WorldWideScience

Sample records for blood flow imaging

  1. Functional Doppler optical coherence tomography for cortical blood flow imaging

    Science.gov (United States)

    Yu, Lingfeng; Liu, Gangjun; Nguyen, Elaine; Choi, Bernard; Chen, Zhongping

    2010-02-01

    Optical methods have been widely used in basic neuroscience research to study the cerebral blood flow dynamics in order to overcome the low spatial resolution associated with magnetic resonance imaging and positron emission tomography. Although laser Doppler imaging and laser speckle imaging can map out en face cortical hemodynamics and columns, depth resolution is not available. Two-photon microscopy has been used for mapping cortical activity. However, flow measurement requires fluorescent dye injection, which can be problematic. The noninvasive and high resolution tomographic capabilities of optical coherence tomography make it a promising technique for mapping depth resolved cortical blood flow. Here, we present a functional Doppler optical coherence tomography (OCT) imaging modality for quantitative evaluation of cortical blood flow in a mouse model. Fast, repeated, Doppler OCT scans across a vessel of interest were performed to record flow dynamic information with a high temporal resolution of the cardiac cycles. Spectral Doppler analysis of continuous Doppler images demonstrates how the velocity components and longitudinally projected flow-volume-rate change over time, thereby providing complementary temporal flow information to the spatially distributed flow information of Doppler OCT. The proposed functional Doppler OCT imaging modality can be used to diagnose vessel stenosis/blockage or monitor blood flow changes due to pharmacological agents/neuronal activities. Non-invasive in-vivo mice experiments were performed to verify the capabilities of function Doppler OCT.

  2. Ultrafast Ultrasound Imaging of Ocular Anatomy and Blood Flow

    Science.gov (United States)

    Urs, Raksha; Ketterling, Jeffrey A.; Silverman, Ronald H.

    2016-01-01

    Purpose Ophthalmic ultrasound imaging is currently performed with mechanically scanned single-element probes. These probes have limited capabilities overall and lack the ability to image blood flow. Linear-array systems are able to detect blood flow, but these systems exceed ophthalmic acoustic intensity safety guidelines. Our aim was to implement and evaluate a new linear-array–based technology, compound coherent plane-wave ultrasound, which offers ultrafast imaging and depiction of blood flow at safe acoustic intensity levels. Methods We compared acoustic intensity generated by a 128-element, 18-MHz linear array operated in conventionally focused and plane-wave modes and characterized signal-to-noise ratio (SNR) and lateral resolution. We developed plane-wave B-mode, real-time color-flow, and high-resolution depiction of slow flow in postprocessed data collected continuously at a rate of 20,000 frames/s. We acquired in vivo images of the posterior pole of the eye by compounding plane-wave images acquired over ±10° and produced images depicting orbital and choroidal blood flow. Results With the array operated conventionally, Doppler modes exceeded Food and Drug Administration safety guidelines, but plane-wave modalities were well within guidelines. Plane-wave data allowed generation of high-quality compound B-mode images, with SNR increasing with the number of compounded frames. Real-time color-flow Doppler readily visualized orbital blood flow. Postprocessing of continuously acquired data blocks of 1.6-second duration allowed high-resolution depiction of orbital and choroidal flow over the cardiac cycle. Conclusions Newly developed high-frequency linear arrays in combination with plane-wave techniques present opportunities for the evaluation of ocular anatomy and blood flow, as well as visualization and analysis of other transient phenomena such as vessel wall motion over the cardiac cycle and saccade-induced vitreous motion. PMID:27428169

  3. Ultrasonic Imaging of Hemodynamic Force in Carotid Blood Flow

    Science.gov (United States)

    Nitta, N.; Homma, K.

    Hemodynamic forces including blood pressure and shear stress affect vulnerable plaque rupture in arteriosclerosis and biochemical activation of endothelium such as NO production. In this study, a method for estimating and imaging shear stress and pressure gradient distributions in blood vessel as the hemodynamic force based on viscosity estimation is presented. Feasibility of this method was investigated by applying to human carotid blood flow. Estimated results of shear stress and pressure gradient distributions coincide with the ideal distributions obtained by numerical simulation and flow-phantom experiment.

  4. Velocity estimation using synthetic aperture imaging [blood flow

    OpenAIRE

    Nikolov, Svetoslav; Jensen, Jørgen Arendt

    2001-01-01

    Presented an approach for synthetic aperture blood flow ultrasound imaging. Estimates with a low bias and standard deviation can be obtained with as few as eight emissions. The performance of the new estimator is verified using both simulations and measurements. The results demonstrate that a fully functioning synthetic aperture scanner can be made

  5. Increased cerebral blood flow in preeclampsia with magnetic resonance imaging

    NARCIS (Netherlands)

    Zeeman, GG; Hatab, MR; Twickler, DM

    2004-01-01

    Objective: The purpose of this study was to compare third trimester and nonpregnant cerebral blood flow of women with preeclampsia to normotensive control subjects with the use of magnetic resonance imaging techniques. Study design: Nine normotensive pregnant women and 12 untreated women with preecl

  6. Velocity estimation using synthetic aperture imaging [blood flow

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav; Jensen, Jørgen Arendt

    2001-01-01

    Presented an approach for synthetic aperture blood flow ultrasound imaging. Estimates with a low bias and standard deviation can be obtained with as few as eight emissions. The performance of the new estimator is verified using both simulations and measurements. The results demonstrate that a fully...

