase [ubiquinone] Fe-S protein 3) and Tgfb1 (transforming

  12. Oligonucleotide microarray analysis of dietary-induced hyperlipidemia gene expression profiles in miniature pigs.

    Directory of Open Access Journals (Sweden)

    Junko Takahashi

    Full Text Available BACKGROUND: Hyperlipidemia animal models have been established, but complete gene expression profiles of the transition from normal lipid levels have not been obtained. Miniature pigs are useful model animals for gene expression studies on dietary-induced hyperlipidemia because they have a similar anatomy and digestive physiology to humans, and blood samples can be obtained from them repeatedly. METHODOLOGY: Two typical dietary treatments were used for dietary-induced hyperlipidemia models, by using specific pathogen-free (SPF Clawn miniature pigs. One was a high-fat and high-cholesterol diet (HFCD and the other was a high-fat, high-cholesterol, and high-sucrose diet (HFCSD. Microarray analyses were conducted from whole blood samples during the dietary period and from white blood cells at the end of the dietary period to evaluate the transition of expression profiles of the two dietary models. PRINCIPAL FINDINGS: Variations in whole blood gene expression intensity within the HFCD or the HFCSD group were in the same range as the controls provide with normal diet at all periods. This indicates uniformity of dietary-induced hyperlipidemia for our dietary protocols. Gene ontology- (GO based functional analyses revealed that characteristics of the common changes between HFCD and HFCSD were involved in inflammatory responses and reproduction. The correlation coefficient between whole blood and white blood cell expression profiles at 27 weeks with the HFCSD diet was significantly lower than that of the control and HFCD diet groups. This may be due to the effects of RNA originating from the tissues and/or organs. CONCLUSIONS: No statistically significant differences in fasting plasma lipids and glucose levels between the HFCD and HFCSD groups were observed. However, blood RNA analyses revealed different characteristics corresponding to the dietary protocols. In this study, whole blood RNA analyses proved to be a useful tool to evaluate transitions in

  13. Toward stable gene expression in CHO cells

    Science.gov (United States)

    Mariati; Koh, Esther YC; Yeo, Jessna HM; Ho, Steven CL; Yang, Yuansheng

    2014-01-01

    Maintaining high gene expression level during long-term culture is critical when producing therapeutic recombinant proteins using mammalian cells. Transcriptional silencing of promoters, most likely due to epigenetic events such as DNA methylation and histone modifications, is one of the major mechanisms causing production instability. Previous studies demonstrated that the core CpG island element (IE) from the hamster adenine phosphoribosyltransferase gene is effective to prevent DNA methylation. We generated one set of modified human cytomegalovirus (hCMV) promoters by insertion of one or two copies of IE in either forward or reverse orientations into different locations of the hCMV promoter. The modified hCMV with one copy of IE inserted between the hCMV enhancer and core promoter in reverse orientation (MR1) was most effective at enhancing expression stability in CHO cells without comprising expression level when compared with the wild type hCMV. We also found that insertion of IE into a chimeric murine CMV (mCMV) enhancer and human elongation factor-1α core (hEF) promoter in reverse orientation did not enhance expression stability, indicating that the effect of IE on expression stability is possibly promoter specific. PMID:25482237

  14. Gene expression in Pseudomonas aeruginosa swarming motility

    Directory of Open Access Journals (Sweden)

    Déziel Eric

    2010-10-01

    Full Text Available Abstract Background The bacterium Pseudomonas aeruginosa is capable of three types of motilities: swimming, twitching and swarming. The latter is characterized by a fast and coordinated group movement over a semi-solid surface resulting from intercellular interactions and morphological differentiation. A striking feature of swarming motility is the complex fractal-like patterns displayed by migrating bacteria while they move away from their inoculation point. This type of group behaviour is still poorly understood and its characterization provides important information on bacterial structured communities such as biofilms. Using GeneChip® Affymetrix microarrays, we obtained the transcriptomic profiles of both bacterial populations located at the tip of migrating tendrils and swarm center of swarming colonies and compared these profiles to that of a bacterial control population grown on the same media but solidified to not allow swarming motility. Results Microarray raw data were corrected for background noise with the RMA algorithm and quantile normalized. Differentially expressed genes between the three conditions were selected using a threshold of 1.5 log2-fold, which gave a total of 378 selected genes (6.3% of the predicted open reading frames of strain PA14. Major shifts in gene expression patterns are observed in each growth conditions, highlighting the presence of distinct bacterial subpopulations within a swarming colony (tendril tips vs. swarm center. Unexpectedly, microarrays expression data reveal that a minority of genes are up-regulated in tendril tip populations. Among them, we found energy metabolism, ribosomal protein and transport of small molecules related genes. On the other hand, many well-known virulence factors genes were globally repressed in tendril tip cells. Swarm center cells are distinct and appear to be under oxidative and copper stress responses. Conclusions Results reported in this study show that, as opposed to

  15. Determinants of human adipose tissue gene expression

    DEFF Research Database (Denmark)

    Viguerie, Nathalie; Montastier, Emilie; Maoret, Jean-José

    2012-01-01

    Weight control diets favorably affect parameters of the metabolic syndrome and delay the onset of diabetic complications. The adaptations occurring in adipose tissue (AT) are likely to have a profound impact on the whole body response as AT is a key target of dietary intervention. Identification...... interconnection between expression of genes involved in de novo lipogenesis and components of the metabolic syndrome. Sex had a marked influence on AT expression of 88 transcripts, which persisted during the entire dietary intervention and after control for fat mass. In women, the influence of body mass index...

  16. Engineering genes for predictable protein expression.

    Science.gov (United States)

    Gustafsson, Claes; Minshull, Jeremy; Govindarajan, Sridhar; Ness, Jon; Villalobos, Alan; Welch, Mark

    2012-05-01

    The DNA sequence used to encode a polypeptide can have dramatic effects on its expression. Lack of readily available tools has until recently inhibited meaningful experimental investigation of this phenomenon. Advances in synthetic biology and the application of modern engineering approaches now provide the tools for systematic analysis of the sequence variables affecting heterologous expression of recombinant proteins. We here discuss how these new tools are being applied and how they circumvent the constraints of previous approaches, highlighting some of the surprising and promising results emerging from the developing field of gene engineering.

  17. Annotation of gene function in citrus using gene expression information and co-expression networks

    OpenAIRE

    Wong, Darren CJ; Sweetman, Crystal; Ford, Christopher M.

    2014-01-01

    Background The genus Citrus encompasses major cultivated plants such as sweet orange, mandarin, lemon and grapefruit, among the world’s most economically important fruit crops. With increasing volumes of transcriptomics data available for these species, Gene Co-expression Network (GCN) analysis is a viable option for predicting gene function at a genome-wide scale. GCN analysis is based on a “guilt-by-association” principle whereby genes encoding proteins involved in similar and/or related bi...

  18. The Trojan Horse Liposome Technology for Nonviral Gene Transfer across the Blood-Brain Barrier

    Directory of Open Access Journals (Sweden)

    Ruben J. Boado

    2011-01-01

    Full Text Available The application of blood-borne gene therapy protocols to the brain is limited by the presence of the blood-brain barrier (BBB. Viruses have been extensively used as gene delivery systems. However, their efficacy in brain is limited by the lack of transport across the BBB following intravenous (IV administration. Recent progress in the “Trojan Horse Liposome” (THL technology applied to transvascular non-viral gene therapy of the brain presents a promising solution to the trans-vascular brain gene delivery problem. THLs are comprised of immunoliposomes carrying nonviral gene expression plasmids. The tissue target specificity of the THL is provided by peptidomimetic monoclonal antibody (MAb component of the THL, which binds to specific endogenous receptors located on both the BBB and on brain cellular membranes, for example, insulin receptor and transferrin receptor. These MAbs mediate (a receptor-mediated transcytosis of the THL complex through the BBB, (b endocytosis into brain cells and (c transport to the brain cell nuclear compartment. The expression of the transgene in brain may be restricted using tissue/cell specific gene promoters. This manuscript presents an overview on the THL transport technology applied to brain disorders, including lysosomal storage disorders and Parkinson's disease.

  19. Global gene expression in Escherichia coli biofilms

    DEFF Research Database (Denmark)

    Schembri, Mark; Kjærgaard, K.; Klemm, Per

    2003-01-01

    in expression have no current defined function. These genes, as well as those induced by stresses relevant to biofilm growth such as oxygen and nutrient limitation, may be important factors that trigger enhanced resistance mechanisms of sessile communities to antibiotics and hydrodynamic shear forces.......It is now apparent that microorganisms undergo significant changes during the transition from planktonic to biofilm growth. These changes result in phenotypic adaptations that allow the formation of highly organized and structured sessile communities, which possess enhanced resistance...... to antimicrobial treatments and host immune defence responses. Escherichia coli has been used as a model organism to study the mechanisms of growth within adhered communities. In this study, we use DNA microarray technology to examine the global gene expression profile of E. coli during sessile growth compared...

  20. Combinatorial engineering for heterologous gene expression.

    Science.gov (United States)

    Zwick, Friederike; Lale, Rahmi; Valla, Svein

    2013-01-01

    Tools for strain engineering with predictable outcome are of crucial importance for the nascent field of synthetic biology. The success of combining different DNA biological parts is often restricted by poorly understood factors deriving from the complexity of the systems. We have previously identified variants for different regulatory elements of the expression cassette XylS/Pm. When such elements are combined they act in a manner consistent with their individual behavior, as long as they affect different functions, such as transcription and translation. Interestingly, sequence context does not seem to influence the final outcome significantly. Expression of reporter gene bla could be increased up to 75 times at the protein level by combining three variants in one cassette. For other tested reporter genes similar results were obtained, except that the stimulatory effect was quantitatively less. Combination of individually characterized DNA parts thus stands as suitable method to achieve a desired phenotype.

  1. Structure, expression and functions of MTA genes.

    Science.gov (United States)

    Kumar, Rakesh; Wang, Rui-An

    2016-05-15

    Metastatic associated proteins (MTA) are integrators of upstream regulatory signals with the ability to act as master coregulators for modifying gene transcriptional activity. The MTA family includes three genes and multiple alternatively spliced variants. The MTA proteins neither have their own enzymatic activity nor have been shown to directly interact with DNA. However, MTA proteins interact with a variety of chromatin remodeling factors and complexes with enzymatic activities for modulating the plasticity of nucleosomes, leading to the repression or derepression of target genes or other extra-nuclear and nucleosome remodeling and histone deacetylase (NuRD)-complex independent activities. The functions of MTA family members are driven by the steady state levels and subcellular localization of MTA proteins, the dynamic nature of modifying signals and enzymes, the structural features and post-translational modification of protein domains, interactions with binding proteins, and the nature of the engaged and resulting features of nucleosomes in the proximity of target genes. In general, MTA1 and MTA2 are the most upregulated genes in human cancer and correlate well with aggressive phenotypes, therapeutic resistance, poor prognosis and ultimately, unfavorable survival of cancer patients. Here we will discuss the structure, expression and functions of the MTA family of genes in the context of cancer cells.

  2. Differential hexosamine biosynthetic pathway gene expression with type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Megan Coomer

    2014-01-01

    Full Text Available The hexosamine biosynthetic pathway (HBP culminates in the attachment of O-linked β-N-acetylglucosamine (O-GlcNAc onto serine/threonine residues of target proteins. The HBP is regulated by several modulators, i.e. O-linked β-N-acetylglucosaminyl transferase (OGT and β-N-acetylglucosaminidase (OGA catalyze the addition and removal of O-GlcNAc moieties, respectively; while flux is controlled by the rate-limiting enzyme glutamine:fructose-6-phosphate amidotransferase (GFPT, transcribed by two genes, GFPT1 and GFPT2. Since increased HBP flux is glucose-responsive and linked to insulin resistance/type 2 diabetes onset, we hypothesized that diabetic individuals exhibit differential expression of HBP regulatory genes. Volunteers (n = 60; n = 20 Mixed Ancestry, n = 40 Caucasian were recruited from Stellenbosch and Paarl (Western Cape, South Africa and classified as control, pre- or diabetic according to fasting plasma glucose and HbA1c levels, respectively. RNA was purified from leukocytes isolated from collected blood samples and OGT, OGA, GFPT1 and GFPT2 expressions determined by quantitative real-time PCR. The data reveal lower OGA expression in diabetic individuals (P < 0.01, while pre- and diabetic subjects displayed attenuated OGT expression vs. controls (P < 0.01 and P < 0.001, respectively. Moreover, GFPT2 expression decreased in pre- and diabetic Caucasians vs. controls (P < 0.05 and P < 0.01, respectively. We also found ethnic differences, i.e. Mixed Ancestry individuals exhibited a 2.4-fold increase in GFPT2 expression vs. Caucasians, despite diagnosis (P < 0.01. Gene expression of HBP regulators differs between diabetic and non-diabetic individuals, together with distinct ethnic-specific gene profiles. Thus differential HBP gene regulation may offer diagnostic utility and provide candidate susceptibility genes for different ethnic groupings.

