WorldWideScience

Sample records for blood gas monitoring transcutaneous

  1. Transcutaneous monitoring of blood gases: is it comparable with arterialized earlobe sampling?

    Science.gov (United States)

    Dawson, S; Cave, C; Pavord, I; Potter, J F

    1998-03-01

    Researchers are increasingly looking for reliable non-invasive methods of assessing blood gas concentrations, and several new techniques have recently become available. Values derived using arterialized earlobe samples have been found to be comparable with conventional arterial samples, and recent studies have compared transcutaneous blood gas analysis with the traditional arterial samples and found a reasonable level of agreement in particular for the partial pressure of carbon dioxide. There are no data comparing oxygen and carbon dioxide partial pressures (pO2, pCO2) derived from arterialized samples with one of the newer transcutaneous techniques. We therefore simultaneously studied arterialized earlobe blood gas samples and values for pO2 and pCO2 obtained by a transcutaneous monitor (TINA, Radiometer, Copenhagen) in 26 subjects with varying blood gas values. There was a close agreement between the two methods for assessment of pCO2 [mean difference (95% C.I.) between transcutaneous and earlobe values 0.25 kPa (-0.004, 0.5 kPa)], but not for pO2 [1.71 kPa (0.35, 3.07 kPa)]. Similarly, the limits of agreement were narrow for pCO2 compared to those for pO2 (-0.98, 1.47 kPa and -6.44, 3.02 kPa respectively). We conclude that transcutaneous measurement of pCO2 using the TINA is acceptable in the research setting, whereas assessment of pO2 cannot reliably be made using this technique. PMID:9692127

  2. Optical Transcutaneous pCO2 Sensor using Soft Lithography Method for Arterial Blood Gas Analysis

    Science.gov (United States)

    Kang, Byoung-Ho; Kim, Do-Eok; Leem, Myoung-Kun; Kwon, Dae-Hyuk; Lee, Kwang-Man; Kang, Shin-Won

    2008-10-01

    In this study, we carried out development of non-invasive optical transcutaneous partial pressure of carbon dioxide, pCO2, monitoring system. The purpose of this system is to detect CO2 from outer skin, not from the arterial blood-gathering method. There are advantages about a reduction of analysis time and real-time monitoring that this system might be available. The measurement system is composed of the IR lamp, the pyroelectric sensor including a 4.26 μm optical filter, the optical gas reaction chamber and the signal processing circuit. The optical reaction length of chamber was reduced by 1 mm using the soft-lithography method which CO2 is exhausted in human body as we considered. The fabricated pCO2 monitoring system showed linear result of 6.50×10-6 absorbance/ppm sensitivity for CO2 concentration from 0 ˜5,000 ppm by MFC and about 2 seconds of fast response time. The proposed system can be used in the optical biosensor field for the medical diagnosis such as pCO2 monitoring system and environment monitoring systems.

  3. Combining transcutaneous blood gas measurement and pulse oximetry.

    Science.gov (United States)

    Eberhard, Patrick; Gisiger, P A; Gardaz, J P; Spahn, D R

    2002-01-01

    We are describing the preliminary results of tests performed in adult volunteers and in adult patients during and after general anesthesia with a miniaturized single sensor combining the continuous and non-invasive measurement of oxygen saturaiton by pulse oximetry (SpO2) and transcutaneous PCO2 (OxiCarbo sensor). The sensor is heated to 42 degrees C to arterialize the cutaneous tissue and is applied at the ear lobe with a special low-pressure clip. The results indicate a good agreement between ear lobe PCO2 and arterial PCO2 in the range 35 to 70 mmHg (10 patients, number of measurements 104, regression line TcPCO2 = 1.01 PaCO2 + 0.59 mmHg, bias 1.22 mmHg, SD 3.69 mmHg) and between ear lobe SpO2 and SaO2 (bias 0.44% with SD 0.77% in the range 80% to 100%, bias 1.39% with SD 1.43% in the range 60% to 80%). The ear lobe OxiCarbog sensor detects the SpO2 change 5 to 37 sec faster than a finger sensor and the PCO2 change 9 to 48 sec faster than a transcutaneous sensor fixed at the upper arm. Further improvements versus single sensors are a higher stability of the SpO2 signal and the possibility of performing long term SpO2 and PCO2 measurement at the ear lobe. PMID:11900043

  4. Transcutaneous partial oxygen tension and skin blood flow monitoring: Continuous, noninvasive measures of cardiorespiratory change

    OpenAIRE

    Mark W. Greenlee; Akita, M.

    1985-01-01

    Transcutaneous partial oxygen tension (tc pO₂) and skin blood flow (via heat clearance) were measured noninvasively in 22 male subjects who performed stress-inducing tasks (i.e. hand-grip exercise, cold pressor test, breath holding, hyperventilation and mirror-tracing). An analysis of variance and covariance was conducted for tc pO₂ heat clearance, heart rate, respiration rate, finger pulse volume and systolic/diastolic blood pressure. Results indicate that tc pO₂ can depict phasic cardioresp...

  5. The Significance of Transcutaneous Continuous Overnight CO2 Monitoring in Determining Initial Mechanical Ventilator Application for Patients with Neuromuscular Disease

    OpenAIRE

    Lee, Soon Kyu; Kim, Dong-Hyun; Choi, Won Ah; Won, Yu Hui; Kim, Sun Mi; Kang, Seong-Woong

    2012-01-01

    Objective To reveal the significance of continuous transcutaneous carbon dioxide (CO2) level monitoring through reviewing cases which showed a discrepancy in CO2 levels between arterial blood gas analysis (ABGA) and continuous transcutaneous blood gas monitoring. Method Medical record review was conducted retrospectively of patients with neuromuscular diseases who had started home mechanical ventilation between June 2008 and May 2010. The 89 patients underwent ABGA at the 1st hospital day, an...

  6. Validation of a Transcutaneous CO2 Monitor in Adult Patients with Chronic Respiratory Failure

    NARCIS (Netherlands)

    Hazenberg, A.; Zijlstra, J. G.; Kerstjens, H. A. M.; Wijkstra, P. J.

    2011-01-01

    Background: Home mechanical ventilation is usually started in hospital as arterial blood gas sampling is deemed necessary to monitor CO2 and O-2 adequately during institution of ventilatory support. A non-invasive device to reliably measure CO2 transcutaneously would alleviate the need for high care

  7. Continuous blood gas monitoring in femoral arteries

    Science.gov (United States)

    Schlain, Les A.; Spar, Steven M.; Dellinger, Bart

    1995-05-01

    Continuous intra-arterial blood gas monitoring is a potentially valuable tool in the surgical and intensive care arenas. Patient oxygenation and acid base status can change rapidly and without warning. The ability to monitor pHa, PaCO2 and PaO2 in arterial blood will be a major medical advance for the anesthesiologist and intensivist. Intra-arterial blood gas sensors are typically placed in radial arteries. In certain patient populations accurate monitoring is not possible in radial arteries due to arterial environmental factors such as hypotension, vasoconstriction and atherosclerotic disease. These same factors can make radial cannulation difficult resulting in traumatic catheter insertion, thereby further compromising flow conditions. In situations where radial artery flow is expected to be compromised, selecting a large vessel for sensor placement is desirable. We report an initial feasibility study of our blood gas monitoring system using the femoral artery as the sensing site. Clinical results are presented as well as potential advantages and disadvantages associated with monitoring in the femoral artery.

  8. Evaluation of a transcutaneous carbon dioxide monitor in patients with acute respiratory failure

    Directory of Open Access Journals (Sweden)

    Antonello Nicolini

    2011-01-01

    Full Text Available Background: Non-invasive measurement of oxygenation is a routine procedure in clinical practice, but transcutaneous monitoring of PCO 2 (PtCO 2 is used much less than expected. Methods : The aim of our study was to analyze the value of a commercially available combined SpO 2 /PtCO 2 monitor (TOSCA-Linde Medical System, Basel, Switzerland in adult non-invasive ventilated patients with acute respiratory failure. Eighty critically ill adult patients, requiring arterial blood sample gas analyses, underwent SpO 2 and PtCO 2 measurements (10 min after the probe was attached to an earlobe simultaneously with arterial blood sampling. The level of agreement between PaCO2 - PtCO 2 and SaO 2 - SpO 2 was assessed by Bland-Altman analyses. Results : Both, SaO 2 from blood gas analysis and SpO 2 from the transcutaneous monitor, and PaCO 2 and PtCO 2 were equally useful. No measurements were outside of the acceptable clinical range of agreement of ± 7.5 mmHg. Conclusions : The accuracy of estimation of the TOSCA transcutaneous electrode (compared with the "gold standard" blood sample gas analysis was generally good. Moreover, TOSCA presents the advantage of the possibility of continuous non-invasive measurement. The level of agreement of the two methods of measurement allows us to state that the TOSCA sensor is useful in routine monitoring of adults admitted to an intermediate respiratory unit and undergoing non-invasive ventilation.

  9. Evaluation of a transcutaneous carbon dioxide monitor in patients with acute respiratory failure

    OpenAIRE

    Antonello Nicolini; Maura Bravo Ferrari

    2011-01-01

    Background: Non-invasive measurement of oxygenation is a routine procedure in clinical practice, but transcutaneous monitoring of PCO 2 (PtCO 2 ) is used much less than expected. Methods : The aim of our study was to analyze the value of a commercially available combined SpO 2 /PtCO 2 monitor (TOSCA-Linde Medical System, Basel, Switzerland) in adult non-invasive ventilated patients with acute respiratory failure. Eighty critically ill adult patients, requiring arterial blood sample gas a...

  10. The accuracy of non-invasive carbon dioxide monitoring: a clinical evaluation of two transcutaneous systems.

    Science.gov (United States)

    Bolliger, D; Steiner, L A; Kasper, J; Aziz, O A; Filipovic, M; Seeberger, M D

    2007-04-01

    We determined the accuracy of two transcutaneous carbon dioxide monitoring systems (SenTec Digital Monitor with V-Sign Sensor and TOSCA 500 with TOSCA Sensor 92) for the measurement of single values and trends in the arterial partial pressure of carbon dioxide in 122 adult patients during major surgery and in 50 adult patients in the intensive care unit. One or several paired measurements were performed in each patient. The first measurement was used to determine the accuracy of a single value of transcutaneous carbon dioxide; the difference between the first and the last measurements was used to analyse the accuracy and to track trends. We defined a 95% limit of agreement of agreement between transcutaneous carbon dioxide partial pressure values derived from the two systems and arterial carbon dioxide values for both single values and trends as defined by our suggested limit of agreement. We conclude that these systems cannot replace conventional blood gas analysis in the clinical setting studied. PMID:17381578

  11. Transcutaneous carbon dioxide monitoring: literature review.

    Science.gov (United States)

    Drysdale, David

    2014-06-01

    Dental anxiety is very common, affecting 22% of the population. One way to increase access to dental care is by the use of BDZs in conscious sedation. These drugs are known to be safe when titrated. BDZs work by stimulating GABAA receptors within inhibitory pathways of the CNS. A consequence of this is a reduction in respiratory drive. Thus assessing saturation of peripheral oxygen (SpO2) is mandatory. A pulse oximeter is normally used to do this. However a pulse oximeter cannot detect changes in CO2 which could result from a reduction in ventilatory drive. Many practitioners prescribe supplemental oxygen to compensate for hypoventilation, which can inhibit the ability of pulse oximetry to detect hypoventilation. Transcutaneous CO2 monitoring is currently used in ICUs and neonatal units. It may, however, have a place in conscious sedation dentistry. It can be used to detect changes in CO2, and is not affected by supplemental oxygen. PMID:24984664

  12. A novel approach towards noninvasive monitoring of transcutaneous CO2

    OpenAIRE

    Chatterjee, Madhubanti; Ge, Xudong; Kostov, Yordan; Tolosa, Leah; Rao, Govind

    2013-01-01

    The continuous monitoring of transcutaneous gases is an integral part of neonatal intensive care. Present monitors measure the equilibrating values of these gases by raising the skin temperature to 42°C or above. Because neonatal skin is very sensitive and delicate, this often leads to serious skin injuries. In this work, we present a new approach to the noninvasive measurement of transcutaneous partial pressure of carbon dioxide (tcpCO2) based on the initial pseudo steady state diffusion rat...

  13. Using transcutaneous carbon dioxide monitor (TOSCA 500) to detect respiratory failure in patients with amyotrophic lateral sclerosis: a validation study.

    Science.gov (United States)

    Rafiq, Muhammad K; Bradburn, Michael; Proctor, Alison R; Billings, Catherine; Bianchi, Stephen; McDermott, Christopher J; Shaw, Pamela J

    2012-10-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative condition, respiratory failure being the commonest cause of death. Quality of life and survival can be improved by supporting respiratory function with non-invasive ventilation. Transcutaneous carbon dioxide monitoring is a non-invasive method of measuring arterial carbon dioxide levels enabling simple and efficient screening for respiratory failure. The aim of this study was to validate the accuracy of carbon dioxide level recorded transcutaneously with a TOSCA 500 monitor. It is a prospective, observational study of 40 consecutive patients with ALS, recruited from a specialist ALS clinic. The partial pressure of carbon dioxide (PCO(2)) in each patient was determined by both transcutaneous monitoring and by an arterialized ear lobe capillary blood sample. The carbon dioxide (CO(2)) levels obtained with these two methods were compared by Bland-Altman analysis. The results showed that the mean difference between arterialized and transcutaneous readings was - 0.083 kPa (SD 0.318). The Bland-Altman limits of agreement ranged from 0.553 to - 0.719 kPa. The difference was  0.5 kPa, with a maximum recorded difference of 0.95 kPa. In conclusion, non-invasive carbon dioxide monitoring using a TOSCA monitor is a useful clinical tool in neurology practice. Users should be aware of the possibility of occasional inaccurate readings. A clinically unexpected or incompatible reading should be verified with a blood gas analysis, especially when a decision to provide ventilatory support is required. PMID:22871078

  14. AARC clinical practice guideline: transcutaneous monitoring of carbon dioxide and oxygen: 2012.

    Science.gov (United States)

    Restrepo, Ruben D; Hirst, Keith R; Wittnebel, Leonard; Wettstein, Richard

    2012-11-01

    An electronic literature search for articles published between January 1990 and September 2011 was conducted by using the PubMed, CINAHL, SCOPUS, and Cochrane Library databases. The update of this clinical practice guideline is the result of reviewing a total of 124 articles: 3 randomized controlled trials, 103 prospective trials, 1 retrospective study, 3 case studies, 11 review articles, 2 surveys and 1 consensus paper on transcutaneous monitoring (TCM) for P(tcO(2)) and P(tcCO(2)). The following recommendations are made following the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) criteria: (1) Although P(tcCO(2)) has a good correlation with P(aCO(2)) and is a reliable method to evaluate plasma CO(2) levels, it is recommended that arterial blood gas values be compared to transcutaneous readings taken at the time of arterial sampling, in order to verify the transcutaneous values, and periodically as dictated by the patient's clinical condition. (2) It is suggested that P(tcCO(2)) may be used in clinical settings where monitoring the adequacy of ventilation is indicated. (3) It is suggested that P(tcO(2)) and P(tcCO(2)) may be used in determining the adequacy of tissue perfusion and monitoring of reperfusion. (4) It is suggested that TCM should be avoided in the presence of increased thickness or edema of the skin and/or subcutaneous tissue where the sensor is applied. (5) It is recommended that sites used for a TCM be changed as often as necessary and that they be alternated and observed to avoid thermal injury. Manufacturer recommendations should be followed. PMID:23107301

  15. Non Invasive Transcutaneous Carbondioxide Monitoring in Adult Open Heart Surgery

    OpenAIRE

    UÇAR, P.; GAZİOĞLU, G.; ERDEMLİ, Ö.; ÇİÇEK, Ö. F.; DEMİR, A.

    2013-01-01

    Non Invasive Transcutaneous Carbondioxide Monitoring in Adult Open Heart SurgeryObjective: Follow-up of CO level during open heart surgery is crucial in terms of monitoring and management of the metabolic status. In this prospective observational study,measurement of end tidal CO and arterial CO levels in adult open heart surgery was compared with transcutaneous CO monitoring which is a non-invasive method.Material and Method: The study included 22 ASA II-III patients with an age range of 30-...

  16. A miniaturized transcutaneous system for continuous glucose monitoring.

    Science.gov (United States)

    Croce, Robert A; Vaddiraju, SanthiSagar; Kondo, Jun; Wang, Yan; Zuo, Liang; Zhu, Kai; Islam, Syed K; Burgess, Diane J; Papadimitrakopoulos, Fotios; Jain, Faquir C

    2013-02-01

    Implantable sensors for continuous glucose monitoring hold great potential for optimal diabetes management. This is often undermined by a variety of issues associated with: (1) negative tissue response; (2) poor sensor performance; and (3) lack of device miniaturization needed to reduce implantation trauma. Herein, we report our initial results towards constructing an implantable device that simultaneously address all three aforementioned issues. In terms of device miniaturization, a highly miniaturized CMOS (complementary metal-oxide-semiconductor) potentiostat and signal processing unit was employed (with a combined area of 0.665 mm(2)). The signal processing unit converts the current generated by a transcutaneous, Clark-type amperometric sensor to output frequency in a linear fashion. The Clark-type amperometric sensor employs stratification of five functional layers to attain a well-balanced mass transfer which in turn yields a linear sensor response from 0 to 25 mM of glucose concentration, well beyond the physiologically observed (2 to 22 mM) range. In addition, it is coated with a thick polyvinyl alcohol (PVA) hydrogel with embedded poly(lactic-co-glycolic acid) (PLGA) microspheres intended to provide continuous, localized delivery of dexamethasone to suppress inflammation and fibrosis. In vivo evaluation in rat model has shown that the transcutaneous sensor system reproducibly tracks repeated glycemic events. Clarke's error grid analysis on the as-obtained glycemic data has indicated that all of the measured glucose readings fell in the desired Zones A & B and none fell in the erroneous Zones C, D and E. Such reproducible operation of the transcutaneous sensor system, together with low power (140 μW) consumption and capability for current-to-frequency conversion renders this a versatile platform for continuous glucose monitoring and other biomedical sensing devices. PMID:22992979

  17. A novel approach toward noninvasive monitoring of transcutaneous CO(2).

    Science.gov (United States)

    Chatterjee, Madhubanti; Ge, Xudong; Kostov, Yordan; Tolosa, Leah; Rao, Govind

    2014-01-01

    The continuous monitoring of transcutaneous gases is an integral part of neonatal intensive care. Present monitors measure the equilibrating values of these gases by raising the skin temperature to 42°C or above. Because neonatal skin is very sensitive and delicate, this often leads to serious skin injuries. In this work, we present a new approach to the noninvasive measurement of transcutaneous partial pressure of carbon dioxide (tcpCO2) based on the initial pseudo steady state diffusion rates instead of the mass-transfer equilibrium. Because we are following initial diffusion rates, each measurement takes no more than a few minutes. Additionally, raising the surface temperature is not required, thus, skin irritation and burns are highly unlikely. A dual-chamber diffusion vessel with either porcine skin or dialysis membrane placed between the two chambers was used to mimic neonatal skin. LI-820 CO2 Analyzer was used to measure the CO2 diffusing through the membrane or skin. Initial experiments on adult human skin under varying physical activities, food intake and breathing patterns showed a strong influence of the various conditions on the amount of CO2 diffusing through skin. These initial findings suggest that this method can be used not only on neonates but to a wider population of patients. PMID:23931988

  18. Agreement of Mixed Venous Carbon Dioxide Tension (PvCO2) and Transcutaneous Carbon Dioxide (PtCO2) Measurements in Ventilated Infants

    OpenAIRE

    Uslu, Sinan; Bulbul, Ali; Dursun, Mesut; Zubarioglu, Umut; Turkoglu, Ebru; Guran, Omer

    2015-01-01

    Background: Noninvasive transcutaneous carbon dioxide monitoring has been shown to be accurate in infants and children, limited data are available to show the usefulness and limitations of partial transcutaneous carbon dioxide tension (PtCO2) value. Objectives: The current study prospectively determines the effectiveness and accuracy of PtCO2 measurements in newborns. Materials and Methods: Venous blood gas sampling and monitoring of the PtCO2 level (TCM TOSCA, Radiometer) were done simultane...

  19. The influence of transcutaneous electrical neurostimulation (TENS) on human cerebral blood flow velocities

    OpenAIRE

    ter Laan, Mark; van Dijk, J. Marc C.; Elting, Jan-Willem J.; Fidler, Vaclav; Staal, Michiel J

    2010-01-01

    Background It has been shown that transcutaneous electrical neurostimulation (TENS) reduces sympathetic tone. Spinal cord stimulation (SCS) has proven qualities to improve coronary, peripheral, and cerebral blood circulation. Therefore, we postulate that TENS and SCS affect the autonomic nervous system in analogous ways. In this line of thought, cervical application of TENS might be a useful and simple adjunct in the treatment of cerebrovascular disease by improving cerebral blood flow. Exper...

  20. Carbon dioxide monitoring during laparoscopic-assisted bariatric surgery in severely obese patients: transcutaneous versus end-tidal techniques.

    Science.gov (United States)

    Dion, Joanna M; McKee, Chris; Tobias, Joseph D; Herz, Daniel; Sohner, Paul; Teich, Steven; Michalsky, Marc

    2015-02-01

    Various factors including severe obesity or increases in intra-abdominal pressure during laparoscopy can lead to inaccuracies in end-tidal carbon dioxide (PETCO2) monitoring. The current study prospectively compares ET and transcutaneous (TC) CO2 monitoring in severely obese adolescents and young adults during laparoscopic-assisted bariatric surgery. Carbon dioxide was measured with both ET and TC devices during insufflation and laparoscopic bariatric surgery. The differences between each measure (PETCO2 and TC-CO2) and the PaCO2 were compared using a non-paired t test, Fisher's exact test, and a Bland-Altman analysis. The study cohort included 25 adolescents with a mean body mass index of 50.2 kg/m2 undergoing laparoscopic bariatric surgery. There was no difference in the absolute difference between the TC-CO2 and PaCO2 (3.2±3.0 mmHg) and the absolute difference between the PETCO2 and PaCO2 (3.7±2.5 mmHg). The bias and precision were 0.3 and 4.3 mmHg for TC monitoring versus PaCO2 and 3.2 and 3.2 mmHg for ET monitoring versus PaCO2. In the young severely obese population both TC and PETCO2 monitoring can be used to effectively estimate PaCO2. The correlation of PaCO2 to TC-CO2 is good, and similar to the correlation of PaCO2 to PETCO2. In this population, both of these non-invasive measures of PaCO2 can be used to monitor ventilation and minimize arterial blood gas sampling. PMID:24916514

  1. Transcutaneous oxygen and carbon dioxide monitoring in intensive care.

    OpenAIRE

    Marsden, D.; Chiu, M. C.; Paky, F; Helms, P

    1985-01-01

    Transcutaneous oxygen (TcPo2) and carbon dioxide (TcPco2) tensions were compared with arterial values in 23 children aged 4 months to 14 years, all requiring some form of respiratory support, but not in shock. Electrodes were placed on the upper chest and were heated to 45 degrees C. For TcPo2 and arterial oxygen (Pao2) a tight linear correlation over the range 6 to 14 kPa was found. Arterial carbon dioxide (Paco2) ranged between 2.63 and 6.8 kPa, and over this range a linear regression adequ...

  2. Application of transcutaneous diffuse reflectance spectroscopy in the measurement of blood glucose concentration

    Institute of Scientific and Technical Information of China (English)

    Wenliang Chen(陈文亮); Rong Liu(刘蓉); Houxin Cui(崔厚欣); Kexin Xu(徐可欣); Lina Lü(吕丽娜)

    2004-01-01

    In this paper, the propagation characteristics of near-infrared (NIR) light in the palm tissue are analyzed,and the principle and feasibility of using transcutaneous diffuse reflectance spectroscopy for non-invasive blood glucose detection are presented. An optical probe suitable for measuring the diffuse reflectance spectrum of human palm and a non-invasive blood glucose detection system using NIR spectroscopy are designed. Based on this system, oral glucose tolerance tests are performed to measure the blood glucose concentrations of two young healthy volunteers. The partial least square calibration model is then constructed by all individual experimental data. The final result shows that correlation coefficients of the two experiments between the predicted blood glucose concentrations and the reference blood glucose concentrations are 0.9870 and 0.9854, respectively. The root mean square errors of prediction of full cross validation are 0.54 and 0.52 mmol/1, respectively.

  3. Assessment of a continuous blood gas monitoring system in animals during circulatory stress

    Directory of Open Access Journals (Sweden)

    Renzulli Attilio

    2011-01-01

    Full Text Available Abstract Background The study was aimed to determine the measurement accuracy of The CDI™ blood parameter monitoring system 500 (Terumo Cardiovascular Systems Corporation, Ann Arbor MI in the real-time continuous measurement of arterial blood gases under different cardiocirculatory stress conditions Methods Inotropic stimulation (Dobutamine 2.5 and 5 μg/kg/min, vasoconstriction (Arginine-vasopressin 4, 8 and 16 IU/h, hemorrhage (-10%, -20%, -35%, and -50% of the theoretical volemia, and volume resuscitation were induced in ten swine (57.4 ± 10.7 Kg.Intermittent blood gas assessments were carried out using a routine gas analyzer at any experimental phase and compared with values obtained at the same time settings during continuous monitoring with CDI™ 500 system. The Bland-Altman analysis was employed. Results Bias and precision for pO2 were - 0.06 kPa and 0.22 kPa, respectively (r2 = 0.96; pCO2 - 0.02 kPa and 0.15 kPa, respectively; pH -0.001 and 0.01 units, respectively ( r2 = 0.96. The analysis showed very good agreement for SO2 (bias 0.04,precision 0.33, r2 = 0.95, Base excess (bias 0.04,precision 0.28, r2 = 0.98, HCO3 (bias 0.05,precision 0.62, r2 = 0.92,hemoglobin (bias 0.02,precision 0.23, r2 = 0.96 and K+ (bias 0.02, precision 0.27, r2 = 0.93. The sensor was reliable throughout the experiment during hemodynamic variations. Conclusions Continuous blood gas analysis with the CDI™ 500 system was reliable and it might represent a new useful tool to accurately and timely monitor gas exchange in critically ill patients. Nonetheless, our findings need to be confirmed by larger studies to prove its reliability in the clinical setting.

  4. Modulation of cerebral blood flow with transcutaneous electrical neurostimulation (TENS) in patients with cerebral vasospasm after subarachnoid hemorrhage

    NARCIS (Netherlands)

    ter Laan, Mark; van Dijk, J.M.C.; Stewart, Roy; Staal, Michiel J; Elting, Jan-Willem J

    2014-01-01

    ObjectivesTranscutaneous electrical neurostimulation (TENS) and spinal cord stimulation have been shown to increase peripheral and cerebral blood flow. We postulate that certain pathological conditions attenuate cerebral autoregulation, which may result in a relative increase of the importance of ne

  5. Non-arterial assessment of blood gas status in patients with chronic pulmonary disease.

    OpenAIRE

    Elborn, J. S.; Finch, M B; Stanford, C. F.

    1991-01-01

    Assessment of blood gas status is important in the management of patients with chronic pulmonary disease. Arterial puncture is often painful and may damage the arterial wall. Measurement of oxygen saturation by transcutaneous oximetry offers a non-invasive alternative to arterial methods but does not allow assessment of partial pressure of carbon dioxide. We have examined the value of oximetry and dorsal hand venous carbon dioxide as an alternative to arterial puncture. Transcutaneous oxygen ...

  6. Transcutaneous PCO2 Measurement at Low Temperature for Reliable and Continuous Free Flap Monitoring: Experimental and Clinical Study

    OpenAIRE

    Yoshiro Abe, MD; Ichiro Hashimoto, MD, PhD; Keiichi Goishi, MD; Keisuke Kashiwagi, MD; Masahiro Yamano, MD; Hideki Nakanishi, MD

    2013-01-01

    Background: Measurement of transcutaneous oxygen pressure (TcPO2) and transcutaneous carbon dioxide pressure (TcPCO2) has been used for free flap monitoring. Because these values are obtained with sensor probes heated to 44°C, there is potential for low-temperature burns on skin flaps. We measured TcPO2 and TcPCO2 at 37°C in both animals and humans to determine the feasibility and safety of the procedure as a postoperative flap monitoring method. Methods: Twelve epigastric island flaps wer...

  7. Continuous arterial blood gas monitoring in rabbits: an efficient method for evaluation of ratio-based optrodes

    Science.gov (United States)

    Martin, Roy C.; Olstein, Alan D.; Malin, Stephen F.; Perkovich, Anne

    1992-04-01

    Laboratory bench testing of optical blood gas sensors is insufficient to completely predict capabilities. Sensor testing in animals offers advantages of known physiologic and regulatory mechanisms of hemodynamics to better predict sensor performance. The domestic rabbit, Oryctalogis Cuniculus, a lagomorph of the family Leporidae was used for sensor evaluation. The rabbits are ventilated and blood gases modulated by variations in FIO2 and rate adjustments. Twenty gauge catheters are placed in the dorsal aorta, cartoid, and femoral arteries. Pressures are monitored via transducers on the arterial lines. The optical blood gas sensors are fitted within the catheters and blood samples are collected over them for bench analysis. Sensors are on 125 micrometers glass optic fibers. Proprietary prepolymers are applied on the fiber tips through in fiber photopolymerization. These sensors are then calibrated in tonometered water and blood. Sensor monitoring is accomplished through OSR microfluorimetry systems. We have used this model in 26 studies over the past six months evaluating over fifty blood gas sensors. These studies have lasted from six to twenty-four hours. Our correlation of sensor readings to assayed blood samples is r2 equals .97 for pH values of 6.80 - 7.70, r2 equals .94 for PCO2 values of 10 - 175 mmHg and r2 equals .94 for PO2 values of 10 - 350 mmHg.

  8. Effects of the transcutaneous electrode temperature on the accuracy of transcutaneous carbon dioxide tension

    DEFF Research Database (Denmark)

    Sørensen, Line C; Brage-Andersen, Lene; Greisen, Gorm

    2011-01-01

    The harmful effect of hypocapnia on the neonatal brain emphasizes the importance of monitoring arterial carbon dioxide tension (PaCO2). Transcutaneous monitoring of carbon dioxide (tcPCO2) reduces the need for arterial blood sampling. Drawbacks are high electrode temperature causing risks of skin...

  9. Monitor blood glucose - slideshow

    Science.gov (United States)

    ... medlineplus.gov/ency/presentations/100220.htm Monitoring blood glucose - Series—Monitoring blood glucose: Using a self-test meter To use the ... A.M. Editorial team. Related MedlinePlus Health Topics Blood Sugar A.D.A.M., Inc. is accredited by ...

  10. Transcutaneous cervical esophagus ultrasound in adults: Relation with ambulatory 24-h pH-monitoring and esophageal manometry

    OpenAIRE

    Kacar, Sabite; Uysal, Selma; Kuran, Sedef; Dagli, Ulku; Ozin, Yasemin; Karabulut, Erdem; Sasmaz, Nurgul

    2007-01-01

    AIM: To determine the gastroesophageal refluxate in the cervical esophagus (CE) and measure transcutaneous cervical esophageal ultrasound (TCEUS) findings [anterior wall thickness (WT) of CE, esophageal luminal diameter (ELD), esophageal diameter (ED)]; to compare TCEUS findings in the patient subgroups divided according to 24-h esophageal pH monitoring and manometry; and to investigate possible cut-off values according to the TCEUS findings as a predictor of gastroesophageal reflux (GER).

  11. Home monitoring of blood pressure

    OpenAIRE

    McGrath, Barry P

    2015-01-01

    Home blood pressure monitoring is the self-measurement of blood pressure by patients. In the diagnosis and management of high blood pressure it is complementary to 24-hour ambulatory blood pressure monitoring and clinic blood pressure measurements. Home monitoring can also help to identify white-coat and masked hypertension.

  12. Blood gas analysis for bedside diagnosis

    OpenAIRE

    Singh, Virendra; Khatana, Shruti; Gupta, Pranav

    2013-01-01

    Arterial blood gas is an important routine investigation to monitor the acid-base balance of patients, effectiveness of gas exchange, and the state of their voluntary respiratory control. Majority of the oral and maxillofacial surgeons find it difficult to interpret and clinically correlate the arterial blood gas report in their everyday practice. This has led to underutilization of this simple tool. The present article aims to simplify arterial blood gas analysis for a rapid and easy bedside...

  13. Blood glucose monitoring.

    Science.gov (United States)

    Davey, Sarah

    2014-06-10

    I found the CPD article on blood glucose monitoring and management in acute stroke care interesting and informative. As I am a mental health nursing student, my knowledge of chronic physical conditions is limited, so I learned a lot. PMID:24894257

  14. Effects of the transcutaneous electrode temperature on the accuracy of transcutaneous carbon dioxide tension

    DEFF Research Database (Denmark)

    Sørensen, Line C; Brage-Andersen, Lene; Greisen, Gorm

    2011-01-01

    The harmful effect of hypocapnia on the neonatal brain emphasizes the importance of monitoring arterial carbon dioxide tension (PaCO2). Transcutaneous monitoring of carbon dioxide (tcPCO2) reduces the need for arterial blood sampling. Drawbacks are high electrode temperature causing risks of skin...... burning. The aim was to determine the accuracy and precision of tcPCO2 at reduced electrode temperature....

  15. Gas exchange as monitored in mixed venous and arterial blood during experimental cardiopulmonary resuscitation.

    Science.gov (United States)

    Wiklund, L; Jorfeldt, L; Stjernström, H; Rubertsson, S

    1992-07-01

    Nineteen anaesthetized piglets were investigated. After catheterization and a stabilization period, ventricular fibrillation was induced with a transthoracic DC shock, after which a 10-min period of cardiopulmonary resuscitation (CPR) took place. CPR included manual chest compression and mechanical ventilation with pure oxygen. After 1 min of CPR, an infusion of alkaline buffer was begun and completed within 5 min. A total of 50 mmol of either sodium bicarbonate (n = 6) or tris buffer mixture (n = 7) were given. These two groups were compared with a third control group (n = 6) receiving the same volume of normal saline. After 8 min of CPR all animals were given 0.5 mg adrenaline i.v., and after 10 min DC shocks were used to revert the heart back to normal sinus rhythm. Our results demonstrate that blood flow and not ventilation is the limiting factor for the efficient disposal of CO2 during CPR. This also applied when the demand for CO2 transport was increased by administration of sodium bicarbonate. The respiratory exchange ratio increased 1.9-fold, indicating that the transport of carbon dioxide was less affected than that of oxygen. The estimated alveolo-arterial oxygen tension difference, shunt, and overall ventilation/perfusion ratio increased, creating an inverse hyperbolic relationship between arterial PCO2 and PO2. The difference between mixed venous and arterial PCO2 correlated well to the mixed venous PCO2, implying more efficient pulmonary elimination of PCO2 when the mixed venous PCO2 was high. Pulmonary gas exchange during CPR appears to be independent of alkaline buffer therapy in the form of sodium bicarbonate or tris buffer mixture.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1632165

  16. Real-time gastric motility monitoring using transcutaneous intraluminal impedance measurements (TIIM)

    International Nuclear Information System (INIS)

    The stomach plays a critical role in digestion, processing ingested food mechanically and breaking it up into particles, which can be effectively and efficiently processed by the intestines. When the motility of the stomach is compromised, digestion is adversely affected. This can lead to a variety of disorders. Current diagnostic techniques for gastric motility disorders are seriously lacking, and are based more on eliminating other possibilities rather than on specific tests. Presently, gastric motility can be assessed by monitoring gastric emptying, food transit, intragastric pressures, etc. The associated tests are usually stationary and of relatively short duration. The present study proposes a new method of measuring gastric motility, utilizing the attenuation of an oscillator-induced electrical signal across the gastric tissue, which is modulated by gastric contractions. The induced high-frequency oscillator signal is generated within the stomach, and is picked up transluminally by cutaneous electrodes positioned on the abdominal area connected to a custom-designed data acquisition instrument. The proposed method was implemented in two different designs: first a transoral catheter was modified to emit the signal inside the stomach; and second, a gastric retentive pill was designed to emit the signal. Both implementations were applied in vivo on two mongrel dogs (25.50 kg and 25.75 kg). Gastric contractions were registered and quantitatively compared to recordings from force transducers sutured onto the serosa of the stomach. Gastric motility indices were calculated for each minute, with transluminal impedance measurements and the measurements from the force transducers showing statistically significant (p < 0.05) Pearson correlation coefficients (0.65 ± 0.08 for the catheter-based design and 0.77 ± 0.03 for the gastric retentive pill design). These results show that transcutaneous intraluminal impedance measurement has the potential with further research

  17. Noninvasive Transcutaneous Monitoring in Long-Term Follow-Up of Patients With Thromboangiitis Obliterans Treated With Intravenous Iloprost.

    Science.gov (United States)

    Melillo, Elio; Grigoratos, Chrysanthos; Sanctis, Francesco De; Spontoni, Paolo; Nuti, Marco; Dell'Omodarme, Matteo; Ferrari, Mauro; Balbarini, Alberto

    2015-07-01

    We evaluated the effectiveness of intravenous iloprost (IVI) in outpatients with thromboangiitis obliterans (TAO) and lower limb noninvasive transcutaneous monitoring (TCM) at follow-up (FU). Ten consecutive patients with TAO underwent IVI therapy. Transcutaneous oxygen (TcPo 2) and carbon dioxide (TcPco 2) determination and laser Doppler flowmetry (LDF) were performed before and after IVI at 3, 6, and 12 months of FU. Clinical response was positive in 7 patients, whereas 3 nonresponders underwent a second IVI cycle with 1 showing a late positive clinical response. After 12 months of FU, all patients were alive without amputations. Supine and dependent TcP2 levels significantly improved (P < .005). Hallux LDF values showed significant change with the maximal hyperemic test at 44°C (P < .005). Forefoot maximal hyperemic test at 44°C LDF (P < .005) and improved venous arterial reflex (P < .05) showed statistically significant time evolution. We demonstrated some degree of IVI effectiveness and evaluated TCM in patients with TAO. PMID:25005765

  18. Effects of the transcutaneous electrode temperature on the accuracy of transcutaneous carbon dioxide tension

    OpenAIRE

    Sørensen, Line C; Brage-Andersen, Lene; Greisen, Gorm

    2011-01-01

    Aim The harmful effect of hypocapnia on the neonatal brain emphasizes the importance of monitoring arterial carbon dioxide tension (PaCO2). Transcutaneous monitoring of carbon dioxide (tcPCO2) reduces the need for arterial blood sampling. Drawbacks are high electrode temperature causing risks of skin burning. The aim was to determine the accuracy and precision of tcPCO2 at reduced electrode temperature. Methods Forty newborns (GA 24.9-41.7) were included. Two tc-monitors were applied (TCM4, R...

  19. Monitoring Blood Sugar: The Importance of Checking Blood Sugar Levels

    Science.gov (United States)

    ... 5 Things to Know About Zika & Pregnancy Monitoring Blood Sugar KidsHealth > For Parents > Monitoring Blood Sugar Print ... Other Tests Record Keeping The Importance of Checking Blood Sugar Levels Besides helping to keep blood sugar ...

  20. A novel system for transcutaneous application of carbon dioxide causing an "artificial Bohr effect" in the human body.

    Directory of Open Access Journals (Sweden)

    Yoshitada Sakai

    Full Text Available BACKGROUND: Carbon dioxide (CO(2 therapy refers to the transcutaneous administration of CO(2 for therapeutic purposes. This effect has been explained by an increase in the pressure of O(2 in tissues known as the Bohr effect. However, there have been no reports investigating the oxygen dissociation of haemoglobin (Hb during transcutaneous application of CO(2in vivo. In this study, we investigate whether the Bohr effect is caused by transcutaneous application of CO2 in human living body. METHODS: We used a novel system for transcutaneous application of CO(2 using pure CO(2 gas, hydrogel, and a plastic adaptor. The validity of the CO(2 hydrogel was confirmed in vitro using a measuring device for transcutaneous CO(2 absorption using rat skin. Next, we measured the pH change in the human triceps surae muscle during transcutaneous application of CO(2 using phosphorus-31 magnetic resonance spectroscopy ((31P-MRS in vivo. In addition, oxy- and deoxy-Hb concentrations were measured with near-infrared spectroscopy in the human arm with occulted blood flow to investigate O2 dissociation from Hb caused by transcutaneous application of CO(2. RESULTS: The rat skin experiment showed that CO(2 hydrogel enhanced CO(2 gas permeation through the rat skin. The intracellular pH of the triceps surae muscle decreased significantly 10 min. after transcutaneous application of CO(2. The NIRS data show the oxy-Hb concentration decreased significantly 4 min. after CO(2 application, and deoxy-Hb concentration increased significantly 2 min. after CO(2 application in the CO(2-applied group compared to the control group. Oxy-Hb concentration significantly decreased while deoxy-Hb concentration significantly increased after transcutaneous CO(2 application. CONCLUSIONS: Our novel transcutaneous CO(2 application facilitated an O(2 dissociation from Hb in the human body, thus providing evidence of the Bohr effect in vivo.

  1. A new transcutaneous bidirectional communication for monitoring implanted artificial heart using the human body as a conductive medium.

    Science.gov (United States)

    Okamoto, Eiji; Kato, Yoshikuni; Seino, Kazuyuki; Miura, Hidekazu; Shiraishi, Yasuyuki; Yambe, Tomoyuki; Mitamura, Yoshinori

    2012-10-01

    A transcutaneous communication system (TCS) is a key technology for monitoring and controlling artificial hearts and other artificial organs in the body. In this study, we developed a new TCS that uses the human body as a conductive medium. Direct data exchange provides a higher level of communication security compared to that of wireless methods without physical constraints such as an external wire. The external and internal units of the new TCS each consist mainly of a data transmitter and a data receiver. The data transmitter has an amplitude shift keying (ASK) modulator (carrier frequencies: 4 and 10 MHz) and an electrode. The ASK-modulated data current is led into the body through the electrode, and it flows back to the energy source through the body, the data receiver, and the earth ground that includes all conductors and dielectrics in the environment that are in close proximity to the patient. Performance of the TCS was evaluated by a communication test on the surface of the human body and in an animal experiment using a goat. The TCS was able to transmit data concurrently for 4 weeks between everywhere on the surface of the body and everywhere inside the body under full-duplex communication at a transmission rate of 115 kbps. The power consumption of each TCS unit was 125 mW with an ASK-modulated current of 7 mA (root-mean-square). While further study is required to secure its safety, the newly developed TCS has promise to be a next-generation transcutaneous communication device. PMID:22812488

  2. How to monitor blood glucose.

    Science.gov (United States)

    Dunning, Trisha

    2016-01-27

    Rationale and key points Capillary blood glucose monitoring is an essential component of diabetes care. Blood glucose tests provide important information about how the body is controlling blood glucose metabolism, and the effect of glucose-lowering medicines, illness and stress. ▶ The nurse should consider the rationale for testing blood glucose each time they perform a test, and reflect on the result, taking into consideration the patient's blood glucose target range and recommended care guidelines. ▶ Blood glucose testing times and testing frequency should be planned to suit the glucose-lowering medicine regimen and the clinical situation. Reflective activity Clinical skills articles can help update your practice and ensure it remains evidence based. Apply this article to your practice. Reflect on and write a short account of: 1. What you have gained from this article. 2. How this article will influence your practice when monitoring blood glucose. Subscribers can upload their reflective accounts at: rcni.com/portfolio . PMID:26967884

  3. Variability of Transcutaneous Oxygen and Carbon Dioxide Pressure Measurements Associated with Sensor Location.

    Science.gov (United States)

    Górska, K; Korczyński, P; Maskey-Warzęchowska, M; Chazan, R; Krenke, R

    2015-01-01

    Transcutaneous measurement of oxygen and carbon dioxide pressure (PtcO2 and PtcCO2) is useful in gas exchange monitoring. However, the relationship between PtcO2, pulse oximetry (SaO2) and arterial blood gases (ABG) is unclear. The aim of the present study was to compare PtcO2 and PtcCO2 with SaO2 and ABG, to evaluate the effect of sensor location on the results and stability of PtcO2 and PtcCO2, and to assess the impact of body composition on PtcO2 and PtcCO2. PtcO2 and PtcCO2 were measured in 20 healthy volunteers at three locations: right second intercostal space, lateral surface of the abdomen, and the inner surface of the left arm. The results were recorded 10, 15, and 20 min after sensor fixation and compared with SaO2 and ABG measured 20 min after electrode placement on the chest. Body composition was evaluated by bioimpedance. The findings were that PtcO2 was stable on the chest; but on the arm and abdomen it increased and reached maximum at 20 min. Transcutaneous PCO2 stabilized at 10 min in all the three locations. No significant correlations between PtcO2 and SaO2 or PaO2 were found. Transcutaneous PCO2 correlated with PaCO2. Both PtcO2 and PtcCO2 were not influenced by body composition. We conclude that the value of PtcO2 in monitoring of blood oxygenation was not unequivocally confirmed; PtcCO2 reliably reflects PaCO2, irrespective of sensor location. Body composition does not affect PtcO2 and PtcCO2. PMID:25820668

  4. Incidence and severity of respiratory insufficiency detected by transcutaneous carbon dioxide monitoring after cardiac surgery and intensive care unit discharge.

    Science.gov (United States)

    Lagow, Elaine E; Leeper, Barbara Bobbi; Jennings, Linda W; Ramsay, Michael A E

    2013-10-01

    Patients undergoing coronary artery bypass surgery and/or heart valve surgery using a median sternotomy approach coupled with the use of cardiopulmonary bypass often experience pulmonary complications in the postoperative period. These patients are initially monitored in an intensive care unit (ICU) but after discharge from this unit to the ward they may still have compromised pulmonary function. This dysfunction may progress to significant respiratory failure that will cause the patient to return to the ICU. To investigate the severity and incidence of respiratory insufficiency once the patient has been discharged from the ICU to the ward, this study used transcutaneous carbon dioxide monitoring to determine the incidence of unrecognized inadequate ventilation in 39 patients undergoing the current standard of care. The incidence and severity of hypercarbia, hypoxia, and tachycardia in post-cardiac surgery patients during the first 24 hours after ICU discharge were found to be high, with severe episodes of each found in 38%, 79%, and 44% of patients, respectively. PMID:24082412

  5. Transcutaneous Intraluminal Impedance Measurement for Minimally Invasive Monitoring of Gastric Motility: Validation in Acute Canine Models

    Directory of Open Access Journals (Sweden)

    Michael D. Poscente

    2014-01-01

    Full Text Available Transcutaneous intraluminal impedance measurement (TIIM is a new method to cutaneously measure gastric contractions by assessing the attenuation dynamics of a small oscillating voltage emitted by a battery-powered ingestible capsule retained in the stomach. In the present study, we investigated whether TIIM can reliably assess gastric motility in acute canine models. Methods. Eight mongrel dogs were randomly divided into 2 groups: half received an active TIIM pill and half received an identically sized sham capsule. After 24-hour fasting and transoral administration of the pill (active or sham, two force transducers (FT were sutured onto the antral serosa at laparotomy. After closure, three standard cutaneous electrodes were placed on the abdomen, registering the transluminally emitted voltage. Thirty-minute baseline recordings were followed by pharmacological induction of gastric contractions using neostigmine IV and another 30-minute recording. Normalized one-minute baseline and post-neostigmine gastric motility indices (GMIs were calculated and Pearson correlation coefficients (PCCs between cutaneous and FT GMIs were obtained. Statistically significant GMI PCCs were seen in both baseline and post-neostigmine states. There were no significant GMI PCCs in the sham capsule test. Further chronic animal studies of this novel long-term gastric motility measurement technique are needed before testing it on humans.

  6. The application of transcutaneous CO2 pressure monitoring in the anesthesia of obese patients undergoing laparoscopic bariatric surgery.

    Directory of Open Access Journals (Sweden)

    Shijiang Liu

    Full Text Available To investigate the correlation and accuracy of transcutaneous carbon dioxide partial pressure (PTCCO2 with regard to arterial carbon dioxide partial pressure (PaCO2 in severe obese patients undergoing laparoscopic bariatric surgery. Twenty-one patients with BMI>35 kg/m(2 were enrolled in our study. Their PaCO2, end-tidal carbon dioxide partial pressure (PetCO2, as well as PTCCO2 values were measured at before pneumoperitoneum and 30 min, 60 min, 120 min after pneumoperitoneum respectively. Then the differences between each pair of values (PetCO2-PaCO2 and. (PTCCO2-PaCO2 were calculated. Bland-Altman method, correlation and regression analysis, as well as exact probability method and two way contingency table were employed for the data analysis. 21 adults (aged 19-54 yr, mean 29, SD 9 yr; weight 86-160 kg, mean 119.3, SD 22.1 kg; BMI 35.3-51.1 kg/m(2, mean 42.1,SD 5.4 kg/m(2 were finally included in this study. One patient was eliminated due to the use of vaso-excitor material phenylephrine during anesthesia induction. Eighty-four sample sets were obtained. The average PaCO2-PTCCO2 difference was 0.9 ± 1.3 mmHg (mean ± SD. And the average PaCO2-PetCO2 difference was 10.3 ± 2.3 mmHg (mean ± SD. The linear regression equation of PaCO2-PetCO2 is PetCO2 = 11.58+0.57 × PaCO2 (r(2 = 0.64, P<0.01, whereas the one of PaCO2-PTCCO2 is PTCCO2 = 0.60 + 0.97 × PaCO2 (r(2 = 0.89. The LOA (limits of agreement of 95% average PaCO2-PetCO2 difference is 10.3 ± 4.6 mmHg (mean ± 1.96 SD, while the LOA of 95% average PaCO2-PTCCO2 difference is 0.9 ± 2.6 mmHg (mean ± 1.96 SD. In conclusion, transcutaneous carbon dioxide monitoring provides a better estimate of PaCO2 than PetCO2 in severe obese patients undergoing laparoscopic bariatric surgery.

  7. Transcutaneous oxygen tension in imminent foot gangrene

    DEFF Research Database (Denmark)

    Tønnesen, K H

    1978-01-01

    Transcutaneous oxygen tension at 44 degree C and maximal isotope clearance (90m Tc-pretechnetate + histramine) just proximal to the 1st toe and systolic toe blood pressure (strain gauge) were studied on a tilt table in patients with various degrees of obstructive arteriosclerotic disease. In legs......) from the arterioles into the tissue sink and counter current gas shunting. The hypoxia in spite of a positive perfusion pressure up to 50 mmHg explains our experience that ischemic ulcers in feet such low pressures never heal.......Transcutaneous oxygen tension at 44 degree C and maximal isotope clearance (90m Tc-pretechnetate + histramine) just proximal to the 1st toe and systolic toe blood pressure (strain gauge) were studied on a tilt table in patients with various degrees of obstructive arteriosclerotic disease. In legs...... with moderate obstruction, the oxygen tension reached zero at a toe systolic blood pressure of 5--10 mmHg (tilt toe up) and reached arterial oxygen tension at about 50 to 70 mmHg (tilt toe down). In legs withsevere arterial obstruction and ischaemic rest pain, oxygen tension rose from zero not before...

  8. The application of transcutaneous CO2 pressure monitoring in the anesthesia of obese patients undergoing laparoscopic bariatric surgery.

    Science.gov (United States)

    Liu, Shijiang; Sun, Jie; Chen, Xing; Yu, Yingying; Liu, Xuan; Liu, Cunming

    2014-01-01

    To investigate the correlation and accuracy of transcutaneous carbon dioxide partial pressure (PTCCO2) with regard to arterial carbon dioxide partial pressure (PaCO2) in severe obese patients undergoing laparoscopic bariatric surgery. Twenty-one patients with BMI>35 kg/m(2) were enrolled in our study. Their PaCO2, end-tidal carbon dioxide partial pressure (PetCO2), as well as PTCCO2 values were measured at before pneumoperitoneum and 30 min, 60 min, 120 min after pneumoperitoneum respectively. Then the differences between each pair of values (PetCO2-PaCO2) and. (PTCCO2-PaCO2) were calculated. Bland-Altman method, correlation and regression analysis, as well as exact probability method and two way contingency table were employed for the data analysis. 21 adults (aged 19-54 yr, mean 29, SD 9 yr; weight 86-160 kg, mean 119.3, SD 22.1 kg; BMI 35.3-51.1 kg/m(2), mean 42.1,SD 5.4 kg/m(2)) were finally included in this study. One patient was eliminated due to the use of vaso-excitor material phenylephrine during anesthesia induction. Eighty-four sample sets were obtained. The average PaCO2-PTCCO2 difference was 0.9 ± 1.3 mmHg (mean ± SD). And the average PaCO2-PetCO2 difference was 10.3 ± 2.3 mmHg (mean ± SD). The linear regression equation of PaCO2-PetCO2 is PetCO2 = 11.58+0.57 × PaCO2 (r(2) = 0.64, Ptranscutaneous carbon dioxide monitoring provides a better estimate of PaCO2 than PetCO2 in severe obese patients undergoing laparoscopic bariatric surgery. PMID:24699267

  9. Noninvasive monitoring of PaCO2 during one-lung ventilation and minimal access surgery in adults: End-tidal versus transcutaneous techniques

    OpenAIRE

    Cox, Paul; Tobias, Joseph D.

    2007-01-01

    Background: Previous studies have suggested that end-tidal CO2 (ET-CO2) may be inaccurate during one-lung ventilation (OLV). This study was performed to compare the accuracy of the noninvasive monitoring of PCO2 using transcutaneous CO2 (TC-CO2) with ET-CO2 in patients undergoing video-assisted thoracoscopic surgery (VATS) during OLV. Materials and Methods: In adult patients undergoing thoracoscopic surgical procedures, PCO2 was simultaneously measured with TC-CO2 and ET-CO2 devices and compa...

  10. Transcutaneous cervical esophagus ultrasound in adults: Relation with ambulatory 24-h pH-monitoring and esophageal manometry

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    AIM: To determine the gastroesophageal refluxate in the cervical esophagus (CE) and measure transcutaneous cervical esophageal ultrasound (TCEUS) findings [anterior wall thickness (WT) of CE, esophageal luminal diameter (ELD), esophageal diameter (ED)]; to compare TCEUS findings in the patient subgroups divided according to 24-h esophageal pH monitoring and manometry; and to investigate possible cut-off values according to the TCEUS findings as a predictor of gastroesophageal reflux (GER).METHODS: In 45/500 patients, refluxate was visualized in TCEUS. 38/45 patients underwent esophagogastroduo denoscopy (EGD), 24-h pH monitoring and manometry.RESULTS: The 38 patients were grouped according to 24-h pH monitoring as follows: Group A: GER-positive (n = 20) [Includes Group B: isolated proximal reflux (PR) (n = 6), Group C: isolated distal reflux (DR) (n = 6),and Group D: both PR/DR (n = 8)]; Group E: no reflux (n = 13); and Group F: hypersensitive esophagus (HSE) (n= 5). Groups B + D indicated total PR patients (n = 14),Groups E + F reflux-negatives with HSE (n = 18), and Groups A + F reflux-positives with HSE (n = 25). When the 38 patients were grouped according to manometry findings, 24 had normal esophageal manometry; 7 had hypotensive and 2 had hypertensive lower esophageal sphincter (LES); and 5 had ineffective esophageal motility disorder (IEM). The ELD measurement was greater in group A + F than group E (P = 0.023, 5.0 ± 1.3 vs 3.9 ± 1.4 mm). In 27/38 patients, there was at least one pathologic acid reflux and/or pathologic manometry finding. The cut-off value for ELD of 4.83 mm had 79% sensitivity and 61% specificity in predicting the PR between Groups B + D and E (AUC = 0.775, P = 0.015).CONCLUSION: Visualizing refluxate in TCEUS was useful as a pre-diagnostic tool for estimating GER or manometric pathology in 71.1% of adults in our study,but it was not diagnostic for CE WT.

  11. Rugged and breathable forms of stretchable electronics with adherent composite substrates for transcutaneous monitoring

    Science.gov (United States)

    Jang, Kyung-In; Han, Sang Youn; Xu, Sheng; Mathewson, Kyle E.; Zhang, Yihui; Jeong, Jae-Woong; Kim, Gwang-Tae; Webb, R. Chad; Lee, Jung Woo; Dawidczyk, Thomas J.; Kim, Rak Hwan; Song, Young Min; Yeo, Woon-Hong; Kim, Stanley; Cheng, Huanyu; Rhee, Sang Il; Chung, Jeahoon; Kim, Byunggik; Chung, Ha Uk; Lee, Dongjun; Yang, Yiyuan; Cho, Moongee; Gaspar, John G.; Carbonari, Ronald; Fabiani, Monica; Gratton, Gabriele; Huang, Yonggang; Rogers, John A.

    2014-09-01

    Research in stretchable electronics involves fundamental scientific topics relevant to applications with importance in human healthcare. Despite significant progress in active components, routes to mechanically robust construction are lacking. Here, we introduce materials and composite designs for thin, breathable, soft electronics that can adhere strongly to the skin, with the ability to be applied and removed hundreds of times without damaging the devices or the skin, even in regions with substantial topography and coverage of hair. The approach combines thin, ultralow modulus, cellular silicone materials with elastic, strain-limiting fabrics, to yield a compliant but rugged platform for stretchable electronics. Theoretical and experimental studies highlight the mechanics of adhesion and elastic deformation. Demonstrations include cutaneous optical, electrical and radio frequency sensors for measuring hydration state, electrophysiological activity, pulse and cerebral oximetry. Multipoint monitoring of a subject in an advanced driving simulator provides a practical example.

  12. Real-time gastric motility monitoring using transcutaneous intraluminal impedance measurements (TIIM).

    Science.gov (United States)

    Poscente, M D; Wang, G; Filip, D; Ninova, P; Yadid-Pecht, O; Andrews, C N; Mintchev, M P

    2014-02-01

    The stomach plays a critical role in digestion, processing ingested food mechanically and breaking it up into particles, which can be effectively and efficiently processed by the intestines. When the motility of the stomach is compromised, digestion is adversely affected. This can lead to a variety of disorders. Current diagnostic techniques for gastric motility disorders are seriously lacking, and are based more on eliminating other possibilities rather than on specific tests. Presently, gastric motility can be assessed by monitoring gastric emptying, food transit, intragastric pressures, etc. The associated tests are usually stationary and of relatively short duration. The present study proposes a new method of measuring gastric motility, utilizing the attenuation of an oscillator-induced electrical signal across the gastric tissue, which is modulated by gastric contractions. The induced high-frequency oscillator signal is generated within the stomach, and is picked up transluminally by cutaneous electrodes positioned on the abdominal area connected to a custom-designed data acquisition instrument. The proposed method was implemented in two different designs: first a transoral catheter was modified to emit the signal inside the stomach; and second, a gastric retentive pill was designed to emit the signal. Both implementations were applied in vivo on two mongrel dogs (25.50 kg and 25.75 kg). Gastric contractions were registered and quantitatively compared to recordings from force transducers sutured onto the serosa of the stomach. Gastric motility indices were calculated for each minute, with transluminal impedance measurements and the measurements from the force transducers showing statistically significant (p impedance measurement has the potential with further research and development to become a useful diagnostic technique. PMID:24398539

  13. Vasogen's immune modulation therapy (IMT) improves postischemic foot skin blood flow and transcutaneous pO(2) recovery rates in patients with advanced peripheral arterial occlusive disease

    DEFF Research Database (Denmark)

    Edvinsson, L I; Edvinsson, M L; Angus Deveber, G

    2003-01-01

    or Vasogen's IMT over a 9-week period. Dorsal foot skin blood flow was assessed directly using laser Doppler fluxmetry (LDF) and indirectly using measurement of transcutaneous pO(2) (tcpO(2)). Key outcome measures of skin blood flow were, for LDF: resting values, peak postischemic values, and the total time...... to reach peak values following release from 4 min of total foot ischemia and, for tcpO(2): resting values and the time for tcpO(2) to reach 50% of the pre-ischemia value. Measurements were carried out at baseline, at weeks 3, 6, and 9, and at 2 months post-therapy. RESULTS: No significant differences were...... in time to peak blood flow (p=0.026) vs a 7.9 s decrease in the placebo group (p=ns). Similar but less striking results were achieved for tcpO(2) recovery time to 50% of pre-ischemia values (treated group, p=0.035; placebo group, p=ns). CONCLUSION: Vasogen's IMT improved recovery rates of postischemic...

  14. Design of a prospective clinical study on the agreement between the Continuous GlucoseMonitor, a novel device for CONTinuous ASSessment of blood GLUcose levels, and the RAPIDLab® 1265 blood gas analyser: The CONTASSGLU study

    Directory of Open Access Journals (Sweden)

    Zimmermann Johannes B

    2012-09-01

    Full Text Available Abstract Background Although a device is needed to continuously measure blood glucose levels within an intensive care setting, and several large-scale prospective studies have shown that patients might benefit from intensive insulin, potassium, or glucose therapy during intensive care, no devices are currently available to continuously assess blood glucose levels in critically ill patients. We conceived the study described here to evaluate the clinical use of the Continuous Glucose Monitor (CGM performed via a central vein, and to determine the impact of phenomena, such as drift and shift, on the agreement between the CGM and a RAPIDLab® 1265 blood gas analyser (BGA. Methods/design In the CONTinuous ASSessment of blood GLUcose (CONTASSGLU study, up to 130 patients under intensive care will be fitted with the CGM, an ex vivo device that continuously measures blood glucose and lactate levels. Readings from the device taken 8 h after initial placement and calibration will be compared with values measured by a BGA. For this study, we chose the BGA as it is an established standard point-of-care device, instead of the devices used in certified central laboratories. Nevertheless, we will also independently compare the results from the point-of-care BGA with those determined by a central laboratory-based device. Blood samples will be collected from each patient from the same site in which the CGM will measure blood glucose. Consequently, each participant will serve as their own control, and no randomisation is necessary. The 95% limits of agreement and the corresponding confidence intervals will be calculated and compared with a prespecified clinically acceptable relative difference of 20%. Discussion Several attempts have been made to develop a device to continuously measure blood glucose levels within an intensive care setting or to use the devices that were originally designed for diabetes management, as several of these devices are already

  15. Home blood pressure monitoring for mild hypertensives.

    OpenAIRE

    Midanik, L T; Resnick, B; Hurley, L B; Smith, E J; Mccarthy, M.

    1991-01-01

    A clinical trial of 204 untreated patients with mild hypertension was conducted to assess the effect of home blood pressure monitoring on blood pressure level, pharmacologic treatment, reduction of risk factors, and use of health services. After 1 year, no statistically significant differences were found between the treatment and control groups. The findings indicate that, while home blood pressure monitoring may be useful, it has no measurable short-term impact on these aspects of blood pres...

  16. The Application of Transcutaneous CO2 Pressure Monitoring in the Anesthesia of Obese Patients Undergoing Laparoscopic Bariatric Surgery

    OpenAIRE

    Liu, Shijiang; Sun, Jie; Chen, Xing; Yu, Yingying; Liu, Xuan; Liu, Cunming

    2014-01-01

    To investigate the correlation and accuracy of transcutaneous carbon dioxide partial pressure (PTCCO2) with regard to arterial carbon dioxide partial pressure (PaCO2) in severe obese patients undergoing laparoscopic bariatric surgery. Twenty-one patients with BMI>35 kg/m2 were enrolled in our study. Their PaCO2, end-tidal carbon dioxide partial pressure (PetCO2), as well as PTCCO2 values were measured at before pneumoperitoneum and 30 min, 60 min, 120 min after pneumoperitoneum respectively. ...

  17. Transcutaneous continuous carbon dioxide tension monitoring reduced incidence, degree and duration of hypercapnia during combined regional anaesthesia and monitored anaesthesia care in shoulder surgery patients.

    Science.gov (United States)

    Baulig, Werner; Keselj, Marija; Baulig, Barbara; Guzzella, Sandra; Borgeat, Alain; Aguirre, José

    2015-08-01

    We studied the impact of transcutaneous continuous carbon dioxide tension (PtcCO2) monitoring on ventilation and oxygenation during monitored anaesthesia care (MAC) in patients scheduled for shoulder surgery with continuous interscalene block. 50 patients were randomised either to the intervention (I-group) or the control (C-group) group. In both groups MAC was performed using target controlled infusion of propofol and remifentanil. MAC regimen was adapted to PtcCO2 values in the I-group, whereas the C-group was blinded for these values. Primary outcome was the incidence, degree and duration of hypoventilation stages. In the I-group and the C-group the mean ± SD [range] of PtcCO2 and PaCO2 was 5.79 ± 0.84 [4.37] and 5.44 ± 0.59 [2.78] kPa, as well as 6.41 ± 1.17 [6.29] and 6.01 ± 0.96 [7.15] kPa. Periods of PtcCO2/PaCO2 > 6.5 kPa were 21.0 ± 35.7/1.2 ± 4.2 min in the I-group and 45.6 ± 40.0/18.6 ± 26.8 min in the C-group. Severe hypercapnia (PtcCO2 and/or PaCO2 > 7.5 kPa) was dected in 3/0 patients of the I-group and in 10/3 patients of the C-group. PtcCO2 and PaCO2 showed a strong correlation (r = 0.78), but only moderate agreement with a mean bias (LOA) of -0.37 (-1.69; +0.95) kPa showing an overestimation of the PaCO2. Sensitivity and specificity of PtcCO2 to detect changes of PaCO2 was 0.94 and 0.56, respectively. In no patient SpO2 or SaO2 values lower than 90% were measured. Despite a moderate agreement between PaCO2 and PtcCO2 the PtcCO2 monitoring significantly reduced incidence, degree and duration of hypercapnia in shoulder surgery patients with MAC. PMID:25312782

  18. Diabetes: Monitoring Your Blood Sugar Level

    Science.gov (United States)

    ... to Web version Diabetes | Monitoring Your Blood Sugar Level What tests can I use to check my blood sugar level? There are 2 blood tests that can help ... the past 2-3 months. Testing your A1C level every 3 months is the best way for ...

  19. Transcutaneous oxygen tension in imminent foot gangrene

    DEFF Research Database (Denmark)

    Tønnesen, K H

    1978-01-01

    Transcutaneous oxygen tension at 44 degree C and maximal isotope clearance (90m Tc-pretechnetate + histramine) just proximal to the 1st toe and systolic toe blood pressure (strain gauge) were studied on a tilt table in patients with various degrees of obstructive arteriosclerotic disease. In legs...

  20. Blood monitoring systems and methods thereof

    Science.gov (United States)

    Mir, Jose (Inventor); Zander, Dennis (Inventor)

    2012-01-01

    A blood monitoring system is capable of monitoring the blood of a subject in vivo. The blood monitoring system comprises: 1) an array of movable microneedle micromachined within associated wells; 2) array of motion actuators able to move each needle in and out of their associated wells; 3) array of microvalves associated with each microneedle able to control the flow of air around the microneedle; 4) an array of chemical sensors inserted into patient by movable microneedles; 5) an array of inductors able to measure chemical concentration in the vicinity of inserted chemical sensors; 6) conducting vias that provide timed actuating signal signals from a control system to each motion actuator; 7) conducting vias that transmit signal produced by array of chemical sensors to the control system for processing, although the blood monitoring system can comprise other numbers and types of elements in other configurations.

