WorldWideScience

Sample records for blood gene expression

  1. Blood Gene Expression Predicts Bronchiolitis Obliterans Syndrome

    Directory of Open Access Journals (Sweden)

    Richard Danger

    2018-01-01

    Full Text Available Bronchiolitis obliterans syndrome (BOS, the main manifestation of chronic lung allograft dysfunction, leads to poor long-term survival after lung transplantation. Identifying predictors of BOS is essential to prevent the progression of dysfunction before irreversible damage occurs. By using a large set of 107 samples from lung recipients, we performed microarray gene expression profiling of whole blood to identify early biomarkers of BOS, including samples from 49 patients with stable function for at least 3 years, 32 samples collected at least 6 months before BOS diagnosis (prediction group, and 26 samples at or after BOS diagnosis (diagnosis group. An independent set from 25 lung recipients was used for validation by quantitative PCR (13 stables, 11 in the prediction group, and 8 in the diagnosis group. We identified 50 transcripts differentially expressed between stable and BOS recipients. Three genes, namely POU class 2 associating factor 1 (POU2AF1, T-cell leukemia/lymphoma protein 1A (TCL1A, and B cell lymphocyte kinase, were validated as predictive biomarkers of BOS more than 6 months before diagnosis, with areas under the curve of 0.83, 0.77, and 0.78 respectively. These genes allow stratification based on BOS risk (log-rank test p < 0.01 and are not associated with time posttransplantation. This is the first published large-scale gene expression analysis of blood after lung transplantation. The three-gene blood signature could provide clinicians with new tools to improve follow-up and adapt treatment of patients likely to develop BOS.

  2. Prediction of the gene expression in normal lung tissue by the gene expression in blood.

    Science.gov (United States)

    Halloran, Justin W; Zhu, Dakai; Qian, David C; Byun, Jinyoung; Gorlova, Olga Y; Amos, Christopher I; Gorlov, Ivan P

    2015-11-17

    Comparative analysis of gene expression in human tissues is important for understanding the molecular mechanisms underlying tissue-specific control of gene expression. It can also open an avenue for using gene expression in blood (which is the most easily accessible human tissue) to predict gene expression in other (less accessible) tissues, which would facilitate the development of novel gene expression based models for assessing disease risk and progression. Until recently, direct comparative analysis across different tissues was not possible due to the scarcity of paired tissue samples from the same individuals. In this study we used paired whole blood/lung gene expression data from the Genotype-Tissue Expression (GTEx) project. We built a generalized linear regression model for each gene using gene expression in lung as the outcome and gene expression in blood, age and gender as predictors. For ~18 % of the genes, gene expression in blood was a significant predictor of gene expression in lung. We found that the number of single nucleotide polymorphisms (SNPs) influencing expression of a given gene in either blood or lung, also known as the number of quantitative trait loci (eQTLs), was positively associated with efficacy of blood-based prediction of that gene's expression in lung. This association was strongest for shared eQTLs: those influencing gene expression in both blood and lung. In conclusion, for a considerable number of human genes, their expression levels in lung can be predicted using observable gene expression in blood. An abundance of shared eQTLs may explain the strong blood/lung correlations in the gene expression.

  3. Cytokine gene expression of peripheral blood lymphocytes ...

    African Journals Online (AJOL)

    Lipopolysaccharide (LPS) is a predominant glycolipid in the outer membranes of gam-negative bacteria that stimulates monocytes, macrophages, and neutrophils to produce cytokines. The aim was to study the expression profile of TLRs and cytokines and determine the role of LPS in the peripheral blood lymphocytes.

  4. The Effect of Statins on Blood Gene Expression in COPD.

    Directory of Open Access Journals (Sweden)

    Ma'en Obeidat

    Full Text Available COPD is currently the fourth leading cause of death worldwide. Statins are lipid lowering agents with documented cardiovascular benefits. Observational studies have shown that statins may have a beneficial role in COPD. The impact of statins on blood gene expression from COPD patients is largely unknown.Identify blood gene signature associated with statin use in COPD patients, and the pathways underpinning this signature that could explain any potential benefits in COPD.Whole blood gene expression was measured on 168 statin users and 451 non-users from the ECLIPSE study using the Affymetrix Human Gene 1.1 ST microarray chips. Factor Analysis for Robust Microarray Summarization (FARMS was used to process the expression data. Differential gene expression analysis was undertaken using the Linear Models for Microarray data (Limma package adjusting for propensity score and surrogate variables. Similarity of the expression signal with published gene expression profiles was performed in ProfileChaser.25 genes were differentially expressed between statin users and non-users at an FDR of 10%, including LDLR, CXCR2, SC4MOL, FAM108A1, IFI35, FRYL, ABCG1, MYLIP, and DHCR24. The 25 genes were significantly enriched in cholesterol homeostasis and metabolism pathways. The resulting gene signature showed correlation with Huntington's disease, Parkinson's disease and acute myeloid leukemia gene signatures.The blood gene signature of statins' use in COPD patients was enriched in cholesterol homeostasis pathways. Further studies are needed to delineate the role of these pathways in lung biology.

  5. Diet induced gene expression in rat peripheral blood mononuclear cells

    NARCIS (Netherlands)

    Caimari, A.; Oliver, P.; Rodenburg, W.; Keijer, Jaap; Palou, A.

    2009-01-01

    Gene expression of rat peripheral blood mononuclear cells was analyzed by microarray analysis in normoweight and in diet-induced obese rats (cafeteria rats). The aim of this study was to identify genes involved in energy homeostasis that are altered in the obese state.

  6. Blood Gene Expression Profiling of Breast Cancer Survivors Experiencing Fibrosis

    International Nuclear Information System (INIS)

    Landmark-Hoyvik, Hege; Dumeaux, Vanessa; Reinertsen, Kristin V.; Edvardsen, Hege; Fossa, Sophie D.; Borresen-Dale, Anne-Lise

    2011-01-01

    Purpose: To extend knowledge on the mechanisms and pathways involved in maintenance of radiation-induced fibrosis (RIF) by performing gene expression profiling of whole blood from breast cancer (BC) survivors with and without fibrosis 3-7 years after end of radiotherapy treatment. Methods and Materials: Gene expression profiles from blood were obtained for 254 BC survivors derived from a cohort of survivors, treated with adjuvant radiotherapy for breast cancer 3-7 years earlier. Analyses of transcriptional differences in blood gene expression between BC survivors with fibrosis (n = 31) and BC survivors without fibrosis (n = 223) were performed using R version 2.8.0 and tools from the Bioconductor project. Gene sets extracted through a literature search on fibrosis and breast cancer were subsequently used in gene set enrichment analysis. Results: Substantial differences in blood gene expression between BC survivors with and without fibrosis were observed, and 87 differentially expressed genes were identified through linear analysis. Transforming growth factor-β1 signaling was identified as the most significant gene set, showing a down-regulation of most of the core genes, together with up-regulation of a transcriptional activator of the inhibitor of fibrinolysis, Plasminogen activator inhibitor 1 in the BC survivors with fibrosis. Conclusion: Transforming growth factor-β1 signaling was found down-regulated during the maintenance phase of fibrosis as opposed to the up-regulation reported during the early, initiating phase of fibrosis. Hence, once the fibrotic tissue has developed, the maintenance phase might rather involve a deregulation of fibrinolysis and altered degradation of extracellular matrix components.

  7. Cytokine gene expression of peripheral blood lymphocytes ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-03-20

    Mar 20, 2009 ... Key words: Lipopolysaccharide, lymphocytes, TLRs, cytokines. INTRODUCTION. Lipopolysaccharide (LPS), a predominant glycolipid in the outer membranes of Gam-negative bacteria, stimulates monocyte, macrophages, and neutrophils and increase expression of cell adhesion molecules (Trent et al., ...

  8. Gene expression in blood of subjects with Duchenne muscular dystrophy.

    Science.gov (United States)

    Wong, Brenda; Gilbert, Donald L; Walker, Wynn L; Liao, Isaac H; Lit, Lisa; Stamova, Boryana; Jickling, Glen; Apperson, Michelle; Sharp, Frank R

    2009-04-01

    The objective of this study was to examine RNA expression in blood of subjects with Duchenne muscular dystrophy (DMD). Whole blood was collected into PAX gene tubes and RNA was isolated for 3- to 20-year-old males with DMD (n = 34) and for age- and gender-matched normal healthy controls (n = 21). DMD was confirmed by genetic testing in all subjects. RNA expression was measured on Affymetrix whole-genome human U133 Plus 2.0 GeneChips. Using a Benjamini-Hochberg false discovery rate of 0.05 to correct for multiple comparisons, an unpaired t test for DMD versus controls yielded 10,763 regulated probes with no fold change cutoff, 1,467 probes with >|1.5|-fold change, 191 probes with >|2.0|-fold change, and 59 probes with a >|2.5|-fold change. These genes (probes) separated DMD from controls using cluster analyses. Almost all of the genes regulated in peripheral blood were different from the genes reported to be regulated in diseased muscle of subjects with DMD. It is proposed that the genes regulated in blood of subjects with Duchenne muscular dystrophy are indicative, at least in part, of the immune response to the diseased DMD muscle. The regulated genes might be used to monitor therapy or provide novel targets for immune-directed therapy for DMD.

  9. Impact of blood collection and processing on peripheral blood gene expression profiling in type 1 diabetes.

    Science.gov (United States)

    Yip, Linda; Fuhlbrigge, Rebecca; Atkinson, Mark A; Fathman, C Garrison

    2017-08-18

    The natural history of type 1 diabetes (T1D) is challenging to investigate, especially as pre-diabetic individuals are difficult to identify. Numerous T1D consortia have been established to collect whole blood for gene expression analysis from individuals with or at risk to develop T1D. However, with no universally accepted protocol for their collection, differences in sample processing may lead to variances in the results. Here, we examined whether the choice of blood collection tube and RNA extraction kit leads to differences in the expression of genes that are changed during the progression of T1D, and if these differences could be minimized by measuring gene expression directly from the lysate of whole blood. Microarray analysis showed that the expression of 901 genes is highly influenced by sample processing using the PAXgene versus the Tempus system. These included a significant number of lymphocyte-specific genes and genes whose expression has been reported to differ in the peripheral blood of at-risk and T1D patients compared to controls. We showed that artificial changes in gene expression occur when control and T1D samples were processed differently. The sample processing-dependent differences in gene expression were largely due to loss of transcripts during the RNA extraction step using the PAXgene system. The majority of differences were not observed when gene expression was measured in whole blood lysates prepared from blood collected in PAXgene and Tempus tubes. We showed that the gene expression profile of samples processed using the Tempus system is more accurate than that of samples processed using the PAXgene system. Variation in sample processing can result in misleading changes in gene expression. However, these differences can be minimized by measuring gene expression directly in whole blood lysates.

  10. Blood gene expression profiling of an early acetaminophen response.

    Science.gov (United States)

    Bushel, P R; Fannin, R D; Gerrish, K; Watkins, P B; Paules, R S

    2017-06-01

    Acetaminophen can adversely affect the liver especially when overdosed. We used whole blood as a surrogate to identify genes as potential early indicators of an acetaminophen-induced response. In a clinical study, healthy human subjects were dosed daily with 4 g of either acetaminophen or placebo pills for 7 days and evaluated over the course of 14 days. Alanine aminotransferase (ALT) levels for responders to acetaminophen increased between days 4 and 9 after dosing, and 12 genes were detected with expression profiles significantly altered within 24 h. The early responsive genes separated the subjects by class and dose period. In addition, the genes clustered patients who overdosed on acetaminophen apart from controls and also predicted the exposure classifications with 100% accuracy. The responsive genes serve as early indicators of an acetaminophen exposure, and their gene expression profiles can potentially be evaluated as molecular indicators for further consideration.

  11. Identification and validation of suitable endogenous reference genes for gene expression studies in human peripheral blood.

    Science.gov (United States)

    Stamova, Boryana S; Apperson, Michelle; Walker, Wynn L; Tian, Yingfang; Xu, Huichun; Adamczy, Peter; Zhan, Xinhua; Liu, Da-Zhi; Ander, Bradley P; Liao, Isaac H; Gregg, Jeffrey P; Turner, Renee J; Jickling, Glen; Lit, Lisa; Sharp, Frank R

    2009-08-05

    Gene expression studies require appropriate normalization methods. One such method uses stably expressed reference genes. Since suitable reference genes appear to be unique for each tissue, we have identified an optimal set of the most stably expressed genes in human blood that can be used for normalization. Whole-genome Affymetrix Human 2.0 Plus arrays were examined from 526 samples of males and females ages 2 to 78, including control subjects and patients with Tourette syndrome, stroke, migraine, muscular dystrophy, and autism. The top 100 most stably expressed genes with a broad range of expression levels were identified. To validate the best candidate genes, we performed quantitative RT-PCR on a subset of 10 genes (TRAP1, DECR1, FPGS, FARP1, MAPRE2, PEX16, GINS2, CRY2, CSNK1G2 and A4GALT), 4 commonly employed reference genes (GAPDH, ACTB, B2M and HMBS) and PPIB, previously reported to be stably expressed in blood. Expression stability and ranking analysis were performed using GeNorm and NormFinder algorithms. Reference genes were ranked based on their expression stability and the minimum number of genes needed for nomalization as calculated using GeNorm showed that the fewest, most stably expressed genes needed for acurate normalization in RNA expression studies of human whole blood is a combination of TRAP1, FPGS, DECR1 and PPIB. We confirmed the ranking of the best candidate control genes by using an alternative algorithm (NormFinder). The reference genes identified in this study are stably expressed in whole blood of humans of both genders with multiple disease conditions and ages 2 to 78. Importantly, they also have different functions within cells and thus should be expressed independently of each other. These genes should be useful as normalization genes for microarray and RT-PCR whole blood studies of human physiology, metabolism and disease.

  12. Identification and validation of suitable endogenous reference genes for gene expression studies in human peripheral blood

    Directory of Open Access Journals (Sweden)

    Turner Renee J

    2009-08-01

    Full Text Available Abstract Background Gene expression studies require appropriate normalization methods. One such method uses stably expressed reference genes. Since suitable reference genes appear to be unique for each tissue, we have identified an optimal set of the most stably expressed genes in human blood that can be used for normalization. Methods Whole-genome Affymetrix Human 2.0 Plus arrays were examined from 526 samples of males and females ages 2 to 78, including control subjects and patients with Tourette syndrome, stroke, migraine, muscular dystrophy, and autism. The top 100 most stably expressed genes with a broad range of expression levels were identified. To validate the best candidate genes, we performed quantitative RT-PCR on a subset of 10 genes (TRAP1, DECR1, FPGS, FARP1, MAPRE2, PEX16, GINS2, CRY2, CSNK1G2 and A4GALT, 4 commonly employed reference genes (GAPDH, ACTB, B2M and HMBS and PPIB, previously reported to be stably expressed in blood. Expression stability and ranking analysis were performed using GeNorm and NormFinder algorithms. Results Reference genes were ranked based on their expression stability and the minimum number of genes needed for nomalization as calculated using GeNorm showed that the fewest, most stably expressed genes needed for acurate normalization in RNA expression studies of human whole blood is a combination of TRAP1, FPGS, DECR1 and PPIB. We confirmed the ranking of the best candidate control genes by using an alternative algorithm (NormFinder. Conclusion The reference genes identified in this study are stably expressed in whole blood of humans of both genders with multiple disease conditions and ages 2 to 78. Importantly, they also have different functions within cells and thus should be expressed independently of each other. These genes should be useful as normalization genes for microarray and RT-PCR whole blood studies of human physiology, metabolism and disease.

  13. Aging: a portrait from gene expression profile in blood cells.

    Science.gov (United States)

    Calabria, Elisa; Mazza, Emilia Maria Cristina; Dyar, Kenneth Allen; Pogliaghi, Silvia; Bruseghini, Paolo; Morandi, Carlo; Salvagno, Gian Luca; Gelati, Matteo; Guidi, Gian Cesare; Bicciato, Silvio; Schiaffino, Stefano; Schena, Federico; Capelli, Carlo

    2016-08-01

    The availability of reliable biomarkers of aging is important not only to monitor the effect of interventions and predict the timing of pathologies associated with aging but also to understand the mechanisms and devise appropriate countermeasures. Blood cells provide an easily available tissue and gene expression profiles from whole blood samples appear to mirror disease states and some aspects of the aging process itself. We report here a microarray analysis of whole blood samples from two cohorts of healthy adult and elderly subjects, aged 43±3 and 68±4 years, respectively, to monitor gene expression changes in the initial phase of the senescence process. A number of significant changes were found in the elderly compared to the adult group, including decreased levels of transcripts coding for components of the mitochondrial respiratory chain, which correlate with a parallel decline in the maximum rate of oxygen consumption (VO2max), as monitored in the same subjects. In addition, blood cells show age-related changes in the expression of several markers of immunosenescence, inflammation and oxidative stress. These findings support the notion that the immune system has a major role in tissue homeostasis and repair, which appears to be impaired since early stages of the aging process.

  14. Blood cell gene expression profiling in rheumatoid arthritis. Discriminative genes and effect of rheumatoid factor

    DEFF Research Database (Denmark)

    Bovin, Lone Frier; Rieneck, Klaus; Workman, Christopher

    2004-01-01

    To study the pathogenic importance of the rheumatoid factor (RF) in rheumatoid arthritis (RA) and to identify genes differentially expressed in patients and healthy individuals, total RNA was isolated from peripheral blood mononuclear cells (PBMC) from eight RF-positive and six RF-negative RA...... patients, and seven healthy controls. Gene expression of about 10,000 genes were examined using oligonucleotide-based DNA chip microarrays. The analyses showed no significant differences in PBMC expression patterns from RF-positive and RF-negative patients. However, comparisons of gene expression patterns...

  15. Gene expression analysis in human breast cancer associated blood vessels.

    Directory of Open Access Journals (Sweden)

    Dylan T Jones

    Full Text Available Angiogenesis is essential for solid tumour growth, whilst the molecular profiles of tumour blood vessels have been reported to be different between cancer types. Although presently available anti-angiogenic strategies are providing some promise for the treatment of some cancers it is perhaps not surprisingly that, none of the anti-angiogenic agents available work on all tumours. Thus, the discovery of novel anti-angiogenic targets, relevant to individual cancer types, is required. Using Affymetrix microarray analysis of laser-captured, CD31-positive blood vessels we have identified 63 genes that are upregulated significantly (5-72 fold in angiogenic blood vessels associated with human invasive ductal carcinoma (IDC of the breast as compared with blood vessels in normal human breast. We tested the angiogenic capacity of a subset of these genes. Genes were selected based on either their known cellular functions, their enriched expression in endothelial cells and/or their sensitivity to anti-VEGF treatment; all features implicating their involvement in angiogenesis. For example, RRM2, a ribonucleotide reductase involved in DNA synthesis, was upregulated 32-fold in IDC-associated blood vessels; ATF1, a nuclear activating transcription factor involved in cellular growth and survival was upregulated 23-fold in IDC-associated blood vessels and HEX-B, a hexosaminidase involved in the breakdown of GM2 gangliosides, was upregulated 8-fold in IDC-associated blood vessels. Furthermore, in silico analysis confirmed that AFT1 and HEX-B also were enriched in endothelial cells when compared with non-endothelial cells. None of these genes have been reported previously to be involved in neovascularisation. However, our data establish that siRNA depletion of Rrm2, Atf1 or Hex-B had significant anti-angiogenic effects in VEGF-stimulated ex vivo mouse aortic ring assays. Overall, our results provide proof-of-principle that our approach can identify a cohort of

  16. Global changes in Staphylococcus aureus gene expression in human blood.

    Directory of Open Access Journals (Sweden)

    Natalia Malachowa

    2011-04-01

    Full Text Available Staphylococcus aureus is a leading cause of bloodstream infections worldwide. In the United States, many of these infections are caused by a strain known as USA300. Although progress has been made, our understanding of the S. aureus molecules that promote survival in human blood and ultimately facilitate metastases is incomplete. To that end, we analyzed the USA300 transcriptome during culture in human blood, human serum, and trypticase soy broth (TSB, a standard laboratory culture media. Notably, genes encoding several cytolytic toxins were up-regulated in human blood over time, and hlgA, hlgB, and hlgC (encoding gamma-hemolysin subunits HlgA, HlgB, and HlgC were among the most highly up-regulated genes at all time points. Compared to culture supernatants from a wild-type USA300 strain (LAC, those derived from an isogenic hlgABC-deletion strain (LACΔhlgABC had significantly reduced capacity to form pores in human neutrophils and ultimately cause neutrophil lysis. Moreover, LACΔhlgABC had modestly reduced ability to cause mortality in a mouse bacteremia model. On the other hand, wild-type and LACΔhlgABC strains caused virtually identical abscesses in a mouse skin infection model, and bacterial survival and neutrophil lysis after phagocytosis in vitro was similar between these strains. Comparison of the cytolytic capacity of culture supernatants from wild-type and isogenic deletion strains lacking hlgABC, lukS/F-PV (encoding PVL, and/or lukDE revealed functional redundancy among two-component leukotoxins in vitro. These findings, along with a requirement of specific growth conditions for leukotoxin expression, may explain the apparent limited contribution of any single two-component leukotoxin to USA300 immune evasion and virulence.

  17. Blood-informative transcripts define nine common axes of peripheral blood gene expression.

    Directory of Open Access Journals (Sweden)

    Marcela Preininger

    Full Text Available We describe a novel approach to capturing the covariance structure of peripheral blood gene expression that relies on the identification of highly conserved Axes of variation. Starting with a comparison of microarray transcriptome profiles for a new dataset of 189 healthy adult participants in the Emory-Georgia Tech Center for Health Discovery and Well-Being (CHDWB cohort, with a previously published study of 208 adult Moroccans, we identify nine Axes each with between 99 and 1,028 strongly co-regulated transcripts in common. Each axis is enriched for gene ontology categories related to sub-classes of blood and immune function, including T-cell and B-cell physiology and innate, adaptive, and anti-viral responses. Conservation of the Axes is demonstrated in each of five additional population-based gene expression profiling studies, one of which is robustly associated with Body Mass Index in the CHDWB as well as Finnish and Australian cohorts. Furthermore, ten tightly co-regulated genes can be used to define each Axis as "Blood Informative Transcripts" (BITs, generating scores that define an individual with respect to the represented immune activity and blood physiology. We show that environmental factors, including lifestyle differences in Morocco and infection leading to active or latent tuberculosis, significantly impact specific axes, but that there is also significant heritability for the Axis scores. In the context of personalized medicine, reanalysis of the longitudinal profile of one individual during and after infection with two respiratory viruses demonstrates that specific axes also characterize clinical incidents. This mode of analysis suggests the view that, rather than unique subsets of genes marking each class of disease, differential expression reflects movement along the major normal Axes in response to environmental and genetic stimuli.

  18. Blood-informative transcripts define nine common axes of peripheral blood gene expression.

    Science.gov (United States)

    Preininger, Marcela; Arafat, Dalia; Kim, Jinhee; Nath, Artika P; Idaghdour, Youssef; Brigham, Kenneth L; Gibson, Greg

    2013-01-01

    We describe a novel approach to capturing the covariance structure of peripheral blood gene expression that relies on the identification of highly conserved Axes of variation. Starting with a comparison of microarray transcriptome profiles for a new dataset of 189 healthy adult participants in the Emory-Georgia Tech Center for Health Discovery and Well-Being (CHDWB) cohort, with a previously published study of 208 adult Moroccans, we identify nine Axes each with between 99 and 1,028 strongly co-regulated transcripts in common. Each axis is enriched for gene ontology categories related to sub-classes of blood and immune function, including T-cell and B-cell physiology and innate, adaptive, and anti-viral responses. Conservation of the Axes is demonstrated in each of five additional population-based gene expression profiling studies, one of which is robustly associated with Body Mass Index in the CHDWB as well as Finnish and Australian cohorts. Furthermore, ten tightly co-regulated genes can be used to define each Axis as "Blood Informative Transcripts" (BITs), generating scores that define an individual with respect to the represented immune activity and blood physiology. We show that environmental factors, including lifestyle differences in Morocco and infection leading to active or latent tuberculosis, significantly impact specific axes, but that there is also significant heritability for the Axis scores. In the context of personalized medicine, reanalysis of the longitudinal profile of one individual during and after infection with two respiratory viruses demonstrates that specific axes also characterize clinical incidents. This mode of analysis suggests the view that, rather than unique subsets of genes marking each class of disease, differential expression reflects movement along the major normal Axes in response to environmental and genetic stimuli.

  19. Gene expression patterns in peripheral blood correlate with the extent of coronary artery disease.

    Directory of Open Access Journals (Sweden)

    Peter R Sinnaeve

    Full Text Available Systemic and local inflammation plays a prominent role in the pathogenesis of atherosclerotic coronary artery disease, but the relationship of whole blood gene expression changes with coronary disease remains unclear. We have investigated whether gene expression patterns in peripheral blood correlate with the severity of coronary disease and whether these patterns correlate with the extent of atherosclerosis in the vascular wall. Patients were selected according to their coronary artery disease index (CADi, a validated angiographical measure of the extent of coronary atherosclerosis that correlates with outcome. RNA was extracted from blood of 120 patients with at least a stenosis greater than 50% (CADi > or = 23 and from 121 controls without evidence of coronary stenosis (CADi = 0. 160 individual genes were found to correlate with CADi (rho > 0.2, P<0.003. Prominent differential expression was observed especially in genes involved in cell growth, apoptosis and inflammation. Using these 160 genes, a partial least squares multivariate regression model resulted in a highly predictive model (r(2 = 0.776, P<0.0001. The expression pattern of these 160 genes in aortic tissue also predicted the severity of atherosclerosis in human aortas, showing that peripheral blood gene expression associated with coronary atherosclerosis mirrors gene expression changes in atherosclerotic arteries. In conclusion, the simultaneous expression pattern of 160 genes in whole blood correlates with the severity of coronary artery disease and mirrors expression changes in the atherosclerotic vascular wall.

  20. Leukocyte count affects expression of reference genes in canine whole blood samples

    NARCIS (Netherlands)

    Piek, C.J.; Brinkhof, B.; Rothuizen, J.; Dekker, A.; Penning, L.C.

    2011-01-01

    Background The dog is frequently used as a model for hematologic human diseases. In this study the suitability of nine potential reference genes for quantitative RT-PCR studies in canine whole blood was investigated. Findings The expression of these genes was measured in whole blood samples of 263

  1. A pilot investigation of visceral fat adiposity and gene expression profile in peripheral blood cells.

    Science.gov (United States)

    Yamaoka, Masaya; Maeda, Norikazu; Nakamura, Seiji; Kashine, Susumu; Nakagawa, Yasuhiko; Hiuge-Shimizu, Aki; Okita, Kohei; Imagawa, Akihisa; Matsuzawa, Yuji; Matsubara, Ken-ichi; Funahashi, Tohru; Shimomura, Iichiro

    2012-01-01

    Evidence suggests that visceral fat accumulation plays a central role in the development of metabolic syndrome. Excess visceral fat causes local chronic low-grade inflammation and dysregulation of adipocytokines, which contribute in the pathogenesis of the metabolic syndrome. These changes may affect the gene expression in peripheral blood cells. This study for the first time examined the association between visceral fat adiposity and gene expression profile in peripheral blood cells. The gene expression profile was analyzed in peripheral blood cells from 28 obese subjects by microarray analysis. Reverse transcription-polymerase chain reaction (RT-PCR) was performed using peripheral blood cells from 57 obese subjects. Obesity was defined as body mass index (BMI) greater than 25 kg/m(2) according to the Japanese criteria, and the estimated visceral fat area (eVFA) was measured by abdominal bioelectrical impedance. Analysis of gene expression profile was carried out with Agilent whole human genome 4 × 44 K oligo-DNA microarray. The expression of several genes related to circadian rhythm, inflammation, and oxidative stress correlated significantly with visceral fat accumulation. Period homolog 1 (PER1) mRNA level in blood cells correlated negatively with visceral fat adiposity. Stepwise multiple regression analysis identified eVFA as a significant determinant of PER1 expression. In conclusion, visceral fat adiposity correlated with the expression of genes related to circadian rhythm and inflammation in peripheral blood cells.

  2. Gene expression profiling in whole blood identifies distinct biological pathways associated with obesity

    Directory of Open Access Journals (Sweden)

    Gorman Shelby A

    2010-12-01

    Full Text Available Abstract Background Obesity is reaching epidemic proportions and represents a significant risk factor for cardiovascular disease, diabetes, and cancer. Methods To explore the relationship between increased body mass and gene expression in blood, we conducted whole-genome expression profiling of whole blood from seventeen obese and seventeen well matched lean subjects. Gene expression data was analyzed at the individual gene and pathway level and a preliminary assessment of the predictive value of blood gene expression profiles in obesity was carried out. Results Principal components analysis of whole-blood gene expression data from obese and lean subjects led to efficient separation of the two cohorts. Pathway analysis by gene-set enrichment demonstrated increased transcript levels for genes belonging to the "ribosome", "apoptosis" and "oxidative phosphorylation" pathways in the obese cohort, consistent with an altered metabolic state including increased protein synthesis, enhanced cell death from proinflammatory or lipotoxic stimuli, and increased energy demands. A subset of pathway-specific genes acted as efficient predictors of obese or lean class membership when used in Naive Bayes or logistic regression based classifiers. Conclusion This study provides a comprehensive characterization of the whole blood transcriptome in obesity and demonstrates that the investigation of gene expression profiles from whole blood can inform and illustrate the biological processes related to regulation of body mass. Additionally, the ability of pathway-related gene expression to predict class membership suggests the feasibility of a similar approach for identifying clinically useful blood-based predictors of weight loss success following dietary or surgical interventions.

  3. Differential gene expression profiling in blood from patients with digestive system cancers.

    Science.gov (United States)

    Honda, Masao; Sakai, Yoshio; Yamashita, Taro; Yamashita, Tatsuya; Sakai, Akito; Mizukoshi, Eishiro; Nakamoto, Yasunari; Tatsumi, Isamu; Miyazaki, Yoshitaka; Tanno, Hiroshi; Kaneko, Shuichi

    2010-09-10

    To develop a non-invasive and sensitive diagnostic test for cancer using peripheral blood, we evaluated gene expression profiling of blood obtained from patients with cancer of the digestive system and normal subjects. The expression profiles of blood-derived total RNA obtained from 39 cancer patients (11 colon cancer, 14 gastric cancer, and 14 pancreatic cancer) was clearly different from those obtained from 15 normal subjects. By comparing the gene expression profiles of cancer patients and normal subjects, 25 cancer-differentiating genes (p3) were identified and an "expression index" deduced from the expression values of these genes differentiated the validation cohort (11 colon cancer, 8 gastric cancer, 18 pancreatic cancer, and 15 normal subjects) into cancer patients and normal subjects with 100% (37/37) and 87% (13/15) accuracy, respectively. Although, the expression profiles were not clearly different between the cancer patients, some characteristic genes were identified according to the stage and species of the cancer. Interestingly, many immune-related genes such as antigen presenting, cell cycle accelerating, and apoptosis- and stress-inducing genes were up-regulated in cancer patients, reflecting the active turnover of immune regulatory cells in cancer patients. These results showed the potential relevance of peripheral blood gene expression profiling for the development of new diagnostic examination tools for cancer patients. Copyright © 2010 Elsevier Inc. All rights reserved.

  4. Altered gene expression in blood and sputum in COPD frequent exacerbators in the ECLIPSE cohort.

    Directory of Open Access Journals (Sweden)

    Dave Singh

    Full Text Available Patients with chronic obstructive pulmonary disease (COPD who are defined as frequent exacerbators suffer with 2 or more exacerbations every year. The molecular mechanisms responsible for this phenotype are poorly understood. We investigated gene expression profile patterns associated with frequent exacerbations in sputum and blood cells in a well-characterised cohort. Samples from subjects from the ECLIPSE COPD cohort were used; sputum and blood samples from 138 subjects were used for microarray gene expression analysis, while blood samples from 438 subjects were used for polymerase chain reaction (PCR testing. Using microarray, 150 genes were differentially expressed in blood (>±1.5 fold change, p≤0.01 between frequent compared to non-exacerbators. In sputum cells, only 6 genes were differentially expressed. The differentially regulated genes in blood included downregulation of those involved in lymphocyte signalling and upregulation of pro-apoptotic signalling genes. Multivariate analysis of the microarray data followed by confirmatory PCR analysis identified 3 genes that predicted frequent exacerbations; B3GNT, LAF4 and ARHGEF10. The sensitivity and specificity of these 3 genes to predict the frequent exacerbator phenotype was 88% and 33% respectively. There are alterations in systemic immune function associated with frequent exacerbations; down-regulation of lymphocyte function and a shift towards pro-apoptosis mechanisms are apparent in patients with frequent exacerbations.

  5. Leukocyte count affects expression of reference genes in canine whole blood samples

    Directory of Open Access Journals (Sweden)

    Dekker Aldo

    2011-02-01

    Full Text Available Abstract Background The dog is frequently used as a model for hematologic human diseases. In this study the suitability of nine potential reference genes for quantitative RT-PCR studies in canine whole blood was investigated. Findings The expression of these genes was measured in whole blood samples of 263 individual dogs, representing 73 different breeds and a group of 40 mixed breed dogs, categorized into healthy dogs and dogs with internal and hematological diseases, and dogs that underwent a surgical procedure. GeNorm analysis revealed that a combination of 5 to 6 of the most stably expressed genes constituted a stable normalizing factor. Evaluation of the expression revealed different ranking of reference genes in Normfinder and GeNorm. The disease category and the white blood cell count significantly affected reference gene expression. Conclusions The discrepancy between the ranking of reference genes in this study by Normfinder and Genorm can be explained by differences between the experimental groups such as "disease category" and "WBC count". This stresses the importance of assessing the expression stability of potential reference genes for gene experiments in canine whole blood anew for each specific experimental condition.

  6. Stimulated Gene Expression Profiles as a Blood Marker of Major Depressive Disorder

    NARCIS (Netherlands)

    Spijker, Sabine; Van Zanten, Jeroen S.; De Jong, Simone; Penninx, Brenda; van Dyck, Richard; Zitman, Frans G.; Smit, Jan H.; Ylstra, Bauke; Smit, August B.; Hoogendijk, Witte J. G.

    2010-01-01

    Background: Major depressive disorder (MDD) is a moderately heritable disorder with a high lifetime prevalence. At present, laboratory blood tests to support MDD diagnosis are not available. Methods: We used a classifier approach on blood gene expression profiles of a unique set of unmedicated

  7. Comparison of brain and blood gene expression in an animal model of negative symptoms in schizophrenia

    NARCIS (Netherlands)

    Bosker, Fokko J.; Gladkevich, Anatoliy V.; Pietersen, Charmaine Y.; Kooi, Krista A.; Bakker, Petra L.; Gerbens, Frans; den Boer, Johan A.; Korf, Jakob; te Meerman, Gerard

    2012-01-01

    Objectives: To investigate the potential of white blood cells as probes for central processes we have measured gene expression in both the anterior cingulate cortex and white blood cells using a putative animal model of negative symptoms in schizophrenia. Methods: The model is based on the

  8. Gene expression profiles are different in venous and capillary blood: Implications for vaccine studies.

    Science.gov (United States)

    Stein, D F; O'Connor, D; Blohmke, C J; Sadarangani, M; Pollard, A J

    2016-10-17

    Detailed analysis of the immunological pathways leading to robust vaccine responses has become possible with the application of systems biology, including transcriptomic analysis. Venous blood is usually obtained for such studies but others have obtained capillary blood (e.g. finger-prick). Capillary samples are practically advantageous, especially in children. The aim of this study was to compare gene expression profiles in venous and capillary blood before, 12h and 24h after vaccination with 23-valent pneumococcal polysaccharide or trivalent inactivated seasonal influenza vaccines. Gene expression at baseline was markedly different between venous and capillary samples, with 4940 genes differentially expressed, and followed a different pattern of changes after vaccination. At baseline, multiple pathways were upregulated in venous compared to capillary blood, including transforming growth factor-beta receptor signalling and toll-like receptor cascades. After vaccination with the influenza vaccine, there was enrichment for T and NK cell related signatures in capillary blood, and monocyte signatures in venous blood. By contrast, after vaccination with the pneumococcal vaccination, there was enrichment of dendritic cells, monocytes and interferon related signatures in capillary blood, whilst at 24h there was enrichment for T and NK cell related signatures in venous blood. These data show differences between venous and capillary gene expression both at baseline, and post vaccination, which may impact on the conclusions regarding immunological mechanisms drawn from studies using these different sampling methodologies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Parallel Gene Expression Changes in Sarcoidosis Involving the Lacrimal Gland, Orbital Tissue, or Blood.

    Science.gov (United States)

    Rosenbaum, James T; Choi, Dongseok; Wilson, David J; Grossniklaus, Hans E; Harrington, Christina A; Sibley, Cailin H; Dailey, Roger A; Ng, John D; Steele, Eric A; Czyz, Craig N; Foster, Jill A; Tse, David; Alabiad, Chris; Dubovy, Sander; Parekh, Prashant; Harris, Gerald J; Kazim, Michael; Patel, Payal; White, Valerie; Dolman, Peter; Korn, Bobby S; Kikkawa, Don; Edward, Deepak P; Alkatan, Hind; Al-Hussain, Hailah; Yeatts, R Patrick; Selva, Dinesh; Stauffer, Patrick; Planck, Stephen R

    2015-07-01

    Sarcoidosis is a major cause of ocular or periocular inflammation. The pathogenesis of sarcoidosis is incompletely understood and diagnosis often requires a biopsy. To determine how gene expression in either orbital adipose tissue or the lacrimal gland affected by sarcoidosis compares with gene expression in other causes of orbital disease and how gene expression in tissue affected by sarcoidosis compares with gene expression in peripheral blood samples obtained from patients with sarcoidosis. In a multicenter, international, observational study, gene expression profiling of formalin-fixed biopsy specimens, using GeneChipp U133 Plus 2 microarrays (Affymetrix), was conducted between October 2012 and January 2014 on tissues biopsied from January 2000 through June 2013. Participants included 12 patients with orbital sarcoidosis (7 in adipose tissue; 5 affecting the lacrimal gland) as well as comparable tissue from 6 healthy individuals serving as controls or patients with thyroid eye disease, nonspecific orbital inflammation, or granulomatosis with polyangiitis. In addition, results were compared with gene expression in peripheral blood samples obtained from 12 historical individuals with sarcoidosis. Significantly differentially expressed transcripts defined as a minimum of a 1.5-fold increase or a comparable decrease and a false discovery rate of P tissue from patients with sarcoidosis. Signals from 4050 probe sets (approximately 2619 genes) were significantly decreased. Signals from 3069 probe sets (approximately 2001 genes) were significantly higher and 3320 (approximately 2283 genes) were significantly lower in the lacrimal gland for patients with sarcoidosis. Ninety-two probe sets (approximately 69 genes) had significantly elevated signals and 67 probe sets (approximately 56 genes) had significantly lower signals in both orbital tissues and in peripheral blood from patients with sarcoidosis. The transcription factors, interferon-response factor 1, interferon

  10. Effects of Transport and Storage Conditions on Gene Expression in Blood Samples.

    Science.gov (United States)

    Malentacchi, Francesca; Pizzamiglio, Sara; Wyrich, Ralf; Verderio, Paolo; Ciniselli, Chiara; Pazzagli, Mario; Gelmini, Stefania

    2016-04-01

    Inappropriate handling of blood samples might induce or repress gene expression and/or lead to RNA degradation affecting downstream analysis. In particular, sample transport is a critical step for biobanking or multicenter studies because of uncontrolled variables (i.e., unstable temperature). We report the results of a pilot study implemented within the EC funded SPIDIA project, aimed to investigate the role of transport and storage of blood samples containing and not containing an RNA stabilizer. Blood was collected from a single donor both in EDTA and in PAXgene Blood RNA tubes. Half of the samples were sent to a second laboratory both at room temperature and at 4°C, whereas the remaining samples were stored at room temperature and at 4°C. Gene expression of selected genes (c-FOS, IL-1β, IL-8, and GAPDH) known to be induced or repressed by ex vivo blood handling and of blood-mRNA quality biomarkers identified and validated within the SPIDIA project, which allow for monitoring changes in unstabilized blood samples after collection and during transport and storage, were analyzed by RT-qPCR. If the shipment of blood in tubes not containing RNA stabilizer is not performed under a stable condition, gene profile studies can be affected by the effects of transport. Moreover, also controlled temperature shipment (4°C) can influence the expression of specific genes if blood is collected in tubes not containing a stabilizer. The use of dedicated biomarkers or time course experiments should be performed in order to verify potential bias on gene expression analysis due to sample shipment and storage conditions. Alternatively, the use of RNA stabilizer containing tubes can represent a reliable option to avoid ex vivo RNA changes.

  11. Effects of gender on gene expression in the blood of ischemic stroke patients.

    Science.gov (United States)

    Tian, Yingfang; Stamova, Boryana; Jickling, Glen C; Liu, Dazhi; Ander, Bradley P; Bushnell, Cheryl; Zhan, Xinhua; Davis, Ryan R; Verro, Piero; Pevec, William C; Hedayati, Nasim; Dawson, David L; Khoury, Jane; Jauch, Edward C; Pancioli, Arthur; Broderick, Joseph P; Sharp, Frank R

    2012-05-01

    This study examined the effects of gender on RNA expression after ischemic stroke (IS). RNA obtained from blood of IS patients (n=51; 153 samples at genes for females compared with males. In all, 242, 227, and 338 male-specific genes were regulated at genes were regulated at genes were associated with integrin, integrin-liked kinase, actin, tight junction, Wnt/β-catenin, RhoA, fibroblast growth factors (FGF), granzyme, and tumor necrosis factor receptor (TNFR)2 signaling. Female-specific stroke genes were associated with p53, high-mobility group box-1, hypoxia inducible factor (HIF)1α, interleukin (IL)1, IL6, IL12, IL18, acute-phase response, T-helper, macrophage, and estrogen signaling. Cell death signaling was overrepresented in both genders, although the molecules and pathways differed. Gender affects gene expression in the blood of IS patients, which likely implies gender differences in immune, inflammatory, and cell death responses to stroke.

  12. Sex hormones and gene expression signatures in peripheral blood from postmenopausal women - the NOWAC postgenome study

    Directory of Open Access Journals (Sweden)

    Rylander Charlotta

    2011-03-01

    Full Text Available Abstract Background Postmenopausal hormone therapy (HT influences endogenous hormone concentrations and increases the risk of breast cancer. Gene expression profiling may reveal the mechanisms behind this relationship. Our objective was to explore potential associations between sex hormones and gene expression in whole blood from a population-based, random sample of postmenopausal women Methods Gene expression, as measured by the Applied Biosystems microarray platform, was compared between hormone therapy (HT users and non-users and between high and low hormone plasma concentrations using both gene-wise analysis and gene set analysis. Gene sets found to be associated with HT use were further analysed for enrichment in functional clusters and network predictions. The gene expression matrix included 285 samples and 16185 probes and was adjusted for significant technical variables. Results Gene-wise analysis revealed several genes significantly associated with different types of HT use. The functional cluster analyses provided limited information on these genes. Gene set analysis revealed 22 gene sets that were enriched between high and low estradiol concentration (HT-users excluded. Among these were seven oestrogen related gene sets, including our gene list associated with systemic estradiol use, which thereby represents a novel oestrogen signature. Seven gene sets were related to immune response. Among the 15 gene sets enriched for progesterone, 11 overlapped with estradiol. No significant gene expression patterns were found for testosterone, follicle stimulating hormone (FSH or sex hormone binding globulin (SHBG. Conclusions Distinct gene expression patterns associated with sex hormones are detectable in a random group of postmenopausal women, as demonstrated by the finding of a novel oestrogen signature.

  13. Blood-gene expression reveals reduced circadian rhythmicity in individuals resistant to sleep deprivation.

    Science.gov (United States)

    Arnardottir, Erna S; Nikonova, Elena V; Shockley, Keith R; Podtelezhnikov, Alexei A; Anafi, Ron C; Tanis, Keith Q; Maislin, Greg; Stone, David J; Renger, John J; Winrow, Christopher J; Pack, Allan I

    2014-10-01

    To address whether changes in gene expression in blood cells with sleep loss are different in individuals resistant and sensitive to sleep deprivation. Blood draws every 4 h during a 3-day study: 24-h normal baseline, 38 h of continuous wakefulness and subsequent recovery sleep, for a total of 19 time-points per subject, with every 2-h psychomotor vigilance task (PVT) assessment when awake. Sleep laboratory. Fourteen subjects who were previously identified as behaviorally resistant (n = 7) or sensitive (n = 7) to sleep deprivation by PVT. Thirty-eight hours of continuous wakefulness. We found 4,481 unique genes with a significant 24-h diurnal rhythm during a normal sleep-wake cycle in blood (false discovery rate [FDR] sleep. After accounting for circadian effects, two genes (SREBF1 and CPT1A, both involved in lipid metabolism) exhibited small, but significant, linear changes in expression with the duration of sleep deprivation (FDR sleep deprivation was a reduction in the amplitude of the diurnal rhythm of expression of normally cycling probe sets. This reduction was noticeably higher in behaviorally resistant subjects than sensitive subjects, at any given P value. Furthermore, blood cell type enrichment analysis showed that the expression pattern difference between sensitive and resistant subjects is mainly found in cells of myeloid origin, such as monocytes. Individual differences in behavioral effects of sleep deprivation are associated with differences in diurnal amplitude of gene expression for genes that show circadian rhythmicity. © 2014 Associated Professional Sleep Societies, LLC.

  14. Catecholamine-related gene expression in blood correlates with tic severity in tourette syndrome.

    Science.gov (United States)

    Gunther, Joan; Tian, Yingfang; Stamova, Boryana; Lit, Lisa; Corbett, Blythe; Ander, Brad; Zhan, Xinhua; Jickling, Glen; Bos-Veneman, Netty; Liu, Da; Hoekstra, Pieter; Sharp, Frank

    2012-12-30

    Tourette syndrome (TS) is a heritable disorder characterized by tics that are decreased in some patients by treatment with alpha adrenergic agonists and dopamine receptor blockers. Thus, this study examines the relationship between catecholamine gene expression in blood and tic severity. TS diagnosis was confirmed using Diagnostic and Statistical Manual of Mental Disorders (DSM)-IV criteria and tic severity measured using the Yale Global Tic Severity Scale (YGTSS) for 26 un-medicated subjects with TS. Whole blood was collected and Ribonucleic acid (RNA) processed on Affymetrix Human Exon 1.0 ST arrays. An Analysis of Covariance (ANCOVA) identified 3627 genes correlated with tic severity (pGene Ontology, Allen Mouse Brain Atlas, and PubMed determined genes associated with catecholamines and located in the basal ganglia. Using GeneCards, PubMed, and manual curation, seven genes associated with TS were further examined: DRD2, HRH3, MAOB, BDNF, SNAP25, SLC6A4, and SLC22A3. These genes are highly associated with TS and have also been implicated in other movement disorders, Attention Deficit Hyperactivity Disorder (ADHD), and Obsessive-Compulsive Disorder (OCD). Correlation of gene expression in peripheral blood with tic severity may allow inferences about catecholamine pathway dysfunction in TS subjects. Findings built on previous work suggest that at least some genes expressed peripherally are relevant for central nervous system (CNS) pathology in the brain of individuals with TS. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  15. Whole Blood Transcriptome Sequencing Reveals Gene Expression Differences between Dapulian and Landrace Piglets

    Directory of Open Access Journals (Sweden)

    Jiaqing Hu

    2016-01-01

    Full Text Available There is little genomic information regarding gene expression differences at the whole blood transcriptome level of different pig breeds at the neonatal stage. To solve this, we characterized differentially expressed genes (DEGs in the whole blood of Dapulian (DPL and Landrace piglets using RNA-seq (RNA-sequencing technology. In this study, 83 DEGs were identified between the two breeds. Gene Ontology (GO and Kyoto Encyclopedia of Genes and Genomes (KEGG pathway analyses identified immune response and metabolism as the most commonly enriched terms and pathways in the DEGs. Genes related to immunity and lipid metabolism were more highly expressed in the DPL piglets, while genes related to body growth were more highly expressed in the Landrace piglets. Additionally, the DPL piglets had twofold more single nucleotide polymorphisms (SNPs and alternative splicing (AS than the Landrace piglets. These results expand our knowledge of the genes transcribed in the piglet whole blood of two breeds and provide a basis for future research of the molecular mechanisms underlying the piglet differences.

  16. Correlations between gene expression and mercury levels in blood of boys with and without autism.

    Science.gov (United States)

    Stamova, Boryana; Green, Peter G; Tian, Yingfang; Hertz-Picciotto, Irva; Pessah, Isaac N; Hansen, Robin; Yang, Xiaowei; Teng, Jennifer; Gregg, Jeffrey P; Ashwood, Paul; Van de Water, Judy; Sharp, Frank R

    2011-01-01

    Gene expression in blood was correlated with mercury levels in blood of 2- to 5-year-old boys with autism (AU) compared to age-matched typically developing (TD) control boys. This was done to address the possibility that the two groups might metabolize toxicants, such as mercury, differently. RNA was isolated from blood and gene expression assessed on whole genome Affymetrix Human U133 expression microarrays. Mercury levels were measured using an inductively coupled plasma mass spectrometer. Analysis of covariance (ANCOVA) was performed and partial correlations between gene expression and mercury levels were calculated, after correcting for age and batch effects. To reduce false positives, only genes shared by the ANCOVA models were analyzed. Of the 26 genes that correlated with mercury levels in both AU and TD boys, 11 were significantly different between the groups (P(Diagnosis*Mercury) ≤ 0.05). The expression of a large number of genes (n = 316) correlated with mercury levels in TD but not in AU boys (P ≤ 0.05), the most represented biological functions being cell death and cell morphology. Expression of 189 genes correlated with mercury levels in AU but not in TD boys (P ≤ 0.05), the most represented biological functions being cell morphology, amino acid metabolism, and antigen presentation. These data and those in our companion study on correlation of gene expression and lead levels show that AU and TD children display different correlations between transcript levels and low levels of mercury and lead. These findings might suggest different genetic transcriptional programs associated with mercury in AU compared to TD children.

  17. Gender-dependent correlations of carotid intima-media thickness with gene expression in blood.

    Science.gov (United States)

    Turner, Renée J; Bushnell, Cheryl D; Register, Thomas C; Sharp, Frank R

    2011-06-01

    The mechanisms underlying gender differences in stroke incidence, risk, and outcome are uncertain. We sought to determine whether transcriptional profiles of circulating blood cells of men and women differentially correlated with carotid artery intima-media thickness (CIMT), a predictor of atherosclerosis and stroke risk. Gene expression in whole blood was measured using Affymetrix expression arrays in men (n=17) and women (n=35), aged 45-64 years, with at least one risk factor for stroke. Mean average CIMT was measured using B-mode ultrasound. Expression levels of 746 genes positively and 292 genes negatively correlated with CIMT only in women (pgenes positively and 597 genes negatively correlated with CIMT only in men (pgenes correlated with CIMT in men and women, but in opposite directions. These genes were associated with estrogen, cholesterol and lipid metabolism, inflammation, coagulation, and vasoreactivity. This pilot study provides the first proof of principle that gene expression in blood cells correlates with CIMT. These results point to potential pathophysiological mechanisms underlying sex differences in stroke risk. Since the sample size is small, the findings are preliminary and need to be confirmed in independent, larger studies.

  18. LPS-induced modules of co-expressed genes in equine peripheral blood mononuclear cells.

    Science.gov (United States)

    Pacholewska, Alicja; Marti, Eliane; Leeb, Tosso; Jagannathan, Vidhya; Gerber, Vincent

    2017-01-05

    Lipopolysaccharide (endotoxin, LPS) is a strong inducer of the innate immune response. It is widespread in our environment, e.g. in house dust and contributes to asthma. Compared to humans, horses are even more sensitive to LPS. However, data on LPS effects on the equine transcriptome are very limited. Using RNA-seq we analysed LPS-induced differences in the gene expression in equine peripheral blood mononuclear cells at the gene and gene-network level in two half-sib families and one group of unrelated horses. 24 h-LPS challenge of equine immune cells resulted in substantial changes in the transcriptomic profile (1,265 differentially expressed genes) showing partial overlap with human data. One of the half-sib families showed a specific response different from the other two groups of horses. We also identified co-expressed gene modules that clearly differentiated 24 h-LPS- from non-stimulated samples. These modules consisted of 934 highly interconnected genes and included genes involved in the immune response (e.g. IL6, CCL22, CXCL6, CXCL2), however, none of the top ten hub genes of the modules have been annotated as responsive to LPS in gene ontology. Using weighted gene co-expression network analysis we identified ten co-expressed gene modules significantly regulated by in vitro stimulation with LPS. Apart from 47 genes (5%) all other genes highly interconnected within the most up- and down-regulated modules were also significantly differentially expressed (FDR LPS-regulated module hub genes have not yet been described as having a role in the immune response to LPS (e.g. VAT1 and TTC25).

  19. A practical platform for blood biomarker study by using global gene expression profiling of peripheral whole blood.

    Directory of Open Access Journals (Sweden)

    Ze Tian

    Full Text Available Although microarray technology has become the most common method for studying global gene expression, a plethora of technical factors across the experiment contribute to the variable of genome gene expression profiling using peripheral whole blood. A practical platform needs to be established in order to obtain reliable and reproducible data to meet clinical requirements for biomarker study.We applied peripheral whole blood samples with globin reduction and performed genome-wide transcriptome analysis using Illumina BeadChips. Real-time PCR was subsequently used to evaluate the quality of array data and elucidate the mode in which hemoglobin interferes in gene expression profiling. We demonstrated that, when applied in the context of standard microarray processing procedures, globin reduction results in a consistent and significant increase in the quality of beadarray data. When compared to their pre-globin reduction counterparts, post-globin reduction samples show improved detection statistics, lowered variance and increased sensitivity. More importantly, gender gene separation is remarkably clearer in post-globin reduction samples than in pre-globin reduction samples. Our study suggests that the poor data obtained from pre-globin reduction samples is the result of the high concentration of hemoglobin derived from red blood cells either interfering with target mRNA binding or giving the pseudo binding background signal.We therefore recommend the combination of performing globin mRNA reduction in peripheral whole blood samples and hybridizing on Illumina BeadChips as the practical approach for biomarker study.

  20. Expression profiling of solute carrier gene families at the blood-CSF barrier

    Directory of Open Access Journals (Sweden)

    Horace T.B. Ho

    2012-08-01

    Full Text Available The choroid plexus (CP is a highly vascularized tissue in the brain ventricles and acts as the blood-cerebrospinal fluid barrier (BCSFB. A main function of the CP is to secrete cerebrospinal fluid (CSF, which is accomplished by active transport of small ions and water from the blood side to the CSF side. The CP also supplies the brain with certain nutrients, hormones and metal ions, while removing metabolites and xenobiotics from the CSF. Numerous membrane transporters are expressed in the CP in order to facilitate the solute exchange between the blood and the CSF. The solute carrier (SLC superfamily represents a major class of transporters in the CP that constitutes the molecular mechanisms for CP function. Recently, we systematically and quantitatively examined Slc gene expression in 20 anatomically comprehensive brain areas in the adult mouse brain using high-quality in situ hybridization data generated by the Allen Brain Atlas. Here we focus our analysis on Slc gene expression at the BCSFB using previously obtained data. Of the 252 Slc genes present in the mouse brain, 202 Slc genes were found at detectable levels in the CP. Unsupervised hierarchical cluster analysis showed that the CP Slc gene expression pattern is substantially different from the other 19 analyzed brain regions. The majority of the Slc genes in the CP are expressed at low to moderate levels, whereas 28 Slc genes are present in the CP at the highest levels. These highly expressed Slc genes encode transporters involved in CSF secretion, energy production, and transport of nutrients, hormones, neurotransmitters, sulfate, and metal ions. In this review, the functional characteristics and potential importance of these Slc transporters in the CP are discussed, with particular emphasis on their localization and physiological functions at the BCSFB.

  1. Dissecting Daily and Circadian Expression Rhythms of Clock-Controlled Genes in Human Blood.

    Science.gov (United States)

    Lech, Karolina; Ackermann, Katrin; Revell, Victoria L; Lao, Oscar; Skene, Debra J; Kayser, Manfred

    2016-02-01

    The identification and investigation of novel clock-controlled genes (CCGs) has been conducted thus far mainly in model organisms such as nocturnal rodents, with limited information in humans. Here, we aimed to characterize daily and circadian expression rhythms of CCGs in human peripheral blood during a sleep/sleep deprivation (S/SD) study and a constant routine (CR) study. Blood expression levels of 9 candidate CCGs (SREBF1, TRIB1, USF1, THRA1, SIRT1, STAT3, CAPRIN1, MKNK2, and ROCK2), were measured across 48 h in 12 participants in the S/SD study and across 33 h in 12 participants in the CR study. Statistically significant rhythms in expression were observed for STAT3, SREBF1, TRIB1, and THRA1 in samples from both the S/SD and the CR studies, indicating that their rhythmicity is driven by the endogenous clock. The MKNK2 gene was significantly rhythmic in the S/SD but not the CR study, which implies its exogenously driven rhythmic expression. In addition, we confirmed the circadian expression of PER1, PER3, and REV-ERBα in the CR study samples, while BMAL1 and HSPA1B were not significantly rhythmic in the CR samples; all 5 genes previously showed significant expression in the S/SD study samples. Overall, our results demonstrate that rhythmic expression patterns of clock and selected clock-controlled genes in human blood cells are in part determined by exogenous factors (sleep and fasting state) and in part by the endogenous circadian timing system. Knowledge of the exogenous and endogenous regulation of gene expression rhythms is needed prior to the selection of potential candidate marker genes for future applications in medical and forensic settings. © 2015 The Author(s).

  2. Catecholamine-related gene expression in blood correlates with tic severity in tourette syndrome

    NARCIS (Netherlands)

    Gunther, Joan; Tian, Yingfang; Stamova, Boryana; Lit, Lisa; Corbett, Blythe; Ander, Brad; Zhan, Xinhua; Jickling, Glen; Bos-Veneman, Netty; Liu, Da; Hoekstra, Pieter; Sharp, Frank

    2012-01-01

    Tourette syndrome (TS) is a heritable disorder characterized by tics that are decreased in some patients by treatment with alpha adrenergic agonists and dopamine receptor blockers. Thus, this study examines the relationship between catecholamine gene expression in blood and tic severity. TS

  3. Gene expression signatures in peripheral blood cells from Japanese women exposed to environmental cadmium

    International Nuclear Information System (INIS)

    Dakeshita, Satoru; Kawai, Tomoko; Uemura, Hirokazu; Hiyoshi, Mineyoshi; Oguma, Etsuko; Horiguchi, Hyogo; Kayama, Fujio; Aoshima, Keiko; Shirahama, Satoshi; Rokutan, Kazuhito; Arisawa, Kokichi

    2009-01-01

    The objective of this study was to examine the effects of environmental cadmium (Cd) exposure on the gene expression profile of peripheral blood cells, using an original oligoDNA microarray. The study population consisted of 20 female residents in a Cd-polluted area (Cd-exposed group) and 20 female residents in a non-Cd-polluted area individually matched for age (control group). The mRNA levels in Cd-exposed subjects were compared with those in respective controls, using a microarray containing oligoDNA probes for 1867 genes. Median Cd concentrations in blood (3.55 μg/l) and urine (8.25 μg/g creatinine) from the Cd-exposed group were 2.4- and 1.9-times higher than those of the control group, respectively. Microarray analysis revealed that the Cd-exposed group significantly up-regulated 137 genes and down-regulated 80 genes, compared with the control group. The Ingenuity Pathway Analysis Application (IPA) revealed that differentially expressed genes were likely to modify oxidative stress and mitochondria-dependent apoptosis pathways. Among differentially expressed genes, the expression of five genes was positively correlated with Cd concentrations in blood or urine. Quantitative real-time PCR (RT-PCR) analysis validated the significant up-regulation of CASP9, TNFRSF1B, GPX3, HYOU1, SLC3A2, SLC19A1, SLC35A4 and ITGAL, and down-regulation of BCL2A1 and COX7B. After adjustment for differences in the background characteristics of the two groups, we finally identified seven Cd-responsive genes (CASP9, TNFRSF1B, GPX3, SLC3A2, ITGAL, BCL2A1, and COX7B), all of which constituted a network that controls oxidative stress response by IPA. These seven genes may be marker genes useful for the health risk assessment of chronic low level exposure to Cd

  4. Peripheral blood RNA gene expression profiling in illicit methcathinone users reveals effect on immune system

    Directory of Open Access Journals (Sweden)

    Katrin eSikk

    2011-08-01

    Full Text Available Methcathinone (ephedrone is relatively easily accessible for abuse. Its users develop an extrapyramidal syndrome and it is not known if this is caused by methcathinone itself, by side-ingredients (manganese, or both. In the present study we aimed to clarify molecular mechanisms underlying this condition. We analyzed whole genome gene expression patterns of peripheral blood from 20 methcathinone users and 20 matched controls. Gene expression profile data was analyzed by Bayesian modelling and functional annotation. In order to verify the genechip results we performed quantitative real-time (RT PCR in selected genes. 326 out of analyzed 28,869 genes showed statistically significant differential expression with FDR adjusted p-values below 0.05. Quantitative RT-PCR confirmed differential expression for the most of selected genes. Functional annotation and network analysis indicated that most of the genes were related to activation immunological disease, cellular movement and cardiovascular disease gene network (enrichment score 42. As HIV and HCV infections were confounding factors, we performed additional stratification of patients. A similar functional activation of the immunological disease pathway was evident when we compared patients according to the injection status (past versus current users, balanced for HIV and HCV infection. However, this difference was not large therefore the major effect was related to the HIV status of the patients. Mn-methcathinone abusers have blood transcriptional patterns mostly caused by their HIV and HCV infections.

  5. Microarray Analyses of Peripheral Blood Cells Identifies Unique Gene Expression Signature in Psoriatic Arthritis

    Science.gov (United States)

    Batliwalla, Franak M.; Li, Wentian; Ritchlin, Christopher T.; Xiao, Xiangli; Brenner, Max; Laragione, Teresina; Shao, Tianmeng; Durham, Robert; Kemshetti, Sunil; Schwarz, Edward; Coe, Rodney; Kern, Marlena; Baechler, Emily C.; Behrens, Timothy W.; Gregersen, Peter K.

    2005-01-01

    Psoriatic arthritis (PsA) is a chronic and erosive form of arthritis of unknown cause. We aimed to characterize the PsA phenotype using gene expression profiling and comparing it with healthy control subjects and patients rheumatoid arthritis (RA). Peripheral blood cells (PBCs) of 19 patients with active PsA and 19 age- and sex-matched control subjects were used in the analyses of PsA, with blood samples collected in PaxGene tubes. A significant alteration in the pattern of expression of 313 genes was noted in the PBCs of PsA patients on Affymetrix U133A arrays: 257 genes were expressed at reduced levels in PsA, and 56 genes were expressed at increased levels, compared with controls. Downregulated genes tended to cluster to certain chromosomal regions, including those containing the psoriasis susceptibility loci PSORS1 and PSORS2. Among the genes with the most significantly reduced expression were those involved in downregulation or suppression of innate and acquired immune responses, such as SIGIRR, STAT3, SHP1, IKBKB, IL-11RA, and TCF7, suggesting inappropriate control that favors proin-flammatory responses. Several members of the MAPK signaling pathway and tumor suppressor genes showed reduced expression. Three proinflammatory genes—S100A8, S100A12, and thioredoxin—showed increased expression. Logistic regression and recursive partitioning analysis determined that one gene, nucleoporin 62 kDa, could correctly classify all controls and 94.7% of the PsA patients. Using a dataset of 48 RA samples for comparison, the combination of two genes, MAP3K3 followed by CACNA1S, was enough to correctly classify all RA and PsA patients. Thus, PBC gene expression profiling identified a gene expression signature that differentiated PsA from RA, and PsA from controls. Several novel genes were differentially expressed in PsA and may prove to be diagnostic biomarkers or serve as new targets for the development of therapies. PMID:16622521

  6. Platelet-derived growth factor (PDGF) B-chain gene expression by activated blood monocytes precedes the expression of the PDGF A-chain gene

    International Nuclear Information System (INIS)

    Martinet, Y.; Jaffe, H.A.; Yamauchi, K.; Betsholtz, C.; Westermark, B.; Heldin, C.H.; Crystal, R.G.

    1987-01-01

    When activated, normal human blood monocytes are known to express the c-sis proto-oncogene coding for PDGF B-chain. Since normal human platelet PDGF molecules are dimers of A and B chains and platelets and monocytes are derived from the same marrow precursors, activated blood monocytes were simultaneously evaluated for their expression of PDGF A and B chain genes. Human blood monocytes were purified by adherence, cultured with or without activation by lipopolysaccharide and poly(A)+ RNA evaluated using Northern analysis and 32 P-labeled A-chain and B-chain (human c-sis) probes. Unstimulated blood monocytes did not express either A-chain or B-chain genes. In contrast, activated monocytes expressed a 4.2 kb mRNA B-chain transcript at 4 hr, but the B-chain mRNA levels declined significantly over the next 18 hr. In comparison, activated monocytes expressed very little A-chain mRNA at 4 hr, but at 12 hr 1.9, 2.3, and 2.8 kb transcripts were observed and persisted through 24 hr. Thus, activation of blood monocytes is followed by PDGF B-chain gene expression preceding PDGF A-chain gene expression, suggesting a difference in the regulation of the expression of the genes for these two chains by these cells

  7. HLA gene expression is altered in whole blood and placenta from women who later developed preeclampsia.

    Science.gov (United States)

    Small, Heather Y; Akehurst, Christine; Sharafetdinova, Liliya; McBride, Martin W; McClure, John D; Robinson, Scott W; Carty, David M; Freeman, Dilys J; Delles, Christian

    2017-03-01

    Preeclampsia is a multisystem disease that significantly contributes to maternal and fetal morbidity and mortality. In this study, we used a non-biased microarray approach to identify dysregulated genes in maternal whole blood samples which may be associated with the development of preeclampsia. Whole blood samples were obtained at 28 wk of gestation from 5 women who later developed preeclampsia (cases) and 10 matched women with normotensive pregnancies (controls). Placenta samples were obtained from an independent cohort of 19 women with preeclampsia matched with 19 women with normotensive pregnancies. We studied gene expression profiles using Illumina microarray in blood and validated changes in gene expression in whole blood and placenta tissue by qPCR. We found a transcriptional profile differentiating cases from controls; 336 genes were significantly dysregulated in blood from women who developed preeclampsia. Functional annotation of microarray results indicated that most of the genes found to be dysregulated were involved in inflammatory pathways. While general trends were preserved, only HLA-A was validated in whole blood samples from cases using qPCR (2.30- ± 0.9-fold change) whereas in placental tissue HLA-DRB1 expression was found to be significantly increased in samples from women with preeclampsia (5.88- ± 2.24-fold change). We have identified that HLA-A is upregulated in the circulation of women who went on to develop preeclampsia. In placenta of women with preeclampsia we identified that HLA-DRB1 is upregulated. Our data provide further evidence for involvement of the HLA gene family in the pathogenesis of preeclampsia. Copyright © 2017 the American Physiological Society.

  8. A meta-analysis of gene expression signatures of blood pressure and hypertension.

    Directory of Open Access Journals (Sweden)

    Tianxiao Huan

    2015-03-01

    Full Text Available Genome-wide association studies (GWAS have uncovered numerous genetic variants (SNPs that are associated with blood pressure (BP. Genetic variants may lead to BP changes by acting on intermediate molecular phenotypes such as coded protein sequence or gene expression, which in turn affect BP variability. Therefore, characterizing genes whose expression is associated with BP may reveal cellular processes involved in BP regulation and uncover how transcripts mediate genetic and environmental effects on BP variability. A meta-analysis of results from six studies of global gene expression profiles of BP and hypertension in whole blood was performed in 7017 individuals who were not receiving antihypertensive drug treatment. We identified 34 genes that were differentially expressed in relation to BP (Bonferroni-corrected p<0.05. Among these genes, FOS and PTGS2 have been previously reported to be involved in BP-related processes; the others are novel. The top BP signature genes in aggregate explain 5%-9% of inter-individual variance in BP. Of note, rs3184504 in SH2B3, which was also reported in GWAS to be associated with BP, was found to be a trans regulator of the expression of 6 of the transcripts we found to be associated with BP (FOS, MYADM, PP1R15A, TAGAP, S100A10, and FGBP2. Gene set enrichment analysis suggested that the BP-related global gene expression changes include genes involved in inflammatory response and apoptosis pathways. Our study provides new insights into molecular mechanisms underlying BP regulation, and suggests novel transcriptomic markers for the treatment and prevention of hypertension.

  9. Gene expression in blood of children and adolescents: Mediation between childhood maltreatment and major depressive disorder.

    Science.gov (United States)

    Spindola, Leticia Maria; Pan, Pedro Mario; Moretti, Patricia Natalia; Ota, Vanessa Kiyomi; Santoro, Marcos Leite; Cogo-Moreira, Hugo; Gadelha, Ary; Salum, Giovanni; Manfro, Gisele Gus; Mari, Jair Jesus; Brentani, Helena; Grassi-Oliveira, Rodrigo; Brietzke, Elisa; Miguel, Euripedes Constantino; Rohde, Luis Augusto; Sato, João Ricardo; Bressan, Rodrigo Affonseca; Belangero, Sintia Iole

    2017-09-01

    Investigating major depressive disorder (MDD) in childhood and adolescence can help reveal the relative contributions of genetic and environmental factors to MDD, since early stages of disease have less influence of illness exposure. Thus, we investigated the mRNA expression of 12 genes related to the hypothalamic-pituitary-adrenal (HPA) axis, inflammation, neurodevelopment and neurotransmission in the blood of children and adolescents with MDD and tested whether a history of childhood maltreatment (CM) affects MDD through gene expression. Whole-blood mRNA levels of 12 genes were compared among 20 children and adolescents with MDD diagnosis (MDD group), 49 participants without MDD diagnosis but with high levels of depressive symptoms (DS group), and 61 healthy controls (HC group). The differentially expressed genes were inserted in a mediation model in which CM, MDD, and gene expression were, respectively, the independent variable, outcome, and intermediary variable. NR3C1, TNF, TNFR1 and IL1B were expressed at significantly lower levels in the MDD group than in the other groups. CM history did not exert a significant direct effect on MDD. However, an indirect effect of the aggregate expression of the 4 genes mediated the relationship between CM and MDD. In the largest study investigating gene expression in children with MDD, we demonstrated that NR3C1, TNF, TNFR1 and IL1B expression levels are related to MDD and conjunctly mediate the effect of CM history on the risk of developing MDD. This supports a role of glucocorticoids and inflammation as potential effectors of environmental stress in MDD. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Impact of visceral fat on gene expression profile in peripheral blood cells in obese Japanese subjects.

    Science.gov (United States)

    Obata, Yoshinari; Maeda, Norikazu; Yamada, Yuya; Yamamoto, Koji; Nakamura, Seiji; Yamaoka, Masaya; Tanaka, Yoshimitsu; Masuda, Shigeki; Nagao, Hirofumi; Fukuda, Shiro; Fujishima, Yuya; Kita, Shunbun; Nishizawa, Hitoshi; Funahashi, Tohru; Matsubara, Ken-Ichi; Matsuzawa, Yuji; Shimomura, Iichiro

    2016-11-29

    Visceral fat plays a central role in the development of metabolic syndrome and atherosclerotic cardiovascular diseases. The association of visceral fat accumulation with cardio-metabolic diseases has been reported, but the impact of visceral fat on the gene expression profile in peripheral blood cells remains to be determined. The aim of this study was to determine the effects of visceral fat area (VFA) and subcutaneous fat area (SFA) on the gene expression profile in peripheral blood cells of obese subjects. All 17 enrolled subjects were hospitalized to receive diet therapy for obesity (defined as body mass index, BMI, greater than 25 kg/m 2 ). VFA and SFA were measured at the umbilical level by computed tomography (CT). Blood samples were subjected to gene expression profile analysis by using SurePrint G3 Human GE Microarray 8 × 60 k ver. 2.0. The correlation between various clinical parameters, including VFA and SFA, and peripheral blood gene expression levels was analyzed. Among the 17 subjects, 12 had normal glucose tolerance or borderline diabetes, and 5 were diagnosed with type 2 diabetes without medications [glycated hemoglobin (HbA1c); 6.3 ± 1.3%]. The mean BMI, VFA, and SFA were 30.0 ± 5.5 kg/m 2 , 177 ± 67 and 245 ± 131 cm 2 , respectively. Interestingly, VFA altered the expression of 1354 genes, including up-regulation of 307 and down-regulation of 1047, under the statistical environment that the parametric false discovery rate (FDR) was less than 0.1. However, no significant effects were noted for SFA or BMI. Gene ontology analysis showed higher prevalence of VFA-associated genes than that of SFA-associated genes, among the genes associated with inflammation, oxidative stress, immune response, lipid metabolism, and glucose metabolism. Accumulation of visceral fat, but not subcutaneous fat, has a significant impact on the gene expression profile in peripheral blood cells in obese Japanese subjects.