  7. Quantitative imaging of coronary blood flow

    Directory of Open Access Journals (Sweden)

    Adam M. Alessio

    2010-04-01

    Full Text Available Adam M. Alessio received his PhD in Electrical Engineering from the University of Notre Dame in 2003. During his graduate studies he developed tomographic reconstruction methods for correlated data and helped construct a high-resolution PET system. He is currently a Research Assistant Professor in Radiology at the University of Washington. His research interests focus on improved data processing and reconstruction algorithms for PET/CT systems with an emphasis on quantitative imaging. Erik Butterworth recieved the BA degree in Mathematics from the University of Chicago in 1977. Between 1977 and 1987 he worked as a computer programmer/analyst for several small commercial software firms. Since 1988, he has worked as a software engineer on various research projects at the University of Washington. Between 1988 and 1993 he developed a real-time data aquisition for the analysis of estuarine sediment transport in the department of Geophysics. Between 1988 and 2002 he developed I4, a system for the display and analysis of cardic PET images in the department of Cardiology. Since 1993 he has worked on physiological simulation systems (XSIM from 1993 to 1999, JSim since 1999 at the National Simulation Resource Facility in Cirulatory Mass Transport and Exchange, in the Department of Bioengineering. His research interests include simulation systems and medical imaging. James H. Caldwell, MD, University of Missouri-Columbia 1970, is Professor of Medicine (Cardiology and Radiology and Adjunct Professor of Bioengineering at the University of Washington School of Medicine and Acting Head, Division of Cardiology and Director of Nuclear Cardiology for the University of Washington Hospitals, Seattle WA, USA. James B. Bassingthwaighte, MD, Toronto 1955, PhD Mayo Grad Sch Med 1964, was Professor of Physiology and of Medicine at Mayo Clinic until 1975 when he moved to the University of Washington to chair Bioengineering. He is Professor of Bioengineering and

  8. Quantitative blood flow velocity imaging using laser speckle flowmetry

    Science.gov (United States)

    Nadort, Annemarie; Kalkman, Koen; van Leeuwen, Ton G.; Faber, Dirk J.

    2016-04-01

    Laser speckle flowmetry suffers from a debated quantification of the inverse relation between decorrelation time (τc) and blood flow velocity (V), i.e. 1/τc = αV. Using a modified microcirculation imager (integrated sidestream dark field - laser speckle contrast imaging [SDF-LSCI]), we experimentally investigate on the influence of the optical properties of scatterers on α in vitro and in vivo. We found a good agreement to theoretical predictions within certain limits for scatterer size and multiple scattering. We present a practical model-based scaling factor to correct for multiple scattering in microcirculatory vessels. Our results show that SDF-LSCI offers a quantitative measure of flow velocity in addition to vessel morphology, enabling the quantification of the clinically relevant blood flow, velocity and tissue perfusion.

  9. Holographic laser Doppler imaging of microvascular blood flow

    CERN Document Server

    Magnain, C; Boucneau, T; Simonutti, M; Ferezou, I; Rancillac, A; Vitalis, T; Sahel, J A; Paques, M; Atlan, M

    2014-01-01

    We report on local superficial blood flow monitoring in biological tissue from laser Doppler holographic imaging. In time averaging recording conditions, holography acts as a narrowband bandpass filter, which, combined with a frequency shifted reference beam, permits frequency selective imaging in the radiofrequency range. These Doppler images are acquired with an off axis Mach Zehnder interferometer. Microvascular hemodynamic components mapping is performed in the cerebral cortex of the mouse and the eye fundus of the rat with near-infrared laser light without any exogenous marker. These measures are made from a basic inverse method analysis of local first order optical fluctuation spectra at low radiofrequencies, from 0 Hz to 100 kHz. Local quadratic velocity is derived from Doppler broadenings induced by fluid flows, with elementary diffusing wave spectroscopy formalism in backscattering configuration. We demonstrate quadratic mean velocity assessment in the 0.1 to 10 millimeters per second range in vitro ...

  10. Nephron blood flow dynamics measured by laser speckle contrast imaging

    DEFF Research Database (Denmark)

    von Holstein-Rathlou, Niels-Henrik; Sosnovtseva, Olga V; Pavlov, Alexey N;

    2011-01-01

    Tubuloglomerular feedback (TGF) has an important role in autoregulation of renal blood flow and glomerular filtration rate (GFR). Because of the characteristics of signal transmission in the feedback loop, the TGF undergoes self-sustained oscillations in single-nephron blood flow, GFR, and tubula...

  11. Evaluation of the Effects of Acupuncture on Blood Flow in Humans with Ultrasound Color Doppler Imaging

    OpenAIRE

    Takayama, Shin; WATANABE, Masashi; Kusuyama, Hiroko; Nagase, Satoru; Seki, Takashi; Nakazawa, Toru; Yaegashi, Nobuo

    2012-01-01

    Color Doppler imaging (CDI) can be used to noninvasively create images of human blood vessels and quantitatively evaluate blood flow in real-time. The purpose of this study was to assess the effects of acupuncture on the blood flow of the peripheral, mesenteric, and retrobulbar arteries by CDI. Statistical significance was defined as P values less than 0.05. Blood flow in the radial and brachial arteries was significantly lower during needle stimulation on LR3 than before in healthy volunteer...

  12. Functional laser speckle imaging of cerebral blood flow under hypothermia

    Science.gov (United States)

    Li, Minheng; Miao, Peng; Zhu, Yisheng; Tong, Shanbao

    2011-08-01

    Hypothermia can unintentionally occur in daily life, e.g., in cardiovascular surgery or applied as therapeutics in the neurosciences critical care unit. So far, the temperature-induced spatiotemporal responses of the neural function have not been fully understood. In this study, we investigated the functional change in cerebral blood flow (CBF), accompanied with neuronal activation, by laser speckle imaging (LSI) during hypothermia. Laser speckle images from Sprague-Dawley rats (n = 8, male) were acquired under normothermia (37°C) and moderate hypothermia (32°C). For each animal, 10 trials of electrical hindpaw stimulation were delivered under both temperatures. Using registered laser speckle contrast analysis and temporal clustering analysis (TCA), we found a delayed response peak and a prolonged response window under hypothermia. Hypothermia also decreased the activation area and the amplitude of the peak CBF. The combination of LSI and TCA is a high-resolution functional imaging method to investigate the spatiotemporal neurovascular coupling in both normal and pathological brain functions.