  1. Gas House Autonomous System Monitoring

    Science.gov (United States)

    Miller, Luke; Edsall, Ashley

    2015-01-01

    Gas House Autonomous System Monitoring (GHASM) will employ Integrated System Health Monitoring (ISHM) of cryogenic fluids in the High Pressure Gas Facility at Stennis Space Center. The preliminary focus of development incorporates the passive monitoring and eventual commanding of the Nitrogen System. ISHM offers generic system awareness, adept at using concepts rather than specific error cases. As an enabler for autonomy, ISHM provides capabilities inclusive of anomaly detection, diagnosis, and abnormality prediction. Advancing ISHM and Autonomous Operation functional capabilities enhances quality of data, optimizes safety, improves cost effectiveness, and has direct benefits to a wide spectrum of aerospace applications.

  2. Blood sugar monitoring with laser diode

    Science.gov (United States)

    Zhang, Xiqin; Chen, Jianhong; Yeo, Joon Hock

    2006-09-01

    In this paper, the non-invasive measurement of blood sugar level was studied by use of near infrared laser diode. The in-vivo experiments were carried out using laser diodes with wavelength 1625nm and 1650nm. Several volunteers were tested before and after drinking glucose solution. We took blood from a fingertip and measured its concentration with a glucose meter while taking signal voltage from laser diode system. The signal voltage was processed by using a computer and blood absorption was obtained. The results show that blood sugar level and blood absorption have similar trends before and after drinking glucose solution. We also compared the trends of drinking glucose solution and pure water and the results show that the difference of blood absorption is obvious. From the results we can see that laser diode is suitable for blood glucose monitoring.

  3. Effects of transcutaneous electrical nerve stimulation (TENS) on arterial stiffness and blood pressure in resistant hypertensive individuals: study protocol for a randomized controlled trial

    OpenAIRE

    Vilela-Martin, José Fernando; Giollo-Junior, Luiz Tadeu; Chiappa, Gaspar Rogério; Cipriano-Junior, Gerson; Vieira, Paulo José Cardoso; dos Santos Ricardi, Fábio; Paz-Landim, Manoel Ildefonso; de Andrade, Days Oliveira; Cestário, Elizabeth do Espírito Santo; Cosenso-Martin, Luciana Neves; Yugar-Toledo, Juan Carlos; Cipullo, José Paulo

    2016-01-01

    Background Resistant hypertension (RH) treatment requires an adequate and intense therapeutic approach. However, the results are not always satisfactory despite intensive treatment. Of the different pathophysiological mechanisms involved in the pathogenesis of RH, sympathetic overstimulation and therapies that block the sympathetic system have been widely studied. These approaches, however, are invasive and expensive. Another possible approach is by transcutaneous electrical nerve stimulation...

  4. A fiberoptic sensor for tissue carbon dioxide monitoring

    OpenAIRE

    Davenport, J. J.; Hickey, M.; Phillips, J. P.; Kyriacou, P. A.

    2015-01-01

    We present a new fiberoptic carbon dioxide sensor for transcutaneous and mucosa (indwelling) blood gas monitoring. The sensor is based on optical fluorescence of molecules sensitive to pH changes associated with dissolved CO2. A three layer chemical coating was dip-coated onto the distal tip of an optical fiber (600μm core radius). It contained the 50mg/ml 'polym H7', a coating polymer bonded to a fluorescence indicator dye, along with 125mg/ml of the transfer agent tetraoctylammonium hydroxi...

  5. Home and ambulatory blood pressure monitoring: when? who?

    Science.gov (United States)

    Kantarci, Gülçin

    2013-12-01

    Blood pressure measurement in the diagnosis and management of hypertension, including the technique required for ambulatory blood pressure monitoring and home blood pressure monitoring, will be reviewed in this article. Home and ambulatory measurements are widely used, both to confirm the diagnosis and to improve adherence to therapy. The major advantage of out-of-office blood pressure monitoring is that it provides a large number of blood pressure measurements away from the medical environment, which represents a more reliable assessment of actual blood pressure than office blood pressure. The advantage of ambulatory blood pressure monitoring is its unique ability to measure nocturnal blood pressure. Although not fully validated in large-scale clinical trials, ambulatory blood pressure monitoring appears to correlate best with prognosis. Ambulatory blood pressure monitoring and home blood pressure monitoring provide somewhat different information on the subject's blood pressure status, and the two methods should thus be regarded as complementary, rather than competitive or alternative. PMID:25019016

  6. A Novel Infrared Gas Monitor

    Science.gov (United States)

    Wang, Yingding; Zhong, Hongjie

    2000-03-01

    In the paper a novel non-dispersive infrared(IR) gas monitor is described.It is based on the principle that certain gases absorb IR radiation at specific(and often unique) wavelengths.Conventional devices typically include several primary components:a broadband source, usually an incandescent filament,a rotating chopper shutter,a narrow-band filter,a sample tube and a detector. We have developed a number of IR light emitting diodes(LED) having narrow optical bandwidths and which can be intensity modulated by electrical means,for example InAsSbP(4.2 micron)LED.The IR LED can thus replace the thermal source,narrow-band filter and chopper assembly of the conventional IR gas monitor,yielding a solid state,low- powered,compact and almost maintenance-free instrument with high sensitivity and stability and which free of the effects of mechanical vibration too. The detector used in the IR gas monitor is the solid-state detector,such as PbS,PbSe, InSb,HgCdTe,TGS,LT and PZT detector etc. The different configuration of the IR gas monitor is designed.For example,two-path version for measuring methane concentration by monitoring the 3.31 micron absorption band,it can eliminate the interference effects,such as to compensate for LED intensity changes caused by power and temperature variations,and for signal fluctuations due to changes in detector bias. we also have designed portable single-beam version without the sample tube.Its most primary advantage is very cheap(about cost USD 30 ).It measures carbon dioxide concentration by monitoring the 4.25 micron absorption band.Thought its precisions is low,it is used to control carbon dioxide concentration in the air in the green houses and plastic houses(there are about twenty millon one in the China).Because more carbon dioxide will increase the quanity of vegetable and flower production to a greatextent. It also is used in medical,sanitary and antiepidemic applications,such as hospital, store,hotel,cabin and ballroom etc. Key words

  7. [Ambulatory invasive and noninvasive blood pressure monitoring].

    Science.gov (United States)

    Bachmann, K; Wortmann, A; Engels, G

    1989-08-01

    Indirect arterial blood pressure measurement has not changed substantially since its introduction by Riva-Rocci in 1986, Korotkoff in 1905 and Recklinghausen in 1906. Random measurements in the clinic or practice reflect only incompletely the dynamic nature of the blood pressure. Blood pressure recordings by patients themselves have provided more information through better temporal resolution, however, exact characterization of the pressure response throughout the entire day and, in particular, during physical exertion are not enabled; the latter are especially important with regard to diagnosis and treatment of hypertension. In 1966, therefore, radiotelemetric transmission of direct, continuously-measured arterial blood pressure was developed which enabled beat-to-beat registration of blood pressure, outside the laboratory, during normal daily life and sport activities. The initial results showed a marked variability of the blood pressure during the course of the day (Figure 1). Excessive blood pressure increases were observed during exposure to cold, static and dynamic exercise and to a lesser degree during automobile driving and exposure to heat (Figure 3). Recording of the pressure curves via transmission by radiotelemetry shows a high degree of accuracy and temporal resolution, spatial and situational freedom but is invasive and costly in terms of personnel. The same holds true for direct continuous blood pressure registration and storage on a portable tape recorder. Portable, automatic blood pressure measuring units for ambulatory monitoring employ indirect auscultatory or oscillometric recording with a cuff. As compared with the radiotelemetric direct continuous blood pressure measuring method, the indirect method has subordinate temporal resolution, that is, the measurements are only intermittent.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2676813

  8. Beat-to-Beat Blood Pressure Monitor

    Science.gov (United States)

    Lee, Yong Jin

    2012-01-01

    This device provides non-invasive beat-to-beat blood pressure measurements and can be worn over the upper arm for prolonged durations. Phase and waveform analyses are performed on filtered proximal and distal photoplethysmographic (PPG) waveforms obtained from the brachial artery. The phase analysis is used primarily for the computation of the mean arterial pressure, while the waveform analysis is used primarily to obtain the pulse pressure. Real-time compliance estimate is used to refine both the mean arterial and pulse pressures to provide the beat-to-beat blood pressure measurement. This wearable physiological monitor can be used to continuously observe the beat-to-beat blood pressure (B3P). It can be used to monitor the effect of prolonged exposures to reduced gravitational environments and the effectiveness of various countermeasures. A number of researchers have used pulse wave velocity (PWV) of blood in the arteries to infer the beat-to-beat blood pressure. There has been documentation of relative success, but a device that is able to provide the required accuracy and repeatability has not yet been developed. It has been demonstrated that an accurate and repeatable blood pressure measurement can be obtained by measuring the phase change (e.g., phase velocity), amplitude change, and distortion of the PPG waveforms along the brachial artery. The approach is based on comparing the full PPG waveform between two points along the artery rather than measuring the time-of-flight. Minimizing the measurement separation and confining the measurement area to a single, well-defined artery allows the waveform to retain the general shape between the two measurement points. This allows signal processing of waveforms to determine the phase and amplitude changes.

  9. Incidence and severity of respiratory insufficiency detected by transcutaneous carbon dioxide monitoring after cardiac surgery and intensive care unit discharge

    OpenAIRE

    Lagow, Elaine E.; Leeper, Barbara “Bobbi”; Jennings, Linda W.; Ramsay, Michael A.E.

    2013-01-01

    Patients undergoing coronary artery bypass surgery and/or heart valve surgery using a median sternotomy approach coupled with the use of cardiopulmonary bypass often experience pulmonary complications in the postoperative period. These patients are initially monitored in an intensive care unit (ICU) but after discharge from this unit to the ward they may still have compromised pulmonary function. This dysfunction may progress to significant respiratory failure that will cause the patient to r...

  10. Home and ambulatory blood pressure monitoring: when? who?

    OpenAIRE

    Gülçin KANTARCI

    2013-01-01

    Blood pressure measurement in the diagnosis and management of hypertension, including the technique required for ambulatory blood pressure monitoring and home blood pressure monitoring, will be reviewed in this article. Home and ambulatory measurements are widely used, both to confirm the diagnosis and to improve adherence to therapy. The major advantage of out-of-office blood pressure monitoring is that it provides a large number of blood pressure measurements away from the medical environme...

  11. Blood glucose control and monitoring in the critically ill

    NARCIS (Netherlands)

    R.T.M. van Hooijdonk

    2015-01-01

    This thesis deals with blood glucose control and blood glucose monitoring in intensive care unit (ICU) patients: two important aspects of care for and monitoring of critically ill patients. While the precise targets of blood glucose control in ICU patients remain a matter of debate, currently many,

  12. Techniques for the measurement and monitoring of carbon dioxide in the blood.

    Science.gov (United States)

    Huttmann, Sophie E; Windisch, Wolfram; Storre, Jan H

    2014-05-01

    The relationship between an elevated partial pressure of carbon dioxide (Pco2) and reduced alveolar ventilation resulting from respiratory failure primarily affecting the respiratory pump was first reported during the 1952 Copenhagen polio epidemic. Several methods for Pco2 estimation, such as blood gas analyses, capnography, and transcutaneous Pco2 measurements, have since been developed to assess alveolar ventilation. The clinical setting in which CO2 measurement is valuable includes acute and chronic respiratory failure, transport, cardiopulmonary resuscitation, patient-controlled analgesia, and procedural sedation. The techniques that are currently available differ considerably regarding their accuracy, capacity to facilitate continuous assessment, side effects, availability, and their ability to assess additional information. Importantly, each technique has its own spectrum of indications and applications. Therefore, the different techniques are not competitive but, rather, complementary. As a consequence, it is reasonable to combine different techniques depending on specific clinical scenarios. This review summarizes the physiological background, historical development, instrument-specific technical aspects, and current recommendations for the clinical application of Pco2 assessment. PMID:24701974

  13. Transcutaneous Spinal Direct Current Stimulation

    OpenAIRE

    Cogiamanian, Filippo; Ardolino, Gianluca; Vergari, Maurizio; Ferrucci, Roberta; Ciocca, Matteo; Scelzo, Emma; Barbieri, Sergio; Priori, Alberto

    2012-01-01

    In the past 10 years renewed interest has centered on non-invasive transcutaneous weak direct currents applied over the scalp to modulate cortical excitability (“brain polarization” or transcranial direct current stimulation, tDCS). Extensive literature shows that tDCS induces marked changes in cortical excitability that outlast stimulation. Aiming at developing a new, non-invasive, approach to spinal cord neuromodulation we assessed the after-effects of thoracic transcutaneous spinal DC stim...

  14. Towards a Wearable Non-invasive Blood Glucose Monitoring Device

    International Nuclear Information System (INIS)

    Every day, about 150 Million people worldwide face the problem of diabetic metabolic control. Both the hypo- and hyper- glycaemic conditions of patients have fatal consequences and warrant blood glucose monitoring at regular interval. Existing blood glucose monitors can be widely classified into three classes viz., invasive, minimally invasive, and noninvasive. Invasive monitoring requires small volume of blood and are inappropriate for continuous monitoring of blood glucose. Minimally invasive monitors analyze tissue fluid or extract few micro litre of blood only. Also the skin injury is minimal. On the other hand, noninvasive devices are painless and void of any skin injury. We use an indigenously developed polarization sensitive Optical Coherence Tomography to measure the blood glucose levels. Current trends and recent results with the device are discussed.

  15. Ambulatory Blood Pressure Monitoring in Clinical Practice: A Review

    Science.gov (United States)

    Viera, Anthony J.; Shimbo, Daichi

    2016-01-01

    Ambulatory blood pressure monitoring offers the ability to collect blood pressure readings several times an hour across a 24-hour period. Ambulatory blood pressure monitoring facilitates the identification of white-coat hypertension, the phenomenon whereby certain individuals who are not on antihypertensive medication show elevated blood pressure in a clinical setting but show non-elevated blood pressure averages when assessed by ambulatory blood pressure monitoring. Additionally, readings can be segmented into time windows of particular interest, e.g., mean daytime and nighttime values. During sleep, blood pressure typically decreases, or dips, such that mean sleep blood pressure is lower than mean awake blood pressure. A non-dipping pattern and nocturnal hypertension are strongly associated with increased cardiovascular morbidity and mortality. Approximately 70% of individuals dip ≥10% at night, while 30% have non-dipping patterns, when blood pressure remains similar to daytime average, or occasionally rises above daytime average. The various blood pressure categorizations afforded by ambulatory blood pressure monitoring are valuable for clinical management of high blood pressure since they increase accuracy for diagnosis and the prediction of cardiovascular risk. PMID:25107387

  16. Monitoring gas quality green gas feeding in; Monitoring gaskwaliteit groengasinvoeding

    Energy Technology Data Exchange (ETDEWEB)

    Holstein, J. [DNV KEMA Energy and Sustainability, Arnhem (Netherlands); Polman, E. [Kiwa Technology, Apeldoorn (Netherlands)

    2013-04-15

    Due to the growing number of green gas facilities in the Netherlands more practical knowledge is collected about the production and injection of green gas. Also there was the need to gather data about more practical experiences and knowledge about the gas quality, the performance of gas cleaning and gas treatment systems, as well the integration of green gas in the gas infrastructure. In addition to this, there is a need to get insight in the safety aspects of green gas injection. In order to comply this demand, DNV KEMA en Kiwa Technology measured the quality parameters continuously between June 2012 en January 2013 (three weeks) and discontinuously (gas samples) of green gas at eight production facilities. The measurements have been performed at designated places and are independent from the measurements of the biomethane producer. In order to be sure that the results of DNV KEMA and Kiwa are comparable, a combined measurement program was executed. It results in uniformity for all the measured values: the differences are within the uncertainty level for each component. During the measurement period of three weeks, the gas quality parameters were compared to specifications, written down in the national regulations for the transport and the distribution grid respectively [Dutch] Door het groeiend aantal groengasinvoedingen in Nederland wordt steeds meer praktijkkennis verzameld. Er dient meer praktijkkennis te worden verzameld over de chemische gaskwaliteit, prestaties van de gasreiniging- en gasopwaardering en de wijze van inpassing in de bestaande infrastructuur. Daarnaast is het wenselijk om inzicht te verkrijgen in de veiligheid van groengasinvoeding. Daarop is de groengaskwaliteit op acht locaties over een periode van drie weken continu en discontinu gemeten tussen juni 2012 en januari 2013. De metingen zijn uitgevoerd op een aangewezen plaats door de netbeheerder en staan los van de metingen van de invoeders zelf. Voor het waarborgen van de uniformiteit van

  17. Prediction of arterial blood gas values from arterialized earlobe blood gas values in patients treated with mechanical ventilation

    Directory of Open Access Journals (Sweden)

    Honarmand Azim

    2008-01-01

    earlobe blood gas can accurately predict the ABG values of pH, PCO 2 , BE, and HCO 3 - for patients who do not require regular continuous blood pressure measurements and close monitoring of arterial PO 2 measurements.

  18. Ambulatory Blood Pressure Monitoring and Circadian Rhythm of Blood Pressure in Diabetes Mellitus

    OpenAIRE

    Elena Matteucci; Ottavio Giampietro

    2013-01-01

    Systolic and diastolic blood pressures display a circadian rhythmicity that can be assessed by 24-hour ambulatory blood pressure monitoring and analysed using the cosinor procedure. Altered characteristics to the circadian rhythm of blood pressure, which may result in adverse health outcomes, have been observed in both prediabetes and diabetes. We have investigated the circadian variability of blood pressure in patients with type 1 and type 2 diabetes. Chronobiologically interpreted ambulator...

  19. Wearable Beat to Beat Blood Pressure Monitor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A key component of NASA's human exploration programs is a system that monitors the health of the crew during space missions. The wearable beat-to-beat blood...

  20. Greenhouse gas emissions studies using a portable TDL gas monitor

    International Nuclear Information System (INIS)

    The Boreal Laser company developed a portable open path gas monitor called the GasFinder. The GasFinder is based on laser technology and is an ideal tool for studying greenhouse gas emissions. The response time is one second, and the GasFinder is specific to the gas under study. In addition, it has a broad dynamic range. Very small and light, weighing only 5 kilograms, the GasFinder is permanently calibrated. The alignment of the GasFinder is easy and stable. The path length has no effect on response, enabling the GasFinder to provide a series of paths measurements in quick succession for different lengths (between 1 metre and 1000 metres). The establishment of baseline emissions and the determination of the effectiveness of process improvements for the reduction of emissions are instances where the GasFinder has already been successfully used. The authors discussed some examples concerning the detection of methane leak in natural gas production, processing and transportation and carbon dioxide measurements from both natural and man-made sources

  1. Correlation between arterial and venous blood gas analysis parameters in patients with acute exacerbation of chronic obstructive pulmonary disease

    OpenAIRE

    Novović Miloš; Topić Vesna

    2012-01-01

    Introduction. Arterial blood gas (ABG) analyses have an important role in the assessment and monitoring of the metabolic and oxygen status of patients with acute exacerbation of chronic obstructive pulmonary disease (COPD). Arterial puncture could have a lot of adverse effects, while sampling of venous blood is simpler and is not so invasive. Objective. The aim of this study was to evaluate whether venous blood gas (VBG) values of pH, partial pressure of carbon dioxide (PCO2), partial o...

  2. Ionization chamber for monitoring radioactive gas

    International Nuclear Information System (INIS)

    This present invention provides simple, effective and accurate cumulative measurement of radioactive gas over a time period. Measurements of radioactive gas are important for many purposes. Tritium concentrations in potentially exposed workers are measured, for example, with periodic urine specimens. Carbon-14 serves as a useful research tool for monitoring the progress of many chemical and biological reactions and interactions. For example, many microorganisms break down carbon-14 containing compounds in sugar to produce carbon-14 dioxide gas which can be collected and measured to determine various characteristics of the microorganisms. Both tritium and carbon-14 dioxide produce low energy radiation which cannot be easily measured by conventional radioactivity detectors. (author). 4 figs

  3. Wearable Beat-to-Beat Blood Pressure Monitor

    Science.gov (United States)

    Lee, Yong Jin

    2015-01-01

    Linea Research Corporation has developed a wearable noninvasive monitor that provides continuous blood pressure and heart rate measurements in extreme environments. Designed to monitor the physiological effects of astronauts' prolonged exposure to reduced-gravity environments as well as the effectiveness of various countermeasures, the device offers wireless connectivity to allow transfer of both real-time and historical data. It can be modified to monitor the health status of astronaut crew members during extravehicular missions.

  4. Continuous monitoring of blood volume changes in humans

    Science.gov (United States)

    Hinghofer-Szalkay, H.; Greenleaf, J. E.

    1987-01-01

    Use of on-line high-precision mass densitometry for the continuous monitoring of blood volume changes in humans was demonstrated by recording short-term blood volume alterations produced by changes in body position. The mass density of antecubital venous blood was measured continuously for 80 min per session with 0.1 g/l precision at a flow rate of 1.5 ml/min. Additional discrete plasma density and hematocrit measurements gave linear relations between all possible combinations of blood density, plasma density, and hematocrit. Transient filtration phenomena were revealed that are not amenable to discontinuous measurements.

  5. Cuff inflation during ambulatory blood pressure monitoring and heart rate

    Directory of Open Access Journals (Sweden)

    Mia Skov-Madsen

    2008-11-01

    Full Text Available Mia Skov-Madsen, My Svensson, Jeppe Hagstrup ChristensenDepartment of Nephrology, Aarhus University Hospital, Aalborg, DenmarkIntroduction: Twenty four-hour ambulatory blood pressure monitoring is a clinically validated procedure in evaluation of blood pressure (BP. We hypothesised that the discomfort during cuff inflation would increase the heart rate (HR measured with 24-h ambulatory BP monitoring compared to a following HR measurement with a 24-h Holter monitor.Methods: The study population (n = 56 were recruited from the outpatient’s clinic at the Department of Nephrology, Aalborg Hospital, Aarhus University Hospital at Aalborg, Denmark. All the patients had chronic kidney disease (CKD. We compared HR measured with a 24-h Holter monitor with a following HR measured by a 24-h ambulatory BP monitoring.Results: We found a highly significant correlation between the HR measured with the Holter monitor and HR measured with 24-h ambulatory blood pressure monitoring (r = 0.77, p < 0.001. Using the Bland-Altman plot, the mean difference in HR was only 0.5 beat/min during 24 hours with acceptable limits of agreement for both high and low HR levels. Dividing the patients into groups according to betablocker treatment, body mass index, age, sex, angiotensin-converting enzyme inhibitor treatment, statins treatment, diuretic treatment, or calcium channel blocker treatment revealed similar results as described above.Conclusion: The results indicate that the discomfort induced by cuff inflation during 24-h ambulatory BP monitoring does not increase HR. Thus, 24-h ambulatory BP monitoring may be a reliable measurement of the BP among people with CKD.Keywords: ambulatory blood pressure monitoring, Holter monitoring, heart rate, chronic kidney disease, hypertension

  6. Arterialisation of transcutaneous oxygen and carbon dioxide.

    OpenAIRE

    Broadhurst, E; Helms, P; Vyas, H; Cheriyan, G

    1988-01-01

    We compared previously calculated global correction factors for oxygen and carbon dioxide arterial/transcutaneous ratios with individual in vivo calibrations from the first arterial sample. In infants beyond the neonatal period and older children in vivo calibration confers little benefit over the use of a global calibration correction factor for transcutaneous carbon dioxide, and may reduce the precision with which arterial oxygen can be estimated from transcutaneous oxygen.

  7. 20 CFR 718.105 - Arterial blood-gas studies.

    Science.gov (United States)

    2010-04-01

    ... DEATH DUE TO PNEUMOCONIOSIS Criteria for the Development of Medical Evidence § 718.105 Arterial blood... test shall be offered to the miner unless medically contraindicated. If an exercise blood-gas test is... Appendix C is administered during a hospitalization which ends in the miner's death, then any such...

  8. Noninvasive optoacoustic monitoring of cerebral venous blood oxygenation in newborns

    Science.gov (United States)

    Petrov, Irene Y.; Wynne, Karon E.; Petrov, Yuriy; Esenaliev, Rinat O.; Richardson, C. Joan; Prough, Donald S.

    2012-02-01

    Cerebral ischemia after birth and during labor is a major cause of death and severe complications such as cerebral palsy. In the USA alone, cerebral palsy results in permanent disability of 10,000 newborns per year and approximately 500,000 of the total population. Currently, no technology is capable of direct monitoring of cerebral oxygenation in newborns. This study proposes the use of an optoacoustic technique for noninvasive cerebral ischemia monitoring by probing the superior sagittal sinus (SSS), a large central cerebral vein. We developed and built a multi-wavelength, near-infrared optoacoustic system suitable for noninvasive monitoring of cerebral ischemia in newborns with normal weight (NBW), low birth-weight (LBW, 1500 - 2499 g) and very low birth-weight (VLBW, neonatal intensive care unit. We performed single and continuous measurements of the SSS blood oxygenation. The data acquisition, processing and analysis software developed by our group provided real-time, absolute SSS blood oxygenation measurements. The SSS blood oxygenation ranged from 60% to 80%. Optoacoustic monitoring of the SSS blood oxygenation provides valuable information because adequate cerebral oxygenation would suggest that no therapy was necessary; conversely, evidence of cerebral ischemia would prompt therapy to increase cerebral blood flow.

  9. Photoacoustic monitoring of real time blood and hemolymph sedimentation

    Science.gov (United States)

    Landa, A.; Alvarado-Gil, J. J.; Gutíerrez-Juárez, G.; Vargas-Luna, M.

    2003-01-01

    The dynamics of blood and hemolymph sedimentation is studied in real time using the photoacoustic technique. A modified configuration of a conventional photoacoustic cell is used, where the advantage of this methodology is that the sample is not illuminated directly and that the process can be monitored through the measurement of the thermal contact between a reference material and the blood. It is demonstrated that during the process the thermal effusivity decreases at the region of contact between the sample and the reference materials. The usefulness of these results in real time monitoring using photothermal techniques is discussed.

  10. OTP for belhaven flammable gas monitor at 241-T-104

    International Nuclear Information System (INIS)

    This Operational Test Procedure tests the operability of the Safety Class 3 flammable gas monitoring system with equipment shutdown capability. This test includes the flammable gas monitor, heat trace system, pneumatic system, and the interface with existing equipment

  11. Noninvasive 24-hour ambulatory arterial blood pressure monitoring in cirrhosis

    DEFF Research Database (Denmark)

    Møller, Søren; Wiinberg, N; Henriksen, Jens Henrik

    1995-01-01

    Cirrhotic patients have disturbed systemic hemodynamics with reduced arterial blood pressure, but this has not been investigated during daily activity and sleep. Systolic (SBP), diastolic (DBP), and mean arterial blood pressure (MAP), and heart rate (HR) were measured by an automatic ambulant...... device for monitoring blood pressure in 35 patients with cirrhosis and 35 healthy matched controls. During the daytime, SBP, DBP, and MAP were significantly lower in the patients than in the controls (median 118 vs. 127; 70 vs. 78; 86 vs. 94 mm Hg, P < .0001 to P < .05). The nighttime blood pressures...... were almost similar in the two groups (108 vs. 110; 65 vs. 67; 78 vs. 82 mm Hg, NS). Conversely, HR was significantly higher in the patients both in the daytime (86 vs. 72/min, P < .0001) and at night (80 vs. 64/min, P < .0001). Consequently, the reduction in blood pressure and HR from daytime to...

  12. Using statistical quality control techniques to monitor blood glucose levels.

    OpenAIRE

    Oniki, T. A.; Clemmer, T. P.; Arthur, L. K.; Linford, L. H.

    1995-01-01

    Continuous Quality Improvement techniques developed in industry are increasingly being applied to the medical field. Statistical process control charts are a CQI technique aimed at monitoring a process and its variability. At our hospital, statistical quality control charts are being constructed from laboratory blood glucose measurements of patients receiving enteral or parenteral nutrition. The charts will be used to monitor glucose levels, reveal variations, and illustrate the effects of ne...

  13. Accuracy of blood pressure monitors available in high street pharmacies.

    Science.gov (United States)

    Ware, Adam; Stevens, Richard; Selwood, Mary; Fleming, Susannah

    2016-02-01

    The aim of this study was to assess the accuracy of automated blood pressure monitors on sale to the UK general public. We conducted static pressure accuracy testing on all compatible (19 out of 22 available) blood pressure monitors available for sale in pharmacies within the city of Oxford, UK, and tested two devices for accuracy in measurement of systolic and diastolic blood pressures in 21 adults. The devices showed good accuracy when measuring static pressure in laboratory bench testing, with the median error per device ranging from -2.2 to +1.2 mmHg; however, the two devices tested performed worse in vivo than in laboratory tests, with median errors as high as 6 mmHg. The monitors showed good accuracy in static pressure testing, with a lack of correlation between monitor price and accuracy. However, higher error rates seen during in-vivo testing of a subset of monitors may indicate that static testing may not be appropriate for routine accuracy assessment of these monitors. PMID:26427055

  14. Predictors of Daily Blood Glucose Monitoring in Appalachian Ohio

    Science.gov (United States)

    Raffle, Holly; Ware, Lezlee J.; Ruhil, Anirudh V. S.; Hamel-Lambert, Jane; Denham, Sharon A.

    2012-01-01

    Objective: To determine factors contributing to successful diabetes self-management in Appalachia, as evidenced by daily blood glucose monitoring. Methods: A telephone survey (N = 3841) was conducted to assess health status and health care access. The current investigation is limited to the subset of this sample who report having diabetes (N =…

  15. Apparatus and method for monitoring of gas having stable isotopes

    Science.gov (United States)

    Clegg, Samuel M; Fessenden-Rahn, Julianna E

    2013-03-05

    Gas having stable isotopes is monitored continuously by using a system that sends a modulated laser beam to the gas and collects and transmits the light not absorbed by the gas to a detector. Gas from geological storage, or from the atmosphere can be monitored continuously without collecting samples and transporting them to a lab.

  16. Blood perfusion and pH monitoring in organs by laser-induced fluorescence spectroscopy

    Science.gov (United States)

    Vari, Sandor G.; Papazoglou, Theodore G.; Pergadia, Vani R.; Stavridi, Marigo; Snyder, Wendy J.; Papaioannou, Thanassis; Duffy, J. T.; Weiss, Andrew B.; Thomas, Reem; Grundfest, Warren S.

    1994-01-01

    Sensitivity of laser-induced fluorescence spectroscopy (LIFS) in detecting a change in tissue pH, and blood perfusion was determined. Rabbits were anesthetized, paralyzed, and mechanically ventilated. The arterial and venous blood supplies of the kidney were isolated and ligated to alter the perfusion. The femoral artery was cannulated to extract samples for blood gas analysis. A 308-nm XeCl was used as an excitation source. A 600 micrometers core diameter fiber was used for fluorescence acquisition, and the spectra analyzed by an optical multichannel analyzer (EG & G, OMA III). the corresponding intensity ratio R equals INADH / ICOLL was used as an index for respiratory acidosis. Blood perfusion was assessed using the following algorithm: (IELAS minus ICOLL) divided by (INADH minus ICOLL). The intensity ratio linearly decreased with the reduction of blood perfusion. When we totally occluded the artery the ratio decreased tenfold when compared to the ratio of a fully perfused kidney. Results of monitoring blood acidosis by laser-induced fluorescence spectroscopy shows a significant trend between pH and intensity ratio. Since all the slopes were negative, there is an obvious significant correlation between the pH and NADH.COLLAGEN RATIO. Blue-light-induced fluorescence measurements and ratio fluorometry is a sensitive method for monitoring blood perfusion and acidity or alkalinity of an organ.

  17. Numerical Monitoring of Natural Gas Distribution Discrepancy Using CFD Simulator

    OpenAIRE

    Vadim E. Seleznev

    2010-01-01

    The paper describes a new method for numerical monitoring of discrepancies in natural gas supply to consumers, who receive gas from gas distribution loops. This method serves to resolve the vital problem of commercial natural gas accounting under the conditions of deficient field measurements of gas supply volumes. Numerical monitoring makes it possible to obtain computational estimates of actual gas deliveries over given time spans and to estimate their difference from corresponding values r...

  18. Inherently safe passive gas monitoring system

    Energy Technology Data Exchange (ETDEWEB)

    Cordaro, Joseph V.; Bellamy, John Stephen; Shuler, James M.; Shull, Davis J.; Leduc, Daniel R.

    2016-09-06

    Generally, the present disclosure is directed to gas monitoring systems that use inductive power transfer to safely power an electrically passive device included within a nuclear material storage container. In particular, the electrically passive device can include an inductive power receiver for receiving inductive power transfer through a wall of the nuclear material storage container. The power received by the inductive power receiver can be used to power one or more sensors included in the device. Thus, the device is not required to include active power generation components such as, for example, a battery, that increase the risk of a spark igniting flammable gases within the container.

  19. In situ monitoring of gas emissions

    International Nuclear Information System (INIS)

    Classical extraction apparatuses for gaseous effluents analysis require important maintenance costs. A new in situ system for flue gas monitoring has been developed by the Californian Air Instruments and Measurements Inc. society and installed at the Red Wing refuse-fueled power plant in Minnesota. This system allows the in situ quantitative analysis of carbon monoxide and dioxide effluents using a self calibrating infrared spectrometer. This paper describes the numerous advantages and the maintenance costs reduction provided by this system. (J.S.). 2 photos

  20. Optical coherence tomography for blood glucose monitoring through signal attenuation

    Science.gov (United States)

    De Pretto, Lucas R.; Yoshimura, Tania M.; Ribeiro, Martha S.; de Freitas, Anderson Z.

    2016-03-01

    Development of non-invasive techniques for glucose monitoring is crucial to improve glucose control and treatment adherence in patients with diabetes. Hereafter, Optical Coherence Tomography (OCT) may offer a good alternative for portable glucometers, since it uses light to probe samples. Changes in the object of interest can alter the intensity of light returning from the sample and, through it, one can estimate the sample's attenuation coefficient (μt) of light. In this work, we aimed to explore the behavior of μt of mouse's blood under increasing glucose concentrations. Different samples were prepared in four glucose concentrations using a mixture of heparinized blood, phosphate buffer saline and glucose. Blood glucose concentrations were measured with a blood glucometer, for reference. We have also prepared other samples diluting the blood in isotonic saline solution to check the effect of a higher multiple-scattering component on the ability of the technique to differentiate glucose levels based on μt. The OCT system used was a commercial Spectral Radar OCT with 930 nm central wavelength and spectral bandwidth (FWHM) of 100 nm. The system proved to be sensitive for all blood glucose concentrations tested, with good correlations with the obtained attenuation coefficients. A linear tendency was observed, with an increase in attenuation with higher values of glucose. Statistical difference was observed between all groups (pcontrol, which eliminates the use of analytes and/or test strips, as in the case with commercially available glucometers.

  1. Oscillometric continuous blood pressure sensing for wearable health monitoring system

    CERN Document Server

    Gelao, Gennaro; Passaro, Vittorio M N; Perri, Anna Gina

    2015-01-01

    In this paper we present an acquisition chain for the measurement of blood arterial pressure based on the oscillometric method. This method does not suffer from any limitation as the well-known auscultatory method and it is suited for wearable health monitoring systems. The device uses a pressure sensor whose signal is filtered, digitalized and analyzed by a microcontroller. Local analysis allows the evaluation of the systolic and diastolic pressure values which can be used for local alarms, data collection and remote monitoring.

  2. [A gas chromatographic method for determining acetaldehyde in cadaver blood].

    Science.gov (United States)

    Savich, V I; Valladares, Kh A; Gusakov, Iu A; Skachko, Z M

    1990-01-01

    Gas-chromatographic method of acetaldehyde detection in blood of subjects who died of alcoholic intoxication is suggested. Method is simple, does not require additional expenses, can be readily used in medicolegal practice and in difficult cases it may help the expert to make an objective conclusion on the cause of death. PMID:2087747

  3. 21 CFR 870.4410 - Cardiopulmonary bypass in-line blood gas sensor.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cardiopulmonary bypass in-line blood gas sensor... Cardiopulmonary bypass in-line blood gas sensor. (a) Identification. A cardiopulmonary bypass in-line blood gas sensor is a transducer that measures the level of gases in the blood. (b) Classification. Class...

  4. Performance of a coincidence based blood activity monitor

    International Nuclear Information System (INIS)

    A new device has been constructed that measures the positron emitting radio-tracer concentration in arterial blood by extracting blood with a peristaltic pump, then measuring the activity concentration by detecting coincident pairs of 511 keV photons with a pair of heavy inorganic scintillators attached to photomultiplier tubes. The sensitivity of this device is experimentally determined to be 610 counts/second per μCi/ml, and has a paralyzing dead time of 1.2 μs, so is capable of measuring blood activity concentration as high as 1 mCi/ml. Its performance is compared to two other blood monitoring methods: discrete blood samples counted with a well counter and device that uses a plastic scintillator to directly detect positrons. The positron detection efficiency of this device for 18F is greater than the plastic scintillation counter, and also eliminates the radioisotope dependent correction factors necessary to convert count rate to absolute concentration. Coincident photon detection also has the potential of reducing the background compared to direct positron detection, thereby increasing the minimum detectable isotope concentration. 10 refs., 6 figs

  5. Development of blood extraction system for health monitoring system

    Science.gov (United States)

    Tsuchiya, Kazuyoshi; Nakanishi, Naoyuki; Nakamachi, Eiji

    2004-03-01

    The purpose of this research is to develop the compact human blood sampling device applied for a health monitoring system(HMS), which is called "Mobile Hospital". The HMS consists of (1) a micro electrical pumping system for blood extraction, (2) a bio-sensor to detect and evaluate an amount of Glucose, Cholesterol and Urea in extracted blood, by using enzyme such as Glucoseoxidase (GOD), Cholesteroloxidase and Urease. The mechanical design elements of the device are bio-compatible microneedle, indentation unit using a shape memory alloy(SMA) actuator and pumping unit using a piezoelectric microactuator. The design concept is the biomimetic micromachine of female mosquito"s blood sampling mechanism. The performances of the main mechanical elements such as indentation force of the microneedle, actual stroke of the indentation unit using a SMA actuator and liquid sampling ability of the pumping unit using PZT piezoelectric microactuator were measured. The 3 mm stroke of the indentation load generated by SMA actuator was 0.8mN. The amount of imitation blood extracted by using bimorph PZT actuators was about 0.5 microliters for 10 sec. A 60-micrometer outer diameter and 25-micrometer inner diameter Titanium microneedle, which size is same as female mosquito"s labium, was produced by sputter deposition.

  6. TRANSCUTANEOUS DRUG DELIVERY SYSTEM: A COMPREHENSIVE REVIEW

    OpenAIRE

    Sandhu Premjeet; Kataria Sahil; Bilandi Ajay; Jain Sonam; Rathore Devashish

    2011-01-01

    Conventional drug delivery systems are often not suitable for new protein based and other Therapeutic compounds produced by modern technology. Therefore an alternative Approach to deliver these drugs can be achieved through the skin in the form of transcutaneous drug delivery system. Modern medicine has responded with the development of methods to deliver drug transcutanously (through) the skin for therapeutic use as an alternative to traditional route including oral, intravascular, intramusc...

  7. Transcutaneous transsplenic catheterization of the splenic vein

    International Nuclear Information System (INIS)

    The authors have developed a method for transcutaneous transsplenic catheterizaton of the portal vein basin and used this method in clinical studies. This method permits a higher quality of spot splenoportography, selective catheterization and embolization of the gastric veins in bleedings from varicose veins of the esophagus in the patients in whom catheterization of the portal vien basin via the transcutaneous transhepatic approach is impossible because of liver tumors of occulusive stenotic deformation of the portal vein

  8. Transcutaneous electrostimulation for osteoarthritis of the knee

    OpenAIRE

    Rutjes, Anne WS; Nüesch, Eveline; Sterchi, Rebekka; Kalichman, Leonid; Hendriks, Erik; Osiri, Manathip; Brosseau, Lucie; Reichenbach, Stephan; Jüni, Peter

    2009-01-01

    BACKGROUND: Osteoarthritis is the most common form of joint disease and the leading cause of pain and physical disability in the elderly. Transcutaneous electrical nerve stimulation (TENS), interferential current stimulation and pulsed electrostimulation are used widely to control both acute and chronic pain arising from several conditions, but some policy makers regard efficacy evidence as insufficient. OBJECTIVES: To compare transcutaneous electrostimulation with sham or no specific interve...

  9. Self-monitoring ultrasonic gas flow meter

    Science.gov (United States)

    Lin, Y.; Hans, V.

    2005-01-01

    Ultrasound is predestined for gas flow velocity measurements on account of its high sensitivity to all kinds of natural and artificial turbulences in the fluid. Vortex measurements behind a bluff body as well as cross-correlation methods have been proved good. Cross-correlation measurements of natural structures determine the most frequent velocity components in the fluid. Therefore, the measured flow velocity deviates from the real mean flow velocity because of a skewed probability density distribution of the velocity components. Vortex measurements base on the principle that the frequency of the vortices generated in the wake of a bluff body is proportional to the mean flow velocity. The measurement of the periodic vortices with cross-correlation functions leads to the direct determination of the real mean flow velocity. The combination of both measuring methods results in a self-monitoring system.

  10. TRANSCUTANEOUS DRUG DELIVERY SYSTEM: A COMPREHENSIVE REVIEW

    Directory of Open Access Journals (Sweden)

    Sandhu Premjeet

    2011-12-01

    Full Text Available Conventional drug delivery systems are often not suitable for new protein based and other Therapeutic compounds produced by modern technology. Therefore an alternative Approach to deliver these drugs can be achieved through the skin in the form of transcutaneous drug delivery system. Modern medicine has responded with the development of methods to deliver drug transcutanously (through the skin for therapeutic use as an alternative to traditional route including oral, intravascular, intramuscular, subcutaneous, and sublingual. Transcutaneous drug delivery has many theoretic and practical advantage and disadvantages, and such issues are often a concern for both clinicians and patients. Transcutaneous patches are flexible pharmaceutical preparations of varying sizes, containing one or more active ingredient, intended to be applied to the unbroken skin in order to deliver the active ingredient to the systemic circulation after passing through the skin barriers. A Transcutaneous patch or skin patch is a medicated adhesive patch that is placed on the skin to deliver a specific dose of medication through the skin and into the bloodstream. Often, this promotes healing to an injured area of the body. In this method, the drug enters the bloodstream directly through skin and it avoid first pass effect. Characterization of Transcutaneous patch are necessary because check it’s quality, size, time of onset & duration, adhesive property, thickness, weight of patch, moisture of content, uniformity & cutaneous toxicological studies. Their requirements for evaluation are HPLC, U.V. spectrophotometer, screw gauge, digital balance, desiccators, thin layer chromatography & K.C. Cell used.

  11. Fence line noble gas monitoring system

    International Nuclear Information System (INIS)

    A new system has been developed for monitoring noble gas emissions at the fence line around the Pickering NPP in Canada. The system differs from the traditional method of assessing the dose to the critical group based on meteorological models. Instead, the new system monitors the dose directly at the fence line, which in fact has reduced the reported doses by 1 to 2 orders of magnitude. Typical annual Minimum Detectable Levels (MDLs)4 in Air Kerma are 1.8 nGy (135Xe), 4.2 nGy (135Xe), and 11.0 nGy (41Ar). The complete system comprises 7 self-contained Na(Tl) detector units located around the Pickering fence line. System design makes each detector assembly a stand-alone unit with internal data scanning, Stabilization and data storage capability. Each detector has been calibrated for Air Kerma, Ambient Dose Equivalent, Effective Dose (adults), and Effective Dose (Juvenile)5. The detector systems are polled every 24 hrs. (user selected from real-time to every 7 days as required) by one or more central computers. The central computers collect spectral data from each detector unit and store all the data in a SQL database. The data is analyzed and preliminary noble gas concentration calculated. Every month the complete data set for the month is reevaluated based on actual wind information using the new computed calibration factors, to achieve maximum data accuracy. The system creates automatic monthly reports with tables of emissions and MDLs. Included in the reports are also graphs of the emissions during the month. (author)

  12. Noble gas atmospheric monitoring at reprocessing facilities

    Energy Technology Data Exchange (ETDEWEB)

    Nakhleh, C.W.; Perry, R.T. Jr.; Poths, J.; Stanbro, W.D.; Wilson, W.B.; Fearey, B.L.

    1997-05-01

    The discovery in Iraq after the Gulf War of the existence of a large clandestine nuclear-weapon program has led to an across-the-board international effort, dubbed Programme 93+2, to improve the effectiveness and efficiency of International Atomic Energy Agency (IAEA) safeguards. One particularly significant potential change is the introduction of environmental monitoring (EM) techniques as an adjunct to traditional safeguards methods. Monitoring of stable noble gas (Kr, Xe) isotopic abundances at reprocessing plant stacks appears to be able to yield information on the burnup and type of the fuel being processed. To estimate the size of these signals, model calculations of the production of stable Kr, Xe nuclides in reactor fuel and the subsequent dilution of these nuclides in the plant stack are carried out for two case studies: reprocessing of PWR fuel with a burnup of 35 GWd/tU, and reprocessing of CAND fuel with a burnup of 1 GWd/tU. For each case, a maximum-likelihood analysis is used to determine the fuel burnup and type from the isotopic data.

  13. Optical coherence tomography for blood glucose monitoring through signal attenuation

    Science.gov (United States)

    De Pretto, Lucas R.; Yoshimura, Tania M.; Ribeiro, Martha S.; de Freitas, Anderson Z.

    2016-03-01

    Development of non-invasive techniques for glucose monitoring is crucial to improve glucose control and treatment adherence in patients with diabetes. Hereafter, Optical Coherence Tomography (OCT) may offer a good alternative for portable glucometers, since it uses light to probe samples. Changes in the object of interest can alter the intensity of light returning from the sample and, through it, one can estimate the sample's attenuation coefficient (μt) of light. In this work, we aimed to explore the behavior of μt of mouse's blood under increasing glucose concentrations. Different samples were prepared in four glucose concentrations using a mixture of heparinized blood, phosphate buffer saline and glucose. Blood glucose concentrations were measured with a blood glucometer, for reference. We have also prepared other samples diluting the blood in isotonic saline solution to check the effect of a higher multiple-scattering component on the ability of the technique to differentiate glucose levels based on μt. The OCT system used was a commercial Spectral Radar OCT with 930 nm central wavelength and spectral bandwidth (FWHM) of 100 nm. The system proved to be sensitive for all blood glucose concentrations tested, with good correlations with the obtained attenuation coefficients. A linear tendency was observed, with an increase in attenuation with higher values of glucose. Statistical difference was observed between all groups (p<0.001). This work opens the possibility towards a non-invasive diagnostic modality using OCT for glycemic control, which eliminates the use of analytes and/or test strips, as in the case with commercially available glucometers.

  14. Reflectance Photoplethysmography as Noninvasive Monitoring of Tissue Blood Perfusion.

    Science.gov (United States)

    Abay, Tomas Ysehak; Kyriacou, Panayiotis A

    2015-09-01

    In the last decades, photoplethysmography (PPG) has been used as a noninvasive technique for monitoring arterial oxygen saturation by pulse oximetry (PO), whereas near-infrared spectroscopy (NIRS) has been employed for monitoring tissue blood perfusion. While NIRS offers more parameters to evaluate oxygen delivery and consumption in deep tissues, PO only assesses the state of oxygen delivery. For a broader assessment of blood perfusion, this paper explores the utilization of dual-wavelength PPG by using the pulsatile (ac) and continuous (dc) PPG for the estimation of arterial oxygen saturation (SpO2) by conventional PO. Additionally, the Beer-Lambert law is applied to the dc components only for the estimation of changes in deoxyhemoglobin (HHb), oxyhemoglobin (HbO2), and total hemoglobin (tHb) as in NIRS. The system was evaluated on the forearm of 21 healthy volunteers during induction of venous occlusion (VO) and total occlusion (TO). A reflectance PPG probe and NIRS sensor were applied above the brachioradialis, PO sensors were applied on the fingers, and all the signals were acquired simultaneously. While NIRS and forearm SpO2 indicated VO, SpO2 from the finger did not exhibit any significant drop from baseline. During TO, all the indexes indicated the change in blood perfusion. HHb, HbO2, and tHb changes estimated by PPG presented high correlation with the same parameters obtained by NIRS during VO (r(2) = 0.960, r(2) = 0.821, and r(2) = 0.974, respectively) and during TO (r(2) = 0.988, r(2) = 0.940, and r(2) = 0.938, respectively). The system demonstrated the ability to extract valuable information from PPG signals for a broader assessment of tissue blood perfusion. PMID:25838515

  15. The effect of transcutaneous application of carbon dioxide (CO2) on skeletal muscle

    International Nuclear Information System (INIS)

    Highlights: → PGC-1α is up-regulated as a result of exercise such as mitochondrial biogenesis and muscle fiber-type switching, and up-regulation of VEGF. → We demonstrated transcutaneous application of CO2 up-regulated the gene expression of PGC-1α, SIRT1 and VEGF, and instance of muscle fiber switching. → Transcutaneous application of CO2 may cause similar effect to aerobic exercise in skeletal muscle. -- Abstract: In Europe, carbon dioxide therapy has been used for cardiac disease and skin problems for a long time. However there have been few reports investigating the effects of carbon dioxide therapy on skeletal muscle. Peroxisome proliferators-activated receptor (PPAR)-gamma coactivator-1 (PGC-1α) is up-regulated as a result of exercise and mediates known responses to exercise, such as mitochondrial biogenesis and muscle fiber-type switching, and neovascularization via up-regulation of vascular endothelial growth factor (VEGF). It is also known that silent mating type information regulation 2 homologs 1 (SIRT1) enhances PGC-1α-mediated muscle fiber-type switching. Previously, we demonstrated transcutaneous application of CO2 increased blood flow and a partial increase of O2 pressure in the local tissue known as the Bohr effect. In this study, we transcutaneously applied CO2 to the lower limbs of rats, and investigated the effect on the fast muscle, tibialis anterior (TA) muscle. The transcutaneous CO2 application caused: (1) the gene expression of PGC-1α, silent mating type information regulation 2 homologs 1 (SIRT1) and VEGF, and increased the number of mitochondria, as proven by real-time PCR and immunohistochemistry, (2) muscle fiber switching in the TA muscle, as proven by isolation of myosin heavy chain and ATPase staining. Our results suggest the transcutaneous application of CO2 may have therapeutic potential for muscular strength recovery resulting from disuse atrophy in post-operative patients and the elderly population.

  16. Microseism Monitoring System for Coal and Gas Outburst

    Directory of Open Access Journals (Sweden)

    Li Zhenbi

    2012-09-01

    Full Text Available The outburst forecast of coal and gas is a complex system engineering. On the basis of the analysis of microseism monitoring principle, a simplex positioning algorithm for microseism monitoring is designed; a mine microseism monitoring system is established to canalize mine microseism. Mechanism of the error producing and noise reduction measures is studied. We can analyze the data of the microseism monitoring to find coal or rock vibration caused by mining activities. Microseism monitoring system can capture real-time positioning information. It also can timely, accurately monitor and position these microseism events and the mining microseism event, which provide the pressure monitoring, the prediction of gas outstanding and the next step gas coal bed mining monitoring with reference experience.

  17. Transcutaneous measurement of the arterial input function in positron emission tomography

    International Nuclear Information System (INIS)

    Positron emission tomography (PET) provides a powerful tool in medical research. Biochemical function can be both precisely localized and quantitatively measured. To achieve reliable quantitation it is necessary to know the time course of activity concentration in the arterial blood during the measurement. In this study the arterial blood curve from the brachial artery is compared to the activity measured in the internal carotid artery with a new transcutaneous detector

  18. Microseism Monitoring System for Coal and Gas Outburst

    OpenAIRE

    Li Zhenbi; Zhao Baiting

    2012-01-01

    The outburst forecast of coal and gas is a complex system engineering. On the basis of the analysis of microseism monitoring principle, a simplex positioning algorithm for microseism monitoring is designed; a mine microseism monitoring system is established to canalize mine microseism. Mechanism of the error producing and noise reduction measures is studied. We can analyze the data of the microseism monitoring to find coal or rock vibration caused by mining activities. Microseism monitoring s...

  19. Systemic Metabolomic Changes in Blood Samples of Lung Cancer Patients Identified by Gas Chromatography Time-of-Flight Mass Spectrometry

    OpenAIRE

    Suzanne Miyamoto; Taylor, Sandra L.; Barupal, Dinesh K; Ayumu Taguchi; Gert Wohlgemuth; Wikoff, William R.; Yoneda, Ken Y.; Gandara, David R.; Samir M. Hanash; Kyoungmi Kim; Oliver Fiehn

    2015-01-01

    Lung cancer is a leading cause of cancer deaths worldwide. Metabolic alterations in tumor cells coupled with systemic indicators of the host response to tumor development have the potential to yield blood profiles with clinical utility for diagnosis and monitoring of treatment. We report results from two separate studies using gas chromatography time-of-flight mass spectrometry (GC-TOF MS) to profile metabolites in human blood samples that significantly differ from non-small cell lung cancer ...

  20. Ultrasonic monitoring of droplets' evaporation: Application to human whole blood.

    Science.gov (United States)

    Laux, D; Ferrandis, J Y; Brutin, D

    2016-09-01

    During a colloidal droplet evaporation, a sol-gel transition can be observed and is described by the desiccation time τD and the gelation time τG. These characteristic times, which can be linked to viscoelastic properties of the droplet and to its composition, are classically rated by analysis of mass droplet evolution during evaporation. Even if monitoring mass evolution versus time seems straightforward, this approach is very sensitive to environmental conditions (vibrations, air flow…) as mass has to be evaluated very accurately using ultra-sensitive weighing scales. In this study we investigated the potentialities of ultrasonic shear reflectometry to assess τD and τG in a simple and reliable manner. In order to validate this approach, our study has focused on blood droplets evaporation on which a great deal of work has recently been published. Desiccation and gelation times measured with shear ultrasonic reflectometry have been perfectly correlated to values obtained from mass versus time analysis. This ultrasonic method which is not very sensitive to environmental perturbations is therefore very interesting to monitor the drying of blood droplets in a simple manner and is more generally suitable for complex fluid droplets evaporation investigation. PMID:27150753

  1. Noninvasive respiratory monitoring

    International Nuclear Information System (INIS)

    This book contains 10 selections. Some of the titles are: Transcutaneous Monitoring of Respiratory Gases; Computed Tomography of the Chest; Measurement and Monitoring of Exhaled Carbon Dioxide; Oximetry; and Ultrasonic Evaluation of the Chest Wall and Pleura

  2. Noninvasive respiratory monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Nochomovitz, M.L.; Cherniack, N.S.

    1986-01-01

    This book contains 10 selections. Some of the titles are: Transcutaneous Monitoring of Respiratory Gases; Computed Tomography of the Chest; Measurement and Monitoring of Exhaled Carbon Dioxide; Oximetry; and Ultrasonic Evaluation of the Chest Wall and Pleura.

  3. A Microprocessor-Based System for Monitoring Gas Turbines

    Directory of Open Access Journals (Sweden)

    P. K.S. Shrivastava

    1989-04-01

    Full Text Available The development and testing of hardware and software for a microprocessor-based monitoring system for gas turbines is described in this paper. The operators of gas turbines can be trained to monitor running hours, slip between high and low pressure compressor spools and torque on the reduction gear-box under various conditions ofoperation. The system will replace the traditional method of monitoring these parameters which are more time consuming and error prone.

  4. A Microprocessor-Based System for Monitoring Gas Turbines

    OpenAIRE

    P. K.S. Shrivastava; R P Arora; Jasbir Singh

    1989-01-01

    The development and testing of hardware and software for a microprocessor-based monitoring system for gas turbines is described in this paper. The operators of gas turbines can be trained to monitor running hours, slip between high and low pressure compressor spools and torque on the reduction gear-box under various conditions ofoperation. The system will replace the traditional method of monitoring these parameters which are more time consuming and error prone.

  5. Monitoring of rapid blood pH variations by CO detection in breath with tunable diode laser

    Science.gov (United States)

    Kouznetsov, Andrian I.; Stepanov, Eugene V.; Zyrianov, Pavel V.; Shulagin, Yurii A.; Diachenko, Alexander I.; Gurfinkel, Youri I.

    1997-06-01

    Detection of endogenous carbon monoxide content in breath with tunable diode lasers (TDL) was proposed for noninvasive monitoring of rapid blood pH variation. Applied approach is based on high sensitivity of the haemoglobin and myoglobin affinity for CO to blood pH value and an ability to detect rapidly small variations of CO content in expired air. Breath CO absorption in 4.7 micrometers spectral region was carefully measured using PbSSe tunable diode laser that can provide 1 ppb CO concentration sensitivity and 10 s time constant. Applied TDL gas analyzer was used to monitor expired air of studied persons in physiological tests including hyperventilation and physical load. Simultaneous blood tests were conducted to demonstrate correlation between blood and breath chemical parameters.

  6. Oxygen tension measurement using an automatic blood gas analyser.

    Science.gov (United States)

    Becket, J; Orchard, C; Chakrabarti, M K; Hall, G M; Gillies, I D; Bourdillon, P J

    1981-08-01

    Two different methods of assessing the reliability of the oxygen electrode of one model of an automatic blood gas analyser (BGA) have been studied. In the first, a single automatic BGA was assessed by using outdated bank blood which was pumped around a small extracorporeal circuit into which known gas mixtures were passed. Oxygen tension was varied between 2 and 16 kPa. In the second, fresh heparinized blood was tonometered with calibrated gases and submitted to the automatic BGA used in the first part of the study and also to three other identical machines. Each of the machines was between 3 and 4 years old.Eighteen different units of blood were used in the first part of the study. The correlation coefficient between the automatic BGA and the Po(2) in the extracorporeal circuit varied between 0.29 and 0.99. 31% of the total of 209 measurements made by the automatic BGA were more than 1.2 kPa from the reference value, 25% of them being between 1.2 and 4.0 kPa from the reference value. In the second part of the study, the correlation coefficient between this automatic BGA and the tonometered blood was 0.96. The correlation coefficients for the 3 other identical BGAs were 0.84, 0.97 and 0.88, indicating that the BGA used in the first part of the study was no worse than any of the others.It is suggested that although clinicians are likely to ignore readings of an automatic BGA that are more than 4.0 kPa from the true value and are likely to repeat the investigation, readings between 1.2 and 4.0 kPa from the true value may adversely affect patient management. PMID:7288796

  7. A multichannel bioimpedance monitor for full-body blood flow monitoring.

    Science.gov (United States)

    Vondra, Vlastimil; Jurak, Pavel; Viscor, Ivo; Halamek, Josef; Leinveber, Pavel; Matejkova, Magdalena; Soukup, Ladislav

    2016-02-01

    The design, properties, and possible diagnostic contribution of a multichannel bioimpedance monitor (MBM) with three independent current sources are presented in this paper. The simultaneous measurement of bioimpedance at 18 locations (the main part of the body, legs, arms, and neck) provides completely new information, on the basis of which more precise haemodynamic parameters can be obtained. The application of the MBM during various haemodynamic stages, such as resting in a supine position, tilting, exercise stress, and various respiration manoeuvres, is demonstrated. Statistical analysis on a group of 34 healthy volunteers is presented for demonstration of blood flow monitoring by using the proposed method. PMID:25992508

  8. Non-invasive respiratory monitoring in paediatric intensive care unit.

    OpenAIRE

    Nadkarni U; Shah A; Deshmukh C

    2000-01-01

    Monitoring respiratory function is important in a Paediatrics Intensive Care Unit (PICU), as majority of patients have cardio-respiratory problems. Non-invasive monitoring is convenient, accurate, and has minimal complications. Along with clinical monitoring, oxygen saturation using pulse oximetry, transcutaneous oxygenation (PtcO2) and transcutaneous PCO2 (PtcCO2) using transcutaneous monitors and end-tidal CO2 using capnography are important and routine measurements done in most PICUs. Cons...

  9. Transcutaneous Bilirubin Measurement in Preterm Neonates

    Directory of Open Access Journals (Sweden)

    Paymaneh Alizadeh Taheri

    2012-11-01

    Full Text Available Hyperbilirubinemia is a common problem during neonatal period especially in preterm neonates. Transcutaneous bilirubin measurement (TcB by special devices had been documented as an effective tool for predicting neonatal jaundice in full term neonate, but for preterm infants the present evidences are controversial. We carried out a prospective study in Shariati Hospital NICU. 126 paired TcB/total serum bilirubin (TSB measurements were obtained. TcB (on forehead and sternum were measured using JH2-1A device for every admitted preterm infant who clinically showed jaundice and TSB measurements was obtained within 30 min of TcB. 58 (46% were male and 68 (54% were female. The mean gestational age was 31 week and mean birth weight was 1728 ± 60 g. 30 percent of neonates were ill. The mean value obtained by TBS was 8.8 mg/dl and for frontal TcB was 8.2mg/dl and for sternal TcB was 7.4mg/dl. There were good correlation between TBS and TcB and the maximum correlation were seen in 33-37 weeks of gestation and birth weight more than 2500 g with forehead TcB measurement. Healthy preterm infants had significant correlation of TSB and TcB (r=0.56, P<0.001 and ill preterm neonate had r =0.82, P<0.001. The correlation between TBS and TcB with and without phototherapy was r=0.66, P=0.000 and r=0.69, P=0.000 respectively. Although TcB measurement may underestimate TBS but there is significant correlation between TcB and TBS in preterm cases even in ill neonate or who receiving phototherapy. This method can be used for determination of bilirbin level in preterm neonate and reduces the number of blood sampling.

  10. Operating Experience Review of the INL HTE Gas Monitoring System

    Energy Technology Data Exchange (ETDEWEB)

    L. C. Cadwallader; K. G. DeWall

    2010-06-01

    This paper describes the operations of several types of gas monitors in use at the Idaho National Laboratory (INL) High Temperature Electrolysis Experiment (HTE) laboratory. The gases monitored at hydrogen, carbon monoxide, carbon dioxide, and oxygen. The operating time, calibration, and unwanted alarms are described. The calibration session time durations are described. Some simple statistics are given for the reliability of these monitors and the results are compared to operating experiences of other types of monitors.

  11. Gas Saturation Monitoring In Heterogeneous Reservoir Using Tdt Modeling Technique

    OpenAIRE

    Hamada, G. M.; Dahab, A.A.; Abdel Dayem, M. M.; Heikel, S.

    1999-01-01

    The Zeit Bay field reservoir units consist of sandstone and carbonates, partially overlaying a tilted block of fractured basement reservoir with a complex drive mechanism. A secondary recovery scheme of gas re-injection into the original gas cap was initiated to maintain reservoir energy and to overcome pressure decline. Hence accurate detection of gas movement is very critical. Several difficulties to monitor gas-oil contacts were encountered in a considerable number of wells. Some of these ...

  12. Hydrogen and Oxygen Gas Monitoring System Design and Operation

    Energy Technology Data Exchange (ETDEWEB)

    Lee C. Cadwallader; Kevin G. DeWall; J. Stephen Herring

    2007-06-01

    This paper describes pertinent design practices of selecting types of monitors, monitor unit placement, setpoint selection, and maintenance considerations for gas monitors. While hydrogen gas monitors and enriched oxygen atmosphere monitors as they would be needed for hydrogen production experiments are the primary focus of this paper, monitors for carbon monoxide and carbon dioxide are also discussed. The experiences of designing, installing, and calibrating gas monitors for a laboratory where experiments in support of the DOE Nuclear Hydrogen Initiative (NHI) are described along with codes, standards, and regulations for these monitors. Information from the literature about best operating practices is also presented. The NHI program has two types of activities. The first, near-term activity is laboratory and pilot-plant experimentation with different processes in the kilogram per day scale to select the most promising types of processes for future applications of hydrogen production. Prudent design calls for indoor gas monitors to sense any hydrogen leaks within these laboratory rooms. The second, longer-term activity is the prototype, or large-scale plants to produce tons of hydrogen per day. These large, outdoor production plants will require area (or “fencepost”) monitoring of hydrogen gas leaks. Some processes will have oxygen production with hydrogen production, and any oxygen releases are also safety concerns since oxygen gas is the strongest oxidizer. Monitoring of these gases is important for personnel safety of both indoor and outdoor experiments. There is some guidance available about proper placement of monitors. The fixed point, stationary monitor can only function if the intruding gas contacts the monitor. Therefore, monitor placement is vital to proper monitoring of the room or area. Factors in sensor location selection include: indoor or outdoor site, the location and nature of potential vapor/gas sources, chemical and physical data of the

  13. Engineering considerations for corrosion monitoring of gas gathering pipeline systems

    Energy Technology Data Exchange (ETDEWEB)

    Braga, T.G.; Asperger, R.G.

    1987-01-01

    Proper corrosion monitoring of gas gathering pipelines requires a system review to determine the appropriate monitor locations and types of monitoring techniques. This paper develops and discusses a classification of conditions such as flow regime and gas composition. Also discussed are junction categories which, for corrosion monitoring, need to be considered from two points of view. The first is related to fluid flow in the line and the second is related corrosion inhibitor movement along the pipeline. The appropriate application of the various monitoring techniques such as coupons, hydrogen detectors, electrical resistance probe and linear polarization probes are discussed in relation to flow regime and gas composition. Problems caused by semi-conduction from iron sulfide are considered. Advantages and disadvantages of fluid gathering methods such as pots and flow-through drips are discussed in relation to their reliability as on-line monitoring locations.

  14. Hybrid CARS for Non-Invasive Blood Glucose Monitoring

    Science.gov (United States)

    Wang, Xi; Pestov, Dmitry; Zhang, Aihua; Murawski, Robert; Sokolov, Alexei; Welch, George; Laane, Jaan; Scully, Marlan

    2007-10-01

    We develop a spectroscopy technique that combines the advantages of both the frequency-resolved coherent anti-Stokes Raman scattering (CARS) and the time-resolved CARS. We use broadband preparation pulses to get an instantaneous coherent excitation of multiplex molecular vibration levels and subsequent optically shaped time-delayed narrowband probing pulse to detect these vibrations. This technique can suppress the nonresonant background and retrieve the molecular fingerprint signal efficiently and rapidly. We employ this technique to glucose detection, the final goal of which is accurate, non-invasive (i.e. painless) and continuous monitoring of blood glucose concentration in the Diabetes diagnosis to replace the current glucose measurement process, which requires painful fingerpricks and therefore cannot be performed more than a few times a day. We have gotten the CARS spectra of glucose aqueous solution down to 2 mM.