  11. A composite peripheral blood gene expression measure as a potential diagnostic biomarker in bipolar disorder

    DEFF Research Database (Denmark)

    Munkholm, Klaus; Peijs, L; Vinberg, M

    2015-01-01

    as a diagnostic and state biomarker in bipolar disorder. First, messenger RNA levels of 19 candidate genes were assessed in peripheral blood mononuclear cells of 37 rapid cycling bipolar disorder patients in different affective states (depression, mania and euthymia) during a 6-12-month period and in 40 age......- and gender-matched healthy control subjects. Second, a composite gene expression measure was constructed in the first half study sample and independently validated in the second half of the sample. We found downregulation of POLG and OGG1 expression in bipolar disorder patients compared with healthy control...... subjects. In patients with bipolar disorder, upregulation of NDUFV2 was observed in a depressed state compared with a euthymic state. The composite gene expression measure for discrimination between patients and healthy control subjects on the basis of 19 genes generated an area under the receiver...

  12. Comparative analysis of gene expression in maternal peripheral blood and monocytes during spontaneous preterm labor.

    Science.gov (United States)

    Paquette, Alison G; Shynlova, Oksana; Kibschull, Mark; Price, Nathan D; Lye, Stephen J

    2018-03-01

    Preterm birth is the leading cause of newborn death worldwide, and is associated with significant cognitive and physiological challenges in later life. There is a pressing need to define the mechanisms that initiate spontaneous preterm labor, and for development of novel clinical biomarkers to identify high-risk pregnancies. Most preterm birth studies utilize fetal tissues, and there is limited understanding of the transcriptional changes that occur in mothers undergoing spontaneous preterm labor. Earlier work revealed that a specific population of maternal peripheral leukocytes (macrophages/monocytes) play an active role in the initiation of labor. Thus, we hypothesized that there are dynamic gene expression changes in maternal blood leukocytes during preterm labor. Using next-generation sequencing we aim to characterize the transcriptome in whole blood leukocytes and peripheral monocytes of women undergoing spontaneous preterm labor compared to healthy pregnant women who subsequently delivered at full term. RNA sequencing was performed in both whole blood and peripheral monocytes from women who underwent preterm labor (24-34 weeks of gestation, N = 20) matched for gestational age to healthy pregnant controls (N = 30). All participants were a part of the Ontario Birth Study cohort (Toronto, Ontario, Canada). We identified significant differences in expression of 262 genes in peripheral monocytes and 184 genes in whole blood of women who were in active spontaneous preterm labor compared to pregnant women of the same gestational age not undergoing labor, with 43 of these genes differentially expressed in both whole blood and peripheral monocytes. ADAMTS2 expression was significantly increased in women actively undergoing spontaneous preterm labor, which we validated through digital droplet reverse transcriptase polymerase chain reaction. Intriguingly, we have also identified a number of gene sets including signaling by stem cell factor-KIT, nucleotide metabolism

  13. Whole Blood Gene Expression Profiling in Preclinical and Clinical Cattle Infected with Atypical Bovine Spongiform Encephalopathy.

    Directory of Open Access Journals (Sweden)

    Elena Xerxa

    Full Text Available Prion diseases, such as bovine spongiform encephalopathies (BSE, are transmissible neurodegenerative disorders affecting humans and a wide variety of mammals. Variant Creutzfeldt-Jakob disease (vCJD, a prion disease in humans, has been linked to exposure to BSE prions. This classical BSE (cBSE is now rapidly disappearing as a result of appropriate measures to control animal feeding. Besides cBSE, two atypical forms (named H- and L-type BSE have recently been described in Europe, Japan, and North America. Here we describe the first wide-spectrum microarray analysis in whole blood of atypical BSE-infected cattle. Transcriptome changes in infected animals were analyzed prior to and after the onset of clinical signs. The microarray analysis revealed gene expression changes in blood prior to the appearance of the clinical signs and during the progression of the disease. A set of 32 differentially expressed genes was found to be in common between clinical and preclinical stages and showed a very similar expression pattern in the two phases. A 22-gene signature showed an oscillating pattern of expression, being differentially expressed in the preclinical stage and then going back to control levels in the symptomatic phase. One gene, SEL1L3, was downregulated during the progression of the disease. Most of the studies performed up to date utilized various tissues, which are not suitable for a rapid analysis of infected animals and patients. Our findings suggest the intriguing possibility to take advantage of whole blood RNA transcriptional profiling for the preclinical identification of prion infection. Further, this study highlighted several pathways, such as immune response and metabolism that may play an important role in peripheral prion pathogenesis. Finally, the gene expression changes identified in the present study may be further investigated as a fingerprint for monitoring the progression of disease and for developing targeted therapeutic

  14. Gene expression patterns in blood leukocytes discriminate patients with acute infections

    Science.gov (United States)

    Allman, Windy; Chung, Wendy; Mejias, Asuncion; Ardura, Monica; Glaser, Casey; Wittkowski, Knut M.; Piqueras, Bernard; Banchereau, Jacques; Palucka, A. Karolina; Chaussabel, Damien

    2007-01-01

    Each infectious agent represents a unique combination of pathogen-associated molecular patterns that interact with specific pattern-recognition receptors expressed on immune cells. Therefore, we surmised that the blood immune cells of individuals with different infections might bear discriminative transcriptional signatures. Gene expression profiles were obtained for 131 peripheral blood samples from pediatric patients with acute infections caused by influenza A virus, Gram-negative (Escherichia coli) or Gram-positive (Staphylococcus aureus and Streptococcus pneumoniae) bacteria. Thirty-five genes were identified that best discriminate patients with influenza A virus infection from patients with either E coli or S pneumoniae infection. These genes classified with 95% accuracy (35 of 37 samples) an independent set of patients with either influenza A, E coli, or S pneumoniae infection. A different signature discriminated patients with E coli versus S aureus infections with 85% accuracy (34 of 40). Furthermore, distinctive gene expression patterns were observed in patients presenting with respiratory infections of different etiologies. Thus, microarray analyses of patient peripheral blood leukocytes might assist in the differential diagnosis of infectious diseases. PMID:17105821

  15. Data-driven asthma endotypes defined from blood biomarker and gene expression data.

    Directory of Open Access Journals (Sweden)

    Barbara Jane George

    Full Text Available The diagnosis and treatment of childhood asthma is complicated by its mechanistically distinct subtypes (endotypes driven by genetic susceptibility and modulating environmental factors. Clinical biomarkers and blood gene expression were collected from a stratified, cross-sectional study of asthmatic and non-asthmatic children from Detroit, MI. This study describes four distinct asthma endotypes identified via a purely data-driven method. Our method was specifically designed to integrate blood gene expression and clinical biomarkers in a way that provides new mechanistic insights regarding the different asthma endotypes. For example, we describe metabolic syndrome-induced systemic inflammation as an associated factor in three of the four asthma endotypes. Context provided by the clinical biomarker data was essential in interpreting gene expression patterns and identifying putative endotypes, which emphasizes the importance of integrated approaches when studying complex disease etiologies. These synthesized patterns of gene expression and clinical markers from our research may lead to development of novel serum-based biomarker panels.

  16. Gene expression changes in blood RNA after swimming in a chlorinated pool.

    Science.gov (United States)

    Salas, Lucas A; Font-Ribera, Laia; Bustamante, Mariona; Sumoy, Lauro; Grimalt, Joan O; Bonnin, Sarah; Aguilar, Maria; Mattlin, Heidi; Hummel, Manuela; Ferrer, Anna; Kogevinas, Manolis; Villanueva, Cristina M

    2017-08-01

    Exposure to disinfection by-products (DBP) such as trihalomethanes (THM) in swimming pools has been linked to adverse health effects in humans, but their biological mechanisms are unclear. We evaluated short-term changes in blood gene expression of adult recreational swimmers after swimming in a chlorinated pool. Volunteers swam 40min in an indoor chlorinated pool. Blood samples were drawn and four THM (chloroform, bromodichloromethane, dibromochloromethane and bromoform) were measured in exhaled breath before and after swimming. Intensity of physical activity was measured as metabolic equivalents (METs). Gene expression in whole blood mRNA was evaluated using IlluminaHumanHT-12v3 Expression-BeadChip. Linear mixed models were used to evaluate the relationship between gene expression changes and THM exposure. Thirty-seven before-after pairs were analyzed. The median increase from baseline to after swimming were: 0.7 to 2.3 for MET, and 1.4 to 7.1μg/m 3 for exhaled total THM (sum of the four THM). Exhaled THM increased on average 0.94μg/m 3 per 1 MET. While 1643 probes were differentially expressed post-exposure. Of them, 189 were also associated with exhaled levels of individual/total THM or MET after False Discovery Rate. The observed associations with the exhaled THM were low to moderate (Log-fold change range: -0.17 to 0.15). In conclusion, we identified short-term gene expression changes associated with swimming in a pool that were minor in magnitude and their biological meaning was unspecific. The high collinearity between exhaled THM levels and intensity of physical activity precluded mutually adjusted models with both covariates. These exploratory results should be validated in future studies. Copyright © 2017. Published by Elsevier B.V.

  17. Association between gene expression biomarkers of immunosuppression and blood transfusion in severely injured polytrauma patients.

    Science.gov (United States)

    Torrance, Hew Dt; Brohi, Karim; Pearse, Rupert M; Mein, Charles A; Wozniak, Eva; Prowle, John R; Hinds, Charles J; OʼDwyer, Michael J

    2015-04-01

    To explore the hypothesis that blood transfusion contributes to an immunosuppressed phenotype in severely injured patients. Despite trauma patients using disproportionately large quantities of blood and blood products, the immunomodulatory effects of blood transfusion in this group are inadequately described. A total of 112 ventilated polytrauma patients were recruited. Messenger RNA (mRNA) was extracted from PAXGene tubes collected within 2 hours of the trauma, at 24 hours, and at 72 hours. T-helper cell subtype specific cytokines and transcription factors were quantified using real-time polymerase chain reaction. Median injury severity score was 29. Blood transfusion was administered to 27 (24%) patients before the 2-hour sampling point. Transfusion was associated with a greater immediate rise in IL-10 (P = 0.003) and IL-27 (P = 0.04) mRNA levels. Blood products were transfused in 72 (64%) patients within the first 24 hours. There was an association between transfusion at 24 hours and higher IL-10 (P transfused. Multiple regression models confirmed that the transfusion of blood products was independently associated with altered patterns of gene expression. Blood stream infections occur in 15 (20.8%) of those transfused in the first 24 hours, compared with 1 patient (2.5%) not transfused (OR = 10.3 [1.3-81], P = 0.008). The primarily immunosuppressive inflammatory response to polytrauma may be exacerbated by the transfusion of blood products. Furthermore, transfusion was associated with an increased susceptibility to nosocomial infections.

  18. Micro-fluidic module for blood cell separation for gene expression radiobiological assays

    International Nuclear Information System (INIS)

    Brengues, Muriel; Gu, Jian; Zenhausern, Frederic

    2015-01-01

    Advances in molecular techniques have improved discovery of biomarkers associated with radiation exposure. Gene expression techniques have been demonstrated as effective tools for biodosimetry, and different assay platforms with different chemistries are now available. One of the main challenges is to integrate the sample preparation processing of these assays into micro-fluidic platforms to be fully automated for point-of-care medical countermeasures in the case of a radiological event. Most of these assays follow the same workflow processing that comprises first the collection of blood samples followed by cellular and molecular sample preparation. The sample preparation is based on the specific reagents of the assay system and depends also on the different subsets of cells population and the type of biomarkers of interest. In this article, the authors present a module for isolation of white blood cells from peripheral blood as a prerequisite for automation of gene expression assays on a micro-fluidic cartridge. For each sample condition, the gene expression platform can be adapted to suit the requirements of the selected assay chemistry (authors)

  19. Gene expression profile of peripheral blood monocytes: a step towards the molecular diagnosis of celiac disease?

    Directory of Open Access Journals (Sweden)

    Martina Galatola

    Full Text Available AIM: Celiac disease (CD is a multifactorial autoimmune disease induced by ingestion of gluten in genetically predisposed individuals. Despite technological progress, the diagnosis of CD is still based on duodenal biopsy as it was 50 years ago. In this study we analysed the expression of CD-associated genes in small bowel biopsies of patients and controls in order to explore the multivariate pathway of the expression profile of CD patients. Then, using multivariant discriminant analysis, we evaluated whether the expression profiles of these genes in peripheral blood monocytes (PBMs differed between patients and controls. PARTICIPANTS: Thirty-seven patients with active and 11 with treated CD, 40 healthy controls and 9 disease controls (Crohn's disease patients were enrolled. RESULTS: Several genes were differentially expressed in CD patients versus controls, but the analysis of each single gene did not provided a comprehensive picture. A multivariate discriminant analysis showed that the expression of 5 genes in intestinal mucosa accounted for 93% of the difference between CD patients and controls. We then applied the same approach to PBMs, on a training set of 20 samples. The discriminant equation obtained was validated on a testing cohort of 10 additional cases and controls, and we obtained a correct classification of all CD cases and of 91% of the control samples. We applied this equation to treated CD patients and to disease controls and obtained a discrimination of 100%. CONCLUSIONS: The combined expression of 4 genes allows one to discriminate between CD patients and controls, and between CD patients on a gluten-free diet and disease controls. Our results contribute to the understanding of the complex interactions among CD-associated genes, and they may represent a starting point for the development of a molecular diagnosis of celiac disease.

  20. Differentially expressed gene transcripts using RNA sequencing from the blood of immunosuppressed kidney allograft recipients.

    Directory of Open Access Journals (Sweden)

    Casey Dorr

    Full Text Available We performed RNA sequencing (RNAseq on peripheral blood mononuclear cells (PBMCs to identify differentially expressed gene transcripts (DEGs after kidney transplantation and after the start of immunosuppressive drugs. RNAseq is superior to microarray to determine DEGs because it's not limited to available probes, has increased sensitivity, and detects alternative and previously unknown transcripts. DEGs were determined in 32 adult kidney recipients, without clinical acute rejection (AR, treated with antibody induction, calcineurin inhibitor, mycophenolate, with and without steroids. Blood was obtained pre-transplant (baseline, week 1, months 3 and 6 post-transplant. PBMCs were isolated, RNA extracted and gene expression measured using RNAseq. Principal components (PCs were computed using a surrogate variable approach. DEGs post-transplant were identified by controlling false discovery rate (FDR at < 0.01 with at least a 2 fold change in expression from pre-transplant. The top 5 DEGs with higher levels of transcripts in blood at week 1 were TOMM40L, TMEM205, OLFM4, MMP8, and OSBPL9 compared to baseline. The top 5 DEGs with lower levels at week 1 post-transplant were IL7R, KLRC3, CD3E, CD3D, and KLRC2 (Striking Image compared to baseline. The top pathways from genes with lower levels at 1 week post-transplant compared to baseline, were T cell receptor signaling and iCOS-iCOSL signaling while the top pathways from genes with higher levels than baseline were axonal guidance signaling and LXR/RXR activation. Gene expression signatures at month 3 were similar to week 1. DEGs at 6 months post-transplant create a different gene signature than week 1 or month 3 post-transplant. RNAseq analysis identified more DEGs with lower than higher levels in blood compared to baseline at week 1 and month 3. The number of DEGs decreased with time post-transplant. Further investigations to determine the specific lymphocyte(s responsible for differential gene

  1. Gene expression profiling of blood for the prediction of ischemic stroke.

    Science.gov (United States)

    Stamova, Boryana; Xu, Huichun; Jickling, Glen; Bushnell, Cheryl; Tian, Yingfang; Ander, Bradley P; Zhan, Xinhua; Liu, Dazhi; Turner, Renee; Adamczyk, Peter; Khoury, Jane C; Pancioli, Arthur; Jauch, Edward; Broderick, Joseph P; Sharp, Frank R

    2010-10-01

    A blood-based biomarker of acute ischemic stroke would be of significant value in clinical practice. This study aimed to (1) replicate in a larger cohort our previous study using gene expression profiling to predict ischemic stroke; and (2) refine prediction of ischemic stroke by including control groups relevant to ischemic stroke. Patients with ischemic stroke (n=70, 199 samples) were compared with control subjects who were healthy (n=38), had vascular risk factors (n=52), and who had myocardial infarction (n=17). Whole blood was drawn ≤3 hours, 5 hours, and 24 hours after stroke onset and from control subjects. RNA was processed on whole genome microarrays. Genes differentially expressed in ischemic stroke were identified and analyzed for predictive ability to discriminate stroke from control subjects. The 29 probe sets previously reported predicted a new set of ischemic strokes with 93.5% sensitivity and 89.5% specificity. Sixty- and 46-probe sets differentiated control groups from 3-hour and 24-hour ischemic stroke samples, respectively. A 97-probe set correctly classified 86% of ischemic strokes (3 hour+24 hour), 84% of healthy subjects, 96% of vascular risk factor subjects, and 75% with myocardial infarction. This study replicated our previously reported gene expression profile in a larger cohort and identified additional genes that discriminate ischemic stroke from relevant control groups. This multigene approach shows potential for a point-of-care test in acute ischemic stroke.

  2. Aging alters mRNA expression of amyloid transporter genes at the blood-brain barrier.

    Science.gov (United States)

    Osgood, Doreen; Miller, Miles C; Messier, Arthur A; Gonzalez, Liliana; Silverberg, Gerald D

    2017-09-01

    Decreased clearance of potentially toxic metabolites, due to aging changes, likely plays a significant role in the accumulation of amyloid-beta (Aβ) peptides and other macromolecules in the brain of the elderly and in the patients with Alzheimer's disease (AD). Aging is the single most important risk factor for AD development. Aβ transport receptor proteins expressed at the blood-brain barrier are significantly altered with age: the efflux transporters lipoprotein receptor-related protein 1 and P-glycoprotein are reduced, whereas the influx transporter receptor for advanced glycation end products is increased. These receptors play an important role in maintaining brain biochemical homeostasis. We now report that, in a rat model of aging, gene transcription is altered in aging, as measured by Aβ receptor gene messenger RNA (mRNA) at 3, 6, 9, 12, 15, 20, 30, and 36 months. Gene mRNA expression from isolated cerebral microvessels was measured by quantitative polymerase chain reaction. Lipoprotein receptor-related protein 1 and P-glycoprotein mRNA were significantly reduced in aging, and receptor for advanced glycation end products was increased, in parallel with the changes seen in receptor protein expression. Transcriptional changes appear to play a role in aging alterations in blood-brain barrier receptor expression and Aβ accumulation. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Peripheral blood mononuclear cell gene expression in healthy adults rapidly transported to high altitude

    Directory of Open Access Journals (Sweden)

    Herman NM

    2014-12-01

    Full Text Available Nicole M Herman,1 Diane E Grill,2 Paul J Anderson,1 Andrew D Miller,1 Jacob B Johnson,1 Kathy A O’Malley,1 Maile L Ceridon Richert,1 Bruce D Johnson1 1Department of Cardiovascular Diseases, 2Department of Biostatistics, Mayo Clinic Rochester, MN, USA Abstract: Although mechanisms of high altitude illness have been studied extensively, the processes behind the development of these conditions are still unclear. Few genome-wide studies on rapid exposure to high altitude have been performed. Each year, scientists and support workers are transferred by plane from McMurdo Station in Antarctica (sea level to the Amundsen-Scott South Pole Station at 2,835 meters. This uniform and rapid transfer to altitude provides a unique opportunity to study the effects of hypobaric hypoxia on gene expression that may help illustrate the body's adaptations to these conditions. We hypothesized that an extensive number of genes would change with rapid exposure to altitude and further expected that these genes would correspond to inflammatory pathways proposed as a mechanism in development of acute mountain sickness. Peripheral venous blood samples were drawn from 98 healthy subjects at sea level and again on day two at altitude. Microarray analysis was performed on these samples. In total, 1,118 probe sets with significant P-values and fold changes (90% upregulated were identified and entered into MetaCore™ software. Several pathways, including oxidative phosphorylation, cytoskeleton remodeling, and platelet aggregation, were significantly represented by the data set and all were upregulated. Many genes changed expression, and the vast majority of these increased. Increased metabolism in peripheral blood mononuclear cells suggests increased inflammatory activity. Keywords: peripheral blood mononuclear cells, microarray, gene expression, acute mountain sickness

  4. Blood-based gene-expression predictors of PTSD risk and resilience among deployed marines: a pilot study.

    Science.gov (United States)

    Glatt, Stephen J; Tylee, Daniel S; Chandler, Sharon D; Pazol, Joel; Nievergelt, Caroline M; Woelk, Christopher H; Baker, Dewleen G; Lohr, James B; Kremen, William S; Litz, Brett T; Tsuang, Ming T

    2013-06-01

    Susceptibility to PTSD is determined by both genes and environment. Similarly, gene-expression levels in peripheral blood are influenced by both genes and environment, and expression levels of many genes show good correspondence between peripheral blood and brain. Therefore, our objectives were to test the following hypotheses: (1) pre-trauma expression levels of a gene subset (particularly immune-system genes) in peripheral blood would differ between trauma-exposed Marines who later developed PTSD and those who did not; (2) a predictive biomarker panel of the eventual emergence of PTSD among high-risk individuals could be developed based on gene expression in readily assessable peripheral blood cells; and (3) a predictive panel based on expression of individual exons would surpass the accuracy of a model based on expression of full-length gene transcripts. Gene-expression levels were assayed in peripheral blood samples from 50 U.S. Marines (25 eventual PTSD cases and 25 non-PTSD comparison subjects) prior to their deployment overseas to war-zones in Iraq or Afghanistan. The panel of biomarkers dysregulated in peripheral blood cells of eventual PTSD cases prior to deployment was significantly enriched for immune genes, achieved 70% prediction accuracy in an independent sample based on the expression of 23 full-length transcripts, and attained 80% accuracy in an independent sample based on the expression of one exon from each of five genes. If the observed profiles of pre-deployment mRNA-expression in eventual PTSD cases can be further refined and replicated, they could suggest avenues for early intervention and prevention among individuals at high risk for trauma exposure. Copyright © 2013 Wiley Periodicals, Inc.

  5. Meta-analysis of peripheral blood gene expression modules for COPD phenotypes.

    Directory of Open Access Journals (Sweden)

    Dominik Reinhold

    Full Text Available Chronic obstructive pulmonary disease (COPD occurs typically in current or former smokers, but only a minority of people with smoking history develops the disease. Besides environmental factors, genetics is an important risk factor for COPD. However, the relationship between genetics, environment and phenotypes is not well understood. Sample sizes for genome-wide expression studies based on lung tissue have been small due to the invasive nature of sample collection. Increasing evidence for the systemic nature of the disease makes blood a good alternative source to study the disease, but there have also been few large-scale blood genomic studies in COPD. Due to the complexity and heterogeneity of COPD, examining groups of interacting genes may have more relevance than identifying individual genes. Therefore, we used Weighted Gene Co-expression Network Analysis to find groups of genes (modules that are highly connected. However, module definitions may vary between individual data sets. To alleviate this problem, we used a consensus module definition based on two cohorts, COPDGene and ECLIPSE. We studied the relationship between the consensus modules and COPD phenotypes airflow obstruction and emphysema. We also used these consensus module definitions on an independent cohort (TESRA and performed a meta analysis involving all data sets. We found several modules that are associated with COPD phenotypes, are enriched in functional categories and are overrepresented for cell-type specific genes. Of the 14 consensus modules, three were strongly associated with airflow obstruction (meta p ≤ 0.0002, and two had some association with emphysema (meta p ≤ 0.06; some associations were stronger in the case-control cohorts, and others in the cases-only subcohorts. Gene Ontology terms that were overrepresented included "immune response" and "defense response." The cell types whose type-specific genes were overrepresented in modules (p < 0.05 included

  6. Peripheral blood gene expression as a novel genomic biomarker in complicated sarcoidosis.

    Directory of Open Access Journals (Sweden)

    Tong Zhou

    Full Text Available Sarcoidosis, a systemic granulomatous syndrome invariably affecting the lung, typically spontaneously remits but in ~20% of cases progresses with severe lung dysfunction or cardiac and neurologic involvement (complicated sarcoidosis. Unfortunately, current biomarkers fail to distinguish patients with remitting (uncomplicated sarcoidosis from other fibrotic lung disorders, and fail to identify individuals at risk for complicated sarcoidosis. We utilized genome-wide peripheral blood gene expression analysis to identify a 20-gene sarcoidosis biomarker signature distinguishing sarcoidosis (n = 39 from healthy controls (n = 35, 86% classification accuracy and which served as a molecular signature for complicated sarcoidosis (n = 17. As aberrancies in T cell receptor (TCR signaling, JAK-STAT (JS signaling, and cytokine-cytokine receptor (CCR signaling are implicated in sarcoidosis pathogenesis, a 31-gene signature comprised of T cell signaling pathway genes associated with sarcoidosis (TCR/JS/CCR was compared to the unbiased 20-gene biomarker signature but proved inferior in prediction accuracy in distinguishing complicated from uncomplicated sarcoidosis. Additional validation strategies included significant association of single nucleotide polymorphisms (SNPs in signature genes with sarcoidosis susceptibility and severity (unbiased signature genes - CX3CR1, FKBP1A, NOG, RBM12B, SENS3, TSHZ2; T cell/JAK-STAT pathway genes such as AKT3, CBLB, DLG1, IFNG, IL2RA, IL7R, ITK, JUN, MALT1, NFATC2, PLCG1, SPRED1. In summary, this validated peripheral blood molecular gene signature appears to be a valuable biomarker in identifying cases with sarcoidoisis and predicting risk for complicated sarcoidosis.

  7. Peripheral blood mammaglobin gene expression for diagnosis and prediction of metastasis in breast cancer patients.

    Science.gov (United States)

    Radwan, Wafaa M; Moussa, Heba S; Essa, Enas S; Kandil, Samia H; Kamel, Azza M

    2013-03-01

    To evaluate the value of peripheral blood mammaglobin (MG) gene expression for diagnosis and prediction of metastasis in breast cancer patients. MG expression was detected by nested reverse-transcription polymerase chain reaction in the peripheral blood of 46 females (32 breast cancer, 12 benign breast lesions, 2 no breast abnormalities). In total 28 breast cancer patients were followed up through a period of 34 months for the development of metastasis. MG expression was detected in 16/32 (50%) breast cancer patients but not in patients with benign lesions or healthy participants. Five patients had metastasis at diagnosis. During the 34 months of follow up, five more MG-positive patients showed metastatic lesions and none of the MG negative patients who were followed up developed metastasis. The study suggests blood MG expression is a specific molecular marker for detection of occult mammary carcinoma cells of patients with operable breast cancer. It might be of value as a predictor of subsequent metastasis. Large-scale studies and longer follow-up periods are needed. © 2012 Wiley Publishing Asia Pty Ltd.

  8. Expression of Mitochondrial-Encoded Genes in Blood Differentiate Acute Renal Allograft Rejection

    Directory of Open Access Journals (Sweden)

    Silke Roedder

    2017-11-01

    Full Text Available Despite potent immunosuppression, clinical and biopsy confirmed acute renal allograft rejection (AR still occurs in 10–15% of recipients, ~30% of patients demonstrate subclinical rejection on biopsy, and ~50% of them can show molecular inflammation, all which increase the risk of chronic dysfunction and worsened allograft outcomes. Mitochondria represent intracellular endogenous triggers of inflammation, which can regulate immune cell differentiation, and expansion and cause antigen-independent graft injury, potentially enhancing the development of acute rejection. In the present study, we investigated the role of mitochondrial DNA encoded gene expression in biopsy matched peripheral blood (PB samples from kidney transplant recipients. Quantitative PCR was performed in 155 PB samples from 115 unique pediatric (<21 years and adult (>21 years renal allograft recipients at the point of AR (n = 61 and absence of rejection (n = 94 for the expression of 11 mitochondrial DNA encoded genes. We observed increased expression of all genes in adult recipients compared to pediatric recipients; separate analyses in both cohorts demonstrated increased expression during rejection, which also differentiated borderline rejection and showed an increasing pattern in serially collected samples (0–3 months prior to and post rejection. Our results provide new insights on the role of mitochondria during rejection and potentially indicate mitochondria as targets for novel immunosuppression.

  9. FOXP3 gene expression in the blood of iranian multiple sclerosis patients.

    Science.gov (United States)

    Akbari, Zahra; Taheri, Mohammad; Jafari, Abdorreza; Sayad, Arezou

    2018-02-27

    Multiple sclerosis (MS) is a heterogeneous disease with an unknown etiology. Both genetic and environmental factors lead to MS disease. Recent studies have revealed the inhibitory role of T regulatory cells in the MS disease. Forkhead box P3 (FOXP3) gene is a transcript of the CD4+CD25+FOXP3 and T regulatory cells that is recently introduced as a factor in determining the lineage of immune cells. Based on these assumptions we investigate the expression of this gene in the peripheral blood of fifty MS patients in comparison to fifty controls. In this case-control study, we investigate the FOXP3 expression in fifty MS patients (30 females (60%) and 20 males (40%), mean age ± SD: 33.3 ± 5.4 years) in comparing to fifty healthy age and sex matched-controls (30 females (60%) and 20 males (40%), mean age ± SD: 34.2 ± 4.8) using real-time quantitative reverse transcription-PCR (qRT-PCR) in order to explore any association between FOXP3 expression level and MS. The expression level of FOXP3 gene was not significantly different between MS patients and controls (p: 0.79). In addition the expression level of the gene was not significantly different between male and female (p: 0.8, p: 0.79, respectively). Although, the FOXP3 gene is one of the most important genes in the regulation of the immune cells, according to no significant results of this study it may concluded that the expression of the gene is not different between MS patients and healthy controls at least at mRNA level. So it seems that investigating the protein level of FOXP3, related LNCs and microRNAs could be useful to investigate the relation between this gene and the disease. However, the clinical relevance of FOXP3 in patients with regard to their therapy needs to be further explored by evaluation of genetic background in relation to immune responses in MS patients.

  10. Effects of oral eicosapentaenoic acid versus docosahexaenoic acid on human peripheral blood mononuclear cell gene expression.

    Science.gov (United States)

    Tsunoda, Fumiyoshi; Lamon-Fava, Stefania; Asztalos, Bela F; Iyer, Lakshmanan K; Richardson, Kris; Schaefer, Ernst J

    2015-08-01

    Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have beneficial effects on inflammation and cardiovascular disease (CVD). Our aim was to assess the effect of a six-week supplementation with either olive oil, EPA, or DHA on gene expression in peripheral blood mononuclear cells (PBMC). Subjects were sampled at baseline and six weeks after receiving either: olive oil 6.0 g/day (n = 16), EPA 1.8 g/day (n = 16), or DHA 1.8 g/day (n = 18). PBMC were subjected to gene expression analysis by microarray with key findings confirmed by quantitative real-time polymerase chain reaction (Q-PCR). Plasma phospholipid EPA increased 3 fold in the EPA group, and DHA increased 63% in the DHA group (both p < 0.01), while no effects were observed in the olive oil group. Microarray analysis indicated that EPA but not DHA or olive oil significantly affected the gene expression in the following pathways: 1) interferon signaling, 2) receptor recognition of bacteria and viruses, 3) G protein signaling, glycolysis and glycolytic shunting, 4) S-adenosyl-l-methionine biosynthesis, and 5) cAMP-mediated signaling including cAMP responsive element protein 1 (CREB1), as well as many other individual genes including hypoxia inducible factor 1, α subunit (HIF1A). The findings for CREB1 and HIF1A were confirmed by Q-PCR analysis. Our data indicate that EPA supplementation was associated with significant effects on gene expression involving the interferon pathway as well as down-regulation of CREB1 and HIF1A, which may relate to its beneficial effect on CVD risk reduction. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. Evaluation of endogenous control gene(s) for gene expression studies in human blood exposed to 60Co γ-rays ex vivo

    International Nuclear Information System (INIS)

    Vaiphei, S. Thangminlal; Keppen, Joshua; Nongrum, Saibadaiahun; Sharan, R.N.; Chaubey, R.C.; Kma, L.

    2015-01-01

    In gene expression studies, it is critical to normalize data using a stably expressed endogenous control gene in order to obtain accurate and reliable results. However, we currently do not have a universally applied endogenous control gene for normalization of data for gene expression studies, particularly those involving 60 Co γ-ray-exposed human blood samples. In this study, a comparative assessment of the gene expression of six widely used housekeeping endogenous control genes, namely 18S, ACTB, B2M, GAPDH, MT-ATP6 and CDKN1A, was undertaken for a range of 60 Co γ-ray doses (0.5, 1.0, 2.0 and 4.0 Gy) at 8.4 Gy min -1 at 0 and 24 h post-irradiation time intervals. Using the NormFinder algorithm, real-time PCR data obtained from six individuals (three males and three females) were analyzed with respect to the threshold cycle (Ct) value and abundance, ΔCt pair-wise comparison, intra- and inter-group variability assessments, etc. GAPDH, either alone or in combination with 18S, was found to be the most suitable endogenous control gene and should be used in gene expression studies, especially those involving qPCR of γ-ray-exposed human blood samples. (author)

  12. Evaluation of endogenous control gene(s) for gene expression studies in human blood exposed to 60Co γ-rays ex vivo.

    Science.gov (United States)

    Vaiphei, S Thangminlal; Keppen, Joshua; Nongrum, Saibadaiahun; Chaubey, R C; Kma, L; Sharan, R N

    2015-01-01

    In gene expression studies, it is critical to normalize data using a stably expressed endogenous control gene in order to obtain accurate and reliable results. However, we currently do not have a universally applied endogenous control gene for normalization of data for gene expression studies, particularly those involving (60)Co γ-ray-exposed human blood samples. In this study, a comparative assessment of the gene expression of six widely used housekeeping endogenous control genes, namely 18S, ACTB, B2M, GAPDH, MT-ATP6 and CDKN1A, was undertaken for a range of (60)Co γ-ray doses (0.5, 1.0, 2.0 and 4.0 Gy) at 8.4 Gy min(-1) at 0 and 24 h post-irradiation time intervals. Using the NormFinder algorithm, real-time PCR data obtained from six individuals (three males and three females) were analyzed with respect to the threshold cycle (Ct) value and abundance, ΔCt pair-wise comparison, intra- and inter-group variability assessments, etc. GAPDH, either alone or in combination with 18S, was found to be the most suitable endogenous control gene and should be used in gene expression studies, especially those involving qPCR of γ-ray-exposed human blood samples. © The Author 2014. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  13. Diagnosis of partial body radiation exposure in mice using peripheral blood gene expression profiles.

    Directory of Open Access Journals (Sweden)

    Sarah K Meadows

    2010-07-01

    Full Text Available In the event of a terrorist-mediated attack in the United States using radiological or improvised nuclear weapons, it is expected that hundreds of thousands of people could be exposed to life-threatening levels of ionizing radiation. We have recently shown that genome-wide expression analysis of the peripheral blood (PB can generate gene expression profiles that can predict radiation exposure and distinguish the dose level of exposure following total body irradiation (TBI. However, in the event a radiation-mass casualty scenario, many victims will have heterogeneous exposure due to partial shielding and it is unknown whether PB gene expression profiles would be useful in predicting the status of partially irradiated individuals. Here, we identified gene expression profiles in the PB that were characteristic of anterior hemibody-, posterior hemibody- and single limb-irradiation at 0.5 Gy, 2 Gy and 10 Gy in C57Bl6 mice. These PB signatures predicted the radiation status of partially irradiated mice with a high level of accuracy (range 79-100% compared to non-irradiated mice. Interestingly, PB signatures of partial body irradiation were poorly predictive of radiation status by site of injury (range 16-43%, suggesting that the PB molecular response to partial body irradiation was anatomic site specific. Importantly, PB gene signatures generated from TBI-treated mice failed completely to predict the radiation status of partially irradiated animals or non-irradiated controls. These data demonstrate that partial body irradiation, even to a single limb, generates a characteristic PB signature of radiation injury and thus may necessitate the use of multiple signatures, both partial body and total body, to accurately assess the status of an individual exposed to radiation.

  14. Gene expression

    International Nuclear Information System (INIS)

    Hildebrand, C.E.; Crawford, B.D.; Walters, R.A.; Enger, M.D.

    1983-01-01

    We prepared probes for isolating functional pieces of the metallothionein locus. The probes enabled a variety of experiments, eventually revealing two mechanisms for metallothionein gene expression, the order of the DNA coding units at the locus, and the location of the gene site in its chromosome. Once the switch regulating metallothionein synthesis was located, it could be joined by recombinant DNA methods to other, unrelated genes, then reintroduced into cells by gene-transfer techniques. The expression of these recombinant genes could then be induced by exposing the cells to Zn 2+ or Cd 2+ . We would thus take advantage of the clearly defined switching properties of the metallothionein gene to manipulate the expression of other, perhaps normally constitutive, genes. Already, despite an incomplete understanding of how the regulatory switch of the metallothionein locus operates, such experiments have been performed successfully

  15. EFFECTS OF STORAGE, RNA EXTRACTION, GENECHIP TYPE, AND DONOR SEX ON GENE EXPRESSION PROFILING OF HUMAN WHOLE BLOOD

    Science.gov (United States)

    Background: Gene expression profiling of whole blood may be useful for monitoring toxicological exposure and for diagnosis and monitoring of various diseases. Several methods are available that can be used to transport, store, and extract RNA from whole blood, but it is not clear...

  16. Arsenic exposure from drinking water is associated with decreased gene expression and increased DNA methylation in peripheral blood.

    Science.gov (United States)

    Ameer, Syeda Shegufta; Engström, Karin; Hossain, Mohammad Bakhtiar; Concha, Gabriela; Vahter, Marie; Broberg, Karin

    2017-04-15

    Exposure to inorganic arsenic increases the risk of cancer and non-malignant diseases. Inefficient arsenic metabolism is a marker for susceptibility to arsenic toxicity. Arsenic may alter gene expression, possibly by altering DNA methylation. To elucidate the associations between arsenic exposure, gene expression, and DNA methylation in peripheral blood, and the modifying effects of arsenic metabolism. The study participants, women from the Andes, Argentina, were exposed to arsenic via drinking water. Arsenic exposure was assessed as the sum of arsenic metabolites in urine (U-As), using high performance liquid-chromatography hydride-generation inductively-coupled-plasma-mass-spectrometry, and arsenic metabolism efficiency was assessed by the urinary fractions (%) of the individual metabolites. Genome-wide gene expression (N=80 women) and DNA methylation (N=93; 80 overlapping with gene expression) in peripheral blood were measured using Illumina DirectHyb HumanHT-12 v4.0 and Infinium Human-Methylation 450K BeadChip, respectively. U-As concentrations, ranging 10-1251μg/L, was associated with decreased gene expression: 64% of the top 1000 differentially expressed genes were down-regulated with increasing U-As. U-As was also associated with hypermethylation: 87% of the top 1000CpGs were hypermethylated with increasing U-As. The expression of six genes and six individual CpG sites were significantly associated with increased U-As concentration. Pathway analyses revealed enrichment of genes related to cell death and cancer. The pathways differed somewhat depending on arsenic metabolism efficiency. We found no overlap between arsenic-related gene expression and DNA methylation for individual genes. Increased arsenic exposure was associated with lower gene expression and hypermethylation in peripheral blood, but with no evident overlap. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Taurine Transporter Gene Expression in Mononuclear Blood Cells of Type 1 Diabetes Patients.

    Science.gov (United States)

    Napoli, Zaleida; Seghieri, Giuseppe; Bianchi, Loria; Anichini, Roberto; De Bellis, Alessandra; Campesi, Ilaria; Carru, Ciriaco; Occhioni, Stefano; Zinellu, Angelo; Franconi, Flavia

    2016-01-01

    Taurine transporter gene expression (RNA-TauT) has a role in retinal cell function and is modulated in vitro and in vivo by hyperglycemia and/or oxidative stress. This study was aimed at testing whether RNA-TauT gene expression is modified in blood mononuclear peripheral cells (MPCs) of type 1 diabetic patients, is related to plasma markers of oxidative stress or endothelial dysfunction, or, finally, is related to presence of retinopathy. RNA-TauT was measured in MPCs by real-time PCR-analysis in 35 type 1 diabetic patients and in 33 age- and sex-matched controls, additionally measuring plasma and cell taurine and markers of oxidative stress and endothelial dysfunction. RNA-TauT, expressed as 2(-ΔΔCt), was significantly higher in MPCs of type 1 diabetic patients than in controls [median (interquartile range): 1.32(0.31) versus 1.00(0.15); P = 0.01]. In diabetic patients RNA-TauT was related to HbA1c (r = 0.42; P = 0.01) and inversely to plasma homocysteine (r = -0.39; P = 0.02) being additionally significantly higher in MPCs of patients without retinopathy [(n = 22); 1.36(0.34)] compared to those with retinopathy [(n = 13); 1.16(0.20)], independently from HbA1c or diabetes duration. RNA-TauT gene expression is significantly upregulated in MPCs of type 1 diabetes patients and is related to HbA1c levels and inversely to plasma homocysteine. Finally, in diabetes patients, RNA-TauT upregulation seems to be blunted in patients with retinopathy independently of their metabolic control or longer diabetes duration.

  18. Decreased blood riboflavin levels are correlated with defective expression of RFT2 gene in gastric cancer

    Science.gov (United States)

    Eli, Maynur; Li, De-Sheng; Zhang, Wei-Wei; Kong, Bing; Du, Chen-Song; Wumar, Maimaitiaili; Mamtimin, Batur; Sheyhidin, Ilyar; Hasim, Ayshamgul

    2012-01-01

    AIM: To investigate the relationship between blood riboflavin levels and riboflavin transporter 2 (RFT2) gene expression in gastric carcinoma (GC) development. METHODS: High-performance liquid chromatography was used to detect blood riboflavin levels in patients with GC. Real-time fluorogenic quantitative polymerase chain reaction and immunohistochemistry were used to analyze the expression of RFT2 mRNA and protein in samples from 60 GC patients consisting of both tumor and normal tissue. RESULTS: A significant decrease in the RFT2 mRNA levels was detected in GC samples compared with those in the normal mucous membrane (0.398 ± 0.149 vs 1.479 ± 0.587; P = 0.040). Tumors exhibited low RFT2 protein expression (75%, 16.7%, 8.3% and 0% for no RFT2 staining, weak staining, medium staining and strong staining, respectively), which was significantly lower than that in the normal mucous membrane (10%, 16.7%, 26.7% and 46.7% for no RFT2 staining, weak staining, medium staining and strong staining, respectively; P riboflavin levels were reverse correlated with development of GC (1.2000 ± 0.97 569 ng/mL in high tumor stage patients vs 2.5980 ± 1.31 129 ng/mL in low tumor stage patients; P riboflavin levels with defective expression of RFT2 protein was found in GC patients (χ2 = 2.619; P = 0.019). CONCLUSION: Defective expression of RFT2 is associated with the development of GC and this may represent a mechanism underlying the decreased plasma riboflavin levels in GC. PMID:22791947

  19. Inflammatory Gene Expression in Whole Peripheral Blood at Early Stages of Sporadic Amyotrophic Lateral Sclerosis

    Directory of Open Access Journals (Sweden)

    Pol Andrés-Benito

    2017-10-01

    Full Text Available ObjectiveCharacterization of altered expression of selected transcripts linked to inflammation in the peripheral blood of sporadic amyotrophic lateral sclerosis (sALS patients at early stage of disease to increase knowledge about peripheral inflammatory response in sALS.MethodsRNA expression levels of 45 genes were assessed by RT-qPCR in 22 sALS cases in parallel with 13 age-matched controls. Clinical and serum parameters were assessed at the same time.ResultsUpregulation of genes coding for factors involved in leukocyte extravasation (ITGB2, INPP5D, SELL, and ICAM1 and extracellular matrix remodeling (MMP9 and TIMP2, as well as downregulation of certain chemokines (CCL5 and CXC5R, anti-inflammatory cytokines (IL10, TGFB2, and IL10RA, pro-inflammatory cytokines (IL-6, and T-cell regulators (CD2 and TRBC1 was found in sALS cases independently of gender, clinical symptoms at onset (spinal, respiratory, or bulbar, progression, peripheral leukocyte number, and integrity of RNA. MMP9 levels positively correlated with age, whereas CCR5, CCL5, and TRBC1 negatively correlated with age in sALS but not in controls. Relatively higher TNFA expression levels correlate with higher creatinine kinase protein levels in plasma.ConclusionPresent findings show early inflammatory responses characterized by upregulation of factors enabling extravasation of leukocytes and extracellular matrix remodeling in blood in sALS cases, in addition to increased TNFA levels paralleling skeletal muscle damage.

  20. Gene-expression patterns in peripheral blood classify familial breast cancer susceptibility.

    Science.gov (United States)

    Piccolo, Stephen R; Andrulis, Irene L; Cohen, Adam L; Conner, Thomas; Moos, Philip J; Spira, Avrum E; Buys, Saundra S; Johnson, W Evan; Bild, Andrea H

    2015-11-04

    Women with a family history of breast cancer face considerable uncertainty about whether to pursue standard screening, intensive screening, or prophylactic surgery. Accurate and individualized risk-estimation approaches may help these women make more informed decisions. Although highly penetrant genetic variants have been associated with familial breast cancer (FBC) risk, many individuals do not carry these variants, and many carriers never develop breast cancer. Common risk variants have a relatively modest effect on risk and show limited potential for predicting FBC development. As an alternative, we hypothesized that additional genomic data types, such as gene-expression levels, which can reflect genetic and epigenetic variation, could contribute to classifying a person's risk status. Specifically, we aimed to identify common patterns in gene-expression levels across individuals who develop FBC. We profiled peripheral blood mononuclear cells from women with a family history of breast cancer (with or without a germline BRCA1/2 variant) and from controls. We used the support vector machines algorithm to differentiate between patients who developed FBC and those who did not. Our study used two independent datasets, a training set of 124 women from Utah (USA) and an external validation (test) set from Ontario (Canada) of 73 women (197 total). We controlled for expression variation associated with clinical, demographic, and treatment variables as well as lymphocyte markers. Our multigene biomarker provided accurate, individual-level estimates of FBC occurrence for the Utah cohort (AUC = 0.76 [0.67-84]) . Even at their lower confidence bounds, these accuracy estimates meet or exceed estimates from alternative approaches. Our Ontario cohort resulted in similarly high levels of accuracy (AUC = 0.73 [0.59-0.86]), thus providing external validation of our findings. Individuals deemed to have "high" risk by our model would have an estimated 2.4 times greater odds of

  1. Identification of a set of endogenous reference genes for miRNA expression studies in Parkinson's disease blood samples.

    Science.gov (United States)

    Serafin, Alice; Foco, Luisa; Blankenburg, Hagen; Picard, Anne; Zanigni, Stefano; Zanon, Alessandra; Pramstaller, Peter P; Hicks, Andrew A; Schwienbacher, Christine

    2014-10-10

    Research on microRNAs (miRNAs) is becoming an increasingly attractive field, as these small RNA molecules are involved in several physiological functions and diseases. To date, only few studies have assessed the expression of blood miRNAs related to Parkinson's disease (PD) using microarray and quantitative real-time PCR (qRT-PCR). Measuring miRNA expression involves normalization of qRT-PCR data using endogenous reference genes for calibration, but their choice remains a delicate problem with serious impact on the resulting expression levels. The aim of the present study was to evaluate the suitability of a set of commonly used small RNAs as normalizers and to identify which of these miRNAs might be considered reliable reference genes in qRT-PCR expression analyses on PD blood samples. Commonly used reference genes snoRNA RNU24, snRNA RNU6B, snoRNA Z30 and miR-103a-3p were selected from the literature. We then analyzed the effect of using these genes as reference, alone or in any possible combination, on the measured expression levels of the target genes miR-30b-5p and miR-29a-3p, which have been previously reported to be deregulated in PD blood samples. We identified RNU24 and Z30 as a reliable and stable pair of reference genes in PD blood samples.

  2. Remarkable stability in patterns of blood-stage gene expression during episodes of non-lethal Plasmodium yoelii malaria.

    Science.gov (United States)

    Cernetich-Ott, Amy; Daly, Thomas M; Vaidya, Akhil B; Bergman, Lawrence W; Burns, James M

    2012-08-06

    Microarray studies using in vitro cultures of synchronized, blood-stage Plasmodium falciparum malaria parasites have revealed a 'just-in-time' cascade of gene expression with some indication that these transcriptional patterns remain stable even in the presence of external stressors. However, direct analysis of transcription in P. falciparum blood-stage parasites obtained from the blood of infected patients suggests that parasite gene expression may be modulated by factors present in the in vivo environment of the host. The aim of this study was to examine changes in gene expression of the rodent malaria parasite, Plasmodium yoelii 17X, while varying the in vivo setting of replication. Using P. yoelii 17X parasites replicating in vivo, differential gene expression in parasites isolated from individual mice, from independent infections, during ascending, peak and descending parasitaemia and in the presence and absence of host antibody responses was examined using P. yoelii DNA microarrays. A genome-wide analysis to identify coordinated changes in groups of genes associated with specific biological pathways was a primary focus, although an analysis of the expression patterns of two multi-gene families in P. yoelii, the yir and pyst-a families, was also completed. Across experimental conditions, transcription was surprisingly stable with little evidence for distinct transcriptional states or for consistent changes in specific pathways. Differential gene expression was greatest when comparing differences due to parasite load and/or host cell availability. However, the number of differentially expressed genes was generally low. Of genes that were differentially expressed, many involved biologically diverse pathways. There was little to no differential expression of members of the yir and pyst-a multigene families that encode polymorphic proteins associated with the membrane of infected erythrocytes. However, a relatively large number of these genes were expressed during

  3. Gene Expression Profiling of Peripheral Blood From Kidney Transplant Recipients for the Early Detection of Digestive System Cancer.

    Science.gov (United States)

    Kusaka, M; Okamoto, M; Takenaka, M; Sasaki, H; Fukami, N; Kataoka, K; Ito, T; Kenmochi, T; Hoshinaga, K; Shiroki, R

    2017-06-01

    Kidney transplant recipients are at increased risk of developing cancer in comparison with the general population. To effectively manage post-transplantation malignancies, it is essential to proactively monitor patients. A long-term intensive screening program was associated with a reduced incidence of cancer after transplantation. This study evaluated the usefulness of the gene expression profiling of peripheral blood samples obtained from kidney transplant patients and adopted a screening test for detecting cancer of the digestive system (gastric, colon, pancreas, and biliary tract). Nineteen patients were included in this study and a total of 53 gene expression screening tests were performed. The gene expression profiles of blood-delivered total RNA and whole genome human gene expression profiles were obtained. We investigated the expression levels of 2665 genes associated with digestive cancers and counted the number of genes in which expression was altered. A hierarchical clustering analysis was also performed. The final prediction of the cancer possibility was determined according to an algorithm. The number of genes in which expression was altered was significantly increased in the kidney transplant recipients in comparison with the general population (1091 ± 63 vs 823 ± 94; P = .0024). The number of genes with altered expression decreased after the induction of mechanistic target of rapamycin (mTOR) inhibitor (1484 ± 227 vs 883 ± 154; P = .0439). No cases of possible digestive cancer were detected in this study period. The gene expression profiling of peripheral blood samples may be a useful and noninvasive diagnostic tool that allows for the early detection of cancer of the digestive system. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Clinical variations modulate patterns of gene expression and define blood biomarkers in major depression.

    Science.gov (United States)

    Belzeaux, Raoul; Formisano-Tréziny, Christine; Loundou, Anderson; Boyer, Laurent; Gabert, Jean; Samuelian, Jean-Claude; Féron, François; Naudin, Jean; Ibrahim, El Chérif

    2010-12-01

    The aim of the study is to compare the expression level of candidate genes between patients suffering from a severe major depressive episode (MDE) and controls, and also among patients during MDE evolution. After a comprehensive review of the biological data related to mood disorders, we initiated a hypothesis-driven exploration of candidate mRNAs. Using RT-qPCR, we analyzed peripheral blood mononuclear cells (PBMCs) mRNA obtained from a homogeneous population of 11 patients who suffered from severe melancholic MDE. To assess the evolution of MDE, we analyzed PBMC mRNAs that were collected on Day 1 and 8 weeks later. Data from these patient samples were analyzed in comparison to age- and sex-matched healthy controls. Among 40 candidate genes consistently transcribed in PBMCs, 10 were differentially expressed in at least one comparison. We found that variations of mRNA levels for NRG1, SORT1 and TPH1 were interesting state-dependent biological markers of the disease. We also observed that variations in other mRNA expression were associated with treatment efficacy or clinical improvement (CREB1, HDAC5, HSPA2, HTR1B, HTR2A, and SLC6A4/5HTT). Significantly, 5HTT exhibited a strong correlation with clinical score evolution. We also found a state-independent marker, IL10. Moreover, the analysis of 2 separate MDEs concerning a same patient revealed comparable results for the expression of CREB1, HSPA2, HTR1B, NRG1 and TPH1. Overall, our results indicate that PBMCs obtained at different time points during MDE progression represent a promising avenue to discover biological markers for depression. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Transcription profiling of human peripheral blood to development gene expression signatures for practical radiation biodosimetry

    Data.gov (United States)

    National Aeronautics and Space Administration — To further development of our gene expression approach to biodosimetry we have employed whole genome microarray expression profiling as a discovery platform to...

  6. BloodSpot: a database of gene expression profiles and transcriptional programs for healthy and malignant haematopoiesis

    DEFF Research Database (Denmark)

    Bagger, Frederik Otzen; Sasivarevic, Damir; Hadi Sohi, Sina

    2016-01-01

    largely inaccessible. Current databases provide information about gene-expression but fail to answer key questions regarding co-regulation, genetic programs or effect on patient survival. To address these shortcomings, we present BloodSpot (www.bloodspot.eu), which includes and greatly extends our...... previously released database HemaExplorer, a database of gene expression profiles from FACS sorted healthy and malignant haematopoietic cells. A revised interactive interface simultaneously provides a plot of gene expression along with a Kaplan–Meier analysis and a hierarchical tree depicting...

  7. Identification of factors contributing to variability in a blood-based gene expression test.

    Directory of Open Access Journals (Sweden)

    Michael R Elashoff

    Full Text Available BACKGROUND: Corus CAD is a clinically validated test based on age, sex, and expression levels of 23 genes in whole blood that provides a score (1-40 points proportional to the likelihood of obstructive coronary disease. Clinical laboratory process variability was examined using whole blood controls across a 24 month period: Intra-batch variability was assessed using sample replicates; inter-batch variability examined as a function of laboratory personnel, equipment, and reagent lots. METHODS/RESULTS: To assess intra-batch variability, five batches of 132 whole blood controls were processed; inter-batch variability was estimated using 895 whole blood control samples. ANOVA was used to examine inter-batch variability at 4 process steps: RNA extraction, cDNA synthesis, cDNA addition to assay plates, and qRT-PCR. Operator, machine, and reagent lots were assessed as variables for all stages if possible, for a total of 11 variables. Intra- and inter-batch variations were estimated to be 0.092 and 0.059 Cp units respectively (SD; total laboratory variation was estimated to be 0.11 Cp units (SD. In a regression model including all 11 laboratory variables, assay plate lot and cDNA kit lot contributed the most to variability (p = 0.045; 0.009 respectively. Overall, reagent lots for RNA extraction, cDNA synthesis, and qRT-PCR contributed the most to inter-batch variance (52.3%, followed by operators and machines (18.9% and 9.2% respectively, leaving 19.6% of the variance unexplained. CONCLUSION: Intra-batch variability inherent to the PCR process contributed the most to the overall variability in the study while reagent lot showed the largest contribution to inter-batch variability.

  8. Gene expression patterns in CD4+ peripheral blood cells in healthy subjects and stage IV melanoma patients.

    Science.gov (United States)

    Felts, Sara J; Van Keulen, Virginia P; Scheid, Adam D; Allen, Kathleen S; Bradshaw, Renee K; Jen, Jin; Peikert, Tobias; Middha, Sumit; Zhang, Yuji; Block, Matthew S; Markovic, Svetomir N; Pease, Larry R

    2015-11-01

    Melanoma patients exhibit changes in immune responsiveness in the local tumor environment, draining lymph nodes, and peripheral blood. Immune-targeting therapies are revolutionizing melanoma patient care increasingly, and studies show that patients derive clinical benefit from these newer agents. Nonetheless, predicting which patients will benefit from these costly therapies remains a challenge. In an effort to capture individual differences in immune responsiveness, we are analyzing patterns of gene expression in human peripheral blood cells using RNAseq. Focusing on CD4+ peripheral blood cells, we describe multiple categories of immune regulating genes, which are expressed in highly ordered patterns shared by cohorts of healthy subjects and stage IV melanoma patients. Despite displaying conservation in overall transcriptome structure, CD4+ peripheral blood cells from melanoma patients differ quantitatively from healthy subjects in the expression of more than 2000 genes. Moreover, 1300 differentially expressed genes are found in transcript response patterns following activation of CD4+ cells ex vivo, suggesting that widespread functional discrepancies differentiate the immune systems of healthy subjects and melanoma patients. While our analysis reveals that the transcriptome architecture characteristic of healthy subjects is maintained in cancer patients, the genes expressed differentially among individuals and across cohorts provide opportunities for understanding variable immune states as well as response potentials, thus establishing a foundation for predicting individual responses to stimuli such as immunotherapeutic agents.

  9. Stress associated gene expression in blood cells is related to outcome in radiotherapy treated head and neck cancer patients

    International Nuclear Information System (INIS)

    Bøhn, Siv K; Blomhoff, Rune; Russnes, Kjell M; Sakhi, Amrit K; Thoresen, Magne; Holden, Marit; Moskaug, JanØ; Myhrstad, Mari C; Olstad, Ole K; Smeland, Sigbjørn

    2012-01-01

    We previously observed that a radiotherapy-induced biochemical response in plasma was associated with favourable outcome in head and neck squamous carcinoma cancer (HNSCC) patients. The aim of the present study was to compare stress associated blood cell gene expression between two sub-groups of HNSCC patients with different biochemical responses to radiotherapy. Out of 87 patients (histologically verified), 10 biochemical ‘responders’ having a high relative increase in plasma oxidative damage and a concomitant decrease in plasma antioxidants during radiotherapy and 10 ‘poor-responders’ were selected for gene-expression analysis and compared using gene set enrichment analysis. There was a significant induction of stress-relevant gene-sets in the responders following radiotherapy compared to the poor-responders. The relevance of the involvement of similar stress associated gene expression for HNSCC cancer and radioresistance was verified using two publicly available data sets of 42 HNSCC cases and 14 controls (GEO GSE6791), and radiation resistant and radiation sensitive HNSCC xenografts (E-GEOD-9716). Radiotherapy induces a systemic stress response, as revealed by induction of stress relevant gene expression in blood cells, which is associated to favourable outcome in a cohort of 87 HNSCC patients. Whether these changes in gene expression reflects a systemic effect or are biomarkers of the tumour micro-environmental status needs further study. Raw data are available at ArrayExpress under accession number E-MEXP-2460

  10. Stress associated gene expression in blood cells is related to outcome in radiotherapy treated head and neck cancer patients

    Directory of Open Access Journals (Sweden)

    Bøhn Siv K

    2012-09-01

    Full Text Available Abstract Background We previously observed that a radiotherapy-induced biochemical response in plasma was associated with favourable outcome in head and neck squamous carcinoma cancer (HNSCC patients. The aim of the present study was to compare stress associated blood cell gene expression between two sub-groups of HNSCC patients with different biochemical responses to radiotherapy. Methods Out of 87 patients (histologically verified, 10 biochemical ‘responders’ having a high relative increase in plasma oxidative damage and a concomitant decrease in plasma antioxidants during radiotherapy and 10 ‘poor-responders’ were selected for gene-expression analysis and compared using gene set enrichment analysis. Results There was a significant induction of stress-relevant gene-sets in the responders following radiotherapy compared to the poor-responders. The relevance of the involvement of similar stress associated gene expression for HNSCC cancer and radioresistance was verified using two publicly available data sets of 42 HNSCC cases and 14 controls (GEO GSE6791, and radiation resistant and radiation sensitive HNSCC xenografts (E-GEOD-9716. Conclusions Radiotherapy induces a systemic stress response, as revealed by induction of stress relevant gene expression in blood cells, which is associated to favourable outcome in a cohort of 87 HNSCC patients. Whether these changes in gene expression reflects a systemic effect or are biomarkers of the tumour micro-environmental status needs further study. Trial registration Raw data are available at ArrayExpress under accession number E-MEXP-2460.

  11. Maternal Whole Blood Gene Expression at 18 and 28 Weeks of Gestation Associated with Spontaneous Preterm Birth in Asymptomatic Women.

    Directory of Open Access Journals (Sweden)

    Yujing J Heng

    Full Text Available The heterogeneity of spontaneous preterm birth (SPTB requires an interdisciplinary approach to determine potential predictive risk factors of early delivery. The aim of this study was to investigate maternal whole blood gene expression profiles associated with spontaneous preterm birth (SPTB, <37 weeks in asymptomatic pregnant women. The study population was a matched subgroup of women (51 SPTBs, 114 term delivery controls who participated in the All Our Babies community based cohort in Calgary (n = 1878. Maternal blood at 17-23 (sampling time point 1, T1 and 27-33 weeks of gestation (T2 were collected. Total RNA was extracted and microarray was performed on 326 samples (165 women. Univariate analyses determined significant clinical factors and differential gene expression associated with SPTB. Thirteen genes were validated using qRT-PCR. Three multivariate logistic models were constructed to identify gene expression at T1 (Model A, T2 (Model B, and gene expression fold change from T1 to T2 (Model C associated with SPTB. All models were adjusted for clinical factors. Model C can predict SPTB with 65% sensitivity and 88% specificity in asymptomatic women after adjusting for history of abortion and anaemia (occurring before T2. Clinical data enhanced the sensitivity of the Models to predict SPTB. In conclusion, clinical factors and whole blood gene expression are associated with SPTB in asymptomatic women. An effective screening tool for SPTB during pregnancy would enable targeted preventive approaches and personalised antenatal care.

  12. Differential expression of the KLK2 and KLK3 genes in peripheral blood and tissues of patients with prostate cancer

    Directory of Open Access Journals (Sweden)

    Juliana Meola

    2006-01-01

    Full Text Available We used the multiplex semi-quantitative reverse-transcriptase PCR (RT-PCR to investigate kallikrein 2 and 3 (KLK2 and KLK3 mRNA levels in prostate tissue from 42 prostate cancer patients, 33 of whom were also assessed for peripheral blood KLK2 expression by qualitative semi-nested RT-PCR. We found that KLK2 was an important tissue biomarker for distinguishing between prostate cancer patients and those with benign prostatic hyperplasia, particularly when KLK2 expression was > 60% of that of the beta2-microglobulin constitutive gene. Patients with an average relative expression value > 0.6 (cutoff value had an eleven-fold higher chance of having prostate cancer. When one or two tissues samples were evaluated for KLK2 expression using the cutoff value the estimated chance of having prostate cancer was increased by seven times for one positive sample and 45 times for two positive samples. There was no significant correlation between KLK3 gene expression and prostate cancer diagnosis. Logistic regression for blood and tissue KLK2 expression successfully detected 92% of the prostate cancer cases. The detection of KLK2 in blood showed a sensitivity of 59% and a specificity of 82%. This study indicates that the KLK2 gene may be a useful molecular marker for the diagnosis of prostate cancer and that analysis of KLK2 expression in blood and tissues could provide a novel approach for the clinical investigation of this type of cancer.

  13. Examining Radiation-Induced In Vivo and In Vitro Gene Expression Changes of the Peripheral Blood in Different Laboratories for Biodosimetry Purposes: First RENEB Gene Expression Study.

    Science.gov (United States)

    Abend, M; Badie, C; Quintens, R; Kriehuber, R; Manning, G; Macaeva, E; Njima, M; Oskamp, D; Strunz, S; Moertl, S; Doucha-Senf, S; Dahlke, S; Menzel, J; Port, M

    2016-02-01

    The risk of a large-scale event leading to acute radiation exposure necessitates the development of high-throughput methods for providing rapid individual dose estimates. Our work addresses three goals, which align with the directive of the European Union's Realizing the European Network of Biodosimetry project (EU-RENB): 1. To examine the suitability of different gene expression platforms for biodosimetry purposes; 2. To perform this examination using blood samples collected from prostate cancer patients (in vivo) and from healthy donors (in vitro); and 3. To compare radiation-induced gene expression changes of the in vivo with in vitro blood samples. For the in vitro part of this study, EDTA-treated whole blood was irradiated immediately after venipuncture using single X-ray doses (1 Gy/min(-1) dose rate, 100 keV). Blood samples used to generate calibration curves as well as 10 coded (blinded) samples (0-4 Gy dose range) were incubated for 24 h in vitro, lysed and shipped on wet ice. For the in vivo part of the study PAXgene tubes were used and peripheral blood (2.5 ml) was collected from prostate cancer patients before and 24 h after the first fractionated 2 Gy dose of localized radiotherapy to the pelvis [linear accelerator (LINAC), 580 MU/min, exposure 1-1.5 min]. Assays were run in each laboratory according to locally established protocols using either microarray platforms (2 laboratories) or qRT-PCR (2 laboratories). Report times on dose estimates were documented. The mean absolute difference of estimated doses relative to the true doses (Gy) were calculated. Doses were also merged into binary categories reflecting aspects of clinical/diagnostic relevance. For the in vitro part of the study, the earliest report time on dose estimates was 7 h for qRT-PCR and 35 h for microarrays. Methodological variance of gene expression measurements (CV ≤10% for technical replicates) and interindividual variance (≤twofold for all genes) were low. Dose estimates based on

  14. Profile of whole blood gene expression following immune stimulation in a wild passerine.

    Science.gov (United States)

    Meitern, Richard; Andreson, Reidar; Hõrak, Peeter

    2014-06-27

    Immunoecology aims to explain variation among hosts in the strength and efficacy of immunological defences in natural populations. This requires development of biomarkers of the activation of the immune system so that they can be collected non-lethally and sampled from small amounts of easily obtainable tissue. We used transcriptome profiling in wild greenfinches (Carduelis chloris) to detect whole blood transcripts that most profoundly indicate upregulation of antimicrobial defences during acute phase response. The more general aim of this study was to obtain a functional annotation of a substantial portion of the greenfinch transcriptome that would enable to gain access to more specific genomic tools in subsequent studies. The birds received either bacterial lipopolysaccharide or saline injections and RNA-seq transcriptional profiling was performed 12 h after treatment to provide initial functional annotation of the transcriptome and assess whole blood response to immune stimulation. A total of 66,084 transcripts were obtained from de novo Trinty assembly, out of which 23,153 could be functionally annotated. Only 1,911 of these were significantly upregulated or downregulated. The manipulation caused marked upregulation of several transcripts related to immune activation. These included avian-specific antimicrobial agents avidin and gallinacin, but also some more general host response genes, such as serum amyloid A protein, lymphocyte antigen 75 and copper-transporting ATPase 1. However, links with avian immunity for most differentially regulated transcripts remained rather hypothetical, as a large set of differentially expressed transcripts lacked functional annotation. This appears to be the first large scale transcriptional profiling of immune function in passerine birds. The transcriptomic data obtained suggest novel markers for the assessment of the immunological state of wild passerines. Characterizing the function of those possible novel infection markers

  15. Gene expression profiling of human peripheral blood lymphocytes cultured in modeled microgravity

    Data.gov (United States)

    National Aeronautics and Space Administration — In the present study we analyzed miRNA and mRNA expression profiles in human peripheral blood lymphocytes (PBLs) incubated in microgravity condition simulated by a...

  16. Y chromosome gene expression in the blood of male patients with ischemic stroke compared with male controls.

    Science.gov (United States)

    Tian, Yingfang; Stamova, Boryana; Jickling, Glen C; Xu, Huichun; Liu, Dazhi; Ander, Bradley P; Bushnell, Cheryl; Zhan, Xinhua; Turner, Renee J; Davis, Ryan R; Verro, Piero; Pevec, William C; Hedayati, Nasim; Dawson, David L; Khoury, Jane; Jauch, Edward C; Pancioli, Arthur; Broderick, Joseph P; Sharp, Frank R

    2012-04-01

    Sex is suggested to be an important determinant of ischemic stroke risk factors, etiology, and outcome. However, the basis for this remains unclear. The Y chromosome is unique in males. Genes expressed in males on the Y chromosome that are associated with stroke may be important genetic contributors to the unique features of males with ischemic stroke, which would be helpful for explaining sex differences observed between men and women. We compared Y chromosome gene expression in males with ischemic stroke and male controls. Blood samples were obtained from 40 male patients ≤3, 5, and 24 hours after ischemic stroke and from 41 male controls (July 2003-April 2007). RNA was isolated from blood and was processed using Affymetrix Human U133 Plus 2.0 expression arrays (Affymetrix Inc., Santa Clara, California). Y chromosome genes differentially expressed between male patients with stroke and male control subjects were identified using an ANCOVA adjusted for age and batch. A P 1.2 were considered significant. Seven genes on the Y chromosome were differentially expressed in males with ischemic stroke compared with controls. Five of these genes (VAMP7, CSF2RA, SPRY3, DHRSX, and PLCXD1) are located on pseudoautosomal regions of the human Y chromosome. The other 2 genes (EIF1AY and DDX3Y) are located on the nonrecombining region of the human Y chromosome. The identified genes were associated with immunology, RNA metabolism, vesicle fusion, and angiogenesis. Specific genes on the Y chromosome are differentially expressed in blood after ischemic stroke. These genes provide insight into potential molecular contributors to sex differences in ischemic stroke. Copyright © 2012 Elsevier HS Journals, Inc. All rights reserved.

  17. Cholesterol Transporters ABCA1 and ABCG1 Gene Expression in Peripheral Blood Mononuclear Cells in Patients with Metabolic Syndrome

    Directory of Open Access Journals (Sweden)

    Zahra Tavoosi

    2015-01-01

    Full Text Available ABCA1 and ABCG1 genes encode the cholesterol transporter proteins that play a key role in cholesterol and phospholipids homeostasis. This study was aimed at evaluating and comparing ABCA1 and ABCG1 genes expression in metabolic syndrome patients and healthy individuals. This case-control study was performed on 36 patients with metabolic syndrome and the same number of healthy individuals in Hamadan (west of Iran during 2013-2014. Total RNA was extracted from mononuclear cells and purified using RNeasy Mini Kit column. The expression of ABCA1 and ABCG1 genes was performed by qRT-PCR. Lipid profile and fasting blood glucose were measured using colorimetric procedures. ABCG1 expression in metabolic syndrome patients was significantly lower (about 75% compared to that of control group, while for ABCA1 expression, there was no significant difference between the two studied groups. Comparison of other parameters such as HDL-C, FBS, BMI, waist circumference, and systolic and diastolic blood pressure between metabolic syndrome patients and healthy individuals showed significant differences (P<0.05. Decrease in ABCG1 expression in metabolic syndrome patients compared to healthy individuals suggests that hyperglycemia, related metabolites, and hyperlipidemia over the transporter capacity resulted in decreased expression of ABCG1. Absence of a significant change in ABCA1 gene expression between two groups can indicate a different regulation mechanism for ABCA1 expression.

  18. Longitudinal weight differences, gene expression, and blood biomarkers in BMI discordant identical twins

    Science.gov (United States)

    van Dongen, Jenny; Willemsen, Gonneke; Heijmans, Bastiaan T.; Neuteboom, Jacoline; Kluft, Cornelis; Jansen, Rick; Penninx, Brenda W.J.; Slagboom, P. Eline; de Geus, Eco J.C.; Boomsma, Dorret I.

    2015-01-01

    Background BMI discordant monozygotic (MZ) twins allows an examination of the causes and consequences of adiposity in a genetically controlled design. Few studies have examined longitudinal BMI discordance in MZ pairs. Objectives To study the development over time of BMI discordance in adolescent and adult MZ twin pairs, and to examine lifestyle, metabolic, inflammatory, and gene expression differences associated with concurrent and long-term BMI discordance in MZ pairs. Subjects/Methods BMI data from 2775 MZ twin pairs, collected in eight longitudinal surveys and a biobank project between 1991 and 2011, were analyzed to characterize longitudinal discordance. Lifestyle characteristics were compared within discordant pairs (ΔBMI ≥ 3 kg/m2) and biomarkers (lipids, glucose, insulin, CRP, fibrinogen, IL-6, TNF-α and sIL-6R and liver enzymes AST, ALT and GGT) and gene expression were compared in peripheral blood from discordant pairs who participated in the NTR biobank project. Results The prevalence of discordance ranged from 3.2% in 1991 (mean age=17, SD=2.4) to 17.4% (N=202 pairs) in 2009 (mean age=35, SD=15), and was 16.5% (N=174) among pairs participating in the biobank project (mean age=35, SD=12). Of 699 MZ with BMI data from 3-5 time points, 17 pairs (2.4%) were long-term discordant (at all available time points; mean follow-up range=6.4 years). Concurrently discordant pairs showed significant differences in self-ratings of which twin eats most (p=2.3×10−13), but not in leisure time exercise activity (p=0.28) and smoking (p>0.05). Ten out of 14 biomarkers showed significantly more unfavorable levels in the heavier of twin of the discordant pairs (p-values BMI discordance is uncommon in adolescent identical pairs but increases with higher pair-mean of BMI at older ages, although long-term BMI discordance is rare. In discordant pairs, the heavier twin had a more unfavorable blood biomarker profile than the genetically matched leaner twin, in support of

  19. Elevated ERCC-1 Gene Expression in blood cells associated with exposure to arsenic from drinking water in Inner Mongolia

    Science.gov (United States)

    Background: Chronic arsenic exposure has been associated with human cancers. The objective of this study was to investigate arsenic effects on a DNA nucleotide excision repair gene, ERCC1, expression in human blood cells. Material and Methods: Water and toe nail samples were coll...