  13. Low resource processing algorithms for laser Doppler blood flow imaging.

    Science.gov (United States)

    Nguyen, Hoang C; Hayes-Gill, Barrie R; Zhu, Yiqun; Crowe, John A; He, Diwei; Morgan, Stephen P

    2011-07-01

    The emergence of full field laser Doppler blood flow imaging systems based on CMOS camera technology means that a large amount of data from each pixel in the image needs to be processed rapidly and system resources need to be used efficiently. Conventional processing algorithms that are utilized in single point or scanning systems are therefore not an ideal solution as they will consume too much system resource. Two processing algorithms that address this problem are described and efficiently implemented in a field programmable gate array. The algorithms are simple enough to use low system resource but effective enough to produce accurate flow measurements. This enables the processing unit to be integrated entirely in an embedded system, such as in an application-specific integrated circuit. The first algorithm uses a short Fourier transformation length (typically 8) but averages the output multiple times (typically 128). The second method utilizes an infinite impulse response filter with a low number of filter coefficients that operates in the time domain and has a frequency-weighted response. The algorithms compare favorably with the reference standard 1024 point fast Fourier transform in terms of both resource usage and accuracy. The number of data words per pixel that need to be stored for the algorithms is 1024 for the reference standard, 8 for the short length Fourier transform algorithm and 5 for the algorithm based on the infinite impulse response filter. Compared to the reference standard the error in the flow calculation is 1.3% for the short length Fourier transform algorithm and 0.7% for the algorithm based on the infinite impulse response filter. PMID:21316289

  14. Determining tumor blood flow parameters from dynamic image measurements

    Science.gov (United States)

    Libertini, Jessica M.

    2008-11-01

    Many recent cancer treatments focus on preventing angiogenesis, the process by which a tumor promotes the growth of large and efficient capillary beds for the increased nourishment required to support the tumor's rapid growth[l]. To measure the efficacy of these treatments in a timely fashion, there is an interest in using data from dynamic sequences of contrast-enhanced medical imaging, such as MRI and CT, to measure blood flow parameters such as perfusion, permeability-surface-area product, and the relative volumes of the plasma and extracellular-extravascular space. Starting with a two compartment model presented by the radiology community[2], this work challenges the application of a simplification to this problem, which was originally developed to model capillary reuptake[3]. While the primary result of this work is the demonstration of the inaccuracy of this simplification, the remainder of the paper is dedicated to presenting alternative methods for calculating the perfusion and plasma volume coefficients. These methods are applied to model data sets based on real patient data, and preliminary results are presented.

  15. Determining tumor blood flow parameters from dynamic image measurements

    Energy Technology Data Exchange (ETDEWEB)

    Libertini, Jessica M [Division of Applied Mathematics, Brown University, Providence, Rhode Island 02906 (United States)], E-mail: Jessica_Libertini@brown.edu

    2008-11-01

    Many recent cancer treatments focus on preventing angiogenesis, the process by which a tumor promotes the growth of large and efficient capillary beds for the increased nourishment required to support the tumor's rapid growth. To measure the efficacy of these treatments in a timely fashion, there is an interest in using data from dynamic sequences of contrast-enhanced medical imaging, such as MRI and CT, to measure blood flow parameters such as perfusion, permeability-surface-area product, and the relative volumes of the plasma and extracellular-extravascular space. Starting with a two compartment model presented by the radiology community, this work challenges the application of a simplification to this problem, which was originally developed to model capillary reuptake. While the primary result of this work is the demonstration of the inaccuracy of this simplification, the remainder of the paper is dedicated to presenting alternative methods for calculating the perfusion and plasma volume coefficients. These methods are applied to model data sets based on real patient data, and preliminary results are presented.

  16. Semiquantitative imaging measurement of baseline and vasomodulated normal prostatic blood flow using sildenafil

    OpenAIRE

    Haaga, JR; Exner, A; Fei, B; Seftel, AD

    2006-01-01

    The physiologic variability of blood flow to the prostate has not been studied until this time. We report the vasoactive effects of sildenafil and phenylephrine on blood flow of the normal prostate. Sildenafil increases prostate blood flow by approximately 75% and phenylephrine reduces the flow incrementally. Administration of these drugs with dynamic contrast-enhanced magnetic resonance imaging may improve the diagnosis of cancerous tissue because according to the literature, tumor angiogeni...

  17. Laser doppler blood flow imaging using a CMOS imaging sensor with on-chip signal processing.

    Science.gov (United States)

    He, Diwei; Nguyen, Hoang C; Hayes-Gill, Barrie R; Zhu, Yiqun; Crowe, John A; Gill, Cally; Clough, Geraldine F; Morgan, Stephen P

    2013-01-01

    The first fully integrated 2D CMOS imaging sensor with on-chip signal processing for applications in laser Doppler blood flow (LDBF) imaging has been designed and tested. To obtain a space efficient design over 64 × 64 pixels means that standard processing electronics used off-chip cannot be implemented. Therefore the analog signal processing at each pixel is a tailored design for LDBF signals with balanced optimization for signal-to-noise ratio and silicon area. This custom made sensor offers key advantages over conventional sensors, viz. the analog signal processing at the pixel level carries out signal normalization; the AC amplification in combination with an anti-aliasing filter allows analog-to-digital conversion with a low number of bits; low resource implementation of the digital processor enables on-chip processing and the data bottleneck that exists between the detector and processing electronics has been overcome. The sensor demonstrates good agreement with simulation at each design stage. The measured optical performance of the sensor is demonstrated using modulated light signals and in vivo blood flow experiments. Images showing blood flow changes with arterial occlusion and an inflammatory response to a histamine skin-prick demonstrate that the sensor array is capable of detecting blood flow signals from tissue. PMID:24051525

