WorldWideScience

Sample records for blood flow velocity

  1. Decorrelation-based blood flow velocity estimation: effect of spread of flow velocity, linear flow velocity gradients, and parabolic flow.

    NARCIS (Netherlands)

    Lupotti, F.A.; Steen, A.F.W. van der; Mastik, F.; Korte, C.L. de

    2002-01-01

    In recent years, a new method to measure transverse blood flow, based on the decorrelation of the radio frequency (RF) signals has been developed. In this paper, we investigated the influence of nonuniform flow on the velocity estimation. The decorrelation characteristics of transverse blood flow us

  2. Blood flow velocity in migraine attacks - a transcranial Doppler study

    Energy Technology Data Exchange (ETDEWEB)

    Zwetsloot, C.P.; Caekebeke, J.F.V.; Jansen, J.C.; Odink, J.; Ferrari, M.D. (Rijksuniversiteit Leiden (Netherlands))

    1991-05-01

    A pulsed Doppler device was used to measure blood flow velocities in the common carotid artery, the extracranial part of the internal carotid artery, the external carotid artery, the middle cerebral artery, and the anterior cerebral artery in 31 migraneurs without aura (n=27) and with aura (n=4), both during and ouside an attack. The aims were to compare blood flow velocity during and between migraine attacks and to study asymmetries of the blood flow velocity. Compared with blood flow velocity values obtained in the attack-free interval, blood flow velocity was lower during attacks without aura in both common carotid arteries, but not in the other extra- and intracranial vessels which were examined. However, during attacks of migraine with aura, blood flow velocity tended to be lower in all examined vessels. There were no asymmetries of the blood flow velocity. It is suggested that during migraine attacks without aura there is a dissociation in blood flow regulation in the common carotid and middle cerebral arteries. 20 refs., 2 tabs.

  3. Maximum Likelihood Blood Velocity Estimator Incorporating Properties of Flow Physics

    DEFF Research Database (Denmark)

    Schlaikjer, Malene; Jensen, Jørgen Arendt

    2004-01-01

    The aspect of correlation among the blood velocities in time and space has not received much attention in previous blood velocity estimators. The theory of fluid mechanics predicts this property of the blood flow. Additionally, most estimators based on a cross-correlation analysis are limited...... of simulated and in vivo data from the carotid artery. The estimator is meant for two-dimensional (2-D) color flow imaging. The resulting mathematical relation for the estimator consists of two terms. The first term performs a cross-correlation analysis on the signal segment in the radio frequency (RF......)-data under investigation. The flow physic properties are exploited in the second term, as the range of velocity values investigated in the cross-correlation analysis are compared to the velocity estimates in the temporal and spatial neighborhood of the signal segment under investigation. The new estimator...

  4. Quantitative blood flow velocity imaging using laser speckle flowmetry

    Science.gov (United States)

    Nadort, Annemarie; Kalkman, Koen; van Leeuwen, Ton G.; Faber, Dirk J.

    2016-04-01

    Laser speckle flowmetry suffers from a debated quantification of the inverse relation between decorrelation time (τc) and blood flow velocity (V), i.e. 1/τc = αV. Using a modified microcirculation imager (integrated sidestream dark field - laser speckle contrast imaging [SDF-LSCI]), we experimentally investigate on the influence of the optical properties of scatterers on α in vitro and in vivo. We found a good agreement to theoretical predictions within certain limits for scatterer size and multiple scattering. We present a practical model-based scaling factor to correct for multiple scattering in microcirculatory vessels. Our results show that SDF-LSCI offers a quantitative measure of flow velocity in addition to vessel morphology, enabling the quantification of the clinically relevant blood flow, velocity and tissue perfusion.

  5. Improved technique for blood flow velocity measurement using Doppler effect

    Science.gov (United States)

    Valadares Oliveira, Eduardo J.; Nantes Button, Vera L. d. S.; Maia, Joaquim M.; Costa, Eduardo T.

    2002-04-01

    The Doppler velocimeter developed allows to determine the angle between the ultrasonic beam and the velocity vector of the flow, and to calculate the precise blood flow in a vessel. Four piezoelectric transducers constitute the Doppler velocimeter. Three of these transducers are positioned to form an equilateral triangle (base of a pyramid). When these transducers move simultaneously, backward or forward from the initial position, the emitted ultrasonic beams focalize on a position (peak of the pyramid) closer or farther from the transducers faces, according to the depth of the vessel where we intend to measure de flow. The angle between the transducers allows adjusting the height of this pyramid and the position of the focus (where the three beams meet). A forth transducer is used to determine the diameter of the vessel and monitor the position of the Doppler velocimeter relative to the vessel. Simulation results showed that with this technique is possible to accomplish precise measurement of blood flow.

  6. Data adaptive estimation of transversal blood flow velocities

    DEFF Research Database (Denmark)

    Pirnia, E.; Jakobsson, A.; Gudmundson, E.

    2014-01-01

    , posing natural difficulties due to the complex behaviour of blood flow, and due to the natural orientation of most blood vessels. Recently, a transversal modulation scheme was introduced to induce also an oscillation along the transversal direction, thereby allowing for the measurement of also...... the transversal blood flow. In this paper, we propose a novel data-adaptive blood flow estimator exploiting this modulation scheme. Using realistic Field II simulations, the proposed estimator is shown to achieve a notable performance improvement as compared to current state-of-the-art techniques....

  7. Recent advances in blood flow vector velocity imaging

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Nikolov, Svetoslav; Udesen, Jesper;

    2011-01-01

    investigated using both simulations, flow rig measurements, and in-vivo validation against MR scans. The TO method obtains a relative accuracy of 10% for a fully transverse flow in both simulations and flow rig experiments. In-vivo studies performed on 11 healthy volunteers comparing the TO method...... been acquired using a commercial implementation of the method (BK Medical ProFocus Ultraview scanner). A range of other methods are also presented. This includes synthetic aperture imaging using either spherical or plane waves with velocity estimation performed with directional beamforming or speckle...... Medical 8804 transducer. This resulted in a relative standard deviation of 1.2% for a fully transverse flow. Plane wave imaging was also implemented on the RASMUS scanner and a 100 Hz frame rate was attained. Several vector velocity image sequences of complex flow were acquired, which demonstrates...

  8. Effects of friction massage of the popliteal fossa on blood flow velocity of the popliteal vein

    Science.gov (United States)

    Iwamoto, Koji; Mizukami, Masafumi; Asakawa, Yasutsugu; Endo, Yusuke; Takata, Yuichi; Yoshikawa, Kenichi; Yoshio, Masaharu

    2017-01-01

    [Purpose] Friction massage (friction) of the popliteal fossa is provided for the purpose of relieving pain related to circulatory disorders by improving venous flow in the lower legs. The purpose of this study is to verify the effects of enhancing the venous flow based on measuring the blood flow velocity of the popliteal vein before and after providing friction to the patients. [Subjects and Methods] Fifteen healthy male university students participated in the study. The Doppler ultrasonography (DU) was used to measure the blood flow velocity of the popliteal vein, in order to verify the effects of enhancing the venous flow by comparing the measured values before and after a friction massage. [Results] The result of comparing the blood flow velocity before and after providing friction showed that there was a significant increase after friction. [Conclusion] This study proved that friction to the popliteal fossa is effectively enhances venous flow by increasing the blood flow velocity in the popliteal vein.

  9. In vivo lateral blood flow velocity measurement using speckle size estimation.

    Science.gov (United States)

    Xu, Tiantian; Hozan, Mohsen; Bashford, Gregory R

    2014-05-01

    In previous studies, we proposed blood measurement using speckle size estimation, which estimates the lateral component of blood flow within a single image frame based on the observation that the speckle pattern corresponding to blood reflectors (typically red blood cells) stretches (i.e., is "smeared") if blood flow is in the same direction as the electronically controlled transducer line selection in a 2-D image. In this observational study, the clinical viability of ultrasound blood flow velocity measurement using speckle size estimation was investigated and compared with that of conventional spectral Doppler of carotid artery blood flow data collected from human patients in vivo. Ten patients (six male, four female) were recruited. Right carotid artery blood flow data were collected in an interleaved fashion (alternating Doppler and B-mode A-lines) with an Antares Ultrasound Imaging System and transferred to a PC via the Axius Ultrasound Research Interface. The scanning velocity was 77 cm/s, and a 4-s interval of flow data were collected from each subject to cover three to five complete cardiac cycles. Conventional spectral Doppler data were collected simultaneously to compare with estimates made by speckle size estimation. The results indicate that the peak systolic velocities measured with the two methods are comparable (within ±10%) if the scan velocity is greater than or equal to the flow velocity. When scan velocity is slower than peak systolic velocity, the speckle stretch method asymptotes to the scan velocity. Thus, the speckle stretch method is able to accurately measure pure lateral flow, which conventional Doppler cannot do. In addition, an initial comparison of the speckle size estimation and color Doppler methods with respect to computational complexity and data acquisition time indicated potential time savings in blood flow velocity estimation using speckle size estimation. Further studies are needed for calculation of the speckle stretch method

  10. A Reconstruction Method of Blood Flow Velocity in Left Ventricle Using Color Flow Ultrasound

    Directory of Open Access Journals (Sweden)

    Jaeseong Jang

    2015-01-01

    Full Text Available Vortex flow imaging is a relatively new medical imaging method for the dynamic visualization of intracardiac blood flow, a potentially useful index of cardiac dysfunction. A reconstruction method is proposed here to quantify the distribution of blood flow velocity fields inside the left ventricle from color flow images compiled from ultrasound measurements. In this paper, a 2D incompressible Navier-Stokes equation with a mass source term is proposed to utilize the measurable color flow ultrasound data in a plane along with the moving boundary condition. The proposed model reflects out-of-plane blood flows on the imaging plane through the mass source term. The boundary conditions to solve the system of equations are derived from the dimensions of the ventricle extracted from 2D echocardiography data. The performance of the proposed method is evaluated numerically using synthetic flow data acquired from simulating left ventricle flows. The numerical simulations show the feasibility and potential usefulness of the proposed method of reconstructing the intracardiac flow fields. Of particular note is the finding that the mass source term in the proposed model improves the reconstruction performance.

  11. Effect of labetalol on cerebral blood flow and middle cerebral arterial flow velocity in healthy volunteers

    DEFF Research Database (Denmark)

    Schroeder, T; Schierbeck, Jens; Howardy, P;

    1991-01-01

    in normotensive subjects. Neither does it affect CO2 reactivity. The uniform results obtained with the two methods suggest TCD as a usable alternative to conventional CBF technique in the assessment of cerebral vasoactivity of various drugs in subjects with a normal cerebral circulation.......The effect of labetalol, a combined alpha- and beta-adrenoceptor antagonist, on the cerebral circulation was investigated in 7 normotensive subjects. Cerebral blood flow (CBF) was measured with the intravenous 133Xe method and mean flow velocity (Vmean) in the middle cerebral artery was determined...

  12. Middle cerebral artery blood velocity and cerebral blood flow and O2 uptake during dynamic exercise

    DEFF Research Database (Denmark)

    Madsen, P L; Sperling, B K; Warming, T

    1993-01-01

    Results obtained by the 133Xe clearance method with external detectors and by transcranial Doppler sonography (TCD) suggest that dynamic exercise causes an increase of global average cerebral blood flow (CBF). These data are contradicted by earlier data obtained during less-well-defined conditions....... To investigate this controversy, we applied the Kety-Schmidt technique to measure the global average levels of CBF and cerebral metabolic rate of oxygen (CMRO2) during rest and dynamic exercise. Simultaneously with the determination of CBF and CMRO2, we used TCD to determine mean maximal flow velocity...... in the middle cerebral artery (MCA Vmean). For values of CBF and MCA Vmean a correction for an observed small drop in arterial PCO2 was carried out. Baseline values for global CBF and CMRO2 were 50.7 and 3.63 ml.100 g-1.min-1, respectively. The same values were found during dynamic exercise, whereas a 22% (P

  13. Involvement of calcitonin gene-related peptide in migraine: regional cerebral blood flow and blood flow velocity in migraine patients

    DEFF Research Database (Denmark)

    Lassen, L.H.; Jacobsen, V.B.; Haderslev, P.A.

    2008-01-01

    g/min) or placebo for 20 min was studied in 12 patients with migraine without aura outside attacks. Xenon-133 inhalation SPECT-determined regional cerebral blood flow (rCBF) and transcranial Doppler (TCD)-determined blood velocity (V-mean) in the middle cerebral artery (MCA), as well as the heart......Calcitonin gene-related peptide (CGRP)-containing nerves are closely associated with cranial blood vessels. CGRP is the most potent vasodilator known in isolated cerebral blood vessels. CGRP can induce migraine attacks, and two selective CGRP receptor antagonists are effective in the treatment...... of migraine attacks. It is therefore important to investigate its mechanism of action in patients with migraine. We here investigate the effects of intravenous human alpha-CGRP (h alpha CGRP) on intracranial hemodynamics. In a double-blind, cross-over study, the effect of intravenous infusion of haCGRP (2 mu...

  14. Micro-particle image velocimetry for velocity profile measurements of micro blood flows.

    Science.gov (United States)

    Pitts, Katie L; Fenech, Marianne

    2013-04-25

    Micro-particle image velocimetry (μPIV) is used to visualize paired images of micro particles seeded in blood flows. The images are cross-correlated to give an accurate velocity profile. A protocol is presented for μPIV measurements of blood flows in microchannels. At the scale of the microcirculation, blood cannot be considered a homogeneous fluid, as it is a suspension of flexible particles suspended in plasma, a Newtonian fluid. Shear rate, maximum velocity, velocity profile shape, and flow rate can be derived from these measurements. Several key parameters such as focal depth, particle concentration, and system compliance, are presented in order to ensure accurate, useful data along with examples and representative results for various hematocrits and flow conditions.

  15. Cerebral blood flow velocity changes during upright positioning in bed after acute stroke : An observational study

    NARCIS (Netherlands)

    Aries, Marcel J; Elting, Jan Willem; Stewart, Roy; De Keyser, Jacques; Kremer, Berry; Vroomen, Patrick

    2013-01-01

    Objectives: National guidelines recommend mobilisation in bed as early as possible after acute stroke. Little is known about the influence of upright positioning on real-time cerebral flow variables in patients with stroke. We aimed to assess whether cerebral blood flow velocity (CBFV) changes signi

  16. Retinal blood flow velocity in patients with active uveitis using the retinal function imager

    Institute of Scientific and Technical Information of China (English)

    FENG Xing; Kedhar Sanjay; Bhoomibunchoo Chavakij

    2013-01-01

    Background Previous studies suggest a link between macular edema and retinal blood flow velocity (RBFV).The effects of inflammation in the retinal blood vessels are not clearly understood.We want to evaluate the differences in retinal blood flow velocities of patients with active uveitis and healthy controls using the retinal function imager (RFI)and determine the correlation between retinal blood flow veiocity and central macular thickness in uveitis patients.Methods Twenty-eight eyes of 24 patients with active anterior uveitis and 51 eyes of 51 normal control subjects were enrolled.Retinal blood flow velocities evaluated by RFI and central macular thickness evaluated by optical coherence tomography (SLO-OCT) were obtained.Differences among the groups were assessed using Stata statistical software.Results Ten eyes had uveitic cystoid macular edema (CME).Median (first quartile,third quartile) venous velocity for uveitic eyes with CME,uveitic eyes without CME,and controls were 2.09 (1.92,2.44),2.64 (2.32,2.86),and 2.82 (2.39,3.53) mm/s respectively.Median (first and quartile) arterial velocity for uveitic eyes with CME,uveitic eyes without CME,and controls were 3.79 (3.61,4.09),3.46 (2.86,4.12),and 3.93 (3.35,4.65) mm/s.Uveitic eyes with CME had significantly lower venous velocity than controls (P=0.044).There was a strong linear relationship between venous velocity and central retinal thickness (P=-0.007).Conclusions Retinal venous velocities were significantly decreased in eyes with uveitic CME relative to controls.Decreased venous velocity was correlated with increased central retinal thickness in uveitic eyes.

  17. Fast Blood Vector Velocity Imaging using ultrasound: In-vivo examples of complex blood flow in the vascular system

    DEFF Research Database (Denmark)

    Hansen, Kristoffer Lindskov; Udesen, Jesper; Gran, Fredrik;

    2008-01-01

    speckle tracking between segments in consecutive speckle images. The flow patterns of six bifurcations and two veins were investigated in-vivo. It was shown: 1) that a stable vortex in the carotid bulb was present opposed to other examined bifurcations, 2) that retrograde flow was present......Conventional ultrasound methods for acquiring color flow images of the blood motion are restricted by a relatively low frame rate and angle dependent velocity estimates. The Plane Wave Excitation (PWE) method has been proposed to solve these limitations. The frame rate can be increased, and the 2-D...... vector velocity of the blood motion can be estimated. The transmitted pulse is not focused, and a full speckle image of the blood can be acquired for each emission. A 13 bit Barker code is transmitted simultaneously from each transducer element. The 2-D vector velocity of the blood is found using 2-D...

  18. Effects of Wrist Posture and Fingertip Force on Median Nerve Blood Flow Velocity

    Science.gov (United States)

    Wilson, Katherine E.; Tat, Jimmy

    2017-01-01

    Purpose. The purpose of this study was to assess nerve hypervascularization using high resolution ultrasonography to determine the effects of wrist posture and fingertip force on median nerve blood flow at the wrist in healthy participants and those experiencing carpal tunnel syndrome (CTS) symptoms. Methods. The median nerves of nine healthy participants and nine participants experiencing symptoms of CTS were evaluated using optimized ultrasonography in five wrist postures with and without a middle digit fingertip press (0, 6 N). Results. Both wrist posture and fingertip force had significant main effects on mean peak blood flow velocity. Blood flow velocity with a neutral wrist (2.87 cm/s) was significantly lower than flexed 30° (3.37 cm/s), flexed 15° (3.27 cm/s), and extended 30° (3.29 cm/s). Similarly, median nerve blood flow velocity was lower without force (2.81 cm/s) than with force (3.56 cm/s). A significant difference was not found between groups. Discussion. Vascular changes associated with CTS may be acutely induced by nonneutral wrist postures and fingertip force. This study represents an early evaluation of intraneural blood flow as a measure of nerve hypervascularization in response to occupational risk factors and advances our understanding of the vascular phenomena associated with peripheral nerve compression.

  19. Influence of caffeine and caffeine withdrawal on headache and cerebral blood flow velocities

    NARCIS (Netherlands)

    Couturier, EGM; Laman, DM; vanDuijn, MAJ; vanDuijn, H

    1997-01-01

    Caffeine consumption may cause headache, particularly migraine. Its withdrawal also produces headaches and may be related to weekend migraine attacks. Transcranial Doppler sonography (TCD) has shown changes in cerebral blood flow velocities (BFV) during and between attacks of migraine. In order to e

  20. Intracoronary Blood Flow Velocity and Transstenotic Pressure Drop in an Awake Human Being During Coronary Vasodilation

    NARCIS (Netherlands)

    F. Zijlstra (Felix); P.W.J.C. Serruys (Patrick)

    1988-01-01

    textabstractThe pressure drop over a coronary stenosis and the intracoronary Doppler blood flow velocity were measured at rest and during coronary vasodilation. We report the first observation that confirms the validity of fluid dynamic equations to describe the hemodynamics of a coronary stenosis b

  1. Rizatriptan does not change cerebral blood flow velocity during migraine attacks.

    Science.gov (United States)

    Gori, S; Morelli, N; Bellini, G; Bonanni, E; Manca, L; Orlandi, G; Iudice, A; Murri, L

    2005-04-30

    Rizatriptan represents a major advance in the treatment of migraine attack: inhibition of peripheral trigeminal nerve and constriction of intracranial extracerebral blood vessels have been proposed as its main antimigraine mechanisms of action. Although many studies may suggest that rizatriptan causes highly selective vasoconstriction within intracranial extracerebral vessels (i.e., meningeal arteries), no literature data are available to date on possible cerebral hemodynamic changes in humans after treatment with rizatriptan. The aim of this study was to evaluate the effect of rizatriptan on cerebral blood flow velocity performing transcranial Doppler during spontaneous attacks of migraine without aura. Fourteen patients suffering from migraine without aura were monitored to evaluate mean flow velocity changes on both middle cerebral arteries during migraine attack 30 min before and 120 min after oral administration of rizatriptan 10mg. Monitoring was repeated for 30 min during the pain-free period. All patients turned out to be drug responders and no significant mean flow velocity changes were observed between the pain-free period and pre-treatment phase; besides no significant difference in mean flow velocity value have been detected between the periods after the drug administration during the attack versus both pre-treatment period and pain-free phase. These findings indicate that the antimigraine action of rizatriptan is not associated with clear intracranial cerebral hemodynamic changes and may support its cerebrovascular safety.

  2. Blood flow velocity in the popliteal vein using transverse oscillation ultrasound

    Science.gov (United States)

    Bechsgaard, Thor; Hansen, Kristoffer Lindskov; Brandt, Andreas Hjelm; Holbek, Simon; Lönn, Lars; Strandberg, Charlotte; Bækgaard, Niels; Nielsen, Michael Bachmann; Jensen, Jørgen Arendt

    2016-04-01

    Chronic venous disease is a common condition leading to varicose veins, leg edema, post-thrombotic syndrome and venous ulcerations. Ultrasound (US) is the main modality for examination of venous disease. Color Doppler and occasionally spectral Doppler US (SDUS) are used for evaluation of the venous flow. Peak velocities measured by SDUS are rarely used in a clinical setting for evaluating chronic venous disease due to inadequate reproducibility mainly caused by the angle dependency of the estimate. However, estimations of blood velocities are of importance in characterizing venous disease. Transverse Oscillation US (TOUS), a non-invasive angle independent method, has been implemented on a commercial scanner. TOUS's advantage compared to SDUS is a more elaborate visualization of complex flow. The aim of this study was to evaluate, whether TOUS perform equal to SDUS for recording velocities in the veins of the lower limbs. Four volunteers were recruited for the study. A standardized flow was provoked with a cuff compression-decompression system placed around the lower leg. The average peak velocity in the popliteal vein of the four volunteers was 151.5 cm/s for SDUS and 105.9 cm/s for TOUS (p measures for the evaluation of venous blood flow.

  3. Voluntary respiratory control and cerebral blood flow velocity upon ice-water immersion

    DEFF Research Database (Denmark)

    Mantoni, Teit; Rasmussen, Jakob Højlund; Belhage, Bo;

    2008-01-01

    INTRODUCTION: In non-habituated subjects, cold-shock response to cold-water immersion causes rapid reduction in cerebral blood flow velocity (approximately 50%) due to hyperventilation, increasing risk of syncope, aspiration, and drowning. Adaptation to the response is possible, but requires...... several cold immersions. This study examines whether thorough instruction enables non-habituated persons to attenuate the ventilatory component of cold-shock response. METHODS: There were nine volunteers (four women) who were lowered into a 0 degrees C immersion tank for 60 s. Middle cerebral artery mean......: Even without prior cold-water experience, subjects were able to suppress reflex hyperventilation following ice-water immersion, maintaining the cerebral blood flow velocity at a level not associated with impaired consciousness. This study implies that those susceptible to accidental cold...

  4. Intrauterine growth restriction, visceral blood flow velocity and exocrine pancreatic function

    Directory of Open Access Journals (Sweden)

    Deenmamode Jean M

    2008-11-01

    Full Text Available Abstract Background Animal models and observations in human neonates suggest fetal exocrine pancreas vulnerability to reduced maternofetal blood flow. We investigated the relationship between superior mesenteric artery blood flow velocity (sma bfv and exocrine pancreatic function, in a cohort of very low birth weight (VLBW babies. Group 1: 9 babies Group2: 18 babies > 10th percentile for birth weight. Findings All had Doppler ultrasound scan of the superior mesenteric artery (sma, by same operator (RMN, on day 1 of life before commencement of enteral feeding. Stool samples assayed for faecal chymotrypsin and weekly serum samples assayed for amylase and lipase (kinetic colorimetric assay from days 1 to 14 of life. Growth restricted babies had significantly lower sma bfv values compared with appropriately grown preterm babies. Faecal chymotrypsin levels were also lower but this difference did not achieve statistical significance. Both groups had serum lipase levels detectable in adult concentrations. Serum amylase was undetectable in either group. Conclusion Babies with previous in-utero blood flow redistribution may exhibit altered gut ontogeny with re-setting of mesenteric blood flow velocities and altered exocrine pancreatic function.

  5. On Ultrasonic MTI Measurement of Velocity Profiles in Blood-Flow

    Directory of Open Access Journals (Sweden)

    Bjørn A.J. Angelsen

    1981-04-01

    Full Text Available A theoretical analysis of Doppler frequency estimators proposed to be used in ultrasonic MTI measurements of velocity profiles in blood flow, is given. The estimators give an output in form of a single analogue voltage and the relation of the output to the Doppler spectrum is discussed. Three new estimators are also proposed. All estimators work fairly well for narrow-band Doppler spectra, but errors are found when broad-band spectra are present.

  6. Voluntary respiratory control and cerebral blood flow velocity upon ice-water immersion

    DEFF Research Database (Denmark)

    Mantoni, Teit; Rasmussen, Jakob Højlund; Belhage, Bo;

    2008-01-01

    In non-habituated subjects, cold-shock response to cold-water immersion causes rapid reduction in cerebral blood flow velocity (approximately 50%) due to hyperventilation, increasing risk of syncope, aspiration, and drowning. Adaptation to the response is possible, but requires several cold...... immersions. This study examines whether thorough instruction enables non-habituated persons to attenuate the ventilatory component of cold-shock response....

  7. Effect of Electrical Stimulation on Blood Flow Velocity and Vessel Size

    Science.gov (United States)

    Jin, Hee-Kyung; Hwang, Tae-Yeon; Cho, Sung-Hyoun

    2017-01-01

    Abstract Interferential current electrical stimulation alters blood flow velocity and vessel size. We aimed to investigate the changes in the autonomic nervous system depending on electrical stimulation parameters. Forty-five healthy adult male and female subjects were studied. Bipolar adhesive pad electrodes were used to stimulate the autonomic nervous system at the thoracic vertebrae 1-4 levels for 20 min. Using Doppler ultrasonography, blood flow was measured to determine velocity and vessel size before, immediately after, and 30 min after electrical stimulation. Changes in blood flow velocity were significantly different immediately and 30 min after stimulation. The interaction between intervention periods and groups was significantly different between the exercise and pain stimulation groups immediately after stimulation (p<0.05). The vessel size was significantly different before and 30 min after stimulation (p<0.05). Imbalances in the sympathetic nervous system, which regulates balance throughout the body, may present with various symptoms. Therefore, in the clinical practice, the parameters of electrical stimulation should be selectively applied in accordance with various conditions and changes in form.

  8. Assessment of blood flow velocity and pulsatility in cerebral perforating arteries with 7-T quantitative flow MRI.

    Science.gov (United States)

    Bouvy, W H; Geurts, L J; Kuijf, H J; Luijten, P R; Kappelle, L J; Biessels, G J; Zwanenburg, J J M

    2016-09-01

    Thus far, blood flow velocity measurements with MRI have only been feasible in large cerebral blood vessels. High-field-strength MRI may now permit velocity measurements in much smaller arteries. The aim of this proof of principle study was to measure the blood flow velocity and pulsatility of cerebral perforating arteries with 7-T MRI. A two-dimensional (2D), single-slice quantitative flow (Qflow) sequence was used to measure blood flow velocities during the cardiac cycle in perforating arteries in the basal ganglia (BG) and semioval centre (CSO), from which a mean normalised pulsatility index (PI) per region was calculated (n = 6 human subjects, aged 23-29 years). The precision of the measurements was determined by repeated imaging and performance of a Bland-Altman analysis, and confounding effects of partial volume and noise on the measurements were simulated. The median number of arteries included was 14 in CSO and 19 in BG. In CSO, the average velocity per volunteer was in the range 0.5-1.0 cm/s and PI was 0.24-0.39. In BG, the average velocity was in the range 3.9-5.1 cm/s and PI was 0.51-0.62. Between repeated scans, the precision of the average, maximum and minimum velocity per vessel decreased with the size of the arteries, and was relatively low in CSO and BG compared with the M1 segment of the middle cerebral artery. The precision of PI per region was comparable with that of M1. The simulations proved that velocities can be measured in vessels with a diameter of more than 80 µm, but are underestimated as a result of partial volume effects, whilst pulsatility is overestimated. Blood flow velocity and pulsatility in cerebral perforating arteries have been measured directly in vivo for the first time, with moderate to good precision. This may be an interesting metric for the study of haemodynamic changes in aging and cerebral small vessel disease. © 2015 The Authors NMR in Biomedicine Published by John Wiley & Sons Ltd.

  9. Optimal velocity encoding during measurement of cerebral blood flow volume using phase-contrast magnetic resonance angiography

    Institute of Scientific and Technical Information of China (English)

    Gang Guo; Yonggui Yang; Weiqun Yang

    2011-01-01

    This study investigated the effect of velocity encoding on measurement of brain blood flow and blood volume of inflow and outflow using phase-contrast magnetic resonance angiography. A single two-dimensional phase-contrast magnetic resonance angiography slice was applied perpendicular to the internal carotid artery and the vertebral artery at C2 level. For each subject, the velocity encoding was set from 30 to 90 cm/s with an interval of 10 cm/s for a total of seven settings. Various velocity encodings greatly affected blood flow volume, maximal blood flow velocity and mean blood flow velocity in the internal carotid artery, but did not significantly affect vertebral arteries and jugular veins. When velocity encoding was 60-80 cm/s, the inflow blood volume was 655 ± 118 mL/min, and the outflow volume was 506 ± 186 mL/min. The ratio of outflow/inflow was steady at 0.78-0.83, and there was no aliasing in any of the images. These findings suggest that velocity encodings of 60-80 cm/s should be selected during measurement of cerebral blood flow volume using phase-contrast magnetic resonance angiography.

  10. The effect of nitrous oxide on cerebral blood flow velocity in children anaesthetised with sevoflurane.

    Science.gov (United States)

    Rowney, D A; Fairgrieve, R; Bissonnette, B

    2004-01-01

    To determine the effects of nitrous oxide on middle cerebral artery blood flow velocity (CBFV) during sevoflurane anaesthesia in children, CBFV was measured using transcranial Doppler sonography in 16 ASA I or II children. Anaesthesia consisted of 1.0 MAC sevoflurane in 30% oxygen with intermittent positive pressure ventilation maintaining FEco2 at 38 mmHg (5.0 kPa) and a caudal epidural block using 0.25% bupivacaine 1.0 ml.kg-1. The remainder of the inspired gas was varied in one of two sequences either air/nitrous oxide/air or nitrous oxide/air/nitrous oxide. The results showed that CBFV decreased when nitrous oxide was replaced by air (p = 0.03) and returned to its initial value when nitrous oxide was reintroduced. CBFV increased when air was replaced by nitrous oxide (p = 0.04) and returned to its initial value when air was reintroduced. Mean heart rate and blood pressure remained constant. We conclude that nitrous oxide increases cerebral blood flow velocity in healthy children anaesthetised with 1.0 MAC sevoflurane.

  11. A velocity tracking approach for the data assimilation problem in blood flow simulations.

    Science.gov (United States)

    Tiago, J; Guerra, T; Sequeira, A

    2016-11-24

    Several advances have been made in data assimilation techniques applied to blood flow modeling. Typically, idealized boundary conditions, only verified in straight parts of the vessel, are assumed. We present a general approach, on the basis of a Dirichlet boundary control problem, that may potentially be used in different parts of the arterial system. The relevance of this method appears when computational reconstructions of the 3D domains, prone to be considered sufficiently extended, are either not possible, or desirable, because of computational costs. On the basis of taking a fully unknown velocity profile as the control, the approach uses a discretize then optimize methodology to solve the control problem numerically. The methodology is applied to a realistic 3D geometry representing a brain aneurysm. The results show that this data assimilation approach may be preferable to a pressure control strategy and that it can significantly improve the accuracy associated to typical solutions obtained using idealized velocity profiles.

  12. Effects of prostaglandin analogs on blood flow velocity and resistance in the ophthalmic artery of rabbits

    Directory of Open Access Journals (Sweden)

    Amália Turner Giannico

    2016-02-01

    Full Text Available ABSTRACT Purpose: The aim of this study was to investigate the effects of prostaglandin analogs on blood flow in the ophthalmic artery of clinically healthy rabbits. Methods: Fifty-five clinically healthy New Zealand white rabbits were divided into six groups, and the left eyes were treated for four weeks with the preservative benzalkonium chloride (BAK only or a topical formulation of different prostaglandin analogs (bimatoprost BAK, tafluprost BAK-free, travoprost BAK, travoprost POLYQUAD, and latanoprost BAK. Color Doppler imaging was performed before and after the treatments. The mean values of the peak systolic velocity (PSV and end diastolic velocity and the resistive index (RI were calculated. Statistical analysis was performed to compare the differences pre- and post-treatment for each drug and post-treatment among the drugs. Results: The prostaglandin analogs did not affect PSV. Bimatoprost BAK, travoprost POLYQUAD, and latanoprost BAK did not change RI. Tafluprost BAK-free and travoprost BAK therapy resulted in similar reductions in RI. No significant differences pre- and post-treatment were found when BAK was administered alone. Conclusion: The prostaglandin analogs tafluprost BAK-free and travoprost BAK improved blood flow in the ophthalmic artery in healthy New Zealand white rabbits, which suggests that these drugs enhance the prevention of the progression the progression of glaucoma.

  13. [Coronary artery blood flow velocity non-invasively measured using a vessel-tracking pulsed Doppler system].

    Science.gov (United States)

    Tateishi, O; Aizawa, O; Okamura, T; Yoshida, T; Furuhata, H; Seo, Y; Iinuma, K; Shiki, E

    1988-09-01

    A newly-developed noninvasive method was used to measure left coronary blood flow during phantom experiments. Two techniques were used in which: (1) the sample position can always be set in a fluctuating vessel using a wall echo-tracking method with a phase-locked-loop, and (2) the Doppler reference signal was generated separately synchronous with the wall echo signal. These techniques were combined, using a commercially available pulsed Doppler apparatus (SSH-40B: Toshiba). Basic experiments were performed using a blood vessel phantom to verify the validity of these systems. Blood flow velocity in the fluctuating tube could be measured clearly using a vessel-tracking method. The blood flow velocity of the left anterior descending artery was measured in three normal subjects and in seven patients from the third intercostal space along the left sternal border. The velocity pattern was characterized by a crescendo-decrescendo shape in diastole. The peak velocity which appeared in diastole ranged from 19 to 69 cm/sec, with no difference by disease entity. However, in all cases, the blood flow velocity signals were marred by extraneous signals, making it impossible to measure blood flow velocity during systole. Further improvement of the system is mandatory in order to use this flowmeter clinically.

  14. Changes in mean cerebral blood flow velocity during cognitive task-induced cerebral fatigue in high performance fighter pilots

    Institute of Scientific and Technical Information of China (English)

    Yongsheng Chen

    2008-01-01

    BACKGROUND: Several studies have demonstrated that sustained cognitive tasks can induce cognitive fatigue and that the mean cerebral blood flow velocity changes in some cerebral regions during cerebral fatigue. OBJECTIVE: To dynamically monitor the changes in mean cerebral blood flow velocity in different brain regions of high performance fighter pilots during mental arithmetic tasks and consecutive performance tasks. DESIGN, TIME AND SETTING: The present neurophysiological trial, based on controlled observation, was performed at the Laboratory of Neurophysiology, Institute of Aviation Medicine, Air Force of China between January 2003 and December 2005. PARTICIPANTS: Forty-five males, high performance fighter pilots, averaging (27.6 ± 2.5) years, were recruited for this study. METHODS: The mean cerebral blood flow velocity in the anterior cerebral artery, middle cerebral artery, and posterior cerebral artery of subjects was dynamically tested using transcranial Doppler during 5- hour mental arithmetic tasks and during 5- hour consecutive performance tasks. The neurobehavioral ability index was analyzed throughout each trial according to the number of correct responses, false responses, and lost responses. Simultaneously, cerebral cognitive fatigue-induced lethargy was assessed by the Stanford Sleepiness Scale. MAIN OUTCOME MEASURES: Changes in mean cerebral blood flow velocity in the anterior cerebral artery, middle cerebral artery, and posterior cerebral artery; neurobehavioral ability index of mental arithmetic and consecutive performance tasks; Stanford Sleepiness Scale scores. RESULTS: During mental arithmetic tasks, the mean cerebral blood flow velocity in the anterior cerebral artery increased during hour 2 and decreased after hour 4. There was no significant change in mean cerebral blood flow velocity in the middle cerebral artery and posterior cerebral artery. During hour 4, cerebral cognitive fatigue was observed and, simultaneously, Stanford Sleepiness

  15. Carbon dioxide induced changes in cerebral blood flow and flow velocity: role of cerebrovascular resistance and effective cerebral perfusion pressure.

    Science.gov (United States)

    Grüne, Frank; Kazmaier, Stephan; Stolker, Robert J; Visser, Gerhard H; Weyland, Andreas

    2015-09-01

    In addition to cerebrovascular resistance (CVR) zero flow pressure (ZFP), effective cerebral perfusion pressure (CPPe) and the resistance area product (RAP) are supplemental determinants of cerebral blood flow (CBF). Until now, the interrelationship of PaCO2-induced changes in CBF, CVR, CPPe, ZFP, and RAP is not fully understood. In a controlled crossover trial, we investigated 10 anesthetized patients aiming at PaCO2 levels of 30, 37, 43, and 50 mm Hg. Cerebral blood flow was measured with a modified Kety-Schmidt-technique. Zero flow pressure and RAP was estimated by linear regression analysis of pressure-flow velocity relationships of the middle cerebral artery. Effective cerebral perfusion pressure was calculated as the difference between mean arterial pressure and ZFP, CVR as the ratio CPPe/CBF. Statistical analysis was performed by one-way RM-ANOVA. When comparing hypocapnia with hypercapnia, CBF showed a significant exponential reduction by 55% and mean VMCA by 41%. Effective cerebral perfusion pressure linearly decreased by 17% while ZFP increased from 14 to 29 mm Hg. Cerebrovascular resistance increased by 96% and RAP by 39%; despite these concordant changes in mean CVR and Doppler-derived RAP correlation between these variables was weak (r=0.43). In conclusion, under general anesthesia hypocapnia-induced reduction in CBF is caused by both an increase in CVR and a decrease in CPPe, as a consequence of an increase in ZFP.

  16. Transcranial Doppler-determined change in posterior cerebral artery blood flow velocity does not reflect vertebral artery blood flow during exercise.

    Science.gov (United States)

    Washio, Takuro; Sasaki, Hiroyuki; Ogoh, Shigehiko

    2017-02-10

    We examined whether a change in posterior cerebral artery flow velocity (PCAv) reflected the posterior cerebral blood flow, in healthy subjects, during both static and dynamic exercise. PCAv and vertebral artery (VA) blood flow, as an index of posterior blood flow, were continuously measured during an exercise trial, using transcranial Doppler (TCD) ultrasonography and Doppler ultrasound, respectively. Static handgrip exercise significantly increased both PCAv and VA blood flow. Increasing intensity of dynamic exercise further increased VA blood flow from moderate exercise, while PCAv decreased to almost resting level. During both static and dynamic exercise, the PCA cerebrovascular conductance (CVC) index significantly decreased from rest (static and high intensity dynamic exercise; -11.5 ± 12.2% and -18.0 ± 16.8%; mean ± SD, respectively), despite no change in the CVC of VA. These results indicate that vasoconstriction occurred at PCA but not VA during exercise-induced hypertension. This discrepancy in vascular response to exercise between PCA and VA may be due to different cerebral arterial characteristics. Therefore, to determine the effect of exercise on posterior cerebral circulation, at least, we need to consider carefully which cerebral artery to measure, regardless of exercise mode.

  17. A Hybrid Windkessel Model of Blood Flow in Arterial Tree Using Velocity Profile Method

    Science.gov (United States)

    Aboelkassem, Yasser; Virag, Zdravko

    2016-11-01

    For the study of pulsatile blood flow in the arterial system, we derived a coupled Windkessel-Womersley mathematical model. Initially, a 6-elements Windkessel model is proposed to describe the hemodynamics transport in terms of constant resistance, inductance and capacitance. This model can be seen as a two compartment model, in which the compartments are connected by a rigid pipe, modeled by one inductor and resistor. The first viscoelastic compartment models proximal part of the aorta, the second elastic compartment represents the rest of the arterial tree and aorta can be seen as the connection pipe. Although the proposed 6-elements lumped model was able to accurately reconstruct the aortic pressure, it can't be used to predict the axial velocity distribution in the aorta and the wall shear stress and consequently, proper time varying pressure drop. We then modified this lumped model by replacing the connection pipe circuit elements with a vessel having a radius R and a length L. The pulsatile flow motions in the vessel are resolved instantaneously along with the Windkessel like model enable not only accurate prediction of the aortic pressure but also wall shear stress and frictional pressure drop. The proposed hybrid model has been validated using several in-vivo aortic pressure and flow rate data acquired from different species such as, humans, dogs and pigs. The method accurately predicts the time variation of wall shear stress and frictional pressure drop. Institute for Computational Medicine, Dept. Biomedical Engineering.

  18. Regional differences in the cerebral blood flow velocity response to hypobaric hypoxia at high altitudes.

    Science.gov (United States)

    Feddersen, Berend; Neupane, Pritam; Thanbichler, Florian; Hadolt, Irmgard; Sattelmeyer, Vera; Pfefferkorn, Thomas; Waanders, Robb; Noachtar, Soheyl; Ausserer, Harald

    2015-11-01

    Symptoms of acute mountain sickness (AMS) may appear above 2,500 m altitude, if the time allowed for acclimatization is insufficient. As the mechanisms underlying brain adaptation to the hypobaric hypoxic environment are not fully understood, a prospective study was performed investigating neurophysiological changes by means of near infrared spectroscopy, electroencephalograpy (EEG), and transcranial doppler sonography at 100, 3,440 and 5,050 m above sea level in the Khumbu Himal, Nepal. Fourteen of the 26 mountaineers reaching 5,050 m altitude developed symptoms of AMS between 3,440 and 5,050 m altitude (Lake-Louise Score ⩾3). Their EEG frontal beta activity and occipital alpha activity increased between 100 and 3,440 m altitude, i.e., before symptoms appeared. Cerebral blood flow velocity (CBFV) in the anterior and middle cerebral arteries (MCAs) increased in all mountaineers between 100 and 3,440 m altitude. During further ascent to 5,050 altitude, mountaineers with AMS developed a further increase in CBFV in the MCA, whereas in all mountaineers CBFV decreased continuously with increasing altitude in the posterior cerebral arteries. These results indicate that hypobaric hypoxia causes different regional changes in CBFV despite similar electrophysiological changes.

  19. Differential increases in blood flow velocity in the middle cerebral artery after tourniquet deflation during sevoflurane, isoflurane or propofol anaesthesia.

    Science.gov (United States)

    Kadoi, Y; Kawauchi, C H; Ide, M; Saito, S; Mizutani, A

    2009-07-01

    The purpose of this study was to examine the comparative effects of sevoflurane, isoflurane or propofol on cerebral blood flow velocity after tourniquet deflation during orthopaedic surgery. Thirty patients undergoing elective orthopaedic surgery were randomly divided into sevoflurane, isoflurane and propofol groups. Anaesthesia was maintained with sevoflurane, isoflurane or propofol infusion in 33% oxygen and 67% nitrous oxide, in whatever concentrations were necessary to keep bispectral index values between 45 and 50. Ventilatory rate or tidal volume was adjusted to target PaCO2 of 35 mmHg. A 2.0 MHz transcranial Doppler probe was attached to the patient's head at the temporal window and mean blood flow velocity in the middle cerebral artery was continuously measured. The extremity was exsanguinated with an Esmarch bandage and the pneumatic tourniquet was inflated to a pressure of 450 mmHg. Arterial blood pressure, heart rate, velocity in the middle cerebral artery and arterial blood gas analysis were measured every minute for 10 minutes after release of the tourniquet in all three groups. Velocity in the middle cerebral artery in the three groups increased for five minutes after tourniquet deflation. Because of the different cerebrovascular effects of the three agents, the degree of increase in flow velocity in the isoflurane group was greater than in the other two groups, the change in flow velocity in the propofol group being the lowest (at three minutes after deflation 40 +/- 7%, 32 +/- 6% and 28 +/- 10% in the isoflurane, sevoflurane and propofol groups respectively, P < 0.05).

  20. The effect of the prior flow velocity on the structural organization of aggregated erythrocytes in the quiescent blood.

    Science.gov (United States)

    Pribush, Alexander; Meyerstein, Dan; Meyerstein, Naomi

    2011-02-01

    Usually, investigations of erythrocyte aggregation at rest are focused on effects of the strength of erythrocyte-erythrocyte attractive interactions and the volume fraction of the cells, whereas the role of prior flow velocity has not been thoroughly investigated. The aim of this study is to fill this gap. The main conclusions extracted from time records of the complex admittance of blood are as follows: (1) Dispersion of blood in a prior flow into discrete aggregates increases the mesh size of network, which, as has been recently shown, is formed in the quiescent blood. (2) If the energy of the flow field is sufficient to prevent the formation of face-to-side intercellular links, so that the dispersed phase consists of linear rouleaux, changes in the mesh size correlate positively with the length of rouleaux. (3) At slower prior flow velocities, the cells are combined into branched aggregates. As the degree of branching increases, the effect becomes less important. (4) The effects of the length of linear rouleaux and the degree of branching of ramified aggregates on the mesh size are qualitatively similar for suspensions with different aggregating media. (5) Erythrocytes suspended in strongly aggregating media form at low flow conditions a network-like structure. In this case, unlike high and moderate prior flow regimes, the mesh size of RBC network at rest is less than that formed after the stoppage of completely dispersed blood.

  1. Velocity field measurements of valvular blood flow in a human superficial vein using high-frequency ultrasound speckle image velocimetry.

    Science.gov (United States)

    Nam, Kweon-Ho; Yeom, Eunseop; Ha, Hojin; Lee, Sang-Joon

    2012-01-01

    This study aims to investigate the blood flow around the perivalvular area in a human superficial vein using high-frequency ultrasound (HFUS) speckle image velocimetry. HFUS B-mode images were captured from the superficial veins of human lower extremity with a 35-MHz transducer. To measure the instantaneous velocity fields of blood flow, a cross-correlation particle image velocimetry (PIV) algorithm was applied to two B-mode images that were captured consecutively. The echo speckles of red blood cells (RBCs) were used as flow tracers. In the vicinity of the venous valve, the opening and closing motions of valve cusps were simultaneously visualized with the phasic variation of velocity fields. Large-scale vortices were observed behind the sinus pockets while the main bloodstream was directed proximally. This measurement technique combining PIV algorithm and HFUS B-mode imaging was found to be unique and useful for investigating the hemodynamic characteristics of blood flow in the perivalvular area and for diagnosing venous insufficiency and valve abnormality in superficial blood vessels.

  2. Intraoperative vascular anatomy, arterial blood flow velocity, and microcirculation in unilateral and bilateral cleft lip repair

    NARCIS (Netherlands)

    Mueller, A.A.; Schumann, D.; Reddy, R.R.; Schwenzer-Zimmerer, K.; Mueller-Gerbl, M.; Zeilhofer, H.F.; Sailer, H.F.; Reddy, S.G.

    2012-01-01

    BACKGROUND: Cleft lip repair aims to normalize the disturbed anatomy and function. The authors determined whether normalization of blood circulation is achieved. METHODS: The authors measured the microcirculatory flow, oxygen saturation, and hemoglobin level in the lip and nose of controls (n = 22)

  3. Carbon dioxide induced changes in cerebral blood flow and flow velocity: Role of cerebrovascular resistance and effective cerebral perfusion pressure

    NARCIS (Netherlands)

    F. Grüne (Frank); S. Kazmaier (Stephan); R.J. Stolker (Robert J.); G.H. Visser (Gerhard Henk); A. Weyland (Andreas)

    2015-01-01

    textabstractIn addition to cerebrovascular resistance (CVR) zero flow pressure (ZFP), effective cerebral perfusion pressure (CPPe) and the resistance area product (RAP) are supplemental determinants of cerebral blood flow (CBF). Until now, the interrelationship of PaCO2 -induced changes in CBF, CVR,

  4. Quantification of blood flow velocity in stenosed arteries by the use of finite elements: an observer-independent noninvasive method.

    Science.gov (United States)

    Mühlthaler, Hannes; Quatember, Bernhard; Fraedrich, Gustav; Mühlthaler, Markus; Pfeifer, Bernhard; Greiner, Andreas; Schocke, Michael F H

    2008-10-01

    Interventions for peripheral arterial disease should be designed to treat a physiological rather than an anatomic defect. Thus, for vascular surgeons, functional information about stenoses is as important as the anatomic one. In case of finding a stenosis by the use of magnetic resonance angiography, it would be a matter of particular interest to derive automatically and directly objective information about the hemodynamic influence on blood flow, caused by patient-specific stenoses. We developed a methodology to noninvasively perform numerical simulations of a patient's hemodynamic state on the basis of magnetic resonance images and by the means of the finite element method. We performed patient-specific three-dimensional simulation studies of the increase in systolic blood flow velocity due to stenoses using the commercial computational fluid dynamic software package FIDAP 8.52. The generation of a mesh defining the flow domain with a stenosis and some simulation results are shown.

  5. Blood flow velocity in the Popliteal Vein using Transverse Oscillation Ultrasound

    DEFF Research Database (Denmark)

    Bechsgaard, Thor; Lindskov Hansen, Kristoffer; Brandt, Andreas Hjelm;

    2016-01-01

    Chronic venous disease is a common condition leading to varicose veins, leg edema, post-thrombotic syndrome and venous ulcerations. Ultrasound (US) is the main modality for examination of venous disease. Color Doppler and occasionally spectral Doppler US (SDUS) are used for evaluation of the venous...... in the veins of the lower limbs. Four volunteers were recruited for the study. A standardized flow was provoked with a cuff compression-decompression system placed around the lower leg. The average peak velocity in the popliteal vein of the four volunteers was 151.5 cm/s for SDUS and 105.9 cm/s for TOUS (p

  6. Evaluation of coronary blood flow velocity during cardiac arrest with circulation maintained through mechanical chest compressions in a porcine model

    Directory of Open Access Journals (Sweden)

    Wagner Henrik

    2011-12-01

    Full Text Available Abstract Background Mechanical chest compressions (CCs have been shown capable of maintaining circulation in humans suffering cardiac arrest for extensive periods of time. Reports have documented a visually normalized coronary blood flow during angiography in such cases (TIMI III flow, but it has never been actually measured. Only indirect measurements of the coronary circulation during cardiac arrest with on-going mechanical CCs have been performed previously through measurement of the coronary perfusion pressure (CPP. In this study our aim was to correlate average peak coronary flow velocity (APV to CPP during mechanical CCs. Methods In a closed chest porcine model, cardiac arrest was established through electrically induced ventricular fibrillation (VF in eleven pigs. After one minute, mechanical chest compressions were initiated and then maintained for 10 minutes upon which the pigs were defibrillated. Measurements of coronary blood flow in the left anterior descending artery were made at baseline and during VF with a catheter based Doppler flow fire measuring APV. Furthermore measurements of central (thoracic venous and arterial pressures were also made in order to calculate the theoretical CPP. Results Average peak coronary flow velocity was significantly higher compared to baseline during mechanical chests compressions and this was observed during the entire period of mechanical chest compressions (12 - 39% above baseline. The APV slowly declined during the 10 min period of mechanical chest compressions, but was still higher than baseline at the end of mechanical chest compressions. CPP was simultaneously maintained at > 20 mmHg during the 10 minute episode of cardiac arrest. Conclusion Our study showed good correlation between CPP and APV which was highly significant, during cardiac arrest with on-going mechanical CCs in a closed chest porcine model. In addition APV was even higher during mechanical CCs compared to baseline. Mechanical

  7. Cerebral blood flow velocities are reduced during attacks of unilateral migraine without aura

    DEFF Research Database (Denmark)

    Thomsen, L L; Iversen, Helle Klingenberg; Olesen, J

    1995-01-01

    aura in 25 patients. Blood velocity in the middle cerebral artery was lower on the headache side (59 cm/s) than on the non-headache side (65 cm/s) during the migraine attack. No such difference was found outside of attack (65 cm/s both sides). The difference (headache side minus non-headache side......) was on average -6.1 cm/s during attack compared to -0.4 cm/s outside of attack (p = 0.01). Assuming that rCBF is unchanged during attacks of migraine without aura, our results suggest a 9% increase in middle cerebral artery lumen (cross-sectional area) on the affected side during unilateral attacks of migraine...... without aura. The findings, however, do not necessarily mean that arterial dilatation is the only or even the most significant cause of pain....

  8. Differential effects of hyperventilation on cerebral blood flow velocity after tourniquet deflation during sevoflurane, isoflurane, or propofol anesthesia.

    Science.gov (United States)

    Hinohara, Hiroshi; Kadoi, Yuji; Ide, Masanobu; Kuroda, Masataka; Saito, Shigeru; Mizutani, Akio

    2010-08-01

    The purpose of this study was to compare the degree of increase in middle cerebral artery (MCA) blood flow velocity after tourniquet deflation when modulating hyperventilation during orthopedic surgery under sevoflurane, isoflurane, or propofol anesthesia. Twenty-four patients undergoing elective orthopedic surgery were randomly divided into sevoflurane, isoflurane, and propofol groups. Anesthesia was maintained with sevoflurane, isoflurane, or propofol administration with 33% oxygen and 67% nitrous oxide at anesthetic drug concentrations adequate to maintain bispectral values between 45 and 50. A 2.0-MHz transcranial Doppler probe was attached to the patient's head at the temporal window, and mean blood flow velocity in the MCA (V (mca)) was continuously measured. The extremity was exsanguinated with an Esmarch bandage, and the pneumatic tourniquet was inflated to a pressure of 450 mmHg. Arterial blood pressure, heart rate, V (mca) and arterial blood gases were measured every minute for 10 min after release of the tourniquet in all three groups. Immediately after tourniquet release, the patients' respiratory rates were increased to tightly maintain end-tidal carbon dioxide (PetCO(2)) at 35 mmHg. No change in partial pressure of carbon dioxide in arterial blood (PaCO(2)) was observed pre- and posttourniquet deflation in any of the three groups. Increase in V (mca) in the isoflurane group was greater than that in the other two groups after tourniquet deflation. In addition, during the study period, no difference in V (mca) after tourniquet deflation was observed between the propofol and sevoflurane groups. Hyperventilation could prevent an increase in V (mca) in the propofol and sevoflurane groups after tourniquet deflation. However, hyperventilation could not prevent an increase in V (mca) in the isoflurane group.

  9. Simultaneous mapping of temporally-resolved blood flow velocity and oxygenation in femoral artery and vein during reactive hyperemia

    Directory of Open Access Journals (Sweden)

    Langham Michael C

    2011-10-01

    Full Text Available Abstract Background Post-occlusive hyperemia is often used as a paradigm to evaluate vascular reactivity, for example by measuring post-ischemic flow-mediated dilation, arterial blood flow or temporally resolved venous blood oxygenation (HbO2. Here we demonstrate the feasibility of a simultaneous measurement of blood flow and HbO2 in the femoral circulation as part of a single procedure. Methods A multi-echo GRE pulse sequence was designed and implemented to collect velocity-encoded projections in addition to full-image echoes for field mapping as a means to quantify intravascular magnetic susceptibility. The method's feasibility was evaluated at 3T in a small pilot study involving two groups of healthy subjects (mean ages 26 ± 1.6 and 59 ± 7.3 years, N = 7 and 5, respectively in terms of six parameters characterizing the time-course of reactive hyperemia and their sensitivity to differentiate age effects. The reproducibility was assessed on two of the seven young healthy subjects with three repeated measurements. Results The physiological parameters agree with those obtained with current methods that quantify either velocity or HbO2 alone. Of the six measures of vascular reactivity, one from each group was significantly different in the two subject groups (p Conclusion The proposed method is able quantify multiple parameters that may lead to more detailed assessment of peripheral vascular reactivity in a single cuff paradigm rather than in separate procedures as required previously, thereby improving measurement efficiency and patient comfort.

  10. Middle cerebral artery blood velocity during running

    DEFF Research Database (Denmark)

    Lyngeraa, Tobias; Pedersen, Lars Møller; Mantoni, T;

    2013-01-01

    Running induces characteristic fluctuations in blood pressure (BP) of unknown consequence for organ blood flow. We hypothesized that running-induced BP oscillations are transferred to the cerebral vasculature. In 15 healthy volunteers, transcranial Doppler-determined middle cerebral artery (MCA....... During running, rhythmic oscillations in arterial BP induced by interference between HR and step frequency impact on cerebral blood velocity. For the exercise as a whole, average MCA velocity becomes elevated. These results suggest that running not only induces an increase in regional cerebral blood flow...

  11. Compromised cerebrovascular modulation in chronic anxiety: evidence from cerebral blood flow velocity measured by transcranial Doppler sonography

    Institute of Scientific and Technical Information of China (English)

    Hong-Liang Zhang; Zhen-Ni Guo; Ge Yang; Le Yang; Ke Han; Jiang Wu; Yingqi Xing; Yi Yang

    2012-01-01

    Objective Cerebral autoregulation (CA) is the mechanism by which constant cerebral blood flow is maintained despite changes in cerebral perfusion pressure.CA can be evaluated by dynamic monitoring of cerebral blood flow velocity (CBFV) with transcranial Doppler sonography (TCD).The present study aimed to explore CA in chronic anxiety.Methods Subjects with Hamilton anxiety scale scores ≥14 were enrolled and the dynamic changes of CBFV in response to an orthostatic challenge were investigated using TCD.Results In both the anxious and the healthy subjects,the mean CBFV was significantly lower in the upright position than when supine.However,the CBFV changes from supine to upright differed between the anxious and the healthy groups.Anxious subjects showed more pronounced decreases in CBFV with abrupt standing.Conclusion Our results indicate that cerebrovascular modulation is compromised in chronic anxiety; anxious subjects have some insufficiency in maintaining cerebral perfusion after postural change.Given the fact that anxiety and impaired CA are associated with cardiovascular disease,early ascertainment of compromised cerebrovascular modulation using TCD might suggest interventional therapies in the anxious population,and improve the primary prevention of cardiovascular disease.

  12. The influence of transcutaneous electrical neurostimulation (TENS) on human cerebral blood flow velocities

    NARCIS (Netherlands)

    ter Laan, Mark; van Dijk, J. Marc C.; Elting, Jan-Willem J.; Fidler, Vaclav; Staal, Michiel J.

    2010-01-01

    It has been shown that transcutaneous electrical neurostimulation (TENS) reduces sympathetic tone. Spinal cord stimulation (SCS) has proven qualities to improve coronary, peripheral, and cerebral blood circulation. Therefore, we postulate that TENS and SCS affect the autonomic nervous system in anal

  13. Napoleon Cybulski--Polish pioneer in developing of the device for measuring blood flow velocity.

    Science.gov (United States)

    Pawlik, W W; Konturek, S J; Bilski, R

    2006-04-01

    Napoleon Cybulski (1854-1919) was the most prominent Polish physiologist who chaired the Department of Physiology at the Faculty of Medicine of Jagiellonian University between 1885 and 1919. One of his greatest achievements was the construction of a device for precise measurements of blood movement in the vessels - the photohemotachometer, which provided a better insight into the physiology and pathophysiology of the circulatory system. In the field of endocrinology Cybulski together with Szymonowicz, found out that adrenal extracts contain biologically active substances that elevate blood pressure. He was also a constructor of an extremely clever microcalorimeter to measure the quantity of heat produced during isolated muscle contraction. He applied, for the first time, condensator discharges to stimulate nerves and analyzed changes in the excitability of the muscles. Cybulski proved that the cause of the electrical excitability of tissue depends on the electrical energy and the time of its duration. Together with Beck, he performed the experiments on the sensory centers in the central nervous system by means of the observations of the electrical evoked potentials. They discovered the continuous electrical oscillations in the brain - the brain waves and recorded the negative electrical potentials in certain brain areas induced by sensory impulses coming from the periphery. Using this technique Beck and Cybulski localized various centers in the brain of dogs and Macaccus rhesus monkeys. The names of Beck and Cybulski were quoted in many publications on neurophysiology and electroencephalography. The present paper describes Napoleon Cybulski as a constructor of an original instrument for studying the movement of blood under various experimental conditions an emphasizes the contribution of this invention to the development of physiology.

  14. Quantification of resting myocardial blood flow velocity in normal humans using real-time contrast echocardiography. A feasibility study

    Directory of Open Access Journals (Sweden)

    Slordahl Stig

    2005-06-01

    Full Text Available Abstract Background Real-time myocardial contrast echocardiography (MCE is a novel method for assessing myocardial perfusion. The aim of this study was to evaluate the feasibility of a very low-power real-time MCE for quantification of regional resting myocardial blood flow (MBF velocity in normal human myocardium. Methods Twenty study subjects with normal left ventricular (LV wall motion and normal coronary arteries, underwent low-power real-time MCE based on color-coded pulse inversion Doppler. Standard apical LV views were acquired during constant IV. infusion of SonoVue®. Following transient microbubble destruction, the contrast replenishment rate (β, reflecting MBF velocity, was derived by plotting signal intensity vs. time and fitting data to the exponential function; y (t =A (1-e-β(t-t0 + C. Results Quantification was feasible in 82%, 49% and 63% of four-chamber, two-chamber and apical long-axis view segments, respectively. The LAD (left anterior descending artery and RCA (right coronary artery territories could potentially be evaluated in most, but contrast detection in the LCx (left circumflex artery bed was poor. Depending on localisation and which frames to be analysed, mean values of were 0.21–0.69 s-1, with higher values in medial than lateral, and in basal compared to apical regions of scan plane (p = 0.03 and p Conclusion Low-power real-time MCE did have the potential to give contrast enhancement for quantification of resting regional MBF velocity. However, the technique is difficult and subjected to several limitations. Significant variability in β suggests that this parameter is best suited for with-in patient changes, comparing values of stress studies to baseline.

  15. The Effects of Chinese Medicines on Micro-circulation of Nail Folds and Blood Flow Velocity of Limbs in the Patients with Arteriosclerotic Obliteration

    Institute of Scientific and Technical Information of China (English)

    葛辛; 葛芃; 彭玉清; 陈云翔

    2003-01-01

    The effects of Chinese medicines on micro-circulation and blood flow velocity in arteries of the lower limbs were observed in 33 patients with arteriosclerotic obliteration (ASO). The results showed that the integral values of micro-circulation after treatment were obviously higher than those before treatment (P<0.05 or P<0.01). Blood flow velocity in arteries of the lower limbs determined with the color Doppler ultrasound detecting method after treatment were also obviously higher than those before treatment (P<0.05 or P<0.01). In this series of 33 ASO patients, the markedly effective rate was 36.36%, and the total effective rate was 63.64%. The observation indicates that the recipe prescribed according to the principle of supplementing qi and activating blood circulation can effectively improve micro-circulation in ASO patients, and accelerate blood flow in arteries of the lower limbs.

  16. A segmented K-space velocity mapping protocol for quantification of renal artery blood flow during breath-holding

    DEFF Research Database (Denmark)

    Thomsen, C; Cortsen, M; Söndergaard, L;

    1995-01-01

    for renal artery flow determination. The protocol uses 16 phase-encoding lines per heart beat during 16 heart cycles and gives a temporal velocity resolution of 160 msec. Comparison with a conventional ECG-triggered velocity mapping protocol was made in phantoms as well as in volunteers. In our study, both...

  17. Ultrasound systems for blood velocity estimation

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    1998-01-01

    Medical ultrasound scanners can be used both for displayinggray-scale images of the anatomy and for visualizing theblood flow dynamically in the body.The systems can interrogate the flow at a single position in the bodyand there find the velocity distribution over time. They can also show adynamic...... color image of velocity at up to 20 to 60 frames a second. Both measurements are performedby repeatedly pulsing in the same direction and then usethe correlation from pulse to pulse to determine the velocity.The paper gives a simple model for the interactionbetween the ultrasound and the moving blood...

  18. In vitro confocal micro-PIV measurements of blood flow in a square microchannel: the effect of the haematocrit on instantaneous velocity profiles.

    Science.gov (United States)

    Lima, Rui; Wada, Shigeo; Takeda, Motohiro; Tsubota, Ken-ichi; Yamaguchi, Takami

    2007-01-01

    A confocal microparticle image velocimetry (micro-PIV) system was used to obtain detailed information on the velocity profiles for the flow of pure water (PW) and in vitro blood (haematocrit up to 17%) in a 100-microm-square microchannel. All the measurements were made in the middle plane of the microchannel at a constant flow rate and low Reynolds number (Re=0.025). The averaged ensemble velocity profiles were found to be markedly parabolic for all the working fluids studied. When comparing the instantaneous velocity profiles of the three fluids, our results indicated that the profile shape depended on the haematocrit. Our confocal micro-PIV measurements demonstrate that the root mean square (RMS) values increase with the haematocrit implying that it is important to consider the information provided by the instantaneous velocity fields, even at low Re. The present study also examines the potential effect of the RBCs on the accuracy of the instantaneous velocity measurements.

  19. Oral Levosimendan Increases Cerebral Blood Flow Velocities in Patients with a History of Stroke or Transient Ischemic Attack: A Pilot Safety Study

    Directory of Open Access Journals (Sweden)

    Matti Kivikko, MD, PhD

    2015-12-01

    Conclusions: Oral levosimendan increases cerebral blood flow velocities and diminishes NT-pro-BNP levels in patients with earlier ischemic cerebrovascular event. Daily doses up to 1.0 mg were well tolerated, whereas the 2.0 mg dose level induced an increase in ventricular extrasystoles. ClinicalTrials.gov identifier: NCT00698763.

  20. Comparison of cerebral blood flow velocity estimation with cranial ultrasound imaging for early prediction of outcome in preterm infants.

    Science.gov (United States)

    Rennie, J M; Coughtrey, H; Morley, R; Evans, D H

    1995-01-01

    Seventy-four low birth weight infants underwent serial measurements of cerebral blood flow velocity (CBFV) using Doppler ultrasound together with ultrasound imaging of the brain. Surviving infants were examined and assessed using the Bayley scales of mental and motor development at 18 months post-term. There were no significant differences in mean CBFV between normal and impaired infants. Infants with abnormal neurological signs (n = 6) or developmental delay (n = 3) did not show the usual steady rise in CBFV during the first few days of life. Four of nine had a rise, then a fall in CBFV compared with 4 of 31 with complete data in the normal group. This difference is significant (chi 2 = 4.3, p = 0.03). The magnitude of the percentage increase between day 1 and day 3 was also smaller in the abnormal group (median 0% vs. 39%, Mann-Whitney p = 0.03). A structural abnormality seen on the cranial ultrasound image was a better predictor of adverse outcome than an abnormal CBFV pattern, with a better sensitivity and specificity (66% and 97% for imaging compared to 44% and 87% for CBFV). The addition of serial ultrasound Doppler measurements of CBFV did not improve the prediction of outcome obtained using ultrasound imaging alone.