  3. Gene Expression Profiling of Biological Pathway Alterations by Radiation Exposure

    Directory of Open Access Journals (Sweden)

    Kuei-Fang Lee

    2014-01-01

    Full Text Available Though damage caused by radiation has been the focus of rigorous research, the mechanisms through which radiation exerts harmful effects on cells are complex and not well-understood. In particular, the influence of low dose radiation exposure on the regulation of genes and pathways remains unclear. In an attempt to investigate the molecular alterations induced by varying doses of radiation, a genome-wide expression analysis was conducted. Peripheral blood mononuclear cells were collected from five participants and each sample was subjected to 0.5 Gy, 1 Gy, 2.5 Gy, and 5 Gy of cobalt 60 radiation, followed by array-based expression profiling. Gene set enrichment analysis indicated that the immune system and cancer development pathways appeared to be the major affected targets by radiation exposure. Therefore, 1 Gy radioactive exposure seemed to be a critical threshold dosage. In fact, after 1 Gy radiation exposure, expression levels of several genes including FADD, TNFRSF10B, TNFRSF8, TNFRSF10A, TNFSF10, TNFSF8, CASP1, and CASP4 that are associated with carcinogenesis and metabolic disorders showed significant alterations. Our results suggest that exposure to low-dose radiation may elicit changes in metabolic and immune pathways, potentially increasing the risk of immune dysfunctions and metabolic disorders.

  4. Identification of Differentially Expressed Genes Associated with Prognosis of B Acute Lymphoblastic Leukemia

    OpenAIRE

    Idalia Garza-Veloz; Margarita L. Martinez-Fierro; Jose Carlos Jaime-Perez; Karol Carrillo-Sanchez; Maria Guadalupe Ramos-Del Hoyo; Angel Lugo-Trampe; Augusto Rojas-Martinez; Cesar Homero Gutierrez-Aguirre; Oscar Gonzalez-Llano; Rosario Salazar-Riojas; Alfredo Hidalgo-Miranda; David Gomez-Almaguer; Rocio Ortiz-Lopez

    2015-01-01

    Background. Acute lymphoblastic leukemia type B (B-ALL) is a neoplastic disorder with high mortality rates. The aim of this study was to validate the expression profile of 45 genes associated with signaling pathways involved in leukemia and to evaluate their association with the prognosis of B-ALL. Methods. 219 samples of peripheral blood mononuclear cells obtained from 73 B-ALL patients were studied at diagnosis, four, and eight weeks after starting treatment. Gene expression was analyzed by...

  5. Proteomic and gene expression patterns of keratoconus

    Directory of Open Access Journals (Sweden)

    Arkasubhra Ghosh

    2013-01-01

    Full Text Available Keratoconus is a progressive corneal thinning disease associated with significant tissue remodeling activities and activation of a variety of signaling networks. However, it is not understood how differential gene and protein expression direct function in keratoconus corneas to drive the underlying pathology, ectasia. Research in the field has focused on discovering differentially expressed genes and proteins and quantifying their levels and activities in keratoconus patient samples. In this study, both microarray analysis of total ribonucleic acid (RNA and whole proteome analyses are carried out using corneal epithelium and tears from keratoconus patients and compared to healthy controls. A number of structural proteins, signaling molecules, cytokines, proteases, and enzymes have been found to be deregulated in keratoconus corneas. Together, the data provide clues to the complex process of corneal degradation which suggest novel ways to clinically diagnose and manage the disease. This review will focus on discussing these recent advances in the knowledge of keratoconus biology from a gene expression and function point-of-view.

  6. Chloroquine mediated modulation of Anopheles gambiae gene expression.

    Directory of Open Access Journals (Sweden)

    Patrícia Abrantes

    Full Text Available BACKGROUND: Plasmodium development in the mosquito is crucial for malaria transmission and depends on the parasite's interaction with a variety of cell types and specific mosquito factors that have both positive and negative effects on infection. Whereas the defensive response of the mosquito contributes to a decrease in parasite numbers during these stages, some components of the blood meal are known to favor infection, potentiating the risk of increased transmission. The presence of the antimalarial drug chloroquine in the mosquito's blood meal has been associated with an increase in Plasmodium infectivity for the mosquito, which is possibly caused by chloroquine interfering with the capacity of the mosquito to defend against the infection. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we report a detailed survey of the Anopheles gambiae genes that are differentially regulated by the presence of chloroquine in the blood meal, using an A. gambiae cDNA microarray. The effect of chloroquine on transcript abundance was evaluated separately for non-infected and Plasmodium berghei-infected mosquitoes. Chloroquine was found to affect the abundance of transcripts that encode proteins involved in a variety of processes, including immunity, apoptosis, cytoskeleton and the response to oxidative stress. This pattern of differential gene expression may explain the weakened mosquito defense response which accounts for the increased infectivity observed in chloroquine-treated mosquitoes. CONCLUSIONS/SIGNIFICANCE: The results of the present study suggest that chloroquine can interfere with several putative mosquito mechanisms of defense against Plasmodium at the level of gene expression and highlight the need for a better understanding of the impacts of antimalarial agents on parasite transmission.

  7. Altered choroid plexus gene expression in major depressive disorder

    Directory of Open Access Journals (Sweden)

    Cortney Ann Turner

    2014-04-01

    Full Text Available Given the emergent interest in biomarkers for mood disorders, we assessed gene expression in the choroid plexus, the region that produces cerebrospinal fluid (CSF, in individuals with major depressive disorder (MDD. Genes that are expressed in the choroid plexus (CP can be secreted into the CSF and may be potential biomarker candidates. Given that we have previously shown that fibroblast growth factor family members are differentially expressed in post-mortem brain of subjects with MDD and the CP is a known source of growth factors in the brain, we posed the question whether growth factor dysregulation would be found in the CP of subjects with MDD. We performed laser capture microscopy of the choroid plexus at the level of the hippocampus in subjects with MDD and psychiatrically normal controls. We then extracted, amplified, labeled and hybridized the cRNA to Illumina BeadChips to assess gene expression. In controls, the most highly abundant known transcript was transthyretin. Moreover, half of the 14 most highly expressed transcripts in controls encode ribosomal proteins. Using BeadStudio software, we identified 169 transcripts differentially expressed (p< 0.05 between control and MDD samples. Using pathway analysis we noted that the top network altered in subjects with MDD included multiple members of the transforming growth factor-beta (TGFβ pathway. Quantitative real-time PCR (qRT-PCR confirmed downregulation of several transcripts that interact with the extracellular matrix in subjects with MDD. These results suggest that there may be an altered cytoskeleton in the choroid plexus in MDD subjects that may lead to a disrupted blood-CSF-brain barrier.

  8. Analysis of gene expression in rabbit muscle

    Directory of Open Access Journals (Sweden)

    Alena Gálová

    2014-02-01

    Full Text Available Increasing consumer knowledge of the link between diet and health has raised the demand for high quality food. Meat and meat products may be considered as irreplaceable in human nutrition. Breeding livestock to higher content of lean meat and the use of modern hybrids entails problems with the quality of meat. Analysing of livestock genomes could get us a great deal of important information, which may significantly affect the improvement process. Domestic animals are invaluable resources for study of the molecular architecture of complex traits. Although the mapping of quantitative trait loci (QTL responsible for economically important traits in domestic animals has achieved remarkable results in recent decades, not all of the genetic variation in the complex traits has been captured because of the low density of markers used in QTL mapping studies. The genome wide association study (GWAS, which utilizes high-density single-nucleotide polymorphism (SNP, provides a new way to tackle this issue. New technologies now allow producing microarrays containing thousands of hybridization probes on a single membrane or other solid support. We used microarray analysis to study gene expression in rabbit muscle during different developmental age stages. The outputs from GeneSpring GX sotware are presented in this work. After the evaluation of gene expression in rabbits, will be selected genes of interest in relation to meat quality parameters and will be further analyzed by the available methods of molecular biology and genetics.

  9. Screening for the Most Suitable Reference Genes for Gene Expression Studies in Equine Milk Somatic Cells.

    Directory of Open Access Journals (Sweden)

    Jakub Cieslak

    Full Text Available Apart from the well-known role of somatic cell count as a parameter reflecting the inflammatory status of the mammary gland, the composition of cells isolated from milk is considered as a valuable material for gene expression studies in mammals. Due to its unique composition, in recent years an increasing interest in mare's milk consumption has been observed. Thus, investigating the genetic background of horse's milk variability presents and interesting study model. Relying on 39 milk samples collected from mares representing three breeds (Polish Primitive Horse, Polish Cold-blooded Horse, Polish Warmblood Horse we aimed to investigate the utility of equine milk somatic cells as a source of mRNA and to screen the best reference genes for RT-qPCR using geNorm and NormFinder algorithms. The results showed that despite relatively low somatic cell counts in mare's milk, the amount and the quality of the extracted RNA are sufficient for gene expression studies. The analysis of the utility of 7 potential reference genes for RT-qPCR experiments for the normalization of equine milk somatic cells revealed some differences between the outcomes of the applied algorithms, although in both cases the KRT8 and TOP2B genes were pointed as the most stable. Analysis by geNorm showed that the combination of 4 reference genes (ACTB, GAPDH, TOP2B and KRT8 is required for apropriate RT-qPCR experiments normalization, whereas NormFinder algorithm pointed the combination of KRT8 and RPS9 genes as the most suitable. The trial study of the relative transcript abundance of the beta-casein gene with the use of various types and numbers of internal control genes confirmed once again that the selection of proper reference gene combinations is crucial for the final results of each real-time PCR experiment.

  10. Determinants of ABH expression on human blood platelets.

    Science.gov (United States)

    Cooling, Laura L W; Kelly, Kathleen; Barton, James; Hwang, Debbie; Koerner, Theodore A W; Olson, John D

    2005-04-15

    Platelets express ABH antigens, which can adversely effect platelet transfusion recovery and survival in ABH-incompatible recipients. To date, there has been no large, comprehensive study comparing specific donor factors with ABH expression on platelet membranes and glycoconjugates. We studied ABH expression in 166 group A apheresis platelet donors by flow cytometry, Western blotting, and thin layer chromatography relative to donor age, sex, A1/A2 subgroup, and Lewis phenotype. Overall, A antigen on platelet membranes, glycoproteins, and glycosphingolipids was linked to an A1 red blood cell (RBC) phenotype. Among A1 donors, platelet ABH varied significantly between donors (0%-87%). Intradonor variability, however, was minimal, suggesting that platelet ABH expression is a stable, donor-specific characteristic, with 5% of A1 donors typing as either ABH high- or low-expressers. Group A2 donors, in contrast, possessed a Bombay-like phenotype, lacking both A and H antigens. Unlike RBCs, ABH expression on platelets may be determined primarily by H-glycosyltransferase (FUT1) activity. Identification of A2 and A1 low expressers may increase the availability and selection of crossmatched and HLA-matched platelets. Platelets from group A2 may also be a superior product for patients undergoing A/O major mismatch allogeneic progenitor cell transplantation.

  11. 2Gyγ射线照射后24h大鼠周围血淋巴细胞基因表达谱研究%Study on gene expression profiling in peripheral blood lymphocytes of rats 24 hours after exposure to 2 Gy gamma ray

    Institute of Scientific and Technical Information of China (English)

    尹晶晶; 张伟; 李建国; 安全; 秦秀军; 闻建华

    2015-01-01

    目的:利用基因芯片技术研究2 Gyγ射线离体和全身照射后24 h对大鼠周围血淋巴细胞基因表达的影响。方法采用2 Gy钴-60(60Co)γ射线对无特定病原体级雄性SD大鼠分别进行离体和全身照射,于照射后24 h提取周围血淋巴细胞RNA,应用基因芯片技术进行辐射差异表达基因筛选,应用基因本体( GO)和京都基因与基因组百科全书( KEGG)数据库对差异表达基因进行生物信息学分析,并应用实时荧光定量聚合酶链反应( PCR)技术对基因芯片结果进行验证。结果离体照射组和全身照射组分别筛选出差异表达3倍以上的基因6925和3938条。2组共同差异表达3倍以上的基因有1322条;GO富集分析结果表明差异表达基因涵盖于生物学过程、细胞组分和分子功能3个分类;KEGG富集分析结果表明,离体照射组差异表达基因涉及41个生物学通路,全身照射组差异表达基因涉及38个生物学通路,2组涉及12个共同的生物学通路;离体照射组与全身照射组共同差异表达的基因涉及8个生物学通路;随机选择2条差异表达基因进行mRNA水平的验证,结果显示PCR扩增结果与基因芯片结果具有良好的一致性。结论60 Coγ射线照射所致大鼠周围血淋巴细胞的差异表达基因和信号通路主要涉及细胞凋亡、细胞周期、信号转导及DNA损伤修复等多个方面。%Objective To explore the impacts on peripheral blood lymphocyte gene expression of SD rats by microarray technology 24 hours after in vitro and whole-body exposure to 2 Gy gamma ray.Methods Specific pathogen free male SD rats were in vitro and whole-body respectively exposed to Co-60 gamma ray at 2 Gy, RNA was extracted from peripheral blood lymphocytes 24 hours after irradiation, the method of microarray was applied for screening differentially expressed genes.Bioinformatics analysis of differentially expressed genes were

  12. 抗阻、耐力运动对大鼠骨骼肌Perilipin、HSL基因表达及血清FFA含量的影响%Effects of Resistance and Endurance Exercise on Perilpin and HSL in Gene Expression as Well as Blood Serum Among Rat's Skeletal Muscle

    Institute of Scientific and Technical Information of China (English)