  20. Cpt1a gene expression in peripheral blood mononuclear cells as an early biomarker of diet-related metabolic alterations

    KAUST Repository

    Diaz-Rua, Ruben

    2016-11-23

    Background: Research on biomarkers that provide early information about the development of future metabolic alterations is an emerging discipline. Gene expression analysis in peripheral blood mononuclear cells (PBMC) is a promising tool to identify subjects at risk of developing diet-related diseases.

  1. ADAM10 gene expression in the blood cells of Alzheimer's disease patients and mild cognitive impairment subjects

    NARCIS (Netherlands)

    Manzine, Patricia Regina; Marcello, Elena; Borroni, Barbara; Kamphuis, Willem; Hol, Elly; Padovani, Alessandro; Nascimento, Carla Crispim; De Godoy Bueno, Patricia; Assis Carvalho Vale, Francisco; Iost Pavarini, Sofia Cristina; Di Luca, Monica; Cominetti, Márcia Regina

    2015-01-01

    ADAM10 is a potential biomarker for Alzheimer's disease (AD). ADAM10 protein levels are reduced in platelets of AD patients. The aim was to verify the total blood and platelet ADAM10 gene expression in AD patients and to compare with mild cognitive impairment (MCI) and healthy subjects. No

  2. Gene expression profiling of circulating tumor cells and peripheral blood mononuclear cells from breast cancer patients

    Czech Academy of Sciences Publication Activity Database

    Hensler, M.; Vancurova, I.; Becht, E.; Palata, O.; Strnad, P.; Tesarova, P.; Cabinakova, M.; Švec, David; Kubista, Mikael; Bartunkova, J.; Spisek, R.; Sojka, L.

    2016-01-01

    Roč. 5, č. 4 (2016), e1102827 ISSN 2162-402X Institutional support: RVO:86652036 Keywords : Breast cancer * gene expression profiling * circulating tumor cells Subject RIV: FD - Oncology ; Hematology Impact factor: 7.719, year: 2016

  3. Age and prior blood feeding of Anopheles gambiae influences their susceptibility and gene expression patterns to ivermectin-containing blood meals.

    Science.gov (United States)

    Seaman, Jonathan A; Alout, Haoues; Meyers, Jacob I; Stenglein, Mark D; Dabiré, Roch K; Lozano-Fuentes, Saul; Burton, Timothy A; Kuklinski, Wojtek S; Black, William C; Foy, Brian D

    2015-10-15

    Ivermectin has been proposed as a novel malaria transmission control tool based on its insecticidal properties and unique route of acquisition through human blood. To maximize ivermectin's effect and identify potential resistance/tolerance mechanisms, it is important to understand its effect on mosquito physiology and potential to shift mosquito population age-structure. We therefore investigated ivermectin susceptibility and gene expression changes in several age groups of female Anopheles gambiae mosquitoes. The effect of aging on ivermectin susceptibility was analyzed in three age groups (2, 6, and 14-days) of colonized female Anopheles gambiaemosquitoes using standard survivorship assays. Gene expression patterns were then analyzed by transcriptome sequencing on an Illumina HiSeq 2500 platform. RT-qPCR was used to validate transcriptional changes and also to examine expression in a different, colonized strain and in wild mosquitoes, both of which blood fed naturally on an ivermectin-treated person. Mosquitoes of different ages and blood meal history died at different frequencies after ingesting ivermectin. Mortality was lowest in 2-day old mosquitoes exposed on their first blood meal and highest in 6-day old mosquitoes exposed on their second blood meal. Twenty-four hours following ivermectin ingestion, 101 and 187 genes were differentially-expressed relative to control blood-fed, in 2 and 6-day groups, respectively. Transcription patterns of select genes were similar in membrane-fed, colonized, and naturally-fed wild vectors. Transcripts from several unexpected functional classes were highly up-regulated, including Niemann-Pick Type C (NPC) genes, peritrophic matrix-associated genes, and immune-response genes, and these exhibited different transcription patterns between age groups, which may explain the observed susceptibility differences. Niemann-Pick Type 2 genes were the most highly up-regulated transcripts after ivermectin ingestion (up to 160 fold) and

  4. Promoter methylation and expression of DNA repair genes MGMT and ERCC1 in tissue and blood of rectal cancer patients.

    Science.gov (United States)

    Shalaby, Sally M; El-Shal, Amal S; Abdelaziz, Lobna A; Abd-Elbary, Eman; Khairy, Mostafa M

    2018-02-20

    Rectal cancer involves one-third of colorectal cancers (CRCs). Recently, data supported that DNA methylation have a role in CRC pathogenesis. In the present study we aimed to analyze the methylation status of MGMT and ERCC1 promoter regions in blood and tissue of patients with benign and malignant rectal tumors. We also studied the methylated MGMT and ERCC1 genes and their relations with clinicopathological features. Furthermore, we suggested that methylation may play a critical function in the regulation of MGMT and ERCC1 expression. Fifty patients with non-metastatic cancer rectum and 43 patients with benign rectal lesions were involved in the study. DNA extraction from blood and rectal specimens was done to analyze the methylation status of MGMT and ERCC1 genes by methylation-specific PCR method. RNA was extracted also to determine the expression levels of these genes by real time-PCR. The frequency of MGMT and ERCC1 methylation was significantly higher in rectum cancers than in benign tumors both for the tissue and the blood (pMGMT or ERCC1 methylation and clinicopathological features; while they were correlated with the response to therapy. An interesting finding that the agreement of the methylation levels in the blood and rectal tissue was classified as good (κ=0.78) for MGMT gene and as very good (κ=0.85) for ERCC1. Lastly, the MGMT and ERCC1 genes methylation was associated with down-regulation of their mRNA expression when compared with the non-methylated status. Our findings provided evidence that both blood and tumor tissue MGMT and ERCC1 methylation were associated with cancer rectum. MGMT or ERCC1 methylation in blood could be suitable non-invasive biomarkers differentiating benign and malignant rectal tumors. Furthermore, the methylation of the MGMT and ERCC1 promoter regions was associated with down-regulation of their mRNA expression. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Whole thorax irradiation of non-human primates induces persistent nuclear damage and gene expression changes in peripheral blood cells.

    Directory of Open Access Journals (Sweden)

    Shanaz A Ghandhi

    Full Text Available We investigated the cytogenetic and gene expression responses of peripheral blood cells of non-human primates (NHP, Macaca mulatta that were whole-thorax irradiated with a single dose of 10 Gy. In this model, partial irradiation of NHPs in the thoracic region (Whole Thorax Lung Irradiation, WTLI allows the study of late radiation-induced lung injury, while avoiding acute radiation syndromes related to hematopoietic and gastrointestinal injury. A transient drop in circulating lymphocytes and platelets was seen by 9 days, followed by elevations in respiratory rate, circulating neutrophils, lymphocytes, and monocytes at 60-100 days, corresponding to computed tomography (CT and histologic evidence of pneumonitis, and elective euthanasia of four animals. To evaluate long-term DNA damage in NHP peripheral blood lymphocytes after 10 Gy WTLI, we used the cytokinesis-block micronucleus (CBMN assay to measure chromosomal aberrations as post-mitotic micronuclei in blood samples collected up to 8 months after irradiation. Regression analysis showed significant induction of micronuclei in NHP blood cells that persisted with a gradual decline over the 8-month study period, suggesting long-term DNA damage in blood lymphocytes after WTLI. We also report transcriptomic changes in blood up to 30 days after WTLI. We isolated total RNA from peripheral blood at 3 days before and then at 2, 5 and 30 days after irradiation. We identified 1187 transcripts that were significantly changed across the 30-day time course. From changes in gene expression, we identified biological processes related to immune responses, which persisted across the 30-day study. Response to oxygen-containing compounds and bacteria were implicated by gene-expression changes at the earliest day 2 and latest, day 30 time-points. Gene expression changes suggest a persistent altered state of the immune system, specifically response to infection, for at least a month after WTLI.

  6. Blood cell gene expression profiling in subjects with aggressive periodontitis and chronic arthritis

    DEFF Research Database (Denmark)

    Sørensen, Lars K; Poulsen, Anne Havemose; Sønder, Søren U

    2008-01-01

    with untreated localized aggressive periodontitis (LAgP) or generalized aggressive periodontitis (GAgP). Differentially expressed genes were validated in groups of subjects with LAgP, GAgP, juvenile idiopathic arthritis (JIA), or rheumatoid arthritis (RA) and controls. METHODS: Candidate genes were identified...

  7. In vivo expression of Salmonella enterica serotype Typhi genes in the blood of patients with typhoid fever in Bangladesh.

    Directory of Open Access Journals (Sweden)

    Alaullah Sheikh

    2011-12-01

    Full Text Available Salmonella enterica serotype Typhi is the cause of typhoid fever. It is a human-restricted pathogen, and few data exist on S. Typhi gene expression in humans.We applied an RNA capture and amplification technique, Selective Capture of Transcribed Sequences (SCOTS, and microarray hybridization to identify S. Typhi transcripts expressed in the blood of five humans infected with S. Typhi in Bangladesh. In total, we detected the expression of mRNAs for 2,046 S. Typhi genes (44% of the S. Typhi genome in human blood; expression of 912 genes was detected in all 5 patients, and expression of 1,100 genes was detected in 4 or more patients. Identified transcripts were associated with the virulence-associated PhoP regulon, Salmonella pathogenicity islands, the use of alternative carbon and energy sources, synthesis and transport of iron, thiamine, and biotin, and resistance to antimicrobial peptides and oxidative stress. The most highly represented group were genes currently annotated as encoding proteins designated as hypothetical, unknown, or unclassified. Of the 2,046 detected transcripts, 1,320 (29% of the S. Typhi genome had significantly different levels of detection in human blood compared to in vitro cultures; detection of 141 transcripts was significantly different in all 5 patients, and detection of 331 transcripts varied in at least 4 patients. These mRNAs encode proteins of unknown function, those involved in energy metabolism, transport and binding, cell envelope, cellular processes, and pathogenesis. We confirmed increased expression of a subset of identified mRNAs by quantitative-PCR.We report the first characterization of bacterial transcriptional profiles in the blood of patients with typhoid fever. S. Typhi is an important global pathogen whose restricted host range has greatly inhibited laboratory studies. Our results suggest that S. Typhi uses a largely uncharacterized genetic repertoire to survive within cells and utilize alternate

  8. Comparison of Gene Expression by Sheep and Human Blood Stimulated with the TLR4 Agonists Lipopolysaccharide and Monophosphoryl Lipid A.

    Directory of Open Access Journals (Sweden)

    Perenlei Enkhbaatar

    Full Text Available Animal models that mimic human biology are important for successful translation of basic science discoveries into the clinical practice. Recent studies in rodents have demonstrated the efficacy of TLR4 agonists as immunomodulators in models of infection. However, rodent models have been criticized for not mimicking important characteristics of the human immune response to microbial products. The goal of this study was to compare genomic responses of human and sheep blood to the TLR4 agonists lipopolysaccharide (LPS and monophosphoryl lipid A (MPLA.Venous blood, withdrawn from six healthy human adult volunteers (~ 28 years old and six healthy adult female sheep (~3 years old, was mixed with 30 μL of PBS, LPS (1μg/mL or MPLA (10μg/mL and incubated at room temperature for 90 minutes on a rolling rocker. After incubation, 2.5 mL of blood was transferred to Paxgene Blood RNA tubes. Gene expression analysis was performed using an Agilent Bioanalyzer with the RNA6000 Nano Lab Chip. Agilent gene expression microarrays were scanned with a G2565 Microarray Scanner. Differentially expressed genes were identified.11,431 human and 4,992 sheep probes were detected above background. Among them 1,029 human and 175 sheep genes were differentially expressed at a stringency of 1.5-fold change (p 1.5-fold changes in human samples. Genes of major inflammatory mediators, such as IL-1, IL-6 and IL-8, TNF alpha, NF-kappaB, ETS2, PTGS2, PTX3, CXCL16, KYNU, and CLEC4E were similarly (>2-fold upregulated by LPS and MPLA in both species.The genomic responses of peripheral blood to LPS and MPLA in sheep are quite similar to those observed in humans, supporting the use of the ovine model for translational studies that mimic human inflammatory diseases and the study of TLR-based immunomodulators.

  9. Dynamic expression of leukocyte innate immune genes in whole blood from horses with lipopolysaccharide-induced acute systemic inflammation

    DEFF Research Database (Denmark)

    Vinther, Anne Mette L.; Skovgaard, Kerstin; Heegaard, Peter M. H.

    2015-01-01

    Background: In horses, insights into the innate immune processes in acute systemic inflammation are limited even though these processes may be highly important for future diagnostic and therapeutic advances in high-mortality disease conditions as the systemic inflammatory response syndrome (SIRS...... expressions in blood leukocytes during equine acute LPS-induced systemic inflammation thoroughly characterized a highly regulated and dynamic innate immune response. These results provide new insights into the molecular mechanisms of equine systemic inflammation.......) and sepsis. Therefore, the aim of this study was to investigate the expression of 31 selected blood leukocyte immune genes in an equine model of acute systemic inflammation to identify significantly regulated genes and to describe their expression dynamics during a 24-h experimental period. Systemic...

  10. Blood-Based Gene Expression Signatures of Infants and Toddlers with Autism

    Science.gov (United States)

    Glatt, Stephen J.; Tsuang, Ming T.; Winn, Mary; Chandler, Sharon D.; Collins, Melanie; Lopez, Linda; Weinfeld, Melanie; Carter, Cindy; Schork, Nicholas; Pierce, Karen; Courchesne, Eric

    2012-01-01

    Objective: Autism spectrum disorders (ASDs) are highly heritable neurodevelopmental disorders that onset clinically during the first years of life. ASD risk biomarkers expressed early in life could significantly impact diagnosis and treatment, but no transcriptome-wide biomarker classifiers derived from fresh blood samples from children with…

  11. Brief focal cerebral ischemia that simulates transient ischemic attacks in humans regulates gene expression in rat peripheral blood.

    Science.gov (United States)

    Zhan, Xinhua; Ander, Bradley P; Jickling, Glen; Turner, Renée; Stamova, Boryana; Xu, Huichun; Liu, Dazhi; Davis, Ryan R; Sharp, Frank R

    2010-01-01

    Blood gene expression profiles of very brief (5 and 10 mins) focal ischemia that simulates transient ischemic attacks in humans were compared with ischemic stroke (120 mins focal ischemia), sham, and naïve controls. The number of significantly regulated genes after 5 and 10 mins of cerebral ischemia was 39 and 160, respectively (fold change >/=mid R:1.5mid R: and Pgenes common to brief focal ischemia and ischemic stroke. Ingenuity pathway analysis showed that genes regulated in the 5 mins group were mainly involved in small molecule biochemistry. Genes regulated in the 10 mins group were involved in cell death, development, growth, and proliferation. Such genes were also regulated in the ischemic stroke group. Genes common to ischemia were involved in the inflammatory response, immune response, and cell death-indicating that these pathways are a feature of focal ischemia, regardless of the duration. These results provide evidence that brief focal ischemia differentially regulates gene expression in the peripheral blood in a manner that could distinguish brief focal ischemia from ischemic stroke and controls in rats. We postulate that this will also occur in humans.

  12. RNA-seq analyses of blood-induced changes in gene expression in the mosquito vector species, Aedes aegypti

    Directory of Open Access Journals (Sweden)

    Olson Ken E

    2011-01-01

    Full Text Available Abstract Background Hematophagy is a common trait of insect vectors of disease. Extensive genome-wide transcriptional changes occur in mosquitoes after blood meals, and these are related to digestive and reproductive processes, among others. Studies of these changes are expected to reveal molecular targets for novel vector control and pathogen transmission-blocking strategies. The mosquito Aedes aegypti (Diptera, Culicidae, a vector of Dengue viruses, Yellow Fever Virus (YFV and Chikungunya virus (CV, is the subject of this study to look at genome-wide changes in gene expression following a blood meal. Results Transcriptional changes that follow a blood meal in Ae. aegypti females were explored using RNA-seq technology. Over 30% of more than 18,000 investigated transcripts accumulate differentially in mosquitoes at five hours after a blood meal when compared to those fed only on sugar. Forty transcripts accumulate only in blood-fed mosquitoes. The list of regulated transcripts correlates with an enhancement of digestive activity and a suppression of environmental stimuli perception and innate immunity. The alignment of more than 65 million high-quality short reads to the Ae. aegypti reference genome permitted the refinement of the current annotation of transcript boundaries, as well as the discovery of novel transcripts, exons and splicing variants. Cis-regulatory elements (CRE and cis-regulatory modules (CRM enriched significantly at the 5'end flanking sequences of blood meal-regulated genes were identified. Conclusions This study provides the first global view of the changes in transcript accumulation elicited by a blood meal in Ae. aegypti females. This information permitted the identification of classes of potentially co-regulated genes and a description of biochemical and physiological events that occur immediately after blood feeding. The data presented here serve as a basis for novel vector control and pathogen transmission

  13. Predicting acute cardiac rejection from donor heart and pre-transplant recipient blood gene expression.

    Science.gov (United States)

    Hollander, Zsuzsanna; Chen, Virginia; Sidhu, Keerat; Lin, David; Ng, Raymond T; Balshaw, Robert; Cohen-Freue, Gabriela V; Ignaszewski, Andrew; Imai, Carol; Kaan, Annemarie; Tebbutt, Scott J; Wilson-McManus, Janet E; McMaster, Robert W; Keown, Paul A; McManus, Bruce M

    2013-02-01

    Acute rejection in cardiac transplant patients remains a contributory factor to limited survival of implanted hearts. Currently, there are no biomarkers in clinical use that can predict, at the time of transplantation, the likelihood of post-transplant acute cellular rejection. Such a development would be of great value in personalizing immunosuppressive treatment. Recipient age, donor age, cold ischemic time, warm ischemic time, panel-reactive antibody, gender mismatch, blood type mismatch and human leukocyte antigens (HLA-A, -B and -DR) mismatch between recipients and donors were tested in 53 heart transplant patients for their power to predict post-transplant acute cellular rejection. Donor transplant biopsy and recipient pre-transplant blood were also examined for the presence of genomic biomarkers in 7 rejection and 11 non-rejection patients, using non-targeted data mining techniques. The biomarker based on the 8 clinical variables had an area under the receiver operating characteristic curve (AUC) of 0.53. The pre-transplant recipient blood gene-based panel did not yield better performance, but the donor heart tissue gene-based panel had an AUC = 0.78. A combination of 25 probe sets from the transplant donor biopsy and 18 probe sets from the pre-transplant recipient whole blood had an AUC = 0.90. Biologic pathways implicated include VEGF- and EGFR-signaling, and MAPK. Based on this study, the best predictive biomarker panel contains genes from recipient whole blood and donor myocardial tissue. This panel provides clinically relevant prediction power and, if validated, may personalize immunosuppressive treatment and rejection monitoring. Copyright © 2013 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.

  14. Comparing the Gene Expression Profile of Stromal Cells from Human Cord Blood and Bone Marrow: Lack of the Typical “Bone” Signature in Cord Blood Cells

    Directory of Open Access Journals (Sweden)

    Julia Bosch

    2013-01-01

    Full Text Available With regard to the bone-regenerative capacity, bone marrow stromal cells (BMSC can still be termed the “gold standard.” Nevertheless, neonatal stromal cells from cord blood (CB feature advantages concerning availability, immaturity, and proliferation potential. The detailed gene expression analysis and overexpression of genes expressed differentially provide insight into the inherent capacity of stromal cells. Microarray and qRT-PCR analyses revealed closely related gene expression patterns of two stromal cell populations derived from CB. In contrast to the CB-derived cell types, BMSC displayed high expression levels of BSP, OSX, BMP4, OC, and PITX2. Lentiviral overexpression of BSP but not of OSX in CB-cells increased the capacity to form a mineralized matrix. BMP4 induced the secretion of proteoglycans during chondrogenic pellet culture and extended the osteogenic but reduced the adipogenic differentiation potential. BMSC revealed the typical osteogenic gene expression signature. In contrast, the CB-derived cell types exhibited a more immature gene expression profile and no predisposition towards skeletal development. The absence of BSP and BMP4—which were defined as potential key players affecting the differentiation potential—in neonatal stromal cells should be taken into consideration when choosing a cell source for tissue regeneration approaches.

  15. Phenobarbital reduces blood glucose and gluconeogenesis through down-regulation of phosphoenolpyruvate carboxykinase (GTP) gene expression in rats.

    Science.gov (United States)

    Oda, Hiroaki; Okuda, Yuji; Yoshida, Yukiko; Kimura, Noriko; Kakinuma, Atsushi

    2015-10-23

    The regulatory mechanism of phosphoenolpyruvate carboykinase (GTP) (EC 4.1.1.32) (PEPCK) gene expression and gluconeogenesis by phenobarbital (PB), which is known to induce drug-metabolizing enzymes, was investigated. Higher level of PEPCK mRNA was observed in spherical rat primary hepatocytes on EHS-gel than monolayer hepatocytes on TIC (type I collagen). We found that PB directly suppressed PEPCK gene expression in spherical hepatocytes on EHS-gel, but not in those on TIC. PB strongly suppressed cAMP-dependent induction of PEPCK gene expression. Tyrosine aminotransferase (TAT), another gluconeogenic enzyme, was induced by cAMP, but not suppressed by PB. Chronic administration of PB reduced hepatic PEPCK mRNA in streptozotocin-induced diabetic and nondiabetic rats, and PB reduced blood glucose level in diabetic rats. Increased TAT mRNA in diabetic rats was not suppressed by PB. These results indicated that PB-dependent reduction is specific to PEPCK. From pyrvate challenge test, PB suppressed the increased gluconeogenesis in diabetic rats. PEPCK gene promoter activity was suppressed by PB in HepG2 cells. In conclusion, we found that spherical hepatocytes cultured on EHS-gel are capable to respond to PB to suppress PEPCK gene expression. Moreover, our results indicate that hypoglycemic action of PB result from transcriptional repression of PEPCK gene and subsequent suppression of gluconeogenesis. Copyright © 2015. Published by Elsevier Inc.

  16. Gene expression changes in peripheral blood mononuclear cells in occupational exposure to nickel.

    Science.gov (United States)

    Bonin, Serena; Larese, Francesca Filon; Trevisan, Giusto; Avian, Andrea; Rui, Francesca; Stanta, Giorgio; Bovenzi, Massimo

    2011-02-01

    Allergic contact dermatitis is preceded by a clinically silent phase of sensitisation. In this study, we investigated whether the expression levels of six genes were related to nickel exposure and/or nickel sensitisation, and whether they could predict allergic manifestations to nickel. The mRNA expression level of six genes involved in cell growth (PIM1 and ETS2), metabolism/synthesis (HSD11B1 and PRDX4), apoptosis (CASP8) and signal transduction (CISH) was investigated by means of quantitative real-time RT-PCR in a cohort of 110 subjects, including healthy controls (n=51), nickel-exposed workers (n=23) and patients allergic to nickel (n=36). Our findings show that the expression levels of the analysed genes did not differ between allergic patients and healthy controls, while higher expression levels of ETS2 and CASP8 were detected in the nickel-exposed workers. Changes in ETS2 and CASP8 expression are likely to be related to nickel exposure rather than to allergy. © 2011 John Wiley & Sons A/S.

  17. Temporal Gene Expression Profiles of Pre Blood-Fed Adult Females Immediately Following Eclosion in the Southern House Mosquito Culex Quinquefasciatus.

    Science.gov (United States)

    Reid, William R; Zhang, Lee; Liu, Nannan

    2015-01-01

    Prior to acquisition of the first host blood meal, the anautogenous mosquito Culex quinquefasciatus requires a period of time in order to prepare for the blood feeding and, later, vitellogenesis. In the current study, we conducted whole transcriptome analyses of adult female Culex mosquitoes to identify genes that may be necessary for both taking of the blood meal, and processing of the blood meal in adult female mosquitoes Cx. quinquefasciatus. We examined temporal expression of genes for the periods of post eclosion and prior to the female freely taking a blood meal. We further evaluated the temporal expression of certain genes for the periods after the taking of a blood meal to identify genes that may be necessary for both the taking of the blood meal, and the processing of the blood meal. We found that adult females required a minimum of 48 h post-eclosion before they freely took their first blood meal. We hypothesized that gene expression signatures were altered in the mosquitoes before blood feeding in preparation for the acquisition of the blood meal through changes in multiple gene expression. To identify the genes involved in the acquisition of blood feeding, we quantified the gene expression levels of adult female Cx. quinquefasciatus using RNA Seq throughout a pre-blooding period from 2 to 72 h post eclosion at 12 h intervals. A total of 325 genes were determined to be differentially-expressed throughout the pre-blooding period, with the majority of differentially-expressed genes occurring between the 2 h and 12 h post-eclosion time points. Among the up-regulated genes were salivary proteins, cytochrome P450s, odorant-binding proteins, and proteases, while the majority of the down-regulated genes were hypothetical or cuticular genes. In addition, Trypsin was found to be up-regulated immediately following blood feeding, while trypsin and chymotrypsin were up-regulated at 48 h and 60 h post blood-feeding, respectively, suggesting that these proteases are

  18. Blood-based gene expression profiles models for classification of subsyndromal symptomatic depression and major depressive disorder.

    Science.gov (United States)

    Yi, Zhenghui; Li, Zezhi; Yu, Shunying; Yuan, Chengmei; Hong, Wu; Wang, Zuowei; Cui, Jian; Shi, Tieliu; Fang, Yiru

    2012-01-01

    Subsyndromal symptomatic depression (SSD) is a subtype of subthreshold depressive and also lead to significant psychosocial functional impairment as same as major depressive disorder (MDD). Several studies have suggested that SSD is a transitory phenomena in the depression spectrum and is thus considered a subtype of depression. However, the pathophysioloy of depression remain largely obscure and studies on SSD are limited. The present study compared the expression profile and made the classification with the leukocytes by using whole-genome cRNA microarrays among drug-free first-episode subjects with SSD, MDD, and matched controls (8 subjects in each group). Support vector machines (SVMs) were utilized for training and testing on candidate signature expression profiles from signature selection step. Firstly, we identified 63 differentially expressed SSD signatures in contrast to control (Pbiomarkers for SSD and MDD together, we selected top gene signatures from each group of pair-wise comparison results, and merged the signatures together to generate better profiles used for clearly classify SSD and MDD sets in the same time. In details, we tried different combination of signatures from the three pair-wise compartmental results and finally determined 48 gene expression signatures with 100% accuracy. Our finding suggested that SSD and MDD did not exhibit the same expressed genome signature with peripheral blood leukocyte, and blood cell-derived RNA of these 48 gene models may have significant value for performing diagnostic functions and classifying SSD, MDD, and healthy controls.

  19. gene structure, gene expression

    Indian Academy of Sciences (India)

    and seedling leaves were sampled at 6 h after the treatment. For cold stress, the seedlings were transferred to 4◦C growth chamber for 30 min. Control seedlings were exposed to none of these treatments. To examine the expression patterns of these predicted genes in Poplar and to further confirm their stress responsive-.

  20. Fruit and vegetable consumption and proinflammatory gene expression from peripheral blood mononuclear cells in young adults: a translational study

    Directory of Open Access Journals (Sweden)

    Puchau Blanca

    2010-05-01

    Full Text Available Abstract Background Fruits and vegetables are important sources of fiber and nutrients with a recognized antioxidant capacity, which could have beneficial effects on the proinflammatory status as well as some metabolic syndrome and cardiovascular disease features. The current study assessed the potential relationships of fruit and vegetable consumption with the plasma concentrations and mRNA expression values of some proinflammatory markers in young adults. Methods One-hundred and twenty healthy subjects (50 men/70 women; 20.8 ± 2.6 y; 22.3 ± 2.8 kg/m2 were enrolled. Experimental determinations included anthropometry, blood pressure and lifestyle features as well as blood biochemical and inflammatory measurements. The mRNA was isolated from peripheral blood mononuclear cells (PBMC and the gene expression concerning selected inflammatory markers was assessed by quantitative real-time PCR. Nutritional intakes were estimated by a validated semi-quantitative food-frequency questionnaire. Results The highest tertile of energy-adjusted fruit and vegetable consumption (>660 g/d was associated with lower plasma concentrations of C-reactive protein (CRP and homocysteine and with lower ICAM1, IL1R1, IL6, TNFα and NFκB1 gene expression in PBMC (P for trend ICAM1, TNFα and NFκB1 gene expression in PBMC showed a descending trend as increased fiber intake (>19.5 g/d from fruits and vegetables (P for trend 11.8 mmol/d of dietary total antioxidant capacity showed lower plasma CRP and mRNA values of ICAM1, IL1R1, IL6, TNFα and NFκB1 genes (P for trend Conclusion A higher fruit and vegetable consumption was independently associated not only with reduced CRP and homocysteine concentrations but also with a lower mRNA expression in PBMC of some relevant proinflammatory markers in healthy young adults.

  1. Blood-Based Gene Expression Profiles Models for Classification of Subsyndromal Symptomatic Depression and Major Depressive Disorder

    Science.gov (United States)

    Yu, Shunying; Yuan, Chengmei; Hong, Wu; Wang, Zuowei; Cui, Jian; Shi, Tieliu; Fang, Yiru

    2012-01-01

    Subsyndromal symptomatic depression (SSD) is a subtype of subthreshold depressive and also lead to significant psychosocial functional impairment as same as major depressive disorder (MDD). Several studies have suggested that SSD is a transitory phenomena in the depression spectrum and is thus considered a subtype of depression. However, the pathophysioloy of depression remain largely obscure and studies on SSD are limited. The present study compared the expression profile and made the classification with the leukocytes by using whole-genome cRNA microarrays among drug-free first-episode subjects with SSD, MDD, and matched controls (8 subjects in each group). Support vector machines (SVMs) were utilized for training and testing on candidate signature expression profiles from signature selection step. Firstly, we identified 63 differentially expressed SSD signatures in contrast to control (P< = 5.0E-4) and 30 differentially expressed MDD signatures in contrast to control, respectively. Then, 123 gene signatures were identified with significantly differential expression level between SSD and MDD. Secondly, in order to conduct priority selection for biomarkers for SSD and MDD together, we selected top gene signatures from each group of pair-wise comparison results, and merged the signatures together to generate better profiles used for clearly classify SSD and MDD sets in the same time. In details, we tried different combination of signatures from the three pair-wise compartmental results and finally determined 48 gene expression signatures with 100% accuracy. Our finding suggested that SSD and MDD did not exhibit the same expressed genome signature with peripheral blood leukocyte, and blood cell–derived RNA of these 48 gene models may have significant value for performing diagnostic functions and classifying SSD, MDD, and healthy controls. PMID:22348066

  2. Microarray analysis of gene expression in peripheral blood mononuclear cells from dioxin-exposed human subjects

    International Nuclear Information System (INIS)

    McHale, Cliona M.; Zhang, Luoping; Hubbard, Alan E.; Zhao, Xin; Baccarelli, Andrea; Pesatori, Angela C.; Smith, Martyn T.; Landi, Maria Teresa

    2007-01-01

    Tetrachlorodibenzo-p-dioxin (TCDD) is classified as a human carcinogen and exerts toxic effects on the skin (chloracne). Effects on reproductive, immunological, and endocrine systems have also been observed in animal models. TCDD acts through the aryl hydrocarbon receptor (AhR) pathway influencing largely unknown gene networks. An industrial accident in Seveso, Italy in 1976 exposed thousands of people to substantial quantities of TCDD. Twenty years after the exposure, this study examines global gene expression in the mononuclear cells of 26 Seveso female never smokers, with similar age, alcohol consumption, use of medications, and background plasma levels of 22 dioxin congeners unrelated to the Seveso accident. Plasma dioxin levels were still elevated in the exposed subjects. We performed analyses in two different comparison groups. The first included high-exposed study subjects compared with individuals with background TCDD levels (average plasma levels 99.4 and 6.7 ppt, respectively); the second compared subjects who developed chloracne after the accident, and those who did not develop this disease. Overall, we observed a modest alteration of gene expression based on dioxin levels or on chloracne status. In the comparison between high levels and background levels of TCDD, four histone genes were up-regulated and modified expression of HIST1H3H was confirmed by real-time PCR. In the comparison between chloracne case-control subjects, five hemoglobin genes were up-regulated. Pathway analysis revealed two major networks for each comparison, involving cell proliferation, apoptosis, immunological and hematological disease, and other pathways. Further examination of the role of these genes in dioxin induced-toxicity is warranted

  3. Analysis of Salmonella enterica serotype paratyphi A gene expression in the blood of bacteremic patients in Bangladesh.

    Directory of Open Access Journals (Sweden)

    Alaullah Sheikh

    2010-12-01

    Full Text Available Salmonella enterica serotype Paratyphi A is a human-restricted cause of paratyphoid fever, accounting for up to a fifth of all cases of enteric fever in Asia.In this work, we applied an RNA analysis method, Selective Capture of Transcribed Sequences (SCOTS, and cDNA hybridization-microarray technology to identify S. Paratyphi A transcripts expressed by bacteria in the blood of three patients in Bangladesh. In total, we detected 1,798 S. Paratyphi A mRNAs expressed in the blood of infected humans (43.9% of the ORFeome. Of these, we identified 868 in at least two patients, and 315 in all three patients. S. Paratyphi A transcripts identified in at least two patients encode proteins involved in energy metabolism, nutrient and iron acquisition, vitamin biosynthesis, stress responses, oxidative stress resistance, and pathogenesis. A number of detected transcripts are expressed from PhoP and SlyA-regulated genes associated with intra-macrophage survival, genes contained within Salmonella Pathogenicity Islands (SPIs 1-4, 6, 10, 13, and 16, as well as RpoS-regulated genes. The largest category of identified transcripts is that of encoding proteins with unknown function. When comparing levels of bacterial mRNA using in vivo samples collected from infected patients to samples from in vitro grown organisms, we found significant differences for 347, 391, and 456 S. Paratyphi A transcripts in each of three individual patients (approximately 9.7% of the ORFeome. Of these, expression of 194 transcripts (4.7% of ORFs was concordant in two or more patients, and 41 in all patients. Genes encoding these transcripts are contained within SPI-1, 3, 6 and 10, PhoP-regulated genes, involved in energy metabolism, nutrient acquisition, drug resistance, or uncharacterized genes. Using quantitative RT-PCR, we confirmed increased gene expression in vivo for a subset of these genes.To our knowledge, we describe the first microarray-based transcriptional analysis of a pathogen

  4. Altered Cytokine Gene Expression in Peripheral Blood Monocytes across the Menstrual Cycle in Primary Dysmenorrhea: A Case-Control Study

    Science.gov (United States)

    Ma, Hongyue; Hong, Min; Duan, Jinao; Liu, Pei; Fan, Xinsheng; Shang, Erxin; Su, Shulan; Guo, Jianming; Qian, Dawei; Tang, Yuping

    2013-01-01

    Primary dysmenorrhea is one of the most common gynecological complaints in young women, but potential peripheral immunologic features underlying this condition remain undefined. In this paper, we compared 84 common cytokine gene expression profiles of peripheral blood mononuclear cells (PBMCs) from six primary dysmenorrheic young women and three unaffected controls on the seventh day before (secretory phase), and the first (menstrual phase) and the fifth (regenerative phase) days of menstruation, using a real-time PCR array assay combined with pattern recognition and gene function annotation methods. Comparisons between dysmenorrhea and normal control groups identified 11 (nine increased and two decreased), 14 (five increased and nine decreased), and 15 (seven increased and eight decreased) genes with ≥2-fold difference in expression (Pmenstrual phase, genes encoding pro-inflammatory cytokines (IL1B, TNF, IL6, and IL8) were up-regulated, and genes encoding TGF-β superfamily members (BMP4, BMP6, GDF5, GDF11, LEFTY2, NODAL, and MSTN) were down-regulated. Functional annotation revealed an excessive inflammatory response and insufficient TGF-β superfamily member signals with anti-inflammatory consequences, which may directly contribute to menstrual pain. In the secretory and regenerative phases, increased expression of pro-inflammatory cytokines and decreased expression of growth factors were also observed. These factors may be involved in the regulation of decidualization, endometrium breakdown and repair, and indirectly exacerbate primary dysmenorrhea. This first study of cytokine gene expression profiles in PBMCs from young primary dysmenorrheic women demonstrates a shift in the balance between expression patterns of pro-inflammatory cytokines and TGF-β superfamily members across the whole menstrual cycle, underlying the peripheral immunologic features of primary dysmenorrhea. PMID:23390521

  5. Altered cytokine gene expression in peripheral blood monocytes across the menstrual cycle in primary dysmenorrhea: a case-control study.

    Directory of Open Access Journals (Sweden)

    Hongyue Ma

    Full Text Available Primary dysmenorrhea is one of the most common gynecological complaints in young women, but potential peripheral immunologic features underlying this condition remain undefined. In this paper, we compared 84 common cytokine gene expression profiles of peripheral blood mononuclear cells (PBMCs from six primary dysmenorrheic young women and three unaffected controls on the seventh day before (secretory phase, and the first (menstrual phase and the fifth (regenerative phase days of menstruation, using a real-time PCR array assay combined with pattern recognition and gene function annotation methods. Comparisons between dysmenorrhea and normal control groups identified 11 (nine increased and two decreased, 14 (five increased and nine decreased, and 15 (seven increased and eight decreased genes with ≥ 2-fold difference in expression (P<0.05 in the three phases of menstruation, respectively. In the menstrual phase, genes encoding pro-inflammatory cytokines (IL1B, TNF, IL6, and IL8 were up-regulated, and genes encoding TGF-β superfamily members (BMP4, BMP6, GDF5, GDF11, LEFTY2, NODAL, and MSTN were down-regulated. Functional annotation revealed an excessive inflammatory response and insufficient TGF-β superfamily member signals with anti-inflammatory consequences, which may directly contribute to menstrual pain. In the secretory and regenerative phases, increased expression of pro-inflammatory cytokines and decreased expression of growth factors were also observed. These factors may be involved in the regulation of decidualization, endometrium breakdown and repair, and indirectly exacerbate primary dysmenorrhea. This first study of cytokine gene expression profiles in PBMCs from young primary dysmenorrheic women demonstrates a shift in the balance between expression patterns of pro-inflammatory cytokines and TGF-β superfamily members across the whole menstrual cycle, underlying the peripheral immunologic features of primary dysmenorrhea.

  6. Gene expression profiling of whole blood: Comparison of target preparation methods for accurate and reproducible microarray analysis

    Science.gov (United States)

    Vartanian, Kristina; Slottke, Rachel; Johnstone, Timothy; Casale, Amanda; Planck, Stephen R; Choi, Dongseok; Smith, Justine R; Rosenbaum, James T; Harrington, Christina A

    2009-01-01

    Background Peripheral blood is an accessible and informative source of transcriptomal information for many human disease and pharmacogenomic studies. While there can be significant advantages to analyzing RNA isolated from whole blood, particularly in clinical studies, the preparation of samples for microarray analysis is complicated by the need to minimize artifacts associated with highly abundant globin RNA transcripts. The impact of globin RNA transcripts on expression profiling data can potentially be reduced by using RNA preparation and labeling methods that remove or block globin RNA during the microarray assay. We compared four different methods for preparing microarray hybridization targets from human whole blood collected in PAXGene tubes. Three of the methods utilized the Affymetrix one-cycle cDNA synthesis/in vitro transcription protocol but varied treatment of input RNA as follows: i. no treatment; ii. treatment with GLOBINclear; or iii. treatment with globin PNA oligos. In the fourth method cDNA targets were prepared with the Ovation amplification and labeling system. Results We find that microarray targets generated with labeling methods that reduce globin mRNA levels or minimize the impact of globin transcripts during hybridization detect more transcripts in the microarray assay compared with the standard Affymetrix method. Comparison of microarray results with quantitative PCR analysis of a panel of genes from the NF-kappa B pathway shows good correlation of transcript measurements produced with all four target preparation methods, although method-specific differences in overall correlation were observed. The impact of freezing blood collected in PAXGene tubes on data reproducibility was also examined. Expression profiles show little or no difference when RNA is extracted from either fresh or frozen blood samples. Conclusion RNA preparation and labeling methods designed to reduce the impact of globin mRNA transcripts can significantly improve the

  7. Gene expression differences between PAXgene and Tempus blood RNA tubes are highly reproducible between independent samples and biobanks.

    Science.gov (United States)

    Skogholt, Anne Heidi; Ryeng, Einar; Erlandsen, Sten Even; Skorpen, Frank; Schønberg, Svanhild A; Sætrom, Pål

    2017-03-23

    Gene expression profiling from blood is sensitive to technology choices. For example, the main blood RNA collection systems-the PAXgene and Tempus tubes-differently influence RNA expression signatures. The aim of this study was to establish a common RNA isolation protocol for these two systems and investigate if it could reduce the differences in gene expression between them. We collected identical blood samples on the PAXgene and Tempus systems and retrieved blood samples from two independent biobanks-NOWAC and HUNT3-which are based on PAXgene and Tempus, respectively. High-quality RNA was extracted from both sampling systems by using their original protocols and our common modified protocol, and were profiled on Illumina microarrays. Regardless of the protocol used, we found most of the measured transcripts to be differently affected by the two sampling systems. However, our modified protocol reduced the number of transcripts that were significantly differentially expressed between PAXgene and Tempus by approximately 50%. Expression differences between PAXgene and Tempus were highly reproducible both between protocols and between different independent sample sets (Pearson correlation 0.563-0.854 across 47323 probes). Moreover, the modified protocol increased the microRNA output of the system with lowest microRNA yield, the PAXgene system. Most transcripts are affected by the choice of sampling system, but these effects are highly reproducible between independent samples. We propose that by running a control experiment with samples on both systems in parallel with biologically relevant samples, researchers may adjust for technical differences between the sampling systems.

  8. Whole-blood gene expression profiling in ankylosing spondylitis shows upregulation of toll-like receptor 4 and 5.

    Science.gov (United States)

    Assassi, Shervin; Reveille, John D; Arnett, Frank C; Weisman, Michael H; Ward, Michael M; Agarwal, Sandeep K; Gourh, Pravitt; Bhula, Jiten; Sharif, Roozbeh; Sampat, Keeran; Mayes, Maureen D; Tan, Filemon K

    2011-01-01

    to identify differentially expressed genes in peripheral blood cells (PBC) of patients with ankylosing spondylitis (AS) relative to healthy controls and controls with systemic inflammation. we investigated PBC samples of 16 patients with AS and 14 matched controls, in addition to systemic lupus erythematosus (SLE) and systemic sclerosis (SSc) samples utilizing Illumina Human Ref-8 BeadChips. Candidate genes were confirmed using quantitative PCR. Subsequently, these genes were also validated in a separate sample of 27 patients with AS [before and after anti-tumor necrosis factor (anti-TNF) treatment] and 27 matched controls. we identified 83 differentially expressed transcripts between AS patients and controls. This gene list was filtered through the lists of differentially expressed transcripts in SLE and SSc, which resulted in identification of 52 uniquely dysregulated transcripts in AS. Many of the differentially expressed genes belonged to Toll-like receptor (TLR) and related pathways. TLR4 and TLR5 were the only dysregulated TLR subtypes among AS patients. We confirmed the overexpression of TLR4 and TLR5 in AS patients in comparison to controls (p = 0.012 and p = 0.006, respectively) and SLE (p = 0.002, p = 0.008) using quantitative PCR in the same sample. Similarly, TLR4 (p = 0.007) and TLR5 (p = 0.012) were significantly upregulated among the AS patients before anti-TNF treatment in the confirmatory sample. TLR4 (p = 0.002) and TLR5 (p = 0.025) decreased significantly after anti-TNF treatment. PBC gene expression profiling in AS shows an upregulation of TLR4 and TLR5. This supports the importance of TLR subtypes in the pathogenesis of AS that are responsible for the immune response to Gram-negative bacteria.

  9. Glucose increases interleukin-12 gene expression and production in stimulated peripheral blood mononuclear cells of type 2 diabetes patients

    Directory of Open Access Journals (Sweden)

    Chien-Ming Chu

    2014-10-01

    Full Text Available Background: Lipopolysaccharide (LPS-stimulated peripheral blood mononuclear cells (PBMCs of type 2 diabetes patients produce more interleukin (IL-12 under glucose treatment. The aim of this study was to determine whether increased IL-12 response in hyperglycemic LPS-stimulated PBMCs is due to increased gene expression or osmolarity. Methods: LPS-stimulated PBMCs of 13 type 2 diabetes patients and 8 healthy controls were used for culture in the presence or absence of glucose or mannitol for 24 h. The IL-12 gene expressions of PBMCs and IL-12 protein levels in supernatants were evaluated. Results: After 24 h, the stimulated PBMCs of diabetes patients expressed more IL-12 mRNA and produced more IL-12 protein following glucose treatment than those without glucose treatment and with mannitol treatment. Stimulated PBMCs of controls did not express more IL-12 mRNA and produce more IL-12 protein following glucose treatment than those without glucose treatment and with mannitol treatment. Conclusions: Glucose increases the IL-12 production in stimulated PBMCs of diabetes patients through increased IL-12 gene expression.

  10. Blood mononuclear cell gene expression profiles characterize the oxidant, hemolytic, and inflammatory stress of sickle cell disease

    Science.gov (United States)

    Jison, Maria L.; Munson, Peter J.; Barb, Jennifer J.; Suffredini, Anthony F.; Talwar, Shefali; Logun, Carolea; Raghavachari, Nalini; Beigel, John H.; Shelhamer, James H.; Danner, Robert L.; Gladwin, Mark T.

    2016-01-01

    In sickle cell disease, deoxygenation of intra-erythrocytic hemoglobin S leads to hemoglobin polymerization, erythrocyte rigidity, hemolysis, and microvascular occlusion. Ischemia-reperfusion injury, plasma hemoglobin-mediated nitric oxide consumption, and free radical generation activate systemic inflammatory responses. To characterize the role of circulating leukocytes in sickle cell pathogenesis we performed global transcriptional analysis of blood mononuclear cells from 27 patients in steady-state sickle cell disease (10 patients treated and 17 patients untreated with hydroxyurea) compared with 13 control subjects. We used gender-specific gene expression to validate human microarray experiments. Patients with sickle cell disease demonstrated differential gene expression of 112 genes involved in heme metabolism, cell-cycle regulation, antioxidant and stress responses, inflammation, and angiogenesis. Inducible heme oxygenase-1 and downstream proteins biliverdin reductase and p21, a cyclin-dependent kinase, were up-regulated, potentially contributing to phenotypic heterogeneity and absence of atherosclerosis in patients with sickle cell disease despite endothelial dysfunction and vascular inflammation. Hydroxyurea therapy did not significantly affect leukocyte gene expression, suggesting that such therapy has limited direct anti-inflammatory activity beyond leukoreduction. Global transcriptional analysis of circulating leukocytes highlights the intense oxidant and inflammatory nature of steady-state sickle cell disease and provides insight into the broad compensatory responses to vascular injury. PMID:15031206

  11. Effects of chronic ascariasis and trichuriasis on cytokine production and gene expression in human blood: a cross-sectional study.

    Science.gov (United States)

    Reina Ortiz, Miguel; Schreiber, Fernanda; Benitez, Susana; Broncano, Nely; Chico, Martha E; Vaca, Maritza; Alexander, Neal; Lewis, David J; Dougan, Gordon; Cooper, Philip J

    2011-06-01

    Chronic soil-transmitted helminth (STH) infections are associated with effects on systemic immune responses that could be caused by alterations in immune homeostasis. To investigate this, we measured the impact in children of STH infections on cytokine responses and gene expression in unstimulated blood. Sixty children were classified as having chronic, light, or no STH infections. Peripheral blood mononuclear cells were cultured in medium for 5 days to measure cytokine accumulation. RNA was isolated from peripheral blood and gene expression analysed using microarrays. Different infection groups were compared for the purpose of analysis: STH infection (combined chronic and light vs. uninfected groups) and chronic STH infection (chronic vs. combined light and uninfected groups). The chronic STH infection effect was associated with elevated production of GM-CSF (P=0.007), IL-2 (P=0.03), IL-5 (P=0.01), and IL-10 (P=0.01). Data reduction suggested that chronic infections were primarily associated with an immune phenotype characterized by elevated IL-5 and IL-10, typical of a modified Th2-like response. Chronic STH infections were associated with the up-regulation of genes associated with immune homeostasis (IDO, P=0.03; CCL23, P=0.008, HRK, P=0.005), down-regulation of microRNA hsa-let-7d (P=0.01) and differential regulation of several genes associated with granulocyte-mediated inflammation (IL-8, down-regulated, P=0.0002; RNASE2, up-regulated, P=0.009; RNASE3, up-regulated, p=0.03). Chronic STH infections were associated with a cytokine response indicative of a modified Th2 response. There was evidence that STH infections were associated with a pattern of gene expression suggestive of the induction of homeostatic mechanisms, the differential expression of several inflammatory genes and the down-regulation of microRNA has-let-7d. Effects on immune homeostasis and the development of a modified Th2 immune response during chronic STH infections could explain the systemic

  12. A nutrigenomic approach to detect nutritional stress from gene expression in blood samples drawn from Steller sea lions.

    Science.gov (United States)

    Spitz, Jérôme; Becquet, Vanessa; Rosen, David A S; Trites, Andrew W

    2015-09-01

    Gene expression profiles are increasingly being used as biomarkers to detect the physiological responses of a number of species to disease, nutrition, and other stressors. However, little attention has been given to using gene expression to assess the stressors and physiological status of marine mammals. We sought to develop and validate a nutrigenomic approach to quantify nutritional stress in Steller sea lions (Eumetopias jubatus). We subjected 4 female Steller sea lions to 3 feeding regimes over 70-day trials (unrestricted food intake, acute nutritional stress, and chronic nutritional stress), and drew blood samples from each animal at the end of each feeding regime. We then extracted the RNA of white blood cells and measured the response of 8 genes known to react to diet restriction in terrestrial mammals. Overall, we found that the genomic response of Steller sea lions experiencing nutritional stress was consistent with how terrestrial mammals respond to dietary restrictions. Our nutritionally stressed sea lions down-regulated some cellular processes involved in immune response and oxidative stress, and up-regulated pro-inflammatory responses and metabolic processes. Nutrigenomics appears to be a promising means to monitor nutritional status and contribute to mitigation measures needed to assist in the recovery of Steller sea lions and other at-risk species of marine mammals. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Cloning, expression and characterization of a gene from earthworm Eisenia fetida encoding a blood-clot dissolving protein.

    Directory of Open Access Journals (Sweden)

    GangQiang Li

    Full Text Available A lumbrokinase gene encoding a blood-clot dissolving protein was cloned from earthworm (Eisenia fetida by RT-PCR amplification. The gene designated as CST1 (GenBank No. AY840996 was sequence analyzed. The cDNA consists of 888 bp with an open reading frame of 729 bp, which encodes 242 amino acid residues. Multiple sequence alignments revealed that CST1 shares similarities and conserved amino acids with other reported lumbrokinases. The amino acid sequence of CST1 exhibits structural features similar to those found in other serine proteases, including human tissue-type (tPA, urokinase (uPA, and vampire bat (DSPAα1 plasminogen activators. CST1 has a conserved catalytic triad, found in the active sites of protease enzymes, which are important residues involved in polypeptide catalysis. CST1 was expressed as inclusion bodies in Escherichia coli BL21(DE3. The molecular mass of recombinant CST1 (rCST was 25 kDa as estimated by SDS-PAGE, and further confirmed by Western Blot analysis. His-tagged rCST1 was purified and renatured using nickel-chelating resin with a recovery rate of 50% and a purity of 95%. The purified, renatured rCST1 showed fibrinolytic activity evaluated by both a fibrin plate and a blood clot lysis assay. rCST1 degraded fibrin on the fibrin plate. A significant percentage (65.7% of blood clot lysis was observed when blood clot was treated with 80 mg/mL of rCST1 in vitro. The antithrombotic activity of rCST1 was 912 units/mg calculated by comparison with the activity of a lumbrokinase standard. These findings indicate that rCST1 has potential as a potent blood-clot treatment. Therefore, the expression and purification of a single lumbrokinase represents an important improvement in the use of lumbrokinases.

  14. A gene co-expression network in whole blood of schizophrenia patients is independent of antipsychotic-use and enriched for brain-expressed genes

    DEFF Research Database (Denmark)

    de Jong, Simone; Boks, Marco P M; Fuller, Tova F

    2012-01-01

    -expression modules associated with schizophrenia. Several of these disease related modules are likely to reflect expression changes due to antipsychotic medication. However, two of the disease modules could be replicated in an independent second data set involving antipsychotic-free patients and controls. One......, and regulated by the major histocompatibility (MHC) complex, which is intriguing in light of the fact that common allelic variants from the MHC region have been implicated in schizophrenia. This suggests that the MHC increases schizophrenia susceptibility via altered gene expression of regulatory genes...

  15. Dexamethasone stimulated gene expression in peripheral blood indicates glucocorticoid-receptor hypersensitivity in job-related exhaustion.

    Science.gov (United States)

    Menke, Andreas; Arloth, Janine; Gerber, Markus; Rex-Haffner, Monika; Uhr, Manfred; Holsboer, Florian; Binder, Elisabeth B; Holsboer-Trachsler, Edith; Beck, Johannes

    2014-06-01

    Work-related stress can lead to various health problems ranging from job-related exhaustion to psychiatric and somatic diseases. Biomarkers of job-related exhaustion could help to improve our understanding of the biological mechanisms and might be useful to guide prevention and treatment strategies. The present study included 12 male cases suffering from job-related exhaustion and 12 matched healthy controls. Severity of exhaustion was assessed with the Maslach Burnout Inventory (MBI) and the Shirom-Melamed Burnout Measure (SMBM). Whole genome expression profiles derived from whole blood cells (baseline and following glucocorticoid-receptor (GR) stimulation with 1.5mg dexamethasone p.o.) and corresponding plasma cortisol levels were analyzed. All cases participated in regular aerobic exercise for 12 consecutive weeks and were then re-assessed at follow-up for exhaustion symptoms as well as for cortisol levels and gene expression profiles. At baseline, we found increased basal cortisol levels and an enhanced suppression of plasma cortisol concentrations following dexamethasone in cases suffering from job-related exhaustion. Gene expression analysis revealed that 1.6-fold more transcripts were significantly regulated by dexamethasone in cases as compared to controls. At follow-up after 12 weeks of regular exercise training which was accompanied by significantly improved exhaustion severity scores, cortisol levels and gene expression profiles of cases normalized to the levels observed in controls. In conclusion, we detected GR-induced neuroendocrine and gene expression changes in cases suffering from job-related exhaustion which are in line with an increased sensitivity of GR function. This GR dysregulation normalized with symptom recovery. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Increased Expression of Peripheral Blood Leukocyte Genes Implicate CD14+ Tissue Macrophages in Cellular Intestine Allograft Rejection

    Science.gov (United States)

    Ashokkumar, Chethan; Ningappa, Mylarappa; Ranganathan, Sarangarajan; Higgs, Brandon W.; Sun, Qing; Schmitt, Lori; Snyder, Sara; Dobberstein, Jennifer; Branca, Maria; Jaffe, Ronald; Zeevi, Adriana; Squires, Robert; Alissa, Feras; Shneider, Benjamin; Soltys, Kyle; Bond, Geoffrey; Abu-Elmagd, Kareem; Humar, Abhinav; Mazariegos, George; Hakonarson, Hakon; Sindhi, Rakesh

    2011-01-01

    Recurrent rejection shortens graft survival after intestinal transplantation (ITx) in children, most of whom also experience early acute cellular rejection (rejectors). To elucidate mechanisms common to early and recurrent rejection, we used a test cohort of 20 recipients to test the hypothesis that candidate peripheral blood leukocyte genes that trigger rejection episodes would be evident late after ITx during quiescent periods in genome-wide gene expression analysis and would achieve quantitative real-time PCR replication pre-ITx (another quiescent period) and in the early post-ITx period during first rejection episodes. Eight genes were significantly up-regulated among rejectors in the late post-ITx and pre-ITx periods, compared with nonrejectors: TBX21, CCL5, GNLY, SLAMF7, TGFBR3, NKG7, SYNE1, and GK5. Only CCL5 was also up-regulated in the early post-ITx period. Among resting peripheral blood leukocyte subsets in randomly sampled nonrejectors, CD14+ monocytes expressed the CCL5 protein maximally. Compared with nonrejectors, rejectors demonstrated higher counts of both circulating CCL5+CD14+ monocytes and intragraft CD14+ monocyte-derived macrophages in immunohistochemistry of postperfusion and early post-ITx biopsies from the test and an independent replication cohort. Donor-specific alloreactivity measured with CD154+ T-cytotoxic memory cells correlated with the CCL5 gene and intragraft CD14+ monocyte-derived macrophages at graft reperfusion and early post-ITx. CCL5 gene up-regulation and CD14+ macrophages likely prime cellular ITx rejection. Infiltration of reperfused intestine allografts with CD14+ macrophages may predict rejection events. PMID:21854741

  17. Comparison of whole blood and peripheral blood mononuclear cell gene expression for evaluation of the perioperative inflammatory response in patients with advanced heart failure.

    Directory of Open Access Journals (Sweden)

    Galyna Bondar

    Full Text Available Heart failure (HF prevalence is increasing in the United States. Mechanical Circulatory Support (MCS therapy is an option for Advanced HF (AdHF patients. Perioperatively, multiorgan dysfunction (MOD is linked to the effects of device implantation, augmented by preexisting HF. Early recognition of MOD allows for better diagnosis, treatment, and risk prediction. Gene expression profiling (GEP was used to evaluate clinical phenotypes of peripheral blood mononuclear cells (PBMC transcriptomes obtained from patients' blood samples. Whole blood (WB samples are clinically more feasible, but their performance in comparison to PBMC samples has not been determined.We collected blood samples from 31 HF patients (57±15 years old undergoing cardiothoracic surgery and 7 healthy age-matched controls, between 2010 and 2011, at a single institution. WB and PBMC samples were collected at a single timepoint postoperatively (median day 8 postoperatively (25-75% IQR 7-14 days and subjected to Illumina single color Human BeadChip HT12 v4 whole genome expression array analysis. The Sequential Organ Failure Assessment (SOFA score was used to characterize the severity of MOD into low (≤ 4 points, intermediate (5-11, and high (≥ 12 risk categories correlating with GEP.Results indicate that the direction of change in GEP of individuals with MOD as compared to controls is similar when determined from PBMC versus WB. The main enriched terms by Gene Ontology (GO analysis included those involved in the inflammatory response, apoptosis, and other stress response related pathways. The data revealed 35 significant GO categories and 26 pathways overlapping between PBMC and WB. Additionally, class prediction using machine learning tools demonstrated that the subset of significant genes shared by PBMC and WB are sufficient to train as a predictor separating the SOFA groups.GEP analysis of WB has the potential to become a clinical tool for immune-monitoring in patients with MOD.

  18. Cpt1a gene expression in peripheral blood mononuclear cells as an early biomarker of diet-related metabolic alterations

    Directory of Open Access Journals (Sweden)

    Rubén Díaz-Rúa

    2016-11-01

    Full Text Available Background: Research on biomarkers that provide early information about the development of future metabolic alterations is an emerging discipline. Gene expression analysis in peripheral blood mononuclear cells (PBMC is a promising tool to identify subjects at risk of developing diet-related diseases. Objective: We analysed PBMC expression of key energy homeostasis-related genes in a time-course analysis in order to find out early markers of metabolic alterations due to sustained intake of high-fat (HF and high-protein (HP diets. Design: We administered HF and HP diets (4 months to adult Wistar rats in isocaloric conditions to a control diet, mainly to avoid overweight associated with the intake of hyperlipidic diets and, thus, to be able to characterise markers of metabolically obese normal-weight (MONW syndrome. PBMC samples were collected at different time points of dietary treatment and expression of relevant energy homeostatic genes analysed by real-time reverse transcription-polymerase chain reaction. Serum parameters related with metabolic syndrome, as well as fat deposition in liver, were also analysed. Results: The most outstanding results were those obtained for the expression of the lipolytic gene carnitine palmitoyltransferase 1a (Cpt1a. Cpt1a expression in PBMC increased after only 1 month of exposure to both unbalanced diets, and this increased expression was maintained thereafter. Interestingly, in the case of the HF diet, Cpt1a expression was altered even in the absence of increased body weight but correlated with alterations such as higher insulin resistance, alteration of serum lipid profile and, particularly, increased fat deposition in liver, a feature characteristic of metabolic syndrome, which was even observed in animals fed with HP diet. Conclusions: We propose Cpt1a gene expression analysis in PBMC as an early biomarker of metabolic alterations associated with MONW phenotype due to the intake of isocaloric HF diets, as

  19. Dietary conjugated linoleic acid affects blood parameters, liver morphology and expression of selected hepatic genes in laying hens.

    Science.gov (United States)

    Koronowicz, A A; Banks, P; Szymczyk, B; Leszczyńska, T; Master, A; Piasna, E; Szczepański, W; Domagała, D; Kopeć, A; Piątkowska, E; Laidler, P

    2016-10-01

    The objective of this research were to investigate the effect of a conjugated linoleic acid (CLA)-enriched diet on Isa Brown laying hen health status and to provide a comprehensive analysis of changes in blood parameters, liver morphology and selected hepatic gene expression. Hens were allocated to the control and experimental group (diet enriched with 0.75% CLA) for a total period of 4 m. At the end of the experiment half of the hens from each group were slaughtered for analyses. The remaining hens were transferred to an organic farm for the next 5 m and fed on the diet without CLA supplementation. The CLA-enriched diet resulted in significant changes in blood and serum parameters; specifically, haematocrit (HCT), mean corpuscular volume (MCV) and white blood cells (WBC) count were decreased compared to the control. The total cholesterol (TC) was not significantly affected while the triacylglycerol's (TG) concentration was elevated. The activity of alanine aminotransferase (ALT) was significantly increased in the CLA-supplemented group, while aspartate aminotransferase (AST) showed an increasing tendency. Liver biopsies showed pathological changes classified as non-alcoholic fatty liver disease (NAFLD). Additionally, the expression of hepatic genes involved in fatty acids synthesis (ME1, ACLY, ACC, FASN, SCD1), oxidation (CPT1α, PPARA), detoxification processes (Cytochrome P450, CYP, Flavin-containing monooxygenase, FMO3), oxidative stress (NOX4, XbP1) and inflammation (IL6, TNFα) were elevated. Cessation of CLA supplementation for 5 m of organic farming resulted in normalisation of blood and hepatic parameters to the levels observed in control hens. The results of this study indicate that dietary CLA triggers an integrated stress response in laying hens and activates mechanisms involved in liver detoxification.

  20. Global gene expression profile of peripheral blood mononuclear cells challenged with Theileria annulata in crossbred and indigenous cattle.

    Science.gov (United States)

    Kumar, Amod; Gaur, Gyanendra Kumar; Gandham, Ravi Kumar; Panigrahi, Manjit; Ghosh, Shrikant; Saravanan, B C; Bhushan, Bharat; Tiwari, Ashok Kumar; Sulabh, Sourabh; Priya, Bhuvana; V N, Muhasin Asaf; Gupta, Jay Prakash; Wani, Sajad Ahmad; Sahu, Amit Ranjan; Sahoo, Aditya Prasad

    2017-01-01

    Bovine tropical theileriosis is an important haemoprotozoan disease associated with high rates of morbidity and mortality particularly in exotic and crossbred cattle. It is one of the major constraints of the livestock development programmes in India and Southeast Asia. Indigenous cattle (Bos indicus) are reported to be comparatively less affected than exotic and crossbred cattle. However, genetic basis of resistance to tropical theileriosis in indigenous cattle is not well documented. Recent studies incited an idea that differentially expressed genes in exotic and indigenous cattle play significant role in breed specific resistance to tropical theileriosis. The present study was designed to determine the global gene expression profile in peripheral blood mononuclear cells derived from indigenous (Tharparkar) and cross-bred cattle following in vitro infection of T. annulata (Parbhani strain). Two separate microarray experiments were carried out each for cross-bred and Tharparkar cattle. The cross-bred cattle showed 1082 differentially expressed genes (DEGs). Out of total DEGs, 597 genes were down-regulated and 485 were up-regulated. Their fold change varied from 2283.93 to -4816.02. Tharparkar cattle showed 875 differentially expressed genes including 451 down-regulated and 424 up-regulated. The fold change varied from 94.93 to -19.20. A subset of genes was validated by qRT-PCR and results were correlated well with microarray data indicating that microarray results provided an accurate report of transcript level. Functional annotation study of DEGs confirmed their involvement in various pathways including response to oxidative stress, immune system regulation, cell proliferation, cytoskeletal changes, kinases activity and apoptosis. Gene network analysis of these DEGs plays an important role to understand the interaction among genes. It is therefore, hypothesized that the different susceptibility to tropical theileriosis exhibited by indigenous and crossbred cattle

  1. Transgenic mosquitoes expressing a phospholipase A(2 gene have a fitness advantage when fed Plasmodium falciparum-infected blood.

    Directory of Open Access Journals (Sweden)

    Ryan C Smith

    Full Text Available Genetically modified mosquitoes have been proposed as an alternative strategy to reduce the heavy burden of malaria. In recent years, several proof-of-principle experiments have been performed that validate the idea that mosquitoes can be genetically modified to become refractory to malaria parasite development.We have created two transgenic lines of Anophelesstephensi, a natural vector of Plasmodium falciparum, which constitutively secrete a catalytically inactive phospholipase A2 (mPLA2 into the midgut lumen to interfere with Plasmodium ookinete invasion. Our experiments show that both transgenic lines expressing mPLA2 significantly impair the development of rodent malaria parasites, but only one line impairs the development of human malaria parasites. In addition, when fed on malaria-infected blood, mosquitoes from both transgenic lines are more fecund than non-transgenic mosquitoes. Consistent with these observations, cage experiments with mixed populations of transgenic and non-transgenic mosquitoes show that the percentage of transgenic mosquitoes increases when maintained on Plasmodium-infected blood.Our results suggest that the expression of an anti-Plasmodium effector gene gives transgenic mosquitoes a fitness advantage when fed malaria-infected blood. These findings have important implications for future applications of transgenic mosquito technology in malaria control.

  2. Transgenic mosquitoes expressing a phospholipase A(2) gene have a fitness advantage when fed Plasmodium falciparum-infected blood.

    Science.gov (United States)

    Smith, Ryan C; Kizito, Christopher; Rasgon, Jason L; Jacobs-Lorena, Marcelo

    2013-01-01

    Genetically modified mosquitoes have been proposed as an alternative strategy to reduce the heavy burden of malaria. In recent years, several proof-of-principle experiments have been performed that validate the idea that mosquitoes can be genetically modified to become refractory to malaria parasite development. We have created two transgenic lines of Anophelesstephensi, a natural vector of Plasmodium falciparum, which constitutively secrete a catalytically inactive phospholipase A2 (mPLA2) into the midgut lumen to interfere with Plasmodium ookinete invasion. Our experiments show that both transgenic lines expressing mPLA2 significantly impair the development of rodent malaria parasites, but only one line impairs the development of human malaria parasites. In addition, when fed on malaria-infected blood, mosquitoes from both transgenic lines are more fecund than non-transgenic mosquitoes. Consistent with these observations, cage experiments with mixed populations of transgenic and non-transgenic mosquitoes show that the percentage of transgenic mosquitoes increases when maintained on Plasmodium-infected blood. Our results suggest that the expression of an anti-Plasmodium effector gene gives transgenic mosquitoes a fitness advantage when fed malaria-infected blood. These findings have important implications for future applications of transgenic mosquito technology in malaria control.

  3. Quantitative evaluation of interleukin-12 p40 gene expression in peripheral blood mononuclear cells.

    Science.gov (United States)

    Conte, Enrico; Nigro, Luciano; Fagone, Evelina; Drago, Francesco; Cacopardo, Bruno

    2008-01-01

    The heterodimeric cytokine IL-12 (composed of a p35 and a p40 subunit) is produced primarily by monocytes, macrophages and B cells. In vitro and in vivo experiments have demonstrated the crucial role of IL-12 in initiating and establishing both innate immunity and T cell-mediated resistance to intracellular pathogens, including Leishmania donovani, Toxoplasma gondii, Listeria monocytogenes, and Mycobacterium tuberculosis. Assessment of cytokine expression has thus become crucial to understand host responses to infections. In this study, by using the reverse transcriptase-real time PCR we developed a highly specific and sensitive assay to quantitatively evaluate IL-12p40 mRNA transcription levels in peripheral blood mononuclear cells (PBMCs) stimulated with PHA vs. unstimulated cells. We also used the ELISA to evaluate bioactive IL-12 release in culture supernatants. We provide evidence that IL-12 p40 mRNA levels were significantly up-regulated in PHA-activated PBMCs. These results were correlated with data of IL-12 levels obtained by ELISA.

  4. Correlations of gene expression with blood lead levels in children with autism compared to typically developing controls.

    Science.gov (United States)

    Tian, Yingfang; Green, Peter G; Stamova, Boryana; Hertz-Picciotto, Irva; Pessah, Isaac N; Hansen, Robin; Yang, Xiaowei; Gregg, Jeffrey P; Ashwood, Paul; Jickling, Glen; Van de Water, Judy; Sharp, Frank R

    2011-01-01

    The objective of this study was to examine the correlation between gene expression and lead (Pb) levels in blood in children with autism (AU, n = 37) compared to typically developing controls (TD, n = 15). We postulated that, though lead levels did not differ between the groups, AU children might metabolize lead differently compared to TD children. RNA was isolated from blood and processed on Affymetrix microarrays. Separate analyses of covariance (ANCOVA) corrected for age and gender were performed for TD, AU, and all subjects (AU + TD). To reduce false positives, only genes that overlapped these three ANCOVAs were considered. Thus, 48 probe sets correlated with lead levels in both AU and TD subjects and were significantly different between the groups (p(Diagnosis x log₂Pb) genes were related mainly to immune and inflammatory processes, including MHC Class II family members and CD74. A large number (n = 791) of probe sets correlated (P ≤ 0.05) with lead levels in TD but not in AU subjects; and many probe sets (n = 162) correlated (P ≤ 0.05) with lead levels in AU but not in TD subjects. Only 30 probe sets correlated (P ≤ 0.05) with lead levels in a similar manner in the AU and TD groups. These data show that AU and TD children display different associations between transcript levels and low levels of lead. We postulate that this may relate to the underlying genetic differences between the two groups, though other explanations cannot be excluded.

  5. Regulation of tumor necrosis factor gene expression by ionizing radiation in human myeloid leukemia cells and peripheral blood monocytes

    International Nuclear Information System (INIS)

    Sherman, M.L.; Datta, R.; Hallahan, D.E.; Weichselbaum, R.R.; Kufe, D.W.

    1991-01-01

    Previous studies have demonstrated that ionizing radiation induces the expression of certain cytokines, such as TNF alpha/cachectin. However, there is presently no available information regarding the molecular mechanisms responsible for the regulation of cytokine gene expression by ionizing radiation. In this report, we describe the regulation of the TNF gene by ionizing radiation in human myeloid leukemia cells. The increase in TNF transcripts by x rays was both time- and dose-dependent as determined by Northern blot analysis. Similar findings were obtained in human peripheral blood monocytes. Transcriptional run-on analyses have demonstrated that ionizing radiation stimulates the rate of TNF gene transcription. Furthermore, induction of TNF mRNA was increased in the absence of protein synthesis. In contrast, ionizing radiation had little effect on the half-life of TNF transcripts. These findings indicate that the increase in TNF mRNA observed after irradiation is regulated by transcriptional mechanisms and suggest that production of this cytokine by myeloid cells may play a role in the pathophysiologic effects of ionizing radiation

  6. In vitro expression of hard metal dust (WC-Co)--responsive genes in human peripheral blood mononucleated cells.

    Science.gov (United States)

    Lombaert, Noömi; Lison, Dominique; Van Hummelen, Paul; Kirsch-Volders, Micheline

    2008-03-01

    Hard metals consist of tungsten carbide (WC) and metallic cobalt (Co) particles and are important industrial materials produced for their extreme hardness and high wear resistance properties. While occupational exposure to metallic Co alone is apparently not associated with an increased risk of cancer, the WC-Co particle mixture was shown to be carcinogenic in exposed workers. The in vitro mutagenic/apoptogenic potential of WC-Co in human peripheral blood mononucleated cells was previously demonstrated by us. This study aimed at obtaining a broader view of the pathways responsible for WC-Co induced carcinogenicity, and in particular genotoxicity and apoptosis. We analyzed the profile of gene expression induced in vitro by WC-Co versus control (24 h treatment) in human PBMC and monocytes using microarrays. The most significantly up-regulated pathways for WC-Co treated PBMC were apoptosis and stress/defense response; the most down-regulated was immune response. For WC-Co treated monocytes the most significantly up- and down-regulated pathways were nucleosome/chromatin assembly and immune response respectively. Quantitative RT-PCR data for a selection of the most strongly modulated genes (HMOX1, HSPA1A, HSPA1L, BNIP3, BNIP3L, ADORA2B, MT3, PLA2G7, TNFAIP6), and some additionally chosen apoptosis related genes (BCL2, BAX, FAS, FASL, TNFalpha), confirmed the microarray data after WC-Co exposure and demonstrated limited differences between the Co-containing compounds. Overall, this study provides the first analysis of gene expression induced by the WC-Co mixture showing a large profile of gene modulation and giving a preliminary indication for a hypoxia mimicking environment induced by WC-Co exposure.