  18. Laser Doppler Blood Flow Imaging Using a CMOS Imaging Sensor with On-Chip Signal Processing

    Science.gov (United States)

    He, Diwei; Nguyen, Hoang C.; Hayes-Gill, Barrie R.; Zhu, Yiqun; Crowe, John A.; Gill, Cally; Clough, Geraldine F.; Morgan, Stephen P.

    2013-01-01

    The first fully integrated 2D CMOS imaging sensor with on-chip signal processing for applications in laser Doppler blood flow (LDBF) imaging has been designed and tested. To obtain a space efficient design over 64 × 64 pixels means that standard processing electronics used off-chip cannot be implemented. Therefore the analog signal processing at each pixel is a tailored design for LDBF signals with balanced optimization for signal-to-noise ratio and silicon area. This custom made sensor offers key advantages over conventional sensors, viz. the analog signal processing at the pixel level carries out signal normalization; the AC amplification in combination with an anti-aliasing filter allows analog-to-digital conversion with a low number of bits; low resource implementation of the digital processor enables on-chip processing and the data bottleneck that exists between the detector and processing electronics has been overcome. The sensor demonstrates good agreement with simulation at each design stage. The measured optical performance of the sensor is demonstrated using modulated light signals and in vivo blood flow experiments. Images showing blood flow changes with arterial occlusion and an inflammatory response to a histamine skin-prick demonstrate that the sensor array is capable of detecting blood flow signals from tissue. PMID:24051525

  19. Laser doppler blood flow imaging using a CMOS imaging sensor with on-chip signal processing.

    Science.gov (United States)

    He, Diwei; Nguyen, Hoang C; Hayes-Gill, Barrie R; Zhu, Yiqun; Crowe, John A; Gill, Cally; Clough, Geraldine F; Morgan, Stephen P

    2013-09-18

    The first fully integrated 2D CMOS imaging sensor with on-chip signal processing for applications in laser Doppler blood flow (LDBF) imaging has been designed and tested. To obtain a space efficient design over 64 × 64 pixels means that standard processing electronics used off-chip cannot be implemented. Therefore the analog signal processing at each pixel is a tailored design for LDBF signals with balanced optimization for signal-to-noise ratio and silicon area. This custom made sensor offers key advantages over conventional sensors, viz. the analog signal processing at the pixel level carries out signal normalization; the AC amplification in combination with an anti-aliasing filter allows analog-to-digital conversion with a low number of bits; low resource implementation of the digital processor enables on-chip processing and the data bottleneck that exists between the detector and processing electronics has been overcome. The sensor demonstrates good agreement with simulation at each design stage. The measured optical performance of the sensor is demonstrated using modulated light signals and in vivo blood flow experiments. Images showing blood flow changes with arterial occlusion and an inflammatory response to a histamine skin-prick demonstrate that the sensor array is capable of detecting blood flow signals from tissue.

  20. Laser Doppler Blood Flow Imaging Using a CMOS Imaging Sensor with On-Chip Signal Processing

    Directory of Open Access Journals (Sweden)

    Cally Gill

    2013-09-01

    Full Text Available The first fully integrated 2D CMOS imaging sensor with on-chip signal processing for applications in laser Doppler blood flow (LDBF imaging has been designed and tested. To obtain a space efficient design over 64 × 64 pixels means that standard processing electronics used off-chip cannot be implemented. Therefore the analog signal processing at each pixel is a tailored design for LDBF signals with balanced optimization for signal-to-noise ratio and silicon area. This custom made sensor offers key advantages over conventional sensors, viz. the analog signal processing at the pixel level carries out signal normalization; the AC amplification in combination with an anti-aliasing filter allows analog-to-digital conversion with a low number of bits; low resource implementation of the digital processor enables on-chip processing and the data bottleneck that exists between the detector and processing electronics has been overcome. The sensor demonstrates good agreement with simulation at each design stage. The measured optical performance of the sensor is demonstrated using modulated light signals and in vivo blood flow experiments. Images showing blood flow changes with arterial occlusion and an inflammatory response to a histamine skin-prick demonstrate that the sensor array is capable of detecting blood flow signals from tissue.

  1. Validation of an optical flow algorithm to measure blood flow waveforms in arteries using dynamic digital x-ray images

    Science.gov (United States)

    Rhode, Kawal; Lambrou, Tryphon; Hawkes, David J.; Hamilton, George; Seifalian, Alexander M.

    2000-06-01

    We have developed a weighted optical flow algorithm for the extraction of instantaneous blood velocity from dynamic digital x-ray images of blood vessels. We have carried out in- vitro validation of this technique. A pulsatile physiological blood flow circuit was constructed using sections of silicone tubing to simulate blood vessels with whole blood as the fluid. Instantaneous recording of flow from an electromagnetic flow meter (EMF) provided the gold standard measurement. Biplanar dynamic digital x-ray images of the blood vessel with injection of contrast medium were acquired at 25 fps using a PC frame capture card. Imaging of a Perspex calibration cube allowed 3D reconstruction of the vessel and determination of true dimensions. Blood flow waveforms were calculated off-line on a Sun workstation using the new algorithm. The correlation coefficient between instantaneous blood flow values obtained from the EMF and the x-ray method was r equals 0.871, n equals 1184, p less than 0.0001. The correlation coefficient for average blood flow was r equals 0.898, n equals 16, p less than 0.001. We have successfully demonstrated that our new algorithm can measure pulsatile blood flow in a vessel phantom. We aim to use this algorithm to measure blood flow clinically in patients undergoing vascular interventional procedures.