  15. Ambulatory blood pressure monitoring in solid organ transplantation.

    Science.gov (United States)

    Ramesh Prasad, G V

    2012-01-01

    Solid organ transplant recipients are at an increased risk for hypertension and cardiovascular disease. To assist in their management, 24-h ambulatory blood pressure monitoring (ABPM) has become increasingly used in both clinical research settings and practice. ABPM has been used to better define post-transplant hypertension incidence and prevalence in different solid organ transplantation populations. ABPM provides additional information on cardiovascular risk beyond that obtained by clinic-based readings, based on its ability to assess 24-h blood pressure (BP) load, detect nocturnal non-dipping, and predict target organ damage. It has provided some assurance about the safety of living kidney donation. Information from ABPM can be used to guide living kidney donor selection, and because ABPM-related data has been correlated with clinically important kidney and heart transplant recipient outcomes, it may be a valuable adjunct in their management. Despite these advantages, barriers to wider use of ABPM include expense, clinical inertia in hypertension management, lack of prospective clinical trial data, and clinical problems that compete with hypertension for attention such as acute or chronic allograft dysfunction. The increasing amount of research and clinical use for ABPM may allow for closer assessment and intervention to help address the increased cardiovascular risk faced by many solid organ transplant recipients. PMID:22220828

  16. Blood Pressure Mobile Monitoring for Pregnant Woman Based Android System

    Science.gov (United States)

    Supriyanti, Retno; Erfayanto, Uji; Ramadani, Yogi; Murdyantoro, Eko; Widodo, Haris B.

    2016-01-01

    Currently, at least 18,000 women die every year in Indonesia due to pregnancy or childbirth. It means that every half hour a woman dies due to pregnancy or childbirth. As a result, every year 36,000 children became orphans. The high maternal mortality rate was put Indonesia on top in ASEAN. The main causes of maternal mortality are high-risk pregnancy. Mothers who have diseases like high blood pressure, pre-eclampsia, diabetes, hyperthyroidism, and already over 40 years old and infectious diseases such as rubella, hepatitis and HIV can be factors that lead to high-risk pregnancy. This paper will discuss the development of a blood pressure monitoring device that is suitable for pregnant women. It is based on convenience for pregnant women to get the equipment that is flexible with her presence. Results indicate that the equipment is in use daily support for pregnant women therefore, one of the causes of maternal mortality can be detected earlier.

  17. Does home blood pressure monitoring improve patient outcomes? A systematic review comparing home and ambulatory blood pressure monitoring on blood pressure control and patient outcomes

    Science.gov (United States)

    Breaux-Shropshire, Tonya L; Judd, Eric; Vucovich, Lee A; Shropshire, Toneyell S; Singh, Sonal

    2015-01-01

    Objective Our objective was to compare the clinical effectiveness of home blood pressure monitoring (HBPM) and 24-hour ambulatory blood pressure monitoring (ABPM) on blood pressure (BP) control and patient outcomes. Design A systematic review was conducted. We also appraised the methodological quality of studies. Data sources PubMed, Scopus, CINAHL, and the Cochrane Central Register of Control Trials (CENTRAL). Inclusion criteria Randomized control trials, prospective and retrospective cohort studies, observational studies, and case-control studies published in English from any year to present that describe HBPM and 24-hour ABPM and report on systolic and/or diastolic BP and/or heart attack, stroke, kidney failure and/or all-cause mortality for adult patients. Due to the nature of the question, studies with only untreated patients were not considered. Results Of 1,742 titles and abstractions independently reviewed by two reviewers, 137 studies met predetermined criteria for evaluation. Nineteen studies were identified as relevant and included in the paper. The common themes were that HBPM and ABPM correlated with cardiovascular events and mortality, and targeting HBPM or ABPM resulted in similar outcomes. Associations between BP measurement type and mortality differed by study population. Both the low sensitivity of office blood pressure monitoring (OBPM) to detect optimal BP control by ABPM and the added association of HBPM with cardiovascular mortality supported the routine use of HBPM in clinical practice. There was insufficient data to determine the benefit of using HBPM as a measurement standard for BP control. Conclusion HBPM encourages patient-centered care and improves BP control and patient outcomes. Given the limited number of studies with both HBPM and ABPM, these measurement types should be incorporated into the design of randomized clinical trials within hypertensive populations. PMID:26170715

  18. Coal mine gas monitoring system based on wireless sensor network

    Institute of Scientific and Technical Information of China (English)

    WANG Jian; WANG Ru-lin; WANG Xue-min; SHEN Chuan-he

    2007-01-01

    Based on the nowadays'condition.it is urgent that the gas detection cable communication system must be replaced by the wireless communication systems.The wireless sensors distributed in the environment can achieve the intelligent gas monitoring system.Apply with multilayer data fuse to design working tactics,and import the artificial neural networks to analyze detecting result.The wireless sensors system communicates with the controI center through the optical fiber cable.All the gas sensor nodes distributed in coal mine are combined into an intelligent,flexible structure wireless network system.forming coal mine gas monitoring system based on wireless sensor network.

  19. Mobile Personal Health System for Ambulatory Blood Pressure Monitoring

    Science.gov (United States)

    Felix, Vanessa G.; Ostos, Rodolfo; Gonzalez, Jesus A.; Cervantes, Armando; Ochoa, Armando; Ruiz, Carlos; Ramos, Roberto; Maestre, Gladys E.

    2013-01-01

    The ARVmobile v1.0 is a multiplatform mobile personal health monitor (PHM) application for ambulatory blood pressure (ABP) monitoring that has the potential to aid in the acquisition and analysis of detailed profile of ABP and heart rate (HR), improve the early detection and intervention of hypertension, and detect potential abnormal BP and HR levels for timely medical feedback. The PHM system consisted of ABP sensor to detect BP and HR signals and smartphone as receiver to collect the transmitted digital data and process them to provide immediate personalized information to the user. Android and Blackberry platforms were developed to detect and alert of potential abnormal values, offer friendly graphical user interface for elderly people, and provide feedback to professional healthcare providers via e-mail. ABP data were obtained from twenty-one healthy individuals (>51 years) to test the utility of the PHM application. The ARVmobile v1.0 was able to reliably receive and process the ABP readings from the volunteers. The preliminary results demonstrate that the ARVmobile 1.0 application could be used to perform a detailed profile of ABP and HR in an ordinary daily life environment, bedsides of estimating potential diagnostic thresholds of abnormal BP variability measured as average real variability. PMID:23762189

  20. Blood Pressure Monitoring for the Anesthesiologist: A Practical Review.

    Science.gov (United States)

    Bartels, Karsten; Esper, Stephen A; Thiele, Robert H

    2016-06-01

    Periodic, quantitative measurement of blood pressure (BP) in humans, predating the era of evidence-based medicine by over a century, is a component of the American Society of Anesthesiologists standards for basic anesthetic monitoring and is a staple of anesthetic management worldwide. Adherence to traditional BP parameters complicates the ability of investigators to determine whether particular BP ranges confer any clinical benefits. The BP waveform is a complex amalgamation of both antegrade and retrograde (reflected) pressure waves and is affected by vascular compliance, distance from the left ventricle, and the 3D structure of the vascular tree. Although oscillometry is the standard method of measuring BP semicontinuously in anesthetized patients and is the primary form of measurement in >80% of general anesthetics, major shortcomings of oscillometry are its poor performance at the extremes and its lack of information concerning BP waveform. Although arterial catheterization remains the gold standard for accurate BP measurement, 2 classes of devices have been developed to noninvasively measure the BP waveform continuously, including tonometric and volume clamp devices. Described in terms of a feedback loop, control of BP requires measurement, an algorithm (usually human), and an intervention. This narrative review article discusses the details of BP measurement and the advantages and disadvantages of both noninvasive and invasive monitoring, as well as the principles and algorithms associated with each technique. PMID:27195632

  1. The role of pre-hospital blood gas analysis in trauma resuscitation

    Directory of Open Access Journals (Sweden)

    Katila Ari

    2010-04-01

    Full Text Available Abstract Background To assess, whether arterial blood gas measurements during trauma patient's pre-hospital shock resuscitation yield useful information on haemodynamic response to fluid resuscitation by comparing haemodynamic and blood gas variables in patients undergoing two different fluid resuscitation regimens. Methods In a prospective randomised study of 37 trauma patients at risk for severe hypovolaemia, arterial blood gas values were analyzed at the accident site and on admission to hospital. Patients were randomised to receive either conventional fluid therapy or 300 ml of hypertonic saline. The groups were compared for demographic, injury severity, physiological and outcome variables. Results 37 patients were included. Mean (SD Revised Trauma Score (RTS was 7.3427 (0.98 and Injury Severity Score (ISS 15.1 (11.7. Seventeen (46% patients received hypertonic fluid resuscitation and 20 (54% received conventional fluid therapy, with no significant differences between the groups concerning demographic data or outcome. Base excess (BE values decreased significantly more within the hypertonic saline (HS group compared to the conventional fluid therapy group (mean BE difference -2.1 mmol/l vs. -0.5 mmol/l, p = 0.003. The pH values on admission were significantly lower within the HS group (mean 7.31 vs. 7.40, p = 0.000. Haemoglobin levels were in both groups lower on admission compared with accident site. Lactate levels on admission did not differ significantly between the groups. Conclusion Pre-hospital use of small-volume resuscitation led to significantly greater decrease of BE and pH values. A portable blood gas analyzer was found to be a useful tool in pre-hospital monitoring for trauma resuscitation.

  2. Project W-030 flammable gas verification monitoring test

    International Nuclear Information System (INIS)

    This document describes the verification monitoring campaign used to document the ability of the new ventilation system to mitigate flammable gas accumulation under steady state tank conditions. This document reports the results of the monitoring campaign. The ventilation system configuration, process data, and data analysis are presented

  3. Optoelectronic blood oximetry as a tool of health safety monitoring

    Science.gov (United States)

    Cysewska-Sobusiak, Anna

    2001-08-01

    A metrological approach of some selected problems connected with the significant field of biomedical optics i.e., monitoring of arterial blood oxygenation by use of the tissues as optical media exposed to the controlled light action, has been presented. The subject of the measurements based on utilization of the selection absorption properties of blood is the hemoglobin oxygen saturation. Using optoelectronic sensing allows to convert sophisticated effects of noninvasive light-living tissue interaction to electrical signals which may be convenient to measure. Pulse oximetry which is based upon such a way of sensing and processing, is the recent advance in noninvasive oximetry. The unique advantages of that marvelous diagnostic technique have caused to recommend pulse oximeters as standard equipment in intensive care and other critical situations impending hypoxemia appearance. However, end-users of the pulse oximeters not always are aware of that these devices fall under specific limitations, of both physiological and technical nature. The author of this paper is a metrologist and deals mainly with various interdisciplinary problems of a measurement reliability including the aspects such as uncertainty of an outcome accessible to the user, causes affecting sensitivity, resolution and repeatability of processing function, and response time and stability of results. Referring to the subject discussed herein, and taking into account some open questions, the author's contribution is her own experience in modeling as well as in in vivo measuring of transilluminated living objects. A proposed novel use of the known pulse oximetry concept may be considered as complementary results against a general review background of the achievements obtained in oximetry as the state-of-the-art, and furthermore, the developing studies which are still in progress.

  4. Raman gas analyzer applicability to monitoring of gaseous air pollution

    Science.gov (United States)

    Petrov, D. V.; Matrosov, I. I.; Tikhomirov, A. A.

    2015-11-01

    It is shown that the main problem, arising when designing a stationary Raman gas analyzer intended to monitor gaseous air pollutions, is to get SRS signals of sufficient intensity. The engineering solutions are presented that provide the required sensitivity (~ 50-100 ppb). It is achieved by compressing a gas medium under analysis and gaining intensity of the exciting laser radiation.

  5. Ambulatory Blood Pressure Monitoring-Derived Short-Term Blood Pressure Variability in Primary Aldosteronism.

    Science.gov (United States)

    Grillo, Andrea; Bernardi, Stella; Rebellato, Andrea; Fabris, Bruno; Bardelli, Moreno; Burrello, Jacopo; Rabbia, Franco; Veglio, Franco; Fallo, Francesco; Carretta, Renzo

    2015-08-01

    The aim of this study was to investigate the short-term blood pressure (BP) variability (BPV) derived from ambulatory blood pressure monitoring (ABPM) in patients with primary aldosteronism (PA), either idiopathic hyperaldosteronism (IHA) or aldosterone-producing adenoma (APA), in comparison with patients with essential hypertension (EH) and normotensive (NT) controls. Thirty patients with PA (16 with IHA and 14 with APA), 30 patients with EH, and 30 NT controls, matched for sex, age, body mass index, and antihypertensive therapy, were studied. The standard deviation (SD) of 24-hour, daytime, and nighttime BP; 24-hour weighted SD of BP; and 24-hour BP average real variability were not different between patients with PA and those with EH (P=not significant). All BPV indices were higher in patients with PA, either IHA or APA subtypes, and patients with EH, compared with NT controls (P<.001 to P<.05). ABPM-derived short-term BPV is increased in patients with PA, and it may represent an additional cardiovascular risk factor in this disease. The role of aldosterone excess in BPV has to be clarified. PMID:25880017

  6. Mucosal blood flow measurements using laser Doppler perfusion monitoring

    Institute of Scientific and Technical Information of China (English)

    Dag Arne Lihaug Hoff; Hans Gregersen; Jan Gunnar Hatlebakk

    2009-01-01

    Perfusion of individual tissues is a basic physiological process that is necessary to sustain oxygenation and nutrition at a cellular level. Ischemia, or the insufficiency of perfusion, is a common mechanism for tissue death or degeneration, and at a lower threshold, a mechanism for the generation of sensory signalling including pain. It is of considerable interest to study perfusion of peripheral abdominal tissues in a variety of circumstances. Microvascular disease of the abdominal organs has been implicated in the pathogenesis of a variety of disorders, including peptic ulcer disease, inflammatory bowel disease and chest pain. The basic principle of laser Doppler perfusion monitoring (LDPM) is to analyze changes in the spectrum of light reflected from tissues as a response to a beam of monochromatic laser light emitted. It reflects the total local microcirculatory blood perfusion, including perfusion in capillaries, arterioles, venules and shunts. During the last 20-25 years, numerous studies have been performed in different parts of the gastrointestinal (GI) tract using LDPM. In recent years we have developed a multi-modal catheter device which includes a laser Doppler probe, with the intent primarily to investigate patients suffering from functional chest pain of presumed oesophageal origin. Preliminary studies show the feasibility of incorporating LDPM into such catheters for performing physiological studies in the GI tract. LDPM has emerged as a research and clinical tool in preference to other methods; but, it is important to be aware of its limitations and account for them when reporting results.

  7. Evaluation of the Capillary Blood Glucose Self-monitoring Program

    Directory of Open Access Journals (Sweden)

    Mariana Cristina Augusto

    2014-10-01

    Full Text Available OBJECTIVE: to evaluate the structure, process and results of the Capillary Blood Glucose Self-monitoring Program in a Brazilian city.METHOD: epidemiological, cross-sectional study. The methodological framework of Donabedian was used to construct indicators of structure, process and outcome. A random sample (n = 288 of users enrolled and 96 health professionals who worked in the program was studied. Two questionnaires were used that were constructed for this study, one for professionals and one for users, both containing data for the evaluation of structure, process and outcome. Anthropometric measures and laboratory results were collected by consulting the patients' health records. The analysis involved descriptive statistics.RESULTS: most of the professionals were not qualified to work in the program and were not knowledgeable about the set of criteria for patient registration. None of the patients received complete and correct orientations about the program and the percentage with skills to perform conducts autonomously was 10%. As regards the result indicators, 86.4% of the patients and 81.3% of the professionals evaluated the program positively.CONCLUSION: the evaluation indicators designed revealed that one of the main objectives of the program, self-care skills, has not been achieved.

  8. Does home blood pressure monitoring improve patient outcomes? A systematic review comparing home and ambulatory blood pressure monitoring on blood pressure control and patient outcomes

    Directory of Open Access Journals (Sweden)

    Breaux-Shropshire TL

    2015-07-01

    Full Text Available Tonya L Breaux-Shropshire,1,2 Eric Judd,1 Lee A Vucovich,3 Toneyell S Shropshire,4 Sonal Singh5 1Vascular Biology and Hypertension Program, Cardiovascular Disease, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA; 2Veterans Administration, Birmingham, AL, USA; 3Lister Hill Library, University of Alabama at Birmingham, Birmingham, AL, USA; 4Department of Physical Therapy, Louisiana State University Health Sciences Center, New Orleans, LA, USA; 5Department of Medicine, John Hopkins School of Medicine, Baltimore, MD, USA Objective: Our objective was to compare the clinical effectiveness of home blood pressure monitoring (HBPM and 24-hour ambulatory blood pressure monitoring (ABPM on blood pressure (BP control and patient outcomes. Design: A systematic review was conducted. We also appraised the methodological quality of studies. Data sources: PubMed, Scopus, CINAHL, and the Cochrane Central Register of Control Trials (CENTRAL. Inclusion criteria: Randomized control trials, prospective and retrospective cohort studies, observational studies, and case-control studies published in English from any year to present that describe HBPM and 24-hour ABPM and report on systolic and/or diastolic BP and/or heart attack, stroke, kidney failure and/or all-cause mortality for adult patients. Due to the nature of the question, studies with only untreated patients were not considered. Results: Of 1,742 titles and abstractions independently reviewed by two reviewers, 137 studies met predetermined criteria for evaluation. Nineteen studies were identified as relevant and included in the paper. The common themes were that HBPM and ABPM correlated with cardiovascular events and mortality, and targeting HBPM or ABPM resulted in similar outcomes. Associations between BP measurement type and mortality differed by study population. Both the low sensitivity of office blood pressure monitoring (OBPM to detect optimal BP control by ABPM and the

  9. Design and assembly of BESIII MUON gas monitor

    International Nuclear Information System (INIS)

    By monitoring the 5.9 keV X-ray of 55Fe radioactive source, we develop a counter to monitor the real-time gas ratio of BESIII MUON detector. After several experiments to study the performance of the counter, we confirmed the finite proportional mode of our monitor, and chose the appropriate high voltage to make the monitor operate permanently and stably. Based on LabVIEW and ROOT, we compile the integrated data acquisition system to display the real time monitor result. According to the signal character, we assemble the high voltage, gas pipe and electronic package board to reduce the cost of system equipments. Finally we report the primary test result after assembly. (authors)

  10. Non-invasive monitoring of blood pressure using the Philips Intellivue MP50 monitor cannot replace invasive blood pressure techniques in surgery patients under general anesthesia

    OpenAIRE

    Meng, Xianghu; ZANG, GUANGHUI; FAN, LONGCHANG; Zheng, Lei; DAI, JINZHEN; WANG, XUEREN; Xia, Wei; Liu, Jihong; ZHANG, CHUANHAN

    2013-01-01

    The Philips Intellivue MP50 monitor provides a method for non-invasive, near-continuous blood pressure (BP) monitoring and is designed to be an alternative to direct intra-arterial BP (IABP) measurement. However, no studies have specifically compared non-invasive and invasive BP measurements using the monitor. The present retrospective study observed 515 patients undergoing surgery with general anesthesia, whose invasive (intra-radial, femoral or dorsalis pedis artery) and non-invasive (oscil...

  11. Results of ambulatory arterial blood pressure monitoring in children with obesity

    OpenAIRE

    Faruk Öktem

    2010-01-01

    Objectives: The relationship between obesity and essential hypertension is well known. In this study, we aimed to evaluate ambulatory arterial blood pressure monitoring of obese and non-obese children who had similar demographic characteristics.Materials and methods: Seventy one children and adolescents (n=39 obesity, n=32 controls) were studied. Blood pressure of the children were measured by 24 hour ambulatory blood pressure monitoring device.Results: Obese children had significantly higher...

  12. Analysis of blood gas values in mice following pulmonary irradiation

    International Nuclear Information System (INIS)

    The arterial pH and partial pressures of oxygen (P/sub a/O2) and carbon dioxide (P/sub a/CO2) of mice were investigated at times from 1 to 16 weeks after a single radiation dose of 1100 rad to the thorax. The mice breathed air during the irradiation and either air, 7% O2:93% N2, or 100% O2 during the blood gas determinations. P/sub a/O2 values of mice breathing 7% O2:93% N2 or 100% O2 were reduced 4 to 6 weeks after the irradiation. Also, all P/sub a/O2 values were reduced and all hemoglobin (Hb) levels were elevated 16 weeks after irradiation. The majority of the animals died between 16 and 26 weeks after irradiation, but decreased P/sub a/O2 and increased Hb levels also were observed 27 weeks after the treatment in a few of the surviving mice. These findings indicate that the arterial blood gases may change following pulmonary irradiation and may provide an endpoint for the study of radiation-induced pulmonary damage

  13. Analysis of mean transcutaneous capnography in consecutive patients undergoing polysomnography

    OpenAIRE

    Giulio Cesare Pinnola; Patrícia Souza Bastos

    2014-01-01

    Transcutaneous capnography is a noninvasive method useful for analysis of the behavioral tendency of transcutaneous CO2 pressure (PtcCO2) in patients undergoing polysomnography, to evaluate respiratory sleep disorders. Objective Determine normative PtcCO2 values in normal patients undergoing polysomnography. Method One hundred seventy-nine patients who underwent polysomnography with simultaneous PtcCO2 measurement were assessed by means of a transcutaneous capnograph (TCM4 series from Radi...

  14. Transcutaneous electrostimulation for osteoarthritis of the knee: CAT

    OpenAIRE

    Raúl Alberto Aguilera Eguía; Alejandro Ibacache Palma

    2013-01-01

    Purpose. The aim of this CAT (Critically Appraised Topic) was to check the validity of the results and effectiveness of Transcutaneous Electrical Stimulation in subjects with knee osteoarthritis and answer the question: In subjects with osteoarthritis of the knee, does low frequency transcutaneous electrical stimulation reduce pain? Method. We conducted an analysis of the article "Transcutaneous Electrical Stimulation for osteoarthritis of the knee, Cochrane Systematic Review" of Rutjes et al...

  15. Operating experience review of an INL gas monitoring system

    Energy Technology Data Exchange (ETDEWEB)

    Cadwallader, Lee C. [Idaho National Lab. (INL), Idaho Falls, ID (United States); DeWall, K. G. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Herring, J. S. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-12

    This article describes the operations of several types of gas monitors in use at the Idaho National Laboratory (INL) High Temperature Electrolysis Experiment (HTE) laboratory. The gases monitored in the lab room are hydrogen, carbon monoxide, carbon dioxide, and oxygen. The operating time, calibration, and both actual and unwanted alarms are described. The calibration session time durations are described. In addition, some simple calculations are given to estimate the reliability of these monitors and the results are compared to operating experiences of other types of monitors.

  16. The influence of acupoint transcutaneous electrical stimulation on blood glucose, glycosylated hemoglobin and the physical fitness of patients with type 2 diabetes mellitus%经皮穴位电刺激疗法对2型糖尿病患者血糖和糖化血红蛋白及体质指标的影响

    Institute of Scientific and Technical Information of China (English)

    杨铭; 吴志远; 贾杰; 吴毅; 黄天生; 苏红梅; 王松伟; 陆佳敏; 吕颖

    2014-01-01

    Objective To compare the effects of electrical stimulation applied transcutaneously to acupoints with electroacupuncture on blood glucose,glycosylated hemoglobin levels and the physical fitness of type 2 diabetic patients.Methods Sixty persons with type 2 diabetes were randomized into an electroacupuncture group (30 cases) and a transcutaneous stimulation group (30 cases).The patients were treated with either electroacupuncture or transcutaneous electrical stimulation of certain acupoints for a period of 2 months,30 minutes a day,5 times per week.At pre-treatment,post-treatment and follow-up,the indexes of 2 hour postprandial blood glucose (2hPG) and glycosylated hemoglobin (HbA1c),body mass index (BMI),waist-to-hip ratio (WHR) and percentage of body fat (PBF) were measured.Results After treatment,all of the above indexes had improved in both groups.At follow-up there was no longer any statistically significant difference compared with before treatment except for HbA1c levels in the electroacupuncture group.There was no statistically significant difference between the groups in terms of any index at any time point.Conclusion Transcutaneous electrical stimulation of the acupoints demonstrated effects similar to those of electroacupuncture in improving the blood glucose and glycosylated hemoglobin levels and the physical fitness of patients with type 2 diabetes.%目的 探讨经皮穴位电刺激疗法和电针疗法对2型糖尿病患者血糖、糖化血红蛋白及体质指标的影响.方法 将60例2型糖尿病患者按随机数字表法分为电针组和Acu-TENS组,每组30例.2组患者在常规用药基础上,分别进行为期2个月,每日1次,每次30 min,每周5次的电针治疗和经皮穴位电刺激治疗.分别于治疗前、治疗2个月后(治疗后)及治疗结束后2个月(随访时)对2组患者进行餐后2h血糖、糖化血红蛋白、体质指数(BMI)、腰臀比、体脂百分比等指标检测,并进行统计学分析比较.结果 治

  17. Monitoring of noble gas radioisotopes in nuclear power plant effluents

    International Nuclear Information System (INIS)

    Monitoring of gaseous radionuclides in the effluents of nuclear facilities is an essential requirement in effluent management programs. Since there is no practical way of removing noble gas radioisotopes from air at release pathways, their accurate monitoring is essential for providing appropriate environmental protection. Emitted γ dose-rate is the limiting factor for concentration-time integral of noble gas in gaseous effluents of reactor facilities. The external exposure to the public from a semi-infinite cloud is directly proportional to both the noble gas isotope concentration and the integrated γ energy per disintegration. Both can be directly measured in gaseous effluent pathways with a suitable detector. The capability of NaI(T1), CaF2(Eu) and plastic scintillation detectors to measure the γ-Ci.MeV content of noble gas releases was experimentally evaluated. The combination of CaF2(Eu) detector in a pressurized through-flow chamber, with a charge integrating scaler well complied with both γ energy response and detection sensitivity requirements. Noble gas source terms and effluent monitoring criteria are discussed, theoretical and experimental results are presented and a practical, on-line noble gas monitoring system is described

  18. Development of oil and gas sector monitoring in Perm territory

    Directory of Open Access Journals (Sweden)

    Galina Vasil'evna Kutergina

    2012-03-01

    Full Text Available This paper reviews current approaches to the definition of «regional monitoring» and its contents. The work is based on the use of a systematic approach to the analysis of regional monitoring, reviewing it as part of the overall control system and risk management in the region.Organization of regional monitoring is considered on the example of oil and gas complex (OGC of Perm territory. This paper summarizes the structure of the OGC, the specific features of the activities of the enterprises that have the most significant impact on the organization of monitoring. The findings are based on an analysis and compilation of statistics. Authors consider in most details the subjects and objects of state and corporate level monitoring of the regional OGC in Perm territory, their main function of monitoring, interoperability issues, methodological support of various institutions in the periodic monitoring of OGC - the audit committees and internal audit units. Proposals for the development in most parts refer to the use of risk-oriented approach to organizing periodic monitoring of oil and gas industry in the territory on the basis of a common methodology for assessing its effectiveness. The proposals to expand cooperation between state agencies and regional bodies of governance of OGC enterprises in Perm territory on a wide range of areas of the organization of monitoring: the exchange of professional information, methodology, activities, staff and others.

  19. A gas scintillation monitor for tritium gas in argon or in nitrogen

    International Nuclear Information System (INIS)

    The aim of the work here presented is to determine the prospects for the realization of a new type of monitoring system, mainly dedicated to the measurement of gas activity in the isolation space of double containers for high activity tritium. This monitoring system should have sufficient sensitivity, quick response and should be easily decontaminated. Looking at the data in the literature, we reached the conclusion that gas scintillation, produced by the passage of ionizing particles in a gas, could be successfully exploited for the measurement of the specific activity of tritium in gaseous form, mixed in streams of given gas carrier

  20. A Gas Monitoring and Control System in a Coal and Gas Outburst Laboratory

    Directory of Open Access Journals (Sweden)

    W. Nie

    2014-01-01

    Full Text Available Coal and gas outburst is a phenomenon characterized by the ejection of gas and coal from the solid face of a mine. Physical minioutburst experiments are a very important tool for analyzing outbursts of coal and gas. However, few reports have focused on the safety problem produced by gas concentration or the role of gas spread during the physical experiments. In this study, we designed a simple monitoring and control system for the safety of staff during the minioutburst experiments. The results showed that, in the simulation of four dangerous situations, the system based on a sensors feedback loop can monitor the development of gas content in the temporal and spatial domains for the enhancement of accurate warnings. The system also automatically chooses the appropriate ventilation measures to lower the gas content considering different degrees of danger.

  1. Electrodes for transcutaneous (surface) electrical stimulation

    OpenAIRE

    Keller Thierry; Kuhn Andreas

    2008-01-01

    In therapeutic and functional applications transcutaneous electrical stimulation (TES) is still the most frequently applied technique for muscle and nerve activation despite the huge efforts made to improve implantable technologies. Stimulation electrodes play the important role in interfacing the tissue with the stimulation unit. Between the electrode and the excitable tissue there are a number of obstacles in form of tissue resistivities and permittivities that can only be circumvented by m...

  2. Effect of administration of water enriched in O2 by injection or electrolysis on transcutaneous oxygen pressure in anesthetized pigs

    Directory of Open Access Journals (Sweden)

    Charton A

    2014-08-01

    Full Text Available Antoine Charton,1 François Péronnet,2 Stephane Doutreleau,3 Evelyne Lonsdorfer,3 Alexis Klein,4 Liliana Jimenez,4 Bernard Geny,3 Pierre Diemunsch,1 Ruddy Richard5 1Department of Anesthesia and Critical Care, and EA 3072, Hôpital de Hautepierre; University of Strasbourg, Strasbourg, France; 2Department of Kinesiology, Université de Montréal, Montreal, QC, Canada; 3CHRU of Strasbourg, Physiology and Functional Explorations Department, New Civil Hospital, Strasbourg, France and University of Strasbourg, Faculty of Medicine, Physiology Department, Strasbourg, France; 4Danone Research, Palaiseau, France; 5Department of Sport Medicine and Functional Explorations, CHU Clermont-Ferrand and INRA UMR 1019, CRNH-Auvergne, Clermont-Ferrand, France Background: Oral administration of oxygenated water has been shown to improve blood oxygenation and could be an alternate way for oxygen (O2 supply. In this experiment, tissue oxygenation was compared in anesthetized pigs receiving a placebo or water enriched in O2 by injection or a new electrolytic process. Methods: Forty-two pigs randomized in three groups received either mineral water as placebo or water enriched in O2 by injection or the electrolytic process (10 mL/kg in the stomach. Hemodynamic parameters, partial pressure of oxygen in the arterial blood (PaO2, skin blood flow, and tissue oxygenation (transcutaneous oxygen pressure, or TcPO2 were monitored during 90 minutes of general anesthesia. Absorption and tissue distribution of the three waters administered were assessed using dilution of deuterium oxide. Results: Mean arterial pressure, heart rate, PaO2, arteriovenous oxygen difference, and water absorption from the gut were not significantly different among the three groups. The deuterium to protium ratio was also similar in the plasma, skin, and muscle at the end of the protocol. Skin blood flow decreased in the three groups. TcPO2 slowly decreased over the last 60 minutes of the experiment in

  3. Wearable Beat to Beat Blood Pressure Monitor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A key component of NASA's human exploration programs is a system that monitors the health of the crew during the space missions. The wearable physiological monitor...

  4. Software to Control and Monitor Gas Streams

    Science.gov (United States)

    Arkin, C.; Curley, Charles; Gore, Eric; Floyd, David; Lucas, Damion

    2012-01-01

    This software package interfaces with various gas stream devices such as pressure transducers, flow meters, flow controllers, valves, and analyzers such as a mass spectrometer. The software provides excellent user interfacing with various windows that provide time-domain graphs, valve state buttons, priority- colored messages, and warning icons. The user can configure the software to save as much or as little data as needed to a comma-delimited file. The software also includes an intuitive scripting language for automated processing. The configuration allows for the assignment of measured values or calibration so that raw signals can be viewed as usable pressures, flows, or concentrations in real time. The software is based on those used in two safety systems for shuttle processing and one volcanic gas analysis system. Mass analyzers typically have very unique applications and vary from job to job. As such, software available on the market is usually inadequate or targeted on a specific application (such as EPA methods). The goal was to develop powerful software that could be used with prototype systems. The key problem was to generalize the software to be easily and quickly reconfigurable. At Kennedy Space Center (KSC), the prior art consists of two primary methods. The first method was to utilize Lab- VIEW and a commercial data acquisition system. This method required rewriting code for each different application and only provided raw data. To obtain data in engineering units, manual calculations were required. The second method was to utilize one of the embedded computer systems developed for another system. This second method had the benefit of providing data in engineering units, but was limited in the number of control parameters.

  5. Data Of Daily Blood Pressure Monitoring In Patients With Rheumatoid Arthritis

    Directory of Open Access Journals (Sweden)

    A.P. Rebrov

    2009-06-01

    Full Text Available The aim of present work is to study the frequency of hypertension and the peculiarity of 24-hour blood pressure monitoring in patients with rheumatoid arthritis. We studied 584 patients with rheumatoid arthritis. Daily blood pressure monitoring was carried out in 46 patients with arthritis and 18 patients with essential hypertension. Frequency of hypertension was higher in patients with arthritis then in general population. Elevation of systolic blood pressure, heart rate and arterial blood pressure adequate decrease at night were developed to associate with advance of the disease.

  6. Extensive monitoring through multiple blood samples in professional soccer players

    DEFF Research Database (Denmark)

    Heisterberg, Mette F; Fahrenkrug, Jan; Krustrup, Peter;

    2013-01-01

    ABSTRACT: The aim of this study was to make a comprehensive gathering of consecutive detailed blood samples from professional soccer players, and to analyze different blood parameters in relation to seasonal changes in training and match exposure.Blood samples were collected five times during a six...... months period and analyzed for 37 variables in 27 professional soccer players from the best Danish league. Additionally, players were tested for body composition, VO2max and physical performance by the Yo-Yo intermittent endurance sub-max test (IE2).Multiple variations in blood parameters occurred during...... of the season. Leucocytes decreased with increased physical training. Lymphocytes decreased at the end of the season. VO2max decreased towards the end of the season whereas no significant changes were observed in the IE2 test.The regular blood samples from elite soccer players reveal significant changes...

  7. The Food and Drug Administration Is Now Preparing to Establish Tighter Performance Requirements for Blood Glucose Monitors

    OpenAIRE

    Klonoff, David C.

    2010-01-01

    On March 16 and 17, 2010, the Food and Drug Administration (FDA) presented a public meeting about blood glucose monitoring at the Gaithersberg Hilton Hotel. The meeting was intended to present expert opinions and solicit input from the public about whether to develop new regulatory policies for blood glucose monitors. The meeting was divided into three sections: (1) Clinical Accuracy Requirements for Blood Glucose Monitors, (2) Interferences and Limitations of Blood Glucose Monitors, and (3) ...

  8. Experimental study on engine gas-path component fault monitoring using exhaust gas electrostatic signal

    Science.gov (United States)

    Sun, Jianzhong; Zuo, Hongfu; Liu, Pengpeng; Wen, Zhenhua

    2013-12-01

    This paper presents the recent development in engine gas-path components health monitoring using electrostatic sensors in combination with signal-processing techniques. Two ground-based engine electrostatic monitoring experiments are reported and the exhaust gas electrostatic monitoring signal-based fault-detection method is proposed. It is found that the water washing, oil leakage and combustor linear cracking result in an increase in the activity level of the electrostatic monitoring signal, which can be detected by the electrostatic monitoring system. For on-line health monitoring of the gas-path components, a baseline model-based fault-detection method is proposed and the multivariate state estimation technique is used to establish the baseline model for the electrostatic monitoring signal. The method is applied to a data set from a turbo-shaft engine electrostatic monitoring experiment. The results of the case study show that the system with the developed method is capable of detecting the gas-path component fault in an on-line fashion.

  9. Experimental study on engine gas-path component fault monitoring using exhaust gas electrostatic signal

    International Nuclear Information System (INIS)

    This paper presents the recent development in engine gas-path components health monitoring using electrostatic sensors in combination with signal-processing techniques. Two ground-based engine electrostatic monitoring experiments are reported and the exhaust gas electrostatic monitoring signal-based fault-detection method is proposed. It is found that the water washing, oil leakage and combustor linear cracking result in an increase in the activity level of the electrostatic monitoring signal, which can be detected by the electrostatic monitoring system. For on-line health monitoring of the gas-path components, a baseline model-based fault-detection method is proposed and the multivariate state estimation technique is used to establish the baseline model for the electrostatic monitoring signal. The method is applied to a data set from a turbo-shaft engine electrostatic monitoring experiment. The results of the case study show that the system with the developed method is capable of detecting the gas-path component fault in an on-line fashion. (paper)

  10. An elapsed time-temperature monitor for blood storage.

    Science.gov (United States)

    Harris, G E; Cloud, S; Myhre, B A

    1977-01-01

    Blood should not be allowed to exceed 10 C while being stored or transported. However, one cannot test the internal temperature of a unit of blood without contaminating it. Most blood banks have established an arbitrary time limit beyond which a blood unit cannot be kept out of the refrigerator. This method is ineffective if blood is stored in a satellite refrigerator, since the blood may be moved in and out of the refrigerator and the blood bank personnel will be unaware of it. An elapsed time indicator is described which employs a small condenser (E-Cell-Plessey Electronics) charged with a known amount of electricity. If the device is removed from the refrigerator, it begins to discharge at a known rate. The amount of time subsequently can be determined by the loss of charge. The prototype of this instrument has been found to be quite accurate and small (2 inches X 2 inches X 1 inch). It would be rather inexpensive if made in considerable numbers. PMID:867474

  11. Comparison of scintillation and gas filled detectors for contamination monitoring

    International Nuclear Information System (INIS)

    There are now for radioactive contamination monitoring not only instruments with gas filled detectors but also devices with scintillation detectors in use. These detection techniques have significant physical differences and utilize hardware with specific properties. Therefore there are special advantages and drawbacks for the user and the application. A scintillator is usually a rugged component with a relatively low weight and high detection efficiency. The technical problems with scintillators are mainly in effective and uniform light detection. Gas filled detectors have good uniformities in detection efficiencies. Their main disadvantages are the gas supply and thin entrance windows. These foils can easily be damaged resulting in gas leakage. For both types of instruments efficiencies, typical background levels, position dependent responses and minimum detectable activities for a wide range of radionuclides are summarized and discussed. Also other handling features, like for instance weight, temperature ranges and aspects of service and maintenance are discussed. In addition to the presented data characterizing the different types of contamination monitors it is also important to think about service and maintenance. In general gas filled detectors could more easily be destroyed than scintillators. On an average this generates more problems and also higher repair cost. This is certainly one of the reasons that made scintillators in contamination monitoring so popular. Scintillation detection has been proven to be a reliable and competitive technology for contamination monitoring. The efficiencies and detection limits are in general superior to comparable gas filled detectors. This is also true for many nuclear medicine nuclides with photon emitters. Simultaneous and separate measurement of alpha- and beta-gamma radiation can easily be achieved by pulse analysis. The overall weight of a scintillation based instrument can be substantially lower than the weight of

  12. The effect of transcutaneous application of carbon dioxide (CO{sub 2}) on skeletal muscle

    Energy Technology Data Exchange (ETDEWEB)

    Oe, Keisuke [Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe (Japan); Ueha, Takeshi [NeoChemir Inc, Kobe (Japan); Sakai, Yoshitada, E-mail: sakai.yoshitada@gm.himeji-du.ac.jp [Faculty of Health Care Sciences, Himeji Dokkyo University, Himeji (Japan); Niikura, Takahiro; Lee, Sang Yang; Koh, Akihiro [Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe (Japan); Hasegawa, Takumi [Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, Kobe (Japan); Tanaka, Masaya [NeoChemir Inc, Kobe (Japan); Miwa, Masahiko; Kurosaka, Masahiro [Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe (Japan)

    2011-04-01

    Highlights: {yields} PGC-1{alpha} is up-regulated as a result of exercise such as mitochondrial biogenesis and muscle fiber-type switching, and up-regulation of VEGF. {yields} We demonstrated transcutaneous application of CO{sub 2} up-regulated the gene expression of PGC-1{alpha}, SIRT1 and VEGF, and instance of muscle fiber switching. {yields} Transcutaneous application of CO{sub 2} may cause similar effect to aerobic exercise in skeletal muscle. -- Abstract: In Europe, carbon dioxide therapy has been used for cardiac disease and skin problems for a long time. However there have been few reports investigating the effects of carbon dioxide therapy on skeletal muscle. Peroxisome proliferators-activated receptor (PPAR)-gamma coactivator-1 (PGC-1{alpha}) is up-regulated as a result of exercise and mediates known responses to exercise, such as mitochondrial biogenesis and muscle fiber-type switching, and neovascularization via up-regulation of vascular endothelial growth factor (VEGF). It is also known that silent mating type information regulation 2 homologs 1 (SIRT1) enhances PGC-1{alpha}-mediated muscle fiber-type switching. Previously, we demonstrated transcutaneous application of CO{sub 2} increased blood flow and a partial increase of O{sub 2} pressure in the local tissue known as the Bohr effect. In this study, we transcutaneously applied CO{sub 2} to the lower limbs of rats, and investigated the effect on the fast muscle, tibialis anterior (TA) muscle. The transcutaneous CO{sub 2} application caused: (1) the gene expression of PGC-1{alpha}, silent mating type information regulation 2 homologs 1 (SIRT1) and VEGF, and increased the number of mitochondria, as proven by real-time PCR and immunohistochemistry, (2) muscle fiber switching in the TA muscle, as proven by isolation of myosin heavy chain and ATPase staining. Our results suggest the transcutaneous application of CO{sub 2} may have therapeutic potential for muscular strength recovery resulting from disuse

  13. A fiberoptic sensor for tissue carbon dioxide monitoring.

    Science.gov (United States)

    Davenport, John J; Hickey, Michelle; Phillips, Justin P; Kyriacou, Panicos A

    2015-08-01

    We present a new fiberoptic carbon dioxide sensor for transcutaneous and mucosa (indwelling) blood gas monitoring. The sensor is based on optical fluorescence of molecules sensitive to pH changes associated with dissolved CO2. A three layer chemical coating was dip-coated onto the distal tip of an optical fiber (600μm core radius). It contained the 50mg/ml `polym H7', a coating polymer bonded to a fluorescence indicator dye, along with 125mg/ml of the transfer agent tetraoctylammonium hydroxide (TONOH). Light from a blue (460 nm) LED was launched into the fiber to excite the sensing film. The sensing film fluoresced green (530 nm), the intensity of which decreased in the presence of CO2. The sensor was tested in vitro, finding a correlation between change in fluorescence (in AU) and aqueous CO2 concentration with a minimum detection threshold of 40%. The sensor is being developed for medical applications where its small size and ability to continuously monitor the partial pressure of CO2 (PCO2) will make it an extremely useful diagnostic tool. PMID:26738134

  14. Specific radiological monitoring (SRM) in oil and gas production platforms

    International Nuclear Information System (INIS)

    Technologically enhanced naturally occurring radioactive materials (TENORM) are present in components of both oil and natural gas production facilities. TENORM can be associated with the presence of crude oil, produced water and natural gas. The radiation exposure pathways to the workers in oil and gas production are similar to those in the uranium and heavy mineral sand mining and processing industry. This paper work provides a short review on the Specific Radiological Monitoring (SRM) program were carried out at oil and gas platforms in the east cost of Peninsular Malaysia. The objective of this paper work is to observe the monitoring parameters levels and to evaluate whether these levels are exceeding the limits set by Atomic Energy Licensing Board (AELB). The monitoring results showed that the surface contamination, airborne contamination and concentration of radon and thoron are well below the set limit stipulated in LEM/TEK/30 SEM.2, except for external radiation and radioactivity concentration of sludge and scales. About 2 (2.35%) from the 85 external radiation measurements performed were found above the permissible limit. While about 11 (36.6%) and 7 (23.3%) of the 30 collected sludge and scales samples were found containing higher Ra-226 and Ra-228, respectively, than the mean concentrations in normal soils of Peninsular Malaysia. In general, it can be concluded that a few of oil and gas production platform are producing TENORM. (Author)

  15. Exposure-based treatment to control excessive blood glucose monitoring.

    OpenAIRE

    Allen, K D; Evans, J. H.

    2001-01-01

    We investigated an exposure-based procedure for reducing excessive checking of blood glucose by a child with diabetes. In a changing criterion design, an exposure-based procedure was implemented by systematically exposing the child to decreasing amounts of information about blood sugar levels (checking) and thereby increasing exposure to potential hypoglycemia. Access to information was reduced in graduated increments, with the parents setting criteria to levels at which they were willing to ...

  16. Remote Real-Time Monitoring of Subsurface Landfill Gas Migration

    Directory of Open Access Journals (Sweden)

    Alan F. Smeaton

    2011-06-01

    Full Text Available The cost of monitoring greenhouse gas emissions from landfill sites is of major concern for regulatory authorities. The current monitoring procedure is recognised as labour intensive, requiring agency inspectors to physically travel to perimeter borehole wells in rough terrain and manually measure gas concentration levels with expensive hand-held instrumentation. In this article we present a cost-effective and efficient system for remotely monitoring landfill subsurface migration of methane and carbon dioxide concentration levels. Based purely on an autonomous sensing architecture, the proposed sensing platform was capable of performing complex analytical measurements in situ and successfully communicating the data remotely to a cloud database. A web tool was developed to present the sensed data to relevant stakeholders. We report our experiences in deploying such an approach in the field over a period of approximately 16 months.

  17. Self-Blood Glucose Monitoring in Diabetes Mellitus (Beyond the Basics)

    Science.gov (United States)

    ... Use ©2016 UpToDate, Inc. Patient education: Self-blood glucose monitoring in diabetes mellitus (Beyond the Basics) Author ... 2016. | This topic last updated: Oct 19, 2015. BLOOD SUGAR TESTING OVERVIEW — If you have diabetes, you have ...

  18. Assessment of Self-Monitored Blood Glucose Results Using a Reflectance Meter with Memory and Microcomputer

    OpenAIRE

    Kuykendall, V.G.; Michaels, D W; Hartmann, K.G.

    1985-01-01

    A microcomputer software package for diabetes patient care utilizing self-monitoring of blood glucose (SMBG) has been developed. The software facilitates the collection, storage, analysis, and presentation of blood glucose/time information. Data entry is accomplished automatically via interface to hand held blood glucose reflectance instruments which retain up to 339 glucose/time results in internal RAM. The times of other significant clinical events may also be stored in the meter and upload...

  19. The physiological basis of pulmonary gas exchange: implications for clinical interpretation of arterial blood gases.

    Science.gov (United States)

    Wagner, Peter D

    2015-01-01

    The field of pulmonary gas exchange is mature, with the basic principles developed more than 60 years ago. Arterial blood gas measurements (tensions and concentrations of O₂ and CO₂) constitute a mainstay of clinical care to assess the degree of pulmonary gas exchange abnormality. However, the factors that dictate arterial blood gas values are often multifactorial and complex, with six different causes of hypoxaemia (inspiratory hypoxia, hypoventilation, ventilation/perfusion inequality, diffusion limitation, shunting and reduced mixed venous oxygenation) contributing variably to the arterial O₂ and CO₂ tension in any given patient. Blood gas values are then usually further affected by the body's abilities to compensate for gas exchange disturbances by three tactics (greater O₂ extraction, increasing ventilation and increasing cardiac output). This article explains the basic principles of gas exchange in health, mechanisms of altered gas exchange in disease, how the body compensates for abnormal gas exchange, and based on these principles, the tools available to interpret blood gas data and, quantitatively, to best understand the physiological state of each patient. This understanding is important because therapeutic intervention to improve abnormal gas exchange in any given patient needs to be based on the particular physiological mechanisms affecting gas exchange in that patient. PMID:25323225

  20. Gas bubble disease monitoring and research of juvenile salmonids

    International Nuclear Information System (INIS)

    This document describes the project activities 1996--1997 contract year. This report is composed of three chapters which contain data and analyses of the three main elements of the project: field research to determine the vertical distribution of migrating juvenile salmonids, monitoring of juvenile migrants at dams on the Snake and Columbia rivers, and laboratory experiments to describe the progression of gas bubble disease signs leading to mortality. The major findings described in this report are: A miniature pressure-sensitive radio transmitter was found to be accurate and precise and, after compensation for water temperature, can be used to determine the depth of tagged-fish to within 0.32 m of the true depth (Chapter 1). Preliminary data from very few fish suggest that depth protects migrating juvenile steelhead from total dissolved gas supersaturation (Chapter 1). As in 1995, few fish had any signs of gas bubble disease, but it appeared that prevalence and severity increased as fish migrated downstream and in response to changing gas supersaturation (Chapter 2). It appeared to gas bubble disease was not a threat to migrating juvenile salmonids when total dissolved gas supersaturation was < 120% (Chapter 2). Laboratory studies suggest that external examinations are appropriate for determining the severity of gas bubble disease in juvenile salmonids (Chapter 3). The authors developed a new method for examining gill arches for intravascular bubbles by clamping the ventral aorta to reduce bleeding when arches were removed (Chapter 3). Despite an outbreak of bacterial kidney disease in the experimental fish, the data indicate that gas bubble disease is a progressive trauma that can be monitored (Chapter 3)

  1. On preventive blood pressure self-monitoring at home

    DEFF Research Database (Denmark)

    Verdezoto, Nervo; Grönvall, Erik

    2015-01-01

    -called Quantified Self). In this article, we explore socio-technical complexities that may occur when introducing preventive health-measurement technologies into older adults’ daily routines and everyday lives. In particular, the original study investigated blood pressure (BP) measurement in non-clinical settings...

  2. Monitoring of RSG-GAS Core with Using Neural Network

    International Nuclear Information System (INIS)

    Monitoring of RSG-GAS core using neural network technique was performed. Monitoring of the core is very important for the reactor safety and the maintenance. Neural network reactor modeled from normal operation data and detected anomaly in the core are earlier compared to conventional alarm system. In the experiment, signal was taken from neutron detector JKT-03 CX811, JKT-03 CX821, and JKT-03 CX831. Calculation result showed deviation between measurement and estimated value within the error boundary, so reactor core is in the normal condition. (author)

  3. Reactive intermediates in the gas phase generation and monitoring

    CERN Document Server

    Setser, D W

    2013-01-01

    Reactive Intermediates in the Gas Phase: Generation and Monitoring covers methods for reactive intermediates in the gas phase. The book discusses the generation and measurement of atom and radical concentrations in flow systems; the high temperature flow tubes, generation and measurement of refractory species; and the electronically excited long-lived states of atoms and diatomic molecules in flow systems. The text also describes the production and detection of reactive species with lasers in static systems; the production of small positive ions in a mass spectrometer; and the discharge-excite

  4. Monitoring radioactive xenon gas in room air using activated charcoal

    International Nuclear Information System (INIS)

    A method for monitoring room air for radioactive xenon gas is described. It uses activated charcoal vials, a vacuum source and a well-type scintillation counter. The method may be adapted for detection and identification of any radioactive gas excluding those with ultra-short half-lives. Sampling room air during xenon-133 (133Xe) ventilation lung studies was performed using this technique. The results show that low concentrations of 133Xe in room air can be reliably detected and that staff exposure to 133Xe at this institution was within ICRP recommendations

  5. Relationship of Blood Pressure Self-Monitoring, Medication Adherence, Self-Efficacy, Stage of Change, and Blood Pressure Control Among Municipal Workers With Hypertension

    OpenAIRE

    Breaux-Shropshire, Tonya L.; Brown, Kathleen C.; Pryor, Erica R.; Maples, Elizabeth H.

    2012-01-01

    Uncontrolled blood pressure remains a major public health issue. Medication adherence is a key factor in blood pressure management; however, adherence behavior is not clearly understood and the most significant factors contributing to poor medication adherence and blood pressure control are unknown. The purpose of this study was to determine the relationship of self-monitoring of blood pressure, medication adherence, self-efficacy, stage of change, and blood pressure control among municipal w...

  6. Optical coherence tomography for glucose monitoring in blood

    Science.gov (United States)

    Ullah, Hafeez; Hussain, Fayyaz; Ikram, Masroor

    2015-08-01

    In this review, we have discussed the potential application of the emerging imaging modality, i.e., optical coherence tomography (OCT) for glucose monitoring in biological tissues. OCT provides monitoring of glucose diffusion in different fibrous tissues like in sclera by determining the permeability rate with acceptable accuracy both in type 1 and in type 2 diabetes. The maximum precision of glucose measurement in Intralipid suspensions, for example, with the OCT technique yields the accuracy up to 4.4 mM for 10 % Intralipid and 2.2 mM for 3 % Intralipid.

  7. Continuous monitoring of blood glucose in the practice of endocrinologist

    Directory of Open Access Journals (Sweden)

    Yu I Philippov

    2012-12-01

    Full Text Available Continuous glucose monitoring - an important diagnostic, teaching and treatment tool for patients with diabetes mellitus, which is increasingly becoming a part of routine clinical practice in endocrinology. This article presents an overview of modern techniques, their advantages and disadvantages, evidence basis and place in everyday clinical practice. The article discusses the key factors affecting the efficiency, indications, contraindications, conditions of use of the continuous glucose monitoring systems in patients with diabetes mellitus, gives an algorithm for the application of this technique in clinical practice.

  8. Cytokine signatures of human whole blood for monitoring immunosuppression

    OpenAIRE

    He, Yi; Luo, Yuwei; Lao, Xiaobin; Tan, Liping; Sun, Erwei

    2014-01-01

    How to evaluate status of the immune system is extremely critical for clinical immunosuppressive treatment. In this study, we tested the secretion of cytokines in undiluted whole blood samples stimulated with Phorbol 12-myristate 13-acetate (PMA) and ionomycin (IONO), and compared the effects of dexamethasone (DEX), cyclosporine A (CsA) or mycophenolic acid (MPA), either alone or in combination, on cytokine profiles. The results showed that both DEX and CsA dose-dependently inhibited the prod...

  9. Data acquisition system for BESIII MUON gas monitor

    International Nuclear Information System (INIS)

    A counting plateau data acquisition system and full energy photo electron peak spectrum data acquisition system were designed based on CAMAC, in order to research the performance of BESIII MUON gas monitor under 55Fe 5.9 KeV X-ray. With data acquisition board PCI-1716L, and adopting LabVIEW and ROOT software, we also designed a data acquisition system, which had long time running stability, accurate data analysis character and less electronic hardware. (authors)

  10. Microfabricated BTU monitoring device for system-wide natural gas monitoring.

    Energy Technology Data Exchange (ETDEWEB)

    Einfeld, Wayne; Manginell, Ronald Paul; Robinson, Alex Lockwood; Moorman, Matthew Wallace

    2005-11-01

    The natural gas industry seeks inexpensive sensors and instrumentation to rapidly measure gas heating value in widely distributed locations. For gas pipelines, this will improve gas quality during transfer and blending, and will expedite accurate financial accounting. Industrial endusers will benefit through continuous feedback of physical gas properties to improve combustion efficiency during use. To meet this need, Sandia has developed a natural gas heating value monitoring instrument using existing and modified microfabricated components. The instrument consists of a silicon micro-fabricated gas chromatography column in conjunction with a catalytic micro-calorimeter sensor. A reference thermal conductivity sensor provides diagnostics and surety. This combination allows for continuous calorimetric determination with a 1 minute analysis time and 1.5 minute cycle time using air as a carrier gas. This system will find application at remote natural gas mining stations, pipeline switching and metering stations, turbine generators, and other industrial user sites. Microfabrication techniques will allow the analytical components to be manufactured in production quantities at a low per-unit cost.

  11. Flammable gas tank safety program: Technical basis for gas analysis and monitoring

    International Nuclear Information System (INIS)

    Flammable gases generated in radioactive liquids. Twenty-five high level radioactive liquid waste storage tanks located underground at the Hanford Site are on a Flammable Gas Watch List because they contain waste which tends to retain the gases generated in it until rather large quantities are available for sudden release to the tank head space; if a tank is full it has little dome space, and a flammable concentration of gases could be produced--even if the tank is ventilated. If the waste has no tendency to retain gas generated in it then a continual flammable gas concentration in the tank dome space is established by the gas production rate and the tank ventilation rate (or breathing rate for unventilated tanks); this is also a potential problem for Flammable Gas Watch List tanks, and perhaps other Hanford tanks too. All Flammable Gas Watch List tanks will be fitted with Standard Hydorgen Monitoring Systems so that their behavior can be observed. In some cases, such as tank 241-SY-101, the data gathered from such observations will indicate that tank conditions need to be mitigated so that gas release events are either eliminated or rendered harmless. For example, a mixer pump was installed in tank 241-SY-101; operating the pump stirs the waste, replacing the large gas release events with small releases of gas that are kept below twenty-five percent of the lower flammability limit by the ventilation system. The concentration of hydrogen measured in Hanford waste tanks is greater than that of any other flammable gas. Hydrogen levels measured with a Standard Hydrogen Monitoring System in excess of 0.6 volume percent will cause Westinghouse Hanford Company to consider actions which will decrease the amount of flammable gas in the tank

  12. Noble gas geochemistry to monitor CO2 geological storages

    International Nuclear Information System (INIS)

    According to the last IPCC (Intergovernmental Panel on Climate Change) report, a probability of 90 % can be now established for the responsibility of the anthropogenic CO2 emissions for the global climate change observed since the beginning of the 20. century. To reduce these emissions and keep producing energy from coal, oil or gas combustions, CO2 could be stored in geological reservoirs like aquifers, coal beds, and depleted oil or gas fields. Storing CO2 in geological formations implies to control the efficiency and to survey the integrity of the storages, in order to be able to detect the possible leaks as fast as possible. Here, we study the feasibility of a geochemical monitoring through noble gas geochemistry. We present (1) the development of a new analytical line, Garodiox, developed to extract quantitatively noble gas from water samples, (2) the testing of Garodiox on samples from a natural CO2 storage analogue (Pavin lake, France) and (3) the results of a first field work on a natural CO2 accumulation (Montmiral, France). The results we obtain and the conclusions we draw, highlight the interest of the geochemical monitoring we suggest. (author)

  13. Risk Stratification by Ambulatory Blood Pressure Monitoring Across JNC Classes of Conventional Blood Pressure

    DEFF Research Database (Denmark)

    Brguljan-Hitij, Jana; Thijs, Lutgarde; Li, Yan;

    2014-01-01

    BACKGROUND: Guidelines propose classification of conventional blood pressure (CBP) into normotension (<120/<80 mm Hg), prehypertension (120-139/80-89 mm Hg), and hypertension (≥140/≥90 mm Hg). METHODS: To assess the potential differential contribution of ambulatory blood pressure (ABP) in predict......BACKGROUND: Guidelines propose classification of conventional blood pressure (CBP) into normotension (...) in predicting risk across CBP strata, we analyzed outcomes in 7,826 untreated people recruited from 11 populations. RESULTS: During an 11.3-year period, 809 participants died (276 cardiovascular deaths) and 639, 383, and 225 experienced a cardiovascular, cardiac, or cerebrovascular event. Compared...... with normotension (n = 2,639), prehypertension (n = 3,076) carried higher risk (P ≤ 0.015) of cardiovascular (+41%) and cerebrovascular (+92%) endpoints; compared with hypertension (n = 2,111) prehypertension entailed lower risk (P ≤ 0.005) of total mortality (-14%) and cardiovascular mortality (-29...

  14. Arterial blood gas analysis or oxygen saturation in the assessment of acute asthma?

    OpenAIRE

    Carruthers, D M; Harrison, B. D.

    1995-01-01

    BACKGROUND--A study was undertaken to determine if arterial blood gas estimation is always necessary in the assessment of patients presenting to hospital with acute severe asthma, or whether oxygen saturation as measured by pulse oximetry is a reliable screening test for predicting those in respiratory failure. METHODS--A prospective study was conducted in a specialist respiratory medical unit. Arterial blood gas tensions and pulse oximetry were measured in 89 consecutive patients admitted wi...

  15. Thermodilution versus inert gas rebreathing for estimation of effective pulmonary blood flow

    DEFF Research Database (Denmark)

    Christensen, P; Clemensen, P; Andersen, P K; Henneberg, S W

    2000-01-01

    To compare measurements of the effective pulmonary blood flow (Qep, i.e., nonshunted fraction of cardiac output, Qt) by the inert gas rebreathing (RB) method and the thermodilution (TD) technique in critically ill patients.......To compare measurements of the effective pulmonary blood flow (Qep, i.e., nonshunted fraction of cardiac output, Qt) by the inert gas rebreathing (RB) method and the thermodilution (TD) technique in critically ill patients....

  16. Noninvasive cerebral blood oxygenation monitoring: clinical test of multiwavelength optoacoustic system

    Science.gov (United States)

    Petrov, Y. Y.; Prough, D. S.; Petrova, I.; Patrikeev, I. A.; Cicenaite, I.; Esenaliev, R. O.

    2007-02-01

    Continuous monitoring of cerebral blood oxygenation is critically important for treatment of patients with life-threatening conditions like severe brain injury or during cardiac surgery. We designed and built a novel multiwavelength optoacoustic system for noninvasive, continuous, and accurate monitoring of cerebral blood oxygenation. We use an Optical Parametric Oscillator as a light source. We successfully tested the system in vitro as well as in vivo in large animals (sheep) through thick tissues overlying blood vessels which drain venous blood out of the brain (e.g., superior sagittal sinus or jugular vein). Here we present the results of clinical tests of the system for continuous noninvasive cerebral blood oxygenation monitoring in the internal jugular vein of healthy volunteers. We applied our custom-built optoacoustic probe (which incorporated a wide-band acoustic transducer and an optical fiber) to the neck area overlying the internal jugular vein. We performed measurements with volunteers at 18 wavelengths in the near-infrared spectral range. Despite a thick layer of overlying connective tissue and low energy used in the experiments, we recorded signals with high signal-to-noise ratios for all volunteers. We found that the temporal (independent of signal amplitude) parameters of recorded profiles for different levels of blood oxygenation correlated well with the spectrum of effective attenuation coefficients of blood.

  17. Long-term monitoring of marine gas leakage

    Science.gov (United States)

    Spickenbom, Kai; Faber, Eckhard; Poggenburg, Jürgen; Seeger, Christian; Furche, Markus

    2010-05-01

    The sequestration of CO2 in sub-seabed geological formations is one of the Carbon Capture and Storage (CCS) strategies currently under study. Although offshore operations are significantly more expensive than comparable onshore operations, the growing public resistance against onshore CCS projects makes sub-seabed storage a promising option. Even after a thorough review of the geological setting, there is always the possibility of leakage from the reservoir. As part of the EU-financed project CO2ReMoVe (Research, Monitoring, Verification), which aims to develop innovative research and technologies for monitoring and verification of carbon dioxide geological storage, we are working on the development of submarine long-term gas flow monitoring systems. The basic design of the monitoring system builds on our experience in volcano monitoring. Early prototypes were composed of a raft floating on the surface of a mud volcano, carrying sensors for CO2 flux and concentration, data storage and transmission, and power supply by battery-buffered solar panels. The system was modified for installation in open sea by using a buoy instead of a raft and a funnel on the seafloor to collect the gas, connected by a flexible tube. This setup provides a cost-effective solution for shallow waters. However, a buoy interferes with ship traffic, and it is also difficult to adapt this design to greater water depths. These requirements can best be complied by a completely submersed system. A system for unattended long-term monitoring in a marine environment has to be extremely durable. Therefore, we focussed on developing a mechanically and electrically as simple setup as possible, which has the additional advantage of low cost. The system consists of a funnel-shaped gas collector, a sensor head and pressure housings for electronics and power supply. Since this setup is inexpensive, it can be deployed in numbers to cover larger areas. By addition of multi-channel data loggers, data

  18. Arterial blood gas levels in high altitude Kashmiri population, India

    Directory of Open Access Journals (Sweden)

    Sheikh Imran Sayeed

    2015-11-01

    Conclusions: The present study might provide useful base line normal values of Arterial Blood Gases for the local population and will be beneficial to the clinicians. [Int J Res Med Sci 2015; 3(11.000: 3283-3287

  19. Long-term flow monitoring of submarine gas emanations

    Science.gov (United States)

    Spickenbom, K.; Faber, E.; Poggenburg, J.; Seeger, C.

    2009-04-01

    One of the Carbon Capture and Storage (CCS) strategies currently under study is the sequestration of CO2 in sub-seabed geological formations. Even after a thorough review of the geological setting, there is the possibility of leaks from the reservoirs. As part of the EU-financed project CO2ReMoVe (Research, Monitoring, Verification), which aims to develop innovative research and technologies for monitoring and verification of carbon dioxide geological storage, we are working on the development of submarine long-term gas flow monitoring systems. Technically, however, these systems are not limited to CO2 but can be used for monitoring of any free gas emission (bubbles) on the seafloor. The basic design of the gas flow sensor system was derived from former prototypes developed for monitoring CO2 and CH4 on mud volcanoes in Azerbaijan. This design was composed of a raft floating on the surface above the gas vent to collect the bubbles. Sensors for CO2 flux and concentration and electronics for data storage and transmission were mounted on the raft, together with battery-buffered solar panels for power supply. The system was modified for installation in open sea by using a buoy instead of a raft and a funnel on the seafloor to collect the gas, which is then guided above water level through a flexible tube. Besides some technical problems (condensed water in the tube, movement of the buoys due to waves leading to biased measurement of flow rates), this setup provides a cost-effective solution for shallow waters. However, a buoy interferes with ship traffic, and it is also difficult to adapt this design to greater water depths. These requirements can best be complied by a completely submersed system. To allow unattended long-term monitoring in a submarine environment, such a system has to be extremely durable. Therefore, we focussed on developing a mechanically and electrically as simple setup as possible, which has the additional advantage of low cost. The system

  20. Corporeal blood gas changes according to duration of drug-induced prolonged erection.

    OpenAIRE

    Kim, S.C.; Seo, K. K.; Oh, C. H.

    1993-01-01

    The corporeal blood gas changes in accordance with the duration of the prolonged erection which developed after intracorporeal pharmacotherapy with papaverine and phentolamine were investigated in 62 impotence patients. The picture of the corporeal blood taken from 15 psychogenic impotence patients (a control group) at 10 minutes after intracavernous injection when they showed full erections was arterial but there was pCO2 rise and pH drop compared to femoral artery blood taken simultaneously...