  7. DNA ARRAYS TO MONITOR GENE EXPRESSION IN RAT BLOOD AND UTERUS FOLLOWING 17BETA-ESTRADIOL EXPOSURE: BIOMONITORING ENVIRONMENTAL EFFECTS USING SURROGATE TISSUES

    Science.gov (United States)

    We propose that gene expression changes in accessible tissues such as blood often reflect those in inaccessible tissues, thus offering a convenient biomonitoring method to provide insight into the effects of environmental toxicants on such tissues. In this pilot study, gene expre...

  8. Microarray-based analysis of gene expression profiles in peripheral blood of patients with acute primary angle closure.

    Science.gov (United States)

    Jeoung, Jin Wook; Ko, Jung Hwa; Kim, Yu Jeong; Kim, Yong Woo; Park, Ki Ho; Oh, Joo Youn

    2017-12-01

    We investigated the expression of molecules in peripheral blood mononuclear cells (PBMCs) and plasma of patients with acute primary angle closure (APAC). Peripheral blood was collected from patients with APAC (n = 10) and age-matched controls (n = 5). The gene transcription profile was analyzed in PBMCs using microarrays and validated by real-time reverse transcription polymerase chain reaction (RT-PCR). The levels of secreted proteins were evaluated in plasma by ELISA. 347 gene transcripts were up-regulated by 2-fold or more, and 696 transcripts down-regulated 2-fold or more in PBMCs from patients compared to controls. The most highly up-regulated gene was thrombospondin-1 (TSP-1, 8.66-fold increase), and the most down-regulated gene was prostaglandin-endoperoxide synthase 2 (PTGS2, 9.09-fold decrease). Real-time RT-PCR assay confirmed the increase of TSP-1 and the decrease of PTGS2 in PBMCs of patients. ELISA revealed that the levels of TSP-1 and active transforming growth factor (TGF)-β1 that is activated by TSP-1 were elevated in plasma of patients, while the level of prostaglandin E2 (PGE2) that is converted by PTGS2 was reduced. The plasma level of TSP-1 was positively correlated with that of active TGF-β1. Our data suggest that the molecular network including TSP-1, TGF-β1, and PGE2 might be involved in the pathogenesis of APAC and PACG.

  9. In vitro marker gene expression analyses in human peripheral blood mononuclear cells: A tool to assess safety of influenza vaccines in humans.

    Science.gov (United States)

    Sasaki, Eita; Momose, Haruka; Hiradate, Yuki; Ishii, Ken J; Mizukami, Takuo; Hamaguchi, Isao

    2018-12-01

    Vaccines are inoculated in healthy individuals from children to the elderly, and thus high levels of safety and consistency of vaccine quality in each lot must meet the required specifications by using preclinical and lot release testing. Because vaccines are inoculated into humans, recapitulation of biological reactions in humans should be considered for test methods. We have developed a new method to evaluate the safety of influenza vaccines using biomarker gene expression in mouse and rat models. Some biomarker genes are already known to be expressed in human lymphocytes, macrophages and dendritic cells; therefore, we considered some of these genes might be common biomarkers for human and mice to evaluate influenza vaccine safety. In this study, we used human peripheral blood mononuclear cells (PBMC) as a primary assessment tool to confirm the usefulness of potential marker genes in humans. Analysis of marker gene expression in PBMC revealed biomarker gene expressions were dose-relatedly increased in toxic reference influenza vaccine (RE)-stimulated PBMC. Although some marker genes showed increased expression in hemagglutinin split vaccine-stimulated PBMC, their expression levels were lower than that of RE in PBMC from two different donors. Many marker gene expressions correlated with chemokine production. Marker genes such as IRF7 were associated with other Type 1 interferon (IFN)-associated signals and were highly expressed in the CD304 + plasmacytoid dendritic cell (pDC) population. These results suggest PBMC and their marker genes may be useful for vaccine safety evaluation in humans.

  10. Gene expression in human peripheral blood 48 hours after exposure to ionizing radiation

    Data.gov (United States)

    National Aeronautics and Space Administration — Analysis of human peripheral blood 48 hours after irradiation ex vivo with graded doses of gamma rays. Results have been used in building and testing classifiers to...

  11. Senescence-Related Changes in Gene Expression of Peripheral Blood Mononuclear Cells from Octo/Nonagenarians Compared to Their Offspring

    Directory of Open Access Journals (Sweden)

    Amirah Abdul Rahman

    2013-01-01

    Full Text Available Mechanisms determining both functional rate of decline and the time of onset in aging remain elusive. Studies of the aging process especially those involving the comparison of long-lived individuals and young controls are fairly limited. Therefore, this research aims to determine the differential gene expression profile in related individuals from villages in Pahang, Malaysia. Genome-wide microarray analysis of 18 samples of peripheral blood mononuclear cells (PBMCs from two groups: octo/nonagenarians (80–99 years old and their offspring (50.2 ± 4.0 years old revealed that 477 transcripts were age-induced and 335 transcripts were age-repressed with fold changes ≥1.2 in octo/nonagenarians compared to offspring. Interestingly, changes in gene expression were associated with increased capacity for apoptosis (BAK1, cell cycle regulation (CDKN1B, metabolic process (LRPAP1, insulin action (IGF2R, and increased immune and inflammatory response (IL27RA, whereas response to stress (HSPA8, damage stimulus (XRCC6, and chromatin remodelling (TINF2 pathways were downregulated in octo/nonagenarians. These results suggested that systemic telomere maintenance, metabolism, cell signalling, and redox regulation may be important for individuals to maintain their healthy state with advancing age and that these processes play an important role in the determination of the healthy life-span.

  12. Effect of delta sleep-inducing peptide on the expression of antioxidant enzyme genes in the brain and blood of rats during physiological aging.

    Science.gov (United States)

    Kutilin, D S; Bondarenko, T I; Kornienko, I V; Mikhaleva, I I

    2014-09-01

    Subcutaneous injections of exogenous delta sleep-inducing peptide in a dose of 100 μg/kg (monthly, 5-day courses) to rats of various age groups (2-24 months) were followed by an increase in the expression of genes for SOD 1 (Sod1) and glutathione peroxidase 1 (Gpx1) in the brain and nucleated blood cells. The expression of these genes was shown to decrease during physiological aging of the body.

  13. Thoughts modulate the expression of inflammatory genes and may improve the coronary blood flow in patients after a myocardial infarction

    Directory of Open Access Journals (Sweden)

    Carlo Dal Lin

    2018-01-01

    Conclusions: The RR helps to advantageously modulate the expression of inflammatory genes through a cascade of NEI messengers improving, over time, microvascular function and the arteriosclerotic process.

  14. Fish-oil supplementation induces antiinflammatory gene expression profiles in human blood mononuclear cells

    NARCIS (Netherlands)

    Bouwens, M.; Rest, van de O.; Dellschaft, N.; Grootte Bromhaar, M.M.; Groot, de C.P.G.M.; Geleijnse, J.M.; Müller, M.R.; Afman, L.A.

    2009-01-01

    Background: Polyunsaturated fatty acids can have beneficial effects on human immune cells, such as peripheral blood mononuclear cells (PBMCs). However, the mechanisms of action of polyunsaturated fatty acids on immune cells are still largely unknown. Objective: The objective was to examine the

  15. Development of a blood-based gene expression algorithm for assessment of obstructive coronary artery disease in non-diabetic patients

    Directory of Open Access Journals (Sweden)

    Ellis Stephen G

    2011-03-01

    Full Text Available Abstract Background Alterations in gene expression in peripheral blood cells have been shown to be sensitive to the presence and extent of coronary artery disease (CAD. A non-invasive blood test that could reliably assess obstructive CAD likelihood would have diagnostic utility. Results Microarray analysis of RNA samples from a 195 patient Duke CATHGEN registry case:control cohort yielded 2,438 genes with significant CAD association (p RT-PCR analysis of these 113 genes in a PREDICT cohort of 640 non-diabetic subject samples was used for algorithm development. Gene expression correlations identified clusters of CAD classifier genes which were reduced to meta-genes using LASSO. The final classifier for assessment of obstructive CAD was derived by Ridge Regression and contained sex-specific age functions and 6 meta-gene terms, comprising 23 genes. This algorithm showed a cross-validated estimated AUC = 0.77 (95% CI 0.73-0.81 in ROC analysis. Conclusions We have developed a whole blood classifier based on gene expression, age and sex for the assessment of obstructive CAD in non-diabetic patients from a combination of microarray and RT-PCR data derived from studies of patients clinically indicated for invasive angiography. Clinical trial registration information PREDICT, Personalized Risk Evaluation and Diagnosis in the Coronary Tree, http://www.clinicaltrials.gov, NCT00500617

  16. Investigation of Fasciculation and Elongation Protein ζ-1 (FEZ1 in Peripheral Blood Reveals Differences in Gene Expression in Patients with Schizophrenia

    Directory of Open Access Journals (Sweden)

    Vachev T.I.

    2015-06-01

    Full Text Available Schizophrenia (SZ is a chronic neuropsychiatric disorder characterized by affective, neuromorphological and cognitive impairment, deteriorated social functioning and psychosis with underlying molecular abnormalities, including gene expression changes. Observations have suggested that fasciculation and elongation protein ζ-1 (FEZ1 may be implicated in the pathogenesis of schizophrenia. Nevertheless, our current knowledge of the expression of FEZ1 in peripheral blood of schizophrenia patients remains unclear. The purpose of this study was to identify the characteristic gene expression patterns of FEZ1 in peripheral blood samples from schizophrenia patients. We performed quantitative reverse-transcriptase (qRT-PCR analysis using peripheral blood from drug-free schizophrenia patients (n = 29 and age and gender-matched general population controls (n = 24. For the identification of FEZ1 gene expression patterns, we applied a comparative threshold cycle (CT method. A statistically significant difference of FEZ1 mRNA level was revealed in schizophrenia subjects compared to healthy controls (p = 0.0034. To the best of our knowledge, this study is the first describing a down-regulation of FEZ1 gene expression in peripheral blood of patients with schizophrenia. Our results suggested a possible functional role of FEZ1 in the pathogenesis of schizophrenia and confirmed the utility of peripheral blood samples for molecular profiling of psychiatric disorders including schizophrenia. The current study describes FEZ1 gene expression changes in peripheral blood of patients with schizophrenia with significantly down-regulation of FEZ1 mRNA. Thus, our results provide support for a model of SZ pathogenesis that includes the effects of FEZ1 expression.

  17. [Expression of RRM1 and ERCC1 genes in tumor tissues and peripheral blood lymphocytes of advanced non-small cell lung cancer].

    Science.gov (United States)

    Zhang, Guo-bin; Chen, Jian; Wang, Lin-run; Li, Jun; Li, Min-wei; Xu, Nong; Shen-Tu, Jian-zhong

    2012-09-01

    To investigate the expression of RRM1 and ERCC1 genes in tumor tissues and peripheral blood lymphocytes of advanced non-small cell lung cancer (NSCLC). Tissue and peripheral blood samples were collected from 49 advanced NSCLC patients treated with gemcitabine plus carboplatin. The expressions of RRM1 and ERCC1 mRNA in tumor tissue and peripheral lymphocytes were detected by real-time fluorescent quantitative PCR. The relationship of gene expression with clinical characteristics,chemotherapy response and prognosis was analyzed. The RRM1 expression in tumor tissues was positively correlated with that in peripheral blood lymphocytes,while no significant correlation was observed between ERCC1 expression in tumor tissues and that in peripheral blood (rs=0.332 and 0.258; P=0.020 and 0.073, respectively). The expression of RRM1 and ERCC1 in tumor tissues peripheral lymphocytes was synchronous (rs=0.634 and 0.351; P0.05). Significant difference was found in response rate to chemotherapy (Ptissues or low RRM1 expression levels in peripheral blood and those with high RRM1 and ERCC1 expression levels. The patients with low ERCC1 expression levels in tumor tissues gained higher 2-year survival rate (Pblood with the response to chemotherapy and prognosis (P>0.05). The expression of RRMI and ERCC1 genes in tumor tissues and RRM1 in peripheral blood lymphocytes is closely correlated with the response to chemotherapy and prognosis of patients with advanced NSCLC treated with gemcitabine plus carboplatin.

  18. Expression of SSX-1 and SSX-5 genes in the peripheral blood of ...

    African Journals Online (AJOL)

    Background: Liver cancer is the fifth most common cancer in men and the seventh in women. Hepatocellular carcinoma (HCC) is responsible for significant morbidity and mortality in patients with liver cirrhosis and accounts for 90% of primary liver cancer. Synovial sarcoma X chromosome (SSX) genes belong to cancer ...

  19. The effect of hydro-alcoholic Prosopis farcta fruit extract on blood glucose and gene expression of pyruvate kinase in type 1 diabetic rats

    Directory of Open Access Journals (Sweden)

    Mosa Darvish Sargazi

    2016-02-01

    Full Text Available Background: With respect to antioxidant effect of Prosopis farcta fruit extract and the role of antioxidant agents in diabetes improvement, the aim of this study was to investigate the effect of hydro-alcoholic Prosopis farcta fruit extract on blood glucose and gene expression of pyruvate kinase (PK. Materials and Methods: Type 1 diabete was induced in male wistar rats (150-300 g by injection of 60 mg/kg of streptozotocin. Diabetic group received 300 mg/kg of Prosopis farcta fruit extract daily 30 days. The group of normal control and diabetic control received distilled water. Then the glucose level was investigated in day before injection and on days 15 and 30 after injection of prosopis farcta fruit extract. PK gene expression of liver tissue was analysed by Real-Time PCR. Results: The result showed the blood glucose compare to diabetic control significantly decreased on days 15 and there was not any significant between diabetic control. The result of PK gene expression showed that the gene expression in diabetic treatment group compared to diabetic control increased on day 15 and then the expression did not change on day 30 but still wars greater than diabetic control. Conclusion: The result of this study showed that hydro-alcoholic prosopis farcta fruit extract could probably decrease blood glucose by increasing PK gene expression.

  20. Study protocol: a randomised controlled trial investigating the effect of exercise training on peripheral blood gene expression in patients with stable angina

    Directory of Open Access Journals (Sweden)

    Crossman David C

    2010-10-01

    Full Text Available Abstract Background Exercise training has been shown to reduce angina and promote collateral vessel development in patients with coronary artery disease. However, the mechanism whereby exercise exerts these beneficial effects is unclear. There has been increasing interest in the use of whole genome peripheral blood gene expression in a wide range of conditions to attempt to identify both novel mechanisms of disease and transcriptional biomarkers. This protocol describes a study in which we will assess the effect of a structured exercise programme on peripheral blood gene expression in patients with stable angina, and correlate this with changes in angina level, anxiety, depression, and exercise capacity. Methods/Design Sixty patients with stable angina will be recruited and randomised 1:1 to exercise training or conventional care. Patients randomised to exercise training will attend an exercise physiology laboratory up to three times weekly for supervised aerobic interval training sessions of one hour in total duration. Patients will undergo assessments of angina, anxiety, depression, and peripheral blood gene expression at baseline, after six and twelve weeks of training, and twelve weeks after formal exercise training ceases. Discussion This study will provide comprehensive data on the effect of exercise training on peripheral blood gene expression in patients with angina. By correlating this with improvement in angina status we will identify candidate peripheral blood transcriptional markers predictive of improvements in angina level in response to exercise training. Trial Registration Clinicaltrials.gov identifier: NCT01147952

  1. Peripheral Blood Based Discrimination of Ulcerative Colitis and Crohn’s Disease from Non-IBD Colitis by Genome-Wide Gene Expression Profiling

    Directory of Open Access Journals (Sweden)

    Ferenc Sipos

    2011-01-01

    Full Text Available A molecular diagnostic assay using easily accessible peripheral blood would greatly assist in the screening and diagnosis of ulcerative colitis (UC and Crohn’s disease (CD. Transcriptional profiles in blood/biopsy samples from 12 UC (6/12, 9 CD (5/9, 6 non-inflammatory bowel disease (non-IBD colitis (6/0, and 11 healthy (11/11 patients were assessed by Affymetrix HGU133Plus2.0 microarrays. Prediction analysis of microarrays, discriminant and ROC analyses were performed, the results were validated by RT-PCR and immunohistochemistry using also an independent set of samples (15 blood samples, 45 biopsies. A set of 13 transcripts was differentially expressed in IBD, non-IBD controls and healthy blood samples (100% specificity and sensitivity. Validated difference was found in 16 transcripts between UC, non-IBD and normal blood, and 4 transcripts between CD, non-IBD and normal samples. UC and CD blood cases could be also distinguished by 5 genes with 100% specificity and sensitivity. Some disease associated alterations in blood transcripts were also detected in colonic tissue. IBD subtypes may be discriminated from non-IBD (diverticulitis, infective and ischemic colitis in vitro from peripheral blood by screening for differential gene expression revealed in this study. Transcriptional profile alterations in peripheral blood can be located in diseased colon.

  2. Aerobic training increases the expression of adiponectin receptor genes in the peripheral blood mononuclear cells of young men

    Directory of Open Access Journals (Sweden)

    SH Lee

    2015-09-01

    Full Text Available Little is known about the effect of exercise training on the expression of adiponectin receptor genes in peripheral blood mononuclear cells (PBMCs. In this study, we investigated the effects of aerobic training on the expression of AdipoR1 and AidpoR2 mRNAs in PBMCs, whole body insulin sensitivity, and circulating adiponectins in men. Thirty young men were randomly assigned to either a control (n=15 or an exercise (n=15 group. Subjects assigned to the exercise group underwent a 12-week jogging and/or running programme on a motor-driven treadmill at an intensity of 60%-75% of the age-based maximum heart rate with duration of 40 minutes per session and a frequency of 5 days per week. Two-way mixed ANOVA with repeated measures was used to test any significant time-by-group interaction effects for the measured variables at p=0.05. We found significant time-by-group interaction effects for waist circumference (p=0.001, VO2 max (p<0.001, fasting insulin (p=0.016, homeostasis model assessment for insulin resistance (HOMA-IR (p=0.010, area under the curve (AUC for insulin response during the 75-g oral glucose tolerance test (p=0.002, high-molecular weight (HMW adiponectin (p=0.016, and the PBMC mRNA levels of AdipoR1 (p<0.001 and AdipoR2 (p=0.001. The exercise group had significantly increased mRNA levels of AdipoR1 and AdipoR2 in PBMCs, along with increased whole body insulin sensitivity and HMW adiponectin, decreased waist circumference, and increased VO2 max compared with the control group. In summary, the current findings suggest that exercise training modulates the expression of AdipoR1 and AdipoR2 mRNAs in PBMCs, implying that manipulation of the expression of these genes could be a potential surrogate for lifestyle intervention-mediated improvements of whole body insulin sensitivity and glucose homeostasis.

  3. Aggressive periodontitis and chronic arthritis: blood mononuclear cell gene expression and plasma protein levels of cytokines and cytokine inhibitors.

    Science.gov (United States)

    Sørensen, Lars K; Havemose-Poulsen, Anne; Bendtzen, Klaus; Holmstrup, Palle

    2009-02-01

    Cytokines and cytokine inhibitors have been associated with many immunoinflammatory diseases. In the present study, we examined whether peripheral blood mononuclear cell (PBMC) gene expression mirrors the corresponding plasma levels of clinically important pro- and anti-inflammatory cytokines and cytokine receptors in patients with periodontitis and patients with arthritis representing two examples of chronic inflammatory diseases, such as periodontitis and arthritis. To identify possible disease-specific characteristics of subjects with periodontitis relative to subjects with chronic inflammation in general, patients with arthritis (juvenile idiopathic arthritis [JIA] and rheumatoid arthritis [RA]) were included. The study population consisted of white adults aggressive periodontitis (LAgP; n = 18), generalized aggressive periodontitis (GAgP; n = 27), JIA (n = 10), and RA (n = 23) and healthy controls (n = 25). PBMC transcripts of interleukin (IL) 1 alpha (IL1A), IL 1 beta (IL1B), IL 1 receptor antagonist (IL1RN), IL6, IL10, tumor necrosis factor alpha (TNFA), TNF alpha receptor I (TNFRI), and TNFRII were measured using real-time reverse transcription-polymerase chain reaction and compared to the corresponding plasma protein levels measured by enzyme-linked immunosorbent assay and a multiplex antibody bead assay. Compared to controls, soluble (s) TNF-RII levels were significantly elevated in patients with GAgP (P = 0.001) or JIA (P = 0.002), and PBMC TNFA transcript levels were lower in patients with JIA (P = 0.001). A negative correlation was found between IL6 expression and IL-6 plasma levels in patients with JIA versus controls, and a positive correlation/association was found between TNFRI expression and sTNF-RI plasma levels in patients with LAgP and RA. The study demonstrated only a few changes in the PBMC expression of various cytokine and cytokine inhibitor genes in aggressive periodontitis and chronic arthritis compared to controls. There were a few

  4. DNA ARRAYS TO MONITOR GENE EXPRESSION IN RAT BLOOD AND UTERUS FOLLOWING 17-BETA-ESTRADIOL EXPOSURE: BIOMONITORING ENVIRONMENTAL EFFECTS USING SURROGATE TISSUES

    Science.gov (United States)

    DNA arrays to monitor gene expression in rat blood and uterus following 17-b-estradiol exposure - biomonitoring environmental effects using surrogate tissuesJohn C. Rockett, Robert J. Kavlock, Christy R. Lambright, Louise G. Parks, Judith E. Schmid, Vickie S. Wilson, Carmen W...

  5. Distinct Gene Expression Profiles in Peripheral Blood Mononuclear Cells from Patients Infected with Vaccinia Virus, Yellow Fever 17D Virus, or Upper Respiratory Infections Running Title: PBMC Expression Response to Viral Agents

    Science.gov (United States)

    Scherer, Christina A.; Magness, Charles L.; Steiger, Kathryn V.; Poitinger, Nicholas D.; Caputo, Christine M.; Miner, Douglas G.; Winokur, Patricia L.; Klinzman, Donna; McKee, Janice; Pilar, Christine; Ward, Patricia A.; Gillham, Martha H.; Haulman, N. Jean; Stapleton, Jack T.; Iadonato, Shawn P.

    2007-01-01

    Gene expression in human peripheral blood mononuclear cells was systematically evaluated following smallpox and yellow fever vaccination, and naturally occurring upper respiratory infection (URI). All three infections were characterized by the induction of many interferon stimulated genes, as well as enhanced expression of genes involved in proteolysis and antigen presentation. Vaccinia infection was also characterized by a distinct expression signature composed of up-regulation of monocyte response genes, with repression of genes expressed by B and T-cells. In contrast, the yellow fever host response was characterized by a suppression of ribosomal and translation factors, distinguishing this infection from vaccinia and URI. No significant URI-specific signature was observed, perhaps reflecting greater heterogeneity in the study population and etiological agents. Taken together, these data suggest that specific host gene expression signatures may be identified that distinguish one or a small number of virus agents. PMID:17651872

  6. Hypoxanthine Guanine Phosphoribosyl Transferase Is the Most Stable Reference Gene for Gene Expression Analysis by Quantitative PCR in Peripheral Blood Mononuclear Cells from Women with the Polycystic Ovary Syndrome

    Directory of Open Access Journals (Sweden)

    Milutinović Danijela Vojnović

    2014-09-01

    Full Text Available Background: The polycystic ovary syndrome (PCOS is a frequent endocrine disorder that affects women of reproductive age. As the syndrome is strongly associated with obesity, it is of interest to examine the gene expression diffe rences that accompany its development and the associ a ted metabolic disturbances. Real-time RT PCR is a standard method for studying changes in gene expression. However, to obtain accurate and reliable results, validation of reference genes is obligatory. The aim of this study was to identify a suitable reference for the normalization of gene expression in peripheral blood mononuclear cells (PBMCs from obese and normal-weight women with PCOS.

  7. [Construction of suppression subtractive hybridization cDNA library of half-blood males of Dermacentor silvarum and analysis of differentially expressed genes].

    Science.gov (United States)

    Liu, Qi; Wang, Wei-lin; Meng, Qing-feng; Xu, Zhan; Cui, Jie; Liu, Xin-xin; Wang, Wei-li

    2014-08-01

    To construct a suppression subtractive hybridization (SSH) cDNA library of half-blood males of Dermacentor silvarum, and analyze the differentially expressed genes. Total RNA was extracted from the half-blood males and unfed males of D. silvarum. cDNA was synthesized following the protocol of SMARTER cDNA synthesis kit. After Rsa I digestion, cDNA was ligated to adaptors. The cDNA from the half-blood males was used as the tester, and unfed males as the driver. The SSH library was constructed using TaKaRa PCR-select cDNA subtraction kit. Differentially expressed cDNAs were amplified by nested PCR, cloned into PMD-18T vector, transformed into E. coli DH5alpha, and the white-blue plaque selection was used to get the positive clones. The titer of SSH library and the recombination efficiency were calculated. Individual colonies were randomly selected from library. Subtractive efficiency of the subtracted cDNA library was examined by reverse Northern blotting and RT-PCR. Positive clones with differentially expressed genes were sequenced. Homology comparison and function prediction were performed by Blastn and Blastx. The bands of double-stranded cDNAs from half-blood males and unfed males of D. silvarum were dispersed and longer than 500 bp. After Rsa I digestion, the ds cDNA-fragments were 100-1000 bp. The ligation reaction efficiency of adaptor was more than 25%. Nested PCR showed that the bands of subtracted ds cDNA were gathered, ranging from 250 to 500 bp. The titer of SSH library was 700,000 pfu/ml, and the recombination efficiency was 88.5% (239/270). Reverse Northern hybridization revealed that the clones showed stronger signals in half-blood males cDNA probes than in unfed males cDNA probes. RT-PCR showed that among the eight random selected positive clones, 5 clones were up-expressed under half-blood condition. A total of 87 differentially expressed sequence tags (ESTs, 200-800 bp) were obtained from 115 positive clones. Among the 87 ESTs, 53 ESTs showed

  8. Garlic accelerates red blood cell turnover and splenic erythropoietic gene expression in mice: evidence for erythropoietin-independent erythropoiesis.

    Directory of Open Access Journals (Sweden)

    Bünyamin Akgül

    2010-12-01

    Full Text Available Garlic (Allium sativum has been valued in many cultures both for its health effects and as a culinary flavor enhancer. Garlic's chemical complexity is widely thought to be the source of its many health benefits, which include, but are not limited to, anti-platelet, procirculatory, anti-inflammatory, anti-apoptotic, neuro-protective, and anti-cancer effects. While a growing body of scientific evidence strongly upholds the herb's broad and potent capacity to influence health, the common mechanisms underlying these diverse effects remain disjointed and relatively poorly understood. We adopted a phenotype-driven approach to investigate the effects of garlic in a mouse model. We examined RBC indices and morphologies, spleen histochemistry, RBC half-lives and gene expression profiles, followed up by qPCR and immunoblot validation. The RBCs of garlic-fed mice register shorter half-lives than the control. But they have normal blood chemistry and RBC indices. Their spleens manifest increased heme oxygenase 1, higher levels of iron and bilirubin, and presumably higher CO, a pleiotropic gasotransmitter. Heat shock genes and those critical for erythropoiesis are elevated in spleens but not in bone marrow. The garlic-fed mice have lower plasma erythropoietin than the controls, however. Chronic exposure to CO of mice on garlic-free diet was sufficient to cause increased RBC indices but again with a lower plasma erythropoietin level than air-treated controls. Furthermore, dietary garlic supplementation and CO treatment showed additive effects on reducing plasma erythropoietin levels in mice. Thus, garlic consumption not only causes increased energy demand from the faster RBC turnover but also increases the production of CO, which in turn stimulates splenic erythropoiesis by an erythropoietin-independent mechanism, thus completing the sequence of feedback regulation for RBC metabolism. Being a pleiotropic gasotransmitter, CO may be a second messenger for garlic

  9. Differences in Mammalian Target of Rapamycin Gene Expression in the Peripheral Blood and Articular Cartilages of Osteoarthritic Patients and Disease Activity

    Directory of Open Access Journals (Sweden)

    Elena V. Tchetina

    2013-01-01

    Full Text Available The gene expression of mTOR, autophagy-related ULK1, caspase 3, CDK-inhibitor p21, and TNFα was measured in the peripheral blood of osteoarthritic (OA patients at different stages of the disease aiming to establish a gene expression profile that might indicate the activity of the disease and joint destruction. Whole blood of 65 OA outpatients, 27 end-stage OA patients, 27 healthy volunteers, and knee articular cartilages of 28 end-stage OA patients and 26 healthy subjects were examined. OA outpatients were subjected to clinical testing, ultrasonography, and radiographic and WOMAC scoring. Protein levels of p70-S6K, p21, and caspase 3 were quantified by ELISA. Gene expression was measured using real-time RT-PCR. Upregulation of mTOR gene expression was observed in PBMCs of 42 OA outpatients (“High mTOR expression subset” and in PBMCs and articular cartilages of all end-stage OA patients. A positive correlation between mTOR gene expression in PBMCs and cartilage was observed in the end-stage OA patients. 23 OA outpatients in the “Low mTOR expression subset” exhibited significantly lower mTOR gene expression in PBMCs compared to healthy controls. These “Low mTOR” subset subjects experienced significantly more pain upon walking, and standing and increased total joint stiffness versus “High mTOR” subset, while the latter more often exhibited synovitis. The protein concentrations of p70-S6K, p21, and caspase 3 in PBMCs were significantly lower in the “Low” subset versus “High” subset and end-stage subjects. Increases in the expression of mTOR in PBMCs of OA patients are related to disease activity, being associated with synovitis more than with pain.

  10. Replicable and Coupled Changes in Innate and Adaptive Immune Gene Expression in Two Case-Control Studies of Blood Microarrays in Major Depressive Disorder.

    Science.gov (United States)

    Leday, Gwenaël G R; Vértes, Petra E; Richardson, Sylvia; Greene, Jonathan R; Regan, Tim; Khan, Shahid; Henderson, Robbie; Freeman, Tom C; Pariante, Carmine M; Harrison, Neil A; Perry, V Hugh; Drevets, Wayne C; Wittenberg, Gayle M; Bullmore, Edward T

    2018-01-01

    Peripheral inflammation is often associated with major depressive disorder (MDD), and immunological biomarkers of depression remain a focus of investigation. We used microarray data on whole blood from two independent case-control studies of MDD: the GlaxoSmithKline-High-Throughput Disease-specific target Identification Program [GSK-HiTDiP] study (113 patients and 57 healthy control subjects) and the Janssen-Brain Resource Company study (94 patients and 100 control subjects). Genome-wide differential gene expression analysis (18,863 probes) resulted in a p value for each gene in each study. A Bayesian method identified the largest p-value threshold (q = .025) associated with twice the number of genes differentially expressed in both studies compared with the number of coincidental case-control differences expected by chance. A total of 165 genes were differentially expressed in both studies with concordant direction of fold change. The 90 genes overexpressed (or UP genes) in MDD were significantly enriched for immune response to infection, were concentrated in a module of the gene coexpression network associated with innate immunity, and included clusters of genes with correlated expression in monocytes, monocyte-derived dendritic cells, and neutrophils. In contrast, the 75 genes underexpressed (or DOWN genes) in MDD were associated with the adaptive immune response and included clusters of genes with correlated expression in T cells, natural killer cells, and erythroblasts. Consistently, the MDD patients with overexpression of UP genes also had underexpression of DOWN genes (correlation > .70 in both studies). MDD was replicably associated with proinflammatory activation of the peripheral innate immune system, coupled with relative inactivation of the adaptive immune system, indicating the potential of transcriptional biomarkers for immunological stratification of patients with depression. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier

  11. Prediction of response to remission induction therapy by gene expression profiling of peripheral blood in Japanese patients with microscopic polyangiitis.

    Science.gov (United States)

    Ishizu, Akihiro; Tomaru, Utano; Masuda, Sakiko; Sada, Ken-Ei; Amano, Koichi; Harigai, Masayoshi; Kawaguchi, Yasushi; Arimura, Yoshihiro; Yamagata, Kunihiro; Ozaki, Shoichi; Dobashi, Hiroaki; Homma, Sakae; Okada, Yasunori; Sugiyama, Hitoshi; Usui, Joichi; Tsuboi, Naotake; Matsuo, Seiichi; Makino, Hirofumi

    2017-05-31

    Microscopic polyangiitis (MPA), which is classified as an anti-neutrophil cytoplasmic antibody (ANCA)-associated small vessel vasculitis, is one of the most frequent primary vasculitides in Japan. We earlier nominated 16 genes (IRF7, IFIT1, IFIT5, OASL, CLC, GBP-1, PSMB9, HERC5, CCR1, CD36, MS4A4A, BIRC4BP, PLSCR1, DEFA1/DEFA3, DEFA4, and COL9A2) as predictors of response to remission induction therapy against MPA. The aim of this study is to determine the accuracy of prediction using these 16 predictors. Thirty-nine MPA patients were selected randomly and retrospectively from the Japanese nationwide RemIT-JAV-RPGN cohort and enrolled in this study. Remission induction therapy was conducted according to the Guidelines of Treatment for ANCA-Associated Vasculitis published by the Ministry of Health, Labour, and Welfare of Japan. Response to remission induction therapy was predicted by profiling the altered expressions of the 16 predictors between the period before and 1 week after the beginning of treatment. Remission is defined as the absence of clinical manifestations of active vasculitis (Birmingham Vasculitis Activity Score 2003: 0 or 1 point). Persistent remission for 18 months is regarded as a "good response," whereas no remission or relapse after remission is regarded as a "poor response." "Poor" and "good" responses were predicted in 7 and 32 patients, respectively. Five out of 7 patients with "poor" prediction and 1 out of 32 patients with "good" prediction experienced relapse after remission. One out of 7 patients with "poor" prediction was not conducted to remission. Accordingly, the sensitivity and specificity to predict poor response was 85.7% (6/7) and 96.9% (31/32), respectively. Response to remission induction therapy can be predicted by monitoring the altered expressions of the 16 predictors in the peripheral blood at an early point of treatment in MPA patients.

  12. Plasma fatty acid ratios affect blood gene expression profiles--a cross-sectional study of the Norwegian Women and Cancer Post-Genome Cohort.

    Directory of Open Access Journals (Sweden)

    Karina Standahl Olsen

    Full Text Available High blood concentrations of n-6 fatty acids (FAs relative to n-3 FAs may lead to a "physiological switch" towards permanent low-grade inflammation, potentially influencing the onset of cardiovascular and inflammatory diseases, as well as cancer. To explore the potential effects of FA ratios prior to disease onset, we measured blood gene expression profiles and plasma FA ratios (linoleic acid/alpha-linolenic acid, LA/ALA; arachidonic acid/eicosapentaenoic acid, AA/EPA; and total n-6/n-3 in a cross-section of middle-aged Norwegian women (n = 227. After arranging samples from the highest values to the lowest for all three FA ratios (LA/ALA, AA/EPA and total n-6/n-3, the highest and lowest deciles of samples were compared. Differences in gene expression profiles were assessed by single-gene and pathway-level analyses. The LA/ALA ratio had the largest impact on gene expression profiles, with 135 differentially expressed genes, followed by the total n-6/n-3 ratio (125 genes and the AA/EPA ratio (72 genes. All FA ratios were associated with genes related to immune processes, with a tendency for increased pro-inflammatory signaling in the highest FA ratio deciles. Lipid metabolism related to peroxisome proliferator-activated receptor γ (PPARγ signaling was modified, with possible implications for foam cell formation and development of cardiovascular diseases. We identified higher expression levels of several autophagy marker genes, mainly in the lowest LA/ALA decile. This finding may point to the regulation of autophagy as a novel aspect of FA biology which warrants further study. Lastly, all FA ratios were associated with gene sets that included targets of specific microRNAs, and gene sets containing common promoter motifs that did not match any known transcription factors. We conclude that plasma FA ratios are associated with differences in blood gene expression profiles in this free-living population, and that affected genes and pathways may

  13. Integration of Genome-Wide SNP Data and Gene-Expression Profiles Reveals Six Novel Loci and Regulatory Mechanisms for Amino Acids and Acylcarnitines in Whole Blood.

    Directory of Open Access Journals (Sweden)

    Ralph Burkhardt

    2015-09-01

    Full Text Available Profiling amino acids and acylcarnitines in whole blood spots is a powerful tool in the laboratory diagnosis of several inborn errors of metabolism. Emerging data suggests that altered blood levels of amino acids and acylcarnitines are also associated with common metabolic diseases in adults. Thus, the identification of common genetic determinants for blood metabolites might shed light on pathways contributing to human physiology and common diseases. We applied a targeted mass-spectrometry-based method to analyze whole blood concentrations of 96 amino acids, acylcarnitines and pathway associated metabolite ratios in a Central European cohort of 2,107 adults and performed genome-wide association (GWA to identify genetic modifiers of metabolite concentrations. We discovered and replicated six novel loci associated with blood levels of total acylcarnitine, arginine (both on chromosome 6; rs12210538, rs17657775, propionylcarnitine (chromosome 10; rs12779637, 2-hydroxyisovalerylcarnitine (chromosome 21; rs1571700, stearoylcarnitine (chromosome 1; rs3811444, and aspartic acid traits (chromosome 8; rs750472. Based on an integrative analysis of expression quantitative trait loci in blood mononuclear cells and correlations between gene expressions and metabolite levels, we provide evidence for putative causative genes: SLC22A16 for total acylcarnitines, ARG1 for arginine, HLCS for 2-hydroxyisovalerylcarnitine, JAM3 for stearoylcarnitine via a trans-effect at chromosome 1, and PPP1R16A for aspartic acid traits. Further, we report replication and provide additional functional evidence for ten loci that have previously been published for metabolites measured in plasma, serum or urine. In conclusion, our integrative analysis of SNP, gene-expression and metabolite data points to novel genetic factors that may be involved in the regulation of human metabolism. At several loci, we provide evidence for metabolite regulation via gene-expression and observed

  14. Rituximab Downregulates Gene Expression Associated with Cell Proliferation, Survival, and Proteolysis in the Peripheral Blood from Rheumatoid Arthritis Patients: A Link between High Baseline Autophagy-Related ULK1 Expression and Improved Pain Control

    Directory of Open Access Journals (Sweden)

    Elena V. Tchetina

    2016-01-01

    Full Text Available Objective. To clarify molecular mechanisms for the response to rituximab in a longitudinal study. Methods. Peripheral blood from 16 RA patients treated with rituximab for a single treatment course and 26 healthy controls, blood and knee articular cartilages from 18 patients with long-standing RA, and cartilages from 14 healthy subjects were examined. Clinical response was assessed using ESR, ACPA, CRP, RF, DAS28 levels, CD19+ B-cell counts, bone erosion, and joint space narrowing scores. Protein expression in PBMCs was quantified using ELISA. Gene expression was performed with quantitative real-time PCR. Results. A decrease (p<0.05 in DAS28, ESR, and CRP values after rituximab treatment was associated with the downregulation of MTOR, p21, caspase 3, ULK1, TNFα, IL-1β, and cathepsin K gene expression in the peripheral blood to levels found in healthy subjects. MMP-9 expression remained significantly higher compared to controls although decreased (p<0.05 versus baseline. A negative correlation between baseline ULK1 gene expression and the number of tender joints at the end of follow-up was observed. Conclusions. The response to rituximab was associated with decreased MTOR, p21, caspase 3, ULK1, TNFα, IL-1β, and cathepsin K gene expression compared to healthy subjects. Residual increased expression in MMP-9, IFNα, and COX2 might account for remaining inflammation and pain. High baseline ULK1 gene expression indicates a good response in respect to pain.

  15. Recombinant gene expression protocols

    National Research Council Canada - National Science Library

    Tuan, Rocky S

    1997-01-01

    .... A fundamental requirement for successful recombinant gene expression is the design of the cloning vector and the choice of the host organism for expression. Recombinant Gene Expression Protocols grows out of the need for a laboratory manual that provides the reader the background and rationale, as well as the practical protocols for the preparation of...

  16. Response of the goat mammary gland to infection with Staphylococcus aureus revealed by gene expression profiling in milk somatic and white blood cells

    Directory of Open Access Journals (Sweden)

    Cremonesi Paola

    2012-10-01

    Full Text Available Abstract Background S. aureus is one of the main pathogens responsible for the intra-mammary infection in dairy ruminants. Although much work has been carried out to understand the complex physiological and cellular events that occur in the mammary gland in response to S. aureus, the protective mechanisms are still poorly understood. The objectives of the present study were to investigate gene expression during the early response of the goat mammary gland to an experimental challenge with S. aureus, in order to better understand the local and systemic response and to compare them in two divergent lines of goat selected for high and low milk somatic cell scores. Results No differences in gene expression were found between high and low SCS (Somatic Cells Score selection lines. Analysing the two groups together, an expression of 300 genes were found to change from T0 before infection, and T4 at 24 hours and T5 at 30 hours following challenge. In blood derived white blood cells 8 genes showed increased expression between T0 and T5 and 1 gene has reduced expression. The genes showing the greatest increase in expression following challenge (5.65 to 3.16 fold change play an important role in (i immune and inflammatory response (NFKB1, TNFAIP6, BASP1, IRF1, PLEK, BATF3; (ii the regulation of innate resistance to pathogens (PTX3; and (iii the regulation of cell metabolism (CYTH4, SLC2A6, ARG2. The genes with reduced expression (−1.5 to −2.5 fold included genes involved in (i lipid metabolism (ABCG2, FASN, (ii chemokine, cytokine and intracellular signalling (SPPI, and (iii cell cytoskeleton and extracellular matrix (KRT19. Conclusions Analysis of genes with differential expression following infection showed an inverse relationship between immune response and lipid metabolism in the early response of the mammary gland to the S. aureus challenge. PTX3 showed a large change in expression in both milk and blood, and is therefore a candidate for further

  17. Response of the goat mammary gland to infection with Staphylococcus aureus revealed by gene expression profiling in milk somatic and white blood cells

    Science.gov (United States)

    2012-01-01

    Background S. aureus is one of the main pathogens responsible for the intra-mammary infection in dairy ruminants. Although much work has been carried out to understand the complex physiological and cellular events that occur in the mammary gland in response to S. aureus, the protective mechanisms are still poorly understood. The objectives of the present study were to investigate gene expression during the early response of the goat mammary gland to an experimental challenge with S. aureus, in order to better understand the local and systemic response and to compare them in two divergent lines of goat selected for high and low milk somatic cell scores. Results No differences in gene expression were found between high and low SCS (Somatic Cells Score) selection lines. Analysing the two groups together, an expression of 300 genes were found to change from T0 before infection, and T4 at 24 hours and T5 at 30 hours following challenge. In blood derived white blood cells 8 genes showed increased expression between T0 and T5 and 1 gene has reduced expression. The genes showing the greatest increase in expression following challenge (5.65 to 3.16 fold change) play an important role in (i) immune and inflammatory response (NFKB1, TNFAIP6, BASP1, IRF1, PLEK, BATF3); (ii) the regulation of innate resistance to pathogens (PTX3); and (iii) the regulation of cell metabolism (CYTH4, SLC2A6, ARG2). The genes with reduced expression (−1.5 to −2.5 fold) included genes involved in (i) lipid metabolism (ABCG2, FASN), (ii) chemokine, cytokine and intracellular signalling (SPPI), and (iii) cell cytoskeleton and extracellular matrix (KRT19). Conclusions Analysis of genes with differential expression following infection showed an inverse relationship between immune response and lipid metabolism in the early response of the mammary gland to the S. aureus challenge. PTX3 showed a large change in expression in both milk and blood, and is therefore a candidate for further studies on

  18. Germline genes hypomethylation and expression define a molecular signature in peripheral blood of ICF patients: implications for diagnosis and etiology.

    Science.gov (United States)

    Velasco, Guillaume; Walton, Emma L; Sterlin, Delphine; Hédouin, Sabrine; Nitta, Hirohisa; Ito, Yuya; Fouyssac, Fanny; Mégarbané, André; Sasaki, Hiroyuki; Picard, Capucine; Francastel, Claire

    2014-04-17

    Immunodeficiency Centromeric Instability and Facial anomalies (ICF) is a rare autosomal recessive disease characterized by reduction in serum immunoglobulins with severe recurrent infections, facial dysmorphism, and more variable symptoms including mental retardation. ICF is directly related to a genomic methylation defect that mainly affects juxtacentromeric heterochromatin regions of certain chromosomes, leading to chromosomal rearrangements that constitute a hallmark of this syndrome upon cytogenetic testing. Mutations in the de novo DNA methyltransferase DNMT3B, the protein ZBTB24 of unknown function, or loci that remain to be identified, lie at its origin. Despite unifying features, common or distinguishing molecular signatures are still missing for this disease. We used the molecular signature that we identified in a mouse model for ICF1 to establish transcriptional biomarkers to facilitate diagnosis and understanding of etiology of the disease. We assayed the expression and methylation status of a set of genes whose expression is normally restricted to germ cells, directly in whole blood samples and epithelial cells of ICF patients. We report that DNA hypomethylation and expression of MAEL and SYCE1 represent robust biomarkers, easily testable directly from uncultured cells to diagnose the most prevalent sub-type of the syndrome. In addition, we identified the first unifying molecular signatures for ICF patients. Of importance, we validated the use of our biomarkers to diagnose a baby born to a family with a sick child. Finally, our analysis revealed unsuspected complex molecular signatures in two ICF patients suggestive of a novel genetic etiology for the disease. Early diagnosis of ICF syndrome is crucial since early immunoglobulin supplementation can improve the course of disease. However, ICF is probably underdiagnosed, especially in patients that present with incomplete phenotype or born to families with no affected relatives. The specific and robust

  19. Expression of Caspase-1 Gene Transcript Variant mRNA in Peripheral Blood Mononuclear Cells of Patients with Primary Gout in Different TCM Syndromes

    Directory of Open Access Journals (Sweden)

    Wan-Tai Dang

    2015-01-01

    Full Text Available A large number of studies have shown that cysteinyl aspartate specific protease-1 (CASP1 played an important role in the inflammatory response of primary gout, but the decreased expression of different CASP1 transcript variant could inhibit the activation of IL-1β. Our study mainly analyzed the expression level and function of CASP1 gene transcript variant mRNA in peripheral blood mononuclear cells of patients with gout in different TCM syndromes. The expression of CASP1 gene transcript variant and IL-1β mRNA in PBMCs were detected in patients with PG [acute phase (AP: 44 cases; nonacute phase (NAP: 52 cases] and healthy controls (HC: 30 cases by reverse transcription-polymerase chain reaction and/or real-time quantitative polymerase chain reaction. The expressions of plasma IL-1β in patients with PG and HC were detected by enzyme-linked immunosorbent assay. Dysregulated expression of the CASP1 gene and its transcript variant, plasma proinflammatory cytokines in all patients with primary gout in different TCM syndromes, correlation analysis showed that there was negative correlation between the expression of CASP1-gamma gene transcript variant mRNA and IL-1β protein in APPG group. The study suggested that CASP1 gene and its transcript variant may play a critical role in the inflammatory response of patients with PG in different phases and TCM syndromes.

  20. Expression of selected genes of dendritic and Treg cells in blood and skin of morphea patients treated with UVA1 phototherapy

    Science.gov (United States)

    Osmola-Mańkowska, Agnieszka J.; Kowalczyk, Michał J.; Żaba, Ryszard W.; Adamski, Zygmunt; Dańczak-Pazdrowska, Aleksandra

    2018-01-01

    Introduction Morphea is a chronic autoimmune disease characterized by fibrosis of the skin. Dendritic cells (DC) and regulatory T cells (Tregs) play a significant role in development of autoimmune and tolerance mechanisms. The aim of the study was to establish the expression of selected genes of plasmacytoid and myeloid DC, Treg cells, and the microenvironment of cytokines (interleukin-17A (IL-17A), transforming growth factor β (TGF-β)) in blood and skin of morphea patients. In addition, the effect of UVA1 phototherapy on expression of the aforementioned genes was evaluated. Material and methods The study was performed on 15 blood and 10 skin samples from patients with morphea. The evaluation included expression of CLEC4C (C-type lectin domain family 4, member C receptor), Lymphocyte antigen 75 (LY75), Forkhead box p3 (foxp3) transcription factor, IL-17A and TGF-β genes in peripheral blood mononuclear cells (PBMC) and in skin samples both before and after UVA1 phototherapy using real-time polymerase chain reaction. Results The study revealed lower expression of CLEC4C before (p = 0.010) and after (p = 0.009) phototherapy and lower expression of IL-17A before (p = 0.038) phototherapy in PBMC of patients with morphea vs. the control group. Expression of CLEC4C in PBMC correlated negatively (rho = –0.90; p = 0.001) with activity of disease after phototherapy. No significant differences were found between expression of analysed genes before and after UVA1 therapy in PBMC and skin of morphea patients. Conclusions The results do not confirm the involvement of analysed subsets of DC and Tregs in UVA1 phototherapy in morphea, but point to CLEC4C as a possible biomarker associated with the disease activity. PMID:29593811

  1. Gene expression in peripheral blood differs after cardioembolic compared with large-vessel atherosclerotic stroke: biomarkers for the etiology of ischemic stroke.

    Science.gov (United States)

    Xu, Huichun; Tang, Yang; Liu, Da-Zhi; Ran, Ruiqiong; Ander, Bradley P; Apperson, Michelle; Liu, Xin She; Khoury, Jane C; Gregg, Jeffrey P; Pancioli, Arthur; Jauch, Edward C; Wagner, Kenneth R; Verro, Piero; Broderick, Joseph P; Sharp, Frank R

    2008-07-01

    There are no biomarkers that differentiate cardioembolic from large-vessel atherosclerotic stroke, although the treatments differ for each and approximately 30% of strokes and transient ischemic attacks have undetermined etiologies using current clinical criteria. We aimed to define gene expression profiles in blood that differentiate cardioembolic from large-vessel atherosclerotic stroke. Peripheral blood samples were obtained from healthy controls and acute ischemic stroke patients (genes differ at least 1.5-fold between them, and a minimum number of 23 genes differentiate the two types of stroke with at least 95.2% specificity and 95.2% sensitivity for each. Genes regulated in large-vessel atherosclerotic stroke are expressed in platelets and monocytes and modulate hemostasis. Genes regulated in cardioembolic stroke are expressed in neutrophils and modulate immune responses to infectious stimuli. This new method can be used to predict whether a stroke of unknown etiology was because of cardioembolism or large-vessel atherosclerosis that would lead to different therapy. These results have wide ranging implications for similar disorders.

  2. Genes That Influence Blood Pressure

    Science.gov (United States)

    ... Matters September 26, 2011 Genes that Influence Blood Pressure In one of the largest genomic studies ever, ... consortium identified 29 genetic variations that influence blood pressure. More than half of these variants were previously ...

  3. Expression of cytokine genes and receptors in white blood cells associated with divergent body weight gain in beef steers

    Science.gov (United States)

    Previous work examining the transcriptome of steer tissue samples from animals with divergent gain have shown a relationship with the expression of genes with functions in immune and inflammatory pathways. The process of mounting an immune or inflammatory response is energetically expensive and vari...

  4. Plasma 25 hydroxyvitamin D level and blood gene expression profiles: a cross-sectional study of the Norwegian Women and Cancer Post-genome Cohort.

    Science.gov (United States)

    Standahl Olsen, K; Rylander, C; Brustad, M; Aksnes, L; Lund, E

    2013-07-01

    Vitamin D deficiency has been associated with increased risk of developing several diseases, but much is unknown about the molecular effects involved. Gene expression technology is increasingly being used to elucidate molecular mechanisms related to nutritional factors, and in this study of free-living, middle-aged Norwegian women, we aimed at identifying gene expression pathways in the blood associated with vitamin D status. Blood samples and questionnaires were collected as a part of the Norwegian Women and Cancer Post-genome Cohort (500 invited subjects, 218 included). Plasma 25 hydroxyvitamin D (25(OH)D) concentrations were measured using high-performance liquid chromatography, and we compared groups with sufficient versus deficient vitamin D status (25(OH)D >50 nmol/l (n=66) versus genome microarrays. In a targeted pathway-level analysis, several immunological processes, immune cell functions and major signaling pathways were differentially regulated according to vitamin D status (Pnutritional factors.

  5. Expression of lymphocyte coding genes in peripheral blood and lymphocyte infiltration in cardiac tissues influenced by cyclosporin A in heterotopic heart transplantation model in rats.

    Science.gov (United States)

    Xu, Xiu-fang; Xin, Yi; Zhang, Ying; Huang, Yi-min; Li, Wen-bin; Li, Na; Lin, Zheng; Zhou, Yu-jie; Zhang, Zhao-guang

    2013-12-01

    To systematically compare the expression of coding genes with pathological changes of transplanted cardiac tissue and peripheral blood lymphocytes in an allo-heterotopic rat cardiac transplant model. Using SD rats as donors and Wistar rats as recipients, animals were divided into two groups, control and cyclosporine A intervention plus heart transplant groups. After transplant at 1, 3, 7, 10 and 12d, we assessed the ability of lymphocytes to infiltrate into cardiac tissues and levels of leukocyte coding genes in peripheral blood. Histopathological changes were monitored in cardiac tissue to determine the level of transplant rejection. (1) 24h after transplant peripheral blood lymphocytes' transcription and expression were temporarily reduced. (2) CD4(+) and CD8(+) lymphocytes infiltrate into cardiac tissue and Grade 1R pathological changes were observed 3d-7d after heart transplant. (3)Cyclosporine A was not able to completely block heart transplant rejection.(4) Although cyclosporine A was not able to effectively suppress CD4(+) T cell gene expression, it did suppress CD8(+) T cell gene transcription. (5) Cyclosporine A did not effectively reduce the rapid infiltration of CD4(+) or CD8(+) infiltration in 3d, but significantly reduced the degree of CD4(+) T cell infiltration in cardiac tissues between 3 and 7d. (6) Differential display (DD-PCR): Graft control group: there were differences in 2,3-bisphosphoglycerate, ribosomal protein S25, 12S ribosomal, gig18, MHC-III and ATPase H(+), which occurred 24h before CD4/CD8 surface protein expression. Cyclosporine A group: there were differences in thrombospondin-1, TCR, 2,3-bisphosphoglycerate, sodium channel beta-1, gig18 and TCR. In the cyclosporine A group 2,3-bisphosphoglycerate positive expression was observed 24h after the control group, which indicates that cyclosporine A slowed down the 2,3-bisphosphoglycerate transcription rate in peripheral lymphocytes and delayed its expression time. Cyclosporine A also

  6. Gene expression analysis using a high-resolution DNA microarray of peripheral whole blood immediately before and after leukocytapheresis for rheumatoid arthritis.

    Science.gov (United States)

    Kusaoi, Makio; Yamaji, Ken; Murayama, Go; Yasui, Misa; Yamada, Risa; Hishinuma, Ruka; Nemoto, Takuya; Hohtatsu, Katsura; Kageyama, Michiaki; Kawamoto, Toshio; Sugimoto, Kaoru; Sekiya, Fumio; Kon, Takayuki; Ogasawara, Michihiro; Kempe, Kazuo; Tsuda, Hiroshi; Takasaki, Yoshinari

    2012-10-01

    Leukocytapheresis (LCAP) is a safe, unique therapy pertaining to intractable rheumatoid arthritis (RA) even in cases of drug allergy or infectious states. To investigate how to represent LCAP efficacy, we have conducted gene expression analyses from the peripheral blood of RA patients treated with non-woven polyethylene terephthalate filters. Peripheral blood samples were collected immediately before and after treatment from eight RA patients who received LCAP. Among these patients, all of them achieved 20% improvement in the core set of the American College of Rheumatology (ACR20), and thus, they were confirmed as LCAP responders. Gene expression analysis was done with a high-resolution DNA microarray. The results of each of the two groups' gene expression values (immediately before and after LCAP) were calculated using Welch's t-test. Calculations were performed with a statistical software R.basic package: if the P-value was less than 0.05, this was seen as a significant change. In a comparison of 25,370 gene expressions, the number of genes showing a P-value < 0.05 in the upregulating group was 2110, and in the downregulating group it was 1864. The results of pathway analysis using the MetaCore program indicate that gene groups work for cytoskeletal remodeling are upregulated, and genes related to immune responses, such as antigens presenting via major histocompatibility complex class I and II, are downregulated just after LCAP. These findings may relate to LCAP efficacy for RA patients, but this needs further investigation. © 2012 The Authors. Therapeutic Apheresis and Dialysis © 2012 International Society for Apheresis.

  7. Analysis of Salmonella enterica Serotype Paratyphi A Gene Expression in the Blood of Bacteremic Patients in Bangladesh

    OpenAIRE

    Sheikh, Alaullah; Charles, Richelle C.; Rollins, Sean M.; Harris, Jason B.; Bhuiyan, Md. Saruar; Khanam, Farhana; Bukka, Archana; Kalsy, Anuj; Porwollik, Steffen; Brooks, W. Abdullah; LaRocque, Regina C.; Hohmann, Elizabeth L.; Cravioto, Alejandro; Logvinenko, Tanya; Calderwood, Stephen B.

    2010-01-01

    Background: Salmonella enterica serotype Paratyphi A is a human-restricted cause of paratyphoid fever, accounting for up to a fifth of all cases of enteric fever in Asia. Methodology/Principal Findings: In this work, we applied an RNA analysis method, Selective Capture of Transcribed Sequences (SCOTS), and cDNA hybridization-microarray technology to identify S. Paratyphi A transcripts expressed by bacteria in the blood of three patients in Bangladesh. In total, we detected 1,798 S. Paratyphi ...

  8. Investigation of gene expression and serum levels of PIN1 and eNOS with high blood pressure in patients with Alzheimer disease.

    Science.gov (United States)

    Azimi, Mina; Nikanfar, Masoud; Khakikhatibi, Fatemeh; Rahbarghazi, Reza; Nourazarian, Seyed Manuchehr; Biray Avci, Cigir; Nourazarian, Alireza

    2017-09-01

    According to evidence, Alzheimer's disease is known as one of the most serious neurodegenerative diseases, for which hypertension has been observed to be a key risk factor. Therefore, this study aims to examine the relationship between the PIN1 and eNOS genes expression, as well as serum levels and hypertension in Alzheimer's disease sufferers. Blood samples were obtained from subjects who were divided into four groups: the control group, normotensive Alzheimer's patients, the Alzheimer's sufferers group with hypertension, and the healthy group with only hypertension, considering the inhibition of confounding factors. Thereafter, eNOS and PIN1 genes expression along with serum levels were studied. Based on the obtained results, a statistically significant correlation didn't exist between serum level of PIN1 and the systolic and diastolic blood pressure, between serum level of eNOS and diastolic blood pressure in the norm tension Alzheimer's disease patients, between serum levels of PIN1, eNOS and systolic blood pressure, and between serum eNOS and systolic and diastolic blood pressure in the patients with hypertension (pdiseases in Alzheimer's disease. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. An In Vitro Blood-Feeding Method Revealed Differential Borrelia turicatae (Spirochaetales: Spirochaetaceae) Gene Expression After Spirochete Acquisition and Colonization in the Soft Tick Ornithodoros turicata (Acari: Argasidae).

    Science.gov (United States)

    Neelakanta, Girish; Sultana, Hameeda; Sonenshine, Daniel E; Marconi, Richard T

    2017-03-01

    In the Midwestern, Southwestern, and Southern part of the United States, the soft tick Ornithodoros turicata transmits the spirochete Borrelia turicatae, the causative agent of relapsing fever in humans. In this study, we report a simplified and an efficient method of in vitro feeding to evaluate O. turicata-B. turicatae interactions. Both nymphal and adult female ticks successfully acquired spirochetes upon in vitro feeding on the B. turicatae-infected blood. We also noted transstadial transmission of spirochetes to adult ticks that were molted from nymphs fed on B. turicatae-infected blood. A differential expression pattern for some of the B. turicatae genes was evident after acquisition and colonization of the vector. The levels of arthropod-associated lipoprotein Alp-mRNA were significantly upregulated and the mRNA levels of factor H binding protein FhbA and immunogenic protein BipA were significantly downregulated in the spirochetes after acquisition into ticks in comparison with spirochetes grown in culture medium. In addition, genes such as bta124 and bta116 were significantly upregulated in spirochetes in unfed ticks in comparison with the levels noted in spirochetes after acquisition. These findings represent an efficient in vitro blood-feeding method to study B. turicatae gene expression after acquisition and colonization in these ticks. In summary, we report that B. turicatae survive and develop in the tick host when acquired by in vitro feeding. We also report that B. turicatae genes are differentially expressed in ticks in comparison with the in vitro-grown cultures, indicating influence of tick environment on spirochete gene expression. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Simultaneous analysis of the expression of 14 genes with individual prognostic value in myelodysplastic syndrome patients at diagnosis: WT1 detection in peripheral blood adversely affects survival.

    Science.gov (United States)

    Santamaría, Carlos; Ramos, Fernando; Puig, Noemi; Barragán, Eva; de Paz, Raquel; Pedro, Carme; Insunza, Andrés; Tormo, Mar; Del Cañizo, Consuelo; Diez-Campelo, María; Xicoy, Blanca; Salido, Eduardo; Sánchez del Real, Javier; Hernández, Montserrat; Chillón, Carmen; Sanz, Guillermo F; García-Sanz, Ramón; San Miguel, Jesús F; González, Marcos

    2012-12-01

    Several studies have evaluated the prognostic value of the individual expression of certain genes in patients with myelodysplastic syndromes (MDS). However, none of them includes their simultaneous analysis by quantitative polymerase chain reaction (PCR). We evaluated relative expression levels of 14 molecular markers in 193 peripheral blood samples from untreated MDS patients using real-time PCR. Detectable WT1 expression levels, low TET2, and low IER3 gene expression were the only markers showing in univariate analysis a poor prognostic value for all treatment-free (TFS), progression-free (PFS), and overall survival (OS). In multivariate analysis, molecular parameters associated with a shorter TFS were: WT1 detection (p = 0.014), low TET2 (p = 0.002), and low IER3 expression (p = 0.025). WT1 detection (p = 0.006) and low TET2 (p = 0.006) expression were associated with a shorter PFS when multivariate analysis was carried out by including only molecular markers. Molecular values with an independent value in OS were: WT1 detection (p = 0.003), high EVI1 expression (p = 0.001), and undetectatable p15-CDKN2B (p = 0.037). WT1 expressers were associated with adverse clinical-biological features, high IPSS and WPSS scoring, and unfavorable molecular expression profile. In summary, detectable WT1 expression levels, and low TET2 and low IER3 expression in peripheral blood showed a strong association with adverse prognosis in MDS patients at diagnosis. However, WT1 was the only molecular marker displaying an independent prognostic value in both OS and TFS.

  11. Host age and expression of genes involved in red blood cell invasion in Plasmodium falciparum field isolates.

    Science.gov (United States)

    Valmaseda, Aida; Bassat, Quique; Aide, Pedro; Cisteró, Pau; Jiménez, Alfons; Casellas, Aina; Machevo, Sonia; Aguilar, Ruth; Sigaúque, Betuel; Chauhan, Virander S; Langer, Christine; Beeson, James; Chitnis, Chetan; Alonso, Pedro L; Gaur, Deepak; Mayor, Alfredo

    2017-07-05

    Plasmodium falciparum proteins involved in erythrocyte invasion are main targets of acquired immunity and important vaccine candidates. We hypothesized that anti-parasite immunity acquired upon exposure would limit invasion-related gene (IRG) expression and affect the clinical impact of the infection. 11 IRG transcript levels were measured in P. falciparum isolates by RT-PCR, and IgG/IgM against invasion ligands by Luminex®, in 50 Mozambican adults, 25 children with severe malaria (SM) and 25 with uncomplicated malaria (UM). IRG expression differences among groups and associations between IRG expression and clinical/immunologic parameters were assessed. IRG expression diversity was higher in parasites infecting children than adults (p = 0.022). eba140 and ptramp expression decreased with age (p = 0.003 and 0.007, respectively) whereas p41 expression increased (p = 0.022). pfrh5 reduction in expression was abrupt early in life. Parasite density decreased with increasing pfrh5 expression (p immune escape when tested in malaria-exposed individuals.

  12. GABA- and acetylcholine-related gene expression in blood correlate with tic severity and microarray evidence for alternative splicing in Tourette syndrome: a pilot study.

    Science.gov (United States)

    Tian, Yingfang; Gunther, Joan R; Liao, Isaac H; Liu, Dazhi; Ander, Bradley P; Stamova, Boryana S; Lit, Lisa; Jickling, Glen C; Xu, Huichun; Zhan, Xinhua; Sharp, Frank R

    2011-03-24

    Tourette syndrome (TS) is a complex childhood neurodevelopmental disorder characterized by motor and vocal tics. Recently, altered numbers of GABAergic-parvalbumin (PV) and cholinergic interneurons were observed in the basal ganglia of individuals with TS. Thus, we postulated that gamma-amino butyric acid (GABA)- and acetylcholine (ACh)-related genes might be associated with the pathophysiology of TS. Total RNA isolated from whole blood of 26 un-medicated TS subjects and 23 healthy controls (HC) was processed on Affymetrix Human Exon 1.0 ST arrays. Data were analyzed to identify genes whose expression correlated with tic severity in TS, and to identify genes differentially spliced in TS compared to HC subjects. Many genes (3627) correlated with tic severity in TS (p genes were significantly over-represented. Moreover, several GABA and ACh-related genes were predicted to be alternatively spliced in TS compared to HC including GABA receptors GABRA4 and GABRG1, the nicotinic ACh receptor CHRNA4 and cholinergic differentiation factor (CDF). This pilot study suggests that at least some of these GABA- and ACh-related genes observed in blood that correlate with tics or are alternatively spliced are involved in the pathophysiology of TS and tics. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. Expression of the Blood-Group-Related Gene B4galnt2 Alters Susceptibility to Salmonella Infection.

    Directory of Open Access Journals (Sweden)

    Philipp Rausch

    2015-07-01

    Full Text Available Glycans play important roles in host-microbe interactions. Tissue-specific expression patterns of the blood group glycosyltransferase β-1,4-N-acetylgalactosaminyltransferase 2 (B4galnt2 are variable in wild mouse populations, and loss of B4galnt2 expression is associated with altered intestinal microbiota. We hypothesized that variation in B4galnt2 expression alters susceptibility to intestinal pathogens. To test this, we challenged mice genetically engineered to express different B4galnt2 tissue-specific patterns with a Salmonella Typhimurium infection model. We found B4galnt2 intestinal expression was strongly associated with bacterial community composition and increased Salmonella susceptibility as evidenced by increased intestinal inflammatory cytokines and infiltrating immune cells. Fecal transfer experiments demonstrated a crucial role of the B4galnt2-dependent microbiota in conferring susceptibility to intestinal inflammation, while epithelial B4galnt2 expression facilitated epithelial invasion of S. Typhimurium. These data support a critical role for B4galnt2 in gastrointestinal infections. We speculate that B4galnt2-specific differences in host susceptibility to intestinal pathogens underlie the strong signatures of balancing selection observed at the B4galnt2 locus in wild mouse populations.

  14. A combined blood based gene expression and plasma protein abundance signature for diagnosis of epithelial ovarian cancer - a study of the OVCAD consortium

    International Nuclear Information System (INIS)

    Pils, Dietmar; Sehouli, Jalid; Braicu, Ioana; Vergote, Ignace; Van Gorp, Toon; Mahner, Sven; Concin, Nicole; Speiser, Paul; Zeillinger, Robert; Tong, Dan; Hager, Gudrun; Obermayr, Eva; Aust, Stefanie; Heinze, Georg; Kohl, Maria; Schuster, Eva; Wolf, Andrea

    2013-01-01

    The immune system is a key player in fighting cancer. Thus, we sought to identify a molecular ‘immune response signature’ indicating the presence of epithelial ovarian cancer (EOC) and to combine this with a serum protein biomarker panel to increase the specificity and sensitivity for earlier detection of EOC. Comparing the expression of 32,000 genes in a leukocytes fraction from 44 EOC patients and 19 controls, three uncorrelated shrunken centroid models were selected, comprised of 7, 14, and 6 genes. A second selection step using RT-qPCR data and significance analysis of microarrays yielded 13 genes (AP2A1, B4GALT1, C1orf63, CCR2, CFP, DIS3, NEAT1, NOXA1, OSM, PAPOLG, PRIC285, ZNF419, and BC037918) which were finally used in 343 samples (90 healthy, six cystadenoma, eight low malignant potential tumor, 19 FIGO I/II, and 220 FIGO III/IV EOC patients). Using new 65 controls and 224 EOC patients (thereof 14 FIGO I/II) the abundances of six plasma proteins (MIF, prolactin, CA125, leptin, osteopondin, and IGF2) was determined and used in combination with the expression values from the 13 genes for diagnosis of EOC. Combined diagnostic models using either each five gene expression and plasma protein abundance values or 13 gene expression and six plasma protein abundance values can discriminate controls from patients with EOC with Receiver Operator Characteristics Area Under the Curve values of 0.998 and bootstrap .632+ validated classification errors of 3.1% and 2.8%, respectively. The sensitivities were 97.8% and 95.6%, respectively, at a set specificity of 99.6%. The combination of gene expression and plasma protein based blood derived biomarkers in one diagnostic model increases the sensitivity and the specificity significantly. Such a diagnostic test may allow earlier diagnosis of epithelial ovarian cancer

  15. Decreased Expression of Innate Immunity-Related Genes in Peripheral Blood Mononuclear Cells from Patients with IgG4-Related Disease.

    Directory of Open Access Journals (Sweden)

    Akio Nakajima

    Full Text Available IgG4-related disease (IgG4-RD is a new clinical entity of unknown etiology characterized by elevated serum IgG4 and tissue infiltration by IgG4-positive plasma cells. Although aberrancies in acquired immune system functions, including increases in Th2 and Treg cytokines observed in patients with IgG4-RD, its true etiology remains unclear. To investigate the pathogenesis of IgG4-RD, this study compared the expression of genes related to innate immunity in patients with IgG4-RD and healthy controls.Peripheral blood mononuclear cells (PBMCs were obtained from patients with IgG4-RD before and after steroid therapy and from healthy controls. Total RNA was extracted and DNA microarray analysis was performed in two IgG4-RD patients to screen for genes showing changes in expression. Candidate genes were validated by real-time RT-PCR in 27 patients with IgG4-RD and 13 healthy controls.DNA microarray analysis identified 21 genes that showed a greater than 3-fold difference in expression between IgG4-RD patients and healthy controls and 30 genes that showed a greater than 3-fold change in IgG4-RD patients following steroid therapy. Candidate genes related to innate immunity, including those encoding Charcot-Leyden crystal protein (CLC, membrane-spanning 4-domain subfamily A member 3 (MS4A3, defensin alpha (DEFA 3 and 4, and interleukin-8 receptors (IL8R, were validated by real-time RT-PCR. Expression of all genes was significantly lower in IgG4-RD patients than in healthy controls. Steroid therapy significantly increased the expression of DEFA3, DEFA4 and MS4A3, but had no effect on the expression of CLC, IL8RA and IL8RB.The expression of genes related to allergy or innate immunity, including CLC, MS4A3, DEFA3, DEFA4, IL8RA and IL8RB, was lower in PBMCs from patients with IgG4-RD than from healthy controls. Although there is the limitation in the number of patients applied in DNA microarray, impaired expression of genes related to innate immunity may be

  16. Relationship between quantity of IFNT estimated by IFN-stimulated gene expression in peripheral blood mononuclear cells and bovine embryonic mortality after AI or ET

    Directory of Open Access Journals (Sweden)

    Matsuyama Shuichi

    2012-03-01

    Full Text Available Abstract Background Interferon tau (IFNT, which is secreted into the uterine cavity during the maternal recognition period (MRP, is a key factor for establishment of pregnancy. The present study aims to clarify the relationship between the ability of a bovine conceptus to produce IFNT during the MRP and the conceptus's ability to establish pregnancy. Methods In the first experiment, IFNT (0, 500, or 1000 micrograms was administered into the uterine horn ipsilateral to the CL 16 or 17 d after standing estrus, and mRNA levels of IFN-stimulated gene 15-kDa protein (ISG15 and Mx2 in peripheral blood mononuclear cells (PBMCs were determined. In the second experiment, we investigated ISG15 mRNA expression in PBMCs during the MRP in cattle after either artificial insemination (AI or embryo transfer (ET. Results Intrauterine administration of IFNT stimulated ISG15 and Mx2 gene expressions in PBMCs in cattle, and there was a positive correlation between the expressions of peripheral markers and the quantity of IFNT administered. In pregnant and normal interestrous interval (ISG15 gene showed similar patterns after AI and ET, and ISG15 mRNA expression was increased in pregnant cattle but unchanged in nIEI cattle. In contrast, ISG15 gene expression in extended interestrous interval (greater than or equal to 25 d cattle (eIEI cattle differed after ET compared with AI. In eIEI cattle after ET, ISG15 gene expression increased, such that the value on day 18 was intermediate between those of pregnant and nIEI cattle. In eIEI cattle after AI, ISG15 gene expression did not increase throughout the observation period. Conclusions The results of the current study indicate that the quantity of conceptus-derived IFNT can be estimated by measuring ISG15 mRNA levels in PBMCs from cattle. Using this approach, we demonstrate that ISG15 gene expression during the MRP in eIEI cattle differed after ET compared with AI. In addition, the modest increase in ISG15 gene

  17. Gene Expression Omnibus (GEO)

    Data.gov (United States)

    U.S. Department of Health & Human Services — Gene Expression Omnibus is a public functional genomics data repository supporting MIAME-compliant submissions of array- and sequence-based data. Tools are provided...