  2. Recent advances in blood flow vector velocity imaging

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Nikolov, Svetoslav; Udesen, Jesper;

    2011-01-01

    with magnetic resonance phase contrast angiography (MRA) revealed a correlation between the stroke volume estimated by TO and MRA of 0.91 (pflow in e.g. bifurcations and around valves have...... investigated using both simulations, flow rig measurements, and in-vivo validation against MR scans. The TO method obtains a relative accuracy of 10% for a fully transverse flow in both simulations and flow rig experiments. In-vivo studies performed on 11 healthy volunteers comparing the TO method...... tracking. The key advantages of these techniques are very fast imaging that can attain an order of magnitude higher precision than conventional methods. SA flow imaging was implemented on the experimental scanner RASMUS using an 8-emission spherical emission sequence and reception of 64 channels on a BK...

  3. Blood Flow Imaging in Maternal and Fetal Arteries and Veins

    Science.gov (United States)

    Ricci, S.; Urban, G.; Vergani, P.; Paidas, M. J.; Tortoli, P.

    Maternal and fetal blood circulation has been investigated for nearly a decade through ultrasound (US) techniques. Evaluation of the spectrogram related to a single sample volume has been proven valuable for the assessment of fetal well-being and for prediction of pregnancy complications. In this work, an alternative technique, called Multigate Spectral Doppler Analysis (MSDA), is proposed. In this approach, 128 sample volumes aligned along the same scan line are simultaneously investigated to detect the blood velocity profile with high resolution. Profiles obtained through MSDA reveal features not detectable with the standard US technique, thus representing a more accurate flow signature. Some preliminary illustrative results are reported here.

  4. Low-cost laser speckle contrast imaging of blood flow using a webcam

    OpenAIRE

    Richards, Lisa M.; Kazmi, S. M. Shams; Davis, Janel L.; Olin, Katherine E.; Dunn, Andrew K.

    2013-01-01

    Laser speckle contrast imaging has become a widely used tool for dynamic imaging of blood flow, both in animal models and in the clinic. Typically, laser speckle contrast imaging is performed using scientific-grade instrumentation. However, due to recent advances in camera technology, these expensive components may not be necessary to produce accurate images. In this paper, we demonstrate that a consumer-grade webcam can be used to visualize changes in flow, both in a microfluidic flow phanto...

  5. Extraction of the magnetohydrodynamic blood flow potential from the surface electrocardiogram in magnetic resonance imaging.

    Science.gov (United States)

    Nijm, Grace M; Swiryn, Steven; Larson, Andrew C; Sahakian, Alan V

    2008-07-01

    The magnetohydrodynamic effect generates voltages related to blood flow, which are superimposed on the electrocardiogram (ECG) used for gating during cardiac magnetic resonance imaging (MRI). A method is presented for extracting the magnetohydrodynamic signal from the ECG. The extracted magnetohydrodynamic blood flow potential may be physiologically meaningful due to its relationship to blood flow. Removal of the magnetohydrodynamic voltages from the ECG can potentially lead to improved gating and diagnostically useful ECGs.

  6. Radionuclide Tracers for Myocardial Perfusion Imaging and Blood Flow Quantification.

    Science.gov (United States)

    deKemp, Robert A; Renaud, Jennifer M; Klein, Ran; Beanlands, Rob S B

    2016-02-01

    Myocardial perfusion imaging is performed most commonly using Tc-99m-sestamibi or tetrofosmin SPECT as well as Rb-82-rubidium or N-13-ammonia PET. Diseased-to-normal tissue contrast is determined by the tracer retention fraction, which decreases nonlinearly with flow. Reduced tissue perfusion results in reduced tracer retention, but the severity of perfusion defects is typically underestimated by 20% to 40%. Compared to SPECT, retention of the PET tracers is more linearly related to flow, and therefore, the perfusion defects are measured more accurately using N-13-ammonia or Rb-82.

  7. True color blood flow imaging using a high-speed laser photography system

    Science.gov (United States)

    Liu, Chien-Sheng; Lin, Cheng-Hsien; Sun, Yung-Nien; Ho, Chung-Liang; Hsu, Chung-Chi

    2012-10-01

    Physiological changes in the retinal vasculature are commonly indicative of such disorders as diabetic retinopathy, glaucoma, and age-related macular degeneration. Thus, various methods have been developed for noninvasive clinical evaluation of ocular hemodynamics. However, to the best of our knowledge, current ophthalmic instruments do not provide a true color blood flow imaging capability. Accordingly, we propose a new method for the true color imaging of blood flow using a high-speed pulsed laser photography system. In the proposed approach, monochromatic images of the blood flow are acquired using a system of three cameras and three color lasers (red, green, and blue). A high-quality true color image of the blood flow is obtained by assembling the monochromatic images by means of image realignment and color calibration processes. The effectiveness of the proposed approach is demonstrated by imaging the flow of mouse blood within a microfluidic channel device. The experimental results confirm the proposed system provides a high-quality true color blood flow imaging capability, and therefore has potential for noninvasive clinical evaluation of ocular hemodynamics.