  1. Monitoring oxygenation.

    Science.gov (United States)

    Severinghaus, John W

    2011-06-01

    Cyanosis was used for a century after dentists began pulling teeth under 100% N(2)O in 1844 because brief (2 min) severe hypoxia is harmless. Deaths came with curare and potent anesthetic respiratory arrest. Leland Clark's invention of a polarographic blood oxygen tension electrode (1954) was introduced for transcutaneous PO2 monitoring to adjust PEEP and CPAP PO2 to prevent premature infant blindness from excess O2 (1972). Oximetry for warning military aviators was tried after WW II but not used for routine monitoring until Takuo Aoyagi (1973) discovered an equation to measure SaO2 by the ratio of ratios of red and IR light transmitted through tissue as it changed with arterial pulses. Pulse oximetry (1982) depended on simultaneous technology improvements of light emitting red and IR diodes, tiny cheap solid state sensors and micro-chip computers. Continuous monitoring of airway anesthetic concentration and oxygen also became very common after 1980. Death from anesthesia fell 10 fold between 1985 and 2000 as pulse oximetry became universally used, but no proof of a causative relationship to pulse oximetry exists. It is now assumed that all anesthesiologist became much more aware of the dangers of prolonged hypoxia, perhaps by using the pulse oximeters. PMID:21717228

  2. Blood gas analyzer utility in evaluating oxygen kinetics of the aqueous humor

    Directory of Open Access Journals (Sweden)

    Ismail Ersan

    2015-04-01

    Full Text Available Purpose: To measure the partial pressure of oxygen (PO2 and carbon dioxide (PCO2 and the pH of aqueous humor (AH and arterial blood samples from rabbits using a blood gas analyzer. Methods: Twenty New Zealand rabbits were anesthetized intramuscularly with ketamine and xylazine and were then allowed to breathe room air. Using a gas blood analyzer, arterial blood and AH samples were analyzed for PO2, PCO2, and pH. Results: The mean arterial blood pressure was 87.14 ± 15.0 mmHg. The mean blood and AH PO2 were 95.18 ± 11.76 mmHg and 88.83 ± 9.92 mmHg, the mean blood and AH PCO2 were 25.86 ± 5.46 mmHg and 29.50 ± 5.36 mmHg, and the mean blood and AH pH were 7.38 ± 0.06 and 7.33 ± 0.09, respectively. Conclusion: Conclusions: The blood gas analyzer was easily employed to evaluate the aqueous humor in rabbits. When comparing the results of studies evaluating aqueous PO2, care should be taken to determine the methods used in these studies.

  3. Continuous non-invasive finger blood pressure monitoring in children.

    Science.gov (United States)

    Tanaka, H; Thulesius, O; Yamaguchi, H; Mino, M; Konishi, K

    1994-06-01

    We evaluated the performance of continuous non-invasive finger arterial pressure measurement using the volume-clamp technique (Finapres). This study was designed to compare finger arterial pressure with brachial blood pressure estimated by the auscultatory method in 217 children (90 boys and 127 girls) aged 4-16 years and in 38 adults (aged 18-45 years). Finger and brachial artery pressure readings were obtained consecutively from the ipsilateral side in the supine position. Finger arterial pressure waveforms were recorded in all children except 4 with small and thin fingers. There was good agreement for systolic pressure with only a slight underestimation of 1.9 mmHg and 5.1 mmHg lower for diastolic pressure. This difference most probably reflects inaccuracy of the auscultatory cuff method rather than an error in the Finapres. There was large inter-individual variability in Finapres recordings which might be due to differences in vasomotor tone, as demonstrated by systolic amplification in 5 patients with anorexia. However, Finapres showed a small within-subject variability (3.8 mmHg for systolic and 4.1 mmHg for diastolic pressure) determined in 5 patients during phenylephrine infusion, and as good reproducibility as the auscultatory method. These results suggest that finger arterial pressure measurement in children older than 6 years of age has similar accuracy as that in adults, and that this method is useful for clinical applications in children, especially for the non-invasive evaluation of autonomic control and cardiovascular reflexes involving transient and rapid blood pressure changes. PMID:7919764

  4. Continuous blood pressure monitoring in cirrhosis. Relations to splanchnic and systemic haemodynamics

    DEFF Research Database (Denmark)

    Møller, S; Christensen, E; Henriksen, Jens Henrik Sahl

    1997-01-01

    a high post-sinusoidal resistance, a low plasma volume, a short central circulation time, and the presence of ascites. In contrast, a low intra-arterial blood pressure was determined by a low serum sodium, a low haemoglobin, and a high cardiac output. Diuretic treatment did not influence this model......BACKGROUND/AIMS: Low arterial blood pressure is recognised as a distinctive factor in the hyperdynamic circulation in cirrhosis. 24-hour monitoring of the blood pressure and heart rate has recently revealed a reduced circadian variation with relation to liver function. However, associations with...... other clinical and haemodynamic characteristics have not been investigated and the aim of the present study was to identify splanchnic and systemic determinants of the 24-h blood pressure and heart rate in cirrhosis. METHODS: The variables were measured by an automatic ambulant device for monitoring...

  5. Transcutaneous electrostimulation for osteoarthritis of the knee: CAT

    Directory of Open Access Journals (Sweden)

    Raúl Alberto Aguilera Eguía

    2013-09-01

    Full Text Available Purpose. The aim of this CAT (Critically Appraised Topic was to check the validity of the results and effectiveness of Transcutaneous Electrical Stimulation in subjects with knee osteoarthritis and answer the question: In subjects with osteoarthritis of the knee, does low frequency transcutaneous electrical stimulation reduce pain? Method. We conducted an analysis of the article "Transcutaneous Electrical Stimulation for osteoarthritis of the knee, Cochrane Systematic Review" of Rutjes et al (2009. We analyzed validity of results, applicability and effectiveness of this intervention in patients with knee osteoarthritis. Results. Low frequency transcutaneous electrical stimulation may reduce pain in subjects with knee osteoarthritis. SMD -0.85 (95% CI -1.36 to -0.34. Conclusion. The intervention is neither endorsed nor discouraged in knee pain reduction.

  6. Monitoring underground gas storage for seismic risk assessment

    Science.gov (United States)

    Guido, Francesco Luigi; Picotti, Vincenzo; Antonellini, Marco

    2013-04-01

    Temporary gas storage facilities play a fundamental role in the design of energy supply. The evaluation and recognition of induced seismicity, geodetic displacements and wellbores damages are their main associated risks that should be minimized for a safe management of these facilities, especially in densely populated areas. Injection and withdrawal of gas into/from a porous reservoir generally lead reservoir rocks to deform. Rock deformation is due to variations of the state of stress of rocks, both in the reservoir and the surrounding: subsidence, wellbore damages and induced or activated seismicity are primary consequences of these variations. In this paper we present a case study on induced deformation by an exploited gas reservoir, converted to temporary natural gas storage since 1994, in North-Eastern Italy. The reservoir, composed by 2 independent carbonatic sandstone intervals, approximately 10 meters thick, and 1400 meters deep, has been exploited since 1983, recording a pressure drop of about 16 MPa. The inversion of gas pressure and volume data, together with a 26 year ground displacement dataset monitoring, allow us to define reservoir deformations, modelled by a semi-analytical method based on an equivalent Eshelby's inclusion problem, able to account for mechanical differences between reservoir and surrounding rocks. Stress field changes, and displacement fields around the reservoir and on the ground mainly represent the results of this modelling. A Coulomb Failure Stress analysis, performed by FEA, was applied to define and evaluate the influence of magnitude and shape of stress field changes on rock stability, highlighting rock volumes that mainly suffer stress changes eventually leading to induced/activated earthquakes. The microseismic monitoring provides then the control on failures and their location. The methodology here used provide a solid base for induced or activated seismicity risk assessment: it provides an easy tool to quantify magnitude

  7. Influence of different storage times and temperatures on blood gas and acid-base balance in ovine venous blood

    Directory of Open Access Journals (Sweden)

    H.A. Hussein

    2013-01-01

    Full Text Available The present study was designed to investigate the effects of storage temperature and time on blood gas and acid-base balance of ovine venous blood. Ten clinically healthy sheep were used in this study. A total number of 30 blood samples, were divided into three different groups, and were stored in a refrigerator adjusted to +4 ºC (Group I, n = 10, at RT of about 22-25 ºC (Group II, n = 10 and in an incubator adjusted to 37 ºC (Group III, n = 10 for up to 48 h. Blood samples were analysed for blood gas and acid-base indices at 0, 1, 2, 3, 4, 5, 6, 12, 24 and 48 h of storage. In comparison to the baseline value (0, there were significant decreases of blood pH of samples stored at RT and in the incubator after 1 h (p<0.05, the pH value of refrigerated blood samples exhibited insignificant changes during the study (p<0.05. Mean values of pCO2 showed a significant increase in Group I and Group III after 1 h then a progressive decrease after 12 h in all Groups. Mean pO2 values were significantly higher for Group I after 2 h and for Groups II and III after 1 h (p<0.05. In general, base excess decreased significantly for all the groups during the study especially in Groups II and III. In comparison with baseline values, in all groups, bicarbonate (HCO3 increased between 1 h and 6 h (p<0.05, and later decreased at the end of the study (p<0.05. In conclusion, status of acid-base indices of the samples stored at refrigerator and RT were found within normal reference range and it may be of clinical diagnostic use for up to 6 h.

  8. Intraoperative Changes in Blood Coagulation and Thrombelastographic Monitoring in Liver Transplantation

    OpenAIRE

    Kang, Yoo Goo; Martin, Douglas J.; Marquez, Jose; Lewis, Jessica H.; Bontempo, Franklin A.; Shaw, Byers W.; Starzl, Thomas E.; Winter, Peter M.

    1985-01-01

    The blood coagulation system of 66 consecutive patients undergoing consecutive liver transplantations was monitored by thrombelastograph and analytic coagulation profile. A poor preoperative coagulation state, decrease in levels of coagulation factors, progressive fibrinolysis, and whole blood clot lysis were observed during the preanhepatic and anhepatic stages of surgery. A further general decrease in coagulation factors and platelets, activation of fibrinolysis, and abrupt decrease in leve...

  9. Clinical implication of blood glucose monitoring in general dental offices: the Ehime Dental Diabetes Study

    OpenAIRE

    Harase, Tadahiro; Nishida, Wataru; Hamakawa, Tomohiro; Hino, Satoshi; Shigematsu, Kenji; Kobayashi, Satoru; Sako, Hirofumi; Ito, Shirou; Murakami, Hajime; Nishida, Kei; Inoue, Hiroshi; Fujisawa, Masahito; Yoshizu, Hiroshi; Kawamura, Ryoichi; Takata, Yasunori

    2015-01-01

    Objective We examined whether general dentists can contribute to the detection of patients with undiagnosed diabetes and prediabetes by monitoring blood glucose in dental clinics. Research design and methods A total of 716 patients who visited clinics for dental treatment were enrolled and classified into 3 groups (mild, moderate, and severe) according to Kornman's criteria for periodontitis. The correlations between the casual blood glucose level, presence or absence of the history of diabet...

  10. Microvascular blood flow monitoring with laser speckle contrast imaging using the generalized differences algorithm

    OpenAIRE

    Humeau-Heurtier, Anne; Mahé, Guillaume; Abraham, Pierre

    2015-01-01

    Laser speckle contrast imaging (LSCI) is a full-field optical technique to monitor microvascular blood flow with high spatial and temporal resolutions. It is used in many medical fields such as dermatology, vascular medicine, or neurosciences. However, LSCI leads to a large amount of data: image sampling frequency is often of several Hz and recordings usually last several minutes. Therefore, clinicians often perform regions of interest in which a spatial averaging of blood flow is performed a...

  11. System Accuracy Evaluation of the GlucoRx Nexus Voice TD-4280 Blood Glucose Monitoring System

    OpenAIRE

    Muhammad Khan; Keith Broadbent; Mike Morris; David Ewins; Franklin Joseph

    2014-01-01

    Use of blood glucose (BG) meters in the self-monitoring of blood glucose (SMBG) significantly lowers the risk of diabetic complications. With several BG meters now commercially available, the International Organization for Standardization (ISO) ensures that each BG meter conforms to a set degree of accuracy. Although adherence to ISO guidelines is a prerequisite for commercialization in Europe, several BG meters claim to meet the ISO guidelines yet fail to do so on internal validation. We con...

  12. Parsimonious model for blood glucose level monitoring in type 2 diabetes patients.

    Science.gov (United States)

    Zhao, Fang; Ma, Yan Fen; Wen, Jing Xiao; DU, Yan Fang; Li, Chun Lin; Li, Guang Wei

    2014-07-01

    To establish the parsimonious model for blood glucose monitoring in patients with type 2 diabetes receiving oral hypoglycemic agent treatment. One hundred and fifty-nine adult Chinese type 2 diabetes patients were randomized to receive rapid-acting or sustained-release gliclazide therapy for 12 weeks. Their blood glucose levels were measured at 10 time points in a 24 h period before and after treatment, and the 24 h mean blood glucose levels were measured. Contribution of blood glucose levels to the mean blood glucose level and HbA1c was assessed by multiple regression analysis. The correlation coefficients of blood glucose level measured at 10 time points to the daily MBG were 0.58-0.74 and 0.59-0.79, respectively, before and after treatment (P<0.0001). The multiple stepwise regression analysis showed that the blood glucose levels measured at 6 of the 10 time points could explain 95% and 97% of the changes in MBG before and after treatment. The three blood glucose levels, which were measured at fasting, 2 h after breakfast and before dinner, of the 10 time points could explain 84% and 86% of the changes in MBG before and after treatment, but could only explain 36% and 26% of the changes in HbA1c before and after treatment, and they had a poorer correlation with the HbA1c than with the 24 h MBG. The blood glucose levels measured at fasting, 2 h after breakfast and before dinner truly reflected the change 24 h blood glucose level, suggesting that they are appropriate for the self-monitoring of blood glucose levels in diabetes patients receiving oral anti-diabetes therapy. PMID:25073916

  13. The latest continuous monitoring instrumentation for ground-gas monitoring and risk prediction

    Directory of Open Access Journals (Sweden)

    A. N. Nwachukwu, A. W. Diya

    2012-01-01

    Full Text Available In the field of ground-gas monitoring and risk assessment, the concentrations and flows of ground-gas from contaminated sites are usually measured in-situ using handheld or transportable field instruments followed with ex-situ analysis. These portable instruments only give spot data of the gases being monitored and few of their controls. However, and more recently, it has been discovered that ground-gas concentrations and flows are temporarily and spatially variable, with the accompanying realization that the existing instruments are not able to resolve these problems. For example, contaminated sites investigation shows that environment conditions such as pressure, temperature, water level, and air movement substantially affect ground-gas concentrations on the range of timescales, therefore; uncertainty will always exist when using methods that lack temporal resolution. This paper describes the most recent instrumentation that provides real time continuous gas data both inside borehole and ambient air for parameters such as methane, carbon dioxide, volatile organic compounds (VOCs, hydrogen sulfides, oxygen and carbon monoxide alongside atmospheric and borehole pressures. Raw data is presented from field work carried out in 2 landfill sites and 2 peat sites in Manchester, United Kingdom. These datasets are currently being used to derive a methodology for improved prediction of risks due to ground-gases.

  14. Transcutaneous Spinal Direct Current Stimulation (tsDCS)

    OpenAIRE

    AlbertoPriori

    2012-01-01

    In the past ten years renewed interest has centered on non-invasive transcutaneous weak direct currents applied over the scalp to modulate cortical excitability (“brain polarization” or transcranial direct current stimulation, tDCS). Extensive literature shows that tDCS induces marked changes in cortical excitability that outlast stimulation. Aiming at developing a new, non invasive, approach to spinal cord neuromodulation we assessed the after-effects of thoracic transcutaneous spinal DC ...

  15. Transcutaneous immunisation assisted by low-frequency ultrasound.

    OpenAIRE

    Dahlan, A.; Alpar, H. O.; Stickings, P.; Sesardic, D.; Murdan, S.

    2009-01-01

    Low-frequency ultrasound application is known to increase the skin's permeability to large molecules such as vaccines, and to enable transcutaneous immunisation. Sodium dodecyl sulphate (SDS) - a skin irritant - is often included in the coupling medium at 1% (w/v), as this has been found to enhance skin permeability. In this paper we show, for the first time, the feasibility of low-frequency ultrasound-assisted transcutaneous immunisation in the absence of SDS. Antibody titres were strongly i...

  16. Monitoring

    Science.gov (United States)

    ... its main source of fuel. To keep your blood sugar level on target and avoid problems with your eyes, kidneys, heart and feet, you should eat right ... better. And monitoring doesn’t stop at measuring blood sugar levels. Because ... blood testing) Eye health (eye exams) Foot health (foot exams and ...

  17. Novel optoacoustic system for noninvasive continuous monitoring of cerebral venous blood oxygenation

    Science.gov (United States)

    Petrov, Yuriy; Petrov, Irene Y.; Prough, Donald S.; Esenaliev, Rinat O.

    2012-02-01

    Traumatic brain injury (TBI) and spinal cord injury are a major cause of death for individuals under 50 years of age. In the USA alone, 150,000 patients per year suffer moderate or severe TBI. Moreover, TBI is a major cause of combatrelated death. Monitoring of cerebral venous blood oxygenation is critically important for management of TBI patients because cerebral venous blood oxygenation below 50% results in death or severe neurologic complications. At present, there is no technique for noninvasive, accurate monitoring of this clinically important variable. We proposed to use optoacoustic technique for noninvasive monitoring of cerebral venous blood oxygenation by probing cerebral veins such as the superior sagittal sinus (SSS) and validated it in animal studies. In this work, we developed a novel, medical grade optoacoustic system for continuous, real-time cerebral venous blood oxygenation monitoring and tested it in human subjects at normal conditions and during hyperventilation to simulate changes that may occur in patients with TBI. We designed and built a highly-sensitive optoacoustic probe for SSS signal detection. Continuous measurements were performed in the near infrared spectral range and the SSS oxygenation absolute values were automatically calculated in real time using a special algorithm developed by our group. Continuous measurements performed at normal conditions and during hyperventilation demonstrated that hyperventilation resulted in approximately 12% decrease of cerebral venous blood oxygenation.

  18. Comparison of invasive and non-invasive blood pressure monitoring during clinical anaesthesia in dogs.

    Science.gov (United States)

    MacFarlane, Paul D; Grint, Nicola; Dugdale, Alexandra

    2010-03-01

    Monitoring blood pressure during anaesthesia is widely recommended in man and animals. The accuracy of any device used to measure blood pressure is an important consideration when selecting monitoring equipment, the ANSI/AAMI SP10 standard is widely cited in this respect in recent veterinary publications. Blood pressure was monitored using invasive and non-invasive techniques during clinical anaesthesia in 19 dogs. The results were compared using Bland-Altman analysis. The bias (and limits of agreement) between invasive and non-invasive measurement was 7.1 mmHg (+/-34.7) for systolic blood pressure, -1.8 mmHg (+/-27.4) for mean blood pressure and 6.9 mmHg (+/-27.5) for diastolic blood pressure. In a clinical setting the bias between invasive and non-invasive measurement techniques was similar or smaller than laboratory reports, however the limits of agreement were considerably wider suggesting that care should be exercised when interpreting NIBP values. PMID:20306347

  19. Non-invasive respiratory monitoring in paediatric intensive care unit.

    Directory of Open Access Journals (Sweden)

    Nadkarni U

    2000-04-01

    Full Text Available Monitoring respiratory function is important in a Paediatrics Intensive Care Unit (PICU, as majority of patients have cardio-respiratory problems. Non-invasive monitoring is convenient, accurate, and has minimal complications. Along with clinical monitoring, oxygen saturation using pulse oximetry, transcutaneous oxygenation (PtcO2 and transcutaneous PCO2 (PtcCO2 using transcutaneous monitors and end-tidal CO2 using capnography are important and routine measurements done in most PICUs. Considering the financial and maintenance constraints pulse oximetry with end tidal CO2 monitoring can be considered as most feasible.

  20. Biomarkers for Monitoring Pre-Analytical Quality Variation of mRNA in Blood Samples

    OpenAIRE

    Zhang, Hui; Korenková, Vlasta; Sjöback, Robert; Švec, David; Björkman, Jens; Kruhøffer, Mogens; Verderio, Paolo; Pizzamiglio, Sara; Ciniselli, Chiara Maura; Wyrich, Ralf; Oelmueller, Uwe; Kubista, Mikael; Lindahl, Torbjørn; Lönneborg, Anders; Rian, Edith

    2014-01-01

    There is an increasing need for proper quality control tools in the pre-analytical phase of the molecular diagnostic workflow. The aim of the present study was to identify biomarkers for monitoring pre-analytical mRNA quality variations in two different types of blood collection tubes, K2EDTA (EDTA) tubes and PAXgene Blood RNA Tubes (PAXgene tubes). These tubes are extensively used both in the diagnostic setting as well as for research biobank samples. Blood specimens collected in the two dif...

  1. Active Geophysical Monitoring in Oil and Gas Industry

    Science.gov (United States)

    Bakulin, A.; Calvert, R.

    2005-12-01

    Effective reservoir management is a Holy Grail of the oil and gas industry. Quest for new technologies is never ending but most often they increase effectiveness and decrease the costs. None of the newcomers proved to be a silver bullet in such a key metric of the industry as average oil recovery factor. This factor is still around 30 %, meaning that 70 % of hydrocarbon reserves are left in the ground in places where we already have expensive infrastructure (platforms, wells) to extract them. Main reason for this inefficiency is our inability to address realistic reservoir complexity. Most of the time we fail to properly characterize our reservoirs before production. As a matter of fact, one of the most important parameters -- permeability -- can not be mapped from remote geophysical methods. Therefore we always start production blind even though reservoir state before production is the simplest one. Once first oil is produced, we greatly complicate the things and quickly become unable to estimate the state and condition of the reservoir (fluid, pressures, faults etc) or oilfield hardware (wells, platforms, pumps) to make a sound next decision in the chain of reservoir management. Our modeling capabilities are such that if we know true state of the things - we can make incredibly accurate predictions and make extremely efficient decisions. Thus the bottleneck is our inability to properly describe the state of the reservoirs in real time. Industry is starting to recognize active monitoring as an answer to this critical issue. We will highlight industry strides in active geophysical monitoring from well to reservoir scale. It is worth noting that when one says ``monitoring" production technologists think of measuring pressures at the wellhead or at the pump, reservoir engineers think of measuring extracted volumes and pressures, while geophysicist may think of change in elastic properties. We prefer to think of monitoring as to measuring those parameters of the

  2. Direct blood pressure monitoring in laboratory rodents via implantable radio telemetry.

    Science.gov (United States)

    Huetteman, Daniel A; Bogie, Heather

    2009-01-01

    The ability to monitor and record precise blood pressure fluctuations in research animals is vital to research for human hypertension. Direct measurement of blood pressure via implantable radio telemetry devices is the preferred method for automatic collection of chronic, continuous blood pressure data. Two surgical techniques are described for instrumenting the two most commonly used laboratory rodent species with radiotelemetry devices. The basic rat procedure involves advancing a blood pressure catheter into the abdominal aorta and placing a radio transmitting device in the peritoneal cavity. The mouse technique involves advancing a thin, flexible catheter from the left carotid artery into the aortic arch and placing the telemetry device under the skin along the animal's flank. Both procedures yield a chronically instrumented model to provide accurate blood pressure data from an unrestrained animal in its home cage. PMID:19763922

  3. Tissue-Informative Mechanism for Wearable Non-invasive Continuous Blood Pressure Monitoring

    Science.gov (United States)

    Woo, Sung Hun; Choi, Yun Young; Kim, Dae Jung; Bien, Franklin; Kim, Jae Joon

    2014-10-01

    Accurate continuous direct measurement of the blood pressure is currently available thru direct invasive methods via intravascular needles, and is mostly limited to use during surgical procedures or in the intensive care unit (ICU). Non-invasive methods that are mostly based on auscultation or cuff oscillometric principles do provide relatively accurate measurement of blood pressure. However, they mostly involve physical inconveniences such as pressure or stress on the human body. Here, we introduce a new non-invasive mechanism of tissue-informative measurement, where an experimental phenomenon called subcutaneous tissue pressure equilibrium is revealed and related for application in detection of absolute blood pressure. A prototype was experimentally verified to provide an absolute blood pressure measurement by wearing a watch-type measurement module that does not cause any discomfort. This work is supposed to contribute remarkably to the advancement of continuous non-invasive mobile devices for 24-7 daily-life ambulatory blood-pressure monitoring.

  4. A novel automated discontinuous venous blood monitoring system for ex vivo glucose determination in humans.

    Science.gov (United States)

    Schaller, R; Feichtner, F; Köhler, H; Bodenlenz, M; Plank, J; Wutte, A; Mader, J K; Ellmerer, M; Hellmich, R; Wedig, H; Hainisch, R; Pieber, T R; Schaupp, L

    2009-03-15

    Intensive insulin therapy reduces mortality and morbidity in critically ill patients but imposes great demands on medical staff who must take frequent blood samples for the determination of glucose levels. A solution to this resourcing problem would be provided by an automated blood monitoring system. The aim of the present clinical study was to evaluate such a system comprising an automatic blood sampling unit linked to a glucose biosensor. Our approach was to determine the correlation and system error of the sampling unit alone and of the combined system with respect to reference levels over 12h in humans. Two venous cannulae were inserted to connect the automatic and reference systems to the subjects. Blood samples were taken at 15 and 30 min intervals. The median Pearson coefficient of correlation between manually and automatically withdrawn blood samples was 0.982 for the sampling unit alone and 0.950 for the complete system. The biosensor had a linear range up to 20 mmoll(-1) and a 95% response time of Titration Error Grid analysis suggested an acceptable treatment in 99.56% of cases. Implementation of a "Keep Vein Open" saline infusion into the automated blood sampling system reduced blood withdrawal failures through occluded catheters fourfold. In summary, automated blood sampling from a peripheral vein coupled with automatic glucose determination is a promising alternative to frequent manual blood sampling. PMID:19135351

  5. Laser Spectroscopy Based Multi-Gas Monitor Technology Demonstration

    Science.gov (United States)

    Mudgett, Paul D.; Pilgrim, Jeffrey S.

    2016-01-01

    The timing was right in the “evolution” of low power tunable diode laser spectroscopy (TDLS) to design a spacecraft cabin air monitor around technology being developed at a small company funded by SBIR grants. NASA Centers had been monitoring their progress hoping that certain key gaps in the long term gas monitoring development roadmap could be filled by TDLS. The first iteration of a monitor for multiple gases called the Multi-Gas Monitor (MGM) which measures oxygen, carbon dioxide, ammonia and water vapor, as well as temperature and pressure. In January 2013, the ISS Program being particularly interested in ammonia funded a technology demonstration of MGM. The project was a joint effort between Vista Photonics for the sensor, NASA-JSC for project management and laboratory calibration, and Nanoracks for the enclosure and payload certification/integration. Nanoracks was selected in order to use their new experimental infrastructure located in an EXPRESS rack in the JEM. The MGM enclosure has multiple power supply options including 5VDC USB interface to the Nanoracks Frame, 28VDC Express Rack power and internal rechargeable batteries. MGM was calibrated at NASA-JSC in July 2013, delivered to ISS on 37 Soyuz in November 2013 and was installed and activated in February 2014. MGM resided in the Nanoracks Frame making continuous measurements the majority of the time, but also spent a day in Node 3 on battery power, and a month in the US Lab Module on 28VDC power, as part of the demonstration. Data was downloaded via Nanoracks on roughly a weekly basis. Comparisons were made with data from the Major Constituents Analyzer (MCA) which draws and analyzes air from JEM and other modules several times per hour. A crewmember challenged the carbon dioxide channel by breathing into the intake upon startup, and challenged the ammonia channel later using a commercial ammonia inhalant. Many interesting phenomena in the cabin atmosphere were detected during the tech demo

  6. Development of monitoring and control technology based on trace gas monitoring. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Liebowitz, B.

    1997-07-01

    Trace gases are generated by many biological reactions. During anaerobic decomposition, trace levels of hydrogen (H{sub 2}) and carbon monoxide (CO) gases are produced. It was shown previously that these trace gases are intrinsically related to the biochemical reactions occurring and, therefore, offer promise for on-line process monitoring and control. This work was designed to test how effectively hydrogen and CO could be to monitor high-rate anaerobic systems that has significant mass transfer and complex hydraulics. An experimental program was designed to examine the behavior of an upflow anaerobic sludge blanket (UASB) reactor system under steady state and in response to organic loading perturbations. The responses of trace gases CO and H{sub 2} were tracked using an on-line, real-time gas-monitoring system linked to a computer-controlled data acquisition package. Data on conventional process parameters such as pH, chemical oxygen demand (COD), volatile fatty acids (VFAs) were concurrently collected. Monitoring of conventional process indicators (i.e., pH, VFA, gas production) and trace gas (H{sub 2} and CO) indicators was conducted using a matrix of nine different steady-state OLRs (4-23 kg COD/m{sup 3} -d) and system HRTs (0.5 to 2.5 days) was performed to determine any correlation among the indicators. Of OLR, HRT, and influent COD, only OLR had any significant influence on the process indicators examined. All parameters except methane increased with increases in OLR; methane decreased with increased OLR. The OLR and gas production rate (GP) were observed to be linearly correlated.

  7. Basic study on FP gas monitoring with Resonance Ionization Spectroscopy

    International Nuclear Information System (INIS)

    Resonance Ionization Spectroscopy (RIS) has recently got into the spotlight as an innovative technology for ultra high sensitive trace element analysis and/or efficient isotope separation and is being developed into more extensive application in various engineering fields with improvement of tunable laser performance. The present study is aiming to develop a new and advanced Failed Fuel Detection and Location (FFDL) technique based on fission product (FP) gas (such as Kr and Xe) monitoring with Resonance Ionization Mass Spectrometry (RIMS), which combines RIS with mass spectrometry. Under collaborative works of advanced basic engineering research with JNC over four years since 1996, the feasibility study on the RIMS-FFDL have been made through basic experiments to detect Xe and Kr by using a RIMS system for common utilization installed at the Nuclear Engineering Research Laboratory of the University of Tokyo. This report describes the basic performance necessary to the design of RIMS-FFDL such as the detection limit, the elemental selectivity, etc. obtained from experiments and their theoretical analyses and also the successful results on the detection and isotopic ratio analysis of ppb level Xe/Kr tag gas in the cover gas sampled from the experimental fast reactor 'JOYO', which would lead to the conclusion that the RIMS-FFDL can satisfy all the requirements for conventional FFDL methods in addition to a novel function of no-line isotopic ratio analysis useful for the tag gas method adopted in the prototype fast reactor 'MONJU'. (author)

  8. Development of portable health monitoring system for automatic self-blood glucose measurement

    Science.gov (United States)

    Kim, Huijun; Mizuno, Yoshihumi; Nakamachi, Eiji; Morita, Yusuke

    2010-02-01

    In this study, a new HMS (Health Monitoring System) device is developed for diabetic patient. This device mainly consists of I) 3D blood vessel searching unit and II) automatic blood glucose measurement (ABGM) unit. This device has features such as 1)3D blood vessel location search 2) laptop type, 3) puncturing a blood vessel by using a minimally invasive micro-needle, 4) very little blood sampling (10μl), and 5) automatic blood extraction and blood glucose measurement. In this study, ABGM unit is described in detail. It employs a syringe type's blood extraction mechanism because of its high accuracy. And it consists of the syringe component and the driving component. The syringe component consists of a syringe itself, a piston, a magnet, a ratchet and a micro-needle whose inner diameter is about 80μm. And the syringe component is disposable. The driving component consists of body parts, a linear stepping motor, a glucose enzyme sensor and a slider for accurate positioning control. The driving component has the all-in-one mechanism with a glucose enzyme sensor for compact size and stable blood transfer. On designing, required thrust force to drive the slider is designed to be greater than the value of the blood extraction force. Further, only one linear stepping motor is employed for blood extraction and transportation processes. The experimental result showed more than 80% of volume ratio under the piston speed 2.4mm/s. Further, the blood glucose was measured successfully by using the prototype unit. Finally, the availability of our ABGM unit was confirmed.

  9. Genetic and phenotypic relationships between blood gas parameters and ascites-related traits in broilers.

    Science.gov (United States)

    Closter, A M; van As, P; Groenen, M A M; Vereijken, A L J; van Arendonk, J A M; Bovenhuis, H

    2009-03-01

    Ascites, also called pulmonary hypertension syndrome, is a metabolic disorder in chickens that have an insufficient pulmonary vascular capacity. The tendency of broilers to develop ascites is heritable, and successful selection against this susceptibility would benefit from good and easy-to-measure indicator traits. Blood gas parameters have been suggested as indicator traits for ascites susceptibility. Therefore, the aim of the present study was to estimate the heritability of blood gas parameters and the genetic and phenotypic correlations between blood gas parameters, heart ratio (postmortem indicator for ascites), and BW at 2 different ages. For this purpose, blood gas parameters, including the partial pressure of carbon dioxide in venous blood (pvCO(2)), the partial pressure of oxygen in venous blood (pvO(2)), and blood oxygen saturation, were measured at an average age of 22 d in nearly 3,000 broilers. To challenge the resistance of the birds to ascites, they were kept under cold conditions. Heritability for heart ratio was 0.43, and the heritability estimates were low: 0.02 for pvCO(2), 0.03 for pvO(2), and 0.07 for blood oxygen saturation. The estimated heritability for pH was 0.15, for bicarbonate was 0.19, and for total carbon dioxide content was 0.19. The genetic correlations between heart ratio and total carbon dioxide content (0.31 +/- 0.15) and between heart ratio and bicarbonate (0.31 +/- 0.15) were moderate and positive. For pvO(2), the genetic correlation with heart ratio was stronger and negative (-0.62 +/- 0.21); however, this correlation could not be estimated accurately because of the low heritability of pvO(2). For pvCO(2), the genetic correlation with the heart ratio was close to zero (-0.04 +/- 0.45). Phenotypic correlations between traits were, in general, similar to the genetic correlations. Heritabilities for blood gas parameters and the genetic correlations between blood gas parameters and the heart ratio estimated in the present study

  10. Real-Time Electrical Impedimetric Monitoring of Blood Coagulation Process under Temperature and Hematocrit Variations Conducted in a Microfluidic Chip

    OpenAIRE

    Lei, Kin Fong; Chen, Kuan-Hao; Tsui, Po-Hsiang; Tsang, Ngan-Ming

    2013-01-01

    Blood coagulation is an extremely complicated and dynamic physiological process. Monitoring of blood coagulation is essential to predict the risk of hemorrhage and thrombosis during cardiac surgical procedures. In this study, a high throughput microfluidic chip has been developed for the investigation of the blood coagulation process under temperature and hematocrit variations. Electrical impedance of the whole blood was continuously recorded by on-chip electrodes in contact with the blood sa...

  11. Patients’ blood pressure knowledge, perceptions and monitoring practices in community pharmacies

    Directory of Open Access Journals (Sweden)

    Lam JY

    2010-09-01

    Full Text Available Hypertension is a modifiable risk factor for cardiovascular disease. Despite this, patients often cannot or inaccurately estimate their risk factors.Objectives: In order to improve pharmacist interventions, we sought to: 1 find out patients’ knowledge about blood pressure (BP and their self- monitoring behaviors and 2 identify the relationships between these two elements. Specifically, if evaluation of BP control were related to knowledge of one’s BP level and self-monitoring habits, and if knowledge of one’s target and BP level varied with monitoring habits. Methods: Final year pharmacy students were trained and interviewed patients in community pharmacies as a required exercise in their pharmacy clerkship. Each student recruited a convenience sample of 5-10 patients who were on hypertension medication, and surveyed them regarding their BP targets, recent BP levels as well as monthly and home BP monitoring practices. Results: One third of the 449 patients interviewed were able to report a blood pressure target with 26% reporting a JNC 7 recognized target. Three quarters of patients who reported a blood pressure target were able to report a blood pressure level, with 12% being at their self- reported target. Roughly two thirds of patients perceived their BP to be “about right”, and slightly less than a third thought it to be “high”. Sixty percent of patients monitor their BP monthly, but less than 50% of patients practice home BP monitoring. Conclusions: This study along with others before it point to the knowledge and self-management gaps in patients with chronic conditions. Furthermore, pharmacy students were able to use a brief intervention to screen patients during routine care. Pharmacists can help improve patient understanding and promote increased self-management through regular BP monitoring.

  12. Ambulatory blood pressure monitoring of patients with heart failure: a new prognosis marker

    Directory of Open Access Journals (Sweden)

    Manoel F. Canesin

    2002-01-01

    Full Text Available OBJECTIVE: To evaluate the relationship between 24-hour ambulatory arterial blood pressure monitoring and the prognosis of patients with advanced congestive heart failure. METHODS: We studied 38 patients with NYHA functional class IV congestive heart failure, and analyzed left ventricular ejection fraction, diastolic diameter, and ambulatory blood pressure monitoring data. RESULTS: Twelve deaths occurred. Left ventricular ejection fraction (35.2±7.3% and diastolic diameter (72.2±7.8mm were not correlated with the survival. The mean 24-hour (SBP24, waking (SBPw, and sleeping (SBPs systolic pressures of the living patients were higher than those of the deceased patients and were significant for predicting survival. Patients with mean SBP24, SBPv, and SBPs > or = 105mmHg had longer survival (p=0.002, p=0.01 and p=0.0007, respectively. Patients with diastolic blood pressure sleep decrements (dip and patients with mean blood pressure dip or = 105 mmHg CONCLUSION: Ambulatory blood pressure monitoring appears to be a useful method for evaluating patients with congestive heart failure.

  13. A comprehensive evaluation of strip performance in multiple blood glucose monitoring systems.

    Science.gov (United States)

    Katz, Laurence B; Macleod, Kirsty; Grady, Mike; Cameron, Hilary; Pfützner, Andreas; Setford, Steven

    2015-05-01

    Accurate self-monitoring of blood glucose is a key component of effective self-management of glycemic control. Accurate self-monitoring of blood glucose results are required for optimal insulin dosing and detection of hypoglycemia. However, blood glucose monitoring systems may be susceptible to error from test strip, user, environmental and pharmacological factors. This report evaluated 5 blood glucose monitoring systems that each use Verio glucose test strips for precision, effect of hematocrit and interferences in laboratory testing, and lay user and system accuracy in clinical testing according to the guidelines in ISO15197:2013(E). Performance of OneTouch(®) VerioVue™ met or exceeded standards described in ISO15197:2013 for precision, hematocrit performance and interference testing in a laboratory setting. Performance of OneTouch(®) Verio IQ™, OneTouch(®) Verio Pro™, OneTouch(®) Verio™, OneTouch(®) VerioVue™ and Omni Pod each met or exceeded accuracy standards for user performance and system accuracy in a clinical setting set forth in ISO15197:2013(E). PMID:25702769

  14. What do professionals recommend regarding the frequency of self-monitoring of blood glucose?

    NARCIS (Netherlands)

    Hortensius, J.; Kleefstra, N.; Houweling, S. T.; van der Bijl, J. J.; Gans, R. O. B.; Bilo, H. J. G.

    2012-01-01

    Background: Patients' adherence to guidelines regarding self-monitoring of blood glucose (SMBG) is limited. However, there are no previous reports about the recommendations that are given in clinical practice concerning SMBG. The aim of this study was to investigate what healthcare providers recomme

  15. Polarization Sensitive Optical Coherence Tomography for Blood Glucose Monitoring in Human Subjects

    CERN Document Server

    Solanki, Jitendra; Sen, Pratima; Andrews, Joseph Thomas

    2012-01-01

    A device based on Polarization sensitive optical coherence tomography is developed to monitor blood glucose levels in human subjects. The device was initially tested with tissue phantom. The measurements with human subjects for various glucose concentration levels are found to be linearly dependent on the degree of circular polarization obtainable from the PS-OCT.

  16. Fission product range effects on HEU fissile gas monitoring for UF6 gas

    International Nuclear Information System (INIS)

    The amount of 235U in UF6 flowing in a pipe can be monitored by counting gamma rays emitted from fission fragments carried along by the flowing gas. Neutron sources are mounted in an annular sleeve that is filled with moderator material and surrounds the pipe. This provides a source of thermal neutrons to produce the fission fragments. Those fragments that remain in the gas stream following fission are carried past a gamma detector. A typical fragment will be quite unstable, giving up energy as it decays to a more stable isotope with a significant amount of this energy being emitted in the form of gamma rays. A given fragment can emit several gamma rays over its lifetime. The gamma ray emission activity level of a distribution of fission fragments decreases with time. The monitoring system software uses models of these processes to interpret the gamma radiation counting data measured by the gamma detectors

  17. Carotid arterial blood pressure waveform monitoring using a portable ultrasound system.

    Science.gov (United States)

    Joohyun Seo; Pietrangelo, Sabino J; Hae-Seung Lee; Sodini, Charles G

    2015-08-01

    This work presents a non-invasive arterial blood pressure (ABP) waveform monitoring technique using ultrasound. A portable ultrasound system to excite ultrasound transducers and acquire data is designed with off-the-shelf components. The insonation angles are identified using a vector Doppler technique based on the cosine dependency of the Doppler signals. The pulse pressure of an estimated waveform at the left common carotid artery is compared to the standard sphygmomanometer measurement in a clinical test. The estimated carotid ABP waveform shows excellent agreement to the finger ABP waveform with expected discrepancy of the systolic peak shape due to different measurement sites. The proposed method also tracks slow blood pressure fluctuations. This validation on human subjects shows potential for a noninvasive blood pressure waveform monitoring device at central arterial sites. PMID:26737584

  18. Application of the iodide clearance technique to monitor local changes in periodontal ligament blood flow

    International Nuclear Information System (INIS)

    The present study was undertaken to validate a newly developed technique for monitoring blood flow changes with local clearance of 125I in the periodontal ligament (PDL). The tracer substance was allowed to diffuse into the intact PDL via a cavity that was drilled from the root canal out towards the root surface. Electric stimulation of the cervical sympathetic trunk caused a reduction in the clearance rate of the tracer from the cavity in a frequency-dependent manner. Intra-arterial infusions of noradrenaline also induced decreases in clearance rate. Intra-arterial infusions of the vasodilators substance P and vasoactive intestinal peptide induced increases in clearance rate. The present technique makes it possible to monitor local blood flow changes in the intact PDL during both decreases and increases in blood flow

  19. Condition Based Monitoring of Gas Turbine Combustion Components

    Energy Technology Data Exchange (ETDEWEB)

    Ulerich, Nancy; Kidane, Getnet; Spiegelberg, Christine; Tevs, Nikolai

    2012-09-30

    The objective of this program is to develop sensors that allow condition based monitoring of critical combustion parts of gas turbines. Siemens teamed with innovative, small companies that were developing sensor concepts that could monitor wearing and cracking of hot turbine parts. A magnetic crack monitoring sensor concept developed by JENTEK Sensors, Inc. was evaluated in laboratory tests. Designs for engine application were evaluated. The inability to develop a robust lead wire to transmit the signal long distances resulted in a discontinuation of this concept. An optical wear sensor concept proposed by K Sciences GP, LLC was tested in proof-of concept testing. The sensor concept depended, however, on optical fiber tips wearing with the loaded part. The fiber tip wear resulted in too much optical input variability; the sensor could not provide adequate stability for measurement. Siemens developed an alternative optical wear sensor approach that used a commercial PHILTEC, Inc. optical gap sensor with an optical spacer to remove fibers from the wearing surface. The gap sensor measured the length of the wearing spacer to follow loaded part wear. This optical wear sensor was developed to a Technology Readiness Level (TRL) of 5. It was validated in lab tests and installed on a floating transition seal in an F-Class gas turbine. Laboratory tests indicate that the concept can measure wear on loaded parts at temperatures up to 800{degrees}C with uncertainty of < 0.3 mm. Testing in an F-Class engine installation showed that the optical spacer wore with the wearing part. The electro-optics box located outside the engine enclosure survived the engine enclosure environment. The fiber optic cable and the optical spacer, however, both degraded after about 100 operating hours, impacting the signal analysis.

  20. Direct monitoring of organic vapours with amperometric enzyme gas sensors.

    Science.gov (United States)

    Hämmerle, Martin; Hilgert, Karin; Achmann, Sabine; Moos, Ralf

    2010-02-15

    In this study, amperometric enzyme gas sensors for direct monitoring of organic vapours (formaldehyde, ethanol and phenol) are presented using exemplarily different sensing strategies: NADH detection, H(2)O(2) detection and direct substrate recycling, respectively. The presented sensor configurations allow the selective, continuous, online monitoring of organic vapours without prior accumulation or sampling of the analyte. The gaseous samples are provided as headspace above aqueous solutions. The concentration in the gas phase was calculated from the concentration in solution at room temperature according to the respective Henry constants given in the literature. The enzymes employed are NAD-dependent formaldehyde dehydrogenase [EC 1.2.1.46] from Pseudomonas putida, alcohol oxidase [EC 1.1.3.13] from Pichia pastoris, and tyrosinase [EC 1.14.18.1] from mushroom. The gas diffusion working electrodes used in the sensors are based on a porous, hydrophobic PTFE membrane (exposed geometric electrode area: 1.77 cm(2)) covered with a porous layer of gold, platinum or graphite/Teflon. Detection limit, sensitivity, and measuring range are 34 microM (6.5 ppb), 117 nA/mM, and 0.46-66.4 mM for formaldehyde, 9.9 microM (55 ppb), 3.43 microA/mM, and 0.1-30 mM for ethanol, and 0.89 microM (0.36 ppb), 2.4 microA/mM, and 0.01-1 mM for phenol, respectively. Further sensor characteristics such as response time and stability are also determined: t(90%) (formaldehyde: 4.5 min; ethanol: 69 s; phenol: 27 min), stability at permanent exposure (formaldehyde: 63%, 15 h @ 2.62 mM; ethanol: 86%, 18 @ 1 mM; phenol: 86%, 16.5 h @ 0.1 M). PMID:19926472

  1. Correlation between arterial and venous blood gas analysis parameters in patients with acute exacerbation of chronic obstructive pulmonary disease

    Directory of Open Access Journals (Sweden)

    Novović Miloš

    2012-01-01

    Full Text Available Introduction. Arterial blood gas (ABG analyses have an important role in the assessment and monitoring of the metabolic and oxygen status of patients with acute exacerbation of chronic obstructive pulmonary disease (COPD. Arterial puncture could have a lot of adverse effects, while sampling of venous blood is simpler and is not so invasive. Objective. The aim of this study was to evaluate whether venous blood gas (VBG values of pH, partial pressure of carbon dioxide (PCO2, partial oxygen pressure (PO2, bicarbonate (HCO3, and venous and arterial blood oxygen saturation (SO2 can reliably predict ABG levels in patients with acute exacerbation of COPD. Methods. Forty-seven patients with a prior diagnosis of COPD were included in this prospective study. The patients with acute exacerbation of this disease were examined at the General Hospital EMS Department in Prijepolje. ABG samples were taken immediately after venous sampling, and both were analyzed. Results. The Pearson correlation coefficients between arterial and venous parameters were 0.828, 0.877, 0.599, 0.896 and 0.312 for pH, PCO2, PO2, HCO3 and SO2, respectively. The statistically significant correlation between arterial and venous pH, PCO2 and HCO3, values was found in patients with acute exacerbation of COPD (p<0.001. Conclusion. When we cannot provide arterial blood for analysis, venous values of the pH, Pv,CO2 and HCO3 parameters can be an alternative to their arterial equivalents in the interpretation of the metabolic status in patients with acute exacerbation of COPD, while the values of venous Pv,O2 and Sv,O2 cannot be used as predictors in the assessment of oxygen status of such patients.

  2. Quality assessment of patients’ self-monitoring of blood glucose in community pharmacies

    Directory of Open Access Journals (Sweden)

    Kjome RL

    2010-03-01

    Full Text Available Objective: To evaluate diabetes patients’ self-monitoring of blood glucose using a community pharmacy-based quality assurance procedure, to investigate whether the procedure improved the quality of the patient performance of self monitoring of blood glucose, and to examine the opinions of the patients taking part in the study. Methods: The results of patient blood glucose measurements were compared to the results obtained with HemoCue Glucose 201+ by pharmacy employees in 16 Norwegian community pharmacies. Patient performance was monitored using an eight item checklist. Patients whose blood glucose measurements differed from pharmacy measurements by more than 20% were instructed in the correct use of their glucometer. The patients then re-measured their blood glucose. If the results were still outside the set limits, the control procedure was repeated with a new lot of glucometer strips, and then with a new glucometer. The patients returned for a follow-up visit after three months. Results: During the first visit, 5% of the 338 patients had measurements that deviated from pharmacy blood glucose values by more than 20% and user errors were observed for 50% of the patients. At the second visit, there was no significant change in the analytical quality of patient measurements, but the percentage of patients who made user errors had decreased to 29% (p < 0.001. Eighty-five percent of the patients reported that they used their blood glucose results to adjust medication, exercise or meals. Fifty-one percent of the patients reported a greater trust in their measurements after the second visit. Eighty percent of patients wished to have their measurements assessed yearly. Of these patients, 83% preferred to have the assessment done at the community pharmacy. Conclusion: A community pharmacy-based quality assessment procedure of patients’ self monitoring of blood glucose significantly reduced the number of user errors. The analytical quality of the

  3. Validation protocol for multiple blood gas analyzers in accordance with laboratory accreditation programs

    OpenAIRE

    Pérsio A. R. Ebner; Paschoalina Romano; Alexandre Sant’Anna; Maria Elizabete Mendes; Magna Oliveira; Nairo M. Sumita

    2015-01-01

    ABSTRACTIntroduction:The results of blood gas analysis using different instrumentation can vary widely due to the methodological differences, the calibration procedures and the use of different configurations for each type of instrument.Objective:The objective of this study was to evaluate multiple analytical systems for measurement of blood gases, electrolytes and metabolites in accordance with the accreditation program (PALC) of Sociedade Brasileira de Patologia Clínica/Medicina Laboratoria...

  4. 21 CFR 874.3950 - Transcutaneous air conduction hearing aid system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Transcutaneous air conduction hearing aid system... Transcutaneous air conduction hearing aid system. (a) Identification. A transcutaneous air conduction hearing aid... occluding the ear canal. The device consists of an air conduction hearing aid attached to a...

  5. Effects of Imidapril on Venous Blood Gas Values in Broiler Chickens Exposed to Low Ambient Temperature

    Institute of Scientific and Technical Information of China (English)

    Xueqin HAO; Meng LI; Shouyan ZHANG; Yongshu WANG; Tongwen SUN

    2013-01-01

    [Objective] This study was designed to evaluate the effects of imidapril on blood gas parameters in broiler chickens.[Method] Twenty-four chickens were randomly divided into three groups (n=8),control group,low temperature group and imidapril group.Chickens in low temperature group and imidapril group were exposed to low ambient temperature (12-18 ℃) from age at 14 d to 45 d,whereas the control group was exposed to 24-30 ℃; chickens in imidapril group were gavaged with imidapril (3 mg/kg) once daily for 30 d.At age of 45 d,blood was taken from wing vein and blood gas parameters were evaluated by blood gas analyzer in Luoyang Central Hospital Affiliated to Zhengzhou University.[Result] Imidapril significantly increased hematocrit (HCT) and total hemoglobin content (THBC) and blood Na concentration in broiler chickens exposed to low ambient temperature.No significant differences were observed in pH,Pco2,Po2,K+,Ca2+,HCO3-,HCO3std,Tco2,BE and SO2c.[Conclusion] Imidapril increases hematocrit,total hemoglobin content and blood Na+concentration in chickens exposed to low ambient temperature.

  6. Comparison of serum bilirubin estimation with transcutaneous bilirubinometry in neonates

    International Nuclear Information System (INIS)

    Objective: To assess usefulness of Minolta Air shield transcutaneous bilirubinometer by comparing bilirubin values obtained by transcutaneous jaundice meter with serum bilirubin estimation. Design: Analytical cross sectional study. Place and duration: NICU Military Hospital Rawalpindi Pakistan Jun 2002 to May 2005. Subjects and Methods: One hundred and fifty neonates admitted to NICU because of visible jaundice were included in the study. Serum was sent to laboratory for total bilirubin estimation. At the same time bilirubin was also checked by a Jaundice Meter. Data was tabulated and t-test applied to compare the two values. Results: One hundred and fifty paired estimations were performed. The transcutaneous bilirubin values ranged from 8.0 mg/dl to 20.4 mg/dl. While serum bilirubin by jaundice meter values ranged between 5.3 mg/dl and 26.0 mg/dl. A Scatter diagram was plotted. It showed a correlation coefficient of 0.78. Conclusion: Bilirubin values obtained by transcutaneous bilirubin meter were not significantly different from laboratory values thus proving the fact that transcutaneous bilirubinometer is a useful device to measure bilirubin. (author)

  7. Mathematical modeling of blood-gas kinetics for the volatile organic compounds isoprene and acetone

    International Nuclear Information System (INIS)

    Breath gas analysis is based on the compelling concept that the exhaled breath levels of endogenously produced volatile organic compounds (VOCs) can provide a direct, non-invasive window to the blood and hence, by inference, to the body. In this sense, breath VOCs are regarded as a comprehensive repository of valuable physiological and clinical information, that might be exploited in such diverse areas as diagnostics, therapeutic monitoring or general dynamic assessments of metabolic function, pharmacodynamics (e.g., in drug testing) and environmental exposure (e.g., in occupational health). Despite this enormous potential, the lack of standardized breath sampling regimes as well as the poor mechanistic understanding of VOC exhalation kinetics could cast a cloud over the widespread use of breath gas analysis in the biomedical sciences. In this context, a primary goal of the present thesis is to provide a better quantitative insight into the breath behavior of two prototypic VOCs, isoprene and acetone. A compartmental modeling framework is developed and validated by virtue of real-time breath measurements of these trace gases during distinct physiological states. In particular, the influence of various hemodynamic and ventilatory parameters on VOC concentrations in exhaled breath is investigated. This approach also complements previous steady state investigations in toxicology. From a phenomenological point of view, both acetone and isoprene concentrations in end-tidal breath are demonstrated to exhibit a reproducible non-steady state behavior during moderate workload challenges on a stationary bicycle. However, these dynamics depart drastically from what is expected on the basis of classical pulmonary inert gas elimination theory. More specifically, the start of exercise is accompanied by an abrupt increase in breath isoprene levels, usually by a factor of 3 to 4 compared with the steady state value during rest. This phase is followed by a gradual decline and the

  8. Patient self-monitoring of blood glucose and refinements of conventional insulin treatment.

    Science.gov (United States)

    Tattersall, R; Gale, E

    1981-01-01

    The compelling evidence that blood glucose control will slow or prevent microvascular complications has stimulated research to find better ways of managing insulin-dependent diabetes. The excellent results obtained with "open loop" insulin infusion systems suggest that the relative failure of conventional treatment is the result of (1) a lack of appropriate feedback to the patient and (2) the use of insulin regimens which do not mimic physiologic insulinemia, particularly in the basal state. Doctors regard blood glucose measurements as an essential part of diabetic management and extension of this technology to patients has added a new dimension, particularly in the assessment of control. Nevertheless, home blood-glucose monitoring will not necessarily improve diabetic control; the best results have been obtained when it has been offered as part of a package deal which includes more investment of time and interest by patients and doctor together with joint discussions of problems and changes in treatment. The biggest problem with conventional twice daily insulin regimens is to sustain constant basal insulin levels during the night. Attempts to obtain fasting normoglycemia with an injection before supper often result in nocturnal hyperinsulinemia and hypoglycemia. This can usually be resolved by changing to a three times daily regimen with an extra injection of NPH insulin at bedtime. Three times daily insulin injections with feedback from home blood-glucose monitoring give as good blood glucose control as infusion systems and are cheaper and more acceptable to patients. PMID:7006390

  9. Direct Determination of the Blood Concentration of Halogenated Anesthetic Agents by Gas Chromatography

    Directory of Open Access Journals (Sweden)

    Yamada,Teruo

    1988-08-01

    Full Text Available The direct determination by gas chromatography of blood levels of anesthetic agents has been difficult because of the water content of blood. In the present study, the method of Yokota et al. (1967 was modified by improving the packing materials of the column, the blood sample vaporizer and the flow-path during analysis. As a result, accurate and reproducible determination of halothane, enflurane and isoflurane dissolved in blood was achieved. With this system, blood in which halothane, enflurane and isoflurane had been dissolved could be analyzed without changing the column between samples. Moreover, each sample was prepared in less than 10 min, and more than 100 consecutive determinations could be made with excellent reproducibility. The coefficient of variation was less than 3.8%.

  10. A signal processing application for evaluating self-monitoring blood glucose strategies in a software agent model.

    Science.gov (United States)

    Wang, Zhanle; Paranjape, Raman

    2015-07-01

    We propose the signal processing technique of calculating a cross-correlation function and an average deviation between the continuous blood glucose and the interpolation of limited blood glucose samples to evaluate blood glucose monitoring frequency in a self-aware patient software agent model. The diabetic patient software agent model [1] is a 24-h circadian, self-aware, stochastic model of a diabetic patient's blood glucose levels in a software agent environment. The purpose of this work is to apply a signal processing technique to assist patients and physicians in understanding the extent of a patient's illness using a limited number of blood glucose samples. A second purpose of this work is to determine an appropriate blood glucose monitoring frequency in order to have a minimum number of samples taken that still provide a good understanding of the patient's blood glucose levels. For society in general, the monitoring cost of diabetes is an extremely important issue, and these costs can vary tremendously depending on monitoring approaches and monitoring frequencies. Due to the cost and discomfort associated with blood glucose monitoring, today, patients expect monitoring frequencies specific to their health profile. The proposed method quantitatively assesses various monitoring protocols (from 6 times per day to 1 time per week) in nine predefined categories of patient agents in terms of risk factors of health status and age. Simulation results show that sampling 6 times per day is excessive, and not necessary for understanding the dynamics of the continuous signal in the experiments. In addition, patient agents in certain conditions only need to sample their blood glucose 1 time per week to have a good understanding of the characteristics of their blood glucose. Finally, an evaluation scenario is developed to visualize this concept, in which appropriate monitoring frequencies are shown based on the particular conditions of patient agents. This base line can

  11. Changes in electrolytes and blood gas after transfusion of irradiated MAP

    International Nuclear Information System (INIS)

    This study was undertaken to investigate the changes in recipient serum electrolytes and arterial blood gas after irradiated blood transfusion. We measured electrolytes and arterial blood gas before and after the transfusion during elective surgery in 55 patients. The mean blood loss was 1,477 g and the mean transfused blood unit of irradiated Mannitol-Adenine-Phosphate (MAP) was 5.9 units. Potassium concentration increased from 3.8 to 4.2 mEq·l-1. A total of 187 units, which had been stored for 12.3±3.5 days after donation and for 5.1±3.8 days after irradiation, was used. There was a significant correlation between the storage period from the day of irradiation and the potassium concentration of the supernatant (r=0.56, p<0.0001). This study recommends that a safe transfusion rate of irradiated blood should be determined because the high potassium concentration of irradiated blood may lead to lethal complications in case of rapid transfusion. (author)

  12. Changes in electrolytes and blood gas after transfusion of irradiated MAP

    Energy Technology Data Exchange (ETDEWEB)

    Miyao, Hideki; Katayama, Akinori; Okamoto, Yumi; Koyama, Kaoru; Kawasaki, Jun; Kawazoe, Taro [Saitama Medical School, Kawagoe (Japan). Saitama Medical Center

    2001-09-01

    This study was undertaken to investigate the changes in recipient serum electrolytes and arterial blood gas after irradiated blood transfusion. We measured electrolytes and arterial blood gas before and after the transfusion during elective surgery in 55 patients. The mean blood loss was 1,477 g and the mean transfused blood unit of irradiated Mannitol-Adenine-Phosphate (MAP) was 5.9 units. Potassium concentration increased from 3.8 to 4.2 mEq{center_dot}l{sup -1}. A total of 187 units, which had been stored for 12.3{+-}3.5 days after donation and for 5.1{+-}3.8 days after irradiation, was used. There was a significant correlation between the storage period from the day of irradiation and the potassium concentration of the supernatant (r=0.56, p<0.0001). This study recommends that a safe transfusion rate of irradiated blood should be determined because the high potassium concentration of irradiated blood may lead to lethal complications in case of rapid transfusion. (author)

  13. Effect of stratified inequality of blood flow on gas exchange in liquid-filled lungs.

    Science.gov (United States)

    West, J. B.; Maloney, J. E.; Castle, B. L.

    1972-01-01

    This investigation set out to answer two questions: (1) are the distal alveoli in the terminal lung units less well perfused than the proximal alveoli, i.e., is there stratification of blood flow; and (2) if so, does this enhance gas exchange in the presence of stratified inequality of ventilation. Excised dog lungs were ventilated with saline and perfused with blood. Following single inspirations of xenon 133 in saline and various periods of breath holding, the expired xenon concentration against volume was measured and it confirmed marked stratified inequality of ventilation under these conditions. By measuring the rate of depletion of xenon from alveoli during a period of blood flow, we showed that the alveoli which emptied at the end of expiration had 16% less blood flow than those exhaling earlier. However, by measuring the xenon concentration in pulmonary venous blood, we found that about 10% less tracer was transferred from the alveoli into the blood when the inspired xenon was stratified within the respiratory zone. Thus while stratification of blood flow was confirmed, it was shown to impair rather than enhance the efficiency of gas transfer.

  14. A CMOS-Based Tactile Sensor for Continuous Blood Pressure Monitoring

    CERN Document Server

    Kirstein, K -U; Salo, T; Hagleitner, C; Vancura, T; Hierlemann, A

    2011-01-01

    A monolithic integrated tactile sensor array is presented, which is used to perform non-invasive blood pressure monitoring of a patient. The advantage of this device compared to a hand cuff based approach is the capability of recording continuous blood pressure data. The capacitive, membrane-based sensor device is fabricated in an industrial CMOS-technology combined with post-CMOS micromachining. The capacitance change is detected by a S?-modulator. The modulator is operated at a sampling rate of 128kS/s and achieves a resolution of 12bit with an external decimation filter and an OSR of 128.

  15. Transcutaneous mechanical nerve stimulation using perineal vibration: a novel method for the treatment of female stress urinary incontinence

    DEFF Research Database (Denmark)

    Sønksen, Jens; Ohl, Dana A; Bonde, Birthe;

    2007-01-01

    We defined basic guidelines for transcutaneous mechanical nerve stimulation in modifying pelvic floor responses in women and determined the efficacy of transcutaneous mechanical nerve stimulation in treating stress urinary incontinence.......We defined basic guidelines for transcutaneous mechanical nerve stimulation in modifying pelvic floor responses in women and determined the efficacy of transcutaneous mechanical nerve stimulation in treating stress urinary incontinence....

  16. Electrodes for transcutaneous (surface electrical stimulation

    Directory of Open Access Journals (Sweden)

    Keller Thierry

    2008-01-01

    Full Text Available In therapeutic and functional applications transcutaneous electrical stimulation (TES is still the most frequently applied technique for muscle and nerve activation despite the huge efforts made to improve implantable technologies. Stimulation electrodes play the important role in interfacing the tissue with the stimulation unit. Between the electrode and the excitable tissue there are a number of obstacles in form of tissue resistivities and permittivities that can only be circumvented by magnetic fields but not by electric fields and currents. However, the generation of magnetic fields needed for the activation of excitable tissues in the human body requires large and bulky equipment. TES devices on the other hand can be built cheap, small and light weight. The weak part in TES is the electrode that cannot be brought close enough to the excitable tissue and has to fulfill a number of requirements to be able to act as efficient as possible. The present review article summarizes the most important factors that influence efficient TES, presents and discusses currently used electrode materials, designs and configurations, and points out findings that have been obtained through modeling, simulation and testing.

  17. Development of bremsstrahlung detection type tritium gas monitoring system, (1)

    International Nuclear Information System (INIS)

    A tritium monitoring system by means of bremsstrahlung detecting was developed. A prototype system consisted of a sampling cylinder, a gas circulating apparatus, an NaI(T1) detector, an amplifier and a multichannel analyzer. The sizes of sampling cylinders used 208 mm phi x 290; 170; 70 mmH, 133 mm phi x 292; 172; 72 mmH and 55 mm phi x 294; 174; 74 mmH, respectively. The sensitivity of prototype system was from 12 to 57 cps/μCi.cm-3, depending on the size of sampling cylinder and an efficiency of NaI(T1) detector. When pulses due to breamsstrahlungs with energy from 4 to 17 keV were counted, the minimum detectable concentration of the prototype tritium monitoring system was obtained to be 5.2 x 10-3 μCi/cm3. It was evaluated that the detectable range of concentration was from 1 x 10-2 to 1 x 103 μCi/cm3. (author)

  18. Optical methods for monitoring harmful gas in animal facilities

    Science.gov (United States)

    Zhang, Shirui; Dong, Daming; Zheng, Wengang; Wang, Jihua

    2014-06-01

    Animal facilities produce large amounts of harmful gases such as ammonia, hydrogen sulfide, and methane, many of which have a pungent odor. The harmful gases produced by animal housing not only affect the health of people and livestock but also pollute the air. The detection of the harmful gases can effectively improve efficiency of livestock production and reduce environmental pollution. More and more optical detection methods are applied to the detection of the harmful gases produced by animal housing. This summarizes optical detection methods for monitoring the harmful gases in animal housing recently, including nondispersive infrared gas analyzer, ultraviolet differential optical absorption spectroscopy, Fourier transform infrared spectroscopy, and tunable diode laser absorption spectroscopy. The basic principle and the characteristics of these methods are illustrated and the applications on the detection of harmful gases in animal housing are described. Meanwhile, the research of harmful gases monitoring for livestock production based on these methods were listed. The current situation and future development of the detection methods for harmful gases generated by animal housing were summarized by comparing the advantages and disadvantages of each method.

  19. Development of Residual Gas Profile Monitors at GSI

    International Nuclear Information System (INIS)

    Beam profile measurements at modern ion synchrotrons and storage rings require high timing performances on a turn-by-turn basis. High spatial resolutions are essential for cold beams and beamwidth measurings. The currently used RGM supported very interesting measurements and applications. Due to the readout technology the spatial and time resolution is limited. To meet the expanded demands a more comprehensive device is under development. It will be an all-purpose residual gas monitor to cover the wide range of beam currents and transversal particle distributions. Due to the fast profile detection it will operate on primary electrons after residual gas ionization. A magnetic field of 100 mT binds them to the ionization point inside 0.1-mm orbits. The high-resolution mode will be read out by a digital CCD camera with an upstream MCP-phosphor screen assembly. It is planned to read out the fast turn-by-turn mode by an array of 100 photodiodes with a resolution of 1 mm. Every photodiode is equipped with an amplifier-digitizer device providing a frame rate of ∼ 10 MSamples/s

  20. Noble Gas Measurement and Analysis Technique for Monitoring Reprocessing Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Charlton, William S

    1999-09-01

    An environmental monitoring technique using analysis of stable noble gas isotopic ratios on-stack at a reprocessing facility was developed. This technique integrates existing technologies to strengthen safeguards at reprocessing facilities. The isotopic ratios are measured using a mass spectrometry system and are compared to a database of calculated isotopic ratios using a Bayesian data analysis method to determine specific fuel parameters (e.g., burnup, fuel type, fuel age, etc.). These inferred parameters can be used by investigators to verify operator declarations. A user-friendly software application (named NOVA) was developed for the application of this technique. NOVA included a Visual Basic user interface coupling a Bayesian data analysis procedure to a reactor physics database (calculated using the Monteburns 3.01 code system). The integrated system (mass spectrometry, reactor modeling, and data analysis) was validated using on-stack measurements during the reprocessing of target fuel from a U.S. production reactor and gas samples from the processing of EBR-II fast breeder reactor driver fuel. These measurements led to an inferred burnup that matched the declared burnup with sufficient accuracy and consistency for most safeguards applications. The NOVA code was also tested using numerous light water reactor measurements from the literature. NOVA was capable of accurately determining spent fuel type, burnup, and fuel age for these experimental results. Work should continue to demonstrate the robustness of this system for production, power, and research reactor fuels.