  18. Assessment of Cytokeratin-19 Gene Expression in Peripheral Blood of Breast Cancer Patients and Breast Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Saeideh Keyvani

    2016-01-01

    Full Text Available Detection of cytokeratin-19 (CK19 expression as an epithelial-specific marker in circulating tumor cells (CTCs of breast cancer patients can be important for diagnostic purposes. Comparison of CK19 expression in breast cancer cell lines can indicate that expression of this marker is different in various breast cancer cell lines based on their category. Thirty-five breast cancer patients were evaluated for detection of CK19 mRNA in their peripheral blood using CK19-specific primers and a nested reverse transcriptase polymerase chain reaction (RT-PCR technique. CK19 expression levels were detected in MCF7, T47D, SK-BR-3, and MDA-MB-231 cell lines by semiquantitative RT-PCR and Western blot analyses. Statistical analysis of our data indicates that there is no significant difference between CK19 expression and histopathological parameters and some molecular markers, including Ki-67, HER-2, and P53, but there are statistically significant correlations between estrogen receptor (P = 0.040 and progesterone receptor ( P = 0.046 with CK19 expression. CK19 expression was detected in MCF7, T47D, and SK-BR-3 cell lines but not in MDA-MB-231 cell line. More studies are needed to determine the relationship between this marker and other markers in the diagnosis and treatment of breast cancer. On the other hand, the study of different markers using breast cancer cell lines as experimental models of breast cancer could have an impact on improving the health outcomes of patients with breast cancer.

  19. Gene expression profiles of cryopreserved CD34{sup +} human umbilical cord blood cells are related to their bone marrow reconstitution abilities in mouse xenografts

    Energy Technology Data Exchange (ETDEWEB)

    Sudo, Kazuhiro [Cell Engineering Division, RIKEN BioResource Center, Tsukuba (Japan); Yasuda, Jun, E-mail: yasuda-jun@umin.ac.jp [Omics Science Center, RIKEN, Yokohama (Japan); Department of Cell Biology, The JFCR-Cancer Institute (Japan); Nakamura, Yukio, E-mail: yukionak@brc.riken.jp [Cell Engineering Division, RIKEN BioResource Center, Tsukuba (Japan)

    2010-07-09

    Human umbilical cord blood (UCB) cells are an alternative source of hematopoietic stem cells for treatment of leukemia and other diseases. It is very difficult to assess the quality of UCB cells in the clinical situation. Here, we sought to assess the quality of UCB cells by transplantation to immunodeficient mice. Cryopreserved CD34{sup +} UCB cells from twelve different human donors were transplanted into sublethally irradiated NOD/shi-scid Jic mice. In parallel, the gene expression profiles of the UCB cells were determined from oligonucleotide microarrays. UCB cells from three donors failed to establish an engraftment in the host mice, while the other nine succeeded to various extents. Gene expression profiling indicated that 71 genes, including HOXB4, C/EBP-{beta}, and ETS2, were specifically overexpressed and 23 genes were suppressed more than 2-fold in the successful UCB cells compared to those that failed. Functional annotation revealed that cell growth and cell cycle regulators were more abundant in the successful UCB cells. Our results suggest that hematopoietic ability may vary among cryopreserved UCB cells and that this ability can be distinguished by profiling expression of certain sets of genes.

  20. Over-Expression of Dopamine D2 Receptor and Inwardly Rectifying Potassium Channel Genes in Drug-Naive Schizophrenic Peripheral Blood Lymphocytes as Potential Diagnostic Markers

    Directory of Open Access Journals (Sweden)

    Ágnes Zvara

    2005-01-01

    Full Text Available Schizophrenia is one of the most common neuropsychiatric disorders affecting nearly 1% of the human population. Current diagnosis of schizophrenia is based on complex clinical symptoms. The use of easily detectable peripheral molecular markers could substantially help the diagnosis of psychiatric disorders. Recent studies showed that peripheral blood lymphocytes (PBL express subtypes of D1 and D2 subclasses of dopamine receptors. Recently, dopamine receptor D3 (DRD3 was found to be over-expressed in schizophrenic PBL and proposed to be a diagnostic and follow-up marker for schizophrenia. In this study we screened PBL of 13 drug-naive/drug-free schizophrenic patients to identify additional markers of schizophrenia. One of the benefits of our study is the use of blood samples of non-medicated, drug-naive patients. This excludes the possibility that changes detected in gene expression levels might be attributed to the medication rather than to the disorder itself. Among others, genes for dopamine receptor D2 (DRD2 and the inwardly rectifying potassium channel (Kir2.3 were found to be over-expressed in microarray analysis. Increased mRNA levels were confirmed by quantitative real-time PCR (QRT-PCR using the SybrGreen method and dual labeled TaqMan probes. The use of both molecular markers allows a more rapid and precise prediction of schizophrenia and might help find the optimal medication for schizophrenic patients.

  1. Association of Body Mass Index with DNA Methylation and Gene Expression in Blood Cells and Relations to Cardiometabolic Disease: A Mendelian Randomization Approach.

    Directory of Open Access Journals (Sweden)

    Michael M Mendelson

    2017-01-01

    Full Text Available The link between DNA methylation, obesity, and adiposity-related diseases in the general population remains uncertain.We conducted an association study of body mass index (BMI and differential methylation for over 400,000 CpGs assayed by microarray in whole-blood-derived DNA from 3,743 participants in the Framingham Heart Study and the Lothian Birth Cohorts, with independent replication in three external cohorts of 4,055 participants. We examined variations in whole blood gene expression and conducted Mendelian randomization analyses to investigate the functional and clinical relevance of the findings. We identified novel and previously reported BMI-related differential methylation at 83 CpGs that replicated across cohorts; BMI-related differential methylation was associated with concurrent changes in the expression of genes in lipid metabolism pathways. Genetic instrumental variable analysis of alterations in methylation at one of the 83 replicated CpGs, cg11024682 (intronic to sterol regulatory element binding transcription factor 1 [SREBF1], demonstrated links to BMI, adiposity-related traits, and coronary artery disease. Independent genetic instruments for expression of SREBF1 supported the findings linking methylation to adiposity and cardiometabolic disease. Methylation at a substantial proportion (16 of 83 of the identified loci was found to be secondary to differences in BMI. However, the cross-sectional nature of the data limits definitive causal determination.We present robust associations of BMI with differential DNA methylation at numerous loci in blood cells. BMI-related DNA methylation and gene expression provide mechanistic insights into the relationship between DNA methylation, obesity, and adiposity-related diseases.

  2. Nalmefene is effective at reducing alcohol seeking, treating alcohol-cocaine interactions and reducing alcohol-induced histone deacetylases gene expression in blood.

    Science.gov (United States)

    Calleja-Conde, Javier; Echeverry-Alzate, Victor; Giné, Elena; Bühler, Kora-Mareen; Nadal, Roser; Maldonado, Rafael; Rodríguez de Fonseca, Fernando; Gual, Antoni; López-Moreno, Jose Antonio

    2016-08-01

    The opioid antagonist nalmefene (selincro®) was approved for alcohol-related disorders by the European Medicines Agency in 2013. However, there have been no studies regarding the effectiveness of nalmefene when alcohol is used in combination with cocaine. Using operant alcohol self-administration in Wistar rats and qRT-PCR, we evaluated (i) the dose-response curve for s.c. and p.o. nalmefene; (ii) the effects of nalmefene with increasing concentrations of alcohol; (iii) the efficacy of nalmefene on cocaine-potentiated alcohol responding; and (iv) the gene expression profiles of histone deacetylases (Hdac1-11) in peripheral blood in vivo and in the prefrontal cortex, heart, liver and kidney post mortem. S.c. (0.01, 0.05, 0.1 mg·kg(-1) ) and p.o. (10, 20, 40 mg·kg(-1) ) nalmefene dose-dependently reduced alcohol-reinforced responding by up to 50.3%. This effect of nalmefene was not dependent on alcohol concentration (10, 15, 20%). Cocaine potentiated alcohol responding by approximately 40% and nalmefene (0.05 mg·kg(-1) ) reversed this effect of cocaine. Alcohol increased Hdac gene expression in blood and nalmefene prevented the increases in Hdacs 3, 8, 5, 7, 9, 6 and 10. In the other tissues, alcohol and nalmefene either did not alter the gene expression of Hdacs, as in the prefrontal cortex, or a tissue-Hdac-specific effect was observed. Nalmefene might be effective as a treatment for alcohol-dependent patients who also use cocaine. Also, the expression of Hdacs in peripheral blood might be useful as a biomarker of alcohol use and drug response. © 2016 The British Pharmacological Society.

  3. Expression of the sFLT1 gene in cord blood cells is associated to maternal arsenic exposure and decreased birth weight

    DEFF Research Database (Denmark)

    Remy, Sylvie; Govarts, Eva; Bruckers, Liesbeth

    2014-01-01

    with changes in expression of the sFLT1 (soluble fms-like tyrosine kinase-1) gene in cord blood cells in girls. The protein product of sFLT1 is a scavenger of vascular endothelial growth factor (VEGF) in the extracellular environment and plays a key role in the inhibition of placental angiogenesis. In terms...... samples of 183 newborns to identify associations between arsenic levels and birth anthropometric parameters in an area with very low arsenic exposure. Our core research aim was to screen for transcriptional marks that mechanistically explain these associations. Multiple regression analyses showed...... of fetal development, inhibition of placental angiogenesis leads to impaired nutrition and hence to growth retardation. Various genes related to DNA methylation and oxidative stress showed also changed expression in relation to arsenic exposure but were not related to birth outcome parameters...

  4. Differences in exon expression and alternatively spliced genes in blood of multiple sclerosis compared to healthy control subjects.

    Science.gov (United States)

    Tian, Yingfang; Apperson, Michelle L; Ander, Bradley P; Liu, Dazhi; Stomova, Boryana S; Jickling, Glen C; Enriquez, Richelle; Agius, Mark A; Sharp, Frank R

    2011-01-01

    Using whole genome exon microarrays 120 exons were differentially expressed between medication-free multiple sclerosis (MS) subjects in remission and healthy control subjects (HS) (p|1.2|). These exons differentiated MS from HS using cluster analyses, principal components analyses (PCAs) and cross-validation. In addition, 340 genes (transcripts) were predicted to be alternatively spliced in MS compared to HS. These findings may provide insight into the pathophysiology of MS and potentially provide prognostic and diagnostic biomarkers. However, given that multiple comparisons were performed on a very small sample, these preliminary findings require confirmation using a much larger independent cohort. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Gene Expression Changes in Long-Term In Vitro Human Blood-Brain Barrier Models and Their Dependence on a Transwell Scaffold Material

    Directory of Open Access Journals (Sweden)

    Joel D. Gaston

    2017-01-01

    Full Text Available Disruption of the blood-brain barrier (BBB is the hallmark of many neurovascular disorders, making it a critically important focus for therapeutic options. However, testing the effects of either drugs or pathological agents is difficult due to the potentially damaging consequences of altering the normal brain microenvironment. Recently, in vitro coculture tissue models have been developed as an alternative to animal testing. Despite low cost, these platforms use synthetic scaffolds which prevent normal barrier architecture, cellular crosstalk, and tissue remodeling. We created a biodegradable electrospun gelatin mat “biopaper” (BP as a scaffold material for an endothelial/astrocyte coculture model allowing cell-cell contact and crosstalk. To compare the BP and traditional models, we investigated the expression of 27 genes involved in BBB permeability, cellular function, and endothelial junctions at different time points. Gene expression levels demonstrated higher expression of transcripts involved in endothelial junction formation, including TJP2 and CDH5, in the BP model. The traditional model had higher expression of genes associated with extracellular matrix-associated proteins, including SPARC and COL4A1. Overall, the results demonstrate that the BP coculture model is more representative of a healthy BBB state, though both models have advantages that may be useful in disease modeling.

  6. MicroRNAs miR-17 and miR-20a inhibit T cell activation genes and are under-expressed in MS whole blood.

    Directory of Open Access Journals (Sweden)

    Mathew B Cox

    Full Text Available It is well established that Multiple Sclerosis (MS is an immune mediated disease. Little is known about what drives the differential control of the immune system in MS patients compared to unaffected individuals. MicroRNAs (miRNAs are small non-coding nucleic acids that are involved in the control of gene expression. Their potential role in T cell activation and neurodegenerative disease has recently been recognised and they are therefore excellent candidates for further studies in MS. We investigated the transcriptome of currently known miRNAs using miRNA microarray analysis in peripheral blood samples of 59 treatment naïve MS patients and 37 controls. Of these 59, 18 had a primary progressive, 17 a secondary progressive and 24 a relapsing remitting disease course. In all MS subtypes miR-17 and miR-20a were significantly under-expressed in MS, confirmed by RT-PCR. We demonstrate that these miRNAs modulate T cell activation genes in a knock-in and knock-down T cell model. The same T cell activation genes are also up-regulated in MS whole blood mRNA, suggesting these miRNAs or their analogues may provide useful targets for new therapeutic approaches.

  7. Anticitrullinated Protein Antibodies Induce Inflammatory Gene Expression Profile in Peripheral Blood Cells from CCP-positive Patients with RA.

    Science.gov (United States)

    Gertel, Smadar; Karmon, Gidi; Szarka, Eszter; Shovman, Ora; Houri-Levi, Esther; Mozes, Edna; Shoenfeld, Yehuda; Amital, Howard

    2018-03-01

    Anticitrullinated protein antibodies (ACPA) have major diagnostic significance in rheumatoid arthritis (RA). ACPA are directed against different citrullinated antigens, including filaggrin, fibrinogen, vimentin, and collagen. The presence of ACPA is associated with joint damage and extraarticular manifestations, suggesting that ACPA may have a significant role in the pathogenesis of RA. To verify the effect of ACPA on RA-immune cells, peripheral blood mononuclear cells (PBMC) from cyclic citrullinated peptide (CCP)-positive patients with RA and healthy controls were cocultured in vitro with ACPA. ACPA-positive stained cells were analyzed by flow cytometry and the effect of ACPA on mRNA expression levels was evaluated by real-time PCR. We tested whether the stimulatory effects induced by ACPA could be inhibited by the addition of a new multiepitope citrullinated peptide (Cit-ME). We found that ACPA bind specifically to PBMC from CCP-positive patients with RA through the Fab portion. ACPA induce upregulation of pathogenic cytokine expression (4- to 13-fold increase) in PBMC derived from CCP-positive patients with RA. Moreover, ACPA upregulated IL-1β and IL-6 mRNA expression levels by 10- and 6-fold, respectively, compared to control IgG. Cit-ME, a genuine ligand of ACPA, inhibited the ACPA-induced upregulation of IL-1β and IL-6 by 30%. ACPA bind to a limited percentage of PBMC and upregulate inflammatory cytokine expression, suggesting that ACPA is involved in RA pathogenesis. Targeting ACPA to decrease their pathogenic effects might provide a novel direction in developing therapeutic strategies for RA.

  8. Gene expression profiling in peripheral blood mononuclear cells of patients with common variable immunodeficiency: modulation of adaptive immune response following intravenous immunoglobulin therapy.

    Directory of Open Access Journals (Sweden)

    Marzia Dolcino

    Full Text Available BACKGROUND: Regular intravenous immunoglobulin treatment is used to replace antibody deficiency in primary immunodeficiency diseases; however the therapeutic effect seems to be related not only to antibody replacement but also to an active role in the modulation of the immune response. Common variable immunodeficiency is the most frequent primary immunodeficiency seen in clinical practice. METHODS: We have studied the effect of intravenous immunoglobulin replacement in patients with common variable immunodeficiency by evaluating the gene-expression profiles from Affimetrix HG-U133A. Some of the gene array results were validated by real time RT-PCR and by the measurement of circulating cytokines and chemokines by ELISA. Moreover we performed FACS analysis of blood mononuclear cells from the patients enrolled in the study. RESULTS: A series of genes involved in innate and acquired immune responses were markedly up- or down-modulated before therapy. Such genes included CD14, CD36, LEPR, IRF-5, RGS-1, CD38, TNFRSF25, IL-4, CXCR4, CCR3, IL-8. Most of these modulated genes showed an expression similar to that of normal controls after immunoglobulin replacement. Real time RT-PCR of selected genes and serum levels of IL-4, CXCR4 before and after therapy changed accordingly to gene array results. Interestingly, serum levels of IL-8 remained unchanged, as the corresponding gene, before and after treatment. FACS analysis showed a marked decrease of CD8+T cells and an increase of CD4+T cells following treatment. Moreover we observed a marked increase of CD23⁻CD27⁻IgM⁻IgG⁻ B cells (centrocytes. CONCLUSIONS: Our results are in accordance with previous reports and provide further support to the hypothesis that the benefits of intravenous immunoglobulin therapy are not only related to antibody replacement but also to its ability to modulate the immune response in common variable immunodeficiency.

  9. In vivo Exposure Effects of 99mTc-methoxyisobutylisonitrile on the FDXR and XPA Genes Expression in Human Peripheral Blood Lymphocytes

    Directory of Open Access Journals (Sweden)

    Mohammad Taghi Bahreyni-Toossi

    2018-01-01

    Full Text Available Objective(s: In recent years, the application of radiopharmaceuticals in nuclear medicine has increased substantially. Following the diagnostic procedures performed in nuclear medicine departments, such as myocardial perfusion imaging, patients generally receive considerable doses of radiation. Normally, radiation-induced DNA damages are expected following exposure to a low-dose ionizing radiation. In order to detect molecular changes, high-sensitivity techniques must be utilized. The aim of this study was to assess the effect of a low-dose (below 10 mSv gamma ray on gene expression using quantitative real-time polymerase chain reaction (qRT-PCR. Methods: Blood samples were obtained from 20 volunteer patients who underwent myocardial perfusion imaging. They were given various doses of Technetium99-m methoxyisobutylisonitrile (99mTc-MIBI. After that, peripheral blood mononuclear cells (PBMNs were derived, and then total RNA was extracted and reverse-transcribed to cDNA. Finally, the expression levels of xeroderma pigmentosum complementation group-A (XPA and ferredoxin reductase (FDXR genes were determinded through qRT-PCR technique using SYBR Green. Results: XPA and FDXR expression levels were obtained following a very low-dose ionizing radiation. A significant up-regulation of both genes was observed, and the gene expression level of each individual patient was different. If differences in the administered activity and radiosensitivity are taken into account, the observed differences could be justified. Furthermore, gender and age did not play a significant role in the expression levels of the genes under study. Conclusion: The up-regulation of FDXR after irradiation revealed the high-sensitivity level of this gene; therefore, it could be used as an appropriate biomarker for biological dosimetry. On the other hand, the up-regulation of XPA is an indication of DNA repair following radiation exposure. According to linear no-threshold model (LNT

  10. Expressed sequence tag analysis of blood cells in the vanadium-rich ascidian, Ascidia sydneiensis samea--a survey of genes for metal accumulation.

    Science.gov (United States)

    Yamaguchi, Nobuo; Togi, Akiko; Ueki, Tatsuya; Uyama, Taro; Michibata, Hitoshi

    2002-09-01

    Some species in the family Ascidiidae accumulate vanadium at concentrations in excess of 350 mM, which corresponds to about 10(7) times that found in seawater. The vanadium ions are stored in vacuoles located within vanadium-containing blood cells, vanadocytes. To investigate the phenomenon, an expressed sequence tag analysis (EST) of a cDNA library of Ascidia sydneiensis samea blood cells was carried out. Three hundred clones were obtained and sequenced by EST analysis. A similarity search revealed that 158 of the clones (52.7%) were known genes, and 142 of the clones (47.3%) did not have any similarity to genes registered in the SwissProt database. According to the functions of their genes the identified EST clones were categorized into eight types of clones; these consisted of genes; metal-related proteins (29 clones), signal transduction (22 clones), protein synthesis (17 clones), nuclear proteins (17 clones), cytoskeleton and motility (14 clones), energy conversion (3 clones), hypothetical proteins (11 clones), and others (45 clones). The ferritin homologue has a high degree of similarity to that of mammals; the iron-binding sites of ferritin are well conserved including His-118 which is important for capturing Fe(2+), also works as a ligand for VO(2+).

  11. A preliminary perusal of ACE I/D polymorphism with adiposity traits and blood pressure among the AO NAGAS: Does gender-dependent gene expression matter?

    Directory of Open Access Journals (Sweden)

    Imkongtenla Pongen

    2016-12-01

    Full Text Available This study aims to evaluate the association of gender-dependent expression of angiotensin converting enzyme gene polymorphism (I/D with adiposity markers and blood pressure among AoNagas.57AoNagas[Males (n =26; Females (n = 31; Mean Age: 30.56±7.5 and 31.9 ±8.3 1]residing in Delhi were included in this cross sectionalstudy. Anthropometric measurements and blood pressure were taken using standardized techniques. Adiposity indices viz., BMI, WHR and WHtR were computed. Body fat percentage was assessed by bioelectricimpedance technique using Tanita Body composition analyzer (T-6360. Venous blood samples were withdrawn for DNA extraction and genotyping of ACE gene (I/D polymorphism was established by polymerase chain reaction (PCR. In female participants with DD homozygote, risk of both general and central obesity as depicted by BMI, body fat percentage, WC, WHR and WHtR were higher than ID heterozygote. Risk of hypertension was found to be greater among males with DD homozygote rather than females with DD homozygote. In males, obesity was not found to be associated with hypertension in either DD or ID genotypic variants of ACE. Whereas, in females obesity was significantly and positively correlated with hypertension in both DD and ID genotype. DD homozygous form of ACE is linked with both obesity and blood pressure in females and only with blood pressure in males. This genotype-by-gender interaction gives us a facet in understanding the complex genetic basis of adiposity and blood pressure phenotypes.

  12. Aggressive Periodontitis and Chronic Arthritis: Blood Mononuclear Cell Gene Expression and Plasma Protein Levels of Cytokines and Cytokine Inhibitors

    DEFF Research Database (Denmark)

    Sørensen, Lars Korsbæk Connor; Poulsen, Anne Havemose; Bendtzen, Klaus

    2009-01-01

    -inflammatory cytokines and cytokine receptors in patients with periodontitis and patients with arthritis representing two examples of chronic inflammatory diseases, such as periodontitis and arthritis. To identify possible disease-specific characteristics of subjects with periodontitis relative to subjects with chronic...... inflammation in general, patients with arthritis (juvenile idiopathic arthritis [JIA] and rheumatoid arthritis [RA]) were included. METHODS: The study population consisted of white adults aggressive periodontitis (LAgP; n = 18), generalized aggressive periodontitis......TNF-RI plasma levels in patients with LAgP and RA. CONCLUSIONS: The study demonstrated only a few changes in the PBMC expression of various cytokine and cytokine inhibitor genes in aggressive periodontitis and chronic arthritis compared to controls. There were a few similarities among disease groups...

  13. Small ncRNA Expression-Profiling of Blood from Hemophilia A Patients Identifies miR-1246 as a Potential Regulator of Factor 8 Gene.

    Directory of Open Access Journals (Sweden)

    Tewarit Sarachana

    Full Text Available Hemophilia A (HA is a bleeding disorder caused by deficiency of functional plasma clotting factor VIII (FVIII. Genetic mutations in the gene encoding FVIII (F8 have been extensively studied. Over a thousand different mutations have been reported in the F8 gene. These span a diverse range of mutation types, namely, missense, splice-site, deletions of single and multiple exons, inversions, etc. There is nonetheless evidence that other molecular mechanisms, in addition to mutations in the gene encoding the FVIII protein, may be involved in the pathobiology of HA. In this study, global small ncRNA expression profiling analysis of whole blood from HA patients, and controls, was performed using high-throughput ncRNA microarrays. Patients were further sub-divided into those that developed neutralizing-anti-FVIII antibodies (inhibitors and those that did not. Selected differentially expressed ncRNAs were validated by quantitative reverse transcription-polymerase chain reaction (qRT-PCR analysis. We identified several ncRNAs, and among them hsa-miR-1246 was significantly up-regulated in HA patients. In addition, miR-1246 showed a six-fold higher expression in HA patients without inhibitors. We have identified an miR-1246 target site in the noncoding region of F8 mRNA and were able to confirm the suppressory role of hsa-miR-1246 on F8 expression in a stable lymphoblastoid cell line expressing FVIII. These findings suggest several testable hypotheses vis-à-vis the role of nc-RNAs in the regulation of F8 expression. These hypotheses have not been exhaustively tested in this study as they require carefully curated clinical samples.

  14. Development of gene expression assays measuring immune ...

    African Journals Online (AJOL)

    Using qPCR, the relative expression stability of the reference genes ACTB, GAPDH, YWHAZ and TBP in these samples was determined as well as the mean fold change in the expression of IFNG, CXCL8, CXCL9, CXCL10 and CXCL11 in M. bovis-antigen stimulated blood. The expression of YWHAZ and TBP showed ...

  15. The intake of high-fat diets induces an obesogenic-like gene expression profile in peripheral blood mononuclear cells, which is reverted by dieting.

    Science.gov (United States)

    Reynés, Bàrbara; García-Ruiz, Estefanía; Palou, Andreu; Oliver, Paula

    2016-06-01

    Peripheral blood mononuclear cells (PBMC) are increasingly used for nutrigenomic studies. In this study, we aimed to identify whether these cells could reflect the development of an obesogenic profile associated with the intake of high-fat (HF) diets. We analysed, by real-time RT-PCR, the dietary response of key genes related to lipid metabolism, obesity and inflammation in PBMC of control rats, rats fed a cafeteria or a commercial HF diet and rats fed a control diet after the intake of a cafeteria diet (post-cafeteria model). Cafeteria diet intake, which resulted in important overweight and related complications, altered the expressions of most of the studied genes in PBMC, evidencing the development of an obesogenic profile. Commercial HF diet, which produced metabolic alterations but in the absence of noticeably increased body weight, also altered PBMC gene expression, inducing a similar regulatory pattern as that observed for the cafeteria diet. Regulation of carnitine palmitoyltransferase I (Cpt1a) mRNA expression was of special interest; its expression reflected metabolic alterations related to the intake of both obesogenic diets (independently of increased body weight) even at an early stage as well as metabolic recovery in post-cafeteria animals. Thus, PBMC constitute an important source of biomarkers that reflect the increased adiposity and metabolic deregulation associated with the intake of HF diets. In particular, we propose an analysis of Cpt1a expression as a good biomarker to detect the early metabolic alterations caused by the consumption of hyperlipidic diets, and also as a marker of metabolic recovery associated to weight loss.

  16. A Single Meal Containing Raw, Crushed Garlic Influences Expression of Immunity- and Cancer-Related Genes in Whole Blood of Humans.

    Science.gov (United States)

    Charron, Craig S; Dawson, Harry D; Albaugh, George P; Solverson, Patrick M; Vinyard, Bryan T; Solano-Aguilar, Gloria I; Molokin, Aleksey; Novotny, Janet A

    2015-11-01

    Preclinical and epidemiologic studies suggest that garlic intake is inversely associated with the progression of cancer and cardiovascular disease. We designed a study to probe the mechanisms of garlic action in humans. We conducted a randomized crossover feeding trial in which 17 volunteers consumed a garlic-containing meal (100 g white bread, 15 g butter, and 5 g raw, crushed garlic) or a garlic-free control meal (100 g white bread and 15 g butter) after 10 d of consuming a controlled, garlic-free diet. Blood was collected before and 3 h after test meal consumption for gene expression analysis in whole blood. Illumina BeadArray was used to screen for genes of interest, followed by real-time quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) on selected genes. To augment human study findings, Mono Mac 6 cells were treated with a purified garlic extract (0.5 μL/mL), and mRNA was measured by qRT-PCR at 0, 3, 6, and 24 h. The following 7 genes were found to be upregulated by garlic intake: aryl hydrocarbon receptor (AHR), aryl hydrocarbon receptor nuclear translocator (ARNT), hypoxia-inducible factor 1α (HIF1A), proto-oncogene c-Jun (JUN), nuclear factor of activated T cells (NFAT) activating protein with immunoreceptor tyrosine-based activation motif 1 (NFAM1), oncostatin M (OSM), and V-rel avian reticuloendotheliosis viral oncogene homolog (REL). Fold-increases in mRNA transcripts ranged from 1.6 (HIF1A) to 3.0 (NFAM1) (P garlic, respectively). OSM is a pleiotropic cytokine that inhibits several tumor cell lines in culture. These data indicate that the bioactivity of garlic is multifaceted and includes activation of genes related to immunity, apoptosis, and xenobiotic metabolism in humans and Mono Mac 6 cells. This trial is registered at clinicaltrials.gov as NCT01293591. © 2015 American Society for Nutrition.

  17. A Single Meal Containing Raw, Crushed Garlic Influences Expression of Immunity- and Cancer-Related Genes in Whole Blood of Humans1234

    Science.gov (United States)

    Charron, Craig S; Dawson, Harry D; Albaugh, George P; Solverson, Patrick M; Vinyard, Bryan T; Solano-Aguilar, Gloria I; Molokin, Aleksey; Novotny, Janet A

    2015-01-01

    Background: Preclinical and epidemiologic studies suggest that garlic intake is inversely associated with the progression of cancer and cardiovascular disease. Objective: We designed a study to probe the mechanisms of garlic action in humans. Methods: We conducted a randomized crossover feeding trial in which 17 volunteers consumed a garlic-containing meal (100 g white bread, 15 g butter, and 5 g raw, crushed garlic) or a garlic-free control meal (100 g white bread and 15 g butter) after 10 d of consuming a controlled, garlic-free diet. Blood was collected before and 3 h after test meal consumption for gene expression analysis in whole blood. Illumina BeadArray was used to screen for genes of interest, followed by real-time quantitative reverse transcriptase–polymerase chain reaction (qRT-PCR) on selected genes. To augment human study findings, Mono Mac 6 cells were treated with a purified garlic extract (0.5 μL/mL), and mRNA was measured by qRT-PCR at 0, 3, 6, and 24 h. Results: The following 7 genes were found to be upregulated by garlic intake: aryl hydrocarbon receptor (AHR), aryl hydrocarbon receptor nuclear translocator (ARNT), hypoxia-inducible factor 1α (HIF1A), proto-oncogene c-Jun (JUN), nuclear factor of activated T cells (NFAT) activating protein with immunoreceptor tyrosine-based activation motif 1 (NFAM1), oncostatin M (OSM), and V-rel avian reticuloendotheliosis viral oncogene homolog (REL). Fold-increases in mRNA transcripts ranged from 1.6 (HIF1A) to 3.0 (NFAM1) (P garlic, respectively). OSM is a pleiotropic cytokine that inhibits several tumor cell lines in culture. Conclusion: These data indicate that the bioactivity of garlic is multifaceted and includes activation of genes related to immunity, apoptosis, and xenobiotic metabolism in humans and Mono Mac 6 cells. This trial is registered at clinicaltrials.gov as NCT01293591. PMID:26423732

  18. Gene expression and gene therapy imaging

    International Nuclear Information System (INIS)

    Rome, Claire; Couillaud, Franck; Moonen, Chrit T.W.

    2007-01-01

    The fast growing field of molecular imaging has achieved major advances in imaging gene expression, an important element of gene therapy. Gene expression imaging is based on specific probes or contrast agents that allow either direct or indirect spatio-temporal evaluation of gene expression. Direct evaluation is possible with, for example, contrast agents that bind directly to a specific target (e.g., receptor). Indirect evaluation may be achieved by using specific substrate probes for a target enzyme. The use of marker genes, also called reporter genes, is an essential element of MI approaches for gene expression in gene therapy. The marker gene may not have a therapeutic role itself, but by coupling the marker gene to a therapeutic gene, expression of the marker gene reports on the expression of the therapeutic gene. Nuclear medicine and optical approaches are highly sensitive (detection of probes in the picomolar range), whereas MRI and ultrasound imaging are less sensitive and require amplification techniques and/or accumulation of contrast agents in enlarged contrast particles. Recently developed MI techniques are particularly relevant for gene therapy. Amongst these are the possibility to track gene therapy vectors such as stem cells, and the techniques that allow spatiotemporal control of gene expression by non-invasive heating (with MRI guided focused ultrasound) and the use of temperature sensitive promoters. (orig.)

  19. Data on gene and protein expression changes induced by apabetalone (RVX-208 in ex vivo treated human whole blood and primary hepatocytes

    Directory of Open Access Journals (Sweden)

    Sylwia Wasiak

    2016-09-01

    Full Text Available Apabetalone (RVX-208 inhibits the interaction between epigenetic regulators known as bromodomain and extraterminal (BET proteins and acetyl-lysine marks on histone tails. Data presented here supports the manuscript published in Atherosclerosis “RVX-208, a BET-inhibitor for Treating Atherosclerotic Cardiovascular Disease, Raises ApoA-I/HDL and Represses Pathways that Contribute to Cardiovascular Disease” (Gilham et al., 2016 [1]. It shows that RVX-208 and a comparator BET inhibitor (BETi JQ1 increase mRNA expression and production of apolipoprotein A-I (ApoA-I, the main protein component of high density lipoproteins, in primary human and African green monkey hepatocytes. In addition, reported here are gene expression changes from a microarray-based analysis of human whole blood and of primary human hepatocytes treated with RVX-208. Keywords: Bromodomain, BET proteins, BET inhibitor, RVX-208, JQ1, Vascular inflammation, ApoA-I, Apolipoprotein A-I, African green monkey, Primary human hepatocytes, Gene expression, Microarrays

  20. Novel Blood Pressure Locus and Gene Discovery Using Genome-Wide Association Study and Expression Data Sets From Blood and the Kidney

    NARCIS (Netherlands)

    Wain, Louise V; Vaez, Ahmad; Jansen, Rick; Joehanes, Roby; van der Most, Peter J; Erzurumluoglu, A Mesut; O'Reilly, Paul F; Cabrera, Claudia P; Warren, Helen R; Rose, Lynda M; Verwoert, Germaine C; Hottenga, Jouke-Jan; Strawbridge, Rona J; Esko, Tonu; Arking, Dan E; Hwang, Shih-Jen; Guo, Xiuqing; Kutalik, Zoltan; Trompet, Stella; Shrine, Nick; Teumer, Alexander; Ried, Janina S; Bis, Joshua C; Smith, Albert V; Amin, Najaf; Nolte, Ilja M; Lyytikäinen, Leo-Pekka; Mahajan, Anubha; Wareham, Nicholas J; Hofer, Edith; Joshi, Peter K; Kristiansson, Kati; Traglia, Michela; Havulinna, Aki S; Goel, Anuj; Nalls, Mike A; Sõber, Siim; Vuckovic, Dragana; Luan, Jian'an; Del Greco M, Fabiola; Ayers, Kristin L; Marrugat, Jaume; Ruggiero, Daniela; Lopez, Lorna M; Niiranen, Teemu; Enroth, Stefan; Jackson, Anne U; Nelson, Christopher P; Huffman, Jennifer E; Zhang, Weihua; Marten, Jonathan; Gandin, Ilaria; Harris, Sarah E; Zemunik, Tatijana; Lu, Yingchang; Evangelou, Evangelos; Shah, Nabi; de Borst, Martin H; Mangino, Massimo; Prins, Bram P; Campbell, Archie; Li-Gao, Ruifang; Chauhan, Ganesh; Oldmeadow, Christopher; Abecasis, Gonçalo R; Abedi, Maryam; Barbieri, Caterina M; Barnes, Michael R; Batini, Chiara; Beilby, John; Blake, Tineka; Boehnke, Michael; Bottinger, Erwin P; Braund, Peter S; Brown, Morris; Brumat, Marco; Campbell, Harry; Chambers, John C; Cocca, Massimiliano; Collins, Francis S; Connell, John; Cordell, Heather J; Damman, Jeffrey J; Davies, Gail; de Geus, Eco J; de Mutsert, Renée; Deelen, Joris; Demirkale, Yusuf; Doney, Alex S F; Dörr, Marcus; Farrall, Martin; Ferreira, Teresa; Frånberg, Mattias; Gao, He; Giedraitis, Vilmantas; Gieger, Christian; Giulianini, Franco; Gow, Alan J; Hamsten, Anders; Harris, Tamara B; Hofman, Albert; Holliday, Elizabeth G; Hui, Jennie; Jarvelin, Marjo-Riitta; Johansson, Åsa; Johnson, Andrew D; Jousilahti, Pekka; Jula, Antti; Kähönen, Mika; Kathiresan, Sekar; Khaw, Kay-Tee; Kolcic, Ivana; Koskinen, Seppo; Langenberg, Claudia; Larson, Marty; Launer, Lenore J; Lehne, Benjamin; Liewald, David C M; Lin, Li; Lind, Lars; Mach, François; Mamasoula, Chrysovalanto; Menni, Cristina; Mifsud, Borbala; Milaneschi, Yuri; Morgan, Anna; Morris, Andrew D; Morrison, Alanna C; Munson, Peter J; Nandakumar, Priyanka; Nguyen, Quang Tri; Nutile, Teresa; Oldehinkel, Albertine J; Oostra, Ben A; Org, Elin; Padmanabhan, Sandosh; Palotie, Aarno; Paré, Guillaume; Pattie, Alison; Penninx, Brenda W J H; Poulter, Neil; Pramstaller, Peter P; Raitakari, Olli T; Ren, Meixia; Rice, Kenneth; Ridker, Paul M; Riese, Harriëtte; Ripatti, Samuli; Robino, Antonietta; Rotter, Jerome I; Rudan, Igor; Saba, Yasaman; Saint Pierre, Aude; Sala, Cinzia F; Sarin, Antti-Pekka; Schmidt, Reinhold E; Scott, Rodney J; Seelen, Marc A; Shields, Denis C; Siscovick, David; Sorice, Rossella; Stanton, Alice; Stott, David J; Sundström, Johan; Swertz, Morris a.; Taylor, Kent D; Thom, Simon; Tzoulaki, Ioanna; Tzourio, Christophe; Uitterlinden, André G; Völker, Uwe; Vollenweider, Peter; Wild, Sarah; Willemsen, Gonneke; Wright, Alan F; Yao, Jie; Thériault, Sébastien; Conen, David; Attia, John R; Sever, Peter; Debette, Stéphanie; Mook-Kanamori, Dennis O; Zeggini, Eleftheria; Spector, Tim D; van der Harst, Pim; Palmer, Colin N A; Vergnaud, Anne-Claire; Loos, Ruth J F; Polasek, Ozren; Starr, John M; Girotto, Giorgia; Hayward, Caroline; Kooner, Jaspal S; Lindgren, Cecila M; Vitart, Veronique; Samani, Nilesh J; Tuomilehto, Jaakko; Gyllensten, Ulf; Knekt, Paul; Deary, Ian J; Ciullo, Marina; Elosua, Roberto; Keavney, Bernard D; Hicks, Andrew A; Scott, Robert A; Gasparini, Paolo; Laan, Maris; Liu, YongMei; Watkins, Hugh; Hartman, Catharina A; Salomaa, Veikko; Toniolo, Daniela; Perola, Markus; Wilson, James F; Schmidt, Helena; Zhao, Jing Hua; Lehtimäki, Terho; van Duijn, Cornelia M; Gudnason, Vilmundur; Psaty, Bruce M; Peters, Annette; Rettig, Rainer; James, Alan L; Jukema, J Wouter; Strachan, David P; Palmas, Walter; Metspalu, Andres; Ingelsson, Erik; Boomsma, Dorret I; Franco, Oscar H; Bochud, Murielle; Newton-Cheh, Christopher; Munroe, Patricia B; Elliott, Paul; Chasman, Daniel I; Chakravarti, Aravinda; Knight, Joanne; Morris, Andrew P; Levy, Daniel; Tobin, Martin D; Snieder, Harold; Caulfield, Mark J; Ehret, Georg B

    2017-01-01

    Elevated blood pressure is a major risk factor for cardiovascular disease and has a substantial genetic contribution. Genetic variation influencing blood pressure has the potential to identify new pharmacological targets for the treatment of hypertension. To discover additional novel blood pressure

  1. Novel Blood Pressure Locus and Gene Discovery Using Genome-Wide Association Study and Expression Data Sets From Blood and the Kidney

    NARCIS (Netherlands)

    Wain, Louise V; Vaez, Ahmad; Jansen, Rick; Joehanes, Roby; van der Most, Peter J; Erzurumluoglu, A Mesut; O'Reilly, Paul F; Cabrera, Claudia P; Warren, Helen R; Rose, Lynda M; Verwoert, Germaine C; Hottenga, Jouke-Jan; Strawbridge, Rona J; Esko, Tonu; Arking, Dan E; Hwang, Shih-Jen; Guo, Xiuqing; Kutalik, Zoltan; Trompet, Stella; Shrine, Nick; Teumer, Alexander; Ried, Janina S; Bis, Joshua C; Smith, Albert V; Amin, Najaf; Nolte, Ilja M; Lyytikäinen, Leo-Pekka; Mahajan, Anubha; Wareham, Nicholas J; Hofer, Edith; Joshi, Peter K; Kristiansson, Kati; Traglia, Michela; Havulinna, Aki S; Goel, Anuj; Nalls, Mike A; Sõber, Siim; Vuckovic, Dragana; Luan, Jian'an; Del Greco M, Fabiola; Ayers, Kristin L; Marrugat, Jaume; Ruggiero, Daniela; Lopez, Lorna M; Niiranen, Teemu; Enroth, Stefan; Jackson, Anne U; Nelson, Christopher P; Huffman, Jennifer E; Zhang, Weihua; Marten, Jonathan; Gandin, Ilaria; Harris, Sarah E; Zemunik, Tatijana; Lu, Yingchang; Evangelou, Evangelos; Shah, Nabi; de Borst, Martin H; Mangino, Massimo; Prins, Bram P; Campbell, Archie; Li-Gao, Ruifang; Chauhan, Ganesh; Oldmeadow, Christopher; Abecasis, Gonçalo; Abedi, Maryam; Barbieri, Caterina M; Barnes, Michael R; Batini, Chiara; Beilby, John; Blake, Tineka; Boehnke, Michael; Bottinger, Erwin P; Braund, Peter S; Brown, Morris; Brumat, Marco; Campbell, Harry; Chambers, John C; Cocca, Massimiliano; Collins, Francis; Connell, John; Cordell, Heather J; Damman, Jeffrey J; Davies, Gail; de Geus, Eco J; de Mutsert, Renée; Deelen, Joris; Demirkale, Yusuf; Doney, Alex S F; Dörr, Marcus; Farrall, Martin; Ferreira, Teresa; Frånberg, Mattias; Gao, He; Giedraitis, Vilmantas; Gieger, Christian; Giulianini, Franco; Gow, Alan J; Hamsten, Anders; Harris, Tamara B; Hofman, Albert; Holliday, Elizabeth G; Hui, Jennie; Jarvelin, Marjo-Riitta; Johansson, Åsa; Johnson, Andrew D; Jousilahti, Pekka; Jula, Antti; Kähönen, Mika; Kathiresan, Sekar; Khaw, Kay-Tee; Kolcic, Ivana; Koskinen, Seppo; Langenberg, Claudia; Larson, Marty; Launer, Lenore J; Lehne, Benjamin; Liewald, David C M; Lin, Li; Lind, Lars; Mach, François; Mamasoula, Chrysovalanto; Menni, Cristina; Mifsud, Borbala; Milaneschi, Yuri; Morgan, Anna; Morris, Andrew D; Morrison, Alanna C; Munson, Peter J; Nandakumar, Priyanka; Nguyen, Quang Tri; Nutile, Teresa; Oldehinkel, Albertine J; Oostra, Ben A; Org, Elin; Padmanabhan, Sandosh; Palotie, Aarno; Paré, Guillaume; Pattie, Alison; Penninx, Brenda W J H; Poulter, Neil; Pramstaller, Peter P; Raitakari, Olli T; Ren, Meixia; Rice, Kenneth; Ridker, Paul M; Riese, Harriëtte; Ripatti, Samuli; Robino, Antonietta; Rotter, Jerome I; Rudan, Igor; Saba, Yasaman; Saint Pierre, Aude; Sala, Cinzia F; Sarin, Antti-Pekka; Schmidt, Reinhold; Scott, Rodney; Seelen, Marc A; Shields, Denis C; Siscovick, David; Sorice, Rossella; Stanton, Alice; Stott, David J; Sundström, Johan; Swertz, Morris; Taylor, Kent D; Thom, Simon; Tzoulaki, Ioanna; Tzourio, Christophe; Uitterlinden, André G; Völker, Uwe; Vollenweider, Peter; Wild, Sarah; Willemsen, Gonneke; Wright, Alan F; Yao, Jie; Thériault, Sébastien; Conen, David; Attia, John; Sever, Peter; Debette, Stéphanie; Mook-Kanamori, Dennis O; Zeggini, Eleftheria; Spector, Tim D; van der Harst, Pim; Palmer, Colin N A; Vergnaud, Anne-Claire; Loos, Ruth J F; Polasek, Ozren; Starr, John M; Girotto, Giorgia; Hayward, Caroline; Kooner, Jaspal S; Lindgren, Cecila M; Vitart, Veronique; Samani, Nilesh J; Tuomilehto, Jaakko; Gyllensten, Ulf; Knekt, Paul; Deary, Ian J; Ciullo, Marina; Elosua, Roberto; Keavney, Bernard D; Hicks, Andrew A; Scott, Robert A; Gasparini, Paolo; Laan, Maris; Liu, YongMei; Watkins, Hugh; Hartman, Catharina A; Salomaa, Veikko; Toniolo, Daniela; Perola, Markus; Wilson, James F; Schmidt, Helena; Zhao, Jing Hua; Lehtimäki, Terho; van Duijn, Cornelia M; Gudnason, Vilmundur; Psaty, Bruce M; Peters, Annette; Rettig, Rainer; James, Alan; Jukema, J Wouter; Strachan, David P; Palmas, Walter; Metspalu, Andres; Ingelsson, Erik; Boomsma, Dorret I; Franco, Oscar H; Bochud, Murielle; Newton-Cheh, Christopher; Munroe, Patricia B; Elliott, Paul; Chasman, Daniel I; Chakravarti, Aravinda; Knight, Joanne; Morris, Andrew P; Levy, Daniel; Tobin, Martin D; Snieder, Harold; Caulfield, Mark J; Ehret, Georg B

    Elevated blood pressure is a major risk factor for cardiovascular disease and has a substantial genetic contribution. Genetic variation influencing blood pressure has the potential to identify new pharmacological targets for the treatment of hypertension. To discover additional novel blood pressure

  2. Expression of the sFLT1 gene in cord blood cells is associated to maternal arsenic exposure and decreased birth weight.

    Directory of Open Access Journals (Sweden)

    Sylvie Remy

    Full Text Available There is increasing epidemiologic evidence that arsenic exposure in utero is associated with adverse pregnancy outcomes and may contribute to long-term health effects. These effects may occur at low environmental exposures but the underlying molecular mechanism is not clear. We collected cord blood samples of 183 newborns to identify associations between arsenic levels and birth anthropometric parameters in an area with very low arsenic exposure. Our core research aim was to screen for transcriptional marks that mechanistically explain these associations. Multiple regression analyses showed that birth weight decreased with 47 g (95% CI: 16-78 g for an interquartile range increase of 0.99 μg/L arsenic. The model was adjusted for child's sex, maternal smoking during pregnancy, gestational age, and parity. Higher arsenic concentrations and reduced birth weight were positively associated with changes in expression of the sFLT1 (soluble fms-like tyrosine kinase-1 gene in cord blood cells in girls. The protein product of sFLT1 is a scavenger of vascular endothelial growth factor (VEGF in the extracellular environment and plays a key role in the inhibition of placental angiogenesis. In terms of fetal development, inhibition of placental angiogenesis leads to impaired nutrition and hence to growth retardation. Various genes related to DNA methylation and oxidative stress showed also changed expression in relation to arsenic exposure but were not related to birth outcome parameters. In conclusion, this study suggests that increased expression of sFLT1 is an intermediate marker that points to placental angiogenesis as a pathway linking prenatal arsenic exposure to reduced birth weight.

  3. Effects of spironolactone on human blood mononuclear cells: mineralocorticoid receptor independent effects on gene expression and late apoptosis induction

    DEFF Research Database (Denmark)

    Sønder, Søren Ulrik Salling; Mikkelsen, Marianne; Rieneck, Klaus

    2006-01-01

    ,000 probed. In contrast, the SPIR-related steroids affected 17 or fewer transcripts. Combining SPIR and ALDO resulted in 940 affected transcripts, indicating that SPIR has an early gene-regulatory effect independent of MR. 3 The affected genes encode a large number of signalling proteins and receptors......, including immunoinflammatory response genes and apoptosis and antiapoptosis genes. Apoptosis was evident in CD3-, CD14- and CD19-positive cells, but only after 18 h of exposure to SPIR. 4 The transcriptional network involving the differentially regulated genes was examined and the results indicate that SPIR...

  4. Fish oil improves motor function, limits blood-brain barrier disruption, and reduces Mmp9 gene expression in a rat model of juvenile traumatic brain injury.

    Science.gov (United States)

    Russell, K L; Berman, N E J; Gregg, P R A; Levant, B

    2014-01-01

    The effects of an oral fish oil treatment regimen on sensorimotor, blood-brain barrier, and biochemical outcomes of traumatic brain injury (TBI) were investigated in a juvenile rat model. Seventeen-day old Long-Evans rats were given a 15mL/kg fish oil (2.01g/kg EPA, 1.34g/kg DHA) or soybean oil dose via oral gavage 30min prior to being subjected to a controlled cortical impact injury or sham surgery, followed by daily doses for seven days. Fish oil treatment resulted in less severe hindlimb deficits after TBI as assessed with the beam walk test, decreased cerebral IgG infiltration, and decreased TBI-induced expression of the Mmp9 gene one day after injury. These results indicate that fish oil improved functional outcome after TBI resulting, at least in part from decreased disruption of the blood-brain barrier through a mechanism that includes attenuation of TBI-induced expression of Mmp9. © 2013 Elsevier Ltd. All rights reserved.

  5. Aortic and carotid arterial stiffness and epigenetic regulator gene expression changes precede blood pressure rise in stroke-prone Dahl salt-sensitive hypertensive rats.

    Science.gov (United States)

    Herrera, Victoria L; Decano, Julius L; Giordano, Nicholas; Moran, Ann Marie; Ruiz-Opazo, Nelson

    2014-01-01

    Multiple clinical studies show that arterial stiffness, measured as pulse wave velocity (PWV), precedes hypertension and is an independent predictor of hypertension end organ diseases including stroke, cardiovascular disease and chronic kidney disease. Risk factor studies for arterial stiffness implicate age, hypertension and sodium. However, causal mechanisms linking risk factor to arterial stiffness remain to be elucidated. Here, we studied the causal relationship of arterial stiffness and hypertension in the Na-induced, stroke-prone Dahl salt-sensitive (S) hypertensive rat model, and analyzed putative molecular mechanisms. Stroke-prone and non-stroke-prone male and female rats were studied at 3- and 6-weeks of age for arterial stiffness (PWV, strain), blood pressure, vessel wall histology, and gene expression changes. Studies showed that increased left carotid and aortic arterial stiffness preceded hypertension, pulse pressure widening, and structural wall changes at the 6-week time-point. Instead, differential gene induction was detected implicating molecular-functional changes in extracellular matrix (ECM) structural constituents, modifiers, cell adhesion, and matricellular proteins, as well as in endothelial function, apoptosis balance, and epigenetic regulators. Immunostaining testing histone modifiers Ep300, HDAC3, and PRMT5 levels confirmed carotid artery-upregulation in all three layers: endothelial, smooth muscle and adventitial cells. Our study recapitulates observations in humans that given salt-sensitivity, increased Na-intake induced arterial stiffness before hypertension, increased pulse pressure, and structural vessel wall changes. Differential gene expression changes associated with arterial stiffness suggest a molecular mechanism linking sodium to full-vessel wall response affecting gene-networks involved in vascular ECM structure-function, apoptosis balance, and epigenetic regulation.

  6. Aortic and carotid arterial stiffness and epigenetic regulator gene expression changes precede blood pressure rise in stroke-prone Dahl salt-sensitive hypertensive rats.

    Directory of Open Access Journals (Sweden)

    Victoria L Herrera

    Full Text Available Multiple clinical studies show that arterial stiffness, measured as pulse wave velocity (PWV, precedes hypertension and is an independent predictor of hypertension end organ diseases including stroke, cardiovascular disease and chronic kidney disease. Risk factor studies for arterial stiffness implicate age, hypertension and sodium. However, causal mechanisms linking risk factor to arterial stiffness remain to be elucidated. Here, we studied the causal relationship of arterial stiffness and hypertension in the Na-induced, stroke-prone Dahl salt-sensitive (S hypertensive rat model, and analyzed putative molecular mechanisms. Stroke-prone and non-stroke-prone male and female rats were studied at 3- and 6-weeks of age for arterial stiffness (PWV, strain, blood pressure, vessel wall histology, and gene expression changes. Studies showed that increased left carotid and aortic arterial stiffness preceded hypertension, pulse pressure widening, and structural wall changes at the 6-week time-point. Instead, differential gene induction was detected implicating molecular-functional changes in extracellular matrix (ECM structural constituents, modifiers, cell adhesion, and matricellular proteins, as well as in endothelial function, apoptosis balance, and epigenetic regulators. Immunostaining testing histone modifiers Ep300, HDAC3, and PRMT5 levels confirmed carotid artery-upregulation in all three layers: endothelial, smooth muscle and adventitial cells. Our study recapitulates observations in humans that given salt-sensitivity, increased Na-intake induced arterial stiffness before hypertension, increased pulse pressure, and structural vessel wall changes. Differential gene expression changes associated with arterial stiffness suggest a molecular mechanism linking sodium to full-vessel wall response affecting gene-networks involved in vascular ECM structure-function, apoptosis balance, and epigenetic regulation.

  7. Redox maintenance and concerted modulation of gene expression and signaling pathways by a nanoformulation of curcumin protects peripheral blood mononuclear cells against gamma radiation.

    Science.gov (United States)

    Soltani, Behrooz; Ghaemi, Nasser; Sadeghizadeh, Majid; Najafi, Farhood

    2016-09-25

    Exposure to ionizing radiation (IR) could be detrimental to health. Oxidative stress, DNA damage, and inflammation are implicated in radiation damage. Curcumin, a natural polyphenol, has remarkable antioxidant, anti-inflammation and anticarcinogenic properties and is reported to protect cells and organisms against gamma-rays. We have recently enhanced solubility of curcumin via a novel dendrosomal nanoformulation (DNC). The objective of this study was to assess the potential efficacy of this nanoformulation in protecting human peripheral blood mononuclear cells (PBMC) against gamma-radiation. IR-induced damage was evident in reactive oxygen species, antioxidant enzymes activities, glutathione, lipid peroxidation, and viability assays. Treatment by DNC, showing superiority to curcumin, effectively counteracted these effects and reduced DNA damage as determined via 8-OHdG levels and lipid peroxidation as measured by the level of TBARS (as well as lipid hydroperoxides and 8-isoprostane). PBMC pretreatment by DNC prior to irradiation proved effective as well. Uptake kinetics revealed enhanced uptake of DNC compared to curcumin, particularly after irradiation. DNC suppressed IR-induced NF-κB activation 18 h post-irradiation. It induced Nrf2 binding activity early after irradiation which was sustained to 18 h. Gene expression analysis of a chosen set of radiation response genes in irradiated PBMC revealed a similar profile for DNA damage response and repair genes including FDXR, XPC, DDB2, and GADD45 in DNC-treated cells compared to IR control. However, in response to radiation, an altered profile of expression was noticed for CDKN1A (p21), MDM2, IFNG, and BBC3 (PUMA) genes after DNC treatment. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Characterization and differentiation of equine experimental local and early systemic inflammation by expression responses of inflammation-related genes in peripheral blood leukocytes

    DEFF Research Database (Denmark)

    Vinther, Anne Mette L; Heegaard, Peter M. H.; Skovgaard, Kerstin

    2016-01-01

    , the aim of this study was to investigate the innate peripheral blood leukocyte (PBL) immune response to local inflammation in horses, and to compare this response with the PBL immune response during the early phase of acute systemic inflammation. Expression of 22 selected inflammation-related genes......Local inflammation may progress into systemic inflammation. To increase our understanding of the basic immunological processes during transition of equine local inflammation into a systemic state, investigation into the equine systemic immune response to local inflammation is warranted. Therefore...... in horses initiated an innate transcriptional response in PBLs, which differed from the transcriptional response during the early phase of systemic inflammation. This study may provide new insights into the immunobiology of PBLs during the transition of local inflammation into a systemic state....

  9. Gene Expression in Bone

    Science.gov (United States)

    D'Ambrogio, A.

    Skeletal system has two main functions, to provide mechanical integrity for both locomotion and protection and to play an important role in mineral homeostasis. There is extensive evidence showing loss of bone mass during long-term Space-Flights. The loss is due to a break in the equilibrium between the activity of osteoblasts (the cells that forms bone) and the activity of osteoclasts (the cells that resorbs bone). Surprisingly, there is scanty information about the possible altered gene expression occurring in cells that form bone in microgravity.(Just 69 articles result from a "gene expression in microgravity" MedLine query.) Gene-chip or microarray technology allows to screen thousands of genes at the same time: the use of this technology on samples coming from cells exposed to microgravity could provide us with many important informations. For example, the identification of the molecules or structures which are the first sensors of the mechanical stress derived from lack of gravity, could help in understanding which is the first event leading to bone loss due to long-term exposure to microgravity. Consequently, this structure could become a target for a custom-designed drug. It is evident that bone mass loss, observed during long-time stay in Space, represents an accelerated model of what happens in aging osteoporosis. Therefore, the discovery and design of drugs able to interfere with the bone-loss process, could help also in preventing negative physiological processes normally observed on Earth. Considering the aims stated above, my research is designed to:

  10. Finger stick blood collection for gene expression profiling and storage of tempus blood RNA tubes [version 2; referees: 1 approved, 2 approved with reservations

    Directory of Open Access Journals (Sweden)

    Darawan Rinchai

    2017-03-01

    Full Text Available With this report we aim to make available a standard operating procedure (SOP developed for RNA stabilization of small blood volumes collected via a finger stick. The anticipation that this procedure may be improved through peer-review and/or readers public comments is another element motivating the publication of this SOP. Procuring blood samples from human subjects can, among other uses, enable assessment of the immune status of an individual subject via the profiling of RNA abundance using technologies such as real time PCR, NanoString, microarrays or RNA-sequencing. It is often desirable to minimize blood volumes and employ methods that are the least invasive and can be practically implemented outside of clinical settings. Finger stick blood samples are increasingly used for measurement of levels of pharmacological drugs and biological analytes. It is a simple and convenient procedure amenable for instance to field use or self-collection at home using a blood sample collection kit. Such methodologies should also enable the procurement of blood samples at high frequency for health or disease monitoring applications.

  11. Modulation of Chemokine Gene Expression in CD133 Cord Blood-Derived Human Mast Cells by Cyclosporin A and Dexamethasone

    DEFF Research Database (Denmark)

    Holm, Mette; Kvistgaard, Helene; Dahl, Christine

    2006-01-01

    following receptor mediated mast cell activation or following pharmacological activation of specific signal transduction cascades that become activated upon classical FcepsilonRI receptor crosslinking. We demonstrate that chemokine genes encoding IL-8, MCP-1, MIP-1alpha, and MIP-1beta are induced...... 150-fold, which vastly exceeds the yields of conventional protocols using CD34(+) cells as a source of progenitors. Taking advantage of the large quantities of in vitro differentiated mast cells, here we assess at the levels of transcription and translation the kinetics of chemokine gene induction...

  12. Effects of transgenic expression of dopamine beta hydroxylase (Dbh) gene on blood pressure in spontaneously hypertensive rats

    Czech Academy of Sciences Publication Activity Database

    Pravenec, Michal; Landa, Vladimír; Zídek, Václav; Mlejnek, Petr; Šilhavý, Jan; Mir, S.A.; Vaingankar, S. M.; Wang, J.; Kurtz, T. W.

    2016-01-01

    Roč. 65, č. 6 (2016), s. 1039-1044 ISSN 0862-8408 R&D Projects: GA ČR(CZ) GAP301/12/0696; GA TA ČR(CZ) TA02010013 Institutional support: RVO:67985823 Keywords : spontaneously hypertensive rat * transgenic * dopamine beta hydroxylase * catecholamines * blood pressure * left ventricular mass Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 1.461, year: 2016

  13. A role for prostaglandins in rapid cycling suggested by episode-specific gene expression shifts in peripheral blood mononuclear cells

    DEFF Research Database (Denmark)

    Gurvich, Artem; Begemann, Martin; Dahm, Liane

    2014-01-01

    of prostaglandin synthesis-related genes in rapid cycling was first proposed. METHODS: Psychopathological follow-up of the reported case was performed under cessation of celecoxib treatment. In a prospective observational study, patients with bipolar disorder (n = 47; of these, four had rapid cycling...

  14. Effects of spironolactone on human blood mononuclear cells: mineralocorticoid receptor independent effects on gene expression and late apoptosis induction

    DEFF Research Database (Denmark)

    Sønder, Søren Ulrik Salling; Mikkelsen, Marianne; Rieneck, Klaus

    2006-01-01

    1 Spironolactone (SPIR) binds to cytoplasmic mineralocorticoid receptors (MR) and functions as an aldosterone antagonist. Recently, the drug was shown to have an early suppressive effect on several immunoactive and proinflammatory cytokines. 2 To elucidate the mechanism behind this, the four MR-b...... affects genes controlled by the transcription factors NF-kappaB, CEBPbeta and MYC. 5 These observations provide new insight into the non-MR-mediated effects of SPIR....

  15. Integrative Analyses of Hepatic Differentially Expressed Genes and Blood Biomarkers during the Peripartal Period between Dairy Cows Overfed or Restricted-Fed Energy Prepartum

    Science.gov (United States)

    Shahzad, Khuram; Bionaz, Massimo; Trevisi, Erminio; Bertoni, Giuseppe; Rodriguez-Zas, Sandra L.; Loor, Juan J.

    2014-01-01

    Using published dairy cattle liver transcriptomics dataset along with novel blood biomarkers of liver function, metabolism, and inflammation we have attempted an integrative systems biology approach applying the classical functional enrichment analysis using DAVID, a newly-developed Dynamic Impact Approach (DIA), and an upstream gene network analysis using Ingenuity Pathway Analysis (IPA). Transcriptome data was generated from experiments evaluating the impact of prepartal plane of energy intake [overfed (OF) or restricted (RE)] on liver of dairy cows during the peripartal period. Blood biomarkers uncovered that RE vs. OF led to greater prepartal liver distress accompanied by a low-grade inflammation and larger proteolysis (i.e., higher haptoglobin, bilirubin, and creatinine). Post-partum the greater bilirubinaemia and lipid accumulation in OF vs. RE indicated a large degree of liver distress. The re-analysis of microarray data revealed that expression of >4,000 genes was affected by diet × time. The bioinformatics analysis indicated that RE vs. OF cows had a liver with a greater lipid and amino acid catabolic capacity both pre- and post-partum while OF vs. RE cows had a greater activation of pathways/functions related to triglyceride synthesis. Furthermore, RE vs. OF cows had a larger (or higher capacity to cope with) ER stress likely associated with greater protein synthesis/processing, and a higher activation of inflammatory-related functions. Liver in OF vs. RE cows had a larger cell proliferation and cell-to-cell communication likely as a response to the greater lipid accumulation. Analysis of upstream regulators indicated a pivotal role of several lipid-related transcription factors (e.g., PPARs, SREBPs, and NFE2L2) in priming the liver of RE cows to better face the early postpartal metabolic and inflammatory challenges. An all-encompassing dynamic model was proposed based on the findings. PMID:24914544

  16. Promoter Region Hypermethylation and mRNA Expression of MGMT and p16 Genes in Tissue and Blood Samples of Human Premalignant Oral Lesions and Oral Squamous Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Vikram Bhatia

    2014-01-01

    Full Text Available Promoter methylation and relative gene expression of O6-methyguanine-DNA-methyltransferase (MGMT and p16 genes were examined in tissue and blood samples of patients with premalignant oral lesions (PMOLs and oral squamous cell carcinoma (OSCC. Methylation-specific PCR and reverse transcriptase PCR were performed in 146 tissue and blood samples from controls and patients with PMOLs and OSCC. In PMOL group, significant promoter methylation of MGMT and p16 genes was observed in 59% (P=0.0010 and 57% (P=0.0016 of tissue samples, respectively, and 39% (P=0.0135 and 33% (P=0.0074 of blood samples, respectively. Promoter methylation of both genes was more frequent in patients with OSCC, that is, 76% (P=0.0001 and 82% (P=0.0001 in tissue and 57% (P=0.0002 and 70% (P=0.0001 in blood, respectively. Significant downregulation of MGMT and p16 mRNA expression was observed in both tissue and blood samples from patients with PMOLs and OSCC. Hypermethylation-induced transcriptional silencing of MGMT and p16 genes in both precancer and cancer suggests important role of these changes in progression of premalignant state to malignancy. Results support use of blood as potential surrogate to tissue samples for screening or diagnosing PMOLs and early OSCC.

  17. Effects of limited concentrate feeding on growth and blood and serum variables, and on nutrient digestibility and gene expression of hepatic gluconeogenic enzymes in dairy calves.

    Science.gov (United States)

    Lohakare, J D; van de Sand, H; Gerlach, K; Hosseini, A; Mielenz, M; Sauerwein, H; Pries, M; Südekum, K-H

    2012-02-01

    This study elucidated the effects of limited concentrate feeding on growth, nutrient digestibility, blood profile and gene expression of gluconeogenic enzymes in the liver of dairy calves. The study utilized 36 German Holstein dairy calves (5-7 days of age) divided into two groups of 18 calves each for 150 days. Control group calves received 2 kg/(calf × day) of concentrate, whereas calves in the restricted group received only 1 kg/(calf × day). Good quality forage (mixture of maize and grass silages) was available for ad libitum consumption to both groups. The intake of milk replacer before weaning, and of concentrate were recorded daily per calf; however, the consumption of forages was quantified as daily average of the group. Body weights (BW) were recorded at start and on days 35, 70, 112 and 150. Blood and serum samples and spot urinary and faecal samples were also collected at similar time points. On days 70 and 150, liver biopsies were collected from seven animals in each group. The BW was not different between the groups at all times. Total BW gain in the control group was 124 kg as opposed to 111 kg in restricted group that led to average BW gain of 827 g/day and 739 g/day in respective groups, and the differences were significant (p = 0.018). As planned, the control group had higher concentrate and lower forage intake than the restricted group. The blood haemoglobin, haematocrit and serum variables (glucose, total protein, albumin and urea) were within the normal range in both groups, but serum glucose was higher (p < 0.05) in control than in restricted group at 70 days. There was no difference between groups in organic matter (OM) digestibility which declined (p < 0.001) with increasing age in both groups. Microbial crude protein (MCP) synthesis estimated from urinary allantoin excretion increased (p < 0.001) in both groups with increasing age but was not different between groups. The mRNA expressions for the gluconeogenic enzymes, cytosolic and

  18. A New Synthetic Compound, 2-OH, Enhances Interleukin-2 and Interferon-γ Gene Expression in Human Peripheral Blood Mononuclear Cells

    Directory of Open Access Journals (Sweden)

    Woan-Fang Tzeng

    2009-07-01

    Full Text Available A new synthetic compound, 6-hydroxy-2-tosylisoquinolin-1(2H-one (2-OH, was selected for immunopharmacological activity tests. The effects of 2-OH on human peripheral blood mononuclear cell (PBMC proliferation were determined by tritiated thymidine uptake. Compared to phytohemagglutinin (PHA; 5 μg/mL stimulation, 2-OH significantly enhanced PBMC proliferation in a dose-dependent manner. The 50% enhancement activity (EC50 for 2-OH was 4.4±0.1 μM. In addition, effects of 2-OH on interleukin-2 (IL-2 and interferon-γ (IFN-γ production in PBMC were determined by enzyme immunoassay. Results demonstrated that 2-OH stimulated IL-2 and IFN-γ production in PBMC. Data from reverse transcription-polymerase chain reaction (RT-PCR and real-time PCR indicated that IL-2 and IFN-γ mRNA expression in PBMC could be induced by 2-OH. Therefore, 2-OH enhanced IL-2 and IFN-γ production in PBMC by modulation their gene expression. We suggest that 2-OH may be an immunomodulatory agent.

  19. Imaging gene expression in gene therapy

    International Nuclear Information System (INIS)

    Wiebe, Leonard I.

    1997-01-01

    Full text. Gene therapy can be used to introduce new genes, or to supplement the function of indigenous genes. At the present time, however, there is non-invasive test to demonstrate efficacy of the gene transfer and expression processes. It has been postulated that scintigraphic imaging can offer unique information on both the site at which the transferred gene is expressed, and the degree of expression, both of which are critical issue for safety and clinical efficacy. Many current studies are based on 'suicide gene therapy' of cancer. Cells modified to express these genes commit metabolic suicide in the presence of an enzyme encoded by the transferred gene and a specifically-convertible pro drug. Pro drug metabolism can lead to selective metabolic trapping, required for scintigraphy. Herpes simplex virus type-1 thymidine kinase (H S V-1 t k + ) has been use for 'suicide' in vivo tumor gene therapy. It has been proposed that radiolabelled nucleosides can be used as radiopharmaceuticals to detect H S V-1 t k + gene expression where the H S V-1 t k + gene serves a reporter or therapeutic function. Animal gene therapy models have been studied using purine-([ 18 F]F H P G; [ 18 F]-A C V), and pyrimidine- ([ 123 / 131 I]I V R F U; [ 124 / 131I ]) antiviral nucleosides. Principles of gene therapy and gene therapy imaging will be reviewed and experimental data for [ 123 / 131I ]I V R F U imaging with the H S V-1 t k + reporter gene will be presented

  20. Evolution of gene expression after gene amplification.

    Science.gov (United States)

    Garcia, Nelson; Zhang, Wei; Wu, Yongrui; Messing, Joachim

    2015-04-24

    We took a rather unique approach to investigate the conservation of gene expression of prolamin storage protein genes across two different subfamilies of the Poaceae. We took advantage of oat plants carrying single maize chromosomes in different cultivars, called oat-maize addition (OMA) lines, which permitted us to determine whether regulation of gene expression was conserved between the two species. We found that γ-zeins are expressed in OMA7.06, which carries maize chromosome 7 even in the absence of the trans-acting maize prolamin-box-binding factor (PBF), which regulates their expression. This is likely because oat PBF can substitute for the function of maize PBF as shown in our transient expression data, using a γ-zein promoter fused to green fluorescent protein (GFP). Despite this conservation, the younger, recently amplified prolamin genes in maize, absent in oat, are not expressed in the corresponding OMAs. However, maize can express the oldest prolamin gene, the wheat high-molecular weight glutenin Dx5 gene, even when maize Pbf is knocked down (through PbfRNAi), and/or another maize transcription factor, Opaque-2 (O2) is knocked out (in maize o2 mutant). Therefore, older genes are conserved in their regulation, whereas younger ones diverged during evolution and eventually acquired a new repertoire of suitable transcriptional activators. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  1. Regulation of eucaryotic gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Brent, R.; Ptashne, M.S

    1989-05-23

    This patent describes a method of regulating the expression of a gene in a eucaryotic cell. The method consists of: providing in the eucaryotic cell, a peptide, derived from or substantially similar to a peptide of a procaryotic cell able to bind to DNA upstream from or within the gene, the amount of the peptide being sufficient to bind to the gene and thereby control expression of the gene.

  2. Gene Expression and Microarray Investigation of Dendrobium ...

    African Journals Online (AJOL)

    diet. The rats were continuously fed for 16 months, and blood glucose monitored by a glucose meter. One wild-type rat and 4 high- fat/high-glucose rats died during ..... therapy not only changed gene expression patterns in type 2 diabetes but also improved immune activity and reduced the likelihood of cancer development.

  3. Differential Gene Expression and Aging

    Directory of Open Access Journals (Sweden)

    Laurent Seroude

    2002-01-01

    Full Text Available It has been established that an intricate program of gene expression controls progression through the different stages in development. The equally complex biological phenomenon known as aging is genetically determined and environmentally modulated. This review focuses on the genetic component of aging, with a special emphasis on differential gene expression. At least two genetic pathways regulating organism longevity act by modifying gene expression. Many genes are also subjected to age-dependent transcriptional regulation. Some age-related gene expression changes are prevented by caloric restriction, the most robust intervention that slows down the aging process. Manipulating the expression of some age-regulated genes can extend an organism's life span. Remarkably, the activity of many transcription regulatory elements is linked to physiological age as opposed to chronological age, indicating that orderly and tightly controlled regulatory pathways are active during aging.

  4. Effects of breed and dietary nutrient density on the growth performance, blood metabolite, and genes expression of target of rapamycin (TOR) signalling pathway of female broiler chickens.