  1. Estimation of blood velocities using ultrasound

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    Ultrasound systems are especially useful in estimating blood velocities in the human body because they are noninvasive and can display an estimate in real time. This book offers a comprehensive treatment of this relatively new, important technology. The book begins with an introduction to ultraso......Ultrasound systems are especially useful in estimating blood velocities in the human body because they are noninvasive and can display an estimate in real time. This book offers a comprehensive treatment of this relatively new, important technology. The book begins with an introduction...... to ultrasound, flow physics, and the circulatory system. Next, the interaction of ultrasound with blood is discussed. The special contribution of the book lies in the remaining chapters, which offer a lucid, thorough description of continuous and pulsed wave systems, the latest systems for doing color flow...

  2. Phase-resolved functional optical coherence tomography: simultaneous imaging of in situ tissue structure, blood flow velocity, standard deviation, birefringence, and Stokes vectors in human skin

    Science.gov (United States)

    Ren, Hongwu; Ding, Zhihua; Zhao, Yonghua; Miao, Jianjun; Nelson, J. Stuart; Chen, Zhongping

    2002-10-01

    We describe a phase-resolved functional optical coherence tomography system that can simultaneously yield in situ images of tissue structure, blood flow velocity, standard deviation, birefringence, and the Stokes vectors in human skin. Multifunctional images were obtained by processing of analytical interference fringe signals derived from two perpendicular polarization-detection channels. The blood flow velocity and standard deviation images were obtained by comparison of the phases from pairs of analytical signals in neighboring A-lines in the same polarization state. The analytical signals from two polarization-diversity detection channels were used to determine the four Stokes vectors for four reference polarization states. From the four Stokes vectors, the birefringence image, which is not sensitive to the orientation of the optical axis in the sample, was obtained. Multifunctional in situ images of a port wine stain birthmark in human skin are presented.

  3. Microwave Ablation Using Four-Tine Antenna: Effects of Blood Flow Velocity, Vessel Location, and Total Displacement on Porous Hepatic Cancer Tissue

    Directory of Open Access Journals (Sweden)

    Montree Chaichanyut

    2016-01-01

    Full Text Available This research is concerned with microwave ablation analyses using a 2.45 GHz four-tine (4T antenna for hepatic cancer tissue. In the study, three-dimensional finite-element models were utilized to examine the tissue temperature distributions during and after MW ablation. A preliminary study was first carried out with regard to the specific absorption rates along the 4T antenna insertion depths and the temperature distributions inside the solid and porous liver models with either 3 cm-in-diameter tumor or 5 cm-in-diameter tumor. Based on the preliminary results, the porous models were further examined for the effect of varying blood flow velocities (0–200 cm/s with a 1 cm-in-diameter blood vessel next to the antenna and also for the effect of vessel-antenna locations (0, 0.8, and 1.3 cm with a constant blood flow velocity of 16.7 cm/s. All scenarios were simulated under temperature-controlled mode (90°C. The findings revealed that the blood flow velocity and vessel location influence the ablation effectiveness and that increased blood flow inhibits heat transfer to the vessel wall. At the nearest and farthest vessel-antenna locations (0 and 1.3 cm, approximately 90.3% and 99.55% of the cancer cells were eradicated except for the areas adjacent to the vessel. In addition, total tissue thermal displacement is 5.9 mm which is 6.59% of the total length of the overall model.

  4. Microwave Ablation Using Four-Tine Antenna: Effects of Blood Flow Velocity, Vessel Location, and Total Displacement on Porous Hepatic Cancer Tissue

    Science.gov (United States)

    Chaichanyut, Montree

    2016-01-01

    This research is concerned with microwave ablation analyses using a 2.45 GHz four-tine (4T) antenna for hepatic cancer tissue. In the study, three-dimensional finite-element models were utilized to examine the tissue temperature distributions during and after MW ablation. A preliminary study was first carried out with regard to the specific absorption rates along the 4T antenna insertion depths and the temperature distributions inside the solid and porous liver models with either 3 cm-in-diameter tumor or 5 cm-in-diameter tumor. Based on the preliminary results, the porous models were further examined for the effect of varying blood flow velocities (0–200 cm/s) with a 1 cm-in-diameter blood vessel next to the antenna and also for the effect of vessel-antenna locations (0, 0.8, and 1.3 cm) with a constant blood flow velocity of 16.7 cm/s. All scenarios were simulated under temperature-controlled mode (90°C). The findings revealed that the blood flow velocity and vessel location influence the ablation effectiveness and that increased blood flow inhibits heat transfer to the vessel wall. At the nearest and farthest vessel-antenna locations (0 and 1.3 cm), approximately 90.3% and 99.55% of the cancer cells were eradicated except for the areas adjacent to the vessel. In addition, total tissue thermal displacement is 5.9 mm which is 6.59% of the total length of the overall model. PMID:27642364

  5. Influence of Acute Jugular Vein Compression on the Cerebral Blood Flow Velocity, Pial Artery Pulsation and Width of Subarachnoid Space in Humans

    OpenAIRE

    Frydrychowski, Andrzej F.; Pawel J Winklewski; Wojciech Guminski

    2012-01-01

    PURPOSE: The aim of this study was to assess the effect of acute bilateral jugular vein compression on: (1) pial artery pulsation (cc-TQ); (2) cerebral blood flow velocity (CBFV); (3) peripheral blood pressure; and (4) possible relations between mentioned parameters. METHODS: Experiments were performed on a group of 32 healthy 19-30 years old male subjects. cc-TQ and the subarachnoid width (sas-TQ) were measured using near-infrared transillumination/backscattering sounding (NIR-T/BSS), CBFV i...

  6. Middle cerebral artery blood velocity during rowing

    DEFF Research Database (Denmark)

    Secher, Niels Henry; Pott, F; Knudsen, L.;

    1997-01-01

    original,arterial blood pressure,central venous pressure,cerebral blood flow, exercise, transcranial Doppler......original,arterial blood pressure,central venous pressure,cerebral blood flow, exercise, transcranial Doppler...

  7. Quantification of ultrasound correlation-based flow velocity mapping and edge velocity gradient measurement.

    Science.gov (United States)

    Park, Dae Woo; Kruger, Grant H; Rubin, Jonathan M; Hamilton, James; Gottschalk, Paul; Dodde, Robert E; Shih, Albert J; Weitzel, William F

    2013-10-01

    This study investigated the use of ultrasound speckle decorrelation- and correlation-based lateral speckle-tracking methods for transverse and longitudinal blood velocity profile measurement, respectively. By studying the blood velocity gradient at the vessel wall, vascular wall shear stress, which is important in vascular physiology as well as the pathophysiologic mechanisms of vascular diseases, can be obtained. Decorrelation-based blood velocity profile measurement transverse to the flow direction is a novel approach, which provides advantages for vascular wall shear stress measurement over longitudinal blood velocity measurement methods. Blood flow velocity profiles are obtained from measurements of frame-to-frame decorrelation. In this research, both decorrelation and lateral speckle-tracking flow estimation methods were compared with Poiseuille theory over physiologic flows ranging from 50 to 1000 mm/s. The decorrelation flow velocity measurement method demonstrated more accurate prediction of the flow velocity gradient at the wall edge than the correlation-based lateral speckle-tracking method. The novelty of this study is that speckle decorrelation-based flow velocity measurements determine the blood velocity across a vessel. In addition, speckle decorrelation-based flow velocity measurements have higher axial spatial resolution than Doppler ultrasound measurements to enable more accurate measurement of blood velocity near a vessel wall and determine the physiologically important wall shear.

  8. Preliminary evaluation of vector flow and spectral velocity estimation

    DEFF Research Database (Denmark)

    Pedersen, Mads Møller; Pihl, Michael Johannes; Haugaard, Per

    Spectral estimation is considered as the golden standard in ultrasound velocity estimation. For spectral velocity estimation the blood flow angle is set by the ultrasound operator. Vector flow provides temporal and spatial estimates of the blood flow angle and velocity. A comparison of vector flow...... agrees with the spectral flow angle. The vector velocity estimates agrees with the spectral estimates at PS and ED. From preliminary data it is concluded that vector flow angle estimation can replace the operator-dependent angle correction used for spectral velocity estimation....... estimation and spectral estimates is presented. The variation of the blood flow angle and the effect on the velocity estimate is investigated. The right common carotid arteries of three healthy volunteers were scanned. Real-time spectral and vector flow data were obtained simultaneously from one range gate...

  9. The phosphodiesterase 5 inhibitor sildenafil has no effect on cerebral blood flow or blood velocity, but nevertheless induces headache in healthy subjects

    DEFF Research Database (Denmark)

    Kruuse, Christina; Thomsen, Lars Lykke; Jacobsen, Torsten Bjørn

    2002-01-01

    , and regional cerebral blood flow in the perfusion area of the middle cerebral artery (rCBFmca) was measured using single photon emission computed tomography and xenon inhalation. Radial and temporal artery diameters were studied using high-frequency ultrasound. Blood pressure and heart rate were recorded......Cyclic nucleotides are important hemodynamic regulators in many tissues. Glyceryl trinitrate markedly dilates large cerebral arteries and increases cGMP. Here, the authors study the effect of sildenafil, a selective inhibitor of cGMP-hydrolyzing phosphodiesterase 5 on cerebral hemodynamics...

  10. Endovascular blood flow measurement system

    Science.gov (United States)

    Khe, A. K.; Cherevko, A. A.; Chupakhin, A. P.; Krivoshapkin, A. L.; Orlov, K. Yu

    2016-06-01

    In this paper an endovascular measurement system used for intraoperative cerebral blood flow monitoring is described. The system is based on a Volcano ComboMap Pressure and Flow System extended with analogue-to-digital converter and PC laptop. A series of measurements performed in patients with cerebrovascular pathologies allows us to introduce “velocity-pressure” and “flow rate-energy flow rate” diagrams as important characteristics of the blood flow. The measurement system presented here can be used as an additional instrument in neurosurgery for assessment and monitoring of the operation procedure. Clinical data obtained with the system are used for construction of mathematical models and patient-specific simulations. The monitoring of the blood flow parameters during endovascular interventions was approved by the Ethics Committee at the Meshalkin Novosibirsk Research Institute of Circulation Pathology and included in certain surgical protocols for pre-, intra- and postoperative examinations.

  11. Assessment value of blood flow velocity and resistance index detection by transvaginal color Doppler ultrasound on effect of neoadjuvant chemotherapy for ovarian cancer

    Institute of Scientific and Technical Information of China (English)

    You-Bin Fan

    2016-01-01

    Objective:To analyze the assessment value of blood flow velocity and resistance index detection by transvaginal color Doppler ultrasound on effect of neoadjuvant chemotherapy for ovarian cancer.Methods:A total of 78 cases of ovarian cancer patients receiving treatment in our hospital from September 2012 to May 2014 were included for study, all patients received neoadjuvant chemotherapy, and before and after treatment, transvaginal color Doppler ultrasound (TVCDU) was used to record resistance index (RI) and pulsatility index (PI), the expression levels of serum tumor markers, illness-related indicators and apoptosis-related factors in circulating blood were detected, and the correlation between TVCDU monitoring indexes and ovarian cancer-related indicators was further analyzed.Results: PI value (1.13±0.12) and RI value (0.65±0.05) of ovarian cancer patients after treatment were significantly higher than PI value (0.72±0.06) and RI value (0.32±0.03) of ovarian cancer patients before treatment; serum HE4, CA153, CA125 and毬-HCG levels of ovarian cancer patients after treatment were lower than those before treatment; serum MSLN, CCL-18, FS, CL and Hpa levels of ovarian cancer patients after treatment were lower than those before treatment; after ovarian cancer patients received neoadjuvant chemotherapy, ADM, HIF-1毩, PCNA and bcl-2 gene expression levels were lower than those before treatment; RI and PI values of ovarian cancer patients were inversely proportional to the expression levels of HE4, CA153, CA125,毬-HCG, MSLN, CCL-18, FS, CL, Hpa, ADM, HIF-1毩, PCNA and bcl-2. Conclusion:Blood flow velocity and resistance index detection by transvaginal color Doppler ultrasound can be used as a highly efficient means to evaluate the effect of neoadjuvant chemotherapy for ovarian cancer, and it has positive significance in judging disease severity, guiding treatment and other aspects.

  12. Middle cerebral artery blood velocity and plasma catecholamines during exercise

    DEFF Research Database (Denmark)

    Pott, F; Jensen, K; Hansen, H;

    1996-01-01

    During dynamic exercise, mean blood velocity (Vmean) in the middle cerebral artery (MCA) demonstrates a graded increase to work rate and reflects regional cerebral blood flow. At a high work rate, however, vasoactive levels of plasma catecholamines could mediate vasoconstriction of the MCA...

  13. Vector blood velocity estimation in medical ultrasound

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Gran, Fredrik; Udesen, Jesper

    2006-01-01

    Two methods for making vector velocity estimation in medical ultrasound are presented. All of the techniques can find both the axial and transverse velocity in the image and can be used for displaying both the correct velocity magnitude and direction. The first method uses a transverse oscillation...... in the ultrasound field to find the transverse velocity. In-vivo examples from the carotid artery are shown, where complex turbulent flow is found in certain parts of the cardiac cycle. The second approach uses directional beam forming along the flow direction to estimate the velocity magnitude. Using a correlation...

  14. The Importance of Velocity Acceleration to Flow-Mediated Dilation

    Directory of Open Access Journals (Sweden)

    Lee Stoner

    2012-01-01

    Full Text Available The validity of the flow-mediated dilation test has been questioned due to the lack of normalization to the primary stimulus, shear stress. Shear stress can be calculated using Poiseuille's law. However, little attention has been given to the most appropriate blood velocity parameter(s for calculating shear stress. The pulsatile nature of blood flow exposes the endothelial cells to two distinct shear stimuli during the cardiac cycle: a large rate of change in shear at the onset of flow (velocity acceleration, followed by a steady component. The parameter typically entered into the Poiseuille's law equation to determine shear stress is time-averaged blood velocity, with no regard for flow pulsatility. This paper will discuss (1 the limitations of using Posieuille's law to estimate shear stress and (2 the importance of the velocity profile—with emphasis on velocity acceleration—to endothelial function and vascular tone.

  15. Ecografia transfontanelar com fluxo a cores em recém-nascidos prematuros Intracranial blood flow velocities evaluated by color doppler (duplex in preterm infants

    Directory of Open Access Journals (Sweden)

    Marcelo Cardoso de Assis

    2004-03-01

    Full Text Available Com o objetivo de determinarmos, evolutivamente, a medida da velocidade do fluxo sangüíneo nas artérias intracranianas, em recém-nascidos prematuros (RNP normais e com hemorragia intracerebral, avaliamos - no período de junho de 1994 a março de 1999 - 73 recém-nascidos prematuros. A idade gestacional variou de 28 a 36 semanas e o peso ao nascimento variou de 720g a 2530g. O diagnóstico da hemorragia intracerebral foi realizado utilizando-se a ecografia transfontanelar (EGT. Para avaliação seqüencial da medida da velocidade do fluxo sangüíneo nas artérias intracranianas os 73 foram submetidos a EGT, com Doppler pulsátil, no 3º, 7º, 30º e 90º dias de vida. Após obtermos os valores numéricos destas velocidades determinamos o indice de resistência (IR. Ao analisarmos os valores do IR, comparando-se os 2 grupos de RNP, concluimos que os valores do IR são sempre mais elevados nos RNP normais (RNP-N que nos RNP com hemorragia intracerebral (RNP-HIC; que tanto no grupo de RNP normais quanto no grupo de RNP com hemorragia intracerebral os valores do IR decrescem significativamente com o acréscimo da idade dos neonatos. Analisando-se ainda, comparativamente, os valores do IR nos RNP com hemorragia intracerebral, em seus diversos graus, observamos não haver, evolutivamente, diferença estatisticamente significante. Analisando-se também , comparativamente, os valores do IR nos RNP com hemorragia intracerebral localizada no hemisfério cerebral direito ou esquerdo concluimos não haver diferença estatisticamente significante entre os valores do IR obtidos das artérias localizadas no hemisfério cerebral acometido comparados aos valores do IR obtidos do hemisfério cerebral não afetado.In order to ascertain the blood flow velocities in the intracranial arteries we evaluated 73 preterm neonates during a period ranging from June 1994 to March 1999. These preterm infants were divided in two separate groups, 18 healthy and 55 with

  16. 影响胎儿大脑中动脉血流峰速的临床相关因素%Related clinical effect factors of peak velocity of blood flow of fetal middle cerebral artery

    Institute of Scientific and Technical Information of China (English)

    凌奕; 金松; 南瑞霞; 华少萍; 张宏玉; 胡春霞; 莫秀兰

    2011-01-01

    Objective: To analyze the related clinical effect factors of peak velocity of blood flow of fetal middle cerebral artery ( MCA) , provide a basis for predicting fetal anemia by peak velocity of blood flow of MCA. Methods; 140 fetuses from the hospital were analyzed and divided into normal control group (85 fetuses), uncomplicated twin group (22 fetuses) , thalassemia group (IS fetuses) and fetal anomaly group (18 fetuses) , all the fetuses received color Doppler examination of peak velocity of blood flow of MCA and hemoglobin detection. MOM value was used as the unit, the differences of peak velocities of blood flow of MCA and fetal hemoglobin contents among the four groups were analyzed. Results; There was no significant difference in peak velocity of blood flow of MCA and fetal hemoglobin content between uncomplicated twin group and single pregnancy group. In thalassemia group, the peak velocity of blood flow of MCA increased significantly , while fetal hemoglobin content decreased. Compared with normal single pregnancy group, the peak velocity of blood flow of MCA in fetal anomaly group increased significantly (P < 0. 05 ) , but after exclusing anemia fetuses, there is no significant difference in the peak velocity of blood flow of MCA between fetal anomaly non - anemia group and normal single pregnancy group. Conclusion: The peak velocity of blood flow of MCA is significantly related to fetal anemia, but there was no correlation between peak velocity of blood now of MCA and un-complicated twin pregnancy; the study shows that there is no significant difference in the peak velocity of blood flow of MCAbetween fetal anomaly non - anemia group and normal single pregnancy group after exclusing anemia fetuses, a further study with large samples is needed.%目的:分析影响胎儿大脑中动脉血流峰速(MCA-PSV)的临床相关因素,为应用MCA-PSV预测胎儿贫血提供依据.方法:对海南医学院附属医院140例胎儿进行临

  17. Algorithms for estimating blood velocities using ultrasound

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    2000-01-01

    Ultrasound has been used intensively for the last 15 years for studying the hemodynamics of the human body. Systems for determining both the velocity distribution at one point of interest (spectral systems) and for displaying a map of velocity in real time have been constructed. A number of schemes...... have been developed for performing the estimation, and the various approaches are described. The current systems only display the velocity along the ultrasound beam direction and a velocity transverse to the beam is not detected. This is a major problem in these systems, since most blood vessels...

  18. Joint probability discrimination between stationary tissue and blood velocity signals

    DEFF Research Database (Denmark)

    Schlaikjer, Malene; Jensen, Jørgen Arendt

    2001-01-01

    In CFM-mode the blood velocity estimates are overlaid onto the B-mode image. The velocity estimation gives non-zero velocity estimates in both the surrounding tissue and the vessels. A discrimination algorithm is needed to determine, which estimates represent blood flow and should be displayed....... This study presents a new statistical discriminator. Investigation of the RF-signals reveals that features can be derived that distinguish the segments of the signal, which do an do not carry information on the blood flow. In this study 4 features, have been determined: (a) the energy content in the segments...... before and after echo-canceling, and (b) the amplitude variations between samples in consecutive RF-signals before and after echo-canceling. The statistical discriminator was obtained by computing the probability density functions (PDFs) for each feature through histogram analysis of data...

  19. Influence of acute jugular vein compression on the cerebral blood flow velocity, pial artery pulsation and width of subarachnoid space in humans.

    Directory of Open Access Journals (Sweden)

    Andrzej F Frydrychowski

    Full Text Available PURPOSE: The aim of this study was to assess the effect of acute bilateral jugular vein compression on: (1 pial artery pulsation (cc-TQ; (2 cerebral blood flow velocity (CBFV; (3 peripheral blood pressure; and (4 possible relations between mentioned parameters. METHODS: Experiments were performed on a group of 32 healthy 19-30 years old male subjects. cc-TQ and the subarachnoid width (sas-TQ were measured using near-infrared transillumination/backscattering sounding (NIR-T/BSS, CBFV in the left anterior cerebral artery using transcranial Doppler, blood pressure was measured using Finapres, while end-tidal CO(2 was measured using medical gas analyser. Bilateral jugular vein compression was achieved with the use of a sphygmomanometer held on the neck of the participant and pumped at the pressure of 40 mmHg, and was performed in the bend-over (BOPT and swayed to the back (initial position. RESULTS: In the first group (n = 10 during BOPT, sas-TQ and pulse pressure (PP decreased (-17.6% and -17.9%, respectively and CBFV increased (+35.0%, while cc-TQ did not change (+1.91%. In the second group, in the initial position (n = 22 cc-TQ and CBFV increased (106.6% and 20.1%, respectively, while sas-TQ and PP decreases were not statistically significant (-15.5% and -9.0%, respectively. End-tidal CO(2 remained stable during BOPT and venous compression in both groups. Significant interdependence between changes in cc-TQ and PP after bilateral jugular vein compression in the initial position was found (r = -0.74. CONCLUSIONS: Acute bilateral jugular venous insufficiency leads to hyperkinetic cerebral circulation characterised by augmented pial artery pulsation and CBFV and direct transmission of PP into the brain microcirculation. The Windkessel effect with impaired jugular outflow and more likely increased intracranial pressure is described. This study clarifies the potential mechanism linking jugular outflow insufficiency with arterial small vessel cerebral

  20. Mean Velocity Estimation of Viscous Debris Flows

    Institute of Scientific and Technical Information of China (English)

    Hongjuan Yang; Fangqiang Wei; Kaiheng Hu

    2014-01-01

    The mean velocity estimation of debris flows, especially viscous debris flows, is an impor-tant part in the debris flow dynamics research and in the design of control structures. In this study, theoretical equations for computing debris flow velocity with the one-phase flow assumption were re-viewed and used to analyze field data of viscous debris flows. Results show that the viscous debris flow is difficult to be classified as a Newtonian laminar flow, a Newtonian turbulent flow, a Bingham fluid, or a dilatant fluid in the strict sense. However, we can establish empirical formulas to compute its mean velocity following equations for Newtonian turbulent flows, because most viscous debris flows are tur-bulent. Factors that potentially influence debris flow velocity were chosen according to two-phase flow theories. Through correlation analysis and data fitting, two empirical formulas were proposed. In the first one, velocity is expressed as a function of clay content, flow depth and channel slope. In the second one, a coefficient representing the grain size nonuniformity is used instead of clay content. Both formu-las can give reasonable estimate of the mean velocity of the viscous debris flow.

  1. 男大学生体成分与脑血流速度相关性研究%The Research on the Relationship Between Body Composition and Cerebral Blood Flow Velocity in Male College Students

    Institute of Scientific and Technical Information of China (English)

    姚宝元

    2012-01-01

    探讨身体成分与脑血流速度(Cerebral Blood Flow Velocity,CBFV)的关系,以便揭示体脂对CBFV的影响。方法:以10名男大学生为实验对象,应用经颅多普勒技术检测了其安静时的大脑中动脉血流速度和采用In Body身体成份分析仪测试了其身体成分,然后对CBFV和身体进行了相关分析。结果:大脑中动脉收缩期峰速度(Vp)、舒张期末峰速度(Vd)和平均峰速度(Vm)分别与其体脂、体脂百分数和体重指数(BMI)呈显著负相关;而大脑中动脉的搏动指数(PI)分别与体脂百分数和BMI呈显著正相关。结论:体脂对CBFV有显著的负面影响,体脂增多,CBFV降低。%By investigating the relationship between body composition and cerebral blood flow velocity, the effect of body fat on cerebral blood flow velocity was evaluated. Methods: The middle cerebral artery blood velocity was evaluated by Using CBS - II transcranial Doppler at rest in ten male college students, and their body composition was assessed by using In Body body Composi- tion analyser at rest. Correlation of body composition to the middle cerebral artery blood velocity was analysed. Results : Vp, Vd and Vm of MCA were negatively related to body fat,body fat percentage and BMI respectively. PI of MCA was positively related to body fat, body fat and BMI percentage, respectively. Conclusion: Our study implies boy fat has significant and negative effect on cerebral blood flow velocity. Cerebral blood flow velocity will reduce when body fat increases.

  2. Tissue motion in blood velocity estimation and its simulation

    DEFF Research Database (Denmark)

    Schlaikjer, Malene; Torp-Pedersen, Søren; Jensen, Jørgen Arendt;

    1998-01-01

    to the improvement of color flow imaging. Optimization based on in-vivo data is difficult since the blood and tissue signals cannot be accurately distinguished and the correct extend of the vessel under investigation is often unknown. This study introduces a model for the simulation of blood velocity data in which...... times to cover the whole cardiac cycle and a total of 400 independent RF measurements of 950 pulse echo lines were recorded. The motion of the tissue surrounding the hepatic vein from superficial breathing had a peak velocity of 6.2±3.4 mm/s over the cardiac cycle, when averaged over the 10 volunteers...

  3. Adaptive blood velocity estimation in medical ultrasound

    DEFF Research Database (Denmark)

    Gran, Fredrik; Jakobsson, Andreas; Jensen, Jørgen Arendt

    2007-01-01

    This paper investigates the use of data-adaptive spectral estimation techniques for blood velocity estimation in medical ultrasound. Current commercial systems are based on the averaged periodogram, which requires a large observation window to give sufficient spectral resolution. Herein, we propose...

  4. Simulating river flow velocity on global scale

    Directory of Open Access Journals (Sweden)

    K. Schulze

    2005-01-01

    Full Text Available Flow velocity in rivers has a major impact on residence time of water and thus on high and low water as well as on water quality. For global scale hydrological modeling only very limited information is available for simulating flow velocity. Based on the Manning-Strickler equation, a simple algorithm to model temporally and spatially variable flow velocity was developed with the objective of improving flow routing in the global hydrological model of WaterGAP. An extensive data set of flow velocity measurements in US rivers was used to test and to validate the algorithm before integrating it into WaterGAP. In this test, flow velocity was calculated based on measured discharge and compared to measured velocity. Results show that flow velocity can be modeled satisfactorily at selected river cross sections. It turned out that it is quite sensitive to river roughness, and the results can be optimized by tuning this parameter. After the validation of the approach, the tested flow velocity algorithm has been implemented into the WaterGAP model. A final validation of its effects on the model results is currently performed.

  5. Velocity envelope of vector flow estimation with spatial quadrature

    Science.gov (United States)

    Kerr, Richard F.; Anderson, Martin E.

    2003-05-01

    We present the results of two studies investigating the optimal aperture configuration for maximized lateral blood flow velocity estimation using Heterodyned Spatial Quadrature. Our objective was to determine the maximum velocities that can be estimated at Doppler angles of 90 degrees and 60 degrees with a bias of less than 5% for both uniform scatterer motion in a tissue-mimicking phantom and blood-mimicking fluid circulated through a wall-less vessel flow phantom. Constant flow rates ranging from 3.0 to 18.0 ml/sec were applied in the flow phantom, producing expected peak velocities of 15.0 to 89.8 cm/sec under laminar flow conditions. Velocity estimates were obtained at each flow rate using 256 trials, with each trial consisting of an ensemble of 32 vectors. For an f/1 receive geometry with bi-lobed Hamming apodization, all peak flow velocities tested were estimated to within 5% of their expected values for both 90 degree and 60 degree Doppler angles. An f/2 receive geometry featuring bi-lobed Blackman apodization generally provided accurate lateral velocity estimates up to 71.9 cm/sec for a Doppler angle of 90 degrees, and accurate lateral component estimates up to 50.1 cm/sec for a 60 degree Doppler angle. The implications of these findings will be discussed.

  6. Transcutaneous measurement of volume blood flow

    Science.gov (United States)

    Daigle, R. E.; Mcleod, F. D.; Miller, C. W.; Histand, M. B.; Wells, M. K.

    1974-01-01

    Blood flow velocity measurements, using Doppler velocimeter, are described. The ability to measure blood velocity using ultrasound is derived from the Doppler effect; the change in frequency which occurs when sound is reflected or transmitted from a moving target. When ultrasound of the appropriate frequency is transmitted through a moving blood stream, the blood cells act as point scatterers of ultrasonic energy. If this scattered ultrasonic energy is detected, it is found to be shifted in frequency according to the velocity of the blood cells, nu, the frequency of the incident sound, f sub o, the speed of sound in the medium, c, and the angle between the sound beam and the velocity vector, o. The relation describing this effect is known as the Doppler equation. Delta f = 2 f sub o x nu x cos alpha/c. The theoretical and experimental methods are evaluated.

  7. Volume Tracking: A new method for quantitative assessment and visualization of intracardiac blood flow from three-dimensional, time-resolved, three-component magnetic resonance velocity mapping

    Directory of Open Access Journals (Sweden)

    Arheden Håkan

    2011-04-01

    Full Text Available Abstract Background Functional and morphological changes of the heart influence blood flow patterns. Therefore, flow patterns may carry diagnostic and prognostic information. Three-dimensional, time-resolved, three-directional phase contrast cardiovascular magnetic resonance (4D PC-CMR can image flow patterns with unique detail, and using new flow visualization methods may lead to new insights. The aim of this study is to present and validate a novel visualization method with a quantitative potential for blood flow from 4D PC-CMR, called Volume Tracking, and investigate if Volume Tracking complements particle tracing, the most common visualization method used today. Methods Eight healthy volunteers and one patient with a large apical left ventricular aneurysm underwent 4D PC-CMR flow imaging of the whole heart. Volume Tracking and particle tracing visualizations were compared visually side-by-side in a visualization software package. To validate Volume Tracking, the number of particle traces that agreed with the Volume Tracking visualizations was counted and expressed as a percentage of total released particles in mid-diastole and end-diastole respectively. Two independent observers described blood flow patterns in the left ventricle using Volume Tracking visualizations. Results Volume Tracking was feasible in all eight healthy volunteers and in the patient. Visually, Volume Tracking and particle tracing are complementary methods, showing different aspects of the flow. When validated against particle tracing, on average 90.5% and 87.8% of the particles agreed with the Volume Tracking surface in mid-diastole and end-diastole respectively. Inflow patterns in the left ventricle varied between the subjects, with excellent agreement between observers. The left ventricular inflow pattern in the patient differed from the healthy subjects. Conclusion Volume Tracking is a new visualization method for blood flow measured by 4D PC-CMR. Volume Tracking

  8. Blood flow and microgravity

    Science.gov (United States)

    Bureau, Lionel; Coupier, Gwennou; Dubois, Frank; Duperray, Alain; Farutin, Alexander; Minetti, Christophe; Misbah, Chaouqi; Podgorski, Thomas; Tsvirkun, Daria; Vysokikh, Mikhail

    2017-01-01

    The absence of gravity during space flight can alter cardio-vascular functions partially due to reduced physical activity. This affects the overall hemodynamics, and in particular the level of shear stresses to which blood vessels are submitted. Long-term exposure to space environment is thus susceptible to induce vascular remodeling through a mechanotransduction cascade that couples vessel shape and function with the mechanical cues exerted by the circulating cells on the vessel walls. Central to such processes, the glycocalyx - i.e. the micron-thick layer of biomacromolecules that lines the lumen of blood vessels and is directly exposed to blood flow - is a major actor in the regulation of biochemical and mechanical interactions. We discuss in this article several experiments performed under microgravity, such as the determination of lift force and collective motion in blood flow, and some preliminary results obtained in artificial microfluidic circuits functionalized with endothelium that offer interesting perspectives for the study of the interactions between blood and endothelium in healthy condition as well as by mimicking the degradation of glycocalyx caused by long space missions. A direct comparison between experiments and simulations is discussed. xml:lang="fr"

  9. Experimental studies of the blood flow velocity measurement using the echo tracking technique%利用超声回波跟踪技术测量血流速度的实验研究

    Institute of Scientific and Technical Information of China (English)

    汪源源; PeterWEBER

    2001-01-01

    文章主要介绍了利用超声回波跟踪技术进行血流速度测量的原理和方法,通过对运动弦线速度的测量实验,比较了这种方法和传统的超声多普勒技术在血流速度测量上的性能差异。%The theory and method of the blood flow velocity measurement using the ultrasonic echo tracking technique were studied inthis paper. With the experiment of the moving string velocity measurement, the performance of this method was compared with thoseof the conventional Doppler ultrasound blocd flow velocity measurement techniques

  10. Refinement of turbulent flow velocity characteristics

    Directory of Open Access Journals (Sweden)

    Y.V. Bryanskaya

    2013-10-01

    Full Text Available The basic laws of Prandtl semi-empirical turbulence theory were analyzed in the article. It was shown, that the Prandtl – Nikuradse logarithmic distribution of velocities are not strictly universal. The change of the first and second turbulence constants was analyzed on the basis of experimental data of I. Nikuradse. The logarithmic velocity profiles for smooth and rough pipes have been transformed. A united velocity logarithmic profile for flows in pipes, appropriate for any rate of hydraulic resistance was received. A more precise, consistent with the resistance laws, description of the kinematic structure of the flow with varying parameters of the velocity profiles was set. It was shown that the position of the average velocity point for the flow in pipe remained constant when the parameters of the velocity profile changed.

  11. Resting cerebral blood flow

    Science.gov (United States)

    Ances, B M.; Sisti, D; Vaida, F; Liang, C L.; Leontiev, O; Perthen, J E.; Buxton, R B.; Benson, D; Smith, D M.; Little, S J.; Richman, D D.; Moore, D J.; Ellis, R J.

    2009-01-01

    Objective: HIV enters the brain soon after infection causing neuronal damage and microglial/astrocyte dysfunction leading to neuropsychological impairment. We examined the impact of HIV on resting cerebral blood flow (rCBF) within the lenticular nuclei (LN) and visual cortex (VC). Methods: This cross-sectional study used arterial spin labeling MRI (ASL-MRI) to measure rCBF within 33 HIV+ and 26 HIV− subjects. Nonparametric Wilcoxon rank sum test assessed rCBF differences due to HIV serostatus. Classification and regression tree (CART) analysis determined optimal rCBF cutoffs for differentiating HIV serostatus. The effects of neuropsychological impairment and infection duration on rCBF were evaluated. Results: rCBF within the LN and VC were significantly reduced for HIV+ compared to HIV− subjects. A 2-tiered CART approach using either LN rCBF ≤50.09 mL/100 mL/min or LN rCBF >50.09 mL/100 mL/min but VC rCBF ≤37.05 mL/100 mL/min yielded an 88% (29/33) sensitivity and an 88% (23/26) specificity for differentiating by HIV serostatus. HIV+ subjects, including neuropsychologically unimpaired, had reduced rCBF within the LN (p = 0.02) and VC (p = 0.001) compared to HIV− controls. A temporal progression of brain involvement occurred with LN rCBF significantly reduced for both acute/early (<1 year of seroconversion) and chronic HIV-infected subjects, whereas rCBF in the VC was diminished for only chronic HIV-infected subjects. Conclusion: Resting cerebral blood flow (rCBF) using arterial spin labeling MRI has the potential to be a noninvasive neuroimaging biomarker for assessing HIV in the brain. rCBF reductions that occur soon after seroconversion possibly reflect neuronal or vascular injury among HIV+ individuals not yet expressing neuropsychological impairment. GLOSSARY AEH = acute/early HIV infection; ANOVA = analysis of variance; ASL-MRI = arterial spin labeling MRI; CART = classification and regression tree; CBF = cerebral blood flow; CH = chronic HIV

  12. VELOCITY PROFILES OF TURBULENT OPEN CHANNEL FLOWS

    Institute of Scientific and Technical Information of China (English)

    WANG Dianchang; WANG Xingkui; YU Mingzhong; LI Danxun

    2001-01-01

    The log-law and the wake law of velocity profile for open channel flows are discussed and compared in this paper. Experimental data from eight sources are used to verify the velocity distribution models.The effect of bed level on the velocity profile is analyzed. A formula to calculate the maximum velocity is proposed. In the region of y <δm , the velocity profile approximately follows the log-law. For the region of y >δm , the effect of the aspect ratio is considered. A new velocity profile model on the basis of log-law that can unify all of the hydraulic bed roughness is presented.

  13. A new maximum likelihood blood velocity estimator incorporating spatial and temporal correlation

    DEFF Research Database (Denmark)

    Schlaikjer, Malene; Jensen, Jørgen Arendt

    2001-01-01

    The blood flow in the human cardiovascular system obeys the laws of fluid mechanics. Investigation of the flow properties reveals that a correlation exists between the velocity in time and space. The possible changes in velocity are limited, since the blood velocity has a continuous profile in time...... of the observations gives a probability measure of the correlation between the velocities. Both the MLE and the STC-MLE have been evaluated on simulated and in-vivo RF-data obtained from the carotid artery. Using the MLE 4.1% of the estimates deviate significantly from the true velocities, when the performance...

  14. Hemodynamic Correlates of Late Systolic Flow Velocity Augmentation in the Carotid Artery

    OpenAIRE

    Heffernan, Kevin S.; Lefferts, Wesley K; Augustine, Jacqueline A.

    2013-01-01

    Background. The contour of the common carotid artery (CCA) blood flow velocity waveform changes with age; CCA flow velocity increases during late systole, and this may contribute to cerebrovascular disease. Late systolic flow velocity augmentation can be quantified using the flow augmentation index (FAIx). We examined hemodynamic correlates of FAIx to gain insight into determinants of CCA flow patterns. Methods. CCA Doppler ultrasound and wave intensity analysis (WIA) were used to assess regi...

  15. CONCENTRATION AND VELOCITY OF DEBRIS FLOWS

    Institute of Scientific and Technical Information of China (English)

    Xiangjun FEI; Peng CUI; Yong LI

    2002-01-01

    Debris flows in nature generally fall into three groups distinct in their grain composition: water-stone flow,or sub-viscous debris flow,dominated by coarse grains; muddy flow,dominated by fine grains;and viscous debris flow composed of grains in large range. Liquid-phase velocity and sedimentary delivery resistance of sub-viscous debris flow have been discussed based on the composition characters of sub-and high-viscous debris flows. It is revealed that the presence of fine grains plays a vital role in affecting resistance and average velocity,particularly when the volume fraction of grains in the flow is relatively high,i.e. Sv > 0.45. Grain-size distribution of viscous debris flow is characterized by a bimodal curve,which explains the properties like high density and low resistance gradient of debris flows. A calculation formula is finally put forward,which has to some extent overcome locality limits and achieved a good agreement with the field observations of debris flows in Southwest China.

  16. Examples of in-vivo blood vector velocity estimation

    DEFF Research Database (Denmark)

    Udesen, Jesper; Nielsen, Michael Bachmann; Nielsen, Kristian R.

    2007-01-01

    In this paper examples of in-vivo blood vector velocity images of the carotid artery are presented. The transverse oscillation (TO) method for blood vector velocity estimation has been used to estimate the vector velocities and the method is first evaluated in a circulating flowrig where...

  17. Improved accuracy in the estimation of blood velocity vectors using matched filtering

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Gori, P.

    2000-01-01

    that the complete velocity vector can be found, if the received signals are focused along lines parallel to the direction of the blood flow. A fairly broad beam is emitted in the approach, and this gives rise to a widening in the profiles of the estimated velocity. To reduce this effect, a focused ultrasound......The blood velocity can be estimated by finding the shift in position of the blood scatterers between subsequent ultrasonic pulse emissions through cross-correlation of the received RF signals. Usually only the velocity component along the beam direction is found. It was shown in a previous paper...

  18. Local Control of Blood Flow

    Science.gov (United States)

    Clifford, Philip S.

    2011-01-01

    Organ blood flow is determined by perfusion pressure and vasomotor tone in the resistance vessels of the organ. Local factors that regulate vasomotor tone include myogenic and metabolic autoregulation, flow-mediated and conducted responses, and vasoactive substances released from red blood cells. The relative importance of each of these factors…

  19. Blood Flow in the Microcirculation

    Science.gov (United States)

    Secomb, Timothy W.

    2017-01-01

    The microcirculation is an extensive network of microvessels that distributes blood flow throughout living tissues. Reynolds numbers are much less than 1, and the equations of Stokes flow apply. Blood is a suspension of cells with dimensions comparable to microvessel diameters. Highly deformable red blood cells, which transport oxygen, have a volume concentration (hematocrit) of 40–45% in humans. In the narrowest capillaries, these cells move in single file with a surrounding lubricating layer of plasma. In larger vessels, the red blood cells migrate toward the centerline, reducing the resistance to blood flow. Vessel walls are coated with a layer of macromolecules that restricts flow. At diverging bifurcations, hematocrit is not evenly distributed in the downstream vessels. Other particles are driven toward the walls by interactions with red blood cells. These physiologically important phenomena are discussed here from a fluid mechanical perspective.

  20. Effects of non Newtonian spiral blood flow through arterial stenosis

    Science.gov (United States)

    Hasan, Md. Mahmudul; Maruf, Mahbub Alam; Ali, Mohammad

    2016-07-01

    The spiral component of blood flow has both beneficial and detrimental effects in human circulatory system. A numerical investigation is carried out to analyze the effect of spiral blood flow through an axisymmetric three dimensional artery having 75% stenosis at the center. Blood is assumed as a Non-Newtonian fluid. Standard k-ω model is used for the simulation with the Reynolds number of 1000. A parabolic velocity profile with spiral flow is used as inlet boundary condition. The peak values of all velocity components are found just after stenosis. But total pressure gradually decreases at downstream. Spiral flow of blood has significant effects on tangential component of velocity. However, the effect is mild for radial and axial velocity components. The peak value of wall shear stress is at the stenosis zone and decreases rapidly in downstream. The effect of spiral flow is significant for turbulent kinetic energy. Detailed investigation and relevant pathological issues are delineated throughout the paper.

  1. Effect of eye acupuncture on cerebral blood flow and velocity in rats with ischemia-reperfusion%眼针对大鼠脑缺血再灌注脑血流量及速度影响

    Institute of Scientific and Technical Information of China (English)

    吴翊馨; 张海平; 苏胜林

    2013-01-01

    Objective To observe the effect of eye acupuncture on cerebral blood flow and velocity in rats with cerebral ischemia reperfusion(ICRI) and to explore the mechanisms of eye acupunture treatment to cerebral ischencic diseases.Methods Laser Doppler microcirculation measurement instrument was used to measure blood flow and velocity of cerebnal cortex in rats 24 hours after cerebral ischemia.The structural changes in the capillary loops of the cortex was observed with electron microscope.Results The blood flow of cerebral cortex was 63.28 ± 8.84 PU for ischemic model rats and 169.39 ± 19.89 for the model rats with eye acupuncture,and the blood flow velocity was 19.98 ±6.75 mm/s for the model rats and 57.43 ± 28.54 mm/s for the model rats with eye acupucture,respectively,with significant defferences between the two groups(P < 0.01 for all).The ultrastructure of cerebral cortex capillary was normal for model rats with eye acupuntrre but necrosis and atrophy of capillary endothelial cells were observed in cerebral ischemic model rats.Conclusion Eye acupucture can increase blood flow and velocity of cortex tissue in rats with ICRI and improve ultrastructure of the capillary endothelial cells in rats with ICRI.%目的 观察眼针对脑缺血再灌注模型(CIRI)大鼠脑皮层血流量及流速影响,探讨眼针治疗脑缺血性疾病的可能机制.方法 运用激光多普勒微循环测量仪检测缺血24 h模型大鼠大脑皮层组织血流量及血流速度;观察电镜下毛细血管管壁的结构变化.结果 模型组与眼针组大鼠大脑皮层组织血流量与血流速度分别为(63.28 ±8.84)、(169.38±19.89) PU和(18.98 ±6.75)、(57.43±28.84) mm/s,与模型组比较,眼针组大鼠大脑皮层组织的血流量明显升高、血流速度明显加快(P<0.01);眼针组大鼠大脑皮层毛细血管的超微结构基本正常,模型组内皮细胞坏死、萎缩.结论 眼针能够增加ICRI模型大鼠脑皮层组织血流量,提高血流

  2. STARE velocities: 2. Evening westward electron flow

    Directory of Open Access Journals (Sweden)

    M. Uspensky

    2004-04-01

    Full Text Available Four evening events and one morning event of joint EISCAT/STARE observations during ~22h are considered and the differences between observed STARE line-of-sight (l-o-s velocities and EISCAT electron drift velocities projected onto the STARE beams are studied. We demonstrate that the double-pulse technique, which is currently in use in the STARE routine data handling, typically underestimates the true phase velocity as inferred from the multi-pulse STARE data. We show that the STARE velocities are persistently smaller (1.5–2 times than the EISCAT velocities, even for the multi-pulse data. The effect seems to be more pronounced in the evening sector when the Finland radar observes at large flow angles. We evaluate the performance of the ion-acoustic approach (IAA, Nielsen and Schlegel, 1985 and the off-orthogonal fluid approach (OOFA, Uspensky et al., 2003 techniques to predict the true electron drift velocity for the base event of 12 February 1999. The IAA technique predicts the convection reasonably well for enhanced flows of >~1000m/s, but not so well for slower ones. By considering the EISCAT N(h profiles, we derive the effective aspect angle and effective altitude of backscatter, and use this information for application of the OOFA technique. We demonstrate that the OOFA predictions for the base event are superior over the IAA predictions and thus, we confirm that OOFA predicts the electron velocities reasonably well in the evening sector, in addition to the morning sector, as concluded by Uspensky et al. (2003. To check how "robust" the OOFA model is and how successful it is for convection estimates without the EISCAT support, we analysed three additional evening events and one additional morning event for which information on N(h profiles was intentionally ignored. By accepting the mean STARE/EISCAT velocity ratio of 0.55 and the mean azimuth rotation of 9° (derived for the basic event, we show that the OOFA performs

  3. Neuromodulation of cerebral blood flow

    NARCIS (Netherlands)

    ter Laan, Mark

    2014-01-01

    Dit proefschrift behandelt de modulatie van de cerebrale doorbloeding (cerebral blood flow, CBF) door cervicale elektrische stimulatie en de aanname dat het sympathisch zenuwstelsel hierin een specifieke rol speelt. Enkele resultaten met cervicale ruggenmergsstimulatie (spinal cord stimulation, SCS)

  4. Hyperhomocysteinemia decreases bone blood flow

    Directory of Open Access Journals (Sweden)

    Neetu T

    2011-01-01

    Full Text Available Neetu Tyagi*, Thomas P Vacek*, John T Fleming, Jonathan C Vacek, Suresh C TyagiDepartment of Physiology and Biophysics, School of Medicine, University of Louisville, Louisville, KY, USA *These authors have equal authorshipAbstract: Elevated plasma levels of homocysteine (Hcy, known as hyperhomocysteinemia (HHcy, are associated with osteoporosis. A decrease in bone blood flow is a potential cause of compromised bone mechanical properties. Therefore, we hypothesized that HHcy decreases bone blood flow and biomechanical properties. To test this hypothesis, male Sprague–Dawley rats were treated with Hcy (0.67 g/L in drinking water for 8 weeks. Age-matched rats served as controls. At the end of the treatment period, the rats were anesthetized. Blood samples were collected from experimental or control rats. Biochemical turnover markers (body weight, Hcy, vitamin B12, and folate were measured. Systolic blood pressure was measured from the right carotid artery. Tibia blood flow was measured by laser Doppler flow probe. The results indicated that Hcy levels were significantly higher in the Hcy-treated group than in control rats, whereas vitamin B12 levels were lower in the Hcy-treated group compared with control rats. There was no significant difference in folate concentration and blood pressure in Hcy-treated versus control rats. The tibial blood flow index of the control group was significantly higher (0.78 ± 0.09 flow unit compared with the Hcy-treated group (0.51 ± 0.09. The tibial mass was 1.1 ± 0.1 g in the control group and 0.9 ± 0.1 in the Hcy-treated group. The tibia bone density was unchanged in Hcy-treated rats. These results suggest that Hcy causes a reduction in bone blood flow, which contributes to compromised bone biomechanical properties.Keywords: homocysteine, tibia, bone density

  5. Chaotic advection in blood flow.

    Science.gov (United States)

    Schelin, A B; Károlyi, Gy; de Moura, A P S; Booth, N A; Grebogi, C

    2009-07-01

    In this paper we argue that the effects of irregular chaotic motion of particles transported by blood can play a major role in the development of serious circulatory diseases. Vessel wall irregularities modify the flow field, changing in a nontrivial way the transport and activation of biochemically active particles. We argue that blood particle transport is often chaotic in realistic physiological conditions. We also argue that this chaotic behavior of the flow has crucial consequences for the dynamics of important processes in the blood, such as the activation of platelets which are involved in the thrombus formation.

  6. Estimation of blood velocity vectors using transverse ultrasound beam focusing and cross-correlation

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Lacasa, Isabel Rodriguez

    1999-01-01

    Modern ultrasound scanners estimate the blood velocity by tracking the movement of the blood scatterers along the ultrasound beam. This is done by emitting pulsed ultrasound fields and finding the shift in position from pulse to pulse by correlating the received signals. Only the velocity component...... along the beam direction is found, and this is a serious limitation in the current scanners, since most blood vessels are parallel to the skin surface. A method to find the velocity across the vessel has been suggested by Bonnefous (1988). Here a number of parallel receive beams are measured and used...... or across it or in any direction to the beam. The focused lines, thus, follow the flow and a cross-correlation of lines from different pulses can find the movement of the blood particles between pulse emissions and, thus, the blood velocity. The new approach is investigated using the Field II simulation...

  7. Plasma flow velocity measurements using a modulated Michelson interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Howard, J. [Australian National Univ., Canberra, ACT (Australia). Plasma Research Lab.; Meijer, F.G. [FOM-Instituut voor Plasmafysica `Rijnhuizen`, Association Euratom-FOM, PO Box 1207, 3430 BE Nieuwegein (Netherlands)]|[Physics Faculty, University of Amsterdam, Amsterdam (Netherlands)

    1997-03-01

    This paper discusses the possibility of flow velocity reconstruction using passive spectroscopic techniques. We report some preliminary measurements of the toroidal flow velocity of hydrogen atoms in the RTP tokamak using a phase modulated Michelson interferometer. (orig.) 1 refs.

  8. Micro-PIV measurements of blood flow in extraembryonic blood vessels of chicken embryos.

    Science.gov (United States)

    Lee, Jung Yeop; Ji, Ho Seong; Lee, Sang Joon

    2007-10-01

    The hemodynamic characteristics of blood flow are important in the diagnosis of circulatory diseases, since such diseases are related to wall shear stress of cardiovascular vessels. In chicken embryos at early stages of development, it is possible to directly visualize blood flow inside blood vessels. We therefore employed a micro-PIV technique to assess blood flow in extraembryonic venous and arterial blood vessels of chicken embryos, using red blood cells (RBCs) as tracers and obtaining flow images of RBCs using a high-speed CMOS camera. The mean velocity field showed non-Newtonian flow characteristics. The blood flow in two venous vessels merged smoothly into the Y-shaped downstream vein without any flow separation or secondary flow. Vorticity was high in the inner regions, where the radius of curvature varied greatly. A periodic variation of temporally resolved velocity signals, due to beating of the heart, was observed in arterial blood vessels. The pulsating frequency was obtained by fast Fourier transform analysis using the measured velocity data. The measurement technique used here was useful in analyzing the hemodynamic characteristics of in vivo blood flow in chicken embryos.

  9. Dogs with hearth diseases causing turbulent high-velocity blood flow have changes in patelet function and von Willebrand factor multimer distribution

    DEFF Research Database (Denmark)

    Tarnow, Inge; Kristensen, Annemarie Thuri; Olsen, Lisbeth Høier

    2005-01-01

    and echocardiography were performed in all dogs. PFA100 closure times (the ability of platelets to occlude a hole in a membrane at high shear rates), platelet activation markers (plasma thromboxane B2 concentration, platelet surface P-selectin expression), platelet aggregation (in whole blood and platelet-rich plasma...

  10. On the flow dependency of the electrical conductivity of blood

    NARCIS (Netherlands)

    Hoetink, AE; Faes, TJC; Visser, KR; Heethaar, RM

    2004-01-01

    Experiments presented in the literature show that the electrical conductivity of flowing blood depends on flow velocity. The aim of this study is to extend the Maxwell-Fricke theory, developed for a dilute suspension of ellipsoidal particles in an electrolyte, to explain this flow dependency of the

  11. Magnetohydrodynamics of blood flow.

    Science.gov (United States)

    Keltner, J R; Roos, M S; Brakeman, P R; Budinger, T F

    1990-10-01

    The changes in hydrostatic pressure and electrical potentials across vessels in the human vasculature in the presence of a large static magnetic field are estimated to determine the feasibility of in vivo NMR spectroscopy at fields as high as 10 T.A 10-T magnetic field changes the vascular pressure in a model of the human vasculature by less than 0.2%. An exact solution to the magnetohydrodynamic equations describing a conducting fluid flowing transverse to a static magnetic field in a nonconducting, straight, circular tube is used. This solution is compared to an approximate solution that assumes that no magnetic fields are induced in the fluid and that has led previous investigators to predict significant biological effects from static magnetic fields. Experimental results show that the exact solution accurately predicts the magnetohydrodynamic slowing of 15% NaCl flowing transverse to 2.3- and 4.7-T magnetic fields for fluxes below 0.5 liter/min while the approximate solution predicts a much more retarded flow.

  12. Blood vector velocity estimation using an autocorrelation approach: In vivo Investigation

    DEFF Research Database (Denmark)

    Udesen, Jesper; Bachmann, Michael; Rue, Kristina

    2005-01-01

    In conventional techniques for blood velocity estimation, only the axial component of the velocity vector is found. We have previously shown that it is possible to estimate the 2-D blood velocity vector both in simulations and in flow phantom experiments using a fast and inexpensive method (the...... deg phase shift in the lateral direction. The TO method works at angles where conventional methods fails to estimate any blood movement, i.e. when the angle between the ultrasound beam and the velocity vector is approximately 90 deg. In this paper the first in-vivo color flow map (CFM) images...... are presented using the TO method. A 128 element 5 MHz linear array transducer was used together with the experimental ultrasound scanner RASMUS operating at a sampling frequency of 40 MHz with a pulse repetition frequency of 24 kHz. After sampling the received channel data were beamformed off...

  13. Cerebral blood-flow tomography

    DEFF Research Database (Denmark)

    Lassen, N A; Henriksen, L; Holm, S;

    1983-01-01

    Tomographic maps of local cerebral blood flow (CBF) were obtained with xenon-133 and with isopropyl-amphetamine-iodine-123 (IMP) in 11 subjects: one normal, two tumor cases, and eight cerebrovascular cases. A highly sensitive four-face, rapidly rotating, single-photon emission tomograph was used......., and with low radiation exposure to patient and personnel. On the other hand, IMP gives an image of slightly higher resolution. It also introduces a new class of iodinated brain-seeking compounds allowing, perhaps, imaging of other functions more important than mere blood flow.......Tomographic maps of local cerebral blood flow (CBF) were obtained with xenon-133 and with isopropyl-amphetamine-iodine-123 (IMP) in 11 subjects: one normal, two tumor cases, and eight cerebrovascular cases. A highly sensitive four-face, rapidly rotating, single-photon emission tomograph was used...

  14. Computational Analysis of Human Blood Flow

    Science.gov (United States)

    Panta, Yogendra; Marie, Hazel; Harvey, Mark

    2009-11-01

    Fluid flow modeling with commercially available computational fluid dynamics (CFD) software is widely used to visualize and predict physical phenomena related to various biological systems. In this presentation, a typical human aorta model was analyzed assuming the blood flow as laminar with complaint cardiac muscle wall boundaries. FLUENT, a commercially available finite volume software, coupled with Solidworks, a modeling software, was employed for the preprocessing, simulation and postprocessing of all the models.The analysis mainly consists of a fluid-dynamics analysis including a calculation of the velocity field and pressure distribution in the blood and a mechanical analysis of the deformation of the tissue and artery in terms of wall shear stress. A number of other models e.g. T branches, angle shaped were previously analyzed and compared their results for consistency for similar boundary conditions. The velocities, pressures and wall shear stress distributions achieved in all models were as expected given the similar boundary conditions. The three dimensional time dependent analysis of blood flow accounting the effect of body forces with a complaint boundary was also performed.

  15. High frame-rate blood vector velocity imaging using plane waves: simulations and preliminary experiments

    DEFF Research Database (Denmark)

    Udesen, J.; Gran, F.; Hansen, K.L.

    2008-01-01

    Conventional ultrasound methods for acquiring color images of blood velocity are limited by a relatively low frame-rate and are restricted to give velocity estimates along the ultrasound beam direction only. To circumvent these limitations, the method presented in this paper uses 3 techniques: 1...... carotid artery of a healthy male was scanned with a scan sequence that satisfies the limits set by the Food and Drug Administration. Vector velocity images were obtained with a frame-rate of 100 Hz where 40 speckle images are used for each vector velocity image. It was found that the blood flow...... approximately followed the vessel wall, and that maximum velocity was approximately 1 m/s, which is a normal value for a healthy person. To further evaluate the method, the test person was scanned with magnetic resonance (MR) angiography. The volume flow derived from the MR scanning was compared with that from...

  16. Fast Blood Vector Velocity Imaging: Simulations and Preliminary In Vivo Results

    DEFF Research Database (Denmark)

    Udesen, Jesper; Gran, Fredrik; Hansen, Kristoffer Lindskov;

    2007-01-01

    I Background: Conventional ultrasound methods for acquiring color flow images of the blood velocity are limited by a relatively low frame rate and are restricted to only give velocity estimates along the ultrasound beam direction. To circumvent these limitations, we propose a method where the frame...... rate can be significantly increased, and the full 2-D vector velocity of the blood can be estimated. II Method: The method presented in this paper uses three techniques: 1) The ultrasound is not focused during the transmit of the ultrasound signals, and a full speckle image of the blood can be acquired...... for each pulse emission. 2) The transmitted pulse consists of a 13 bit Barker code which is transmitted simultaneously from each transducer element. 3) The 2-D vector velocity of the blood is found using 2-D speckle tracking between segments in consecutive speckle images. III Results: The method was tested...

  17. MR-based coronary artery blood velocity measurements in patients without coronary artery disease

    Energy Technology Data Exchange (ETDEWEB)

    Schiemann, M.; Esmaeili, A.; Vogl, T.J. [Johann Wolfgang Goethe-University, Institute of Diagnostic and Interventional Radiology University Hospital, Frankfurt am Main (Germany); Bakhtiary, F.; Moritz, A. [University HospitalJohann Wolfgang Goethe-University, Department of Thoracic and Cardiovascular Surgery, Frankfurt am Main (Germany); Hietschold, V. [University Hospital Carl Gustav Carus Technical University Dresden, Institute of Diagnostic Radiology, Dresden (Germany); Koch, A.; Abolmaali, N.D. [Johann Wolfgang Goethe-University, Institute of Diagnostic and Interventional Radiology University Hospital, Frankfurt am Main (Germany); University Hospital Carl Gustav Carus Techinical University Dresden, ZIK OncoRay - Molecular Imaging, Dresden (Germany); Ackermann, H. [Johann Wolfgang Goethe University, Department for Biomathematics, Frankfurt am Main (Germany)

    2006-05-15

    To evaluate the feasibility of MR-based coronary blood velocity measurements (MRvenc) in patients without coronary artery disease (CAD). Eighty-three patients with angiographically excluded CAD received MRvenc of the proximal segments of both coronary arteries (CAs). Using a retrospectively ECG-gated breath-hold phase-contrast FLASH sequence with high temporal resolution, flow data were technically acquirable in 137/166 (83%) CAs. Quantification and analysis of blood velocities in systole and diastole of both CAs were performed. Biphasic velocity profiles were found in 83/100 CAs. Median systolic and diastolic velocities differed significantly in LCA (19 cm/s, 24 cm/s; P<0.0001) and RCAs (14 cm/s, 16 cm/s; P<0.01). The diastolic/systolic velocity ratio was calculated in LCAs and RCAs with a median of 1.3 and 1.1, respectively. The velocity profiles of the remaining CAs were monophasic (17 CAs) or revealed severe alterations of the physiologic velocity profile with reduced flow undulations and steady velocities (37 CAs). Optimized clinical MRvenc is feasible to quantify blood velocities in the CAs. Potential indications are (1) non-invasive monitoring of patients after aortic valve reconstruction as well as (2) detection of asymptomatic CAD patients. (orig.)

  18. Red blood cell clusters in Poiseuille flow

    Science.gov (United States)

    Ghigliotti, Giovanni; Selmi, Hassib; Misbah, Chaouqi; Elasmi, Lassaad

    2011-11-01

    We present 2D numerical simulations of sets of vesicles (closed bags of a lipid bilayer membrane) in a parabolic flow, a setup that mimics red blood cells (RBCs) in the microvasculature. Vesicles, submitted to sole hydrodynamical interactions, are found to form aggregates (clusters) of finite size. The existence of a maximal cluster size is pointed out and characterized as a function of the flow intensity and the swelling ratio of the vesicles. Moreover bigger clusters move at lower velocity, a fact that may prove of physiological interest. These results quantify previous observations of the inhomogeneous distribution of RBCs in vivo (Gaehtgens et al., Blood Cells 6 - 1980). An interpretation of the phenomenon is put forward based on the presence of boli (vortices) between vesicles. Both the results and the explanation can be transposed to the three-dimensional case.

  19. Development of fiber optic laser Doppler velocimeter for measurement of local blood velocity

    Science.gov (United States)

    Ohba, Kenkich; Fujiwara, Noboru

    1993-08-01

    In order to measure the local velocity field in opaque fluid flows like blood flow, a new laser Doppler velocimeter having a pickup consisting of a small distributed index lens attached to the tips of two fibers which are joined side by side in parallel has been newly developed. The distributed index lens is the shape of a truncated cone. The flow field around this sensor has been measured very precisely by means of an ordinary LDV. The effect of turbidity of fluid on the quality of the laser Doppler signal from this sensor has been examined by experiments. As a result, it has been shown that this LDV sensor has a high signal-to-noise ratio, and that the disturbance against flow by the sensor is very small, and it is very promising as a velocity sensor for opaque or semi-opaque fluid flow like blood flow.

  20. Ultrasonic 3-D vector flow method for quantitative in vivo peak velocity and flow rate estimation

    DEFF Research Database (Denmark)

    Holbek, Simon; Ewertsen, Caroline; Bouzari, Hamed;

    2017-01-01

    Current clinical ultrasound systems are limited to show blood flow movement in either 1-D or 2-D. In this paper, a method for estimating 3-D vector velocities in a plane using the Transverse Oscillation (TO) method, a 32 x 32 element matrix array, and the experimental ultrasound scanner SARUS...... is presented. The aim of this paper is to estimate precise flow rates and peak velocities derived from 3-D vector flow estimates. The emission sequence provides 3-D vector flow estimates at up to 1.145 frames per second in a plane, and was used to estimate 3-D vector flow in a cross sectional image plane....... The method is validated in two phantom studies, where flow rates are measured in a flow-rig, providing a constant parabolic flow, and in a straight-vessel phantom (ø = 8 mm) connected to a flow pump capable of generating time varying waveforms. Flow rates are estimated to be 82.1 ± 2.8 L/min in the flow...

  1. Coded ultrasound for blood flow estimation using subband processing

    DEFF Research Database (Denmark)

    Gran, Fredrik; Udesen, Jesper; Nielsen, Michael bachmann

    2007-01-01

    This paper further investigates the use of coded excitation for blood flow estimation in medical ultrasound. Traditional autocorrelation estimators use narrow-band excitation signals to provide sufficient signal-to-noise-ratio (SNR) and velocity estimation performance. In this paper, broadband...... was carried out using an experimental ultrasound scanner and a commercial linear array 7 MHz transducer. A circulating flow rig was scanned with a beam-to-flow angle of 60 degrees. The flow in the rig was laminar and had a parabolic flow-profile with a peak velocity of 0.09 m/s. The mean relative standard...

  2. Estimating mechanical blood trauma in a centrifugal blood pump: laser Doppler anemometer measurements of the mean velocity field.

    Science.gov (United States)

    Pinotti, M; Paone, N

    1996-06-01

    A laser Doppler anemometer (LDA) was used to obtain the mean velocity and the Reynolds stress fields in the inner channels of a well-known centrifugal vaneless pump (Bio-pump). Effects of the excessive flow resistance against which an occlusive pump operates in some surgical situations, such as cardiopulmonary bypass, are illustrated. The velocity vector field obtained from LDA measurements reveals that the constraint-forced vortex provides pumping action in a restricted area in the core of the pump. In such situations, recirculating zones dominate the flow and consequently increase the damage to blood cells and raise the risk of thrombus formation in the device. Reynolds normal and shear stress fields were obtained in the entry flow for the channel formed by two rotating cones to illustrate the effects of flow disturbances on the potential for blood cell damage.

  3. Range/velocity limitations for time-domain blood velocity estimation

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    1993-01-01

    The traditional range/velocity limitation for blood velocity estimation systems using ultrasound is elucidated. It is stated that the equation is a property of the estimator used, not the actual physical measurement situation, as higher velocities can be estimated by the time domain cross......-correlation approach. It is demonstrated that the time domain technique under certain measurement conditions will yield unsatisfactory results, when trying to estimate high velocities. Various methods to avoid these artifacts using temporal and spatial clustering techniques are suggested. The improvement...

  4. Effects of magnetic field and Hall current to the blood velocity and LDL transfer

    Science.gov (United States)

    Abdullah, I.; Naser, N.; Talib, A. H.; Mahali, S.

    2015-09-01

    The magnetic field and Hall current effects have been considered on blood velocity and concentration of low-density lipoprotein (LDL). It is important to observe those effects to the flowing blood in a stenosed artery. The analysis from the obtained results may be useful to some clinical procedures, such as MRI, where the radiologists may have more information in the investigations before cardiac operations could be done. In this study, the uniform magnetic field and Hall current are applied to the Newtonian blood flow through an artery having a cosine-shaped stenosis. The governing equations are coupled with mass transfer and solved employing a finite difference Marker and Cell (MAC) method with an appropriate initial and boundary conditions. The graphical results of velocity profiles and LDL concentration are presented in this paper and the results show that the velocity increases and concentration decreases as Hall parameter increased.

  5. Transfer function analysis for the assessment of cerebral autoregulation using spontaneous oscillations in blood pressure and cerebral blood flow

    NARCIS (Netherlands)

    Abeelen, A.S.S. van den; Beek, A.H. van; Slump, C.H.; Panerai, R.B.; Claassen, J.A.H.R.