  1. Noble Gas Measurement and Analysis Technique for Monitoring Reprocessing Facilities

    International Nuclear Information System (INIS)

    An environmental monitoring technique using analysis of stable noble gas isotopic ratios on-stack at a reprocessing facility was developed. This technique integrates existing technologies to strengthen safeguards at reprocessing facilities. The isotopic ratios are measured using a mass spectrometry system and are compared to a database of calculated isotopic ratios using a Bayesian data analysis method to determine specific fuel parameters (e.g., burnup, fuel type, fuel age, etc.). These inferred parameters can be used by investigators to verify operator declarations. A user-friendly software application (named NOVA) was developed for the application of this technique. NOVA included a Visual Basic user interface coupling a Bayesian data analysis procedure to a reactor physics database (calculated using the Monteburns 3.01 code system). The integrated system (mass spectrometry, reactor modeling, and data analysis) was validated using on-stack measurements during the reprocessing of target fuel from a U.S. production reactor and gas samples from the processing of EBR-II fast breeder reactor driver fuel. These measurements led to an inferred burnup that matched the declared burnup with sufficient accuracy and consistency for most safeguards applications. The NOVA code was also tested using numerous light water reactor measurements from the literature. NOVA was capable of accurately determining spent fuel type, burnup, and fuel age for these experimental results. Work should continue to demonstrate the robustness of this system for production, power, and research reactor fuels

  2. Transcutaneous Electrical Nerve Stimulation Improves Exercise Tolerance in Healthy Subjects.

    Science.gov (United States)

    Tomasi, F P; Chiappa, G; Maldaner da Silva, V; Lucena da Silva, M; Lima, A S C G B; Arena, R; Bottaro, M; Cipriano, G

    2015-07-01

    Transcutaneous electrical nerve stimulation (TENS) increases peripheral blood flow by attenuation of the muscle metaboreflex, improving oxygen supply to working muscles. We tested the hypothesis that application of TENS at ganglion improves exercise performance. 11 subjects underwent constant-work rate tests (CWR) to the limit of tolerance (Tlim) while receiving TENS or placebo. Oxygen uptake (V.O2), carbon dioxide (V.CO2), minute ventilation (V.E), ventilatory equivalent (V.E/V.CO2), heart rate (HR) and oxygen pulse (V.O2/HR) were analyzed at isotime separated by percentile and Tlim. V.O2 was lower and V.CO2 was higher at 100% of isotime during TENS, while there were no differences in V.E and V.E/V.CO2. HR was lower during exercise with TENS, and V.O2/HR increased at peak exercise (17.96±1.9 vs. 20.38±1 ml/min/bpm, P<0.05). TENS increased mechanical efficiency at isotime and Tlim (4.10±0.50 vs. 3.39±0.52%, P<0.05 and 3.95±0.67 vs. 3.77±0.45%, P<0.05) and exercise tolerance compared to P-TENS (390±41 vs. 321±41 s; P<0.05). Our data shows that the application of TENS can potentially increase exercise tolerance and oxygen supply in healthy subjects. PMID:25607523

  3. [From basic principles to clinical applications on transcutaneous vaccine].

    Science.gov (United States)

    Okada, Naoki

    2013-01-01

    The recent vigorous transnational migration of people and materials reflecting the development of transportation facilities, changes in social structure, and war disasters has increased the global spread of emerging and re-emerging infectious diseases. Vaccine, which is the major fundamental prophylaxis against infectious diseases, has greatly contributed to the maintenance and improvement of human health worldwide. However, the disadvantages of conventional injection systems hamper the speedy mass-vaccination and the global distribution of vaccines. Transcutaneous immunization systems, which are easy-to-use and low-invasive methods of vaccination, have the potential to overcome certain issues associated with injectable vaccinations. In this review, we provide an outline of recent trends in the development of techniques for the transcutaneous delivery of vaccine antigens. We also introduce basic and clinical research involving our transcutaneous immunization systems that incorporate self-dissolving microneedle patch. PMID:24292185

  4. Transcutaneous oximetry: normal values for the lower limb.

    Science.gov (United States)

    2016-03-01

    Consistent with the Committee on Publication Ethics guidelines, we the above authors are initiating the retraction of our paper: Blake DF, Young DA, Brown LH: Transcutaneous oximetry: normal values for the lower limb. Diving Hyperb Med. 2014 September;44(3):146-153. We wish to make the following statement: "The authors voluntarily retract this article after discovering a critical error associated with the instrumentation used in the study, namely the fitting of incorrect sensor membranes on the electrodes of the transcutaneous oximetry device used in the study. This resulted in transcutaneous oxygen tension (PtcO₂) measurements that were consistently lower than those that would be recorded with the correct electrode membranes in place, which we recently confirmed by comparing the two membrane types once we discovered the error. We are in the process of replicating our work using the correct PtcO₂ specific membranes." PMID:27044466

  5. Transcutaneous oximetry measurement: normal values for the upper limb.

    Science.gov (United States)

    2016-03-01

    Consistent with the Committee on Publication Ethics guidelines, we the above authors are initiating the retraction of our paper: Young DA, Blake DF, Brown LH: Transcutaneous oximetry measurement: normal values for the upper limb. Diving Hyperb Med. 2012;42(4):208-213. We wish to make the following statement: "The authors voluntarily retract this article after discovering a critical error associated with the instrumentation used in the study, namely the fitting of incorrect sensor membranes on the electrodes of the transcutaneous oximetry device used in the study. This resulted in transcutaneous oxygen tension (PtcO₂) measurements that were consistently lower than those that would have been recorded with the correct electrode membranes in place. We recently confirmed this by comparing the two membrane types once we discovered the error. We are in the process of replicating our work using the correct PtcO₂ specific membranes." PMID:27044465

  6. Analysis of mean transcutaneous capnography in consecutive patients undergoing polysomnography

    Directory of Open Access Journals (Sweden)

    Giulio Cesare Pinnola

    2014-11-01

    Full Text Available Transcutaneous capnography is a noninvasive method useful for analysis of the behavioral tendency of transcutaneous CO2 pressure (PtcCO2 in patients undergoing polysomnography, to evaluate respiratory sleep disorders. Objective Determine normative PtcCO2 values in normal patients undergoing polysomnography. Method One hundred seventy-nine patients who underwent polysomnography with simultaneous PtcCO2 measurement were assessed by means of a transcutaneous capnograph (TCM4 series from Radiomiter. Results The group classified as normal (N=53 presented a apnea/hypopnea index (AHI <5 events/per hour of sleep and their age groups varied between 7 and 76 years of age. Conclusion Global mean values of PtcCO2 in the normal group had a Gaussian distribution that varied between 33.1 and 50.0 mmHg (SD 4,363. Such findings allowed the establishment of normative PtcCO2 values for normal individuals.

  7. Frequency and motives of blood glucose self-monitoring in type 1 diabetes

    DEFF Research Database (Denmark)

    Hansen, M V; Pedersen-Bjergaard, U; Heller, S R;

    2009-01-01

    AIMS: Recommendations for self-monitoring of blood glucose (SMBG) from the DCCT have not been implemented with the same rigour as recommendations for intensifying insulin therapy. We assessed the frequency of and motives for SMBG and compared SMBG behaviour with clinical, behavioural and demograp......AIMS: Recommendations for self-monitoring of blood glucose (SMBG) from the DCCT have not been implemented with the same rigour as recommendations for intensifying insulin therapy. We assessed the frequency of and motives for SMBG and compared SMBG behaviour with clinical, behavioural and...... hypoglycaemia and awareness of hypoglycaemia were independently associated with testing behaviour, whereas the presence of late diabetic complications was not. Lower HbA1c was associated with more frequent testing. CONCLUSION: Patient compliance regarding SMBG is limited. Thus, almost two thirds of the patients...

  8. Non-invasive blood glucose monitoring with Raman spectroscopy: prospects for device miniaturization

    Science.gov (United States)

    Wróbel, M. S.

    2016-01-01

    The number of patients with diabetes has reached over 350 million, and still continues to increase. The need for regular blood glucose monitoring sparks the interest in the development of modern detection technologies. One of those methods, which allows for noninvasive measurements, is Raman spectroscopy. The ability of infrared light to penetrate deep into tissues allows for obtaining measurements through the skin without its perforation. This paper presents the limitations and possibilities of non-invasive blood glucose monitoring with Raman spectroscopy. Especially focusing on the possibilities for device miniaturization. Such device incorporates a Raman spectrometer, a fiber-optical probe, and a computing device (microcontroller, smartphone, etc.) which calculates the glucose concentration using specialized algorithms. Simplification of device design, as well as turbidity correction technique and a new proposed method of synchronized detection are described.

  9. Accuracy of continuous noninvasive hemoglobin monitoring for the prediction of blood transfusions in trauma patients.

    Science.gov (United States)

    Galvagno, Samuel M; Hu, Peter; Yang, Shiming; Gao, Cheng; Hanna, David; Shackelford, Stacy; Mackenzie, Colin

    2015-12-01

    Early detection of hemorrhagic shock is required to facilitate prompt coordination of blood component therapy delivery to the bedside and to expedite performance of lifesaving interventions. Standard physical findings and vital signs are difficult to measure during the acute resuscitation stage, and these measures are often inaccurate until patients deteriorate to a state of decompensated shock. The aim of this study is to examine a severely injured trauma patient population to determine whether a noninvasive SpHb monitor can predict the need for urgent blood transfusion (universal donor or additional urgent blood transfusion) during the first 12 h of trauma patient resuscitation. We hypothesize that trends in continuous SpHb, combined with easily derived patient-specific factors, can identify the immediate need for transfusion in trauma patients. Subjects were enrolled if directly admitted to the trauma center, >17 years of age, and with a shock index (heart rate/systolic blood pressure) >0.62. Upon admission, a Masimo Radical-7 co-oximeter sensor (Masimo Corporation, Irvine, CA) was applied, providing measurement of continuous non-invasive hemoglobin (SpHb) levels. Blood was drawn and hemoglobin concentration analyzed and conventional pulse oximetry photopletysmograph signals were continuously recorded. Demographic information and both prehospital and admission vital signs were collected. The primary outcome was transfusion of at least one unit of packed red blood cells within 24 h of admission. Eight regression models (C1-C8) were evaluated for the prediction of blood use by comparing area under receiver operating curve (AUROC) at different time intervals after admission. 711 subjects had continuous vital signs waveforms available, to include heart rate (HR), SpHb and SpO2 trends. When SpHb was monitored for 15 min, SpHb did not increase AUROC for prediction of transfusion. The highest ROC was recorded for model C8 (age, sex, prehospital shock index, admission

  10. Trans-Cutaneous Bilirubinometery versus Serum Bilirubin in Neonatal Jaundice.

    Science.gov (United States)

    Mahram, Manoochehr; Oveisi, Sonia; Jaberi, Najmeh

    2015-12-01

    Hyperbilirubinemia is a common problem in neonates and causes serious complications. Thus, serial measurements of bilirubin should be done. This assessment is done through two methods of laboratory measurement in serum sample and transcutaneous bilirubinometer. This descriptive study compared transcutaneous bilirubin assessment and laboratory serum bilirubin. Bilirubin level was assessed among 256 neonates admitted to the Qods Children's Hospital in Qazvin- Iran, because of neonatal indirect jaundice, through two methods of transcutaneous bilirubinometery from two sites of forehead and sternum and laboratory measurement of bilirubin in serum. The cases were non-hemolytic icteric term neonates weighing 2500 gram or more and had not received phototherapy or other treatments. Neonates with hemolytic forms of jaundice, sepsis and suspicious to metabolic disorders were excluded. Assessments by means of KJ-8000 transcutaneous bilirubinometer from two sites of forehead and sternum and through laboratory measurement of serum bilirubin were registered and analyzed. The results of the current study showed that there was a correlation of 0.82 between serum bilirubin and transcutaneous forehead bilirubin assessment and for the used device sensitivity of 0.844; specificity of 0.842, Youden Index of 0.709 and Shortest of 0.042 for a cut-off of 12.4 in bilirubin of participants. Furthermore, Likelihood Ratio positive and negative (LR) were 5.665 and 0.164, respectively and diagnostic Odds Ratio (LR+/LR-) was 34.56. Transcutaneous bilirubinometery can be considered as a reliable tool to assess bilirubin for the screening of neonatal jaundice in term neonates. PMID:26749233

  11. Trans-Cutaneous Bilirubinometery versus Serum Bilirubin in Neonatal Jaundice

    Directory of Open Access Journals (Sweden)

    Manoochehr Mahram

    2015-12-01

    Full Text Available Hyperbilirubinemia is a common problem in neonates and causes serious complications. Thus, serial measurements of bilirubin should be done. This assessment is done through two methods of laboratory measurement in serum sample and transcutaneous bilirubinometer. This descriptive study compared transcutaneous bilirubin assessment and laboratory serum bilirubin. Bilirubin level was assessed among 256 neonates admitted to the Qods Children’s Hospital in Qazvin- Iran, because of neonatal indirect jaundice, through two methods of transcutaneous bilirubinometery from two sites of forehead and sternum and laboratory measurement of bilirubin in serum. The cases were non-hemolytic icteric term neonates weighing 2500 gram or more and had not received phototherapy or other treatments. Neonates with hemolytic forms of jaundice, sepsis and suspicious to metabolic disorders were excluded. Assessments by means of KJ-8000 transcutaneous bilirubinometer from two sites of forehead and sternum and through laboratory measurement of serum bilirubin were registered and analyzed. The results of the current study showed that there was a correlation of 0.82 between serum bilirubin and transcutaneous forehead bilirubin assessment and for the used device sensitivity of 0.844; specificity of 0.842, Youden Index of 0.709 and Shortest of 0.042 for a cut-off of 12.4 in bilirubin of participants. Furthermore, Likelihood Ratio positive and negative (LR were 5.665 and 0.164, respectively and diagnostic Odds Ratio (LR+/LR- was 34.56. Transcutaneous bilirubinometery can be considered as a reliable tool to assess bilirubin for the screening of neonatal jaundice in term neonates.

  12. Determination of ketone bodies in blood by headspace gas chromatography-mass spectrometry

    DEFF Research Database (Denmark)

    Holm, Karen Marie Dollerup; Linnet, Kristian; Rasmussen, Brian Schou;

    2010-01-01

    A gas chromatography-mass spectrometry (GC-MS) method for determination of ketone bodies (ß-hydroxybutyrate, acetone, and acetoacetate) in blood is presented. The method is based on enzymatic oxidation of D-ß-hydroxybutyrate to acetoacetate, followed by decarboxylation to acetone, which was...

  13. Non-invasive monitoring of blood pressure using the Philips Intellivue MP50 monitor cannot replace invasive blood pressure techniques in surgery patients under general anesthesia.

    Science.gov (United States)

    Meng, Xianghu; Zang, Guanghui; Fan, Longchang; Zheng, Lei; Dai, Jinzhen; Wang, Xueren; Xia, Wei; Liu, Jihong; Zhang, Chuanhan

    2013-07-01

    The Philips Intellivue MP50 monitor provides a method for non-invasive, near-continuous blood pressure (BP) monitoring and is designed to be an alternative to direct intra-arterial BP (IABP) measurement. However, no studies have specifically compared non-invasive and invasive BP measurements using the monitor. The present retrospective study observed 515 patients undergoing surgery with general anesthesia, whose invasive (intra-radial, femoral or dorsalis pedis artery) and non-invasive (oscillometric) BP (NIBP) were monitored simultaneously using the monitor. These data were analyzed using correlations, regressions and Bland-Altman plots. The patients were placed in a supine position during surgery. The correlation data for invasive BP and NIBP measurements were: for intra-radial measurements, r(2)=0.51 (bias and precision, 11.04±15.22 and 14.76±11.64 mmHg, respectively) for systolic BP (SBP) and r(2)=0.27 (6.17±11.95 and 9.77±9.25 mmHg, respectively) for diastolic BP (DBP); for intra-femoral measurements: r(2)=0.57 (14.79±14.55 and 17.15±11.68 mmHg, respectively) for SBP and r(2)=0.45 (4.12±9.70 and 7.49±7.40 mmHg, respectively) for DBP; and for intra-dorsalis pedis measurements: r(2)=0.33 (13.00±16.81 and 17.34±12.28 mmHg, respectively) for SBP and r(2)=0.30 (0.17±11.27 and 8.44±7.46 mmHg, respectively) for DBP. According to this data, the NIBP measured by the Philips Intellivue MP50 monitor showed low positive correlations and poor agreement with the IABP, as calculated by Bland-Altman analysis. Therefore, the use of oscillometric BP measured by the monitor in surgery patients under general anesthesia is not generally recommended. PMID:23935710

  14. Ambulatory Blood Pressure Monitoring in Diabetes and Obesity—A Review

    OpenAIRE

    Kazuo Eguchi

    2011-01-01

    Diabetes mellitus and obesity are both related to the risk of cardiovascular disease and sudden death. In hypertensive guidelines, diabetes and obesity, especially abdominal obesity, are regarded as high-risk factors. Ambulatory blood pressure monitoring (ABPM) is an established method for the management of hypertension. However, ABPM is not a standard tool for the management of hypertension in diabetes and obesity. In this paper, recent data on the use of ABPM in diabetes and obesity will be...

  15. Ambulatory Blood Pressure Monitoring in Individuals with HIV: A Systematic Review and Meta-Analysis

    OpenAIRE

    Kent, Shia T; Bromfield, Samantha G.; Burkholder, Greer A.; Falzon, Louise; Oparil, Suzanne; Overton, Edgar T.; Mugavero, Michael J.; Schwartz, Joseph E.; Shimbo, Daichi; Muntner, Paul

    2016-01-01

    Introduction Abnormal diurnal blood pressure (BP) rhythms may contribute to the high cardiovascular disease risk in HIV-positive (HIV+) individuals. To synthesize the current literature on ambulatory BP monitoring (ABPM) in HIV+ individuals, a systematic literature review and meta-analysis were performed. Methods Medical databases were searched through November 11, 2015 for studies that reported ABPM results in HIV+ individuals. Data were extracted by 2 reviewers and pooled differences betwee...

  16. Do Currently Available Blood Glucose Monitors Meet Regulatory Standards? 1-Day Public Meeting in Arlington, Virginia

    OpenAIRE

    Klonoff, David C.; Reyes, Juliet S.

    2013-01-01

    Blood glucose monitors (BGMs) are approved by regulatory agencies based on their performance during strict testing conducted by their manufacturers. However, after approval, there is uncertainty whether BGMs maintain the accuracy levels that were achieved in the initial data. The availability of inaccurate BGM systems pose a public health problem because their readings serve as a basis for treatment decisions that can be incorrect. Several articles have concluded that BGMs in the marketplace ...

  17. Evaluation of two methods of rapid blood-glucose monitoring by unskilled personnel during surgery

    DEFF Research Database (Denmark)

    Madsbad, S; Adelhøj, B; Bigler, Dennis Richard;

    1984-01-01

    % of the readings below laboratory values -20%. All situations with severe hypoglycaemia were detected with both strips. The study also demonstrates the ineffectiveness of s.c. insulin regimens during surgery. Only 47% of the measured blood glucose values were within the range of 5.5-10 mmol/l and two......The accuracy of two rapid methods of blood-glucose monitoring without (Haemo-glucotest 1-44) and with a reflectance meter (Hypocount B) was compared using a laboratory method. The assessment was carried out by personnel with no previous experience in measuring blood glucose. Eighty-five percent of...... the 92 measurements obtained with the hypocount B were within +/- 20% of the laboratory glucose values. Using haemo-glucotest 1-44 strips, 74% of the readings were within +/- 20% of the reference laboratory values. For values below 5.5 mmol/l, there was a tendency for results to be too low, with 77...

  18. Effects of ambient air particulate exposure on blood-gas barrier permeability and lung function

    DEFF Research Database (Denmark)

    Bräuner, Elvira Vaclavik; Mortensen, Jann; Møller, Peter;

    2009-01-01

    Particulate air pollution is associated with increased risk of pulmonary diseases and detrimental outcomes related to the cardiovascular system, including altered vessel functions. This study's objective was too evaluate the effects of ambient particle exposure on the blood-gas permeability, lung...... effect on the concentration of CC16 in plasma and urine or on the static and dynamic volumes or ventilation distribution of the lungs. The study thus demonstrates increased permeability of the alveolar blood-gas barrier following moderate exercise, whereas exposure to ambient levels of urban air.......5-15.8 microg/m(3) PM(10-2.5)) or filtered (91-542 particles/cm(3)) air collected above a busy street. The clearance rate of aerosolized (99m)Tc-labeled diethylenetriamine pentaacetic acid ((99m)Tc-DTPA) was measured as an index for the alveolar epithelial membrane integrity and permeability of the lung blood...

  19. Study on monitoring capacity of noble gas for nuclear power plant effluent

    International Nuclear Information System (INIS)

    The content of nuclear power plant effluent especially the radioactive noble gas for monitoring gaseous monitoring is at low levels of radioactivity. For the nuclear power plants in operation, the monitoring results are almost below the limit of detection , the monitoring capacity would determines the discharge evaluation level of the radioactive noble gases. The present situation of radioactive noble gas monitoring and discharge evaluation for a operating nuclear power plant effluent in China were analyzed, comparing relevant suggestions of the EU with monitoring capability of radioactive noble gases in China, Methods to solve the problems were proposed. (authors)

  20. Blood flow changes after unilateral carotid artery ligation monitored by optical coherence tomography

    Science.gov (United States)

    Ma, Yushu; Liang, Chengbo; Suo, Yanyan; Zhao, Yuqian; Wang, Yi; Xu, Tao; Wang, Ruikang; Ma, Zhenhe

    2016-03-01

    Unilateral carotid artery ligation which could induce adaptive improvement is a classic model that has been widely used to study pathology of ischemic disease. In those studies, blood flow is an important parameter to characterize the ischemia. Optical coherence tomography (OCT) is a powerful imaging modality which can provide depth resolved images in biological tissue with high spatial and temporal resolution. SPF rats was anesthetized with isoflurane and divided into two groups. In first group, bilateral carotid artery was surgically exposed, and then left carotid artery was ligated. Blood flow changes of the contralateral carotid artery was monitored using high speed spectral domain optical coherence tomography, including the absolute flow velocity and the flow volume. In the other group, skull window was opened at the ipsilateral cerebral cortex of ligation and blood supply of small artery was measured before and after the ligation. The measured results demonstrate the blood supply compensation process after unilateral carotid artery ligation. With the superiority of high resolution, OCT is an effective technology in monitoring results of carotid artery after ligation.

  1. Use of paravascular admittance waveforms to monitor relative change in arterial blood pressure

    Science.gov (United States)

    Zielinski, Todd M.; Hettrick, Doug; Cho, Yong

    2010-04-01

    Non-invasive methods to monitor ambulatory blood pressure often have limitations that can affect measurement accuracy and patient adherence [1]. Minimally invasive measurement of a relative blood pressure surrogate with an implantable device may provide a useful chronic diagnostic and monitoring tool. We assessed a technique that uses electrocardiogram and paravascular admittance waveform morphology analysis to one, measure a time duration (vascular tone index, VTI in milliseconds) change from the electrocardiogram R-wave to admittance waveform peak and two, measure the admittance waveform minimum, maximum and magnitude as indicators of change in arterial compliance/distensibility or pulse pressure secondary to change in afterload. Methods: Five anesthetized domestic pigs (32 ± 4.2 kg) were used to study the effects of phenylephrine (1-5 ug/kg/min) on femoral artery pressure and admittance waveform morphology measured with a quadrapolar electrode array catheter placed next to the femoral artery to assess the relative change in arterial compliance due to change in peripheral vascular tone. Results: Statistical difference was observed (p measurement techniques that monitor relative change in blood pressure may be suitable for implantable devices to detect progression of cardiovascular disease such as hypertension.

  2. A wearable diffuse reflectance sensor for continuous monitoring of cutaneous blood content

    International Nuclear Information System (INIS)

    An optical diffuse reflectance sensor for characterization of cutaneous blood content and optimized for continuous monitoring has been developed as part of a non-invasive multisensor system for glucose monitoring. A Monte Carlo simulation of the light propagation in the multilayered skin model has been performed in order to estimate the optimal geometrical separation of the light source and detector for skin and underlying tissue. We have observed that the pathlength within the upper vascular plexus of the skin which defines the sensor sensitivity initially grows with increasing source-detector distance (SDD) before reaching a maximum at 3.5 mm and starts to decay with further increase. At the same time, for distances above 2.4 mm, the sensor becomes sensitive to muscle blood content, which decreases the specificity to skin perfusion monitoring. Thus, the SDDs in the range from 1.5 mm to 2.4 mm satisfy the requirements of sensor sensitivity and specificity. The hardware implementation of the system has been realized and tested in laboratory experiments with a venous occlusion procedure and in an outpatient clinical study in 16 patients with type 1 diabetes mellitus. For both testing procedures, the optical sensor demonstrated high sensitivity to perfusion change provoking events. The general build-up of cutaneous blood under the sensor has been observed which can be associated with pressure-induced vasodilation as a response to the sensor application.

  3. Blood is a poor substrate for monitoring pollution burdens in phocid seals.

    Science.gov (United States)

    Lydersen, Christian; Wolkers, Hans; Severinsen, Torbjørn; Kleivane, Lars; Nordøy, Erling S; Skaare, Janneche Utne

    2002-06-26

    phocid seals' annual cycles, we recommend that blood should not be used in studies of OCs where the aim of the study is to monitor OC levels for comparative purposes or time-trend analysis. PMID:12146519

  4. Monitoring soil greenhouse gas emissions from managed grasslands

    Science.gov (United States)

    Díaz-Pinés, Eugenio; Lu, Haiyan; Butterbach-Bahl, Klaus; Kiese, Ralf

    2014-05-01

    Grasslands in Central Europe are of enormous social, ecological and economical importance. They are intensively managed, but the influence of different common practices (i.e. fertilization, harvesting) on the total greenhouse gas budget of grasslands is not fully understood, yet. In addition, it is unknown how these ecosystems will react due to climate change. Increasing temperatures and changing precipitation will likely have an effect on productivity of grasslands and on bio-geo-chemical processes responsible for emissions of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). In the frame of the TERENO Project (www.tereno.net), a long-term observatory has been implemented in the Ammer catchment, southern Germany. Acting as an in situ global change experiment, 36 big lysimeters (1 m2 section, 150 cm height) have been translocated along an altitudinal gradient, including three sites ranging from 600 to 860 meters above sea level. In addition, two treatments have been considered, corresponding to different management intensities. The overall aim of the pre-alpine TERENO observatory is improving our understanding of the consequences of climate change and management on productivity, greenhouse gas balance, soil nutritional status, nutrient leaching and hydrology of grasslands. Two of the sites are equipped with a fully automated measurement system in order to continuously and accurately monitor the soil-atmosphere greenhouse gas exchange. Thus, a stainless steel chamber (1 m2 section, 80 cm height) is controlled by a robotized system. The chamber is hanging on a metal structure which can move both vertically and horizontally, so that the chamber is able to be set onto each of the lysimeters placed on the field. Furthermore, the headspace of the chamber is connected with a gas tube to a Quantum Cascade Laser, which continuously measures CO2, CH4, N2O and H2O mixing ratios. The chamber acts as a static chamber and sets for 15 minutes onto each lysimeter

  5. Measurement of tissue optical properties with optical coherence tomography: Implication for noninvasive blood glucose concentration monitoring

    Science.gov (United States)

    Larin, Kirill V.

    Approximately 14 million people in the USA and more than 140 million people worldwide suffer from diabetes mellitus. The current glucose sensing technique involves a finger puncture several times a day to obtain a droplet of blood for analysis. There have been enormous efforts by many scientific groups and companies to quantify glucose concentration noninvasively using different optical techniques. However, these techniques face limitations associated with low sensitivity, accuracy, and insufficient specificity of glucose concentrations over a physiological range. Optical coherence tomography (OCT), a new technology, is being applied for noninvasive imaging in tissues with high resolution. OCT utilizes sensitive detection of photons coherently scattered from tissue. The high resolution of this technique allows for exceptionally accurate measurement of tissue scattering from a specific layer of skin compared with other optical techniques and, therefore, may provide noninvasive and continuous monitoring of blood glucose concentration with high accuracy. In this dissertation work I experimentally and theoretically investigate feasibility of noninvasive, real-time, sensitive, and specific monitoring of blood glucose concentration using an OCT-based biosensor. The studies were performed in scattering media with stable optical properties (aqueous suspensions of polystyrene microspheres and milk), animals (New Zealand white rabbits and Yucatan micropigs), and normal subjects (during oral glucose tolerance tests). The results of these studies demonstrated: (1) capability of the OCT technique to detect changes in scattering coefficient with the accuracy of about 1.5%; (2) a sharp and linear decrease of the OCT signal slope in the dermis with the increase of blood glucose concentration; (3) the change in the OCT signal slope measured during bolus glucose injection experiments (characterized by a sharp increase of blood glucose concentration) is higher than that measured in

  6. A monitor for the composition of the gas mixture of BESIII muon chambers

    International Nuclear Information System (INIS)

    An ionization chamber is designed to monitor the composition of the gas mixture of BESIII muon chambers, with the energy spectrum of 5.9 keV X-ray of the 55Fe radioactive source. The high voltage, source strength and temperature dependence have been carefully studied to acquire stable operation of the gas monitor

  7. Continuous blood pressure monitoring during exercise using pulse wave transit time measurement.

    Science.gov (United States)

    Lass, J; Meigas, K; Karai, D; Kattai, R; Kaik, J; Rossmann, M

    2004-01-01

    This paper gives an overview of a research, which is focused on the development of the convenient device for continuous non-invasive monitoring of arterial blood pressure. The blood pressure estimation method is based on a presumption that there is a singular relationship between the pulse wave propagation time in arterial system and blood pressure. The parameter used in this study is pulse wave transit time (PWTT). The measurement of PWTT involves the registration of two time markers, one of which is based on ECG R peak detection and another on the detection of pulse wave in peripheral arteries. The reliability of beat to beat systolic blood pressure calculation during physical exercise was the main focus for the current paper. Sixty-one subjects (healthy and hypertensive) were studied with the bicycle exercise test. As a result of current study it is shown that with the correct personal calibration it is possible to estimate the beat to beat systolic arterial blood pressure during the exercise with comparable accuracy to conventional noninvasive methods. PMID:17272172

  8. Systemic Metabolomic Changes in Blood Samples of Lung Cancer Patients Identified by Gas Chromatography Time-of-Flight Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Suzanne Miyamoto

    2015-04-01

    Full Text Available Lung cancer is a leading cause of cancer deaths worldwide. Metabolic alterations in tumor cells coupled with systemic indicators of the host response to tumor development have the potential to yield blood profiles with clinical utility for diagnosis and monitoring of treatment. We report results from two separate studies using gas chromatography time-of-flight mass spectrometry (GC-TOF MS to profile metabolites in human blood samples that significantly differ from non-small cell lung cancer (NSCLC adenocarcinoma and other lung cancer cases. Metabolomic analysis of blood samples from the two studies yielded a total of 437 metabolites, of which 148 were identified as known compounds and 289 identified as unknown compounds. Differential analysis identified 15 known metabolites in one study and 18 in a second study that were statistically different (p-values <0.05. Levels of maltose, palmitic acid, glycerol, ethanolamine, glutamic acid, and lactic acid were increased in cancer samples while amino acids tryptophan, lysine and histidine decreased. Many of the metabolites were found to be significantly different in both studies, suggesting that metabolomics appears to be robust enough to find systemic changes from lung cancer, thus showing the potential of this type of analysis for lung cancer detection.

  9. Results of vapor space monitoring of flammable gas Watch List tanks

    Energy Technology Data Exchange (ETDEWEB)

    Wilkins, N.E.

    1997-09-18

    This report documents the measurement of headspace gas concentrations and monitoring results from the Hanford tanks that have continuous flammable gas monitoring. The systems used to monitor the tanks are Standard Hydrogen Monitoring Systems. Further characterization of the tank off-gases was done with Gas Characterization Systems and vapor grab samples. The background concentrations of all tanks are below the action level of 6250 ppm. Other information which can be derived from the measurements (such as generation rate, release rate, and ventilation rate) is also discussed.

  10. Results of vapor space monitoring of flammable gas Watch List tanks

    International Nuclear Information System (INIS)

    This report documents the measurement of headspace gas concentrations and monitoring results from the Hanford tanks that have continuous flammable gas monitoring. The systems used to monitor the tanks are Standard Hydrogen Monitoring Systems. Further characterization of the tank off-gases was done with Gas Characterization Systems and vapor grab samples. The background concentrations of all tanks are below the action level of 6250 ppm. Other information which can be derived from the measurements (such as generation rate, release rate, and ventilation rate) is also discussed

  11. Results of ambulatory arterial blood pressure monitoring in children with obesity

    Directory of Open Access Journals (Sweden)

    Faruk Öktem

    2010-12-01

    Full Text Available Objectives: The relationship between obesity and essential hypertension is well known. In this study, we aimed to evaluate ambulatory arterial blood pressure monitoring of obese and non-obese children who had similar demographic characteristics.Materials and methods: Seventy one children and adolescents (n=39 obesity, n=32 controls were studied. Blood pressure of the children were measured by 24 hour ambulatory blood pressure monitoring device.Results: Obese children had significantly higher mean blood pressure values (systolic 121.9±11.7 mmHg, diastolic 70.2±5.3 mmHg than control subjects (systolic 109.3±6.7 mmHg, diastolic 65.1±4.6 mmHg, p0.05. Blood pressure load was found to be increased in obese children compared to the controls (%13.6±12.9 and %2.6±3.4, respectively; p<0.05. Serum total cholesterol and LDL-cholesterol levels of obese children (181.1±33.4 and 131.1±23.1mg/dl were significantly higher than those of the controls (134.3±11.1 and 103.3±14.2 mg/dl, p<0.05.Conclusions: Obesity in children and adolescents should not be regarded as variations of normality, but as abnormality with an extremely high risk for the development of hypertension and hyperlipidemia in adulthood.

  12. Real-time electrical impedimetric monitoring of blood coagulation process under temperature and hematocrit variations conducted in a microfluidic chip.

    Directory of Open Access Journals (Sweden)

    Kin Fong Lei

    Full Text Available Blood coagulation is an extremely complicated and dynamic physiological process. Monitoring of blood coagulation is essential to predict the risk of hemorrhage and thrombosis during cardiac surgical procedures. In this study, a high throughput microfluidic chip has been developed for the investigation of the blood coagulation process under temperature and hematocrit variations. Electrical impedance of the whole blood was continuously recorded by on-chip electrodes in contact with the blood sample during coagulation. Analysis of the impedance change of the blood was conducted to investigate the characteristics of blood coagulation process and the starting time of blood coagulation was defined. The study of blood coagulation time under temperature and hematocrit variations was shown a good agreement with results in the previous clinical reports. The electrical impedance measurement for the definition of blood coagulation process provides a fast and easy measurement technique. The microfluidic chip was shown to be a sensitive and promising device for monitoring blood coagulation process even in a variety of conditions. It is found valuable for the development of point-of-care coagulation testing devices that utilizes whole blood sample in microliter quantity.

  13. Transcutaneous vs. intraoperative quantitative ultrasound for staging bovine hepatic steatosis.

    NARCIS (Netherlands)

    Weijers, G.; Starke, A.; Thijssen, J.M.; Haudum, A.; Wohlsein, P.; Rehage, J.; Korte, C.L. de

    2012-01-01

    The aim of this study was to test the hypothesis that quantitative analysis of transcutaneous (Transc) ultrasound (US) images can predict the liver fat content with similar accuracy and precision as using intraoperative (Intraop) US. The second goal was to investigate if a tissue mimicking phantom (

  14. Monitoring of glucose, salt and pure water in human whole blood: An in vitro study.

    Science.gov (United States)

    Imran, Muhammad; Ullah, Hafeez; Akhtar, Munir; Sial, Muhammad Aslam; Ahmed, Ejaz; Durr-E-Sabeeh; Ahmad, Mukhtar; Hussain, Fayyaz

    2016-07-01

    Designing and implementation of non-invasive methods for glucose monitoring in blood is main focus of biomedical scientists to provide a relief from skin puncturing of diabete patient. The objective of this research work is to investigate the shape deformations and the aggregation of red blood cells (RBCs) in the human blood after addition of three different analytes i) (0mM-400mM: Range) of glucose (C(6)H(12)O(6)), ii) (0mM-400mM: range) of pure salt (NaCl) and iii) (0mM- 350mM: range) of pure water (H(2)O). We have observed that the changes in the shape of individual cells from biconcave discs to spherical shapes and eventually the lysis of the cells at optimum concentration of glucose, salts and pure water. This demonstration also provides a base line to facilitate diabetes during partial diagnosis and monitoring of the glucose levels qualitatively both in research laboratories and clinical environment. PMID:27393437

  15. Ultrasound-guided Transcutaneous Embolization of Uterine Arteriovenous Fistula Performed for Treatment of Symptomatic, Heavy Vaginal Bleeding: Case Report with Brief Review of Literature

    Directory of Open Access Journals (Sweden)

    Yasmine Ahmed

    2015-09-01

    Full Text Available Embolization of uterine arteriovenous malformations is usually performed angiographically via transfemoral arterial approach. In this report, ultrasound guided transcutaneous embolization of a uterine arteriovenous malformation, using color Doppler, was successfully performed in one patient with intractable vaginal bleeding. There were no complications following the procedure, and complete cessation of blood flow in the uterine arteriovenous malformation was achieved. This technique may be an alternative treatment option for recurrent heavy vaginal bleeding secondary to uterine arteriovenous malformation.

  16. Patterns of self-monitoring of blood glucose in insulin-treated diabetes: analysis of a Scottish population over time.

    Science.gov (United States)

    Cameron, D; Harris, F M; Evans, J M M

    2016-07-01

    Analysis of a diabetes clinical information system in Tayside, Scotland, shows that a significant proportion of insulin-treated patients with diabetes are not self-monitoring blood glucose according to current clinical guidance and recommendations, with some not self-monitoring their blood glucose at all. Although there has been an increase in the number of reagent strips dispensed over the past decade, this increase is mainly accounted for by increased testing frequency among people with diabetes already testing. PMID:26990502

  17. Prevalence of Blood Pressure Self-Monitoring, Medication Adherence, Self-Efficacy, Stage of Change, and Blood Pressure Control Among Municipal Workers With Hypertension

    OpenAIRE

    Breaux-Shropshire, Tonya L.; Brown, Kathleen C.; Pryor, Erica R.; Maples, Elizabeth H.

    2012-01-01

    Despite the availability of effective medications, hypertension remains inadequately managed in the United States. It has been established that medication adherence is a major strategy for controlling blood pressure. Combined interventions to promote adherence are promising, but further research is needed to understand which behaviors to target. The frequency of self-monitoring of blood pressure among municipal workers is unknown, and the literature is limited regarding assessing individuals’...

  18. Impact of antihypertensive combination and monotreatments on blood pressure variability: assessment by old and new indices. Data from a large ambulatory blood pressure monitoring database.

    LENUS (Irish Health Repository)

    Parati, Gianfranco

    2014-06-01

    High 24-h ambulatory blood pressure (ABP) variability is associated with poor cardiovascular outcomes. We analysed a large ABP monitoring database containing data from hypertensive patients treated with telmisartan\\/amlodipine combination or various monotherapies with the aim of quantifying the 24-h distribution of blood pressure (BP) reduction by treatment through the smoothness index and of developing and testing a new treatment-on-variability index (TOVI) to quantify the effects of treatment on both mean BP and BP variability.

  19. Comparison of fluid types for resuscitation in acute hemorrhagic shock and evaluation of gastric luminal and transcutaneous Pco2 in Leghorn chickens.

    Science.gov (United States)

    Wernick, Morena B; Steinmetz, Hanspeter W; Martin-Jurado, Olga; Howard, Judith; Vogler, Barbara; Vogt, Rainer; Codron, Daryl; Hatt, Jean-Michel

    2013-06-01

    The objective of this study was to compare the effects of 3 different fluid types for resuscitation after experimentally induced hemorrhagic shock in anesthetized chickens and to evaluate partial pressures of carbon dioxide measured in arterial blood (Paco2), with a transcutaneous monitor (TcPco2), with a gastric intraluminal monitor (GiPco2), and by end tidal measurements (Etco2) under stable conditions and after induced hemorrhagic shock. Hemorrhagic shock was induced in 40 white leghorn chickens by removing 50% of blood volume by phlebotomy under general anesthesia. Birds were divided into 4 groups: untreated (control group) and treated with intravenous hetastarch (haes group), with a hemoglobin-based oxygen carrier (hemospan group), or by autotransfusion (blood group). Respiratory rates, heart rates, and systolic arterial blood pressure (SAP) were compared at 8 time points (baseline [T0]; at the loss of 10% [T10%], 20% [T20%], 30% [T30%], 40% [T40%], and 50% [T50%] of blood volume; at the end of resuscitation [RES]; and at the end of anesthesia [END]). Packed cell volume (PCV) and blood hemoglobin content were compared at 6 time points (T0, T50%, RES, and 1, 3, and 7 days after induced hemorrhagic shock). Measurements of Paco2, TcPco2, GiPco2, and Etco2 were evaluated at 2 time points (T0 and T50%), and venous lactic acid concentrations were evaluated at 3 time points (T0, T50%, and END). No significant differences were found in mortality, respiratory rate, heart rate, PCV, or hemoglobin values among the 4 groups. Birds given fluid resuscitation had significantly higher SAPs after fluid administration than did birds in the control group. In all groups, PCV and hemoglobin concentrations began to rise by day 3 after phlebotomy, and baseline values were reached 7 days after blood removal. At T0, TcPco2 did not differ significantly from Paco2, but GiPco2 and Etco2 differed significantly from Paco2. After hemorrhagic shock, GiPco2 and TcPco2 differed significantly

  20. System accuracy of blood glucose monitoring systems: impact of use by patients and ambient conditions.

    Science.gov (United States)

    Schmid, Christina; Haug, Cornelia; Heinemann, Lutz; Freckmann, Guido

    2013-10-01

    For self-monitoring of blood glucose by people with diabetes, the reliability of the measured blood glucose values is a prerequisite in order to ensure correct therapeutic decisions. Requirements for system accuracy are defined by the International Organization for Standardization (ISO) in the standard EN ISO 15197:2003. However, even a system with high analytical quality is not a guarantee for accurate and reliable measurement results. Under routine life conditions, blood glucose measurement results are affected by several factors. First, the act of performing measurements as well as the handling of the system may entail numerous possible error sources, such as traces of glucose-containing products on the fingertips, the use of deteriorated test strips, or the incorrect storage of test strips. Second, ambient and sampling conditions such as high altitude, partial pressure of oxygen, ambient temperature, and the use of alternate test sites can have an influence on measurement results. Therefore, the user-friendliness of a system and the quality of the manufacturer's labeling to reduce the risk of handling errors are also important aspects in ensuring reliable and accurate measurement results. In addition, the analytical performance of systems should be less prone to user errors and ambient conditions. Finally, people with diabetes must be aware of the information and instructions in the manufacturer's labeling and must be able to measure and interpret blood glucose results correctly. PMID:23883407

  1. Fast blood flow monitoring in deep tissues with real-time software correlators

    Science.gov (United States)

    Wang, Detian; Parthasarathy, Ashwin B.; Baker, Wesley B.; Gannon, Kimberly; Kavuri, Venki; Ko, Tiffany; Schenkel, Steven; Li, Zhe; Li, Zeren; Mullen, Michael T.; Detre, John A.; Yodh, Arjun G.

    2016-01-01

    We introduce, validate and demonstrate a new software correlator for high-speed measurement of blood flow in deep tissues based on diffuse correlation spectroscopy (DCS). The software correlator scheme employs standard PC-based data acquisition boards to measure temporal intensity autocorrelation functions continuously at 50 – 100 Hz, the fastest blood flow measurements reported with DCS to date. The data streams, obtained in vivo for typical source-detector separations of 2.5 cm, easily resolve pulsatile heart-beat fluctuations in blood flow which were previously considered to be noise. We employ the device to separate tissue blood flow from tissue absorption/scattering dynamics and thereby show that the origin of the pulsatile DCS signal is primarily flow, and we monitor cerebral autoregulation dynamics in healthy volunteers more accurately than with traditional instrumentation as a result of increased data acquisition rates. Finally, we characterize measurement signal-to-noise ratio and identify count rate and averaging parameters needed for optimal performance. PMID:27231588

  2. Home blood pressure monitor use in patients with chronic kidney disease.

    Science.gov (United States)

    Ye, Xiaojing; Shafi, Salman; Negrete, Andrea; Davis, William N; Sarac, Erdal; Negrete, Alejandro M; Negrete, Hilmer

    2016-10-01

    Home blood pressure monitoring (HBPM) is recommended in patients with chronic kidney disease (CKD) and hypertension (HTN). However, little is known about the use and pattern of HBPM in CKD patients. A cross-sectional study was conducted in an out-patient nephrology clinic. A total of 285 patients participated in the study. Of all patients, 66% reported using HBPM. Self-reported compliance with BP medications (93.9% vs. 85.1%, p 0.03), exercise >3 days/week (45.9 vs. 26.3%, p helpful in managing hypertension (85.4%). Most common reason for not using HBPM was lack of advice by a physician (43.4%). HBPM use is common in patients with CKD and HTN. HBPM users are more likely to follow life-style and dietary modifications for blood pressure control. PMID:27104796

  3. An intelligent system for continuous blood pressure monitoring on remote multi-patients in real time

    CERN Document Server

    Marani, Roberto

    2012-01-01

    In this paper we present an electronic system to perform a non-invasive measurement of the blood pressure based on the oscillometric method, which does not suffer from the limitations of the well-known auscultatory one. Moreover the proposed system is able to evaluate both the systolic and diastolic blood pressure values and makes use of a microcontroller and a Sallen-Key active filter. With reference to other similar devices, a great improvement of our measurement system is achieved since it performs the transmission of the systolic and diastolic pressure values to a remote computer. This aspect is very important when the simultaneous monitoring of multi-patients is required. The proposed system, prototyped and tested at the Electron Devices Laboratory (Electrical and Information Engineering Department) of Polytechnic University of Bari, Italy, is characterized by originality, by plainness of use and by a very high level of automation (so called intelligent system).

  4. 20 CFR Appendix C to Part 718 - Blood-Gas Tables

    Science.gov (United States)

    2010-04-01

    ... level: Arterial PCO2 (mm Hg) Arterial PO2 equal to or less than (mm Hg) 25 or below 75 26 74 27 73 28 72...: Arterial PCO2 (mm Hg) Arterial PO2 equal to or less than (mm Hg) 25 or below 70 26 69 27 68 28 67 29 66 30... arterial blood-gas studies performed at test sites 6,000 feet or more above sea level: Arterial PCO2 (mm...

  5. Improving the gas gain monitoring system in multiwire proportional chambers for MUON detector of LHCb experiment.

    CERN Document Server

    Ruvinskaia, Ekaterina

    2016-01-01

    The gas gain monitoring system in multi-wire proportional chambers for MUON detector of LHCb has been constructed and commissioned. It includes an online- monitoring, tools for analysis the archived data and an alarm system on the quality of the gas mixture. Finally, it will be implemented in the main ECS of LHCb for MUON detector and as a part of safety system of LHCb as a permanent online monitor of the quality of the gas mixture in MWPCs. The main advantage of this setup is a monitoring of Gas Gain (GG) in MWPCs with radioactive sources independently from the presence of beam at LHC. It also provides an option for prompt reaction in case of a problem with the gas.

  6. Tritium concentration monitoring of the purge gas stream of HCPB breeder blankets in future fusion reactors

    International Nuclear Information System (INIS)

    In fusion technology it is necessary to monitor tritiated gases for process monitoring. Such a system should be able to monitor the gas without taking samples. It should also be compact, cheap, the system stability should be excellent and it should recognize changes in the activity fast. Standard tools for activity measurements are ionization chambers and calorimeters. Ionization chambers work without sample taking but they are gas species dependent. Also pressures in the 100 mbar range are needed. Calorimeters are not suitable to be used as process monitors and it takes several hours to get a result. For activity measurements with a calorimeter it is necessary to extract gas samples. The Tritium Activity Chamber Experiment (TRACE) is a specially designed prototype to monitor traces of tritium in a gas sample utilizing Beta Induced X-Ray Spectroscopy (BIXS). Future fusion plants like ITER or DEMO could use such a system to monitor the purge gas streams in HCPB breeder blankets. TRACE will explore the possibility to monitor the expected 10 ppm tritium in the helium purge gas stream. We will evaluate if a BIXS system can be used as a standard monitoring system for tritiated gases in the range of (10-5-100) mbar tritium partial pressure.

  7. Integrated Self-Monitoring of Blood Glucose System: Handling Step Analysis

    OpenAIRE

    Freckmann, Guido; Schmid, Christina; Ruhland, Katharina; Baumstark, Annette; Haug, Cornelia

    2012-01-01

    Self-monitoring of blood glucose (SMBG) implicates a number of handling steps with the meter and the lancing device. Numerous user errors can occur during SMBG, and each step adds to the complexity of use. This report compares the required steps to perform SMBG of one fully integrated (the second generation of the Accu-Chek® Mobile), three partly integrated (Accu-Chek Compact Plus, Ascensia® Breeze®2, and Accu-Chek Aviva), and six conventional (Bayer Contour®, Bayer Contour USB, BGStar™, Free...

  8. Frequency and motives of blood glucose self-monitoring in type 1 diabetes

    DEFF Research Database (Denmark)

    Hansen, M.V.; Pedersen-Bjergaard, U.; Heller, S.R.;

    2009-01-01

    AIMS: Recommendations for self-monitoring of blood glucose (SMBG) from the DCCT have not been implemented with the same rigour as recommendations for intensifying insulin therapy. We assessed the frequency of and motives for SMBG and compared SMBG behaviour with clinical, behavioural and...... hypoglycaemia and awareness of hypoglycaemia were independently associated with testing behaviour, whereas the presence of late diabetic complications was not. Lower HbA1c was associated with more frequent testing. CONCLUSION: Patient compliance regarding SMBG is limited. Thus, almost two thirds of the patients...

  9. The use of blood gas parameters to predict ascites susceptibility in juvenile broilers.

    Science.gov (United States)

    van As, P; Elferink, M G; Closter, A M; Vereijken, A; Bovenhuis, H; Crooijmans, R P M A; Decuypere, E; Groenen, M A M

    2010-08-01

    Ascites syndrome is a metabolic disorder found in modern broilers that have insufficient pulmonary vascular capacity. Commercial breeding programs have heavily focused on high growth rate, which led to fast-growing chickens, but as a negative consequence, the incidence of ascites syndrome increased. However, not all birds with a high growth rate will suffer from ascites syndrome, which might indicate a genetic susceptibility to ascites. Information on blood gas parameters measured early in life and their relation to ascites susceptibility is expected to contribute to identification on the cause of ascites syndrome. In this study, several physiological parameters, such as blood gas parameters [pH, partial pressure of CO(2) in venous blood (pvCO(2)), and partial pressure of O(2) in venous blood], hematocrit, electrolytes (Na(+), Ca(2+), and K(+)), metabolites (lactate and glucose), were measured at d 11 to 12 of age from 100 female and 100 male broilers. From d 14 onward, the birds were challenged to provoke the development of ascites syndrome. Our results showed that high pvCO(2) values together with low pH values (males) or high pH values (females) in the venous blood of juvenile broilers coincided with ascites. Therefore, blood pvCO(2) and pH in both juvenile male and female broilers seem to be critical factors in ascites pathophysiology and can be used as phenotypic traits to predict ascites susceptibility in juvenile broilers at d 11 to 12. A prediction model was built on a subpopulation of the broilers without any loss in sensitivity (0.52) and specificity (0.78) when applied to the validation population. The parameter sex was included in the prediction model because levels of pvCO(2) and pH that associated with ascites susceptibility are different between males and females. Commercial breeders can include these phenotypic traits in their genetic selection programs to reduce the incidence of ascites syndrome. PMID:20634524

  10. Comparison of Hygrometers for Monitoring of Water Vapour in Natural Gas

    OpenAIRE

    Løkken, Torbjørn Vegard

    2015-01-01

    To be able to maintain a safe, regular and economic production and transportation of natural gas, it is crucial to be able to accurately quantify the water vapour concentration in the gas. Underestimation of the water vapour concentration will increase the risk of corrosion and gas hydrate formation. In this work various measuring techniques for monitoring of water vapour in gases, relevant for the natural gas industry, were compared. Through laboratory experiments parameters such as accu...

  11. Monitoring Gas Void Fraction In Two-Phase Flow With Acoustic Emission

    OpenAIRE

    Addali, Abdulmajid

    2010-01-01

    The two-phase gas/liquid flow phenomenon can be encountered over a range of gas and liquid flow rates in the chemical engineering industry, particularly in oil and gas production transportation pipelines. Monitoring and measurement of their characteristics, such as the gas void fraction, are necessary to minimise the disruption of downstream process facilities. Thus, over the last decade, the investigation, development and use of multiphase flow metering system have been a major focus for the...

  12. The Effect of Blood Glucose Self-Monitoring Among Inmates With Diabetes.

    Science.gov (United States)

    Hunter Buskey, Robin N; Mathieson, Kathleen; Leafman, Joan S; Feinglos, Mark N

    2015-10-01

    The increasing prevalence and risk of complications from diabetes necessitate patient participation and attentiveness to select appropriate foods, perform regular physical activity, and be active in diabetes management and self-maintenance. Diabetes is often largely asymptomatic; consequently, early diagnosis and treatment are necessary. Inmates are a unique population challenged by the increased prevalence of chronic conditions including diabetes. Diabetes standards for inmates contain diagnostic and treatment management guidelines that incorporate personal glucose monitoring for insulin users. In December 2009, the Federal Bureau of Prisons initiated a program to distribute glucose meters to insulin-dependent inmates to facilitate self-monitoring blood glucose. The purpose of this study was to evaluate the effect of these glucose meters on hemoglobin A1c levels. PMID:26276137

  13. Understanding Challenges and Opportunities of Preventive Blood Pressure Self-Monitoring at Home

    DEFF Research Database (Denmark)

    Grönvall, Erik; Verdezoto, Nervo

    2013-01-01

    The herein presented study explores socio-technical complexities that may occur when introducing preventive health-measurement technologies in older adults’ daily routines and everyday lives. Using mainly blood pressure measurements in private homes, the study applied qualitative and quantitative...... to support people’s preventive self-monitoring needs compared with existing solutions. Furthermore, supporting the active and informed citizen can improve older adult’s care abilities, awareness and activation towards preventive care....... methods to understand existing challenges and uncover opportunities of self-monitoring technologies to support preventive healthcare activities among older adults. Emerging challenges from our study were: rule complexity for self-measuring, reliability of measurements, interpretation, understanding and...... health awareness, the sharing activity for prevention, motivational factors, the role of the doctor for prevention, older adult’s use of technology, the home as a distributed information space, and visualization of health data. An awareness of these challenges can help designers to develop better tools...

  14. Cerebral venous blood oxygenation monitoring during hyperventilation in healthy volunteers with a novel optoacoustic system

    Science.gov (United States)

    Petrov, Andrey; Prough, Donald S.; Petrov, Irene Y.; Petrov, Yuriy; Deyo, Donald J.; Henkel, Sheryl N.; Seeton, Roger; Esenaliev, Rinat O.

    2013-03-01

    Monitoring of cerebral venous oxygenation is useful to facilitate management of patients with severe or moderate traumatic brain injury (TBI). Prompt recognition of low cerebral venous oxygenation is a key to avoiding secondary brain injury associated with brain hypoxia. In specialized clinical research centers, jugular venous bulb catheters have been used for cerebral venous oxygenation monitoring and have demonstrated that oxygen saturation capnography. Good temporal correlation between decreases in optoacoustically measured SSS oxygenation and decreases in EtCO2 was obtained. Decreases in EtCO2 from normal values (35-45 mmHg) to 20-25 mmHg resulted in SSS oxygenation decreases by 3-10%. Intersubject variability of the responses may relate to nonspecific brain activation associated with voluntary hyperventilation. The obtained data demonstrate the capability of the optoacoustic system to detect in real time minor changes in the SSS blood oxygenation.

  15. Performance Evaluation and Labeling Comprehension of a New Blood Glucose Monitoring System with Integrated Information Management

    Science.gov (United States)

    List, Susan M; Starks, Nykole; Baum, John; Greene, Carmine; Pardo, Scott; Parkes, Joan L; Schachner, Holly C; Cuddihy, Robert

    2011-01-01

    Background This study evaluated performance and product labeling of CONTOUR® USB, a new blood glucose monitoring system (BGMS) with integrated diabetes management software and a universal serial bus (USB) port, in the hands of untrained lay users and health care professionals (HCPs). Method Subjects and HCPs tested subject's finger stick capillary blood in parallel using CONTOUR USB meters; deep finger stick blood was tested on a Yellow Springs Instruments (YSI) glucose analyzer for reference. Duplicate results by both subjects and HCPs were obtained to assess system precision. System accuracy was assessed according to International Organization for Standardization (ISO) 15197:2003 guidelines [within ±15 mg/dl of mean YSI results (samples system features and ease-of-use were evaluated by subject questionnaires. Results All subjects who completed the study (N = 74) successfully performed blood glucose measurements, connected the meter to a laptop computer, and used key features of the system. The system was accurate; 98.6% (146/148) of subject results and 96.6% (143/148) of HCP results exceeded ISO 15197:2003 criteria. All subject and HCP results were clinically accurate (97.3%; zone A) or associated with benign errors (2.7%; zone B). The majority of subjects rated features of the BGMS as “very good” or “excellent.” Conclusions CONTOUR USB exceeded ISO 15197:2003 system performance criteria in the hands of untrained lay users. Subjects understood the product labeling, found the system easy to use, and successfully performed blood glucose testing. PMID:22027308

  16. Performance evaluation of a high-sensitivity tritium gas monitor using a pulse-shaping analyzer

    International Nuclear Information System (INIS)

    A tritium gas monitor was developed by applying several techniques including pulse shape analysis. The optimum analyzer values were determined for parameters such as the bias (voltage) applied to the detector, counting gas flow rate, and mixing ratio of sample air to counting gas using an enclosed tritium reference source. After applying these optimized parameters, the factor for converting counting rate to tritium concentration was determined by conducting an experiment using tritiated methane gas. Finally, the detection limit of the monitor for air samples containing tritium was determined based on the conversion factor. (authors)

  17. Arterial blood gas analysis and electrolyte determination in neonates with asphyxia

    Institute of Scientific and Technical Information of China (English)

    Zi-Mei Sun

    2015-01-01

    Objective:To explore the value of arterial blood gas analysis and electrolyte determination in the diagnosis of neonatal asphyxia.Methods: A total of 100 neonates with asphyxia who were admitted in our department from March, 2013 to March, 2014 were included in the study and divided into the mild asphyxia group and the severe asphyxia group according to Apgar scoring. Moreover, 50 normal neonates were served as the control group and used for comparative analysis. AVL blood-gas analyzer was used to detect the levels of pH, PaO2, HCO3-, BE, PaCO2, K+, Na+, Cl-, and Ca2+.Results:The concentrations of pH, PaO2, HCO3-, and BE in the severe asphyxia group were significantly lower than those in the mild asphyxia group and the control group, while PaCO2 level was significantly higher than that in the mild asphyxia group and the control group. The comparison of the various indicators between the control group and the mild asphyxia group was not statistically significant. The comparison of serum K+, Na+,and Cl- levels among the control group, the mild asphyxia group, and the severe asphyxia group was not statistically significant. The serum Ca2+ level in the severe asphyxia group was significantly lower than that in the mild asphyxia group and the control group, while the comparison between the mild asphyxia group and the control group was also statistically significant.Conclusions:Blood gas analysis and electrolyte determination to the arterial blood in neonates can compensate for the insufficiency of Apgar scoring and provide an objective evidence for the diagnosis of neonatal asphyxia and the estimation of severity degree. Clinical combination with Apgar scoring is of great significance in enhancing the diagnosis of neonatal asphyxia and the accuracy of severity evaluation.

  18. Modelling, verification, and calibration of a photoacoustics based continuous non-invasive blood glucose monitoring system

    Science.gov (United States)

    Pai, Praful P.; Sanki, Pradyut K.; Sarangi, Satyabrata; Banerjee, Swapna

    2015-06-01

    This paper examines the use of photoacoustic spectroscopy (PAS) at an excitation wavelength of 905 nm for making continuous non-invasive blood glucose measurements. The theoretical background of the measurement technique is verified through simulation. An apparatus is fabricated for performing photoacoustic measurements in vitro on glucose solutions and in vivo on human subjects. The amplitude of the photoacoustic signals measured from glucose solutions is observed to increase with the solution concentration, while photoacoustic amplitude obtained from in vivo measurements follows the blood glucose concentration of the subjects, indicating a direct proportionality between the two quantities. A linear calibration method is applied separately on measurements obtained from each individual in order to estimate the blood glucose concentration. The estimated glucose values are compared to reference glucose concentrations measured using a standard glucose meter. A plot of 196 measurement pairs taken over 30 normal subjects on a Clarke error grid gives a point distribution of 82.65% and 17.35% over zones A and B of the grid with a mean absolute relative deviation (MARD) of 11.78% and a mean absolute difference (MAD) of 15.27 mg/dl (0.85 mmol/l). The results obtained are better than or comparable to those obtained using photoacoustic spectroscopy based methods or other non-invasive measurement techniques available. The accuracy levels obtained are also comparable to commercially available continuous glucose monitoring systems.

  19. High-resolution in-situ LDV monitoring system for measuring velocity distribution in blood vessel

    Science.gov (United States)

    Kyoden, Tomoaki; Abe, Shotaro; Ishida, Hiroki; Akiguchi, Shunsuke; Andoh, Tsugunobu; Takada, Yogo; Teranishi, Tsunenobu; Hachiga, Tadashi

    2015-10-01

    We herein describe a cross-sectional multiple-point laser Doppler velocimetry (CS-MLDV) system for monitoring blood vessels that are sutured and connected during an operation. In order to observe the condition of a blood vessel during an operation, the previously developed linear MLDV (L-MLDV) system can realize velocity distribution imaging of the carotid artery in a living mouse by means of traverse laser light. We subsequently developed a CS-MLDV system, which can measure the instantaneous two-dimensional (2D) flow velocity, by upgrading the optical components and signal processing used in L-MLDV. The validity of the CS-MLDV results was verified through comparison with the results of a computational fluid dynamics (CFD) analysis. The results of the CFD analysis were similar to the experimental results obtained under the same flow field condition. Moreover, an instantaneous 2D velocity distribution can be obtained even for the case of flowing blood. Finally, we carried out in-vivo measurement in a mesenteric vessel of a mouse in order to demonstrate the potential of the CS-MLDV for use in surgery.

  20. System Accuracy Evaluation of the GlucoRx Nexus Voice TD-4280 Blood Glucose Monitoring System

    Directory of Open Access Journals (Sweden)

    Muhammad Khan

    2014-01-01

    Full Text Available Use of blood glucose (BG meters in the self-monitoring of blood glucose (SMBG significantly lowers the risk of diabetic complications. With several BG meters now commercially available, the International Organization for Standardization (ISO ensures that each BG meter conforms to a set degree of accuracy. Although adherence to ISO guidelines is a prerequisite for commercialization in Europe, several BG meters claim to meet the ISO guidelines yet fail to do so on internal validation. We conducted a study to determine whether the accuracy of the GlucoRx Nexus TD-4280 meter, utilized by our department for its cost-effectiveness, complied with ISO guidelines. 105 patients requiring laboratory blood glucose analysis were randomly selected and reference measurements were determined by the UniCel DxC 800 clinical system. Overall the BG meter failed to adhere to the ≥95% accuracy criterion required by both the 15197:2003 (overall accuracy 92.4% and 15197:2013 protocol (overall accuracy 86.7%. Inaccurate meters have an inherent risk of over- and/or underestimating the true BG concentration, thereby risking patients to incorrect therapeutic interventions. Our study demonstrates the importance of internally validating the accuracy of BG meters to ensure that its accuracy is accepted by standardized guidelines.

  1. Fast gas chromatography and negative-ion chemical ionization tandem mass spectrometry for forensic analysis of cannabinoids in whole blood.

    Science.gov (United States)

    Thomas, Aurélien; Widmer, Christèle; Hopfgartner, Gérard; Staub, Christian

    2007-11-01

    The present work describes a fast gas chromatography/negative-ion chemical ionization tandem mass spectrometric assay (Fast GC/NICI-MS/MS) for analysis of tetrahydrocannabinol (THC), 11-hydroxy-tetrahydrocannabinol (THC-OH) and 11-nor-9-carboxy-tetrahydrocannabinol (THC-COOH) in whole blood. The cannabinoids were extracted from 500 microL of whole blood by a simple liquid-liquid extraction (LLE) and then derivatized by using trifluoroacetic anhydride (TFAA) and hexafluoro-2-propanol (HFIP) as fluorinated agents. Mass spectrometric detection of the analytes was performed in the selected reaction-monitoring mode on a triple quadrupole instrument after negative-ion chemical ionization. The assay was found to be linear in the concentration range of 0.5-20 ng/mL for THC and THC-OH, and of 2.5-100 ng/mL for THC-COOH. Repeatability and intermediate precision were found less than 12% for all concentrations tested. Under standard chromatographic conditions, the run cycle time would have been 15 min. By using fast conditions of separation, the assay analysis time has been reduced to 5 min, without compromising the chromatographic resolution. Finally, a simple approach for estimating the uncertainty measurement is presented. PMID:17913432

  2. Finite-sized gas bubble motion in a blood vessel: non-Newtonian effects.

    Science.gov (United States)

    Mukundakrishnan, Karthik; Ayyaswamy, Portonovo S; Eckmann, David M

    2008-09-01

    We have numerically investigated the axisymmetric motion of a finite-sized nearly occluding air bubble through a shear-thinning Casson fluid flowing in blood vessels of circular cross section. The numerical solution entails solving a two-layer fluid model--a cell-free layer and a non-Newtonian core together with the gas bubble. This problem is of interest to the field of rheology and for gas embolism studies in health sciences. The numerical method is based on a modified front-tracking method. The viscosity expression in the Casson model for blood (bulk fluid) includes the hematocrit [the volume fraction of red blood cells (RBCs)] as an explicit parameter. Three different flow Reynolds numbers, Reapp=rholUmaxdmicroapp , in the neighborhood of 0.2, 2, and 200 are investigated. Here, rhol is the density of blood, Umax is the centerline velocity of the inlet Casson profile, d is the diameter of the vessel, and microapp is the apparent viscosity of whole blood. Three different hematocrits have also been considered: 0.45, 0.4, and 0.335. The vessel sizes considered correspond to small arteries, and small and large arterioles in normal humans. The degree of bubble occlusion is characterized by the ratio of bubble to vessel radius (aspect ratio), lambda , in the range 0.9 - --> +) imparted to the cell surface during bubble motion; (iii) large shear stress gradients together with sign reversals are ascribable to the development of a recirculation vortex at the rear of the bubble; (iv) computed magnitudes of shear stress gradients coupled with their sign reversals may correspond to levels that cause injury to the cell by membrane disruption through impulsive compression and stretching; and (v) for the vessel sizes and flow rates investigated, gravitational effects are negligible. PMID:18851139

  3. Transcutaneous Noninvasive Device for the Responsive Delivery of Melatonin in Microgravity. Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Our goal is develop a smart, transcutaneous device for individualized circadian (sleep) therapy by responsive release of melatonin, in microgravity. Additionally,...