  8. Laser Doppler blood flow imaging using a CMOS imaging sensor with on-chip signal processing

    OpenAIRE

    Cally Gill; Clough, Geraldine F.; Morgan, Stephen P; Hayes-Gill, Barrie R.; Crowe, John A.; Yiqun Zhu; Hoang C. Nguyen; Diwei He

    2013-01-01

    The first fully integrated 2D CMOS imaging sensor with on-chip signal processing for applications in laser Doppler blood flow (LDBF) imaging has been designed and tested. To obtain a space efficient design over 64 × 64 pixels means that standard processing electronics used off-chip cannot be implemented. Therefore the analog signal processing at each pixel is a tailored design for LDBF signals with balanced optimization for signal-to-noise ratio and silicon area. This custom made sensor offer...

  9. Microvascular blood flow monitoring with laser speckle contrast imaging using the generalized differences algorithm

    OpenAIRE

    Humeau-Heurtier, Anne; Mahé, Guillaume; Abraham, Pierre

    2015-01-01

    Laser speckle contrast imaging (LSCI) is a full-field optical technique to monitor microvascular blood flow with high spatial and temporal resolutions. It is used in many medical fields such as dermatology, vascular medicine, or neurosciences. However, LSCI leads to a large amount of data: image sampling frequency is often of several Hz and recordings usually last several minutes. Therefore, clinicians often perform regions of interest in which a spatial averaging of blood flow is performed a...

  10. Estimation of vessel diameter and blood flow dynamics from laser speckle images

    DEFF Research Database (Denmark)

    Postnov, Dmitry D.; Tuchin, Valery V.; Sosnovtseva, Olga

    2016-01-01

    Laser speckle imaging is a rapidly developing method to study changes of blood velocity in the vascular networks. However, to assess blood flow and vascular responses it is crucial to measure vessel diameter in addition to blood velocity dynamics. We suggest an algorithm that allows for dynamical...... masking of a vessel position and measurements of it's diameter from laser speckle images. This approach demonstrates high reliability and stability....

  11. Estimation of vessel diameter and blood flow dynamics from laser speckle images

    Science.gov (United States)

    Postnov, Dmitry D.; Tuchin, Valery V.; Sosnovtseva, Olga

    2016-01-01

    Laser speckle imaging is a rapidly developing method to study changes of blood velocity in the vascular networks. However, to assess blood flow and vascular responses it is crucial to measure vessel diameter in addition to blood velocity dynamics. We suggest an algorithm that allows for dynamical masking of a vessel position and measurements of it’s diameter from laser speckle images. This approach demonstrates high reliability and stability.

  12. Multi-modal in vivo imaging of brain blood oxygenation, blood flow and neural calcium dynamics during acute seizures

    Science.gov (United States)

    Ringuette, Dene; Jeffrey, Melanie A.; Carlen, Peter L.; Levi, Ofer

    2016-03-01

    Dysfunction of the vascular endothelium has been implicated in the development of epilepsy. To better understand the relation between vascular function and seizure and provide a foundation for interpreting results from functional imaging in chronic disease models, we investigate the relationship between intracellular calcium dynamics and local cerebral blood flow and blood oxygen saturation during acute seizure-like events and pharmacological seizure rescue. To probe the relation between the aforementioned physiological markers in an acute model of epilepsy in rats, we integrated three different optical modalities together with electrophysiological recordings: Laser speckle contrast imaging (LSCI) was used to study changes in flow speeds, Intrinsic optical signal imaging (IOSI) was used to monitor changes in oxygenated, de-oxygenated, and total hemoglobin concentration, and Calcium-sensitive dye imaging was used to monitor intracellular calcium dynamics. We designed a dedicated cortical flow chamber to remove superficial blood and dye resulting from the injection procedure, which reduced spurious artifacts. The near infrared light used for IOSI and LSCI was delivered via a light pipe integrated with the flow chamber to minimize the effect of fluid surface movement on illumination stability. Calcium-sensitive dye was injected via a glass electrode used for recording the local field potential. Our system allowed us to observe and correlate increases in intracellular calcium, blood flow and blood volume during seizure-like events and provide a quantitative analysis of neurovascular coupling changes associated with seizure rescue via injection of an anti-convulsive agent.

  13. Micro-particle image velocimetry for velocity profile measurements of micro blood flows.

    Science.gov (United States)

    Pitts, Katie L; Fenech, Marianne

    2013-04-25

    Micro-particle image velocimetry (μPIV) is used to visualize paired images of micro particles seeded in blood flows. The images are cross-correlated to give an accurate velocity profile. A protocol is presented for μPIV measurements of blood flows in microchannels. At the scale of the microcirculation, blood cannot be considered a homogeneous fluid, as it is a suspension of flexible particles suspended in plasma, a Newtonian fluid. Shear rate, maximum velocity, velocity profile shape, and flow rate can be derived from these measurements. Several key parameters such as focal depth, particle concentration, and system compliance, are presented in order to ensure accurate, useful data along with examples and representative results for various hematocrits and flow conditions.

  14. Evaluation of the effects of acupuncture on blood flow in humans with ultrasound color Doppler imaging.

    Science.gov (United States)

    Takayama, Shin; Watanabe, Masashi; Kusuyama, Hiroko; Nagase, Satoru; Seki, Takashi; Nakazawa, Toru; Yaegashi, Nobuo

    2012-01-01

    Color Doppler imaging (CDI) can be used to noninvasively create images of human blood vessels and quantitatively evaluate blood flow in real-time. The purpose of this study was to assess the effects of acupuncture on the blood flow of the peripheral, mesenteric, and retrobulbar arteries by CDI. Statistical significance was defined as P values less than 0.05. Blood flow in the radial and brachial arteries was significantly lower during needle stimulation on LR3 than before in healthy volunteers, but was significantly higher after needle stimulation than before. LR3 stimulation also resulted in a significant decrease in the vascular resistance of the short posterior ciliary artery and no significant change of blood flow through the superior mesenteric artery (SMA) during acupuncture. In contrast, ST36 stimulation resulted in a significant increase in blood flow through the SMA and no significant change in the vascular resistance of the retrobulbar arteries. Additionally, acupuncture at previously determined acupoints in patients with open-angle glaucoma led to a significant reduction in the vascular resistance of the central retinal artery and short posterior ciliary artery. Our results suggest that acupuncture can affect blood flow of the peripheral, mesenteric, and retrobulbar arteries, and CDI can be useful to evaluate hemodynamic changes by acupuncture. PMID:22778772