    2014-01-01

    Cerebral autoregulation (CA) is a key mechanism to protect the brain against excessive fluctuations in blood pressure (BP) and maintain cerebral blood flow. Analyzing the relationship between spontaneous BP and cerebral blood flow velocity (CBFV) using transfer function analysis is a widely used tec

  6. Blood velocity estimation using ultrasound and spectral iterative adaptive approaches

    DEFF Research Database (Denmark)

    Gudmundson, Erik; Jakobsson, Andreas; Jensen, Jørgen Arendt;

    2011-01-01

    This paper proposes two novel iterative data-adaptive spectral estimation techniques for blood velocity estimation using medical ultrasound scanners. The techniques make no assumption on the sampling pattern of the emissions or the depth samples, allowing for duplex mode transmissions where B......-mode images are interleaved with the Doppler emissions. Furthermore, the techniques are shown, using both simplified and more realistic Field II simulations as well as in vivo data, to outperform current state-of-the-art techniques, allowing for accurate estimation of the blood velocity spectrum using only 30...

  7. Ocular Blood Flow Autoregulation Mechanisms and Methods

    Directory of Open Access Journals (Sweden)

    Xue Luo

    2015-01-01

    Full Text Available The main function of ocular blood flow is to supply sufficient oxygen and nutrients to the eye. Local blood vessels resistance regulates overall blood distribution to the eye and can vary rapidly over time depending on ocular need. Under normal conditions, the relation between blood flow and perfusion pressure in the eye is autoregulated. Basically, autoregulation is a capacity to maintain a relatively constant level of blood flow in the presence of changes in ocular perfusion pressure and varied metabolic demand. In addition, ocular blood flow dysregulation has been demonstrated as an independent risk factor to many ocular diseases. For instance, ocular perfusion pressure plays key role in the progression of retinopathy such as glaucoma and diabetic retinopathy. In this review, different direct and indirect techniques to measure ocular blood flow and the effect of myogenic and neurogenic mechanisms on ocular blood flow are discussed. Moreover, ocular blood flow regulation in ocular disease will be described.

  8. Coded Ultrasound for Blood Flow Estimation Using Subband Processing

    DEFF Research Database (Denmark)

    Gran, Fredrik; Udesen, Jesper; Nielsen, Michael Bachamnn

    2008-01-01

    This paper investigates the use of coded excitation for blood flow estimation in medical ultrasound. Traditional autocorrelation estimators use narrow-band excitation signals to provide sufficient signal-to-noise-ratio (SNR) and velocity estimation performance. In this paper, broadband coded...... for velocity estimation is compared with a conventional approach transmitting a narrow-band pulse. The study was carried out using an experimental ultrasound scanner and a commercial linear array 7 MHz transducer. A circulating flow rig was scanned with a beam-to-flow angle of 60°. The flow in the rig...

  9. Ocular Blood Flow Autoregulation Mechanisms and Methods

    OpenAIRE

    Xue Luo; Yu-meng Shen; Meng-nan Jiang; Xiang-feng Lou; Yin Shen

    2015-01-01

    The main function of ocular blood flow is to supply sufficient oxygen and nutrients to the eye. Local blood vessels resistance regulates overall blood distribution to the eye and can vary rapidly over time depending on ocular need. Under normal conditions, the relation between blood flow and perfusion pressure in the eye is autoregulated. Basically, autoregulation is a capacity to maintain a relatively constant level of blood flow in the presence of changes in ocular perfusion pressure and va...

  10. A dual-phantom system for validation of velocity measurements in stenosis models under steady flow.

    Science.gov (United States)

    Blake, James R; Easson, William J; Hoskins, Peter R

    2009-09-01

    A dual-phantom system is developed for validation of velocity measurements in stenosis models. Pairs of phantoms with identical geometry and flow conditions are manufactured, one for ultrasound and one for particle image velocimetry (PIV). The PIV model is made from silicone rubber, and a new PIV fluid is made that matches the refractive index of 1.41 of silicone. Dynamic scaling was performed to correct for the increased viscosity of the PIV fluid compared with that of the ultrasound blood mimic. The degree of stenosis in the models pairs agreed to less than 1%. The velocities in the laminar flow region up to the peak velocity location agreed to within 15%, and the difference could be explained by errors in ultrasound velocity estimation. At low flow rates and in mild stenoses, good agreement was observed in the distal flow fields, excepting the maximum velocities. At high flow rates, there was considerable difference in velocities in the poststenosis flow field (maximum centreline differences of 30%), which would seem to represent real differences in hydrodynamic behavior between the two models. Sources of error included: variation of viscosity because of temperature (random error, which could account for differences of up to 7%); ultrasound velocity estimation errors (systematic errors); and geometry effects in each model, particularly because of imperfect connectors and corners (systematic errors, potentially affecting the inlet length and flow stability). The current system is best placed to investigate measurement errors in the laminar flow region rather than the poststenosis turbulent flow region.

  11. Plasma flow velocity measurements using a modulated Michelson interferometer

    NARCIS (Netherlands)

    Howard, J.; Meijer, F. G.

    1997-01-01

    This paper discusses the possibility of flow velocity reconstruction using passive spectroscopic techniques. We report some preliminary measurements of the toroidal flow velocity of hydrogen atoms in the RTP tokamak using a phase modulated Michelson interferometer. (C) 1997 Elsevier Science S.A.

  12. ANALYSIS OF PULSATILE BLOOD FLOW IN AXIALLY MOVING ARTERIES

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In order to study motional properties of pulsatile blood flow in axially moving arteries, the authors derived some expressions of the pulsatile blood flow from the basic equations of motion for blood and vascular walls, including an axial blood velocity equation, a flow rate equation and a wall shear stress equation, which described not only the overall axial movement of the arteries but also the elastic properties of the vascular walls, discussed the effects of the arterial wall elasticity on the wall shear stress in coronary arteries in terms of these expressions, and analyzed changes of motional properties of pulsatile blood flow between an elastic arterial tube model and a rigid tube model. The results proved the inference by J.E. Moore Jr. et al. (1994) that the axial movement of arteries be as important in determining coronary artery hemodynamics as the elastic property of the vascular wall.

  13. 2-D blood vector velocity estimation using a phase shift estimator

    DEFF Research Database (Denmark)

    Udesen, Jesper

    2006-01-01

    In this PhD thesis a method for 2-D blood velocity estimation called \\textit{the transverse oscillation method} (TO) is investigated. The thesis is divided into two parts. In the first part the basic principles in conventional 1-D flow estimation are described, and the state of the art for 2-D...... velocity estimation is discussed. The TO method is introduced, and the basic theory behind the method is explained. This includes the creation of the acoustic fields, beamforming, echo-canceling and the velocity estimator. In the second part of the thesis the eight papers produced during this PhD project...... when the angle between the blood and the ultrasound beam is above $50^\\circ$. Furthermore, the TO method is tested in-vivo where the scannings are performed by skilled sonographers. The in-vivo scannings resulted in a sequence of 2-D vector CFM images which showed 2-D flow patterns in the bifurcation...

  14. Exploration of 4D MRI blood flow using stylistic visualization.

    Science.gov (United States)

    van Pelt, Roy; Oliván Bescós, Javier; Breeuwer, Marcel; Clough, Rachel E; Gröller, M Eduard; ter Haar Romenij, Bart; Vilanova, Anna

    2010-01-01

    Insight into the dynamics of blood-flow considerably improves the understanding of the complex cardiovascular system and its pathologies. Advances in MRI technology enable acquisition of 4D blood-flow data, providing quantitative blood-flow velocities over time. The currently typical slice-by-slice analysis requires a full mental reconstruction of the unsteady blood-flow field, which is a tedious and highly challenging task, even for skilled physicians. We endeavor to alleviate this task by means of comprehensive visualization and interaction techniques. In this paper we present a framework for pre-clinical cardiovascular research, providing tools to both interactively explore the 4D blood-flow data and depict the essential blood-flow characteristics. The framework encompasses a variety of visualization styles, comprising illustrative techniques as well as improved methods from the established field of flow visualization. Each of the incorporated styles, including exploded planar reformats, flow-direction highlights, and arrow-trails, locally captures the blood-flow dynamics and may be initiated by an interactively probed vessel cross-section. Additionally, we present the results of an evaluation with domain experts, measuring the value of each of the visualization styles and related rendering parameters.

  15. Effect of multi-velocity-difference in traffic flow

    Institute of Scientific and Technical Information of China (English)

    Mo Ye-Liu; He Hong-Di; Xue Yu; Shi Wei; Lu Wei-Zhen

    2008-01-01

    Based on the optimal velocity models, an extended model is proposed, in which multi-velocity-difference ahead is taken into consideration. The damping effect of the multi-velocity-difference ahead has been investigated by means of analytical and numerical methods. Results indicate that the multi-velocity-difference leads to the enhancement of stability of traffic flow, suppression of the emergence of traffic jamming, and reduction of the energy consumption.

  16. High Frame-Rate Blood Vector Velocity Imaging Using Plane Waves: Simulations and Preliminary Experiments

    DEFF Research Database (Denmark)

    Udesen, Jesper; Gran, Fredrik; Hansen, Kristoffer Lindskov;

    2008-01-01

    Conventional ultrasound methods for acquiring color images of blood velocity are limited by a relatively low frame-rate and are restricted to give velocity estimates along the ultrasound beam direction only. To circumvent these limitations, the method presented in this paper uses 3 techniques: 1......) The ultrasound is not focused during the transmissions of the ultrasound signals; 2) A 13-bit Barker code is transmitted simultaneously from each transducer element; and 3) The 2-D vector velocity of the blood is estimated using 2-D cross-correlation. A parameter study was performed using the Field II program......, and performance of the method was investigated when a virtual blood vessel was scanned by a linear array transducer. An improved parameter set for the method was identified from the parameter study, and a flow rig measurement was performed using the same improved setup as in the simulations. Finally, the common...

  17. Large-Eddy simulation of pulsatile blood flow.

    Science.gov (United States)

    Paul, Manosh C; Mamun Molla, Md; Roditi, Giles

    2009-01-01

    Large-Eddy simulation (LES) is performed to study pulsatile blood flow through a 3D model of arterial stenosis. The model is chosen as a simple channel with a biological type stenosis formed on the top wall. A sinusoidal non-additive type pulsation is assumed at the inlet of the model to generate time dependent oscillating flow in the channel and the Reynolds number of 1200, based on the channel height and the bulk velocity, is chosen in the simulations. We investigate in detail the transition-to-turbulent phenomena of the non-additive pulsatile blood flow downstream of the stenosis. Results show that the high level of flow recirculation associated with complex patterns of transient blood flow have a significant contribution to the generation of the turbulent fluctuations found in the post-stenosis region. The importance of using LES in modelling pulsatile blood flow is also assessed in the paper through the prediction of its sub-grid scale contributions. In addition, some important results of the flow physics are achieved from the simulations, these are presented in the paper in terms of blood flow velocity, pressure distribution, vortices, shear stress, turbulent fluctuations and energy spectra, along with their importance to the relevant medical pathophysiology.

  18. Changes in Maternal Posterior and Anterior Cerebral Artery Flow Velocity During Pregnancy and Postpartum-A Longitudinal Study

    NARCIS (Netherlands)

    van Veen, Teelkien R.; Haeri, Sina; Sangi-Haghpeykar, Haleh; Belfort, Michael A.

    2013-01-01

    BackgroundTo evaluate the normal range of blood flow velocity in the maternal anterior (ACA) and posterior cerebral arteries (PCA) along the normal pregnancy and postpartum period. MethodsTranscranial Doppler ultrasound was used to measure the systolic, diastolic, and mean blood velocities in the AC

  19. AN ANALYSIS MODEL OF PULSATILE BLOOD FLOW IN ARTERIES

    Institute of Scientific and Technical Information of China (English)

    LIUZhao-rong; XUGang; CHENYong; TENGZhong0=zhao; QINKai-rong

    2003-01-01

    Blood flow in artery was treated as the flow under equilibriums state(the steady flow under mean pressure)combined with the periodically small pulsatile flow.Using vascular strain energy function advanced by Fung,the vascular stress-strain relationship under equilibrium state was analyzed and the circumferential and axial elastic moduli were deduced that are expressed while the arterial strains around the equilibrium state are relatively small,so that the equations of vesse wall motion under the pulsatile pressure could be established here.Through solving both the vessel equations and the linear Navier-Stokes equations,the analytic expressions of the blood flow velocities and the vascular displacements were obtained.The influence of the difference between vascular circumferentia and axial elasticities on pulsatile blood flow and vascular motion was discussed in details.

  20. AN ANALYSIS MODEL OF PULSATILE BLOOD FLOW IN ARTERIES

    Institute of Scientific and Technical Information of China (English)

    柳兆荣; 徐刚; 陈泳; 滕忠照; 覃开蓉

    2003-01-01

    Blood flow in artery was treated as the flow under equilibrium state ( the steady flow under mean pressure ) combined with the periodically small pulsatile flow. Using vascular strain energy function advanced by Fung, the vascular stress-strain relationship under equilibrium state was analyzed and the circumferential and axial elastic moduli were deduced that are expressed while the arterial strains around the equilibrium state are relatively small, so that the equations of vessel wall motion under the pulsatile pressure could be established here. Through solving both the vessel equations and the linear NavierStokes equations, the analytic expressions of the blood flow velocities and the vascular displacements were obtained. The influence of the difference between vascular circumferential and axial elasticities on pulsatile blood flow and vascular motion was discussed in details.

  1. Analysis on Velocity Characteristics of Cavitation Flow Around Hydrofoil

    Institute of Scientific and Technical Information of China (English)

    LI Xiang-bin; LIU Shu-yan; WANG Guo-yu; ZHANG Bo; ZHANG Min-di

    2010-01-01

    The time-averaged velocity distributions in flows around a hydronautics hydrofoil were measured by using a digit-al particle image velocimeter (DPIV) system. The results show that the velocity distribution in the whole flow field depends on the development of cavitation structures with the decreasing of cavitation number. The high-fluctuation region with lower velocity relates to the cavitation area. The lowest velocity distribution in the cavity core becomes more uniform, and its in-fluence becomes smaller gradually as moving to downstream. The main-stream velocity distribution is even, then fluctuate and even at last. In the supercavitation stage, the fluid velocity in the cavitation region, corresponding to the front of the hydrofoil's suction surface, has a distribution close to the main stream, while the fluid velocity in other cavitation area is lower.

  2. Coded ultrasound for blood flow estimation using subband processing

    DEFF Research Database (Denmark)

    Gran, F.; Udesen, J.; Jensen, J.A.;

    2008-01-01

    This paper investigates the use of coded excitation for blood flow estimation in medical ultrasound. Traditional autocorrelation estimators use narrow-band excitation signals to provide sufficient signal-to-noise-ratio (SNR) and velocity estimation performance. In this paper, broadband coded sign...

  3. Assessment of maternal cerebral blood flow in patients with preeclampsia

    Directory of Open Access Journals (Sweden)

    Mandić Vesna

    2005-01-01

    Full Text Available Introduction Systemic vasoconstrktion in preeclamptic patients increases vascular resistance, and is manifested by increased arterial blood flow velocity. The aim of the study is to evaluate if there is a change of Doppler indices in maternal medial cerbral artery (MCA in severe preeclampsia due to: 1 severity of clinical symptoms, 2 the beginning of eclamptic attack and 3 the application of anticonvidsive therapy. Material and methods A prospective clinical study included 92 pregnant women, gestational age 28-36 weeks. They were divided into three groups: normotensive (n=30, mild preeclampsia (n=33, and severe preeclampsia (n=29. We investigated maternal cerebral circulation by assessing the MCA. We registrated: pulsatility index (Pi, resistance index (Ri, Systolic/diastolic ratio (S/D, and the maximum systolic, end diastolic and medium velocity. Patients with severe preeclampsia were divided into two subgroups: subgroup 1 included patients without symptoms of threatening eclampsia (n=18; 62.06%; while subgroup 2 included those with symptoms of preeclampsia (n=11; 37.94%. All patients with severe preeclampsia were treated with magnesium sulfate (MgSO4, and cerebral blood flow was measured before and after the treatment. Statistical analysis was done by oneway ANOVA, Student t-test and t-paired sample test. The difference was considered to be significant if p < 0.05. Results Significantly increased Pi, Ri and all velocities were established in the group of patients with severe preeclampsia compared with the other two groups. In the group with severe preeclamsia we registrated significantly increased values of all velocities (patients with signs of threatening eclampsia. After MgSO4 treatment in patients with severe preeclampsia significantly decreased values of Pi, Ri, S/D ratio and all velocities were registered. Discussion In the studied group of patients with severe preclampsia we found increased velocity values, Pi and Ri, especially in

  4. A study of methods to estimate debris flow velocity

    Science.gov (United States)

    Prochaska, A.B.; Santi, P.M.; Higgins, J.D.; Cannon, S.H.

    2008-01-01

    Debris flow velocities are commonly back-calculated from superelevation events which require subjective estimates of radii of curvature of bends in the debris flow channel or predicted using flow equations that require the selection of appropriate rheological models and material property inputs. This research investigated difficulties associated with the use of these conventional velocity estimation methods. Radii of curvature estimates were found to vary with the extent of the channel investigated and with the scale of the media used, and back-calculated velocities varied among different investigated locations along a channel. Distinct populations of Bingham properties were found to exist between those measured by laboratory tests and those back-calculated from field data; thus, laboratory-obtained values would not be representative of field-scale debris flow behavior. To avoid these difficulties with conventional methods, a new preliminary velocity estimation method is presented that statistically relates flow velocity to the channel slope and the flow depth. This method presents ranges of reasonable velocity predictions based on 30 previously measured velocities. ?? 2008 Springer-Verlag.

  5. Quantitative velocity distributions via nuclear magnetic resonance flow metering

    Science.gov (United States)

    O'Neill, Keelan T.; Fridjonsson, Einar O.; Stanwix, Paul L.; Johns, Michael L.

    2016-08-01

    We demonstrate the use of Tikhonov regularisation as a data inversion technique to determine the velocity distributions of flowing liquid streams. Regularisation is applied to the signal produced by a nuclear magnetic resonance (NMR) flow measurement system consisting of a pre-polarising permanent magnet located upstream of an Earth's magnetic field NMR detection coil. A simple free induction decay (FID) NMR signal is measured for the flowing stream in what is effectively a 'time-of-flight' measurement. The FID signal is then modelled as a function of fluid velocity and acquisition time, enabling determination of the velocity probability distributions via regularisation. The mean values of these velocity distributions were successfully validated against in-line rotameters. The ability to quantify multi-modal velocity distributions was also demonstrated using a two-pipe system.

  6. Real gas flows with high velocities

    CERN Document Server

    Lunev, Vladimir V

    2009-01-01

    Gasdynamic Model and Equations Outline of the Gasdynamic Model Basic Equations and Postulates Equations of State Kinetic Theory Second Law of Thermodynamics Speed of Sound Integral Equations of Motion Kinematics of Fluid Media Differential Equations of Gasdynamics Rheological Model Initial and Boundary Conditions Similarity and Modeling in Gasdynamics Euler Equations Navier-Stokes Equations Turbulent Flows Viscous and Inviscid Flow Models Inviscid Gasdynamics Stream Function, Potential,

  7. Real-Time GPU Implementation of Transverse Oscillation Vector Velocity Flow Imaging

    DEFF Research Database (Denmark)

    Bradway, David; Pihl, Michael Johannes; Krebs, Andreas

    2014-01-01

    , Open Computing Language (OpenCL) is used to estimate 2-D vector velocity flow in vivo in the carotid artery. Data are streamed live from a BK Medical 2202 Pro Focus UltraView Scanner to a workstation running a research interface software platform. Processing data from a 50 millisecond frame of a duplex......Rapid estimation of blood velocity and visualization of complex flow patterns are important for clinical use of diagnostic ultrasound. This paper presents real-time processing for two-dimensional (2-D) vector flow imaging which utilizes an off-the-shelf graphics processing unit (GPU). In this work...

  8. Effect of head rotation on cerebral blood velocity in the prone position

    DEFF Research Database (Denmark)

    Højlund, Jakob; Sandmand, Marie; Sonne, Morten;

    2012-01-01

    for cerebral blood flow. We tested in healthy subjects the hypothesis that rotating the head in the prone position reduces cerebral blood flow. Methods. Mean arterial blood pressure (MAP), stroke volume (SV), and CO were determined, together with the middle cerebral artery mean blood velocity (MCA V......(mean)) and jugular vein diameters bilaterally in 22 healthy subjects in the prone position with the head centered, respectively, rotated sideways, with and without positive pressure breathing (10 cmH(2)O). Results. The prone position reduced SV (by 5.4 ± 1.5%; P ...(mean) was maintained. The head-rotated prone position with positive pressure breathing augmented MAP further (87 ± 2 mmHg) but not CO, narrowed both jugular vein diameters, and reduced MCA V(mean) (by 8.6 ± 3.2 %). Conclusion. During positive pressure breathing the prone position with sideways rotated head reduces MCA...

  9. Volume Flow in Arteriovenous Fistulas Using Vector Velocity Ultrasound

    DEFF Research Database (Denmark)

    Hansen, Peter Møller; Olesen, Jacob Bjerring; Pihl, Michael Johannes;

    2014-01-01

    Volume flow in arteriovenous fistulas for hemodialysis was measured using the angle-independent ultrasound technique Vector Flow Imaging and compared with flow measurements using the ultrasound dilution technique during dialysis. Using an UltraView 800 ultrasound scanner (BK Medical, Herlev......, Denmark) with a linear transducer, 20 arteriovenous fistulas were scanned directly on the most superficial part of the fistula just before dialysis. Vector Flow Imaging volume flow was estimated with two different approaches, using the maximum and the average flow velocities detected in the fistula. Flow...

  10. Quantitative Cerebral Blood Flow Measurements Using MRI

    OpenAIRE

    Muir, Eric R; Watts, Lora Talley; Tiwari, Yash Vardhan; Bresnen, Andrew; Timothy Q Duong

    2014-01-01

    Magnetic resonance imaging utilized as a quantitative and noninvasive method to image cerebral blood flow. The two most common techniques used to detect cerebral blood flow are dynamic susceptibility contrast (DSC) perfusion MRI and arterial spin labeling perfusion MRI. Herein we describe the use of these two techniques to measure cerebral blood flow in rodents, including methods, analysis, and important considerations when utilizing these techniques.

  11. Animal models of surgically manipulated flow velocities to study shear stress-induced atherosclerosis.

    Science.gov (United States)

    Winkel, Leah C; Hoogendoorn, Ayla; Xing, Ruoyu; Wentzel, Jolanda J; Van der Heiden, Kim

    2015-07-01

    Atherosclerosis is a chronic inflammatory disease of the arterial tree that develops at predisposed sites, coinciding with locations that are exposed to low or oscillating shear stress. Manipulating flow velocity, and concomitantly shear stress, has proven adequate to promote endothelial activation and subsequent plaque formation in animals. In this article, we will give an overview of the animal models that have been designed to study the causal relationship between shear stress and atherosclerosis by surgically manipulating blood flow velocity profiles. These surgically manipulated models include arteriovenous fistulas, vascular grafts, arterial ligation, and perivascular devices. We review these models of manipulated blood flow velocity from an engineering and biological perspective, focusing on the shear stress profiles they induce and the vascular pathology that is observed.

  12. Simultaneous Temperature and Velocity Diagnostic for Reacting Flows Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A diagnostic technique is proposed for measuring temperature and velocity simultaneously in a high temperature reacting flow for aiding research in propulsion. The...

  13. Measurement of gas flow velocities by laser-induced gratings

    Energy Technology Data Exchange (ETDEWEB)

    Hemmerling, B.; Stampanoni-Panariello, A. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Kozlov, A.D.N. [General Physics Institute, Moscow (Russian Federation)

    1999-08-01

    Time resolved light scattering from laser-induced electrostrictive gratings was used for the determination of flow velocities in air at room temperature. By measuring the velocity profile across the width of a slit nozzle we demonstrated the high spatial resolution (about 200 mm) of this novel technique. (author) 3 figs., 1 ref.

  14. Velocity profiles in strongly turbulent Taylor-Couette flow

    NARCIS (Netherlands)

    Grossmann, S.; Lohse, D.; Sun, C.

    2014-01-01

    We derive the velocity profiles in strongly turbulent Taylor-Couette flow for the general case of independently rotating cylinders. The theory is based on the Navier-Stokes equations in the appropriate (cylinder) geometry. In particular, we derive the axial and the angular velocity profiles as funct

  15. Regional cerebral blood flow in schizophrenia

    Energy Technology Data Exchange (ETDEWEB)

    Mathew, R.J.; Duncan, G.C.; Weinman, M.L.; Barr, D.L.

    1982-10-01

    Regional cerebral blood flow (rCBF) was measured via xenon133 inhalation technique in 23 patients with schizophrenia and 18 age- and sex-matched controls. The mean blood flow to both hemispheres was found to be lower for the patients. The patients and their controls did not differ on interhemispheric differences in blood flow. There were no differences in rCBF between medicated and unmedicated, subchronic and chronic, and paranoid and nonparanoid patients. Hallucinations were associated with reduced blood flow to several postcentral regions.

  16. Estimation of flow velocity for a debris flow via the two-phase fluid model

    Directory of Open Access Journals (Sweden)

    S. Guo

    2014-06-01

    Full Text Available The two-phase fluid model is applied in this study to calculate the steady velocity of a debris flow along a channel bed. By using the momentum equations of the solid and liquid phases in the debris flow together with an empirical formula to describe the interaction between two phases, the steady velocities of the solid and liquid phases are obtained theoretically. The comparison of those velocities obtained by the proposed method with the observed velocities of two real-world debris flows shows that the proposed method can estimate accurately the velocity for a debris flow.

  17. In-vivo Examples of Flow Patterns With The Fast Vector Velocity Ultrasound Method

    DEFF Research Database (Denmark)

    Hansen, Kristoffer Lindskov; Udesen, Jesper; Gran, Fredrik

    2009-01-01

    Purpose: Conventional ultrasound methods for acquiring color flow images of the blood motion are limited by a relatively low frame rate and are restricted to only giving velocity estimates along the ultrasound beam direction. To circumvent these limitations, the Plane Wave Excitation (PWE) method...... a fast vector velocity ultrasound method, in-vivo scans have been recorded where complex flow patterns were visualized in greater detail than previously visualized by conventional color flow imaging techniques.......Purpose: Conventional ultrasound methods for acquiring color flow images of the blood motion are limited by a relatively low frame rate and are restricted to only giving velocity estimates along the ultrasound beam direction. To circumvent these limitations, the Plane Wave Excitation (PWE) method...... has been proposed. Material and Methods: The PWE method can estimate the 2D vector velocity of the blood with a high frame rate. Vector velocity estimates are acquired by using the following approach: The ultrasound is not focused during the ultrasound transmission, and a full speckle image...

  18. In vivo μPIV measurements of blood velocity in small vessels of a rat model

    Science.gov (United States)

    Leong, Chia Min; Russell, John; Connor, Nadine; Honkanen, Markus; Wei, Timothy

    2009-11-01

    Aging-related muscular changes have been shown to affect voice production. There is correlation between muscular changes and changes in capillary hemodynamics and structure with aging. Alterations in oxygen transport to cells and tissues at the capillary level has been hypothesized as one of the key factors that causes muscular changes thus voice production. Since oxygen transport is related to hemodynamics, we start by measuring blood velocity in capillaries of cremaster muscle of a living rat. The μPIV technique is adapted for measuring blood velocity where red blood cells are used as `seeding particles'. The accuracy of the μPIV measurements are determined by comparison with results obtained using other techniques such as particle tracking velocimetry (PTV). Finally, challenges in measuring flow through three-dimensional larynx geometry will be discussed.

  19. Estimation of the blood velocity spectrum using a recursive lattice filter

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Buelund, Claus; Jørgensen, Allan;

    1996-01-01

    In medical ultrasound the blood velocity distribution in a vessel can be found by emitting a pulsed field into the patient. The field is then scattered by the tissues and the red blood cells, and a single complex sample set is acquired at the depth of interest for each pulse emitted. The signals...... acquired for showing the blood velocity distribution are inherently non-stationary, due to the pulsatility of the flow. All current signal processing schemes assume that the signal is stationary within the window of analysis, although this is an approximation. In this paper a recursive least...... with the actual distributions that always will be smooth. Setting the exponential decay factor to 0.99 gives satisfactory results for in-vivo data from the carotid artery. The filter can easily be implemented using a standard fixed-point signal processing chip for real-time processing...

  20. Minimum detectable air velocity by thermal flow sensors.

    Science.gov (United States)

    Issa, Safir; Lang, Walter

    2013-08-19

    Miniaturized thermal flow sensors have opened the doors for a large variety of new applications due to their small size, high sensitivity and low power consumption. Theoretically, very small detection limits of air velocity of some micrometers per second are achievable. However, the superimposed free convection is the main obstacle which prevents reaching these expected limits. Furthermore, experimental investigations are an additional challenge since it is difficult to generate very low flows. In this paper, we introduce a physical method, capable of generating very low flow values in the mixed convection region. Additionally, we present the sensor characteristic curves at the zero flow case and in the mixed convection region. Results show that the estimated minimum detectable air velocity by the presented method is 0.8 mm/s. The equivalent air velocity to the noise level of the sensor at the zero flow case is about 0.13 mm/s.

  1. Modified Beer-Lambert law for blood flow

    Science.gov (United States)

    Baker, Wesley B.; Parthasarathy, Ashwin B.; Busch, David R.; Mesquita, Rickson C.; Greenberg, Joel H.; Yodh, A. G.

    2015-03-01

    The modified Beer-Lambert law is among the most widely used approaches for analysis of near-infrared spectroscopy (NIRS) reflectance signals for measurements of tissue blood volume and oxygenation. Briefly, the modified Beer-Lambert paradigm is a scheme to derive changes in tissue optical properties based on continuous-wave (CW) diffuse optical intensity measurements. In its simplest form, the scheme relates differential changes in light transmission (in any geometry) to differential changes in tissue absorption. Here we extend this paradigm to the measurement of tissue blood flow by diffuse correlation spectroscopy (DCS). In the new approach, differential changes of the intensity temporal auto-correlation function at a single delay-time are related to differential changes in blood flow. The key theoretical results for measurement of blood flow changes in any tissue geometry are derived, and we demonstrate the new method to monitor cerebral blood flow in a pig under conditions wherein the semi-infinite geometry approximation is fairly good. Specifically, the drug dinitrophenol was injected in the pig to induce a gradual 200% increase in cerebral blood flow, as measured with MRI velocity flow mapping and by DCS. The modified Beer-Lambert law for flow accurately recovered these flow changes using only a single delay-time in the intensity auto-correlation function curve. The scheme offers increased DCS measurement speed of blood flow. Further, the same techniques using the modified Beer-Lambert law to filter out superficial tissue effects in NIRS measurements of deep tissues can be applied to the DCS modified Beer-Lambert law for blood flow monitoring of deep tissues.

  2. Ultrasonic Doppler Velocity Profiler for Fluid Flow

    CERN Document Server

    2012-01-01

    The ultrasonic velocity profile (UVP) method, first developed in medical engineering, is now widely used in clinical settings. The fluid mechanical basis of UVP was established in investigations by the author and his colleagues with work demonstrating that UVP is a powerful new tool in experimental fluid mechanics. There are diverse examples, ranging from problems in fundamental fluid dynamics to applied problems in mechanical, chemical, nuclear, and environmental engineering. In all these problems, the methodological principle in fluid mechanics was converted from point measurements to spatio-temporal measurements along a line. This book is the first monograph on UVP that offers comprehensive information about the method, its principles, its practice, and applied examples, and which serves both current and new users. Current users can confirm that their application configurations are correct, which will help them to improve the configurations so as to make them more efficient and effective. New users will be...

  3. Fluorescent beeswax for surface flow velocity observations

    Science.gov (United States)

    Grimaldi, S.; Tauro, F.; Petroselli, A.; Mocio, G.; Capocci, I.; Rapiti, E.; Rapiti, R.; Cipollari, G.; Porfiri, M.

    2012-12-01

    Watershed surface processes control downstream runoff phenomena, waste and pollutant diffusion, erosion mechanics, and sediment transport. A quantitative understanding of the flow physics is currently limited by the lack of effective tracing techniques suitable for basin-scale observations. More specifically, field experiments require environmentally resilient, non-invasive, and low cost measurement systems that can potentially operate in remotely-controlled or unmanned conditions. Traditional tracing methodologies are largely not capable to cope with extreme in-situ conditions, including practical logistic challenges as well as inherent flow complexity. Specifically, most of available technologies need physical sampling to estimate the tracer concentration and do not allow for continuous-time measurements. In addition, commonly used tracers, such as isotopes, dyes, and chemicals, are not directly applicable to monitor surface hillslope processes and large-scale microchannel networks due to elaborate detection processes and dispersion issues. In this context, the feasibility of using buoyant fluorescent microspheres as particle tracers in natural water flows is investigated. Specifically, a novel fabrication methodology is designed to manufacture particles from natural beeswax and a highly diluted solution of a nontoxic fluorescent red dye. The fabrication procedure allows for adjusting the size of the particles from tens of microns up to a few millimeters and their density from positively to negatively-buoyant with respect to water. An array of experimental techniques is employed to conduct a thorough characterization of the fluorescence and morphology of the tracers. In addition, ad-hoc experiments are designed to assess the fluorescence response due to Ultra Violet (UV) exposure and thermal processes. Proof-of-concept laboratory analysis are conducted to illustrate the integration of the novel particle tracers in existing tracing methods for surface flow

  4. Modeling cerebral blood flow during posture change from sitting to standing

    DEFF Research Database (Denmark)

    Ottesen, Johnny T.; Olufsen, M.; Tran, H.T.

    2004-01-01

    extremities, the brain, and the heart. We use physiologically based control mechanisms to describe the regulation of cerebral blood flow velocity and arterial pressure in response to orthostatic hypotension resulting from postural change. To justify the fidelity of our mathematical model and control......Abstract Hypertension, decreased cerebral blood flow, and diminished cerebral blood flow velocity regulation, are among the first signs indicating the presence of cerebral vascular disease. In this paper, we will present a mathematical model that can predict blood flow and pressure during posture...

  5. Novel measurement of blood velocity profile using translating-stage optical method and theoretical modeling based on non-Newtonian viscosity model

    Science.gov (United States)

    Kim, Chang-Beom; Lim, Jaeho; Hong, Hyobong; Kresh, J. Yasha; Wootton, David M.

    2015-07-01

    Detailed knowledge of the blood velocity distribution over the cross-sectional area of a microvessel is important for several reasons: (1) Information about the flow field velocity gradients can suggest an adequate description of blood flow. (2) Transport of blood components is determined by the velocity profiles and the concentration of the cells over the cross-sectional area. (3) The velocity profile is required to investigate volume flow rate as well as wall shear rate and shear stress which are important parameters in describing the interaction between blood cells and the vessel wall. The present study shows the accurate measurement of non-Newtonian blood velocity profiles at different shear rates in a microchannel using a novel translating-stage optical method. Newtonian fluid velocity profile has been well known to be a parabola, but blood is a non-Newtonian fluid which has a plug flow region at the centerline due to yield shear stress and has different viscosities depending on shear rates. The experimental results were compared at the same flow conditions with the theoretical flow equations derived from Casson non-Newtonian viscosity model in a rectangular capillary tube. And accurate wall shear rate and shear stress were estimated for different flow rates based on these velocity profiles. Also the velocity profiles were modeled and compared with parabolic profiles, concluding that the wall shear rates were at least 1.46-3.94 times higher than parabolic distribution for the same volume flow rate.

  6. Analysis of Systolic Backflow and Secondary Helical Blood Flow in the Ascending Aorta Using Vector Flow Imaging

    DEFF Research Database (Denmark)

    Hansen, Kristoffer Lindskov; Møller-Sørensen, Hasse; Kjaergaard, Jesper

    2016-01-01

    Secondary rotational flow and systolic backflow are seen in the ascending aorta and, in this study, were analyzed with the vector velocity method transverse oscillation. Twenty-five patients were scanned intra-operatively, and the vector velocities were related to estimates of transesophageal...... that backflow is injurious and that secondary flow is a normal flow phenomenon. The study also shows that transverse oscillation can provide new information on blood flow in the ascending aorta....

  7. In-vitro laser anemometry blood flow systems

    Science.gov (United States)

    Liepsch, Dieter W.; Poll, Axel; Pflugbeil, Gottlieb

    1993-08-01

    Lasers are used in a wide variety of medical applications. While laser catheters have been developed for highly accurate velocity measurements these are invasive; noninvasive techniques are more desirable but not as precise. The laser is, however, a great tool for in vitro measurements. Several groups internationally are using the laser in the study of local velocity distribution in microscopic areas of specially constructed models. Laser Doppler anemometry is widely used to measure the local, time-dependent velocities, while phase Doppler anemometry has been developed to measure particle size, distribution and velocity. Most recently, laser analyzer techniques have been developed for analyzing the particle size of two phase flow systems. It has become increasingly important for physicians to visualize blood flow. In addition to the techniques mentioned above, several laser sheet techniques have been developed for precise measurements. This paper presents a short review of laser techniques and shows some applications especially for the laser-Doppler anemometer.

  8. Pulsed photoacoustic Doppler flow measurements in blood-mimicking phantoms

    Science.gov (United States)

    Brunker, J.; Beard, P.

    2011-03-01

    The feasibility of making spatially resolved measurements of blood flow using pulsed photoacoustic Doppler techniques has been explored. Doppler time shifts were quantified via cross-correlation of pairs of photoacoustic waveforms generated within a blood-simulating phantom using pairs of laser light pulses. The photoacoustic waves were detected using a focussed or planar PZT ultrasound transducer. For each flow measurement, a series of 100 waveform pairs was collected. Previous data processing methods involved rejection of poorly correlated waveform pairs; the modal velocity value and standard deviation were then extracted from the selected distribution of velocity measurements. However, the data selection criteria used in this approach is to some extent arbitrary. A new data analysis protocol, which involves averaging the 100 cross-correlation functions and thus uses all of the measured data, has been designed in order to prevent exclusion of outliers. This more rigorous approach has proved effective for quantifying the linear motion of micron-scale absorbers imprinted on an acetate sheet moving with velocities in the range 0.14 to 1.25 ms-1. Experimental parameters, such as the time separation between the laser pulses and the transducer frequency response, were evaluated in terms of their effect on the accuracy, resolution and range of measurable velocities. The technique was subsequently applied to fluid phantoms flowing at rates less than 5 mms-1 along an optically transparent tube. Preliminary results are described for three different suspensions of phenolic resin microspheres, and also for whole blood. Velocity information was obtained even under non-optimal conditions using a low frequency transducer and a low pulse repetition frequency. The distinguishing advantage of pulsed rather than continuous-wave excitation is that spatially resolved velocity measurements can be made. This offers the prospect of mapping flow within the microcirculation and thus

  9. Conventional Point-Velocity Records and Surface Velocity Observations for Estimating High Flow Discharge

    Directory of Open Access Journals (Sweden)

    Giovanni Corato

    2014-10-01

    Full Text Available Flow velocity measurements using point-velocity meters are normally obtained by sampling one, two or three velocity points per vertical profile. During high floods their use is inhibited due to the difficulty of sampling in lower portions of the flow area. Nevertheless, the application of standard methods allows estimation of a parameter, α, which depends on the energy slope and the Manning roughness coefficient. During high floods, monitoring of velocity can be accomplished by sampling the maximum velocity, umax, only, which can be used to estimate the mean flow velocity, um, by applying the linear entropy relationship depending on the parameter, M, estimated on the basis of historical observed pairs (um, umax. In this context, this work attempts to analyze if a correlation between α and M holds, so that the monitoring for high flows can be addressed by exploiting information from standard methods. A methodology is proposed to estimate M from α, by coupling the “historical” information derived by standard methods, and “new” information from the measurement of umax surmised at later times. Results from four gauged river sites of different hydraulic and geometric characteristics have shown the robust estimation of M based on α.

  10. Functional Doppler optical coherence tomography for cortical blood flow imaging

    Science.gov (United States)

    Yu, Lingfeng; Liu, Gangjun; Nguyen, Elaine; Choi, Bernard; Chen, Zhongping

    2010-02-01

    Optical methods have been widely used in basic neuroscience research to study the cerebral blood flow dynamics in order to overcome the low spatial resolution associated with magnetic resonance imaging and positron emission tomography. Although laser Doppler imaging and laser speckle imaging can map out en face cortical hemodynamics and columns, depth resolution is not available. Two-photon microscopy has been used for mapping cortical activity. However, flow measurement requires fluorescent dye injection, which can be problematic. The noninvasive and high resolution tomographic capabilities of optical coherence tomography make it a promising technique for mapping depth resolved cortical blood flow. Here, we present a functional Doppler optical coherence tomography (OCT) imaging modality for quantitative evaluation of cortical blood flow in a mouse model. Fast, repeated, Doppler OCT scans across a vessel of interest were performed to record flow dynamic information with a high temporal resolution of the cardiac cycles. Spectral Doppler analysis of continuous Doppler images demonstrates how the velocity components and longitudinally projected flow-volume-rate change over time, thereby providing complementary temporal flow information to the spatially distributed flow information of Doppler OCT. The proposed functional Doppler OCT imaging modality can be used to diagnose vessel stenosis/blockage or monitor blood flow changes due to pharmacological agents/neuronal activities. Non-invasive in-vivo mice experiments were performed to verify the capabilities of function Doppler OCT.

  11. A reconstruction method of intra-ventricular blood flow using color flow ultrasound: a simulation study

    Science.gov (United States)

    Jang, Jaeseong; Ahn, Chi Young; Jeon, Kiwan; Choi, Jung-il; Lee, Changhoon; Seo, Jin Keun

    2015-03-01

    A reconstruction method is proposed here to quantify the distribution of blood flow velocity fields inside the left ventricle from color Doppler echocardiography measurement. From 3D incompressible Navier- Stokes equation, a 2D incompressible Navier-Stokes equation with a mass source term is derived to utilize the measurable color flow ultrasound data in a plane along with the moving boundary condition. The proposed model reflects out-of-plane blood flows on the imaging plane through the mass source term. For demonstrating a feasibility of the proposed method, we have performed numerical simulations of the forward problem and numerical analysis of the reconstruction method. First, we construct a 3D moving LV region having a specific stroke volume. To obtain synthetic intra-ventricular flows, we performed a numerical simulation of the forward problem of Navier-Stokes equation inside the 3D moving LV, computed 3D intra-ventricular velocity fields as a solution of the forward problem, projected the 3D velocity fields on the imaging plane and took the inner product of the 2D velocity fields on the imaging plane and scanline directional velocity fields for synthetic scanline directional projected velocity at each position. The proposed method utilized the 2D synthetic projected velocity data for reconstructing LV blood flow. By computing the difference between synthetic flow and reconstructed flow fields, we obtained the averaged point-wise errors of 0.06 m/s and 0.02 m/s for u- and v-components, respectively.

  12. Optical flow based velocity estimation for mobile robots

    Science.gov (United States)

    Li, Xiuzhi; Zhao, Guanrong; Jia, Songmin; Qin, Baoling; Yang, Ailin

    2015-02-01

    This paper presents an optical flow based novel technique to perceive the instant motion velocity of mobile robots. The primary focus of this study is to determine the robot's ego-motion using displacement field in temporally consecutive image pairs. In contrast to most previous approaches for estimating velocity, we employ a polynomial expansion based dense optical flow approach and propose a quadratic model based RANSAC refinement of flow fields to render our method more robust with respect to noise and outliers. Accordingly, techniques for geometrical transformation and interpretation of the inter-frame motion are presented. Advantages of our proposal are validated by real experimental results conducted on Pioneer robot.

  13. Establishing the diffuse correlation spectroscopy signal relationship with blood flow.

    Science.gov (United States)

    Boas, David A; Sakadžić, Sava; Selb, Juliette; Farzam, Parisa; Franceschini, Maria Angela; Carp, Stefan A

    2016-07-01

    Diffuse correlation spectroscopy (DCS) measurements of blood flow rely on the sensitivity of the temporal autocorrelation function of diffusively scattered light to red blood cell (RBC) mean square displacement (MSD). For RBCs flowing with convective velocity [Formula: see text], the autocorrelation is expected to decay exponentially with [Formula: see text], where [Formula: see text] is the delay time. RBCs also experience shear-induced diffusion with a diffusion coefficient [Formula: see text] and an MSD of [Formula: see text]. Surprisingly, experimental data primarily reflect diffusive behavior. To provide quantitative estimates of the relative contributions of convective and diffusive movements, we performed Monte Carlo simulations of light scattering through tissue of varying vessel densities. We assumed laminar vessel flow profiles and accounted for shear-induced diffusion effects. In agreement with experimental data, we found that diffusive motion dominates the correlation decay for typical DCS measurement parameters. Furthermore, our model offers a quantitative relationship between the RBC diffusion coefficient and absolute tissue blood flow. We thus offer, for the first time, theoretical support for the empirically accepted ability of the DCS blood flow index ([Formula: see text]) to quantify tissue perfusion. We find [Formula: see text] to be linearly proportional to blood flow, but with a proportionality modulated by the hemoglobin concentration and the average blood vessel diameter.

  14. Pancreatic islet blood flow and its measurement.

    Science.gov (United States)

    Jansson, Leif; Barbu, Andreea; Bodin, Birgitta; Drott, Carl Johan; Espes, Daniel; Gao, Xiang; Grapensparr, Liza; Källskog, Örjan; Lau, Joey; Liljebäck, Hanna; Palm, Fredrik; Quach, My; Sandberg, Monica; Strömberg, Victoria; Ullsten, Sara; Carlsson, Per-Ola

    2016-05-01

    Pancreatic islets are richly vascularized, and islet blood vessels are uniquely adapted to maintain and support the internal milieu of the islets favoring normal endocrine function. Islet blood flow is normally very high compared with that to the exocrine pancreas and is autonomously regulated through complex interactions between the nervous system, metabolites from insulin secreting β-cells, endothelium-derived mediators, and hormones. The islet blood flow is normally coupled to the needs for insulin release and is usually disturbed during glucose intolerance and overt diabetes. The present review provides a brief background on islet vascular function and especially focuses on available techniques to measure islet blood perfusion. The gold standard for islet blood flow measurements in experimental animals is the microsphere technique, and its advantages and disadvantages will be discussed. In humans there are still no methods to measure islet blood flow selectively, but new developments in radiological techniques hold great hopes for the future.

  15. Carbon film deposition from high velocity rarefied flow

    Energy Technology Data Exchange (ETDEWEB)

    Rebrov, A.K., E-mail: rebrov@itp.nsc.ru; Emelyanov, A.A.; Yudin, I.B.

    2015-01-30

    The presented study is based on the idea of the activation of a gas-precursor high velocity flow by hot wire. The wire forms the channel for flow before expansion to substrate. The construction allows change of the specific flow rate, velocity, composition and temperature of a gas mixture by studying the film synthesis in conditions from free molecular to continuum flow at velocities from hundreds to thousands of m/s. At a high pressure, the film has typical and unusual hexagonal incorporations for diamond tetragonal particles. Raman spectrum with the pronounced diamond peak is typical for diamond-like film. X-ray diffraction points in the presence of lonsdaleite. Conditions of deposition were simulated by Monte Carlo method. Collisions with hot surfaces and chemical transformations were taken into consideration as well.

  16. Bone blood flow and metabolism in humans

    DEFF Research Database (Denmark)

    Heinonen, Ilkka; Kemppainen, Jukka; Kaskinoro, Kimmo;

    2012-01-01

    Human bone blood flow and metabolism during physical exercise remains poorly characterised. In the present study we measured femoral bone blood flow and glucose uptake in young healthy subjects by positron emission tomography in three separate protocols. In six women, blood flow was measured...... in femoral bone at rest and during one leg intermittent isometric exercise with increasing exercise intensities. In nine men, blood flow in femur was determined at rest and during dynamic one leg exercise, and two other physiological perturbations: moderate systemic hypoxia (14 O(2) ) at rest and during...... exercise, and during intra-femoral infusion of high-dose adenosine. Bone glucose uptake was measured at rest and during dynamic one leg exercise in five men. The results indicate that isometric exercise increased femoral bone blood flow from rest (1.8 ± 0.6 ml/100g/min) to low intensity exercise (4.1 ± 1...

  17. Effect of Hematocrit on Wall Shear Stress for Blood Flow through Tapered Artery

    OpenAIRE

    Singh, A. K.; Singh, D. P.

    2013-01-01

    The purpose of this study to show the effects of Hematocrit (Red blood cells), height of stenosis, porous parameter and velocity of blood on wall shear stress of the flow of blood through tapered artery. The study reveals that wall shear stress reduces for increasing Hematocrit percentage. It is also observed that wall shear stress increases as stenosis height and porous parameter increase whereas it decreases with the increasing values of velocity of blood and slope of tapered artery.

  18. The Physics of Coronary Blood Flow

    CERN Document Server

    Zamir, M

    2005-01-01

    Coronary blood flow is blood flow to the heart for its own metabolic needs. In the most common form of heart disease there is a disruption in this flow because of obstructive disease in the vessels that carry the flow. The subject of coronary blood flow is therefore associated mostly with the pathophysiology of this disease, rarely with dynamics or physics. Yet, the system responsible for coronary blood flow, namely the "coronary circulation," is a highly sophisticated dynamical system in which the dynamics and physics of the flow are as important as the integrity of the conducting vessels. While an obstruction in the conducting vessels is a fairly obvious and clearly visible cause of disruption in coronary blood flow, any discord in the complex dynamics of the system can cause an equally grave, though less conspicuous, disruption in the flow. This book is devoted specifically to the dynamics and physics of coronary blood flow. While relevance to the clinical and pathophysiological issues is clearly maintaine...

  19. Cerebral blood flow assessment of preterm infants during respiratory therapy with the expiratory flow increase technique

    Directory of Open Access Journals (Sweden)

    Mariana Almada Bassani

    2016-06-01

    Full Text Available Abstract Objective: To assess the impact of respiratory therapy with the expiratory flow increase technique on cerebral hemodynamics of premature newborns. Methods: This is an intervention study, which included 40 preterm infants (≤34 weeks aged 8-15 days of life, clinically stable in ambient air or oxygen catheter use. Children with heart defects, diagnosis of brain lesion and/or those using vasoactive drugs were excluded. Ultrasonographic assessments with transcranial Doppler flowmetry were performed before, during and after the increase in expiratory flow session, which lasted 5min. Cerebral blood flow velocity and resistance and pulsatility indices in the pericallosal artery were assessed. Results: Respiratory physical therapy did not significantly alter flow velocity at the systolic peak (p=0.50, the end diastolic flow velocity (p=0.17, the mean flow velocity (p=0.07, the resistance index (p=0.41 and the pulsatility index (p=0.67 over time. Conclusions: The expiratory flow increase technique did not affect cerebral blood flow in clinically-stable preterm infants.

  20. Flow of Red Blood Cells in Stenosed Microvessels

    Science.gov (United States)

    Vahidkhah, Koohyar; Balogh, Peter; Bagchi, Prosenjit

    2016-06-01

    A computational study is presented on the flow of deformable red blood cells in stenosed microvessels. It is observed that the Fahraeus-Lindqvist effect is significantly enhanced due to the presence of a stenosis. The apparent viscosity of blood is observed to increase by several folds when compared to non-stenosed vessels. An asymmetric distribution of the red blood cells, caused by geometric focusing in stenosed vessels, is observed to play a major role in the enhancement. The asymmetry in cell distribution also results in an asymmetry in average velocity and wall shear stress along the length of the stenosis. The discrete motion of the cells causes large time-dependent fluctuations in flow properties. The root-mean-square of flow rate fluctuations could be an order of magnitude higher than that in non-stenosed vessels. Several folds increase in Eulerian velocity fluctuation is also observed in the vicinity of the stenosis. Surprisingly, a transient flow reversal is observed upstream a stenosis but not downstream. The asymmetry and fluctuations in flow quantities and the flow reversal would not occur in absence of the cells. It is concluded that the flow physics and its physiological consequences are significantly different in micro- versus macrovascular stenosis.

  1. Noninvasive color Doppler sonography of uterine blood flow throughout pregnancy in sheep and goats.

    Science.gov (United States)

    Elmetwally, M; Rohn, K; Meinecke-Tillmann, S

    2016-04-01

    In contrast to cattle or horses, uterine blood flow in small ruminants has been investigated predominantly after surgical intervention and chronic instrumentation. The objective of the present study was to investigate the clinical applicability of noninvasive color Doppler sonography to characterize blood flow in the maternal uterine artery of sheep, n = 11 (18 pregnancies) and goats, n = 11 (20 pregnancies). The following parameters were measured transrectally or transabdominally: blood flow volume, time-averaged maximum velocity (TAMV), resistance index (RI), pulsatility index (PI), Time-averaged mean velocity, impedance of blood flow (AB or systolic/diastolic [S/D] velocity ratio), peak velocity of blood flow and blood flow acceleration. Examinations started 2 weeks after breeding and continued at 2-week intervals until parturition. Outcomes for sheep and goats were similar and will be discussed together. Based on noninvasive color Doppler sonography, blood flow volume increased (approximately 60-fold, P sheep and goats. Furthermore, for uterine artery blood flow, there was an effect of stage of pregnancy on PI and RI (P sheep and goats, respectively, and then decreased until parturition. Similar to PI and RI, vascular impedance of the uterine decreased (P < 0.0001) throughout pregnancy. This is apparently the first study using noninvasive color Doppler sonography of uterine blood flow throughout physiological pregnancy in small ruminants. Clearly, this technology facilitates repeated, noninvasive assessments, with great potential for future studies.

  2. Mechanics of blood flow in the microcirculation.

    Science.gov (United States)

    Secomb, T W

    1995-01-01

    The microcirculation in most tissues consists of an intricate network of very narrow tubes. In analyses of blood flow through the microcirculation, inertial effects can be neglected, but continuum models for blood cannot be assumed, since blood is a concentrated suspension of cells with dimensions comparable to vessel diameters. These cells strongly influence blood flow. About 45% of blood volume consists of red blood cells, whose key mechanical properties are known. A red cell has a fluid interior, surrounded by a flexible membrane, which strongly resists area changes, but bends and shears easily. White blood cells are comparable in size but much less numerous. They are less flexible than red cells and capable of active locomotion. Other suspended elements are much smaller than red cells: This review focuses on the mechanics of red cell motion in the microcirculation. Experimental and theoretical studies of blood flow in uniform tubes, bifurcations and networks are discussed. Comparisons between predicted and observed flows in networks imply that resistance to blood flow in living microvessels is higher than that in uniform tubes with corresponding diameters. Living microvessels have non-uniform geometries, and red cells must deform continually to traverse them. Theoretical results are presented implying that these transient deformations contribute to increased flow resistance in the microcirculation.

  3. Is flow velocity a significant parameter in flood damage modelling?

    Directory of Open Access Journals (Sweden)

    H. Kreibich

    2009-10-01

    Full Text Available Flow velocity is generally presumed to influence flood damage. However, this influence is hardly quantified and virtually no damage models take it into account. Therefore, the influences of flow velocity, water depth and combinations of these two impact parameters on various types of flood damage were investigated in five communities affected by the Elbe catchment flood in Germany in 2002. 2-D hydraulic models with high to medium spatial resolutions were used to calculate the impact parameters at the sites in which damage occurred. A significant influence of flow velocity on structural damage, particularly on roads, could be shown in contrast to a minor influence on monetary losses and business interruption. Forecasts of structural damage to road infrastructure should be based on flow velocity alone. The energy head is suggested as a suitable flood impact parameter for reliable forecasting of structural damage to residential buildings above a critical impact level of 2 m of energy head or water depth. However, general consideration of flow velocity in flood damage modelling, particularly for estimating monetary loss, cannot be recommended.

  4. Blood Flow through an Open-Celled Foam

    Science.gov (United States)

    Ortega, Jason; Maitland, Duncan

    2011-11-01

    The Hazen-Dupuit-Darcy (HDD) equation is commonly used in engineering applications to model the pressure gradient of flow through a porous media. One major advantage of this equation is that it simplifies the complex geometric details of the porous media into two coefficients: the permeability, K, and form factor, C. However through this simplification, the flow details within the porous media are no longer accessible, making it difficult to study the phenomena that contribute to changes in K and C due to clotting of blood flow. To obtain a more detailed understanding of blood flow through a porous media, a direct assessment of the complex interstitial geometry and flow is required. In this study, we solve the Navier-Stokes equations for Newtonian and non-Newtonian blood flow through an open-celled foam geometry obtained from a micro-CT scan. The nominal strut size of the foam sample is of O(10e-5) m and the corresponding Reynolds number based upon this length ranges up to O(10). Fitting the pressure gradient vs. Darcy velocity data with the HDD equation demonstrates that both viscous and inertial forces play an important role in the flow through the foam at these Reynolds numbers. Recirculation zones are observed to form in the wake of the pore struts, producing regions of flow characterized by both low shear rates and long fluid residence times, factors of which have been shown in previous studies to promote blood clotting.

  5. Velocity Measurements of Turbulent Wake Flow Over a Circular Cylinder

    Science.gov (United States)

    Shih, Chang-Lung; Chen, Wei-Cheng; Chang, Keh-Chin; Wang, Muh-Rong

    2016-06-01

    There are two general concerns in the velocity measurements of turbulence. One is the temporal characteristics which governs the turbulent mixing process. Turbulence is rotational and is characterized by high levels of fluctuating vorticity. In order to obtain the information of vorticity dynamics, the spatial characteristics is the other concern. These varying needs can be satisfied by using a variety of diagnostic techniques such as invasive physical probes and non-invasive optical instruments. Probe techniques for the turbulent measurements are inherently simple and less expensive than optical methods. However, the presence of a physical probe may alter the flow field, and velocity measurements usually become questionable when probing recirculation zones. The non-invasive optical methods are mostly made of the foreign particles (or seeding) instead of the fluid flow and are, thus, of indirect method. The difference between the velocities of fluid and foreign particles is always an issue to be discussed particularly in the measurements of complicated turbulent flows. Velocity measurements of the turbulent wake flow over a circular cylinder will be made by using two invasive instruments, namely, a cross-type hot-wire anemometry (HWA) and a split-fiber hot-film anemometry (HFA), and a non-invasive optical instrument, namely, particle image velocimetry (PIV) in this study. Comparison results show that all three employed diagnostic techniques yield similar measurements in the mean velocity while somewhat deviated results in the root-mean-squared velocity, particularly for the PIV measurements. It is demonstrated that HFA possesses more capability than HWA in the flow measurements of wake flow. Wake width is determined in terms of either the flatness factor or shear-induced vorticity. It is demonstrated that flow data obtained with the three employed diagnostic techniques are capable of yielding accurate determination of wake width.

  6. Measuring surface flow velocity with smartphones: potential for citizen observatories

    Science.gov (United States)

    Weijs, Steven V.; Chen, Zichong; Brauchli, Tristan; Huwald, Hendrik

    2014-05-01

    Stream flow velocity is an important variable for discharge estimation and research on sediment dynamics. Given the influence of the latter on rating curves (stage-discharge relations), and the relative scarcity of direct streamflow measurements, surface velocity measurements can offer important information for, e.g., flood warning, hydropower, and hydrological science and engineering in general. With the growing amount of sensing and computing power in the hands of more outdoorsy individuals, and the advances in image processing techniques, there is now a tremendous potential to obtain hydrologically relevant data from motivated citizens. This is the main focus of the interdisciplinary "WeSenseIt" project, a citizen observatory of water. In this subproject, we investigate the feasibility of stream flow surface velocity measurements from movie clips taken by (smartphone-) cameras. First results from movie-clip derived velocity information will be shown and compared to reference measurements.

  7. Effects of desflurane,isoflurane,and sevoflurane on cerebral blood flow velocity%地氟醚、异氟醚和七氟醚对脑血流速率的影响

    Institute of Scientific and Technical Information of China (English)

    陈绍辉; 黄宇光; 黄一宁; 徐仲煌; 张秀华; 杨克勤

    2001-01-01

    Objective The purpose of the study was to evaluate the effects ofthree inhalational anesthetics,desflurane,isoflurane and sevoflurane,on the mean velocity of cerebral blood flow of middle cerebral artery by transcranial Doppler ultrasonography (TCD).Methods Forty-two patients,aged from 18 to 60 years old with ASA physical status Ⅰ or Ⅱ,undergoing elective non-neurosurgical operations under general anesthesia were recruited.They were randomly assigned to three groups to receive desflurane-O2,isoflurane-O2,or sevoflurane-O2 anesthesia,respectively.The pressure of end-tidal carbon dioxide was kept to 40±1mmHg by mechanical ventilation.TCD datum,mean velocity (Vm)of middle cerebral artery was recorded when endtidal concentrations of the selected anesthetics maintained at following occasions:equilibration at 1.0MAC for 15min;immediately after a rapid increase (within 2min)from 1.0MAC to 1.5MAC;equilibration at 1.5MAC for 15min;maintained at 1.5MAC and the mean arterial blood pressure (MAP)was adjusted close to that of 1.0MAC by phenylephrine infusion,simultaneously,together with MAP and heart rate (HR).Results Compared to the values under 1.0MAC anesthesia,the results under different conditions were represented as follows:(1)Vm increased significantly when maintained at 1.5MAC and MAP was similar to that of 1.0MAC in desflurane and isoflurane group (from 56cm/s to 61cm/s and from 47cm/s to 52cm/s,respectively,P<0.01),but without any significant change in sevoflurane group (from 60cm/s to 60cm/s,P>0.05).(2)After a rapid increase (within 2min)from 1.0MAC to 1.5MAC,desflurane caused a significant increase in MAP,HR and Vm(from 56cm/s to 61cm/s,P<0.01);isoflurane induced a significant decrease in MAP,but little change in Vm(from 47cm/s to 49cm/s, P>0.05),and sevoflurane resulted in remarkable decrease in Vm(from 60cm/s to

  8. Ozone Therapy on Cerebral Blood Flow: A Preliminary Report

    Directory of Open Access Journals (Sweden)

    Bernardino Clavo

    2004-01-01

    Full Text Available Ozone therapy is currently being used in the treatment of ischemic disorders, but the underlying mechanisms that result in successful treatment are not well known. This study assesses the effect of ozone therapy on the blood flow in the middle cerebral and common carotid arteries. Seven subjects were recruited for the therapy that was performed by transfusing ozone-enriched autologous blood on 3 alternate days over 1 week. Blood flow quantification in the common carotid artery (n = 14 was performed using color Doppler. Systolic and diastolic velocities in the middle cerebral artery (n = 14 were estimated using transcranial Doppler. Ultrasound assessments were conducted at the following three time points: 1 basal (before ozone therapy, 2 after session #3 and 3 1 week after session #3. The common carotid blood flow had increased by 75% in relation to the baseline after session #3 (P < 0.001 and by 29% 1 week later (P = 0.039. In the middle cerebral artery, the systolic velocity had increased by 22% after session #3 (P = 0.001 and by 15% 1 week later (P = 0.035, whereas the diastolic velocity had increased by 33% after session #3 (P < 0.001 and by 18% 1 week later (P = 0.023. This preliminary Doppler study supports the clinical experience of achieving improvement by using ozone therapy in peripheral ischemic syndromes. Its potential use as a complementary treatment in cerebral low perfusion syndromes merits further clinical evaluation.

  9. Velocity profiles of turbidity currents flowing over a flat bed

    OpenAIRE

    Kikura, H.; Murakawa, H.; Tasaka, Y.; Chamoun, Sabine; De Cesare, Giovanni; Schleiss, Anton

    2016-01-01

    Turbidity currents are the main source of suspended sediment transport in reservoirs and thus one of the main causes of sedimentation. One of the techniques used to avoid reservoir sedimentation is through venting of turbidity currents. In the framework of a research work on venting, velocity measurements of turbidity currents flowing on a flat bed are carried out using Ultrasonic Velocity Profilers (UVP). Five profilers of 4 MHz placed at different positions in an experimental flume provide ...

  10. Blood flow autoregulation in pedicled flaps

    DEFF Research Database (Denmark)

    Bonde, Christian T; Holstein-Rathlou, Niels-Henrik; Elberg, Jens J

    2009-01-01

    INTRODUCTION: Clinical work on the blood perfusion in skin and muscle flaps has suggested that some degree of blood flow autoregulation exists in such flaps. An autoregulatory mechanism would enable the flap to protect itself from changes in the perfusion pressure. The purpose of the present study...... was to evaluate if, and to what extent, a tissue flap could compensate a reduction in blood flow due to an acute constriction of the feed artery. Further, we wanted to examine the possible role of smooth muscle L-type calcium channels in the autoregulatory mechanism by pharmacological intervention with the L......-type calcium channel blocker nimodipine and the vasodilator papaverine. MATERIAL AND METHODS: Pedicled flaps were raised in pigs. Flow in the pedicle was reduced by constriction of the feed artery (n=34). A transit time flow probe measured the effect on blood flow continuously. Following this, three different...

  11. The Effect of the Relative Velocity on Traffic Flow

    Institute of Scientific and Technical Information of China (English)

    XUE Yu; DONG Li-Yun; YUAN Yi-Wu; DAI Shi-Qiang

    2002-01-01

    The optimal velocity model of traffc is extended to take the relative velocity into account. The traffcbehavior is investigated numerically and analytically with this model. It is shown that the car interaction with therelative velocity can effect the stability of the traffic flow and raise critical density. The jamming transition between thefreely moving and jamming phases is investigated with the linear stability analysis and nonlinear perturbation methods.The traffic jam is described by the kink solution of the modified Korteweg-de Vries equation. The theoretical result isin good agreement with the simulation.

  12. Micro-PIV quantification of capillary blood flow redistribution caused by laser-assisted vascular occlusion

    Science.gov (United States)

    Kurochkin, Maxim A.; Stiukhina, Elena S.; Fedosov, Ivan V.; Postnov, Dmitry E.; Tuchin, Valery V.

    2016-04-01

    We propose μPIV-based technique for quantitative assessment of blood flow redistribution in microcirculatory networks. Our approach is based on per-segment averaging of measured quantities so we can avoid most of problems that are typical for point-wise measurements. The key point of our technique is the digital processing algorithms of recorded data that include: capillary network axial line construction; interrogation regions centering; blood flow velocity local estimate using PIV approach; blood flow velocity calculation by means of averaging over entire vessel segment; the calculation of blood volume flow rate map. We illustrate the application of developed technique with in vivo measurements and blood flow velocity map reconstruction for chorioallantoic membrane (CAM) of chicken embryo, in which the local vascular occlusion was produced using continuous wave laser light irradiation..

  13. Effect of flow discharge and median grain size on mean flow velocity under overland flow

    Science.gov (United States)

    Ali, M.; Sterk, G.; Seeger, M.; Stroosnijder, L.