    Science.gov (United States)

    Wang, X-q; Jiang, W; Tan, H-z; Zhang, D-x; Zhang, H-j; Wei, S; Yan, H-c

    2013-08-01

    This study was conducted to compare the effects of exchanged diets with identical energy level on characteristics of slow-growing (WENs Yellow-Feathered Chicken, WYFC) and fast-growing (White Recessive Rock Chicken, WRRC) female chickens. A total of 1450 WYFC and 1150 WRRC 1-day-old female hatchlings were used. A high-nutrient-density (HND) diet and a low-nutrient-density (LND) diet were formulated for three phases. A completely randomized experimental design with a 2 × 2 factorial arrangement (diet and breed), each with five replicates of 145 and 115 birds, was applied. The results showed that WRRC had a higher body weight (BW), average daily feed intake and average daily gain than WYFC throughout the experiment (palkaline phosphatase (ALP) concentrations than WYFC (peffect was observed on organ indices, muscle yields or blood responses. The gene expressions of Rheb, TOR, S6K1 and 4E-BP1 in gastrocnemius muscle were the highest in the WYFC-LND groups at 63 and 105 days (pdietary nutrient density and that lower-nutrient-density diets are optimal for the long-term housing of broiler chickens. © 2012 Blackwell Verlag GmbH.

  5. Influence of simulated microgravity on clock genes expression rhythmicity and underlying blood circulating miRNAs-mRNA co-expression regulatory mechanism in C57BL/6J mice

    Science.gov (United States)

    Lv, Ke; Qu, Lina

    Purpose: It is vital for astronauts to maintain the optimal alertness and neurobehavioral function. Among various factors that exist in the space flight and long-duration mission environment, gravity changes may probably an essential environmental factor to interfere with internal circadian rhythms homeostasis and sleep quality, but the underlying mechanism is unclear. Mammals' biological clock is controlled by the suprachiasmatic nucleus (SCN), and peripheral organs adjust their own rhythmicity with the central signals. Nevertheless the mechanism underlying this synchronizition process is still unknown. microRNAs (miRNAs) are about 19˜22nt long regulatory RNAs that serve as critical modulators of post-transcriptional gene regulation. Recently, circulating miRNAs were found to have the regulatory role between cells and peripheral tissues, besides its function inside the cells. This study aims to investigate the regulatory signal transduction role of miRNAs between SCN and peripheral biological clock effecter tissues and to further decipher the mechanism of circadian disturbance under microgravity. Method: Firstly, based on the assumption that severe alterations in the expression of genes known to be involved in circadian rhythms may affect the expression of other genes, the labeled cDNA from liver and suprachiasmatic nucleus (SCN) of clock-knockout mice and control mice in different time points were cohybridized to microarrays. The fold change exceeding 2 (FC>2) was used to identify genes with altered expression levels in the knockout mice compared with control mice. Secondly, male C57BL/6J mice at 8 weeks of age were individually caged and acclimatized to the laboratory conditions (12h light/dark cycle) before being used for continuous core body temperature and activity monitoring. The mice were individually caged and tail suspended using a strip of adhesive surgical tape attached to a chain hanging from a pulley. Peripheral blood and liver tissues collection

  6. Separate and combined effects of genetic variants and pre-treatment whole blood gene expression on response to exposure-based cognitive behavioural therapy for anxiety disorders.

    Science.gov (United States)

    Coleman, Jonathan R I; Lester, Kathryn J; Roberts, Susanna; Keers, Robert; Lee, Sang Hyuck; De Jong, Simone; Gaspar, Héléna; Teismann, Tobias; Wannemüller, André; Schneider, Silvia; Jöhren, Peter; Margraf, Jürgen; Breen, Gerome; Eley, Thalia C

    2017-04-01

    Exposure-based cognitive behavioural therapy (eCBT) is an effective treatment for anxiety disorders. Response varies between individuals. Gene expression integrates genetic and environmental influences. We analysed the effect of gene expression and genetic markers separately and together on treatment response. Adult participants (n ≤ 181) diagnosed with panic disorder or a specific phobia underwent eCBT as part of standard care. Percentage decrease in the Clinical Global Impression severity rating was assessed across treatment, and between baseline and a 6-month follow-up. Associations with treatment response were assessed using expression data from 3,233 probes, and expression profiles clustered in a data- and literature-driven manner. A total of 3,343,497 genetic variants were used to predict treatment response alone and combined in polygenic risk scores. Genotype and expression data were combined in expression quantitative trait loci (eQTL) analyses. Expression levels were not associated with either treatment phenotype in any analysis. A total of 1,492 eQTLs were identified with q genetic variants and treatment response did not affect expression levels significantly. Genetic variants did not significantly predict treatment response alone or in polygenic risk scores. We assessed gene expression alone and alongside genetic variants. No associations with treatment outcome were identified. Future studies require larger sample sizes to discover associations.

  7. A Randomized Double-Blinded, Placebo-Controlled Trial Investigating the Effect of Fish Oil Supplementation on Gene Expression Related to Insulin Action, Blood Lipids, and Inflammation in Gestational Diabetes Mellitus-Fish Oil Supplementation and Gestational Diabetes

    Directory of Open Access Journals (Sweden)

    Mehri Jamilian

    2018-01-01

    Full Text Available Gestational diabetes mellitus (GDM is a common complication of pregnancy, and it is mostly associated with postpartum diabetes, insulin resistance, and dyslipidemia. Fish oil (omega-3 supplementation has been shown to reduce the risk of different chronic diseases such as cardiovascular disease, type 2 diabetes, and cancers, though the evidence of its impact on gestational diabetes is scarce. Our goal in this study was to determine the effect of fish oil administration on gene expression related to insulin action, blood lipids, and inflammation in women with GDM. Participants with GDM (n = 40, aged 18–40 years, were randomized to take either 1000 mg fish oil capsules, containing 180 mg eicosapentaenoic acid and 120 mg docosahexaenoic acid (n = 20, or placebo (n = 20 twice a day for 6 weeks. Gene expression related to insulin, lipids, and inflammation was quantified in peripheral blood mononuclear cells (PBMCs of GDM women using Reverse Transcription Polymerase Chain Reaction (RT-PCR method. Results of RT-PCR indicated that omega-3 supplementation upregulated gene expression of peroxisome proliferator-activated receptor gamma (PPAR-γ (P = 0.04 in PBMCs of patients with GDM, compared with the placebo. In addition, gene expression of the low-density lipoprotein receptor (LDLR (P < 0.001, interleukin-1 (IL-1 (P = 0.007, and tumor necrosis factor alpha (TNF-α (P = 0.01 was downregulated in PBMCs of women with GDM, following omega-3 supplementation. No significant effect of omega-3 supplementation was indicated on gene expression of IL-8 in PBMCs of patients with GDM. Overall, fish oil supplementation for 6 weeks in women with GDM significantly improved gene expression of PPAR-γ, IL-1, and TNF-α, but not gene expression of IL-8.

  8. Effects of a healthy Nordic diet on gene expression changes in peripheral blood mononuclear cells in response to an oral glucose tolerance test in subjects with metabolic syndrome

    DEFF Research Database (Denmark)

    Leder, Lena; Kolehmainen, Marjukka; Narverud, Ingunn

    2016-01-01

    -related genes in peripheral blood mononuclear cells (PBMCs) during a 2-h oral glucose tolerance test (OGTT) in individuals with MetS. METHODS: A Nordic multicenter randomized dietary study included subjects (n = 213) with MetS, randomized to a ND group or a control diet (CD) group applying an isocaloric study...

  9. Effect of Essential Oils of Peppermint, Lemon, Thyme and Ajwain on Performance, Blood Metabolites and Hepatic lipogenic Gene Expression of Broilers

    Directory of Open Access Journals (Sweden)

    Farhad Samadian

    2016-04-01

    Full Text Available Intoduction Essential oils (EOs are important aromatic components of herbs and spices which are complex mixtures of secondary plant metabolites consisting of low-boiling-phenylpropenes and terpenes. Their biological activities have been known and utilized since ancient times in perfumery, food preservation, flavoring, and medicine. Some of their biological activities include antibacterial, antifungal, anti-oxidant and anti-inflammatory effects. The ban on the use of antibiotics as growth promoters has stimulated the search for alternative feed supplements in animal production. EOs have received attention in recent years as potential ‘natural’ alternatives for replacing antibiotic growth promoters (AGPs in animal diets due to their positive impact on growth performance and welfare. A number of studies have been carried out to investigate the effects of EOs on broiler performance rather than the physiological effects, but the results have not been consistent (or constant. The purpose of this study was to investigate the effects of four essential oils (Thymus vulgaris, Mentha piperita, Citrus lemon, Carum copticom on growth performance, some of the serum biochemistry parameters and lipogenic gene expression in broiler chickens. Materials and Methods A total of 312, 1-day-old broiler chicks were allocated in completely randomized design to 13 groups with 6 replicate cages per treatment. After 2-day adjustment with the basal diet, the birds were randomly assigned to the corresponding experimental diets supplemented with 0 (Control, 50, 100 and 150 mg/kg diet essential oils extracted from Crum capticum, Thymus vulgaris, Mentha piperita and Cirtus lemon. The basal diet composed of maize–soybean meal prepared in our laboratory and all birds had free access to water for the entire period. Food intake and BW were recorded to determine growth performance and feed: gain ratio. At the end of the experiment (42 day blood samples (6 samples per treatment

  10. Effects of breed and harvest age on feed intake, growth, carcass traits, blood metabolites, and lipogenic gene expression in Boer and Kiko goats.

    Science.gov (United States)

    Solaiman, S; Min, B R; Gurung, N; Behrends, J; McElhenney, W

    2012-07-01

    The objectives of this experiment were to determine the effects of 2 different breeds (BR), Boer and Kiko, and 4 post-weaning harvest ages (HA; Days 0, 29, 56, and 85) on growth, carcass traits, blood metabolites, and lipogenic gene expression. Forty-eight goat (Capra hircus) kids (BW = 23.9 ± 1.50 kg; 3 to 4 mo) were used in a 2 × 4 factorial arrangement of treatments. Goats were stratified by BW within BR and randomly assigned to 4 HA. Kids were born between March 15 and April 7 to purebred does, and were represented by at least 3 purebred sires within each BR. They were fed a grain/hay (80:20) diet once per day. At designated HA, randomly pre-assigned goats (n = 6) from each BR were transported to the Meat Science Lab at Mississippi State University, Starkville, MS, and were harvested. There were no interactions (P > 0.10) between BR and HA. Boer tended (P = 0.08) to have greater initial BW, final BW (P = 0.05), and G/F ratio (P = 0.05). Although the 80:20 grain/hay diet was reinforced by adjusting DMI, both BR had similar total DMI, Boer kept that ratio, while Kiko consumed more (P = 0.001) hay (70:30, grain/hay) and had more (P = 0.001) DMI when expressed as g/kg BW. Boer tended to have greater transportation shrink (P = 0.07), HCW (P = 0.08), and cold carcass weights (CCW; P = 0.08), with greater (P = 0.001) carcass fat. No differences (P > 0.10) were observed in carcass shrink, dressing percentage, 12th rib fat thickness, and LM area between the 2 BR. When expressed as percentage empty BW, carcass bone was similar (P = 0.25), whereas muscle percentage (P = 0.02) was greater for Kiko and fat percentage was greater (P = 0.001) for Boer. Fat as a percentage of CCW remained relatively similar (P > 0.10) for both BR for the 2nd and 3rd HA. Differences were more evident (P = 0.01) at the 4th HA. Boer reached targeted harvest weight (29 kg) at the 3rd HA, while fat deposition continued (P = 0.01) during the 4th HA. Breed had no effect (P > 0.10) on meat color (L

  11. Gene expression in colorectal cancer

    DEFF Research Database (Denmark)

    Birkenkamp-Demtroder, Karin; Christensen, Lise Lotte; Olesen, Sanne Harder

    2002-01-01

    Understanding molecular alterations in colorectal cancer (CRC) is needed to define new biomarkers and treatment targets. We used oligonucleotide microarrays to monitor gene expression of about 6,800 known genes and 35,000 expressed sequence tags (ESTs) on five pools (four to six samples in each......' C, and clustered Dukes' D separately. Real-time PCR of 10 known genes and 5 ESTs demonstrated excellent reproducibility of the array-based findings. The most frequently altered genes belonged to functional categories of metabolism (22%), transcription and translation (11%), and cellular processes (9...

  12. Human Lacrimal Gland Gene Expression.

    Directory of Open Access Journals (Sweden)

    Vinay Kumar Aakalu

    Full Text Available The study of human lacrimal gland biology and development is limited. Lacrimal gland tissue is damaged or poorly functional in a number of disease states including dry eye disease. Development of cell based therapies for lacrimal gland diseases requires a better understanding of the gene expression and signaling pathways in lacrimal gland. Differential gene expression analysis between lacrimal gland and other embryologically similar tissues may be helpful in furthering our understanding of lacrimal gland development.We performed global gene expression analysis of human lacrimal gland tissue using Affymetrix ® gene expression arrays. Primary data from our laboratory was compared with datasets available in the NLM GEO database for other surface ectodermal tissues including salivary gland, skin, conjunctiva and corneal epithelium.The analysis revealed statistically significant difference in the gene expression of lacrimal gland tissue compared to other ectodermal tissues. The lacrimal gland specific, cell surface secretory protein encoding genes and critical signaling pathways which distinguish lacrimal gland from other ectodermal tissues are described.Differential gene expression in human lacrimal gland compared with other ectodermal tissue types revealed interesting patterns which may serve as the basis for future studies in directed differentiation among other areas.

  13. Differential gene expresison in umbilical cord blood and maternal peripheral blood

    Czech Academy of Sciences Publication Activity Database

    Merkerová, M.; Vasiková, A.; Bruchová, H.; Líbalová, Helena; Topinka, Jan; Balaščak, I.; Šrám, Radim; Brdička, R.

    2009-01-01

    Roč. 83, č. 3 (2009), s. 183-190 ISSN 0902-4441 R&D Projects: GA MŠk 2B06088 Institutional research plan: CEZ:AV0Z50390512 Keywords : gene expression * umbilical cord blood * peripheral blood Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 2.345, year: 2009

  14. Differences in Whole Blood Gene Expression Associated with Infection Time-Course and Extent of Fetal Mortality in a Reproductive Model of Type 2 Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) Infection

    Science.gov (United States)

    Wilkinson, Jamie M.; Ladinig, Andrea; Bao, Hua; Kommadath, Arun; Stothard, Paul; Lunney, Joan K.; Harding, John C. S.; Plastow, Graham S.

    2016-01-01

    Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) infection of pregnant females causes fetal death and increased piglet mortality, but there is substantial variation in the extent of reproductive pathology between individual dams. This study used RNA-sequencing to characterize the whole blood transcriptional response to type 2 PRRSV in pregnant gilts during the first week of infection (at 0, 2, and 6 days post-inoculation), and attempted to identify gene expression signatures associated with a low or high level of fetal mortality rates (LFM and HFM; n = 8/group) at necropsy, 21 days post-inoculation. The initial response to infection measured at 2 days post-inoculation saw an upregulation of genes involved in innate immunity, such as interferon-stimulated antiviral genes and inflammatory markers, and apoptosis. A concomitant decrease in expression of protein synthesis and T lymphocyte markers was observed. By day 6 the pattern had reversed, with a drop in innate immune signaling and an increase in the expression of genes involved in cell division and T cell signaling. Differentially expressed genes (DEGs) associated with extremes of litter mortality rate were identified at all three time-points. Among the 15 DEGs upregulated in LFM gilts on all three days were several genes involved in platelet function, including integrins ITGA2B and ITGB3, and the chemokine PF4 (CXCL4). LFM gilts exhibited a higher baseline expression of interferon-stimulated and pro-inflammatory genes prior to infection, and of T cell markers two days post-infection, indicative of a more rapid progression of the immune response to PRRSV. This study has increased our knowledge of the early response to PRRSV in the blood of pregnant gilts, and could ultimately lead to the development of a biomarker panel that can be used to predict PRRSV-associated reproductive pathology. PMID:27093427

  15. Differences in Whole Blood Gene Expression Associated with Infection Time-Course and Extent of Fetal Mortality in a Reproductive Model of Type 2 Porcine Reproductive and Respiratory Syndrome Virus (PRRSV Infection.

    Directory of Open Access Journals (Sweden)

    Jamie M Wilkinson

    Full Text Available Porcine Reproductive and Respiratory Syndrome Virus (PRRSV infection of pregnant females causes fetal death and increased piglet mortality, but there is substantial variation in the extent of reproductive pathology between individual dams. This study used RNA-sequencing to characterize the whole blood transcriptional response to type 2 PRRSV in pregnant gilts during the first week of infection (at 0, 2, and 6 days post-inoculation, and attempted to identify gene expression signatures associated with a low or high level of fetal mortality rates (LFM and HFM; n = 8/group at necropsy, 21 days post-inoculation. The initial response to infection measured at 2 days post-inoculation saw an upregulation of genes involved in innate immunity, such as interferon-stimulated antiviral genes and inflammatory markers, and apoptosis. A concomitant decrease in expression of protein synthesis and T lymphocyte markers was observed. By day 6 the pattern had reversed, with a drop in innate immune signaling and an increase in the expression of genes involved in cell division and T cell signaling. Differentially expressed genes (DEGs associated with extremes of litter mortality rate were identified at all three time-points. Among the 15 DEGs upregulated in LFM gilts on all three days were several genes involved in platelet function, including integrins ITGA2B and ITGB3, and the chemokine PF4 (CXCL4. LFM gilts exhibited a higher baseline expression of interferon-stimulated and pro-inflammatory genes prior to infection, and of T cell markers two days post-infection, indicative of a more rapid progression of the immune response to PRRSV. This study has increased our knowledge of the early response to PRRSV in the blood of pregnant gilts, and could ultimately lead to the development of a biomarker panel that can be used to predict PRRSV-associated reproductive pathology.

  16. Differences in Whole Blood Gene Expression Associated with Infection Time-Course and Extent of Fetal Mortality in a Reproductive Model of Type 2 Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) Infection.

    Science.gov (United States)

    Wilkinson, Jamie M; Ladinig, Andrea; Bao, Hua; Kommadath, Arun; Stothard, Paul; Lunney, Joan K; Harding, John C S; Plastow, Graham S

    2016-01-01

    Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) infection of pregnant females causes fetal death and increased piglet mortality, but there is substantial variation in the extent of reproductive pathology between individual dams. This study used RNA-sequencing to characterize the whole blood transcriptional response to type 2 PRRSV in pregnant gilts during the first week of infection (at 0, 2, and 6 days post-inoculation), and attempted to identify gene expression signatures associated with a low or high level of fetal mortality rates (LFM and HFM; n = 8/group) at necropsy, 21 days post-inoculation. The initial response to infection measured at 2 days post-inoculation saw an upregulation of genes involved in innate immunity, such as interferon-stimulated antiviral genes and inflammatory markers, and apoptosis. A concomitant decrease in expression of protein synthesis and T lymphocyte markers was observed. By day 6 the pattern had reversed, with a drop in innate immune signaling and an increase in the expression of genes involved in cell division and T cell signaling. Differentially expressed genes (DEGs) associated with extremes of litter mortality rate were identified at all three time-points. Among the 15 DEGs upregulated in LFM gilts on all three days were several genes involved in platelet function, including integrins ITGA2B and ITGB3, and the chemokine PF4 (CXCL4). LFM gilts exhibited a higher baseline expression of interferon-stimulated and pro-inflammatory genes prior to infection, and of T cell markers two days post-infection, indicative of a more rapid progression of the immune response to PRRSV. This study has increased our knowledge of the early response to PRRSV in the blood of pregnant gilts, and could ultimately lead to the development of a biomarker panel that can be used to predict PRRSV-associated reproductive pathology.

  17. Gene expression changes in peripheral blood mononuclear cells from patients with metabolic syndrome after acute intake of phenol-rich virgin olive oil

    Science.gov (United States)

    Some studies have shown that acute intake of high-phenol virgin olive oil reduces pro-inflammatory, pro-oxidant and pro-thrombotic states, but it remains unclear if the effects attributed to its phenolic fraction are exerted at the transcriptional level in vivo. Gene expression microarray analysis w...

  18. Changes in PTGS1 and ALOX12 Gene Expression in Peripheral Blood Mononuclear Cells Are Associated with Changes in Arachidonic Acid, Oxylipins, and Oxylipin/Fatty Acid Ratios in Response to Omega-3 Fatty Acid Supplementation.

    Directory of Open Access Journals (Sweden)

    Claire C Berthelot

    Full Text Available There is a high degree of inter-individual variability among people in response to intervention with omega-3 fatty acids (FA, which may partly explain conflicting results on the effectiveness of omega-3 FA for the treatment and prevention of chronic inflammatory diseases. In this study we sought to evaluate whether part of this inter-individual variability in response is related to the regulation of key oxylipin metabolic genes in circulating peripheral blood mononuclear cells (PBMCs.Plasma FA and oxylipin profiles from 12 healthy individuals were compared to PBMC gene expression profiles following six weeks of supplementation with fish oil, which delivered 1.9 g/d eicosapentaenoic acid (EPA and 1.5 g/d docosahexaenoic acid (DHA. Fold changes in gene expression were measured by a quantitative polymerase chain reaction (qPCR.Healthy individuals supplemented with omega-3 FA had differential responses in prostaglandin-endoperoxide synthase 1 (PTGS1, prostaglandin-endoperoxide synthase 2 (PTGS2, arachidonate 12-lipoxygenase (ALOX12, and interleukin 8 (IL-8 gene expression in isolated PBMCs. In those individuals for whom plasma arachidonic acid (ARA in the phosphatidylethanolamine (PE lipid class decreased in response to omega-3 intervention, there was a corresponding decrease in gene expression for PTGS1 and ALOX12. Several oxylipin product/FA precursor ratios (e.g. prostaglandin E2 (PGE2/ARA for PTGS1 and 12-hydroxyeicosatetraenoic acid (12-HETE/ARA for ALOX12 were also associated with fold change in gene expression, suggesting an association between enzyme activity and gene expression. The fold-change in PTGS1 gene expression was highly positively correlated with ALOX12 gene expression but not with PTGS2, whereas IL-8 and PTGS2 were positively correlated.The regulation of important oxylipin metabolic genes in PBMCs varied with the extent of change in ARA concentrations in the case of PTGS1 and ALOX12 regulation. PBMC gene expression changes in

  19. Changes in PTGS1 and ALOX12 Gene Expression in Peripheral Blood Mononuclear Cells Are Associated with Changes in Arachidonic Acid, Oxylipins, and Oxylipin/Fatty Acid Ratios in Response to Omega-3 Fatty Acid Supplementation.

    Science.gov (United States)

    Berthelot, Claire C; Kamita, Shizuo George; Sacchi, Romina; Yang, Jun; Nording, Malin L; Georgi, Katrin; Hegedus Karbowski, Christine; German, J Bruce; Weiss, Robert H; Hogg, Ronald J; Hammock, Bruce D; Zivkovic, Angela M

    2015-01-01

    There is a high degree of inter-individual variability among people in response to intervention with omega-3 fatty acids (FA), which may partly explain conflicting results on the effectiveness of omega-3 FA for the treatment and prevention of chronic inflammatory diseases. In this study we sought to evaluate whether part of this inter-individual variability in response is related to the regulation of key oxylipin metabolic genes in circulating peripheral blood mononuclear cells (PBMCs). Plasma FA and oxylipin profiles from 12 healthy individuals were compared to PBMC gene expression profiles following six weeks of supplementation with fish oil, which delivered 1.9 g/d eicosapentaenoic acid (EPA) and 1.5 g/d docosahexaenoic acid (DHA). Fold changes in gene expression were measured by a quantitative polymerase chain reaction (qPCR). Healthy individuals supplemented with omega-3 FA had differential responses in prostaglandin-endoperoxide synthase 1 (PTGS1), prostaglandin-endoperoxide synthase 2 (PTGS2), arachidonate 12-lipoxygenase (ALOX12), and interleukin 8 (IL-8) gene expression in isolated PBMCs. In those individuals for whom plasma arachidonic acid (ARA) in the phosphatidylethanolamine (PE) lipid class decreased in response to omega-3 intervention, there was a corresponding decrease in gene expression for PTGS1 and ALOX12. Several oxylipin product/FA precursor ratios (e.g. prostaglandin E2 (PGE2)/ARA for PTGS1 and 12-hydroxyeicosatetraenoic acid (12-HETE)/ARA for ALOX12) were also associated with fold change in gene expression, suggesting an association between enzyme activity and gene expression. The fold-change in PTGS1 gene expression was highly positively correlated with ALOX12 gene expression but not with PTGS2, whereas IL-8 and PTGS2 were positively correlated. The regulation of important oxylipin metabolic genes in PBMCs varied with the extent of change in ARA concentrations in the case of PTGS1 and ALOX12 regulation. PBMC gene expression changes in

  20. Gene expression in colorectal cancer

    DEFF Research Database (Denmark)

    Birkenkamp-Demtroder, Karin; Christensen, Lise Lotte; Olesen, Sanne Harder

    2002-01-01

    Understanding molecular alterations in colorectal cancer (CRC) is needed to define new biomarkers and treatment targets. We used oligonucleotide microarrays to monitor gene expression of about 6,800 known genes and 35,000 expressed sequence tags (ESTs) on five pools (four to six samples in each...... pool) of total RNA from left-sided sporadic colorectal carcinomas. We compared normal tissue to carcinoma tissue from Dukes' stages A-D (noninvasive to distant metastasis) and identified 908 known genes and 4,155 ESTs that changed remarkably from normal to tumor tissue. Based on intensive filtering 226...

  1. Remote control of gene expression.

    Science.gov (United States)

    Long, Xiaochun; Miano, Joseph M

    2007-06-01

    The elucidation of a growing number of species' genomes heralds an unprecedented opportunity to ascertain functional attributes of non-coding sequences. In particular, cis regulatory modules (CRMs) controlling gene expression constitute a rich treasure trove of data to be defined and experimentally validated. Such information will provide insight into cell lineage determination and differentiation and the genetic basis of heritable diseases as well as the development of novel tools for restricting the inactivation of genes to specific cell types or conditions. Historically, the study of CRMs and their individual transcription factor binding sites has been limited to proximal regions around gene loci. Two important by-products of the genomics revolution, artificial chromosome vectors and comparative genomics, have fueled efforts to define an increasing number of CRMs acting remotely to control gene expression. Such regulation from a distance has challenged our perspectives of gene expression control and perhaps the very definition of a gene. This review summarizes current approaches to characterize remote control of gene expression in transgenic mice and inherent limitations for accurately interpreting the essential nature of CRM activity.

  2. Circumvention of normal constraints on granule protein gene expression in peripheral blood neutrophils and monocytes of patients with antineutrophil cytoplasmic autoantibody-associated glomerulonephritis.

    Science.gov (United States)

    Yang, Jia Jin; Pendergraft, William F; Alcorta, David A; Nachman, Patrick H; Hogan, Susan L; Thomas, Robin P; Sullivan, Pamela; Jennette, J Charles; Falk, Ronald J; Preston, Gloria A

    2004-08-01

    Granulopoiesis-related genes are distinctively upregulated in peripheral leukocytes of patients with antineutrophil cytoplasmic autoantibodies (ANCA)-associated glomerulonephritis. Affymetrix microarrays identified the upregulation of nine neutrophilic primary granule genes, including myeloperoxidase (MPO) and proteinase 3 (PR3), plus five secondary granule genes. Coordinate expression of granulocyte maturation marker CD35, measured by TaqMan PCR, and positive in situ staining for PR3 transcripts in polymorphic neutrophils and monocytes indicate that these genes are expressed in "mature" cells. Increased transcripts correlated with disease activity and absolute neutrophil values but not with "left shift," drug regimen, cytokine levels, hematuria, proteinuria, ANCA titer, serum creatinine, gender, or age. Upregulation of PR3 and MPO transcripts was specifically associated with ANCA disease (n = 56) as these changes were not detected in patients with ESRD (n = 25) or systemic lupus erythematosus (n = 17), as determined by TaqMan PCR. This is the first report of this phenomenon in nonneoplastic cells. The data raise the hypothesis that, in addition to the presence of anti-MPO or anti-PR3 autoantibodies, a second critical component in the cause of this disease is the reactivation of once-silenced genes leading to increased antigen availability.

  3. Correlation of Endocrine Disrupting Chemicals Serum Levels and White Blood Cells Gene Expression of Nuclear Receptors in a Population of Infertile Women

    Directory of Open Access Journals (Sweden)

    Donatella Caserta

    2013-01-01

    Full Text Available Significant evidence supports that many endocrine disrupting chemicals could affect female reproductive health. Aim of this study was to compare the internal exposure to bisphenol A (BPA, perfluorooctane sulphonate (PFOS, perfluorooctanoic acid (PFOA, monoethylhexyl phthalate (MEHP, and di(2-ethylhexyl phthalate (DEHP in serum samples of 111 infertile women and 44 fertile women. Levels of gene expression of nuclear receptors (ERα, ERβ, AR, AhR, PXR, and PPARγ were also analyzed as biomarkers of effective dose. The percentage of women with BPA concentrations above the limit of detection was significantly higher in infertile women than in controls. No statistically significant difference was found with regard to PFOS, PFOA, MEHP and DEHP. Infertile patients showed gene expression levels of ERα, ERβ, AR, and PXR significantly higher than controls. In infertile women, a positive association was found between BPA and MEHP levels and ERα, ERβ, AR, AhR, and PXR expression. PFOS concentration positively correlated with AR and PXR expression. PFOA levels negatively correlated with AhR expression. No correlation was found between DEHP levels and all evaluated nuclear receptors. This study underlines the need to provide special attention to substances that are still widely present in the environment and to integrate exposure measurements with relevant indicators of biological effects.

  4. Aberrant Gene Expression in Acute Myeloid Leukaemia

    DEFF Research Database (Denmark)

    Bagger, Frederik Otzen

    genes and genetic signatures and for reducing dimensionally of gene expression data. Next, we have used machine-learning methods to predict survival and to assess important predictors based on these results. General application of a number of these methods has been implemented into two public query......Summary Acute Myeloid Leukaemia (AML) is an aggressive cancer of the bone marrow, affecting formation of blood cells during haematopoiesis. This thesis presents investigation of AML using mRNA gene expression profiles (GEP) of samples extracted from the bone marrow of healthy and diseased subjects....... Here GEPs from purified healthy haematopoietic populations, with different levels of differentiation, form the basis for comparison with diseased samples. We present a mathematical transformation of mRNA microarray data to make it possible to compare AML samples, carrying expanded aberrant...

  5. Transcriptomic analysis of gene expression in mice treated with troxerutin.

    Directory of Open Access Journals (Sweden)

    Yuerong Wang

    Full Text Available Troxerutin, a semi-synthetic derivative of the natural bioflavanoid rutin, has been reported to possess many beneficial effects in human bodies, such as vasoprotection, immune support, anti-inflammation and anti-aging. However, the effects of troxerutin on genome-wide transcription in blood cells are still unknown. In order to find out effects of troxerutin on gene transcription, a high-throughput RNA sequencing was employed to analysis differential gene expression in blood cells consisting of leucocytes, erythrocytes and platelets isolated from the mice received subcutaneous injection of troxerutin. Transcriptome analysis demonstrated that the expression of only fifteen genes was significantly changed by the treatment with troxerutin, among which 5 genes were up-regulated and 10 genes were down-regulated. Bioinformatic analysis of the fifteen differentially expressed genes was made by utilizing the Gene Ontology (GO, and the differential expression induced by troxerutin was further evaluated by real-time quantitative PCR (Q-PCR.

  6. Regulation of lipid metabolism-related gene expression in whole blood cells of normo- and dyslipidemic men after fish oil supplementation

    Directory of Open Access Journals (Sweden)

    Schmidt Simone

    2012-12-01

    Full Text Available Abstract Background Beneficial effects of omega-3 polyunsaturated fatty acids (n-3 PUFAs on the lipid levels of dyslipidemic subjects are widely described in the literature. However, the underlying molecular mechanisms are largely unknown. The aim of this study was to investigate the effects of n-3 PUFAs on the expression of lipid metabolism-related genes in normo- and dyslipidemic men to unveil potential genes and pathways affecting lipid metabolism. Methods Ten normo- and ten dyslipidemic men were supplemented for twelve weeks with six fish oil capsules per day, providing 1.14 g docosahexaenoic acid and 1.56 g eicosapentaenoic acid. The gene expression levels were determined by whole genome microarray analysis and quantitative real-time polymerase chain reaction. Results Several transcription factors (peroxisome proliferator-activated receptor α (PPARα, retinoid X receptor (RXR α, RXRγ, hepatic nuclear factor (HNF 6, and HNF1ß as well as other genes related to triacylglycerol (TG synthesis or high-density lipoprotein (HDL-C and cholesterol metabolism (phospholipids transfer protein, ATP-binding cassette sub-family G member 5, 2-acylglycerol O-acyltransferase (MOGAT 3, MOGAT2, diacylglycerol O-acyltransferase 1, sterol O-acyltransferase 1, apolipoprotein CII, and low-density lipoprotein receptor were regulated after n-3 PUFA supplementation, especially in dyslipidemic men. Conclusion Gene expression analyses revealed several possible molecular pathways by which n-3 PUFAs lower the TG level and increase the HDL-C and low-density lipoprotein level, whereupon the regulation of PPARα appear to play a central role. Trial registration ClinicalTrials.gov (ID: NCT01089231

  7. Transgenic Arabidopsis Gene Expression System

    Science.gov (United States)

    Ferl, Robert; Paul, Anna-Lisa

    2009-01-01

    The Transgenic Arabidopsis Gene Expression System (TAGES) investigation is one in a pair of investigations that use the Advanced Biological Research System (ABRS) facility. TAGES uses Arabidopsis thaliana, thale cress, with sensor promoter-reporter gene constructs that render the plants as biomonitors (an organism used to determine the quality of the surrounding environment) of their environment using real-time nondestructive Green Fluorescent Protein (GFP) imagery and traditional postflight analyses.

  8. Peripheral blood leucocytes show differential expression of tumour progression-related genes in colorectal cancer patients who have a postoperative intra-abdominal infection: a prospective matched cohort study.

    Science.gov (United States)

    Alonso, S; Mayol, X; Nonell, L; Salvans, S; Pascual, M; Pera, M

    2017-05-01

    Anastomotic leak is associated with higher rates of recurrence after surgery for colorectal cancer. However, the mechanisms responsible are unknown. We hypothesized that the infection-induced inflammatory response may induce overexpression of tumour progression-related genes in immune cells. The aim was to investigate the effect of postoperative intra-abdominal infection on the gene expression patterns of peripheral blood leucocytes (PBL) after surgery for colorectal cancer. Prospective matched cohort study. Patients undergoing surgery for colorectal cancer were included. Patients who had anastomotic leak or intra-abdominal abscess were included in the infection group (n = 23) and matched with patients without complications for the control group (n = 23). PBL were isolated from postoperative blood samples. Total RNA was extracted and hybridized to the Affymetrix Human Gene 1.0 ST microarray. Patients in the infection group displayed 162 upregulated genes and 146 downregulated genes with respect to the control group. Upregulated genes included examples coding for secreted cytokines involved in tumour growth and invasion (S100P, HGF, MMP8, MMP9, PDGFC, IL1R2). Infection also upregulated some proangiogenic genes (CEP55, TRPS1) and downregulated some inhibitors of angiogenesis (MME, ALOX15, CXCL10). Finally, some inhibitors (HP, ORM1, OLFM4, IRAK3) and activators (GNLY, PRF1, FGFBP2) of antitumour immunity were upregulated and downregulated, respectively, suggesting that the inflammatory environment caused by a postoperative infection favours immune evasion mechanisms of the tumour. Analysis of PBL shows differential expression of certain tumour progression-related genes in colorectal cancer patients who have a postoperative intra-abdominal infection, which in turn may promote the growth of residual cancer cells to become recurrent tumours. Colorectal Disease © 2017 The Association of Coloproctology of Great Britain and Ireland.

  9. Human papillomavirus gene expression

    International Nuclear Information System (INIS)

    Chow, L.T.; Hirochika, H.; Nasseri, M.; Stoler, M.H.; Wolinsky, S.M.; Chin, M.T.; Hirochika, R.; Arvan, D.S.; Broker, T.R.

    1987-01-01

    To determine the role of tissue differentiation on expression of each of the papillomavirus mRNA species identified by electron microscopy, the authors prepared exon-specific RNA probes that could distinguish the alternatively spliced mRNA species. Radioactively labeled single-stranded RNA probes were generated from a dual promoter vector system and individually hybridized to adjacent serial sections of formalin-fixed, paraffin-embedded biopsies of condylomata. Autoradiography showed that each of the message species had a characteristic tissue distribution and relative abundance. The authors have characterized a portion of the regulatory network of the HPVs by showing that the E2 ORF encodes a trans-acting enhancer-stimulating protein, as it does in BPV-1 (Spalholz et al. 1985). The HPV-11 enhancer was mapped to a 150-bp tract near the 3' end of the URR. Portions of this region are duplicated in some aggressive strains of HPV-6 (Boshart and zur Hausen 1986; Rando et al. 1986). To test the possible biological relevance of these duplications, they cloned tandem arrays of the enhancer and demonstrated, using a chloramphenicol acetyltransferase (CAT) assay, that they led to dramatically increased transcription proportional to copy number. Using the CAT assays, the authors found that the E2 proteins of several papillomavirus types can cross-stimulate the enhancers of most other types. This suggests that prior infection of a tissue with one papillomavirus type may provide a helper effect for superinfection and might account fo the HPV-6/HPV-16 coinfections in condylomata that they have observed

  10. Increased Genes Expression Levels of Cytokines Related to Th17/Treg Cells in Peripheral Blood Mononuclear Cell Correlate with Clinical Severity in COPD and Mustard Gas-exposed Patients.

    Science.gov (United States)

    Farahani, Parisa; Halabian, Raheleh; Vahedi, Ensieh; Salimian, Jafar

    2017-10-01

    The long lasting inflammation and immune dysregulation is one of the main mechanisms involved in lung complication of veterans exposed to sulfur mustard (SM) gas. Th17/Treg cells have an important role in immunopathogenesis of chronic obstructive pulmonary disease (COPD) and mustard lung disease. In this study, expression of cytokines genes levels related to Th17/Treg cells was determined in peripheral blood mononuclear (PBMC) of mustard lung patients and was compared with COPD patients and healthy controls (HC). Real time-polymerase chain reaction was used to assay genes expression levels of Th17 related cytokines (IL-17, IL-6 and TGF-β) and Treg related cytokines (IL-10, TGF-β). IL-17 gene expression level considerably was higher in SM patients (9.98±0.65, p<0.001), and COPD (4.75±0.71, p<0.001), compare to HC group. Also, gene expression level of IL-6 in the SM group (3.31±0.93, p<0.001) and COPD group (2.93±0.21, p<0.001) were significantly higher than the HC group. The IL-10 gene expression level showed a high increase in SM patients (4.12±0.91, p<0.01), and COPD (2.1±0.45, p<0.01). Finally, the TGF-β gene expression level was increased in SM patients (4.91±0.69, p<0.001) as well as in COPD group (5.41±0.78, p<0.001). In SM patients, IL-17 (R=-0.721, p<0.05), IL-6 (R=-0.621, p<0.05) and TGF-β (R=-0.658, p<0.05) had significant negative association with FEV1 (%). Inversely, Il-10 showed positive correlation (R=0.673) with FEV1 (%). Th17/Treg cells related cytokines genes were highly expressed and imbalanced in peripheral blood mononuclear cells of SM and COPD patients which correlated with pulmonary dysfunction.

  11. Cyclic changes in gene expression induced by Peg-interferon alfa-2b plus ribavirin in peripheral blood monocytes (PBMC of hepatitis C patients during the first 10 weeks of treatment

    Directory of Open Access Journals (Sweden)

    Edenberg Howard J

    2008-11-01

    Full Text Available Abstract Background and Aims This study determined the kinetics of gene expression during the first 10 weeks of therapy with Pegylated-interferon-alfa2b (PegIntron™ and ribavirin (administered by weight in HCV patients and compared it with the recently completed Virahep C study 12 in which Peginterferon-alfa2a (Pegasys™ and ribavirin were administered. Methods RNA was isolated from peripheral blood monocytes (PBMC from twenty treatment-naïve patients just before treatment (day 1 and at days 3, 6, 10, 13, 27, 42 and 70 days after treatment. Gene expression at each time was measured using Affymetrix microarrays and compared to that of day 1. Results The expression of many genes differed significantly (p ≤ 0.001 and changed at least 1.5-fold at days 3 (290 probes and 10 (255 probes, but the number dropped at days 6 (165 and 13 (142. Most genes continued to be up regulated throughout the trial period. A second group of genes, including CXCL10, CMKLR1 (chemokine receptor 1, TRAIL, IL1Rα and genes associated with complement and lipid metabolism, was transiently induced early in treatment. CDKN1C (cyclin kinase inhibitor 1 was induced early but repressed at later times. Genes induced at later times were mostly related to blood chemistry and oxygen transport. By week 10, 11 of the patients demonstrated a positive response to therapy, and the final sustained viral response (SVR was 35%. The levels of gene induction or decrease was very similar to that previously reported with Pegasys/ribavirin treatment. Conclusion The response to Pegintron/ribavirin was similar to that reported for Pegasys/ribavirin despite some differences in the amount administered. We did not detect major differences at the genomic level between patients responding to treatment or non-responders, perhaps because of limited power. Gene induction occurred in a cyclic fashion, peaking right after administration of interferon and declining between administrations of the drug. Our

  12. Cyclic changes in gene expression induced by Peg-interferon alfa-2b plus ribavirin in peripheral blood monocytes (PBMC) of hepatitis C patients during the first 10 weeks of treatment.

    Science.gov (United States)

    Taylor, Milton W; Tsukahara, Takuma; McClintick, Jeanette N; Edenberg, Howard J; Kwo, Paul

    2008-11-05

    This study determined the kinetics of gene expression during the first 10 weeks of therapy with Pegylated-interferon-alfa2b (PegIntron) and ribavirin (administered by weight) in HCV patients and compared it with the recently completed Virahep C study 12 in which Peginterferon-alfa2a (Pegasys) and ribavirin were administered. RNA was isolated from peripheral blood monocytes (PBMC) from twenty treatment-naïve patients just before treatment (day 1) and at days 3, 6, 10, 13, 27, 42 and 70 days after treatment. Gene expression at each time was measured using Affymetrix microarrays and compared to that of day 1. The expression of many genes differed significantly (p changed at least 1.5-fold) at days 3 (290 probes) and 10 (255 probes), but the number dropped at days 6 (165) and 13 (142). Most genes continued to be up regulated throughout the trial period. A second group of genes, including CXCL10, CMKLR1 (chemokine receptor 1), TRAIL, IL1Ralpha and genes associated with complement and lipid metabolism, was transiently induced early in treatment. CDKN1C (cyclin kinase inhibitor 1) was induced early but repressed at later times. Genes induced at later times were mostly related to blood chemistry and oxygen transport. By week 10, 11 of the patients demonstrated a positive response to therapy, and the final sustained viral response (SVR) was 35%. The levels of gene induction or decrease was very similar to that previously reported with Pegasys/ribavirin treatment. The response to Pegintron/ribavirin was similar to that reported for Pegasys/ribavirin despite some differences in the amount administered. We did not detect major differences at the genomic level between patients responding to treatment or non-responders, perhaps because of limited power. Gene induction occurred in a cyclic fashion, peaking right after administration of interferon and declining between administrations of the drug. Our data suggest that more than once a week dosing might be desirable early during

  13. Blood pressure regulation by CD4+ lymphocytes expressing choline acetyltransferase

    OpenAIRE

    Olofsson, Peder S.; Steinberg, Benjamin E.; Sobbi, Roozbeh; Cox, Maureen A.; Ahmed, Mohamed N.; Oswald, Michaela; Szekeres, Ferenc; Hanes, William M.; Introini, Andrea; Liu, Shu Fang; Holodick, Nichol E.; Rothstein, Thomas L.; L?vdahl, Cecilia; Chavan, Sangeeta S.; Yang, Huan

    2016-01-01

    Blood pressure regulation is known to be maintained by a neuro-endocrine circuit, but whether immune cells contribute to blood pressure homeostasis has not been defined. We previously described that CD4+ T lymphocytes that express choline acetyltransferase (ChAT), which catalyzes the synthesis of the vasorelaxant acetylcholine, relay neural signals 1 . Here we show that these CD4+ CD44high CD62Llow T helper cells by gene expression are a distinct T cell population defined by ChAT (CD4 TChAT)....

  14. Homeobox gene expression in Brachiopoda

    DEFF Research Database (Denmark)

    Altenburger, Andreas; Martinez, Pedro; Wanninger, Andreas

    2011-01-01

    The molecular control that underlies brachiopod ontogeny is largely unknown. In order to contribute to this issue we analyzed the expression pattern of two homeobox containing genes, Not and Cdx, during development of the rhynchonelliform (i.e., articulate) brachiopod Terebratalia transversa. Not...

  15. Correction of gene expression data

    DEFF Research Database (Denmark)

    Darbani Shirvanehdeh, Behrooz; Stewart, C. Neal, Jr.; Noeparvar, Shahin

    2014-01-01

    an analytical approach to examine the suitability of correction methods by considering the inter-treatment bias as well as the inter-replicate variance, which allows use of the best correction method with minimum residual bias. Analyses of RNA sequencing and microarray data showed that the efficiencies......This report investigates for the first time the potential inter-treatment bias source of cell number for gene expression studies. Cell-number bias can affect gene expression analysis when comparing samples with unequal total cellular RNA content or with different RNA extraction efficiencies....... For maximal reliability of analysis, therefore, comparisons should be performed at the cellular level. This could be accomplished using an appropriate correction method that can detect and remove the inter-treatment bias for cell-number. Based on inter-treatment variations of reference genes, we introduce...

  16. Vascular Gene Expression: A Hypothesis

    Directory of Open Access Journals (Sweden)

    Angélica Concepción eMartínez-Navarro

    2013-07-01

    Full Text Available The phloem is the conduit through which photoassimilates are distributed from autotrophic to heterotrophic tissues and is involved in the distribution of signaling molecules that coordinate plant growth and responses to the environment. Phloem function depends on the coordinate expression of a large array of genes. We have previously identified conserved motifs in upstream regions of the Arabidopsis genes, encoding the homologs of pumpkin phloem sap mRNAs, displaying expression in vascular tissues. This tissue-specific expression in Arabidopsis is predicted by the overrepresentation of GA/CT-rich motifs in gene promoters. In this work we have searched for common motifs in upstream regions of the homologous genes from plants considered to possess a primitive vascular tissue (a lycophyte, as well as from others that lack a true vascular tissue (a bryophyte, and finally from chlorophytes. Both lycophyte and bryophyte display motifs similar to those found in Arabidopsis with a significantly low E-value, while the chlorophytes showed either a different conserved motif or no conserved motif at all. These results suggest that these same genes are expressed coordinately in non- vascular plants; this coordinate expression may have been one of the prerequisites for the development of conducting tissues in plants. We have also analyzed the phylogeny of conserved proteins that may be involved in phloem function and development. The presence of CmPP16, APL, FT and YDA in chlorophytes suggests the recruitment of ancient regulatory networks for the development of the vascular tissue during evolution while OPS is a novel protein specific to vascular plants.

  17. Grape seed extract proanthocyanidins downregulate HIV- 1 entry coreceptors, CCR2b, CCR3 and CCR5 gene expression by normal peripheral blood mononuclear cells

    Directory of Open Access Journals (Sweden)

    MADHAVAN P NAIR

    2002-01-01

    Full Text Available Flavonoids and related polyphenols, in addition to their cardioprotective, anti-tumor, anti-inflammatory, anti-carcinogenic and anti-allergic activities, also possess promising anti-HIV effects. Recent studies documented that the ß-chemokine receptors, CCR2b, CCR3 and CCR5, and the alpha-chemokine receptors, CXCR1, CXCR2 and CXCR4 serve as entry coreceptors for HIV-1. Although flavonoids and polyphenolic compounds elicit anti-HIV effects such as inhibition of HIV-1 expression and virus replication, the molecular mechanisms underlying these effects remain to be clearly elucidated. We hypothesize that flavonoids exert their anti-HIV effects, possibly by interfering at the HIV co-receptor level. We investigated the effect of flavonoid constituents of a proprietary grape seed extract (GSE on the expression of HIV-1 coentry receptors by immunocompetent mononuclear leukocytes. Our results showed that GSE significantly downregulated the expression of the HIV-1 entry co-receptors, CCR2b , CCR3 and CCR5 in normal PBMC in a dose dependent manner. Further , GSE treated cultures showed significantly lower number of CCR3 positive cells as quantitated by flow cytometry analysis which supports RT-PCR gene expression data.Investigations of the mechanisms underlying the anti-HIV-1 effects of grape seed extracts may help to identify promising natural products useful in the prevention and /or amelioration of HIV-1 infection

  18. Gene expression of desaturase (FADS1 and FADS2) and Elongase (ELOVL5) enzymes in peripheral blood: association with polyunsaturated fatty acid levels and atopic eczema in 4-year-old children.

    Science.gov (United States)

    Chisaguano, Aida Maribel; Montes, Rosa; Pérez-Berezo, Teresa; Castellote, Ana Isabel; Guerendiain, Marcela; Bustamante, Mariona; Morales, Eva; García-Esteban, Raquel; Sunyer, Jordi; Franch, Angels; López-Sabater, M Carmen

    2013-01-01

    It is unknown if changes in the gene expression of the desaturase and elongase enzymes are associated with abnormal n-6 long chain polyunsaturated fatty acid (LC-PUFA) levels in children with atopic eczema (AE). We analyzed whether mRNA-expression of genes encoding key enzymes of LC-PUFA synthesis (FADS1, FADS2 and ELOVL5) is associated with circulating LC-PUFA levels and risk of AE in 4-year-old children. AE (n=20) and non-AE (n=104) children participating in the Sabadell cohort within the INfancia y Medio Ambiente (INMA) Project were included in the present study. RT-PCR with TaqMan Low-Density Array cards was used to measure the mRNA-expression of FADS1, FADS2 and ELOVL5. LC-PUFA levels were measured by fast gas chromatography in plasma phospholipids. The relationship of gene expression with LC-PUFA levels and enzyme activities was evaluated by Pearson's rank correlation coefficient, and logistic regression models were used to study its association with risk of developing AE. Children with AE had lower levels of several n-6 PUFA members, dihomo-γ-linolenic (DGLA) and arachidonic (AA) acids. mRNA-expression levels of FADS1 and 2 strongly correlated with DGLA levels and with D6D activity. FADS2 and ELOVL5 mRNA-expression levels were significantly lower in AE than in non-AE children (-40.30% and -20.36%; respectively), but no differences were found for FADS1. Changes in the mRNA-expression levels of FADS1 and 2 directly affect blood DGLA levels and D6D activity. This study suggests that lower mRNA-expressions of FADS2 and ELOVL5 are associated with higher risk of atopic eczema in young children.

  19. Neighboring Genes Show Correlated Evolution in Gene Expression

    Science.gov (United States)

    Ghanbarian, Avazeh T.; Hurst, Laurence D.

    2015-01-01

    When considering the evolution of a gene’s expression profile, we commonly assume that this is unaffected by its genomic neighborhood. This is, however, in contrast to what we know about the lack of autonomy between neighboring genes in gene expression profiles in extant taxa. Indeed, in all eukaryotic genomes genes of similar expression-profile tend to cluster, reflecting chromatin level dynamics. Does it follow that if a gene increases expression in a particular lineage then the genomic neighbors will also increase in their expression or is gene expression evolution autonomous? To address this here we consider evolution of human gene expression since the human-chimp common ancestor, allowing for both variation in estimation of current expression level and error in Bayesian estimation of the ancestral state. We find that in all tissues and both sexes, the change in gene expression of a focal gene on average predicts the change in gene expression of neighbors. The effect is highly pronounced in the immediate vicinity (genes increasing their expression in humans tend to avoid nuclear lamina domains and be enriched for the gene activator 5-hydroxymethylcytosine, we conclude that, most probably owing to chromatin level control of gene expression, a change in gene expression of one gene likely affects the expression evolution of neighbors, what we term expression piggybacking, an analog of hitchhiking. PMID:25743543

  20. Gene expression profile of pulpitis

    Science.gov (United States)

    Galicia, Johnah C.; Henson, Brett R.; Parker, Joel S.; Khan, Asma A.

    2016-01-01

    The cost, prevalence and pain associated with endodontic disease necessitate an understanding of the fundamental molecular aspects of its pathogenesis. This study was aimed to identify the genetic contributors to pulpal pain and inflammation. Inflamed pulps were collected from patients diagnosed with irreversible pulpitis (n=20). Normal pulps from teeth extracted for various reasons served as controls (n=20). Pain level was assessed using a visual analog scale (VAS). Genome-wide microarray analysis was performed using Affymetrix GeneTitan Multichannel Instrument. The difference in gene expression levels were determined by the Significance Analysis of Microarray program using a false discovery rate (q-value) of 5%. Genes involved in immune response, cytokine-cytokine receptor interaction and signaling, integrin cell surface interactions, and others were expressed at relatively higher levels in the in the pulpitis group. Moreover, several genes known to modulate pain and inflammation showed differential expression in asymptomatic and mild pain patients (≥30mm on VAS) compared to those with moderate to severe pain. This exploratory study provides a molecular basis for the clinical diagnosis of pulpitis. With an enhanced understanding of pulpal inflammation, future studies on treatment and management of pulpitis and on pain associated with it can have a biological reference to bridge treatment strategies with pulpal biology. PMID:27052691

  1. Gene expression profile of pulpitis.

    Science.gov (United States)

    Galicia, J C; Henson, B R; Parker, J S; Khan, A A

    2016-06-01

    The cost, prevalence and pain associated with endodontic disease necessitate an understanding of the fundamental molecular aspects of its pathogenesis. This study was aimed to identify the genetic contributors to pulpal pain and inflammation. Inflamed pulps were collected from patients diagnosed with irreversible pulpitis (n=20). Normal pulps from teeth extracted for various reasons served as controls (n=20). Pain level was assessed using a visual analog scale (VAS). Genome-wide microarray analysis was performed using Affymetrix GeneTitan Multichannel Instrument. The difference in gene expression levels were determined by the significance analysis of microarray program using a false discovery rate (q-value) of 5%. Genes involved in immune response, cytokine-cytokine receptor interaction and signaling, integrin cell surface interactions, and others were expressed at relatively higher levels in the pulpitis group. Moreover, several genes known to modulate pain and inflammation showed differential expression in asymptomatic and mild pain patients (⩾30 mm on VAS) compared with those with moderate to severe pain. This exploratory study provides a molecular basis for the clinical diagnosis of pulpitis. With an enhanced understanding of pulpal inflammation, future studies on treatment and management of pulpitis and on pain associated with it can have a biological reference to bridge treatment strategies with pulpal biology.

  2. Gene Expression in Trypanosomatid Parasites

    Directory of Open Access Journals (Sweden)

    Santiago Martínez-Calvillo

    2010-01-01

    Full Text Available The parasites Leishmania spp., Trypanosoma brucei, and Trypanosoma cruzi are the trypanosomatid protozoa that cause the deadly human diseases leishmaniasis, African sleeping sickness, and Chagas disease, respectively. These organisms possess unique mechanisms for gene expression such as constitutive polycistronic transcription of protein-coding genes and trans-splicing. Little is known about either the DNA sequences or the proteins that are involved in the initiation and termination of transcription in trypanosomatids. In silico analyses of the genome databases of these parasites led to the identification of a small number of proteins involved in gene expression. However, functional studies have revealed that trypanosomatids have more general transcription factors than originally estimated. Many posttranslational histone modifications, histone variants, and chromatin modifying enzymes have been identified in trypanosomatids, and recent genome-wide studies showed that epigenetic regulation might play a very important role in gene expression in this group of parasites. Here, we review and comment on the most recent findings related to transcription initiation and termination in trypanosomatid protozoa.

  3. Comparative effects of captopril and l-carnitine on blood pressure and antioxidant enzyme gene expression in the heart of spontaneously hypertensive rats.

    Science.gov (United States)

    Miguel-Carrasco, José L; Monserrat, María T; Mate, Alfonso; Vázquez, Carmen M

    2010-04-25

    It has been shown that oxidative stress is involved in the pathogenesis of arterial hypertension. The aim of this work was to study and compare the molecular mechanisms of the antioxidant properties of l-carnitine and captopril in spontaneously hypertensive rats (SHR). Antioxidant enzyme activity/regulation (glutathione peroxidase, glutathione reductase and superoxide dismutase) was measured in the erythrocytes and hearts of SHR. The molecular expression of endothelial nitric oxide synthase (eNOS), NADPH oxidase, angiotensin converting enzyme (ACE), angiotensin II type I receptor (AT(1) receptor) and NF-kappaB/IkappaB system was also measured in the hearts of these animals. Both l-carnitine and captopril augmented the antioxidant defense capacity in SHRs. This effect was mediated by an upregulation of antioxidant enzymes, an increase in the plasma total antioxidant capacity and a reduction of lipid peroxidation and superoxide anion production in the heart. The administration of both compounds to hypertensive animals also produced an upregulation of eNOS and a normalization of ACE, angiotensin AT(1) receptor, and the NF-kappaB/IkappaB system expression. In addition, captopril reduced the arterial blood pressure and the relative heart weights back to control values, whereas l-carnitine caused only a partial reduction of blood pressure values and did not alter the cardiac hypertrophy found in SHRs. In conclusion, we have found that l-carnitine and captopril have a similar antioxidant effect in the hearts of hypertensive rats. The molecular regulation of antioxidant enzymes through an inhibition of the renin-angiotensin system and a modulation of the NF-kappaB/IkappaB system seems to be responsible for this antioxidant effect. 2010 Elsevier B.V. All rights reserved.

  4. From genetic variability to phenotypic expression of blood group systems.

    Science.gov (United States)

    Raud, L; Férec, C; Fichou, Y

    2017-11-01

    More than 300 red blood cell (RBC) antigens belonging to 36 blood group systems have been officially reported in humans by the International Society of Blood Transfusion (ISBT). Phenotypic variability is directly linked to the expression of the 41 blood group genes. The Rh blood group system, which is composed of 54 antigens, is the most complex and polymorphic system. Many rare genetic variants within the RH (RHD and RHCE) genes, involving various mutational mechanisms (single-nucleotide substitutions, short insertions/deletions, rearrangements, large deletions), have been reported in the literature and reference databases. Expression of the variants induces variable clinical outcomes depending on their nature and impact on antigen structure. Their respective molecular and cellular effects remain however poorly studied. Biological resources to conduct this research are also barely available. We have paid a specific attention to three different classes of single-nucleotide substitutions: 1/ splice site variants in the Rh, Kell, Kidd, Junior and Langereis systems by the minigene splicing assay developed locally; 2/ missense variants in the RhD protein and their effect on intermolecular interaction with its protein partner RhAG, intracellular trafficking and plasma membrane integration; and 3/ synonymous variants in the RHD gene. Overall not only this project has fundamental objectives by analyzing the functional effect of variants in order to make genotype-phenotype correlation, but the aim is also to develop/engineer molecular tools and cell models to carry out those studies. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  5. Cyclic di-GMP modulates gene expression in Lyme disease spirochetes at the tick-mammal interface to promote spirochete survival during the blood meal and tick-to-mammal transmission.

    Science.gov (United States)

    Caimano, Melissa J; Dunham-Ems, Star; Allard, Anna M; Cassera, Maria B; Kenedy, Melisha; Radolf, Justin D

    2015-08-01

    Borrelia burgdorferi, the Lyme disease spirochete, couples environmental sensing and gene regulation primarily via the Hk1/Rrp1 two-component system (TCS) and Rrp2/RpoN/RpoS pathways. Beginning with acquisition, we reevaluated the contribution of these pathways to spirochete survival and gene regulation throughout the enzootic cycle. Live imaging of B. burgdorferi caught in the act of being acquired revealed that the absence of RpoS and the consequent derepression of tick-phase genes impart a Stay signal required for midgut colonization. In addition to the behavioral changes brought on by the RpoS-off state, acquisition requires activation of cyclic di-GMP (c-di-GMP) synthesis by the Hk1/Rrp1 TCS; B. burgdorferi lacking either component is destroyed during the blood meal. Prior studies attributed this dramatic phenotype to a metabolic lesion stemming from reduced glycerol uptake and utilization. In a head-to-head comparison, however, the B. burgdorferi Δglp mutant had a markedly greater capacity to survive tick feeding than B. burgdorferi Δhk1 or Δrrp1 mutants, establishing unequivocally that glycerol metabolism is only one component of the protection afforded by c-di-GMP. Data presented herein suggest that the protective response mediated by c-di-GMP is multifactorial, involving chemotactic responses, utilization of alternate substrates for energy generation and intermediary metabolism, and remodeling of the cell envelope as a means of defending spirochetes against threats engendered during the blood meal. Expression profiling of c-di-GMP-regulated genes through the enzootic cycle supports our contention that the Hk1/Rrp1 TCS functions primarily, if not exclusively, in ticks. These data also raise the possibility that c-di-GMP enhances the expression of a subset of RpoS-dependent genes during nymphal transmission. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  6. A shift from oral to blood pH is a stimulus for adaptive gene expression of Streptococcus gordonii CH1 and induces protection against oxidative stress and enhanced bacterial growth by expression of msrA

    NARCIS (Netherlands)

    Vriesema, A. J.; Dankert, J.; Zaat, S. A.

    2000-01-01

    Viridans group streptococci (VS) from the oral cavity entering the bloodstream may initiate infective endocarditis (IE). We aimed to identify genes expressed in response to a pH increase from slightly acidic (pH 6.2) to neutral (pH 7.3) as encountered by VS entering the bloodstream from the oral

  7. Acute hypoxic stress: Effect on blood parameters, antioxidant enzymes, and expression of HIF-1alpha and GLUT-1 genes in largemouth bass (Micropterus salmoides).

    Science.gov (United States)

    Yang, S; Yan, T; Wu, H; Xiao, Q; Fu, H M; Luo, J; Zhou, J; Zhao, L L; Wang, Y; Yang, S Y; Sun, J L; Ye, X; Li, S J

    2017-08-01

    Dissolved oxygen (DO) plays a crucial role in survival, growth, and normal physiological functions of aquatic organisms. Nevertheless, the mechanisms involved in hypoxic stress and adaptation have not been fully elucidated in Largemouth bass (Micropterus salmoides). To reveal the effect of acute hypoxia on Largemouth bass, we simulated acute hypoxia (DO: 1.2 ± 0.2 mg/L) in the laboratory and analyzed physiological parameters (RBCs, Hb, SOD, CAT, NA + /K + -ATPase, GPx, and MDA) and gene expression (HIF-1alpha and GLUT-1) in Largemouth bass exposed to various durations of acute hypoxia (0, 1, 2, 4, 8, 12, and 24 h). Our results indicated that acute hypoxic exposure significantly increased RBCs but decreased Hb. In addition, antioxidant enzyme activity was enhanced significantly in the liver and muscles at the initial stage of acute hypoxic exposure, but decreased significantly in gills during the entire process of hypoxic exposure. Furthermore, the expression levels of HIF-1alpha and GLUT-1 mRNA were significantly up-regulated in Largemouth bass under acute hypoxic exposure. In conclusion, our study provides a valuable basis for further elucidation of hypoxic adaptation and facilitates husbandry for an economically valuable species. Copyright © 2017. Published by Elsevier Ltd.

  8. Exit of pediatric pre-B acute lymphoblastic leukaemia cells from the bone marrow to the peripheral blood is not associated with cell maturation or alterations in gene expression

    Directory of Open Access Journals (Sweden)

    Wiebe Thomas

    2008-08-01

    Full Text Available Abstract Background Childhood pre-B acute lymphoblastic leukemia (ALL is a bone marrow (BM derived disease, which often disseminates out of the BM cavity, where malignant cells to a variable degree can be found circulating in the peripheral blood (PB. Normal pre-B cells are absolutely dependent on BM stroma for survival and differentiation. It is not known whether transformed pre-B ALL cells retain any of this dependence, which possibly could impact on drug sensitivity or MRD measurements. Results Pre-B ALL cells, highly purified by a novel method using surface expression of CD19 and immunoglobulin light chains, from BM and PB show a very high degree of similarity in gene expression patterns, with differential expression of vascular endothelial growth factor (VEGF as a notable exception. In addition, the cell sorting procedure revealed that in 2 out of five investigated patients, a significant fraction of the malignant cells had matured beyond the pre-B cell stage. Conclusion The transition of ALL cells from the BM into the circulation does not demand, or result in, major changes of gene expression pattern. This might indicate an independence of BM stroma on the part of transformed pre-B cells, which contrasts with that of their normal counterparts.

  9. pH but not hypoxia affects neonatal gene expression: relevance for housekeeping gene selection.

    Science.gov (United States)

    Maron, Jill L; Arya, Michelle A; Seefeld, Kimberly J; Peter, Inga; Bianchi, Diana W; Johnson, Kirby L

    2008-07-01

    To identify a candidate neonatal housekeeping gene and to determine the effects of pH and PaO(2) on the stability of newborn gene expression in physiologically hypoxic and acidotic newborn blood. Quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) amplification was performed for four commonly used housekeeping genes (GAPDH, beta-actin, cyclophilin, 28S rRNA) on extracted RNA. Blood gas analyses determined pH and PaO(2) levels. Beta-Actin was the least variable and GAPDH the most variable housekeeping gene studied. pH negatively correlated with gene expression levels. PaO(2) levels did not significantly affect gene expression. These results inform selection of housekeeping genes for neonatal mRNA research.

  10. Effects of steroidal implantation and ractopamine-HCl on nitrogen retention, blood metabolites and skeletal muscle gene expression in Holstein steers.

    Science.gov (United States)

    Walker, D K; Titgemeyer, E C; Sissom, E K; Brown, K R; Higgins, J J; Andrews, G A; Johnson, B J

    2007-10-01

    Six Holstein steers (231 +/- 17 kg) housed in metabolism crates were used in a randomized complete block design with three blocks of two steers based on previous serum insulin-like growth factor (IGF)-I concentrations. One of the two steers in each block was implanted with 120 mg trenbolone acetate and 24 mg oestradiol-17beta on day 0. None of the steers was fed ractopamine-HCl in the initial 28 days, and then all steers were fed 200 mg of ractopamine-HCl per steer daily from day 28 until the end of the trial. Steers were fed a corn-based diet (62% rolled corn, 20% expeller soya bean meal and 15% alfalfa hay) twice daily with an average dry matter intake of 4.8 kg/day. Blood and M. longissimus biopsy samples were collected prior to implantation and on days 14, 28, 42 and 56. There was an implant x ractopamine interaction for retained nitrogen (p ractopamine feeding led to only small improvements in nitrogen retention for implanted steers (45.9 g/day vs. 44.5 g/day), whereas ractopamine led to larger increases in nitrogen retention for non-implanted steers (39.0 g/day vs. 30.4 g/day). Implantation increased (p ractopamine tended to decrease (p = 0.06) serum IGF-I concentrations. Implantation tended to increase (p = 0.16) and ractopamine decreased (p Ractopamine decreased mRNA expression of beta(1)- and beta(2)-receptors in M. longissimus (p ractopamine both increased nitrogen retention in steers, but the combination did not yield an additive response. The two growth promotants had opposite effects on serum concentrations of IGF-I and mRNA expression of IGF-I in M. longissimus.

  11. Harnessing gene expression networks to prioritize candidate epileptic encephalopathy genes.

    Science.gov (United States)

    Oliver, Karen L; Lukic, Vesna; Thorne, Natalie P; Berkovic, Samuel F; Scheffer, Ingrid E; Bahlo, Melanie

    2014-01-01

    We apply a novel gene expression network analysis to a cohort of 182 recently reported candidate Epileptic Encephalopathy genes to identify those most likely to be true Epileptic Encephalopathy genes. These candidate genes were identified as having single variants of likely pathogenic significance discovered in a large-scale massively parallel sequencing study. Candidate Epileptic Encephalopathy genes were prioritized according to their co-expression with 29 known Epileptic Encephalopathy genes. We utilized developing brain and adult brain gene expression data from the Allen Human Brain Atlas (AHBA) and compared this to data from Celsius: a large, heterogeneous gene expression data warehouse. We show replicable prioritization results using these three independent gene expression resources, two of which are brain-specific, with small sample size, and the third derived from a heterogeneous collection of tissues with large sample size. Of the nineteen genes that we predicted with the highest likelihood to be true Epileptic Encephalopathy genes, two (GNAO1 and GRIN2B) have recently been independently reported and confirmed. We compare our results to those produced by an established in silico prioritization approach called Endeavour, and finally present gene expression networks for the known and candidate Epileptic Encephalopathy genes. This highlights sub-networks of gene expression, particularly in the network derived from the adult AHBA gene expression dataset. These networks give clues to the likely biological interactions between Epileptic Encephalopathy genes, potentially highlighting underlying mechanisms and avenues for therapeutic targets.

  12. Modulation of gene expression made easy

    DEFF Research Database (Denmark)

    Solem, Christian; Jensen, Peter Ruhdal

    2002-01-01

    A new approach for modulating gene expression, based on randomization of promoter (spacer) sequences, was developed. The method was applied to chromosomal genes in Lactococcus lactis and shown to generate libraries of clones with broad ranges of expression levels of target genes. In one example...... that the method can be applied to modulating the expression of native genes on the chromosome. We constructed a series of strains in which the expression of the las operon, containing the genes pfk, pyk, and ldh, was modulated by integrating a truncated copy of the pfk gene. Importantly, the modulation affected...

  13. Cerebrovascular gene expression in spontaneously hypertensive rats

    DEFF Research Database (Denmark)

    Grell, Anne-Sofie; Frederiksen, Simona Denise; Edvinsson, Lars

    2017-01-01

    in the middle cerebral arteries from hypertensive compared to normotensive rats. The gene expression of 72 genes was decreased and the gene expression of 97 genes was increased. The following genes with a fold difference ≥1.40 were verified by quantitative PCR; Postn, Olr1, Fas, Vldlr, Mmp2, Timp1, Serpine1......, Mmp11, Cd34, Ptgs1 and Ptgs2. The gene expression of Postn, Olr1, Fas, Vldlr, Mmp2, Timp1 and Serpine1 and the protein expression of LOX1 (also known as OLR1) were significantly increased in the middle cerebral arteries from spontaneously hypertensive rats compared to Wistar-Kyoto rats. In conclusion...

  14. A large-scale electrophoresis- and chromatography-based determination of gene expression profiles in bovine brain capillary endothelial cells after the re-induction of blood-brain barrier properties

    Directory of Open Access Journals (Sweden)

    Duban-Deweer Sophie

    2010-11-01

    Full Text Available Abstract Background Brain capillary endothelial cells (BCECs form the physiological basis of the blood-brain barrier (BBB. The barrier function is (at least in part due to well-known proteins such as transporters, tight junctions and metabolic barrier proteins (e.g. monoamine oxidase, gamma glutamyltranspeptidase and P-glycoprotein. Our previous 2-dimensional gel proteome analysis had identified a large number of proteins and revealed the major role of dynamic cytoskeletal remodelling in the differentiation of bovine BCECs. The aim of the present study was to elaborate a reference proteome of Triton X-100-soluble species from bovine BCECs cultured in the well-established in vitro BBB model developed in our laboratory. Results A total of 215 protein spots (corresponding to 130 distinct proteins were identified by 2-dimensional gel electrophoresis, whereas over 350 proteins were identified by a shotgun approach. We classified around 430 distinct proteins expressed by bovine BCECs. Our large-scale gene expression analysis enabled the correction of mistakes referenced into protein databases (e.g. bovine vinculin and constitutes valuable evidence for predictions based on genome annotation. Conclusions Elaboration of a reference proteome constitutes the first step in creating a gene expression database dedicated to capillary endothelial cells displaying BBB characteristics. It improves of our knowledge of the BBB and the key proteins in cell structures, cytoskeleton organization, metabolism, detoxification and drug resistance. Moreover, our results emphasize the need for both appropriate experimental design and correct interpretation of proteome datasets.

  15. Adaptive Evolution of Gene Expression in Drosophila

    Directory of Open Access Journals (Sweden)

    Armita Nourmohammad

    2017-08-01

    Full Text Available Gene expression levels are important quantitative traits that link genotypes to molecular functions and fitness. In Drosophila, population-genetic studies have revealed substantial adaptive evolution at the genomic level, but the evolutionary modes of gene expression remain controversial. Here, we present evidence that adaptation dominates the evolution of gene expression levels in flies. We show that 64% of the observed expression divergence across seven Drosophila species are adaptive changes driven by directional selection. Our results are derived from time-resolved data of gene expression divergence across a family of related species, using a probabilistic inference method for gene-specific selection. Adaptive gene expression is stronger in specific functional classes, including regulation, sensory perception, sexual behavior, and morphology. Moreover, we identify a large group of genes with sex-specific adaptation of expression, which predominantly occurs in males. Our analysis opens an avenue to map system-wide selection on molecular quantitative traits independently of their genetic basis.

  16. Nonlinear dimensionality reduction of gene expression data

    OpenAIRE

    Nilsson, Jens

    2006-01-01

    Using microarray measurements techniques, it is possible to measure the activity of genes simultaneously across the whole genome. Since genes influence each others activity levels through complex regulatory networks, such gene expression measurements are state samples of a dynamical system. Gene expression data has proven useful for diagnosis and definition of disease subgroups, for inference of the functional role of a given gene or for the deciphering of complex disease mechanisms. However,...