    张可斌; 单凤军

    2012-01-01

    OBJECTIVE To study the effects of long-term training with different intensities on Perilpin and HSL in gene expression and blood serum in protein content among rat's skeletal muscle. METHODS 46 SD male rats were collected in adaptive training, and 6 rats were excluded. 40 rats were randomly divided into group C (sedentary control group), group L (low-intensity movement), group M (medium-intensity movement) and group N (high-intensity movement). The methods of Biochemistry and Rel-Time PCR were carried out to test the expression of ATGL and HSL. RESULTS Compared with Group C, FFA in the blood serum in each group was significantly higher (P < 0.05, P < 0.01). The HSL expression in the R and N groups significantly increased (P < 0.05). The expression of R gene expressed most. The Perilpin expression in R and N groups decreased (P < 0.05) , and expression of R gene express least. CONCLUSION The long-term training with different intensities can lead to the up-regulating of HSL in gene expression among rat's tibialis anterior and down-regulating of Perilipin in protein content. Medium intensity, especially the high-intensive long training, could dramatically improve the levels of Perilpin in gene expression. High-intensify training could enhance the HSL in gene expression and lower the content of peillipin, and enhance the fat hydrolysis ability in skeletal muscle.%目的 研究长期不同强度运动对大鼠胫骨前肌HSL、Perilipin基因表达及血清FFA含量的影响.方法 46只雄性SD大鼠,适应练习时淘汰6只.将40只大鼠随即分为安静对照组(C组)、中等耐力运动组(M组)、大强度运动组(N组)、抗阻训练组(R组).10周训练结束后采用生化方法测定各组大鼠血清FFA含量,RT- PCR法测定ATGL、HSL基因表达.结果 与C组相比,运动各组血清中FFA含量增加(P< 0.05,P< 0.01);R组、N组HSL基因表达上调(P<0.05),其中R组基因表达量最多;R组、N组Perilipin基因表达下调(P<0.05),其中

  13. Reduced expression of Autographa californica nucleopolyhedrovirus ORF34, an essential gene, enhances heterologous gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Salem, Tamer Z. [Department of Entomology, Michigan State University, East Lansing, MI 48824 (United States); Department of Microbial Molecular Biology, AGERI, Agricultural Research Center, Giza 12619 (Egypt); Division of Biomedical Sciences, Zewail University, Zewail City of Science and Technology, Giza 12588 (Egypt); Zhang, Fengrui [Department of Entomology, Michigan State University, East Lansing, MI 48824 (United States); Thiem, Suzanne M., E-mail: smthiem@msu.edu [Department of Entomology, Michigan State University, East Lansing, MI 48824 (United States); Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824 (United States)

    2013-01-20

    Autographa californica multiple nucleopolyhedrovirus ORF34 is part of a transcriptional unit that includes ORF32, encoding a viral fibroblast growth factor (FGF) and ORF33. We identified ORF34 as a candidate for deletion to improve protein expression in the baculovirus expression system based on enhanced reporter gene expression in an RNAi screen of virus genes. However, ORF34 was shown to be an essential gene. To explore ORF34 function, deletion (KO34) and rescue bacmids were constructed and characterized. Infection did not spread from primary KO34 transfected cells and supernatants from KO34 transfected cells could not infect fresh Sf21 cells whereas the supernatant from the rescue bacmids transfection could recover the infection. In addition, budded viruses were not observed in KO34 transfected cells by electron microscopy, nor were viral proteins detected from the transfection supernatants by western blots. These demonstrate that ORF34 is an essential gene with a possible role in infectious virus production.

  14. Identification of common prognostic gene expression signatures with biological meanings from microarray gene expression datasets.

    Science.gov (United States)

    Yao, Jun; Zhao, Qi; Yuan, Ying; Zhang, Li; Liu, Xiaoming; Yung, W K Alfred; Weinstein, John N

    2012-01-01

    Numerous prognostic gene expression signatures for breast cancer were generated previously with few overlap and limited insight into the biology of the disease. Here we introduce a novel algorithm named SCoR (Survival analysis using Cox proportional hazard regression and Random resampling) to apply random resampling and clustering methods in identifying gene features correlated with time to event data. This is shown to reduce overfitting noises involved in microarray data analysis and discover functional gene sets linked to patient survival. SCoR independently identified a common poor prognostic signature composed of cell proliferation genes from six out of eight breast cancer datasets. Furthermore, a sequential SCoR analysis on highly proliferative breast cancers repeatedly identified T/B cell markers as favorable prognosis factors. In glioblastoma, SCoR identified a common good prognostic signature of chromosome 10 genes from two gene expression datasets (TCGA and REMBRANDT), recapitulating the fact that loss of one copy of chromosome 10 (which harbors the tumor suppressor PTEN) is linked to poor survival in glioblastoma patients. SCoR also identified prognostic genes on sex chromosomes in lung adenocarcinomas, suggesting patient gender might be used to predict outcome in this disease. These results demonstrate the power of SCoR to identify common and biologically meaningful prognostic gene expression signatures.

  15. Identification of common prognostic gene expression signatures with biological meanings from microarray gene expression datasets.

    Directory of Open Access Journals (Sweden)

    Jun Yao

    Full Text Available Numerous prognostic gene expression signatures for breast cancer were generated previously with few overlap and limited insight into the biology of the disease. Here we introduce a novel algorithm named SCoR (Survival analysis using Cox proportional hazard regression and Random resampling to apply random resampling and clustering methods in identifying gene features correlated with time to event data. This is shown to reduce overfitting noises involved in microarray data analysis and discover functional gene sets linked to patient survival. SCoR independently identified a common poor prognostic signature composed of cell proliferation genes from six out of eight breast cancer datasets. Furthermore, a sequential SCoR analysis on highly proliferative breast cancers repeatedly identified T/B cell markers as favorable prognosis factors. In glioblastoma, SCoR identified a common good prognostic signature of chromosome 10 genes from two gene expression datasets (TCGA and REMBRANDT, recapitulating the fact that loss of one copy of chromosome 10 (which harbors the tumor suppressor PTEN is linked to poor survival in glioblastoma patients. SCoR also identified prognostic genes on sex chromosomes in lung adenocarcinomas, suggesting patient gender might be used to predict outcome in this disease. These results demonstrate the power of SCoR to identify common and biologically meaningful prognostic gene expression signatures.

  16. Cholinergic regulation of VIP gene expression in human neuroblastoma cells

    DEFF Research Database (Denmark)

    Kristensen, Bo; Georg, Birgitte; Fahrenkrug, Jan

    1997-01-01

    Vasoactive intestinal polypeptide, muscarinic receptor, neuroblastoma cell, mRNA, gene expression, peptide processing......Vasoactive intestinal polypeptide, muscarinic receptor, neuroblastoma cell, mRNA, gene expression, peptide processing...

  17. Polymorphism of the human vitronectin gene causes vitronectin blood type.

    Science.gov (United States)

    Kubota, K; Hayashi, M; Oishi, N; Sakaki, Y

    1990-03-30

    Human blood plasma/sera are classified into three distinct vitronectin types based on the relative amount of the 75 kDa polypeptide to its cleavage product of 65 kDa. We asked whether the vitronectin blood types correlated with the polymorphism of the vitronectin gene. A portion of the vitronectin gene was amplified by using polymerase chain reaction and digested with a restriction enzyme PmaC I which may distinguish the base sequence causing the polymorphic change at the amino acid position 381. Amplified DNAs of the blood type I (75 kDa-rich), II (75/65 kDa-even), and III (65 kDa-rich) were shown to be resistant, moderately sensitive and completely sensitive to PmaC I, respectively. These results suggest that Thr at position 381 is essential for the cleavage of the vitronectin 75 kDa polypeptide and that three possible combinations of two codominant alleles of vitronectin determine three vitronectin blood types.

  18. Gravity-Induced Gene Expression in Plants.

    Science.gov (United States)

    Sederoff, Heike; Heber, Steffen; Howard, Brian; Myburg-Nichols, Henrietta; Hammond, Rebecca; Salinas-Mondragon, Raul; Brown, Christopher S.

    Plants sense changes in their orientation towards the vector of gravity and respond with directional growth. Several metabolites in the signal transduction cascade have been identified. However, very little is known about the interaction between these sensing and signal transduction events and even less is known about their role in the differential growth response. Gravity induced changes in transcript abundance have been identified in Arabidopsis whole seedlings and root apices (Moseyko et al. 2002; Kimbrough et al. 2004). Gravity induced transcript abundance changes can be observed within less than 1 min after stimulation (Salinas-Mondragon et al. 2005). Gene expression however requires not only transcription but also translation of the mRNA. Translation can only occur when mRNA is associated with ribosomes, even though not all mRNA associated with ribosomes is actively translated. To approximate translational capacity we quantified whole genome transcript abundances in corn stem pulvini during the first hour after gravity stimulation in total and poly-ribosomal fractions. As in Arabidopsis root apices, transcript abundances of several clusters of genes responded to gravity stimulation. The vast majority of these transcripts were also found to associate with polyribosomes in the same temporal and quantitative pattern. These genes are transcriptionally regulated by gravity stimulation, but do not exhibit translational regulation. However, a small group of genes showed increased transcriptional regulation after gravity stimulation, but no association with polysomes. These transcripts likely are translationally repressed. The mechanism of translational repression for these transcripts is unknown. Based on the hypothesis that the genes essential for gravitropic responses should be expressed in most or all species, we compared the temporal gravity induced expression pattern of all orthologs identified between maize and Arabidopsis. A small group of genes showed high

  19. Gene expression regulators--MicroRNAs

    Institute of Scientific and Technical Information of China (English)

    CHEN Fang; YIN Q. James

    2005-01-01

    A large class of non-coding RNAs found in small molecule RNAs are closely associated with the regulation of gene expression, which are called microRNA (miRNA). MiRNAs are coded in intergenic or intronic regions and can be formed into foldback hairpin RNAs. These transcripts are cleaved by Dicer, generating mature miRNAs that can silence their target genes in different modes of action. Now, research on small molecule RNAs has gotten breakthrough advance in biology. To discover miRNA genes and their target genes has become hot topics in RNA research. This review attempts to look back the history of miRNA discovery, to introduce the methods of screening miRNAs, to localize miRNA loci in genome, to seek miRNA target genes and the biological function, and to discuss the working mechanisms of miRNAs. Finally, we will discuss the potential important roles of miRNAs in modulating the genesis, development, growth, and differentiation of organisms. Thus, it can be predicted that a complete understanding of miRNA functions will bring us some new concepts, approaches and strategies for the study of living beings.

  20. Gene Expression Profiling of Xeroderma Pigmentosum

    Directory of Open Access Journals (Sweden)

    Bowden Nikola A

    2006-05-01

    Full Text Available Abstract Xeroderma pigmentosum (XP is a rare recessive disorder that is characterized by extreme sensitivity to UV light. UV light exposure results in the formation of DNA damage such as cyclobutane dimers and (6-4 photoproducts. Nucleotide excision repair (NER orchestrates the removal of cyclobutane dimers and (6-4 photoproducts as well as some forms of bulky chemical DNA adducts. The disease XP is comprised of 7 complementation groups (XP-A to XP-G, which represent functional deficiencies in seven different genes, all of which are believed to be involved in NER. The main clinical feature of XP is various forms of skin cancers; however, neurological degeneration is present in XPA, XPB, XPD and XPG complementation groups. The relationship between NER and other types of DNA repair processes is now becoming evident but the exact relationships between the different complementation groups remains to be precisely determined. Using gene expression analysis we have identified similarities and differences after UV light exposure between the complementation groups XP-A, XP-C, XP-D, XP-E, XP-F, XP-G and an unaffected control. The results reveal that there is a graded change in gene expression patterns between the mildest, most similar to the control response (XP-E and the severest form (XP-A of the disease, with the exception of XP-D. Distinct differences between the complementation groups with neurological symptoms (XP-A, XP-D and XP-G and without (XP-C, XP-E and XP-F were also identified. Therefore, this analysis has revealed distinct gene expression profiles for the XP complementation groups and the first step towards understanding the neurological symptoms of XP.

  1. Expression Detection of DMRTs and Two sox9 Genes in Takifugu rubripes (Tetraodontidae,Vertebrata)

    Institute of Scientific and Technical Information of China (English)

    SHEN Xueyan; CUI Jianzhou; YANG Guanpin; GONG Qingli; GU Qianqun

    2007-01-01

    Sex determination and sex differentiation are important phenomena in fish, but the mechanisms of sex determination in Takifugu rubripes are poorly understood. In our study, the expression patterns of genes for DMRTs (DMRT1, DMRT2 and DMRT3),sox9a and sox9b in T. rubripes tissues were verified with the Reverse Transcription (RT)-PCR detection. It is showed that DMRT1 expressions in testis and ovaries were much lower, and no expressions were fotmd in muscle, blood and tailfin. However, expressions for DMRT2 and DMRT3 were not found in the tissues stated above. Transcripts of sox9a were detected in muscle, fin, ovary and testis, but not in blood, whereas sox9b expression was only detected in ovary. The expression patterns of DMRTs, sox9a and sox9b in T. rubripes gonads suggest that these genes may not be sex-specific.