    2012-07-01

    SummaryPrecise estimation of mean flow velocity (Umean) is imperative for accurate prediction of hydrographs and sediment yield. For overland flow, Umean is normally estimated by multiplying the dye or salt based velocity measurement with a correction factor (α). A wide range of correction factors is available in the literature, all of which were derived under different experimental conditions. The selection of a suitable α has become a main challenge for accurate mean flow calculations. This study aimed to assess the variability of α with grain size (D50) and slope (S), and to evaluate the dependency of Umean on flow rate (Q), D50 and S by regression analysis. Flume experiments were performed at Q varying from 33 to 1033 × 10-6 m3 s-1, S ranging from 3° to 10°, and D50 ranging from 0.233 to 1.022 mm. Flow velocities were measured directly with the dye tracing technique (Udye), and derived indirectly from flow depth measurements (Udepth). The Udepth measurements were considered as Umean. The derived α (Udepth/Udye) values did not remain constant with sediment size and increase significantly with the increase of D50. The mean α values for 0.230, 0.536, 0.719 and 1.022 mm sands were 0.44, 0.77, 0.82 and 0.82, respectively. Hence, due to the substantial variation of α with D50, no absolute α value is applicable to all hydraulic and sedimentary conditions. However, mean α values for 0.230, 0.536 and 0.719 mm sands were found comparable with α values available in the literature for similar grain sizes. The influence of Q, S, and D50 on Umean was studied by regression analysis. Regression analysis depicted the significant influence of Q and D50 on Umean, while the effect of slope was found to be non-significant. Comparison of the derived regression equation with five literature datasets showed that the model can predict mean flow velocities in overland flow at a reasonable accuracy as long as the mean velocity is below 0.4 m s-1. At higher velocities the

  14. Sensors for Using Times of Flight to Measure Flow Velocities

    Science.gov (United States)

    Fralick, Gutave; Wrbanek, John D.; Hwang, Danny; Turso, James

    2006-01-01

    Thin-film sensors for measuring flow velocities in terms of times of flight are undergoing development. These sensors are very small and can be mounted flush with surfaces of airfoils, ducts, and other objects along which one might need to measure flows. Alternatively or in addition, these sensors can be mounted on small struts protruding from such surfaces for acquiring velocity measurements at various distances from the surfaces for the purpose of obtaining boundary-layer flow-velocity profiles. These sensors are related to, but not the same as, hot-wire anemometers. Each sensor includes a thin-film, electrically conductive loop, along which an electric current is made to flow to heat the loop to a temperature above that of the surrounding fluid. Instantaneous voltage fluctuations in segments of the loop are measured by means of electrical taps placed at intervals along the loop. These voltage fluctuations are caused by local fluctuations in electrical resistance that are, in turn, caused by local temperature fluctuations that are, in turn, caused by fluctuations in flow-induced cooling and, hence, in flow velocity. The differential voltage as a function of time, measured at each pair of taps, is subjected to cross-correlation processing with the corresponding quantities measured at other pairs of taps at different locations on the loop. The cross-correlations yield the times taken by elements of fluid to travel between the pairs of taps. Then the component of velocity along the line between any two pairs of taps is calculated simply as the distance between the pairs of taps divided by the travel time. Unlike in the case of hot-wire anemometers, there is no need to obtain calibration data on voltage fluctuations versus velocity fluctuations because, at least in principle, the correlation times are independent of the calibration data.

  15. Carbon dioxide and liver blood flow.

    Science.gov (United States)

    Dutton, R; Levitzky, M; Berkman, R

    1976-01-01

    This study was designed to determine blood flow to the liver during hypercapnia and combined hypercapnia-hypoxia with the portal vein and hepatic artery intact except for placement of an electromagnetic flow probe around these vessels. Twenty mongrel dogs weighing 30-45 kg were anesthetized with pentobarbital and flow probes and occluders were surgically implanted. Ten of these dogs were subjected to hypercapnia alone. During inspiration of 6% CO2 in room air, portal vein flow increased from 588 +/- 73 ml/min to 731 +/- 113 ml/min (p less than .05), while hepatic artery flow did not change significantly from its control mean of 221 +/- 38 ml/min. In the remaining dogs, inhalation of 6% O2 resulted in a reduction of portal blood flow within 30 min from 527 +/- 55 ml/min to 381 +/- 41 ml/min (p less than .01). Again, mean hepatic artery flow did not increase significantly above its control of 273 +/- 43 ml/min. Subsequent inhalation of 6% CO2 plus 6% O2 (combined hypercapniahypoxia) for 30 min in these same animals resulted in a significant increase of portal vein blood flow from 514 +/- 46 ml/min to 716 +/- 116 ml/min (p less than .05). Thus, hypercapnia alone increases total liver blood flow, primarily by an increase in portal vein flow. Hypoxia results in a decrease in portal vein flow. The superimposition of hypercapnia on hypoxia restores blood flow to a level close to that found with hypercapnia alone. Hypercapnia in the range of 63 +/- 4 mmHg PCO2 overwhelms the tendency toward a reduction of portal vein blood flow induced by an arterial PO2 of 42 +/- 5 mmHg in the presence of mild hypocapnia (PCO2 : 30.2 +/- 1 mmHg).

  16. Coronary artery flow measurement using navigator echo gated phase contrast magnetic resonance velocity mapping at 3.0 T.

    Science.gov (United States)

    Johnson, Kevin; Sharma, Puneet; Oshinski, John

    2008-01-01

    A validation study and early results for non-invasive, in vivo measurement of coronary artery blood flow using phase contrast magnetic resonance imaging (PC-MRI) at 3.0T is presented. Accuracy of coronary artery blood flow measurements by phase contrast MRI is limited by heart and respiratory motion as well as the small size of the coronary arteries. In this study, a navigator echo gated, cine phase velocity mapping technique is described to obtain time-resolved velocity and flow waveforms of small diameter vessels at 3.0T. Phantom experiments using steady, laminar flow are presented to validate the technique and show flow rates measured by 3.0T phase contrast MRI to be accurate within 15% of true flow rates. Subsequently, in vivo scans on healthy volunteers yield velocity measurements for blood flow in the right, left anterior descending, and left circumflex arteries. Measurements of average, cross-sectional velocity were obtainable in 224/243 (92%) of the cardiac phases. Time-averaged, cross-sectional velocity of the blood flow was 6.8+/-4.3cm/s in the LAD, 8.0+/-3.8cm/s in the LCX, and 6.0+/-1.6cm/s in the RCA.

  17. A theoretical computerized study for the electrical conductivity of arterial pulsatile blood flow by an elastic tube model.

    Science.gov (United States)

    Shen, Hua; Zhu, Yong; Qin, Kai-Rong

    2016-12-01

    The electrical conductivity of pulsatile blood flow in arteries is an important factor for the application of the electrical impedance measurement system in clinical settings. The electrical conductivity of pulsatile blood flow depends not only on blood-flow-induced red blood cell (RBC) orientation and deformation but also on artery wall motion. Numerous studies have investigated the conductivity of pulsatile blood based on a rigid tube model, in which the effects of wall motion on blood conductivity are not considered. In this study, integrating Ling and Atabek's local flow theory and Maxwell-Fricke theory, we develop an elastic tube model to explore the effects of wall motion as well as blood flow velocity on blood conductivity. The simulation results suggest that wall motion, rather than blood flow velocity, is the primary factor that affects the conductivity of flowing blood in arteries.

  18. Altered phase interactions between spontaneous blood pressure and flow fluctuations in type 2 diabetes mellitus: Nonlinear assessment of cerebral autoregulation

    Science.gov (United States)

    Hu, Kun; Peng, C. K.; Huang, Norden E.; Wu, Zhaohua; Lipsitz, Lewis A.; Cavallerano, Jerry; Novak, Vera

    2008-04-01

    Cerebral autoregulation is an important mechanism that involves dilatation and constriction in arterioles to maintain relatively stable cerebral blood flow in response to changes of systemic blood pressure. Traditional assessments of autoregulation focus on the changes of cerebral blood flow velocity in response to large blood pressure fluctuations induced by interventions. This approach is not feasible for patients with impaired autoregulation or cardiovascular regulation. Here we propose a newly developed technique-the multimodal pressure-flow (MMPF) analysis, which assesses autoregulation by quantifying nonlinear phase interactions between spontaneous oscillations in blood pressure and flow velocity during resting conditions. We show that cerebral autoregulation in healthy subjects can be characterized by specific phase shifts between spontaneous blood pressure and flow velocity oscillations, and the phase shifts are significantly reduced in diabetic subjects. Smaller phase shifts between oscillations in the two variables indicate more passive dependence of blood flow velocity on blood pressure, thus suggesting impaired cerebral autoregulation. Moreover, the reduction of the phase shifts in diabetes is observed not only in previously-recognized effective region of cerebral autoregulation (type 2 diabetes mellitus alters cerebral blood flow regulation over a wide frequency range and that this alteration can be reliably assessed from spontaneous oscillations in blood pressure and blood flow velocity during resting conditions. We also show that the MMPF method has better performance than traditional approaches based on Fourier transform, and is more suitable for the quantification of nonlinear phase interactions between nonstationary biological signals such as blood pressure and blood flow.

  19. Review of the correlation between blood flow velocity and polycythemia in the fetus, neonate and adult: appropriate diagnostic levels need to be determined for twin anemia-polycythemia sequence.

    Science.gov (United States)

    Lucewicz, A; Fisher, K; Henry, A; Welsh, A W

    2016-02-01

    Twin anemia-polycythemia sequence (TAPS) is recognized increasingly antenatally by the demonstration of an anemic twin and a polycythemic cotwin using the middle cerebral artery peak systolic velocity (MCA-PSV). While the MCA-PSV has been shown to correlate well with anemia in singleton fetuses, the evidence to support its use to diagnose fetal polycythemia appears to be less clear-cut. We aimed to evaluate fetal, neonatal and adult literature used to support the use of MCA-PSV for the diagnosis of polycythemia. Comprehensive literature searches were performed for ultrasound evidence of polycythemia in the human fetus, neonate and adult using key search terms. Only manuscripts in the English language with an abstract were considered for the review, performed in June 2014. Fifteen manuscripts were found for the human fetus, including 38 cases of TAPS. Nine of these defined fetal polycythemia as MCA-PSV < 0.8 multiples of the median (MoM), five used < 1.0 MoM and one used 0.8-1.0 MoM. Only two studies, involving a total of 15 cases, proposed a diagnostic level, acknowledging false-positive and -negative cases, though neither reported sensitivities or specificities. Six neonatal studies (96 neonates) demonstrated evidence of decreased cerebral velocities in polycythemia and a consequent increase with hemodilution. In the adult, five studies (57 polycythemic adults) demonstrated increased flow or velocity with hemodilution. Neither neonatal nor adult studies conclusively defined levels for screening for polycythemia. Despite widespread adoption of a cut-off of < 0.8 MoM in the published literature for the polycythemic fetus in TAPS, this is based upon minimal evidence, with unknown sensitivity and specificity. We recommend caution in excluding TAPS based purely upon the absence of a reduced MCA-PSV.

  20. Hybrid PIV-PTV technique for measuring blood flow in rat mesenteric vessels.

    Science.gov (United States)

    Ha, Hojin; Nam, Kweon-Ho; Lee, Sang Joon

    2012-11-01

    The micro-particle tracking velocimetry (μ-PTV) technique is used to obtain the velocity fields of blood flow in the microvasculature under in vivo conditions because it can provide the blood velocity distribution in microvessels with high spatial resolution. The in vivo μ-PTV technique usually requires a few to tens of seconds to obtain a whole velocity profile across the vessel diameter because of the limited number density of tracer particles under in vivo conditions. Thus, the μ-PTV technique alone is limited in measuring unsteady blood flows that fluctuate irregularly due to the heart beating and muscle movement in surrounding tissues. In this study, a new hybrid PIV-PTV technique was established by combining PTV and particle image velocimetry (PIV) techniques to resolve the drawbacks of the μ-PTV method in measuring blood flow in microvessels under in vivo conditions. Images of red blood cells (RBCs) and fluorescent particles in rat mesenteric vessels were obtained simultaneously. Temporal variations of the centerline blood velocity were monitored using a fast Fourier transform-based cross-correlation PIV method. The fluorescence particle images were analyzed using the μ-PTV technique to extract the spatial distribution of the velocity vectors. Data from the μ-PTV and PIV methods were combined to obtain a better estimate of the velocity profile in actual blood flow. This technique will be useful in investigating hemodynamics in microcirculation by measuring unsteady irregular blood flows more accurately.

  1. Phase-Contrast Magnetic Resonance Angiography Measurements of Global Cerebral Blood Flow in the Neonate

    NARCIS (Netherlands)

    Benders, Manon J. N. L.; Hendrikse, Jeroen; de Vries, Linda S.; van Bel, Frank; Groenendaal, Floris

    2011-01-01

    Cerebral blood flow (CBF) alterations are important in pathogenesis of neonatal ischemic/hemorrhagic brain damage. In clinical practice, estimation of neonatal CBF is mostly based on Doppler-measured blood flow velocities in major intracranial arteries. Using phase-contrast magnetic resonance angiog

  2. Analytic expression for poloidal flow velocity in the banana regime

    Energy Technology Data Exchange (ETDEWEB)

    Taguchi, M. [College of Industrial Technology, Nihon University, Narashino 275-8576 (Japan)

    2013-01-15

    The poloidal flow velocity in the banana regime is calculated by improving the l = 1 approximation for the Fokker-Planck collision operator [M. Taguchi, Plasma Phys. Controlled Fusion 30, 1897 (1988)]. The obtained analytic expression for this flow, which can be used for general axisymmetric toroidal plasmas, agrees quite well with the recently calculated numerical results by Parker and Catto [Plasma Phys. Controlled Fusion 54, 085011 (2012)] in the full range of aspect ratio.

  3. Frequency encoding in renal blood flow regulation

    DEFF Research Database (Denmark)

    Marsh, Donald J; Sosnovtseva, Olga; Pavlov, Alexey N;

    2005-01-01

    With a model of renal blood flow regulation, we examined consequences of tubuloglomerular feedback (TGF) coupling to the myogenic mechanism via voltage-gated Ca channels. The model reproduces the characteristic oscillations of the two mechanisms and predicts frequency and amplitude modulation...... of the myogenic oscillation by TGF. Analysis by wavelet transforms of single-nephron blood flow confirms that both amplitude and frequency of the myogenic oscillation are modulated by TGF. We developed a double-wavelet transform technique to estimate modulation frequency. Median value of the ratio of modulation...... TGF cycle to the next. We used a blood pressure signal recorded by telemetry from a conscious rat as the input to the model. Blood pressure fluctuations induced variability in the modulation records similar to those found in the nephron blood flow results. Frequency and amplitude modulation can...

  4. Regulation of blood flow by prostaglandins

    DEFF Research Database (Denmark)

    Boushel, Robert Christopher; Langberg, H; Risum, N;

    2004-01-01

    adaptation of connective tissues e.g. tendon. This review covers the role of PG for mediating tissue blood flow at rest and during increases in metabolic demand such as exercise and reactive hyperaemia. There is strong evidence that PGs contribute to elevate blood flow at rest and during reactive hyperaemia...... in a variety of tissues. Their role for regulating the large increases in muscle blood flow during exercise is less clear which may be explained by redundant mechanisms. Several interactions are known to exist between specific vasodilator substances, and therefore PGs can act in synergy with other substances...... and contribute to functional hyperaemia. Furthermore, there is evidence for differential, tissue-specific influences of PGs where their influence on blood flow during exercise may be profound....

  5. Blood flow and permeability in microvessels

    Science.gov (United States)

    Sugihara-Seki, Masako; Fu, Bingmei M.

    2005-07-01

    The mechanics of blood flow in microvessels and microvessel permeability are reviewed. In the first part, characteristics of blood flow in vivo and in vitro are described from a fluid-mechanical point of view, and mathematical models for blood flow in microvessels are presented. Possible causes of the increased flow resistance obtained in vivo compared to in vitro are examined, including the effects of irregularities of vessel lumen, the presence of endothelial surface glycocalyx and white blood cells. In the second part, the ultrastructural pathways and mechanisms whereby endothelial cells and the clefts between the cells modulate microvessel permeability to water and solutes are introduced. Previous and current models for microvessel permeability to water and solutes are reviewed. These models examine the role of structural components of interendothelial cleft, such as junction strands and surface glycocalyx, in the determination of water and solute transport across the microvessel walls. Transport models in the tissue space surrounding the microvessel are also described.

  6. Pulsatile blood flow, shear force, energy dissipation and Murray's Law

    Directory of Open Access Journals (Sweden)

    Bengtsson Hans-Uno

    2006-08-01

    Full Text Available Abstract Background Murray's Law states that, when a parent blood vessel branches into daughter vessels, the cube of the radius of the parent vessel is equal to the sum of the cubes of the radii of daughter blood vessels. Murray derived this law by defining a cost function that is the sum of the energy cost of the blood in a vessel and the energy cost of pumping blood through the vessel. The cost is minimized when vessel radii are consistent with Murray's Law. This law has also been derived from the hypothesis that the shear force of moving blood on the inner walls of vessels is constant throughout the vascular system. However, this derivation, like Murray's earlier derivation, is based on the assumption of constant blood flow. Methods To determine the implications of the constant shear force hypothesis and to extend Murray's energy cost minimization to the pulsatile arterial system, a model of pulsatile flow in an elastic tube is analyzed. A new and exact solution for flow velocity, blood flow rate and shear force is derived. Results For medium and small arteries with pulsatile flow, Murray's energy minimization leads to Murray's Law. Furthermore, the hypothesis that the maximum shear force during the cycle of pulsatile flow is constant throughout the arterial system implies that Murray's Law is approximately true. The approximation is good for all but the largest vessels (aorta and its major branches of the arterial system. Conclusion A cellular mechanism that senses shear force at the inner wall of a blood vessel and triggers remodeling that increases the circumference of the wall when a shear force threshold is exceeded would result in the observed scaling of vessel radii described by Murray's Law.

  7. Intermittency and velocity fluctuations in hopper flows prone to clogging

    Science.gov (United States)

    Thomas, C. C.; Durian, D. J.

    2016-08-01

    We study experimentally the dynamics of granular media in a discharging hopper. In such flows, there often appears to be a critical outlet size Dc such that the flow never clogs for D >Dc . We report on the time-averaged velocity distributions, as well as temporal intermittency in the ensemble-averaged velocity of grains in a viewing window, for both D Dc , near and far from the outlet. We characterize the velocity distributions by the standard deviation and the skewness of the distribution of vertical velocities. We propose a measure for intermittency based on the two-sample Kolmogorov-Smirnov DKS statistic for the velocity distributions as a function of time. We find that there is no discontinuity or kink in these various measures as a function of hole size. This result supports the proposition that there is no well-defined Dc and that clogging is always possible. Furthermore, the intermittency time scale of the flow is set by the speed of the grains at the hopper exit. This latter finding is consistent with a model of clogging as the independent sampling for stable configurations at the exit with a rate set by the exiting grain speed [C. C. Thomas and D. J. Durian, Phys. Rev. Lett. 114, 178001 (2015), 10.1103/PhysRevLett.114.178001].

  8. Prediction of Cerebral Hyperperfusion Syndrome with Velocity Blood Pressure Index

    Directory of Open Access Journals (Sweden)

    Zhi-Chao Lai

    2015-01-01

    Full Text Available Background: Cerebral hyperperfusion syndrome is an important complication of carotid endarterectomy (CEA. An >100% increase in middle cerebral artery velocity (MCAV after CEA is used to predict the cerebral hyperperfusion syndrome (CHS development, but the accuracy is limited. The increase in blood pressure (BP after surgery is a risk factor of CHS, but no study uses it to predict CHS. This study was to create a more precise parameter for prediction of CHS by combined the increase of MCAV and BP after CEA. Methods: Systolic MCAV measured by transcranial Doppler and systematic BP were recorded preoperatively; 30 min postoperatively. The new parameter velocity BP index (VBI was calculated from the postoperative increase ratios of MCAV and BP. The prediction powers of VBI and the increase ratio of MCAV (velocity ratio [VR] were compared for predicting CHS occurrence. Results: Totally, 6/185 cases suffered CHS. The best-fit cut-off point of 2.0 for VBI was identified, which had 83.3% sensitivity, 98.3% specificity, 62.5% positive predictive value and 99.4% negative predictive value for CHS development. This result is significantly better than VR (33.3%, 97.2%, 28.6% and 97.8%. The area under the curve (AUC of receiver operating characteristic: AUC VBI = 0.981, 95% confidence interval [CI] 0.949-0.995; AUC VR = 0.935, 95% CI 0.890-0.966, P = 0.02. Conclusions: The new parameter VBI can more accurately predict patients at risk of CHS after CEA. This observation needs to be validated by larger studies.

  9. Estimating Stream Surface Flow Velocities from Video Clips

    Science.gov (United States)

    Weijs, S. V.; Brauchli, T.; Chen, Z.; Huwald, H.

    2014-12-01

    Measuring surface flow velocities in streams can provide important information on discharge. This information is independent of water level, the most commonly used proxy for discharge and therefore has significant potential to reduce uncertainties. Advances in cheap and commonly used imaging devices (e.g. smartphone cameras) and image processing techniques offer new opportunities to get velocity information. Short video clips of streams can be used in combination with optical flow algorithms to get proxies for stream surface velocities. Here some initial results are presented and the main challenges are discussed, especially in view of using these techniques in a citizen science context (specifically the "WeSenseIt" project, a citizen observatory of water), where we try to minimize the need for site preparation and additional equipment needed to take measurements.

  10. Velocity and energy relaxation in two-phase flows

    CERN Document Server

    Meyapin, Yannick; Gisclon, Marguerite

    2009-01-01

    In the present study we investigate analytically the process of velocity and energy relaxation in two-phase flows. We begin our exposition by considering the so-called six equations two-phase model [Ishii1975, Rovarch2006]. This model assumes each phase to possess its own velocity and energy variables. Despite recent advances, the six equations model remains computationally expensive for many practical applications. Moreover, its advection operator may be non-hyperbolic which poses additional theoretical difficulties to construct robust numerical schemes |Ghidaglia et al, 2001]. In order to simplify this system, we complete momentum and energy conservation equations by relaxation terms. When relaxation characteristic time tends to zero, velocities and energies are constrained to tend to common values for both phases. As a result, we obtain a simple two-phase model which was recently proposed for simulation of violent aerated flows [Dias et al, 2010]. The preservation of invariant regions and incompressible li...

  11. Coronary Flow Velocity Reserve Assessed by Transthoracic Doppler

    DEFF Research Database (Denmark)

    Michelsen, Marie M; Pena, Adam; Mygind, Naja D;

    2016-01-01

    of the left anterior descending coronary artery in two-dimensional color Doppler mode, and (4) gradual, consistent increases of characteristic, well-defined flow velocity curves in pulsed-wave mode. RESULTS: The mean age (SD) was 62.1 ± 9.7 years. On the basis of the evaluations, patients were divided...

  12. Shear Profiles and Velocity Distribution in Dense Shear Granular Flow

    Institute of Scientific and Technical Information of China (English)

    WANG Deng-Ming; ZHOU You-He

    2009-01-01

    We perform DEM simulations to investigate the influence of the packing fraction γ on the,shape of mean tan-gential velocity profile in a 2D annular dense shear granular flow. There is a critical packing fraction γc. For γ < γc, the mean tangential velocity profile shows a roughly exponential decay from the shearing boundary and is almost invariant to the imposed shear rate. However, for γ γc, the tangential velocity profile exhibits a rate-dependence feature and changes from linear to nonlinear gradually with the increasing shear rate. Fhrther-more, the distributions of normalized tangential velocities at different positions along radial direction exhibit the Gaussian or the composite Gaussian distributing features.

  13. Simple Radiowave-Based Method For Measuring Peripheral Blood Flow Project

    Science.gov (United States)

    Oliva-Buisson, Yvette J.

    2014-01-01

    Project objective is to design small radio frequency based flow probes for the measurement of blood flow velocity in peripheral arteries such as the femoral artery and middle cerebral artery. The result will be the technological capability to measure peripheral blood flow rates and flow changes during various environmental stressors such as microgravity without contact to the individual being monitored. This technology may also lead to an easier method of detecting venous gas emboli during extravehicular activities.

  14. Age and gender related differences in aortic blood flow

    Science.gov (United States)

    Enevoldsen, Marie Sand; Pedersen, Mads Møller; Hemmsen, Martin Christian; Lönn, Lars; Henneberg, Kaj-Åge; Jensen, Jørgen Arendt

    2012-03-01

    The abdominal aorta (AA) is predisposed to development of abdominal aneurysms (AAA), a focal dilatation with fatal consequences if left untreated. The blood flow patterns is thought to play an important role in the development of AAA. The purpose of this work is to investigate the blood flow patterns within a group of healthy volunteers (six females, eight males) aged 23 to 76 years to identify changes and differences related to age and gender. The healthy volunteers were categorized by gender (male/female) and age (below/above 35 years). Subject-specific flow and geometry data were acquired using the research interface on a Profocus ultrasound scanner (B-K Medical, Herlev, Denmark; segmentation of 3D magnetic resonance angiography (Magnetom Trio, Siemens Healthcare, Erlangen, Germany). The largest average diameter was among the elderly males (19.7 (+/- 1.33) mm) and smallest among the young females (12.4 (+/- 0.605) mm). The highest peak systolic velocity was in the young female group (1.02 (+/- 0.336) m/s) and lowest in the elderly male group (0.836 (+/- 0.127) m/s). A geometrical change with age was observed as the AA becomes more bended with age. This also affects the blood flow velocity patterns, which are markedly different from young to elderly. Thus, changes in blood flow patterns in the AA related to age and gender are observed. Further investigations are needed to determine the relation between changes in blood flow patterns and AAA development.

  15. [Doppler studies of arterial blood flow in the uterus during labor].

    Science.gov (United States)

    Fendel, H; Fendel, M; Pauen, A; Liedtke, B; Schonlau, H; Warnking, R

    1984-01-01

    By the pulsed doppler method the arterial uterine blood velocity was studied in 19 patients with contractions before and during labour. It is shown, that uterine contractions reduce blood velocity significantly. Normally there is a low resistance in uterine arteries, so that the diastolic flow is nearly as high as the systolic flow. In uterine contractions the vascular resistance increases. Systolic flow is reduced slightly and diastolic flow severely or completely. But a complete zero-flow couldn't observed in any studied uterine contraction.

  16. Blood pressure and blood flow variation during postural change from sitting to standing: model development and validation

    DEFF Research Database (Denmark)

    Olufsen, M.S.; Ottesen, Johnny T.; Tran, H.T.

    2005-01-01

    Short-term cardiovascular responses to postural change from sitting to standing involve complex interactions between the autonomic nervous system, which regulates blood pressure, and cerebral autoregulation, which maintains cerebral perfusion. We present a mathematical model that can predict...... dynamic changes in beat-to-beat arterial blood pressure and middle cerebral artery blood flow velocity during postural change from sitting to standing. Our cardiovascular model utilizes 11 compartments to describe blood pressure, blood flow, compliance, and resistance in the heart and systemic circulation....... To include dynamics due to the pulsatile nature of blood pressure and blood flow, resistances in the large systemic arteries are modeled using nonlinear functions of pressure. A physiologically based submodel is used to describe effects of gravity on venous blood pooling during postural change. Two types...

  17. MR assessment of absolute myocardial blood flow and vasodilator flow reserve in patients with hypertrophic cardiomyopathy

    Energy Technology Data Exchange (ETDEWEB)

    Kawada, Nanaka; Sakuma, Hajime; Takeda, Kan; Nakagawa, Tsuyoshi; Yamakado, Tetsu; Nakano, Takeshi [Mie Univ., Tsu (Japan). School of Medicine

    1997-04-01

    Absolute coronary blood flow per myocardial mass and coronary flow reserve for the entire left ventricle were evaluated in normals and in patients with hypertrophic cardiomyopathy (HCM) by using fast cine MR imaging and fast velocity encoded cine (VENC) MR imaging. Nine healthy volunteers and 8 patients with HCM were studied with a 1.5 T imager. Breath-hold cine MR images encompassing the whole left ventricle were acquired on short axis imaging planes in order to evaluate myocardial mass. A fast VENC MR images were obtained to measure blood flow volume in the coronary sinus before and after dipyridamole administration (TR/TE=15/5 ms, FOV=28 x 22 cm, slice thickness=5 mm). Coronary flow reserve was calculated as a ratio of hyperemic to baseline coronary flow volumes. In the baseline state, coronary blood flow per myocardial mass was significantly lower in patients with HCM than in normal myocardium (0.56{+-}0.23 vs. 0.78{+-}0.27 ml/min/g, p<0.05). After dipyridamole administration, coronary blood flow per myocardial mass in patients with HCM increased substantially less than that in healthy subjects (0.99{+-}0.38 vs. 2.22{+-}0.55 ml/min/g, p<0.01), resulting in the significantly decreased coronary flow reserve ratio in HCM in comparison with that in normal myocardium (1.86{+-}0.56 vs. 3.11{+-}1.37, p<0.05). In conclusion, breath-hold velocity encoded cine MR imaging is a noninvasive technique which can provide assessments of altered coronary blood flow volume per myocardial mass and vasodilator flow reserve in patients with HCM. (author)

  18. Flow velocity measurement with the nonlinear acoustic wave scattering

    Science.gov (United States)

    Didenkulov, Igor; Pronchatov-Rubtsov, Nikolay

    2015-10-01

    A problem of noninvasive measurement of liquid flow velocity arises in many practical applications. To this end the most often approach is the use of the linear Doppler technique. The Doppler frequency shift of signal scattered from the inhomogeneities distributed in a liquid relatively to the emitted frequency is proportional to the sound frequency and velocities of inhomogeneities. In the case of very slow flow one needs to use very high frequency sound. This approach fails in media with strong sound attenuation because acoustic wave attenuation increases with frequency and there is limit in increasing sound intensity, i.e. the cavitation threshold. Another approach which is considered in this paper is based on the method using the difference frequency Doppler Effect for flows with bubbles. This method is based on simultaneous action of two high-frequency primary acoustic waves with closed frequencies on bubbles and registration of the scattered by bubbles acoustic field at the difference frequency. The use of this method is interesting since the scattered difference frequency wave has much lower attenuation in a liquid. The theoretical consideration of the method is given in the paper. The experimental examples confirming the theoretical equations, as well as the ability of the method to be applied in medical diagnostics and in technical applications on measurement of flow velocities in liquids with strong sound attenuation is described. It is shown that the Doppler spectrum form depends on bubble concentration velocity distribution in the primary acoustic beams crossing zone that allows one to measure the flow velocity distribution.

  19. Flow velocity measurement with the nonlinear acoustic wave scattering

    Energy Technology Data Exchange (ETDEWEB)

    Didenkulov, Igor, E-mail: din@appl.sci-nnov.ru [Institute of Applied Physics, 46 Ulyanov str., Nizhny Novgorod, 603950 (Russian Federation); Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., Nizhny Novgorod, 603950 (Russian Federation); Pronchatov-Rubtsov, Nikolay, E-mail: nikvas@rf.unn.ru [Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., Nizhny Novgorod, 603950 (Russian Federation)

    2015-10-28

    A problem of noninvasive measurement of liquid flow velocity arises in many practical applications. To this end the most often approach is the use of the linear Doppler technique. The Doppler frequency shift of signal scattered from the inhomogeneities distributed in a liquid relatively to the emitted frequency is proportional to the sound frequency and velocities of inhomogeneities. In the case of very slow flow one needs to use very high frequency sound. This approach fails in media with strong sound attenuation because acoustic wave attenuation increases with frequency and there is limit in increasing sound intensity, i.e. the cavitation threshold. Another approach which is considered in this paper is based on the method using the difference frequency Doppler Effect for flows with bubbles. This method is based on simultaneous action of two high-frequency primary acoustic waves with closed frequencies on bubbles and registration of the scattered by bubbles acoustic field at the difference frequency. The use of this method is interesting since the scattered difference frequency wave has much lower attenuation in a liquid. The theoretical consideration of the method is given in the paper. The experimental examples confirming the theoretical equations, as well as the ability of the method to be applied in medical diagnostics and in technical applications on measurement of flow velocities in liquids with strong sound attenuation is described. It is shown that the Doppler spectrum form depends on bubble concentration velocity distribution in the primary acoustic beams crossing zone that allows one to measure the flow velocity distribution.

  20. Pulsatile magneto-hydrodynamic blood flows through porous blood vessels using a third grade non-Newtonian fluids model.

    Science.gov (United States)

    Akbarzadeh, Pooria

    2016-04-01

    In this paper, the unsteady pulsatile magneto-hydrodynamic blood flows through porous arteries concerning the influence of externally imposed periodic body acceleration and a periodic pressure gradient are numerically simulated. Blood is taken into account as the third-grade non-Newtonian fluid. Besides the numerical solution, for small Womersley parameter (such as blood flow through arterioles and capillaries), the analytical perturbation method is used to solve the nonlinear governing equations. Consequently, analytical expressions for the velocity profile, wall shear stress, and blood flow rate are obtained. Excellent agreement between the analytical and numerical predictions is evident. Also, the effects of body acceleration, magnetic field, third-grade non-Newtonian parameter, pressure gradient, and porosity on the flow behaviors are examined. Some important conclusions are that, when the Womersley parameter is low, viscous forces tend to dominate the flow, velocity profiles are parabolic in shape, and the center-line velocity oscillates in phase with the driving pressure gradient. In addition, by increasing the pressure gradient, the mean value of the velocity profile increases and the amplitude of the velocity remains constant. Also, when non-Newtonian effect increases, the amplitude of the velocity profile.

  1. Estimation of vessel diameter and blood flow dynamics from laser speckle images

    DEFF Research Database (Denmark)

    Postnov, Dmitry D.; Tuchin, Valery V.; Sosnovtseva, Olga

    2016-01-01

    Laser speckle imaging is a rapidly developing method to study changes of blood velocity in the vascular networks. However, to assess blood flow and vascular responses it is crucial to measure vessel diameter in addition to blood velocity dynamics. We suggest an algorithm that allows for dynamical...... masking of a vessel position and measurements of it's diameter from laser speckle images. This approach demonstrates high reliability and stability....

  2. Cell-cell interaction in blood flow in patients with coronary heart disease (in vitro study)

    Science.gov (United States)

    Malinova, Lidia I.; Simonenko, Georgy V.; Denisova, Tatyana P.; Tuchin, Valery V.

    2007-02-01

    Blood cell-cell and cell-vessel wall interactions are one of the key patterns in blood and vascular pathophysiology. We have chosen the method of reconstruction of pulsative blood flow in vitro in the experimental set. Blood flow structure was studied by PC integrated video camera with following slide by slide analysis. Studied flow was of constant volumetric blood flow velocity (1 ml/h). Diameter of tube in use was comparable with coronary arteries diameter. Glucose solution and unfractured heparin were used as the nonspecial irritants of studied flow. Erythrocytes space structure in flow differs in all groups of patients in our study (men with stable angina pectoris (SAP), myocardial infarction (MI) and practically healthy men (PHM). Intensity of erythrocytes aggregate formation was maximal in patients with SAP, but time of their "construction/deconstruction" at glucose injection was minimal. Phenomena of primary clotting formation in patients with SAP of high function class was reconstructed under experimental conditions. Heparin injection (10 000 ED) increased linear blood flow velocity both in patients with SAP, MI and PHP but modulated the cell profile in the flow. Received data correspond with results of animal model studies and noninvasive blood flow studies in human. Results of our study reveal differences in blood flow structure in patients with coronary heart disease and PHP under irritating conditions as the possible framework of metabolic model of coronary blood flow destabilization.

  3. Critical transport velocity in two-phase, horizontal pipe flow

    Energy Technology Data Exchange (ETDEWEB)

    Sommerville, D. (U.S. Army Chemical Research, Development and Engineering Center, Aberdeen Proving Grounds, MD (US))

    1991-02-01

    This paper reports on the suspension of solid particles or entrainment of liquid droplets in two- phase flow. Theoretical and empirical relationships have been derived for both instances without any consideration to the similarities between the two. However, a general relation for two-phase flow is desirable since there are systems that cannot be readily defined due to the dual (solid/liquid) nature of the transported material, such as colloids, pulp, slurries, and sludge. Using turbulence theory, one general equation can be derived to predict critical transport velocities for two-phase horizontal flow.

  4. 21 CFR 870.2120 - Extravascular blood flow probe.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Extravascular blood flow probe. 870.2120 Section... blood flow probe. (a) Identification. An extravascular blood flow probe is an extravascular ultrasonic or electromagnetic probe used in conjunction with a blood flowmeter to measure blood flow in...

  5. Blood Flow Imaging in Maternal and Fetal Arteries and Veins

    Science.gov (United States)

    Ricci, S.; Urban, G.; Vergani, P.; Paidas, M. J.; Tortoli, P.

    Maternal and fetal blood circulation has been investigated for nearly a decade through ultrasound (US) techniques. Evaluation of the spectrogram related to a single sample volume has been proven valuable for the assessment of fetal well-being and for prediction of pregnancy complications. In this work, an alternative technique, called Multigate Spectral Doppler Analysis (MSDA), is proposed. In this approach, 128 sample volumes aligned along the same scan line are simultaneously investigated to detect the blood velocity profile with high resolution. Profiles obtained through MSDA reveal features not detectable with the standard US technique, thus representing a more accurate flow signature. Some preliminary illustrative results are reported here.

  6. Holographic laser Doppler imaging of pulsatile blood flow

    CERN Document Server

    Bencteux, Jeffrey; Kostas, Thomas; Bayat, Sam; Atlan, Michael

    2015-01-01

    We report on wide-field imaging of pulsatile motion induced by blood flow using heterodyne holographic interferometry on the thumb of a healthy volunteer, in real-time. Optical Doppler images were measured with green laser light by a frequency-shifted Mach-Zehnder interferometer in off-axis configuration. The recorded optical signal was linked to local instantaneous out-of-plane motion of the skin at velocities of a few hundreds of microns per second, and compared to blood pulse monitored by plethysmoraphy during an occlusion-reperfusion experiment.

  7. Cerebral blood flow response to functional activation

    DEFF Research Database (Denmark)

    Paulson, Olaf B; Hasselbalch, Steen G; Rostrup, Egill

    2010-01-01

    Cerebral blood flow (CBF) and cerebral metabolic rate are normally coupled, that is an increase in metabolic demand will lead to an increase in flow. However, during functional activation, CBF and glucose metabolism remain coupled as they increase in proportion, whereas oxygen metabolism only...

  8. Choice of velocity variables for complex flow computation

    Science.gov (United States)

    Shyy, W.; Chang, G. C.

    1991-01-01

    The issue of adopting the velocity components as dependent velocity variables for the Navier-Stokes flow computations is investigated. The viewpoint advocated is that a numerical algorithm should preferably honor both the physical conservation law in differential form and the geometric conservation law in discrete form. With the use of Cartesian velocity vector, the momentum equations in curvilinear coordinates can retain the full conservation-law form and satisfy the physical conservation laws. With the curvilinear velocity components, source terms appear in differential equations and hence the full conservation law form can not be retained. In discrete expressions, algorithms based on the Cartesian components can satisfy the geometric conservation-law form for convection terms but not for viscous terms; those based on the curvilinear components, on the other hand, cannot satisfy the geometric conservation-law form for either convection or viscous terms. Several flow solutions for domain with 90 and 360 degree turnings are presented to illustrate the issues of using the Cartesian velocity components and the staggered grid arrangement.

  9. Axial dispersion in flowing red blood cell suspensions

    Science.gov (United States)

    Podgorski, Thomas; Losserand, Sylvain; Coupier, Gwennou

    2016-11-01

    A key parameter in blood microcirculation is the transit time of red blood cells (RBCs) through an organ, which can influence the efficiency of gas exchange and oxygen availability. A large dispersion of this transit time is observed in vivo and is partly due to the axial dispersion in the flowing suspension. In the classic Taylor-Aris example of a solute flowing in a tube, the combination of molecular diffusion and parabolic velocity profile leads to enhanced axial dispersion. In suspensions of non-Brownian deformable bodies such as RBCs, axial dispersion is governed by a combination of shear induced migration and shear-induced diffusion arising from hydrodynamic interactions. We revisit this problem in the case of RBC pulses flowing in a microchannel and show that the axial dispersion of the pulse eventually saturates with a final extension that depends directly on RBC mechanical properties. The result is especially interesting in the dilute limit since the final pulse length depends only on the channel width, exponent of the migration law and dimensionless migration velocity. In continuous flow, the dispersion of transit times is the result of complex cell-cell and cell-wall interactions and is strongy influenced by the polydispersity of the blood sample. The authors acknowledge support from LabEx TEC21 and CNES.

  10. Deployable Emergency Shutoff Device Blocks High-Velocity Fluid Flows

    Science.gov (United States)

    Nabors, Sammy A.

    2015-01-01

    NASA's Marshall Space Flight Center has developed a device and method for blocking the flow of fluid from an open pipe. Motivated by the sea-bed oil-drilling catastrophe in the Gulf of Mexico in 2010, NASA innovators designed the device to plug, control, and meter the flow of gases and liquids. Anchored with friction fittings, spikes, or explosively activated fasteners, the device is well-suited for harsh environments and high fluid velocities and pressures. With the addition of instrumentation, it can also be used as a variable area flow metering valve that can be set based upon flow conditions. With robotic additions, this patent-pending innovation can be configured to crawl into a pipe then anchor and activate itself to block or control fluid flow.

  11. In vivo analysis of physiological 3D blood flow of cerebral veins

    Energy Technology Data Exchange (ETDEWEB)

    Schuchardt, Florian; Schroeder, Laure; Baeuerle, Jochen; Harloff, Andreas [University Medical Centre, Department of Neurology, Freiburg (Germany); Anastasopoulos, Constantin [University Medical Center, Department of Neuropaediatrics and Muscle Disorders, Freiburg (Germany); University Medical Centre, Department of Neuroradiology, Freiburg (Germany); Markl, Michael [Northwestern University, Department of Radiology, Feinberg School of Medicine and McCormick School of Engineering, Chicago, IL (United States); Hennemuth, Anja; Drexl, Johann [Fraunhofer MEVIS, Bremen (Germany); Valdueza, Jose M. [Neurological Center, Segeberger Kliniken, Bad Segeberg (Germany); Mader, Irina [University Medical Centre, Department of Neuroradiology, Freiburg (Germany)

    2015-08-15

    To visualize and quantify physiological blood flow of intracranial veins in vivo using time-resolved, 3D phase-contrast MRI (4D flow MRI), and to test measurement accuracy. Fifteen healthy volunteers underwent repeated ECG-triggered 4D flow MRI (3 Tesla, 32-channel head coil). Intracranial venous blood flow was analysed using dedicated software allowing for blood flow visualization and quantification in analysis planes at the superior sagittal, straight, and transverse sinuses. MRI was evaluated for intra- and inter-observer agreement and scan-rescan reproducibility. Measurements of the transverse sinuses were compared with transcranial two-dimensional duplex ultrasound. Visualization of 3D blood flow within cerebral sinuses was feasible in 100 % and within at least one deep cerebral vein in 87 % of the volunteers. Blood flow velocity/volume increased along the superior sagittal sinus and was lower in the left compared to the right transverse sinus. Intra- and inter-observer reliability and reproducibility of blood flow velocity (mean difference 0.01/0.02/0.02 m/s) and volume (mean difference 0.0002/-0.0003/0.00003 l/s) were good to excellent. High/low velocities were more pronounced (8 % overestimation/9 % underestimation) in MRI compared to ultrasound. Four-dimensional flow MRI reliably visualizes and quantifies three-dimensional cerebral venous blood flow in vivo and is promising for studies in patients with sinus thrombosis and related diseases. (orig.)

  12. Accurate blood flow measurements: are artificial tracers necessary?

    Directory of Open Access Journals (Sweden)

    Christian Poelma

    Full Text Available Imaging-based blood flow measurement techniques, such as particle image velocimetry, have become an important tool in cardiovascular research. They provide quantitative information about blood flow, which benefits applications ranging from developmental biology to tumor perfusion studies. Studies using these methods can be classified based on whether they use artificial tracers or red blood cells to visualize the fluid motion. We here present the first direct comparison in vivo of both methods. For high magnification cases, the experiments using red blood cells strongly underestimate the flow (up to 50% in the present case, as compared to the tracer results. For medium magnification cases, the results from both methods are indistinguishable as they give the same underestimation of the real velocities (approximately 33%, based on in vitro reference measurements. These results suggest that flow characteristics reported in literature cannot be compared without a careful evaluation of the imaging characteristics. A method to predict the expected flow averaging behavior for a particular facility is presented.

  13. Accurate blood flow measurements: are artificial tracers necessary?

    Science.gov (United States)

    Poelma, Christian; Kloosterman, Astrid; Hierck, Beerend P; Westerweel, Jerry

    2012-01-01

    Imaging-based blood flow measurement techniques, such as particle image velocimetry, have become an important tool in cardiovascular research. They provide quantitative information about blood flow, which benefits applications ranging from developmental biology to tumor perfusion studies. Studies using these methods can be classified based on whether they use artificial tracers or red blood cells to visualize the fluid motion. We here present the first direct comparison in vivo of both methods. For high magnification cases, the experiments using red blood cells strongly underestimate the flow (up to 50% in the present case), as compared to the tracer results. For medium magnification cases, the results from both methods are indistinguishable as they give the same underestimation of the real velocities (approximately 33%, based on in vitro reference measurements). These results suggest that flow characteristics reported in literature cannot be compared without a careful evaluation of the imaging characteristics. A method to predict the expected flow averaging behavior for a particular facility is presented.

  14. Hemodynamic Correlates of Late Systolic Flow Velocity Augmentation in the Carotid Artery

    Directory of Open Access Journals (Sweden)

    Kevin S. Heffernan

    2013-01-01

    Full Text Available Background. The contour of the common carotid artery (CCA blood flow velocity waveform changes with age; CCA flow velocity increases during late systole, and this may contribute to cerebrovascular disease. Late systolic flow velocity augmentation can be quantified using the flow augmentation index (FAIx. We examined hemodynamic correlates of FAIx to gain insight into determinants of CCA flow patterns. Methods. CCA Doppler ultrasound and wave intensity analysis (WIA were used to assess regional hemodynamics in 18 young healthy men (age 22 ± 1 years. Forward waves ( and backward waves (negative area, NA were measured and used to calculate the reflection index (NA/ = RIx. Additional parameters included which is a forward travelling expansion/decompression wave of myocardial origin that produces suction, CCA single-point pulse wave velocity (PWV as a measure of arterial stiffness, and CCA pressure augmentation index (AIx. Results. Primary correlates of FAIx included , logRIx , and AIx . FAIx was not associated with CCA stiffness . Conclusions. FAIx is a complex ventricular-vascular coupling parameter that is associated with both increased expansion wave magnitude (increased suction from the left ventricle and increased pressure from wave reflections.

  15. Hemodynamic correlates of late systolic flow velocity augmentation in the carotid artery.

    Science.gov (United States)

    Heffernan, Kevin S; Lefferts, Wesley K; Augustine, Jacqueline A

    2013-01-01

    Background. The contour of the common carotid artery (CCA) blood flow velocity waveform changes with age; CCA flow velocity increases during late systole, and this may contribute to cerebrovascular disease. Late systolic flow velocity augmentation can be quantified using the flow augmentation index (FAIx). We examined hemodynamic correlates of FAIx to gain insight into determinants of CCA flow patterns. Methods. CCA Doppler ultrasound and wave intensity analysis (WIA) were used to assess regional hemodynamics in 18 young healthy men (age 22 ± 1 years). Forward waves (W 1) and backward waves (negative area, NA) were measured and used to calculate the reflection index (NA/W 1 = RIx). Additional parameters included W 2 which is a forward travelling expansion/decompression wave of myocardial origin that produces suction, CCA single-point pulse wave velocity (PWV) as a measure of arterial stiffness, and CCA pressure augmentation index (AIx). Results. Primary correlates of FAIx included W 2 (r = - 0.52, P 0.05). Conclusions. FAIx is a complex ventricular-vascular coupling parameter that is associated with both increased expansion wave magnitude (increased suction from the left ventricle) and increased pressure from wave reflections.

  16. Aortic blood flow subtraction: an alternative method for measuring total renal blood flow in conscious dogs

    DEFF Research Database (Denmark)

    Sandgaard, N C F; Andersen, J L; Holstein-Rathlou, N-H;

    2002-01-01

    We have measured total renal blood flow (TRBF) as the difference between signals from ultrasound flow probes implanted around the aorta above and below the renal arteries. The repeatability of the method was investigated by repeated, continuous infusions of angiotensin II and endothelin-1 seven...... arterial blood pressure by 49% and decreased TRBF by 12%, providing an increase in renal vascular resistance of 69%. Dynamic analysis showed autoregulation of renal blood flow in the frequency range ... of TRBF by aortic blood flow subtraction is a practical and reliable method that allows direct comparison of excretory function and renal blood flow from two kidneys. The method also allows direct comparison between TRBF and flow in the caudal aorta....

  17. Fourier analysis of cerebrospinal fluid flow velocities: MR imaging study. The Scandinavian Flow Group

    DEFF Research Database (Denmark)

    Thomsen, C; Ståhlberg, F; Stubgaard, M;

    1990-01-01

    An interleaved pseudocinematographic FLASH (fast low-angle shot) sequence with additional pulsed gradients for flow encoding was used to quantify cerebrospinal fluid (CSF) flow velocities and CSF production. Flow-dependent phase information was obtained by subtracting two differently encoded phase...

  18. Predicting stroke outcome using DCE-CT measured blood velocity

    Science.gov (United States)

    Oosterbroek, Jaap; Bennink, Edwin; Dankbaar, Jan Willem; Horsch, Alexander D.; Viergever, Max A.; Velthuis, Birgitta K.; de Jong, Hugo W. A. M.

    2015-03-01

    CT plays an important role in the diagnosis of acute stroke patients. Dynamic contrast enhanced CT (DCE-CT) can estimate local tissue perfusion and extent of ischemia. However, hemodynamic information of the large intracranial vessels may also be obtained from DCE-CT data and may contain valuable diagnostic information. We describe a novel method to estimate intravascular blood velocity (IBV) in large cerebral vessels using DCE-CT data, which may be useful to help predict stroke outcome. DCE-CT scans from 34 patients with isolated M1 occlusions were included from a large prospective multi-center cohort study of patients with acute ischemic stroke. Gaussians fitted to the intravascular data yielded the time-to-peak (TTP) and cerebral-blood-volume (CBV). IBV was computed by taking the inverse of the TTP gradient magnitude. Voxels with a CBV of at least 10% of the CBV found in the arterial input function were considered part of a vessel. Mid-sagittal planes were drawn manually and averages of the IBV over all vessel-voxels (arterial and venous) were computed for each hemisphere. Mean-hemisphere IBV differences, mean-hemisphere TTP differences, and hemisphere vessel volume differences were used to differentiate between patients with good and bad outcome (modified Rankin Scale score <3 versus ≥3 at 90 days) using ROC analysis. AUCs from the ROC for IBV, TTP, and vessel volume were 0.80, 0.67 and 0.62 respectively. In conclusion, IBV was found to be a better predictor of patient outcome than the parameters used to compute it and may be a promising new parameter for stroke outcome prediction.

  19. An implantable blood pressure and flow transmitter.

    Science.gov (United States)

    Rader, R. D.; Meehan, J. P.; Henriksen, J. K. C.

    1973-01-01

    A miniature totally implantable FM/FM telemetry system has been developed to simultaneously measure blood pressure and blood flow, thus providing an appreciation of the hemodynamics of the circulation to the entire body or to a particular organ. Developed for work with animal subjects, the telemetry system's transmission time is controlled by an RF signal that permits an operating life of several months. Pressure is detected by a miniature intravascular transducer and flow is detected by an extravascular interferometric ultrasonic technique. Both pressure and flow are calibrated prior to implanting. The pressure calibration can be checked after the implanting by cannulation; flow calibration can be verified only at the end of the experiment by determining the voltage output from the implanted sensing system as a function of several measured flow rates. The utility of this device has been established by its use in investigating canine renal circulation during exercise, emotional encounters, administration of drugs, and application of accelerative forces.

  20. Diabetes augments in vivo microvascular blood flow dynamics after stroke.

    Science.gov (United States)

    Tennant, Kelly A; Brown, Craig E

    2013-12-04

    Stroke usually affects people with underlying medical conditions. In particular, diabetics are significantly more likely to have a stroke and the prognosis for recovery is poor. Because diabetes is associated with degenerative changes in the vasculature of many organs, we sought to determine how hyperglycemia affects blood flow dynamics after an ischemic stroke. Longitudinal in vivo two-photon imaging was used to track microvessels before and after photothrombotic stroke in a diabetic mouse model. Chronic hyperglycemia exacerbated acute (3-7 d) ischemia-induced increases in blood flow velocity, vessel lumen diameter, and red blood cell flux in peri-infarct regions. These changes in blood flow dynamics were most evident in superficial blood vessels within 500 μm from the infarct, rather than deeper or more distant cortical regions. Long-term imaging of diabetic mice not subjected to stroke indicated that these acute stroke-related changes in vascular function could not be attributed to complications from hyperglycemia alone. Treating diabetic mice with insulin immediately after stroke resulted in less severe alterations in blood flow within the first 7 d of recovery, but had more variable results at later time points. Analysis of microvessel branching patterns revealed that stroke led to a pruning of microvessels in peri-infarct cortex, with very few instances of sprouting. These results indicate that chronic hyperglycemia significantly affects the vascular response to ischemic stroke and that insulin only partially mitigates these changes. The combination of these acute and chronic alterations in blood flow dynamics could underlie diabetes-related deficits in cortical plasticity and stroke recovery.

  1. BLOOD FLOW AND MACROMOLECULAR TRANSPORT IN CURVED BLOOD VESSELS

    Institute of Scientific and Technical Information of China (English)

    WEI Lan; WEN Gong-bi; TAN Wen-chang

    2006-01-01

    A numerical analysis of the steady/pulsatile flow and macromolecular (such as LDL and Albumin) transport in curved blood vessels was carried out. The computational results predict that the vortex of the secondary flow is time-dependent in the aortic arch.The concentration of macromolecule concentrates at the region of sharp curve, and the wall concentration at the outer part is higher than that at the inner part. Atherosclerosis and thrombosis are prone to develop in such regions with sharp flow.

  2. Three Kinds of Velocity Structure Function in Turbulent Flows

    Institute of Scientific and Technical Information of China (English)

    LIU Wei; JIANG Nan

    2004-01-01

    Based on the local multi-scale eddy structures in turbulent flows, we elucidate the essential difference between the real turbulent field with a finite Reynolds number and the Kolmogorov fully developed random field. The motion of fluid particles in the real turbulent field is not fully random. There exist multi-scale structures due to the effect of viscosity. Actually the movements of fluid particles in the turbulent field are restricted by such eddy structures. Furthermore, concept of the locally averaged velocity structure function is put forward to describe the relative strain distortion of two adjacent turbulent eddy structures at a certain scale. The time sequence of the longitudinal velocity component at different vertical locations in turbulent boundary layer has been elaborately measured by the constant temperature anemometry of model IFA-300 in a wind tunnel. The experiment proves that the locally averaged velocity structure function is in agreement with the wavelet-coefficient structure function.

  3. Using thermal tracers to estimate flow velocities of shallow flows: laboratory and field experiments

    Directory of Open Access Journals (Sweden)

    Lima Rui L.P. de

    2015-09-01

    Full Text Available Accurate measurement of shallow flows is important for hydraulics, hydrology and water resources management. The objective of this paper is to discuss a technique for shallow flow and overland flow velocity estimation that uses infrared thermography. Laboratory flumes and different bare, vegetated and paved field surfaces were used to test the technique. Results show that shallow flow surface velocities estimated using thermal tracers and infrared technology are similar to estimates obtained using the Acoustic Doppler Velocimeter; similar results were also obtained for overland flow velocity estimates using thermography, here comparing with the dye tracer technique. The thermographic approach revealed some potential as a flow visualization technique, and leaves space for future studies and research.

  4. Measurement of velocity of air flow in the sinus maxillaris.

    Science.gov (United States)

    Müsebeck, K; Rosenberg, H

    1979-03-01

    Anemometry with the hot wire and hot film technique previously described, enables the rhinologist to record slow and rapidly changing air flow in the maxillary sinus. The advantages and disadvantages of this method are considered. Anemometry together with manometry may be designated sinumetry and used as a diagnostic procedure following sinuscopy in chronic maxillary sinus disease. The value of the function from velocity of time allows the estimation of flow-volume in the sinus. Furthermore, the method is useful to evaluate the optimal therapy to restore ventilation in the case of an obstructed ostium demonstrated before and after surgical opening in the inferior meatus.

  5. Mitral flow propagation velocity in non-sedated healthy cats

    OpenAIRE

    SILVA, A.C.; R.A.L. Muzzi; G. Oberlender; L.A.L. Muzzi; M.R. Coelho; R.B. Nogueira

    2014-01-01

    Mitral flow propagation velocity (Vp) is an index used to evaluate the left ventricular diastolic function. Its influence on human and small animal cardiopathies has been studied; however there are few reports evaluating this variable in domestic felines. In addition, there is a lack of studies in non-sedated healthy cats. Therefore, the purpose of this study was to establish values for Vp and its correlation with other echocardiographic indexes in non-sedated healthy cats in order to provide...

  6. Dynamics of the blood flow in the curved artery with the rolling massage

    Science.gov (United States)

    Yi, H. H.; Wu, X. H.; Yao, Y. L.

    2011-10-01

    Arterial wall shear stress and flow velocity are important factors in the development of some arterial diseases. Here, we aim to investigate the dynamic effect of the rolling massage on the property of the blood flow in the curved artery. The distributions of flow velocity and shear stress for the blood flow are computed by the lattice Boltzmann method, and the dynamic factors under different rolling techniques are studied numerically. The study is helpful to understand the mechanism of the massage and develop the massage techniques.

  7. Velocity Measurements of Thermoelectric Driven Flowing Liquid Lithium

    Science.gov (United States)

    Szott, Matthew; Xu, Wenyu; Fiflis, Peter; Haehnlein, Ian; Kapat, Aveek; Kalathiparambil, Kishor; Ruzic, David N.

    2014-10-01

    Liquid lithium has garnered additional attention as a PFC due to its several advantages over solid PFCs, including reduced erosion and thermal fatigue, increased heat transfer, higher device lifetime, and enhanced plasma performance due to the establishment of low recycling regimes at the wall. The Lithium Metal Infused Trenches concept (LiMIT) has demonstrated thermoelectric magnetohydrodynamic flow of liquid lithium through horizontal open-faced metal trenches with measured velocities varying from 3.7+/-0.5 cm/s in the 1.76 T field of HT-7 to 22+/-3 cm/s in the SLiDE facility at UIUC at 0.059 T. To demonstrate the versatility of the concept, a new LiMIT design using narrower trenches shows steady state, thermoelectric-driven flow at an arbitrary angle from horizontal. Velocity characteristics are measured and discussed. Based on this LiMIT concept, a new limiter design has been developed to be tested on the mid-plane of the EAST plasma. Preliminary modelling suggests lithium flow of 6 cm/s in this device. Additionally, recent testing at the Magnum-PSI facility has given encouraging results, and velocity measurements in relation to magnetic field strength and plasma flux are also presented.

  8. Holographic laser Doppler imaging of microvascular blood flow

    CERN Document Server

    Magnain, C; Boucneau, T; Simonutti, M; Ferezou, I; Rancillac, A; Vitalis, T; Sahel, J A; Paques, M; Atlan, M

    2014-01-01

    We report on local superficial blood flow monitoring in biological tissue from laser Doppler holographic imaging. In time averaging recording conditions, holography acts as a narrowband bandpass filter, which, combined with a frequency shifted reference beam, permits frequency selective imaging in the radiofrequency range. These Doppler images are acquired with an off axis Mach Zehnder interferometer. Microvascular hemodynamic components mapping is performed in the cerebral cortex of the mouse and the eye fundus of the rat with near-infrared laser light without any exogenous marker. These measures are made from a basic inverse method analysis of local first order optical fluctuation spectra at low radiofrequencies, from 0 Hz to 100 kHz. Local quadratic velocity is derived from Doppler broadenings induced by fluid flows, with elementary diffusing wave spectroscopy formalism in backscattering configuration. We demonstrate quadratic mean velocity assessment in the 0.1 to 10 millimeters per second range in vitro ...

  9. Cerebral blood flow in the neonate.

    Science.gov (United States)

    Vutskits, Laszlo

    2014-01-01

    Ensuring adequate oxygenation of the developing brain is the cornerstone of neonatal critical care. Despite decades of clinical research dedicated to this issue of paramount importance, our knowledge and understanding regarding the physiology and pathophysiology of neonatal cerebral blood flow are still rudimentary. This review primarily focuses on currently available human clinical and experimental data on cerebral blood flow and autoregulation in the preterm and term infant. Limitations of systemic blood pressure values as surrogates for monitoring adequate cerebral oxygen delivery are discussed. Particular emphasis is placed on the high interindividual variability in cerebral blood flow values, vasoreactivity, and autoregulatory thresholds making the applications of normative values highly questionable. Technical and ethical difficulties to conduct such trials leave us with a near complete lack of knowledge on how pharmacological and surgical interventions impact on cerebral autoregulation. The ensemble of these works argues for the necessity of highly individualized care by taking advantage of continuous bedside monitoring of cerebral circulation. They also point to the urgent need for further studies addressing the exciting but difficult issue of cerebral blood flow autoregulation in the neonate.

  10. Blood flow characteristics in the aortic arch

    Science.gov (United States)

    Prahl Wittberg, Lisa; van Wyk, Stevin; Mihaiescu, Mihai; Fuchs, Laszlo; Gutmark, Ephraim; Backeljauw, Philippe; Gutmark-Little, Iris

    2012-11-01

    The purpose with this study is to investigate the flow characteristics of blood in the aortic arch. Cardiovascular diseases are associated with specific locations in the arterial tree. Considering atherogenesis, it is claimed that the Wall Shear Stress (WSS) along with its temporal and spatial gradients play an important role in the development of the disease. The WSS is determined by the local flow characteristics, that in turn depends on the geometry as well as the rheological properties of blood. In this numerical work, the time dependent fluid flow during the entire cardiac cycle is fully resolved. The Quemada model is applied to account for the non-Newtonian properties of blood, an empirical model valid for different Red Blood Cell loading. Data obtained through Cardiac Magnetic Resonance Imaging have been used in order to reconstruct geometries of the the aortic arch. Here, three different geometries are studied out of which two display malformations that can be found in patients having the genetic disorder Turner's syndrome. The simulations show a highly complex flow with regions of secondary flow that is enhanced for the diseased aortas. The financial support from the Swedish Research Council (VR) and the Sweden-America Foundation is gratefully acknowledged.

  11. FloWave.US: validated, open-source, and flexible software for ultrasound blood flow analysis.

    Science.gov (United States)

    Coolbaugh, Crystal L; Bush, Emily C; Caskey, Charles F; Damon, Bruce M; Towse, Theodore F

    2016-10-01

    Automated software improves the accuracy and reliability of blood velocity, vessel diameter, blood flow, and shear rate ultrasound measurements, but existing software offers limited flexibility to customize and validate analyses. We developed FloWave.US-open-source software to automate ultrasound blood flow analysis-and demonstrated the validity of its blood velocity (aggregate relative error, 4.32%) and vessel diameter (0.31%) measures with a skeletal muscle ultrasound flow phantom. Compared with a commercial, manual analysis software program, FloWave.US produced equivalent in vivo cardiac cycle time-averaged mean (TAMean) velocities at rest and following a 10-s muscle contraction (mean bias blood flow data was 9.8 times faster than the manual method. Finally, a case study of a lower extremity muscle contraction experiment highlighted the ability of FloWave.US to measure small fluctuations in TAMean velocity, vessel diameter, and mean blood flow at specific time points in the cardiac cycle. In summary, the collective features of our newly designed software-accuracy, reliability, reduced processing time, cost-effectiveness, and flexibility-offer advantages over existing proprietary options. Further, public distribution of FloWave.US allows researchers to easily access and customize code to adapt ultrasound blood flow analysis to a variety of vascular physiology applications.

  12. Characterization of Transition to Turbulence for Blood in a Straight Pipe Under Steady Flow Conditions.

    Science.gov (United States)

    Biswas, Dipankar; Casey, David M; Crowder, Douglas C; Steinman, David A; Yun, Yang H; Loth, Francis

    2016-07-01

    Blood is a complex fluid that, among other things, has been established to behave as a shear thinning, non-Newtonian fluid when exposed to low shear rates (SR). Many hemodynamic investigations use a Newtonian fluid to represent blood when the flow field of study has relatively high SR (>200 s-1). Shear thinning fluids have been shown to exhibit differences in transition to turbulence (TT) compared to that of Newtonian fluids. Incorrect prediction of the transition point in a simulation could result in erroneous hemodynamic force predictions. The goal of the present study was to compare velocity profiles near TT of whole blood and Newtonian blood analogs in a straight rigid pipe with a diameter 6.35 mm under steady flow conditions. Rheology was measured for six samples of whole porcine blood and three samples of a Newtonian fluid, and the results show blood acts as a shear thinning non-Newtonian fluid. Measurements also revealed that blood viscosity at SR = 200 s-1 is significantly larger than at SR = 1000 s-1 (13.8%, p measure velocity profiles for blood and Newtonian samples at different flow rates to produce Reynolds numbers (Re) ranging from 1000 to 3300 (based on viscosity at SR = 1000 s-1). Two mathematically defined methods, based on the velocity profile shape change and turbulent kinetic energy (TKE), were used to detect TT. Results show similar parabolic velocity profiles for both blood and the Newtonian fluid for Re blood and Newtonian fluid velocity profiles for larger Re. The Newtonian fluid had blunt-like velocity profiles starting at Re = 2403 ± 8 which indicated transition. In contrast, blood did not show this velocity profile change until Re = 2871 ± 104. The Newtonian fluid had large velocity fluctuations (root mean square (RMS) > 20%) with a maximum TKE near the pipe center at Re = 2316 ± 34 which indicated transition. In contrast, blood results showed the maximum TKE at Re = 2806

  13. An approach to automatic blood vessel image registration of microcirculation for blood flow analysis on nude mice.

    Science.gov (United States)

    Lin, Wen-Chen; Wu, Chih-Chieh; Zhang, Geoffrey; Wu, Tung-Hsin; Lin, Yang-Hsien; Huang, Tzung-Chi; Liu, Ren-Shyan; Lin, Kang-Ping

    2011-04-01

    Image registration is often a required and a time-consuming step in blood flow analysis of large microscopic video sequences in vivo. In order to obtain stable images for blood flow analysis, frame-to-frame image matching as a preprocessing step is a solution to the problem of movement during image acquisition. In this paper, microscopic system analysis without fluorescent labelling is performed to provide precise and continuous quantitative data of blood flow rate in individual microvessels of nude mice. The performance properties of several matching metrics are evaluated through simulated image registrations. An automatic image registration programme based on Powell's optimisation search method with low calculation redundancy was implemented. The matching method by variance of ratio is computationally efficient and improves the registration robustness and accuracy in practical application of microcirculation registration. The presented registration method shows acceptable results in close requisition to analyse red blood cell velocities, confirming the scientific potential of the system in blood flow analysis.