  17. DNA methylation and gene expression of HIF3A

    DEFF Research Database (Denmark)

    Main, Ailsa Maria; Gillberg, Linn; Jacobsen, Anna Louisa

    2016-01-01

    BACKGROUND: Associations between BMI and DNA methylation of hypoxia-inducible factor 3-alpha (HIF3A) in both blood cells and subcutaneous adipose tissue (SAT) have been reported. In this study, we investigated associations between BMI and HIF3A DNA methylation in the blood and SAT from the same...... individuals, and whether HIF3A gene expression in SAT and skeletal muscle biopsies showed associations with BMI and insulin resistance. Furthermore, we aimed to investigate gender specificity and heritability of these traits. METHODS: We studied 137 first-degree relatives of type 2 diabetes (T2D) patients...... glucose tolerance tests. RESULTS: BMI was associated with HIF3A methylation at one CpG site in the blood, and there was a positive association between the blood and SAT methylation levels at a different CpG site within the individuals. The SAT methylation level did not correlate with HIF3A gene expression...

  18. Garlic Influences Gene Expression In Vivo and In Vitro.

    Science.gov (United States)

    Charron, Craig S; Dawson, Harry D; Novotny, Janet A

    2016-02-01

    There is a large body of preclinical research aimed at understanding the roles of garlic and garlic-derived preparations in the promotion of human health. Most of this research has targeted the possible functions of garlic in maintaining cardiovascular health and in preventing and treating cancer. A wide range of outcome variables has been used to investigate the bioactivity of garlic, ranging from direct measures of health status such as cholesterol concentrations, blood pressure, and changes in tumor size and number, to molecular and biochemical measures such as mRNA gene expression, protein concentration, enzyme activity, and histone acetylation status. Determination of how garlic influences mRNA gene expression has proven to be a valuable approach to elucidating the mechanisms of garlic bioactivity. Preclinical studies investigating the health benefits of garlic far outnumber human studies and have made frequent use of mRNA gene expression measurement. There is an immediate need to understand mRNA gene expression in humans as well. Although safety and ethical constraints limit the types of available human tissue, peripheral whole blood is readily accessible, and measuring mRNA gene expression in whole blood may provide a unique window to understanding how garlic intake affects human health. © 2016 American Society for Nutrition.

  19. 90K (MAC-2 BP) gene expression in breast cancer and evidence for the production of 90K by peripheral-blood mononuclear cells

    DEFF Research Database (Denmark)

    Fusco, O; Querzoli, P; Nenci, I

    1998-01-01

    RNA expression and overexpression of c-erbB2/Neu receptor kinase, a marker of poor prognosis for patients with breast cancer. There was no significant difference between the groups with respect to tumor size, number of involved axillary lymph nodes, hormone-receptor status, p53 expression or proliferation...

  20. Synthetic promoter libraries- tuning of gene expression

    DEFF Research Database (Denmark)

    Hammer, Karin; Mijakovic, Ivan; Jensen, Peter Ruhdal

    2006-01-01

    The study of gene function often requires changing the expression of a gene and evaluating the consequences. In principle, the expression of any given gene can be modulated in a quasi-continuum of discrete expression levels but the traditional approaches are usually limited to two extremes: gene...... be met by using promoter libraries. This approach generally consists of inserting a library of promoters in front of the gene to be studied, whereby the individual promoters might deviate either in their spacer sequences or bear slight deviations from the consensus sequence of a vegetative promoter. Here......, we describe the two different methods for obtaining promoter libraries and compare their applicability....

  1. A longitudinal study of gene expression in healthy individuals

    Directory of Open Access Journals (Sweden)

    Tessier Michel

    2009-06-01

    Full Text Available Abstract Background The use of gene expression in venous blood either as a pharmacodynamic marker in clinical trials of drugs or as a diagnostic test requires knowledge of the variability in expression over time in healthy volunteers. Here we defined a normal range of gene expression over 6 months in the blood of four cohorts of healthy men and women who were stratified by age (22–55 years and > 55 years and gender. Methods Eleven immunomodulatory genes likely to play important roles in inflammatory conditions such as rheumatoid arthritis and infection in addition to four genes typically used as reference genes were examined by quantitative reverse transcription-polymerase chain reaction (qRT-PCR, as well as the full genome as represented by Affymetrix HG U133 Plus 2.0 microarrays. Results Gene expression levels as assessed by qRT-PCR and microarray were relatively stable over time with ~2% of genes as measured by microarray showing intra-subject differences over time periods longer than one month. Fifteen genes varied by gender. The eleven genes examined by qRT-PCR remained within a limited dynamic range for all individuals. Specifically, for the seven most stably expressed genes (CXCL1, HMOX1, IL1RN, IL1B, IL6R, PTGS2, and TNF, 95% of all samples profiled fell within 1.5–2.5 Ct, the equivalent of a 4- to 6-fold dynamic range. Two subjects who experienced severe adverse events of cancer and anemia, had microarray gene expression profiles that were distinct from normal while subjects who experienced an infection had only slightly elevated levels of inflammatory markers. Conclusion This study defines the range and variability of gene expression in healthy men and women over a six-month period. These parameters can be used to estimate the number of subjects needed to observe significant differences from normal gene expression in clinical studies. A set of genes that varied by gender was also identified as were a set of genes with elevated

  2. 90K (MAC-2 BP) gene expression in breast cancer and evidence for the production of 90K by peripheral-blood mononuclear cells

    DEFF Research Database (Denmark)

    Fusco, O; Querzoli, P; Nenci, I

    1998-01-01

    activity as estimated by Ki-67 count. Similarly, no association was found between the level of 90K expression and the risk of death from breast cancer. These data are at variance with published findings showing that high serum 90K levels are associated with poor survival. Significantly, investigation of 90......The tumor-derived antigen 90K (Mac-2 BP) is a widely expressed, secreted glycoprotein found in the serum of healthy individuals and at elevated levels in the serum of patients with breast cancer and other types of cancer. The precise function of 90K, particularly in the context of tumor......RNA expression and overexpression of c-erbB2/Neu receptor kinase, a marker of poor prognosis for patients with breast cancer. There was no significant difference between the groups with respect to tumor size, number of involved axillary lymph nodes, hormone-receptor status, p53 expression or proliferation...

  3. Validation of commonly used reference genes for sleep-related gene expression studies

    Directory of Open Access Journals (Sweden)

    Castro Rosa MRPS

    2009-05-01

    Full Text Available Abstract Background Sleep is a restorative process and is essential for maintenance of mental and physical health. In an attempt to understand the complexity of sleep, multidisciplinary strategies, including genetic approaches, have been applied to sleep research. Although quantitative real time PCR has been used in previous sleep-related gene expression studies, proper validation of reference genes is currently lacking. Thus, we examined the effect of total or paradoxical sleep deprivation (TSD or PSD on the expression stability of the following frequently used reference genes in brain and blood: beta-actin (b-actin, beta-2-microglobulin (B2M, glyceraldehyde-3-phosphate dehydrogenase (GAPDH, and hypoxanthine guanine phosphoribosyl transferase (HPRT. Results Neither TSD nor PSD affected the expression stability of all tested genes in both tissues indicating that b-actin, B2M, GAPDH and HPRT are appropriate reference genes for the sleep-related gene expression studies. In order to further verify these results, the relative expression of brain derived neurotrophic factor (BDNF and glycerol-3-phosphate dehydrogenase1 (GPD1 was evaluated in brain and blood, respectively. The normalization with each of four reference genes produced similar pattern of expression in control and sleep deprived rats, but subtle differences in the magnitude of expression fold change were observed which might affect the statistical significance. Conclusion This study demonstrated that sleep deprivation does not alter the expression stability of commonly used reference genes in brain and blood. Nonetheless, the use of multiple reference genes in quantitative RT-PCR is required for the accurate results.

  4. Differential expression and interaction of host factors augment HIV-1 gene expression in neonatal mononuclear cells

    International Nuclear Information System (INIS)

    Sundaravaradan, Vasudha; Mehta, Roshni; Harris, David T.; Zack, Jerome A.; Ahmad, Nafees

    2010-01-01

    We have previously shown a higher level of HIV-1 replication and gene expression in neonatal (cord) blood mononuclear cells (CBMC) compared with adult blood cells (PBMC), which could be due to differential expression of host factors. We performed the gene expression profile of CBMC and PBMC and found that 8013 genes were expressed at higher levels in CBMC than PBMC and 8028 genes in PBMC than CBMC, including 1181 and 1414 genes upregulated after HIV-1 infection in CBMC and PBMC, respectively. Several transcription factors (NF-κB, E2F, HAT-1, TFIIE, Cdk9, Cyclin T1), signal transducers (STAT3, STAT5A) and cytokines (IL-1β, IL-6, IL-10) were upregulated in CBMC than PBMC, which are known to influence HIV-1 replication. In addition, a repressor of HIV-1 transcription, YY1, was down regulated in CBMC than PBMC and several matrix metalloproteinase (MMP-7, -12, -14) were significantly upregulated in HIV-1 infected CBMC than PBMC. Furthermore, we show that CBMC nuclear extracts interacted with a higher extent to HIV-1 LTR cis-acting sequences, including NF-κB, NFAT, AP1 and NF-IL6 compared with PBMC nuclear extracts and retroviral based short hairpin RNA (shRNA) for STAT3 and IL-6 down regulated their own and HIV-1 gene expression, signifying that these factors influenced differential HIV-1 gene expression in CBMC than PBMC.

  5. Research Article Gene expression profiling for coronary artery ...

    Indian Academy of Sciences (India)

    Shiridhar Kashyap

    pressure, neither was any significant difference noticed in risk factors like hypertension, smoking status, and tobacco chewing. The clinical. 8 variables like ESR, LFTs, CRP, haemoglobin, ..... Peripheral blood gene expression profile of atherosclerotic. 2 coronary artery disease in patients of different ethnicity in Malaysia.

  6. Profiling Gene Expression in Germinating Brassica Roots.

    Science.gov (United States)

    Park, Myoung Ryoul; Wang, Yi-Hong; Hasenstein, Karl H

    2014-01-01

    Based on previously developed solid-phase gene extraction (SPGE) we examined the mRNA profile in primary roots of Brassica rapa seedlings for highly expressed genes like ACT7 (actin7), TUB (tubulin1), UBQ (ubiquitin), and low expressed GLK (glucokinase) during the first day post-germination. The assessment was based on the mRNA load of the SPGE probe of about 2.1 ng. The number of copies of the investigated genes changed spatially along the length of primary roots. The expression level of all genes differed significantly at each sample position. Among the examined genes ACT7 expression was most even along the root. UBQ was highest at the tip and root-shoot junction (RS). TUB and GLK showed a basipetal gradient. The temporal expression of UBQ was highest in the MZ 9 h after primary root emergence and higher than at any other sample position. Expressions of GLK in EZ and RS increased gradually over time. SPGE extraction is the result of oligo-dT and oligo-dA hybridization and the results illustrate that SPGE can be used for gene expression profiling at high spatial and temporal resolution. SPGE needles can be used within two weeks when stored at 4 °C. Our data indicate that gene expression studies that are based on the entire root miss important differences in gene expression that SPGE is able to resolve for example growth adjustments during gravitropism.

  7. Polycistronic gene expression in Aspergillus niger.

    Science.gov (United States)

    Schuetze, Tabea; Meyer, Vera

    2017-09-25

    Genome mining approaches predict dozens of biosynthetic gene clusters in each of the filamentous fungal genomes sequenced so far. However, the majority of these gene clusters still remain cryptic because they are not expressed in their natural host. Simultaneous expression of all genes belonging to a biosynthetic pathway in a heterologous host is one approach to activate biosynthetic gene clusters and to screen the metabolites produced for bioactivities. Polycistronic expression of all pathway genes under control of a single and tunable promoter would be the method of choice, as this does not only simplify cloning procedures, but also offers control on timing and strength of expression. However, polycistronic gene expression is a feature not commonly found in eukaryotic host systems, such as Aspergillus niger. In this study, we tested the suitability of the viral P2A peptide for co-expression of three genes in A. niger. Two genes descend from Fusarium oxysporum and are essential to produce the secondary metabolite enniatin (esyn1, ekivR). The third gene (luc) encodes the reporter luciferase which was included to study position effects. Expression of the polycistronic gene cassette was put under control of the Tet-On system to ensure tunable gene expression in A. niger. In total, three polycistronic expression cassettes which differed in the position of luc were constructed and targeted to the pyrG locus in A. niger. This allowed direct comparison of the luciferase activity based on the position of the luciferase gene. Doxycycline-mediated induction of the Tet-On expression cassettes resulted in the production of one long polycistronic mRNA as proven by Northern analyses, and ensured comparable production of enniatin in all three strains. Notably, gene position within the polycistronic expression cassette matters, as, luciferase activity was lowest at position one and had a comparable activity at positions two and three. The P2A peptide can be used to express at

  8. A comparative study of three different gene expression analysis methods.

    Science.gov (United States)

    Choe, Jae Young; Han, Hyung Soo; Lee, Seon Duk; Lee, Hanna; Lee, Dong Eun; Ahn, Jae Yun; Ryoo, Hyun Wook; Seo, Kang Suk; Kim, Jong Kun

    2017-12-04

    TNF-α regulates immune cells and acts as an endogenous pyrogen. Reverse transcription polymerase chain reaction (RT-PCR) is one of the most commonly used methods for gene expression analysis. Among the alternatives to PCR, loop-mediated isothermal amplification (LAMP) shows good potential in terms of specificity and sensitivity. However, few studies have compared RT-PCR and LAMP for human gene expression analysis. Therefore, in the present study, we compared one-step RT-PCR, two-step RT-LAMP and one-step RT-LAMP for human gene expression analysis. We compared three gene expression analysis methods using the human TNF-α gene as a biomarker from peripheral blood cells. Total RNA from the three selected febrile patients were subjected to the three different methods of gene expression analysis. In the comparison of three gene expression analysis methods, the detection limit of both one-step RT-PCR and one-step RT-LAMP were the same, while that of two-step RT-LAMP was inferior. One-step RT-LAMP takes less time, and the experimental result is easy to determine. One-step RT-LAMP is a potentially useful and complementary tool that is fast and reasonably sensitive. In addition, one-step RT-LAMP could be useful in environments lacking specialized equipment or expertise.

  9. Tissue-Based Microarray Expression of Genes Predictive of Metastasis in Uveal Melanoma and Differentially Expressed in Metastatic Uveal Melanoma

    Directory of Open Access Journals (Sweden)

    Hakan Demirci

    2013-01-01

    Full Text Available Purpose: To screen the microarray expression of CDH1, ECM1, EIF1B, FXR1, HTR2B, ID2, LMCD1, LTA4H, MTUS1, RAB31, ROBO1, and SATB1 genes which are predictive of primary uveal melanoma metastasis, and NFKB2, PTPN18, MTSS1, GADD45B, SNCG, HHIP, IL12B, CDK4, RPLP0, RPS17, RPS12 genes that are differentially expressed in metastatic uveal melanoma in normal whole human blood and tissues prone to metastatic involvement by uveal melanoma. Methods: We screened the GeneNote and GNF BioGPS databases for microarray analysis of genes predictive of primary uveal melanoma metastasis and those differentially expressed in metastatic uveal melanoma in normal whole blood, liver, lung and skin. Results: Microarray analysis showed expression of all 22 genes in normal whole blood, liver, lung and skin, which are the most common sites of metastases. In the GNF BioGPS database, data for expression of the HHIP gene in normal whole blood and skin was not complete. Conclusions: Microarray analysis of genes predicting systemic metastasis of uveal melanoma and genes differentially expressed in metastatic uveal melanoma may not be used as a biomarker for metastasis in whole blood, liver, lung, and skin. Their expression in tissues prone to metastasis may suggest that they play a role in tropism of uveal melanoma metastasis to these tissues.

  10. Gene Expression and Microarray Investigation of Dendrobium ...

    African Journals Online (AJOL)

    Result: Between the diabetic rat group and the wild-type group, 1339 functional genes showed differences in expression levels (p < 0.05). ... Genes whose expression normalized were mainly those affected by the disease state and associated with glucose and lipid metabolism, cell growth, apoptosis, biosynthesis, olfactory ...

  11. Expression of conserved signalling pathway genes during

    Indian Academy of Sciences (India)

    Hence, we analysed the expression of Notch, Wnt and Sonic Hedgehog (Shh) pathway genes during differentiation of R1 cells into early vascular lineages. Notch-, Wnt-and Shh-mediated signalling is important during embryonic development. Regulation of gene expression through these signalling molecules is a frequently ...

  12. Serial analysis of gene expression (SAGE)

    NARCIS (Netherlands)

    van Ruissen, Fred; Baas, Frank

    2007-01-01

    In 1995, serial analysis of gene expression (SAGE) was developed as a versatile tool for gene expression studies. SAGE technology does not require pre-existing knowledge of the genome that is being examined and therefore SAGE can be applied to many different model systems. In this chapter, the SAGE

  13. Arabidopsis gene expression patterns during spaceflight

    Science.gov (United States)

    Paul, A.-L.; Ferl, R. J.

    The exposure of Arabidopsis thaliana (Arabidopsis) plants to spaceflight environments resulted in the differential expression of hundreds of genes. A 5 day mission on orbiter Columbia in 1999 (STS-93) carried transgenic Arabidopsis plants engineered with a transgene composed of the alcohol dehydrogenase (Adh) gene promoter linked to the β -Glucuronidase (GUS) reporter gene. The plants were used to evaluate the effects of spaceflight on two fronts. First, expression patterns visualized with the Adh/GUS transgene were used to address specifically the possibility that spaceflight induces a hypoxic stress response, and to assess whether any spaceflight response was similar to control terrestrial hypoxia-induced gene expression patterns. (Paul et al., Plant Physiol. 2001, 126:613). Second, genome-wide patterns of native gene expression were evaluated utilizing the Affymetrix ATH1 GeneChip? array of 8,000 Arabidopsis genes. As a control for the veracity of the array analyses, a selection of genes identified with the arrays was further characterized with quantitative Real-Time RT PCR (ABI - TaqmanTM). Comparison of the patterns of expression for arrays of hybridized with RNA isolated from plants exposed to spaceflight compared to the control arrays revealed hundreds of genes that were differentially expressed in response to spaceflight, yet most genes that are hallmarks of hypoxic stress were unaffected. These results will be discussed in light of current models for plant responses to the spaceflight environment, and with regard to potential future flight opportunities.

  14. Expression of Sox genes in tooth development.

    Science.gov (United States)

    Kawasaki, Katsushige; Kawasaki, Maiko; Watanabe, Momoko; Idrus, Erik; Nagai, Takahiro; Oommen, Shelly; Maeda, Takeyasu; Hagiwara, Nobuko; Que, Jianwen; Sharpe, Paul T; Ohazama, Atsushi

    2015-01-01

    Members of the Sox gene family play roles in many biological processes including organogenesis. We carried out comparative in situ hybridization analysis of seventeen sox genes (Sox1-14, 17, 18, 21) during murine odontogenesis from the epithelial thickening to the cytodifferentiation stages. Localized expression of five Sox genes (Sox6, 9, 13, 14 and 21) was observed in tooth bud epithelium. Sox13 showed restricted expression in the primary enamel knots. At the early bell stage, three Sox genes (Sox8, 11, 17 and 21) were expressed in pre-ameloblasts, whereas two others (Sox5 and 18) showed expression in odontoblasts. Sox genes thus showed a dynamic spatio-temporal expression during tooth development.

  15. Determinants of human adipose tissue gene expression

    DEFF Research Database (Denmark)

    Viguerie, Nathalie; Montastier, Emilie; Maoret, Jean-José

    2012-01-01

    of environmental and individual factors controlling AT adaptation is therefore essential. Here, expression of 271 transcripts, selected for regulation according to obesity and weight changes, was determined in 515 individuals before, after 8-week low-calorie diet-induced weight loss, and after 26-week ad libitum...... interconnection between expression of genes involved in de novo lipogenesis and components of the metabolic syndrome. Sex had a marked influence on AT expression of 88 transcripts, which persisted during the entire dietary intervention and after control for fat mass. In women, the influence of body mass index...... on expression of a subset of genes persisted during the dietary intervention. Twenty-two genes revealed a metabolic syndrome signature common to men and women. Genetic control of AT gene expression by cis signals was observed for 46 genes. Dietary intervention, sex, and cis genetic variants independently...

  16. Gene set analysis for longitudinal gene expression data

    Directory of Open Access Journals (Sweden)

    Piepho Hans-Peter

    2011-07-01

    Full Text Available Abstract Background Gene set analysis (GSA has become a successful tool to interpret gene expression profiles in terms of biological functions, molecular pathways, or genomic locations. GSA performs statistical tests for independent microarray samples at the level of gene sets rather than individual genes. Nowadays, an increasing number of microarray studies are conducted to explore the dynamic changes of gene expression in a variety of species and biological scenarios. In these longitudinal studies, gene expression is repeatedly measured over time such that a GSA needs to take into account the within-gene correlations in addition to possible between-gene correlations. Results We provide a robust nonparametric approach to compare the expressions of longitudinally measured sets of genes under multiple treatments or experimental conditions. The limiting distributions of our statistics are derived when the number of genes goes to infinity while the number of replications can be small. When the number of genes in a gene set is small, we recommend permutation tests based on our nonparametric test statistics to achieve reliable type I error and better power while incorporating unknown correlations between and within-genes. Simulation results demonstrate that the proposed method has a greater power than other methods for various data distributions and heteroscedastic correlation structures. This method was used for an IL-2 stimulation study and significantly altered gene sets were identified. Conclusions The simulation study and the real data application showed that the proposed gene set analysis provides a promising tool for longitudinal microarray analysis. R scripts for simulating longitudinal data and calculating the nonparametric statistics are posted on the North Dakota INBRE website http://ndinbre.org/programs/bioinformatics.php. Raw microarray data is available in Gene Expression Omnibus (National Center for Biotechnology Information with

  17. Positron emission tomography imaging of gene expression

    International Nuclear Information System (INIS)

    Tang Ganghua

    2001-01-01

    The merging of molecular biology and nuclear medicine is developed into molecular nuclear medicine. Positron emission tomography (PET) of gene expression in molecular nuclear medicine has become an attractive area. Positron emission tomography imaging gene expression includes the antisense PET imaging and the reporter gene PET imaging. It is likely that the antisense PET imaging will lag behind the reporter gene PET imaging because of the numerous issues that have not yet to be resolved with this approach. The reporter gene PET imaging has wide application into animal experimental research and human applications of this approach will likely be reported soon

  18. Photosynthetic gene expression in higher plants.

    Science.gov (United States)

    Berry, James O; Yerramsetty, Pradeep; Zielinski, Amy M; Mure, Christopher M

    2013-11-01

    Within the chloroplasts of higher plants and algae, photosynthesis converts light into biological energy, fueling the assimilation of atmospheric carbon dioxide into biologically useful molecules. Two major steps, photosynthetic electron transport and the Calvin-Benson cycle, require many gene products encoded from chloroplast as well as nuclear genomes. The expression of genes in both cellular compartments is highly dynamic and influenced by a diverse range of factors. Light is the primary environmental determinant of photosynthetic gene expression. Working through photoreceptors such as phytochrome, light regulates photosynthetic genes at transcriptional and posttranscriptional levels. Other processes that affect photosynthetic gene expression include photosynthetic activity, development, and biotic and abiotic stress. Anterograde (from nucleus to chloroplast) and retrograde (from chloroplast to nucleus) signaling insures the highly coordinated expression of the many photosynthetic genes between these different compartments. Anterograde signaling incorporates nuclear-encoded transcriptional and posttranscriptional regulators, such as sigma factors and RNA-binding proteins, respectively. Retrograde signaling utilizes photosynthetic processes such as photosynthetic electron transport and redox signaling to influence the expression of photosynthetic genes in the nucleus. The basic C3 photosynthetic pathway serves as the default form used by most of the plant species on earth. High temperature and water stress associated with arid environments have led to the development of specialized C4 and CAM photosynthesis, which evolved as modifications of the basic default expression program. The goal of this article is to explain and summarize the many gene expression and regulatory processes that work together to support photosynthetic function in plants.

  19. HLA-DQA1 gene expression profiling in oligoarticular JIA.

    Science.gov (United States)

    Haas, J P; Metzler, M; Frank, C; Haefner, R; Wassmuth, R

    2009-05-01

    Polymorphisms in the upstream regulatory region of the HLA class II DQA1 gene are currently defined by 10 different alleles. Two of them carrying a Y-box mutation are associated with susceptibility to oligoarticular juvenile idiopathic arthritis (OA-JIA). We investigated allele-dependent differences in HLA-DQA1 gene expression in OA-JIA patients. In cells from affected joints compared to peripheral blood, gene expression of HLA-DRA as well as total HLA-DQA1 was significantly upregulated. Differential analyses of HLA-DQA1 allelic expression showed DQA1*02 and *04 to be comparatively increased. Intra-articular upregulation of HLA-DQA1 was predominantly observed for the OA-JIA associated allele HLA-DQA1*04. Nevertheless, the Y-box mutation of the disease-associated allele DQA1*0401 was not a common denominator for expression behaviour.

  20. Gene expression profiling of Drosophila tracheal fusion cells.

    Science.gov (United States)

    Chandran, Rachana R; Iordanou, Ekaterini; Ajja, Crystal; Wille, Michael; Jiang, Lan

    2014-07-01

    The Drosophila trachea is a premier genetic system to investigate the fundamental mechanisms of tubular organ formation. Tracheal fusion cells lead the branch fusion process to form an interconnected tubular network. Therefore, fusion cells in the Drosophila trachea will be an excellent model to study branch fusion in mammalian tubular organs, such as kidneys and blood vessels. The fusion process is a dynamic cellular process involving cell migration, adhesion, vesicle trafficking, cytoskeleton rearrangement, and membrane fusion. To understand how these cellular events are coordinated, we initiated the critical step to assemble a gene expression profile of fusion cells. For this study, we analyzed the expression of 234 potential tracheal-expressed genes in fusion cells during fusion cell development. 143 Tracheal genes were found to encode transcription factors, signal proteins, cytoskeleton and matrix proteins, transporters, and proteins with unknown function. These genes were divided into four subgroups based on their levels of expression in fusion cells compared to neighboring non-fusion cells revealed by in situ hybridization: (1) genes that have relative high abundance in fusion cells, (2) genes that are dynamically expressed in fusion cells, (3) genes that have relative low abundance in fusion cells, and (4) genes that are expressed at similar levels in fusion cells and non-fusion tracheal cells. This study identifies the expression profile of fusion cells and hypothetically suggests genes which are necessary for the fusion process and which play roles in distinct stages of fusion, as indicated by the location and timing of expression. These data will provide the basis for a comprehensive understanding of the molecular and cellular mechanisms of branch fusion. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Effect of Infla-Kine supplementation on the gene expression of inflammatory markers in peripheral mononuclear cells and on C-reactive protein in blood

    Directory of Open Access Journals (Sweden)

    Nina A. Mikirova

    2017-10-01

    Full Text Available Abstract Background Chronic inflammation is a predisposing factor to numerous degenerative diseases including cancer, heart failure and Alzheimer’s disease. Infla-Kine is a natural supplement comprised of a proprietary blend of Lactobacillus fermentum extract, burdock seed (arctigenin, zinc, alpha lipoic acid, papaya enzyme and an enhanced absorption bio-curcumin complex (BCM-95®. Methods Infla-Kine was administered twice daily to 24 health volunteers for 4 weeks. Quantitative RT-PCR was used to assess mRNA transcripts of IL-1b, IL8, IL-6, NF-κB, and TNF-α from peripheral blood mononuclear cells (PBMC. C reactive protein (CRP was measured from serum. Additionally, quality of life questionnaires were employed to assess general feeling of well-being. Assessments were made before treatment and at conclusion of treatment (4 weeks. Results As compared to pre-treatment, after 4 weeks, a statistically significant reduction of IL8, IL-6, NF-κB, and TNF-α transcripts was observed in PBMC. Furthermore, reduction of IL-1b transcript and serum CRP was observed but did not reach statistical significance. Quality of life improvements were most prevalent in muscle and joint pains. Conclusions Overall, our data demonstrate that twice daily administration of Infla-Kine for 4 weeks reduces inflammatory markers and quality of life in healthy volunteers.

  2. Caleydo: connecting pathways and gene expression.

    Science.gov (United States)

    Streit, Marc; Lex, Alexander; Kalkusch, Michael; Zatloukal, Kurt; Schmalstieg, Dieter

    2009-10-15

    Understanding the relationships between pathways and the altered expression of their components in disease conditions can be addressed in a visual data analysis process. Caleydo uses novel visualization techniques to support life science experts in their analysis of gene expression data in the context of pathways and functions of individual genes. Pathways and gene expression visualizations are placed in a 3D scene where selected entities (i.e. genes) are visually connected. This allows Caleydo to seamlessly integrate interactive gene expression visualization with cross-database pathway exploration. The Caleydo visualization framework is freely available on www.caleydo.org for non-commercial use. It runs on Windows and Linux and requires a 3D capable graphics card.

  3. Adaptive Evolution of Gene Expression in Drosophila.

    Science.gov (United States)

    Nourmohammad, Armita; Rambeau, Joachim; Held, Torsten; Kovacova, Viera; Berg, Johannes; Lässig, Michael

    2017-08-08

    Gene expression levels are important quantitative traits that link genotypes to molecular functions and fitness. In Drosophila, population-genetic studies have revealed substantial adaptive evolution at the genomic level, but the evolutionary modes of gene expression remain controversial. Here, we present evidence that adaptation dominates the evolution of gene expression levels in flies. We show that 64% of the observed expression divergence across seven Drosophila species are adaptive changes driven by directional selection. Our results are derived from time-resolved data of gene expression divergence across a family of related species, using a probabilistic inference method for gene-specific selection. Adaptive gene expression is stronger in specific functional classes, including regulation, sensory perception, sexual behavior, and morphology. Moreover, we identify a large group of genes with sex-specific adaptation of expression, which predominantly occurs in males. Our analysis opens an avenue to map system-wide selection on molecular quantitative traits independently of their genetic basis. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Differential gene expression during Trypanosoma cruzi metacyclogenesis

    Directory of Open Access Journals (Sweden)

    Marco Aurelio Krieger

    1999-09-01

    Full Text Available The transformation of epimastigotes into metacyclic trypomastigotes involves changes in the pattern of expressed genes, resulting in important morphological and functional differences between these developmental forms of Trypanosoma cruzi. In order to identify and characterize genes involved in triggering the metacyclogenesis process and in conferring to metacyclic trypomastigotes their stage specific biological properties, we have developed a method allowing the isolation of genes specifically expressed when comparing two close related cell populations (representation of differential expression or RDE. The method is based on the PCR amplification of gene sequences selected by hybridizing and subtracting the populations in such a way that after some cycles of hybridization-amplification genes specific to a given population are highly enriched. The use of this method in the analysis of differential gene expression during T. cruzi metacyclogenesis (6 hr and 24 hr of differentiation and metacyclic trypomastigotes resulted in the isolation of several clones from each time point. Northern blot analysis showed that some genes are transiently expressed (6 hr and 24 hr differentiating cells, while others are present in differentiating cells and in metacyclic trypomastigotes. Nucleotide sequencing of six clones characterized so far showed that they do not display any homology to gene sequences available in the GeneBank.

  5. EXPRESSION OF BACTERIOOPSIN GENES IN ESCHERICHIA COLI

    OpenAIRE

    TSUJIUCHI, Yutaka; IWASA, Tatsuo; TOKUNAGA, Fumio

    1994-01-01

    An inducible expression vector pUBO was constructed with native codons in order to express the gene of Bacteriorhodopsin (BOP) in Escherichia coli (E. coli). Vector pUBO contains lac-promoter followed by the partial structural gene of lacZ and the structural gene of BOP. The expression of this fusion protein was detected by ELISA with anti-BOP antiserum. The fusion protein obtained from E. coli trnsformed with pUBO formed approximately 0.1% of the total protein of the E. coli membrane fraction.

  6. Differential expression of cell adhesion genes

    DEFF Research Database (Denmark)

    Stein, Wilfred D; Litman, Thomas; Fojo, Tito

    2005-01-01

    that compare cells grown in suspension to similar cells grown attached to one another as aggregates have suggested that it is adhesion to the extracellular matrix of the basal membrane that confers resistance to apoptosis and, hence, resistance to cytotoxins. The genes whose expression correlates with poor...... survival might, therefore, act through such a matrix-to-cell suppression of apoptosis. Indeed, correlative mining of gene expression and patient survival databases suggests that poor survival in patients with metastatic cancer correlates highly with tumor expression of a common theme: the genes involved...

  7. Changes in skeletal muscle gene expression following clenbuterol administration

    Science.gov (United States)

    Spurlock, Diane M; McDaneld, Tara G; McIntyre, Lauren M

    2006-01-01

    Background Beta-adrenergic receptor agonists (BA) induce skeletal muscle hypertrophy, yet specific mechanisms that lead to this effect are not well understood. The objective of this research was to identify novel genes and physiological pathways that potentially facilitate BA induced skeletal muscle growth. The Affymetrix platform was utilized to identify gene expression changes in mouse skeletal muscle 24 hours and 10 days after administration of the BA clenbuterol. Results Administration of clenbuterol stimulated anabolic activity, as indicated by decreased blood urea nitrogen (BUN; P clenbuterol treatment. A total of 22,605 probesets were evaluated with 52 probesets defined as differentially expressed based on a false discovery rate of 10%. Differential mRNA abundance of four of these genes was validated in an independent experiment by quantitative PCR. Functional characterization of differentially expressed genes revealed several categories that participate in biological processes important to skeletal muscle growth, including regulators of transcription and translation, mediators of cell-signalling pathways, and genes involved in polyamine metabolism. Conclusion Global evaluation of gene expression after administration of clenbuterol identified changes in gene expression and overrepresented functional categories of genes that may regulate BA-induced muscle hypertrophy. Changes in mRNA abundance of multiple genes associated with myogenic differentiation may indicate an important effect of BA on proliferation, differentiation, and/or recruitment of satellite cells into muscle fibers to promote muscle hypertrophy. Increased mRNA abundance of genes involved in the initiation of translation suggests that increased levels of protein synthesis often associated with BA administration may result from a general up-regulation of translational initiators. Additionally, numerous other genes and physiological pathways were identified that will be important targets for

  8. Identification of Suitable Reference Genes for Peripheral Blood Mononuclear Cell Subset Studies in Multiple Sclerosis

    DEFF Research Database (Denmark)

    Oturai, Ditte Bang; Søndergaard, H B; Börnsen, L

    2016-01-01

    of suitable reference genes for qPCR studies using different peripheral blood cell subsets (whole blood (WB) cells, peripheral blood mononuclear cells (PBMCs) and PBMC subsets (CD4(+) T cells, CD8(+) T cells, NK cells, monocytes, B cells and dendritic cells) from healthy controls (HC), patients with relapsing......Quantitative real-time PCR (qPCR) involves the need of a proper standard for normalizing the gene expression data. Different studies have shown the validity of reference genes to vary greatly depending on tissue, cell subsets and experimental context. This study aimed at the identification......-remitting multiple sclerosis (RRMS) and interferon-β-treated patients with RRMS (RRMS-IFN-β). Eight candidate reference genes (CASC3, EEF1A1, GAPDH, HPRT1, RPLP0, UBC, UBE2D2 and YWHAZ) were analysed using normfinder and genorm algorithms to identify the most stably expressed genes. We found reference gene...

  9. Pluripotency gene expression and growth control in cultures of peripheral blood monocytes during their conversion into programmable cells of monocytic origin (PCMO: evidence for a regulatory role of autocrine activin and TGF-β.

    Directory of Open Access Journals (Sweden)

    Hendrik Ungefroren

    Full Text Available Previous studies have shown that peripheral blood monocytes can be converted in vitro to a stem cell-like cell termed PCMO as evidenced by the re-expression of pluripotency-associated genes, transient proliferation, and the ability to adopt the phenotype of hepatocytes and insulin-producing cells upon tissue-specific differentiation. However, the regulatory interactions between cultured cells governing pluripotency and mitotic activity have remained elusive. Here we asked whether activin(s and TGF-β(s, are involved in PCMO generation. De novo proliferation of PCMO was higher under adherent vs. suspended culture conditions as revealed by the appearance of a subset of Ki67-positive monocytes and correlated with down-regulation of p21WAF1 beyond day 2 of culture. Realtime-PCR analysis showed that PCMO express ActRIIA, ALK4, TβRII, ALK5 as well as TGF-β1 and the βA subunit of activin. Interestingly, expression of ActRIIA and ALK4, and activin A levels in the culture supernatants increased until day 4 of culture, while levels of total and active TGF-β1 strongly declined. PCMO responded to both growth factors in an autocrine fashion with intracellular signaling as evidenced by a rise in the levels of phospho-Smad2 and a drop in those of phospho-Smad3. Stimulation of PCMO with recombinant activins (A, B, AB and TGF-β1 induced phosphorylation of Smad2 but not Smad3. Inhibition of autocrine activin signaling by either SB431542 or follistatin reduced both Smad2 activation and Oct4A/Nanog upregulation. Inhibition of autocrine TGF-β signaling by either SB431542 or anti-TGF-β antibody reduced Smad3 activation and strongly increased the number of Ki67-positive cells. Furthermore, anti-TGF-β antibody moderately enhanced Oct4A/Nanog expression. Our data show that during PCMO generation pluripotency marker expression is controlled positively by activin/Smad2 and negatively by TGF-β/Smad3 signaling, while relief from growth inhibition is primarily the

  10. Postmortem cardiac tissue maintains gene expression profile even after late harvesting

    OpenAIRE

    Gupta, Simone; Halushka, Marc K; Hilton, Gina M; Arking, Dan E

    2012-01-01

    Abstract Background Gene expression studies can be used to help identify disease-associated genes by comparing the levels of expressed transcripts between cases and controls, and to identify functional genetic variants (expression quantitative loci or eQTLs) by comparing expression levels between individuals with different genotypes. While many of these studies are performed in blood or lymphoblastoid cell lines due to tissue accessibility, the relevance of expression differences in tissues t...

  11. Drosophila melanogaster gene expression changes after spaceflight.

    Data.gov (United States)

    National Aeronautics and Space Administration — Gene expression levels were determined in 3rd instar and adult Drosophila melanogaster reared during spaceflight to elucidate the genetic and molecular mechanisms...

  12. New genes associated with rheumatoid arthritis identified by gene expression profiling.

    Science.gov (United States)

    Wang, H; Guo, J; Jiang, J; Wu, W; Chang, X; Zhou, H; Li, Z; Zhao, J

    2017-06-01

    In this study, we aimed to find new genes associated with rheumatoid arthritis (RA) so that more comprehensive genes would be used for monitoring and/or diagnosing patients. Illumina digital gene expression profiling was applied in two sample types - peripheral blood mononuclear cells (PBMCs) and synovial cells to compare the gene expression pattern between 17 patients with RA and three control groups (six osteoarthritis patients, three ankylosing spondylitis patients and 17 healthy controls). Bioinformatics was performed on pathway analysis and protein-protein interaction networks. Four novel genes from PBMCs - DHRS3, TTC38, SAP30BP and LPIN2 - were found to be associated with RA and further confirmed through quantitative real-time polymerase chain reaction. Five new differentially expressed genes (EPYC, LIFR, GLDN, TADA3 and ZNRF3) found in synovial cells were not confirmed. Pathway analyses revealed 10 significantly enriched pathways, and a protein-protein interaction network analysis showed that four novel PBMC-derived genes were connected to previously reported genes by four intermediate genes. Therefore, we proposed that four newly identified PBMC-derived genes could be integrated with previously reported RA-associated genes to monitor and/or diagnose RA. © 2017 John Wiley & Sons Ltd.

  13. Molecular Characterization and Expression Analysis of Equine ( Gene in Horse (

    Directory of Open Access Journals (Sweden)

    Ki-Duk Song

    2014-05-01

    Full Text Available The objective of this study was to determine the molecular characteristics of the horse vascular endothelial growth factor alpha gene (VEGFα by constructing a phylogenetic tree, and to investigate gene expression profiles in tissues and blood leukocytes after exercise for development of suitable biomarkers. Using published amino acid sequences of other vertebrate species (human, chimpanzee, mouse, rat, cow, pig, chicken and dog, we constructed a phylogenetic tree which showed that equine VEGFα belonged to the same clade of the pig VEGFα. Analysis for synonymous (Ks and non-synonymous substitution ratios (Ka revealed that the horse VEGFα underwent positive selection. RNA was extracted from blood samples before and after exercise and different tissue samples of three horses. Expression analyses using reverse transcription-polymerase chain reaction (RT-PCR and quantitative-polymerase chain reaction (qPCR showed ubiquitous expression of VEGFα mRNA in skeletal muscle, kidney, thyroid, lung, appendix, colon, spinal cord, and heart tissues. Analysis of differential expression of VEGFα gene in blood leukocytes after exercise indicated a unimodal pattern. These results will be useful in developing biomarkers that can predict the recovery capacity of racing horses.

  14. Changes in skeletal muscle gene expression following clenbuterol administration

    Directory of Open Access Journals (Sweden)

    McIntyre Lauren M

    2006-12-01

    Full Text Available Abstract Background Beta-adrenergic receptor agonists (BA induce skeletal muscle hypertrophy, yet specific mechanisms that lead to this effect are not well understood. The objective of this research was to identify novel genes and physiological pathways that potentially facilitate BA induced skeletal muscle growth. The Affymetrix platform was utilized to identify gene expression changes in mouse skeletal muscle 24 hours and 10 days after administration of the BA clenbuterol. Results Administration of clenbuterol stimulated anabolic activity, as indicated by decreased blood urea nitrogen (BUN; P P Conclusion Global evaluation of gene expression after administration of clenbuterol identified changes in gene expression and overrepresented functional categories of genes that may regulate BA-induced muscle hypertrophy. Changes in mRNA abundance of multiple genes associated with myogenic differentiation may indicate an important effect of BA on proliferation, differentiation, and/or recruitment of satellite cells into muscle fibers to promote muscle hypertrophy. Increased mRNA abundance of genes involved in the initiation of translation suggests that increased levels of protein synthesis often associated with BA administration may result from a general up-regulation of translational initiators. Additionally, numerous other genes and physiological pathways were identified that will be important targets for further investigations of the hypertrophic effect of BA on skeletal muscle.

  15. PRAME gene expression profile in medulloblastoma

    Directory of Open Access Journals (Sweden)

    Tânia Maria Vulcani-Freitas

    2011-02-01

    Full Text Available Medulloblastoma is the most common malignant tumors of central nervous system in the childhood. The treatment is severe, harmful and, thus, has a dismal prognosis. As PRAME is present in various cancers, including meduloblastoma, and has limited expression in normal tissues, this antigen can be an ideal vaccine target for tumor immunotherapy. In order to find a potential molecular target, we investigated PRAME expression in medulloblastoma fragments and we compare the results with the clinical features of each patient. Analysis of gene expression was performed by real-time quantitative PCR from 37 tumor samples. The Mann-Whitney test was used to analysis the relationship between gene expression and clinical characteristics. Kaplan-Meier curves were used to evaluate survival. PRAME was overexpressed in 84% samples. But no statistical association was found between clinical features and PRAME overexpression. Despite that PRAME gene could be a strong candidate for immunotherapy since it is highly expressed in medulloblastomas.

  16. Challenges in using liquid biopsies for gene expression profiling.

    Science.gov (United States)

    Porras, Tania B; Kaur, Pushpinder; Ring, Alexander; Schechter, Naomi; Lang, Julie E

    2018-01-23

    Circulating tumor cells (CTCs) have potential utility as a surrogate biomarker of tumor biology via a liquid biopsy. The aim of this study was to evaluate if the nCounter NanoString assay could be used for accurate gene expression profiling of CTCs using the PAM50 research-use-only CodeSet. Analysis was performed on CTCs isolated by the ANGLE Parsortix system from healthy blood spiked with the breast cancer cell lines Hs578T, SkBr3, MDA-MB-231 or MCF7. Using cell lines as gold standard positive controls and Parsortix processed blood without spiking (unspiked) as negative controls, we found an average of 12 significantly differentially expressed genes among spiked samples versus unspiked controls. We validated our findings with the NanoStringDiff differential expression statistical method. The NanoString recommended targeted pre-amplification introduced false positive results due to pre-amplification bias, and the amplification of non-cancer genes from normal leukocytes confounded gene expression profiling of CTCs. Pre-amplification bias is a concern for other similar assays that may be used as discovery tools or target validation of transcripts of interest in gene expression profiling of CTCs. We recommend the use of an unspiked negative control when evaluating CTC technologies regarding gene expression profiling. Given that the molecular profiling of CTCs as a liquid biopsy may have clinical ramifications for potential treatment selection in future clinical trials, our study emphasizes cautious consideration of pre-analytical variables such as amplification bias in the context of liquid biopsy studies.

  17. Homeobox genes expressed during echinoderm arm regeneration.

    Science.gov (United States)

    Ben Khadra, Yousra; Said, Khaled; Thorndyke, Michael; Martinez, Pedro

    2014-04-01

    Regeneration in echinoderms has proved to be more amenable to study in the laboratory than the more classical vertebrate models, since the smaller genome size and the absence of multiple orthologs for different genes in echinoderms simplify the analysis of gene function during regeneration. In order to understand the role of homeobox-containing genes during arm regeneration in echinoderms, we isolated the complement of genes belonging to the Hox class that are expressed during this process in two major echinoderm groups: asteroids (Echinaster sepositus and Asterias rubens) and ophiuroids (Amphiura filiformis), both of which show an extraordinary capacity for regeneration. By exploiting the sequence conservation of the homeobox, putative orthologs of several Hox genes belonging to the anterior, medial, and posterior groups were isolated. We also report the isolation of a few Hox-like genes expressed in the same systems.

  18. Evaluation of suitable reference genes for gene expression studies ...

    Indian Academy of Sciences (India)

    2011-12-14

    Dec 14, 2011 ... MADS family of TFs control floral organ identity within each whorl of the flower by activating downstream genes. Measuring gene expression in different tissue types and developmental stages is of fundamental importance in TFs functional research. In last few years, quantitative real-time. PCR (qRT-PCR) ...

  19. Optimal Reference Genes for Gene Expression Normalization in Trichomonas vaginalis.

    Science.gov (United States)

    dos Santos, Odelta; de Vargas Rigo, Graziela; Frasson, Amanda Piccoli; Macedo, Alexandre José; Tasca, Tiana

    2015-01-01

    Trichomonas vaginalis is the etiologic agent of trichomonosis, the most common non-viral sexually transmitted disease worldwide. This infection is associated with several health consequences, including cervical and prostate cancers and HIV acquisition. Gene expression analysis has been facilitated because of available genome sequences and large-scale transcriptomes in T. vaginalis, particularly using quantitative real-time polymerase chain reaction (qRT-PCR), one of the most used methods for molecular studies. Reference genes for normalization are crucial to ensure the accuracy of this method. However, to the best of our knowledge, a systematic validation of reference genes has not been performed for T. vaginalis. In this study, the transcripts of nine candidate reference genes were quantified using qRT-PCR under different cultivation conditions, and the stability of these genes was compared using the geNorm and NormFinder algorithms. The most stable reference genes were α-tubulin, actin and DNATopII, and, conversely, the widely used T. vaginalis reference genes GAPDH and β-tubulin were less stable. The PFOR gene was used to validate the reliability of the use of these candidate reference genes. As expected, the PFOR gene was upregulated when the trophozoites were cultivated with ferrous ammonium sulfate when the DNATopII, α-tubulin and actin genes were used as normalizing gene. By contrast, the PFOR gene was downregulated when the GAPDH gene was used as an internal control, leading to misinterpretation of the data. These results provide an important starting point for reference gene selection and gene expression analysis with qRT-PCR studies of T. vaginalis.

  20. Optimal Reference Genes for Gene Expression Normalization in Trichomonas vaginalis.

    Directory of Open Access Journals (Sweden)

    Odelta dos Santos

    Full Text Available Trichomonas vaginalis is the etiologic agent of trichomonosis, the most common non-viral sexually transmitted disease worldwide. This infection is associated with several health consequences, including cervical and prostate cancers and HIV acquisition. Gene expression analysis has been facilitated because of available genome sequences and large-scale transcriptomes in T. vaginalis, particularly using quantitative real-time polymerase chain reaction (qRT-PCR, one of the most used methods for molecular studies. Reference genes for normalization are crucial to ensure the accuracy of this method. However, to the best of our knowledge, a systematic validation of reference genes has not been performed for T. vaginalis. In this study, the transcripts of nine candidate reference genes were quantified using qRT-PCR under different cultivation conditions, and the stability of these genes was compared using the geNorm and NormFinder algorithms. The most stable reference genes were α-tubulin, actin and DNATopII, and, conversely, the widely used T. vaginalis reference genes GAPDH and β-tubulin were less stable. The PFOR gene was used to validate the reliability of the use of these candidate reference genes. As expected, the PFOR gene was upregulated when the trophozoites were cultivated with ferrous ammonium sulfate when the DNATopII, α-tubulin and actin genes were used as normalizing gene. By contrast, the PFOR gene was downregulated when the GAPDH gene was used as an internal control, leading to misinterpretation of the data. These results provide an important starting point for reference gene selection and gene expression analysis with qRT-PCR studies of T. vaginalis.

  1. Inferring gene networks from discrete expression data

    KAUST Repository

    Zhang, L.

    2013-07-18

    The modeling of gene networks from transcriptional expression data is an important tool in biomedical research to reveal signaling pathways and to identify treatment targets. Current gene network modeling is primarily based on the use of Gaussian graphical models applied to continuous data, which give a closedformmarginal likelihood. In this paper,we extend network modeling to discrete data, specifically data from serial analysis of gene expression, and RNA-sequencing experiments, both of which generate counts of mRNAtranscripts in cell samples.We propose a generalized linear model to fit the discrete gene expression data and assume that the log ratios of the mean expression levels follow a Gaussian distribution.We restrict the gene network structures to decomposable graphs and derive the graphs by selecting the covariance matrix of the Gaussian distribution with the hyper-inverse Wishart priors. Furthermore, we incorporate prior network models based on gene ontology information, which avails existing biological information on the genes of interest. We conduct simulation studies to examine the performance of our discrete graphical model and apply the method to two real datasets for gene network inference. © The Author 2013. Published by Oxford University Press. All rights reserved.

  2. Perspectives: Gene Expression in Fisheries Management

    Science.gov (United States)

    Nielsen, Jennifer L.; Pavey, Scott A.

    2010-01-01

    Functional genes and gene expression have been connected to physiological traits linked to effective production and broodstock selection in aquaculture, selective implications of commercial fish harvest, and adaptive changes reflected in non-commercial fish populations subject to human disturbance and climate change. Gene mapping using single nucleotide polymorphisms (SNPs) to identify functional genes, gene expression (analogue microarrays and real-time PCR), and digital sequencing technologies looking at RNA transcripts present new concepts and opportunities in support of effective and sustainable fisheries. Genomic tools have been rapidly growing in aquaculture research addressing aspects of fish health, toxicology, and early development. Genomic technologies linking effects in functional genes involved in growth, maturation and life history development have been tied to selection resulting from harvest practices. Incorporating new and ever-increasing knowledge of fish genomes is opening a different perspective on local adaptation that will prove invaluable in wild fish conservation and management. Conservation of fish stocks is rapidly incorporating research on critical adaptive responses directed at the effects of human disturbance and climate change through gene expression studies. Genomic studies of fish populations can be generally grouped into three broad categories: 1) evolutionary genomics and biodiversity; 2) adaptive physiological responses to a changing environment; and 3) adaptive behavioral genomics and life history diversity. We review current genomic research in fisheries focusing on those that use microarrays to explore differences in gene expression among phenotypes and within or across populations, information that is critically important to the conservation of fish and their relationship to humans.

  3. Expression of Deinococcus geothermalis trehalose synthase gene ...

    African Journals Online (AJOL)

    A novel trehalose synthase gene from Deinococcus geothermalis (DSMZ 11300) containing 1692 bp reading-frame encoding 564 amino acids was amplified using polymerase chain reaction (PCR). The gene was ligated into pET30Ek/LIC vector and expressed after isopropyl β-D-thiogalactopyranoside induction in ...

  4. Gene expression profiles in Finnish twins with multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Kaprio Jaakko

    2006-02-01

    Full Text Available Abstract Background Since genetic alterations influencing susceptibility to multiple sclerosis (MS, the most common autoimmune demyelinating disease of the central nervous system (CNS, are as yet poorly understood, the purpose of this study was to identify genes responsible for MS by studying monozygotic (MZ twin pairs discordant for MS. Methods In order to identify genes involved in MS development, the gene expression profiles in blood mononuclear cells obtained from eight MZ twin pairs discordant for MS were analyzed by cDNA microarray technology detecting the expression of 8 300 genes. The twins were collected from the Finnish Twin Cohort Study and both affected subjects and their healthy siblings underwent neurological evaluation and cerebral and spinal magnetic resonance imaging. Gene expressions were confirmed by relative quantitative reverse transcription PCR. Results It appeared that 25 genes were at least two-fold up-regulated and 15 genes down-regulated in 25% (2/8 of twins with MS when compared to their healthy siblings. Moreover, 6/25 genes were up-regulated in 40% of MS twins and one gene, interferon alpha-inducible protein (clone IFI-6-16 (G1P3, in 50% of them. The six most constantly expressed genes are (1 G1P3, (2 POU domain, class 3, transcription factor 1, (3 myxovirus resistance 2, (4 lysosomal-associated multispanning membrane protein-5, (5 hemoglobin alpha 2 and (6 hemoglobin beta. Conclusion Over two-fold up-regulation of these six genes in almost half of MZ twins with MS suggests their role in MS pathogenesis. Studies using MZ MS twins obtained from genetically homogeneous population offer a unique opportunity to explore the genetic nature of MS.

  5. Bayesian assignment of gene ontology terms to gene expression experiments.

    Science.gov (United States)

    Sykacek, P

    2012-09-15

    Gene expression assays allow for genome scale analyses of molecular biological mechanisms. State-of-the-art data analysis provides lists of involved genes, either by calculating significance levels of mRNA abundance or by Bayesian assessments of gene activity. A common problem of such approaches is the difficulty of interpreting the biological implication of the resulting gene lists. This lead to an increased interest in methods for inferring high-level biological information. A common approach for representing high level information is by inferring gene ontology (GO) terms which may be attributed to the expression data experiment. This article proposes a probabilistic model for GO term inference. Modelling assumes that gene annotations to GO terms are available and gene involvement in an experiment is represented by a posterior probabilities over gene-specific indicator variables. Such probability measures result from many Bayesian approaches for expression data analysis. The proposed model combines these indicator probabilities in a probabilistic fashion and provides a probabilistic GO term assignment as a result. Experiments on synthetic and microarray data suggest that advantages of the proposed probabilistic GO term inference over statistical test-based approaches are in particular evident for sparsely annotated GO terms and in situations of large uncertainty about gene activity. Provided that appropriate annotations exist, the proposed approach is easily applied to inferring other high level assignments like pathways. Source code under GPL license is available from the author. peter.sykacek@boku.ac.at.

  6. Bayesian assignment of gene ontology terms to gene expression experiments

    Science.gov (United States)

    Sykacek, P.

    2012-01-01

    Motivation: Gene expression assays allow for genome scale analyses of molecular biological mechanisms. State-of-the-art data analysis provides lists of involved genes, either by calculating significance levels of mRNA abundance or by Bayesian assessments of gene activity. A common problem of such approaches is the difficulty of interpreting the biological implication of the resulting gene lists. This lead to an increased interest in methods for inferring high-level biological information. A common approach for representing high level information is by inferring gene ontology (GO) terms which may be attributed to the expression data experiment. Results: This article proposes a probabilistic model for GO term inference. Modelling assumes that gene annotations to GO terms are available and gene involvement in an experiment is represented by a posterior probabilities over gene-specific indicator variables. Such probability measures result from many Bayesian approaches for expression data analysis. The proposed model combines these indicator probabilities in a probabilistic fashion and provides a probabilistic GO term assignment as a result. Experiments on synthetic and microarray data suggest that advantages of the proposed probabilistic GO term inference over statistical test-based approaches are in particular evident for sparsely annotated GO terms and in situations of large uncertainty about gene activity. Provided that appropriate annotations exist, the proposed approach is easily applied to inferring other high level assignments like pathways. Availability: Source code under GPL license is available from the author. Contact: peter.sykacek@boku.ac.at PMID:22962488

  7. A 588-gene microarray analysis of the peripheral blood mononuclear cells of spondyloarthropathy patients

    NARCIS (Netherlands)

    Gu, J.; Märker-Hermann, E.; Baeten, D.; Tsai, W. C.; Gladman, D.; Xiong, M.; Deister, H.; Kuipers, J. G.; Huang, F.; Song, Y. W.; Maksymowych, W.; Kalsi, J.; Bannai, M.; Seta, N.; Rihl, M.; Crofford, L. J.; Veys, E.; de Keyser, F.; Yu, D. T. Y.

    2002-01-01

    OBJECTIVES: To identify genes which are more highly expressed in the peripheral blood mononuclear cells (PBMC) of patients with spondyloarthropathy (SpA), rheumatoid arthritis (RA) and psoriatic arthritis (PsA), in comparison to normal subjects. METHODS: A 588-gene microarray was used as a screening

  8. Mismatch repair gene expression in gastroesophageal cancers.

    Science.gov (United States)

    Dracea, Amelia; Angelescu, Cristina; Danciulescu, Mihaela; Ciurea, Marius; Ioana, Mihai; Burada, Florin

    2015-09-01

    Mismatch repair (MMR) genes play a critical role in maintaining genomic stability, and the impairment of MMR machinery is associated with different human cancers, mainly colorectal cancer. The purpose of our study was to analyze gene expression patterns of three MMR genes (MSH2, MHS6, and EXO1) in gastroesophageal cancers, a pathology in which the contribution of DNA repair genes remains essentially unclear. A total of 45 Romanian patients diagnosed with sporadic gastroesophageal cancers were included in this study. For each patient, MMR mRNA levels were measured in biopsied tumoral (T) and peritumoral (PT) tissues obtained by upper endoscopy. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) with specific TaqMan probes was used to measure gene expression levels for MSH2, MSH6, and EXO1 genes. A significant association was observed for the investigated MMR genes, all of which were detected to be upregulated in gastroesophageal tumor samples when compared with paired normal samples. In the stratified analysis, the association was limited to gastric adenocarcinoma samples. We found no statistically significant associations between MMR gene expression and tumor site or histological grade. In our study, MSH2, MSH6, and EXO1 genes were overexpressed in gastroesophageal cancers. Further investigations based on more samples are necessary to validate our findings.

  9. Identification of genes showing differential expression profile ...

    Indian Academy of Sciences (India)

    in pig with genetic propensity for higher growth rate were identified by sequence analysis of 12 differentially expressed clones selected by differential screening following the generation of the subtracted cDNA population. Real-time PCR analysis con- firmed difference in expression profiles of the identified genes in ...

  10. Temporarily decreasing progesterone after timed artificial insemination decreased expression of interferon-tau stimulated gene 15 (ISG15) in blood leukocytes, serum pregnancy-specific protein B concentrations, and embryo size in lactating Holstein cows.

    Science.gov (United States)

    Carvalho, P D; Consentini, C C; Weaver, S R; Barleta, R V; Hernandez, L L; Fricke, P M

    2017-04-01

    Our objective was to evaluate the effects of temporarily decreasing progesterone (P4) after timed artificial insemination (TAI) on embryonic growth in dairy cows. Lactating Holstein cows (n = 80) were submitted to a Double-Ovsynch protocol for first TAI and were assigned randomly to receive 12.5 mg of PGF 2α 5 d after the last GnRH treatment (LowP4) or remain untreated (control). Blood samples were collected thrice weekly from 5 to 29 d after TAI for all cows and from 32 to 67 d for pregnant cows, and were analyzed for P4 and pregnancy-specific protein B concentrations. Expression of interferon-tau stimulated gene 15 (ISG15) was assessed in blood leukocyte mRNA 18 and 20 d after TAI. Pregnancy diagnosis was performed weekly using ultrasound from 32 to 67 d after TAI, and embryonic crown-rump length was measured 32, 39, and 46 d after TAI. Data were analyzed by ANOVA and logistic regression using the MIXED and GLIMMIX procedures of SAS. The LowP4 cows had less P4 than control cows from 6 to 11 d after TAI; however, pregnancy outcomes 32 d after TAI and pregnancy loss from 32 to 67 d after TAI did not differ between treatments. Control cows diagnosed pregnant 32 d after TAI had greater expression of ISG15 20 d after TAI than LowP4 cows diagnosed pregnant 32 d after TAI, and pregnant control cows had greater pregnancy-specific protein B concentrations from 25 to 67 d after TAI than pregnant LowP4 cows. Embryo size did not differ between treatments 32 and 39 d after TAI, but control cows had larger embryos 46 d after TAI. In conclusion, temporarily decreasing P4 after TAI decreased embryonic growth during early pregnancy in lactating Holstein cows but did not affect pregnancies per artificial insemination or pregnancy loss. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  11. Photoacoustic imaging of gene expression using tyrosinase as a reporter gene

    Science.gov (United States)

    Paproski, Robert J.; Forbrich, Alexander; Harrison, Tyler; Hitt, Mary; Zemp, Roger J.

    2011-03-01

    Optical reporter genes, such as green fluorescence protein, are powerful research tools that allow visualization of gene expression. We have successfully used tyrosinase as a reporter gene for photoacoustic imaging. Tyrosinase is the key regulatory enzyme in the production of melanin which has a broad optical absorption spectrum. MCF-7 cells were stably transfected with tyrosinase under the control of an inducible promoter. For photoacoustic experiments, MCF-7 cells were resuspended at 108 cells/mL and injected in 700 μm (inner diameter) plastic tubing. Photoacoustic signal of MCF-7 cells expressing tyrosinase were >20-fold greater than those of untransfected MCF-7 cells. Photoacoustic signal of tyrosinaseexpressing MCF-7 cells were approximately 2-fold lesser and greater than those of blood at 576 and 650 nm, respectively, suggesting that photoacoustic signal from blood and tyrosinase-expressing cells can be separated by dualwavelength analysis. Photoacoustic signal from tyrosinase-expressing MCF-7 cells covered by chicken tissue could even be detected at a laser penetration depth of 4 cm, suggesting that tyrosinase can be used to image gene expression in relatively deep tissues. The current data suggests that tyrosinase is a strong reporter gene for photoacoustic imaging.

  12. Developmental gene expression profiles of the human pathogen Schistosoma japonicum

    Directory of Open Access Journals (Sweden)

    McManus Donald P

    2009-03-01

    Full Text Available Abstract Background The schistosome blood flukes are complex trematodes and cause a chronic parasitic disease of significant public health importance worldwide, schistosomiasis. Their life cycle is characterised by distinct parasitic and free-living phases involving mammalian and snail hosts and freshwater. Microarray analysis was used to profile developmental gene expression in the Asian species, Schistosoma japonicum. Total RNAs were isolated from the three distinct environmental phases of the lifecycle – aquatic/snail (eggs, miracidia, sporocysts, cercariae, juvenile (lung schistosomula and paired but pre-egg laying adults and adult (paired, mature males and egg-producing females, both examined separately. Advanced analyses including ANOVA, principal component analysis, and hierarchal clustering provided a global synopsis of gene expression relationships among the different developmental stages of the schistosome parasite. Results Gene expression profiles were linked to the major environmental settings through which the developmental stages of the fluke have to adapt during the course of its life cycle. Gene ontologies of the differentially expressed genes revealed a wide range of functions and processes. In addition, stage-specific, differentially expressed genes were identified that were involved in numerous biological pathways and functions including calcium signalling, sphingolipid metabolism and parasite defence. Conclusion The findings provide a comprehensive database of gene expression in an important human pathogen, including transcriptional changes in genes involved in evasion of the host immune response, nutrient acquisition, energy production, calcium signalling, sphingolipid metabolism, egg production and tegumental function during development. This resource should help facilitate the identification and prioritization of new anti-schistosome drug and vaccine targets for the control of schistosomiasis.

  13. Differential neutrophil gene expression in early bovine pregnancy

    Directory of Open Access Journals (Sweden)

    Kizaki Keiichiro

    2013-02-01

    Full Text Available Abstract Background In food production animals, especially cattle, the diagnosis of gestation is important because the timing of gestation directly affects the running of farms. Various methods have been used to detect gestation, but none of them are ideal because of problems with the timing of detection or the accuracy, simplicity, or cost of the method. A new method for detecting gestation, which involves assessing interferon-tau (IFNT-stimulated gene expression in peripheral blood leukocytes (PBL, was recently proposed. PBL fractionation methods were used to examine whether the expression profiles of various PBL populations could be used as reliable diagnostic markers of bovine gestation. Methods PBL were collected on days 0 (just before artificial insemination, 7, 14, 17, 21, and 28 of gestation. The gene expression levels of the PBL were assessed with microarray analysis and/or quantitative real-time reverse transcription (q PCR. PBL fractions were collected by flow cytometry or density gradient cell separation using Histopaque 1083 or Ficoll-Conray solutions. The expression levels of four IFNT-stimulated genes, interferon-stimulated protein 15 kDa (ISG15, myxovirus-resistance (MX 1 and 2, and 2′-5′-oligoadenylate synthetase (OAS1, were then analyzed in each fraction through day 28 of gestation using qPCR. Results Microarray analysis detected 72 and 28 genes in whole PBL that were significantly higher on days 14 and 21 of gestation, respectively, than on day 0. The upregulated genes included IFNT-stimulated genes. The expression levels of these genes increased with the progression of gestation until day 21. In flow cytometry experiments, on day 14 the expression levels of all of the genes were significantly higher in the granulocyte fraction than in the other fractions. Their expression gradually decreased through day 28 of gestation. Strong correlations were observed between the expression levels of the four genes in the granulocyte

  14. Differential neutrophil gene expression in early bovine pregnancy

    Science.gov (United States)

    2013-01-01

    Background In food production animals, especially cattle, the diagnosis of gestation is important because the timing of gestation directly affects the running of farms. Various methods have been used to detect gestation, but none of them are ideal because of problems with the timing of detection or the accuracy, simplicity, or cost of the method. A new method for detecting gestation, which involves assessing interferon-tau (IFNT)-stimulated gene expression in peripheral blood leukocytes (PBL), was recently proposed. PBL fractionation methods were used to examine whether the expression profiles of various PBL populations could be used as reliable diagnostic markers of bovine gestation. Methods PBL were collected on days 0 (just before artificial insemination), 7, 14, 17, 21, and 28 of gestation. The gene expression levels of the PBL were assessed with microarray analysis and/or quantitative real-time reverse transcription (q) PCR. PBL fractions were collected by flow cytometry or density gradient cell separation using Histopaque 1083 or Ficoll-Conray solutions. The expression levels of four IFNT-stimulated genes, interferon-stimulated protein 15 kDa (ISG15), myxovirus-resistance (MX) 1 and 2, and 2′-5′-oligoadenylate synthetase (OAS1), were then analyzed in each fraction through day 28 of gestation using qPCR. Results Microarray analysis detected 72 and 28 genes in whole PBL that were significantly higher on days 14 and 21 of gestation, respectively, than on day 0. The upregulated genes included IFNT-stimulated genes. The expression levels of these genes increased with the progression of gestation until day 21. In flow cytometry experiments, on day 14 the expression levels of all of the genes were significantly higher in the granulocyte fraction than in the other fractions. Their expression gradually decreased through day 28 of gestation. Strong correlations were observed between the expression levels of the four genes in the granulocyte fractions obtained with

  15. Genetic and epigenetic alterations of the blood group ABO gene in oral squamous cell carcinoma

    DEFF Research Database (Denmark)

    Gao, Shan; Worm, Jesper; Guldberg, Per

    2004-01-01

    Loss of histo-blood group A and B antigen expression is a frequent event in oral carcinomas and is associated with decreased activity of glycosyltransferases encoded by the ABO gene. We examined 30 oral squamous cell carcinomas for expression of A and B antigens and glycosyltransferases. We also...

  16. The effect of 17β-estradiol on gene expression of calcitonin gene-related peptide and some pro-inflammatory mediators in peripheral blood mononuclear cells from patients with pure menstrual migraine

    Directory of Open Access Journals (Sweden)

    Azam Karkhaneh

    2015-09-01

    Results:Treatment with 17β-estradiol had a biphasic effect on expression of CGRP. We found that 17β-estradiol treatment at pharmacological dose significantly increases mRNA expression of CGRP in both groups (P

  17. Regulation of gene expression in human tendinopathy

    Directory of Open Access Journals (Sweden)

    Archambault Joanne M

    2011-05-01

    Full Text Available Abstract Background Chronic tendon injuries, also known as tendinopathies, are common among professional and recreational athletes. These injuries result in a significant amount of morbidity and health care expenditure, yet little is known about the molecular mechanisms leading to tendinopathy. Methods We have used histological evaluation and molecular profiling to determine gene expression changes in 23 human patients undergoing surgical procedures for the treatment of chronic tendinopathy. Results Diseased tendons exhibit altered extracellular matrix, fiber disorientation, increased cellular content and vasculature, and the absence of inflammatory cells. Global gene expression profiling identified 983 transcripts with significantly different expression patterns in the diseased tendons. Global pathway analysis further suggested altered expression of extracellular matrix proteins and the lack of an appreciable inflammatory response. Conclusions Identification of the pathways and genes that are differentially regulated in tendinopathy samples will contribute to our understanding of the disease and the development of novel therapeutics.

  18. Noise minimization in eukaryotic gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Fraser, Hunter B.; Hirsh, Aaron E.; Giaever, Guri; Kumm, Jochen; Eisen, Michael B.

    2004-01-15

    All organisms have elaborate mechanisms to control rates of protein production. However, protein production is also subject to stochastic fluctuations, or noise. Several recent studies in Saccharomyces cerevisiae and Escherichia coli have investigated the relationship between transcription and translation rates and stochastic fluctuations in protein levels, or more generally, how such randomness is a function of intrinsic and extrinsic factors. However, the fundamental question of whether stochasticity in protein expression is generally biologically relevant has not been addressed, and it remains unknown whether random noise in the protein production rate of most genes significantly affects the fitness of any organism. We propose that organisms should be particularly sensitive to variation in the protein levels of two classes of genes: genes whose deletion is lethal to the organism and genes that encode subunits of multiprotein complexes. Using an experimentally verified model of stochastic gene expression in S. cerevisiae, we estimate the noise in protein production for nearly every yeast gene, and confirm our prediction that the production of essential and complex-forming proteins involves lower levels of noise than does the production of most other genes. Our results support the hypothesis that noise in gene expression is a biologically important variable, is generally detrimental to organismal fitness, and is subject to natural selection.

  19. Global gene expression in Escherichia coli biofilms

    DEFF Research Database (Denmark)

    Schembri, Mark; Kjærgaard, K.; Klemm, Per

    2003-01-01

    It is now apparent that microorganisms undergo significant changes during the transition from planktonic to biofilm growth. These changes result in phenotypic adaptations that allow the formation of highly organized and structured sessile communities, which possess enhanced resistance...... to antimicrobial treatments and host immune defence responses. Escherichia coli has been used as a model organism to study the mechanisms of growth within adhered communities. In this study, we use DNA microarray technology to examine the global gene expression profile of E. coli during sessile growth compared...... the transition to biofilm growth, and these included genes expressed under oxygen-limiting conditions, genes encoding (putative) transport proteins, putative oxidoreductases and genes associated with enhanced heavy metal resistance. Of particular interest was the observation that many of the genes altered...

  20. Aberrant Gene Expression in Acute Myeloid Leukaemia

    DEFF Research Database (Denmark)

    Bagger, Frederik Otzen

    -based gene-lookup webservices, called HemaExplorer and BloodSpot. These web-services support the aim of making data and analysis of haematopoietic cells from mouse and human accessible for researchers without bioinformatics expertise. Finally, in order to aid the analysis of the very limited number...

  1. Characterization of changes in gene expression and biochemical pathways at low levels of benzene exposure

    NARCIS (Netherlands)

    Thomas, Reuben; Hubbard, Alan E.; McHale, Cliona M.; Zhang, Luoping; Rappaport, Stephen M.; Lan, Qing; Rothman, Nathaniel; Vermeulen, Roel; Guyton, Kathryn Z.; Jinot, Jennifer; Sonawane, Babasaheb R.; Smith, Martyn T.

    2014-01-01

    Benzene, a ubiquitous environmental pollutant, causes acute myeloid leukemia (AML). Recently, through transcriptome profiling of peripheral blood mononuclear cells (PBMC), we reported dose-dependent effects of benzene exposure on gene expression and biochemical pathways in 83 workers exposed across

  2. Human AZU-1 gene, variants thereof and expressed gene products

    Science.gov (United States)

    Chen, Huei-Mei; Bissell, Mina

    2004-06-22

    A human AZU-1 gene, mutants, variants and fragments thereof. Protein products encoded by the AZU-1 gene and homologs encoded by the variants of AZU-1 gene acting as tumor suppressors or markers of malignancy progression and tumorigenicity reversion. Identification, isolation and characterization of AZU-1 and AZU-2 genes localized to a tumor suppressive locus at chromosome 10q26, highly expressed in nonmalignant and premalignant cells derived from a human breast tumor progression model. A recombinant full length protein sequences encoded by the AZU-1 gene and nucleotide sequences of AZU-1 and AZU-2 genes and variant and fragments thereof. Monoclonal or polyclonal antibodies specific to AZU-1, AZU-2 encoded protein and to AZU-1, or AZU-2 encoded protein homologs.