  4. Combustion/Emission Species Monitoring Ground and Flight Aeronautical Research Using a Gas Microsensor Array Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this program is to develop a miniaturized and in-situ operated gas microsensor array for the real time monitoring of chemical composition of turbine...

  5. Design and Control of a Transcutaneous Power Regulator for Artificial Heart

    Directory of Open Access Journals (Sweden)

    Ms. R. Kasthuri

    2014-02-01

    Full Text Available In medical implant systems high efficiency and improving the patient’s mobility. Artificial organs and monitoring devices to be implanted into human body for the extension and the improvement of human lives. The implants must operate inside the body for the considerable period of time and communicate with outside world wirelessly for exchange of medical data and commands. Rechargeable batteries are recharged remotely through the human skin via inductive links. In my project transformer model a remote power supply for use in the artificial hearts for easy controllability and high efficiency, which can monitor the charging level of the battery has been designed and implemented. In order to recharge the battery the electro-magnetic coupling between primary coil and secondary coil has been used. Primary and secondary windings of the transformer are positioned outside and inside the human body respectively. In such a transformer, the alignment and gap may change with external positioning. The coupling coefficient of the transformer is also varying, and so are the tool to large leakage inductances and the mutual inductance. Resonance-tank circuits with varying resonance frequency are formed from the transformer inductors and external capacitors. A control method is proposed to lock the switching frequency at just above the load insensitive frequency for optimized efficiency at heavy loads. Specifically operation at above resonant of the resonance circuits is maintained under varying coupling coefficient. A transcutaneous power regulator is built and found to perform excellently with high efficiency and tight regulation under variations of the alignment or gap of the transcutaneous transformer load and input voltage.

  6. Satellite Monitoring Systems for Shipping and Offshore Oil and Gas Industry in the Baltic Sea

    OpenAIRE

    Kostianoy A.G.; Bulycheva E.V.; Semenov A. V.; Krainyukov A.

    2015-01-01

    Shipping activities, oil production and transport in the sea, oil handled in harbors, construction and exploitation of offshore oil and gas pipelines have a number of negative impacts on the marine environment and coastal zone of the seas. In 2004-2014 we elaborated several operational satellite monitoring systems for oil and gas companies in Russia and performed integrated satellite monitoring of the ecological state of coastal waters in the Baltic, Black, Caspian, and Kara seas, which inclu...

  7. Monitoring gas emissions can help forecast volcanic eruptions

    Science.gov (United States)

    Kern, Christoph; Maarten de Moor; Bo Galle

    2015-01-01

    As magma ascends in active volcanoes, dissolved volatiles partition from melt into a gas phase, rise, and are released into the atmosphere from volcanic vents. The major components of high-temperature volcanic gas are typically water vapor, carbon dioxide, and sulfur dioxide. 

  8. Non-constrained monitoring of systolic blood pressure on a weighing scale

    International Nuclear Information System (INIS)

    In this study, we developed a novel technique for estimating non-constrained and cuffless blood pressure (BP) that was based on electrocardiogram (ECG) and ballistocardiogram (BCG). The BCG was non-invasively measured using a common electronic weighing scale when a subject was standing on it. The ECG was measured using three different methods: on the chest using Ag/AgCl electrodes, on the hands using dry electrodes and on the feet also using dry electrodes. For a BP correlated parameter, a time interval parameter, which was defined as the time difference between the ECG R-peak and BCG J-peak, was employed for evaluating and estimating beat-to-beat BP. Under a BP varying experiment with a Valsalva manoeuvre, the R–J intervals were extracted at every beat cycle and a systolic blood pressure (SBP) estimation equation was established using linear regression analysis for each subject. In the case of feet delivered ECG (F-ECG), an ensemble average technique synchronized at the BCG J-peak point was applied to extract the ECG signal from the feet. The performance of the proposed method was evaluated using Finapres, a non-invasive blood pressure measurement system, as a reference BP signal, and a scatter plot was used to find the regression line between the reference values and estimated BPs. A moving-window averaging technique was applied to remove the high-frequency noise in the R–J intervals and was applied to enhance the accuracy of the SBP estimation. For all individuals, the estimated SBP was similar to the measured SBP with a reliable correlation, which makes the proposed method suitable for use in a home healthcare system to monitor blood pressure on a weighing scale at the same time as measuring weight

  9. Validation protocol for multiple blood gas analyzers in accordance with laboratory accreditation programs

    Directory of Open Access Journals (Sweden)

    Pérsio A. R. Ebner

    2015-10-01

    Full Text Available ABSTRACTIntroduction:The results of blood gas analysis using different instrumentation can vary widely due to the methodological differences, the calibration procedures and the use of different configurations for each type of instrument.Objective:The objective of this study was to evaluate multiple analytical systems for measurement of blood gases, electrolytes and metabolites in accordance with the accreditation program (PALC of Sociedade Brasileira de Patologia Clínica/Medicina Laboratorial (SBPC/ML.Materials and methods:20 samples were evaluated in three ABL800 Flex (Radiometer Medical ApS, Denmark blood gas analyzers, and the results were compared with those of the device in use, which was considered the reference. The analysis of variance (Anova was applied for statistical purposes, as well as the calculation of mean, standard deviation and coefficient of variation.Results:The p values obtained in the statistical analysis were: pH = 0.983, pO2 = 0.991, pCO2 = 0.353, lactate = 0.584, glucose = 0.995, ionized calcium = 0.983, sodium = 0.991, potassium = 0.926, chlorine = 0.029.Conclusion:The evaluation of multiple analytical systems is an essential procedure in the clinical laboratory for quality assurance and accuracy of the results.

  10. Diabetes Technology: Markers, Monitoring, Assessment, and Control of Blood Glucose Fluctuations in Diabetes

    Directory of Open Access Journals (Sweden)

    Boris P. Kovatchev

    2012-01-01

    Full Text Available People with diabetes face a life-long optimization problem: to maintain strict glycemic control without increasing their risk for hypoglycemia. Since the discovery of insulin in 1921, the external regulation of diabetes by engineering means has became a hallmark of this optimization. Diabetes technology has progressed remarkably over the past 50 years—a progress that includes the development of markers for diabetes control, sophisticated monitoring techniques, mathematical models, assessment procedures, and control algorithms. Continuous glucose monitoring (CGM was introduced in 1999 and has evolved from means for retroactive review of blood glucose profiles to versatile reliable devices, which monitor the course of glucose fluctuations in real time and provide interactive feedback to the patient. Technology integrating CGM with insulin pumps is now available, opening the field for automated closed-loop control, known as the artificial pancreas. Following a number of in-clinic trials, the quest for a wearable ambulatory artificial pancreas is under way, with a first prototype tested in outpatient setting during the past year. This paper discusses key milestones of diabetes technology development, focusing on the progress in the past 10 years and on the artificial pancreas—still not a cure, but arguably the most promising treatment of diabetes to date.

  11. Quantitative monitoring of gas flooding in oil-bearing reservoirs using a pulsed neutron tool

    International Nuclear Information System (INIS)

    This paper reports on quantitative monitoring of gas flooding in oil bearing reservoirs which is unique in that saturations of three fluids (gas, oil and water) in the effective pore space have to be determined, while in most other applications saturation behind casing is determined only for two fluids: hydrocarbons and water. A new method has been developed to monitor gas flooding of oil reservoirs. The method is based on computing two porosities: true effective (base) porosity determined before gas flooding, and apparent effective (monitor) porosity determined after gas flooding. The base porosity is determined from open and/or cased hole porosity logs run before the flooding. When open hole logs are available, the cased hole porosity logs are calibrated against open hole log. The monitor porosity is determined from one of the cased hole porosity logs, such as a neutron log or count rate ratio curve from a pulsed neutron log run after the gas flooding. The base and monitor porosities provide determination of the hydrogen index of the reservoir fluid after the flooding. This hydrogen index is then used to determine saturation of the flood agent after flooding. Water saturation after flooding can be determined from the equation which relates neutron total cross section (Σm) to volumetric constituent cross sections, using Σm values from a monitor run (after flooding)

  12. Transcutaneous electric nerve stimulation (TENS) in dentistry- A review

    OpenAIRE

    Kasat, Vikrant O.; Gupta, Aditi; Ladda, Ruchi; Kathariya, Mitesh; Saluja, Harish; Farooqui, Anjum Ara

    2014-01-01

    Transcutaneous electric nerve stimulation (TENS) is a non-pharmacological method which is widely used by medical and paramedical professionals for the management of acute and chronic pain in a variety of conditions. Similarly, it can be utilized for the management of pain during various dental procedures as well as pain due to various conditions affecting maxillofacial region. This review aims to provide an insight into clinical research evidence available for the analgesic and non analgesic ...

  13. Transcutaneous electrical nerve stimulation for cancer pain in adults.

    OpenAIRE

    Robb, Karen; Bennett, Michael I.; Johnson, Mark I.; Simpson, Karen H; Oxberry, Stephen G.

    2008-01-01

    Background Cancer-related pain is complex and multi-dimensional but the mainstay of cancer pain management has predominately used a biomedical approach. There is a need for non-pharmacological and innovative approaches. Transcutaneous Electric Nerve Stimulation (TENS) may have a role for a significant number of patients but the effectiveness of TENS is currently unknown. Objectives The aim of this systematic review was to determine the effectiveness of TENS for cancer-related pain in adults. ...

  14. Supraorbital transcutaneous neurostimulation has sedative effects in healthy subjects

    OpenAIRE

    Piquet Maxime; Balestra Costantino; Sava Simona L; Schoenen Jean E

    2011-01-01

    Abstract Background Transcutaneous neurostimulation (TNS) at extracephalic sites is a well known treatment of pain. Thanks to recent technical progress, the Cefaly® device now also allows supraorbital TNS. During observational clinical studies, several patients reported decreased vigilance or even sleepiness during a session of supraorbital TNS. We decided therefore to explore in more detail the potential sedative effect of supraorbital TNS, using standardized psychophysical tests in healthy ...

  15. Transcutaneous mechanical nerve stimulation using perineal vibration: a novel method for the treatment of female stress urinary incontinence

    DEFF Research Database (Denmark)

    Sønksen, Jens; Ohl, Dana A; Bonde, Birthe;

    2007-01-01

    We defined basic guidelines for transcutaneous mechanical nerve stimulation in modifying pelvic floor responses in women and determined the efficacy of transcutaneous mechanical nerve stimulation in treating stress urinary incontinence....

  16. Transcutaneous Spinal Direct Current Stimulation (tsDCS

    Directory of Open Access Journals (Sweden)

    Filippo eCogiamanian

    2012-07-01

    Full Text Available In the past ten years renewed interest has centered on non-invasive transcutaneous weak direct currents applied over the scalp to modulate cortical excitability (brain polarization or transcranial direct current stimulation, tDCS. Extensive literature shows that tDCS induces marked changes in cortical excitability that outlast stimulation.Aiming at developing a new, non invasive, approach to spinal cord neuromodulation we assessed the after-effects of thoracic transcutaneous spinal DC stimulation (tsDCS on somatosensory potentials (SEPs evoked in healthy subjects by posterior tibial nerve (PTN stimulation. Our findings showed that thoracic anodal tsDCS depresses the cervico-medullary PTN-SEP component (P30 without eliciting adverse effects. tsDCS also modulates post-activation H-reflex dynamics. Later works further confirmed that transcutaneous electric fields modulate spinal cord function. Subsequent studies in our laboratory showed that tsDCS modulates the flexion reflex in the human lower limb. Besides influencing the laser evoked potentials, tsDCS increases pain tolerance in healthy subjects. Hence, though the underlying mechanisms remain speculative, tsDCS modulates activity in lemniscal, spinothalamic and segmental motor systems.Here we review currently available experimental evidence that non-invasive spinal cord stimulation influences spinal function in humans and argue that, by focally modulating spinal excitability, tsDCS could provide a novel therapeutic tool complementary to drugs and invasive spinal cord stimulation in managing various pathologic conditions, including pain.

  17. Portable Mass Spectrometer System for in-situ Environmental Gas Monitoring

    Science.gov (United States)

    Conejo, E.; Griffin, T. P.; Diaz, J. A.; Arkin, C. R.; Soto, C.; Naylor, G. R.; Curley, C.; Floyd, D.

    2005-01-01

    A system developed by NASA has been used for monitoring air quality around different locations. The system was designed for aircraft applications but has proven to be very useful as a portable gas analyzer. The system has been used to monitor air quality around volcanoes, cities, and the surrounding areas. The transport of the system has been via aircraft, car, and hand carried.

  18. Neonatal apgar scores and umbilical blood gas changes in vaginal delivery and cesarean: a comparative study

    Directory of Open Access Journals (Sweden)

    SH. Raafati

    2006-07-01

    Full Text Available Background: Umbilical cord blood gas analysis is a useful method for assessment of oxygenation and acid-base status in neonates. Severe fetal acidemia is associated with increased perinatal mortality and increased risk of subsequent impaired neurological development. Due to high percentage of C/S in our country and the effect of anesthetic medications on umbilical blood gases which can cause neonatal acidosis and hypoxemia, the study of umbilical cord blood gas in vaginal delivery versus cesarean section is mandatory. Methods: In this cross-sectional study one hundred samples were taken from Mostafa Khomeini hospital in summer 2004. The samples were taken immediately of umbilical vein after clamping the umbilical cord and analyzed after 10 minutes. Cases were classified in to 3 groups: vaginal delivery (n=40, elective C/S under general anesthesia (n=35 and C/S under spinal anesthesia (n=25. Duration of anesthesia and its effect on blood gas and infants apgar were assessed. Results: In the first group (vaginal delivery mean blood gase parameters were; pH=7.3064.73, pO2=25.246.87, HCO3=20.562.03, Apgar=8.820.38 and pCO2=41.826.57. In the second group (general anesthesia mean blood gaze parameters were: pH=7.3044.73, pO2=38.7014.02, pCO2=43.265.87, HCO3=21.1113 and apgar score=8.170.7. In the third group (spinal anesthesia mean blood gaze parameters were: pH=7.3014.50, pCO2=44.14.99, HCO3=21.382.15, pO2=26.625.5 and apgar=8.600.62. The apgar scores and pO2 demonstrated significant relationship with type of anesthesia. The apgar score was lower and pO2 was higher in C/S under general anesthesia compared with the other two groups. There was significant relationship between duration of anesthesia and umbilical pO With increasing duration of anesthesia, pO2 was reduced. Between the type of delivery and anesthesia duration with PH, pO2, pCO2 and HCO3 were not meaningful relationship (P<0.05. Conclusion: There

  19. The usefulness of the arterial blood gas in pure carbon monoxide poisoning.

    Science.gov (United States)

    Lebby, T I; Zalenski, R; Hryhorczuk, D O; Leikin, J B

    1989-04-01

    In a retrospective study of 49 cases of carbon monoxide (CO) intoxication presented to the University of Illinois Hospital (UIH) Emergency Department between November 1986 and April 1988, we looked for a correlation between carboxyhemoglobin (COHb) as determined by a venous sample and the pH as determined by arterial blood gas analysis. The range of COHb levels in our study was 10-64% (mean 21.8% +/- 10.2%). Smoke inhalation cases (n = 3) were excluded from our study because they did not represent pure CO intoxication. Of the remaining 46 cases, 18 had arterial blood gases drawn. In none of these 18 cases (mean COHb 24.5% +/- 12.6%) did we find a correlation between COHb levels and the pH as determined by linear regression analysis. Also, in none of the 18 cases were there any therapeutic interventions associated with the arterial blood gas result. Additionally, in none of the remaining 28 cases were any therapeutic interventions performed with regards to patients' acidosis or ventilatory status (except 100% oxygen administration. We also retrospectively reviewed records of 104 cases who presented to Cook County Hospital Emergency Department with COHb levels over 10% during the period between March 1986 and May 1988. In these cases, we found no significant correlation between COHb level and arterial pH. We therefore conclude that arterial blood gases drawn in order to determine the degree of acidosis in mild CO intoxication without respiratory distress may not be useful in guiding therapeutic intervention and need not be routinely drawn. PMID:2929122

  20. Is liquid heparin comparable to dry balanced heparin for blood gas sampling in intensive care unit?

    Directory of Open Access Journals (Sweden)

    Viswas Chhapola

    2014-01-01

    Full Text Available Introduction: Blood gas (BG analysis is required for management of critically ill patients in emergency and intensive care units. BG parameters can be affected by the type of heparin formulations used-liquid heparin (LH or dry balanced heparin (DBH. This study was conducted to determine whether blood gas, electrolyte, and metabolite estimations performed by using DBH and LH are comparable. Materials and Methods: A prospective study was conducted at pediatric intensive care unit (PICU of a tertiary care hospital. Paired venous samples were collected from 35 consecutive children in commercially prepared DBH syringes and custom-prepared LH syringes. Samples were immediately analyzed by blood gas analyzer and compared for pH, pCO 2 , pO 2 , HCO 3 - , Na + , K + , Cl - , and lactate. Paired comparisons were done and agreement was assessed by Bland-Altman difference plots. The 95% limits of absolute agreement (LOA were compared with the specifications for total allowable error (TEa. Results: The P values were significant for all measured parameters, with the exception of pCO 2 and K +. Bland-Altman difference plots showed wide LOA for pCO 2 , pO 2 , HCO3 - , Na + , K + , and Cl - when compared against TEa. For pCO 2 , HCO3 - , Na + , K + , and Cl - , 40%, 23%, 77%, 34%, and 54% of samples were outside the TEa limits, respectively, with LH. Conclusion: Our study showed that there is poor agreement between LH and DBH for the BG parameters pCO2, pO2, HCO3 - , K + , Na + , and Cl - and, thus, are not comparable. But for pH and lactate, LH and DBH can be used interchangeably.

  1. Integration by Infrastructuring: The Case of Subsea Environmental Monitoring in Oil and Gas Offshore Operations

    OpenAIRE

    Parmiggiani, Elena

    2015-01-01

    This thesis investigates the development of ICT solutions for performing real-time subsea environmental monitoring during oil and gas offshore operations. The research is based on a three-year case study of an international oil and gas company headquartered in Norway. The thesis is specifically focused on aspects of integration: how new tools, systems, and approaches are developed, and how existing ones are adapted to fit the existing systems and practices of the oil and gas co...

  2. Benefits of pollution monitoring technology for greenhouse gas offset markets

    OpenAIRE

    Ando, Amy W.; Shibashis Mukherjee

    2012-01-01

    Environmental economists have shown that tradable emission permit markets can reduce the costs to society of pollution reduction. However, when emissions are difficult to monitor and verify, offset credits from pollution reductions may be subject to price discounts that reduce social welfare. In this paper, we estimate the extent to which social welfare could be improved by using new technology to increase the accuracy with which pollution flows from agricultural fields can be monitored. We u...

  3. Applications of ZigBee Technology in the Safety Monitoring System of Low Gas Pipeline Transportation

    Directory of Open Access Journals (Sweden)

    Wei Deyu

    2015-01-01

    Full Text Available The existing safety monitoring system of low gas pipeline transportation establishes a wired communication network monitoring system mainly on the basis of industrial bus. It has problems such as large transmission signal attenuation, complex wiring, high-labor intensity, inconvenient installation and maintenance, high maintenance cost, and so on. Featuring low cost, power-saving, reliability, stability and flexibility, the wireless sensor network established by ZigBee wireless communication technology can realize the real-time all-dimensional dynamic monitoring on parameters of low gas pipeline transportation system and overcome the shortcomings and deficiencies of wired network system.

  4. Development of non-contact beam intensity monitor by residual gas ionization

    International Nuclear Information System (INIS)

    Non-contact beam intensity monitor is an important device for high-intensity proton accelerator, such as J-PARC. Especially, it is difficult to measure beam intensity of DC-like beam with off-contact. We have developed non-contact beam intensity monitor for J-PARC slow-extraction beam line by measuring charge of ionization electrons in 1 Pa residual gas. In this article, specifications of the residual gas ionization current monitor (RGICM) and results of a test experiment with 65 MeV proton beam at Research Center for Nuclear Physics in Osaka University are reported. (author)

  5. Evaluation of Low-Intensity Transcutaneous Electrical Nerve Stimulation in Combination with Aspirin for Reduction of Controlled Thermal Sensation

    OpenAIRE

    Kajander, Keith C.

    1988-01-01

    Reductions in cutaneous thermal sensation produced by placebo, aspirin, transcutaneous electrical nerve stimulation, and transcutaneous electrical nerve stimulation plus aspirin were compared in 60 normal volunteers. The combination of transcutaneous electrical nerve stimulation plus aspirin produced a statistically significant reduction as compared with placebo. The results suggest this treatment combination may provide levels of analgesia useful for completion of minor dental procedures.

  6. Effects of SO2 and pH on blood-gas partition coefficients of inert gases.

    Science.gov (United States)

    Yamaguchi, K; Mori, M; Kawai, A; Asano, K; Takasugi, T; Umeda, A; Yokoyama, T

    1990-01-01

    Potential effects of SO2 and of pH on blood-gas partition coefficients, lambda, for inert gases, including SF6, ethane, cyclopropane, halothane, diethyl ether, acetone and N2, were systematically investigated using human blood. Measurements on lambda were performed at 37 degrees C in conditions of varied SO2 and pH using gas chromatography. Incorporating the experimental data on lambda, multiple inert gas elimination was applied to 18 patients with varied chronic lung diseases, in order to estimate the effects of SO2 and of pH on both inert gas exchange and resultant recovery of VA/Q distribution in the lung. For this purpose, the data obtained by the procedure of multiple inert gas elimination were analyzed with the classical approach but allowance was made for lambda of the indicator gas to vary according to exchange of O2 and of CO2 in the pulmonary capillary. Among the gases studied, ethane, cyclopropane, halothane and diethyl ether showed significantly smaller lambda values in the oxygenated blood than in deoxygenated blood, whereas SF6, acetone and N2 were little dependent on SO2. An increase in lambda was found for ethane and a decrease for halothane with increasing pH in the blood. The other gases were not significantly influenced by pH. In spite of these experimental findings, regional difference of either SO2 or pH in the lung did not exert important influence on the inert gas exchange or on the predicted VA/Q distribution. In conclusion, blood-gas partition coefficients of some inert gases are consistently altered by SO2 and pH, but their possible effects on inert gas exchange seem to be negligible. PMID:1965757

  7. Microvascular blood flow monitoring with laser speckle contrast imaging using the generalized differences algorithm.

    Science.gov (United States)

    Humeau-Heurtier, Anne; Mahé, Guillaume; Abraham, Pierre

    2015-03-01

    Laser speckle contrast imaging (LSCI) is a full-field optical technique to monitor microvascular blood flow with high spatial and temporal resolutions. It is used in many medical fields such as dermatology, vascular medicine, or neurosciences. However, LSCI leads to a large amount of data: image sampling frequency is often of several Hz and recordings usually last several minutes. Therefore, clinicians often perform regions of interest in which a spatial averaging of blood flow is performed and the result is followed with time. Unfortunately, this leads to a poor spatial resolution for the analyzed data. At the same time, a higher spatial resolution for the perfusion maps is wanted. To get over this dilemma we propose a new post-acquisition visual representation for LSCI perfusion data using the so-called generalized differences (GD) algorithm. From a stack of perfusion images, the procedure leads to a new single image with the same spatial resolution as the original images and this new image reflects perfusion changes. The algorithm is herein applied on simulated stacks of images and on experimental LSCI perfusion data acquired in three different situations with a commercialized laser speckle contrast imager. The results show that the GD algorithm provides a new way of visualizing LSCI perfusion data. PMID:25576743

  8. Fully Autonomous Multiplet Event Detection: Application to Local-Distance Monitoring of Blood Falls Seismicity

    Energy Technology Data Exchange (ETDEWEB)

    Carmichael, Joshua Daniel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Carr, Christina [Univ. of Alaska, Fairbanks, AK (United States); Pettit, Erin C. [Univ. of Alaska, Fairbanks, AK (United States)

    2015-06-18

    We apply a fully autonomous icequake detection methodology to a single day of high-sample rate (200 Hz) seismic network data recorded from the terminus of Taylor Glacier, ANT that temporally coincided with a brine release episode near Blood Falls (May 13, 2014). We demonstrate a statistically validated procedure to assemble waveforms triggered by icequakes into populations of clusters linked by intra-event waveform similarity. Our processing methodology implements a noise-adaptive power detector coupled with a complete-linkage clustering algorithm and noise-adaptive correlation detector. This detector-chain reveals a population of 20 multiplet sequences that includes ~150 icequakes and produces zero false alarms on the concurrent, diurnally variable noise. Our results are very promising for identifying changes in background seismicity associated with the presence or absence of brine release episodes. We thereby suggest that our methodology could be applied to longer time periods to establish a brine-release monitoring program for Blood Falls that is based on icequake detections.

  9. Review of Monitoring Plans for Gas Bubble Disease Signs and Gas Supersaturation Levels on the Columbia and Snake Rivers.

    Energy Technology Data Exchange (ETDEWEB)

    Fidler, Larry; Elston, Ralph; Colt, John

    1994-07-01

    Montgomery Watson was retained by the Bonneville Power Administration to evaluate the monitoring program for gas bubble disease signs and dissolved gas supersaturation levels on the Columbia and Snake rivers. The results of this evaluation will provide the basis for improving protocols and procedures for future monitoring efforts. Key study team members were Dr. John Colt, Dr. Larry Fidler, and Dr. Ralph Elston. On the week of June 6 through 10, 1994 the study team visited eight monitoring sites (smolt, adult, and resident fish) on the Columbia and Snake rivers. Additional protocol evaluations were conducted at the Willard Field Station (National Biological Survey) and Pacific Northwest Laboratories at Richland (Battelle). On June 13 and 14, 1994, the study team visited the North Pacific Division office of the U.S. Corps of Engineers and the Fish Passage Center to collect additional information and data on the monitoring programs. Considering the speed at which the Gas Bubble Trauma Monitoring Program was implemented this year, the Fish Passage Center and cooperating Federal, State, and Tribal Agencies have been doing an incredible job. Thirty-one specific recommendations are presented in this report and are summarized in Section 14.

  10. Performance of two updated blood glucose monitoring systems: an evaluation following ISO 15197:2013.

    Science.gov (United States)

    Pleus, Stefan; Baumstark, Annette; Rittmeyer, Delia; Jendrike, Nina; Haug, Cornelia; Freckmann, Guido

    2016-05-01

    Objective For patients with diabetes, regular self-monitoring of blood glucose (SMBG) is essential to ensure adequate glycemic control. Therefore, accurate and reliable blood glucose measurements with SMBG systems are necessary. The international standard ISO 15197 describes requirements for SMBG systems, such as limits within which 95% of glucose results have to fall to reach acceptable system accuracy. The 2013 version of this standard sets higher demands, especially regarding system accuracy, than the currently still valid edition. ISO 15197 can be applied by manufacturers to receive a CE mark for their system. Research design and methods This study was an accuracy evaluation following ISO 15197:2013 section 6.3 of two recently updated SMBG systems (Contour * and Contour TS; Bayer Consumer Care AG, Basel, Switzerland) with an improved algorithm to investigate whether the systems fulfill the requirements of the new standard. For this purpose, capillary blood samples of approximately 100 participants were measured with three test strip lots of both systems and deviations from glucose values obtained with a hexokinase-based comparison method (Cobas Integra † 400 plus; Roche Instrument Center, Rotkreuz, Switzerland) were determined. Percentages of values within the acceptance criteria of ISO 15197:2013 were calculated. This study was registered at clinicaltrials.gov (NCT02358408). Main outcome Both updated systems fulfilled the system accuracy requirements of ISO 15197:2013 as 98.5% to 100% of the results were within the stipulated limits. Furthermore, all results were within the clinically non-critical zones A and B of the consensus error grid for type 1 diabetes. Conclusions The technical improvement of the systems ensured compliance with ISO 15197 in the hands of healthcare professionals even in its more stringent 2013 version. Alternative presentation of system accuracy results in radar plots provides additional information with certain advantages. In addition

  11. Wearable blood flowmeter appcessory with low-power laser Doppler signal processing for daily-life healthcare monitoring.

    Science.gov (United States)

    Kuwabara, K; Higuchi, Y; Ogasawara, T; Koizumi, H; Haga, T

    2014-01-01

    A new appcessory for monitoring peripheral blood flow in daily life consists of a wearable laser Doppler sensor device and a cooperating smart phone application. Bluetooth Low Energy connects them wirelessly. The sensor device features ultralight weight of 15 g and an intermittent signal processing technique that reduces power consumption to only 7 mW at measurement intervals of 0.1 s. These features enable more than 24-h continuous monitoring of peripheral blood flow in daily life, which can provide valuable vital-sign information for healthcare services. PMID:25571431

  12. Pharmaceutical care in diabetes: quantifying and evaluating community pharmacy’s support to patients performing blood glucose self-monitoring

    OpenAIRE

    Storimans, M.J.

    2006-01-01

    The high prevalence and incidence of diabetes mellitus and its complications have led to a serious growth in the demand for diabetes-related health care in the Netherlands. Since self-management by the patient is a cornerstone of the treatment plan, self-management education has become an important part of diabetes care. One aspect of self-management education is self-monitoring of blood glucose (SMBG). SMBG is a technique that enables patients to monitor and react to changes in their blood g...

  13. Hydrogen monitoring in sodium loops using the carrier gas technique

    International Nuclear Information System (INIS)

    Analysis for hydrogen in liquid sodium is made by combination of membranes permeable to hydrogen and appropriate methods of hydrogen detection. Membranes are usually made of nickel. Hydrogen has been determined with a solid electrolyte cell consisting of a galvanic cell with zirconium oxide ceramic as the electrolyte and of an electrolytic oxygen dosage device with the same electrolyte. The oxygen stream has been controlled with the aid of the signal of the galvanic cell. Thus, a continuous coulometric control of hydrogen in the carrier gas stream has been achieved. A significant interfering factor in applying the carrier gas technique is the possible coverage of the nickel surface of the diffusion cell with oxide. High purity of the carrier gas is necessary for eliminating this effect, especially in the case of low hydrogen content of sodium. (author)

  14. Effect of caffeine citrate on the blood gas indexes in newborns with apnea

    Institute of Scientific and Technical Information of China (English)

    Chun-Yan Wu; Xiao-Jiao Wang; Yuan-Yuan Wang

    2015-01-01

    Objective:To explore the effect of caffeine citrate on the blood gas indexes in newborns with apnea.Methods: A total of 108 primary premature infants diagnosed with apnea were included in the study and randomized into the caffeine citrate treatment group and the aminophylline control group with 54 cases in each group. The apnea episode duration 72 h after medication, and the blood gas before medication and 24, 48, 72 h after medication between the two groups were compared.Results: The apnea episode duration 24, 48, 72 h after medication in the treatment group was significantly shorter than that in the control group. PaO2 24, 48, 72 h after medication in the treatment group was significantly higher than that in the control group, while PaCO2 was significantly reduced when compared with the control group.Conclusions:Caffeine citrate has achieved a significantly clinical effect in the treatment of newborn apnea, as a new therapeutic drug, is worthy of being widely recommended in the clinic.

  15. Gas dynamics considerations in a non-invasive profile monitor for charged particle beams

    CERN Document Server

    Tzoganis, Vasilis; Welsch, Carsten P

    2014-01-01

    A non-invasive, gas jet-based, beam profile monitor has been developed in the QUASAR Group at the Cockcroft Institute, UK. This allows on-line measurement of the 2-dimensional transverse profile of particle beams with negligible disturbance to either primary beam or accelerator vacuum. The monitor is suitable for use with beams across a wide range of energies and intensities. In this setup a nozzle-skimmer system shapes a thin supersonic gas jet into a curtain. However, the small dimensions of the gas inlet nozzle and subsequent skimmers were shown to be the cause of many operational problems. In this paper, the dynamics of gas jet formation transport and shaping is discussed before an image-processing based alignment technique is introduced. Furthermore, experimental results obtained with a 5 keV electron beam are discussed and the effects of gas stagnation pressure on the acquired beam are presented.

  16. Gas monitoring data anomaly identification based on spatio-temporal correlativity analysis

    Institute of Scientific and Technical Information of China (English)

    Shi-song ZHU; Yun-jia WANG; Lian-jiang WEI

    2013-01-01

    Based on spatio-temporal correlativity analysis method,the automatic identification techniques for data anomaly monitoring of coal mining working face gas are presented.The asynchronous correlative characteristics of gas migration in working face airflow direction are qualitatively analyzed.The calculation method of asynchronous correlation delay step and the prediction and inversion formulas of gas concentration changing with time and space after gas emission in the air return roadway are provided.By calculating one hundred and fifty groups of gas sensors data series from a coal mine which have the theoretical correlativity,the correlative coefficient values range of eight kinds of data anomaly is obtained.Then the gas monitoring data anomaly identification algorithm based on spatio-temporal correlativity analysis is accordingly presented.In order to improve the efficiency of analysis,the gas sensors code rules which can express the spatial topological relations are suggested.The experiments indicate that methods presented in this article can effectively compensate the defects of methods based on a single gas sensor monitoring data.

  17. Methodology and technology for peripheral and central blood pressure and blood pressure variability measurement: current status and future directions - Position statement of the European Society of Hypertension Working Group on blood pressure monitoring and cardiovascular variability.

    Science.gov (United States)

    Stergiou, George S; Parati, Gianfranco; Vlachopoulos, Charalambos; Achimastos, Apostolos; Andreadis, Emanouel; Asmar, Roland; Avolio, Alberto; Benetos, Athanase; Bilo, Grzegorz; Boubouchairopoulou, Nadia; Boutouyrie, Pierre; Castiglioni, Paolo; de la Sierra, Alejandro; Dolan, Eamon; Head, Geoffrey; Imai, Yutaka; Kario, Kazuomi; Kollias, Anastasios; Kotsis, Vasilis; Manios, Efstathios; McManus, Richard; Mengden, Thomas; Mihailidou, Anastasia; Myers, Martin; Niiranen, Teemu; Ochoa, Juan Eugenio; Ohkubo, Takayoshi; Omboni, Stefano; Padfield, Paul; Palatini, Paolo; Papaioannou, Theodore; Protogerou, Athanasios; Redon, Josep; Verdecchia, Paolo; Wang, Jiguang; Zanchetti, Alberto; Mancia, Giuseppe; O'Brien, Eoin

    2016-09-01

    Office blood pressure measurement has been the basis for hypertension evaluation for almost a century. However, the evaluation of blood pressure out of the office using ambulatory or self-home monitoring is now strongly recommended for the accurate diagnosis in many, if not all, cases with suspected hypertension. Moreover, there is evidence that the variability of blood pressure might offer prognostic information that is independent of the average blood pressure level. Recently, advancement in technology has provided noninvasive evaluation of central (aortic) blood pressure, which might have attributes that are additive to the conventional brachial blood pressure measurement. This position statement, developed by international experts, deals with key research and practical issues in regard to peripheral blood pressure measurement (office, home, and ambulatory), blood pressure variability, and central blood pressure measurement. The objective is to present current achievements, identify gaps in knowledge and issues concerning clinical application, and present relevant research questions and directions to investigators and manufacturers for future research and development (primary goal). PMID:27214089

  18. Portable Mass Spectrometer Applications for In Situ Environmental Gas Monitoring

    Science.gov (United States)

    Griffin, Timothy P.; Diaz, J. Andres; Arkin, C. Richard; Conejo, Elian

    2005-01-01

    Primary Goal of this project is to (1) Design/build a flexible system to monitor air contamination (2) Learn requirements for operating system in low pressure and low temperature environments (3) Design/build system for integration into aircraft and automobiles Secondary Goals/Offshoots are (1) Fly aboard different aircraft (2)Hand-carry unit (3) Drive unit in automobiles.

  19. Risk-adjusted monitoring of blood-stream infection in paediatric intensive care: a data linkage study

    OpenAIRE

    Harron, K.; WADE, A.; Muller-Pebody, B; Goldstein, H.; Parslow, R.; Gray, J.; Hartley, J. C.; Mok, Q; Gilbert, R.

    2013-01-01

    PURPOSE: National monitoring of variation in the quality of infection control in paediatric intensive care units (PICUs) requires comparisons of risk-adjusted rates. To inform the development of a national monitoring system, we evaluated the effects of risk-adjustment and outcome definition on comparisons of blood-stream infection (BSI) rates in PICU, using linkage of risk-factor data captured by national audit (PICANet) with laboratory records of BSI. METHODS: Admission data for two children...

  20. The future of gas turbine compliance monitoring: The integration of PEMS and CEMS for regulatory compliance

    Energy Technology Data Exchange (ETDEWEB)

    Macak, J.J. III

    1999-07-01

    When the New Source Performance Standards (NSPS) for Stationary Gas Turbines were first promulgated in 1979 (40 CFR 60, Subpart GG), continuous compliance monitoring for gas turbines was simply a parametric monitoring approach where a unit was tested at four load conditions. For those units where water or steam injection was used for NO{sub x} control, testing consisted of establishing a water (or steam injection) versus fuel flow curve to achieve permitted NO{sub x} emission levels across the load range. Since 1979, the growth in gas turbine popularity has encouraged the development of Predictive Emissions Monitoring Systems (PEMS) where gas turbine operating parameters and ambient conditions are fed into a prediction algorithm to predict, rather than monitor, emissions. However, permitting requirements and technological advances now have gas turbines emitting NO{sub x} in the single digits while the overall combined-cycle thermal efficiency has improved dramatically. The combination of supplemental duct-firing in heat recovery steam generators, pollution prevention technology, post-combustion emission controls, and EPA Continuous Emissions Monitoring System (CEMS) regulations for the power industry, resulted in a shift towards CEMS due to the complexity of the overall process. Yet, CEMS are often considered to be a maintenance nightmare with significant amounts of downtime. CEMS and PEMS have their own advantages and disadvantages. Thus evolved the need to find the optimum balance between CEMS and PEMS for gas turbine projects. To justify the cost of both PEMS and CEMS in the same installation, there must be an economic incentive to do so. This paper presents the application of a PEMS/CEMS monitoring system that integrates both PEMS and CEMS in order to meet, and exceed, all emissions monitoring requirements.

  1. Noble gas atmospheric monitoring for international safeguards at reprocessing plants

    Energy Technology Data Exchange (ETDEWEB)

    Nakhleh, C.W.; Poths, J.; Stanbro, W.D.; Perry, R.T. Jr.; Wilson, W.B.; Fearey, B.L.

    1997-11-01

    The use of environmental sampling is a major component of the improvements of International Atomic Energy Agency safeguards being carried out under Program 93+2. Nonradioactive noble gas isotopic measurements in the effluent stream of large reprocessing facilities may provide useful confirmatory information on the burnup and reactor type of the spent fuel undergoing reprocessing. The authors have taken and analyzed stack samples at an operating facility. The data show clear fission signals. The authors are currently applying a maximum-likelihood estimation procedure to determine the fuel burnup from these data. They anticipate that the general features involved in the table noble gas problem--selection of appropriate signals, measurement of those signals under realistic conditions, and inverse calculation of parameters of interest from the environmental data--will be present in all environmental sampling problems. These methods should therefore be widely applicable.

  2. Noble gas atmospheric monitoring for international safeguards at reprocessing plants

    International Nuclear Information System (INIS)

    The use of environmental sampling is a major component of the improvements of International Atomic Energy Agency safeguards being carried out under Program 93+2. Nonradioactive noble gas isotopic measurements in the effluent stream of large reprocessing facilities may provide useful confirmatory information on the burnup and reactor type of the spent fuel undergoing reprocessing. The authors have taken and analyzed stack samples at an operating facility. The data show clear fission signals. The authors are currently applying a maximum-likelihood estimation procedure to determine the fuel burnup from these data. They anticipate that the general features involved in the table noble gas problem--selection of appropriate signals, measurement of those signals under realistic conditions, and inverse calculation of parameters of interest from the environmental data--will be present in all environmental sampling problems. These methods should therefore be widely applicable

  3. Environmental radon monitoring in gas turbine power station in Haryana

    International Nuclear Information System (INIS)

    Measurement of indoor radon and its progeny levels was carried out in Gas Turbine Power Station in Haryana, where natural gas is used as fuel. In the power station LR-115, Type- II plastic track detectors were exposed for 100 days at different locations. The radon levels measured at various locations were moderate to high and thus unsafe from health point of view. The potential alpha energy concentration (PAEC), radon levels (EEC), annual exposure, annual effective dose in the Plant varied from 4.14 mWL to 26.7 mWL, 38.3 Bq m-3 to 247.6 Bq m-3, 0.17 WLM to 1.10 WLM and 0.66 mSv to 4.25 mSv. For comparison, the results of a study carried out in thermal power plant in Haryana are also presented. (author)

  4. Environmental Monitoring and the Gas Industry: Program Manager Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Gregory D. Gillispie

    1997-12-01

    This document has been developed for the nontechnical gas industry manager who has the responsibility for the development of waste or potentially contaminated soil and groundwater data or must make decisions based on such data for the management or remediation of these materials. It explores the pse of common analytical chemistry instrumentation and associated techniques for identification of environmentally hazardous materials. Sufficient detail is given to familiarize the nontechnical reader with the principles behind the operation of each technique. The scope and realm of the techniques and their constituent variations are portrayed through a discussion of crucial details and, where appropriate, the depiction of real-life data. It is the author's intention to provide an easily understood handbook for gas industry management. Techniques which determine the presence, composition, and quantification of gas industry wastes are discussed. Greater focus is given to traditional techniques which have been the mainstay of modem analytical benchwork. However, with the continual advancement of instrumental principles and design, several techniques have been included which are likely to receive greater attention in fiture considerations for waste-related detection. Definitions and concepts inherent to a thorough understanding of the principles common to analytical chemistry are discussed. It is also crucial that gas industry managers understand the effects of the various actions which take place before, during, and after the actual sampling step. When a series of sample collection, storage, and transport activities occur, new or inexperienced project managers may overlook or misunderstand the importance of the sequence. Each step has an impact on the final results of the measurement process; errors in judgment or decision making can be costly. Specific techniques and methodologies for the collection, storage, and transport of environmental media samples are not

  5. Monitoring of density in tokamaks: pumping and gas injection

    International Nuclear Information System (INIS)

    In thermonuclear fusion devices, controlling the Deuterium-Tritium fuel density and exhausting the Helium ashes is a crucial point. This is achieved by fuelling the discharges by different methods (gas puffing and pellet injection are the most commonly used) and by implementing pumping devices at the plasma periphery. These two issues are treated in this work, both from an experimental and a modelling point of view, using the neutral transport code EIRENE as main tool for our studies. As far as pumping is concerned, we have modelled the outboard pump limiter of the Tore Supra tokamak with the EIRENE code to which we coupled a plasma module specially developed to simulate the neutrals and the plasma in a coherent way. This allowed to validate the code against experimental data. As far as plasma fuelling is concerned, we present here an original method: the supersonic pulsed gas injection (SPGI). This intermediate method between conventional gas puff (GP) and pellet injection was designed and tested at Tore Supra. It consists of injecting very dense and short gas puffs at high speed into the plasma. Experimentally, SPGI was found to have a better fuelling efficiency than GP and to lead to a strong plasma cooling. The mechanisms responsible for this improved efficiency are analysed by modelling, using the EIRENE code to determine the ionisation source and a 1 D transport model to reproduce the plasma density response. At last, an extrapolation of the present injector is presented, discussing the possibility to obtain a radial drift of the injected matter as observed in the case of high field side pellet injection. (author)

  6. An in situ method for real-time monitoring of soil gas diffusivity

    Science.gov (United States)

    Laemmel, Thomas; Maier, Martin; Schack-Kirchner, Helmer; Lang, Friederike

    2016-04-01

    Soil aeration is an important factor for the biogeochemistry of soils. Generally, gas exchange between soil and atmosphere is assumed to be governed by molecular diffusion and by this way fluxes can be calculated using by Fick's Law. The soil gas diffusion coefficient DS represents the proportional factor between the gas flux and the gas concentration gradient in the soil and reflects the ability of the soil to "transport passively" gas through the soil. One common way to determine DS is taking core samples in the field and measuring DS in the lab. Unfortunately this method is destructive and laborious and it can only reflect a small fraction of the whole soil. As a consequence, uncertainty about the resulting effective diffusivity on the profile scale, i.e. the real aeration status remains. We developed a method to measure and monitor DS in situ. The set-up consists of a custom made gas sampling device, the continuous injection of an inert tracer gas and inverse gas transport modelling in the soil. The gas sampling device has seven sampling depths (from 0 to -43 cm of depth) and can be easily installed into vertical holes drilled by an auger, which allows for fast installation of the system. Helium (He) as inert tracer gas was injected continuously at the lower end of the device. The resulting steady state distribution of He was used to deduce the DS depth distribution of the soil. For Finite Element Modeling of the gas-sampling-device/soil system the program COMSOL was used. We tested our new method both in the lab and in a field study and compared the results with a reference lab method using soil cores. DS profiles obtained by our in-situ method were consistent with DS profiles determined based on soil core analyses. Soil gas profiles could be measured with a temporal resolution of 30 minutes. During the field study, there was an important rain event and we could monitor the decrease in soil gas diffusivity in the top soil due to water infiltration. The effect

  7. Implementation of Out-of-Office Blood Pressure Monitoring in the Netherlands: From Clinical Guidelines to Patients’ Adoption of Innovation

    NARCIS (Netherlands)

    Carrera, Pricivel M.; Lambooij, Mattijs S.

    2015-01-01

    Out-of-office blood pressure monitoring is promoted by various clinical guidelines toward properly diagnosing and effectively managing hypertension and engaging the patient in their care process. In the Netherlands, however, the Dutch cardiovascular risk management (CVRM) guidelines do not explicitl

  8. Blood Glucose Control Using a Novel Continuous Blood Glucose Monitor and Repetitive Intravenous Insulin Boluses: Exploiting Natural Insulin Pulsatility as a Principle for a Future Artificial Pancreas

    Directory of Open Access Journals (Sweden)

    Nils K. Skjaervold

    2013-01-01

    Full Text Available The aim of this study was to construct a glucose regulatory algorithm by employing the natural pulsatile pattern of insulin secretion and the oscillatory pattern of resting blood glucose levels and further to regulate the blood glucose level in diabetic pigs by this method. We developed a control algorithm based on repetitive intravenous bolus injections of insulin and combined this with an intravascular blood glucose monitor. Four anesthetized pigs were used in the study. The animals developed a mildly diabetic state from streptozotocin pretreatment. They were steadily brought within the blood glucose target range of 4.5–6.0 mmol/L in 21 to 121 min and kept within that range for 128 to 238 min (hypoglycemic values varied from 2.9 to 51.1 min. The study confirmed our hypotheses regarding the feasibility of this new principle for blood glucose control, and the algorithm was constantly improved during the study to produce the best results in the last animals. The main obstacles were the drift of the IvS-1 sensor and problems with the calibration procedure, which calls for an improvement in the sensor stability before this method can be applied fully in new studies in animals and humans.

  9. Evaluation of OneTouch Verio(®), a new blood glucose self-monitoring system for patients with diabetes

    DEFF Research Database (Denmark)

    Littmann, Karin; Petersen, Eva; Pussinen, Christel;

    2013-01-01

    Introduction. Self-monitoring of blood glucose (SMBG) is important in diabetes management. Reliable and user-friendly instruments are essential. OneTouch Verio(®) is a new blood glucose concentration-measuring system designed to be used by patients with diabetes and healthcare professionals. The...... objective of the present study was to evaluate the analytical performance of the OneTouch Verio(®). Method. The OneTouch Verio(®) was evaluated by the Scandinavian evaluation of laboratory equipment for primary healthcare (SKUP) according to a protocol based on ISO 15197 and the American Diabetes...... routine method, imprecision and bias were calculated. User-friendliness was evaluated with a questionnaire. Results. Quality specifications for blood glucose concentration monitoring systems according to ISO 15197 were fulfilled. The mean coefficients of variation (CV%) of repeatability was 3.4% when...

  10. Effective transcutaneous immunization by antigen-loaded flexible liposome in vivo

    Directory of Open Access Journals (Sweden)

    Li N

    2011-12-01

    Full Text Available Ni Li1, Li-Hua Peng1, Xi Chen1, Shinsaku Nakagawa2, Jian-Qing Gao11Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China; 2Department of Biotechnology and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, JapanBackground: Transcutaneous vaccines have received wide attention due to their easy-to-use, needle-free, noninvasive delivery. However, the novel barrier function of stratum corneum hinders the transport of antigen and adjuvant in transcutaneous immunization. Novel nanoscale delivery systems employing, for example, liposomes and nanoparticles, have been widely investigated to overcome the penetration barrier of stratum corneum for effective transcutaneous immunization.Objective: The objective of this study was to prepare two types of flexible liposomes and determine their efficacies for the transcutaneous delivery of antigen and the subsequent immune response induced in vivo.Methods: Ovalbumin (OVA liposome-based transcutaneous vaccines were prepared using reverse-phase evaporation and film-dispersion methods. Particle sizes and antigen encapsulating efficiency were then evaluated. After application to bare mouse skin, topical sites were examined for the presence of fluorescence-labeled liposome. The efficacy of the transcutaneously delivered OVA-loaded flexible liposome in activating the immune responses was investigated by detecting serum immunoglobulin G levels. The influence of an adjuvant, imiquimod, in the transcutaneous immunization was also tested.Results: Two flexible liposomes with well-encapsulated OVA were successfully prepared by film-dispersion or reverse-phase evaporation methods. The sizes of the prepared flexible liposomes ranged from 200 to 400 nm. In vivo, the fluorescence-labeled liposome was detected in hair-follicle ducts, indicating that the flexible liposome can penetrate the skin barrier through the hair

  11. Remote monitoring of gas supply systems; Fernueberwachung von Gasversorgungssystemen

    Energy Technology Data Exchange (ETDEWEB)

    Neubeck, K. [WIKA Alexander Wiegand GmbH und Co., Klingenberg (Germany). Bereich Marketing; Weber, H. [Weber Engineering, Planungsbuero fuer Automatisierungstechnik, Friedberg (Germany)

    1997-11-01

    The data transmission service `Modacom` is suited for the establishment of permanent remote monitoring systems with reliable full-scale data communication. The contribution presents the example of a fuelling system, but many other applications are possible. (orig.) [Deutsch] Mit dem Datenfunkdienst `Modacom` laesst sich ein permanentes Fernueberwachungssystem aufbauen - und das mit flaechendeckender und uebertragungssicherer Datenkommunikation. Am Beispiel einer universell einsetzbaren Fernwirkunterstation mit dem dazugehoerigen Prozessleitsystem lassen sich Tankanlagen effizient managen. Doch sind der Anwendung keine Grenzen gesetzt, denn das System ist an viele Applikationen anpassbar. (orig.)

  12. Applications of optical measurement technology in pollution gas monitoring at thermal power plants

    Science.gov (United States)

    Wang, Jian; Yu, Dahai; Ye, Huajun; Yang, Jianhu; Ke, Liang; Han, Shuanglai; Gu, Haitao; Chen, Yingbin

    2011-11-01

    This paper presents the work of using advanced optical measurement techniques to implement stack gas emission monitoring and process control. A system is designed to conduct online measurement of SO2/NOX and mercury emission from stacks and slipping NH3 of de-nitrification process. The system is consisted of SO2/NOX monitoring subsystem, mercury monitoring subsystem, and NH3 monitoring subsystem. The SO2/NOX monitoring subsystem is developed based on the ultraviolet differential optical absorption spectroscopy (UV-DOAS) technique. By using this technique, a linearity error less than +/-1% F.S. is achieved, and the measurement errors resulting from optical path contamination and light fluctuation are removed. Moreover, this subsystem employs in situ extraction and hot-wet line sampling technique to significantly reduce SO2 loss due to condensation and protect gas pipeline from corrosion. The mercury monitoring subsystem is used to measure the concentration of element mercury (Hg0), oxidized mercury (Hg2+), and total gaseous mercury (HgT) in the flue gas exhaust. The measurement of Hg with a low detection limit (0.1μg/m3) and a high sensitivity is realized by using cold vapor atom fluorescence spectroscopy (CVAFS) technique. This subsystem is also equipped with an inertial separation type sampling technique to prevent gas pipeline from being clogged and to reduce speciation mercury measurement error. The NH3 monitoring subsystem is developed to measure the concentration of slipping NH3 and then to help improving the efficiency of de-nitrification. The NH3 concentration as low as 0.1ppm is able to be measured by using the off-axis integrated cavity output spectroscopy (ICOS) and the tunable diode laser absorption spectroscopy (TDLAS) techniques. The problem of trace NH3 sampling loss is solved by applying heating the gas pipelines when the measurement is running.

  13. Traditional transcutaneous approaches in head and neck surgery [

    Directory of Open Access Journals (Sweden)

    Goessler, Ulrich R.

    2012-12-01

    Full Text Available [english] The treatment of laryngeal and hypopharyngeal malignancies remains a challenging task for the head and neck surgeon as the chosen treatment modality often has to bridge the gap between oncologically sound radicality and preservation of function. Due to the increase in transoral laser surgery in early tumor stages and chemoradiation in advanced stages, the usage of traditional transcutaneous approaches has decreased over the recent past. In addition, the need for a function-sparing surgical approach as well as highest possible quality of life has become evident. In view of these facts, rationale and importance of traditional transcutaneous approaches to the treatment of laryngeal and hypopharyngeal malignancies are discussed in a contemporary background. The transcutaneous open partial laryngectomies remain a valuable tool in the surgeon's armamentarium for the treatment of early and advanced laryngeal carcinomas, especially in cases of impossible laryngeal overview using the rigid laryngoscope. Open partial laryngetomies offer superior overview and oncologic safety at the anterior commissure, especially in recurrencies. In select advanced cases and salvage settings, the supracricoid laryngectomy offers a valuable tool for function-preserving but oncologically safe surgical therapy at the cost of high postoperative morbidity and a very demanding rehabilitation of swallowing.In hypopharyngeal malignancies, the increasing use of transoral laser surgery has led to a decline in transcutaneous resections via partial pharyngectomy with partial laryngectomy in early tumor stages. In advanced stages of tumors of the piriform sinus and the postcricoid area with involvement of the larynx, total laryngectomy with partial pharyngectomy is an oncologically safe approach. The radical surgical approach using circumferent laryngopharyngectomy with/without esophagectomy is indicated in salvage cases with advanced recurrences or as a primary surgical

  14. An hour-specific transcutaneous bilirubin nomogram for Mongolian neonates

    OpenAIRE

    Akahira-Azuma, Moe; Yonemoto, Naohiro; Mori, Rintaro; Hosokawa, Shinichi; Matsushita, Takeji; Sukhbat, Khulan; Nansal, Gerelmaa; Bavuusuren, Bayasgalantai; Shonkhuuz, Enkhtur

    2015-01-01

    Transcutaneous bilirubin (TcB) nomograms have been developed for different populations. However, the TcB level, rate of rise and peak varies among countries and ethnicities. The aim of this study was to establish an hour-specific TcB nomogram for healthy term and late preterm Mongolian neonates during the first 144 h after birth. A total of 5084 TcB measurements from 1297 healthy neonates (gestational age ≥35 weeks, birth weight ≥2000 g) were obtained from October 2012 to October 2013. All me...

  15. Influence of transcutaneous electrical stimulation on heterotopic ossification: an experimental study in Wistar rats

    Directory of Open Access Journals (Sweden)

    T.G.G. Zotz

    2015-01-01

    Full Text Available Heterotopic ossification (HO is a metaplastic biological process in which there is newly formed bone in soft tissues, resulting in joint mobility deficit and pain. Different treatment modalities have been tried to prevent HO development, but there is no consensus on a therapeutic approach. Since electrical stimulation is a widely used resource in physiotherapy practice to stimulate joint mobility, with analgesic and anti-inflammatory effects, its usefulness for HO treatment was investigated. We aimed to identify the influence of electrical stimulation on induced HO in Wistar rats. Thirty-six male rats (350-390 g were used, and all animals were anesthetized for blood sampling before HO induction, to quantify the serum alkaline phosphatase. HO induction was performed by bone marrow implantation in both quadriceps of the animals, which were then divided into 3 groups: control (CG, transcutaneous electrical nerve stimulation (TENS group (TG, and functional electrical stimulation (FES group (FG with 12 rats each. All animals were anesthetized and electrically stimulated twice per week, for 35 days from induction day. After this period, another blood sample was collected and quadriceps muscles were bilaterally removed for histological and calcium analysis and the rats were killed. Calcium levels in muscles showed significantly lower results when comparing TG and FG (P

  16. Fiber Optics: Safety Measures on Oil & Gas Pipeline Monitoring in Lagos State Region

    OpenAIRE

    Johnson, Oluseye

    2014-01-01

    The objective of this thesis work is to research and implement the use of an optical communication system (fiber optics) as a safe and reliable monitoring system for the oil and gas pipeline industry in Lagos region of Nigeria. These optical fiber cables are laid parallel to oil and gas buried pipelines to monitor and indicate ad-vanced warning in real time situation once leakages occur in these pipelines, thereby allowing pipeline operators to take immediate and strategic actions to re-solve...

  17. Laboratory Connections--Gas Monitoring Transducers Part III: Combustible Gas Sensors.

    Science.gov (United States)

    Powers, Michael H.; Dahman, Doug

    1989-01-01

    Describes an interface that uses semiconductor metal oxides to detect low gas concentrations. Notes the detector has long life, high stability, good reproducibility, low cost, and is able to convert the gas concentration to an electrical signal with a simple circuit. Theory, schematic, and applications are provided. (MVL)

  18. French wholesale electricity and gas markets in 2007. Monitoring report

    International Nuclear Information System (INIS)

    Settled on 24 March 2000, the French Energy Regulatory Commission (CRE) is an independent authority. CRE supports an efficient functioning of the electricity and natural gas markets, to the advantage of final consumers. CRE ensures the absence of any discrimination, cross subsidy or obstacle to competition. CRE has examined the functioning of the wholesale markets for electricity and gas for the year 2007. The report discloses the results of a first set of analyses, as well as the next actions to be conducted in order to explain some observed behaviour. On the basis of analyses led on the electricity market, CRE observes that nuclear generation was marginal during 15% of the hours in 2007. Hydraulic generation was marginal during 25% of the hours, coal generation during 25% to 30% of the hours and oil generation during less than 2% of the hours in 2007. Finally, prices on the border markets were of high importance on the French prices which they determined during 20% to 25% of the hours of the year. On an efficient market, the price is driven by the marginal power plant among all those which contribute to satisfy the demand. Therefore the wholesale price formation is conditioned by the frequency of marginality of each generation sector and by the associated valuation of production. On the day-ahead market, when nuclear or hydraulic generation was marginal, the day-ahead price reflected the associated valuation which was decided by EDF. The level of this valuation was generally higher than the marginal generation cost of these plants. As a matter of fact, a producer, even market dominant, may legitimately seek to optimise its income, provided that there is no abuse of a dominant position or any price manipulation. Consequently, at this stage, the relevance of the valuation method for nuclear and hydraulic generation on the wholesale market is still to be checked. CRE has also demonstrated that generation transparency, even if it gradually increased, still needs to

  19. Monitoring and Protection of Oil and Gas Condition in Industrial Using Wireless Sensor Networks

    OpenAIRE

    Y. Chalapathi Rao; Dr.Ch.Santhi Rani; Lavanya, P.

    2012-01-01

    Wireless Sensor Networks (WSNs) are one of the fastest growing and emerging technologies in the field of Wireless networking today. WSNs have a vast amount of applications including environmental monitoring, military, ecology, agriculture, inventory control, robotics and health care. This paper focuses on monitoring and protection of oil and gas operations using WSNs that are optimized to decrease installation, and maintenance cost, energy requirements, increase reliability and improve commun...

  20. Hierarchical Leak Detection and Localization Method in Natural Gas Pipeline Monitoring Sensor Networks

    OpenAIRE

    Ning Yu; Renjian Feng; Jiangwen Wan; Yinfeng Wu; Yang Yu

    2011-01-01

    In light of the problems of low recognition efficiency, high false rates and poor localization accuracy in traditional pipeline security detection technology, this paper proposes a type of hierarchical leak detection and localization method for use in natural gas pipeline monitoring sensor networks. In the signal preprocessing phase, original monitoring signals are dealt with by wavelet transform technology to extract the single mode signals as well as characteristic parameters. In the initia...

  1. A plunger lift and monitoring system for gas wells based on deployment-retrievement integration

    OpenAIRE

    Zheng Tong; Xiaohan Pei; Zejun Shen; Zhongxian Hao; Haifeng Niu

    2015-01-01

    As a necessary step, removing liquid in the wellbore plays an important role during the production of gas wells. Plunger lift is a widely-used intermittent deliquification process for gas wells. However, the manual control way and wire logging are still utilized as a downhole monitoring way for plunger lift, which is not efficient in terms of interrupting the production. This paper presents an improved solution that logging instruments canister are deployed and retrieved by means of a new ass...

  2. Radon Monitoring in Soil Gas and Ground Water for Earthquake Prediction Studies in North West Himalayas, India

    OpenAIRE

    Surinder Singh; Arvind Kumar; Bikramjit Singh Bajwa; Sandeep Mahajan; Vinod Kumar; and Sunil Dhar

    2010-01-01

    Continuous monitoring of soil gas radon at Sarol and the daily monitoring of radon concentration in water at Banikhet is carried out in Chamba valley of North West Himalayas, India _ well known seismic _ to study the correlation of radon anomalies in relation to seismic activities of the region. Radon monitoring in soil gas was carried out by using Barasol probe manufactured by Algade France and the radon content in water was recorded using RAD7 radon monitoring system of Durridge Company, US...

  3. A study of aging effects in the gas-monitoring proportional counters of the BAC calorimeter in the ZEUS experiment

    International Nuclear Information System (INIS)

    The multi-cell proportional chambers in the backing calorimeter of the ZEUS experiment at the HERA storage ring are supplied with an Ar/CO2 gas mixture by an open gas system. Flow proportional counters with built-in 55Fe sources are used as gas system monitoring detectors. The results of the measurements of the aging effects of the gas-monitoring counters are presented

  4. Fluorescent blood glucose monitor by hemin-functionalized graphene quantum dots based sensing system

    Energy Technology Data Exchange (ETDEWEB)

    He, Yuezhen; Wang, Xiaoxun; Sun, Jian; Jiao, Shoufeng; Chen, Hongqi; Gao, Feng; Wang, Lun, E-mail: wanglun@mail.ahnu.edu.cn

    2014-01-31

    Graphical abstract: -- Highlights: •Hemin is assembled onto the surfaces of graphene quantum dots (GQDs). •With the aid of hemin, H{sub 2}O{sub 2} could quench the FL signal of GQDs obviously. •Based on this effect, a fluorescent platform is proposed for the sensing of glucose. •The proposed method provides a new pathway to explore practical application of GQDs. -- Abstract: In the present work, a highly sensitive and specific fluorescent biosensor for blood glucose monitoring is developed based on hemin-functionalized graphene quantum dots (GQDs) and glucose oxidase (GOx) system. The GQDs which are simply prepared by pyrolyzing citric acid exhibit strong fluorescence and good water-solubility. Due to the noncovalent assembly between hemin and GQDs, the addition of hemin can make hydrogen peroxide (H{sub 2}O{sub 2}) to destroy the passivated surface of GQDs, leading to significant fluorescence quenching of GQDs. Based on this effect, a novel fluorescent platform is proposed for the sensing of glucose. Under the optimized conditions, the linear range of glucose is from 9 to 300 μM, and the limit of detection is 0.1 μM. As unique properties of GQDs, the proposed biosensor is green, simple, cost-efficient, and it is successfully applied to the determination of glucose in human serum. In addition, the proposed method provides a new pathway to further design the biosensors based on the assembly of GQDs with hemin for detection of biomolecules.

  5. Do currently available blood glucose monitors meet regulatory standards? 1-day public meeting in Arlington, Virginia.

    Science.gov (United States)

    Klonoff, David C; Reyes, Juliet S

    2013-07-01

    Blood glucose monitors (BGMs) are approved by regulatory agencies based on their performance during strict testing conducted by their manufacturers. However, after approval, there is uncertainty whether BGMs maintain the accuracy levels that were achieved in the initial data. The availability of inaccurate BGM systems pose a public health problem because their readings serve as a basis for treatment decisions that can be incorrect. Several articles have concluded that BGMs in the marketplace may not consistently provide accurate results in accordance with the regulatory standards that led to approval. To address this growing concern, Diabetes Technology Society organized and conducted a 1-day public meeting on May 21, 2013, in Arlington, VA, presided by its president, David Klonoff, M.D., FACP, Fellow AIMBE, to determine whether BGMs on the market meet regulatory standards. The meeting consisted of four sessions in which Food and Drug Administration diabetes experts as well as leading academic clinicians and clinical chemists participated: (1) How is BGM performance determined? (2) Do approved BGMs perform according to International Organization for Standardization standards? (3) How do approved BGMs perform when used by patients and health care professionals? (4) What could be the consequence of poor BGM performance? PMID:23911191

  6. Long-term blood pressure changes induced by the 2009 L'Aquila earthquake: assessment by 24 h ambulatory monitoring.

    Science.gov (United States)

    Giorgini, Paolo; Striuli, Rinaldo; Petrarca, Marco; Petrazzi, Luisa; Pasqualetti, Paolo; Properzi, Giuliana; Desideri, Giovambattista; Omboni, Stefano; Parati, Gianfranco; Ferri, Claudio

    2013-09-01

    An increased rate of cardiovascular and cerebrovascular events has been described during and immediately after earthquakes. In this regard, few data are available on long-term blood pressure control in hypertensive outpatients after an earthquake. We evaluated the long-term effects of the April 2009 L'Aquila earthquake on blood pressure levels, as detected by 24 h ambulatory blood pressure monitoring. Before/after (mean±s.d. 6.9±4.5/14.2±5.1 months, respectively) the earthquake, the available 24 h ambulatory blood pressure monitoring data for the same patients were extracted from our database. Quake-related daily life discomforts were evaluated through interviews. We enrolled 47 patients (25 female, age 52±14 years), divided into three groups according to antihypertensive therapy changes after versus before the earthquake: unchanged therapy (n=24), increased therapy (n=17) and reduced therapy (n=6). Compared with before the quake, in the unchanged therapy group marked increases in 24 h (P=0.004), daytime (P=0.01) and nighttime (P=0.02) systolic blood pressure were observed after the quake. Corresponding changes in 24 h (P=0.005), daytime (P=0.01) and nighttime (P=0.009) diastolic blood pressure were observed. Daily life discomforts were reported more frequently in the unchanged therapy and increased therapy groups than the reduced therapy group (P=0.025 and P=0.018, respectively). In conclusion, this study shows that patients with unchanged therapy display marked blood pressure increments up to more than 1 year after an earthquake, as well as long-term quake-related discomfort. Our data suggest that particular attention to blood pressure levels and adequate therapy modifications should be considered after an earthquake, not only early after the event but also months later. PMID:23595046

  7. Monitoring of milk production and total cholesterol concentration, gamma-glutamyltransferase, and glutathione peroxidase in Simmental cows blood

    Directory of Open Access Journals (Sweden)

    Terezija Silvija Marenjak

    2007-06-01

    Full Text Available Milk production, total blood cholesterol concentration and activity ofgamma-glutamyl-transferase (GGT and glutation peroxidase (GPx in blood of Simmental cows was monitored during two control periods (first control period - May 2004; second control period - June 2004. The objective was to determine a relationship between milk production and particular blood parameters, and their possible implementation as an indicator of milk production. Twelve Simmental cows from small-scale dairy farm in Zagreb County were included in the study. Cows originated from the same herd andwere roughly of the same parity and stage of lactation. The average milk production and total blood cholesterol concentration were significantly higher in May then in June (20,55 L/d vs. 15,44 L/d; 4,55 mmol/L vs. 3,96 mmol/L, respectively, whereas the GPx and GGT activity was significantly lower in May in comparison with June (GPx=1720,66 U/L vs. GPx=1808 U/L, and GGT = 20,11 U/L vs. 23,22 U/L, respectively. A positive correlation between the milk production and the total blood cholesterol level was detected (r=0,58. The total blood cholesterol concentration in the blood plasma mighthave been one of the indicators of production performance in the Simmental cows herd, whereas the activity of stated enzymes may specify the nutritional status thereof the milk production depends on.