  14. Pressure Gradient Estimation Based on Ultrasonic Blood Flow Measurement

    Science.gov (United States)

    Nitta, Naotaka; Homma, Kazuhiro; Shiina, Tsuyoshi

    2006-05-01

    Mechanical load to the blood vessel wall, such as shear stress and pressure, which occurs in blood flow dynamics, contribute greatly to plaque rupture in arteriosclerosis and to biochemical activation of endothelial cells. Therefore, noninvasive estimations of these mechanical loads are able to provide useful information for the prevention of vascular diseases. Although the pressure is the dominant component of mechanical load, for practical purposes, the pressure gradient is also often important. So far, we have investigated the estimation of the kinematic viscosity coefficient using a combination of the Navier-Stokes equations and ultrasonic velocity measurement. In this paper, a method for pressure gradient estimation using the estimated kinematic viscosity coefficient is proposed. The validity of the proposed method was investigated on the basis of the analysis with the data obtained by computer simulation and a flow phantom experiment. These results revealed that the proposed method can provide a valid estimation of the pressure gradient.

  15. Clitoral blood flow increases following vaginal pressure stimulation.

    Science.gov (United States)

    Lavoisier, P; Aloui, R; Schmidt, M H; Watrelot, A

    1995-02-01

    The vascular responses of clitoral arteries to vaginal pressure stimulation in 10 volunteer women were evaluated by Doppler ultrasonography. Pressure stimulations (20-160 mm Hg) along the lower third of the vagina increased blood velocity and flow into clitoral arteries in 9 of the 10 women. The latency and duration of the Doppler responses ranged from 0.1 to 1.6 sec and from 3.2 to 9.5 sec, respectively, and the response was associated with a blood flow increase of 4 to 11 times the baseline prestimulation level. This response parallels that recorded in the cavernous arteries in men when a similar range of pressure stimulations are applied to the glans penis. Similar responses evoked in the male and female suggest a sexual synergy that may occur during intercourse in that such physiological responses and reflexes may be reciprocally reinforced.

  16. Blood flow dynamics in the snake spectacle.

    Science.gov (United States)

    van Doorn, Kevin; Sivak, Jacob G

    2013-11-15

    The eyes of snakes are shielded beneath a layer of transparent integument referred to as the 'reptilian spectacle'. Well adapted to vision by virtue of its optical transparency, it nevertheless retains one characteristic of the integument that would otherwise prove detrimental to vision: its vascularity. Given the potential consequence of spectacle blood vessels on visual clarity, one might expect adaptations to have evolved that mitigate their negative impact. Earlier research demonstrated an adaptation to their spatial layout in only one species to reduce the vessels' density in the region serving the foveal and binocular visual fields. Here, we present a study of spectacle blood flow dynamics and provide evidence of a mechanism to mitigate the spectacle blood vessels' deleterious effect on vision by regulation of blood flow through them. It was found that when snakes are at rest and undisturbed, spectacle vessels undergo cycles of dilation and constriction, such that the majority of the time the vessels are fully constricted, effectively removing them from the visual field. When snakes are presented with a visual threat, spectacle vessels constrict and remain constricted for longer periods than occur during the resting cycles, thus guaranteeing the best possible visual capabilities in times of need. Finally, during the snakes' renewal phase when they are generating a new stratum corneum, the resting cycle is abolished, spectacle vessels remain dilated and blood flow remains strong and continuous. The significance of these findings in terms of the visual capabilities and physiology of snakes is discussed.

  17. Numerical Investigation of Developing Velocity Distributions in Open Channel Flows

    Directory of Open Access Journals (Sweden)

    Usman Ghani

    2014-04-01

    Full Text Available The velocity profiles in open channel flows start developing after entering into the channel for quite some length. All types of laboratory experiments for open channel flows are carried out in the fully developed flow regions which exist at some length downstream the inlet. In this research work an attempt has been made to investigate the impact of roughness and slope of the channel bed on the length required for establishment of fully developed flow in an open channel. A range of different roughness values along with various slopes were considered for this purpose. It was observed that an increase in roughness results in reduction of development length; and development length reduces drastically when roughness reaches to the range normally encountered in open channel flows with emergent vegetation or natural river flows. However, it was observed that the change of slope did not have any noticeable effect on development length. This work suggests that CFD (Computational Fluid Dynamics technique can be used for getting a reliable development length before performing an experimental work

  18. Regional cerebral blood flow in aphasia

    DEFF Research Database (Denmark)

    Soh, K; Larsen, B; Skinhøj, E

    1978-01-01

    Regional cerebral blood flow (rCBF) was studied in 13 aphasic patients with left hemisphere lesions, using the intracarotid xenon 133 injection method and a 254-detector gamma camera system. The rCBF was measured during rest and during various function tests, including a simple speech test...

  19. Effects of aortic irregularities on blood flow.

    Science.gov (United States)

    Prahl Wittberg, Lisa; van Wyk, Stevin; Fuchs, Laszlo; Gutmark, Ephraim; Backeljauw, Philippe; Gutmark-Little, Iris

    2016-04-01

    Anatomic aortic anomalies are seen in many medical conditions and are known to cause disturbances in blood flow. Turner syndrome (TS) is a genetic disorder occurring only in females where cardiovascular anomalies, particularly of the aorta, are frequently encountered. In this study, numerical simulations are applied to investigate the flow characteristics in four TS patient- related aortic arches (a normal geometry, dilatation, coarctation and elongation of the transverse aorta). The Quemada viscosity model was applied to account for the non-Newtonian behavior of blood. The blood is treated as a mixture consisting of water and red blood cells (RBC) where the RBCs are modeled as a convected scalar. The results show clear geometry effects where the flow structures and RBC distribution are significantly different between the aortas. Transitional flow is observed as a jet is formed due to a constriction in the descending aorta for the coarctation case. RBC dilution is found to vary between the aortas, influencing the WSS. Moreover, the local variations in RBC volume fraction may induce large viscosity variations, stressing the importance of accounting for the non-Newtonian effects.

  20. Ergot alkaloids decrease rumen epithelial blood flow

    Science.gov (United States)

    Two experiments were conducted to determine if ergot alkaloids affect blood flow to the absorptive surface of the rumen of steers. Steers (n=8 total) were pair-fed alfalfa cubes at 1.5× NEM and received ground endophyte-infected tall fescue seed (E+) or endophyte-free tall fescue seed (E-) via rumen...

  1. Cerebral blood flow in acute mountain sickness

    DEFF Research Database (Denmark)

    Jensen, J B; Wright, Anne; Lassen, N A

    1990-01-01

    Changes in cerebral blood flow (CBF) were measured using the radioactive xenon technique and were related to the development of acute mountain sickness (AMS). In 12 subjects, ascending from 150 to 3,475 m, CBF was 24% increased at 24 h [45.1 to 55.9 initial slope index (ISI) units] and 4% increased...

  2. Frequency encoding in renal blood flow regulation

    DEFF Research Database (Denmark)

    Marsh, D.J.; Sosnovtseva, Olga; Pavlov, A.N.

    2005-01-01

    With a model of renal blood flow regulation, we examined consequences of tubuloglomerular feedback (TGF) coupling to the myogenic mechanism via voltage-gated Ca channels. The model reproduces the characteristic oscillations of the two mechanisms and predicts frequency and amplitude modulation...

  3. Flow velocity change in the cortical vein during motor activation and its effect on functional brain MRI

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Kazuhiro [Kyoto Prefectural Univ. of Medicine (Japan)

    1998-06-01

    On the brain functional magnetic resonance imaging (fMRI) using the gradient-recalled echo technique with clinical MR scanner, the activated areas nearly correspond with the cortical veins. This suggests that the fMRI signal mainly originates from the cortical veins. In this study, we analyzed the flow velocity in the cortical vein quantitatively during brain activation and resting status using 2 dimensional time-of-flight cine MR venography (2D-TOF-cine-MRV) and 2 dimensional phase contrast MRV (2D-PC-MRV) techniques, and demonstrated that the flow velocity increased in the cortical vein corresponding to the activated area during activation status. The increase of flow velocity was calculated to be about 20%. The reason for the increased flow velocity is probably due to the increased regional cerebral blood flow and volume in the activated area. We should be careful to analyze the data of the fMRI because the flow velocity affects the fMRI signal such as the inflow effect and the oblique flow effect. When using the gradient echo method, the effect of the flow velocity is one of the important factors of the fMRI signal. (author)

  4. Magnetic field effect on blood flow of Casson fluid in axisymmetric cylindrical tube: A fractional model

    Science.gov (United States)

    Ali, Farhad; Sheikh, Nadeem Ahmad; Khan, Ilyas; Saqib, Muhammad

    2017-02-01

    The effects of magnetohydrodynamics on the blood flow when blood is represented as a Casson fluid, along with magnetic particles in a horizontal cylinder is studied. The flow is due to an oscillating pressure gradient. The Laplace and finite Hankel transforms are used to obtain the closed form solutions of the fractional partial differential equations. Effects of various parameters on the flow of both blood and magnetic particles are shown graphically. The analysis shows that, the model with fractional order derivatives bring a remarkable changes as compared to the ordinary model. The study highlights that applied magnetic field reduces the velocities of both the blood and magnetic particles.

  5. Reconstruction of velocity profiles in axisymmetric and asymmetric flows using an electromagnetic flow meter

    Science.gov (United States)

    Kollár, László E.; Lucas, Gary P.; Meng, Yiqing

    2015-05-01

    An analytical method that was developed formerly for the reconstruction of velocity profiles in asymmetric flows is improved to be applicable for both axisymmetric and asymmetric flows. The method is implemented in Matlab, and predicts the velocity profile from measured electrical potential distributions obtained around the boundary of a multi-electrode electromagnetic flow meter (EMFM). Potential distributions are measured in uniform and non-uniform magnetic fields, and the velocity is assumed as a sum of axisymmetric and polynomial components. The procedure requires three steps. First, the discrete Fourier transform (DFT) is applied to the potential distribution obtained in a uniform magnetic field. Since the direction of polynomial components of order greater than two in the plane of the pipe cross section is not unique multiple solutions exist, therefore all possible polynomial velocity profiles are determined. Then, the DFT is applied to the potential distribution obtained in a specific non-uniform magnetic field, and used to calculate the exponent in a power-law representation of the axisymmetric component. Finally, the potential distribution in the non-uniform magnetic field is calculated for all of the possible velocity profile solutions using weight values, and the velocity profile with the calculated potential distribution which is closest to the measured one provides the optimum solution. The method is validated by reconstructing two quartic velocity profiles, one of which includes an axisymmetric component. The potential distributions are obtained from simulations using COMSOL Multiphysics where a model of the EMFM is constructed. The reconstructed velocity profiles show satisfactory agreement with the input velocity profiles. The main benefits of the method described in this paper are that it provides a velocity distribution in the circular cross section of a pipe as an analytical function of the spatial coordinates which is suitable for both

  6. Heat stress exacerbates the reduction in middle cerebral artery blood velocity during prolonged self-paced exercise.

    Science.gov (United States)

    Périard, J D; Racinais, S

    2015-06-01

    This study examined the influence of hyperthermia on middle cerebral artery mean blood velocity (MCA Vmean). Eleven cyclists undertook a 750 kJ self-paced time trial in HOT (35 °C) and COOL (20 °C) conditions. Exercise time was longer in HOT (56 min) compared with COOL (49 min; P heat appears to have exacerbated the reduction in MCA Vmean, in part via increases in peripheral blood flow and a decrease in arterial blood pressure.

  7. Effect of TIPS placement on portal and splanchnic arterial blood flow in 4-dimensional flow MRI

    Energy Technology Data Exchange (ETDEWEB)

    Stankovic, Zoran [Northwestern University, Department of Radiology, Feinberg School of Medicine, Chicago, IL (United States); University Medical Center Freiburg, Department of Diagnostic Radiology and Medical Physics, Freiburg (Germany); Roessle, Martin; Schultheiss, Michael [University Medical Center Freiburg, Department of Gastroenterology, Freiburg (Germany); Euringer, Wulf; Langer, Mathias [University Medical Center Freiburg, Department of Diagnostic Radiology and Medical Physics, Freiburg (Germany); Salem, Riad; Barker, Alex; Carr, James; Collins, Jeremy D. [Northwestern University, Department of Radiology, Feinberg School of Medicine, Chicago, IL (United States); Markl, Michael [Northwestern University, Department of Radiology, Feinberg School of Medicine, Chicago, IL (United States); Northwestern University, Department of Biomedical Engineering, McCormick School of Engineering, Chicago, IL (United States)

    2015-09-15

    To assess changes in portal and splanchnic arterial haemodynamics in patients undergoing transjugular intrahepatic portosystemic shunt (TIPS) using four-dimensional (4D) flow MRI, a non-invasive, non-contrast imaging technique. Eleven patients undergoing TIPS implantation were enrolled. K-t GRAPPA accelerated non-contrast 4D flow MRI of the liver vasculature was applied with acceleration factor R = 5 at 3Tesla. Flow analysis included three-dimensional (3D) blood flow visualization using time-resolved 3D particle traces and semi-quantitative flow pattern grading. Quantitative evaluation entailed peak velocities and net flows throughout the arterial and portal venous (PV) systems. MRI measurements were taken within 24 h before and 4 weeks after TIPS placement. Three-dimensional flow visualization with 4D flow MRI revealed good image quality with minor limitations in PV flow. Quantitative analysis revealed a significant increase in PV flow (562 ± 373 ml/min before vs. 1831 ± 965 ml/min after TIPS), in the hepatic artery (176 ± 132 ml/min vs. 354 ± 140 ml/min) and combined flow in splenic and superior mesenteric arteries (770 ml/min vs. 1064 ml/min). Shunt-flow assessment demonstrated stenoses in two patients confirmed and treated at TIPS revision. Four-dimensional flow MRI might have the potential to give new information about the effect of TIPS placement on hepatic perfusion. It may explain some unexpected findings in clinical observation studies. (orig.)

  8. Numerical Simulations of Blood Flows in the Left Atrium

    Science.gov (United States)

    Zhang, Lucy

    2008-11-01

    A novel numerical technique of solving complex fluid-structure interactions for biomedical applications is introduced. The method is validated through rigorous convergence and accuracy tests. In this study, the technique is specifically used to study blood flows in the left atrium, one of the four chambers in the heart. Stable solutions are obtained at physiologic Reynolds numbers by applying pulmonary venous inflow, mitral valve outflow and appropriate constitutive equations to closely mimic the behaviors of biomaterials. Atrial contraction is also implemented as a time-dependent boundary condition to realistically describe the atrial wall muscle movements, thus producing accurate interactions with the surrounding blood. From our study, the transmitral velocity, filling/emptying velocity ratio, durations and strengths of vortices are captured numerically for sinus rhythms (healthy heart beat) and they compare quite well with reported clinical studies. The solution technique can be further used to study heart diseases such as the atrial fibrillation, thrombus formation in the chamber and their corresponding effects in blood flows.

  9. Doppler standard deviation imaging for clinical monitoring of in vivo human skin blood flow

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yonghua; Chen, Zhongping; Saxer, Christopher; Shen, Qimin; Xiang, Shaohua; Boer, Johannes F. de; Nelson, J. Stuart

    2000-09-15

    We used a novel phase-resolved optical Doppler tomographic (ODT) technique with very high flow-velocity sensitivity (10 {mu}m/s) and high spatial resolution (10 {mu}m) to image blood flow in port-wine stain (PWS) birthmarks in human skin. In addition to the regular ODT velocity and structural images, we use the variance of blood flow velocity to map the PWS vessels. Our device combines ODT and therapeutic systems such that PWS blood flow can be monitored in situ before and after laser treatment. To the authors' knowledge this is the first clinical application of ODT to provide a fast semiquantitative evaluation of the efficacy of PWS laser therapy in situ and in real time. (c) 2000 Optical Society of America.

  10. Femoral Blood Flow and Cardiac Output During Blood Flow Restricted Leg Press Exercise

    Science.gov (United States)

    Everett, M. E.; Hackney, K.; Ploutz-Snyder, L.

    2011-01-01

    Low load blood flow restricted resistance exercise (LBFR) causes muscle hypertrophy that may be stimulated by the local ischemic environment created by the cuff pressure. However, local blood flow (BF) during such exercise is not well understood. PURPOSE: To characterize femoral artery BF and cardiac output (CO) during leg press exercise (LP) performed at a high load (HL) and low load (LL) with different levels of cuff pressure. METHODS: Eleven subjects (men/women 4/7, age 31.4+/-12.8 y, weight 68.9+/-13.2 kg, mean+/-SD) performed 3 sets of supine left LP to fatigue with 90 s of rest in 4 conditions: HL (%1-RM/cuff pressure: 80%/0); LL (20%/0); LBFR(sub DBP) (20%/1.3 x diastolic blood pressure, BP); LBFR(sub SBP) (20%/1.3 x supine systolic BP). The cuff remained inflated throughout the LBFR exercise sessions. Artery diameter, velocity time integral (VTI), and stroke volume (SV) were measured using Doppler ultrasound at rest and immediately after each set of exercise. Heart rate (HR) was monitored using a 3-lead ECG. BF was calculated as VTI x vessel cross-sectional area. CO was calculated as HR x SV. The data obtained after each set of exercise were averaged and used for analyses. Multi-level modeling was used to determine the effect of exercise condition on dependent variables. Statistical significance was set a priori at p LL (9.92+/-0.82 cm3) > LBFR(sub dBP)(6.47+/-0.79 cm3) > LBFR(sub SBP) (3.51+/-0.59 cm3). Blunted exercise induced increases occurred in HR, SV, and CO after LBFR compared to HL and LL. HR increased 45% after HL and LL and 28% after LBFR (p<0.05), but SV increased (p<0.05) only after HL. Consequently, the increase (p<0.05) in CO was greater in HL and LL (approximately 3 L/min) than in LBFR (approximately 1 L/min). CONCLUSION: BF during LBFR(sub SBP) was 1/3 of that observed in LL, which supports the hypothesis that local ischemia stimulates the LBFR hypertrophic response. As the cuff did not compress the artery, the ischemia may have occurred

  11. Ocular Blood Flow and Normal Tension Glaucoma

    Directory of Open Access Journals (Sweden)

    Ning Fan

    2015-01-01

    Full Text Available Normal tension glaucoma (NTG is known as a multifactorial optic neuropathy characterized by progressive retinal ganglion cell death and glaucomatous visual field loss, even though the intraocular pressure (IOP does not exceed the normal range. The pathophysiology of NTG remains largely undetermined. It is hypothesized that the abnormal ocular blood flow is involved in the pathogenesis of this disease. A number of evidences suggested that the vascular factors played a significant role in the development of NTG. In recent years, the new imaging techniques, fluorescein angiography, color Doppler imaging (CDI, magnetic resonance imaging (MRI, and laser speckle flowgraphy (LSFG, have been used to evaluate the ocular blood flow and blood vessels, and the impaired vascular autoregulation was found in patients with NTG. Previous studies showed that NTG was associated with a variety of systemic diseases, including migraine, Alzheimer’s disease, primary vascular dysregulation, and Flammer syndrome. The vascular factors were involved in these diseases. The mechanisms underlying the abnormal ocular blood flow in NTG are still not clear, but the risk factors for glaucomatous optic neuropathy likely included oxidative stress, vasospasm, and endothelial dysfunction.

  12. Dexmedetomidine decreases the oral mucosal blood flow.

    Science.gov (United States)

    Kawaai, Hiroyoshi; Yoshida, Kenji; Tanaka, Eri; Togami, Kohei; Tada, Hitoshi; Ganzberg, Steven; Yamazaki, Shinya

    2013-12-01

    There is an abundance of blood vessels in the oral cavity, and intraoperative bleeding can disrupt operations. There have been some interesting reports about constriction of vessels in the oral cavity, one of which reported that gingival blood flow in cats is controlled by sympathetic α-adrenergic fibres that are involved with vasoconstriction. Dexmedetomidine is a sedative and analgesic agent that acts through the α-2 adrenoceptor, and is expected to have a vasoconstrictive action in the oral cavity. We have focused on the relation between the effects of α-adrenoceptors by dexmedetomidine and vasoconstriction in oral tissues, and assessed the oral mucosal blood flow during sedation with dexmedetomidine. The subjects comprised 13 healthy male volunteers, sedated with dexmedetomidine in a loading dose of 6 μg/kg/h for 10 min and a continuous infusion of 0.7 μg/kg/h for 32 min. The mean arterial pressure (MAP), heart rate (HR), cardiac output (CO), stroke volume (SV), systemic vascular resistance (SVR), and palatal mucosal blood flow (PMBF) were measured at 0, 5, 10, 12, 22, and 32 min after the start of the infusion. The HR, CO, and PBMF decreased significantly during the infusion even though there were no differences in the SV. The SVR increased significantly but the PMBF decreased significantly. In conclusion, PMBF was reduced by the mediating effect of dexmedetomidine on α-2 adrenoceptors.

  13. Velocity kinematic relations in a turbulent flow past a grid

    Science.gov (United States)

    Liberzon, Alex; Gurka, Roi; Kopp, Gregory; Sarathi, Partha; Tsinober, Arkady

    2009-11-01

    We present velocity kinematic relations, involving average and difference of the longitudinal velocity component of the two points at distance r: u+= u(x+r) + u(x) and u-= u(x+r)-u(x), obtained using PIV measurements in a turbulent flow of water past a grid. The present study follows recent numerical and experimental studies, that demonstrated analytical and empirical evidence of the relations, their validity and it emphasizes the physical meaning of the relations. The relations that contain both the large (u+) and small (u-) scale quantities emphasize the non-local aspects of turbulent flows. For example, the pure kinematic relation of Hosokawa in conjunction with the the Kolmogorov 4/5 law leading to the = r/30 shows that the that the large and small scale quantities are correlated contrary to what is suggested by the commonly used sweeping decorrelation hypothesis. Some relations are purely kinematic and some are dynamic, i.e. involving , like the Kolmogorov 4/5 law. The most important aspect is that pure kinematic relations that emphasize the non-local effects, become dynamically significant. Furthermore, we suggest that many of these relations could be used for validation of experimental results.

  14. Effect of Rolling Massage on the Vortex Flow in Blood Vessels with Lattice Boltzmann Simulation

    Science.gov (United States)

    Yi, Hou Hui

    The rolling massage manipulation is a classic Chinese Medical Massage, which is a nature therapy in eliminating many diseases. Here, the effect of the rolling massage on the cavity flows in blood vessel under the rolling manipulation is studied by the lattice Boltzmann simulation. The simulation results show that the vortex flows are fully disturbed by the rolling massage. The flow behavior depends on the rolling velocity and the rolling depth. Rolling massage has a better effect on the flows in the cavity than that of the flows in a planar blood vessel. The result is helpful to understand the mechanism of the massage and develop the rolling techniques.

  15. Fetal ductus venosus flow velocity waveforms and maternal serum AFP before and after first-trimester transabdominal chorionic villus sampling

    NARCIS (Netherlands)

    C.A. Brezinka (Christoph); A.M. Hagenaars (A.); J.W. Wladimiroff (Juriy); F.J. Los

    1995-01-01

    textabstractDoppler flow velocity waveform recording in the fetal ductus venosus and umbilical artery as well as maternal blood sampling for serum alpha-fetoprotein (MSAFP) was performed before and after transabdominal chorion villus sampling (TACVS) in 36 women of advanced maternal age (≥ 36 years)

  16. 彩色多普勒超声监测生长迟缓胎儿脐动脉血液循环的变化%Color Doppler monitoring the blood flow velocity waveforms of the fetal umbilical artery of intrauterine growth retardation

    Institute of Scientific and Technical Information of China (English)

    黄子健; 潘素慈; 戴常平; 李秋明

    2001-01-01

    目的 应用彩色多普勒超声监测生长迟缓(IUGR)胎儿的脐动脉血液循环。方法 测定130例妊娠20~42周妇女(其中正常49例、IUGR 81例)脐动脉时间平均血流速度(TAMX)、收缩期最大血流速度与舒张末期血流速度的比值(S/D)、搏动指数(PI)、阻力指数(RI)、收缩期最大血流速度(Vmax)与舒张末期血流速度(Vmin)。结果 正常孕妇随孕龄增长,胎盘功能增强,胎儿血液循环日渐丰富。IUGR者则明显障碍,在20周时脐动脉TAMX显著下降,在30周后S/D、 PI及RI显著升高,Vmin显著下降,在35周时Vmax显著下降。出现舒张期血流停止或倒流。结论 彩色多普勒超声可直接测定脐动脉血液循环,能在早期诊断IUGR、判断病情及估计预后。%Objective To study the changes of the fetal circulation in intrauterine growth retardation (IUGR) cases.Methods Color Doppler ultrasound was used to detect blood flow velocity waveforms of the umbilical artery (UmA)in 130 pregnant women at 20~42 weeks′ gestation,of which 49 cases were normal pregnancy and 81 cases were IUGR.The indices included time average maximum (TAMX) ,pulsatility index (PI) , resistance index (RI) ,systolic maximum velocity (Vmax) /diastolic minimum velocity (Vmin) ratio (S/D).Results The results showed that the fetal circulation became abundant gradually with increasing gestational age in normal pregnancy group,but that TAMX was markedly decreased at 20 weeks′ gestation,S/D ratio,PI and RI were markedly elevated,Vmin was markedly decreased at 30 weeks′ gestation,and Vmax was markedly decreased at 35 weeks′ gestation in IUGR group.Conclusions Examining blood flow velocity waveforms of UmA by Color Doppler ultrasound was one of the best method to early diagnose and predict the prognosis of IUGR.

  17. Dual-beam optical coherence tomography system for quantification of flow velocity in capillary phantoms

    Science.gov (United States)

    Daly, S. M.; Silien, C.; Leahy, M. J.

    2012-03-01

    The quantification of (blood) flow velocity within the vasculature has potent diagnostic and prognostic potential. Assessment of flow irregularities in the form of increased permeability (micro haemorrhaging), the presence of avascular areas, or conversely the presence of vessels with enlarged or increased tortuosity in the acral regions of the body may provide a means of non-invasive in vivo assessment. If assessment of dermal flow dynamics were performed in a routine manner, the existence and prevalence of ailments such as diabetes mellitus, psoriatic arthritis and Raynaud's condition may be confirmed prior to clinical suspicion. This may prove advantageous in cases wherein the efficacy of a prescribed treatment is dictated by a prompt diagnosis and to alleviate patient discomfort through early detection. Optical Coherence Tomography (OCT) is an imaging modality which utilises the principle of optical interferometry to distinguish between spatial changes in refractive index within the vasculature and thus formulate a multi-dimensional representation of the structure of the epi- and dermal skin layers. The use of the Doppler functionality has been the predominant force for the quantification of moving particles within media, elucidated via estimation of the phase shift in OCT A-scans. However, the theoretical formulation for the assessment of these phase shifts dictates that the angle between the incident light source and the vessel under question be known a priori; this may be achieved via excisional biopsy of the tissue segment in question, but is counter to the non-invasive premise of the OCT technique. To address the issue of angular dependence, an alternate means of estimating absolute flow velocity is presented. The design and development of a dual-beam (db) system incorporating an optical switch mechanism for signal discrimination of two spatially disparate points enabling quasi-simultaneous multiple specimen scanning is described. A crosscorrelation (c

  18. Relative blood flow changes measured using calibrated frequency-weighted Doppler power at different hematocrit levels.

    Science.gov (United States)

    Wallace, Sean; Logallo, Nicola; Faiz, Kashif W; Lund, Christian; Brucher, Rainer; Russell, David

    2014-04-01

    In theory, the power of a trans-cranial Doppler signal may be used to measure changes in blood flow and vessel diameter in addition to velocity. In this study, a flow index (FI) of relative changes in blood flow was derived from frequency-weighted Doppler power signals. The FI, plotted against velocity, was calibrated to the zero intercept with absent flow to reduce the effects of non-uniform vessel insonation. An area index was also calculated. FIs were compared with actual flow in four silicone tubes of different diameter at increasing flow rates and increasing hematocrit (Hct) in a closed-loop phantom model. FI values were strongly correlated with actual flow, at constant Hct, but varied substantially with changes in Hct. Percentage changes in area indexes, relative to the 4-mm tube, were strongly correlated with tube cross-sectional area. The implications of these results for in vivo use are discussed.

  19. Deterministic Aperiodic Sickle Cell Blood Flows

    Science.gov (United States)

    Atsaves, Louis; Harris, Wesley

    2013-11-01

    In this paper sickle cell blood flow in the capillaries is modeled as a hydrodynamical system. The hydrodynamical system consists of the axisymmetric unsteady, incompressible Navier-Stokes equations and a set of constitutive equations for oxygen transport. Blood cell deformation is not considered in this paper. The hydrodynamical system is reduced to a system of non-linear partial differential equations that are then transformed into a system of three autonomous non-linear ordinary differential equations and a set of algebraic equations. We examine the hydrodynamical system to discern stable/unstable, periodic/nonperiodic, reversible/irreversible properties of the system. The properties of the solutions are driven in large part by the coefficients of the governing system of equations. These coefficients depend on the physiological properties of the sickle cell blood. The chaotic nature of the onset of crisis in sickle cell patients is identified. Research Assistant.

  20. Non-Newtonian model study for blood flow through a tapered artery with a stenosis

    Directory of Open Access Journals (Sweden)

    Noreen Sher Akbar

    2016-03-01

    Full Text Available The blood flow through a tapered artery with a stenosis is analyzed, assuming the blood as tangent hyperbolic fluid model. The resulting nonlinear implicit system of partial differential equations is solved analytically with the help of perturbation method. The expressions for shear stress, velocity, flow rate, wall shear stress and longitudinal impedance are obtained. The variations of power law index m, Weissenberg number We, shape of stenosis n and stenosis size δ are discussed different type of tapered arteries.

  1. Human red blood cells deformed under thermal fluid flow.

    Science.gov (United States)

    Foo, Ji-Jinn; Chan, Vincent; Feng, Zhi-Qin; Liu, Kuo-Kang

    2006-03-01

    The flow-induced mechanical deformation of a human red blood cell (RBC) during thermal transition between room temperature and 42.0 degrees C is interrogated by laser tweezer experiments. Based on the experimental geometry of the deformed RBC, the surface stresses are determined with the aid of computational fluid dynamics simulation. It is found that the RBC is more deformable while heating through 37.0 degrees C to 42.0 degrees C, especially at a higher flow velocity due to a thermal-fluid effect. More importantly, the degree of RBC deformation is irreversible and becomes softer, and finally reaches a plateau (at a uniform flow velocity U > 60 microm s(-1)) after the heat treatment, which is similar to a strain-hardening dominated process. In addition, computational simulated stress is found to be dependent on the progression of thermotropic phase transition. Overall, the current study provides new insights into the highly coupled temperature and hydrodynamic effects on the biomechanical properties of human erythrocyte in a model hydrodynamic flow system.

  2. Effect of Head Rotation on Cerebral Blood Velocity in the Prone Position

    Science.gov (United States)

    Højlund, Jakob; Sandmand, Marie; Sonne, Morten; Mantoni, Teit; Jørgensen, Henrik L.; Belhage, Bo; van Lieshout, Johannes J.; Pott, Frank C.

    2012-01-01

    Background. The prone position is applied to facilitate surgery of the back and to improve oxygenation in the respirator-treated patient. In particular, with positive pressure ventilation the prone position reduces venous return to the heart and in turn cardiac output (CO) with consequences for cerebral blood flow. We tested in healthy subjects the hypothesis that rotating the head in the prone position reduces cerebral blood flow. Methods. Mean arterial blood pressure (MAP), stroke volume (SV), and CO were determined, together with the middle cerebral artery mean blood velocity (MCA Vmean) and jugular vein diameters bilaterally in 22 healthy subjects in the prone position with the head centered, respectively, rotated sideways, with and without positive pressure breathing (10 cmH2O). Results. The prone position reduced SV (by 5.4 ± 1.5%; P < 0.05) and CO (by 2.3 ± 1.9 %), and slightly increased MAP (from 78 ± 3 to 80 ± 2 mmHg) as well as bilateral jugular vein diameters, leaving MCA Vmean unchanged. Positive pressure breathing in the prone position increased MAP (by 3.6 ± 0.8 mmHg) but further reduced SV and CO (by 9.3 ± 1.3 % and 7.2 ± 2.4 % below baseline) while MCA Vmean was maintained. The head-rotated prone position with positive pressure breathing augmented MAP further (87 ± 2 mmHg) but not CO, narrowed both jugular vein diameters, and reduced MCA Vmean (by 8.6 ± 3.2 %). Conclusion. During positive pressure breathing the prone position with sideways rotated head reduces MCA Vmean ~10% in spite of an elevated MAP. Prone positioning with rotated head affects both CBF and cerebrovenous drainage indicating that optimal brain perfusion requires head centering. PMID:22988456

  3. Examples of Vector Velocity Imaging

    DEFF Research Database (Denmark)

    Hansen, Peter M.; Pedersen, Mads M.; Hansen, Kristoffer L.

    2011-01-01

    To measure blood flow velocity in vessels with conventional ultrasound, the velocity is estimated along the direction of the emitted ultrasound wave. It is therefore impossible to obtain accurate information on blood flow velocity and direction, when the angle between blood flow and ultrasound wa...... with a 90° angle on the vessel. Moreover secondary flow in the abdominal aorta is illustrated by scanning on the transversal axis....

  4. Development of quantitative Doppler indices for uteroplacental and fetal blood flow during the third trimester.

    Science.gov (United States)

    Joern, H; Funk, A; Goetz, M; Kuehlwein, H; Klein, A; Fendel, H

    1996-01-01

    The aim of our study was to describe the development of uteroplacental and fetal blood flow during the third trimester. Doppler examination was carried out on 393 uncomplicated pregnancies with uncomplicated term delivery. Using a pulsed color Doppler, we calculated the maximum systolic, mean and maximum end-diastolic velocity after correcting the angle of insonation. Patients under tocolysis or other medication influencing blood flow parameters were excluded from this cross-sectional study. Summarizing the results gained by Doppler ultrasound investigation of the uteroplacental and fetal blood vessels, we created quantiles as quantitative Doppler indices for the maximum systolic, mean (TAMX = time averaged maximum velocity) and maximum end-diastolic velocity. The following conclusions could be drawn: (1) resistance to the blood flow in the maternal portion of the placenta does not change during the third trimester; (2) resistance to the blood flow on the fetal side of the placenta decreases up to week 42 of gestation; (3) cerebral vascular resistance decreases constantly up to gestational week 42; and (4) vascular resistance to the blood flow of the kidney decreases only slightly during the third trimester. This study offers clinically important values for quantitative Doppler flow velocimetry for the first time. We hope that our findings improve the usefulness of Doppler ultrasound as a diagnostic tool in obstetrical management.

  5. Blood flow measurements and clot detection with nearinfrared spectroscopy

    OpenAIRE

    Rossow, MJ; Gatto, R.; D'amico, E.; Mantulin, WW; Gratton, E

    2006-01-01

    Detecting impeded blood flow and locating the clot causing it is a major challenge in neurosurgery. We propose an instrument that uses near-infrared spectroscopy to simultaneously detect clots and measure blood flow. © 2006 Optical Society of America.

  6. A model of blood flow in the mesenteric arterial system

    Directory of Open Access Journals (Sweden)

    Cheng Leo K

    2007-05-01

    Full Text Available Abstract Background There are some early clinical indicators of cardiac ischemia, most notably a change in a person's electrocardiogram. Less well understood, but potentially just as dangerous, is ischemia that develops in the gastrointestinal system. Such ischemia is difficult to diagnose without angiography (an invasive and time-consuming procedure mainly due to the highly unspecific nature of the disease. Understanding how perfusion is affected during ischemic conditions can be a useful clinical tool which can help clinicians during the diagnosis process. As a first step towards this final goal, a computational model of the gastrointestinal system has been developed and used to simulate realistic blood flow during normal conditions. Methods An anatomically and biophysically based model of the major mesenteric arteries has been developed to be used to simulate normal blood flows. The computational mesh used for the simulations has been generated using data from the Visible Human project. The 3D Navier-Stokes equations that govern flow within this mesh have been simplified to an efficient 1D scheme. This scheme, together with a constitutive pressure-radius relationship, has been solved numerically for pressure, vessel radius and velocity for the entire mesenteric arterial network. Results The computational model developed shows close agreement with physiologically realistic geometries other researchers have recorded in vivo. Using this model as a framework, results were analyzed for the four distinct phases of the cardiac cycle – diastole, isovolumic contraction, ejection and isovolumic relaxation. Profiles showing the temporally varying pressure and velocity for a periodic input varying between 10.2 kPa (77 mmHg and 14.6 kPa (110 mmHg at the abdominal aorta are presented. An analytical solution has been developed to model blood flow in tapering vessels and when compared with the numerical solution, showed excellent agreement. Conclusion An

  7. EFFECTS OF VASCULAR ZERO-STRESS STATE ON PULSATILE BLOOD FLOW

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In this paper, blood flow in artery was treated as the flow under equilibrium state (the steady flow under mean pressure) combined with the periodically small pulsatile flow. Based on vascular zero-stress state[1], the pulsatile strains according to the radial and axial displacements of blood vessel were obtained. With the use of Hooke’s law, the pulsatile strains and the corresponding Cauchy stresses were connected, so the corresponding wall motion equations could be established here. By solving the linearized Navier-Stokes equations, the analytic expressions of the blood flow velocities and the vascular displacements could be obtained, and the influence of the circumferential and axial stretch ratio on pulsatile blood flow and vascular motion was discussed in details.

  8. Simulation of blood flow in a small-diameter vascular raft model with a swirl (spiral) flow guider

    Institute of Scientific and Technical Information of China (English)

    ZHANG ZhiGuo; FAN YuBo; DENG XiaoYan; WANG GuiXue; ZHANG He; Robert GUIDOIN

    2008-01-01

    Small-dlameter vascular grafts are in large demand for coronary and peripheral bypass procedures, but present products still fail in long-term clinical application. In the present communication, a new type of small-diameter graft with a swirl flow guider was proposed to improve graft patency rate. Flow pattern in the graft was simulated numerically and compared with that in a conventional graft. The numerical results revealed that the swirl flow guider couldindeed make the blood flow rotate in the new graft. The swirling flow distal to the flow guider significantly altered the flow pattern in the new graft and the ve-locity profiles were re-distributed. Due to the swirling flow, the blood velocity near the vessel wall and wall shear rate were greatly enhanced. We believe that the increased blood velocity near the wall and the wall shear rate can impede the occurrence of acute thrombus formation and intimal hyperplasia, hence can improve the graft patency rate for long-term clinical use.

  9. The hot-film anemometer--a method for blood velocity determination. II. In vivo comparison with the electromagnetic blood flowmeter.

    Science.gov (United States)

    Paulsen, P K

    1980-01-01

    Using a constant temperature hot-film anemometer and an electromagnetic blood flowmeter, volumetric flows and velocity profiles were registered in the pulmonary artery, ascending aorta, abdominal aorta and superior vena cava of mongrel dogs. The anemometer registered in 3 out of 4 dogs in the ascending aorta and in 4 out of 5 dogs in the pulmonary artery. The flow profile in these two vessels was flat with a slight deviation with the highest velocity nearer to the posterior wall. In the abdominal aorta the flow profile was sinusoid and in the superior vena cava irregular. In 22 simultaneous measurements anemometer mean results were 97 +/- 23% (+/- SD) of flowmeter results and peak results correspondingly 113 +/- 23%. None of these differences were significant. It is stressed that both qualitatively and quantitatively hot-film anemometer results are comparable to electromagnetic flowmeter results. However, certain differences have been demonstrated.

  10. Modelling of two-phase flow based on separation of the flow according to velocity

    Energy Technology Data Exchange (ETDEWEB)

    Narumo, T. [VTT Energy, Espoo (Finland). Nuclear Energy

    1997-12-31

    The thesis concentrates on the development work of a physical one-dimensional two-fluid model that is based on Separation of the Flow According to Velocity (SFAV). The conventional way to model one-dimensional two-phase flow is to derive conservation equations for mass, momentum and energy over the regions occupied by the phases. In the SFAV approach, the two-phase mixture is divided into two subflows, with as distinct average velocities as possible, and momentum conservation equations are derived over their domains. Mass and energy conservation are treated equally with the conventional model because they are distributed very accurately according to the phases, but momentum fluctuations follow better the flow velocity. Submodels for non-uniform transverse profile of velocity and density, slip between the phases within each subflow and turbulence between the subflows have been derived. The model system is hyperbolic in any sensible flow conditions over the whole range of void fraction. Thus, it can be solved with accurate numerical methods utilizing the characteristics. The characteristics agree well with the used experimental data on two-phase flow wave phenomena Furthermore, the characteristics of the SFAV model are as well in accordance with their physical counterparts as of the best virtual-mass models that are typically optimized for special flow regimes like bubbly flow. The SFAV model has proved to be applicable in describing two-phase flow physically correctly because both the dynamics and steady-state behaviour of the model has been considered and found to agree well with experimental data This makes the SFAV model especially suitable for the calculation of fast transients, taking place in versatile form e.g. in nuclear reactors. 45 refs. The thesis includes also five previous publications by author.

  11. Glial and neuronal control of brain blood flow

    DEFF Research Database (Denmark)

    Attwell, David; Buchan, Alastair M; Charpak, Serge

    2010-01-01

    Blood flow in the brain is regulated by neurons and astrocytes. Knowledge of how these cells control blood flow is crucial for understanding how neural computation is powered, for interpreting functional imaging scans of brains, and for developing treatments for neurological disorders. It is now...... in our understanding of cerebral blood flow control have important implications for the development of new therapeutic approaches....

  12. The Effect of Doppler Phenomenon on the Speed of Blood Flow

    Directory of Open Access Journals (Sweden)

    Ghaidaa Abdulrahman Khalid

    2012-01-01

    Full Text Available This research studying the phenomenon of Doppler (frequency Doppler as a method through which the direction and speed of the blood cells flows in blood vessels wear measured. This Doppler frequency is relied upon in medicine for measuring the speed of blood flow, because the blood flow is an important concept from the concepts of medicine. It represents the function and efficient of the heart and blood vessels in the body so any defect in this function will appear as a change in the speed of blood flow from the normal value assumed. As this speed changes alot in cases of disease and morbidity of the heart, so in order to identify the effect of changing the Doppler frequency on the speed of blood flow and the relationship of this frequency with the angles of transitions and receptions and the effect of changing the ultrasound transmitted frequencies on the measured velocities .The Doppler ultrasound system has been used which is more efficient and easier to be widely used as a practical application in Al Yarmouk Teaching Hospital on two subjects. The normal had a natural medical history in the blood vessels, and abnormal had carotid artery stenosis. This device will give the flow velocity of blood in the blood vessels which is useful to the examiner, the equation of Doppler as a mathematical model in the research is adopted the measured speed to clarify the amount of change in the frequency (shift in frequency. This speed was measured in five different blood vessels, large arteries (abdominal aorta and carotid artery in the neck and large veins (the inferior vena cava across the abdomen and the external Jugular vein in the neck and capillaries in the hand and fingers. Then using the measured velocities in these vessels the Doppler frequency was calculated from this mathematical model using MATLAB program, was found that as velocity of the blood increases, so does the Doppler frequency and vice versa. The greater the value of the Doppler angle

  13. Magnetic Resonance Flow Velocity and Temperature Mapping of a Shape Memory Polymer Foam Device

    Energy Technology Data Exchange (ETDEWEB)

    Small IV, W; Gjersing, E; Herberg, J L; Wilson, T S; Maitland, D J

    2008-10-29

    Interventional medical devices based on thermally responsive shape memory polymer (SMP) are under development to treat stroke victims. The goals of these catheter-delivered devices include re-establishing blood flow in occluded arteries and preventing aneurysm rupture. Because these devices alter the hemodynamics and dissipate thermal energy during the therapeutic procedure, a first step in the device development process is to investigate fluid velocity and temperature changes following device deployment. A laser-heated SMP foam device was deployed in a simplified in vitro vascular model. Magnetic resonance imaging (MRI) techniques were used to assess the fluid dynamics and thermal changes associated with device deployment. Spatial maps of the steady-state fluid velocity and temperature change inside and outside the laser-heated SMP foam device were acquired. Though non-physiological conditions were used in this initial study, the utility of MRI in the development of a thermally-activated SMP foam device has been demonstrated.

  14. Comparison of reduced models for blood flow using Runge-Kutta discontinuous Galerkin methods

    CERN Document Server

    Puelz, Charles; Canic, Suncica; Rusin, Craig G

    2015-01-01

    Reduced, or one-dimensional blood flow models take the general form of nonlinear hyperbolic systems, but differ greatly in their formulation. One class of models considers the physically conserved quantities of mass and momentum, while another class describes mass and velocity. Further, the averaging process employed in the model derivation requires the specification of the axial velocity profile; this choice differentiates models within each class. Discrepancies among differing models have yet to be investigated. In this paper, we systematically compare several reduced models of blood flow for physiologically relevant vessel parameters, network topology, and boundary data. The models are discretized by a class of Runge-Kutta discontinuous Galerkin methods.

  15. Blood flow in healed and inflamed periodontal tissues of dogs

    Energy Technology Data Exchange (ETDEWEB)

    Hock, J.M.; Kim, S.

    1987-01-01

    The objectives of this study were to determine if increased blood flow associated with gingivitis would decrease following resolution of gingival inflammation in dogs with periodontitis; if increased blood flow in inflamed gingiva was associated with changes in the blood flow of alveolar bone, and if blood flow in gingiva and alveolar bone increased if periodontitis was reactivated by ligating teeth. Regional blood flow was measured in dogs with pre-existing periodontitis, using radioisotope-labelled, plastic microspheres. In the first experiment on 4 adult Beagle dogs, teeth in the left jaws were treated to resolve the periodontitis, while teeth in the right jaws were not treated. Gingival and bone blood flow were measured after 12 wk. Blood flow was significantly (p<0.05) lower in non-inflamed healed gingiva (32.1 +- 2.7 ml/min/100 g) than in inflamed gingiva (46.1 +- 5.3 ml/min/100 g). No differences in the blood flow of the alveolar bone underlying inflamed or non-inflamed gingiva were present. In the second experiment, the right mandibular teeth of 5 dogs were treated to resolve periodontitis while teeth in the other quadrants were ligated for 4, 10 or 12 wk. The duration of ligation did not alter blood flow. Gingival blood flow around ligated maxillary and mandibular teeth was comparable and approximately 54% higher than around non-ligated teeth (p<0.03). The difference in blood flow between gingiva with G.I.>1 and gingiva with G.I.<2 was significant (p<0.04). Blood flow in bone was not altered by changes in the inflammatory status of the overlying gingiva. The findings suggest that changes in blood flow associated with inflammation are reversible and that blood flow alveolar bone is regulated independently of gingival blood flow.

  16. Arc Conductance and Flow Velocity Affected by Transient Recovery Voltage

    Science.gov (United States)

    Fukuoka, Reo; Ishikawa, Yuya; Ono, Seisui; Sato, Ken; Yamamoto, Shinji; Iwao, Toru

    2016-09-01

    Recently, the stable supply of electric power is indispensable. The GCB (Gas Circuit Breaker) can prevent the spread of the fault current. However, it should have the reliability more. Therefore the GCB has been researched for performance improvement of the arc interruption of abnormal fault current without the fail. Therefore, it is important to prevent the breakdown such as the re-ignition and thermal re-ignition of arc after the arc interruption. It is necessary to reduce the arc conductance in order to prevent the re-ignition of arc. The arc conductance is derived from the temperature distribution and the volume of the arc. The temperature distribution of the arc is formed by convection. In this research, the arc conductance and flow velocity affected by transient recovery voltage are elucidated. The flow rate and temperature distribution of the arc is calculated with changing transient recovery voltage. In addition, the arc conductance is calculated in order to know the extinguish arc ability. As a result, when the transient recovery voltage increases, the probability of re-ignition increases. Therefore, the arc temperature and the arc conductance were increased.

  17. Optical Flow Cell for Measuring Size, Velocity and Composition of Flowing Droplets

    Directory of Open Access Journals (Sweden)

    Sammer-ul Hassan

    2017-02-01

    Full Text Available Here an optical flow cell with two light paths is reported that can accurately quantify the size and velocity of droplets flowing through a microchannel. The flow cell can measure the time taken for droplets to pass between and through two conjoined light paths, and thereby is capable of measuring the velocities (0.2–5.45 mm/s and sizes of droplets (length > 0.8 mm. The composition of the droplet can also be accurately quantified via optical absorption measurements. The device has a small footprint and uses low-powered, low-cost components, which make it ideally suited for use in field-deployable and portable analytical devices.

  18. Tracking flow of leukocytes in blood for drug analysis

    Science.gov (United States)

    Basharat, Arslan; Turner, Wesley; Stephens, Gillian; Badillo, Benjamin; Lumpkin, Rick; Andre, Patrick; Perera, Amitha

    2011-03-01

    Modern microscopy techniques allow imaging of circulating blood components under vascular flow conditions. The resulting video sequences provide unique insights into the behavior of blood cells within the vasculature and can be used as a method to monitor and quantitate the recruitment of inflammatory cells at sites of vascular injury/ inflammation and potentially serve as a pharmacodynamic biomarker, helping screen new therapies and individualize dose and combinations of drugs. However, manual analysis of these video sequences is intractable, requiring hours per 400 second video clip. In this paper, we present an automated technique to analyze the behavior and recruitment of human leukocytes in whole blood under physiological conditions of shear through a simple multi-channel fluorescence microscope in real-time. This technique detects and tracks the recruitment of leukocytes to a bioactive surface coated on a flow chamber. Rolling cells (cells which partially bind to the bioactive matrix) are detected counted, and have their velocity measured and graphed. The challenges here include: high cell density, appearance similarity, and low (1Hz) frame rate. Our approach performs frame differencing based motion segmentation, track initialization and online tracking of individual leukocytes.

  19. Measurement of cerebral blood flow using phase contrast magnetic resonance imaging and duplex ultrasonography.

    Science.gov (United States)

    Khan, Muhammad Ayaz; Liu, Jie; Tarumi, Takashi; Lawley, Justin Stevan; Liu, Peiying; Zhu, David C; Lu, Hanzhang; Zhang, Rong

    2017-02-01

    Phase contrast magnetic resonance imaging (PC-MRI) and color-coded duplex ultrasonography (CDUS) are commonly used for measuring cerebral blood flow in the internal carotid (ICA) and vertebral arteries. However, agreement between the two methods has been controversial. Recent development of high spatial and temporal resolution blood vessel wall edge-detection and wall-tracking methods with CDUS increased the accuracy and reliability of blood vessel diameter, hence cerebral blood flow measurement. The aim of this study was to compare the improved CDUS method with 3 T PC-MRI for cerebral blood flow measurements. We found that cerebral blood flow velocity measured in the ICA was lower using PC-MRI than CDUS (left ICA: PC-MRI, 18.0 ± 4.2 vs. CDUS, 25.6 ± 8.6 cm/s; right ICA: PC-MRI, 18.5 ± 4.8 vs. CDUS, 26.6 ± 6.7 cm/s, both p blood flow velocity measured in the left vertebral artery with PC-MRI was also lower than CDUS, but no differences in vertebral artery diameter were observed between the methods. Dynamic changes and/or intrinsic physiological fluctuations may have caused these differences in vessel diameter and velocity measurements between the methods. However, estimation of volumetric cerebral blood flow was similar and correlated between the methods despite the presence of large individual differences. These findings support the use of CDUS for cerebral blood flow measurements in the ICA and vertebral artery.

  20. Skin blood flow changes during apneic spells in preterm infants

    NARCIS (Netherlands)

    Suichies, H.E.; Aarnoudse, J.G.; Okken, A.; Jentink, H.W.; Mul, de F.F.M.; Greve, J.

    1989-01-01

    Changes in skin blood flow during apneic spells were determined in 18 preterm infants using a diode laser Doppler flow meter without light conducting fibres. Heart rate, nasal air flow, impedance pneumography, skin and incubator temperature and laser Doppler skin blood flow were recorded simultaneou

  1. Real-time planar flow velocity measurements using an optical flow algorithm implemented on GPU

    CERN Document Server

    Gautier, N

    2013-01-01

    This paper presents a high speed implementation of an optical flow algorithm which computes planar velocity fields in an experimental flow. Real-time computation of the flow velocity field allows the experimentalist to have instantaneous access to quantitative features of the flow. This can be very useful in many situations: fast evaluation of the performances and characteristics of a new setup, design optimization, easier and faster parametric studies, etc. It can also be a valuable measurement tool for closed-loop flow control experiments where fast estimation of the state of the flow is needed. The algorithm is implemented on a Graphics Processing Unit (GPU). The accuracy of the computation is shown. Computation speed and scalability are highlighted along with guidelines for further improvements. The system architecture is flexible, scalable and can be adapted on the fly in order to process higher resolutions or achieve higher precision. The set-up is applied on a Backward-Facing Step (BFS) flow in a hydro...

  2. Nonlinear interactions in renal blood flow regulation

    DEFF Research Database (Denmark)

    Marsh, Donald J.; Sosnovtseva, Olga; Chon, Ki H.

    2005-01-01

    , identical except for the strength of TGF input, with a third, fixed resistance segment representing prearteriolar vessels. The two arteriolar segments are electrically coupled. The arteriolar, glomerular, and tubular models are linked; TGF modulates arteriolar circumference, which determines vascular...... resistance and glomerular capillary pressure. The model couples TGF input to voltage-gated Ca channels. It predicts autoregulation of GFR and renal blood flow, matches experimental measures of tubular pressure and macula densa NaCl concentration, and predicts TGF-induced oscillations and a faster smaller...

  3. Absolute quantification of myocardial blood flow.

    Science.gov (United States)

    Yoshinaga, Keiichiro; Manabe, Osamu; Tamaki, Nagara

    2016-07-21

    With the increasing availability of positron emission tomography (PET) myocardial perfusion imaging, the absolute quantification of myocardial blood flow (MBF) has become popular in clinical settings. Quantitative MBF provides an important additional diagnostic or prognostic information over conventional visual assessment. The success of MBF quantification using PET/computed tomography (CT) has increased the demand for this quantitative diagnostic approach to be more accessible. In this regard, MBF quantification approaches have been developed using several other diagnostic imaging modalities including single-photon emission computed tomography, CT, and cardiac magnetic resonance. This review will address the clinical aspects of PET MBF quantification and the new approaches to MBF quantification.

  4. Intensive blood pressure control affects cerebral blood flow in type 2 diabetes mellitus patients

    DEFF Research Database (Denmark)

    Kim, Yu-Sok; Davis, Shyrin C A T; Truijen, Jasper;

    2011-01-01

    Type 2 diabetes mellitus is associated with microvascular complications, hypertension, and impaired dynamic cerebral autoregulation. Intensive blood pressure (BP) control in hypertensive type 2 diabetic patients reduces their risk of stroke but may affect cerebral perfusion. Systemic hemodynamic...... variables and transcranial Doppler-determined cerebral blood flow velocity (CBFV), cerebral CO2 responsiveness, and cognitive function were determined after 3 and 6 months of intensive BP control in 17 type 2 diabetic patients with microvascular complications (T2DM+), in 18 diabetic patients without (T2DM......-) microvascular complications, and in 16 nondiabetic hypertensive patients. Cerebrovascular reserve capacity was lower in T2DM+ versus T2DM- and nondiabetic hypertensive patients (4.6±1.1 versus 6.0±1.6 [P

  5. Autoregulation of cerebral blood flow in orthostatic hypotension

    Science.gov (United States)

    Novak, V.; Novak, P.; Spies, J. M.; Low, P. A.

    1998-01-01

    BACKGROUND AND PURPOSE: We sought to evaluate cerebral autoregulation in patients with orthostatic hypotension (OH). METHODS: We studied 21 patients (aged 52 to 78 years) with neurogenic OH during 80 degrees head-up tilt. Blood flow velocities (BFV) from the middle cerebral artery were continuously monitored with transcranial Doppler sonography, as were heart rate, blood pressure (BP), cardiac output, stroke volume, CO2, total peripheral resistance, and cerebrovascular resistance. RESULTS: All OH patients had lower BP (PTPR (P.75) but with a flat slope. An expansion of the "autoregulated" range was seen in some patients. The OH_AF group was characterized by a profound fall in BFV in response to a small reduction in BP (mean deltaBP .75). CONCLUSIONS: The most common patterns of cerebral response to OH are autoregulatory failure with a flat flow-pressure relationship or intact autoregulation with an expanded autoregulated range. The least common pattern is autoregulatory failure with a steep flow-pressure relationship. Patients with patterns 1 and 2 have an enhanced capacity to cope with OH, while those with pattern 3 have reduced capacity.

  6. Capillary pericytes regulate cerebral blood flow in health and disease

    DEFF Research Database (Denmark)

    Hall, Catherine N; Reynell, Clare; Gesslein, Bodil;

    2014-01-01

    Increases in brain blood flow, evoked by neuronal activity, power neural computation and form the basis of BOLD (blood-oxygen-level-dependent) functional imaging. Whether blood flow is controlled solely by arteriole smooth muscle, or also by capillary pericytes, is controversial. We demonstrate...... blood flow, capillaries dilate before arterioles and are estimated to produce 84% of the blood flow increase. In pathology, ischaemia evokes capillary constriction by pericytes. We show that this is followed by pericyte death in rigor, which may irreversibly constrict capillaries and damage the blood......-brain barrier. Thus, pericytes are major regulators of cerebral blood flow and initiators of functional imaging signals. Prevention of pericyte constriction and death may reduce the long-lasting blood flow decrease that damages neurons after stroke....

  7. Space-time correlations of fluctuating velocities in turbulent shear flows.

    Science.gov (United States)

    Zhao, Xin; He, Guo-Wei

    2009-04-01

    Space-time correlations or Eulerian two-point two-time correlations of fluctuating velocities are analytically and numerically investigated in turbulent shear flows. An elliptic model for the space-time correlations in the inertial range is developed from the similarity assumptions on the isocorrelation contours: they share a uniform preference direction and a constant aspect ratio. The similarity assumptions are justified using the Kolmogorov similarity hypotheses and verified using the direct numerical simulation (DNS) of turbulent channel flows. The model relates the space-time correlations to the space correlations via the convection and sweeping characteristic velocities. The analytical expressions for the convection and sweeping velocities are derived from the Navier-Stokes equations for homogeneous turbulent shear flows, where the convection velocity is represented by the mean velocity and the sweeping velocity is the sum of the random sweeping velocity and the shear-induced velocity. This suggests that unlike Taylor's model where the convection velocity is dominating and Kraichnan and Tennekes' model where the random sweeping velocity is dominating, the decorrelation time scales of the space-time correlations in turbulent shear flows are determined by the convection velocity, the random sweeping velocity, and the shear-induced velocity. This model predicts a universal form of the space-time correlations with the two characteristic velocities. The DNS of turbulent channel flows supports the prediction: the correlation functions exhibit a fair good collapse, when plotted against the normalized space and time separations defined by the elliptic model.

  8. Echocardiographic determinants of mitral early flow propagation velocity.

    Science.gov (United States)

    Barbier, Paolo; Grimaldi, Antonio; Alimento, Marina; Berna, Giovanni; Guazzi, Maurizio D

    2002-09-15

    Transmitral color Doppler early diastolic flow propagation velocity (Vp) has been correlated with the left ventricular (LV) relaxation time constant tau in dilated cardiomyopathy and ischemic heart disease. The aim of this study was to investigate the independent influence of LV systolic function and geometry, and of LV relaxation, on Vp in an unselected outpatient population. We studied 30 normal subjects and 130 patients (hypertensive LV hypertrophy, aortic valve stenosis or prosthesis, hypertrophic cardiomyopathy, coronary artery disease, dilated cardiomyopathy, aortic or mitral valve regurgitation). In all, we noninvasively measured LV geometry, mass, systolic function, wall motion dyssynergy, and diastolic function (abnormal relaxation or restrictive LV Doppler filling patterns). The Vp was similar in normal subjects and in patients (51 +/- 14 vs 53 +/- 25 cm/s). In normal subjects, the determinants of Vp at multiple regression analysis were isovolumic relaxation time, 2-dimensional cardiac index, and mitral E-wave velocity-time integral. In all, the main determinants were LV ejection fraction, percent of segmental wall dyssynergy, and isovolumic relaxation time and age. The Vp was highest in hypertrophic (75 +/- 25 cm/s, p <0.05 vs normal subjects) and lowest in dilated (35 +/- 13 cm/s, p = NS) cardiomyopathy. During multivariate analysis of variance, percent of wall dyssynergy (but not diffuse LV hypokinesia) independently reduced Vp (p = 0.02). The latter was not influenced by the LV filling pattern. Thus, in an unselected clinical population, prolonged relaxation per se does not influence Vp if LV systolic dysfunction and/or wall dyssynergy is absent-the latter factors are important independent determinants of Vp, which is determined by multiple factors.

  9. Regional cerebral blood flow in schizophrenics

    Energy Technology Data Exchange (ETDEWEB)

    Uchino, J.; Ohta, Y.; Nakane, Y.; Mori, H.; Hirota, N.; Yonekura, M.

    1987-01-01

    The present study on schizophrenics dealt with the relationship of regional cerebral blood flow (rCBF) to age, disease duration, and treatment length with chlorpromazine hydrochloride (CPZ). Regional cerebral blood flow in 28 cerebral regions of interest was measured by iv injection of /sup 133/X in 54 schizophrenic patients and 39 healthy volunteers. Neither age nor dosage of CPZ significantly influenced rCBF. All patients, including 11 treated for a short period of time (6 months or less), were characterized by having a decreased rCBF over the whole cerebrum. Thirty-four patients treated for a long period of time (2 years or more) had a varied rCBF distribution in the left hemisphere, with the most predominant feature being the decrease in rCBF in the frontal lobe (i.e., hypofrontality); however, there was no linear correlation between rCBF and disease duration. A decreased rCBE in the right occipital region was seen in patients with paranoid schizophrenia, suggesting that manifestations of symptoms may depend on disturbed regions. These results suggest that cerebral dysfunction in schizophrenic patients may not be restricted to the frontal lobe, but cover the whole cerebrum, and that nonuniform dysfunction in various regions of the cerebrum, including the frontal lobe, may be involved in manifestations of symptoms.

  10. Cerebral blood flow tomography with xenon-133

    Energy Technology Data Exchange (ETDEWEB)

    Lassen, N.A.

    1985-10-01

    Cerebral blood flow (CBF) can be measured tomographically by inhalation of Xenon-/sup 133/. The calculation is based on taking a sequence of tomograms during the wash-in and wash-out phase of the tracer. Due to the dynamic nature of the process, a highly sensitive and fast moving single photon emission computed tomograph (SPECT) is required. Two brain-dedicated SPECT systems designed for this purpose are mentioned, and the method is described with special reference to the limitations inherent in the soft energy of the 133Xe primary photons. CBF tomography can be used for a multitude of clinical and investigative purposes. This article discusses in particular its use for the selection of patients with carotid occlusion for extracranial/intracranial bypass surgery, for detection of severe arterial spasm after aneurysm bleeding, and for detection of low flow areas during severe migraine attacks. The use of other tracers for CBF tomography using SPECT is summarized with emphasis on the /sup 99m/Tc chelates that freely pass the intact blood-brain barrier. The highly sensitive brain-dedicated SPECT systems described are a prerequisite for achieving high resolution tomograms with such tracers.

  11. Tissue blood flow mapping using laser technology

    Science.gov (United States)

    Wardell, Karin; Linden, Maria; Nilsson, Gert E.

    1995-03-01

    By the introduction of the laser Doppler perfusion imager (LDPI) the microvascular blood flow in a tissue area can be mapped by sequentially moving a laser beam over the tissue. The measurement is performed without touching the tissue and the captured perfusion values in the peripheral circulation are presented as a color-coded image. In the ordinary LDPI-set-up, 64 X 64 measurement sites cover an area in the range of about 10 - 150 cm2 depending on system settings. With a high resolution modification, recordings can be done on tissue areas as small as 1 cm2. This high resolution option has been assessed in animal models for the mapping of small vessels. To be able to record not only spatial but also temporal perfusion components of tissue blood flow, different local area scans (LAS) have been developed. These include single point recording as well as integration of either 2 X 2, 3 X 3, or 4 X 4 measurement sites. The laser beam is repeatedly moved in a quadratic pattern over the small tissue area of interest and the output value constitutes the average perfusion of all captured values within the actual region. For the evaluation, recordings were performed on healthy volunteers before and after application of a vasodilatating cream on the dorsal side of the hand.

  12. Effect of head-up tilt on cerebral blood flow velocity during general anesthesla in patients with diabetic neuropathy%头高位对糖尿病并发自主神经病变患者全麻下脑血流速度的影响

    Institute of Scientific and Technical Information of China (English)

    王宏伟; 钟泰迪

    2012-01-01

    目的 评价头高位对糖尿病并发自主神经病变患者全麻下脑血流速度的影响.方法 择期行全麻手术患者60例,ASA分级Ⅰ或Ⅱ级,年龄40~60岁,体重52 ~70 kg,按照合并糖尿病情况,将患者分为3组:非糖尿病患者对照组(C组)、无自主神经病变的糖尿病组(D组)和糖尿病并发自主神经病变组(ANS-D组),每组20例.全麻诱导气管插管后,于平卧位(T0)、头高位45.后1.5 min(T1)、3.5 min(T2)、5.5 min(T3)时记录MAP和大脑中动脉血流速度(MBFV).结果 与T0时相比,C组和D组T1,2时MAP,T1时MBFV降低,ANS-D组T1-3时MAP和MBFV降低(P<0.05),各组间比较MAP和MBFV差异无统计学意义(P>0.05).结论 头高位时非糖尿病、无自主神经病变的糖尿病患者和糖尿病并发自主神经病变患者全麻下脑血流速度均降低且无差别.%Objective To investigate the effect of head-up tilt on cerebral blood flow velocity during general anesthesia in patients with diabetic neuropathy.Methods Sixty ASA Ⅰ - Ⅱ patients of both sexes aged 40-60 yr weighing 52-70 kg undergoing general anesthesia were divided into 3 groups according to diseases complicated with diabetes situation ( n =20 each):group Ⅰ normal control the patients did not have diabetes mellitus; group Ⅱ type Ⅱ diabetics without neuropathy and group Ⅲ Ⅱ diabetics with neuropathy.Anesthesia was induced with propofol 2 mg/kg,fentanyl 3 μg/kg and vecuronium 0.1 mg/kg and maintained with 1% sevoflurane.The patients were intubated and mechanically ventilated.PErCO2 was maintained at 35-45 mm Hg.Transcranial doppler (TCD)was used to measure middle cerebral artery blood flow velocity (MBFV).MAP and MBFV were measured and recorded in supine position (baseline) and at 1.5,3.5 and 5.5 min of 45° head-up tilt.Results The 3 groups were comparable with respect to age,body weight,height and M/F sex ratio.MAP and MBFV significantly decreased at 45° head-up tilt as compared with the baseline in all

  13. Measurement of real pulsatile blood flow using X-ray PIV technique with CO2 microbubbles.

    Science.gov (United States)

    Park, Hanwook; Yeom, Eunseop; Seo, Seung-Jun; Lim, Jae-Hong; Lee, Sang-Joon

    2015-03-06

    Synchrotron X-ray imaging technique has been used to investigate biofluid flows in a non-destructive manner. This study aims to investigate the feasibility of the X-ray PIV technique with CO2 microbubbles as flow tracer for measurement of pulsatile blood flows under in vivo conditions. The traceability of CO2 microbubbles in a pulsatile flow was demonstrated through in vitro experiment. A rat extracorporeal bypass loop was used by connecting a tube between the abdominal aorta and jugular vein of a rat to obtain hemodynamic information of actual pulsatile blood flows without changing the hemorheological properties. The decrease in image contrast of the surrounding tissue was also investigated for in vivo applications of the proposed technique. This technique could be used to accurately measure whole velocity field information of real pulsatile blood flows and has strong potential for hemodynamic diagnosis of cardiovascular diseases.