  2. Cell cycle networks link gene expression dysregulation, mutation, and brain maldevelopment in autistic toddlers.

    Science.gov (United States)

    Pramparo, Tiziano; Lombardo, Michael V; Campbell, Kathleen; Barnes, Cynthia Carter; Marinero, Steven; Solso, Stephanie; Young, Julia; Mayo, Maisi; Dale, Anders; Ahrens-Barbeau, Clelia; Murray, Sarah S; Lopez, Linda; Lewis, Nathan; Pierce, Karen; Courchesne, Eric

    2015-12-14

    Genetic mechanisms underlying abnormal early neural development in toddlers with Autism Spectrum Disorder (ASD) remain uncertain due to the impossibility of direct brain gene expression measurement during critical periods of early development. Recent findings from a multi-tissue study demonstrated high expression of many of the same gene networks between blood and brain tissues, in particular with cell cycle functions. We explored relationships between blood gene expression and total brain volume (TBV) in 142 ASD and control male toddlers. In control toddlers, TBV variation significantly correlated with cell cycle and protein folding gene networks, potentially impacting neuron number and synapse development. In ASD toddlers, their correlations with brain size were lost as a result of considerable changes in network organization, while cell adhesion gene networks significantly correlated with TBV variation. Cell cycle networks detected in blood are highly preserved in the human brain and are upregulated during prenatal states of development. Overall, alterations were more pronounced in bigger brains. We identified 23 candidate genes for brain maldevelopment linked to 32 genes frequently mutated in ASD. The integrated network includes genes that are dysregulated in leukocyte and/or postmortem brain tissue of ASD subjects and belong to signaling pathways regulating cell cycle G1/S and G2/M phase transition. Finally, analyses of the CHD8 subnetwork and altered transcript levels from an independent study of CHD8 suppression further confirmed the central role of genes regulating neurogenesis and cell adhesion processes in ASD brain maldevelopment.

  3. Studying the Complex Expression Dependences between Sets of Coexpressed Genes

    Directory of Open Access Journals (Sweden)

    Mario Huerta

    2014-01-01

    Full Text Available Organisms simplify the orchestration of gene expression by coregulating genes whose products function together in the cell. The use of clustering methods to obtain sets of coexpressed genes from expression arrays is very common; nevertheless there are no appropriate tools to study the expression networks among these sets of coexpressed genes. The aim of the developed tools is to allow studying the complex expression dependences that exist between sets of coexpressed genes. For this purpose, we start detecting the nonlinear expression relationships between pairs of genes, plus the coexpressed genes. Next, we form networks among sets of coexpressed genes that maintain nonlinear expression dependences between all of them. The expression relationship between the sets of coexpressed genes is defined by the expression relationship between the skeletons of these sets, where this skeleton represents the coexpressed genes with a well-defined nonlinear expression relationship with the skeleton of the other sets. As a result, we can study the nonlinear expression relationships between a target gene and other sets of coexpressed genes, or start the study from the skeleton of the sets, to study the complex relationships of activation and deactivation between the sets of coexpressed genes that carry out the different cellular processes present in the expression experiments.

  4. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository.

    Science.gov (United States)

    Edgar, Ron; Domrachev, Michael; Lash, Alex E

    2002-01-01

    The Gene Expression Omnibus (GEO) project was initiated in response to the growing demand for a public repository for high-throughput gene expression data. GEO provides a flexible and open design that facilitates submission, storage and retrieval of heterogeneous data sets from high-throughput gene expression and genomic hybridization experiments. GEO is not intended to replace in house gene expression databases that benefit from coherent data sets, and which are constructed to facilitate a particular analytic method, but rather complement these by acting as a tertiary, central data distribution hub. The three central data entities of GEO are platforms, samples and series, and were designed with gene expression and genomic hybridization experiments in mind. A platform is, essentially, a list of probes that define what set of molecules may be detected. A sample describes the set of molecules that are being probed and references a single platform used to generate its molecular abundance data. A series organizes samples into the meaningful data sets which make up an experiment. The GEO repository is publicly accessible through the World Wide Web at http://www.ncbi.nlm.nih.gov/geo.

  5. Expression of glycolysis related gene in peripheral blood mononuclear cells of patients with rheumatoid arthritis%类风湿关节炎患者外周血单个核细胞中糖酵解相关基因的表达

    Institute of Scientific and Technical Information of China (English)

    熊御云; 王蓓; 陶真; 吴玲; 尤海燕; 王文红; 焦志军

    2014-01-01

    目的:探讨糖酵解相关基因在类风湿关节炎(rheumatoid arthritis,RA)患者外周血单个核细胞(peripheral blood mononuclear cells,PBMC)中的表达及其意义.方法:选取活动期RA患者19例,稳定期RA患者23例,采用Ficoll法分离PBMC,定量PCR检测糖酵解相关基因表达水平,并与健康对照进行比较.结果:与健康对照相比,活动期RA患者PBMC中糖酵解相关基因丙糖磷酸异构酶(triosephosphate isomerase,TPI)、烯醇化酶(enolase,ENO)、M型丙酮酸激酶(pyruvate kinase muscle,PKM)、单羧酸转运蛋白(monocarboxylic acid transporter member,MCT)表达量均增加(P<0.05),稳定期RA患者4种基因的表达略有升高,但差异无统计学意义.结论:RA患者存在糖酵解相关基因表达的改变.糖酵解反应有可能在RA疾病机制中具有重要的意义.%Objective:To explore the mRNA expression and potential significance of glycolysis related gene in peripheral blood mononuclear cells(PBMC) of patients with rheumatoid arthritis(RA).Methods:PBMC were purified by Ficoll and glycolysis related genes mRNA expression was analysed by real-time PCR.Results:Compared with healthy control,PBMC from active RA patients significantly expressed higher level of glycolysis related genes including TPI,ENO,PKM and MCT.However,there were no significant differences in these genes between inactive group and control group.Conclusion:In RA patients,glycolysis related genes mRNA expression level were changed.Glycolysis may play an important role in the mechanism of RA.

  6. Gene expression in developing watermelon fruit

    Directory of Open Access Journals (Sweden)

    Hernandez Alvaro

    2008-06-01

    Full Text Available Abstract Background Cultivated watermelon form large fruits that are highly variable in size, shape, color, and content, yet have extremely narrow genetic diversity. Whereas a plethora of genes involved in cell wall metabolism, ethylene biosynthesis, fruit softening, and secondary metabolism during fruit development and ripening have been identified in other plant species, little is known of the genes involved in these processes in watermelon. A microarray and quantitative Real-Time PCR-based study was conducted in watermelon [Citrullus lanatus (Thunb. Matsum. & Nakai var. lanatus] in order to elucidate the flow of events associated with fruit development and ripening in this species. RNA from three different maturation stages of watermelon fruits, as well as leaf, were collected from field grown plants during three consecutive years, and analyzed for gene expression using high-density photolithography microarrays and quantitative PCR. Results High-density photolithography arrays, composed of probes of 832 EST-unigenes from a subtracted, fruit development, cDNA library of watermelon were utilized to examine gene expression at three distinct time-points in watermelon fruit development. Analysis was performed with field-grown fruits over three consecutive growing seasons. Microarray analysis identified three hundred and thirty-five unique ESTs that are differentially regulated by at least two-fold in watermelon fruits during the early, ripening, or mature stage when compared to leaf. Of the 335 ESTs identified, 211 share significant homology with known gene products and 96 had no significant matches with any database accession. Of the modulated watermelon ESTs related to annotated genes, a significant number were found to be associated with or involved in the vascular system, carotenoid biosynthesis, transcriptional regulation, pathogen and stress response, and ethylene biosynthesis. Ethylene bioassays, performed with a closely related watermelon

  7. Gene Expression Profile Changes in Germinating Rice

    Institute of Scientific and Technical Information of China (English)

    Dongli He; Chao Han; Pingfang Yang

    2011-01-01

    Water absorption is a prerequisite for seed germination.During imbibition,water influx causes the resumption of many physiological and metabolic processes in growing seed.In order to obtain more complete knowledge about the mechanism of seed germination,two-dimensional gel electrophoresis was applied to investigate the protein profile changes of rice seed during the first 48 h of imbibition.Thirtynine differentially expressed proteins were identified,including 19 down-regulated and 20 up-regulated proteins.Storage proteins and some seed development- and desiccation-associated proteins were down regulated.The changed patterns of these proteins indicated extensive mobilization of seed reserves.By contrast,catabolism-associated proteins were up regulated upon imbibition.Semi-quantitative real time polymerase chain reaction analysis showed that most of the genes encoding the down- or upregulated proteins were also down or up regulated at mRNA level.The expression of these genes was largely consistent at mRNA and protein levels.In providing additional information concerning gene regulation in early plant life,this study will facilitate understanding of the molecular mechanisms of seed germination.

  8. The relationship among gene expression, the evolution of gene dosage, and the rate of protein evolution.

    Directory of Open Access Journals (Sweden)

    Jean-François Gout

    2010-05-01

    Full Text Available The understanding of selective constraints affecting genes is a major issue in biology. It is well established that gene expression level is a major determinant of the rate of protein evolution, but the reasons for this relationship remain highly debated. Here we demonstrate that gene expression is also a major determinant of the evolution of gene dosage: the rate of gene losses after whole genome duplications in the Paramecium lineage is negatively correlated to the level of gene expression, and this relationship is not a byproduct of other factors known to affect the fate of gene duplicates. This indicates that changes in gene dosage are generally more deleterious for highly expressed genes. This rule also holds for other taxa: in yeast, we find a clear relationship between gene expression level and the fitness impact of reduction in gene dosage. To explain these observations, we propose a model based on the fact that the optimal expression level of a gene corresponds to a trade-off between the benefit and cost of its expression. This COSTEX model predicts that selective pressure against mutations changing gene expression level or affecting the encoded protein should on average be stronger in highly expressed genes and hence that both the frequency of gene loss and the rate of protein evolution should correlate negatively with gene expression. Thus, the COSTEX model provides a simple and common explanation for the general relationship observed between the level of gene expression and the different facets of gene evolution.

  9. Nuclear AXIN2 represses MYC gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Rennoll, Sherri A.; Konsavage, Wesley M.; Yochum, Gregory S., E-mail: gsy3@psu.edu

    2014-01-03

    Highlights: •AXIN2 localizes to cytoplasmic and nuclear compartments in colorectal cancer cells. •Nuclear AXIN2 represses the activity of Wnt-responsive luciferase reporters. •β-Catenin bridges AXIN2 to TCF transcription factors. •AXIN2 binds the MYC promoter and represses MYC gene expression. -- Abstract: The β-catenin transcriptional coactivator is the key mediator of the canonical Wnt signaling pathway. In the absence of Wnt, β-catenin associates with a cytosolic and multi-protein destruction complex where it is phosphorylated and targeted for proteasomal degradation. In the presence of Wnt, the destruction complex is inactivated and β-catenin translocates into the nucleus. In the nucleus, β-catenin binds T-cell factor (TCF) transcription factors to activate expression of c-MYC (MYC) and Axis inhibition protein 2 (AXIN2). AXIN2 is a member of the destruction complex and, thus, serves in a negative feedback loop to control Wnt/β-catenin signaling. AXIN2 is also present in the nucleus, but its function within this compartment is unknown. Here, we demonstrate that AXIN2 localizes to the nuclei of epithelial cells within normal and colonic tumor tissues as well as colorectal cancer cell lines. In the nucleus, AXIN2 represses expression of Wnt/β-catenin-responsive luciferase reporters and forms a complex with β-catenin and TCF. We demonstrate that AXIN2 co-occupies β-catenin/TCF complexes at the MYC promoter region. When constitutively localized to the nucleus, AXIN2 alters the chromatin structure at the MYC promoter and directly represses MYC gene expression. These findings suggest that nuclear AXIN2 functions as a rheostat to control MYC expression in response to Wnt/β-catenin signaling.

  10. Expression profiling reveals novel hypoxic biomarkers in peripheral blood of adult mice exposed to chronic hypoxia.

    Directory of Open Access Journals (Sweden)

    Matias Mosqueira

    Full Text Available Hypoxia induces a myriad of changes including an increase in hematocrit due to erythropoietin (EPO mediated erythropoiesis. While hypoxia is of importance physiologically and clinically, lacunae exist in our knowledge of the systemic and temporal changes in gene expression occurring in blood during the exposure and recovery from hypoxia. To identify these changes expression profiling was conducted on blood obtained from cohorts of C57Bl-10 wild type mice that were maintained at normoxia (NX, exposed for two weeks to normobaric chronic hypoxia (CH or two weeks of CH followed by two weeks of normoxic recovery (REC. Using stringent bioinformatic cut-offs (0% FDR, 2 fold change cut-off, 230 genes were identified and separated into four distinct temporal categories. Class I contained 1 transcript up-regulated in both CH and REC; Class II contained 202 transcripts up-regulated in CH but down-regulated after REC; Class III contained 9 transcripts down-regulated both in CH and REC; Class IV contained 18 transcripts down-regulated after CH exposure but up-regulated after REC. Profiling was independently validated and extended by analyzing expression levels of selected genes as novel biomarkers from our profile (e.g. spectrin alpha-1, ubiquitin domain family-1 and pyrroline-5-carboxylate reductase-1 by performing qPCR at 7 different time points during CH and REC. Our identification and characterization of these genes define transcriptome level changes occurring during chronic hypoxia and normoxic recovery as well as novel blood biomarkers that may be useful in monitoring a variety of physiological and pathological conditions associated with hypoxia.