  8. Blood compatibility of gas plasma-treated diamond-like carbon surface-Effect of physicochemical properties of DLC surface on blood compatibility

    International Nuclear Information System (INIS)

    From the knowledge that zwitterion-type polymers show good blood compatibility, the introduction of both cationic and anionic functional groups onto diamond-like carbon (DLC) surface is expected to improve blood compatibility. Thus, DLC films were treated with oxygen and ammonia gas plasmas. The surfaces were characterized in terms of chemical composition by XPS, contact angle, and zeta potential. XPS analysis showed the introductions of a carboxyl group by oxygen plasma treatment and nitrogen atoms by ammonia plasma treatment. The evaluation of blood compatibility for the DLC surfaces was carried out in terms of platelets and the coagulation system. Excellent improvement of platelet compatibility was observed by the treatment with the gas plasmas, regardless of the plasma species. As for the compatibility with the coagulation system, DLC surfaces with a high concentration of carboxyl groups (COOH) markedly activated the system via the intrinsic pathway. However, the surfaces treated with ammonia plasma did not activate the system even though they had high COOH concentration. Measurement of the zeta potential revealed that the ammonia plasma treatment raised the potential from a negative value to a positive one. Though the introduction of amino groups to the surface was not detected directly, the treatment of ammonia plasma changed the electrical state of the DLC surface having COOH group, causing a difference in blood compatibility among the DLCs obtained by various plasma conditions.

  9. Reliability of the Dinamap non-invasive monitor in the measurement of blood pressure of ill Asian newborns.

    Science.gov (United States)

    Chia, F; Ang, A T; Wong, T W; Tan, K W; Fung, K P; Lee, J; Khin, K

    1990-05-01

    Four hundred thirty-one paired sets of readings of systolic and diastolic blood pressure and 438 paired sets of readings of mean arterial BP from 49 ill newborns, including 21 very low birth weight infants, were analyzed for the extent and pattern of agreement and the linear relationship between the Dinamap oscillometric monitor and the direct intraarterial blood pressure readings. Agreement between the two methods was measured by the intraclass correlation, whereas the linear relationship was assessed by the product-moment correlation. The intraclass correlations for systolic, diastolic and mean blood pressures were 0.696, 0.766, and 0.781, respectively. The product-moment correlations for systolic, diastolic and mean blood pressures were 0.706, 0.768, and 0.786, respectively. BP measurements by the Dinamap monitor showed reasonably close agreement to those obtained by the intraarterial mean arterial pressure ranges above 40 mmHg. For mean arterial pressure of 40 mmHg and lower, BP readings by the Dinamap monitor tended to be higher than those obtained by the intraarterial method. These findings appeared to be consistent regardless of the birth weight of the newborn. PMID:2340688

  10. A highlight on lipid based nanocarriers for transcutaneous immunization.

    Science.gov (United States)

    Nasr, Maha; Abdel-Hamid, Sameh; Alyoussef, Abdullah A

    2015-01-01

    Transcutaneous vaccination has become a widely used technique for providing immunity against several types of pathogens, taking advantage of the immune components found in the skin. The success in the field of vaccination has not only relied on the type of antigen and adjuvant delivered, but also on how they are delivered. In this regard, particulate carriers, especially nanoparticles have evoked considerable interest, owing to the desirable properties that they impart to the substance being delivered. The presentation of antigens by the nanoparticles mimics the presentation of the immunogen by the pathogen; hence, it creates a similar immune response. Furthermore, nanoparticles protect the antigen from degradation and allow its prolonged release, which maximizes its exposure to the immune cells. The most commonly used materials for the formulation of nanoparticles are either polymer-based or lipid based. This review will focus on the lipid based nanocarriers, either vesicular such as liposomes, transfersomes, and ethosomes, or non-vesicular such as cubosomes, solid lipid nanoparticles, nano-structured lipid carriers, solid in oil nanodispersions, lipoplexes, and hybrid polymeric-lipidic systems. The applications of these carriers in the field of transcutaneous immunization will be discussed in this review as well. PMID:25658381

  11. Volume conductor model of transcutaneous electrical stimulation with kilohertz signals

    Science.gov (United States)

    Medina, Leonel E.; Grill, Warren M.

    2014-12-01

    Objective. Incorporating high-frequency components in transcutaneous electrical stimulation (TES) waveforms may make it possible to stimulate deeper nerve fibers since the impedance of tissue declines with increasing frequency. However, the mechanisms of high-frequency TES remain largely unexplored. We investigated the properties of TES with frequencies beyond those typically used in neural stimulation. Approach. We implemented a multilayer volume conductor model including dispersion and capacitive effects, coupled to a cable model of a nerve fiber. We simulated voltage- and current-controlled transcutaneous stimulation, and quantified the effects of frequency on the distribution of potentials and fiber excitation. We also quantified the effects of a novel transdermal amplitude modulated signal (TAMS) consisting of a non-zero offset sinusoidal carrier modulated by a square-pulse train. Main results. The model revealed that high-frequency signals generated larger potentials at depth than did low frequencies, but this did not translate into lower stimulation thresholds. Both TAMS and conventional rectangular pulses activated more superficial fibers in addition to the deeper, target fibers, and at no frequency did we observe an inversion of the strength-distance relationship. Current regulated stimulation was more strongly influenced by fiber depth, whereas voltage regulated stimulation was more strongly influenced by skin thickness. Finally, our model reproduced the threshold-frequency relationship of experimentally measured motor thresholds. Significance. The model may be used for prediction of motor thresholds in TES, and contributes to the understanding of high-frequency TES.

  12. Whole blood is the sample matrix of choice for monitoring systemic triclocarban levels.

    Science.gov (United States)

    Schebb, Nils Helge; Ahn, Ki Chang; Dong, Hua; Gee, Shirley J; Hammock, Bruce D

    2012-05-01

    The antibacterial triclocarban (TCC) concentrates in the cellular fraction of blood. Consequently, plasma levels are at least two-fold lower than the TCC amount present in blood. Utilizing whole blood sampling, a low but significant absorption of TCC from soap during showering is demonstrated for a small group of human subjects. PMID:22273184

  13. Whole blood is the sample matrix of choice for monitoring systemic triclocarban levels

    OpenAIRE

    Schebb, Nils Helge; Ahn, Ki Chang; Dong, Hua; Gee, Shirley J.; Hammock, Bruce D.

    2012-01-01

    The antibacterial triclocarban (TCC) concentrates in the cellular fraction of blood. Consequently, plasma levels are at least two-fold lower than the TCC amount present in blood. Utilizing whole blood sampling, a low but significant absorption of TCC from soap during showering is demonstrated for a small group of human subjects.

  14. Performance in real condition of photonic crystal sensor based NO2 gas monitoring system

    Science.gov (United States)

    Rahmat, M.; Maulina, W.; Rustami, E.; Azis, M.; Budiarti, D. R.; Seminar, K. B.; Yuwono, A. S.; Alatas, H.

    2013-11-01

    In this report we discuss the performance in real condition of an optical based real-time NO2 gas monitoring system. For detecting the gas concentration in the ambient air we have developed an optical sensor based on one-dimensional photonic crystal with two defects that allows the existence of photonic pass band inside the associated photonic band gap. To measure the gas concentration, we dissolve the corresponding NO2 gas into a specific Griess Saltzman reagent solution. The change of gas concentration in the related dissolved-solution can be inspected by the photonic pass band peak variation. It is observed that the wavelength of the photonic pass band peak of the fabricated photonic crystal is nearly coincide with the wavelength of the associated solution highest absorbance. The laboratory test shows that the device works properly, whereas the field measurement test demonstrates accurate results with validation error of 1.56%.

  15. Gas monitoring and control for upper corner of longwall based on hydraulic driver

    Science.gov (United States)

    Lian, Hongzhen; Kou, Ziming

    2006-11-01

    In the mine pit using the "U" ventilation systems, there is serious gas accumulating phenomenon nearby upper corner. If not effectively in time, the serious coal mine security accident will exist because of the gas ultra to limit. Through analysis to the gas accumulation reason and the distribution rule nearby upper corner, the situation is understood that the wind speed is extremely low near upper corner region and some parts is at eddy flow status; Using the practical and economical real-time monitoring system, accumulative gas can be scattered through the air flow perturbation of hydraulic blower. This method could reduce partial gas concentration of upper corner in order to meet the coal mine security production requirements

  16. Intraoperative laser speckle contrast imaging for monitoring cerebral blood flow: results from a 10-patient pilot study

    Science.gov (United States)

    Richards, Lisa M.; Weber, Erica L.; Parthasarathy, Ashwin B.; Kappeler, Kaelyn L.; Fox, Douglas J.; Dunn, Andrew K.

    2012-02-01

    Monitoring cerebral blood flow (CBF) during neurosurgery can provide important physiological information for a variety of surgical procedures. Although multiple intraoperative vascular monitoring technologies are currently available, a quantitative method that allows for continuous monitoring is still needed. Laser speckle contrast imaging (LSCI) is an optical imaging method with high spatial and temporal resolution that has been widely used to image CBF in animal models in vivo. In this pilot clinical study, we adapted a Zeiss OPMI Pentero neurosurgical microscope to obtain LSCI images by attaching a camera and a laser diode. This LSCI adapted instrument has been used to acquire full field flow images from 10 patients during tumor resection procedures. The patient's ECG was recorded during acquisition and image registration was performed in post-processing to account for pulsatile motion artifacts. Digital photographs confirmed alignment of vasculature and flow images in four cases, and a relative change in blood flow was observed in two patients after bipolar cautery. The LSCI adapted instrument has the capability to produce real-time, full field CBF image maps with excellent spatial resolution and minimal intervention to the surgical procedure. Results from this study demonstrate the feasibility of using LSCI to monitor blood flow during neurosurgery.

  17. Isotope Ratio Monitoring Gas Chromatography Mass Spectrometry (IRM-GCMS)

    International Nuclear Information System (INIS)

    On Earth, the C-13 content of organic compounds is depleted by roughly 13 to 23 permil from atmospheric carbon dioxide. This difference is largely due to isotope effects associated with the fixation of inorganic carbon by photosynthetic organisms. If life once existed on Mars, then it is reasonable to expect to observe a similar fractionation. Although the strongly oxidizing conditions on the surface of Mars make preservation of ancient organic material unlikely, carbon-isotope evidence for the existence of life on Mars may still be preserved. Carbon depleted in C-13 could be preserved either in organic compounds within buried sediments, or in carbonate minerals produced by the oxidation of organic material. A technique is introduced for rapid and precise measurement of the C-13 contents of individual organic compounds. A gas chromatograph is coupled to an isotope-ratio mass spectrometer through a combustion interface, enabling on-line isotopic analysis of isolated compounds. The isotope ratios are determined by integration of ion currents over the course of each chromatographic peak. Software incorporates automatic peak determination, corrections for background, and deconvolution of overlapped peaks. Overall performance of the instrument was evaluated by the analysis of a mixture of high purity n-alkanes of know isotopic composition. Isotopic values measured via IRM-GCMS averaged withing 0.55 permil of their conventionally measured values

  18. Design and Evaluation of a Fully Implantable Control Unit for Blood Pumps

    Directory of Open Access Journals (Sweden)

    Kristin Unthan

    2015-01-01

    Full Text Available As the number of donor hearts is limited while more and more patients suffer from end stage biventricular heart failure, Total Artificial Hearts become a promising alternative to conventional treatment. While pneumatic devices sufficiently supply the patients with blood flow, the patient’s quality of life is limited by the percutaneous pressure lines and the size of the external control unit. This paper describes the development of the control unit of the ReinHeart, a fully implantable Total Artificial Heart. General requirements for any implantable control unit are defined from a technical and medical point of view: necessity of a Transcutaneous Energy Transmission, autonomous operation, safety, geometry, and efficiency. Based on the requirements, a prototype is designed; it incorporates a LiFePo4 battery pack with charger, a rectifier for transcutaneous energy transmission, the motor’s driver electronics, and a microcontroller which monitors and controls all functions. In validation tests, the control unit demonstrated a stable operation on TET and battery supply and a safe switching from one supply to the other. The overall mean efficiency is 14% on TET and 22% on battery supply. The control unit is suitable for chronic animal trials of the ReinHeart.

  19. Feasibility of monitoring gas hydrate production with time-lapse VSP

    Energy Technology Data Exchange (ETDEWEB)

    Kowalsky, M.B.; Nakagawa, S.; Moridis, G.J.

    2009-11-01

    In this work we begin to examine the feasibility of using time-lapse seismic methods-specifically the vertical seismic profiling (VSP) method-for monitoring changes in hydrate accumulations that are predicted to occur during production of natural gas.

  20. A beam profile monitor using the ionization of residual gas in the beam pipe

    International Nuclear Information System (INIS)

    A beam profile monitor for high energy beams, which has no intercepting parts in the beam pipe, is described. It makes use of the ionization of the residual gas, which is still present in the vacuum chamber of the beam guiding system. The detection of the ionization products is performed with microchannel plates. (orig.)

  1. Design layout for gas monitoring system II (GMS-2) computer system

    Energy Technology Data Exchange (ETDEWEB)

    Vo, V.; Philipp, B.L.; Manke, M.P.

    1995-08-02

    This document provides a general overview of the computer systems software that perform the data acquisition and control for the 241-SY-101 Gas Monitoring System II (GMS-2). It outlines the system layout, and contains descriptions of components and the functions they perform. The GMS-2 system was designed and implemented by Los Alamos National Laboratory and supplied to Westinghouse Hanford Company

  2. Design layout for gas monitoring system II, GMS-2, computer system

    International Nuclear Information System (INIS)

    This document provides a general overview of the computer systems software that perform the data acquisition and control for the 241-SY-101 Gas Monitoring System II (GMS-2). It outlines the system layout, and contains descriptions of components and the functions they perform. The GMS-2 system was designed and implemented by Los Alamos National Laboratory and supplied to Westinghouse Hanford Company

  3. Control and monitoring of landfill gas underground migration at the City of Montreal sanitary landfill site

    International Nuclear Information System (INIS)

    The proposed paper covers the various aspects of control and monitoring of potential landfill gas (LFG) migration through soil voids or rock fractures at the City of Montreal sanitary landfill site. It depicts the social, geographical and geological context and presents a brief history of the landfill site. It describes the LFG collecting system and LFG migration monitoring equipment and programs. Finally it presents monitoring data taken over last few years. The landfill site is located in a well populated urban area. Since 1968, about 33 million metric tons of domestic and commercial waste have been buried in a former limestone quarry. Because of houses and buildings in the vicinity, 100 m in some locations, LFG underground migration is a major risk. LFG could indeed infiltrate buildings and reach explosive concentrations. So it must be controlled. The City of Montreal acquired the site in 1988 and has progressively built a LFG collecting system, composed of more than 288 vertical wells, to pump out of the landfill 280 million m3 of gas annually. To verify the efficiency of this system to minimize LFG underground migration, monitoring equipment and programs have also been designed and put into operation. The monitoring network, located all around the landfill area, is composed of 21 well nests automated to monitor presence of gas in the ground in real time. In addition, 55 individual wells, where manual measurements are made, are also available. To complete the monitoring program, some measurements are also taken in buildings, houses and underground utilities in the neighborhood of the site. Monitoring data show that LFG underground migration is well controlled. They also indicate significant decrease of migration over the years corresponding to improvements to the LFG collecting system

  4. Hypertensive patients' use of blood pressure monitors stationed in pharmacies and other locations: a cross-sectional mail survey

    Directory of Open Access Journals (Sweden)

    Mitchell C Madeline

    2008-10-01

    Full Text Available Abstract Background Blood pressure (BP monitors are commonly stationed in public places such as pharmacies, but it is uncertain how many people with hypertension currently use them. We sought to estimate the proportion of hypertensive patients who use these types of monitors and examine whether use varies by demographic or health characteristics. Methods We conducted a cross-sectional mail survey of hypertensive adults enrolled in a practice based research network of 24 primary care practices throughout the state of North Carolina. We analyzed results using descriptive statistics and examined bivariate associations using chi-square and independent associations using logistic regression. Results We received 530 questionnaires (76% response rate. Of 333 respondents (63% who reported checking their BP in locations other than their doctor's office or home, 66% reported using a monitor stationed in a pharmacy. Younger patients more commonly reported using pharmacy monitors (48% among those 65 years old and high school education (aOR 1.74; 95% CI 1.13–2.58 were associated with use of pharmacy-stationed monitors, but Black race was not. Patients with diabetes, heart disease, or stroke were not more likely to use pharmacy-stationed monitors. Conclusion Hypertensive patients' use of BP monitors located in pharmacies is common. Younger patients, Blacks, and those with high school education were slightly more likely to report using them. Because use of these monitors is so common, efforts to ensure their accuracy are important.

  5. Designing optimal greenhouse gas monitoring networks for Australia

    Science.gov (United States)

    Ziehn, T.; Law, R. M.; Rayner, P. J.; Roff, G.

    2016-01-01

    Atmospheric transport inversion is commonly used to infer greenhouse gas (GHG) flux estimates from concentration measurements. The optimal location of ground-based observing stations that supply these measurements can be determined by network design. Here, we use a Lagrangian particle dispersion model (LPDM) in reverse mode together with a Bayesian inverse modelling framework to derive optimal GHG observing networks for Australia. This extends the network design for carbon dioxide (CO2) performed by Ziehn et al. (2014) to also minimise the uncertainty on the flux estimates for methane (CH4) and nitrous oxide (N2O), both individually and in a combined network using multiple objectives. Optimal networks are generated by adding up to five new stations to the base network, which is defined as two existing stations, Cape Grim and Gunn Point, in southern and northern Australia respectively. The individual networks for CO2, CH4 and N2O and the combined observing network show large similarities because the flux uncertainties for each GHG are dominated by regions of biologically productive land. There is little penalty, in terms of flux uncertainty reduction, for the combined network compared to individually designed networks. The location of the stations in the combined network is sensitive to variations in the assumed data uncertainty across locations. A simple assessment of economic costs has been included in our network design approach, considering both establishment and maintenance costs. Our results suggest that, while site logistics change the optimal network, there is only a small impact on the flux uncertainty reductions achieved with increasing network size.

  6. Designing optimal greenhouse gas monitoring networks for Australia

    Directory of Open Access Journals (Sweden)

    T. Ziehn

    2015-08-01

    Full Text Available Atmospheric transport inversion is commonly used to infer greenhouse gas (GHG flux estimates from concentration measurements. The optimal location of ground based observing stations that supply these measurements can be determined by network design. Here, we use a Lagrangian particle dispersion model (LPDM in reverse mode together with a Bayesian inverse modelling framework to derive optimal GHG observing networks for Australia. This extends the network design for carbon dioxide (CO2 performed by Ziehn et al. (2014 to also minimize the uncertainty on the flux estimates for methane (CH4 and nitrous oxide (N2O, both individually and in a combined network using multiple objectives. Optimal networks are generated by adding up to 5 new stations to the base network, which is defined as two existing stations, Cape Grim and Gunn Point, in southern and northern Australia respectively. The individual networks for CO2, CH4 and N2O and the combined observing network show large similarities because the flux uncertainties for each GHG are dominated by regions of biologically productive land. There is little penalty, in terms of flux uncertainty reduction, for the combined network compared to individually designed networks. The location of the stations in the combined network is sensitive to variations in the assumed data uncertainty across locations. A simple assessment of economic costs has been included in our network design approach, considering both establishment and maintenance costs. Our results suggest that while site logistics change the optimal network, there is only a small impact on the flux uncertainty reductions achieved with increasing network size.

  7. Ocean observatory networks monitor gas hydrates systems - Updates from Cascadia

    Science.gov (United States)

    Scherwath, M.; Kelley, D. S.; Moran, K.; Philip, B. T.; Roemer, M.; Riedel, M.; Solomon, E. A.; Spence, G.; Heesemann, M.

    2015-12-01

    Seafloor observatories have been installed at the Cascadia margin with a long-term (>20 year) lifespan. These observatories consist of a variety of node locations cabled back to shore for continuous power and communication to instruments via high bandwidth internet access. Ocean Networks Canada (ONC) maintains two hydrate sites at Barkley Canyon and Clayoquot Slope off Vancouver Island, and the Ocean Observatories Initiative (OOI) Cabled Array connects to Hydrate Ridge off the Oregon coast. Together, these installations comprise a diverse suite of different experiments. For example, a seafloor crawler, operated by Jacobs University in Bremen, travels around the Barkley hydrate mounds on a daily basis and carries out a suite of measurements such as determining the rate of change of the benthic community composition. Another example is from several years of hourly sonar data showing gas bubbles rising from the seafloor near the Bullseye Vent with varying intensities, allowing statistically sound correlations with other seafloor parameters such as ground shaking, temperature and pressure variations and currents, where tidal pressure appearing as the main driver. The Southern Hydrate Ridge is now equipped with the world's first long-term seafloor mass spectrometer, co-located with a camera and lights, hydrophone, current meters, pressure sensor, autonomous dissolved oxygen and fluid samplers, and is surrounded by a seismometer array for local seismicity. In the future, long-term data will be continuously captured and made available throughout the year covering the full range of variations of the dynamic hydrate system, and expect additional experiments to be connected to the observatories from the broader research community.

  8. Loading of red blood cells with an analyte-sensitive dye for development of a long-term monitoring technique

    Science.gov (United States)

    Ritter, Sarah C.; Meissner, Kenith E.

    2012-03-01

    Measurement of blood analytes, such as pH and glucose, provide crucial information about a patient's health. Some such analytes, such as glucose in the case of diabetes, require long-term or near-continuous monitoring for proper disease management. However, current monitoring techniques are far from ideal: multiple-per-day finger stick tests are inconvenient and painful for the patient; implantable sensors have short functional life spans (i.e., 3-7 days). Red blood cells serve as an attractive alternative for carriers of analyte sensors. Once reintroduced to the blood stream, these carriers may continue to live for the remainder of their life span (120 days for humans). They are also biodegradable and biocompatible, thereby eliminating the immune system response common for many implanted devices. The proposed carrier system takes advantage of the ability of the red blood cells to swell in response to a decrease in the osmolarity of the extracellular solution. Just before the membranes lyse, they develop small pores on the scale of tens of nanometers. Analyte-sensitive dyes in the extracellular solution may then diffuse into the perforated red blood cells and become entrapped upon restoration of physiological temperature and osmolarity. Because the membranes contain various analyte transporters, intracellular analyte levels rapidly equilibrate to those of the extracellular solution. A fluorescent dye has been loaded inside of red blood cells using a preswelling technique. Alterations in preparation parameters have been shown to affect characteristics of the resulting dye-loaded red blood cells (e.g., intensity of fluorescence).

  9. Satellite Monitoring Systems for Shipping and Offshore Oil and Gas Industry in the Baltic Sea

    Directory of Open Access Journals (Sweden)

    Kostianoy A.G.

    2015-06-01

    Full Text Available Shipping activities, oil production and transport in the sea, oil handled in harbors, construction and exploitation of offshore oil and gas pipelines have a number of negative impacts on the marine environment and coastal zone of the seas. In 2004-2014 we elaborated several operational satellite monitoring systems for oil and gas companies in Russia and performed integrated satellite monitoring of the ecological state of coastal waters in the Baltic, Black, Caspian, and Kara seas, which included observation of oil pollution, suspended matter, and algae bloom at a fully operational mode. These monitoring systems differ from the existing ones by the analysis of a wide spectrum of satellite, meteorological and oceanographic data, as well as by a numerical modeling of oil spill transformation and transport in real weather conditions. Our experience in the Baltic Sea includes: (1 integrated satellite monitoring of oil production at the LUKOIL-KMN Ltd. D-6 oil rig in the Southeastern Baltic Sea (Kravtsovskoe oil field in 2004-2014; (2 integrated satellite monitoring of the “Nord Stream” underwater gas pipeline construction and exploitation in the Gulf of Finland (2010-2013; (3 numerical modeling of risks of oil pollution caused by shipping along the main maritime shipping routes in the Gulf of Finland, the Baltic Proper, and in the Southeastern Baltic Sea; (4 numerical modeling of risks of oil pollution caused by oil production at D-6 oil rig and oil transportation on shore via the connecting underwater oil pipeline.

  10. New Hadron Monitor By Using A Gas-Filled RF Resonator

    Energy Technology Data Exchange (ETDEWEB)

    Yonehara, Katsuya [Fermilab; Fasce, Giorgio [ECONA, Rome; Flanagan, Gene [MUONS Inc., Batavia; Johnson, Rolland [MUONS Inc., Batavia; Tollestrup, Alvin [Fermilab; Zwaska, Robert [Fermilab

    2015-05-01

    It is trend to build an intense neutrino beam facility for the fundamental physics research, e.g. LBNF at Fermilab, T2K at KEK, and CNGS at CERN. They have investigated a hadron monitor to diagnose the primary/secondary beam quality. The existing hadron monitor based on an ionization chamber is not robust in the high-radiation environment vicinity of MW-class secondary particle production targets. We propose a gas-filled RF resonator to use as the hadron monitor since it is simple and hence radiation robust in this environment. When charged particles pass through the resonator they produce ionized plasma via the Coulomb interaction with the inert gas. The beam-induced plasma changes the permittivity of inert gas. As a result, a resonant frequency in the resonator shifts with the amount of ionized electrons. The radiation sensitivity is adjustable by the inert gas pressure and the RF amplitude. The hadron profile will be reconstructed with a tomography technique in the hodoscope which consists of X, Y, and theta layers by using a strip-shaped gas resonator. The sensitivity and possible system design will be shown in this presentation.

  11. Gas Filled RF Resonator Hadron Beam Monitor for Intense Neutrino Beam Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Yonehara, Katsuya [Fermilab; Abrams, Robert [MUONS Inc., Batavia; Dinkel, Holly [U. Missouri, Columbia; Freemire, Ben [IIT, Chicago; Johnson, Rolland [MUONS Inc., Batavia; Kazakevich, Grigory [MUONS Inc., Batavia; Tollestrup, Alvin [Fermilab; Zwaska, Robert [Fermilab

    2016-06-01

    MW-class beam facilities are being considered all over the world to produce an intense neutrino beam for fundamental particle physics experiments. A radiation-robust beam monitor system is required to diagnose the primary and secondary beam qualities in high-radiation environments. We have proposed a novel gas-filled RF-resonator hadron beam monitor in which charged particles passing through the resonator produce ionized plasma that changes the permittivity of the gas. The sensitivity of the monitor has been evaluated in numerical simulation. A signal manipulation algorithm has been designed. A prototype system will be constructed and tested by using a proton beam at the MuCool Test Area at Fermilab.

  12. Barriers to self-monitoring of blood glucose among adults with diabetes in an HMO: A cross sectional study

    Directory of Open Access Journals (Sweden)

    Barton Mary B

    2003-03-01

    Full Text Available Abstract Background Recent studies suggest that patients at greatest risk for diabetes complications are least likely to self-monitor blood glucose. However, these studies rely on self-reports of monitoring, an unreliable measure of actual behavior. The purpose of the current study was to examine the relationship between patient characteristics and self-monitoring in a large health maintenance organization (HMO using test strips as objective measures of self-monitoring practice. Methods This cross-sectional study included 4,565 continuously enrolled adult managed care patients in eastern Massachusetts with diabetes. Any self-monitoring was defined as filling at least one prescription for self-monitoring test strips during the study period (10/1/92–9/30/93. Regular SMBG among test strip users was defined as testing an average of once per day for those using insulin and every other day for those using oral sulfonylureas only. Measures of health status, demographic data, and neighborhood socioeconomic status were obtained from automated medical records and 1990 census tract data. Results In multivariate analyses, lower neighborhood socioeconomic status, older age, fewer HbA1c tests, and fewer physician visits were associated with lower rates of self-monitoring. Obesity and fewer comorbidities were also associated with lower rates of self-monitoring among insulin-managed patients, while black race and high glycemic level (HbA1c>10 were associated with less frequent monitoring. For patients taking oral sulfonylureas, higher dose of diabetes medications was associated with initiation of self-monitoring and HbA1c lab testing was associated with more frequent testing. Conclusions Managed care organizations may face the greatest challenges in changing the self-monitoring behavior of patients at greatest risk for poor health outcomes (i.e., the elderly, minorities, and people living in low socioeconomic status neighborhoods.

  13. Rearranged EML4-ALK fusion transcripts sequester in circulating blood platelets and enable blood-based crizotinib response monitoring in non-small-cell lung cancer

    Science.gov (United States)

    Nilsson, R. Jonas A.; Karachaliou, Niki; Berenguer, Jordi; Gimenez-Capitan, Ana; Schellen, Pepijn; Teixido, Cristina; Tannous, Jihane; Kuiper, Justine L.; Drees, Esther; Grabowska, Magda; van Keulen, Marte; Heideman, Danielle A.M.; Thunnissen, Erik; Dingemans, Anne-Marie C.; Viteri, Santiago; Tannous, Bakhos A.; Drozdowskyj, Ana; Rosell, Rafael; Smit, Egbert F.; Wurdinger, Thomas

    2016-01-01

    Purpose: Non-small-cell lung cancers harboring EML4-ALK rearrangements are sensitive to crizotinib. However, despite initial response, most patients will eventually relapse, and monitoring EML4-ALK rearrangements over the course of treatment may help identify these patients. However, challenges associated with serial tumor biopsies have highlighted the need for blood-based assays for the monitoring of biomarkers. Platelets can sequester RNA released by tumor cells and are thus an attractive source for the non-invasive assessment of biomarkers. Methods: EML4-ALK rearrangements were analyzed by RT-PCR in platelets and plasma isolated from blood obtained from 77 patients with non-small-cell lung cancer, 38 of whom had EML4-ALK-rearranged tumors. In a subset of 29 patients with EML4-ALK-rearranged tumors who were treated with crizotinib, EML4-ALK rearrangements in platelets were correlated with progression-free and overall survival. Results: RT-PCR demonstrated 65% sensitivity and 100% specificity for the detection of EML4-ALK rearrangements in platelets. In the subset of 29 patients treated with crizotinib, progression-free survival was 3.7 months for patients with EML4-ALK+ platelets and 16 months for those with EML4-ALK− platelets (hazard ratio, 3.5; P = 0.02). Monitoring of EML4-ALK rearrangements in the platelets of one patient over a period of 30 months revealed crizotinib resistance two months prior to radiographic disease progression. Conclusions: Platelets are a valuable source for the non-invasive detection of EML4-ALK rearrangements and may prove useful for predicting and monitoring outcome to crizotinib, thereby improving clinical decisions based on radiographic imaging alone. PMID:26544515

  14. [Multicenter evaluation of the reliability of five blood glucose monitoring systems].

    Science.gov (United States)

    Jday-Daly, Ismahen; Augereau-Vacher, Christine; De Curraize, Claire; Fonfrède, Michèle; Lefevre, Guillaume; Lacour, Bernard; Hennequin-Le Meur, Carole

    2011-01-01

    As part of a tender AP-HP Paris Hospitals, an assessment of the reliability record of five blood glucose monitoring systems (BGMSs) (Optium Xceed (Abbott), Contour TS (Bayer), One Touch Ultra (Lifescan), Stat Strip Xpress (Nova) and Accu Check (Roche) and an evaluation of their sensitivity to changes in hematocrit were conducted in 4 hospitals of Paris. In terms of inaccuracy, all BGMSs have submitted CV repetability under the limits of acceptability. One BGMS (Lifescan) presented a CV of reproducibility outside limit of acceptability (13.1%). The inaccuracy was measured by a comparison method on multiparameter analyser relative to the hexokinase method for two sites, the glucose oxidase for the two others. The coefficients of correlation varied from 0.8405 to 0.9303. However, according to both defined acceptability criteria (absolute value difference between the result acquired on analyzer and those determined with the BGMS), the percentage of results outside acceptability was above 20% for two BGMSs (Abbott and Lifescan). Similarly, a net effect of changes in hematocrit was observed on the results of those two BGMSs. BGMS Nova was the most reliable, because of the correction device for hematocrit and blank substractions owed to interferences. In terms of expertise, BGMSs Nova and Roche have been selected with the best analytical performance and practicability satisfactory. In the future, accreditation with standard NF/EN 22870 requested for point of care testing, will require a close collaboration between biologists and clinicians to establish a system of strict quality control to detect deviations of these BGMSs. PMID:21463996

  15. Reliability of point-of-care hematocrit, blood gas, electrolyte, lactate and glucose measurement during cardiopulmonary bypass.

    NARCIS (Netherlands)

    Steinfelder-Visscher, J.; Weerwind, P.W.; Teerenstra, S.; Brouwer, M.H.J.

    2006-01-01

    BACKGROUND: Recently, the GEM Premier blood gas analyser was upgraded to the GEM Premier 3000. In addition to pH, pCO2, pO2, Na+, K+, Ca2+, and hematocrit measurement, glucose and lactate can be measured on the GEM Premier 3000. In this prospective clinical study, the analytical performance of the G

  16. Implementation of the ABL-90 blood gas analyzer in a ground-based mobile emergency care unit

    DEFF Research Database (Denmark)

    Mikkelsen, Søren; Wolsing-Hansen, Jonathan; Nybo, Mads;

    2015-01-01

    Point-of Care analysis is increasingly being applied in the prehospital scene. Arterial blood gas analysis is one of many new initiatives adding to the diagnostic tools of the prehospital physician. In this paper we present a study on the feasibility of the Radiometer ABL-90 in a ground...

  17. Ground gas monitoring: implications for hydraulic fracturing and CO2 storage.

    Science.gov (United States)

    Teasdale, Christopher J; Hall, Jean A; Martin, John P; Manning, David A C

    2014-12-01

    Understanding the exchange of carbon dioxide (CO2) and methane (CH4) between the geosphere and atmosphere is essential for the management of anthropogenic emissions. Human activities such as carbon capture and storage and hydraulic fracturing ("fracking") affect the natural system and pose risks to future global warming and to human health and safety if not engineered to a high standard. In this paper an innovative approach of expressing ground gas compositions is presented, using data derived from regulatory monitoring of boreholes in the unsaturated zone at infrequent intervals (typically 3 months) with data from a high frequency monitoring instrument deployed over periods of weeks. Similar highly variable trends are observed for time scales ranging from decades to hourly for boreholes located close to sanitary landfill sites. Additionally, high frequency monitoring data confirm the effect of meteorological controls on ground gas emissions; the maximum observed CH4 and CO2 concentrations in a borehole monitored over two weeks were 40.1% v/v and 8.5% v/v respectively, but for 70% of the monitoring period only air was present. There is a clear weakness in current point monitoring strategies that may miss emission events and this needs to be considered along with obtaining baseline data prior to starting any engineering activity. PMID:25363162

  18. Monitoring of power generation from landfill gas at Cory Environmental Ltd., Mucking Marshes

    International Nuclear Information System (INIS)

    The energy recovery scheme at Mucking Marshes landfill site, operated by Cory Environmental Limited, has been in operation since October 1991. Using landfill gas abstracted from the site, a gas turbine generates up to 3.2 MW net electric power for export. Operation and performance of the scheme has been monitored over the period January 1995 to August 1996. Overall performance since the first use of the turbine has also been studied, and has shown reliable and profitable operation. The capital cost of the gas turbine and gas compressor plant was approximately 1.8 million. Actual gas collection wells, pipework, pumping and monitoring facilities, while essential to the scheme, are considered part of the gas control equipment needed for the landfill site. Based on a notional electricity selling price of 4p/kWh, the current annual income from exported power is 550,000. This would be substantially increased by increasing the running time and power output of the turbine. For the period 1992-1996, the turbine ran for 80.8% of the time, at an average export power of 1.97 MW or 62% of the contracted maximum. A potential increase of up to 100% in annual export is therefore available, giving an even more favourable rate of return on investment. (UK)

  19. On-line monitoring of dissolved gas-in-oil with FTIR spectra

    Institute of Scientific and Technical Information of China (English)

    Xianyong Liu; Yunluo Liu; Li Yue

    2003-01-01

    To overcome the disadvantages of conventional DGA (dissolved gas-in-oil) analysis using gas chromatography and other electrochemical sensors, initial researches were completed to realize on-line monitoring of dissolved gas-in-oil of power transformers using FTIR (Fourier Transform InfraRed) spectroscopy. Gas cell method is used to determine the characteristic absorption peaks of each diagnostic gas; simple and novel devices and procedures were designed in order to get measurable samples and spectra of mixed diagnostic gases with known concentration are taken using long optical path gas cell. The range of wavelength is estimated to be 3.0-13.9 μm from experimental spectra data. Hence the corresponding sampling frequency range should be in 536-4288 Hz and usable optical materials are suggested. It is concluded that a resolution of 10 cm-1 may well satisfy the monitoring of all diagnostic gases and water content except hydrogen, and the lowest detection limit may be as low as 2×l0-8 to acetylene with a 2.4-meter-long optical length.

  20. Artificial neural networks for monitoring the gas turbine; Artificiella neuronnaet foer gasturbinoevervakning

    Energy Technology Data Exchange (ETDEWEB)

    Fast, Magnus; Thern, Marcus [Inst. foer Energivetenskaper, Lunds Univ. (Sweden)

    2011-10-15

    Through available historical operational data from gas turbines, fast, accurate, easy to use and reliable models can be developed. These models can be used for monitoring of gas turbines and assist in the transition from today's time-based maintenance to condition based maintenance. For the end user this means that, because only operational data is needed, they can easily develop their own tools independent of the manufacturer. Traditionally these types of models are constructed with physical relations for e.g., mass, energy and momentum. To develop a model with physical relations is often laborious and requires classified information which the end user does not have access to. Research has shown that by producing models using operational data a very high model precision can be achieved. When implementing these models in a power plant computer system the gas turbine's performance can be monitored in real time. This can facilitate fault detection at an early stage, and if necessary, stop the gas turbine before major damage occurs. For the power plant owner, this means that the gas turbine reliability is increased since the need for maintenance is minimized and the downtime is reduced. It also means that a measure of the gas turbine's overall status is continuously available, with respect to e.g. degradation, which helps in the planning of service intervals. The tool used is called artificial neural networks (ANN), a collective name for a number of algorithms for information processing that attempts to mimic the nerve cell function. Just like real networks of neurons in a brain, these artificial neural networks have the ability to learn. In this case, neural networks are trained to mimic the behavior of gas turbines by introducing them to data from real gas turbines. After a neural network is trained it represents a very accurate model of the gas turbine that it is trained to emulate.

  1. Enabling Technology for Monitoring & Predicting Gas Turbine Health & Performance in IGCC Powerplants

    Energy Technology Data Exchange (ETDEWEB)

    Kenneth A. Yackly

    2005-12-01

    The ''Enabling & Information Technology To Increase RAM for Advanced Powerplants'' program, by DOE request, was re-directed, de-scoped to two tasks, shortened to a 2-year period of performance, and refocused to develop, validate and accelerate the commercial use of enabling materials technologies and sensors for coal/IGCC powerplants. The new program was re-titled ''Enabling Technology for Monitoring & Predicting Gas Turbine Health & Performance in IGCC Powerplants''. This final report summarizes the work accomplished from March 1, 2003 to March 31, 2004 on the four original tasks, and the work accomplished from April 1, 2004 to July 30, 2005 on the two re-directed tasks. The program Tasks are summarized below: Task 1--IGCC Environmental Impact on high Temperature Materials: The first task was refocused to address IGCC environmental impacts on high temperature materials used in gas turbines. This task screened material performance and quantified the effects of high temperature erosion and corrosion of hot gas path materials in coal/IGCC applications. The materials of interest included those in current service as well as advanced, high-performance alloys and coatings. Task 2--Material In-Service Health Monitoring: The second task was reduced in scope to demonstrate new technologies to determine the inservice health of advanced technology coal/IGCC powerplants. The task focused on two critical sensing needs for advanced coal/IGCC gas turbines: (1) Fuel Quality Sensor to rapidly determine the fuel heating value for more precise control of the gas turbine, and detection of fuel impurities that could lead to rapid component degradation. (2) Infra-Red Pyrometer to continuously measure the temperature of gas turbine buckets, nozzles, and combustor hardware. Task 3--Advanced Methods for Combustion Monitoring and Control: The third task was originally to develop and validate advanced monitoring and control methods for coal/IGCC gas

  2. Cardiac Morphology and Function, and Blood Gas Transport in Aquaporin-1 Knockout Mice

    Science.gov (United States)

    Al-Samir, Samer; Wang, Yong; Meissner, Joachim D.; Gros, Gerolf; Endeward, Volker

    2016-01-01

    We have studied cardiac and respiratory functions of aquaporin-1-deficient mice by the Pressure-Volume-loop technique and by blood gas analysis. In addition, the morphological properties of the animals' hearts were analyzed. In anesthesia under maximal dobutamine stimulation, the mice exhibit a moderately elevated heart rate of < 600 min−1 and an O2 consumption of ~0.6 ml/min/g, which is about twice the basal rate. In this state, which is similar to the resting state of the conscious animal, all cardiac functions including stroke volume and cardiac output exhibited resting values and were identical between deficient and wildtype animals. Likewise, pulmonary and peripheral exchange of O2 and CO2 were normal. In contrast, several morphological parameters of the heart tissue of deficient mice were altered: (1) left ventricular wall thickness was reduced by 12%, (2) left ventricular mass, normalized to tibia length, was reduced by 10–20%, (3) cardiac muscle fiber cross sectional area was decreased by 17%, and (4) capillary density was diminished by 10%. As the P-V-loop technique yielded normal end-diastolic and end-systolic left ventricular volumes, the deficient hearts are characterized by thin ventricular walls in combination with normal intraventricular volumes. The aquaporin-1-deficient heart thus seems to be at a disadvantage compared to the wild-type heart by a reduced left-ventricular wall thickness and an increased diffusion distance between blood capillaries and muscle mitochondria. While under the present quasi-resting conditions these morphological alterations have no consequences for cardiac function, we expect that the deficient hearts will show a reduced maximal cardiac output. PMID:27252655

  3. Stratification of Ambulatory Blood Pressure Monitoring Findings by Cluster Analysis in Patients with Arterial Hypertension, Obesity and Albuminuria

    OpenAIRE

    Samoyavcheva S.V.; Shkarin Vl.V.

    2013-01-01

    The aim of the investigation was to study the characteristics of ambulatory blood pressure monitoring (ABPM) indices in the combination of arterial hypertension (AH) with obesity and albuminuria using cluster analysis. Material and Methods. The study involved 70 AH patients randomly chosen, aged from 23 to 71 years (mean age — 47.9 years). ABPM was performed before antihypertensive therapy administration. We estimated body mass index and albuminuria level. ABPM indices were stratified int...

  4. The influence of self-owned home blood pressure monitoring (HBPM) on primary care patients with hypertension: A qualitative study

    OpenAIRE

    Abdullah Adina; Othman Sajaratulnisah

    2011-01-01

    Abstract Background Home blood pressure monitoring (HBPM) is gaining popularity among hypertensive patients. This study aimed to explore the influence of self-initiated HBPM on primary care patients with hypertension. Methods Six in-depth interviews and two focus group discussions were conducted, taking into consideration the experiences of 24 primary care patients with hypertension. These patients had been using HBPM as part of their hypertension management. The overriding influences were gr...

  5. Community pharmacy-based intervention to improve self-monitoring of blood glucose in type 2 diabetic patients

    Directory of Open Access Journals (Sweden)

    Müller U

    2006-12-01

    Full Text Available Self-monitoring of blood glucose (SMBG is clearly correlated with increased life expectancy and quality of life in type 2 diabetic patients. Objective: The objective of our study was to record and assess the errors patients make in preparing, performing, and processing self-monitoring of blood glucose (SMBG. Furthermore, the study aimed to determine to what extent a single standardized SMBG instruction session in a community pharmacy might reduce the number of patients making errors or the number of errors per patient. Methods: Between May and October 2005, SMBG of 462 randomly selected patients with type 2 diabetes was monitored in 32 pharmacies specialized in diabetes care. The patients performed blood glucose self-tests using their own blood glucose meters. Self-testing was monitored using a standardized documentation sheet on which any error made during the performance of the test was recorded. If necessary, patients were instructed in the accurate operation of their meter and the use of the necessary equipment. Additionally, patients obtained written instructions. Six weeks later, assessment of the quality of patient’s SMBG was repeated.Results: During the first observation, 383 patients (83% made at least one mistake performing SMBG. By the time of the second observation, this frequency had fallen to 189 (41% (p<0.001. The average number of mistakes fell from 3.1 to 0.8 per patient. Mistakes that may potentially have led to inaccurate readings were initially recorded for 283 (61% and at study end for 110 (24% patients (p<0.001. Conclusion: It is important to periodically instruct type 2 diabetic patients in the proper SMBG technique in order to ensure accurate measurements. In this study it was shown that community pharmacies specialized in diabetes care can provide this service effectively.

  6. Validation of the integration of technology that measures additional “vascular” indices into an ambulatory blood pressure monitoring system

    OpenAIRE

    Kotovskaya, Yulia V; Kobalava, Zhanna D; Orlov, Artemy V

    2014-01-01

    Background The objective of this study was to validate the novel integration of oscillometric (Vasotens®) technology into a BPLab® ambulatory blood pressure (BP) monitoring system to measure central BP, the aortic augmentation index, and pulse wave velocity (PWV) compared with the recommended and widely accepted tonometric method. Methods The ARTERY Society guidelines for comparison of PWV measurement techniques were used as the basis for recruitment of 99 individuals (mean age 44±19 years, 5...

  7. Validation of the integration of technology that measures additional “vascular” indices into an ambulatory blood pressure monitoring system

    OpenAIRE

    Kotovskaya YV; Kobalava ZD; Orlov AV

    2014-01-01

    Yulia V Kotovskaya,1 Zhanna D Kobalava,1 Artemy V Orlov21Propedeutics Department, Peoples’ Friendship University of Russia, 2Competitive System Analysis Department (No 65), National Research Nuclear University MEPhI, Moscow, RussiaBackground: The objective of this study was to validate the novel integration of oscillometric (Vasotens®) technology into a BPLab® ambulatory blood pressure (BP) monitoring system to measure central BP, the aortic augmentation index, and pulse wave ve...

  8. Evaluation of OneTouch Verio, a new blood glucose self-monitoring system for patients with diabetes

    DEFF Research Database (Denmark)

    Littman, Karin; Petersen, Eva R.B.; Pussinen, Christel;

    2013-01-01

    Introduction. Self-monitoring of blood glucose (SMBG) is important in diabetes management. Reliable and user-friendly instruments are essential. OneTouch Verio® is a new blood glucose concentration-measuring system designed to be used by patients with diabetes and healthcare professionals. The...... objective of the present study was to evaluate the analytical performance of the OneTouch Verio®. Method. The OneTouch Verio® was evaluated by the Scandinavian evaluation of laboratory equipment for primary healthcare (SKUP) according to a protocol based on ISO 15197 and the American Diabetes Association...... (ADA) quality goals. Blood samples were collected and measured on the OneTouch Verio® by laboratory personnel and patients with diabetes (n = 91, randomized into groups receiving personal training or mail instructions for the OneTouch Verio® system). Results were compared to a validated routine method...

  9. Clinical significance of blood gas and electrolyte analysis, CK, CK-MB and HBDH changes in neonatal asphyxia

    Institute of Scientific and Technical Information of China (English)

    Bao-Hua Xu; Xin Lin; Mi-Jia Huang

    2016-01-01

    Objective:To investigate the clinical significance of blood gas and electrolyte analysis, CK, CK-MB and HBDH changes in neonatal asphyxia.Methods:A total of 100 newborns with asphyxia who visited in our hospital were collected, and divided into severe group (n=20) and mild group (n=80) according to the asphyxia degree, and 50 healthy newborns regarded as control group. The 3 groups received blood gas analysis (pH, BE and PaCO2), electrolyte (K+, Na+ and Ca2+) and 3 kinds of enzymes (CK, CK-MB and HBDH) were tested and compared.Results: Compared with control group, pH and BE of blood gas indexes decreased significantly and PaCO2 increased significantly in severe group (P0.05). Compared with mild group, pH and BE of blood gas indexes decreased significantly and PaCO2 increased significantly in severe group (P0.05). Compared with mild group, the level of Ca2+ decreased significantly in severe group (P<0.05); Compared with control group, the levels of CK, CK-MB and HBDH increased significantly in severe and mild group (P<0.05). Compared with mild group, the levels of CK, CK-MB and HBDH increased significantly in severe group (P<0.05).Conclusions:The detection of blood gas and electrolyte analysis, CK, CK-MB and HBDH can provide an objective evidence for the diagnosis of neonatal asphyxia and estimation of severity degree which was helpful in clinical treatment.

  10. Development of a Flexible Implantable Sensor for Postoperative Monitoring of Blood Flow

    OpenAIRE

    Cannata, Jonathan M.; Chilipka, Thomas; Yang, Hao-Chung; Han, Sukgu; Ham, Sung W.; Rowe, Vincent L.; Weaver, Fred A; Shung, K. Kirk; Vilkomerson, David

    2012-01-01

    We have developed a blood flow measurement system using Doppler ultrasound flow sensors fabricated of thin and flexible piezoelectric-polymer films. These flow sensors can be wrapped around a blood vessel and accurately measure flow. The innovation that makes this flow sensor possible is the diffraction-grating transducer. A conventional transducer produces a sound beam perpendicular to its face; therefore, when placed on the wall of a blood vessel, the Doppler shift in the backscattered ultr...

  11. Respiratory compromise: a rare complication of transcutaneous electrical nerve stimulation for angina pectoris.

    OpenAIRE

    Mann, C. J.

    1996-01-01

    Electrical stimulation of any muscle group may produce tetany. If the intercostal muscles are involved this may lead to respiratory embarrasment. A case is presented in which transcutaneous electrical nerve stimulation (TENS) treatment for angina pectoris resulted in respiratory arrest.

  12. Body Position Influences Which Neural Structures Are Recruited by Lumbar Transcutaneous Spinal Cord Stimulation

    OpenAIRE

    Danner, Simon M.; Matthias Krenn; Hofstoetter, Ursula S.; Andrea Toth; Winfried Mayr; Karen Minassian

    2016-01-01

    Transcutaneous stimulation of the human lumbosacral spinal cord is used to evoke spinal reflexes and to neuromodulate altered sensorimotor function following spinal cord injury. Both applications require the reliable stimulation of afferent posterior root fibers. Yet under certain circumstances, efferent anterior root fibers can be co-activated. We hypothesized that body position influences the preferential stimulation of sensory or motor fibers. Stimulus-triggered responses to transcutaneous...

  13. Transcutaneous estimation of arterial carbon dioxide in intensive care. Which electrode temperature?

    OpenAIRE

    Cheriyan, G; Helms, P; Paky, F; Marsden, D.; Chiu, M. C.

    1986-01-01

    Transcutaneous and arterial carbon dioxide were measured simultaneously in 57 children (age range 10 days to 14.3 years) undergoing intensive care. All were haemodynamically stable at the time of study. Mean calibration time with 5 and 10% carbon dioxide was 43 (range 38-58) minutes and mean arterialisation time was 10.5 (range 3-30) minutes. Duplicate hourly arterial samples over a four hour period showed that transcutaneous: arterial carbon dioxide correlation was independent of electrode t...

  14. Microneedle-mediated transcutaneous immunization with plasmid DNA coated on cationic PLGA nanoparticles

    OpenAIRE

    Kumar, Amit; Wonganan, Piyanuch; Sandoval, Michael A.; Li, Xinran; Zhu, Saijie; Cui, Zhengrong

    2012-01-01

    Previously, it was shown that microneedle-mediated transcutaneous immunization with plasmid DNA can potentially induce a stronger immune response than intramuscular injection of the same plasmid DNA. In the present study, we showed that the immune responses induced by transcutaneous immunization by applying plasmid DNA onto a skin area pretreated with solid microneedles were significantly enhanced by coating the plasmid DNA on the surface of cationic nanoparticles. In addition, the net surfac...

  15. Self-monitoring of tear glucose: the development of a tear based glucose sensor as an alternative to self-monitoring of blood glucose.

    Science.gov (United States)

    La Belle, Jeffrey T; Adams, Anngela; Lin, Chi-En; Engelschall, Erica; Pratt, Breanna; Cook, Curtiss B

    2016-07-28

    Tear glucose sensing for diabetes management has long been sought as an alternative to more invasive self-monitoring of blood glucose (SMBG). However, tear glucose sensors were known to have limitations, including correlation issues with blood glucose due to low sample volume, low concentration of glucose in the tear fluid, and evaporation of the tear sample. An engineering design approach to solve these problems led to the development of an integrated device capable of collecting the tear sample from the ocular surface with little to no stress on the eye, with an extremely low limit of detection, broad dynamic range, and rapid detection and analysis of sample. Here we present the development of a prototypical self-monitoring of tear glucose (SMTG) sensor, summarizing bench studies on the enzymes and their specificity, the development of the fluid capture device and its manufacture and performance and results of system testing in an animal study where safety, lag time and tear glucose to blood glucose correlation were assessed. PMID:27327531

  16. Gas Bubble Disease Monitoring and Research of Juvenile Salmonids : Annual Report 1996.

    Energy Technology Data Exchange (ETDEWEB)

    Maule, Alec G.; Beeman, John W.; Hans, Karen M.; Mesa, M.G.; Haner, P.; Warren, J.J. [Geological Survey, Cook, WA (United States). Columbia River Research Lab.

    1997-10-01

    This document describes the project activities 1996--1997 contract year. This report is composed of three chapters which contain data and analyses of the three main elements of the project: field research to determine the vertical distribution of migrating juvenile salmonids, monitoring of juvenile migrants at dams on the Snake and Columbia rivers, and laboratory experiments to describe the progression of gas bubble disease signs leading to mortality. The major findings described in this report are: A miniature pressure-sensitive radio transmitter was found to be accurate and precise and, after compensation for water temperature, can be used to determine the depth of tagged-fish to within 0.32 m of the true depth (Chapter 1). Preliminary data from very few fish suggest that depth protects migrating juvenile steelhead from total dissolved gas supersaturation (Chapter 1). As in 1995, few fish had any signs of gas bubble disease, but it appeared that prevalence and severity increased as fish migrated downstream and in response to changing gas supersaturation (Chapter 2). It appeared to gas bubble disease was not a threat to migrating juvenile salmonids when total dissolved gas supersaturation was < 120% (Chapter 2). Laboratory studies suggest that external examinations are appropriate for determining the severity of gas bubble disease in juvenile salmonids (Chapter 3). The authors developed a new method for examining gill arches for intravascular bubbles by clamping the ventral aorta to reduce bleeding when arches were removed (Chapter 3). Despite an outbreak of bacterial kidney disease in the experimental fish, the data indicate that gas bubble disease is a progressive trauma that can be monitored (Chapter 3).

  17. Penile rehabilitation with a vacuum erectile device in an animal model is related to an antihypoxic mechanism: blood gas evidence.

    Science.gov (United States)

    Lin, Hao-Cheng; Yang, Wen-Li; Zhang, Jun-Lan; Dai, Yu-Tian; Wang, Run

    2013-05-01

    Our previous study showed that vacuum erectile device (VED) therapy has improved erectile function in rats with bilateral cavernous nerve crush (BCNC) injuries. This study was designed to explore the mechanism of VED in penile rehabilitation by analyzing cavernous oxygen saturation (SO2) and to examine the effect of VED therapy on preventing penile shrinkage after BCNC. Thirty adult Sprague-Dawley rats were randomly assigned into three groups: group 1, sham surgery; group 2, BCNC; and group 3, BCNC+VED. Penile length and diameter were measured on a weekly basis. After 4 weeks of therapy, the penile blood was extracted by three methods for blood gas analysis (BGA): method 1, cavernous blood was aspirated at the flaccid state; method 2, cavernous blood was aspirated at the traction state; and method 3, cavernous blood was aspirated immediately after applying VED. SO2 values were tested by the blood gas analyzer. The results showed that VED therapy is effective in preventing penile shrinkage induced by BCNC (Penile shortening: BCNC group 1.9±1.1 mm; VED group 0.3±1.0 mm; PVED group 0.04±0.14 mm; PVED application (88.25%±4.94%) compared to the flaccid (76.53%±4.16%) or traction groups (78.93%±2.56%) (PVED application were 62% arterial and 38% venous blood. These findings suggest that VED therapy can effectively preserve penile size in rats with BCNC injury. The beneficial effect of VED therapy is related to antihypoxia by increasing cavernous blood SO2. PMID:23564044

  18. Laser speckle contrast imaging for monitoring changes in microvascular blood flow

    DEFF Research Database (Denmark)

    Ambrus, Rikard; Strandby, Rune B.; Svendsen, Lars Bo;

    2016-01-01

    BACKGROUND/AIMS: Microvascular blood flow is essential for healing and predicts surgical outcome. The aim of the current study was to investigate the relation between fluxes measured with the laser speckle contrast imaging (LSCI) technique and changes in absolute blood flow. In addition, we studied...

  19. Transcutaneous carbon dioxide during sleep-disordered breathing.

    Science.gov (United States)

    Rimpilä, Ville; Hosokawa, Keisuke; Huhtala, Heini; Saaresranta, Tarja; Salminen, Aaro V; Polo, Olli

    2015-12-01

    Respiratory drive is tightly controlled by the carbon dioxide levels. We tested the hypothesis that sequences of sleep apnoea (obstructive, central or mixed), hypopnoea and flow limitation are characterized by different levels of transcutaneous CO2 (PtcCO2). Polygraphic recordings (n=555) from patients with suspected sleep-disordered breathing (SDB) were retrospectively screened to find sequences (5 min or 10 events) of both SDB and steady breathing. Eighty-eight SDB sequences from 44 patients were included and PtcCO2 and SpO2 values were collected. PtcCO2 values during sequences were normalized by setting wakefulness level as 100%. In terms of PtcCO2, apnoea sequences with central component (central (n=7) and mixed (n=3) apnoea) did not differ from wakefulness (102.0% vs 100%, p=0.122) whereas obstructive apnoea (105.8%, pmonitoring during sleep adds to the understanding of different SDB phenotypes. PMID:26474829

  20. Continued Development of Compact Multi-gas Monitor for Life Support Systems Control in Space

    Science.gov (United States)

    Delgado-Alonso, Jesús; Phillips, Straun; Chullen, Cinda; Quinn, Gregory

    2016-01-01

    Miniature optic gas sensors (MOGS) based on luminescent materials have shown great potential as alternatives to Near-Infrared-based gas sensor systems for the advanced space suit portable life support system (PLSS). The unique capability of MOGS for carbon dioxide and oxygen monitoring under wet conditions has been reported, as has the fast recovery of MOGS humidity sensors after long periods of being wet. Lower volume and power requirements are also potential advantages of MOGS over both traditional and advanced Non-Dispersive Infrared (NDIR) gas sensors, which have shown so far longer life than luminescent sensors. This paper presents the most recent results in the development and analytical validation of a compact multi-gas sensor unit based on luminescent sensors for the PLSS. Results of extensive testing are presented, including studies conducted at Intelligent Optical Systems laboratories, a United Technology Corporation Aerospace Systems (UTAS) laboratory, and a Johnson Space Center laboratory. The potential of this sensor technology for gas monitoring in PLSSs and other life support systems and the advantages and limitations found through detailed sensor validation are discussed.

  1. A Gas-Jet Profile Monitor for the CLIC Drive Beam

    CERN Document Server

    Jeff, A; Lefevre, T; Tzoganis, V; Welsch, C P

    2013-01-01

    The Compact Linear Collider (CLIC) will use a novel acceleration scheme in which energy extracted from a very intense beam of relatively low-energy electrons (the Drive Beam) is used to accelerate a lower intensity Main Beam to very high energy. The high intensity of the Drive Beam, with pulses of more than 1015 electrons, poses a challenge for conventional profile measurements such as wire scanners. Thus, new non-invasive profile measurements are being investigated. Profile monitors using gas ionisation or fluorescence have been used at a number of accelerators. Typically, extra gas must be injected at the monitor and the rise in pressure spreads for some distance down the beam pipe. In contrast, a gas jet can be fired across the beam into a receiving chamber, with little gas escaping into the rest of the beam pipe. In addition, a gas jet shaped into a thin plane can be used like a screen on which the beam crosssectionis imaged. In this paper we present some arrangements for the generation of such a jet. In ...

  2. Development of a pump flow estimator for rotary blood pumps to enhance monitoring of ventricular function.

    Science.gov (United States)

    Granegger, Marcus; Moscato, Francesco; Casas, Fernando; Wieselthaler, Georg; Schima, Heinrich

    2012-08-01

    Estimation of instantaneous flow in rotary blood pumps (RBPs) is important for monitoring the interaction between heart and pump and eventually the ventricular function. Our group has reported an algorithm to derive ventricular contractility based on the maximum time derivative (dQ/dt(max) as a substitute for ventricular dP/dt(max) ) and pulsatility of measured flow signals. However, in RBPs used clinically, flow is estimated with a bandwidth too low to determine dQ/dt(max) in the case of improving heart function. The aim of this study was to develop a flow estimator for a centrifugal pump with bandwidth sufficient to provide noninvasive cardiac diagnostics. The new estimator is based on both static and dynamic properties of the brushless DC motor. An in vitro setup was employed to identify the performance of pump and motor up to 20 Hz. The algorithm was validated using physiological ventricular and arterial pressure waveforms in a mock loop which simulated different contractilities (dP/dt(max) 600 to 2300 mm Hg/s), pump speeds (2 to 4 krpm), and fluid viscosities (2 to 4 mPa·s). The mathematically estimated pump flow data were then compared to the datasets measured in the mock loop for different variable combinations (flow ranging from 2.5 to 7 L/min, pulsatility from 3.5 to 6 L/min, dQ/dt(max) from 15 to 60 L/min/s). Transfer function analysis showed that the developed algorithm could estimate the flow waveform with a bandwidth up to 15 Hz (±2 dB). The mean difference between the estimated and measured average flows was +0.06 ± 0.31 L/min and for the flow pulsatilities -0.27 ± 0.2 L/min. Detection of dQ/dt(max) was possible up to a dP/dt(max) level of 2300 mm Hg/s. In conclusion, a flow estimator with sufficient frequency bandwidth and accuracy to allow determination of changes in ventricular contractility even in the case of improving heart function was developed. PMID:22882439

  3. Development of a Whole Blood Paper-Based Device for Phenylalanine Detection in the Context of PKU Therapy Monitoring

    Directory of Open Access Journals (Sweden)

    Robert Robinson

    2016-02-01

    Full Text Available Laboratory-based testing does not allow for the sufficiently rapid return of data to enable optimal therapeutic monitoring of patients with metabolic diseases such as phenylketonuria (PKU. The typical turn-around time of several days for current laboratory-based testing is too slow to be practically useful for effective monitoring or optimizing therapy. This report describes the development of a rapid, paper-based, point-of-care device for phenylalanine detection using a small volume (40 μL of whole blood. The quantitative resolution and reproducibility of this device with instrumented readout are described, together with the potential use of this device for point-of-care monitoring by PKU patients.

  4. Novel industrial application: flammable and toxic gas monitoring in the printing industry

    Science.gov (United States)

    Jacobson, Esther; Spector, Yechiel

    1999-12-01

    The present paper describes an Open Path Electro-Optical Gas Monitoring System specifically designed for in-situ on-line monitoring of flammable and toxic atmospheres in the Printing Industry in general, and for air-duct applications in particular. The printing industry posies unique fire hazards due to the variety of toxic and flammable chemical employed in the various printing process. Flammable material such as paper, ink, solvents, thinners, metal powders, cornstarch powders, cloth, synthetic materials are frequently used in the printing industry in several processes such as letter-pressing, lithography, screen printing etc.

  5. Resolution power of residual gas ionization monitors for proton beams at PETRA and HERA

    International Nuclear Information System (INIS)

    Residual gas ionisation monitors are used at DESY to measure emittances and profiles of proton beams. Multi channel plates are used as image itensifiers and video cameras are used to obsere the outcoming signals. The accuracy of this method is investigated. The influence of the space charge field of the proton bunches on the motion of ions within the monitors and instrumental effects on the obsered profile are surveyed. Theoretical calculations and Monte Carlo simulations are used to determine correction functions for these effects. The influence of the micro channel plates, optical systems and the video cameras on the obsered signals are also examined. (orig./HP)

  6. Continuous gas monitoring in the West Bohemian earthquake area, Czech Republic: First results

    Czech Academy of Sciences Publication Activity Database

    Faber, E.; Horálek, Josef; Boušková, Alena; Teschner, M.; Koch, U.; Poggenburg, J.

    2009-01-01

    Roč. 53, č. 3 (2009), s. 315-328. ISSN 0039-3169 R&D Projects: GA ČR(CZ) GA205/06/1780 Grant ostatní: German Ministry of Economics and Labour(DE) BMWi VI A 2-27/01 Institutional research plan: CEZ:AV0Z30120515 Keywords : West Bohemian earthquake area * earthquake swarms * gas monitoring * soil gas * carbon dioxide * radon * mofette * time series Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.000, year: 2009

  7. Noninvasive Measurement of Carbon Dioxide during One-Lung Ventilation with Low Tidal Volume for Two Hours: End-Tidal versus Transcutaneous Techniques

    OpenAIRE

    Zhang, Hong; Wang, Dong-Xin

    2015-01-01

    Background There may be significant difference between measurement of end-tidal carbon dioxide partial pressure (PetCO2) and arterial carbon dioxide partial pressure (PaCO2) during one-lung ventilation with low tidal volume for thoracic surgeries. Transcutaneous carbon dioxide partial pressure (PtcCO2) monitoring can be used continuously to evaluate PaCO2 in a noninvasive fashion. In this study, we compared the accuracy between PetCO2 and PtcCO2 in predicting PaCO2 during prolonged one-lung v...