  14. Simulation of blood flow in a small-diameter vascular graft model with a swirl (spiral) flow guider

    Institute of Scientific and Technical Information of China (English)

    Robert; GUIDOIN

    2008-01-01

    Small-diameter vascular grafts are in large demand for coronary and peripheral bypass procedures, but present products still fail in long-term clinical application. In the present communication, a new type of small-diameter graft with a swirl flow guider was proposed to improve graft patency rate. Flow pattern in the graft was simulated numerically and compared with that in a conventional graft. The numerical results revealed that the swirl flow guider could indeed make the blood flow rotate in the new graft. The swirling flow distal to the flow guider significantly altered the flow pattern in the new graft and the ve- locity profiles were re-distributed. Due to the swirling flow, the blood velocity near the vessel wall and wall shear rate were greatly enhanced. We believe that the increased blood velocity near the wall and the wall shear rate can impede the occurrence of acute thrombus formation and intimal hyperplasia, hence can improve the graft patency rate for long-term clinical use.

  15. A Study of A Flow through Small Apertures(2nd Report, Experiments on The Velocity Field)

    OpenAIRE

    福冨, 清; 長谷川, 富市; 中野, 裕二; 鳴海, 敬倫; Hasegawa, Tomiichi; Narumi, Takatsune

    1987-01-01

    The velocity field of an inlet and outlet flow through small orifices was experimentally examined. The velocity along the center line near the orifices was measured with a laser doppler anemometer, stream lines in the whole flow region were photographed, and the following points were clarified : (1) The center line velocities of liquid paraffin agree with the theoretical value of Stokes flow in the region of Reynolds numbers below 10. (2) With distilled water, a diverging angle of the issuing...

  16. Percolation velocity dependence on local concentration in bidisperse granular flows

    Science.gov (United States)

    Jones, Ryan P.; Xiao, Hongyi; Deng, Zhekai; Umbanhowar, Paul B.; Lueptow, Richard M.

    The percolation velocity, up, of granular material in size or density bidisperse mixtures depends on the local concentration, particle size ratio, particle density ratio, and shear rate, γ ˙. Discrete element method computational results were obtained for bounded heap flows with size ratios between 1 and 3 and for density ratios between 1 and 4. The results indicate that small particles percolate downward faster when surrounded by large particles than large particles percolate upward when surrounded by small particles, as was recently observed in shear-box experiments. Likewise, heavy particles percolate downward faster when surrounded by light particles than light particles percolate upward when surrounded by heavy particles. The dependence of up / γ ˙ on local concentration results in larger percolation flux magnitudes at high concentrations of large (or light) particles compared to high concentrations of small (or heavy) particles, while local volumetric flux is conserved. The dependence of up / γ ˙ on local concentration can be incorporated into a continuum model, but the impact on global segregation patterns is usually minimal. Partially funded by Dow Chemical Company and NSF Grant No. CBET-1511450.

  17. Mitral flow propagation velocity in non-sedated healthy cats

    Directory of Open Access Journals (Sweden)

    A.C. Silva

    2014-02-01

    Full Text Available Mitral flow propagation velocity (Vp is an index used to evaluate the left ventricular diastolic function. Its influence on human and small animal cardiopathies has been studied; however there are few reports evaluating this variable in domestic felines. In addition, there is a lack of studies in non-sedated healthy cats. Therefore, the purpose of this study was to establish values for Vp and its correlation with other echocardiographic indexes in non-sedated healthy cats in order to provide new perspectives related to diastolic function in this species. Twenty-six clinically healthy cats were submitted to echocardiography to assess the animals' cardiac conditions. Variables such as age, heart rate (HR, body surface area (BSA, initial (E mitral and late (A mitral ventricular filling waves, isovolumic relaxation time (IVRT and E/IVRT relation were correlated to Vp. No proven relation between any of these variables and Vp was observed in this present study, except for HR and BSA. In the variability analysis, higher values were verified for inter-observer analysis. This study concludes that Vp proved to be an useful index for estimating left ventricular relaxation in non-sedated healthy domestic cats and provides reference ranges for this variable.

  18. Doppler transcraniano convencional em voluntários assintomáticos: variabilidade e valores de referência para parâmetros de fluxo sanguíneo Reference values for measures of blood flow velocities and impedance indexes in healthy individuals through conventional transcranial Doppler

    Directory of Open Access Journals (Sweden)

    Maurício Fregonesi Barbosa

    2006-09-01

    Full Text Available OBJETIVO: Estabelecer valores de referência para medidas de velocidade sanguínea e índices de impedância em indivíduos saudáveis por meio do Doppler transcraniano convencional (DTC e observar suas variações em relação à idade e sexo. MÉTODO: Foram examinados 88 voluntários assintomáticos, sem antecedentes de doença cerebrovascular, cardíaca ou vascular periférica. Os exames de DTC foram realizados pelo mesmo examinador, sendo as artérias cerebrais médias, anteriores e posteriores estudadas por meio da janela temporal e as artérias vertebrais e basilar por meio da janela suboccipital. Foram arquivados os valores de velocidade média (VM, velocidade de pico sistólico (VPS, velocidade diastólica final (VDF e índices de resistência (IR e pulsatilidade (IP de cada segmento arterial examinado. RESULTADOS: Os limites de referência encontrados por nós foram semelhantes aos descritos por outros autores para todos os parâmetros estudados. Houve tendência das velocidades de fluxo diminuírem e dos índices de impedância aumentarem com o avançar da idade. Os valores de velocidade nas mulheres foram superiores aos encontrados em homens. CONCLUSÃO: O DTC se mostrou útil na avaliação hemodinâmica cerebral de nossa população. Os nossos resultados são semelhantes aos de outros estudos, tanto nos valores de referência quanto na sua relação com a idade e o sexo.OBJECTIVE: To establish reference values for measures of blood flow velocities and impedance indexes in healthy individuals through conventional transcranial Doppler (TCD and to observe their variations in relation to the age and sex. METHOD: 88 asymptomatic volunteers were examined without antecedents of cardiac, peripheral or cerebrovascular diseases. The TCD were accomplished by the same examiner. The middle, anterior and posterior cerebral arteries were studied through the temporal acoustic window and the vertebral and basilar arteries through the suboccipital

  19. X-ray PIV measurement of blood flow in deep vessels of a rat: An in vivo feasibility study

    Science.gov (United States)

    Park, Hanwook; Yeom, Eunseop; Lee, Sang Joon

    2016-01-01

    X-ray PIV measurement is a noninvasive approach to measure opaque blood flows. However, it is not easy to measure real pulsatile blood flows in the blood vessels located at deep position of the body, because the surrounding tissues significantly attenuate the contrast of X-ray images. This study investigated the effect of surrounding tissues on X-ray beam attenuation by measuring the velocity fields of blood flows in deep vessels of a live rat. The decrease in image contrast was minimized by employing biocompatible CO2 microbubbles as tracer particles. The maximum measurable velocity of blood flows in the abdominal aorta of a rat model was found through comparative examination between the PIV measurement accuracy and the level of image contrast according to the input flow rate. Furthermore, the feasibility of using X-ray PIV to accurately measure in vivo blood flows was demonstrated by determining the velocity field of blood flows in the inferior vena cava of a rat. This study may serve as a reference in conducting in vivo X-ray PIV measurements of pulsatile blood flows in animal disease models and investigating hemodynamic characteristics and circulatory vascular diseases.

  20. X-ray PIV measurement of blood flow in deep vessels of a rat: An in vivo feasibility study.

    Science.gov (United States)

    Park, Hanwook; Yeom, Eunseop; Lee, Sang Joon

    2016-01-18

    X-ray PIV measurement is a noninvasive approach to measure opaque blood flows. However, it is not easy to measure real pulsatile blood flows in the blood vessels located at deep position of the body, because the surrounding tissues significantly attenuate the contrast of X-ray images. This study investigated the effect of surrounding tissues on X-ray beam attenuation by measuring the velocity fields of blood flows in deep vessels of a live rat. The decrease in image contrast was minimized by employing biocompatible CO2 microbubbles as tracer particles. The maximum measurable velocity of blood flows in the abdominal aorta of a rat model was found through comparative examination between the PIV measurement accuracy and the level of image contrast according to the input flow rate. Furthermore, the feasibility of using X-ray PIV to accurately measure in vivo blood flows was demonstrated by determining the velocity field of blood flows in the inferior vena cava of a rat. This study may serve as a reference in conducting in vivo X-ray PIV measurements of pulsatile blood flows in animal disease models and investigating hemodynamic characteristics and circulatory vascular diseases.

  1. Evaluation of MR angiography and blood flow measurement in abdominal and peripheral arterial occlusive disease

    Energy Technology Data Exchange (ETDEWEB)

    Tabuchi, Kenji [Dokkyo Univ. School of Medicine, Mibu, Tochigi (Japan)

    2000-03-01

    To assess the characteristics of blood flow measurement with MR Angiography (MRA) to evaluate the status of vascular stenoses, two or three dimensional time-of-flight MRA and velocity-encoded cine MR were performed in the 230 segments of 35 patients, with abdominal and peripheral arterial occlusive diseases. In 11 of these 35 patients digital subtraction angiography was additionally underwent, and the stenotic findings was compared with MRA. There were 17 segments in which the velocity could not be measured, because the blood flow exceeded the upper limit of peak-encoded velocity (VENC) which was set at 120 cm/sec. Therefore, it is necessary to set the upper limit of VENC at higher than 120 cm/sec. There were 11 stenotic findings in DSA and 20 stenotic findings in MRA. Pulsatility Index (PI=(max velocity-min. velocity)/average velocity) were used for evaluating the blood flow waveform, and there were significant difference between the 11 stenotic findings of DSA and the others'. In summery, MRA was considered as useful examination to assess the degree of the vascular stenoses in abdominal and peripheral arterial occlusive disease. (author)

  2. Low cerebral blood flow in hypotensive perinatal distress

    DEFF Research Database (Denmark)

    Lou, H C; Lassen, N A; Friis-Hansen, B

    1977-01-01

    was used for the cerebral blood flow measurements. The study confirmed that perinatal distress may be associated with low arterial blood pressure, and it was shown that cerebral blood flow is very low, 20 ml/100 g/min or less, in hypotensive perinatal distress. It is concluded that cerebral ischaemia plays...

  3. Estimation of volume flow in curved tubes based on analytical and computational analysis of axial velocity profiles

    Science.gov (United States)

    Verkaik, A. C.; Beulen, B. W. A. M. M.; Bogaerds, A. C. B.; Rutten, M. C. M.; van de Vosse, F. N.

    2009-02-01

    To monitor biomechanical parameters related to cardiovascular disease, it is necessary to perform correct volume flow estimations of blood flow in arteries based on local blood velocity measurements. In clinical practice, estimates of flow are currently made using a straight-tube assumption, which may lead to inaccuracies since most arteries are curved. Therefore, this study will focus on the effect of curvature on the axial velocity profile for flow in a curved tube in order to find a new volume flow estimation method. The study is restricted to steady flow, enabling the use of analytical methods. First, analytical approximation methods for steady flow in curved tubes at low Dean numbers (Dn) and low curvature ratios (δ) are investigated. From the results a novel volume flow estimation method, the cos θ-method, is derived. Simulations for curved tube flow in the physiological range (1≤Dn≤1000 and 0.01≤δ≤0.16) are performed with a computational fluid dynamics (CFD) model. The asymmetric axial velocity profiles of the analytical approximation methods are compared with the velocity profiles of the CFD model. Next, the cos θ-method is validated and compared with the currently used Poiseuille method by using the CFD results as input. Comparison of the axial velocity profiles of the CFD model with the approximations derived by Topakoglu [J. Math. Mech. 16, 1321 (1967)] and Siggers and Waters [Phys. Fluids 17, 077102 (2005)] shows that the derived velocity profiles agree very well for Dn≤50 and are fair for 50100), no analytical approximation method exists. In the position of the maximum axial velocity, a shift toward the inside of the curve is observed for low Dean numbers, while for high Dean numbers, the position of the maximum velocity is located at the outer curve. When the position of the maximum velocity of the axial velocity profile is given as a function of the Reynolds number, a "zero-shift point" is found at Re=21.3. At this point the shift in

  4. Modeling Cerebral Blood Flow Control During Posture Change from Sitting to Standing

    DEFF Research Database (Denmark)

    Olufsen, Mette; Tran, Hien; Ottesen, Johnny T.

    2004-01-01

    , the heart, and venous valves. We use physiologically based control mechanisms to describe the regulation of cerebral blood velocity and arterial pressure in response to orthostatic hypotension resulting from postural change. Beyond active control mechanisms we also have to include certain passive non......Hypertension, decreased cerebral blood flow, and diminished cerebral blood flow regulation, are among the first signs indicating the presence of cerebral vascular disease. In this paper, we will present a mathematical model that can predict blood flow and pressure during posture change from sitting......-linearities in some of the compliance-pressure and resistance-pressure relationships. Futhermore, an acurate and physiologically based submodel, describing the dynamics of how gravity effects the blood distribution during suspine changes, is included. To justify the fidelity of our mathematical model and control...

  5. Simulation of Blood Flow at Vessel Bifurcation by Lattice Boltzmann Method

    Science.gov (United States)

    Kang, Xiu-Ying; Liu, Da-He; Zhou, Jing; Jin, Yong-Juan

    2005-11-01

    The application of the lattice Boltzmann method to the large vessel bifurcation blood flow is investigated in a wide range of Reynolds numbers. The velocity, shear stress and pressure distributions at the bifurcation are presented in detail. The flow separation zones revealed with increase of Reynolds number are located in the areas of the daughter branches distal to the outer corners of the bifurcation where some deposition of particular blood components might occur to form arteriosclerosis. The results also demonstrate that the lattice Boltzmann method is adaptive to simulating the flow in larger vessels under a high Reynolds number.

  6. The Blood Flow at Arterial Bifurcations Simulated by the Lattice Boltzmann Method

    Institute of Scientific and Technical Information of China (English)

    JI Yu-Pin; KANG Xiu-Ying; LIU Da-He

    2009-01-01

    The Programmed model of non-Newtonian blood flow (the Casson model) at arterial bifurcations is established by the lattice Boltzmann method. The blood flow field under different Reynolds numbers is simulated, and distri-bution of dynamic factors such as flow velocity, shear stress, pressure and shear rate are presented. The existence of the fluid separation zone is analyzed. This provides a basis for further studies of the relationship between hemodynamic factors and pathogenesis, as well as a reference for a better understanding of the pathological changes and location of sediments, and the plague factor in arteries.

  7. [Effect of preoperative administration of Lugol's solution on thyroid blood flow in hyperthyroidism].

    Science.gov (United States)

    Rodier, J F; Janser, J C; Petit, H; Schneegans, O; Ott, G; Kaissling, A; Grob, J C; Velten, M

    1998-01-01

    A study of 50 patients with hyperthyroidism was conducted to evaluate the effect of preoperative administration of Lugol's iodine solution on thyroid blood flow. Highly significant reductions in diameter, time-averaged velocity, and volume flow of the superior thyroid artery were demonstrated after administration of Lugol's solution. The Duplex ultrasound scanning used in this study is a noninvasive, inexpensive, accurate, and reproducible technique suitable for analysis of thyroid blood flow in hyperthyroidism. On the basis of current ultrasonographic results and low postoperative morbidity in patients, Lugol's solution is well tolerated and may be recommended for use before thyroidectomy, especially for diffuse toxic goiters and Graves disease.

  8. A file of red blood cells in tube flow: A three-dimensional numerical study

    Science.gov (United States)

    Ye, Ting; Phan-Thien, Nhan; Khoo, Boo Cheong; Lim, Chwee Teck

    2014-09-01

    The rheology of a file of red blood cells (RBCs) in a tube flow is investigated based on a three-dimensional (3D) computational model using the dissipative particle dynamics (DPD) method. The 3D model consists of a discrete RBC model to describe the RBC deformation, a Morse potential model to characterize the cell-cell interaction, and a DPD model to provide all the relevant information on the suspension flow. Three important features of the suspension flow are simulated and analyzed, (i) the effect of the tube hematocrit, (ii) the effect of the cell spacing, and (iii) the effect of the flow velocity. We first study the cell deformation and the rheology of suspension at different tube hematocrit. The results show that the cell deformation decreases with increasing tube hematocrit, and a good agreement between the simulation and available experiments is found for the discharge hematocrit and relative apparent viscosity of RBC suspension. We then analyze the effect of non-uniform cell spacing, where the cell-cell interaction goes into effect, showing that a non-uniform cell spacing has a slight effect on the cell deformation, and almost has no effect on the rheology of suspension. We finally study the effect of the flow velocity and show that a typical plug-flow velocity profile is observed. The results also show that the cell deformation increases with increasing flow velocity, as expected. The discharge hematocrit also increases, but the relative apparent viscosity decreases, with increasing flow velocity.

  9. Advanced Recording and Preprocessing of Physiological Signals. [data processing equipment for flow measurement of blood flow by ultrasonics

    Science.gov (United States)

    Bentley, P. B.

    1975-01-01

    The measurement of the volume flow-rate of blood in an artery or vein requires both an estimate of the flow velocity and its spatial distribution and the corresponding cross-sectional area. Transcutaneous measurements of these parameters can be performed using ultrasonic techniques that are analogous to the measurement of moving objects by use of a radar. Modern digital data recording and preprocessing methods were applied to the measurement of blood-flow velocity by means of the CW Doppler ultrasonic technique. Only the average flow velocity was measured and no distribution or size information was obtained. Evaluations of current flowmeter design and performance, ultrasonic transducer fabrication methods, and other related items are given. The main thrust was the development of effective data-handling and processing methods by application of modern digital techniques. The evaluation resulted in useful improvements in both the flowmeter instrumentation and the ultrasonic transducers. Effective digital processing algorithms that provided enhanced blood-flow measurement accuracy and sensitivity were developed. Block diagrams illustrative of the equipment setup are included.

  10. Intraoperative cerebral blood flow imaging of rodents

    Science.gov (United States)

    Li, Hangdao; Li, Yao; Yuan, Lu; Wu, Caihong; Lu, Hongyang; Tong, Shanbao

    2014-09-01

    Intraoperative monitoring of cerebral blood flow (CBF) is of interest to neuroscience researchers, which offers the assessment of hemodynamic responses throughout the process of neurosurgery and provides an early biomarker for surgical guidance. However, intraoperative CBF imaging has been challenging due to animal's motion and position change during the surgery. In this paper, we presented a design of an operation bench integrated with laser speckle contrast imager which enables monitoring of the CBF intraoperatively. With a specially designed stereotaxic frame and imager, we were able to monitor the CBF changes in both hemispheres during the rodent surgery. The rotatable design of the operation plate and implementation of online image registration allow the technician to move the animal without disturbing the CBF imaging during surgery. The performance of the system was tested by middle cerebral artery occlusion model of rats.

  11. Scaling of peak flows with constant flow velocity in random self-similar networks

    Science.gov (United States)

    Mantilla, R.; Gupta, V. K.; Troutman, B. M.

    2011-07-01

    A methodology is presented to understand the role of the statistical self-similar topology of real river networks on scaling, or power law, in peak flows for rainfall-runoff events. We created Monte Carlo generated sets of ensembles of 1000 random self-similar networks (RSNs) with geometrically distributed interior and exterior generators having parameters pi and pe, respectively. The parameter values were chosen to replicate the observed topology of real river networks. We calculated flow hydrographs in each of these networks by numerically solving the link-based mass and momentum conservation equation under the assumption of constant flow velocity. From these simulated RSNs and hydrographs, the scaling exponents β and φ characterizing power laws with respect to drainage area, and corresponding to the width functions and flow hydrographs respectively, were estimated. We found that, in general, φ > β, which supports a similar finding first reported for simulations in the river network of the Walnut Gulch basin, Arizona. Theoretical estimation of β and φ in RSNs is a complex open problem. Therefore, using results for a simpler problem associated with the expected width function and expected hydrograph for an ensemble of RSNs, we give heuristic arguments for theoretical derivations of the scaling exponents β(E) and φ(E) that depend on the Horton ratios for stream lengths and areas. These ratios in turn have a known dependence on the parameters of the geometric distributions of RSN generators. Good agreement was found between the analytically conjectured values of β(E) and φ(E) and the values estimated by the simulated ensembles of RSNs and hydrographs. The independence of the scaling exponents φ(E) and φ with respect to the value of flow velocity and runoff intensity implies an interesting connection between unit hydrograph theory and flow dynamics. Our results provide a reference framework to study scaling exponents under more complex scenarios of flow

  12. Mapping blood flow directionality in the human brain.

    Science.gov (United States)

    Park, Sung-Hong; Do, Won-Joon; Choi, Seung Hong; Zhao, Tiejun; Bae, Kyongtae Ty

    2016-07-01

    Diffusion properties of tissue are often expressed on the basis of directional variance, i.e., diffusion tensor imaging. In comparison, common perfusion-weighted imaging such as arterial spin labeling yields perfusion in a scalar quantity. The purpose of this study was to test the feasibility of mapping cerebral blood flow directionality using alternate ascending/descending directional navigation (ALADDIN), a recently-developed arterial spin labeling technique with sensitivity to blood flow directions. ALADDIN was applied along 3 orthogonal directions to assess directional blood flow in a vector form and also along 6 equally-spaced directions to extract blood flow tensor matrix (P) based on a blood flow ellipsoid model. Tensor elements (eigenvalues, eigenvectors, etc) were calculated to investigate characteristics of the blood flow tensor, in comparison with time-of-flight MR angiogram. While the directions of the main eigenvectors were heterogeneous throughout the brain, regional clusters of blood flow directionality were reproducible across subjects. The technique could show heterogeneous blood flow directionality within and around brain tumor, which was different from that of the contralateral normal side. The proposed method is deemed to provide information of blood flow directionality, which has not been demonstrated before. The results warrant further studies to assess changes in the directionality map as a function of scan parameters, to understand the signal sources, to investigate the possibility of mapping local blood perfusion directionality, and to evaluate its usefulness for clinical diagnosis.

  13. Numerical Simulation of Unsteady Blood Flow through Capillary Networks.

    Science.gov (United States)

    Davis, J M; Pozrikidis, C

    2011-08-01

    A numerical method is implemented for computing unsteady blood flow through a branching capillary network. The evolution of the discharge hematocrit along each capillary segment is computed by integrating in time a one-dimensional convection equation using a finite-difference method. The convection velocity is determined by the local and instantaneous effective capillary blood viscosity, while the tube to discharge hematocrit ratio is deduced from available correlations. Boundary conditions for the discharge hematocrit at divergent bifurcations arise from the partitioning law proposed by Klitzman and Johnson involving a dimensionless exponent, q≥1. When q=1, the cells are partitioned in proportion to the flow rate; as q tends to infinity, the cells are channeled into the branch with the highest flow rate. Simulations are performed for a tree-like, perfectly symmetric or randomly perturbed capillary network with m generations. When the tree involves more than a few generations, a supercritical Hopf bifurcation occurs at a critical value of q, yielding spontaneous self-sustained oscillations in the absence of external forcing. A phase diagram in the m-q plane is presented to establish conditions for unsteady flow, and the effect of various geometrical and physical parameters is examined. For a given network tree order, m, oscillations can be induced for a sufficiently high value of q by increasing the apparent intrinsic viscosity, decreasing the ratio of the vessel diameter from one generation to the next, or by decreasing the diameter of the terminal vessels. With other parameters fixed, oscillations are inhibited by increasing m. The results of the continuum model are in excellent agreement with the predictions of a discrete model where the motion of individual cells is followed from inlet to outlet.

  14. The effect of hyperosmotic solutions on the hepatic blood flow

    DEFF Research Database (Denmark)

    Winkler, K; Henriksen, Jens Henrik Sahl; Tygstrup, N

    1993-01-01

    The present study was undertaken in order to measure the effect of hyperosmotic solutions on portal and hepatic blood flow. In five anaesthetized pigs without arterial blood supply to the liver, portal blood flow rate was measured (electromagnetic flowmeter) during 5 min lasting intravenous infus...... for these osmotic effects are not known, but they have to be taken into consideration in studies of the portal and hepatic blood flow.......The present study was undertaken in order to measure the effect of hyperosmotic solutions on portal and hepatic blood flow. In five anaesthetized pigs without arterial blood supply to the liver, portal blood flow rate was measured (electromagnetic flowmeter) during 5 min lasting intravenous...

  15. EFFECT OF ACUPUNCTURE ON BLOOD FLOW OF VERTEBRAL AND BASILAR ARTERIES IN STROKE PATIENTS

    Institute of Scientific and Technical Information of China (English)

    吕建明; 王伟志

    2004-01-01

    Objective: To observe the short-term effect and long-term effect of acupuncture on blood flow of vertebral and basilar arteries in stroke patients.Methods: A total of 58 stroke patients (34 males and 24 females) were agreed to participate in this study, and changes of blood flow of the vertebral and basilar arteries were detected after one week's and 45 days' continuous acupuncture treatment by using a Doppler's ultrasonic diagnosis apparatus.Bilateral Fengchi (GB 20), Wangu (GB 12), Tianzhu (BL 10), etc.were punctured and stimulated with small amplitude, high frequency and twirling-reinforcing method for 3 min.The treatment was conducted once daily.Results: Following one week's and 45 days' acupuncture treatment, diastolic velocity (DV), systolic velocity (SV) and mean velocity (MV) of the basilar artery increased significantly in comparison with pre-treatment (P0.05).Results indicated that acupuncture treatment could effectively improve blood supply of the basilar artery and regulate the uneven blood flow of the bilateral vertebral arteries.Conclusion: Acupuncture treatment can raise blood flow of the brain in stroke patients.

  16. Cerebral blood flow simulations in realistic geometries

    Directory of Open Access Journals (Sweden)

    Szopos Marcela

    2012-04-01

    Full Text Available The aim of this work is to perform the computation of the blood flow in all the cerebral network, obtained from medical images as angiographies. We use free finite elements codes as FreeFEM++. We first test the code on analytical solutions in simplified geometries. Then, we study the influence of boundary conditions on the flow and we finally perform first computations on realistic meshes. L’objectif est ici de simuler l’écoulement sanguin dans tout le réseau cérébral (artériel et veineux obtenu à partir d’angiographies cérébrales 3D à l’aide de logiciels d’éléments finis libres, comme FreeFEM++. Nous menons d’abord une étude détaillée des résultats sur des solutions analytiques et l’influence des conditions limites à imposer dans des géométries simplifiées avant de travailler sur les maillages réalistes.

  17. Dynamic Effect of Rolling Massage on Blood Flow

    Institute of Scientific and Technical Information of China (English)

    CHEN Yan-Yan; YI Hou-Hui; LI Hua-Bing; FANG Hai-Ping

    2009-01-01

    The Chinese traditional medical massage has been used as a natural therapy to eliminate some diseases.Here, the effect of the rolling massage frequency to the blood flow in the blood vessels under the rolling massage manipulation is studied by the lattice Boltzmann simulation.The simulation results show that when the frequency is smaller than or comparable to the putsatile frequency of the blood flow, the effect on the blood flux by the rolling massage is small.On the contrast, if the frequency is twice or more times of the putsatile frequency of the blood flow, the blood flux is greatly enhanced and increases linearly with respect to the frequency.Similar behavior has also been observed on the shear stress on the blood vessel waits.The result is helpful for understanding that the rolling massage has the function of promoting the blood circulation and removing the blood stasis.

  18. Dynamic Effect of Rolling Massage on Blood Flow

    Science.gov (United States)

    Chen, Yan-Yan; Yi, Hou-Hui; Li, Hua-Bing; Fang, Hai-Ping

    2009-02-01

    The Chinese traditional medical massage has been used as a natural therapy to eliminate some diseases. Here, the effect of the rolling massage frequency to the blood flow in the blood vessels under the rolling massage manipulation is studied by the lattice Boltzmann simulation. The simulation results show that when the frequency is smaller than or comparable to the pulsatile frequency of the blood flow, the effect on the blood flux by the rolling massage is small. On the contrast, if the frequency is twice or more times of the pulsatile frequency of the blood flow, the blood flux is greatly enhanced and increases linearly with respect to the frequency. Similar behavior has also been observed on the shear stress on the blood vessel walls. The result is helpful for understanding that the rolling massage has the function of promoting the blood circulation and removing the blood stasis.

  19. Multiscale modeling of blood flow: from single cells to blood rheology.

    Science.gov (United States)

    Fedosov, Dmitry A; Noguchi, Hiroshi; Gompper, Gerhard

    2014-04-01

    Mesoscale simulations of blood flow, where the red blood cells are described as deformable closed shells with a membrane characterized by bending rigidity and stretching elasticity, have made much progress in recent years to predict the flow behavior of blood cells and other components in various flows. To numerically investigate blood flow and blood-related processes in complex geometries, a highly efficient simulation technique for the plasma and solutes is essential. In this review, we focus on the behavior of single and several cells in shear and microcapillary flows, the shear-thinning behavior of blood and its relation to the blood cell structure and interactions, margination of white blood cells and platelets, and modeling hematologic diseases and disorders. Comparisons of the simulation predictions with existing experimental results are made whenever possible, and generally very satisfactory agreement is obtained.

  20. EFFECT OF INCREASED WHOLE-BLOOD VISCOSITY ON REGIONAL BLOOD FLOWS IN CHRONICALLY HYPOXEMIC LAMBS

    NARCIS (Netherlands)

    DALINGHAUS, M; KNOESTER, H; GRATAMA, JWC; VANDERMEER, J; ZIJLSTRA, WG; KUIPERS, JRG

    1994-01-01

    In chronic hypoxemia blood flow and oxygen supply to vital organs are maintained, but to nonvital organs they are decreased. We measured organ blood flows (microspheres) and whole blood viscosity in 10 chronically hypoxemic lambs, with an atrial septal defect and pulmonary stenosis, and in 8 control

  1. Observer-based Controller For Microrobot in Pulsatile Blood Flow

    OpenAIRE

    Sadelli, Lounis; Fruchard, Matthieu; Ferreira, Antoine

    2014-01-01

    International audience; We propose an observer-based controller for a magnetic microrobot immersed in the human vasculature. The drag force depends on the pulsatile blood velocity and specially acts on the microrobot dynamics. In the design of advanced control laws, the blood velocity is usually assumed to be known or set to a constant mean value to achieve the control objectives, whereas the sole robot position is measured. We prove the stability of the proposed observer-based controller com...

  2. Near Continuum Velocity and Temperature Coupled Compressible Boundary Layer Flow over a Flat Plate

    Science.gov (United States)

    He, Xin; Cai, Chunpei

    2017-04-01

    The problem of a compressible gas flows over a flat plate with the velocity-slip and temperature-jump boundary conditions are being studied. The standard single- shooting method is applied to obtain the exact solutions for velocity and temperature profiles when the momentum and energy equations are weakly coupled. A double-shooting method is applied if these two equations are closely coupled. If the temperature affects the velocity directly, more significant velocity slip happens at locations closer to the plate's leading edge, and inflections on the velocity profiles appear, indicating flows may become unstable. As a consequence, the temperature-jump and velocity-slip boundary conditions may trigger earlier flow transitions from a laminar to a turbulent flow state.

  3. A Raman anemometer for component-selective velocity measurements of particles in a flow

    NARCIS (Netherlands)

    Florisson, O.; Mul, de F.F.M.; Winter, de H.G.

    1981-01-01

    An anemometer for the measurement of the velocity of particles of different components in a flow, separate and apart from that of the flow itself, is described. As a component-selective mechanism Raman scattering is used. The velocity is measured by relating the autocorrelated scattering signal to t

  4. Laser transit anemometer measurements of a JANNAF nozzle base velocity flow field

    Science.gov (United States)

    Hunter, William W., Jr.; Russ, C. E., Jr.; Clemmons, J. I., Jr.

    1990-01-01

    Velocity flow fields of a nozzle jet exhausting into a supersonic flow were surveyed. The measurements were obtained with a laser transit anemometer (LTA) system in the time domain with a correlation instrument. The LTA data is transformed into the velocity domain to remove the error that occurs when the data is analyzed in the time domain. The final data is shown in velocity vector plots for positions upstream, downstream, and in the exhaust plane of the jet nozzle.

  5. Cluster headache: transcranial Doppler ultrasound and regional cerebral blood flow studies

    Energy Technology Data Exchange (ETDEWEB)

    Dahl, A.; Russell, D.; Nyberg-Hansen, R.; Rootwelt, K. (Rikshospitalet, Oslo (Norway))

    1990-04-01

    Transcranial Doppler and rCBF examinations were carried out in 25 cluster headache patients. Spontaneous glyceryl trinitrate (nitroglycerin) provoked attacks were accompanied by a bilateral decrease in middle cerebral artery blood flow velocities. This decrease was more pronounced on the symptomatic side, but the difference did not reach statistical significance. Mean hemispheric blood flow and rCBF were within normal limits during provoked attacks and similar to those found when patients were attack-free. During cluster periods middle cerebral artery velocities were significantly higher on the symptomatic side. Glyceryl trinitrate caused a bilateral middle cerebral artery velocity decrease which was significantly greater on the symptomatic side. Attacks provoked by glyceryl trinitrate appeared to begin when the vasodilatory effect of this substance was received. 17 refs., 2 figs., 5 tabs.

  6. Calculating the respiratory flow velocity fluctuations in pericardial diseases.

    Science.gov (United States)

    Siniorakis, Eftychios; Arvanitakis, Spyridon; Zarreas, Elias; Barlagiannis, Dimitris; Skandalakis, Nikos; Karidis, Constantinos

    2010-11-01

    An excessive respiratory fluctuation (RTFV) in transmitral early diastolic velocity E is a pivotal Doppler echocardiographic sign of haemodynamic compromise, in constrictive pericardial diseases. RTFV is expressed as a percentage and 25% is considered a threshold value. Unfortunately there is no unanimity in calculating RTFV. Sometimes it is expressed as a percentage of expiratory E velocity, while others of inspiratory E velocity. This disparity has led to gross misinterpretations in medical literature. Here we emphasize the importance of a rational procedure calculating RTFV and we propose the appropriate mathematical model.

  7. Prediction of Anomalous Blood Viscosity in Confined Shear Flow

    Science.gov (United States)

    Thiébaud, Marine; Shen, Zaiyi; Harting, Jens; Misbah, Chaouqi

    2014-06-01

    Red blood cells play a major role in body metabolism by supplying oxygen from the microvasculature to different organs and tissues. Understanding blood flow properties in microcirculation is an essential step towards elucidating fundamental and practical issues. Numerical simulations of a blood model under a confined linear shear flow reveal that confinement markedly modifies the properties of blood flow. A nontrivial spatiotemporal organization of blood elements is shown to trigger hitherto unrevealed flow properties regarding the viscosity η, namely ample oscillations of its normalized value [η]=(η-η0)/(η0ϕ) as a function of hematocrit ϕ (η0=solvent viscosity). A scaling law for the viscosity as a function of hematocrit and confinement is proposed. This finding can contribute to the conception of new strategies to efficiently detect blood disorders, via in vitro diagnosis based on confined blood rheology. It also constitutes a contribution for a fundamental understanding of rheology of confined complex fluids.

  8. Unilateral fetal-type circle of Willis anatomy causes right-left asymmetry in cerebral blood flow with pseudo-continuous arterial spin labeling: A limitation of arterial spin labeling-based cerebral blood flow measurements?

    Science.gov (United States)

    Barkeij Wolf, Jurriaan Jh; Foster-Dingley, Jessica C; Moonen, Justine Ef; van Osch, Matthias Jp; de Craen, Anton Jm; de Ruijter, Wouter; van der Mast, Roos C; van der Grond, Jeroen

    2016-09-01

    The accuracy of cerebral blood flow measurements using pseudo-continuous arterial spin labeling can be affected by vascular factors other than cerebral blood flow, such as flow velocity and arterial transit time. We aimed to elucidate the effects of common variations in vascular anatomy of the circle of Willis on pseudo-continuous arterial spin labeling signal. In addition, we investigated whether possible differences in pseudo-continuous arterial spin labeling signal could be mediated by differences in flow velocities. Two hundred and three elderly participants underwent magnetic resonance angiography of the circle of Willis and pseudo-continuous arterial spin labeling scans. Mean pseudo-continuous arterial spin labeling-cerebral blood flow signal was calculated for the gray matter of the main cerebral flow territories. Mean cerebellar gray matter pseudo-continuous arterial spin labeling-cerebral blood flow was significantly lower in subjects having a posterior fetal circle of Willis variant with an absent P1 segment. The posterior fetal circle of Willis variants also showed a significantly higher pseudo-continuous arterial spin labeling-cerebral blood flow signal in the ipsilateral flow territory of the posterior cerebral artery. Flow velocity in the basilar artery was significantly lower in these posterior fetal circle of Willis variants. This study indicates that pseudo-continuous arterial spin labeling measurements underestimate cerebral blood flow in the posterior flow territories and cerebellum of subjects with a highly prevalent variation in circle of Willis morphology. Additionally, our data suggest that this effect is mediated by concomitant differences in flow velocity between the supplying arteries.

  9. Effect of 0.2 % Brimonidine onRetinal Blood Flow

    Institute of Scientific and Technical Information of China (English)

    Minbin Yu; Yang Li; Xing Liu; Yunlan Ling; Xiaoping Zheng

    2001-01-01

    Purpose: To analyze the effect of 0.2 % brimonidine eye drops on retinal blood flow of patients with glaucoma. Methods: Using self-control method and Heidelberg Retina Flowmeter (HRF), we examined the volume, flow and velocity of the superior nasal and temporal, the inferior nasal and temporal artery of retina at baseline and 2 hours after single instillation of 0.2% brimonidine. Results: There were no significant changes in volume, fio~ and velocity of four vessels betore and after the administration of 0.2 % brimonidine. Conclusions: There are no significant ocular haemodvnamic benefits associated with Brimonidine therapy to the glaucoma patients. Eye Science 2001; 17:42 ~ 45.

  10. A mathematical model of turbulence in flows with uniform stationary velocity gradients

    Science.gov (United States)

    Zak, M. A.

    1982-01-01

    Certain cases of turbulence as a postinstability state of a fluid in motion modeled by the introduction of multivalued velocity fields are examined. The turbulence is regarded as occurring in the form of random pulsations which grow until the external energy input in the average flow is balanced by the dissipated energy of pulsations by means of turbulent friction. Closed form analytic solutions are shown to be possible when the considered velocity fields, the pulsation velocity and the fluid velocity, are decoupled.

  11. Laser Doppler measurement of relative blood velocity in the human optic nerve head.

    Science.gov (United States)

    Riva, C E; Grunwald, J E; Sinclair, S H

    1982-02-01

    The Doppler shift frequency spectrum (DSFS) of laser light scattered from red blood cells (RBCs) moving in the microcirculation of the optic nerve head has been recorded in normal volunteers by means of a fundus camera laser Doppler velocimeter. The width of the DSFS, which varies in proportion to the speed of the RBCs, has been characterized by a parameter alpha. With the use of a model for the scattering of light by tissue and RBCs and for the RBC velocity distribution, values of alpha recorded at normal intraocular pressure (IOP) suggest that the RBCs that contribute to the Doppler signal are flowing in capillaries. The parameter alpha was found to vary markedly with the IOP and with the phase of the ocular pressure pulse at elevated IOP. The return of the speed of RBCs toward normal, which is observed after a step increase of IOP above normal and after a step decrease below normal, has been attributed to an autoregulatory response of the optic nerve circulation.

  12. Cerebellar blood flow in methylmercury poisoning (Minamata disease)

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, K.; Korogi, Y.; Tomiguchi, S.; Takahashi, M. [Dept. of Radiology, Kumamoto University School of Medicine (Japan); Okajima, T. [Dept. of Neurology, Johnan Hospital, Maihara, Johnan-mochi (Japan); Sato, H. [Dept. of Neurology, Minamata City General Hospital and Medical Centre (Japan)

    2001-04-01

    We looked at regional cerebellar blood flow in patients with Minamata disease (MD) using technetium-99 m ethyl cysteinate dimer (99m-Tc-ECD). We carried out single-photon emission computed tomography (SPECT) on 15 patients with MD (eight men, seven women, aged 51-78 years, mean 70.5 years) and 11 control subjects (eight men, three women, aged 62-80 years, mean 72.5 years). Regional blood flow was measured in the superior, middle, and inferior portions of the cerebellar hemispheres, and the frontal, temporal and occipital cerebral lobes. The degree of cerebellar atrophy was assessed on MRI. There were significant differences in regional blood flow in all parts of the cerebellum between patients and control, but no significant decrease was observed in the cerebrum. Blood flow was lower in the inferior cerebellum than in the other parts. Even in patients without cerebellar atrophy, flow was significantly decreased regional blood flow in the inferior part. (orig.)

  13. Cerebellar blood flow in methylmercury poisoning (Minamata disease).

    Science.gov (United States)

    Itoh, K; Korogi, Y; Tomiguchi, S; Takahashi, M; Okajima, T; Sato, H

    2001-04-01

    We looked at regional cerebellar blood flow in patients with Minamata disease (MD) using technetium-99m ethyl cysteinate dimer (99m-Tc-ECD). We carried out single-photon emission computed tomography (SPECT) on 15 patients with MD (eight men, seven women, aged 51-78 years, mean 70.5 years) and 11 control subjects (eight men, three women, aged 62-80 years, mean 72.5 years). Regional blood flow was measured in the superior, middle, and inferior portions of the cerebellar hemispheres, and the frontal, temporal and occipital cerebral lobes. The degree of cerebellar atrophy was assessed on MRI. There were significant differences in regional blood flow in all parts of the cerebellum between patients and control, but no significant decrease was observed in the cerebrum. Blood flow was lower in the inferior cerebellum than in the other parts. Even in patients without cerebellar atrophy, flow was significantly decreased regional blood flow in the inferior part.

  14. CFD simulation of blood flow inside the corkscrew collaterals of the Buerger’s disease

    Directory of Open Access Journals (Sweden)

    Alireza Sharifi

    2016-03-01

    Results: The local velocity patterns, pressure and kinematic viscosity distributions in different segments of the corkscrew collateral artery was demonstrated and discussed for the first time for this kind of artery. The effects of non-Newtonian consideration for the blood viscosity behavior were investigated in different segments of the artery. Moreover, the variations of the blood flow patterns along the artery were investigated in details for each segment. Conclusion: It was found that the flow patterns were affected by the complex geometry of this artery in such a way that it could lead to the presence of sites that were prone to the accumulation of the flowing particles in blood like nicotine. Furthermore, due to the existence of many successive bends in this artery, the variations of kinematic viscosity along this artery were significant, therefore the non-Newtonian behavior of the blood viscosity must be considered.

  15. Influence of slip velocity in Herschel-Bulkley fluid flow between parallel plates - A mathematical study

    Energy Technology Data Exchange (ETDEWEB)

    Sankar, D. S. [Universiti Teknologi Brunei, Bandar Seri Begawan (Brunei Darussalam); Lee, U Sik [Inha University, Incheon (Korea, Republic of)

    2016-07-15

    This theoretical study investigates three types of basic flows of viscous incompressible Herschel-Bulkley fluid such as (i) plane Couette flow, (ii) Poiseuille flow and (iii) generalized Couette flow with slip velocity at the boundary. The analytic solutions to the nonlinear boundary value problems have been obtained. The effects of various physical parameters on the velocity, flow rate, wall shear stress and frictional resistance to flow are analyzed through appropriate graphs. It is observed that in plane Poiseuille flow and generalized Couette flow, the velocity and flow rate of the fluid increase considerably with the increase of the slip parameter, power law index, pressure gradient. The fluid velocity is significantly higher in plane Poiseuille flow than in plane Couette flow. The wall shear stress and frictional resistance to flow decrease considerably with the increase of the power law index and increase significantly with the increase of the yield stress of the fluid. The wall shear stress and frictional resistance to flow are considerably higher in plane Poiseuille flow than in generalized Couette flow.

  16. Study on relationship between perifollicular blood flow and in vitro fertilization-embryo transfer

    Institute of Scientific and Technical Information of China (English)

    Yan Zhang; Jing Yang; Wangming Xu

    2008-01-01

    Objective: To study the relationship between perifoUicular blood flow and follicule development, oocyte maturing rate, fertilizing rate, cleaving rate, embryo quality and the outcomes of embryo transfer. Methods: The samples were selected from 66 suffers who underwent in vitro fertilization(IVF)or intracytoplasmic sperm injection(ICSI). Eeach patients' perifollicular blood flow(diameter≥12mm )was estimated on the day of human chorionic gonadotropin(HCG)administration. Results:Among 66 cycles, 26(39.4%) cycles resulted in pregnancy, perifollicular blood flow resistance index(Rl), peak systolic velocity/end diastasis velocity(S/D) of non-preg-nant group was significantly higher than that of the pregnant group (P < 0.004). When RI<0.49, the pregnancy rates, fecundation rates, fertilization rates, metaphase numbers for the of second meiosis oocytes increased evidently(P<0.05), but there were no statistical difference in gonadotropin dosage, cycle frequency, infertility years, ages, estradiol(E2)on the day of HCG administration,numbers of oocyet retrieved and high-quality embryo rates (P > 0.05 ). There were no statistical difference between non-pregnant group and pregnant group in S and D (P>0.05). There was no correlation between periFollicular blood flow RI and follicular diameter by linear regression analysis. Conclusion:Our study shows that perifollicular blood flow RI and S/D are effective indices of predicting the pregnancy outcome of IVF-ET.

  17. Mathematical modelling of blood flow through a tapered overlapping stenosed artery with variable viscosity

    CERN Document Server

    Shit, G C; Sinha, A

    2012-01-01

    This paper presents a theoretical study of blood flow through a tapered and overlapping stenosed artery under the action of an externally applied magnetic field. The fluid (blood) medium is assumed to be porous in nature. The variable viscosity of blood depending on hematocrit (percentage volume of erythrocytes) is taken into account in order to improve resemblance to the real situation. The governing equation for laminar, incompressible and Newtonian fluid subject to the boundary conditions is solved by using a well known Frobenius method. The analytical expressions for velocity component, volumetric flow rate, wall shear stress and pressure gradient are obtained. The numerical values are extracted from these analytical expressions and are presented graphically. It is observed that the influence of hematocrit, magnetic field and the shape of artery have important impact on the velocity profile, pressure gradient and wall shear stress. Moreover, the effect of primary stenosis on the secondary one has been sig...

  18. Subcutaneous blood flow during insulin-induced hypoglycaemia

    DEFF Research Database (Denmark)

    Hilsted, J; Madsbad, S; Sestoft, L

    1982-01-01

    Subcutaneous blood flow was measured preceding insulin-induced hypoglycaemia, at the onset of hypoglycaemic symptoms and 2 h later in juvenile diabetics with and without autonomic neuropathy and in normal males. In all groups subcutaneous blood flow decreased at the onset of hypoglycaemic symptoms...... compared with pre-hypoglycaemic flow. Two hours after onset of hypoglycaemic symptoms, subcutaneous blood flow was still significantly decreased compared with pre-hypoglycaemic flow. In normal subjects local nerve blockade had no effect on blood flow changes during hypoglycaemia, whereas local alpha......-receptor blockade abolished the vasoconstrictor response. We suggest that circulating catecholamines stimulating vascular alpha-receptors are probably responsible for flow reduction in the subcutaneous tissue during hypoglycaemia....

  19. Differences in superior thyroid artery and inferior thyroid artery blood flow spectrum parameters in subacute thyroiditis

    Institute of Scientific and Technical Information of China (English)

    Jin-Bo Li

    2016-01-01

    Objective:To study the differences in superior thyroid artery and inferior thyroid artery blood flow spectrum parameters in subacute thyroiditis. Methods:A Total of 40 cases of patients with subacute thyroiditis and 40 cases of healthy volunteers were selected for study and enrolled in pathology group and control group respectively, color Doppler ultrasonography was conducted to detect peak blood flow velocities (Vmax) of superior thyroid artery and inferior thyroid artery as well as resistance index (RI), and serum was collected to detect thyroid hormone contents, infection indexes and oxidative stress indexes. Results:Peak blood flow velocities Vmax of superior thyroid artery and inferior thyroid artery of pathology group were significantly higher than those of control group, and resistance index RI was not different from that of control group;FT3, FT4, TT3, TT4, ESR, CRP, PCT and MDA of pathology group were significantly higher than those of control group, and SOD and TAOC were significantly lower than those of control group;Vmax of superior thyroid artery and inferior thyroid artery were positively correlated with FT3, FT4, TT3, TT4, ESR, CRP, PCT and MDA, and negatively correlated with SOD and TAOC. Conclusion:Peak blood flow velocities (Vmax) of superior thyroid artery and inferior thyroid artery in subacute thyroiditis are significantly accelerated, Vmax has good consistency with thyroid hormone contents, infection indexes and oxidative stress indexes, and it can accurately assess the severity of the disease.

  20. Pulsatile blood flow in Abdominal Aortic Aneurysms

    Science.gov (United States)

    Salsac, Anne-Virginie; Lasheras, Juan C.; Singel, Soeren; Varga, Chris

    2001-11-01

    We discuss the results of combined in-vitro laboratory measurements and clinical observations aimed at determining the effect that the unsteady wall shear stresses and the pressure may have on the growth and eventual rupturing of an Abdominal Aortic Aneurysm (AAA), a permanent bulging-like dilatation occurring near the aortic bifurcation. In recent years, new non-invasive techniques, such as stenting, have been used to treat these AAAs. However, the development of these implants, aimed at stopping the growth of the aneurysm, has been hampered by the lack of understanding of the effect that the hemodynamic forces have on the growth mechanism. Since current in-vivo measuring techniques lack the precision and the necessary resolution, we have performed measurements of the pressure and shear stresses in laboratory models. The models of the AAA were obtained from high resolution three-dimensional CAT/SCANS performed in patients at early stages of the disease. Preliminary DPIV measurements show that the pulsatile blood flow discharging into the cavity of the aneurysm leads to large spikes of pressure and wall shear stresses near and around its distal end, indicating a possible correlation between the regions of high wall shear stresses and the observed location of the growth of the aneurysm.

  1. Synthetic Capillaries to Control Microscopic Blood Flow

    Science.gov (United States)

    Sarveswaran, K.; Kurz, V.; Dong, Z.; Tanaka, T.; Penny, S.; Timp, G.

    2016-02-01

    Capillaries pervade human physiology. The mean intercapillary distance is only about 100 μm in human tissue, which indicates the extent of nutrient diffusion. In engineered tissue the lack of capillaries, along with the associated perfusion, is problematic because it leads to hypoxic stress and necrosis. However, a capillary is not easy to engineer due to its complex cytoarchitecture. Here, it is shown that it is possible to create in vitro, in about 30 min, a tubular microenvironment with an elastic modulus and porosity consistent with human tissue that functionally mimicks a bona fide capillary using “live cell lithography”(LCL) to control the type and position of cells on a composite hydrogel scaffold. Furthermore, it is established that these constructs support the forces associated with blood flow, and produce nutrient gradients similar to those measured in vivo. With LCL, capillaries can be constructed with single cell precision—no other method for tissue engineering offers such precision. Since the time required for assembly scales with the number of cells, this method is likely to be adapted first to create minimal functional units of human tissue that constitute organs, consisting of a heterogeneous population of 100–1000 cells, organized hierarchically to express a predictable function.

  2. Blood Flow Restricted Exercise and Vascular Function

    Directory of Open Access Journals (Sweden)

    Masahiro Horiuchi

    2012-01-01

    Full Text Available It is established that regular aerobic training improves vascular function, for example, endothelium-dependent vasodilatation and arterial stiffness or compliance and thereby constitutes a preventative measure against cardiovascular disease. In contrast, high-intensity resistance training impairs vascular function, while the influence of moderate-intensity resistance training on vascular function is still controversial. However, aerobic training is insufficient to inhibit loss in muscular strength with advancing age; thus, resistance training is recommended to prevent sarcopenia. Recently, several lines of study have provided compelling data showing that exercise and training with blood flow restriction (BFR leads to muscle hypertrophy and strength increase. As such, BFR training might be a novel means of overcoming the contradiction between aerobic and high-intensity resistance training. Although it is not enough evidence to obtain consensus about impact of BFR training on vascular function, available evidences suggested that BFR training did not change coagulation factors and arterial compliance though with inconsistence results in endothelial function. This paper is a review of the literature on the impact of BFR exercise and training on vascular function, such as endothelial function, arterial compliance, or other potential factors in comparison with those of aerobic and resistance training.

  3. RESEARCH ON METHOD TO CALCULATE VELOCITIES OF SOLID PHASE AND LIQUID PHASE IN DEBRIS FLOW

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Velocities of solid phase and liquid phase in debris flow are one key problem to research on impact and abrasion mechanism of banks and control structures under action of debris flow. Debris flow was simplified as two-phase liquid composed of solid phase with the same diameter particles and liquid phase with the same mechanical features. Assume debris flow was one-dimension two-phase liquid moving to one direction,then general equations of velocities of solid phase and liquid phase were founded in twophase theory. Methods to calculate average pressures, volume forces and surface forces of debris flow control volume were established. Specially, surface forces were ascertained using Bingham's rheology equation of liquid phase and Bagnold's testing results about interaction between particles of solid phase. Proportional coefficient of velocities between liquid phase and solid phase was put forward, meanwhile, divergent coefficient between theoretical velocity and real velocity of solid phase was provided too. To state succinctly before, method to calculate velocities of solid phase and liquid phase was obtained through solution to general equations. The method is suitable for both viscous debris flow and thin debris flow. Additionally, velocities every phase can be identified through analyzing deposits in-situ after occurring of debris flow. It is obvious from engineering case the result in the method is consistent to that in real-time field observation.

  4. Artifacts in blood velocity estimation using ultrasound and cross-correlation

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    1994-01-01

    Estimation of blood velocities using ultrasound and time-domain cross-correlation is investigated. The measurement principle is introduced, and the basic properties of the cross-correlation function are discussed. Expressions for the variance of the estimates of the peak location are given, showing...

  5. An Analysis of Pulsed Wave Ultrasound Systems for Blood Velocity Estimation

    DEFF Research Database (Denmark)

    Jensen, J. A.

    1995-01-01

    Pulsed wave ultrasound systems can be used for determining blood's velocity non-invasively in the body. A region of interest is selected, and the received signal is range gated to measure data from the region. One complex sample value is acquired for each pulse emission after complex demodulation...

  6. Blood velocity estimation using spatio-temporal encoding based on frequency division approach

    DEFF Research Database (Denmark)

    Gran, Fredrik; Nikolov, Svetoslav; Jensen, Jørgen Arendt

    2005-01-01

    spectral support. By assigning one band to one virtual source, all virtual sources can be excited simultaneously. The received echoes are beamformed using Synthetic Transmit Aperture beamforming. The velocity of the moving blood is estimated using a cross- correlation estimator. The simulation tool Field...

  7. Glial and neuronal control of brain blood flow

    DEFF Research Database (Denmark)

    Attwell, David; Buchan, Alastair M; Charpak, Serge

    2010-01-01

    Blood flow in the brain is regulated by neurons and astrocytes. Knowledge of how these cells control blood flow is crucial for understanding how neural computation is powered, for interpreting functional imaging scans of brains, and for developing treatments for neurological disorders. It is now...

  8. Blood flow rate measurements with indicator techniques revisited

    DEFF Research Database (Denmark)

    Sejrsen, Per; Bülow, Jens

    2009-01-01

    In view of the emerging role, disturbances in regional blood flow rate seem to play in the pathogenesis of the metabolic syndrome; we review the concepts of the classical indicator dilution and washout techniques used for determinations of regional blood flow rate. Prerequisites, assumptions...

  9. Nephron blood flow dynamics measured by laser speckle contrast imaging

    DEFF Research Database (Denmark)

    von Holstein-Rathlou, Niels-Henrik; Sosnovtseva, Olga V; Pavlov, Alexey N

    2011-01-01

    Tubuloglomerular feedback (TGF) has an important role in autoregulation of renal blood flow and glomerular filtration rate (GFR). Because of the characteristics of signal transmission in the feedback loop, the TGF undergoes self-sustained oscillations in single-nephron blood flow, GFR, and tubula...

  10. Scaling of peak flows with constant flow velocity in random self-similar networks

    Directory of Open Access Journals (Sweden)

    R. Mantilla

    2011-07-01

    Full Text Available A methodology is presented to understand the role of the statistical self-similar topology of real river networks on scaling, or power law, in peak flows for rainfall-runoff events. We created Monte Carlo generated sets of ensembles of 1000 random self-similar networks (RSNs with geometrically distributed interior and exterior generators having parameters pi and pe, respectively. The parameter values were chosen to replicate the observed topology of real river networks. We calculated flow hydrographs in each of these networks by numerically solving the link-based mass and momentum conservation equation under the assumption of constant flow velocity. From these simulated RSNs and hydrographs, the scaling exponents β and φ characterizing power laws with respect to drainage area, and corresponding to the width functions and flow hydrographs respectively, were estimated. We found that, in general, φ > β, which supports a similar finding first reported for simulations in the river network of the Walnut Gulch basin, Arizona. Theoretical estimation of β and φ in RSNs is a complex open problem. Therefore, using results for a simpler problem associated with the expected width function and expected hydrograph for an ensemble of RSNs, we give heuristic arguments for theoretical derivations of the scaling exponents β(E and φ(E that depend on the Horton ratios for stream lengths and areas. These ratios in turn have a known dependence on the parameters of the geometric distributions of RSN generators. Good agreement was found between the analytically conjectured values of β(E and φ(E and the values estimated by the simulated ensembles of RSNs and hydrographs. The independence of the scaling exponents φ(E and φ with respect to the value of flow velocity and runoff intensity implies an interesting connection between unit

  11. Effect of Induced Vibration on the Blood Flow Properties in a Mechanical Aortic Valve

    Directory of Open Access Journals (Sweden)

    Kadhim Saleem Khalefa

    2014-07-01

    Full Text Available The effect of induced vibration on velocity distribution for the blood flow in the bileaflet mechanical heart valves conveying blood was investigated in this study. The bileaflet valve was simulated as an orifice. The induced vibration is due to the pulsed blood flow in the artery. Results presented in this study were performed using CFD FLUENT software. This analysis is based on the non-linear numerical solution by using a finite-element method, for the system of governing partial differential equations (continuity, momentum of Navier - Stokes equation of blood flow through the orifice. It has been found that as the flow through the orifice increased, the vibration at the orifice inlet increased. For steady state conditions, at Reynolds number 50 the recorded frequency was 20Hz. When the Reynolds number increased to 100 due to the increase in the blood flow the recorded frequency increased to 30Hz. The increase in frequency may result in damaging the blood red cells and platelets which subsequently results in increasing the blood clogging downstream of the orifice.

  12. GAS-SOLIDS FLOW BEHAVIOR WITH A GAS VELOCITY CLOSE TO ZERO

    Institute of Scientific and Technical Information of China (English)

    H.; Zhang; J.-X.; Zhu

    2006-01-01

    In a 9.3 m high and 0.10 m i.d. gas-solids downflow fluidized bed (downer), the radial and axial distributions of the local solids holdups and particle velocities along the downer column were measured with the superficial gas velocity set to zero. A unique gas-solids flow structure was found in the downer system with zero gas velocity, which is completely different from that under conditions with higher gas velocities, in terms of its radial and axial flow structures as well as its micro flow structure. The gas-solids flow pattern under zero gas velocity conditions, together with that under low gas velocity conditions, can be considered as a special regime which differs from that under higher gas velocity conditions. According to the hydrodynamic properties of the two regimes, they can be named the "dense annulus" regime for the flow pattern under zero or low gas velocity conditions and the "dense core" regime for that under higher gas velocity conditions.

  13. Intermittent Lagrangian velocities and accelerations in three-dimensional porous medium flow.

    Science.gov (United States)

    Holzner, M; Morales, V L; Willmann, M; Dentz, M

    2015-07-01

    Intermittency of Lagrangian velocity and acceleration is a key to understanding transport in complex systems ranging from fluid turbulence to flow in porous media. High-resolution optical particle tracking in a three-dimensional (3D) porous medium provides detailed 3D information on Lagrangian velocities and accelerations. We find sharp transitions close to pore throats, and low flow variability in the pore bodies, which gives rise to stretched exponential Lagrangian velocity and acceleration distributions characterized by a sharp peak at low velocity, superlinear evolution of particle dispersion, and double-peak behavior in the propagators. The velocity distribution is quantified in terms of pore geometry and flow connectivity, which forms the basis for a continuous-time random-walk model that sheds light on the observed Lagrangian flow and transport behaviors.

  14. Measurement of blood flow in the superior sagittal sinus in healthy volunteers, and in patients with normal pressure hydrocephalus and idiopathic intracranial hypertension with phase-contrast cine MR imaging

    DEFF Research Database (Denmark)

    Gideon, P; Thomsen, C; Gjerris, F

    1996-01-01

    PURPOSE: To measure blood flow and velocity in the superior sagittal ++sinus. MATERIAL AND METHODS: MR velocity mapping was used to examine 14 healthy volunteers, 15 patients with normal pressure hydrocephalus (NPH), 3 patients with high pressure hydrocephalus (HPH), and 11 patients with idiopathic...... intracranial hypertension (IIH). RESULTS: Mean blood flow was 443 ml/min in healthy volunteers with a tendency towards reduced blood flow with increasing age. In NPH patients significantly lower superior sagittal sinus blood flow values were found, but this difference was no longer significant when patients...... and controls were matched for age. In HPH and IIH patients blood flow and velocity were within the normal range. In one patient with thrombosis of the superior sagittal sinus the blood flow was reduced to 40 ml/min. CONCLUSION: MR velocity mapping methods may be of value in the assessment of blood flow...

  15. Lattice BGK Simulations of the Blood Flow in Elastic Vessels

    Institute of Scientific and Technical Information of China (English)

    LU Xiao-Yang; YI Hou-Hui; CHEN Ji-Yao; FANG Hai-Ping

    2006-01-01

    @@ The lattice Boltzmann method is applied to study the flow in elastic blood vessels. The volume-flow rate increases considerably when the compliance constant of the blood vessel is below a critical value. There is a region of the compliance constant in which the average volume-flow rate is dramatically enhanced. A harmonic perturbation of the pressure does not change the behaviour of the average volume-flow rate while the harmonic wave attenuates very quickly along the tube when the resonant period is close to that of the input wave. The model, together with the simulation results, is expected to be helpful to understand the mechanism of the blood volume-flow rate related to the compliance constant of the blood vessel, especially on the dependence of the flux of human blood vessel under weather changes, which has medical significance.

  16. Blood flow controls bone vascular function and osteogenesis

    Science.gov (United States)

    Ramasamy, Saravana K.; Kusumbe, Anjali P.; Schiller, Maria; Zeuschner, Dagmar; Bixel, M. Gabriele; Milia, Carlo; Gamrekelashvili, Jaba; Limbourg, Anne; Medvinsky, Alexander; Santoro, Massimo M.; Limbourg, Florian P.; Adams, Ralf H.

    2016-01-01

    While blood vessels play important roles in bone homeostasis and repair, fundamental aspects of vascular function in the skeletal system remain poorly understood. Here we show that the long bone vasculature generates a peculiar flow pattern, which is important for proper angiogenesis. Intravital imaging reveals that vessel growth in murine long bone involves the extension and anastomotic fusion of endothelial buds. Impaired blood flow leads to defective angiogenesis and osteogenesis, and downregulation of Notch signalling in endothelial cells. In aged mice, skeletal blood flow and endothelial Notch activity are also reduced leading to decreased angiogenesis and osteogenesis, which is reverted by genetic reactivation of Notch. Blood flow and angiogenesis in aged mice are also enhanced on administration of bisphosphonate, a class of drugs frequently used for the treatment of osteoporosis. We propose that blood flow and endothelial Notch signalling are key factors controlling ageing processes in the skeletal system. PMID:27922003

  17. Mammary blood flow regulation in the nursing rabbit

    Energy Technology Data Exchange (ETDEWEB)

    Katz, M.; Creasy, R.K.

    1984-11-01

    Cardiac output and mammary blood flow distribution prior to and after suckling were studied in 10 nursing rabbits by means of radionuclide-labeled microspheres. Suckling was followed by a 5.8% rise in cardiac output and a 20.4% rise in mammary blood flow. Determinations of intraglandular blood flow distribution have shown that there was a 43% increase in blood flow to the glands suckled from as compared to a 22.7% rise to the contralateral untouched glands and a 4.9% rise in the remainder of untouched glands. The conclusion is that a local mechanism may be involved in the regulation of mammary blood flow in the nursing rabbit.

  18. The effects of graded changes in oxygen and carbon dioxide tension on coronary blood velocity independent of myocardial energy demand.

    Science.gov (United States)

    Boulet, Lindsey M; Stembridge, Mike; Tymko, Michael M; Tremblay, Joshua C; Foster, Glen E

    2016-08-01

    In humans, coronary blood flow is tightly regulated by microvessels within the myocardium to match myocardial energy demand. However, evidence regarding inherent sensitivity of the microvessels to changes in arterial partial pressure of carbon dioxide and oxygen is conflicting because of the accompanied changes in myocardial energy requirements. This study aimed to investigate the changes in coronary blood velocity while manipulating partial pressures of end-tidal CO2 (Petco2) and O2 (Peto2). It was hypothesized that an increase in Petco2 (hypercapnia) or decrease in Peto2 (hypoxia) would result in a significant increase in mean blood velocity in the left anterior descending artery (LADVmean) due to an increase in both blood gases and energy demand associated with the concomitant cardiovascular response. Cardiac energy demand was assessed through noninvasive measurement of the total left ventricular mechanical energy. Healthy subjects (n = 13) underwent a euoxic CO2 test (Petco2 = -8, -4, 0, +4, and +8 mmHg from baseline) and an isocapnic hypoxia test (Peto2 = 64, 52, and 45 mmHg). LADVmean was assessed using transthoracic Doppler echocardiography. Hypercapnia evoked a 34.6 ± 8.5% (mean ± SE; P < 0.01) increase in mean LADVmean, whereas hypoxia increased LADVmean by 51.4 ± 8.8% (P < 0.05). Multiple stepwise regressions revealed that both mechanical energy and changes in arterial blood gases are important contributors to the observed changes in LADVmean (P < 0.01). In summary, regulation of the coronary vasculature in humans is mediated by metabolic changes within the heart and an inherent sensitivity to arterial blood gases.