  11. Isolation, Cloning, Expression and Purification of Recombinant RhD Antigen from Cord Blood

    Directory of Open Access Journals (Sweden)

    M Habibi Roudkenar

    2008-09-01

    Full Text Available "nBackground: Rh (Rhesus is a highly complex blood group system in man deeply rooted in transfusion medicine. Isolation of RhD from cord blod, cloning and expression of recombinant RhD antigen in bacterial expression system was the aim of this study."nMethods: Total RNAs were extracted from cord blood (O+.  The quality of RNA was determined by electrophoresis. In or­der to obtain coding sequence of RhD antigen cDNA was synthesized and Rh D gene was amplified by RT-PCR. The iso­lated RhD gene was   cloned to pUC18 vector and transformed to DH5α. The confirmed construct was sub cloned into expres­sion vector, pBADgIII/A, and expressed in Top10 E.coli. The expressed protein was characterized by SDS-PAGE and western blot analysis. Antigenicity of the expressed protein was assessed by ELISA using commercially available hu­man anti-RhD polyclonal   antibody with   peroxidase conjugated goat anti-human IgG, IgM, IgA as secondary antibody. "nRe­sults: RhD gene was successfully cloned and expressed. The expected size of recombinant RhD protein was detected in SDS-PAGE, and confirmed by dot and western blot analysis. RhD antibody reacted with recombinant RhD antigen as well as with RhD polypeptide extracted from RBCs membrane."nConclusion: The recombinant RhD may be helpful to further investigate the molecular basis of RhD protein and could be applica­ble for production anti- D antibody in an animal model.

  12. Expression and its Clinical Signiifcance of CK19 mRNA in Peripheral Blood of Patients with Gastric Cancer

    Institute of Scientific and Technical Information of China (English)

    Zhu Minghui; Zhu Li; Qin Youjuan; Chen Lin

    2014-01-01

    Objective:To investigate the expression of targeted gene CK19 mRNA in peripheral blood of the patients with gastric cancer and its correlation with biological behaviors of gastric cancer. Methods: CK19 mRNA in peripheral blood of 56 patients with gastric cancer was detected by RT-PCR method. Meanwhile, the peripheral blood of 12 healthy volunteers and 12 gastric cancer tissues were respectively selected as negative and positive controls. The correlation between CK19 mRNA expression in peripheral blood of the patients with gastric cancer and clinical pathological characteristics was analyzed. Results: The positive rate of CK19 mRNA in peripheral blood of 56 patients with gastric cancer was 58.9% (33/56). The expression rate of CK19 mRNA in 12 gastric cancer tissues came up to 100.0% (12/12), whereas CK19 mRNA in peripheral blood of 12 healthy volunteers was expressed negatively. CK19 mRNA expression was signiifcantly related to the clinical staging of gastric cancer and lymphatic metastasis (P0.05). Conclusion: The application of RT-PCR was highly sensitive and speciifc in detecting the CK19 mRNA in peripheral blood of patients with gastric cancer, in which CK19 mRNA is expected to be a tumor marker for judging the metastasis and recurrence and evaluating the efifcacyof gastric cancer.

  13. EXPRESSION OF ADHESION MOLECULES ON PERIPHERAL BLOOD MONOCYTES DURING PREGNANCY

    Directory of Open Access Journals (Sweden)

    V. A. Mikhaylova

    2010-01-01

    Full Text Available Peripheral blood monocytes play a key role in regulation of immune response during pregnancy. Intensive adhesion of monocytes to endothelium proves that monocytes are activated during pregnancy. To determine a potential role of adhesion molecules for ability of monocytes to adhere, we studied expression of CD11a, CD11b, CD11c, CD18, CD49d, CD29 markers of monocytes from non-pregnant and pregnant women. Expression of adhesion molecules on monocytes was analyzed by flow cytometry. The amounts of CD11b-expressing monocytes increased during pregnancy, as compared with non-pregnant women. Intensity of CD11a, CD11b, CD11c, CD29 expression on the monocytes did also increase at normal pregnancy. These results suggest that intense adhesion of monocytes to endothelium during uncomplicated pregnancy may be determined by increased expression of CD11a, CD11b, CD11c, CD29, and higher amounts of CD11b+ monocytes.

  14. Expressing exogenous genes in newts by transgenesis.

    Science.gov (United States)

    Casco-Robles, Martin Miguel; Yamada, Shouta; Miura, Tomoya; Nakamura, Kenta; Haynes, Tracy; Maki, Nobuyasu; Del Rio-Tsonis, Katia; Tsonis, Panagiotis A; Chiba, Chikafumi

    2011-05-01

    The great regenerative abilities of newts provide the impetus for studies at the molecular level. However, efficient methods for gene regulation have historically been quite limited. Here we describe a protocol for transgenically expressing exogenous genes in the newt Cynops pyrrhogaster. This method is simple: a reaction mixture of I-SceI meganuclease and a plasmid DNA carrying a transgene cassette flanked by the enzyme recognition sites is directly injected into fertilized eggs. The protocol achieves a high efficiency of transgenesis, comparable to protocols used in other animal systems, and it provides a practical number of transgenic newts (∼20% of injected embryos) that survive beyond metamorphosis and that can be applied to regenerative studies. The entire protocol for obtaining transgenic adult newts takes 4-5 months.

  15. Gene expression-targeted isoflavone therapy.

    Science.gov (United States)

    Węgrzyn, Alicja

    2012-04-01

    Lysosomal storage diseases (LSD) form a group of inherited metabolic disorders caused by dysfunction of one of the lysosomal proteins, resulting in the accumulation of certain compounds. Although these disorders are among first genetic diseases for which specific treatments were proposed, there are still serious unsolved problems that require development of novel therapeutic procedures. An example is neuronopathy, which develops in most of LSD and cannot be treated efficiently by currently approved therapies. Recently, a new potential therapy, called gene expression-targeted isoflavone therapy (GET IT), has been proposed for a group of LSD named mucopolysaccharidoses (MPS), in which storage of incompletely degraded glycosaminoglycans (GAGs) results in severe symptoms of virtually all tissues and organs, including central nervous system. The idea of this therapy is to inhibit synthesis of GAGs by modulating expression of genes coding for enzymes involved in synthesis of these compounds. Such a modulation is possible by using isoflavones, particularly genistein, which interfere with a signal transduction process necessary for stimulation of expression of certain genes. Results of in vitro experiments and studies on animal models indicated a high efficiency of GET IT, including correction of behavior of affected mice. However, clinical trials, performed with soy isoflavone extracts, revealed only limited efficacy. This caused a controversy about GET IT as a potential, effective treatment of patients suffering from MPS, especially neuronopathic forms of these diseases. It this critical review, I present possible molecular mechanisms of therapeutic action of isoflavones (particularly genistein) and suggest that efficacy of GET IT might be sufficiently high when using relatively high doses of synthetic genistein (which was employed in experiments on cell cultures and mouse models) rather than low doses of soy isoflavone extracts (which were used in clinical trials). This

  16. RNA SAMPLE PREPARATION APPLIED TO GENE EXPRESSION PROFILING FOR THE HORSE BIOLOGICAL PASSPORT.

    Science.gov (United States)

    Bailly-Chouriberry, Ludovic; Baudoin, Florent; Cormant, Florence; Glavieux, Yohan; Loup, Benoit; Garcia, Patrice; Popot, Marie-Agnès; Bonnaire, Yves

    2017-04-05

    The improvement of doping control is an on-going race. Techniques to fight against doping are usually based on the direct detection of drugs or their metabolites by analytical methods such as chromatography hyphenated to mass spectrometry after ad hoc sample preparation. Nowadays, omic methods constitute an attractive development and advances have been achieved particularly by application of molecular biology tools for detection of anabolic androgenic steroids (AAS), erythropoiesis-stimulating agent (ESA) or to control human growth hormone misuses. These interesting results across different animal species have suggested that modification of gene expression offers promising new methods of improving the window of detection of banned substances by targeting their effects on blood cell gene expression. In this context, the present study describes the possibility of using a modified version of the dedicated Human IVD (in vitro Diagnostics) PAXgene® Blood RNA Kit for horse gene expression analysis in blood collected on PAXgene® tubes applied to the Horse Biological Passport. The commercial kit was only approved for human blood samples and has required an optimization of specific technical requirements for equine blood samples. Improvements and recommendations were achieved for sample collection, storage and RNA extraction procedure. Following these developments, RNA yield and quality were demonstrated to be suitable for downstream gene expression analysis by qPCR techniques.

  17. Genome-wide age-related changes in DNA methylation and gene expression in human PBMCs.

    Science.gov (United States)

    Steegenga, Wilma T; Boekschoten, Mark V; Lute, Carolien; Hooiveld, Guido J; de Groot, Philip J; Morris, Tiffany J; Teschendorff, Andrew E; Butcher, Lee M; Beck, Stephan; Müller, Michael

    2014-06-01

    Aging is a progressive process that results in the accumulation of intra- and extracellular alterations that in turn contribute to a reduction in health. Age-related changes in DNA methylation have been reported before and may be responsible for aging-induced changes in gene expression, although a causal relationship has yet to be shown. Using genome-wide assays, we analyzed age-induced changes in DNA methylation and their effect on gene expression with and without transient induction with the synthetic transcription modulating agent WY14,643. To demonstrate feasibility of the approach, we isolated peripheral blood mononucleated cells (PBMCs) from five young and five old healthy male volunteers and cultured them with or without WY14,643. Infinium 450K BeadChip and Affymetrix Human Gene 1.1 ST expression array analysis revealed significant differential methylation of at least 5 % (ΔYO > 5 %) at 10,625 CpG sites between young and old subjects, but only a subset of the associated genes were also differentially expressed. Age-related differential methylation of previously reported epigenetic biomarkers of aging including ELOVL2, FHL2, PENK, and KLF14 was confirmed in our study, but these genes did not display an age-related change in gene expression in PBMCs. Bioinformatic analysis revealed that differentially methylated genes that lack an age-related expression change predominantly represent genes involved in carcinogenesis and developmental processes, and expression of most of these genes were silenced in PBMCs. No changes in DNA methylation were found in genes displaying transiently induced changes in gene expression. In conclusion, aging-induced differential methylation often targets developmental genes and occurs mostly without change in gene expression.

  18. Gene expression profiling of cutaneous wound healing

    Directory of Open Access Journals (Sweden)

    Wang Ena

    2007-02-01

    Full Text Available Abstract Background Although the sequence of events leading to wound repair has been described at the cellular and, to a limited extent, at the protein level this process has yet to be fully elucidated. Genome wide transcriptional analysis tools promise to further define the global picture of this complex progression of events. Study Design This study was part of a placebo-controlled double-blind clinical trial in which basal cell carcinomas were treated topically with an immunomodifier – toll-like receptor 7 agonist: imiquimod. The fourteen patients with basal cell carcinoma in the placebo arm of the trial received placebo treatment consisting solely of vehicle cream. A skin punch biopsy was obtained immediately before treatment and at the end of the placebo treatment (after 2, 4 or 8 days. 17.5K cDNA microarrays were utilized to profile the biopsy material. Results Four gene signatures whose expression changed relative to baseline (before wound induction by the pre-treatment biopsy were identified. The largest group was comprised predominantly of inflammatory genes whose expression was increased throughout the study. Two additional signatures were observed which included preferentially pro-inflammatory genes in the early post-treatment biopsies (2 days after pre-treatment biopsies and repair and angiogenesis genes in the later (4 to 8 days biopsies. The fourth and smallest set of genes was down-regulated throughout the study. Early in wound healing the expression of markers of both M1 and M2 macrophages were increased, but later M2 markers predominated. Conclusion The initial response to a cutaneous wound induces powerful transcriptional activation of pro-inflammatory stimuli which may alert the host defense. Subsequently and in the absence of infection, inflammation subsides and it is replaced by angiogenesis and remodeling. Understanding this transition which may be driven by a change from a mixed macrophage population to predominately M2

  19. Network Completion for Static Gene Expression Data

    Directory of Open Access Journals (Sweden)

    Natsu Nakajima

    2014-01-01

    Full Text Available We tackle the problem of completing and inferring genetic networks under stationary conditions from static data, where network completion is to make the minimum amount of modifications to an initial network so that the completed network is most consistent with the expression data in which addition of edges and deletion of edges are basic modification operations. For this problem, we present a new method for network completion using dynamic programming and least-squares fitting. This method can find an optimal solution in polynomial time if the maximum indegree of the network is bounded by a constant. We evaluate the effectiveness of our method through computational experiments using synthetic data. Furthermore, we demonstrate that our proposed method can distinguish the differences between two types of genetic networks under stationary conditions from lung cancer and normal gene expression data.

  20. Global expression differences and tissue specific expression differences in rice evolution result in two contrasting types of differentially expressed genes

    KAUST Repository

    Horiuchi, Youko

    2015-12-23

    Background Since the development of transcriptome analysis systems, many expression evolution studies characterized evolutionary forces acting on gene expression, without explicit discrimination between global expression differences and tissue specific expression differences. However, different types of gene expression alteration should have different effects on an organism, the evolutionary forces that act on them might be different, and different types of genes might show different types of differential expression between species. To confirm this, we studied differentially expressed (DE) genes among closely related groups that have extensive gene expression atlases, and clarified characteristics of different types of DE genes including the identification of regulating loci for differential expression using expression quantitative loci (eQTL) analysis data. Results We detected differentially expressed (DE) genes between rice subspecies in five homologous tissues that were verified using japonica and indica transcriptome atlases in public databases. Using the transcriptome atlases, we classified DE genes into two types, global DE genes and changed-tissues DE genes. Global type DE genes were not expressed in any tissues in the atlas of one subspecies, however changed-tissues type DE genes were expressed in both subspecies with different tissue specificity. For the five tissues in the two japonica-indica combinations, 4.6 ± 0.8 and 5.9 ± 1.5 % of highly expressed genes were global and changed-tissues DE genes, respectively. Changed-tissues DE genes varied in number between tissues, increasing linearly with the abundance of tissue specifically expressed genes in the tissue. Molecular evolution of global DE genes was rapid, unlike that of changed-tissues DE genes. Based on gene ontology, global and changed-tissues DE genes were different, having no common GO terms. Expression differences of most global DE genes were regulated by cis-eQTLs. Expression

  1. Impact of animal strain on gene expression in a rat model of acute cardiac rejection

    Directory of Open Access Journals (Sweden)

    Norsworthy Kelly J

    2009-06-01

    Full Text Available Abstract Background The expression levels of many genes show wide natural variation among strains or populations. This study investigated the potential for animal strain-related genotypic differences to confound gene expression profiles in acute cellular rejection (ACR. Using a rat heart transplant model and 2 different rat strains (Dark Agouti, and Brown Norway, microarrays were performed on native hearts, transplanted hearts, and peripheral blood mononuclear cells (PBMC. Results In heart tissue, strain alone affected the expression of only 33 probesets while rejection affected the expression of 1368 probesets (FDR 10% and FC ≥ 3. Only 13 genes were affected by both strain and rejection, which was Conclusion In ACR, genetic background has a large impact on the transcriptome of immune cells, but not heart tissue. Gene expression studies of ACR should avoid study designs that require cross strain comparisons between leukocytes.