  8. A novel artificial anal sphincter system based on transcutaneous energy transmission

    Institute of Scientific and Technical Information of China (English)

    Zan Peng; Yan Guozheng; Liu Hua

    2008-01-01

    For controlling anal incontinence, a new artificial anal sphincter system (AASS) with sensor feedback based on transcutaneous energy transmission is developed. The device mainly comprises an artificial anal sphincter (AAS), a wireless power supply subsystem, and a communication subsystem. The artificial anal sphincter comprises a front cuff and a sensor cuff placed around the rectum, a reservoir sited in abdominal cavity and a micropump controlling inflation and deflation of the front cuff. There are two pressure sensors in the artificial anal sphincter. One can measure the pressure in the front cuff to clamp the rectum, the other in the sensor cuff can measure the pressure of the rectum. Wireless power supply subsystem includes a resonance transmit coil to transmit an alternating magnetic field and a secondary coil to receive the power. Wireless communication subsystem can transmit the pressure information of the artificial anal sphincter to the monitor, or send the control commands to the artificial anal sphincter. A prototype is designed and the basic function of the artificial anal sphincter system has been tested through experiments. The results demonstrate that the artificial anal sphincter system can control anal incontinence effectively.

  9. Use of Gas Electron Multiplier (GEM) Detectors for an Advanced X-ray Monitor

    CERN Document Server

    Remillard, R A; Boughan, E A; Bradt, H V; Morgan, E H; Becker, U J; Nenonen, S; Vilhu, O R

    2000-01-01

    We describe a concept for a NASA SMEX Mission in which Gas Electron Multiplier (GEM) detectors, developed at CERN, are adapted for use in X-ray astronomy. These detectors can be used to obtain moderately large detector area and two-dimensional photon positions with sub mm accuracy in the range of 1.5 to 15 keV. We describe an application of GEMs with xenon gas, coded mask cameras, and simple circuits for measuring event positions and for anticoincidence rejection of particle events. The cameras are arranged to cover most of the celestial sphere, providing high sensitivity and throughput for a wide variety of cosmic explosions. At longer timescales, persistent X-ray sources would be monitored with unprecedented levels of coverage. The sensitivity to faint X-ray sources on a one-day timescale would be improved by a factor of 6 over the capability of the RXTE All Sky Monitor.

  10. Consensus report: the current role of self-monitoring of blood glucose in non-insulin-treated type 2 diabetes.

    Science.gov (United States)

    Klonoff, David C; Blonde, Lawrence; Cembrowski, George; Chacra, Antonio Roberto; Charpentier, Guillaume; Colagiuri, Stephen; Dailey, George; Gabbay, Robert A; Heinemann, Lutz; Kerr, David; Nicolucci, Antonio; Polonsky, William; Schnell, Oliver; Vigersky, Robert; Yale, Jean-François

    2011-11-01

    The Coalition for Clinical Research--Self-Monitoring of Blood Glucose Scientific Board convened a meeting in San Francisco, CA, July 20-21, 2011, to discuss the current practice of self-monitoring of blood glucose (SMBG) in non-insulin-treated (NIT) type 2 diabetes mellitus (T2DM). Twelve physician panel members from academia, practice, and government attended this meeting. These experts came from the United States, Brazil, Canada, France, Germany, Italy, and the United Kingdom. In addition, three consultants from Australia, Germany, and the United States contributed to the group's final report. This coalition was organized by Diabetes Technology Society. Self-monitoring of blood glucose was studied from eight perspectives related to patients with NIT T2DM: (1) epidemiological studies; (2) randomized controlled trials (RCT)s and meta-analyses; (3) targets, timing, and frequency of SMBG use; (4) incidence and role of SMBG in preventing hypoglycemia with single-drug regimens and combination regimens consisting of antihyperglycemic agents other than secretagogues and insulin; (5) comparison of SMBG with continuous glucose monitoring; (6) technological capabilities and limitations of SMBG; (7) barriers to appropriate use of SMBG; and (8) methods and end points for appropriate future clinical trials. The panel emphasized recent studies, which reflect the current approach for applying this intervention. Among the participants there was consensus that: SMBG is an established practice for patients with NIT T2DM, and to be most effective, it should be performed in a structured format where information obtained from this measurement is used to guide treatment; New, high-quality efficacy data from RCTs have demonstrated efficacy of SMBG in NIT T2DM in trials reported since 2008; Both patients and health care professionals require education on how to respond to the data for SMBG to be effective; and Additional well-defined studies are needed to assess the benefits and costs of

  11. Biological effects monitoring of the discharge water from the Ormen Lange gas facility, Norway

    OpenAIRE

    Brooks, S.; C. Harman

    2009-01-01

    The mussel, Mytilus edulis has been used to assess the biological effects of produced water (PW) discharged from the Ormen Lange gas processing plant on the West coast of Norway. An integrated monitoring approach was applied, using a combination of sensitive health index parameters in the mussel including lysosomal membrane stability (LMS) and micronuclei (MN) formation in haemocytes of live mussels, cell type composition, lysosomal membrane stability and peroxisome proliferators in mussel di...

  12. Tolerability of the Oscar 2 ambulatory blood pressure monitor among research participants: a cross-sectional repeated measures study

    Directory of Open Access Journals (Sweden)

    Hinderliter Alan L

    2011-04-01

    Full Text Available Abstract Background Ambulatory blood pressure monitoring (ABPM is increasingly used to measure blood pressure (BP in research studies. We examined ease of use, comfort, degree of disturbance, reported adverse effects, factors associated with poor tolerability, and association of poor tolerability with data acquisition of 24-hour ABPM using the Oscar 2 monitor in the research setting. Methods Sixty adults participating in a research study of people with a history of borderline clinic BP reported on their experience with ABPM on two occasions one week apart. Poor tolerability was operationalized as an overall score at or above the 75th percentile using responses to questions adapted from a previously developed questionnaire. In addition to descriptive statistics (means for responses to Likert-scaled "0 to 10" questions and proportions for Yes/No questions, we examined reproducibility of poor tolerability as well as associations with poor tolerability and whether poor tolerability was associated with removal of the monitor or inadequate number of BP measurements. Results The mean ambulatory BP of participants by an initial ABPM session was 148/87 mm Hg. After wearing the monitor the first time, the degree to which the monitor was felt to be cumbersome ranged from a mean of 3.0 to 3.8, depending on whether at work, home, driving, or other times. The most bother was interference with normal sleeping pattern (mean 4.2. Wearers found the monitor straightforward to use (mean 7.5. Nearly 67% reported that the monitor woke them after falling asleep, and 8.6% removed it at some point during the night. Reported adverse effects included pain (32%, skin irritation (37%, and bruising (7%. Those categorized as having poor tolerability (kappa = 0.5 between sessions, p = 0.0003 were more likely to report being in fair/poor health (75% vs 22%, p = 0.01 and have elevated 24-hour BP average (systolic: 28% vs 17%, p = 0.56; diastolic: 30% vs 17%, p = 0.37. They were

  13. Transcutaneous oximetry compared to ankle-brachial-index measurement in the evaluation of percutaneous transluminal angioplasty

    International Nuclear Information System (INIS)

    Objective: To investigate transcutaneous oximetry as parameter of the microcirculation is correlated to ankle-brachial-index as parameter of the macrocirculation after peripheral angioplasty procedures. Design: Prospective study. Materials and methods: 60 patients suffering from intermittent claudication were scheduled for angioplasty treatment. 45 patients were considered as eligible for angioplasty after angiographic evaluation, 15 patients underwent angiography only. Transcutaneous oximetry measurements were performed before the procedure, at the end of intervention, 24 h as well as 2 and 4 weeks after percutaneous transluminal angioplasty. Ankle-brachial-indices were obtained before intervention, 24 h as well as 2 and 4 weeks later. Results: Ankle-brachial-indices increased significantly at 24 h after angioplasty in patients being treated with angioplasty. Transcutaneous oximetry values dropped significantly at the end of the procedure and returned close to the baseline levels at 2 and 4 weeks after angioplasty. Ankle-brachial-indices and transcutaneous oximetry were positively correlated before (r = 0.3833, p = 0.009) as well as 4 weeks after angioplasty (r = 0.4596, p = 0.001). Immediately after radiological interventions, ankle-brachial-indices and transcutaneous oximetry are not positively correlated. In patients undergoing angiography only, transcutaneous oximetry levels drop significantly immediately after angiography and remain at decreased levels even at 4 weeks after intervention. Conclusion: Transcutaneous oximetry as parameter of the microcirculation is positively correlated with ankle-brachial-index as parameter of the macrocirculation before and at 4 weeks after angioplasty. Intraarterial angiography leads to a sudden decrease in skin microcirculation without affecting macrocirculation. As indicated by a lack of recovery in transcutaneous oximetry levels after 4 weeks, angiography alone results in a prolonged impaired microcirculation which may

  14. A plunger lift and monitoring system for gas wells based on deployment-retrievement integration

    Directory of Open Access Journals (Sweden)

    Zheng Tong

    2015-11-01

    Full Text Available As a necessary step, removing liquid in the wellbore plays an important role during the production of gas wells. Plunger lift is a widely-used intermittent deliquification process for gas wells. However, the manual control way and wire logging are still utilized as a downhole monitoring way for plunger lift, which is not efficient in terms of interrupting the production. This paper presents an improved solution that logging instruments canister are deployed and retrieved by means of a new assembly. With the reciprocating plunger, logging instruments canister can be carried and deployed to the bottom of a gas well to carry out logging and sampling tasks on the production demand of a field. After the deployment and logging tasks are performed, logging instruments canister is carried back to the surface by the plunger and then data is transferred to the wellhead device near field wireless communication technology. This newly developed plunger lift system comprises plunger body, deployment sub-assembly, retrieve sub-assembly and logging instruments canister. The surface device comprises RF antenna, reader and writer. Based upon the method of deployment-retrieve integration, the new deliquification process is introduced and on-line monitoring of production dynamics can be performed including P/T measurement, downhole fluid sampling, pressure build-up, etc. without interrupting production. The general solution and engineering design parameters have been confirmed by research teams, while system prototype manufacture and workbench tests are being performed. The cost-effective way combining deliquification with dynamic monitoring is developed and contributes to increasing production and the stable productivity of gas wells. It is very significant for low-pressure and low-production gas fields to achieve automation production and management.

  15. Optical Multi-Gas Monitor Technology Demonstration on the International Space Station

    Science.gov (United States)

    Pilgrim, Jeffrey S.; Wood, William R.; Casias, Miguel E.; Vakhtin, Andrei B.; Johnson, Michael D.; Mudgett, Paul D.

    2014-01-01

    The International Space Station (ISS) employs a suite of portable and permanently located gas monitors to insure crew health and safety. These sensors are tasked with functions ranging from fixed mass spectrometer based major constituents analysis to portable electrochemical sensor based combustion product monitoring. An all optical multigas sensor is being developed that can provide the specificity of a mass spectrometer with the portability of an electrochemical cell. The technology, developed under the Small Business Innovation Research program, allows for an architecture that is rugged, compact and low power. A four gas version called the Multi-Gas Monitor was launched to ISS in November 2013 aboard Soyuz and activated in February 2014. The portable instrument is comprised of a major constituents analyzer (water vapor, carbon dioxide, oxygen) and high dynamic range real-time ammonia sensor. All species are sensed inside the same enhanced path length optical cell with a separate vertical cavity surface emitting laser (VCSEL) targeted at each species. The prototype is controlled digitally with a field-programmable gate array/microcontroller architecture. The optical and electronic approaches are designed for scalability and future versions could add three important acid gases and carbon monoxide combustion product gases to the four species already sensed. Results obtained to date from the technology demonstration on ISS are presented and discussed.

  16. Evaluation of the RSG-GAS Alpha-Beta Aerosol Contaminant Monitor Performance Under Reactor Operation Condition

    International Nuclear Information System (INIS)

    Analysis to evaluate the RSG-GAS alpha-beta aerosol contaminant monitor performance was done. The high potential radiation working area such as in RSG-GAS is important to monitored for personal safety. Further it is necessary to assure that the system monitor is reliable enough under normal conditions as well as emergency condition. The method uses in this analysis are monitoring and comparing with the standard source. The standard course indicator and panel in main control room indicate that the result is 1 x 110 exp 9 Ci/m exp 3. Based on data monitor observation, the RSG-GAS alpha-beta aerosol contaminant monitor system under reactor operation condition has a good enough performance

  17. Metabolic Monitoring of Postischemic Myocardium during Intermittent Warm-Blood Cardioplegic Administration

    OpenAIRE

    Borowski, A; Kurt, M.; Calvo, S.; Paprotny, G; Godehardt, E; Fraessdorf, J.; Ghodsizad, A.

    2010-01-01

    In 12 patients undergoing elective myocardial revascularization with intermittent administration of warm-blood cardioplegic solution for myocardial protection, we analyzed metabolic changes by assay of global ischemia indicators (pH, lactate, glucose, and potassium), which we measured in the coronary sinus and arterial blood during the ischemic and post-ischemic periods. A typical cumulative ischemic pattern with progressively decreasing pH values and progressively increasing lactate values c...

  18. Tissue-Informative Mechanism for Wearable Non-invasive Continuous Blood Pressure Monitoring

    OpenAIRE

    Woo, Sung Hun; Choi, Yun Young; Kim, Dae Jung; Bien, Franklin; Kim, Jae Joon

    2014-01-01

    Accurate continuous direct measurement of the blood pressure is currently available thru direct invasive methods via intravascular needles, and is mostly limited to use during surgical procedures or in the intensive care unit (ICU). Non-invasive methods that are mostly based on auscultation or cuff oscillometric principles do provide relatively accurate measurement of blood pressure. However, they mostly involve physical inconveniences such as pressure or stress on the human body. Here, we in...

  19. Tests on a prototype of the Passive Fission Gas Monitor for failed detection (PRISM reactor)

    International Nuclear Information System (INIS)

    The Passive Diffusion Fission Gas Monitor PDFGM is mounted on the PRISM reactor head and extends into the cover gas Region where it determines the presence of radioactive fission gases (Kr, Xe, and so on) released from failed fuel pins. It contains a steel diffusion column that is closed at the upper end but opened to the cover gas at its lower end. The upper portion of the column is located in the field of view of a collimated gamma detector which is shielded from the remainder of the cover gas and of the sodium pool below. Heaters are provided to obtain a uniform axial temperature in the gas column and to minimize the potential for natural convection currents. In this way, the molecular diffusion can be established based on the fission gas concentration gradients along the column length. This is an advanced solution in comparison with current devices based on active components (pumps, filters, and so on). The experimental results on a prototype of PDFGM and their interpretation will be presented in this paper. (author)

  20. Development of a monitor system for gas based detectors and measurement of electron attachment in the chamber gas

    International Nuclear Information System (INIS)

    In the framework of an international collaboration a new electron-positron linear accelerator (ILC) with a c. m. energy up to 500 GeV is planned. For the International Large Detector Concept (ILD) a time projection chamber (TPC) shall perform precise measurements of the particle tracks. In order to fulfil the high requirements on the resolution, a microstructure gas-amplification system is used for read-out. For research and development of the detector principle for the application at the ILC at DESY a large TPC prototype is developed. For the operation of the detector it is necessary to monitor its state and especially that of the measurement gas. For this purpose in the framework of this thesis a slow control system is built, which shall make possible for the different collaboration partners to operate the prototype and to integrate the slow control data into their measurement. For this with an object-oriented control system a graphic user interface was created, which makes an overview over the applied measurement devices and a driving allows. Furthermore the influence of impurities of the gas mixture by oxygen was studied. For this with a small TPC prototype measurements of the electron attachment coefficient at different oxygen concentrations were performed with a magnetic flux density of 4 T. From the amplitude of the measurement signal a rate for the electron attachment could be determined. The values obtained for this agree sufficiently in comparison with literature values

  1. Influence of transcutaneous electrical stimulation on heterotopic ossification: an experimental study in Wistar rats.

    Science.gov (United States)

    Zotz, T G G; Paula, J B de

    2015-11-01

    Heterotopic ossification (HO) is a metaplastic biological process in which there is newly formed bone in soft tissues, resulting in joint mobility deficit and pain. Different treatment modalities have been tried to prevent HO development, but there is no consensus on a therapeutic approach. Since electrical stimulation is a widely used resource in physiotherapy practice to stimulate joint mobility, with analgesic and anti-inflammatory effects, its usefulness for HO treatment was investigated. We aimed to identify the influence of electrical stimulation on induced HO in Wistar rats. Thirty-six male rats (350-390 g) were used, and all animals were anesthetized for blood sampling before HO induction, to quantify the serum alkaline phosphatase. HO induction was performed by bone marrow implantation in both quadriceps of the animals, which were then divided into 3 groups: control (CG), transcutaneous electrical nerve stimulation (TENS) group (TG), and functional electrical stimulation (FES) group (FG) with 12 rats each. All animals were anesthetized and electrically stimulated twice per week, for 35 days from induction day. After this period, another blood sample was collected and quadriceps muscles were bilaterally removed for histological and calcium analysis and the rats were killed. Calcium levels in muscles showed significantly lower results when comparing TG and FG (P<0.001) and between TG and CG (P<0.001). Qualitative histological analyses confirmed 100% HO in FG and CG, while in TG the HO was detected in 54.5% of the animals. The effects of the muscle contractions caused by FES increased HO, while anti-inflammatory effects of TENS reduced HO. PMID:26292223

  2. Idaho National Laboratory (INL) Site Greenhouse Gas (GHG) Monitoring Plan - 40 CFR 98

    Energy Technology Data Exchange (ETDEWEB)

    Deborah L. Layton; Kimberly Frerichs

    2010-07-01

    The purpose of this Greenhouse Gas (GHG) Monitoring Plan is to meet the monitoring plan requirements of Title 40 of the Code of Federal Regulations Part 98.3(g)(5). This GHG Monitoring Plan identifies procedures and methodologies used at the Idaho National Laboratory Site (INL Site) to collect data used for GHG emissions calculations and reporting requirements from stationary combustion and other regulated sources in accordance with 40 CFR 98, Subparts A and other applicable subparts. INL Site Contractors determined subpart applicability through the use of a checklist (Appendix A). Each facility/contractor reviews operations to determine which subparts are applicable and the results are compiled to determine which subparts are applicable to the INL Site. This plan is applicable to the 40 CFR 98-regulated activities managed by the INL Site contractors: Idaho National Laboratory (INL), Idaho Cleanup Project (ICP), Advanced Mixed Waste Treatment Project (AMWTP), and Naval Reactors Facilities (NRF).

  3. Idaho National Laboratory (INL) Site Greenhouse Gas (GHG) Monitoring Plan - 40 CFR 98

    International Nuclear Information System (INIS)

    The purpose of this Greenhouse Gas (GHG) Monitoring Plan is to meet the monitoring plan requirements of Title 40 of the Code of Federal Regulations Part 98.3(g)(5). This GHG Monitoring Plan identifies procedures and methodologies used at the Idaho National Laboratory Site (INL Site) to collect data used for GHG emissions calculations and reporting requirements from stationary combustion and other regulated sources in accordance with 40 CFR 98, Subparts A and other applicable subparts. INL Site Contractors determined subpart applicability through the use of a checklist (Appendix A). Each facility/contractor reviews operations to determine which subparts are applicable and the results are compiled to determine which subparts are applicable to the INL Site. This plan is applicable to the 40 CFR 98-regulated activities managed by the INL Site contractors: Idaho National Laboratory (INL), Idaho Cleanup Project (ICP), Advanced Mixed Waste Treatment Project (AMWTP), and Naval Reactors Facilities (NRF).

  4. Air Monitoring System in Elders' Apartment with QCM Type Gas Sensors

    Science.gov (United States)

    Kikuchi, Masashi; Ito, Tsukasa; Shiratori, Seimei

    The gas monitoring system for elders' apartment using QCM sensors was newly developed. The QCM sensors for sulfide gas and ammonia gas were used for this system. The system for bodily wastes was fabricated and applied to nursing care system in elders' apartment. This system is composed by the sensor unit, communication unit and data server. Care person can see whether the linen should be changed or not without seeing over each room. The QCM sensors have some problems such as the interference of humidity and temperature, therefore these influences were dissolved using humidity sensor and temperature sensor as feedback source. The sensors were placed in several points of elders' apartment for 2 weeks. This system can be used in elders' apartment successfully.

  5. Studies on automatic hot gas reader used in the countrywide personnel monitoring programme

    International Nuclear Information System (INIS)

    In India, ∼58,000 radiation workers are monitored using locally made CaSO4:Dy teflon embedded thermoluminescence dosemeter (TLD) badge system. The automatic hot gas readers developed locally are also used in TL measurements. The hot gas reader system has many advantages over the manual readers used previously and has completely replaced the manual reader system in all TLD personnel monitoring units in India. In the present study, the new reader system is studied and a theoretical attempt has been made to interpret the experimentally obtained results. The glow curves are generated theoretically and are also plotted experimentally. It has been found that the heat capacity of the heating gas, which is responsible for the transfer of heat, has a role in deciding the position of peak and is verified experimentally using different gas flow rates of nitrogen and argon as heating gases in the reader. The theoretical study may also be helpful in fitting the experimentally obtained glow curves and, therefore, the elimination of unwanted non-radiation-induced contributions, such as dark current, electronic spikes, light leakage and tribo-luminescence that generally distort the glow curve shape, can be achieved. (authors)

  6. Reliable long-term continuous blood glucose monitoring for patients in critical care using microdialysis and infrared spectrometry

    Science.gov (United States)

    Heise, H. Michael; Damm, Uwe; Kondepati, Venkata R.

    2006-02-01

    For clinical research, in-vivo blood glucose monitoring is an ongoing important topic to improve glycemic control in patients with non-adequate blood glucose regulation. Critically ill patients received much interest, since the intensive insulin therapy treatment, as established for diabetics, reduces mortality significantly. Despite the existence of commercially available, mainly amperometric biosensors, continued interest is in infrared spectroscopic techniques for reagent-free glucose monitoring. For stable long-term operation, avoiding also sensor recalibration, a bed-side device coupled to a micro-dialysis probe was developed for quasi-continuous glucose monitoring. Multivariate calibration is required for glucose concentration prediction due to the complex composition of dialysates from interstitial body fluid. Measurements were carried out with different test persons, each experiment lasting for more than 8 hours. Owing to low dialysis recovery rates, glucose concentrations in the dialysates were between 0.83 and 4.44 mM. Standard errors of prediction (SEP) obtained with Partial Least Squares (PLS) calibration and different cross-validation strategies were mainly between 0.13 and 0.18 mM based on either full interval data or specially selected spectral variables.

  7. Enabling Technology for Monitoring & Predicting Gas Turbine Health & Performance in COAL IGCC Powerplants

    Energy Technology Data Exchange (ETDEWEB)

    Kenneth A. Yackly

    2004-09-30

    The ''Enabling & Information Technology To Increase RAM for Advanced Powerplants'' program, by DOE request, has been re-directed, de-scoped to two tasks, shortened to a 2-year period of performance, and refocused to develop, validate and accelerate the commercial use of enabling materials technologies and sensors for Coal IGCC powerplants. The new program has been re-titled as ''Enabling Technology for Monitoring & Predicting Gas Turbine Health & Performance in IGCC Powerplants'' to better match the new scope. This technical progress report summarizes the work accomplished in the reporting period April 1, 2004 to August 31, 2004 on the revised Re-Directed and De-Scoped program activity. The program Tasks are: Task 1--IGCC Environmental Impact on high Temperature Materials: This first materials task has been refocused to address Coal IGCC environmental impacts on high temperature materials use in gas turbines and remains in the program. This task will screen material performance and quantify the effects of high temperature erosion and corrosion of hot gas path materials in Coal IGCC applications. The materials of interest will include those in current service as well as advanced, high-performance alloys and coatings. Task 2--Material In-Service Health Monitoring: This second task develops and demonstrates new sensor technologies to determine the in-service health of advanced technology Coal IGCC powerplants, and remains in the program with a reduced scope. Its focus is now on only two critical sensor need areas for advanced Coal IGCC gas turbines: (1) Fuel Quality Sensor for detection of fuel impurities that could lead to rapid component degradation, and a Fuel Heating Value Sensor to rapidly determine the fuel heating value for more precise control of the gas turbine, and (2) Infra-Red Pyrometer to continuously measure the temperature of gas turbine buckets, nozzles, and combustor hardware.

  8. Potential of optical microangiography to monitor cerebral blood perfusion and vascular plasticity following traumatic brain injury in mice in vivo

    Science.gov (United States)

    Jia, Yali; Alkayed, Nabil; Wang, Ruikang K.

    2009-07-01

    Optical microanglography (OMAG) is a recently developed imaging modality capable of volumetric imaging of dynamic blood perfusion, down to capillary level resolution, with an imaging depth up to 2.00 mm beneath the tissue surface. We report the use of OMAG to monitor the cerebral blood flow (CBF) over the cortex of mouse brain upon traumatic brain injury (TBI), with the cranium left intact, for a period of two weeks on the same animal. We show the ability of OMAG to repeatedly image 3-D cerebral vasculatures during pre- and post-traumatic phases, and to visualize the changes of regulated CBF and the vascular plasticity after TBI. The results indicate the potential of OMAG to explore the mechanism involved in the rehabilitation of TBI.

  9. On-line valve monitoring at the Ormen Lange gas plant

    International Nuclear Information System (INIS)

    The purpose of this presentation is to discuss replacing time and labor intensive nuclear outage activities with on line condition monitoring solutions, primarily the periodic verification of MOV functionality discussed in USNRC Generic Letter 96.05. This regulation requires that MOV age related performance degradations are properly identified and accounted for, causing utilities to have to retest valves periodically for the duration of the plants operating license. AECL designed CANDU reactors have a world class performance and safety record, with typical average annual capacity factors of 90%. The CANDU reactor design has the ability to refuel on line, as a result (a) it can be a challenge scheduling all required valve testing into limited duration outage work windows, (b) at multi unit sites, Unit 0 valves can be difficult to test because they are rarely ever out of service, (c) deuterium-oxide (heavy water) moderator is expensive to manufacture, as a result, effective through valve leakage monitoring is essential. These three factors alone make CANDU sites the most suitable candidates for on line valve monitoring systems. Nuclear industry regulations have been instrumental in the development of 'at the valve' diagnostic systems, but diagnostic testing has not typically been utilized to the same degree in other less regulated industries. However, that trend is changing, and the move toward valve diagnostics and condition monitoring has moved fastest in the offshore oil and gas industry on the Norwegian side of the North Sea. The Ormen Lange plant, located on Nyhamna Island on the west coast of Norway, operated by Shell, is one of the worlds most advanced gas processing plants. A stated maintenance goal for the plant is that 70% of the maintenance budget and spend should be based on the results of on line condition monitoring, utilizing monitoring systems equipped with switch sensing, strain gages, hydraulic and pneumatic pressure transducers and acoustic leakage

  10. On-Line Fuel Failure Monitor for Fuel Testing and Monitoring of Gas Cooled Very High Temperature Reactors

    International Nuclear Information System (INIS)

    Very High Temperature Reactors (VHTR) utilize the TRISO microsphere as the fundamental fuel unit in the core. The TRISO microsphere (∼ 1-mm diameter) is composed of a UO2 kernel surrounded by a porous pyrolytic graphite buffer, an inner pyrolytic graphite layer, a silicon carbide (SiC) coating, and an outer pyrolytic graphite layer. The U-235 enrichment of the fuel is expected to range from 4%-10% (higher enrichments are also being considered). The layer/coating system that surrounds the UO2 kernel acts as the containment and main barrier against the environmental release of radioactivity. To understand better the behavior of this fuel under in-core conditions (e.g., high temperature, intense fast neutron flux, etc.), the US Department of Energy (DOE) is launching a fuel testing program that will take place at the Advanced Test Reactor (ATR) located at Idaho National Laboratory (INL). During this project North Carolina State University (NCSU) researchers will collaborate with INL staff for establishing an optimized system for fuel monitoring for the ATR tests. In addition, it is expected that the developed system and methods will be of general use for fuel failure monitoring in gas cooled VHTRs.

  11. One year continuous soil gas monitoring above an EGR test site

    Science.gov (United States)

    Furche, Markus; Schlömer, Stefan; Faber, Eckhard; Dumke, Ingolf

    2010-05-01

    Setup and first results of an ongoing research activity are presented, which is funded by the German Geotechnologien program within in the joint project CLEAN (CO2 Large Scale Enhanced Gas Recovery in the Altmark Natural Gas Field). The task is to establish several soil gas monitoring stations above a partly exhausted gas field in the Altmark which will be used for an enhanced gas recovery (EGR) test by injecting CO2 into the reservoir. The aim is to optimize the monitoring technique including automatic data transfer and data exploitation and to understand mechanisms of natural variations of soil gas concentrations in the specific area. Furthermore the suitability of these measurements as a contribution to leakage detection shall be evaluated. A network of 13 gauging stations for the measurement of CO2 is working continuously for about one year. They are spread over an area of 8 x 3 km and are situated in direct vicinity of existing deep boreholes as the most likely locations for possible leakage. In addition one station is placed far outside the gasfield as a reference point. The technique applied to measure soil gas concentrations uses a gas stream circulating in a tube going down a shallow borehole where the circulating gas is in contact with the soil gas phase via a gas permeable membrane. Above surface, moisture is removed from the gas stream before it reaches several gas sensors for CO2. Besides these, several other parameters are determined as well, e.g. soil moisture and soil temperature, water level, gas flow and gas moisture. In addition a meteorological station gives information about precipitation, air humidity, temperature and pressure, global radiation, wind direction and velocity in the area. Data are continuously collected by dataloggers at each station (5 minutes interval), transferred via GSM routers to the BGR server in Hannover and are stored in a specially designed database. The database does not only contain the measurements but also

  12. Systematic review of the use of dried blood spots for monitoring HIV viral load and for early infant diagnosis.

    Directory of Open Access Journals (Sweden)

    Pieter W Smit

    Full Text Available BACKGROUND: Dried blood spots (DBS have been used as alternative specimens to plasma to increase access to HIV viral load (VL monitoring and early infant diagnosis (EID in remote settings. We systematically reviewed evidence on the performance of DBS compared to plasma for VL monitoring and EID. METHODS AND FINDINGS: Thirteen peer reviewed HIV VL publications and five HIV EID papers were included. Depending on the technology and the viral load distribution in the study population, the percentage of DBS samples that are within 0.5 log of VL in plasma ranged from 52-100%. Because the input sample volume is much smaller in a blood spot, there is a risk of false negatives with DBS. Sensitivity of DBS VL was found to be 78-100% compared to plasma at VL below 1000 copies/ml, but this increased to 100% at a threshold of 5000 copies/ml. Unlike a plasma VL test which measures only cell free HIV RNA, a DBS VL also measures proviral DNA as well as cell-associated RNA, potentially leading to false positive results when using DBS. The systematic review showed that specificity was close to 100% at DBS VL above 5000 copies/ml, and this threshold would be the most reliable for predicting true virologic failure using DBS. For early infant diagnosis, DBS has a sensitivity of 100% compared to fresh whole blood or plasma in all studies. CONCLUSIONS: Although limited data are available for EID, DBS offer a highly sensitive and specific sampling strategy to make viral load monitoring and early infant diagnosis more accessible in remote settings. A standardized approach for sampling, storing, and processing DBS samples would be essential to allow successful implementation. TRIAL REGISTRATION: PROSPERO Registration #: CRD42013003621.

  13. 24-h ambulatory blood pressure monitoring in healthy young adult Anglo, Hispanic, and African-American subjects.

    Science.gov (United States)

    Chase, H P; Garg, S K; Icaza, G; Carmain, J A; Walravens, C F; Marshall, G

    1997-01-01

    The purpose of this study was to compare office and 24-h ambulatory blood pressure (ABP) values for adolescent and young adult males and females of Anglo, Hispanic, and African-American descent. One hundred and eighteen healthy subjects (62 females, 56 males) participated, with an ethnic distribution of 50 Anglo, 32 Hispanic, and 36 African-American subjects. All subjects came to the clinic for height, weight, sitting blood pressure (BP), and to begin 24-h ABP monitoring using the SpaceLabs model 90207 automatic noninvasive monitor. The monitor recorded readings every 0.5 h from 06:00 to 22:00 and every hour at night from 22:00 to 06:00. Office systolic and diastolic BP values were higher for all males compared to all females. Mean 24-h, nighttime, and daytime systolic ABP values were also significantly higher for males compared to females. The 24-h mean and daytime systolic ABP values were significantly different by ethnic groups. The African-American subjects always had the highest readings. Mean 24-h diastolic ABP was also significantly different by ethnic groups, with the African-American subjects being higher than the Anglos or the Hispanics. Diastolic ABP (24-h mean, daytime, and nighttime) values (for all subjects combined) increased gradually and varied significantly with age. This study provides preliminary normative data about ABP in an understudied population (ie, teenagers and young adults of different ethnic backgrounds). It also shows that higher blood pressures are present among males and among subjects of African-American descent in the teenage and young adult population. PMID:9008244

  14. Management of patients with uncontrolled arterial hypertension – the role of electronic compliance monitoring, 24-h ambulatory blood pressure monitoring and Candesartan/HCT

    Directory of Open Access Journals (Sweden)

    Tousset Eric

    2006-08-01

    Full Text Available Abstract Background Incomplete drug regimen compliance (DRC and white-coat hypertension are two of several possible causes of uncontrolled hypertension. Therefore the aim of the present study was to compare DRC in hypertensives treated with combination therapy whose blood pressures (BP were controlled vers. uncontrolled after 4 weeks of self-monitored BP measurement. To observe the consequences in uncontrolled patients of switching one drug of the combination therapy to candesartan/HCTZ (16 mg/12.5 mg with and without a compliance intervention program. Methods Self-and ambulatory-monitoring of BP were done with upper arm oscillometric devices. Patients' dosing histories were compiled electronically (MEMS(c, AARDEX. Patients with office blood pressure (OBP >140/90 mmHg despite combination therapy were begun on MEMS monitoring and self BP measurement for 4 weeks of run-in. Of 62 such patients, 18 (29% patients were normotensive according to self BP measurement and ambulatory BP measurement at 4 weeks (Group A; in the remaining 44 still uncontrolled patients, candesartan/HCTZ was substituted for one of the combination therapy drugs, with half these patients receiving passive compliance monitoring (B and half a DRC intervention program (C. All groups were then followed for 8 weeks. Results DRC before week 4 was significantly higher in A than in the uncontrolled patients (B&C. DRC was stable during run-in A, but declined in B and C. DRC after week 4 was not different in the three groups and stayed constant over time. DRC during weekends was lower than during weekdays in all groups. In group A no significant change in blood pressure was observed with all three methods of BP measurements. In groups B and C significant reductions of systolic and diastolic BP were observed for ABPM and SBPM. After the change to candesartan/HCTZ in B&C ambulatory 24-h-BP (ABPM was normalized in 39% of patients. Conclusion Normalization of BP was associated with superior

  15. Full-field speckle correlation technique as applied to blood flow monitoring

    Science.gov (United States)

    Vilensky, M. A.; Agafonov, D. N.; Timoshina, P. A.; Shipovskaya, O. V.; Zimnyakov, D. A.; Tuchin, V. V.; Novikov, P. A.

    2011-03-01

    The results of experimental study of monitoring the microcirculation in tissue superficial layers of the internal organs at gastro-duodenal hemorrhage with the use of laser speckles contrast analysis technique are presented. The microcirculation monitoring was provided in the course of the laparotomy of rat abdominal cavity in the real time. Microscopic hemodynamics was analyzed for small intestine and stomach under different conditions (normal state, provoked ischemia, administration of vasodilative agents such as papaverine, lidocaine). The prospects and problems of internal monitoring of micro-vascular flow in clinical conditions are discussed.

  16. Wireless Implementation for Monitoring the Bio-Signal Shape of Blood Vessels

    Directory of Open Access Journals (Sweden)

    Cordova-Fraga Teodoro

    2014-01-01

    Full Text Available The application of telemetry systems to monitor and send physiological functions raises a number of challenges in project development of modules that can enter the body with minimal intrusion, managing and amplifying the sensitive signals generated by the body, and transmitting them to an external system for data reading. Such devices can be used to monitor and manage the signals from patients and obtain accurate readings in noisy electrical environments (such as operating rooms. The following paper shows an application of wireless communication systems applied to medical measurement and monitoring via Bluetooth.

  17. Monitoring induced seismicity from underground gas storage: first steps in Italy

    Science.gov (United States)

    Mucciarelli, Marco; Priolo, Enrico

    2013-04-01

    The supply of natural gas and its storage are focal points of the Italian politics of energy production and will have increasing importance in the coming years. About a dozen reservoirs are currently in use and fifteen are in development or awaiting approval. Some of these are found in the vicinity of geological structures that are seismically active. The assessment of seismic hazard (both for natural background and induced seismicity) for a geological gas storage facility has a number of unconventional aspects that must be recognized and traced in a clear, ordered way and using guidelines and rules that leave less room as possible for interpretation by the individual applicant / verification body. Similarly, for control and monitoring there are not clearly defined procedures or standard instrumentation, let alone tools for analysing and processing data. Finally, governmental organizations in charge of permission grants and operative control tend to have appropriate scientific knowledge only in certain areas and not in others (e.g. the seismic one), and the establishment of an independent multidisciplinary inspection body appears desirable. The project StoHaz (https://sites.google.com/site/s2stohaz/home) aims to initiate a series of actions to overcome these deficiencies and allow to define procedures and standards for the seismic hazard assessment and control of the activities of natural gas storage in underground reservoirs. OGS will take advantage of the experience gained with the design, installation and maintenance of the seismic network monitoring the Collalto reservoir, at the moment the only example in Italy of a public research institution monitoring independently the activities of a private gas storage company.

  18. An intelligent system for continuous blood pressure monitoring on remote multi-patients in real time

    OpenAIRE

    Marani, Roberto; Perri, Anna Gina

    2012-01-01

    In this paper we present an electronic system to perform a non-invasive measurement of the blood pressure based on the oscillometric method, which does not suffer from the limitations of the well-known auscultatory one. Moreover the proposed system is able to evaluate both the systolic and diastolic blood pressure values and makes use of a microcontroller and a Sallen-Key active filter. With reference to other similar devices, a great improvement of our measurement system is achieved since it...

  19. A real time, wearable ECG and continous blood pressure monitoring system for first responders.

    Science.gov (United States)

    Ribeiro, David M D; Colunas, Marcio F M; Marques, Fabio A Ferreira; Fernandes, Jose M; Cunha, Joao P Silva

    2011-01-01

    The study of stress and fatigue among First Responders is a major step in mitigating this public health problem. Blood pressure, heart rate variability and fatigue related arrhythmia are three of the main "windows" to study stress and fatigue. In this paper we present a wearable medical device, capable of acquiring an electrocardiogram and estimating blood pressure in real time, through a pulse wave transit time approach. The system is based on an existent certified wearable medical device called "Vital Jacket" and is aimed to become a tool to allow cardiologists in studying stress and fatigue among first response professionals. PMID:22255923

  20. Barometric gas transport along faults and its application to nuclear test-ban monitoring

    International Nuclear Information System (INIS)

    Underground nuclear explosions produce a unique but evanescent set of radionuclide gases that potentially can be used in the context of an on-site, test-ban monitoring program to differentiate them from other detected events such as earthquakes or mining activity. In Part I of this report we describe an experiment to evaluate the upward transport of gases from an underground explosion using two gas tracers with very different diffusivities that were released in a 400-m-deep, chemical explosive detonation. The less diffusive (more massive) tracer was detected on a nearby geologic fault 50 days following the detonation while the more diffusive tracer was detected 375 days after release. Computer simulations indicate that the arrival time and the chromatographic behavior of transport are characteristic of barometrically induced flow in a fractured, porous matrix regime. For a hypothetical 1-kiloton fission explosion subject to the same weather and gas transport conditions of the chemical explosion, simulations predict the detectability of argon-37 after 80 days in spite of depletion by radioactive decay. Largely because of the earlier arrival of xenon-133, owing to its lower binary gas diffusivity, the exceedingly short lived isotope should also be detectable - arriving about 30 days earlier than argon. In Part II we consider that our prediction of the detectability of argon and xenon is based upon the small volume (0.00001 m3) sampling technique of the NPE tracer-gas sampling study while actual sampling for radionuclides would involve drawing much larger volume (possibly 0.1-1 m3) gas samples from the near-surface. Extraction of such a large volume of gas from 1-5 meter depths in the soil raises the possibility of significant atmospheric infiltration, leading to substantial dilution of the extracted gas sample. However, an infiltration experiment suggests that significant dilution would not, in fact, occur at the most prolific sampling stations of the earlier gas

  1. Use of UAVs for greenhouse gas monitoring at hotspot emissions zones

    Science.gov (United States)

    Pitt, J. R.; Allen, G.; Mead, M. I.; Hollingsworth, P.; Kabbabe, K.; Roberts, G.; Shallcross, D. E.

    2015-12-01

    Measuring greenhouse gas emissions from individual localised sources, or "hotspots", is important for both compliance monitoring and validating the techniques used to compile national emission inventories. Frequently ground based techniques are used, such as flux chamber measurements, which suffer from issues regarding sample representativeness, and tracer release methods, which for area sources rely heavily on release site configuration. Obtaining vertically resolved data can enable the use of a mass balance method to calculate greenhouse gas fluxes. This has been achieved using remote sensing techniques, but this usually requires the deployment of expensive, bulky instrumentation. Here we evaluate the suitability of using UAVs, in conjunction with emerging miniaturised sensor technology, as a highly manoeuvrable, low cost alternative for measuring hotspot greenhouse gas emissions. We describe a case study performed at a UK landfill site, where greenhouse gas measurements made on board a fixed wing UAV were used to estimate the bulk CH4 emission rate. Details of the mass balance technique employed, along with the key uncertainties associated with it, are discussed. This work is part of an ongoing study at the University of Manchester into the application of UAVs in atmospheric research, with the rapid advancement in miniaturised sensor technology providing new opportunities for integrating trace gas measurement with existing lightweight UAVs.

  2. JRC's on-line fission gas release monitoring system in the high flux reactor Petten

    International Nuclear Information System (INIS)

    For HTR fuel irradiation tests in the HFR Petten a specific installation was designed and installed, dubbed the “Sweep Loop Facility” (SLF). The SLF is tasked with three functions, namely temperature control by gas mixture technique, surveillance of safety parameters (temperature, pressure, radioactivity etc.) and analysis of fission gas release for three individual capsules in two separate experiments. The SLF enables continuous and independent surveillance of all gas circuits. The release of volatile fission products of the in-pile experiments is monitored by continuous gas purging. The fractional release of these fission products, defined as the ratio between release rate of a gaseous fission isotope (measured) to its instantaneous birth rate (calculated), is a licensing-relevant test for HTR fuel. The newly developed gamma spectrometry station allows for higher measurement frequencies, thus enabling follow-up of rapid and massive release transients. The designed stand-alone system was tested and fully used through the final irradiation period of the HFR-EU1 experiment which was terminated on 18 February 2010. Its robustness allowed us to use it as extra safety instrumentation. This paper describes the gas activity measurement technique based on HPGe gamma spectrometry and illustrates how qualitative and quantitative analysis of volatile fission products can be performed on-line.

  3. On-Line Fission Gas Release Monitoring System in the High Flux Reactor Petten

    International Nuclear Information System (INIS)

    For HTR fuel irradiation tests in the HFR Petten a specific installation was designed and installed dubbed the 'Sweep Loop Facility' (SLF). The SLF is tasked with three functions, namely temperature control by gas mixture technique, surveillance of safety parameters (temperature, pressure, radioactivity etc.) and analysis of fission gas release for three individual capsules in two separate experimental rigs. The SLF enables continuous and independent surveillance of all gas circuits. The release of volatile fission products (FP) from the in-pile experiments is monitored by continuous gas purging. The fractional release of these FP, defined as the ratio between release rate of a gaseous fission isotope (measured) to its instantaneous birth rate (calculated), is a licensing-relevant test for HTR fuel. The developed gamma spectrometry station allows for higher measurement frequencies, thus enabling follow-up of rapid and massive release transients. The designed stand-alone system was tested and fully used through the final irradiation period of the HFR-EU1 experiment which was terminated on 18 February 2010. Its robustness allowed the set up to be used as extra safety instrumentation. This paper describes the gas activity measurement technique based on HPGe gamma spectrometry and illustrates how qualitative and quantitative analysis of volatile FP can be performed on-line. (authors)

  4. Theoretical considerations to optimize transabdominal monitoring of fetal arterial blood oxygenation using pulse oximetry

    Science.gov (United States)

    Zourabian, Anna; Boas, David A.

    2001-06-01

    Pulse oximetry (oxygen saturation monitoring) has markedly improved medical care in many fields, including anesthesiology, intensive care, and newborn intensive care. In obstetrics, fetal heart rate monitoring remains the standard for intrapartum assessment of fetal well being. Fetal oxygen saturation monitoring is a new technique currently under development. It is potentially superior to electronic fetal heart rate monitoring (cardiotocography) because it allows direct assessment of both fetal oxygen status and fetal tissue perfusion. Here we present the analysis for determining the most optimal wavelength selection for pulse oximetry. The wavelengths we chose as the most optimal are: the first in the range of 670-720nm and the second in the range of 825-925nm. Further we discuss the possible systematic errors during our measurements, and their contribution to the obtained saturation results.

  5. Implementation of Out-of-Office Blood Pressure Monitoring in the Netherlands: From Clinical Guidelines to Patients' Adoption of Innovation.

    Science.gov (United States)

    Carrera, Pricivel M; Lambooij, Mattijs S

    2015-10-01

    Out-of-office blood pressure monitoring is promoted by various clinical guidelines toward properly diagnosing and effectively managing hypertension and engaging the patient in their care process. In the Netherlands, however, the Dutch cardiovascular risk management (CVRM) guidelines do not explicitly prescribe 24-hour ambulatory blood pressure measurement (ABPM) and home BP measurement (HBPM). The aim of this descriptive study was to develop an understanding of patients' and physicians' acceptance and use of out-of-office BP monitoring in the Netherlands given the CVRM recommendations.Three small focus group discussions (FGDs) with patients and 1 FGD with physicians were conducted to explore the mechanisms behind the acceptance and use of out-of-office BP monitoring and reveal real-world challenges that limit the implementation of out-of-office BP monitoring methods. To facilitate the FGDs, an analytical framework based on the technology acceptance model (TAM), the theory of planned behavior and the model of personal computing utilization was developed to guide the FGDs and analysis of the transcriptions of each FGD.ABPM was the out-of-office BP monitoring method prescribed by physicians and used by patients. HBPM was not offered to patients even with patients' feedback of poor tolerance of ABPM. Even as there was little awareness about HBPM among patients, there were a few patients who owned and used sphygmomanometers. Patients professed and seemed to exhibit self-efficacy, whereas physicians had reservations about (all of their) patients' self-efficacy in properly using ABPM. Since negative experience with ABPM impacted patients' acceptance of ABPM, the interaction of factors that determined acceptance and use was found to be dynamic among patients but not for physicians.In reference to the CVRM guidelines, physicians implemented out-of-office BP monitoring but showed a strong preference for ABPM even where there is poor tolerance of the method. We found that

  6. Monitoring of gas station attendants exposure to benzene, toluene, xylene (BTX) using three-color chromosome painting

    Science.gov (United States)

    2014-01-01

    Background Chronic exposure of BTX (benzene, toluene, xylene) may lead to progressive degeneration of bone marrow, aplastic anemia and/or leukemia. In Brazil there is no self-service fuel in gas stations and attendants fill the fuel themselves. Due to this they are chronically exposed to high concentration of BTX. Occupational exposure to benzene has been associated with increased chromosomal aberrations in peripheral blood lymphocytes. Fluorescence in situ hybridization (FISH) using whole chromosome painting (wcp) probes allows the rapid detection of chromosomal aberration. In the present study three-color wcp probes for chromosomes 1, 2 and 4 were used for monitoring 60 gas station attendants. Results Blood tests were done and interviews were conducted for each worker. For searching for possible associations between the clinical characteristics and the frequency of chromosomal aberrations the workers were divided into two groups (≤ 10 chromosomal abnormalities per 1,000 metaphases and > 10 chromosomal abnormalities per 1,000 metaphases).The studied workers had a low median age (36 year), albeit long period of BTX exposure (median was 16 years). Low prevalence of smoking and moderate consumption of alcoholic beverages were found in this population. The cytogenetic analysis showed 16.6% (10/60) of workers with a high frequency of chromosomal abnormalities (>10 chromosomal abnormalities per 1,000 metaphases). Translocations were the most frequently observed chromosome aberration. The statistical analysis revealed highly significant differences in skin color (p = 0.002) and a weak significant differences in gender (p = 0.052) distribution between the two groups. Conclusion 16.6% of the studied population showed elevated frequencies of chromosomal abnormalities, which is highly likely to be correlated with their exposure to BTX during their work. Therefore, further studies are needed for better characterize the work associated damage of the genome in

  7. Industrial SO2 emission monitoring through a portable multichannel gas analyzer with an optimized retrieval algorithm

    Science.gov (United States)

    Sun, Youwen; Liu, Cheng; Xie, Pinhua; Hartl, Andreas; Chan, Kalok; Tian, Yuan; Wang, Wei; Qin, Min; Liu, Jianguo; Liu, Wenqing

    2016-03-01

    SO2 variability over a large concentration range and interferences from other gases have been major limitations in industrial SO2 emission monitoring. This study demonstrates accurate industrial SO2 emission monitoring through a portable multichannel gas analyzer with an optimized retrieval algorithm. The proposed analyzer features a large dynamic measurement range and correction of interferences from other coexisting infrared absorbers such as NO, CO, CO2, NO2, CH4, HC, N2O, and H2O. The multichannel gas analyzer measures 11 different wavelength channels simultaneously to correct several major problems of an infrared gas analyzer including system drift, conflict of sensitivity, interferences among different infrared absorbers, and limitation of measurement range. The optimized algorithm uses a third polynomial instead of a constant factor to quantify gas-to-gas interference. Measurement results show good performance in the linear and nonlinear ranges, thereby solving the problem that the conventional interference correction is restricted by the linearity of the intended and interfering channels. The results imply that the measurement range of the developed multichannel analyzer can be extended to the nonlinear absorption region. The measurement range and accuracy are evaluated through experimental laboratory calibration. Excellent agreement was achieved, with a Pearson correlation coefficient (r2) of 0.99977 with a measurement range from approximately 5 to 10 000 ppmv and a measurement error of less than 2 %. The instrument was also deployed for field measurement. Emissions from three different factories were measured. The emissions of these factories have been characterized by different coexisting infrared absorbers, covering a wide range of concentration levels. We compared our measurements with commercial SO2 analyzers. Overall, good agreement was achieved.

  8. A venous outflow method for continuously monitoring cerebral blood flow in the rat.

    Science.gov (United States)

    Morii, S; Ngai, A C; Ko, K R; Winn, H R

    1986-02-01

    We analyzed the retroglenoid venous outflow (VOF) technique in the rat to document the validity of this method of measuring cerebral blood flow (CBF). Stereotypic changes in CBF were obtained with VOF during hypercarbia and hypotension. O2 content of retroglenoid venous blood did not differ significantly from O2 content of blood obtained from the sagittal sinus, suggesting minimal extracerebral contamination of the retroglenoid venous blood. This lack of extracerebral contamination was further analyzed using a double tracer technique (125I-labeled serum albumin, 22Na) that quantitated minimal extracerebral contamination in the retroglenoid vein. CBF measurements were made simultaneously using microsphere and VOF methods, and excellent correlation was found between the two techniques over a wide range of CBF during normoxia, hypoxia, and normoxic hypocarbia and hypercarbia. However, a decrease in the ratio of VOF to microsphere CBF was observed during severe normoxic hypotension (mean arterial pressure = 41 +/- 4 mmHg). VOF represented 18% of total CBF as measured by microsphere method. This study indicates that the retroglenoid outflow technique in rats is a valid method of measuring CBF. PMID:3080902

  9. Blood Glucose Monitoring as a Teaching Tool for Endocrinology: A New Perspective

    Science.gov (United States)

    Moats, Robert K., II

    2009-01-01

    The education of new allied health professionals and nurses in proper endocrine evaluation and care has become critical in recent years, especially considering the greatly increased prevalence of diabetes in adults and children. The evaluation of blood glucose levels in human volunteers over time is a powerful teaching tool for endocrinology that…

  10. Monitoring total boron in blood for BNCT by a novel atomic emission method

    International Nuclear Information System (INIS)

    In BNCT the duration and timing of the is adjusted by 10B concentrations in whole blood. Time-frame for determinations is less than 20 minutes. Therefore fast and accurate boron determinations are a prerequisite for BNCT. We present a method based on ICP-AES instrument for whole blood and plasma boron determinations with protein precipitation with trichloroacetic acid as sample pre-treatment and beryllium as an internal standard. The method was compared to established but tedious ICP-mass spectrometric method with wet ashing as a sample pre-treatment. The ICP-AES method is in good agreement (correlation coefficient 0.99) the ICP-MS. Within-day and between-day imprecisions were less than 3,5% CV for whole blood samples. Samples taken during and after BPA-F infusion (290 mg/kg) revealed an uneven distribution between plasma and erythrocytes. The present method is feasible and one of the fastest currently available for BNCT. Our results indicate that BPA-F or its metabolites do not seem to be tightly bound to plasma proteins. It also seems that determination of boron in plasma sample may be preferable than measuring boron in whole blood. (author)

  11. Effects of education on self-monitoring of blood pressure based on BASNEF model in hypertensive patients

    Directory of Open Access Journals (Sweden)

    Mohammad Hossein Baghianimoghadam

    2010-01-01

    Full Text Available Background: Hypertension is one of the most important health problems. Self-monitoring may be an effective method for controlling this disease. The aim of this study is to determine the effectiveness of education on blood pressure self-monitoring in patients with hypertension based on BASNEF model. Methods: In this clinical trial, 150 outpatients with hypertension were randomly selected from those referred to private clinics in Yazd, Iran, during 2008. They were divided in two groups. The data were collected by a validated and reliable questionnaire. The implementing educational program was continued for 2 months and the pre-test and post-test had an interval of 2-months. BASNEF model was applied to explain the motivation of a behavior. Descriptive analysis, correlation test and also regression analysis were used to analyze data. Results: The respondents acquired 17.72% of total score for self-monitoring behavior, 47.03% of attitude, 12.37% of subjective norms, 33.46% of intention and 50.95% of enabling factors. After intervention, there were significant increases in self-monitoring behavior (173.31%, attitude (62.60%, subjective norms (54.70%, intention (129.93% and enabling factors (46.62% in the intervention group. There was no significant difference between the constructs of BASNEF model in the control group after intervention compared to the baseline values (p > 0.05. Conclusions: The results of this study showed that the level of self-monitoring behavior in the patients was low. Educational programs are helpful and necessary to improve self-monitoring behavior in patients with hypertension.

  12. Physics Simulation Software for Autonomous Propellant Loading and Gas House Autonomous System Monitoring

    Science.gov (United States)

    Regalado Reyes, Bjorn Constant

    2015-01-01

    1. Kennedy Space Center (KSC) is developing a mobile launching system with autonomous propellant loading capabilities for liquid-fueled rockets. An autonomous system will be responsible for monitoring and controlling the storage, loading and transferring of cryogenic propellants. The Physics Simulation Software will reproduce the sensor data seen during the delivery of cryogenic fluids including valve positions, pressures, temperatures and flow rates. The simulator will provide insight into the functionality of the propellant systems and demonstrate the effects of potential faults. This will provide verification of the communications protocols and the autonomous system control. 2. The High Pressure Gas Facility (HPGF) stores and distributes hydrogen, nitrogen, helium and high pressure air. The hydrogen and nitrogen are stored in cryogenic liquid state. The cryogenic fluids pose several hazards to operators and the storage and transfer equipment. Constant monitoring of pressures, temperatures and flow rates are required in order to maintain the safety of personnel and equipment during the handling and storage of these commodities. The Gas House Autonomous System Monitoring software will be responsible for constantly observing and recording sensor data, identifying and predicting faults and relaying hazard and operational information to the operators.

  13. Wireless Sensor Network in Niger Delta Oil and Gas Field Monitoring: The Security Challenges and Countermeasures

    Directory of Open Access Journals (Sweden)

    Fidelis C. Obodoeze

    2012-12-01

    Full Text Available The IEEE 802.15.4 specification has enabled low-power, low-cost and smart wireless sensor networks(WSNs capable of robust and reliable multi-hop communications. By January 2005, an International Oiland Gas Company (IOC, Shell Petroleum Development Company (SPDC, became the firstmultinational Oil and Gas Company operating in the Nigeria Niger Delta region to switch from wired towireless sensor technology eliminating the need for cables thereby allowing data collection in remote,swampy areas and enabling new applications. However, there are concerns related to the use of thesesmart wireless sensor networks such as reliability, standardization, energy consumption and generaloperational, data and physical security issues especially in the monitoring of mission-critical oil and gasinstallations and infrastructure such as pipelines, oil wells, oil rigs and flow stations in a regioncharacterized by rampant vandalisation and sabotage of oil pipelines and other oil installations bymilitants and oil thieves. High cases of vandalisation of oil and gas pipelines and other oil installationswere identified even when there is evidence of wireless sensor deployment. This paper introducedpractical deployment architectures and mechanisms that can secure oil facilities and the wireless sensorsfrom being physically attacked so that they can successfully monitor and report incidences of pipeline andequipment vandalisation easily and on time while at the same time maintain data security of the WSN.

  14. Effects of alpha-trinositol on peripheral circulation in diabetic patients with critical limb ischaemia. A pilot study using laser Doppler fluxmetry, transcutaneous oxygen tension measurements and dynamic capillaroscopy

    DEFF Research Database (Denmark)

    Nilsson, L; Apelqvist, J; Edvinsson, L

    1998-01-01

    h infusion, resulting in a total dose of 2400 mg. Microcirculation was evaluated by means of laser doppler fluxmetry (LDF), transcutaneous oxygen tension (tcPO2) and dynamic capillaroscopy (CBV). RESULTS: Plasma concentration of alpha-trinositol reached a steady state level after 1 h following the...... start of the administration. There were no detectable changes in blood pressure or heart rate. Laser Doppler flux increased from 41% to 57.5% and tcPO2 changed from 116 to 91 s in "half time recovery" after occlusion. Capillary blood flow showed an increase in resting velocity from 0.1 to 0.5 mm/s at 24...

  15. Total Dissolved Gas Monitoring in Chum Salmon Spawning Gravels Below Bonneville Dam

    Energy Technology Data Exchange (ETDEWEB)

    Arntzen, Evan V.; Geist, David R.; Panther, Jennifer L.; Dawley, Earl

    2007-01-30

    At the request of the U.S. Army Corps of Engineers (Portland District), Pacific Northwest National Laboratory (PNNL) conducted research to determine whether total dissolved gas concentrations are elevated in chum salmon redds during spring spill operations at Bonneville Dam. The study involved monitoring the total dissolved gas levels at egg pocket depth and in the river at two chum salmon spawning locations downstream from Bonneville Dam. Dissolved atmospheric gas supersaturation generated by spill from Bonneville Dam may diminish survival of chum (Oncorhynchus keta) salmon when sac fry are still present in the gravel downstream from Bonneville Dam. However, no previous work has been conducted to determine whether total dissolved gas (TDG) levels are elevated during spring spill operations within incubation habitats. The guidance used by hydropower system managers to provide protection for pre-emergent chum salmon fry has been to limit TDG to 105% after allowing for depth compensation. A previous literature review completed in early 2006 shows that TDG levels as low as 103% have been documented to cause mortality in sac fry. Our study measured TDG in the incubation environment to evaluate whether these levels were exceeded during spring spill operations. Total dissolved gas levels were measured within chum salmon spawning areas near Ives Island and Multnomah Falls on the Columbia River. Water quality sensors screened at egg pocket depth and to the river were installed at both sites. At each location, we also measured dissolved oxygen, temperature, specific conductance, and water depth to assist with the interpretation of TDG results. Total dissolved gas was depth-compensated to determine when levels were high enough to potentially affect sac fry. This report provides detailed descriptions of the two study sites downstream of Bonneville Dam, as well as the equipment and procedures employed to monitor the TDG levels at the study sites. Results of the monitoring at

  16. Trans-abdominal monitoring of fetal arterial blood oxygenation using pulse oximetry

    Science.gov (United States)

    Zourabian, Anna; Siegel, Andrew M.; Chance, Britton; Ramanujam, Nirmala; Rode, Martha; Boas, David A.

    2000-10-01

    Pulse oximetry (oxygen saturation monitoring) has markedly improved medical care in many fields, including anesthesiology, intensive care, and newborn intensive care. In obstetrics, fetal heart rate monitoring remains the standard for intrapartum assessment of fetal well being. Fetal oxygen saturation monitoring is a new technique currently under development. It is potentially superior to electronic fetal heart rate monitoring (cardiotocography) because it allows direct assessment of both the fetal oxygen status and fetal tissue perfusion. Here we present the analysis for determining the most optimal wavelength selection for pulse oximetry. The wavelengths we chose as the most optimal are the first in the range of 670 - 720 nm and the second in the range of 825 - 925 nm. Further, we discuss the possible systematic errors during our measurements and their contribution to the obtained saturation results. We present feasibility studies for fetal pulse oximetry, monitored noninvasively through the maternal abdomen. Our preliminary experiments show that the fetal pulse can be discriminated from the maternal pulse and thus, in principle, the fetal arterial oxygen saturation can be obtained. We present the methodology for obtaining these data, and discuss the dependence of our measurements on the fetal position with respect to the optode assembly.

  17. Time-Series Analysis of Continuously Monitored Blood Glucose: The Impacts of Geographic and Daily Lifestyle Factors

    Directory of Open Access Journals (Sweden)

    Sean T. Doherty

    2015-01-01

    Full Text Available Type 2 diabetes is known to be associated with environmental, behavioral, and lifestyle factors. However, the actual impacts of these factors on blood glucose (BG variation throughout the day have remained relatively unexplored. Continuous blood glucose monitors combined with human activity tracking technologies afford new opportunities for exploration in a naturalistic setting. Data from a study of 40 patients with diabetes is utilized in this paper, including continuously monitored BG, food/medicine intake, and patient activity/location tracked using global positioning systems over a 4-day period. Standard linear regression and more disaggregated time-series analysis using autoregressive integrated moving average (ARIMA are used to explore patient BG variation throughout the day and over space. The ARIMA models revealed a wide variety of BG correlating factors related to specific activity types, locations (especially those far from home, and travel modes, although the impacts were highly personal. Traditional variables related to food intake and medications were less often significant. Overall, the time-series analysis revealed considerable patient-by-patient variation in the effects of geographic and daily lifestyle factors. We would suggest that maps of BG spatial variation or an interactive messaging system could provide new tools to engage patients and highlight potential risk factors.

  18. Characterizing workers participating in a worksite wellness health screening program using blood pressure control, self-monitoring, medication adherence, depression, and exercise.

    Science.gov (United States)

    Breaux-Shropshire, Tonya Lynn; Whitt, Lauren; Griffin, Russell L; Shropshire, Angele Trenese; Calhoun, David A

    2014-07-01

    Blood pressure control remains a serious public health issue because hypertension is the most common risk factor for cardiovascular disease. Effective management of hypertension often requires lifestyle modification and medication adherence. The objective of this study was to identify the prevalence of blood pressure control, medication adherence, self-monitoring of blood pressure, depression, and exercise among workers with access to health resources. Faculty and staff (N = 484) from a university and health care institution in the southeastern United States participated in biometric and questionnaire screening. The researchers used initial screening data from this worksite wellness program to describe baseline blood pressure control (< 140/90 mm Hg), self-monitoring of blood pressure, medication adherence, depression, and exercise. Overall, 63% of the workers' blood pressure was controlled; however, 23% of the sample had been prescribed antihypertensive medication to control their blood pressure. Thirty percent of the sample reported practicing blood pressure self-monitoring, 72.2% reported that they exercised, and 22% reported feeling down and depressed. More than half (64.9%) who used prescribed antihypertensive medication reported adherence to these medications. PMID:25000548

  19. The monitoring system of the pipeline safety of the coal mine gas drainage based on the optic fiber sensing technology

    Science.gov (United States)

    Li, Yan-fang; Wei, Yubin; Zhang, Tingting; Zhao, Yanjie; Lv, Lei; Liu, Tong-yu

    2013-09-01

    Based on the technology of the spectrum absorption and the FBG, the monitoring system realize on line detection of the concentration of methane and oxygen, the temperature and the pressure of the gas in pipeline, and in order to improve the accuracy of the gas detection, we induce the compensation to the gas concentration using the data of the temperature and the pressure. In order to have a effective utilization of the methane in the coal mine gas drainage system, we have to have a accurate measurements of the concentration, the temperature and the pressure of the gas in pipeline. At the same time the dynamic monitoring of the concentration of Oxygen is a sign of the leakage of the pump. This paper gave some data detected in the field of the coal mine gas drainage system.

  20. Application of geoelectric methods for man-caused gas deposit mapping and monitoring

    Science.gov (United States)

    Yakymchuk, M. A.; Levashov, S. P.; Korchagin, I. N.; Syniuk, B. B.

    2009-04-01

    anomaly total area made S=20.7 hectares on 07.10.08, and S=19.7 hectares on 13.10.08 and S=10.5 hectares on 08.11.08. The anomaly intensity has decreased, some local extremum has appeared. All this testifies that there is an intensive degassing process of cross-section upper part through producing wells and the drilled degassing wells. Exclusively important feature of the FSPEF-VERS technology is an operationability(!) the of practical problems solving. For an emergency situation on gas field an operationability of technology has crucial importance. For one day of works only the field staff management has received considerable volume of operative information, allowing in quite proved manner to estimate as accident scales and it possible reasons, and so those threats, which this accident can represent for nearby located settlements. So, the imposing of a sketch-map of distribution of a "man-caused" gas deposit on a map of wells location has shown that this deposit does not extend over field border and, hence, does not represent essential threat for nearby settlements. Technology operationability in a whole and practical experience of repeated measurements testifies about possibility of the FSPEF-VERS methods using for operative carrying out of monitoring character survey. Such monitoring survey can be spent on a field after degassing wells drilling to check the process of gas pump-down from a "man-caused" deposit. Geoelectric researches on an emergency site of field on 08.11.08 and the received thus results practically show efficiency and working capacity of the FSPEF-VERS technology in a monitoring mode. The performed experimental works have shown, that process of gas pump-down from a "man-caused" deposit can be traced in time by the FSPEF-VERS technology. It is expedient to locate the additional degassing wells for definitive elimination of accident consequences with taking into account the data of monitoring works by FSPEF-VERS methods. The experiment results testify of