  19. Ultrasonic Doppler measurement of renal artery blood flow

    Science.gov (United States)

    Freund, W. R.; Beaver, W. L.; Meindl, J. D.

    1976-01-01

    Studies were made of (1) blood flow redistribution during lower body negative pressure (LBNP), (2) the profile of blood flow across the mitral annulus of the heart (both perpendicular and parallel to the commissures), (3) testing and evaluation of a number of pulsed Doppler systems, (4) acute calibration of perivascular Doppler transducers, (5) redesign of the mitral flow transducers to improve reliability and ease of construction, and (6) a frequency offset generator designed for use in distinguishing forward and reverse components of blood flow by producing frequencies above and below the offset frequency. Finally methodology was developed and initial results were obtained from a computer analysis of time-varying Doppler spectra.

  20. Physiological non-Newtonian blood flow through single stenosed artery

    Science.gov (United States)

    Mamun, Khairuzzaman; Rahman, Mohammad Matiur; Akhter, Most. Nasrin; Ali, Mohammad

    2016-07-01

    A numerical simulation to investigate the Non-Newtonian modelling effects on physiological flows in a three dimensional idealized artery with a single stenosis of 85% severity. The wall vessel is considered to be rigid. Oscillatory physiological and parabolic velocity profile has been imposed for inlet boundary condition. Where the physiological waveform is performed using a Fourier series with sixteen harmonics. The investigation has a Reynolds number range of 96 to 800. Low Reynolds number k - ω model is used as governing equation. The investigation has been carried out to characterize two Non-Newtonian constitutive equations of blood, namely, (i) Carreau and (ii) Cross models. The Newtonian model has also been investigated to study the physics of fluid. The results of Newtonian model are compared with the Non-Newtonian models. The numerical results are presented in terms of pressure, wall shear stress distributions and the streamlines contours. At early systole pressure differences between Newtonian and Non-Newtonian models are observed at pre-stenotic, throat and immediately after throat regions. In the case of wall shear stress, some differences between Newtonian and Non-Newtonian models are observed when the flows are minimum such as at early systole or diastole.

  1. Measurements of temperature and velocity fluctuations in oscillating flows using thermal anemometry – application to thermoacoustic refrigerators

    OpenAIRE

    Berson, Arganthaël; Poignand, Gaelle; Jondeau, Emmanuel; Blanc-Benon, Philippe; Comte-Bellot, Geneviève

    2012-01-01

    International audience; This paper summarizes our recent work on the development of thermal anemometry to measure velocity and temperature fluctuations in oscillating flows. First, we demonstrate that velocity cannot be measured accurately by hot-wire anemometry in oscillating flows when the flow reverses its direction. Indeed, there is no unique and well-defined correlation between the flow velocity and heat transfer near flow reversal, which prevents the recovery of velocity fluctuations fr...

  2. PERFORMANCE MODELING AND ANALYSIS OF BLOOD FLOW IN ELASTIC ARTERIES

    Institute of Scientific and Technical Information of China (English)

    Anil Kumar; C.L. Varshney; G.C. Sharma

    2005-01-01

    Two different non-Newtonian models for blood flow are considered, first a simple power law model displaying shear thinning viscosity, and second a generalized Maxwell model displaying both shear thinning viscosity and oscillating flow viscous-elasticity. These models are used along with a Newtonian model to study sinusoidal flow of blood in rigid and elastic straight arteries in the presence of magnetic field. The elasticity of blood does not appear to influence its flow behavior under physiological conditions in the large arteries,purely viscous shear thinning model should be quite realistic for simulating blood flow under these conditions. On using the power law model with high shear rate for sinusoidal flow simulation in elastic arteries, the mean and amplitude of the flow rate were found to be lower for a power law fluid compared to Newtonian fluid for the same pressure gradient. The governing equations have been solved by Crank-Niclson scheme. The results are interpreted in the context of blood in the elastic arteries keeping the magnetic effects in view. For physiological flow simulation in the aorta, an increase in mean wall shear stress, but a reduction in peak wall shear stress were observed for power law model compared to a Newtonian fluid model for matched flow rate wave form. Blood flow in the presence of transverse magnetic field in an elastic artery is investigated and the influence of factors such as morphology and surface irregularity is evaluated.

  3. Velocity profile of turbulent sediment-laden flows in open-channels

    Institute of Scientific and Technical Information of China (English)

    Deyu Zhong n; Lei Zhang; Baosheng Wu; Yongqiang Wang

    2015-01-01

    In this paper, a study was carried out on the velocity profile of sediment-laden flows in open channels using a two-phase mixture model for two-phase flows. The governing equations for water-sediment mixtures were derived based on the two-fluid equations for solid–liquid two-phase flows. The drift velocity, a key variable involved in the two-phase mixture equations, was derived from the equation of momentum conservation for the solid phase. The drift velocity shows that the inertia of flow, particle turbulence, and collisions effect contribute to the dispersion of the sediment particles in turbulent flows. Using the two-phase mixture equation, the vertical velocity profile of open channel flows was obtained. Further analysis indicated that the distribution of the velocity over depth of water-sediment mixtures, composed of two different phases, is significantly affected by the turbulence of water-sediment mixtures and the density stratification. However, the velocity distribution is also affected by other factors including collisions between particles and particle turbulence as a basic feature of two-phase flows where interphase interactions inevitably mark their influence on the velocity distribution. Comparisons of this approach with observations for a wide range of experimental conditions are presented in this paper, which show that this approach agrees well with the experiments.

  4. SONIC SPEED AND SHOCK WAVE IN HIGH VELOCITY AERATED FLOWS FROM HIGH HEAD DISCHARGE STRUCTURES

    Institute of Scientific and Technical Information of China (English)

    Dong Zhi-yong

    2003-01-01

    The compressible characteristics in aerated flows at the high velocity of about 50m/s were analyzed. Based on the theory of compressible the relations between the sonic speed and shock wave in high-velocity aerated flow were theoretically deduced. And comparisons with measured data were made. The theoretical and experimental results show the sonic speed in aerated flow is merely of the order of several-dozen meters per second, and its minimum value is only 20m/s, which is far much less than that in water or air alone. So high subsonic flow, supersonic flow and transonic flow as well as compression wave, shock wave and expansion wave similarly to aerodnamics may be produced in high velocity aerated flow at the speed of the order of 50m/s. Hence the influences of these compressible characteristics on high head discharge structures can not be neglected, especially on super high dams over 200m high.

  5. The postural reduction in middle cerebral artery blood velocity is not explained by PaCO2

    DEFF Research Database (Denmark)

    Immink, R V; Secher, N H; Roos, C M

    2006-01-01

    In the normocapnic range, middle cerebral artery mean velocity (MCA Vmean) changes approximately 3.5% per mmHg carbon-dioxide tension in arterial blood (PaCO2) and a decrease in PaCO2 will reduce the cerebral blood flow by vasoconstriction (the CO2 reactivity of the brain). When standing up MCA...... Vmean and the end-tidal carbon-dioxide tension (PETCO2) decrease, suggesting that PaCO2 contributes to the reduction in MCA Vmean. In a fixed body position, PETCO2 tracks changes in the PaCO2 but when assuming the upright position, cardiac output (Q) decreases and its distribution over the lung changes...

  6. Dynamics of blood flow in a microfluidic ladder network

    Science.gov (United States)

    Maddala, Jeevan; Zilberman-Rudenko, Jevgenia; McCarty, Owen

    The dynamics of a complex mixture of cells and proteins, such as blood, in perturbed shear flow remains ill-defined. Microfluidics is a promising technology for improving the understanding of blood flow under complex conditions of shear; as found in stent implants and in tortuous blood vessels. We model the fluid dynamics of blood flow in a microfluidic ladder network with dimensions mimicking venules. Interaction of blood cells was modeled using multiagent framework, where cells of different diameters were treated as spheres. This model served as the basis for predicting transition regions, collision pathways, re-circulation zones and residence times of cells dependent on their diameters and device architecture. Based on these insights from the model, we were able to predict the clot formation configurations at various locations in the device. These predictions were supported by the experiments using whole blood. To facilitate platelet aggregation, the devices were coated with fibrillar collagen and tissue factor. Blood was perfused through the microfluidic device for 9 min at a physiologically relevant venous shear rate of 600 s-1. Using fluorescent microscopy, we observed flow transitions near the channel intersections and at the areas of blood flow obstruction, which promoted larger thrombus formation. This study of integrating model predictions with experimental design, aids in defining the dynamics of blood flow in microvasculature and in development of novel biomedical devices.

  7. Point and planar LIF for velocity-concentration correlations in a jet in cross flow

    DEFF Research Database (Denmark)

    Meyer, Knud Erik; Özcan, Oktay; Larsen, Poul Scheel

    2002-01-01

    (LDA). The flow considered is the mixing of a jet in a fully developed cross flow in a square duct with a width of 10 jet diameters. Both a laminar flow case, Re=675, and a turbulent flow case, Re=33750, are presented . For both flows, the ratio jet-to-duct mean velocities was R=3.3. Result of mean...... velocities, mean concentration and Reynolds fluxes in the symmetry plane of the jet are presented for PIV and PLIF measurements. The LIF measurements performed with the LDA equipment was in general in good agreement with the PIV/PLIF measurements. The cross sections selected for comparison are challenging...

  8. Cerebral blood flow and metabolism during sleep.

    Science.gov (United States)

    Madsen, P L; Vorstrup, S

    1991-01-01

    A review of the current literature regarding sleep-induced changes in cerebral blood flow (CBF) and cerebral metabolic rate (CMR) is presented. Early investigations have led to the notion that dreamless sleep was characterized by global values of CBF and CMR practically at the level of wakefulness, while rapid eye movement (REM) sleep (dream sleep) was a state characterized by a dramatically increased level of CBF and possibly also of CMR. However, recent investigations firmly contradict this notion. Investigations on CBF and CMR performed during non-REM sleep, taking the effect of different levels of sleep into consideration, show that light sleep (stage II) is characterized by global levels of CBF and CMR only slightly reduced by 3-10% below the level associated with wakefulness, whereas CBF and CMR during deep sleep (stage III-IV) is dramatically reduced by 25-44%. Furthermore, recent data indicate that global levels of CBF and CMR are about the same during REM sleep as in wakefulness. On the regional level, deep sleep seems to be associated with a uniform decrease in regional CBF and CMR. Investigations concerning regional CBF and CMR during REM sleep are few but data from recent investigations seem to identify site-specific changes in regional CBF and CMR during REM sleep. CBF and CMR are reflections of cerebral synaptic activity and the magnitude of reduction in these variables associated with deep sleep indicates that overall cerebral synaptic activity is reduced to approximately one-half the level associated with wakefulness, while cerebral synaptic activity levels during REM sleep are similar to wakefulness. However, even though the new understanding of CBF and CMR during sleep provides significant and important information of the brain's mode of working during sleep, it does not at its current state identify the physiological processes involved in sleep or the physiological role of sleep.

  9. 4-D flow magnetic resonance imaging: blood flow quantification compared to 2-D phase-contrast magnetic resonance imaging and Doppler echocardiography

    Energy Technology Data Exchange (ETDEWEB)

    Gabbour, Maya [Ann and Robert H. Lurie Children' s Hospital of Chicago, Department of Medical Imaging 9, Chicago, IL (United States); Schnell, Susanne [Northwestern University Feinberg School of Medicine, Department of Radiology, Chicago, IL (United States); Jarvis, Kelly [Northwestern University, Department of Biomedical Engineering, McCormick School of Engineering, Evanston, IL (United States); Robinson, Joshua D. [Ann and Robert H. Lurie Children' s Hospital of Chicago, Department of Pediatrics, Division of Pediatric Cardiology, Chicago, IL (United States); Northwestern University Feinberg School of Medicine, Department of Pediatrics, Chicago, IL (United States); Markl, Michael [Northwestern University Feinberg School of Medicine, Department of Radiology, Chicago, IL (United States); Northwestern University, Department of Biomedical Engineering, McCormick School of Engineering, Evanston, IL (United States); Rigsby, Cynthia K. [Ann and Robert H. Lurie Children' s Hospital of Chicago, Department of Medical Imaging 9, Chicago, IL (United States); Northwestern University Feinberg School of Medicine, Department of Radiology, Chicago, IL (United States)

    2015-06-15

    Doppler echocardiography (echo) is the reference standard for blood flow velocity analysis, and two-dimensional (2-D) phase-contrast magnetic resonance imaging (MRI) is considered the reference standard for quantitative blood flow assessment. However, both clinical standard-of-care techniques are limited by 2-D acquisitions and single-direction velocity encoding and may make them inadequate to assess the complex three-dimensional hemodynamics seen in congenital heart disease. Four-dimensional flow MRI (4-D flow) enables qualitative and quantitative analysis of complex blood flow in the heart and great arteries. The objectives of this study are to compare 4-D flow with 2-D phase-contrast MRI for quantification of aortic and pulmonary flow and to evaluate the advantage of 4-D flow-based volumetric flow analysis compared to 2-D phase-contrast MRI and echo for peak velocity assessment in children and young adults. Two-dimensional phase-contrast MRI of the aortic root, main pulmonary artery (MPA), and right and left pulmonary arteries (RPA, LPA) and 4-D flow with volumetric coverage of the aorta and pulmonary arteries were performed in 50 patients (mean age: 13.1 ± 6.4 years). Four-dimensional flow analyses included calculation of net flow and regurgitant fraction with 4-D flow analysis planes similarly positioned to 2-D planes. In addition, 4-D flow volumetric assessment of aortic root/ascending aorta and MPA peak velocities was performed and compared to 2-D phase-contrast MRI and echo. Excellent correlation and agreement were found between 2-D phase-contrast MRI and 4-D flow for net flow (r = 0.97, P < 0.001) and excellent correlation with good agreement was found for regurgitant fraction (r = 0.88, P < 0.001) in all vessels. Two-dimensional phase-contrast MRI significantly underestimated aortic (P = 0.032) and MPA (P < 0.001) peak velocities compared to echo, while volumetric 4-D flow analysis resulted in higher (aortic: P = 0.001) or similar (MPA: P = 0.98) peak

  10. Regional patterns of cortical blood flow distinguish extraverts from introverts

    OpenAIRE

    Stenberg, Georg; Risberg, Jarl; Warkentin, S.; Rosén, Ingmar

    1990-01-01

    Eysenck's hypothesis of higher cortical arousal in introverts was examined using regional cerebral blood flow measurement in 37 healthy subjects . The measurement was made at rest, using the133Xe-inhalation method. Estimates of gray matter flow were obtained for 32 brain regions. There was no significant evidence of personality differences in general arousal, as measured by the mean flow level, averaged over all regions. There were, however, regional differences. An overall test of the blood ...

  11. Blood flow regulation and oxygen uptake during high intensity forearm exercise.

    Science.gov (United States)

    Nyberg, Stian Kwak; Berg, Ole Kristian; Helgerud, Jan; Wang, Eivind

    2017-01-05

    The vascular strain is very high during heavy handgrip exercise, but the intensity and kinetics to reach peak blood flow, and peak oxygen uptake, are uncertain. We included 9 young (25±2yr) healthy males to evaluate blood flow and oxygen uptake responses during continuous dynamic handgrip exercise with increasing intensity. Blood flow was measured using Doppler-ultrasound and venous blood was drawn from a deep forearm vein to determine arteriovenous oxygen difference (a-vO2diff) during 6-minutes bouts of 60, 80 and 100% of maximal work rate (WRmax), respectively. Blood flow and oxygen uptake increased (pBlood velocity (49.5±11.5 cm∙sec(-1) to 58.1±11.6 cm∙sec(-1)) and brachial diameter (0.49±0.05cm to 0.50±0.06 cm) showed concomitant increases (pblood flow from 60% to 80%WRmax, while no differences were observed in a-vO2diff Shear rate also increased (pblood flow (60%WRmax:50±22s; 80%WRmax:51±20s; 100%WRmax:51±23s) than a-vO2diff (60%WRmax:29±9s; 80%WRmax:29±5s; 100%WRmax:20±5s), but not different from oxygen uptake (60%WRmax:44±25s; 80%WRmax:43±14s; 100%WRmax:41±32s). No differences were observed in MRT for blood flow or oxygen uptake with increased exercise intensity. In conclusion, when approaching maximal intensity, oxygen uptake appeared to reach a critical level at ~80% of WRmax and be regulated by blood flow. This implies that high, but not maximal, exercise intensity may be an optimal stimulus for shear stress-induced small muscle mass training adaptations.

  12. Localized measurement of longitudinal and transverse flow velocities in colloidal suspensions using optical coherence tomography

    NARCIS (Netherlands)

    Weiss, N.; Van Leeuwen, T.G.; Kalkman, J.

    2013-01-01

    We report on localized measurement of the longitudinal and transverse flow velocities in a colloidal suspension using optical coherence tomography. We present a model for the path-length resolved autocorrelation function including diffusion and flow, which we experimentally verify. For flow that is

  13. Time-resolved X-ray PIV measurements of hemodynamic information of real pulsatile blood flows

    Science.gov (United States)

    Park, Hanwook; Yeom, Eunseop; Lee, Sang Joon

    2015-11-01

    X-ray imaging technique has been used to visualize various bio-fluid flow phenomena as a nondestructive manner. To obtain hemodynamic information related with circulatory vascular diseases, a time-resolved X-ray PIV technique with high temporal resolution was developed. In this study, to embody actual pulsatile blood flows in a circular conduit without changes in hemorheological properties, a bypass loop is established by connecting a microtube between the jugular vein and femoral artery of a rat. Biocompatible CO2 microbubbles are used as tracer particles. After mixing with whole blood, CO2 microbubbles are injected into the bypass loop. Particle images of the pulsatile blood flows in the bypass loop are consecutively captured by the time-resolved X-ray PIV system. The velocity field information are obtained with varying flow rate and pulsataility. To verify the feasibility of the use of CO2 microbubbles under in vivo conditions, the effects of the surrounding-tissues are also investigated, because these effects are crucial for deteriorating the image contrast of CO2 microbubbles. Therefore, the velocity information of blood flows in the abdominal aorta are obtained to demonstrate the visibility and usefulness of CO2 microbubbles under ex vivo conditions. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2008-0061991).

  14. Magnetic resonance flow velocity and temperature mapping of a shape memory polymer foam device

    Directory of Open Access Journals (Sweden)

    Wilson Thomas S

    2009-12-01

    Full Text Available Abstract Background Interventional medical devices based on thermally responsive shape memory polymer (SMP are under development to treat stroke victims. The goals of these catheter-delivered devices include re-establishing blood flow in occluded arteries and preventing aneurysm rupture. Because these devices alter the hemodynamics and dissipate thermal energy during the therapeutic procedure, a first step in the device development process is to investigate fluid velocity and temperature changes following device deployment. Methods A laser-heated SMP foam device was deployed in a simplified in vitro vascular model. Magnetic resonance imaging (MRI techniques were used to assess the fluid dynamics and thermal changes associated with device deployment. Results Spatial maps of the steady-state fluid velocity and temperature change inside and outside the laser-heated SMP foam device were acquired. Conclusions Though non-physiological conditions were used in this initial study, the utility of MRI in the development of a thermally-activated SMP foam device has been demonstrated.

  15. Quantification of complex blood flow using real-time in vivo vector flow ultrasound

    DEFF Research Database (Denmark)

    Pedersen, Mads Møller; Pihl, Michael Johannes; Haugaard, Per;

    2010-01-01

    A quantitative method for distinguishing complex from non-complex flow patterns in ultrasound is presented. A new commercial BK Medical ultrasound scanner uses the Transverse Oscillation vector flow technique for visualising flow patterns in real-time. In vivo vector flow data of the blood flow...

  16. Longitudinal Monitoring of Hepatic Blood Flow before and after TIPS by Using 4D-Flow MR Imaging

    Science.gov (United States)

    Bannas, Peter; Roldán-Alzate, Alejandro; Johnson, Kevin M.; Woods, Michael A.; Ozkan, Orhan; Motosugi, Utaroh; Wieben, Oliver; Reeder, Scott B.; Kramer, Harald

    2016-01-01

    Purpose To demonstrate the feasibility of four-dimensional (4D)– flow magnetic resonance (MR) imaging for noninvasive longitudinal hemodynamic monitoring of hepatic blood flow before and after transjugular intrahepatic portosystemic shunt (TIPS) placement. Materials and Methods The institutional review board approved this prospective Health Insurance Portability and Accountability Act compliant study with written informed consent. Four-dimensional–flow MR imaging was performed in seven patients with portal hypertension and refractory ascites before and 2 and 12 weeks after TIPS placement by using a time-resolved three-dimensional radial phase-contrast acquisition. Flow and peak velocity measurements were obtained in the superior mesenteric vein (SMV), splenic vein (SV), portal vein (PV), and the TIPS. Flow volumes and peak velocities in each vessel, as well as the ratio of in-stent to PV flow, were compared before and after TIPS placement by using analysis of variance. Results Flow volumes significantly increased in the SMV (0.24 L/ min; 95% confidence interval [CI]: 0.07, 0.41), SV (0.31 L/min; 95% CI: 0.07, 0.54), and PV (0.88 L/min; 95% CI: 0.06, 1.70) after TIPS placement (all P .11). Ascites resolved in six of seven patients. In those with resolved ascites, the TIPS-to-PV flow ratio was 0.8 ± 6 0.2 and 0.9 ± 0.2 at the two post-TIPS time points, respectively, while the observed ratios were 4.6 and 4.3 in the patient with refractory ascites at the two post-TIPS time points, respectively. In this patient, 4D-flow MR imaging demonstrated arterio-portal-venous shunting, with draining into the TIPS. Conclusion Four-dimensional–flow MR imaging is feasible for noninvasive longitudinal hemodynamic monitoring of hepatic blood flow before and after TIPS placement. PMID:27171019

  17. Galaxy Cluster Bulk Flows and Collision Velocities in QUMOND

    CERN Document Server

    Katz, Harley; Teuben, Peter; Angus, G W

    2013-01-01

    We examine the formation of clusters of galaxies in numerical simulations of a QUMOND cosmogony with massive sterile neutrinos. Clusters formed in these exploratory simulations develop higher velocities than those found in {\\Lambda}CDM simulations. The bulk motions of clusters attain about 1000 km/s by low redshift, comparable to observations whereas {\\Lambda}CDM simulated clusters tend to fall short. Similarly, high pairwise velocities are common in cluster-cluster collisions like the Bullet cluster. There is also a propensity for the most massive clusters to be larger in QUMOND and to appear earlier than in {\\Lambda}CDM, potentially providing an explanation for 'pink elephants' like El Gordo. However, it is not obvious that the cluster mass function can be recovered.

  18. GALAXY CLUSTER BULK FLOWS AND COLLISION VELOCITIES IN QUMOND

    Energy Technology Data Exchange (ETDEWEB)

    Katz, Harley; McGaugh, Stacy; Teuben, Peter [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Angus, G. W., E-mail: hkatz@astro.umd.edu, E-mail: stacy.mcgaugh@case.edu, E-mail: teuben@astro.umd.edu, E-mail: angus.gz@gmail.com [Astrophysics, Cosmology and Gravity Centre, University of Cape Town, Private Bag X3, Rondebosch 7700 (South Africa)

    2013-07-20

    We examine the formation of clusters of galaxies in numerical simulations of a QUMOND cosmogony with massive sterile neutrinos. Clusters formed in these exploratory simulations develop higher velocities than those found in {Lambda}CDM simulations. The bulk motions of clusters attain {approx}1000 km s{sup -1} by low redshift, comparable to observations whereas {Lambda}CDM simulated clusters tend to fall short. Similarly, high pairwise velocities are common in cluster-cluster collisions like the Bullet Cluster. There is also a propensity for the most massive clusters to be larger in QUMOND and to appear earlier than in {Lambda}CDM, potentially providing an explanation for ''pink elephants'' like El Gordo. However, it is not obvious that the cluster mass function can be recovered.

  19. The effect of hyperosmotic solutions on the hepatic blood flow

    DEFF Research Database (Denmark)

    Winkler, K; Henriksen, Jens Henrik; Tygstrup, N

    1993-01-01

    The present study was undertaken in order to measure the effect of hyperosmotic solutions on portal and hepatic blood flow. In five anaesthetized pigs without arterial blood supply to the liver, portal blood flow rate was measured (electromagnetic flowmeter) during 5 min lasting intravenous...... infusions of hyperosmotic galactose (50%, 84-100 ml) and mannitol (25%, 100 ml), with physiological saline (100 ml) as control. Portal blood flow increased to a peak value of (39% [P = 0.06] galactose and 37%, [P = 0.06], mannitol) soon after stop of the hyperosmotic infusion. For galactose the change ended...... somewhat earlier than for mannitol. Saline induced a minor increase (15%). Similarly, increments of, on average, 144% of the hepatic blood flow rate was seen in six patients with cirrhosis, following infusion of hyperosmotic galactose, the increase being more pronounced than in the pigs. The causes...

  20. Two-Fluid Mathematical Models for Blood Flow in Stenosed Arteries: A Comparative Study

    Directory of Open Access Journals (Sweden)

    Sankar DS

    2009-01-01

    Full Text Available The pulsatile flow of blood through stenosed arteries is analyzed by assuming the blood as a two-fluid model with the suspension of all the erythrocytes in the core region as a non-Newtonian fluid and the plasma in the peripheral layer as a Newtonian fluid. The non-Newtonian fluid in the core region of the artery is assumed as a (i Herschel-Bulkley fluid and (ii Casson fluid. Perturbation method is used to solve the resulting system of non-linear partial differential equations. Expressions for various flow quantities are obtained for the two-fluid Casson model. Expressions of the flow quantities obtained by Sankar and Lee (2006 for the two-fluid Herschel-Bulkley model are used to get the data for comparison. It is found that the plug flow velocity and velocity distribution of the two-fluid Casson model are considerably higher than those of the two-fluid Herschel-Bulkley model. It is also observed that the pressure drop, plug core radius, wall shear stress and the resistance to flow are significantly very low for the two-fluid Casson model than those of the two-fluid Herschel-Bulkley model. Hence, the two-fluid Casson model would be more useful than the two-fluid Herschel-Bulkley model to analyze the blood flow through stenosed arteries.

  1. Simulation of Blood Flow at Vessel Bifurcation by Lattice Boltzmann Method

    Institute of Scientific and Technical Information of China (English)

    KANG Xiu-Ying; LIU Da-He; ZHOU Jing; JIN Yong-Juan

    2005-01-01

    @@ The application of the lattice Boltzmann method to the large vessel bifurcation blood flow is investigated in awide range of Reynolds numbers. The velocity, shear stress and pressure distributions at the bifurcation arepresented in detail. The flow separation zones revealed with increase of Reynolds number are located in theareas of the daughter branches distal to the outer corners of the bifurcation where some deposition of particularblood components might occur to form arteriosclerosis. The results also demonstrate that the lattice Boltzmannmethod is adaptive to simulating the flow in larger vessels under a high Reynolds number.

  2. THE STEADY/PULSATILE FLOW AND MACROMOLECULAR TRANSPORT IN T-BIFURCATION BLOOD VESSELS

    Institute of Scientific and Technical Information of China (English)

    李丁; 温功碧

    2003-01-01

    A numerical analysis of the steady and pulsatile, macromolecular( such as lowdensity lipopotein ( LDL ), Albumin ) transport in T-bifurcation was proposed. Theinfluence of Reynolds number and mass flow ratio etc. parameters on the velocity field andmass transport were calculated. The computational results predict that the blood flow factorsaffect the macromolecular distribution and the transport across the wall, it shows thathemodynamic play an important role in the process of atherosclerosis . The LDL and Albuminconcentration on the wall varies most greatly in flow bifurcation area where the wall shearstress varies greatly at the branching vessel and the atherosclerosis often appears there.

  3. Validation of a new blood-mimicking fluid for use in Doppler flow test objects.

    Science.gov (United States)

    Ramnarine, K V; Nassiri, D K; Hoskins, P R; Lubbers, J

    1998-03-01

    A blood-mimicking fluid (BMF) suitable for use in Doppler flow test objects is described and characterised. The BMF consists of 5 microns diameter nylon scattering particles suspended in a fluid base of water, glycerol, dextran and surfactant. The acoustical properties of various BMF preparations were measured under uniform flow to study the effects of particle size, particle concentration, surfactant concentration, flow rate and stability. The physical properties, (density, viscosity and particle size), and acoustical properties (velocity, backscatter and attenuation) of the BMF are within draft International Electrotechnical Commission requirements.

  4. Mesenteric, coeliac and splanchnic blood flow in humans during exercise

    DEFF Research Database (Denmark)

    Perko, M J; Nielsen, H B; Skak, C;

    1998-01-01

    1. Exercise reduces splanchnic blood flow, but the mesenteric contribution to this response is uncertain. 2. In nineteen humans, superior mesenteric and coeliac artery flows were determined by duplex ultrasonography during fasting and postprandial submaximal cycling and compared with the splanchnic...... blood flow as assessed by the Indocyanine Green dye-elimination technique. 3. Cycling increased arterial pressure, heart rate and cardiac output, while it reduced total vascular resistance. These responses were not altered in the postprandial state. During fasting, cycling increased mesenteric, coeliac...... and splanchnic resistances by 76, 165 and 126 %, respectively, and it reduced corresponding blood flows by 32, 50 and 43 % (by 0.18 +/- 0.04, 0.42 +/- 0.03 and 0.60 +/- 0.04 l min-1). Postprandially, mesenteric and splanchnic vascular resistances decreased, thereby elevating regional blood flow, while...

  5. Spontaneous oscillations of capillary blood flow in artificial microvascular networks.

    Science.gov (United States)

    Forouzan, Omid; Yang, Xiaoxi; Sosa, Jose M; Burns, Jennie M; Shevkoplyas, Sergey S

    2012-09-01

    Previous computational studies have suggested that the capillary blood flow oscillations frequently observed in vivo can originate spontaneously from the non-linear rheological properties of blood, without any regulatory input. Testing this hypothesis definitively in experiments involving real microvasculature has been difficult because in vivo the blood flow in capillaries is always actively controlled by the host. The objective of this study was to test the hypothesis experimentally and to investigate the relative contribution of different blood cells to the capillary blood flow dynamics under static boundary conditions and in complete isolation from the active regulatory mechanisms mediated by the blood vessels in vivo. To accomplish this objective, we passed whole blood and re-constituted blood samples (purified red blood cells suspended in buffer or in autologous plasma) through an artificial microvascular network (AMVN) comprising completely inert, microfabricated vessels with the architecture inspired by the real microvasculature. We found that the flow of blood in capillaries of the AMVN indeed oscillates with characteristic frequencies in the range of 0-0.6 Hz, which is in a very good agreement with previous computational studies and in vivo observations. We also found that the traffic of leukocytes through the network (typically neglected in computational modeling) plays an important role in generating the oscillations. This study represents the key piece of experimental evidence in support of the hypothesis that spontaneous, self-sustained oscillations of capillary blood flow can be generated solely by the non-linear rheological properties of blood flowing through microvascular networks, and provides an insight into the mechanism of this fundamentally important microcirculatory phenomenon.

  6. Lagrangian velocity and acceleration correlations of large inertial particles in a closed turbulent flow

    CERN Document Server

    Machicoane, Nathanaël

    2015-01-01

    We investigate the response of large inertial particle to turbulent fluctuations in a inhomogeneous and anisotropic flow. We conduct a Lagrangian study using particles both heavier and lighter than the surrounding fluid, and whose diameters are comparable to the flow integral scale. Both velocity and acceleration correlation functions are analyzed to compute the Lagrangian integral time and the acceleration time scale of such particles. The knowledge of how size and density affect these time scales is crucial in understanding partical dynamics and may permit stochastic process modelization using two-time models (for instance Saw-ford's). As particles are tracked over long times in the quasi totality of a closed flow, the mean flow influences their behaviour and also biases the velocity time statistics, in particular the velocity correlation functions. By using a method that allows for the computation of turbulent velocity trajectories, we can obtain unbiased Lagrangian integral time. This is particularly usef...

  7. Efficient blood flow visualization using flowline extraction and opacity modulation based on vascular structure analysis.

    Science.gov (United States)

    Kwon, Ohjae; Lee, Jeongjin; Kim, Bohyoung; Shin, Juneseuk; Shin, Yeong-Gil

    2017-03-01

    With the recent advances regarding the acquisition and simulation of blood flow data, blood flow visualization has been widely used in medical imaging for the diagnosis and treatment of pathological vessels. In this paper, we present a novel method for the visualization of the blood flow in vascular structures. The vessel inlet or outlet is first identified using the orthogonality metric between the normal vectors of the flow velocity and vessel surface. Then, seed points are generated on the identified inlet or outlet by Poisson disk sampling. Therefore, it is possible to achieve the automatic seeding that leads to a consistent and faster flow depiction by skipping the manual location of a seeding plane for the initiation of the line integration. In addition, the early terminated line integration in the thin curved vessels is resolved through the adaptive application of the tracing direction that is based on the flow direction at each seed point. Based on the observation that blood flow usually follows the vessel track, the representative flowline for each branch is defined by the vessel centerline. Then, the flowlines are rendered through an opacity assignment according to the similarity between their shape and the vessel centerline. Therefore, the flowlines that are similar to the vessel centerline are shown transparently, while the different ones are shown opaquely. Accordingly, the opacity modulation method enables the flowlines with an unusual flow pattern to appear more noticeable, while the visual clutter and line occlusion are minimized. Finally, Hue-Saturation-Value color coding is employed for the simultaneous exhibition of flow attributes such as local speed and residence time. The experiment results show that the proposed technique is suitable for the depiction of the blood flow in vascular structures. The proposed approach is applicable to many kinds of tubular structures with embedded flow information.

  8. Blood flow and muscle oxygenation during low, moderate, and maximal sustained isometric contractions.

    Science.gov (United States)

    McNeil, Chris J; Allen, Matti D; Olympico, Eric; Shoemaker, J Kevin; Rice, Charles L

    2015-09-01

    A reduction of blood flow to active muscle will precipitate fatigue, and sustained isometric contractions produce intramuscular and compartmental pressures that can limit flow. The present study explored how blood flow and muscle oxygenation respond to isometric contractions at low, moderate, and maximal intensities. Over two visits, 10 males (26 ± 2 yr; means ± SD) performed 1-min dorsiflexion contractions at 30, 60, and 100% of maximal voluntary contraction (MVC) torque. Doppler ultrasound of the anterior tibial artery was used to record arterial diameter and mean blood velocity and to calculate absolute blood flow. The tissue oxygenation index (TOI) of tibialis anterior was acquired with near-infrared spectroscopy (NIRS). There was a progressive increase in blood flow at 30% MVC (peak of 289 ± 139% resting value), no change from rest until an increase in the final 10 s of exercise at 60% MVC (peak of 197 ± 102% rest), and an initial decrease (59 ± 30% resting value) followed by a progressive increase at 100% MVC (peak of 355 ± 133% rest). Blood flow was greater at 30 and 100% than 60% MVC during the last 30 s of exercise. TOI was ∼63% at rest and, within 30 s of exercise, reached steady-state values of ∼42%, ∼22%, and ∼22% for 30, 60, and 100% MVC, respectively. Even maximal contraction of the dorsiflexors is unable to cause more than a transient decrease of flow in the anterior tibial artery. Unlike dynamic or intermittent isometric exercise, our results indicate blood flow is not linearly graded with intensity or directly coupled with oxygenation during sustained isometric contractions.

  9. Stationary bottom generated velocity fluctuations in one-dimensional open channel flow

    NARCIS (Netherlands)

    Jong, de Bartele

    1993-01-01

    Statistical characteristics are calculated for stationary velocity fluctuations in a one-dimensional open channel flow with a given vertical velocity profile and with one-dimensional irregular bottom waves, characterized by a spectral density function. The calculations are based on an approximate ca

  10. Fetal atrioventricular and outflow tract flow velocity waveforms during conducted and blocked supraventricular extrasystoles

    NARCIS (Netherlands)

    K. van der Mooren (K.); J.W. Wladimiroff (Juriy); Th. Stijnen (Theo)

    1992-01-01

    textabstractMaximum flow velocity waveforms at atrioventricular and outflow tract level were studied cross‐sectionally in 19 human fetuses with conducted and/or blocked supraventricular extrasystoles ranging from 25 to 38 weeks of gestation. At outflow tract level, peak systolic velocity and acceler

  11. Flow Scales of Influence on the Settling Velocities of Particles with Varying Characteristics

    Science.gov (United States)

    Jacobs, Corrine N.; Merchant, Wilmot; Jendrassak, Marek; Limpasuvan, Varavut; Gurka, Roi; Hackett, Erin E.

    2016-01-01

    The settling velocities of natural, synthetic, and industrial particles were measured in a grid turbulence facility using optical measurement techniques. Particle image velocimetry and 2D particle tracking were used to measure the instantaneous velocities of the flow and the particles’ trajectories simultaneously. We find that for particles examined in this study (Rep = 0.4–123), settling velocity is either enhanced or unchanged relative to stagnant flow for the range of investigated turbulence conditions. The smallest particles’ normalized settling velocities exhibited the most consistent trends when plotted versus the Kolmogorov-based Stokes numbers suggesting that the dissipative scales influence their dynamics. In contrast, the mid-sized particles were better characterized with a Stokes number based on the integral time scale. The largest particles were largely unaffected by the flow conditions. Using proper orthogonal decomposition (POD), the flow pattern scales are compared to particle trajectory curvature to complement results obtained through dimensional analysis using Stokes numbers. The smallest particles are found to have trajectories with curvatures of similar scale as the small flow scales (higher POD modes) whilst mid-sized particle trajectories had curvatures that were similar to the larger flow patterns (lower POD modes). The curvature trajectories of the largest particles did not correspond to any particular flow pattern scale suggesting that their trajectories were more random. These results provide experimental evidence of the “fast tracking” theory of settling velocity enhancement in turbulence and demonstrate that particles align themselves with flow scales in proportion to their size. PMID:27513958

  12. Influence of aeration and initial water thickness on axial velocity attenuation of jet flows

    Institute of Scientific and Technical Information of China (English)

    Wang-ru WEI; Jun DENG; Bin LIU

    2013-01-01

    With the development of ski-jump energy dissipation for high and large discharge among the hydraulic projects,the effects of characteristics of water flow on energy dissipation are increasingly important.In the present study,the effects of aeration and the initial water thickness on axial velocity attenuation of jet flow were analyzed,using variance analysis and numerical calculated methods.From the analysis of test data,both of the air concentration and initial water thickness are sensitive factors for the axial velocity attenuation of jet flow along the axial way,and there is no significant interaction effect between the aeration and initial water thickness.Aeration has a more significant effect on the axial velocity attenuation of jet flow.Decreasing the initial water thickness of jet flow can reduce the length of jet core,and make the initial position of axial velocity attenuation closer to the nozzle exit.The numerical calculation results show that aeration can contribute to the enhancement of entrainment ability of jet flow,which may improve the interaction between jet flow and surroundings.For ski-jump energy dissipation among the hydraulic projects,combining aeration with decreasing initial water thickness of jet flow is an effective way to enhance the rate of axial velocity attenuation.

  13. Magnetic resonance velocity mapping of 3D cerebrospinal fluid flow dynamics in hydrocephalus: preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Stadlbauer, Andreas [Landesklinikum St. Poelten, MR Physics Group, Department of Radiology, St. Poelten (Austria); University of Erlangen-Nuremberg, Department of Neurosurgery, Erlangen (Germany); Salomonowitz, Erich [Landesklinikum St. Poelten, MR Physics Group, Department of Radiology, St. Poelten (Austria); Brenneis, Christian [Landesklinikum St. Poelten, Department of Neurology, St. Poelten (Austria); Ungersboeck, Karl [Landesklinikum St. Poelten, Department of Neurosurgery, St. Poelten (Austria); Riet, Wilma van der [European MRI Consultancy (EMRIC), Strasbourg (France); Buchfelder, Michael; Ganslandt, Oliver [University of Erlangen-Nuremberg, Department of Neurosurgery, Erlangen (Germany)

    2012-01-15

    To investigate the detectability of CSF flow alterations in the ventricular system of patients with hydrocephalus using time-resolved 3D MR velocity mapping. MR velocity mapping was performed in 21 consecutive hydrocephalus patients and 21 age-matched volunteers using a 3D phase-contrast (PC) sequence. Velocity vectors and particle path lines were calculated for visualisation of flow dynamics. CSF flow was classified as ''hypomotile flow'' if it showed attenuated dynamics and as ''hypermotile flow'' if it showed increased dynamics compared with volunteers. Diagnostic efficacy was compared with routine 2D cine PC-MRI. Seven patients showed hypomotile CSF flow: six had non-communicating hydrocephalus due to aqueductal stenosis. One showed oscillating flow between the lateral ventricles after craniotomy for intracranial haemorrhage. Seven patients showed normal flow: six had hydrocephalus ex vacuo due to brain atrophy. One patient who underwent ventriculostomy 10 years ago showed a flow path through the opening. Seven patients showed hypermotile flow: three had normal pressure hydrocephalus, three had dementia, and in one the diagnosis remained unclear. The diagnostic efficacy of velocity mapping was significantly higher except for that of aqueductal stenosis. Our approach may be useful for diagnosis, therapy planning, and follow-up of different kinds of hydrocephalus. (orig.)

  14. Measuring two-dimensional components of a flow velocity vector using a hot-wire probe.

    Science.gov (United States)

    Kiełbasa, Jan

    2007-08-01

    The article presents a single-hot-wire probe adapted to detect the direction of flow velocity. The modification consists of the introduction of a third support which allows to measure voltage at the central point of the wire. The sign of voltage difference DeltaU between both parts of the wire is the measure of the direction of flow velocity in a system of coordinates associated with the probe.

  15. The influence of the gas content of water and the flow velocity on cavitation erosion aggressiveness

    OpenAIRE

    Stoffel, Bernd; Širok, Brane; Dular, Matevž

    2015-01-01

    A study of the influence of the gas content of water and the flow velocity on cavitation erosion aggressiveness was performed. A cavitation tunnel with a single hydrofoil was used for the experiments. While the cavitation number andthe mean flow velocity remained constant throughout the tests, the gas content of the water was changed in steps from low (approximately 1%) to high (4 %). The gas content of the water was adjusted with a bubble generator. In addition tests at a constant cavitation...

  16. Simple Model for Simulating Characteristics of River Flow Velocity in Large Scale

    Directory of Open Access Journals (Sweden)

    Husin Alatas

    2015-01-01

    Full Text Available We propose a simple computer based phenomenological model to simulate the characteristics of river flow velocity in large scale. We use shuttle radar tomography mission based digital elevation model in grid form to define the terrain of catchment area. The model relies on mass-momentum conservation law and modified equation of motion of falling body in inclined plane. We assume inelastic collision occurs at every junction of two river branches to describe the dynamics of merged flow velocity.

  17. Velocity kinematic relations in decaying turbulent flow past a grid

    Science.gov (United States)

    Gurka, R.; Kopp, G.; Liberzon, A.; Sarathi, P.; Tsinober, A.

    Three recent publications1-3 stressed out that some kinematic relations of velocity increments Δ u_i = u_i (x + r) - u_i (x) comprise a manifestation of nonlocal effects, e.g. large and small scale quantities are correlated. This feature invalidates the so-called random sweeping hypothesis that large and small scales are statistically independent. It is noteworthy that, pure kinematic relations that emphasize the non-local effects thereby become dynamically significant. Some kinematic relations could be used for the validation of experimental results.

  18. Cup anemometer calibration: effect of flow velocity distribution

    Science.gov (United States)

    Piccato, A.; Spazzini, P. G.; Malvano, R.

    2011-10-01

    The effects of different working conditions and specifically of different velocity profiles on the output of a commercial cup anemometer were analysed experimentally. A simple mathematical model is also presented and provides results in line with the experiments. Results show that a cup anemometer with certain geometrical features can be calibrated through a rotating drag rig by correcting for the bias on the instrument output. The increase in uncertainty caused by this systematic correction was evaluated and applied to the results. The correction was validated by checking the compatibility of calibrations of a cup anemometer at the rotating rig and in a wind tunnel.

  19. Normalisation of a severely abnormal ductus venosus Doppler flow velocity waveform in a growth-retarded fetus with absent end-diastolic flow in the umbilical artery and congenital anomalies.

    Science.gov (United States)

    Müller, T; Rehn, M; Girschick, G; Kristen, P; Dietl, J

    2001-01-01

    Doppler recordings of fetal venous blood flow seem to be superior to arterial velocimetry and CTG concerning the prediction of fetal outcome and optimal time of delivery in pregnancies with fetal growth retardation and AREDV. An improvement of arterial Doppler flow velocities has been described. We report the reappearance of a normal end-diastolic flow velocity in a ductus venosus temporarily showing reversed end-diastolic flow in a growth-retarded fetus with congenital anomalies. This normalization was accompanied by an improvement of the CTG, a loss of umbilical vein pulsations, a reappearance of umbilical diastolic flow and a progressive return of cerebral and venous blood flow into the 'normal' range. Improvement of fetal condition may be the explanation for our observation.

  20. Systolic and diastolic changes in human coronary blood flow during Valsalva manoeuvre.

    Science.gov (United States)

    Federici, A; Ciccone, M; Gattullo, D; Losano, G

    2000-01-01

    Valsalva manoeuvre is reported to be sometimes successful for the relief of angina pectoris. The present study investigated how haemodynamic changes produced by Valsalva manoeuvre can interact to improve the relationship between cardiac work and coronary blood flow. Ten male subjects aged 53 +/- 12 years (SD) were considered. Blood velocity in the internal mammary artery, previously anastomosed to the left descending coronary artery, was studied with Doppler technique. The subjects performed Valsalva manoeuvres by expiring into a tube connected to a mercury manometer, to develop a pressure of 40 mmHg. The arterial blood pressure curve was continuously monitored with a Finapres device from a finger of the left hand. During expiratory effort, an increase in heart rate and a decrease in arterial pulse pressure were followed by a more delayed and progressive increase in mean and diastolic pressures. Systolic blood velocity markedly decreased along with the reduction in pulse pressure and increase in heart rate. By contrast, diastolic and mean coronary blood velocities did not show any significant change. Since it is known that the Valsalva manoeuvre strongly reduces stroke volume and cardiac output, it is likely that a reduction in cardiac work also takes place. Since in diastole, i.e. when the myocardial wall is better perfused, coronary blood velocity did not show any significant reduction, it is likely that unchanged perfusion in the presence of reduced cardiac work is responsible for the relief from angina sometimes observed during Valsalva manoeuvre. It is also likely that the increase in heart rate prevents the diastolic and mean blood coronary velocity from decreasing during the expiratory strain, when an increased sympathetic discharge could cause vasoconstriction through the stimulation of the coronary alpha-receptors.

  1. Arterial secondary blood flow patterns visualized with vector flow ultrasound

    DEFF Research Database (Denmark)

    Pedersen, Mads Møller; Pihl, Michael Johannes; Hansen, Jens Munk

    2011-01-01

    This study presents the first quantification and visualisation of secondary flow patterns with vector flow ultrasound. The first commercial implementation of the vector flow method Transverse Oscillation was used to obtain in-vivo, 2D vector fields in real-time. The hypothesis of this study...

  2. Regulation of exercise blood flow: Role of free radicals.

    Science.gov (United States)

    Trinity, Joel D; Broxterman, Ryan M; Richardson, Russell S

    2016-09-01

    During exercise, oxygen and nutrient rich blood must be delivered to the active skeletal muscle, heart, skin, and brain through the complex and highly regulated integration of central and peripheral hemodynamic factors. Indeed, even minor alterations in blood flow to these organs have profound consequences on exercise capacity by modifying the development of fatigue. Therefore, the fine-tuning of blood flow is critical for optimal physical performance. At the level of the peripheral circulation, blood flow is regulated by a balance between the mechanisms responsible for vasodilation and vasoconstriction. Once thought of as toxic by-products of in vivo chemistry, free radicals are now recognized as important signaling molecules that exert potent vasoactive responses that are dependent upon the underlying balance between oxidation-reduction reactions or redox balance. Under normal healthy conditions with low levels of oxidative stress, free radicals promote vasodilation, which is attenuated with exogenous antioxidant administration. Conversely, with advancing age and disease where background oxidative stress is elevated, an exercise-induced increase in free radicals can further shift the redox balance to a pro-oxidant state, impairing vasodilation and attenuating blood flow. Under these conditions, exogenous antioxidants improve vasodilatory capacity and augment blood flow by restoring an "optimal" redox balance. Interestingly, while the active skeletal muscle, heart, skin, and brain all have unique functions during exercise, the mechanisms by which free radicals contribute to the regulation of blood flow is remarkably preserved across each of these varied target organs.

  3. FORMULAE FOR AVERAGE VELOCITY OF GROUNDWATER FLOW AND EXPERIMENTAL EVIDENCE OF NON-DARCY'S FLOW THROUGH A SINGLE FRACTURE

    Institute of Scientific and Technical Information of China (English)

    Qian Jia-zhong; Wang Jia-quan; Li Ru-zhong; Liu Yong

    2003-01-01

    The formulae for average velocity of groundwater flow in a single fracture were derived based on the characteristics of fracture properties and hydraulic methods. The results show that the average velocity is proportional to the square root of the hydraulic gradient. In order to verify the results, a laboratory model was established, and the experimental data were analyzed. Experimental results indicate that the relation between the average velocity and hydraulic gradient is nonlinear, and can be fitted with power functions. And for both the unconfined and confined flows, the value of the exponent of power functions are close to 0.5. Thus the experimental results agree well with those from the theoretical analysis. By comparing the calculated and measured values of the average velocity under the same conditions, the formulae presented herein are more effective than the traditional formula based on Darcy's Law. These results provide the evidences of non-Darcy's flow in single fracture.

  4. [Peculiarities of ocular blood flow in ischemic optic neuropathy and normal tension glaucoma].

    Science.gov (United States)

    Mamikonian, V R; Galoian, N S; Sheremet, N L; Kazarian, E E; Kharlap, S I; Shmeleva-Demir, O A; Andzhelova, D V; Tatevosian, A A

    2013-01-01

    Characteristics of ocular hemodynamics in ischemic optic neuropathy (ION) outcome and normal tension glaucoma (NTG), the conditions that are difficult to be differentially diagnosed, have been investigated. The study enrolled 32 patients (40 eyes) with ION outcome, 26 patients (46 eyes) with NTG, and 20 patients (32 eyes) with no ocular pathology. Besides the standard ophthalmological examination, color Doppler imaging of ocular vessels, evaluation of ocular blood flow volume and individual normal range of intraocular pressure (flowmetry) were performed in all cases. The results showed that an excess of the actual intraocular pressure (IOP) over the individual normal range was much higher in patients with NTG than in patients with ION (39% and 14.5% correspondingly). It was also found that NTG is associated with a more significant decrease of ocular blood flow volume (30.1% in average) in comparison to ION outcome (11%). In both conditions a decrease in velocity parameters of the blood flow in main ocular vessels was registered, however, ocular hemodynamics changes appeared to be more severe in patients with glaucomatous optic neuropathy. A statistically reliable correlation between volumetric and velocity parameters of ocular blood flow has been discovered.

  5. The Terminal Velocity of a Bubble in an Oscillating Flow

    Science.gov (United States)

    Romero, L. A.; Kraynik, A. M.; Torczynski, J. R.

    2010-11-01

    A bubble in an acoustic field experiences a net "Bjerknes" force from the nonlinear coupling of its radial oscillations with the oscillating buoyancy force. It is typically assumed that the bubble's net terminal velocity can be found by considering a spherical bubble with the imposed "Bjerknes stresses". We have analyzed the motion of such a bubble using a rigorous perturbation approach and found that one must include a term involving an effective mass flux through the bubble that arises from the time average of the second-order nonlinear terms in the kinematic boundary condition. The importance of this term is governed by the dimensionless parameter α=R^2φ / R^2φ ν . - ν, where R is the bubble radius, φ is the driving frequency, and ν is the liquid kinematic viscosity. If α is large, this term is unimportant, but if α is small, this term is the dominant factor in determining the terminal velocity. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  6. Quantitative myocardial blood flow with Rubidium-82 PET

    DEFF Research Database (Denmark)

    Hagemann, Christoffer E; Ghotbi, Adam A; Kjær, Andreas

    2015-01-01

    Positron emission tomography (PET) allows assessment of myocardial blood flow in absolute terms (ml/min/g). Quantification of myocardial blood flow (MBF) and myocardial flow reserve (MFR) extend the scope of conventional semi-quantitative myocardial perfusion imaging (MPI): e.g. in 1......) identification of the extent of a multivessel coronary artery disease (CAD) burden, 2) patients with balanced 3-vessel CAD, 3) patients with subclinical CAD, and 4) patients with regional flow variance, despite of a high global MFR. A more accurate assessment of the ischemic burden in patients with intermediate...

  7. Directional velocity estimation using focusing along the flow direction - I: Theory and simulation

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    2003-01-01

    using 8 pulse-echo lines and stationary echo canceling. Pulsatile flow in the femoral artery was also simulated using Womersley's flow model. A purely transverse flow profile could be obtained with a relative standard deviation of less than 10% over the whole cardiac cycle using 8 pulse emissions......A new method for directional velocity estimation is presented. The method uses beamformation along the flow direction to generate data in which the correct velocity magnitude can be directly estimated from the shift in position of the received consecutive signals. The shift is found by cross...... velocity of 0.5 m/s is simulated for different beam-to-flow angles and for different emit foci. At 45degrees the relative standard deviation over the profile is 1.6% for a transmit focus at 40 mm. At 90degrees the approach gave a relative standard deviation of 6.6% with a transmit focus of 80 mm, when...

  8. Numerical simulation of hemodynamic interactions of red blood cells in micro-capillary flow

    Institute of Scientific and Technical Information of China (English)

    石兴; 张帅; 王双连

    2014-01-01

    The hemodynamic interactions of red blood cells (RBCs) in a microcapillary flow are investigated in this paper. This kind of interaction is considered as the non-contact mutual interaction of cells, which is important in the suspension flow of blood, but not sufficiently understood. The distributed Lagrange multiplier/fictitious domain method in the lattice Boltzmann framework is used to solve the suspension of the RBCs. The modification of the flow due to the cells, the dependence of the cell deformation on the flow and the cell-cell interaction via the fluid are discussed. It is revealed that the long-range hydrodynamic interaction with a long interacting distance, more than about 5 times of the RBC equivalent radius, mainly has effect on the rheology properties of the suspension, such as the mean velocity, and the short-range interaction is sensitive to the shape of the cell in the microcapillary flow. The flow velocity around the cell plays a key role in the cell deformation. In the current configuration of the flow and cells, the cells repel each other along the capillary.

  9. Measurement of aortic blood flow by magnetic resonance below and above the origin of the coronary arteries in postmenopausal hormone replacement therapy

    DEFF Research Database (Denmark)

    Sørensen, Morten Beck; Fritz-Hansen, Thomas; Jensen, Henrik Halvor

    2004-01-01

    PURPOSE: Principal blood flow measures might be assessable by velocity-encoded cine magnetic resonance (VENC MR) of aortic blood flow. The feasibility of using VENC MR for clinical research was tested in a contemporary and controversial human model: the effects of 17beta-estradiol (E) and cyclic...

  10. Computational fluid dynamics of gap flow in a biocentrifugal blood pump.

    Science.gov (United States)

    Chua, Leok Poh; Song, Guoliang; Yu, Simon Ching Man; Lim, Tau Meng

    2005-08-01

    The centrifugal blood pump with a magnetically suspended impeller has shown its superiority as compared to other artificial heart pumps. However, there is still insufficient understanding of fluid mechanics related issues in the clearance gap. The design nature of the pump requires sufficient washout in the clearance between the impeller and the stationary pump housing inner surface. In this study, numerical simulations were carried out to investigate the flow fields in the gap of the Kyoto-NTN centrifugal blood pump. The flow patterns in the gap region of the blood pump were presented and regions of high and low velocity were identified. It was found that the radial velocity of the blood in the gap was closely related to the pressure distribution at the exit of the impeller, both the highest pressure gradient and the highest radial velocity in the gap occurred at an angular position of 170 degrees . The mass flow rate in the gap was estimated to be 25.2% of the pump outflow, which is close to the measurement results of a five times enlarged test pump. The wall shear stresses on the gap surface were found to be over 21 Pa and below 300 Pa, which is correspondingly higher than the threshold of thrombi formation and is lower than the shearing threshold of red blood cells. Comparison of the 1 : 1 simulation model with the measurement results on a five times enlarged test pump indicates that there are some differences in the resulting radial velocity distributions in the gap and thus the washout mechanism. Two symmetrical high washout regions at both the cutwater and splitter plate were observed in the simulation instead of a single washout region at the splitter plate found in the experimental study. This may be due to the scaling effect of the enlarged test pump; also the medium used in the experiment is different from the simulation.

  11. Reduced myocardial blood flow in acute and chronic digitalization.

    Science.gov (United States)

    Steiness, E; Bille-Brahe, N E; Hansen, J F; Lomholt, N; Ring-Larsen, H

    1978-07-01

    The myocardial blood flow was measured by the 133Xenon disappearance curve from the left ventricular wall following an injection of 133Xenon in the left coronary artery in 8 dogs without digoxin pretreatment and in 8 chronically digitalized dogs. The myocardial blood flow was significantly less (30%) in the digitalized dogs than in the dogs without pretreatment. In the digitalized dogs as well as in those without pretreatment an intravenous injection of digoxin resulted in a further significant decrease of the myocardial blood flow of about 20% and a significant increase of the coronary vascular resistance. The reduced myocardial blood flow both during acute and chronic digitalization is beleived to be of clinical importance.

  12. Skeletal Blood Flow in Bone Repair and Maintenance

    Institute of Scientific and Technical Information of China (English)

    Ryan E.Tomlinson; Matthew J.Silva

    2013-01-01

    Bone is a highly vascularized tissue, although this aspect of bone is often overlooked. In this article, the importance of blood flow in bone repair and regeneration will be reviewed. First, the skeletal vascular anato-my, with an emphasis on long bones, the distinct mechanisms for vascularizing bone tissue, and methods for remodeling existing vasculature are discussed. Next, techniques for quantifying bone blood flow are briefly summarized. Finally, the body of experimental work that demonstrates the role of bone blood flow in fracture healing, distraction osteogenesis, osteoporosis, disuse osteopenia, and bone grafting is examined. These results illustrate that adequate bone blood flow is an important clinical consideration, particularly during bone regeneration and in at-risk patient groups.

  13. Study Links Stuttering to Less Blood Flow in Brain

    Science.gov (United States)

    ... medlineplus.gov/news/fullstory_162922.html Study Links Stuttering to Less Blood Flow in Brain The more ... to speech may put people at risk for stuttering, a small study suggests. There are also signs ...

  14. Real-Time Blood Flow Estimation Using a Recursive Least-Squares Lattice Filter

    DEFF Research Database (Denmark)

    Stetson, Paul F.; Jensen, Jørgen Arendt

    1997-01-01

    Ultrasonic flow estimation involves Fourier-transforming data from successive pulses. The standard periodogram spectral estimate does not reflect the true velocity distribution in the blood and assumes quasi-stationarity in the data. Last year (see J.A. Jensen et al., IEEE Ultrasonics Symposium...... Proceedings, p. 1221-4, 1996), the authors demonstrated that a recursive lattice filter can yield results much closer to the correct velocity distribution. They have now implemented it in real time on a system with sixteen ADSP-21060 processors, interfaced to a commercial scanner. The system can perform real...

  15. Smart Laser Interferometer with Electrically Tunable Lenses for Flow Velocity Measurements through Disturbing Interfaces

    Directory of Open Access Journals (Sweden)

    Jürgen W. Czarske

    2015-01-01

    Full Text Available Interferometric velocity measurements are of great importance at flow investigations. However, the laser beams can be distorted at the interfaces between optical media of different refractive indices. Temporal fluctuations of these distortions will cause a deterioration of the laser interferometer signals. We have harnessed the power of programmable photonics devices to eliminate this signal deterioration. Non-invasive flow velocity measurements through a rapidly fluctuating media interface with large strokes of about 100 microns are presented. Our work represents a paradigm shift for interferometric velocity measurement techniques from using static to dynamic optical elements.

  16. Retrobulbar blood flow and visual field alterations after acute ethanol ingestion

    Directory of Open Access Journals (Sweden)

    Weber A

    2013-08-01

    Full Text Available Anke Weber, Andreas Remky, Marion Bienert, Klaudia Huber-van der Velden, Thomas Kirschkamp, Corinna Rennings, Gernot Roessler, Niklas Plange Department of Ophthalmology, RWTH Aachen University, Aachen, Germany Background: The purpose of this study was to test the effect of ethyl alcohol on the koniocellular and magnocellular pathway of visual function and to investigate the relationship between such visual field changes and retrobulbar blood flow in healthy subjects. Methods: In 12 healthy subjects (mean age 32 ± 4 years, color Doppler imaging, short-wavelength automated perimetry, and frequency doubling perimetry was performed before and 60 minutes after oral intake of 80 mL of 40 vol% ethanol. Mean and pattern standard deviations for short-wavelength automated and frequency doubling perimetry were assessed. End diastolic velocity (EDV and peak systolic velocity (PSV were measured in the central retinal and ophthalmic arteries using color Doppler imaging. Systemic blood pressure, heart rate, intraocular pressure, and blood alcohol concentration were determined. Results: Mean PSV and EDV in the central retinal artery showed a significant increase after alcohol intake (P = 0.03 and P = 0.02, respectively. Similarly, we found a significant acceleration of blood flow velocity in the ophthalmic artery (P = 0.02 for PSV; P = 0.04 for EDV. Mean intraocular pressure decreased by 1.0 mmHg after alcohol ingestion (P = 0.01. Retinal sensitivity in short-wavelength automated perimetry did not alter, whereas in frequency doubling perimetry, the mean deviation decreased significantly. Systolic and diastolic blood pressure did not change significantly. Mean blood alcohol concentration was 0.38 ± 0.16 g/L. Conclusion: Although ethanol is known to cause peripheral vasodilation, our subjects had no significant drop in systemic blood pressure. However, a significant increase of blood flow velocity was seen in the retrobulbar vessels. Regarding visual function

  17. Quantitative blood flow measurements in the small animal cardiopulmonary system using digital subtraction angiography

    Energy Technology Data Exchange (ETDEWEB)

    Lin Mingde; Marshall, Craig T.; Qi, Yi; Johnston, Samuel M.; Badea, Cristian T.; Piantadosi, Claude A.; Johnson, G. Allan [Department of Radiology, Center for In Vivo Microscopy and Department of Biomedical Engineering, Duke University Medical Center, Box 3302, Durham, North Carolina 27710 (United States); Division of Pulmonary and Critical Care Medicine and Center for Hyperbaric Medicine and Environmental Physiology, Duke University Medical Center, Box 3823, Durham, North Carolina 27710 (United States); Department of Radiology, Center for In Vivo Microscopy, Duke University Medical Center, Box 3302, Durham, North Carolina 27710 (United States); Department of Radiology, Center for In Vivo Microscopy and Department of Biomedical Engineering, Duke University Medical Center, Box 3302, Durham, North Carolina 27710 (United States); Department of Radiology, Center for In Vivo Microscopy, Duke University Medical Center, Box 3302, Durham, North Carolina 27710 (United States); Division of Pulmonary and Critical Care Medicine and Center for Hyperbaric Medicine and Environmental Physiology, Duke University Medical Center, Box 3823, Durham, North Carolina 27710 (United States); Department of Radiology, Center for In Vivo Microscopy and Department of Biomedical Engineering, Duke University Medical Center, Box 3302, Durham, North Carolina 27710 (United States)

    2009-11-15

    Purpose: The use of preclinical rodent models of disease continues to grow because these models help elucidate pathogenic mechanisms and provide robust test beds for drug development. Among the major anatomic and physiologic indicators of disease progression and genetic or drug modification of responses are measurements of blood vessel caliber and flow. Moreover, cardiopulmonary blood flow is a critical indicator of gas exchange. Current methods of measuring cardiopulmonary blood flow suffer from some or all of the following limitations--they produce relative values, are limited to global measurements, do not provide vasculature visualization, are not able to measure acute changes, are invasive, or require euthanasia. Methods: In this study, high-spatial and high-temporal resolution x-ray digital subtraction angiography (DSA) was used to obtain vasculature visualization, quantitative blood flow in absolute metrics (ml/min instead of arbitrary units or velocity), and relative blood volume dynamics from discrete regions of interest on a pixel-by-pixel basis (100x100 {mu}m{sup 2}). Results: A series of calibrations linked the DSA flow measurements to standard physiological measurement using thermodilution and Fick's method for cardiac output (CO), which in eight anesthetized Fischer-344 rats was found to be 37.0{+-}5.1 ml/min. Phantom experiments were conducted to calibrate the radiographic density to vessel thickness, allowing a link of DSA cardiac output measurements to cardiopulmonary blood flow measurements in discrete regions of interest. The scaling factor linking relative DSA cardiac output measurements to the Fick's absolute measurements was found to be 18.90xCO{sub DSA}=CO{sub Fick}. Conclusions: This calibrated DSA approach allows repeated simultaneous visualization of vasculature and measurement of blood flow dynamics on a regional level in the living rat.

  18. Current Imaging Modalities for assessing Ocular Blood Flow in Glaucoma

    OpenAIRE

    Mohindroo, Chirayu; Ichhpujani, Parul; Kumar, Suresh

    2016-01-01

    Glaucoma may be caused by an interplay of elevated intraocular pressure (IOP), vascular, genetic, anatomical, brain, and immune factors. The direct assessment of ocular hemodynam-ics offers promise for glaucoma detection, differentiation, and possibly new treatment modalities. All the methods currently in use to measure ocular blood flow have inherent limitations and measure different aspects of ocular blood flow. This review article attempts to provide detailed information on ocular perfu-si...

  19. Salt-gland secretion and blood flow in the goose.

    Science.gov (United States)

    Hanwell, A; Linzell, J L; Peaker, M

    1971-03-01

    1. Salt-gland blood flow in the domestic goose has been measured using a combination of Sapirstein's indicator fractionation technique for organ blood flow and Fegler's thermodilution method for cardiac output.2. Nasal salt secretion was induced by giving 0.5 M-NaCl or 0.154 M-NaCl I.V. or by giving artificial sea water by stomach tube into the proventriculus.3. During secretion, salt-gland blood flow increased from 82.7 +/- 21.9 ml./100 g tissue. min to as high as 2179 ml./100 g. min (mean 1209 +/- 140).4. The rate of secretion in response to salt loading was very variable and was not correlated with the rate of blood flow.5. From the data obtained, it could be calculated that the median values for the percentage extraction of ions from the arterial plasma were Na 15%, K 35%, Cl 21% and water 5.8%.6. Atropine abolished secretion but not the increase in blood flow produced by salt loading.7. Unilateral complete denervation abolished secretion from and the increase in blood flow through the operated but not the control gland.8. Anaesthesia, induced by pentobarbitone sodium, almost completely blocked secretion and the increase in blood flow in the salt-gland in response to salt loading.9. In geese given 0.5 or 0.154 M-NaCl I.V. a positive, significant correlation was found between the total amount of nasal secretion collected over 30 min and the concentrations of Na and Cl in the nasal fluid. However, when the time course of secretion was followed in any one bird, the rate of secretion was inversely related to the concentrations of Na and Cl.10. Harderian gland blood flow was not affected by salt loading.