  15. Single image correlation for blood flow mapping in complex vessel networks

    Science.gov (United States)

    Chirico, Giuseppe; Sironi, Laura; Bouzin, Margaux; D'Alfonso, Laura; Collini, Maddalena; Ceffa, Nicolo'G.; Marquezin, Cassia

    2015-05-01

    Microcirculation plays a key role in the maintenance and hemodynamics of tissues and organs also due to its extensive interaction with the immune system. A critical limitation of state-of-the-art clinical techniques to characterize the blood flow is their lack of the spatial resolution required to scale down to individual capillaries. On the other hand the study of the blood flow through auto- or cross-correlation methods fail to correlate the flow speed values with the morphological details required to describe an intricate network of capillaries. Here we propose to use a newly developed technique (FLICS, FLow Image Correlation Spectroscopy) that, by employing a single raster-scanned xy-image acquired in vivo by confocal or multi-photon excitation fluorescence microscopy, allows the quantitative measurement of the blood flow velocity in the whole vessel pattern within the field of view, while simultaneously maintaining the morphological information on the immobile structures of the explored circulatory system. Fluorescent flowing objects produce diagonal lines in the raster-scanned image superimposed to static morphological details. The flow velocity is obtained by computing the Cross Correlation Function (CCF) of the intensity fluctuations detected in pairs of columns of the image. The whole analytical dependence of the CCFs on the flow speed amplitude and the flow direction has been reported recently. We report here the derivation of approximated analytical relations that allows to use the CCF peak lag time and the corresponding CCF value, to directly estimate the flow speed amplitude and the flow direction. The validation has been performed on Zebrafish embryos for which the flow direction was changed systematically by rotating the embryos on the microscope stage. The results indicate that also from the CCF peak lag time it is possible to recover the flow speed amplitude within 13% of uncertainty (overestimation) in a wide range of angles between the flow and

  16. The Effect of Blood Flow on Magnetic Resonance Imaging of Non Thermal Irreversible Electroporation

    Science.gov (United States)

    Hjouj, Mohammad; Lavee, Jacob; Last, David; Guez, David; Daniels, Dianne; Sharabi, Shirley; Rubinsky, Boris; Mardor, Yael

    2013-10-01

    To generate an understanding of the physiological significance of MR images of Non-Thermal Irreversible Electroporation (NTIRE) we compared the following MR imaging sequences: T1W, T2W, PD, GE, and T2 SPAIR acquired after NTIRE treatment in a rodent liver model. The parameters that were studied included the presence or absence of a Gd-based contrast agent, and in vivo and ex-vivo NTIRE treatments in the same liver. NTIRE is a new minimally invasive tissue ablation modality in which pulsed electric fields cause molecularly selective cell death while, the extracellular matrix and large blood vessels remain patent. This attribute of NTIRE is of major clinical importance as it allows treatment of undesirable tissues near critical blood vessels. The presented study results suggest that MR images acquired following NTIRE treatment are all directly related to the unique pattern of blood flow after NTIRE treatment and are not produced in the absence of blood flow.

  17. Fast blood flow visualization of high-resolution laser speckle imaging data using graphics processing unit.

    Science.gov (United States)

    Liu, Shusen; Li, Pengcheng; Luo, Qingming

    2008-09-15

    Laser speckle contrast analysis (LASCA) is a non-invasive, full-field optical technique that produces two-dimensional map of blood flow in biological tissue by analyzing speckle images captured by CCD camera. Due to the heavy computation required for speckle contrast analysis, video frame rate visualization of blood flow which is essentially important for medical usage is hardly achieved for the high-resolution image data by using the CPU (Central Processing Unit) of an ordinary PC (Personal Computer). In this paper, we introduced GPU (Graphics Processing Unit) into our data processing framework of laser speckle contrast imaging to achieve fast and high-resolution blood flow visualization on PCs by exploiting the high floating-point processing power of commodity graphics hardware. By using GPU, a 12-60 fold performance enhancement is obtained in comparison to the optimized CPU implementations.

  18. Single photon emission CT perfusion imaging of cerebral blood flow of early syphilis patients

    Institute of Scientific and Technical Information of China (English)

    施辛; 吴锦昌; 刘增礼; 唐军; 苏玉华

    2003-01-01

    Objective To injvestigate the cerebral blood flow of patients with early syphilis. Methods 99Tcm-ECD as brain perfusion imaging agent was used in single photon emission computed tomography (SPECT) for 32 patients with early syphilis and 15 controls. Visual analyses were made on every BSPECT image. Results The 32 patients with early syphilis had general, patchy hypoperfusion of cerebral blood flow. Fourteen of the 32 patients had 48 episodes of marked patchy hypoperfusion of rCBF. The responsible areas of hypoperfusion in a patchy distribution involved the left frontal lobe (6 episodes), right frontal lobe (3), left parietal lobe (7), right parietal lobe (6), left temporal lobe (11), right temporal lobe (5), left occipital lobe (3), left basal ganglia (3), cerebellum (1), and nerve nuceus (1). No abnormality was found in the control group.Conclusions Cerebral blood flow abnormalities exist in patients with early syphilis. General patchy hypoperfusion on SPECT imaging is common.