  2. Apopotic gene Bax expression in carotid plaque

    Institute of Scientific and Technical Information of China (English)

    Bao-Zhong MEN; Ding-Biao ZHOU; Huai-Yin SHI; Xiao-Ming ZHANG

    2006-01-01

    The expression of BAX in carotid atherosclerosis and its regulation is far from defined. Objectives To investigate BAX expression in stable/fibrous and instable/vulnerable carotid plaque and its clinical significance. Methods 25 cases of carotid plaque specimens obtained from endarterectomy were divided into two groups, stable/fibrous 14 cases, vulnerable/instable 11 cases; aortic artery and its branches from hepatic transplantation donors 6 case as control. The expression of proapoptotic BAX was detected by immunohistochemistry(IHC), in situ hybridization(ISH) and in situ TdT dUTP nick end labeling (TUNEL). Results 5 cases of BAX ( + ) were detected by ICH and ISH, 4 case of TUNEL ( + ) were detected by TUNEL in stable/fibrous carotid plaque , while 10 cases were BAX ( + )by IHC(P < 0.05) , 11case by ISH and 9 case by TUNEL were detected in instable/vulnerable carotid plaque ( P < 0.01 ), respectively. The intensity of BAX ( + ) cells by IHC and ISH was 8.63 ± 2.62 and 10.32 ± 3.12 in fibrous plaques, whereas 122 ± 21.64and 152 ± 23.35 in vulnerable plaques, respectively. No expression of BAX was found in controlled group. Conclusion The higher expression of Bax in vulnerable carotid plaque may be one mechanisms in molecular pathogenesis of carotid atherosclerosis which affect plaque stability and be the cause of higher incidence of stroke than fibrous carotid plaques, the regulation of BAX expression in different stage of atherosclerosis may provide targets in gene therapy for carotid atherosclerosis.

  3. Developmental expression and organisation of fibrinogen genes in the zebrafish.

    Science.gov (United States)

    Fish, Richard J; Vorjohann, Silja; Béna, Frédérique; Fort, Alexandre; Neerman-Arbez, Marguerite

    2012-01-01

    The zebrafish is a model organism for studying vertebrate development and many human diseases. Orthologues of the majority of human coagulation factors are present in zebrafish, including fibrinogen. As a first step towards using zebrafish to model human fibrinogen disorders, we cloned the zebrafish fibrinogen cDNAs and made in situ hybridisations and quantitative reverse transcription-polymerase chain reactions (qRT-PCR) to detect zebrafish fibrinogen mRNAs. Prior to liver development or blood flow we detected zebrafish fibrinogen expression in the embryonic yolk syncytial layer and then in the early cells of the developing liver. While human fibrinogen is encoded by a three-gene, 50 kilobase (kb) cluster on chromosome 4 ( FGB-FGA-FGG ), recent genome assemblies showed that the zebrafish fgg gene appears distanced from fga and fgb , which we confirmed by in situ hybridisation. The zebrafish fibrinogen Bβ and γ protein chains are conserved at over 50% of amino acid positions, compared to the human polypeptides. The zebrafish Aα chain is less conserved and its C-terminal region is nearly 200 amino acids shorter than human Aα. We generated transgenic zebrafish which express a green fluorescent protein reporter gene under the control of a 1.6 kb regulatory region from zebrafish fgg . Transgenic embryos showed strong fluorescence in the developing liver, mimicking endogenous fibrinogen expression. This regulatory sequence can now be used for overexpression of transgenes in zebrafish hepatocytes. Our study is a proof-of-concept step towards using zebrafish to model human disease linked to fibrinogen gene mutations.

  4. MicroRNA expression profiles in umbilical cord blood cell lineages.

    Science.gov (United States)

    Merkerova, Michaela; Vasikova, Alzbeta; Belickova, Monika; Bruchova, Hana

    2010-01-01

    MicroRNAs (miRNAs), important regulators of cellular processes, show specific expression signatures in different blood cell lineages and stages of hematopoietic stem cell (HSC) differentiation, indicating their role in the control of hematopoiesis. Because neonatal blood displays various features of immaturity, we might expect differential miRNA regulation. Herein, we determined miRNA expression profiles of umbilical cord blood (UCB) cell lineages and compared them to those of bone marrow (BM) and peripheral blood (PB) cell counterparts. Further, we determined mRNA expression profiles using whole-genome microarrays. An approach combining bioinformatic prediction of miRNA targets with mRNA expression profiling was used to search for putative targets of miRNAs with potential functions in UCB. We pointed out several differentially expressed miRNAs and associated their expression with the target transcript levels. miR-148a expression was suppressed in HSCs and its level inversely correlated with the previously verified target, DNA methyltransferase 3B, suggesting dependence of de novo DNA methylation in HSCs on miR-148a. Prolonged cell survival of UCB HSCs may be associated with low expression of miR-143 and miR-145 and up-regulation of their downstream targets (high expression of c-MYC and miR-17-92 and following repression of TGFBR2). In HSCs, we monitored significant up-regulation of eight miRNAs, which were previously verified as regulators of HOX genes. Further, miR-146b may be associated with immaturity of neonatal immune system because it is strongly up-regulated in UCB granulocytes and T lymphocytes compared to PB cell counterparts. Comparative analysis revealed 13 miRNAs significantly altered between UCB and BM CD34(+) cells. In UCB CD34(+) cells, we monitored up-regulation of miR-520h, promoting differentiation of HSCs into progenitor cells, and reduction of miR-214, whose expression might support HSC survival. In conclusion, UCB cells show specific mi

  5. Expression profiles for six zebrafish genes during gonadal sex differentiation

    DEFF Research Database (Denmark)

    Jørgensen, Anne; Morthorst, Jane E.; Andersen, Ole;

    2008-01-01

    the precise timing of expression of six genes previously suggested to be associated with sex differentiation in zebrafish. The current study investigates the expression of all six genes in the same individual fish with extensive sampling dates during sex determination and -differentiation. RESULTS...... the same fish allowing comparison of the high and low expressers of genes that are expected to be highest expressed in either males or females. There were 78% high or low expressers of all three "male" genes (ar, sox9a and dmrt1) in the investigated period and 81% were high or low expressers of both...

  6. Detection of gene expression pattern in the early stage after spinal cord injury by gene chip

    Institute of Scientific and Technical Information of China (English)

    刘成龙; 靳安民; 童斌辉

    2003-01-01

    Objective: To study the changes of the gene expression pattern of spinal cord tissues in the early stage after injury by DNA microarray (gene chip). Methods: The contusion model of rat spinal cord was established according to Allen's falling strike method and the gene expression patterns of normal and injured spinal cord tissues were studied by gene chip. Results: The expression of 45 genes was significantly changed in the early stage after spinal cord injury, in which 22 genes up-regulated and 23 genes down-regulated. Conclusions: The expression of some genes changes significantly in the early stage after spinal cord injury, which indicates the complexity of secondary spinal cord injury.

  7. 60Coγ射线2.0 Gy剂量诱导大鼠淋巴细胞基因表达的改变%Study of Differential Gene Expression Profiling in Peripheral Blood Lymphocyte of Rat with 2 .0 Gy Gamma Ray Irradiation

    Institute of Scientific and Technical Information of China (English)

    李建国; 尹晶晶; 秦秀军; 张伟; 周晋源; 闻建华

    2013-01-01

    利用Agilent Rat全基因组芯片技术和实时荧光定量PCR技术,采用60 Coγ射线对SD大鼠全身照射,照射剂量为2.0 Gy ,分析照后6、12、24小时大鼠外周血淋巴细胞的差异表达基因谱和通路,同时对基因芯片结果进行验证。结果表明:(1)照后6小时,差异表达基因有1084个,其中上调的736个,下调的348个;照后12小时,差异表达基因有2590个,其中上调的1621个,下调的969个;照后24小时,差异表达基因有3938个,其中上调的2278个,下调的1660个;3个时间点共同差异表达基因有446个,其中上调的274个,下调的172个。(2)照后6小时,差异表达基因涉及到的通路有18个;照后12小时,差异表达基因涉及到的通路有35个;照后24小时,差异表达基因涉及到的通路有38个。其中通路Cell adhesion molecules、Toxoplasmosis、B cell receptor signaling、Intestinal immune network for IgA Production等在照后3个时间点均有出现。(3)差异表达基因Trmt61a和Enc1的相对定量结果与基因芯片检验结果表达趋势一致。%The study analyzed the differential expression profile and pathway of peripheral blood lymphocyte in SD rats 6 ,12 and 24 hours after irradiation to 2 .0 Gy gamma ray .The results showed that at 6 hours after ir-radiation there were 1084 differentially expressed genes of which 736 genes were up-regulated and 348 genes down-regulated .12 hours after irradiation there were 2590 differentially expressed genes of which 1621 genes were up-regulated and 969 genes down-regulated .24 hours after irradiation there were 3938 differentially ex-pressed genes of which 2278 genes were up-regulated and 1660 genes down-regulated .There were 446 co-ex-pressed differential genes at three time points ,of which 274 genes were up-regulated and 172 genes down-regu-lated .The KEGG analysis revealed that 6h point 18 pathways ,12 hours point 35 pathways ,and 24 hours point

  8. Bacillus cereus from blood cultures: virulence genes, antimicrobial susceptibility and risk factors for blood stream infection.

    Science.gov (United States)

    Horii, Toshinobu; Notake, Shigeyuki; Tamai, Kiyoko; Yanagisawa, Hideji

    2011-11-01

    We characterized the profiles of virulence genes and antimicrobial susceptibility of Bacillus cereus isolates from blood cultures as well as the risk factors for blood stream infections (BSIs). The diversity of virulence gene patterns was found to be wide among 15 B. cereus isolates from BSIs and also among 11 isolates from contaminated blood cultures. The MicroScan broth microdilution method yielded results corresponding with those of the agar dilution (reference) method for levofloxacin, linezolid, and vancomycin, while the Etest results were consistent with the reference results for clindamycin, gentamicin, imipenem, levofloxacin, and linezolid. Compared with the reference values, however, some isolates showed marked differences of the minimum inhibitory concentrations (MICs) for ampicillin and clindamycin when determined using the MicroScan method, or the MICs for ampicillin, meropenem, and vancomycin when determined using the Etest method. Significantly more patients were treated with antimicrobials for more than 3 days during the 3-month period before isolation in the BSI group. Prior antimicrobial therapy may be a risk factor for BSIs due to B. cereus.

  9. Coactivators in PPAR-Regulated Gene Expression

    Directory of Open Access Journals (Sweden)

    Navin Viswakarma

    2010-01-01

    Full Text Available Peroxisome proliferator-activated receptor (PPARα, β (also known as δ, and γ function as sensors for fatty acids and fatty acid derivatives and control important metabolic pathways involved in the maintenance of energy balance. PPARs also regulate other diverse biological processes such as development, differentiation, inflammation, and neoplasia. In the nucleus, PPARs exist as heterodimers with retinoid X receptor-α bound to DNA with corepressor molecules. Upon ligand activation, PPARs undergo conformational changes that facilitate the dissociation of corepressor molecules and invoke a spatiotemporally orchestrated recruitment of transcription cofactors including coactivators and coactivator-associated proteins. While a given nuclear receptor regulates the expression of a prescribed set of target genes, coactivators are likely to influence the functioning of many regulators and thus affect the transcription of many genes. Evidence suggests that some of the coactivators such as PPAR-binding protein (PBP/PPARBP/thyroid hormone receptor-associated protein 220 (TRAP220/mediator complex subunit 1 (MED1 may exert a broader influence on the functions of several nuclear receptors and their target genes. Investigations into the role of coactivators in the function of PPARs should strengthen our understanding of the complexities of metabolic diseases associated with energy metabolism.

  10. Gene expression profiling of mouse embryos with microarrays

    OpenAIRE

    Sharov, Alexei A; Piao, Yulan; Minoru S.H. Ko

    2010-01-01

    Global expression profiling by DNA microarrays provides a snapshot of cell and tissue status and becomes an essential tool in biological and medical sciences. Typical questions that can be addressed by microarray analysis in developmental biology include: (1) to find a set of genes expressed in a specific cell type; (2) to identify genes expressed commonly in multiple cell types; (3) to follow the time-course changes of gene expression patterns; (4) to demonstrate cell’s identity by showing s...