  3. Expression Study of Banana Pathogenic Resistance Genes

    Directory of Open Access Journals (Sweden)

    Fenny M. Dwivany

    2016-10-01

    Full Text Available Banana is one of the world's most important trade commodities. However, infection of banana pathogenic fungi (Fusarium oxysporum race 4 is one of the major causes of decreasing production in Indonesia. Genetic engineering has become an alternative way to control this problem by isolating genes that involved in plant defense mechanism against pathogens. Two of the important genes are API5 and ChiI1, each gene encodes apoptosis inhibitory protein and chitinase enzymes. The purpose of this study was to study the expression of API5 and ChiI1 genes as candidate pathogenic resistance genes. The amplified fragments were then cloned, sequenced, and confirmed with in silico studies. Based on sequence analysis, it is showed that partial API5 gene has putative transactivation domain and ChiI1 has 9 chitinase family GH19 protein motifs. Data obtained from this study will contribute in banana genetic improvement.

  4. Pervasive Effects of Aging on Gene Expression in Wild Wolves.

    Science.gov (United States)

    Charruau, Pauline; Johnston, Rachel A; Stahler, Daniel R; Lea, Amanda; Snyder-Mackler, Noah; Smith, Douglas W; vonHoldt, Bridgett M; Cole, Steven W; Tung, Jenny; Wayne, Robert K

    2016-08-01

    Gene expression levels change as an individual ages and responds to environmental conditions. With the exception of humans, such patterns have principally been studied under controlled conditions, overlooking the array of developmental and environmental influences that organisms encounter under conditions in which natural selection operates. We used high-throughput RNA sequencing (RNA-Seq) of whole blood to assess the relative impacts of social status, age, disease, and sex on gene expression levels in a natural population of gray wolves (Canis lupus). Our findings suggest that age is broadly associated with gene expression levels, whereas other examined factors have minimal effects on gene expression patterns. Further, our results reveal evolutionarily conserved signatures of senescence, such as immunosenescence and metabolic aging, between wolves and humans despite major differences in life history and environment. The effects of aging on gene expression levels in wolves exhibit conservation with humans, but the more rapid expression differences observed in aging wolves is evolutionarily appropriate given the species' high level of extrinsic mortality due to intraspecific aggression. Some expression changes that occur with age can facilitate physical age-related changes that may enhance fitness in older wolves. However, the expression of these ancestral patterns of aging in descendant modern dogs living in highly modified domestic environments may be maladaptive and cause disease. This work provides evolutionary insight into aging patterns observed in domestic dogs and demonstrates the applicability of studying natural populations to investigate the mechanisms of aging. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. The impact of self-identified race on epidemiologic studies of gene expression.

    Science.gov (United States)

    Sharma, Sunita; Murphy, Amy; Howrylak, Judie; Himes, Blanca; Cho, Michael H; Chu, Jen-Hwa; Hunninghake, Gary M; Fuhlbrigge, Anne; Klanderman, Barbara; Ziniti, John; Senter-Sylvia, Jody; Liu, Andy; Szefler, Stanley J; Strunk, Robert; Castro, Mario; Hansel, Nadia N; Diette, Gregory B; Vonakis, Becky M; Adkinson, N Franklin; Carey, Vincent J; Raby, Benjamin A

    2011-02-01

    Although population differences in gene expression have been established, the impact on differential gene expression studies in large populations is not well understood. We describe the effect of self-reported race on a gene expression study of lung function in asthma. We generated gene expression profiles for 254 young adults (205 non-Hispanic whites and 49 African Americans) with asthma on whom concurrent total RNA derived from peripheral blood CD4(+) lymphocytes and lung function measurements were obtained. We identified four principal components that explained 62% of the variance in gene expression. The dominant principal component, which explained 29% of the total variance in gene expression, was strongly associated with self-identified race (Pracial differences was observed when we performed differential gene expression analysis of lung function. Using multivariate linear models, we tested whether gene expression was associated with a quantitative measure of lung function: pre-bronchodilator forced expiratory volume in one second (FEV(1)). Though unadjusted linear models of FEV(1) identified several genes strongly correlated with lung function, these correlations were due to racial differences in the distribution of both FEV(1) and gene expression, and were no longer statistically significant following adjustment for self-identified race. These results suggest that self-identified race is a critical confounding covariate in epidemiologic studies of gene expression and that, similar to genetic studies, careful consideration of self-identified race in gene expression profiling studies is needed to avoid spurious association. © 2011 Wiley-Liss, Inc.

  6. Detection of circulating breast tumor cells by differential expression of marker genes

    NARCIS (Netherlands)

    Bosma, Astrid J.; Weigelt, Britta; Lambrechts, A. Caro; Verhagen, Onno J. H. M.; Pruntel, Roelof; Hart, Augustinus A. M.; Rodenhuis, Sjoerd; van 't Veer, Laura J.

    2002-01-01

    Purpose: We undertook a systematic approach to identify breast cancer (BC) marker genes with molecular assays and evaluated these marker genes for the detection of minimal residual disease in peripheral blood mononuclear cells (PBMCs). Experimental Design: We used serial analysis of gene expression

  7. Tolerance associated gene expression following allogeneic hematopoietic cell transplantation.

    Directory of Open Access Journals (Sweden)

    Joseph Pidala

    Full Text Available Biologic markers of immune tolerance may facilitate tailoring of immune suppression duration after allogeneic hematopoietic cell transplantation (HCT. In a cross-sectional study, peripheral blood samples were obtained from tolerant (n = 15, median 38.5 months post-HCT and non-tolerant (n = 17, median 39.5 post-HCT HCT recipients and healthy control subjects (n = 10 for analysis of immune cell subsets and differential gene expression. There were no significant differences in immune subsets across groups. We identified 281 probe sets unique to the tolerant (TOL group and 122 for non-tolerant (non-TOL. These were enriched for process networks including NK cell cytotoxicity, antigen presentation, lymphocyte proliferation, and cell cycle and apoptosis. Differential gene expression was enriched for CD56, CD66, and CD14 human lineage-specific gene expression. Differential expression of 20 probe sets between groups was sufficient to develop a classifier with > 90% accuracy, correctly classifying 14/15 TOL cases and 15/17 non-TOL cases. These data suggest that differential gene expression can be utilized to accurately classify tolerant patients following HCT. Prospective investigation of immune tolerance biologic markers is warranted.

  8. Gene expression analysis of flax seed development

    Directory of Open Access Journals (Sweden)

    Sharpe Andrew

    2011-04-01

    Full Text Available Abstract Background Flax, Linum usitatissimum L., is an important crop whose seed oil and stem fiber have multiple industrial applications. Flax seeds are also well-known for their nutritional attributes, viz., omega-3 fatty acids in the oil and lignans and mucilage from the seed coat. In spite of the importance of this crop, there are few molecular resources that can be utilized toward improving seed traits. Here, we describe flax embryo and seed development and generation of comprehensive genomic resources for the flax seed. Results We describe a large-scale generation and analysis of expressed sequences in various tissues. Collectively, the 13 libraries we have used provide a broad representation of genes active in developing embryos (globular, heart, torpedo, cotyledon and mature stages seed coats (globular and torpedo stages and endosperm (pooled globular to torpedo stages and genes expressed in flowers, etiolated seedlings, leaves, and stem tissue. A total of 261,272 expressed sequence tags (EST (GenBank accessions LIBEST_026995 to LIBEST_027011 were generated. These EST libraries included transcription factor genes that are typically expressed at low levels, indicating that the depth is adequate for in silico expression analysis. Assembly of the ESTs resulted in 30,640 unigenes and 82% of these could be identified on the basis of homology to known and hypothetical genes from other plants. When compared with fully sequenced plant genomes, the flax unigenes resembled poplar and castor bean more than grape, sorghum, rice or Arabidopsis. Nearly one-fifth of these (5,152 had no homologs in sequences reported for any organism, suggesting that this category represents genes that are likely unique to flax. Digital analyses revealed gene expression dynamics for the biosynthesis of a number of important seed constituents during seed development. Conclusions We have developed a foundational database of expressed sequences and collection of plasmid

  9. Gene expression analysis of flax seed development.

    Science.gov (United States)

    Venglat, Prakash; Xiang, Daoquan; Qiu, Shuqing; Stone, Sandra L; Tibiche, Chabane; Cram, Dustin; Alting-Mees, Michelle; Nowak, Jacek; Cloutier, Sylvie; Deyholos, Michael; Bekkaoui, Faouzi; Sharpe, Andrew; Wang, Edwin; Rowland, Gordon; Selvaraj, Gopalan; Datla, Raju

    2011-04-29

    Flax, Linum usitatissimum L., is an important crop whose seed oil and stem fiber have multiple industrial applications. Flax seeds are also well-known for their nutritional attributes, viz., omega-3 fatty acids in the oil and lignans and mucilage from the seed coat. In spite of the importance of this crop, there are few molecular resources that can be utilized toward improving seed traits. Here, we describe flax embryo and seed development and generation of comprehensive genomic resources for the flax seed. We describe a large-scale generation and analysis of expressed sequences in various tissues. Collectively, the 13 libraries we have used provide a broad representation of genes active in developing embryos (globular, heart, torpedo, cotyledon and mature stages) seed coats (globular and torpedo stages) and endosperm (pooled globular to torpedo stages) and genes expressed in flowers, etiolated seedlings, leaves, and stem tissue. A total of 261,272 expressed sequence tags (EST) (GenBank accessions LIBEST_026995 to LIBEST_027011) were generated. These EST libraries included transcription factor genes that are typically expressed at low levels, indicating that the depth is adequate for in silico expression analysis. Assembly of the ESTs resulted in 30,640 unigenes and 82% of these could be identified on the basis of homology to known and hypothetical genes from other plants. When compared with fully sequenced plant genomes, the flax unigenes resembled poplar and castor bean more than grape, sorghum, rice or Arabidopsis. Nearly one-fifth of these (5,152) had no homologs in sequences reported for any organism, suggesting that this category represents genes that are likely unique to flax. Digital analyses revealed gene expression dynamics for the biosynthesis of a number of important seed constituents during seed development. We have developed a foundational database of expressed sequences and collection of plasmid clones that comprise even low-expressed genes such as

  10. Gene expression profiles in skeletal muscle after gene electrotransfer

    DEFF Research Database (Denmark)

    Hojman, Pernille; Zibert, John R; Gissel, Hanne

    2007-01-01

    ) followed by a long low voltage pulse (LV, 100 V/cm, 400 ms); a pulse combination optimised for efficient and safe gene transfer. Muscles were transfected with green fluorescent protein (GFP) and excised at 4 hours, 48 hours or 3 weeks after treatment. RESULTS: Differentially expressed genes were...... with the control muscles. Most interestingly, no changes in the expression of proteins involved in inflammatory responses or muscle regeneration was detected, indicating limited muscle damage and regeneration. Histological analysis revealed structural changes with loss of cell integrity and striation pattern......BACKGROUND: Gene transfer by electroporation (DNA electrotransfer) to muscle results in high level long term transgenic expression, showing great promise for treatment of e.g. protein deficiency syndromes. However little is known about the effects of DNA electrotransfer on muscle fibres. We have...

  11. Visualizing Gene Expression In Situ

    Energy Technology Data Exchange (ETDEWEB)

    Burlage, R.S.

    1998-11-02

    Visualizing bacterial cells and describing their responses to the environment are difficult tasks. Their small size is the chief reason for the difficulty, which means that we must often use many millions of cells in a sample in order to determine what the average response of the bacteria is. However, an average response can sometimes mask important events in bacterial physiology, which means that our understanding of these organisms will suffer. We have used a variety of instruments to visualize bacterial cells, all of which tell us something different about the sample. We use a fluorescence activated cell sorter to sort cells based on the fluorescence provided by bioreporter genes, and these can be used to select for particular genetic mutations. Cells can be visualized by epifluorescent microscopy, and sensitive photodetectors can be added that allow us to find a single bacterial cell that is fluorescent or bioluminescent. We have also used standard photomultipliers to examine cell aggregates as field bioreporter microorganisms. Examples of each of these instruments show how our understanding of bacterial physiology has changed with the technology.

  12. Allele-specific gene expression patterns in primary leukemic cells reveal regulation of gene expression by CpG site methylation

    DEFF Research Database (Denmark)

    Milani, Lili; Lundmark, Anders; Nordlund, Jessica

    2008-01-01

    To identify genes that are regulated by cis-acting functional elements in acute lymphoblastic leukemia (ALL) we determined the allele-specific expression (ASE) levels of 2, 529 genes by genotyping a genome-wide panel of single nucleotide polymorphisms in RNA and DNA from bone marrow and blood...

  13. Renal Gene Expression Database (RGED): a relational database of gene expression profiles in kidney disease

    Science.gov (United States)

    Zhang, Qingzhou; Yang, Bo; Chen, Xujiao; Xu, Jing; Mei, Changlin; Mao, Zhiguo

    2014-01-01

    We present a bioinformatics database named Renal Gene Expression Database (RGED), which contains comprehensive gene expression data sets from renal disease research. The web-based interface of RGED allows users to query the gene expression profiles in various kidney-related samples, including renal cell lines, human kidney tissues and murine model kidneys. Researchers can explore certain gene profiles, the relationships between genes of interests and identify biomarkers or even drug targets in kidney diseases. The aim of this work is to provide a user-friendly utility for the renal disease research community to query expression profiles of genes of their own interest without the requirement of advanced computational skills. Availability and implementation: Website is implemented in PHP, R, MySQL and Nginx and freely available from http://rged.wall-eva.net. Database URL: http://rged.wall-eva.net PMID:25252782

  14. Sequencing and Gene Expression Analysis of Leishmania tropica LACK Gene.

    Science.gov (United States)

    Hammoudeh, Nour; Kweider, Mahmoud; Abbady, Abdul-Qader; Soukkarieh, Chadi

    2014-01-01

    Leishmania Homologue of receptors for Activated C Kinase (LACK) antigen is a 36-kDa protein, which provokes a very early immune response against Leishmania infection. There are several reports on the expression of LACK through different life-cycle stages of genus Leishmania, but only a few of them have focused on L.tropica. The present study provides details of the cloning, DNA sequencing and gene expression of LACK in this parasite species. First, several local isolates of Leishmania parasites were typed in our laboratory using PCR technique to verify of Leishmania parasite species. After that, LACK gene was amplified and cloned into a vector for sequencing. Finally, the expression of this molecule in logarithmic and stationary growth phase promastigotes, as well as in amastigotes, was evaluated by Reverse Transcription-PCR (RT-PCR) technique. The typing result confirmed that all our local isolates belong to L.tropica. LACK gene sequence was determined and high similarity was observed with the sequences of other Leishmania species. Furthermore, the expression of LACK gene in both promastigotes and amastigotes forms was confirmed. Overall, the data set the stage for future studies of the properties and immune role of LACK gene products.

  15. FLOW RESTRICTED RESISTANCE TRAINING ATTENUATES MYOSTATIN GENE EXPRESSION IN A PATIENT WITH INCLUSION BODY MYOSITIS

    Directory of Open Access Journals (Sweden)

    A.R. Santos

    2014-07-01

    Full Text Available Inclusion body myositis is a rare idiopathic inflammatory myopathy that produces extreme muscle weakness. Blood flow restricted resistance training has been shown to improve muscle strength and muscle hypertrophy in inclusion body myositis. Objective: The aim of this study was to evaluate the effects of a resistance training programme on the expression of genes related to myostatin (MSTN signalling in one inclusion body myositis patient. Methods: A 65-year-old man with inclusion body myositis underwent blood flow restricted resistance training for 12 weeks. The gene expression of MSTN, follistatin, follistatin-like 3, activin II B receptor, SMAD-7, MyoD, FOXO-3, and MURF-2 was quantified. Results: After 12 weeks of training, a decrease (25% in MSTN mRNA level was observed, whereas follistatin and follistatin-like 3 gene expression increased by 40% and 70%, respectively. SMAD-7 mRNA level was augmented (20%. FOXO-3 and MURF-2 gene expression increased by 40% and 20%, respectively. No change was observed in activin II B receptor or MyoD gene expression. Conclusions: Blood flow restricted resistance training attenuated MSTN gene expression and also increased expression of myostatin endogenous inhibitors. Blood flow restricted resistance training evoked changes in the expression of genes related to MSTN signalling pathway that could in part explain the muscle hypertrophy previously observed in a patient with inclusion body myositis.

  16. [Imprinting genes and it's expression in Arabidopsis].

    Science.gov (United States)

    Zhang, Hong-Yu; Xu, Pei-Zhou; Yang, Hua; Wu, Xian-Jun

    2010-07-01

    Genomic imprinting refers to the phenomenon that the expression of a gene copy depends on its parent of origin. The Arabidopsis imprinted FIS (Fertilisation-independent seed) genes, mea, fis2, and fie, play essential roles in the repression of central cell and the regulation of early endosperm development. fis mutants display two phenotypes: autonomous diploid endosperm development when fertilization is absent and un-cellularised endosperm formation when fertilization occurs. The FIS Polycomb protein complex including the above three FIS proteins catalyzes histone H3 K27 tri-methylation on target loci. DME (DEMETER), a DNA glycosylase, and AtMET1 (Methyltransferase1), a DNA methyltransferase, are involved in the regulation of imprinted expression of both mea and fis2. This review summarizes the studies on the Arabidopsis imprinted FIS genes and other related genes. Recent works have shown that the insertion of transposons may affect nearby gene expression, which may be the main driving force behind the evolution of genomic imprinting. This summary covers the achievements on Arabidopsis imprinted genes will provide important information for studies on genomic imprinting in the important crops such as rice and maize.

  17. Gene expression profiling for pharmaceutical toxicology screening.

    Science.gov (United States)

    Bugelski, Peter J

    2002-01-01

    Advances in medicinal chemistry and high-throughput pharmacological screening are creating a multitude of potential lead compounds. There is also heightened concern about drug-induced toxicity, which is all too often uncovered late in development or at the post marketing stage. Together, these factors have created a need for novel approaches to screen for toxicity. There have been technological advances that enable study of changes in the gene expression profile caused by toxic insults and important steps made toward unraveling target organ toxicity at the molecular level. Thus, gene expression profile-based screens hold the promise to revolutionize the way in which compounds are selected for development. For screens focused on specific mechanisms of toxicity, reporter gene systems have proven utility, albeit modest because of our limited knowledge of which genes are true surrogate markers for toxicity. For broader forecasts of toxicity, DNA microarrays hold great promise for delivering practical gene expression profile screens (GEPS). For this promise to be realized, however, a number of technological hurdles must be cleared: (i) cost; (ii) reproducibility; (iii) throughput; and (iv) data analysis. Of equal if not greater importance, issues relating to the test systems used, the requisite number of genes to be studied and the size and scope of the database upon which forecasts will be based must be addressed. At present, the proof-of-concept for GEPS for toxicity is in hand, and we are poised to realize the goal of creating practical GEPS for application in compound prioritization.

  18. Blood meal induced regulation of the chemosensory gene repertoire in the southern house mosquito.

    Science.gov (United States)

    Taparia, Tanvi; Ignell, Rickard; Hill, Sharon Rose

    2017-05-19

    The southern house mosquito, Culex quinquefasciatus, is one of the most prevalent vectors of lymphatic filariasis and flavivirus-induced encephalitis. Its vectorial capacity is directly affected by its reproductive feeding behaviors, such as host seeking, blood feeding, resting, and egg laying. In mosquitoes, these gonotrophic behaviors are odor-mediated and regulated following blood feeding. Immediately after a blood meal, female mosquitoes show reduced olfactory responsiveness and flight activity, as they enter a resting state. Insights into antennal chemosensory gene regulation at this time period can provide a foundation to identify targets involved in the state switch between host seeking and resting. This study used quantitative gene expression analyses to explore blood meal induced regulation of chemosensory gene families in the antennae of 6 days post-emergence C. quinquefasciatus females. Improved annotations for multiple chemosensory gene families, and a quantitative differential gene expression analysis between host seeking and 24 h post- blood fed females of the same age, allowed for the detection of transcripts that potentially play a role in the switch from host seeking to resting, in C. quinquefasciatus. The expression profiles of chemosensory genes varied significantly between the two treatments. Annotations for chemosensory gene repertoires in C. quinquefasciatus have been manually curated and corrected for 3' exon choice and transcript length, through sequence and transcriptome analyses. The gene expression analyses identified various molecular components of the peripheral olfactory system in C. quinquefasciatus, including odorant receptors, ionotropic receptors, odorant binding proteins and chemosensory proteins, that are regulated in response to blood feeding, and could be critical for the behavioral switch from host seeking to resting. Functional characterization of these proteins in the future can identify targets essential for the females

  19. Differential testicular gene expression in seasonal fertility

    Science.gov (United States)

    Maywood, Elizabeth S.; Chahad-Ehlers, Samira; Garabette, Martine L.; Pritchard, Claire; Underhill, Phillip; Greenfield, Andrew; Ebling, Francis J. P.; Kyriacou, Charalambos P.; Hastings, Michael H.; Reddy, Akhilesh B.

    2012-01-01

    Spermatogenesis is an essential precursor for successful sexual reproduction. Recently, there has been an expansion in our knowledge of the genes associated with particular stages of normal, physiological testicular development and pubertal activation. What has been lacking, however, is an understanding of those genes that are involved in specifically regulating sperm production, rather than in maturation and elaboration of the testis as an organ. By utilising the reversible (seasonal) fertility of the Syrian hamster as a model system, we sought to discover genes which are specifically involved in turning off sperm production and not in tissue specification and/or maturation. Using gene expression microarrays and in situ hybridisation in hamsters and genetically infertile mice, we have identified a variety of known and novel factors involved in reversible, transcriptional, translational and post-translational control of testicular function, as well those involved in cell division and macromolecular metabolism. The novel genes uncovered could be potential targets for therapies against fertility disorders. PMID:19346449

  20. Gene expression during normal and FSHD myogenesis

    Directory of Open Access Journals (Sweden)

    Sowden Janet

    2011-09-01

    Full Text Available Abstract Background Facioscapulohumeral muscular dystrophy (FSHD is a dominant disease linked to contraction of an array of tandem 3.3-kb repeats (D4Z4 at 4q35. Within each repeat unit is a gene, DUX4, that can encode a protein containing two homeodomains. A DUX4 transcript derived from the last repeat unit in a contracted array is associated with pathogenesis but it is unclear how. Methods Using exon-based microarrays, the expression profiles of myogenic precursor cells were determined. Both undifferentiated myoblasts and myoblasts differentiated to myotubes derived from FSHD patients and controls were studied after immunocytochemical verification of the quality of the cultures. To further our understanding of FSHD and normal myogenesis, the expression profiles obtained were compared to those of 19 non-muscle cell types analyzed by identical methods. Results Many of the ~17,000 examined genes were differentially expressed (> 2-fold, p DUX4 RNA isoform was detected by RT-PCR in FSHD myoblast and myotube preparations only at extremely low levels. Unique insights into myogenesis-specific gene expression were also obtained. For example, all four Argonaute genes involved in RNA-silencing were significantly upregulated during normal (but not FSHD myogenesis relative to non-muscle cell types. Conclusions DUX4's pathogenic effect in FSHD may occur transiently at or before the stage of myoblast formation to establish a cascade of gene dysregulation. This contrasts with the current emphasis on toxic effects of experimentally upregulated DUX4 expression at the myoblast or myotube stages. Our model could explain why DUX4's inappropriate expression was barely detectable in myoblasts and myotubes but nonetheless linked to FSHD.

  1. Gene expression analysis identifies global gene dosage sensitivity in cancer

    DEFF Research Database (Denmark)

    Fehrmann, Rudolf S. N.; Karjalainen, Juha M.; Krajewska, Malgorzata

    2015-01-01

    Many cancer-associated somatic copy number alterations (SCNAs) are known. Currently, one of the challenges is to identify the molecular downstream effects of these variants. Although several SCNAs are known to change gene expression levels, it is not clear whether each individual SCNA affects gen...

  2. Gene expression analysis of zebrafish heart regeneration.

    Directory of Open Access Journals (Sweden)

    Ching-Ling Lien

    2006-08-01

    Full Text Available Mammalian hearts cannot regenerate. In contrast, zebrafish hearts regenerate even when up to 20% of the ventricle is amputated. The mechanism of zebrafish heart regeneration is not understood. To systematically characterize this process at the molecular level, we generated transcriptional profiles of zebrafish cardiac regeneration by microarray analyses. Distinct gene clusters were identified based on temporal expression patterns. Genes coding for wound response/inflammatory factors, secreted molecules, and matrix metalloproteinases are expressed in regenerating heart in sequential patterns. Comparisons of gene expression profiles between heart and fin regeneration revealed a set of regeneration core molecules as well as tissue-specific factors. The expression patterns of several secreted molecules around the wound suggest that they play important roles in heart regeneration. We found that both platelet-derived growth factor-a and -b (pdgf-a and pdgf-b are upregulated in regenerating zebrafish hearts. PDGF-B homodimers induce DNA synthesis in adult zebrafish cardiomyocytes. In addition, we demonstrate that a chemical inhibitor of PDGF receptor decreases DNA synthesis of cardiomyocytes both in vitro and in vivo during regeneration. Our data indicate that zebrafish heart regeneration is associated with sequentially upregulated wound healing genes and growth factors and suggest that PDGF signaling is required.

  3. Gene expression in early stage cervical cancer

    NARCIS (Netherlands)

    Biewenga, Petra; Buist, Marrije R.; Moerland, Perry D.; van Thernaat, Emiel Ver Loren; van Kampen, Antoine H. C.; ten Kate, Fiebo J. W.; Baas, Frank

    2008-01-01

    Objective. Pelvic lymph node metastases are the main prognostic factor for survival in early stage cervical cancer, yet accurate detection methods before surgery are lacking. In this study, we examined whether gene expression profiling can predict the presence of lymph node metastasis in early stage

  4. Identification of genes showing differential expression profile

    Indian Academy of Sciences (India)

    Suppression subtractive hybridization was used to identify genes showing differential expression profile associated withgrowth rate in skeletal muscle tissue of Landrace weanling pig. Two subtracted cDNA populations were generated from mus-culus longissimus muscle tissues of selected pigs with extreme expected ...

  5. Identification of genes showing differential expression profile ...

    Indian Academy of Sciences (India)

    Abstract. Suppression subtractive hybridization was used to identify genes showing differential expression profile associated with growth rate in skeletal muscle tissue of Landrace weanling pig. Two subtracted cDNA populations were generated from mus- culus longissimus muscle tissues of selected pigs with extreme ...

  6. Genomics analysis of genes expressed reveals differential ...

    African Journals Online (AJOL)

    Genomics analysis of genes expressed reveals differential responses to low chronic nitrogen stress in maize. ... Most induced clones were largely involved in various metabolism processes including physiological process, organelle regulation of biological process, nutrient reservoir activity, transcription regulator activity and ...

  7. Global gene expression in Escherichia coli biofilms

    DEFF Research Database (Denmark)

    Schembri, Mark; Kjærgaard, K.; Klemm, Per

    2003-01-01

    to antimicrobial treatments and host immune defence responses. Escherichia coli has been used as a model organism to study the mechanisms of growth within adhered communities. In this study, we use DNA microarray technology to examine the global gene expression profile of E. coli during sessile growth compared...

  8. Identification of genes showing differential expression profile ...

    Indian Academy of Sciences (India)

    Suppression subtractive hybridization was used to identify genes showing differential expression profile associated withgrowth rate in skeletal muscle tissue of Landrace weanling pig. Two subtracted cDNA populations were generated from mus-culus longissimus muscle tissues of selected pigs with extreme expected ...

  9. Differentially expressed genes in pancreatic ductal adenocarcinomas identified through serial analysis of gene expression

    DEFF Research Database (Denmark)

    Hustinx, Steven R; Cao, Dengfeng; Maitra, Anirban

    2004-01-01

    genome and better biocomputational techniques have substantially improved the assignment of differentially expressed SAGE "tags" to human genes. These improvements have provided us with an opportunity to re-evaluate global gene expression in pancreatic cancer using existing SAGE libraries. SAGE libraries...... generated from six pancreatic cancers were compared to SAGE libraries generated from 11 non-neoplastic tissues. Compared to normal tissue libraries, we identified 453 SAGE tags as differentially expressed in pancreatic cancer, including 395 that mapped to known genes and 58 "uncharacterized" tags....... Of the 395 SAGE tags assigned to known genes, 223 were overexpressed in pancreatic cancer, and 172 were underexpressed. In order to map the 58 uncharacterized differentially expressed SAGE tags to genes, we used a newly developed resource called TAGmapper (http://tagmapper.ibioinformatics.org), to identify...

  10. Gene Expression by PBMC in Primary Sclerosing Cholangitis: Evidence for Dysregulation of Immune Mediated Genes

    Directory of Open Access Journals (Sweden)

    Christopher A. Aoki

    2006-01-01

    Full Text Available Primary sclerosing cholangitis (PSC is a chronic disease of the bile ducts characterized by an inflammatory infiltrate and obliterative fibrosis. The precise role of the immune system in the pathogenesis of PSC remains unknown. We used RNA microarray analysis to identify immune-related genes and pathways that are differentially expressed in PSC. Messenger RNA (mRNA from peripheral blood mononuclear cells (PBMC was isolated from both patients with PSC and age and sex matched healthy controls. Samples from 5 PSC patients and 5 controls were analyzed by microarray and based upon rigorous statistical analysis of the data, relevant genes were chosen for confirmation by RT-PCR in 10 PSC patients and 10 controls. Using unsupervised hierarchical clustering, gene expression in PSC was statistically different from our control population. Interestingly, genes within the IL-2 receptor beta, IL-6 and MAP Kinase pathways were found to be differently expressed in patients with PSC compared to controls. Further, individual genes, TNF-α induced protein 6 (TNFaip6 and membrane-spanning 4-domains, subfamily A (ms4a were found to be upregulated in PSC while similar to Mothers against decapentaplegic homolog 5 (SMAD 5 was downregulated. In conclusion, several immune-related pathways and genes were differentially expressed in PSC compared to control patients, giving further evidence that this disease is systemic and immune-mediated.

  11. Detection and expression of bovine papillomavirus in blood of healthy and papillomatosis-affected cattle.

    Science.gov (United States)

    Silva, M A R; De Albuquerque, B M F; Pontes, N E; Coutinho, L C A; Leitão, M C G; Reis, M C; Castro, R S; Freitas, A C

    2013-02-28

    Papillomaviruses (PV) are double-stranded DNA viruses that can cause benignant and malignant tumors in amniotes. There are 13 types of bovine papillomavirus (BPV-1 to -13); they have been found in reproductive tissues and body fluids. Normally these viruses are detected in epithelial tissue. We looked for BPV in the blood of healthy cattle and cattle with papillomatosis, using PCR and RT-PCR. BPV types 1 and 2 were detected in 8/12 blood samples of asymptomatic bovines and in 8/9 samples from cattle with papillomatosis. Six of 8 asymptomatic samples positive for BPV also showed expression for BPV. Five of 6 samples were positive for E2 expression, while 3/6 samples were positive for E5 expression. Five of 8 symptomatic samples positive for BPV also showed BPV expression. Five of 5 were positive for E2 expression, while 1/5 was positive for E5 expression. Two of 6 blood samples of asymptomatic cattle and 1/5 symptomatic blood samples scored positive for both E2 and E5 expression. This is the first study showing expression of BPV genes in the blood of asymptomatic and papillomatosis-affected animals.

  12. Brain Gene Expression Signatures From Cerebrospinal Fluid Exosome RNA Profiling

    Science.gov (United States)

    Zanello, S. B.; Stevens, B.; Calvillo, E.; Tang, R.; Gutierrez Flores, B.; Hu, L.; Skog, J.; Bershad, E.

    2016-01-01

    While the Visual Impairment and Intracranial Pressure (VIIP) syndrome observations have focused on ocular symptoms, spaceflight has been also associated with a number of other performance and neurologic signs, such as headaches, cognitive changes, vertigo, nausea, sleep/circadian disruption and mood alterations, which, albeit likely multifactorial, can also result from elevation of intracranial pressure (ICP). We therefore hypothesize that these various symptoms are caused by disturbances in the neurophysiology of the brain structures and are correlated with molecular markers in the cerebrospinal fluid (CSF) as indicators of neurophysiological changes. Exosomes are 30-200 nm microvesicles shed into all biofluids, including blood, urine, and CSF, carrying a highly rich source of intact protein and RNA cargo. Exosomes have been identified in human CSF, and their proteome and RNA pool is a potential new reservoir for biomarker discovery in neurological disorders. The purpose of this study is to investigate changes in brain gene expression via exosome analysis in patients suffering from ICP elevation of varied severity (idiopathic intracranial hypertension -IIH), a condition which shares some of the neuroophthalmological features of VIIP, as a first step toward obtaining evidence suggesting that cognitive function and ICP levels can be correlated with biomarkers in the CSF. Our preliminary work, reported last year, validated the exosomal technology applicable to CSF analysis and demonstrated that it was possible to obtain gene expression evidence of inflammation processes in traumatic brain injury patients. We are now recruiting patients with suspected IIH requiring lumbar puncture at Baylor College of Medicine. Both CSF (5 ml) and human plasma (10 ml) are being collected in order to compare the pattern of differentially expressed genes observed in CSF and in blood. Since blood is much more accessible than CSF, we would like to determine whether plasma biomarkers for

  13. Regulation of methane genes and genome expression

    Energy Technology Data Exchange (ETDEWEB)

    John N. Reeve

    2009-09-09

    At the start of this project, it was known that methanogens were Archaeabacteria (now Archaea) and were therefore predicted to have gene expression and regulatory systems different from Bacteria, but few of the molecular biology details were established. The goals were then to establish the structures and organizations of genes in methanogens, and to develop the genetic technologies needed to investigate and dissect methanogen gene expression and regulation in vivo. By cloning and sequencing, we established the gene and operon structures of all of the “methane” genes that encode the enzymes that catalyze methane biosynthesis from carbon dioxide and hydrogen. This work identified unique sequences in the methane gene that we designated mcrA, that encodes the largest subunit of methyl-coenzyme M reductase, that could be used to identify methanogen DNA and establish methanogen phylogenetic relationships. McrA sequences are now the accepted standard and used extensively as hybridization probes to identify and quantify methanogens in environmental research. With the methane genes in hand, we used northern blot and then later whole-genome microarray hybridization analyses to establish how growth phase and substrate availability regulated methane gene expression in Methanobacterium thermautotrophicus ΔH (now Methanothermobacter thermautotrophicus). Isoenzymes or pairs of functionally equivalent enzymes catalyze several steps in the hydrogen-dependent reduction of carbon dioxide to methane. We established that hydrogen availability determine which of these pairs of methane genes is expressed and therefore which of the alternative enzymes is employed to catalyze methane biosynthesis under different environmental conditions. As were unable to establish a reliable genetic system for M. thermautotrophicus, we developed in vitro transcription as an alternative system to investigate methanogen gene expression and regulation. This led to the discovery that an archaeal protein

  14. Gene Expression Commons: an open platform for absolute gene expression profiling.

    Directory of Open Access Journals (Sweden)

    Jun Seita

    Full Text Available Gene expression profiling using microarrays has been limited to comparisons of gene expression between small numbers of samples within individual experiments. However, the unknown and variable sensitivities of each probeset have rendered the absolute expression of any given gene nearly impossible to estimate. We have overcome this limitation by using a very large number (>10,000 of varied microarray data as a common reference, so that statistical attributes of each probeset, such as the dynamic range and threshold between low and high expression, can be reliably discovered through meta-analysis. This strategy is implemented in a web-based platform named "Gene Expression Commons" (https://gexc.stanford.edu/ which contains data of 39 distinct highly purified mouse hematopoietic stem/progenitor/differentiated cell populations covering almost the entire hematopoietic system. Since the Gene Expression Commons is designed as an open platform, investigators can explore the expression level of any gene, search by expression patterns of interest, submit their own microarray data, and design their own working models representing biological relationship among samples.

  15. Organ Specific Gene Expression by Low Dose Radiation

    International Nuclear Information System (INIS)

    Lee, Woo Jung; Kang, Chang Mo; Lee, Dea Hoon; Bae, Snag Woo; Lee, Yun Sil

    2005-01-01

    Whole gene expression profiling has become one of the most widely used approaches identify genes and their functions in the context of specific biological questions. There is growing acknowledgement of the usefulness of determining expression patterns to identify and categorize genes, be it to use as disease markers, to discover drug targets, to map specific pathways, or to find markers of drug toxicity in early drug testing. Cellular and tissue sensitivity against ionizing radiation depends on many endogenous gene expression patterns. It is well known that various stimuli such as ionizing radiation produce genetic alteration and an important factor seems to be whether the cell dies, repair all the damage, undergoes defective repair or responds in a way which leads to transformation. The decision whether the damage is dealt with apoptosis, rescue or repair is critical. Death of the individual cell removes the problem from the tissue, however, if the cell does not die, it may acquire genomic instability and lead to a population of cells with abnormally high susceptibility to chromosomal instability mutation and other delayed effects. Studies using inbred strains of rodents have clearly shown genotype-dependent differences in response to radiation exposure, including susceptibility to radiation-induced cellular transformation and tumor formation, as well as differences in susceptibility to radiation-induced chromosomal instability. In this study, we analyzed the genes which have previously been reported to be overexpressed in human peripheral blood lymphocytes, in brain, heart, spleen, intestine, and lung which have been shown to have different intrinsic radiosensitivity, especially after low dose radiation exposure (0.2Gy), and examined the correlation between gene expression patterns and organ sensitivity and attempted to identify genes which are possibly responsible for radiation sensitivity

  16. Comparative gene expression of intestinal metabolizing enzymes.

    Science.gov (United States)

    Shin, Ho-Chul; Kim, Hye-Ryoung; Cho, Hee-Jung; Yi, Hee; Cho, Soo-Min; Lee, Dong-Goo; Abd El-Aty, A M; Kim, Jin-Suk; Sun, Duxin; Amidon, Gordon L

    2009-11-01

    The purpose of this study was to compare the expression profiles of drug-metabolizing enzymes in the intestine of mouse, rat and human. Total RNA was isolated from the duodenum and the mRNA expression was measured using Affymetrix GeneChip oligonucleotide arrays. Detected genes from the intestine of mouse, rat and human were ca. 60% of 22690 sequences, 40% of 8739 and 47% of 12559, respectively. Total genes of metabolizing enzymes subjected in this study were 95, 33 and 68 genes in mouse, rat and human, respectively. Of phase I enzymes, the mouse exhibited abundant gene expressions for Cyp3a25, Cyp4v3, Cyp2d26, followed by Cyp2b20, Cyp2c65 and Cyp4f14, whereas, the rat showed higher expression profiles of Cyp3a9, Cyp2b19, Cyp4f1, Cyp17a1, Cyp2d18, Cyp27a1 and Cyp4f6. However, the highly expressed P450 enzymes were CYP3A4, CYP3A5, CYP4F3, CYP2C18, CYP2C9, CYP2D6, CYP3A7, CYP11B1 and CYP2B6 in the human. For phase II enzymes, glucuronosyltransferase Ugt1a6, glutathione S-transferases Gstp1, Gstm3 and Gsta2, sulfotransferase Sult1b1 and acyltransferase Dgat1 were highly expressed in the mouse. The rat revealed predominant expression of glucuronosyltransferases Ugt1a1 and Ugt1a7, sulfotransferase Sult1b1, acetyltransferase Dlat and acyltransferase Dgat1. On the other hand, in human, glucuronosyltransferases UGT2B15 and UGT2B17, glutathione S-transferases MGST3, GSTP1, GSTA2 and GSTM4, sulfotransferases ST1A3 and SULT1A2, acetyltransferases SAT1 and CRAT, and acyltransferase AGPAT2 were dominantly detected. Therefore, current data indicated substantial interspecies differences in the pattern of intestinal gene expression both for P450 enzymes and phase II drug-metabolizing enzymes. This genomic database is expected to improve our understanding of interspecies variations in estimating intestinal prehepatic clearance of oral drugs.

  17. Gene expression profiling of laterally spreading tumors.

    Science.gov (United States)

    Minemura, Shoko; Tanaka, Takeshi; Arai, Makoto; Okimoto, Kenichiro; Oyamada, Arata; Saito, Keiko; Maruoka, Daisuke; Matsumura, Tomoaki; Nakagawa, Tomoo; Katsuno, Tatsuro; Kishimoto, Takashi; Yokosuka, Osamu

    2015-06-06

    Laterally spreading tumors (LSTs) are generally defined as lesions >10 mm in diameter, are characterized by lateral expansion along the luminal wall with a low vertical axis. In contrast to other forms of tumor, LSTs are generally considered to have a superficial growth pattern and the potential for malignancy. We focused on this morphological character of LSTs, and analyzed the gene expression profile of LSTs. The expression of 168 genes in 41 colorectal tumor samples (17 LST-adenoma, 12 LST-carcinoma, 12 Ip [pedunculated type of the Paris classification)-adenoma, all of which were 10 mm or more in diameter] was analyzed by PCR array. Based on the results, we investigated the expression levels of genes up-regulated in LST-adenoma, compared to Ip-adenoma, by hierarchical and K-means clustering. To confirm the results of the array analysis, using an additional 60 samples (38 LST-adenoma, 22 Ip-adenoma), we determined the localization of the gene product by immunohistochemical staining. The expression of 129 genes differed in colorectal tumors from normal mucosa by PCR array analysis. As a result of K-means clustering, the expression levels of five genes, AKT1, BCL2L1, ERBB2, MTA2 and TNFRSF25, were found to be significantly up-regulated (p < 0.05) in LST-adenoma, compared to Ip-adenoma. Immunohistochemical analysis showed that the BCL2L1 protein was significantly and meaningfully up-regulated in LST-adenoma compared to Ip-adenoma (p = 0.010). With respect to apoptosis status in LST-Adenoma, it assumes that BCL2L1 is anti-apoptotic protein, the samples such as BCL2L1 positive and TUNEL negative, or BCL2L1 negative and TUNEL positive are consistent with the assumption. 63.2 % LST-adenoma samples were consistent with the assumption. LSTs have an unusual profile of gene expression compared to other tumors and BCL2L1 might be concerned in the organization of LSTs.

  18. Gene expression profiling in autoimmune diseases

    DEFF Research Database (Denmark)

    Bovin, Lone Frier; Brynskov, Jørn; Hegedüs, Laszlo

    2007-01-01

    ) patients and healthy individuals were specific for the arthritic process or likewise altered in other chronic inflammatory diseases such as chronic autoimmune thyroiditis (Hashimoto's thyroiditis, HT) and inflammatory bowel disease (IBD). Using qPCR for 18 RA-discriminative genes, there were no significant......A central issue in autoimmune disease is whether the underlying inflammation is a repeated stereotypical process or whether disease specific gene expression is involved. To shed light on this, we analysed whether genes previously found to be differentially regulated in rheumatoid arthritis (RA...... immunoinflammatory diseases, but only if accompanied by pronounced systemic manifestations. This suggests that at least some of the genes activated in RA are predominantly or solely related to general and disease-nonspecific autoimmune processes...

  19. Coevolution of gene expression among interacting proteins

    Energy Technology Data Exchange (ETDEWEB)

    Fraser, Hunter B.; Hirsh, Aaron E.; Wall, Dennis P.; Eisen,Michael B.

    2004-03-01

    Physically interacting proteins or parts of proteins are expected to evolve in a coordinated manner that preserves proper interactions. Such coevolution at the amino acid-sequence level is well documented and has been used to predict interacting proteins, domains, and amino acids. Interacting proteins are also often precisely coexpressed with one another, presumably to maintain proper stoichiometry among interacting components. Here, we show that the expression levels of physically interacting proteins coevolve. We estimate average expression levels of genes from four closely related fungi of the genus Saccharomyces using the codon adaptation index and show that expression levels of interacting proteins exhibit coordinated changes in these different species. We find that this coevolution of expression is a more powerful predictor of physical interaction than is coevolution of amino acid sequence. These results demonstrate previously uncharacterized coevolution of gene expression, adding a different dimension to the study of the coevolution of interacting proteins and underscoring the importance of maintaining coexpression of interacting proteins over evolutionary time. Our results also suggest that expression coevolution can be used for computational prediction of protein protein interactions.

  20. Digital gene expression analysis of gene expression differences within Brassica diploids and allopolyploids.

    Science.gov (United States)

    Jiang, Jinjin; Wang, Yue; Zhu, Bao; Fang, Tingting; Fang, Yujie; Wang, Youping

    2015-01-27

    Brassica includes many successfully cultivated crop species of polyploid origin, either by ancestral genome triplication or by hybridization between two diploid progenitors, displaying complex repetitive sequences and transposons. The U's triangle, which consists of three diploids and three amphidiploids, is optimal for the analysis of complicated genomes after polyploidization. Next-generation sequencing enables the transcriptome profiling of polyploids on a global scale. We examined the gene expression patterns of three diploids (Brassica rapa, B. nigra, and B. oleracea) and three amphidiploids (B. napus, B. juncea, and B. carinata) via digital gene expression analysis. In total, the libraries generated between 5.7 and 6.1 million raw reads, and the clean tags of each library were mapped to 18547-21995 genes of B. rapa genome. The unambiguous tag-mapped genes in the libraries were compared. Moreover, the majority of differentially expressed genes (DEGs) were explored among diploids as well as between diploids and amphidiploids. Gene ontological analysis was performed to functionally categorize these DEGs into different classes. The Kyoto Encyclopedia of Genes and Genomes analysis was performed to assign these DEGs into approximately 120 pathways, among which the metabolic pathway, biosynthesis of secondary metabolites, and peroxisomal pathway were enriched. The non-additive genes in Brassica amphidiploids were analyzed, and the results indicated that orthologous genes in polyploids are frequently expressed in a non-additive pattern. Methyltransferase genes showed differential expression pattern in Brassica species. Our results provided an understanding of the transcriptome complexity of natural Brassica species. The gene expression changes in diploids and allopolyploids may help elucidate the morphological and physiological differences among Brassica species.

  1. Predicting gene expression from sequence: a reexamination.

    Directory of Open Access Journals (Sweden)

    Yuan Yuan

    2007-11-01

    Full Text Available Although much of the information regarding genes' expressions is encoded in the genome, deciphering such information has been very challenging. We reexamined Beer and Tavazoie's (BT approach to predict mRNA expression patterns of 2,587 genes in Saccharomyces cerevisiae from the information in their respective promoter sequences. Instead of fitting complex Bayesian network models, we trained naïve Bayes classifiers using only the sequence-motif matching scores provided by BT. Our simple models correctly predict expression patterns for 79% of the genes, based on the same criterion and the same cross-validation (CV procedure as BT, which compares favorably to the 73% accuracy of BT. The fact that our approach did not use position and orientation information of the predicted binding sites but achieved a higher prediction accuracy, motivated us to investigate a few biological predictions made by BT. We found that some of their predictions, especially those related to motif orientations and positions, are at best circumstantial. For example, the combinatorial rules suggested by BT for the PAC and RRPE motifs are not unique to the cluster of genes from which the predictive model was inferred, and there are simpler rules that are statistically more significant than BT's ones. We also show that CV procedure used by BT to estimate their method's prediction accuracy is inappropriate and may have overestimated the prediction accuracy by about 10%.

  2. Gene expression regulation in roots under drought.

    Science.gov (United States)

    Janiak, Agnieszka; Kwaśniewski, Mirosław; Szarejko, Iwona

    2016-02-01

    Stress signalling and regulatory networks controlling expression of target genes are the basis of plant response to drought. Roots are the first organs exposed to water deficiency in the soil and are the place of drought sensing. Signalling cascades transfer chemical signals toward the shoot and initiate molecular responses that lead to the biochemical and morphological changes that allow plants to be protected against water loss and to tolerate stress conditions. Here, we present an overview of signalling network and gene expression regulation pathways that are actively induced in roots under drought stress. In particular, the role of several transcription factor (TF) families, including DREB, AP2/ERF, NAC, bZIP, MYC, CAMTA, Alfin-like and Q-type ZFP, in the regulation of root response to drought are highlighted. The information provided includes available data on mutual interactions between these TFs together with their regulation by plant hormones and other signalling molecules. The most significant downstream target genes and molecular processes that are controlled by the regulatory factors are given. These data are also coupled with information about the influence of the described regulatory networks on root traits and root development which may translate to enhanced drought tolerance. This is the first literature survey demonstrating the gene expression regulatory machinery that is induced by drought stress, presented from the perspective of roots. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  3. PERT: A Method for Expression Deconvolution of Human Blood Samples from Varied Microenvironmental and Developmental Conditions

    Science.gov (United States)

    Csaszar, Elizabeth; Yu, Mei; Morris, Quaid; Zandstra, Peter W.

    2012-01-01

    The cellular composition of heterogeneous samples can be predicted using an expression deconvolution algorithm to decompose their gene expression profiles based on pre-defined, reference gene expression profiles of the constituent populations in these samples. However, the expression profiles of the actual constituent populations are often perturbed from those of the reference profiles due to gene expression changes in cells associated with microenvironmental or developmental effects. Existing deconvolution algorithms do not account for these changes and give incorrect results when benchmarked against those measured by well-established flow cytometry, even after batch correction was applied. We introduce PERT, a new probabilistic expression deconvolution method that detects and accounts for a shared, multiplicative perturbation in the reference profiles when performing expression deconvolution. We applied PERT and three other state-of-the-art expression deconvolution methods to predict cell frequencies within heterogeneous human blood samples that were collected under several conditions (uncultured mono-nucleated and lineage-depleted cells, and culture-derived lineage-depleted cells). Only PERT's predicted proportions of the constituent populations matched those assigned by flow cytometry. Genes associated with cell cycle processes were highly enriched among those with the largest predicted expression changes between the cultured and uncultured conditions. We anticipate that PERT will be widely applicable to expression deconvolution strategies that use profiles from reference populations that vary from the corresponding constituent populations in cellular state but not cellular phenotypic identity. PMID:23284283

  4. Transcriptional Profiling of Whole Blood Identifies a Unique 5-Gene Signature for Myelofibrosis and Imminent Myelofibrosis Transformation

    DEFF Research Database (Denmark)

    Hasselbalch, Hans Carl; Skov, Vibe; Stauffer Larsen, Thomas

    2014-01-01

    selectively and highly deregulated in myelofibrosis patients. Gene expression microarray studies have been performed on whole blood from 69 patients with myeloproliferative neoplasms. Amongst the top-20 of the most upregulated genes in PMF compared to controls, we identified 5 genes (DEFA4, ELA2, OLFM4, CTSG...

  5. Gene expression profiles in skeletal muscle after gene electrotransfer

    Directory of Open Access Journals (Sweden)

    Eriksen Jens

    2007-06-01

    Full Text Available Abstract Background Gene transfer by electroporation (DNA electrotransfer to muscle results in high level long term transgenic expression, showing great promise for treatment of e.g. protein deficiency syndromes. However little is known about the effects of DNA electrotransfer on muscle fibres. We have therefore investigated transcriptional changes through gene expression profile analyses, morphological changes by histological analysis, and physiological changes by force generation measurements. DNA electrotransfer was obtained using a combination of a short high voltage pulse (HV, 1000 V/cm, 100 μs followed by a long low voltage pulse (LV, 100 V/cm, 400 ms; a pulse combination optimised for efficient and safe gene transfer. Muscles were transfected with green fluorescent protein (GFP and excised at 4 hours, 48 hours or 3 weeks after treatment. Results Differentially expressed genes were investigated by microarray analysis, and descriptive statistics were performed to evaluate the effects of 1 electroporation, 2 DNA injection, and 3 time after treatment. The biological significance of the results was assessed by gene annotation and supervised cluster analysis. Generally, electroporation caused down-regulation of structural proteins e.g. sarcospan and catalytic enzymes. Injection of DNA induced down-regulation of intracellular transport proteins e.g. sentrin. The effects on muscle fibres were transient as the expression profiles 3 weeks after treatment were closely related with the control muscles. Most interestingly, no changes in the expression of proteins involved in inflammatory responses or muscle regeneration was detected, indicating limited muscle damage and regeneration. Histological analysis revealed structural changes with loss of cell integrity and striation pattern in some fibres after DNA+HV+LV treatment, while HV+LV pulses alone showed preservation of cell integrity. No difference in the force generation capacity was observed in

  6. Monitoring the Efficacy of Oncolytic Viruses via Gene Expression

    Directory of Open Access Journals (Sweden)

    Ashley Ansel

    2017-11-01

    Full Text Available With the recent success of oncolytic viruses in clinical trials, efforts toward improved monitoring of the viruses and their mechanism have intensified. Four main gene expression strategies have been employed to date including: analyzing overall gene expression in tumor cells, looking at gene expression of a few specific genes in the tumor cells, focusing on gene expression of specific transgenes introduced into the virus, and following gene expression of certain viral genes. Each strategy presents certain advantages and disadvantages over the others. Various methods to organize the dysregulated genes into clusters have provided a window into the mechanism of action for these viruses. Methodologically, the combined approach of looking at both overall gene expression, the tumor cells and gene expression of viral genes, enables researchers to assess correlation between the introduction of the virus and the changes in the tumor. This would seem to be the most productive approach for future studies, providing much information on mechanism and timing.

  7. Allele-specific expression of the IL-1 alpha gene in human CD4+ T cell clones

    NARCIS (Netherlands)

    Bayley, Jean-Pierre; van Rietschoten, Johanna G. I.; Bakker, Aleida M.; van Baarsen, Lisa; Kaijzel, Eric L.; Wierenga, Eddy A.; van der Pouw Kraan, Tineke C. T. M.; Huizinga, Tom W. J.; Verweij, Cornelis L.

    2003-01-01

    A number of reports have described the monoallelic expression of murine cytokine genes. Here we describe the monoallelic expression of the human IL-1alpha gene in CD4+ T cells. Analysis of peripheral blood T cell clones derived from healthy individuals revealed that the IL-1alpha gene shows

  8. DNA methylation and gene expression differences in children conceived in vitro or in vivo

    OpenAIRE

    Katari, Sunita; Turan, Nahid; Bibikova, Marina; Erinle, Oluwatoyin; Chalian, Raffi; Foster, Michael; Gaughan, John P.; Coutifaris, Christos; Sapienza, Carmen

    2009-01-01

    Epidemiological data indicate that children conceived in vitro have a greater relative risk of low birth-weight, major and minor birth defects, and rare disorders involving imprinted genes, suggesting that epigenetic changes may be associated with assisted reproduction. We examined DNA methylation at more than 700 genes (1536 CpG sites) in placenta and cord blood and measured gene expression levels of a subset of genes that differed in methylation levels between children conceived in vitro ve...

  9. Enhanced gene expression from retroviral vectors

    Directory of Open Access Journals (Sweden)

    Micklem David R

    2008-02-01

    Full Text Available Abstract Background Retroviruses are widely used to transfer genes to mammalian cells efficiently and stably. However, genetic elements required for high-level gene expression are incompatible with standard systems. The retroviral RNA genome is produced by cellular transcription and post-transcriptional processing within packaging cells: Introns present in the retroviral genomic transcript are removed by splicing, while polyadenylation signals lead to the production of ineffective truncated genomes. Furthermore strong enhancer/promoters within the retroviral payload lead to detrimental competition with the retroviral enhancer/promoter. Results By exploiting a new method of producing the retroviral genome in vitro it is possible to produce infectious retroviral particles carrying a high-level expression cassette that completely prohibits production of infectious retroviral particles by conventional methods. We produced an expression cassette comprising a strong enhancer/promoter, an optimised intron, the GFP open reading frame and a strong polyadenylation signal. This cassette was cloned into both a conventional MMLV retroviral vector and a vector designed to allow in vitro transcription of the retroviral genome by T7 RNA polymerase. When the conventional retroviral vector was transfected into packaging cells, the expression cassette drove strong GFP expression, but no infectious retrovirus was produced. Introduction of the in vitro produced uncapped retroviral genomic transcript into the packaging cells did not lead to any detectable GFP expression. However, infectious retrovirus was easily recovered, and when used to infect target primary human cells led to very high GFP expression – up to 3.5 times greater than conventional retroviral LTR-driven expression. Conclusion Retroviral vectors carrying an optimized high-level expression cassette do not produce infectious virions when introduced into packaging cells by transfection of DNA

  10. Gene expression in Pseudomonas aeruginosa swarming motility

    Directory of Open Access Journals (Sweden)

    Déziel Eric

    2010-10-01

    Full Text Available Abstract Background The bacterium Pseudomonas aeruginosa is capable of three types of motilities: swimming, twitching and swarming. The latter is characterized by a fast and coordinated group movement over a semi-solid surface resulting from intercellular interactions and morphological differentiation. A striking feature of swarming motility is the complex fractal-like patterns displayed by migrating bacteria while they move away from their inoculation point. This type of group behaviour is still poorly understood and its characterization provides important information on bacterial structured communities such as biofilms. Using GeneChip® Affymetrix microarrays, we obtained the transcriptomic profiles of both bacterial populations located at the tip of migrating tendrils and swarm center of swarming colonies and compared these profiles to that of a bacterial control population grown on the same media but solidified to not allow swarming motility. Results Microarray raw data were corrected for background noise with the RMA algorithm and quantile normalized. Differentially expressed genes between the three conditions were selected using a threshold of 1.5 log2-fold, which gave a total of 378 selected genes (6.3% of the predicted open reading frames of strain PA14. Major shifts in gene expression patterns are observed in each growth conditions, highlighting the presence of distinct bacterial subpopulations within a swarming colony (tendril tips vs. swarm center. Unexpectedly, microarrays expression data reveal that a minority of genes are up-regulated in tendril tip populations. Among them, we found energy metabolism, ribosomal protein and transport of small molecules related genes. On the other hand, many well-known virulence factors genes were globally repressed in tendril tip cells. Swarm center cells are distinct and appear to be under oxidative and copper stress responses. Conclusions Results reported in this study show that, as opposed to

  11. Gene frequencies of ABO and rhesus blood groups and ...

    African Journals Online (AJOL)

    The distribution and gene frequencies of ABO and rhesus (Rh) blood groups and haemoglobin variants for samples of the Nigerian population at Ogbomoso was determined. Data consisting of records of blood groups and haemoglobin types of different ages ranging from infants to adults for a period of 4 to 6 years (1995 ...

  12. Organ specific gene expressions in C57BL6 mice

    International Nuclear Information System (INIS)

    Majumder, Zahidur Rahman; Lee, Woo Jung; Kim, Dae Yong; Cho, Chul Koo; Kang, Chang Mo; Lee, Su Jae; Bae, Sang Woo; Lee, Yun Sil; Jeoung, Doo Il

    2004-01-01

    Cellular and tissue sensitivity against ionizing radiation depends on many endogenous gene expression patterns. It is well known that tissue or cells responds differently to various stimuli, including ionizing radiation according to the genetic background and the decision whether the damage is dealt with by apoptosis or whether rescue or repair is attempted is critical. Death of the individual cells removes the problem from the tissue but if the cell does not die, it may acquire genomic instability and lead to a population of cells with abnormally high susceptibility to chromosomal instability mutation and other delayed effects. Studies using inbred strains of rodents have clearly shown genotype-dependent differences in response to radiation exposure, including susceptibility to radiation-induced cellular transformation and tumor formation, as well as differences in susceptibility to radiation-induced chromosomal instability. In experiment systems, mouse models have proven very useful in identifying genes that modify radiation sensitivity. For instance, p53 deficient mice are strongly influenced by genetic background. Another importance aspect is that particular type of tumor that arises is dependent on the genetic background. In this study, we analyzed the genes which were previously reported to be overexpressed by radiation in human peripheral blood lymphocytes, in brain, spleen and lung which have different intrinsic radiosensitivity, and examined the correlation between gene expression patterns and organ sensitivity and identified the possible genes which are responsible for organ sensitivity

  13. Autism and increased paternal age related changes in global levels of gene expression regulation.

    Directory of Open Access Journals (Sweden)

    Mark D Alter

    2011-02-01

    Full Text Available A causal role of mutations in multiple general transcription factors in neurodevelopmental disorders including autism suggested that alterations in global levels of gene expression regulation might also relate to disease risk in sporadic cases of autism. This premise can be tested by evaluating for changes in the overall distribution of gene expression levels. For instance, in mice, variability in hippocampal-dependent behaviors was associated with variability in the pattern of the overall distribution of gene expression levels, as assessed by variance in the distribution of gene expression levels in the hippocampus. We hypothesized that a similar change in variance might be found in children with autism. Gene expression microarrays covering greater than 47,000 unique RNA transcripts were done on RNA from peripheral blood lymphocytes (PBL of children with autism (n = 82 and controls (n = 64. Variance in the distribution of gene expression levels from each microarray was compared between groups of children. Also tested was whether a risk factor for autism, increased paternal age, was associated with variance. A decrease in the variance in the distribution of gene expression levels in PBL was associated with the diagnosis of autism and a risk factor for autism, increased paternal age. Traditional approaches to microarray analysis of gene expression suggested a possible mechanism for decreased variance in gene expression. Gene expression pathways involved in transcriptional regulation were down-regulated in the blood of children with autism and children of older fathers. Thus, results from global and gene specific approaches to studying microarray data were complimentary and supported the hypothesis that alterations at the global level of gene expression regulation are related to autism and increased paternal age. Global regulation of transcription, thus, represents a possible point of convergence for multiple etiologies of autism and other

  14. Biosynthetic basis of incompatible histo-blood group A antigen expression

    DEFF Research Database (Denmark)

    David, L; Leitao, D; Sobrinho-Simoes, M

    1993-01-01

    , we have screened 31 cases of gastric tumors of phenotype O for the expression of blood group A gene-defined glycosyltransferase by immunohistology on frozen sections using newly developed monoclonal antibodies to the transferases. Three cases were positive, and transferase expression was confirmed...... by enzyme analysis of extracts from the specimens. Blood group A carbohydrate antigens were also identified immunohistologically in these three cases as well as in five other cases. Thin-layer chromatography immunostaining analysis of glycolipid extracts from the three cases did not confirm the chemical...

  15. Gene expression in Streptococcus mutans biofilms

    OpenAIRE

    Banu, L D

    2010-01-01

    Streptococcus mutans is considered the major aetiological agent of human dental caries. It is an obligate biofilm-forming bacterium, which resides on teeth and forms, together with other species, an oral biofilm that is often designated as supragingival plaque. This thesis consists of three distinct parts. The first part describes, using microarray analysis, how S. mutans modulates gene expression when grown under different conditions in biofilms. The goal of this analysis was to identify gen...

  16. Gene expression: RNA interference in adult mice

    Science.gov (United States)

    McCaffrey, Anton P.; Meuse, Leonard; Pham, Thu-Thao T.; Conklin, Douglas S.; Hannon, Gregory J.; Kay, Mark A.

    2002-07-01

    RNA interference is an evolutionarily conserved surveillance mechanism that responds to double-stranded RNA by sequence-specific silencing of homologous genes. Here we show that transgene expression can be suppressed in adult mice by synthetic small interfering RNAs and by small-hairpin RNAs transcribed in vivo from DNA templates. We also show the therapeutic potential of this technique by demonstrating effective targeting of a sequence from hepatitis C virus by RNA interference in vivo.

  17. Dried blood spots of pooled samples for RHD gene screening in blood donors of mixed ancestry.

    Science.gov (United States)

    Silva-Malta, M C F; Araujo, N C Fidélis; Vieira, O V Neves; Schmidt, L Cayres; Gonçalves, P de Cassia; Martins, M Lobato

    2015-10-01

    In this study, we present a strategy for RHD gene screening based on real-time polymerase chain reaction (PCR) using dried blood spots of pooled samples. Molecular analysis of blood donors may be used to detect RHD variants among the presumed D-negative individuals. RHD genotyping using pooled samples is a strategy to test a large number of samples at a more reasonable cost. RHD gene detection based on real-time PCR using dried blood spots of pooled samples was standardised and used to evaluate 1550 Brazilian blood donors phenotyped as RhD-negative. Positive results were re-evaluated by retesting single samples using real-time PCR and conventional multiplex PCR to amplify five RHD-specific exons. PCR-sequence-specific primers was used to amplify RHDψ allele. We devised a strategy for RHD gene screening using dried blood spots of five pooled samples. Among 1550 serologically D-negative blood donors, 58 (3.74%) had the RHD gene. The non-functional RHDψ allele was detected in 47 samples (3.02%). The present method is a promising strategy to detect the RHD gene among presumed RhD-negative blood donors, particularly for populations with African ancestry. © 2015 British Blood Transfusion Society.

  18. Mosquito Passage Dramatically Changes var Gene Expression in Controlled Human Plasmodium falciparum Infections.

    Science.gov (United States)

    Bachmann, Anna; Petter, Michaela; Krumkamp, Ralf; Esen, Meral; Held, Jana; Scholz, Judith A M; Li, Tao; Sim, B Kim Lee; Hoffman, Stephen L; Kremsner, Peter G; Mordmüller, Benjamin; Duffy, Michael F; Tannich, Egbert

    2016-04-01

    Virulence of the most deadly malaria parasite Plasmodium falciparum is linked to the variant surface antigen PfEMP1, which is encoded by about 60 var genes per parasite genome. Although the expression of particular variants has been associated with different clinical outcomes, little is known about var gene expression at the onset of infection. By analyzing controlled human malaria infections via quantitative real-time PCR, we show that parasite populations from 18 volunteers expressed virtually identical transcript patterns that were dominated by the subtelomeric var gene group B and, to a lesser extent, group A. Furthermore, major changes in composition and frequency of var gene transcripts were detected between the parental parasite culture that was used to infect mosquitoes and Plasmodia recovered from infected volunteers, suggesting that P. falciparum resets its var gene expression during mosquito passage and starts with the broad expression of a specific subset of var genes when entering the human blood phase.

  19. Proteomic and gene expression patterns of keratoconus

    Directory of Open Access Journals (Sweden)

    Arkasubhra Ghosh

    2013-01-01

    Full Text Available Keratoconus is a progressive corneal thinning disease associated with significant tissue remodeling activities and activation of a variety of signaling networks. However, it is not understood how differential gene and protein expression direct function in keratoconus corneas to drive the underlying pathology, ectasia. Research in the field has focused on discovering differentially expressed genes and proteins and quantifying their levels and activities in keratoconus patient samples. In this study, both microarray analysis of total ribonucleic acid (RNA and whole proteome analyses are carried out using corneal epithelium and tears from keratoconus patients and compared to healthy controls. A number of structural proteins, signaling molecules, cytokines, proteases, and enzymes have been found to be deregulated in keratoconus corneas. Together, the data provide clues to the complex process of corneal degradation which suggest novel ways to clinically diagnose and manage the disease. This review will focus on discussing these recent advances in the knowledge of keratoconus biology from a gene expression and function point-of-view.

  20. Analysis of gene expression in rabbit muscle

    Directory of Open Access Journals (Sweden)

    Alena Gálová

    2014-02-01

    Full Text Available Increasing consumer knowledge of the link between diet and health has raised the demand for high quality food. Meat and meat products may be considered as irreplaceable in human nutrition. Breeding livestock to higher content of lean meat and the use of modern hybrids entails problems with the quality of meat. Analysing of livestock genomes could get us a great deal of important information, which may significantly affect the improvement process. Domestic animals are invaluable resources for study of the molecular architecture of complex traits. Although the mapping of quantitative trait loci (QTL responsible for economically important traits in domestic animals has achieved remarkable results in recent decades, not all of the genetic variation in the complex traits has been captured because of the low density of markers used in QTL mapping studies. The genome wide association study (GWAS, which utilizes high-density single-nucleotide polymorphism (SNP, provides a new way to tackle this issue. New technologies now allow producing microarrays containing thousands of hybridization probes on a single membrane or other solid support. We used microarray analysis to study gene expression in rabbit muscle during different developmental age stages. The outputs from GeneSpring GX sotware are presented in this work. After the evaluation of gene expression in rabbits, will be selected genes of interest in relation to meat quality parameters and will be further analyzed by the available methods of molecular biology and genetics.

  1. Moving Toward Integrating Gene Expression Profiling into ...

    Science.gov (United States)

    Microarray profiling of chemical-induced effects is being increasingly used in medium and high-throughput formats. In this study, we describe computational methods to identify molecular targets from whole-genome microarray data using as an example the estrogen receptor α (ERα), often modulated by potential endocrine disrupting chemicals. ERα biomarker genes were identified by their consistent expression after exposure to 7 structurally-diverse ERα agonists and 3 ERα antagonists in ERα-positive MCF-7 cells. Most of the biomarker genes were shown to be directly regulated by ERα as determined by ESR1 gene knockdown using siRNA as well as through ChIP-Seq analysis of ERα-DNA interactions. The biomarker was evaluated as a predictive tool using the fold-change rank-based Running Fisher algorithm by comparison to annotated gene expression data sets from experiments using MCF-7 cells, including those evaluating the transcriptional effects of hormones and chemicals. Using 141 comparisons from chemical- and hormone-treated cells, the biomarker gave a balanced accuracy for prediction of ERα activation or suppression of 94% and 93%, respectively. The biomarker was able to correctly classify 18 out of 21 (86%) ER reference chemicals including “very weak” agonists. Importantly, the biomarker predictions accurately replicated predictions based on 18 in vitro high-throughput screening assays that queried different steps in ERα signaling. For 114 chemicals,

  2. Differentially expressed genes in pancreatic ductal adenocarcinomas identified through serial analysis of gene expression

    DEFF Research Database (Denmark)

    Hustinx, Steven R; Cao, Dengfeng; Maitra, Anirban

    2004-01-01

    generated from six pancreatic cancers were compared to SAGE libraries generated from 11 non-neoplastic tissues. Compared to normal tissue libraries, we identified 453 SAGE tags as differentially expressed in pancreatic cancer, including 395 that mapped to known genes and 58 "uncharacterized" tags....... Of the 395 SAGE tags assigned to known genes, 223 were overexpressed in pancreatic cancer, and 172 were underexpressed. In order to map the 58 uncharacterized differentially expressed SAGE tags to genes, we used a newly developed resource called TAGmapper (http://tagmapper.ibioinformatics.org), to identify...

  3. HTLV-1 subgroups associated with the risk of HAM/TSP are related to viral and host gene expression in peripheral blood mononuclear cells, independent of the transactivation functions of the viral factors.

    Science.gov (United States)

    Yasuma, Keiko; Matsuzaki, Toshio; Yamano, Yoshihisa; Takashima, Hiroshi; Matsuoka, Masao; Saito, Mineki

    2016-08-01

    Among human T cell leukemia virus type 1 (HTLV-1)-infected individuals, the risk of developing HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) across lifetime differs between ethnic groups. There is an association between HTLV-1 tax gene subgroups (subgroup-A or subgroup-B) and the risk of HAM/TSP in the Japanese population. In this study, we investigated the full-length proviral genome sequences of various HTLV-1-infected cell lines and patient samples. The functional differences in the viral transcriptional regulators Tax and HTLV-1 bZIP factor (HBZ) between each subgroup and the relationships between subgroups and the clinical and laboratory characteristics of HAM/TSP patients were evaluated. The results of these analyses indicated the following: (1) distinct nucleotide substitutions corresponding to each subgroup were associated with nucleotide substitutions in viral structural, regulatory, and accessory genes; (2) the HBZ messenger RNA (mRNA) expression in HTLV-1-infected cells was significantly higher in HAM/TSP patients with subgroup-B than in those with subgroup-A; (3) a positive correlation was observed between the expression of HBZ mRNA and its target Foxp3 mRNA in HAM/TSP patients with subgroup-B, but not in patients with subgroup-A; (4) no clear differences were noted in clinical and laboratory characteristics between HAM/TSP patients with subgroup-A and subgroup-B; and (5) no functional differences were observed in Tax and HBZ between each subgroup based on reporter gene assays. Our results indicate that although different HTLV-1 subgroups are characterized by different patterns of viral and host gene expression in HAM/TSP patients via independent mechanisms of direct transcriptional regulation, these differences do not significantly affect the clinical and laboratory characteristics of HAM/TSP patients.

  4. Reduced expression of Autographa californica nucleopolyhedrovirus ORF34, an essential gene, enhances heterologous gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Salem, Tamer Z. [Department of Entomology, Michigan State University, East Lansing, MI 48824 (United States); Department of Microbial Molecular Biology, AGERI, Agricultural Research Center, Giza 12619 (Egypt); Division of Biomedical Sciences, Zewail University, Zewail City of Science and Technology, Giza 12588 (Egypt); Zhang, Fengrui [Department of Entomology, Michigan State University, East Lansing, MI 48824 (United States); Thiem, Suzanne M., E-mail: smthiem@msu.edu [Department of Entomology, Michigan State University, East Lansing, MI 48824 (United States); Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824 (United States)

    2013-01-20

    Autographa californica multiple nucleopolyhedrovirus ORF34 is part of a transcriptional unit that includes ORF32, encoding a viral fibroblast growth factor (FGF) and ORF33. We identified ORF34 as a candidate for deletion to improve protein expression<