  20. Fluorescence photobleaching to evaluate flow velocity and hydrodynamic dispersion in nanoslits.

    Science.gov (United States)

    Cuenca, Amandine; Bodiguel, Hugues

    2012-05-01

    Velocity measurement is a key issue when studying flows below the micron scale, due to the lack of sensitivity of conventional detection techniques. We present an approach based on fluorescence photobleaching to evaluate flow velocity at the nanoscale by direct visualization. Solutions containing a fluorescent dye are injected into nanoslits. A photobleached line, created through laser beam illumination, moves through the channel due to the fluid flow. The velocity and effective diffusion coefficient are calculated from the temporal data of the line position and width respectively. The measurable velocity range is only limited by the diffusion rate of the fluorescent dye for low velocities and by the apparition of Taylor dispersion for high velocities. By controlling the pressure drop and measuring the velocity, we determine the fluid viscosity. The photobleached line spreads in time due to molecular diffusion and Taylor hydrodynamic dispersion. By taking into account the finite spatial and temporal extensions of the bleaching under flow, we determine the effective diffusion coefficient, which we find to be in good agreement with the expression of the two dimensional Taylor-Aris dispersion coefficient. Finally we analyze and discuss the role of the finite width of the rectangular slit on hydrodynamic dispersion.

  1. Turbulence of non-uniform open channel flows and mean velocity scaling

    Science.gov (United States)

    Stewart, R.; Fox, J.

    2014-12-01

    Turbulence and mean velocity distributions are well studied for uniform flows, however fully turbulent non-uniform open channel flows over rough gravel beds are an understudied class of realistic flows with significant geomorphologic importance. The two-fold objectives of this study are to investigate the effects of flow deceleration on multi-layer turbulence and determine velocity scales that produce self-similar profiles using turbulent boundary layer theory. Turbulence statistics were calculated from data collected using a three-dimensional acoustic Doppler velocimeter in backwater region produced by placing cylindrical obstruction downstream of measuring location. Results indicate inner turbulent processes are set according to shear velocity while outer layer of turbulence is not. Mean streamwise velocity profiles of 101 published datasets including 2211 data points from non-uniform decelerating rivers and laboratory flumes are scaled using inner, outer and 2 mixed methods. Theoretical arguments indicate the outer velocity scale determined from the AIP definition of equilibrium provides a more appropriate scaling for the velocity deficit of non-uniform open channel flows than inner scaling determined from Clauser equilibrium. Scaling results of mean profiles show outer scaling collapses data better than inner scaling. Mixed scaling approaches, which account for upstream conditions and the effect of bed roughness felt throughout the flow, provide a better scaling choice for this class of flows than either inner or outer scales alone. Results of this analysis provide insight on the behavior of turbulence in decelerating fully turbulent open channel flow over a rough gravel bed and provides a scaling useful for predicting velocity distributions.

  2. Velocity measurements of low Reynolds number tube flow using fiber-optic technology

    Energy Technology Data Exchange (ETDEWEB)

    Bianchi, J.C.

    1993-03-01

    In 1988 Nielsen started work to measure the spatial variability of the mass flux vector being transported in a porous medium. To measure the spatial variability of the mass flux vector, the spatial variability of its components(velocity, concentration) must be measured. Nielsen was successful in measuring the pore level concentration at many different pores and in verifying the assumption that a nonuniform concentration field exists within the mixing zone between two miscible fluids. However, Nielsen was unable to conduct the necessary pore level velocity measurements needed. Nielsen's work is being continued and a probe is being developed that will measure both velocity and concentration components at pore level. The probe is essentially the same probe used to make the pore level concentration measurements with added capabilities needed to make the velocity measurements. This probe has several design variables, dealing primarily with the velocity component, that need further investigation. The research presented in this thesis investigates these parameters by performing experiments in a capillary tube. The tube is a controlled system where the velocity of the fluid can be determined from the volumetric flow rate using Poiseuille's solution for viscous flow. Also, a statistically based relationship between the velocity measured with the probe and the velocity determined from the volumetric flow rate has been developed.

  3. Velocity measurements of low Reynolds number tube flow using fiber-optic technology

    Energy Technology Data Exchange (ETDEWEB)

    Bianchi, J. Christopher [Univ. of Vermont, Burlington, VT (United States)

    1993-03-01

    In 1988 Nielsen started work to measure the spatial variability of the mass flux vector being transported in a porous medium. To measure the spatial variability of the mass flux vector, the spatial variability of its components(velocity, concentration) must be measured. Nielsen was successful in measuring the pore level concentration at many different pores and in verifying the assumption that a nonuniform concentration field exists within the mixing zone between two miscible fluids. However, Nielsen was unable to conduct the necessary pore level velocity measurements needed. Nielsen`s work is being continued and a probe is being developed that will measure both velocity and concentration components at pore level. The probe is essentially the same probe used to make the pore level concentration measurements with added capabilities needed to make the velocity measurements. This probe has several design variables, dealing primarily with the velocity component, that need further investigation. The research presented in this thesis investigates these parameters by performing experiments in a capillary tube. The tube is a controlled system where the velocity of the fluid can be determined from the volumetric flow rate using Poiseuille`s solution for viscous flow. Also, a statistically based relationship between the velocity measured with the probe and the velocity determined from the volumetric flow rate has been developed.

  4. Experimental comparison of mammalian and avian blood flow in microchannels

    Science.gov (United States)

    Fink, Kathryn; Liepmann, Dorian

    2015-11-01

    The non-Newtonian, shear rate dependent behavior of blood in microchannel fluid dynamics has been studied for nearly a century, with a significant focus on the characteristics of human blood. However, for over 200 years biologists have noted significant differences in red blood cell characteristics across vertebrate species, with particularly drastic differences in cell size and shape between mammals and non-mammalian classes. We present an experimental analysis of flow in long microchannels for several varieties of mammalian and avian blood, across a range of hematocrits, channel diameters, and flow rates. Correlation of shear rate and viscosity is compared to existing constitutive equations for human blood to further quantify the importance of red blood cell characteristics. Ongoing experimental results are made available in an online database for reference or collaboration. K.F. acknowledges funding from the ARCS Foundation and an NSF Graduate Research Fellowship through NSF Grant DGE 1106400.

  5. APPLICATION OF THE THEORY OF INTERACTING CONTINUA TO BLOOD FLOW

    Energy Technology Data Exchange (ETDEWEB)

    Massoudi, Mehrdad; Kim, Jeongho; Hund, Samuel J.; Antaki, James F.

    2011-01-01

    Micro-scale investigations of the flow and deformation of blood and its formed elements have been studied for many years. Early in vitro investigations in the rotational viscometers or small glass tubes revealed important rheological properties such as the reduced blood apparent viscosity, Fahraeus effect and Fahraeus-Lindqvist effect [1], exhibiting the nonhomogeneous property of blood in microcirculation. We have applied Mixture Theory, also known as Theory of Interacting Continua, to study and model this property of blood [2, 3]. This approach holds great promise for predicting the trafficking of RBCs in micro-scale flows (such as the depletion layer near the wall), and other unique hemorheological phenomena relevant to blood trauma. The blood is assumed to be composed of an RBC component modeled as a nonlinear fluid, suspended in plasma, modeled as a linearly viscous fluid.

  6. Blood flow changes coincide with cellular rearrangements during blood vessel pruning in zebrafish embryos.

    Directory of Open Access Journals (Sweden)

    Eva Kochhan

    Full Text Available After the initial formation of a highly branched vascular plexus, blood vessel pruning generates a hierarchically structured network with improved flow characteristics. We report here on the cellular events that occur during the pruning of a defined blood vessel in the eye of developing zebrafish embryos. Time-lapse imaging reveals that the connection of a new blood vessel sprout with a previously perfused multicellular endothelial tube leads to the formation of a branched, Y-shaped structure. Subsequently, endothelial cells in parts of the previously perfused branch rearrange from a multicellular into a unicellular tube, followed by blood vessel detachment. This process is accompanied by endothelial cell death. Finally, we show that differences in blood flow between neighboring vessels are important for the completion of the pruning process. Our data suggest that flow induced changes in tubular architecture ensure proper blood vessel pruning.

  7. PIV Investigations of the Flow Field in the Volute of a Rotary Blood Pump

    Science.gov (United States)

    Sankovic, John M.; Kadambi, Jaikrishnan R.; Smith, William A.; Wernet, Mark P.

    2004-01-01

    A full-size acrylic model of a rotary blood pump was developed in order to utilize Particle Image Velocimetry (PIV) to make measurements of the fluid velocities and turbulent stresses throughout the device. The development of an understanding of the hemodynamics within the blood pump is critical to the development and validation of computational models. A blood analog solution, consisting of sodium iodide solution and glycerin, was developed to match physiological kinematic viscosity. The refractive indices of the fluid, the pump casing, and the impeller were matched to facilitate the use of PIV to make velocity measurements. Velocity measurements made in the volute exit/diffuser region are presented for pumps speeds of 3000-3850 rpm. At each speed data were obtained at a physiological pressure of 12 kPa and at a maximum flow condition. Four hundred data pairs were used for each resultant mean velocity vector value, representing greater than an order of magnitude more data pairs than reported previously in the literature on similar devices and resulting in velocity uncertainty levels of approximately 22.9%.

  8. Cerebral Blood Flow, Heart Rate, and Blood Pressure Patterns during the Tilt Test in Common Orthostatic Syndromes

    Directory of Open Access Journals (Sweden)

    Peter Novak

    2016-01-01

    Full Text Available Objective. The head-up tilt test is widely used for evaluation of orthostatic intolerance. Although orthostatic symptoms usually reflect cerebral hypoperfusion, the cerebral blood flow velocity (CBFv profile in orthostatic syndromes is not well described. This study evaluated CBFv and cardiovascular patterns associated with the tilt test in common orthostatic syndromes. Methods. This retrospective study analyzed the tilt test of patients with history of orthostatic intolerance. The following signals were recorded: ECG, blood pressure, CBFv using transcranial Doppler, respiratory signals, and end tidal CO2. Results. Data from 744 patients were analyzed. Characteristic pattern associated with a particular orthostatic syndrome can be grouped into abnormalities predominantly affecting blood pressure (orthostatic hypotension, orthostatic hypertension syndrome, vasomotor oscillations, and neurally mediated syncope—cardioinhibitory, vasodepressor, and mixed, cerebral blood flow (orthostatic hypoperfusion syndrome, primary cerebral autoregulatory failure, and heart rate (tachycardia syndromes: postural tachycardia syndrome, paroxysmal sinus tachycardia, and inappropriate sinus tachycardia. Psychogenic pseudosyncope is associated with stable CBFv. Conclusions. The tilt test is useful add-on in diagnosis of several orthostatic syndromes. However diagnostic criteria for several syndromes had to be modified to allow unambiguous pattern classification. CBFv monitoring in addition to blood pressure and heart rate may increase diagnostic yield of the tilt test.

  9. Cerebral Blood Flow, Heart Rate, and Blood Pressure Patterns during the Tilt Test in Common Orthostatic Syndromes

    Science.gov (United States)

    2016-01-01

    Objective. The head-up tilt test is widely used for evaluation of orthostatic intolerance. Although orthostatic symptoms usually reflect cerebral hypoperfusion, the cerebral blood flow velocity (CBFv) profile in orthostatic syndromes is not well described. This study evaluated CBFv and cardiovascular patterns associated with the tilt test in common orthostatic syndromes. Methods. This retrospective study analyzed the tilt test of patients with history of orthostatic intolerance. The following signals were recorded: ECG, blood pressure, CBFv using transcranial Doppler, respiratory signals, and end tidal CO2. Results. Data from 744 patients were analyzed. Characteristic pattern associated with a particular orthostatic syndrome can be grouped into abnormalities predominantly affecting blood pressure (orthostatic hypotension, orthostatic hypertension syndrome, vasomotor oscillations, and neurally mediated syncope—cardioinhibitory, vasodepressor, and mixed), cerebral blood flow (orthostatic hypoperfusion syndrome, primary cerebral autoregulatory failure), and heart rate (tachycardia syndromes: postural tachycardia syndrome, paroxysmal sinus tachycardia, and inappropriate sinus tachycardia). Psychogenic pseudosyncope is associated with stable CBFv. Conclusions. The tilt test is useful add-on in diagnosis of several orthostatic syndromes. However diagnostic criteria for several syndromes had to be modified to allow unambiguous pattern classification. CBFv monitoring in addition to blood pressure and heart rate may increase diagnostic yield of the tilt test. PMID:27525257

  10. Blood flow and microdialysis in the human femoral head

    DEFF Research Database (Denmark)

    Bøgehøj, Morten; Emmeluth, Claus; Overgaard, Søren

    2007-01-01

    BACKGROUND: If it would be possible to detect lack of flow and/or the development of ischemia in bone, we might have a way of predicting whether a broken bone will heal. We established microdialysis (MD) and laser Doppler (LD) flow measurement in the human femoral head in order to be able to detect...... ischemia and measure changes in blood flow. MATERIAL AND METHODS: In 9 patients undergoing total hip arthroplasty for primary osteoarthrosis, two MD catheters were inserted into the femoral head through two drill holes after the blood flow had been visualized by LD. Then primary samples were collected...... detected within 2 h of cessation of blood flow in most patients....

  11. Measurement of gas flow velocity: anemometer with a vibrating hot wire.

    Science.gov (United States)

    Kiełbasa, Jan

    2010-01-01

    I propose a new method to measure velocity of a gas flow, which utilizes the time derivative of the voltage observed on a vibrating hot-wire sensor. The wire vibrates with an amplitude a and a frequency f, and is kept perpendicular to the gas flow direction in the plane containing the flow velocity vector v(g). When the parameters of vibrations are tuned, the number of zeros per vibration period of the hot-wire voltage function changes. I demonstrate that at the point of change, the unknown gas velocity is directly expressed by the parameters of vibrations v(g)=2pifa. Therefore, the velocity can be measured without any prior calibration of the hot-wire speed-voltage curve and the method can be used for gases of slowly changing temperature or composition.

  12. Correlation and spectral measurements of fluctuating pressures and velocities in annular turbulent flow. [PWR; BWR

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, R.J.; Jones, B.G.; Roy, R.P.

    1980-02-01

    An experimental study of the fluctuating velocity field, the fluctuating static wall pressure and the in-stream fluctuating static pressure in an annular turbulent air flow system with a radius ratio of 4.314 has been conducted. The study included direct measurements of the mean velocity profile, turbulent velocity field; fluctuating static wall pressure and in-stream fluctuating static pressure from which the statistical values of the turbulent intensity levels, power spectral densities of the turbulent quantities, the cross-correlation between the fluctuating static wall pressure and the fluctuating static pressure in the core region of the flow and the cross-correlation between the fluctuating static wall pressure and the fluctuating velocity field in the core region of the flow were obtained.

  13. Evaluation of flow velocities after carotid artery stenting through split spectrum Doppler optical coherence tomography and computational fluid dynamics modeling.

    Science.gov (United States)

    Vuong, Barry; Genis, Helen; Wong, Ronnie; Ramjist, Joel; Jivraj, Jamil; Farooq, Hamza; Sun, Cuiru; Yang, Victor X D

    2014-12-01

    Hemodynamics plays a critical role in the development of atherosclerosis, specifically in regions of curved vasculature such as bifurcations exhibiting irregular blood flow profiles. Carotid atherosclerotic disease can be intervened by stent implantation, but this may result in greater alterations to local blood flow and consequently further complications. This study demonstrates the use of a variant of Doppler optical coherence tomography (DOCT) known as split spectrum DOCT (ssDOCT) to evaluate hemodynamic patterns both before and after stent implantation in the bifurcation junction in the internal carotid artery (ICA). Computational fluid dynamics (CFD) models were constructed to simulate blood velocity profiles and compared to the findings achieved through ssDOCT images. Both methods demonstrated noticeable alterations in hemodynamic patterns following stent implantation, with features such as slow velocity regions at the neck of the bifurcation and recirculation zones at the stent struts. Strong correlation between CFD models and ssDOCT images demonstrate the potential of ssDOCT imaging in the optimization of stent implantation in the clinical setting.

  14. Multi-Bifurcation Effect of Blood Flow by Lattice Boltzmann Method

    Institute of Scientific and Technical Information of China (English)

    RAO Yong; NI Yu-Shan; LIU Chao-Feng

    2008-01-01

    The multi-bifurcation effect of blood flow is investigated by lattice Boltzmann method at Re = 200 with six different bifurcation angles α, which are 22.5°, 25°, 28°, 30°, 33°, 35°, respectively. The velocities and ratios of average velocity at various bifurcations are discussed. It is indicated that the maximum velocity at the section near the first divider increases and shifts towards the walls of branch with the increase of α. At the first bifurcation, the average horizontal velocities increase with the increase of α. The average horizontal velocities of outer branches at the secondary bifurcation decrease at 22.5°≤α≤30° and increase at 30°≤α≤35°, whereas those of inner branches at the secondary bifurcation have the opposite variation, as the same as the above variations of the ratios of average horizontal velocities at various bifurcations. The ratios of average vertical velocities of branch at first bifurcation to that of outer branches at the secondary bifurcation increase at 22.5°≤α≤30° and decrease at 30°≤α≤35°, whereas the ratios of average vertical velocities of branch at first bifurcation to that of inner branches at the secondary bifurcation always decrease.

  15. Stochastic modeling for magnetic resonance quantification of myocardial blood flow

    Science.gov (United States)

    Seethamraju, Ravi T.; Muehling, Olaf; Panse, Prasad M.; Wilke, Norbert M.; Jerosch-Herold, Michael

    2000-10-01

    Quantification of myocardial blood flow is useful for determining the functional severity of coronary artery lesions. With advances in MR imaging it has become possible to assess myocardial perfusion and blood flow in a non-invasive manner by rapid serial imaging following injection of contrast agent. To date most approaches reported in the literature relied mostly on deriving relative indices of myocardial perfusion directly from the measured signal intensity curves. The central volume principle on the other hand states that it is possible to derive absolute myocardial blood flow from the tissue impulse response. Because of the sensitivity involved in deconvolution due to noise in measured data, conventional methods are sub-optimal, hence, we propose to use stochastic time series modeling techniques like ARMA to obtain a robust impulse response estimate. It is shown that these methods when applied for the optical estimation of the transfer function give accurate estimates of myocardial blood flow. The most significant advantage of this approach, compared with compartmental tracer kinetic models, is the use of a minimum set of prior assumptions on data. The bottleneck in assessing myocardial blood flow, does not lie in the MRI acquisition, but rather in the effort or time for post processing. It is anticipated that the very limited requirements for user input and interaction will be of significant advantage for the clinical application of these methods. The proposed methods are validated by comparison with mean blood flow measurements obtained from radio-isotope labeled microspheres.

  16. Hepatic and intestinal blood flow following thermal injury

    Energy Technology Data Exchange (ETDEWEB)

    Carter, E.A.; Tompkins, R.G.; Burke, J.F.

    1988-07-01

    Because cardiac output decreases after burn injuries, investigators have assumed, based upon dye clearance techniques, that hepatic and intestinal blood flow are also decreased following these injuries. Blood flow to the liver, stomach, small intestine, and kidney was determined by the uptake of 201thallium and 125I-labeled fatty acid (para-125I-phenyl-3-methyl pentanoic acid) in a 20% body surface area scald injury that also included plasma volume replacement resuscitation. Uptake of these radioisotopes was determined 15 minutes, 18 hours, and 72 hours after injury. The uptake of the 201thallium and 125I-labeled fatty acid by the gastrointestinal tissues was not statistically different at any of the time periods after comparison of the injured and control (sham-treated) animals. 201Thallium uptake by the kidney was significantly diminished 15 minutes after the burn injury (P less than 0.01). Based on these blood flow measurement techniques, the data suggest that the 20% body surface area scald injury did not alter blood flow to the liver or gastrointestinal tract within the initial 72 hours after the burn injury even though a decrease in renal blood flow was easily detected. These results suggest that the dysfunction of the gastrointestinal system or hepatic system observed after an acute burn injury is not simply the result of hypovolemic shock, which reduces both renal and mesenteric blood flow. These gastrointestinal and hepatic alterations may be related to a factor or factors other than intestinal ischemia.

  17. Radiohalogenated thienylethylamine derivatives for evaluating local cerebral blood flow

    Science.gov (United States)

    Goodman, Mark M.; Knapp, Jr., Furn F.

    1990-01-01

    Radiopharmaceuticals useful in brain imaging comprising radiohalogenated thienylethylamine derivatives. The compounds are 5-halo-thiophene-2-isopropyl amines able to cross the blood-brain barrier and be retained for a sufficient length of time to allow the evaluation or regional blood flow by radioimaging of the brain.

  18. In-vivo imaging of blood flow in human retinal vessels using color Doppler optical coherence tomography

    Science.gov (United States)

    Yazdanfar, Siavash; Rollins, Andrew M.; Izatt, Joseph A.

    1999-04-01

    Quantification of retinal blood flow may lead to a better understanding of the progression and treatment of several ocular disorders, including diabetic retinopathy, age- related macular degeneration, and glaucoma. Current techniques, such as fluorescein angiography and laser Doppler velocimetry are limited, failing to provide sufficient information to the clinician. Color Doppler optical coherence tomography (CDOCT) is a novel technique using coherent heterodyne detection for simultaneous cross- sectional imaging of tissue microstructure and blood flow. This technique is capable of high spatial and velocity resolution imaging in highly scattering media. We implemented CDOCT for retinal blood flow mapping in human subjects. No dilation of the pupil was necessary. CDOCT is demonstrated for determining bidirectional flow in sub- 100micrometers diameter vessels in the retina. Additionally, we calculated Doppler broadening using the variance of depth- resolved spectra to identify regions with large velocity gradients within the Xenopus heart. This technique may be useful in quantifying local tissue perfusion in highly vascular retinal tissue.

  19. Examination of nanoparticles as a drug carrier on blood flow through catheterized composite stenosed artery with permeable walls.

    Science.gov (United States)

    Ijaz, S; Nadeem, S

    2016-09-01

    In this paper, we have discussed the influence of copper nanoparticles on a blood flow through composite stenosed artery with permeable walls. The nature of blood is discussed mathematically by considering it as viscous nanofluid. The study is carried out for a blood vessel under mild stenosis approximations and expressions of the temperature, velocity, resistance impedance to flow, wall shear stress and the pressure gradient is obtained by using corresponding boundary conditions. Results for the effects of permeability on blood flow through composite stenosis have been discussed graphically. The considered analysis also summarizes that the drug copper nanoparticles are efficient to reduce hemodynamics of stenosis and could be helpful to predict important uses for biomedical applications. Results indicate that nanoparticles are helpful as drug carriers to minimize the effects of resistance impedance to blood flow or coagulation factors due to stenosis.

  20. Microvascular blood flow resistance: Role of red blood cell migration and dispersion.

    Science.gov (United States)

    Katanov, Dinar; Gompper, Gerhard; Fedosov, Dmitry A

    2015-05-01

    Microvascular blood flow resistance has a strong impact on cardiovascular function and tissue perfusion. The flow resistance in microcirculation is governed by flow behavior of blood through a complex network of vessels, where the distribution of red blood cells across vessel cross-sections may be significantly distorted at vessel bifurcations and junctions. In this paper, the development of blood flow and its resistance starting from a dispersed configuration of red blood cells is investigated in simulations for different hematocrit levels, flow rates, vessel diameters, and aggregation interactions between red blood cells. Initially dispersed red blood cells migrate toward the vessel center leading to the formation of a cell-free layer near the wall and to a decrease of the flow resistance. The development of cell-free layer appears to be nearly universal when scaled with a characteristic shear rate of the flow. The universality allows an estimation of the length of a vessel required for full flow development, lc ≲ 25D, for vessel diameters in the range 10 μm red blood cell dispersion at vessel bifurcations and junctions on the flow resistance may be significant in vessels which are shorter or comparable to the length lc. Aggregation interactions between red blood cells generally lead to a reduction of blood flow resistance. The simulations are performed using the same viscosity for both external and internal fluids and the RBC membrane viscosity is not considered; however, we discuss how the viscosity contrast may affect the results. Finally, we develop a simple theoretical model which is able to describe the converged cell-free-layer thickness at steady-state flow with respect to flow rate. The model is based on the balance between a lift force on red blood cells due to cell-wall hydrodynamic interactions and shear-induced effective pressure due to cell-cell interactions in flow. We expect that these results can also be used to better understand the flow

  1. Water velocity and the nature of critical flow in large rapids on the Colorado River, Utah

    Science.gov (United States)

    Magirl, C.S.; Gartner, J.W.; Smart, G.M.; Webb, R.H.

    2009-01-01

     Rapids are an integral part of bedrock-controlled rivers, influencing aquatic ecology, geomorphology, and recreational value. Flow measurements in rapids and high-gradient rivers are uncommon because of technical difficulties associated with positioning and operating sufficiently robust instruments. In the current study, detailed velocity, water surface, and bathymetric data were collected within rapids on the Colorado River in eastern Utah. With the water surface survey, it was found that shoreline-based water surface surveys may misrepresent the water surface slope along the centerline of a rapid. Flow velocities were measured with an ADCP and an electronic pitot-static tube. Integrating multiple measurements, the ADCP returned velocity data from the entire water column, even in sections of high water velocity. The maximum mean velocity measured with the ADCP was 3.7 m/s. The pitot-static tube, while capable of only point measurements, quantified velocity 0.39 m below the surface. The maximum mean velocity measured with the pitot tube was 5.2 m/s, with instantaneous velocities up to 6.5 m/s. Analysis of the data showed that flow was subcritical throughout all measured rapids with a maximum measured Froude number of 0.7 in the largest measured rapids. Froude numbers were highest at the entrance of a given rapid, then decreased below the first breaking waves. In the absence of detailed bathymetric and velocity data, the Froude number in the fastest-flowing section of a rapid was estimated from near-surface velocity and depth soundings alone.

  2. Instability of the middle cerebral artery blood flow in response to CO2.

    Directory of Open Access Journals (Sweden)

    Rosemary E Regan

    Full Text Available BACKGROUND: The middle cerebral artery supplies long end-artery branches to perfuse the deep white matter and shorter peripheral branches to perfuse cortical and subcortical tissues. A generalized vasodilatory stimulus such as carbon dioxide not only results in an increase in flow to these various tissue beds but also redistribution among them. We employed a fast step increase in carbon dioxide to detect the dynamics of the cerebral blood flow response. METHODOLOGY/PRINCIPAL FINDINGS: The study was approved by the Research Ethics Board of the University Health Network at the University of Toronto. We used transcranial ultrasound to measure the time course of middle cerebral artery blood flow velocity in 28 healthy adults. Normoxic, isoxic step increases in arterial carbon dioxide tension of 10 mmHg from both hypocapnic and normocapnic baselines were produced using a new prospective targeting system that enabled a more rapid step change than has been previously achievable. In most of the 28 subjects the responses at both carbon dioxide ranges were characterised by more complex responses than a single exponential rise. Most responses were characterised by a fast initial response which then declined rapidly to a nadir, followed by a slower secondary response, with some showing oscillations before stabilising. CONCLUSIONS/SIGNIFICANCE: A rapid step increase in carbon dioxide tension is capable of inducing instability in the cerebral blood flow control system. These dynamic aspects of the cerebral blood flow responses to rapid changes in carbon dioxide must be taken into account when using transcranial blood flow velocity in a single artery segment to measure cerebrovascular reactivity.

  3. Electroosmotic oscillatory flow of micropolar fluid in microchannels:application to dynamics of blood flow in microfluidic devices

    Institute of Scientific and Technical Information of China (English)

    JC MISRA; S CHANDRA; GC SHIT; PK KUNDU

    2014-01-01

    The electroosmotic flow of a micropolar fluid in a microchannel bounded by two parallel porous plates undergoing periodic vibration is studied. The equations for conservation of linear and angular momentums and Gauss’s law of charge distribution are solved within the framework of the Debye-H¨uckel approximation. The fluid velocity and microrotation are assumed to depend linearly on the Reynolds number. The study shows that the amplitude of microrotation is highly sensitive to the changes in the magnitude of the suction velocity and the width of the microchannel. An increase in the micropolar parameter gives rise to a decrease in the amplitude of microrotation. Numerical estimates reveal that the microrotation of the suspended microelements in blood also plays an important role in controlling the electro-osmotically actuated flow dynamics in micro-bio-fluidic devices.

  4. Ultrafast Ultrasound Imaging of Ocular Anatomy and Blood Flow

    Science.gov (United States)

    Urs, Raksha; Ketterling, Jeffrey A.; Silverman, Ronald H.

    2016-01-01

    Purpose Ophthalmic ultrasound imaging is currently performed with mechanically scanned single-element probes. These probes have limited capabilities overall and lack the ability to image blood flow. Linear-array systems are able to detect blood flow, but these systems exceed ophthalmic acoustic intensity safety guidelines. Our aim was to implement and evaluate a new linear-array–based technology, compound coherent plane-wave ultrasound, which offers ultrafast imaging and depiction of blood flow at safe acoustic intensity levels. Methods We compared acoustic intensity generated by a 128-element, 18-MHz linear array operated in conventionally focused and plane-wave modes and characterized signal-to-noise ratio (SNR) and lateral resolution. We developed plane-wave B-mode, real-time color-flow, and high-resolution depiction of slow flow in postprocessed data collected continuously at a rate of 20,000 frames/s. We acquired in vivo images of the posterior pole of the eye by compounding plane-wave images acquired over ±10° and produced images depicting orbital and choroidal blood flow. Results With the array operated conventionally, Doppler modes exceeded Food and Drug Administration safety guidelines, but plane-wave modalities were well within guidelines. Plane-wave data allowed generation of high-quality compound B-mode images, with SNR increasing with the number of compounded frames. Real-time color-flow Doppler readily visualized orbital blood flow. Postprocessing of continuously acquired data blocks of 1.6-second duration allowed high-resolution depiction of orbital and choroidal flow over the cardiac cycle. Conclusions Newly developed high-frequency linear arrays in combination with plane-wave techniques present opportunities for the evaluation of ocular anatomy and blood flow, as well as visualization and analysis of other transient phenomena such as vessel wall motion over the cardiac cycle and saccade-induced vitreous motion. PMID:27428169

  5. Development and testing of a novel single-wire sensor for wide range flow velocity measurements

    Science.gov (United States)

    Al-Salaymeh, A.; Durst, F.

    2004-05-01

    Thermal flow sensors with a wide dynamic range, e.g. 1:1000 and more, are currently not available in spite of the great demand for such sensors in practical fluid flow measurements. The present paper introduces a sensor of this kind. The new sensor is mechanically the same as the 'sending' wire of the two-wire thermal flow sensor described by Durst et al, but it is excited by discrete, widely separated, square waves of electrical current rather than a continuous sinusoidal current. The nominal 'output' of the new sensor is the increase in wire temperature so that an integral of the resistance over the pulse length can be used for measurements. This 'output' is a function of the time constant ('thermal inertia') of the heated wire and thus also of the velocity of flow. The time constant decreases as the flow velocity increases, while the heat transfer increases. At very low flow velocities the response is determined almost entirely by the time constant of the wire while at high velocities the device acts almost like a 'constant current' hot-wire anemometer. That is, the effect of thermal inertia augments the output signal of the basic hot wire, thus increasing the flow rate range/sensitivity of the device, especially at the low-velocity end, above than that of a simple hot-wire flowmeter. The sensor described here was developed for slowly changing unidirectional flows, and uses one wire of 12.5 µm diameter. It is excited at 30 Hz frequency and its usable flow velocity range is 0.01-25 m s-1.

  6. Velocity Distribution in the Flow from a Wall-Mounted Diffuser in Rooms with Displacement Ventilation

    DEFF Research Database (Denmark)

    Nielsen, Peter V.

    The paper describes experiments with wall-mounted air terminal devices. The airflow from an air terminal device will influence the thermal comfort of the occupants and it is therefore important to develop an expression for this flow. The velocity at the floor is influenced by the flow rate to the...

  7. Velocity vector estimation in synthetic aperture flow and B-mode imaging

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    2004-01-01

    normalized correlation calculated as a function of angle. The method is investigated using data measured by an experimental ultrasound scanner from a flow rig. A commercial 7 MHz linear array transducer is used and data are measured for flow angles of 60° and 90°. The velocity magnitude is determined...

  8. Trace projection transformation: a new method for measurement of debris flow surface velocity fields

    Science.gov (United States)

    Yan, Yan; Cui, Peng; Guo, Xiaojun; Ge, Yonggang

    2016-12-01

    Spatiotemporal variation of velocity is important for debris flow dynamics. This paper presents a new method, the trace projection transformation, for accurate, non-contact measurement of a debris-flow surface velocity field based on a combination of dense optical flow and perspective projection transformation. The algorithm for interpreting and processing is implemented in C ++ and realized in Visual Studio 2012. The method allows quantitative analysis of flow motion through videos from various angles (camera positioned at the opposite direction of fluid motion). It yields the spatiotemporal distribution of surface velocity field at pixel level and thus provides a quantitative description of the surface processes. The trace projection transformation is superior to conventional measurement methods in that it obtains the full surface velocity field by computing the optical flow of all pixels. The result achieves a 90% accuracy of when comparing with the observed values. As a case study, the method is applied to the quantitative analysis of surface velocity field of a specific debris flow.

  9. Blood plasma separation in a long two-phase plug flowing through disposable tubing.

    Science.gov (United States)

    Sun, Meng; Khan, Zeina S; Vanapalli, Siva A

    2012-12-21

    We report a simple technique to separate plasma from blood in a flowing immiscible plug. We investigate the effect of various control parameters such as blood dilution, injection flow rate, observation time and fluid properties on plasma separation. We find that the technique works best for diluted blood samples at low plug velocities and long observation times. We postulate that the main mechanism responsible for efficient separation is the sedimentation of blood cells in the plug and their subsequent collection by the moving plug causing a significant accumulation of cells at the rear of the plug. We discuss the time scales determining the sedimentation, advection and collection of a blood cell in the immiscible plug and propose a phase diagram that is able to predict the operating space for effective plasma separation. We demonstrate that the technique allows for the extraction of more than 60% of the plasma by volume from 1 μL of diluted blood. We show the practical significance of this method by compartmentalizing the separated plasma into discrete microfluidic droplets and detecting cholesterol. This technique features low consumption of blood (nL-scale) and low shear rate (∼1 s(-1)). It is inexpensive, easy to use, and has the potential to be developed as an efficient point-of-care device for blood diagnostics in resource-poor environments. More advanced applications could also be envisioned by integrating our plasma separation method into existing microfluidic drop manipulation techniques.

  10. Facial immersion in cold water enhances cerebral blood velocity during breath-hold exercise in humans

    DEFF Research Database (Denmark)

    Kjeld, Thomas; Pott, Frank C; Secher, Niels H

    2009-01-01

    perfusion evaluated as the middle cerebral artery mean flow velocity (MCA V(mean)) during exercise in nine male subjects. At rest, a breath hold of maximum duration increased the arterial carbon dioxide tension (Pa(CO(2))) from 4.2 to 6.7 kPa and MCA V(mean) from 37 to 103 cm/s (mean; approximately 178%; P...

  11. Molecular Rayleigh Scattering Techniques Developed for Measuring Gas Flow Velocity, Density, Temperature, and Turbulence

    Science.gov (United States)

    Mielke, Amy F.; Seasholtz, Richard G.; Elam, Kristie A.; Panda, Jayanta

    2005-01-01

    Nonintrusive optical point-wise measurement techniques utilizing the principles of molecular Rayleigh scattering have been developed at the NASA Glenn Research Center to obtain time-averaged information about gas velocity, density, temperature, and turbulence, or dynamic information about gas velocity and density in unseeded flows. These techniques enable measurements that are necessary for validating computational fluid dynamics (CFD) and computational aeroacoustic (CAA) codes. Dynamic measurements allow the calculation of power spectra for the various flow properties. This type of information is currently being used in jet noise studies, correlating sound pressure fluctuations with velocity and density fluctuations to determine noise sources in jets. These nonintrusive techniques are particularly useful in supersonic flows, where seeding the flow with particles is not an option, and where the environment is too harsh for hot-wire measurements.

  12. PRESSURE-VELOCITY JOINT MEASUREMENTS OF A WALL-BOUNDED TURBULENT SHEAR FLOW

    Institute of Scientific and Technical Information of China (English)

    LIU Ying-zheng; KE Feng; WANG Wei-zhe; CAO Zhao-min

    2006-01-01

    The unsteady behavior of the large-scale vortical structures buried in a wall-bounded turbulent shear layer flow was extensively investigated using pressure-velocity joint measurements. The wall pressure fluctuations and flow field velocity fluctuations were measured simultaneously by using a microphone and an X-type hotwire, respectively. The spatially and temporally strong coupling between the convecting flow structures and the wall pressure fluctuations were meticulously investigated in terms of the continuous wavelet transform, cross-correlation and coherence of the wall pressure and flow field. The characteristics of the large-scale vortical structures, e.g., the shedding frequency, averaged convection velocity, convective motion, and structure pattern were revealed.

  13. Methods for measurement of cerebral blood flow in man

    DEFF Research Database (Denmark)

    Lassen, N A

    1976-01-01

    A survey of the currently available methods for the measurement of cerebral blood flow in man is given. Many of the clinically important brain diseases such as tumors, stroke, brain trauma or epilepsy entail focal or regional flow alterations. Therefore a special emphasis is placed on methods all...

  14. Ultrasonic Imaging of Hemodynamic Force in Carotid Blood Flow

    Science.gov (United States)

    Nitta, N.; Homma, K.

    Hemodynamic forces including blood pressure and shear stress affect vulnerable plaque rupture in arteriosclerosis and biochemical activation of endothelium such as NO production. In this study, a method for estimating and imaging shear stress and pressure gradient distributions in blood vessel as the hemodynamic force based on viscosity estimation is presented. Feasibility of this method was investigated by applying to human carotid blood flow. Estimated results of shear stress and pressure gradient distributions coincide with the ideal distributions obtained by numerical simulation and flow-phantom experiment.

  15. CHARACTERIZATION OF RENAL BLOOD FLOW REGULATION BASED ON WAVELET COEFFICIENTS

    DEFF Research Database (Denmark)

    Pavlov, A.N.; Pavlova, O.N.; Mosekilde, Erik;

    2010-01-01

    The purpose of this study is to demonstrate the possibility of revealing new characteristic features of renal blood flow autoregulation in healthy and pathological states through the application of discrete wavelet transforms to experimental time series for normotensive and hypertensive rats....... A reduction in the variability of the wavelet coefficients in hypertension is observed at both the microscopic level of the blood flow in efferent arterioles of individual nephrons and at the macroscopic level of the blood pressure in the main arteries. The reduction is manifest in both of the main frequency...

  16. The impact of contralateral cooling on skin capillary blood cell velocity in patients with diabetes mellitus.

    Science.gov (United States)

    Haak, E; Haak, T; Grözinger, Y; Krebs, G; Usadel, K H; Kusterer, K

    1998-01-01

    In healthy volunteers, cooling of the contralateral hand leads to a rapid decrease in the ipsilateral capillary perfusion via a nerval reflex arc. The aim of this study was to investigate whether this reflex arc after contralateral cooling might be altered in patients with diabetes mellitus with and without peripheral neuropathy. Therefore, 12 patients with diabetic neuropathy (4 IDDM, diabetes duration 17.2 +/- 2.9 (SD) years, age 60.8 +/- 4.0 years, HbA1c 6.5 +/- 0.3%) and 12 patients with diabetes mellitus but without neuropathy (6 IDDM, diabetes duration 15.1 +/- 2.7 years, age 55.9 +/- 4.5 years, HbA1c 5.4 +/- 0.1%) were investigated by nailfold capillaroscopy. Twelve healthy volunteers (age 56.8 +/- 3.1 years, HbA1c 4.8 +/- 0.2%) served as controls. Contralateral skin capillary blood cell velocity was determined at rest and during the following 20 min after cooling of the hand (3 min at 15 degreesC). Blood pressure, heart rate and local skin temperature were examined regularly during the investigation. Resting capillary blood cell velocity did not differ between patients and controls. While contralateral cooling resulted in a decrease in capillary blood cell velocity (CBV) in controls (0.29 +/- 0.05 vs. 0.42 +/- 0.05 mm/s, p nerval reflex arcs are impaired. A long-term follow-up in a larger number of patients is required to evaluate whether these findings might serve as a very early diagnostic tool for the diagnosis of developing diabetic neuropathy.

  17. Abnormality in cerebellar blood flow in solo vertigo patients

    Energy Technology Data Exchange (ETDEWEB)

    Nagahori, Takeshi [Shakaihoken Takaoka Hospital, Toyama (Japan); Nishijima, Michiharu; Endo, Shunro; Takaku, Akira

    1997-03-01

    Little is known about the blood flow of the vertebrobasilar system as a cause of vertigo and dizziness. We used Xe-CT to study cerebellar blood flow in 53 patients who ranged in age from 35 to 85 years. The patients were divided into two groups. One of them was the vertigo group that comprised 28 patients with rotatory sensation, and the other, the non-vertigo group of 25 patients with a sensation other than rotation. At the stage of severe symptoms, there was decreased cerebellar blood flow in all patients of both, the vertigo and the non-vertigo groups, and a decrease in the bilateral cerebellar hemisphere was observed in five patients and in a unilateral hemisphere in three patients of the vertigo group. By comparison, in the non-vertigo group, unilateral decrease of cerebellar blood flow was observed in only one patient, and a bilateral decrease in five. At the stage of severe symptoms, the mean regional cerebellar blood flow was 40.5{+-}8.0 ml/100 g/min (n=16 sides) in the vertigo group and 45.3{+-}9.5 ml/100 g/min (n=12 sides) in the non-vertigo group. At the stage of moderate symptoms, blood flow image was normal in four of 14 vertigo patients and in seven of 12 non-vertigo patients. The mean regional blood flow was 47.8{+-}8.6 ml/100 g/min (n=28 sides) in the vertigo group and 47.1{+-}5.1 ml/100 g/min (n=24 sides) in the non-vertigo group. At the asymptomatic stage, a high proportion of normal blood flow images (nine of 16 vertigo patients and 10 of 10 non-vertigo patients) was observed. The mean regional cerebellar blood flow was 51.6{+-}10.7 ml/100 g/min (n=32 sides) in the vertigo group and 52.8{+-}8.5 ml/100 g/min (n=20 sides) in the non-vertigo group. This study demonstrates that a unilateral or bilateral decrease in blood flow of the vertebrobasilar system may cause vertigo and dizziness. It also shows that Xe-CT of the cerebellum may be a valuable examination modality for the diagnosis and treatment of vertigo and dizziness. (author)

  18. Wall morphology, blood flow and wall shear stress: MR findings in patients with peripheral artery disease

    Energy Technology Data Exchange (ETDEWEB)

    Galizia, Mauricio S.; Barker, Alex; Collins, Jeremy; Carr, James [Northwestern University, Department of Radiology, Feinberg School of Medicine, Chicago, IL (United States); Liao, Yihua [Northwestern University' s Feinberg School of Medicine, Department of Preventive Medicine, Chicago, IL (United States); McDermott, Mary M. [Northwestern University' s Feinberg School of Medicine, Department of Preventive Medicine, Chicago, IL (United States); Northwestern University' s Feinberg School of Medicine, Department of Medicine, Chicago, IL (United States); Markl, Michael [Northwestern University, Department of Radiology, Feinberg School of Medicine, Chicago, IL (United States); Northwestern University, Department Biomedical Engineering, McCormick School of Engineering, Chicago, IL (United States)

    2014-04-15

    To investigate the influence of atherosclerotic plaques on femoral haemodynamics assessed by two-dimensional (2D) phase-contrast (PC) magnetic resonance imaging (MRI) with three-directional velocity encoding. During 1 year, patients with peripheral artery disease and an ankle brachial index <1.00 were enrolled. After institutional review board approval and written informed consent, 44 patients (age, 70 ± 12 years) underwent common femoral artery MRI. Patients with contra-indications for MRI were excluded. Sequences included 2D time-of-flight, proton-density, T1-weighted and T2-weighted MRI. Electrocardiogram (ECG)-gated 2D PC-MRI with 3D velocity encoding was acquired. A radiologist classified images in five categories. Blood flow, velocity and wall shear stress (WSS) along the vessel circumference were quantified from the PC-MRI data. The acquired images were of good quality for interpretation. There were no image quality problems related to poor ECG-gating or slice positioning. Velocities, oscillatory shear stress and total flow were similar between patients with normal arteries and wall thickening/plaque. Patients with plaques demonstrated regionally increased peak systolic WSS and enhanced WSS eccentricity. Combined multi-contrast morphological imaging of the peripheral arterial wall with PC-MRI with three-directional velocity encoding is a feasible technique. Further study is needed to determine whether flow is an appropriate marker for altered endothelial cell function, vascular remodelling and plaque progression. (orig.)

  19. Intracycle Angular Velocity Control of Cross-Flow Turbines

    CERN Document Server

    Strom, Benjamin; Polagye, Brian

    2016-01-01

    Cross-flow turbines, also known as vertical-axis turbines, have numerous features that make them attractive for wind and marine renewable energy. To maximize power output, the turbine blade kinematics may be controlled during the course of the blade revolution, thus optimizing the unsteady fluid dynamic forces. Dynamically pitching the blades, similar to blade control in a helicopter, is an established method. However, this technique adds undesirable mechanical complexity to the turbine, increasing cost and reducing durability. Here we introduce a novel alternative requiring no additional moving parts: we optimize the turbine rotation rate as a function of blade position resulting in motion (including changes in the effective angle of attack) that is precisely timed to exploit unsteady fluid effects. We demonstrate experimentally that this approach results in a 79% increase in power output over industry standard control methods. Analysis of the fluid forcing and blade kinematics show that maximal power is ach...

  20. A multiple disk centrifugal pump as a blood flow device.

    Science.gov (United States)

    Miller, G E; Etter, B D; Dorsi, J M

    1990-02-01

    A multiple disk, shear force, valveless centrifugal pump was studied to determine its suitability as a blood flow device. A pulsatile version of the Tesla viscous flow turbine was designed by modifying the original steady flow pump concept to produce physiological pressures and flows with the aid of controlling circuitry. Pressures and flows from this pump were compared to a Harvard Apparatus pulsatile piston pump. Both pumps were connected to an artificial circulatory system. Frequency and systolic duration were varied over a range of physiological conditions for both pumps. The results indicated that the Tesla pump, operating in a pulsatile mode, is capable of producing physiologic pressures and flows similar to the Harvard pump and other pulsatile blood pumps.

  1. ANALYSIS OF OSCILLATORY BLOOD FLOW IN VARYING-AREA ELASTIC VESSEL

    Institute of Scientific and Technical Information of China (English)

    Gong Ke-qin; Sun Hui; Liu Zhao-rong

    2003-01-01

    In this paper, by solving the fundamental equations of periodically oscillatory blood flow, the distributions of pressure gradient and blood velocity in varying-area elastic vessel were obtained, and then the wall shear stress and its gradient were calculated. As an example, the pulsatile blood flow in human carotid was analyzed and the effects of vessel taper angle on the distribution of wall shear stress and its gradient were discussed in detail. Numercial results show that the wall shear stress will enlarge when the taper angle increases. Meantime, no matter whether the vessel is converging or diverging, with the increase of the absolute value of taper angle, the amplitude of wall shear stress gradient will enlarge significantly.

  2. Effect of mitral valve prosthesis design and orientation on intraventricular flow and blood stasis

    Science.gov (United States)

    May-Newman, Karen; Campos, J.; Montes, R.; Ramesh, V.; Moon, J.; Reider, C.; Martinez-Legazpi, P.; Bermejo, J.; Rossini, Lorenzo; Del Alamo, Juan C.

    2016-11-01

    Abnormal blood flow patterns are linked with thromboembolism (TE), especially in the presence of medical devices such as mitral valve prostheses (MVP). We performed PIV on a customized silicone left ventricle (LV) in a mock circulatory loop. We measured the velocity field in the long-axis midplane for 3 different MVP: a porcine bioprosthesis (BP), a tilting disk valve in two orientations: towards the LV lateral (TD-L) or the anterior wall (TD-A), and a bileaflet valve with anti-anatomical orientation (BL). Diastolic LV vortices were tracked and related to measures of blood stasis based on LV residence time. The BP and the TD-L produced flow patterns similar to those measured in patients. The TD-A showed a complete reversal of diastolic vortices. The BL design had increased apical blood stasis, which may lead to increased TE risk.

  3. The influence of bus stop on traffic flow with velocity-difference-separation model

    Science.gov (United States)

    Zheng, Pengjun; Wang, Wei; Ge, Hongxia

    2016-06-01

    Based on velocity-difference-separation model, the mixed traffic flow on two-lane road is investigated. For a fixed road length, the influence of bus and bus stops on traffic flow is studied with the increasing traffic density. Compared with the result without bus stops given by Li et al., a new traffic state is found, which is valuable for studying the impacts of public transport on urban traffic flow.

  4. Viscoelastic capillary flow: the case of whole blood

    Directory of Open Access Journals (Sweden)

    David Rabaud

    2016-07-01

    Full Text Available The dynamics of spontaneous capillary flow of Newtonian fluids is well-known and can be predicted by the Lucas-Washburn-Rideal (LWR law. However a wide variety of viscoelastic fluids such as alginate, xanthan and blood, does not exhibit the same Newtonian behavior.In this work we consider the Herschel-Bulkley (HB rheological model and Navier-Stokes equation to derive a generic expression that predicts the capillary flow of non-Newtonian fluids. The Herschel-Bulkley rheological model encompasses a wide variety of fluids, including the Power-law fluids (also called Ostwald fluids, the Bingham fluids and the Newtonian fluids. It will be shown that the proposed equation reduces to the Lucas-Washburn-Rideal law for Newtonian fluids and to the Weissenberg-Rabinowitsch-Mooney (WRM law for power-law fluids. Although HB model cannot reduce to Casson’s law, which is often used to model whole blood rheology, HB model can fit the whole blood rheology with the same accuracy.Our generalized expression for the capillary flow of non-Newtonian fluid was used to accurately fit capillary flow of whole blood. The capillary filling of a cylindrical microchannel by whole blood was monitored. The blood first exhibited a Newtonian behavior, then after 7 cm low shear stress and rouleaux formation made LWR fails to fit the data: the blood could not be considered as Newtonian anymore. This non-Newtonian behavior was successfully fit by the proposed equation.

  5. Tubuloglomerular feedback dynamics and renal blood flow autoregulation in rats

    DEFF Research Database (Denmark)

    Holstein-Rathlou, N H; Wagner, A J; Marsh, D J

    1991-01-01

    To decide whether tubuloglomerular feedback (TGF) can account for renal autoregulation, we tested predictions of a TGF simulation. Broad-band and single-frequency perturbations were applied to arterial pressure; arterial blood pressure, renal blood flow and proximal tubule pressure were measured....... Data were analyzed by linear systems analysis. Broad-band forcings of arterial pressure were also applied to the model to compare experimental results with simulations. With arterial pressure as the input and tubular pressure, renal blood flow, or renal vascular resistance as outputs, the model......Hz in which, in addition, there are autonomous oscillations in TGF. Higher amplitude forcings in this band were attenuated by autoregulatory mechanisms, but low-amplitude forcings entrained the autonomous oscillations and provoked amplified oscillations in blood flow, showing an effect of TGF on whole kidney...

  6. Direct velocity measurement and enhanced mixing in laminar flows over ultrahydrophobic surfaces

    Science.gov (United States)

    Ou, Jia

    2005-11-01

    A series of experiment are presented studying the kinematics of water flowing over drag-reducing ultrahydrophobic surfaces. The surfaces are fabricated from silicon wafers using photolithography and are designed to incorporate patterns of microridges with precise spacing and alignment. These surfaces are reacted with an organosilane to achieve high hydrophobicity. Microridges with different widths, spacing and alignments are tested in a microchannel flow cell with rectangular cross-section. The velocity profile across the microchannel is measured with micro particle image velocimetry (μ-PIV) capable of resolving the flow down to length scales well below the size of the surface features. A maximum slip velocity of >60% of the average velocity in the flow is observed at the center of the air-water interface supported between these hydrophobic microridges, and the no-slip boundary condition is found at the hydrophobic microridges. The μ-PIV measurements demonstrate that slip along the shear-free air-water interface supported between the hydrophobic micron-sized ridges is the primary mechanism responsible for the drag reduction. The experiment velocity and pressure drop measurement are compared with the prediction of numerical simulation and an analytical model. By aligning the hydrophobic microridges at an acute angle to the flow direction a secondary flow is produced which can significantly enhance mixing in this laminar flow.

  7. Statistics of particle pair relative velocity in the homogeneous shear flow

    Science.gov (United States)

    Gualtieri, P.; Picano, F.; Sardina, G.; Casciola, C. M.

    2012-02-01

    Small scale clustering of inertial particles and relative velocity of particle pairs have been fully characterized for statistically steady homogeneous isotropic flows. Depending on the particle Stokes relaxation time, the spatial distribution of the disperse phase results in a multi-scale manifold characterized by local particle concentration and voids and, because of finite inertia, the two nearby particles have high probability to exhibit large relative velocities. Both effects might explain the speed-up of particle collision rate in turbulent flows. Recently it has been shown that the large scale geometry of the flow plays a crucial role in organizing small scale particle clusters. For instance, a mean shear preferentially orients particle patterns. In this case, depending on the Stokes time, anisotropic clustering may occur even in the inertial range of scales where the turbulent fluctuations which drive the particles have already recovered isotropy. Here we consider the statistics of particle pair relative velocity in the homogeneous shear flow, the prototypical flow which manifests anisotropic clustering at small scales. We show that the mean shear, by imprinting anisotropy on the large scale velocity fluctuations, dramatically affects the particle relative velocity distribution even in the range of small scales where the anisotropic mechanisms of turbulent kinetic energy production are sub-dominant with respect to the inertial energy transfer which drives the carrier fluid velocity towards isotropy. We find that the particles’ populations which manifest strong anisotropy in their relative velocities are the same which exhibit small scale clustering. In contrast to any Kolmogorov-like picture of turbulent transport these phenomena may persist even below the smallest dissipative scales where the residual level of anisotropy may eventually blow-up. The observed anisotropy of particle relative velocity and spatial configuration is suggested to influence the

  8. Quantifying Blood Flow in the DIEP Flap: An Ultrasonographic Study

    Directory of Open Access Journals (Sweden)

    Joseph Richard Dusseldorp, BCom, MBBS(Hons

    2014-10-01

    Conclusions: This study confirms that perforator size is a critical factor in optimizing blood flow in perforator-based free tissue transfer. Further research is required to understand the flow dynamics of perforator flaps based on multiple perforators. However, surgeons should be cognizant that a single large perforator may have substantially higher flow rates than multiple small perforators. Routine FVI calculation is recommended to ensure complete flap survival.

  9. Mass transfer from a sphere in an oscillating flow with zero mean velocity

    Science.gov (United States)

    Drummond, Colin K.; Lyman, Frederic A.

    1990-01-01

    A pseudospectral numerical method is used for the solution of the Navier-Stokes and mass transport equations for a sphere in a sinusoidally oscillating flow with zero mean velocity. The flow is assumed laminar and axisymmetric about the sphere's polar axis. Oscillating flow results were obtained for Reynolds numbers (based on the free-stream oscillatory flow amplitude) between 1 and 150, and Strouhal numbers between 1 and 1000. Sherwood numbers were computed and their dependency on the flow frequency and amplitude discussed. An assessment of the validity of the quasi-steady assumption for mass transfer is based on these results.

  10. Intrinsic regulation of blood flow in adipose tissue

    DEFF Research Database (Denmark)

    Henriksen, O; Nielsen, Steen Levin; Paaske, W

    1976-01-01

    Previous studies on intact human subcutaneous tissue have shown, that blood flow remains constant during minor changes in perfusion pressure. This so-called autoregulatory response has not been demonstrable in isolated preparations of adipose tissue. In the present study on isolated, denervated...... subcutaneous tissue in female rabbits only 2 of 12 expts. revealed an autoregulatory response during reduction in arterial perfusion pressure. Effluent blood flow from the tissue in the control state was 15.5 ml/100 g-min (S.D. 6.4, n = 12) corresponding to slight vasodilatation of the exposed tissue....... Following total ischemia all experiments showed a period with reactive hyperemia, and both duration of hyperemia and excess flow was related to the duration of the ischemia. This response therefore seems more resistant to the experimental procedure, while autoregulation of blood flow to lowered pressure...

  11. Simulations of time harmonic blood flow in the Mesenteric artery: comparing finite element and lattice Boltzmann methods

    Directory of Open Access Journals (Sweden)

    Hose Rod

    2009-10-01

    Full Text Available Abstract Background Systolic blood flow has been simulated in the abdominal aorta and the superior mesenteric artery. The simulations were carried out using two different computational hemodynamic methods: the finite element method to solve the Navier Stokes equations and the lattice Boltzmann method. Results We have validated the lattice Boltzmann method for systolic flows by comparing the velocity and pressure profiles of simulated blood flow between methods. We have also analyzed flow-specific characteristics such as the formation of a vortex at curvatures and traces of flow. Conclusion The lattice Boltzmann Method is as accurate as a Navier Stokes solver for computing complex blood flows. As such it is a good alternative for computational hemodynamics, certainly in situation where coupling to other models is required.

  12. Highly spatially resolved velocity measurements of a turbulent channel flow by a fiber-optic heterodyne laser-Doppler velocity-profile sensor

    Energy Technology Data Exchange (ETDEWEB)

    Shirai, K.; Pfister, T.; Buettner, L.; Czarske, J. [Dresden University of Technology (TU Dresden), Department of Electrical Engineering and Information Technology, Chair for Measurement and Testing Techniques, Dresden (Germany); Mueller, H. [Physikalisch-Technische Bundesanstalt Braunschweig (PTB), Department 1.4 Gas Flow, Braunschweig (Germany); Becker, S.; Lienhart, H.; Durst, F. [Institute of Fluid Mechanics (LSTM), Friedrich-Alexander-University Erlangen-Nuernberg, Erlangen (Germany)

    2006-03-15

    Velocity measurements with a high spatial resolution are important in turbulent flow research. In this paper, we report on the development of a new fiber-optic laser-Doppler velocity-profile sensor exhibiting a spatial resolution of up to 5 {mu}m and its application to turbulent boundary layers. The sensor developed in the present work employs a frequency-division-multiplexing technique in order to separate two measurement signals from the two fringe systems. Velocity measurements close to zero at the solid wall were realized using heterodyne technique. The use of fiber optics improved a robustness of the sensor. The measurement accuracy of the sensor was experimentally investigated with respect to the spatial resolution and velocity. Universal velocity profile of a turbulent flow was obtained in a fully developed channel flow. Mean and fluctuating velocity are presented with a high spatial resolution. (orig.)

  13. Cerebral blood flow tomography with xenon-133

    DEFF Research Database (Denmark)

    Lassen, N A

    1985-01-01

    and investigative purposes. This article discusses in particular its use for the selection of patients with carotid occlusion for extracranial/intracranial bypass surgery, for detection of severe arterial spasm after aneurysm bleeding, and for detection of low flow areas during severe migraine attacks. The use...

  14. Microgravity flame spread over thick solids in low velocity opposed flow

    Science.gov (United States)

    Wang, Shuangfeng; Zhu, Feng

    2016-07-01

    Motivated primarily by fire safety of spacecraft, a renewed interest in microgravity flame spread over solid materials has arisen. With few exceptions, however, research on microgravity flame spread has been focused on thermally thin fuels due to the constraint on available test time. In this study, two sets of experiments are conducted to examine the flame spread and extinction behavior over thick PMMA in simulated and actual microgravity environments. The low-gravity flame spread environment is produced by a narrow channel apparatus in normal gravity. Extinction limits using flow velocity and oxygen concentration as coordinates are presented, and flame spread rates are determined as a function of the velocity and oxygen concentration of the gas flow. The microgravity experiments are also performed with varying low-velocity flow and varying ambient oxygen concentration. The important observations include flame behavior and appearance as a function of oxygen concentration and flow velocity, temperature variation in gas and solid phases, and flame spread rate. A comparison between simulated and actual microgravity data is made, and general agreement is found. Based on the experimental observations, mechanisms for flame spread and extinction in low velocity opposed flows are discussed.

  15. Regional cerebral blood flow autoregulation in patients with fulminant hepatic failure

    DEFF Research Database (Denmark)

    Larsen, Fin Stolze; Strauss, Gitte Irene; Møller, Kirsten;

    2000-01-01

    The absence of cerebral blood flow autoregulation in patients with fulminant hepatic failure (FHF) implies that changes in arterial pressure directly influence cerebral perfusion. It is assumed that dilatation of cerebral arterioles is responsible for the impaired autoregulation. Recently, frontal...... blood flow was reported to be lower compared with other brain regions, indicating greater arteriolar tone and perhaps preserved regional cerebral autoregulation. In patients with severe FHF (6 women, 1 man; median age, 46 years; range, 18 to 55 years), we tested the hypothesis that perfusion...... in the anterior cerebral artery would be less affected by an increase in mean arterial pressure compared with the brain area supplied by the middle cerebral artery. Relative changes in cerebral perfusion were determined by transcranial Doppler-measured mean flow velocity (V(mean)), and resistance was determined...

  16. Laboratory model study of the effect of aeration on axial velocity attenuation of turbulent jet flows in plunge pool

    Institute of Scientific and Technical Information of China (English)

    邓军; 张法星; 田忠; 许唯临; 刘斌; 卫望汝

    2015-01-01

    In the laboratory model experiment, the velocities of the jet flow along the axis are measured, using the CQY−Z8a velocity-meter. The velocity attenuations of the jet flow along the axis under different conditions are studied. The effects of the aeration concentration, the initial jet velocity at the entry and the thickness of the jet flow on the velocity attenuation of the jet flow are analyzed. It is seen that the velocity attenuation of the jet flow along the axis sees a regular variation. It is demonstrated by the test results that under the experimental conditions, the velocity along the axis decreases linearly. The higher the air concentration is, the faster the velocity will be decayed. The absolute value of the slopeK increases with the rise of the air concentration. The relationship can be defined as=a+bKACK. The coefficientA is 0.03 under the experimental conditions. With the low air concentration of the jet flow, the thinner the jet flow is, the faster the velocity will be decayed. With the increase of the air concentra- tion, the influence of the thickness of the jet flow on the velocity attenuation is reduced. When the air concentration is increased to a certain value, the thickness of the jet flow may not have any influence on the velocity attenuation. The initial jet velocity itself at the entry has no influence on the variation of the velocity attenuation as the curves of the velocity attenuation at different velocities at the entry are practically parallel, even coinciding one with another. Therefore, improving the air concentration of the jet flow and disper- sing the jet flow in the plunge pool could reduce the influence of the jet flow on the scour.

  17. 3D Computer Simulations of Pulsatile Human Blood Flows in Vessels and in the Aortic Arch: Investigation of Non-Newtonian Characteristics of Human Blood

    CERN Document Server

    Sultanov, Renat A; Engelbrekt, Brent; Blankenbecler, Richard

    2008-01-01

    Methods of Computational Fluid Dynamics are applied to simulate pulsatile blood flow in human vessels and in the aortic arch. The non-Newtonian behaviour of the human blood is investigated in simple vessels of actual size. A detailed time-dependent mathematical convergence test has been carried out. The realistic pulsatile flow is used in all simulations. Results of computer simulations of the blood flow in vessels of two different geometries are presented. For pressure, strain rate and velocity component distributions we found significant disagreements between our results obtained with realistic non-Newtonian treatment of human blood and widely used method in literature: a simple Newtonian approximation. A significant increase of the strain rate and, as a result, wall sear stress distribution, is found in the region of the aortic arch. We consider this result as theoretical evidence that supports existing clinical observations and those models not using non-Newtonian treatment underestimate the risk of disru...

  18. Planar Velocity Distribution of Viscous Debris Flow at Jiangjia Ravine, Yunnan, China: A Field Measurement Using Two Radar Velocimeters

    Institute of Scientific and Technical Information of China (English)

    FU Xudong; WANG Guangqian; KANG Zhicheng; FEI Xiangjun

    2007-01-01

    Characteristics of planar velocity distribution of viscous debris flow were analyzed using the measured data at Jiangjia Ravine, Yunnan, China. The velocity data were measured through using two radar velocimeters. The cross-sectional mean velocities were calculated and used to examine Kang et al's (2004) relationship, which was established for converting the flow velocity at river centerline measured by a radar velocimeter into the mean velocity based on the stop-watch method. The velocity coefficient, K, defined by the ratio of the mean velocity to the maximum velocity, ranges from 0.2 to 0.6. Kang et al's (2004) relationship was found being inapplicable to flows with K smaller than 0.43. This paper contributes to show the complexity of the planar velocity distribution of viscous debris flows and the applicability of Kang et al's relationship.

  19. Implementation of ultrasound time-domain cross-correlation blood velocity estimators

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    1993-01-01

    are used in the algorithm, imposing a heavy burden on the signal processing hardware. The algorithm is analyzed with regard to the high sampling frequency, and a method for performing real-time high-speed-movement and cross-correlation is suggested. Implementation schemes based on using the sign......The implementation of real-time blood velocity estimators using time-domain cross-correlation is investigated. The basic algorithm for stationary echo canceling, cross-correlation estimation and subsequent velocity estimation is presented. Sampled data acquired at rates of approximately 20 MHz...... of the data as well as the full precision are proposed. From an analysis of the process it is concluded that the sign data implementation can attain real-time processing. This can also be obtained for the full precision data, but at the expense of using a number of dedicated signal processing chips. Both...

  20. Retinal hemodynamic oxygen reactivity assessed by perfusion velocity, blood oximetry and vessel diameter measurements

    DEFF Research Database (Denmark)

    Klefter, Oliver Niels; Lauritsen, Anne Øberg; Larsen, Michael

    2015-01-01

    PURPOSE: To test the oxygen reactivity of a fundus photographic method of measuring macular perfusion velocity and to integrate macular perfusion velocities with measurements of retinal vessel diameters and blood oxygen saturation. METHODS: Sixteen eyes in 16 healthy volunteers were studied at two...... examination sessions using motion-contrast velocimetry and retinal oximetry with vessel diameter corrections. To test oxygen reactivity, participants were examined during normoxia, after 15 min of hyperoxia and finally after 45 min of normoxia. Repeatability was assessed by intraclass correlation coefficients...... retinal arterial oxygen saturation from 95.1 ± 5.0% to 96.6 ± 6.4% (p = 0.038) and increased retinal venous oxygen saturation from 62.9 ± 6.7% to 70.3 ± 7.8% (p = 0.0010). Parameters returned to baseline levels after subsequent normoxia. Saturation and vessel diameter ICCs were 0.88-0.98 (range...