  11. Analysis of multiplex gene expression maps obtained by voxelation

    Directory of Open Access Journals (Sweden)

    Smith Desmond J

    2009-04-01

    Full Text Available Abstract Background Gene expression signatures in the mammalian brain hold the key to understanding neural development and neurological disease. Researchers have previously used voxelation in combination with microarrays for acquisition of genome-wide atlases of expression patterns in the mouse brain. On the other hand, some work has been performed on studying gene functions, without taking into account the location information of a gene's expression in a mouse brain. In this paper, we present an approach for identifying the relation between gene expression maps obtained by voxelation and gene functions. Results To analyze the dataset, we chose typical genes as queries and aimed at discovering similar gene groups. Gene similarity was determined by using the wavelet features extracted from the left and right hemispheres averaged gene expression maps, and by the Euclidean distance between each pair of feature vectors. We also performed a multiple clustering approach on the gene expression maps, combined with hierarchical clustering. Among each group of similar genes and clusters, the gene function similarity was measured by calculating the average gene function distances in the gene ontology structure. By applying our methodology to find similar genes to certain target genes we were able to improve our understanding of gene expression patterns and gene functions. By applying the clustering analysis method, we obtained significant clusters, which have both very similar gene expression maps and very similar gene functions respectively to their corresponding gene ontologies. The cellular component ontology resulted in prominent clusters expressed in cortex and corpus callosum. The molecular function ontology gave prominent clusters in cortex, corpus callosum and hypothalamus. The biological process ontology resulted in clusters in cortex, hypothalamus and choroid plexus. Clusters from all three ontologies combined were most prominently expressed in

  12. Expression signature in peripheral blood cells for molecular diagnosis of head and neck squamous cell carcinoma.

    Science.gov (United States)

    Braakhuis, B J M; Graveland, A P; Dijk, F; Ylstra, B; van Wieringen, W N; Leemans, C R; Brakenhoff, R H

    2013-07-01

    Patients with head and neck squamous cell carcinoma (HNSCC) have a poor prognosis due to the development of locoregional recurrences, distant metastases, and second primary tumors. There is an urgent need for biomarkers that enable detection and monitoring of the disease to provide adequate therapeutic strategies. In this study, we have investigated markers in peripheral blood cells (PBC) of 28 HNSCC patients who underwent surgery by means of expression profiling. Our hypothesis is that nucleated blood cells circulate continuously, also pass the tumor, and change their expression profile in response to tumor cell factors. For comparison, we enrolled a control group of 11 patients who underwent surgery in the head and neck region for non-HNSCC reasons. A set of 2949 genes was found to be statistically different between the groups (P < 0.05, false discovery rate-corrected) and the most prominently different pathways were EIF2, EIF4, and mTOR signaling. These preliminary results are promising and warrant further studies on the definitive role of PBC gene expression as a biomarker for HNSCC detection and monitoring.

  13. Differentially expressed genes in pancreatic ductal adenocarcinomas identified through serial analysis of gene expression

    DEFF Research Database (Denmark)

    Hustinx, Steven R; Cao, Dengfeng; Maitra, Anirban;

    2004-01-01

    Serial analysis of gene expression (SAGE) is a powerful tool for the discovery of novel tumor markers. The publicly available online SAGE libraries of normal and neoplastic tissues (http://www.ncbi.nlm.nih.gov/SAGE/) have recently been expanded; in addition, a more complete annotation of the human...

  14. Gene expression analysis of peripheral cells for subclassification of pediatric inflammatory bowel disease in remission.

    Directory of Open Access Journals (Sweden)

    Pieter P E van Lierop

    Full Text Available OBJECTIVE: In current clinical practice, optimal treatment of inflammatory bowel disease (IBD aims at the induction and maintenance of clinical remission. Clinical remission is apparent when laboratory markers of inflammation are normal and clinical symptoms are absent. However, sub-clinical inflammation can still be present. A detailed analysis of the immune status during this inactive state of disease may provide a useful tool to categorize patients with clinical remission into subsets with variable states of immune activation. DESIGN: By using Affymetrix GeneChips, we analysed RNA gene expression profiles of peripheral blood leukocytes from pediatric IBD patients in clinical remission and controls. We performed (unsupervised clustering analysis of IBD-associated genes and applied Ingenuity® pathway software to identify specific molecular profiles between patients. RESULTS: Pediatric IBD patients with disease in clinical remission display heterogeneously distributed gene expression profiles that are significantly distinct from controls. We identified three clusters of IBD patients, each displaying specific expression profiles of IBD-associated genes. CONCLUSION: The expression of immune- and IBD-associated genes in peripheral blood leukocytes from pediatric IBD patients in clinical remission was different from healthy controls, indicating that sub-clinical immune mechanisms are still active during remission. As such, RNA profiling of peripheral blood may allow for non-invasive patient subclassification and new perspectives in treatment regimes of IBD patients in the future.

  15. Expression of the CTCF gene in bovine oocytes and preimplantation embryos

    Directory of Open Access Journals (Sweden)

    Álvaro F.L. Rios

    2007-01-01

    Full Text Available The CCCTC - binding factor (CTCF is a protein involved in repression, activation, hormone-inducible gene silencing, functional reading of imprinted genes and X-chromosome inactivation. We analyzed CTCF gene expression in bovine peripheral blood, oocytes and in different cellular stages (2-4 cells, 8-16 cells, 16-32 cells, morulae, and blastocysts of in vitro fertilized embryos. This is the first report of CTCF expression in oocytes and preimplantation bovine embryos and has implications for the production of embryonic stem cells and the development of novel medical technologies for humans.

  16. Hepatic gene expression profiling using GeneChips in zebrafish exposed to 17{alpha}-methyldihydrotestosterone

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, J.L.; Thomason, R.G.; Lee, D.M.; Brill, J.L.; Price, B.B.; Carr, G.J. [Miami Valley Innovation Center, Procter and Gamble Company, P.O. Box 538707, Cincinnati, OH 45253-8707 (United States); Versteeg, D.J. [Miami Valley Innovation Center, Procter and Gamble Company, P.O. Box 538707, Cincinnati, OH 45253-8707 (United States)], E-mail: versteeg.dj@pg.com

    2008-04-28

    Concentration and time-dependent changes in hepatic gene expression were examined in adult, female zebrafish (Danio rerio) exposed to 0, 0.1, 0.7, 4.9 {mu}g/L of a model androgen, 17{alpha}-methyldihydrotestosterone (MDHT). At 24 and 168 h, fish were sacrificed and liver was extracted for gene expression analysis using custom Affymetrix GeneChip Zebrafish Genome Microarrays. In an effort to link gene expression changes to higher levels of biological organization, blood was collected for measurement of plasma steroid hormones (17{beta}-estradiol (E2), testosterone (T)) and vitellogenin (VTG) using ELISA. Body and ovary weight were also measured. A significant reduction in E2 occurred at 24 h (0.7 and 4.9 {mu}g/L) and 168 h (4.9 {mu}g/L) following MDHT exposure. In contrast, T was significantly increased at 24 h (4.9 {mu}g/L) and 168 h (0.1, 0.7, 4.9 {mu}g/L). 171 and 575 genes were significantly affected in a concentration-dependent manner at either 24 or 168 h by MDHT exposure at p {<=} 0.001 and p {<=} 0.01, respectively. Genes involved in retinoic acid metabolism (e.g. aldehyde dehydrogenase 8, member A1; retinol dehydrogenase 12), steroid biosynthesis and metabolism (e.g. hydroxysteroid (11{beta}) dehydrogenase 2; hydroxy-delta-5-steroid dehydrogenase, 3 beta-), hormone transport (e.g. sex hormone binding globulin), and regulation of cell growth and proliferation (e.g. N-myc downstream regulated gene 1; spermidinespermine N(1)-acetyltransferase) were affected by MDHT exposure. In this study, we identified genes involved in a variety of biological processes that have the potential to be used as markers of exposure to androgenic substances. Genes identified in this study provide information on the potential mode of action of strong androgens in female fish. In addition, when used for screening of EDC's, these genes may also serve as sensitive markers of exposure to androgenic compounds.

  17. Strategies for aggregating gene expression data: The collapseRows R function

    Directory of Open Access Journals (Sweden)

    Miller Jeremy A

    2011-08-01

    Full Text Available Abstract Background Genomic and other high dimensional analyses often require one to summarize multiple related variables by a single representative. This task is also variously referred to as collapsing, combining, reducing, or aggregating variables. Examples include summarizing several probe measurements corresponding to a single gene, representing the expression profiles of a co-expression module by a single expression profile, and aggregating cell-type marker information to de-convolute expression data. Several standard statistical summary techniques can be used, but network methods also provide useful alternative methods to find representatives. Currently few collapsing functions are developed and widely applied. Results We introduce the R function collapseRows that implements several collapsing methods and evaluate its performance in three applications. First, we study a crucial step of the meta-analysis of microarray data: the merging of independent gene expression data sets, which may have been measured on different platforms. Toward this end, we collapse multiple microarray probes for a single gene and then merge the data by gene identifier. We find that choosing the probe with the highest average expression leads to best between-study consistency. Second, we study methods for summarizing the gene expression profiles of a co-expression module. Several gene co-expression network analysis applications show that the optimal collapsing strategy depends on the analysis goal. Third, we study aggregating the information of cell type marker genes when the aim is to predict the abundance of cell types in a tissue sample based on gene expression data ("expression deconvolution". We apply different collapsing methods to predict cell type abundances in peripheral human blood and in mixtures of blood cell lines. Interestingly, the most accurate prediction method involves choosing the most highly connected "hub" marker gene. Finally, to facilitate

  18. The effect of gestational age on angiogenic gene expression in the rat placenta.

    Directory of Open Access Journals (Sweden)

    Kanchan Vaswani

    Full Text Available The placenta plays a central role in determining the outcome of pregnancy. It undergoes changes during gestation as the fetus develops and as demands for energy substrate transfer and gas exchange increase. The molecular mechanisms that coordinate these changes have yet to be fully elucidated. The study performed a large scale screen of the transcriptome of the rat placenta throughout mid-late gestation (E14.25-E20 with emphasis on characterizing gestational age associated changes in the expression of genes involved in angiogenic pathways. Sprague Dawley dams were sacrificed at E14.25, E15.25, E17.25 and E20 (n = 6 per group and RNA was isolated from one placenta per dam. Changes in placental gene expression were identified using Illumina Rat Ref-12 Expression BeadChip Microarrays. Differentially expressed genes (>2-fold change, <1% false discovery rate, FDR were functionally categorised by gene ontology pathway analysis. A subset of differentially expressed genes identified by microarrays were confirmed using Real-Time qPCR. The expression of thirty one genes involved in the angiogenic pathway was shown to change over time, using microarray analysis (22 genes displayed increased and 9 gene decreased expression. Five genes (4 up regulated: Cd36, Mmp14, Rhob and Angpt4 and 1 down regulated: Foxm1 involved in angiogenesis and blood vessel morphogenesis were subjected to further validation. qPCR confirmed late gestational increased expression of Cd36, Mmp14, Rhob and Angpt4 and a decrease in expression of Foxm1 before labour onset (P<0.0001. The observed acute, pre-labour changes in the expression of the 31 genes during gestation warrant further investigation to elucidate their role in pregnancy.

  19. Selective gene expression in focal cerebral ischemia.

    Science.gov (United States)

    Jacewicz, M; Kiessling, M; Pulsinelli, W A

    1986-06-01

    Regional patterns of protein synthesis were examined in rat cortex made ischemic by the occlusion of the right common carotid and middle cerebral arteries. At 2 h of ischemia, proteins were pulse labeled with intracortical injections of a mixture of [3H]leucine, [3H]isoleucine, and [3H]proline. Newly synthesized proteins were analyzed by two-dimensional gel fluorography, and the results correlated with local CBF, measured with [14C]iodoantipyrine as tracer. Small blood flow reductions (CBF = 50-80 ml 100 g-1 min-1) were accompanied by a modest inhibition in synthesis of many proteins and a marked increase in one protein (Mr 27,000). With further reduction in blood flow (CBF = 40 ml 100 g-1 min-1), synthesis became limited to a small group of proteins (Mr 27,000, 34,000, 73,000, 79,000, and actin) including two new polypeptides (Mr 55,000 and 70,000). Severe ischemia (CBF = 15-25 ml 100 g-1 min-1) caused the isoelectric modification of several proteins (Mr 44,000, 55,000, and 70,000) and induced synthesis of another protein (Mr 40,000). Two polypeptides (Mr 27,000 and 70,000) dominated residual protein synthesis in severe ischemia. The changes in protein synthesis induced by different grades of ischemia most likely comprise a variation of the so-called "heat shock" or "stress" response found in all eukaryotic cells subjected to adverse conditions. Since heat shock genes are known to confer partial protection against anoxia and a variety of other noxious insults, their induction may be a factor in limiting the extent of ischemic tissue damage.

  20. Toxicogenomic analysis of gene expression changes in rat liver after a 28-day oral benzene exposure

    NARCIS (Netherlands)

    Heijne, W.H.M.; Jonker, D.; Stierum, R.H.; Ommen, B. van; Groten, J.P.

    2005-01-01

    Benzene is an industrial chemical, component of automobile exhaust and cigarette smoke. After hepatic bioactivation benzene induces bone marrow, blood and hepatic toxicity. Using a toxicogenomics approach this study analysed the effects of benzene at three dose levels on gene expression in the liver

  1. A common molecular signature in ASD gene expression: following Root 66 to autism.

    Science.gov (United States)

    Diaz-Beltran, L; Esteban, F J; Wall, D P

    2016-01-05

    Several gene expression experiments on autism spectrum disorders have been conducted using both blood and brain tissue. Individually, these studies have advanced our understanding of the molecular systems involved in the molecular pathology of autism and have formed the bases of ongoing work to build autism biomarkers. In this study, we conducted an integrated systems biology analysis of 9 independent gene expression experiments covering 657 autism, 9 mental retardation and developmental delay and 566 control samples to determine if a common signature exists and to test whether regulatory patterns in the brain relevant to autism can also be detected in blood. We constructed a matrix of differentially expressed genes from these experiments and used a Jaccard coefficient to create a gene-based phylogeny, validated by bootstrap. As expected, experiments and tissue types clustered together with high statistical confidence. However, we discovered a statistically significant subgrouping of 3 blood and 2 brain data sets from 3 different experiments rooted by a highly correlated regulatory pattern of 66 genes. This Root 66 appeared to be non-random and of potential etiologic relevance to autism, given their enriched roles in neurological processes key for normal brain growth and function, learning and memory, neurodegeneration, social behavior and cognition. Our results suggest that there is a detectable autism signature in the blood that may be a molecular echo of autism-related dysregulation in the brain.

  2. Evolution of Gene Expression Balance Among Homeologs of Natural Polyploids

    Directory of Open Access Journals (Sweden)

    Jasdeep S. Mutti

    2017-04-01

    Full Text Available Polyploidy is a major evolutionary process in eukaryotes, yet the expression balance of homeologs in natural polyploids is largely unknown. To study this expression balance, the expression patterns of 2180 structurally well-characterized genes of wheat were studied, of which 813 had the expected three copies and 375 had less than three. Copy numbers of the remaining 992 ranged from 4 to 14, including homeologs, orthologs, and paralogs. Of the genes with three structural copies corresponding to homeologs, 55% expressed from all three, 38% from two, and the remaining 7% expressed from only one of the three copies. Homeologs of 76–87% of the genes showed differential expression patterns in different tissues, thus have evolved different gene expression controls, possibly resulting in novel functions. Homeologs of 55% of the genes showed tissue-specific expression, with the largest percentage (14% in the anthers and the smallest (7% in the pistils. The highest number (1.72/3 of homeologs/gene expression was in the roots and the lowest (1.03/3 in the anthers. As the expression of homeologs changed with changes in structural copy number, about 30% of the genes showed dosage dependence. Chromosomal location also impacted expression pattern as a significantly higher proportion of genes in the proximal regions showed expression from all three copies compared to that present in the distal regions.

  3. Evolution of Gene Expression Balance Among Homeologs of Natural Polyploids.

    Science.gov (United States)

    Mutti, Jasdeep S; Bhullar, Ramanjot K; Gill, Kulvinder S

    2017-04-03

    Polyploidy is a major evolutionary process in eukaryotes, yet the expression balance of homeologs in natural polyploids is largely unknown. To study this expression balance, the expression patterns of 2180 structurally well-characterized genes of wheat were studied, of which 813 had the expected three copies and 375 had less than three. Copy numbers of the remaining 992 ranged from 4 to 14, including homeologs, orthologs, and paralogs. Of the genes with three structural copies corresponding to homeologs, 55% expressed from all three, 38% from two, and the remaining 7% expressed from only one of the three copies. Homeologs of 76-87% of the genes showed differential expression patterns in different tissues, thus have evolved different gene expression controls, possibly resulting in novel functions. Homeologs of 55% of the genes showed tissue-specific expression, with the largest percentage (14%) in the anthers and the smallest (7%) in the pistils. The highest number (1.72/3) of homeologs/gene expression was in the roots and the lowest (1.03/3) in the anthers. As the expression of homeologs changed with changes in structural copy number, about 30% of the genes showed dosage dependence. Chromosomal location also impacted expression pattern as a significantly higher proportion of genes in the proximal regions showed expression from all three copies compared to that present in the distal regions.

  4. Dissecting specific and global transcriptional regulation of bacterial gene expression

    NARCIS (Netherlands)

    Gerosa, Luca; Kochanowski, Karl; Heinemann, Matthias; Sauer, Uwe

    2013-01-01

    Gene expression is regulated by specific transcriptional circuits but also by the global expression machinery as a function of growth. Simultaneous specific and global regulation thus constitutes an additional-but often neglected-layer of complexity in gene expression. Here, we develop an experiment

  5. Genome-wide expression profiling in the peripheral blood of patients with fibromyalgia

    Science.gov (United States)

    Jones, Kim D.; Gelbart, Terri; Whisenant, Thomas C.; Waalen, Jill; Mondala, Tony S.; Iklé, David N.; Salomon, Daniel R.; Bennett, Robert M.; Kurian, Sunil M.

    2016-01-01

    Objective Fibromyalgia (FM) is a common pain disorder characterised by nociceptive dysregulation. The basic biology of FM is poorly understood. Herein we have used agnostic gene expression as a potential probe for informing its underlying biology and the development of a proof-of-concept diagnostic gene expression signature. Methods We analysed RNA expression in 70 FM patients and 70 healthy controls. The isolated RNA was amplified and hybridised to Affymetrix® Human Gene 1.1 ST Peg arrays. The data was analysed using Partek Genomics Suite v. 6.6. Results Fibromyalgia patients exhibited a differential expression of 421 genes (p<0.001), several relevant to pathways for pain processing, such as glutamine/glutamate signaling and axonal development. There was also an upregulation of several inflammatory pathways and downregulation of pathways related to hypersensitivity and allergy. Using rigorous diagnostic modeling strategies, we show “locked” gene signatures discovered on Training and Test cohorts, that have a mean Area Under the Curve (AUC) of 0.81 on randomised, independent external data cohorts. Lastly, we identified a subset of 10 probesets that provided a diagnostic sensitivity for FM of 95% and a specificity of 96%. We also show that the signatures for FM were very specific to FM rather than common FM comorbidities. Conclusion These findings provide new insights relevant to the pathogenesis of FM, and provide several testable hypotheses that warrant further exploration and also establish the foundation for a first blood-based molecular signature in FM that needs to be validated in larger cohorts of patients. PMID:27157394

  6. Gene expression during fruit ripening in avocado.

    Science.gov (United States)

    Christoffersen, R E; Warm, E; Laties, G G

    1982-06-01

    The poly(A) (+)RNA populations from avocado fruit (Persea americana Mill cv. Hass) at four stages of ripening were isolated by two cycles of oligo-dT-cellulose chromatography and examined by invitro translation, using the rabbit reticulocyte lysate system, followed by two-dimensional gel electrophoresis (isoelectric focusing followed by sodium dodecyl sulfate polyacrylamide gel electrophoresis) of the resulting translation products. Three mRNAs increased dramatically with the climacteric rise in respiration and ethylene production. The molecular weights of the corresponding translation products from the ripening-related mRNAs are 80,000, 36,000, and 16,500. These results indicate that ripening may be linked to the expression of specific genes.

  7. A combined analysis of microarray gene expression studies of the human prefrontal cortex identifies genes implicated in schizophrenia.

    Science.gov (United States)

    Pérez-Santiago, Josué; Diez-Alarcia, Rebeca; Callado, Luis F; Zhang, Jin X; Chana, Gursharan; White, Cory H; Glatt, Stephen J; Tsuang, Ming T; Everall, Ian P; Meana, J Javier; Woelk, Christopher H

    2012-11-01

    Small cohort sizes and modest levels of gene expression changes in brain tissue have plagued the statistical approaches employed in microarray studies investigating the mechanism of schizophrenia. To combat these problems a combined analysis of six prior microarray studies was performed to facilitate the robust statistical analysis of gene expression data from the dorsolateral prefrontal cortex of 107 patients with schizophrenia and 118 healthy subjects. Multivariate permutation tests identified 144 genes that were differentially expressed between schizophrenia and control groups. Seventy of these genes were identified as differentially expressed in at least one component microarray study but none of these individual studies had the power to identify the remaining 74 genes, demonstrating the utility of a combined approach. Gene ontology terms and biological pathways that were significantly enriched for differentially expressed genes were related to neuronal cell-cell signaling, mesenchymal induction, and mitogen-activated protein kinase signaling, which have all previously been associated with the etiopathogenesis of schizophrenia. The differential expression of BAG3, C4B, EGR1, MT1X, NEUROD6, SST and S100A8 was confirmed by real-time quantitative PCR in an independent cohort using postmortem human prefrontal cortex samples. Comparison of gene expression between schizophrenic subjects with and without detectable levels of antipsychotics in their blood suggests that the modulation of MT1X and S100A8 may be the result of drug exposure. In conclusion, this combined analysis has resulted in a statistically robust identification of genes whose dysregulation may contribute to the mechanism of schizophrenia.

  8. Expression regulation of design process gene in product design

    DEFF Research Database (Denmark)

    Fang, Lusheng; Li, Bo; Tong, Shurong

    2011-01-01

    is proposed and analyzed, as well as its three categories i.e., the operator gene, the structural gene and the regulator gene. Second, the trigger mechanism that design objectives and constraints trigger the operator gene is constructed. Third, the expression principle of structural gene is analyzed......To improve the design process efficiency, this paper proposes the principle and methodology that design process gene controls the characteristics of design process under the framework of design process reuse and optimization based on design process gene. First, the concept of design process gene...... with the example of design management gene. Last, the regulation mode that the regulator gene regulates the expression of the structural gene is established and it is illustrated by taking the design process management gene as an example. © (2011) Trans Tech Publications....

  9. Increased PADI4 expression in blood and tissues of patients with malignant tumors

    Directory of Open Access Journals (Sweden)

    Zhao Yan

    2009-01-01

    Full Text Available Abstract Background Peptidylarginine deiminase type 4 (PAD4/PADI4 post-translationally converts peptidylarginine to citrulline. Recent studies suggest that PADI4 represses expression of p53-regulated genes via citrullination of histones at gene promoters. Methods Expression of PADI4 was investigated in various tumors and non-tumor tissues (n = 1673 as well as in A549, SKOV3 and U937 tumor cell lines by immunohistochemistry, real-time PCR, and western blot. Levels of PADI4 and citrullinated antithrombin (cAT were investigated in the blood of patients with various tumors by ELISA (n = 1121. Results Immunohistochemistry detected significant PADI4 expression in various malignancies including breast carcinomas, lung adenocarcinomas, hepatocellular carcinomas, esophageal squamous cancer cells, colorectal adenocarcinomas, renal cancer cells, ovarian adenocarcinomas, endometrial carcinomas, uterine adenocarcinomas, bladder carcinomas, chondromas, as well as other metastatic carcinomas. However, PADI4 expression was not observed in benign leiomyomas of stomach, uterine myomas, endometrial hyperplasias, cervical polyps, teratomas, hydatidiform moles, trophoblastic cell hyperplasias, hyroid adenomas, hemangiomas, lymph hyperplasias, schwannomas, neurofibromas, lipomas, and cavernous hemangiomas of the liver. Additionally, PADI4 expression was not detected in non-tumor tissues including cholecystitis, cervicitis and synovitis of osteoarthritis, except in certain acutely inflamed tissues such as in gastritis and appendicitis. Quantitative PCR and western blot analysis showed higher PADI4 expression in gastric adenocarcinomas, lung adenocarcinomas, hepatocellular carcinomas, esophageal squamous cell cancers and breast cancers (n = 5 for each disease than in the surrounding healthy tissues. Furthermore, western blot analysis detected PADI4 expression in cultured tumor cell lines. ELISA detected increased PADI4 and cAT levels in the blood of patients with

  10. Aberrant and unstable expression of immunoglobulin genes in persons infected with human immunodeficiency virus.

    Science.gov (United States)

    Bessudo, A; Rassenti, L; Havlir, D; Richman, D; Feigal, E; Kipps, T J

    1998-08-15

    We examined the IgM VH gene subgroup use-distribution in serial blood samples of 37 human immunodeficiency virus (HIV)-infected patients and a group of HIV-seronegative healthy adults. The IgM VH gene repertoires of healthy adults were relatively similar to one another and were stable over time. In contrast, individuals infected with HIV had IgM VH gene repertoires that were significantly more heterogeneous and unstable. Persons at early stages of HIV infection generally had abnormal expression levels of Ig VH3 genes and frequently displayed marked fluctuations in the relative expression levels of this VH gene subgroup over time. In contrast, persons with established acquired immunodeficiency syndrome (AIDS) had a significantly lower incidence of abnormalities in Ig VH3 expression levels, although continued to display abnormalities and instability in the expression levels of the smaller Ig VH gene subgroups. Moreover, the skewing and/or fluctuations in the expressed-IgM VH gene repertoire appeared greatest for persons at earlier stages of HIV infection. These studies show that persons infected with HIV have aberrant and unstable expression of immunoglobulin genes suggestive of a high degree humoral immune dysregulation and ongoing humoral immune responses to HIV-associated antigens and superantigens.

  11. Individual variation of adipose gene expression and identification of covariated genes by cDNA microarrays

    NARCIS (Netherlands)

    Boeuf, S.; Keijer, J.; Franssen-Hal, van N.L.W.; Klaus, S.

    2002-01-01

    Gene expression profiling through the application of microarrays provides comprehensive assessment of gene expression levels in a given tissue or cell population, as well as