  19. Cerebral blood flow imaged with ultrahigh-resolution optical coherence angiography and Doppler tomography

    OpenAIRE

    Ren, Hugang; Du, Congwu; Pan, Yingtian

    2012-01-01

    Speckle contrast based optical coherence angiography (OCA) and optical coherence Doppler tomography (ODT) have been applied to image cerebral blood flow previously. However, the contrast mechanisms of these two methods are not fully studied. Here, we present both flow phantom and in vivo animal experiments using ultrahigh-resolution OCA (μOCA) and ODT (μODT) to investigate the flow sensitivity differences between these two methods. Our results show that the high sensitivity of μOCA for visual...

  20. Doppler standard deviation imaging for clinical monitoring of in vivo human skin blood flow

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yonghua; Chen, Zhongping; Saxer, Christopher; Shen, Qimin; Xiang, Shaohua; Boer, Johannes F. de; Nelson, J. Stuart

    2000-09-15

    We used a novel phase-resolved optical Doppler tomographic (ODT) technique with very high flow-velocity sensitivity (10 {mu}m/s) and high spatial resolution (10 {mu}m) to image blood flow in port-wine stain (PWS) birthmarks in human skin. In addition to the regular ODT velocity and structural images, we use the variance of blood flow velocity to map the PWS vessels. Our device combines ODT and therapeutic systems such that PWS blood flow can be monitored in situ before and after laser treatment. To the authors' knowledge this is the first clinical application of ODT to provide a fast semiquantitative evaluation of the efficacy of PWS laser therapy in situ and in real time. (c) 2000 Optical Society of America.

  1. Evaluation of RI images of hepatic blood flow using Tc-99m PMT

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, Hiromichi; Iwasaki, Naoya; Ichikawa, Kesato

    1988-03-01

    To evaluate the clinical significance of RI images of hepatic blood flow using Tc-99m-PMT, analysis of the RI images and estimation of hepatic blood flow were carried out in patients with various liver diseases (37 cases). After intravenous injection of Tc-99m-PMT, hepatic accumulation curve of ROI positioned at whole liver area and time activity curve of ROI positioned at celiac artery were obtained through scintillation camera images with the computer-analysed system. Hepatic blood flow coefficient (K) was calculated from the hepatic accumulation curve. Based on the differential curve calculated from the time activity curve, chronological images of arterial, portal, parenchymal and saturated parenchymal phases were obtained. Results ; 1) K was 0.50 + 0.04, 0.35 + 0.02 and 0.26 + 0.04/min in normal type, CH type and LC type respectively. These coefficients well correlated with clinical severity of hepatic diseases. 2) Perfusional phase images of the liver became poorer in accordance with progression of liver disease, while images of spleen, portal venous system and collateral channels were more clearly obtained in liver cirrhosis. This method was shown to have a potential to understanding of severity of liver disease and hepatic blood flow dynamics.

  2. Laser speckle contrast imaging of cerebral blood flow in humans during neurosurgery: a pilot clinical study

    Science.gov (United States)

    Parthasarathy, Ashwin B.; Weber, Erica L.; Richards, Lisa M.; Fox, Douglas J.; Dunn, Andrew K.

    2010-11-01

    Monitoring cerebral blood flow (CBF) during neurosurgery can provide important physiological information for a variety of surgical procedures. CBF measurements are important for assessing whether blood flow has returned to presurgical baseline levels and for assessing postsurgical tissue viability. Existing techniques for intraoperative monitoring of CBF based on magnetic resonance imaging are expensive and often impractical, while techniques such as indocyanine green angiography cannot produce quantitative measures of blood flow. Laser speckle contrast imaging (LSCI) is an optical technique that has been widely used to quantitatively image relative CBF in animal models in vivo. In a pilot clinical study, we adapted an existing neurosurgical operating microscope to obtain LSCI images in humans in real time during neurosurgery under baseline conditions and after bipolar cautery. Simultaneously recorded ECG waveforms from the patient were used to develop a filter that helped reduce measurement variabilities due to motion artifacts. Results from this study demonstrate the feasibility of using LSCI to obtain blood flow images during neurosurgeries and its capability to produce full field CBF image maps with excellent spatial resolution in real-time with minimal disruption to the surgical procedure.

  3. Laser speckle contrast imaging for monitoring changes in microvascular blood flow

    DEFF Research Database (Denmark)

    Ambrus, Rikard; Strandby, Rune B.; Svendsen, Lars Bo;

    2016-01-01

    the reproducibility of the LSCI technique when assessing the intra-abdominal microcirculation of the pig. METHODS: During trial 1, a fish gill arch was mechanically perfused with heparinized fish blood under controlled stepwise-altered flow rates alongside mechanically induced movement artefacts. The microcirculation......BACKGROUND/AIMS: Microvascular blood flow is essential for healing and predicts surgical outcome. The aim of the current study was to investigate the relation between fluxes measured with the laser speckle contrast imaging (LSCI) technique and changes in absolute blood flow. In addition, we studied...... of the fish gill was simultaneously assessed with the LSCI technique. In trial 2, microcirculation was measured in the stomach, liver, and small intestine of 10 pigs by two observers. RESULTS: A linear correlation was observed between flux and volumetric flow. During conditions of no volumetric flow, the high...

  4. Hyperspectral imaging of vascular anastomosis associated with blood flow and hemoglobin concentration.

    Science.gov (United States)

    Sakota, Daisuke; Nagaoka, Eiki; Maruyama, Osamu

    2015-08-01

    The feasibility of optical non-invasive evaluation of the graft function of vascular anastomosis was investigated in vitro using hyperspectral imaging (HSI) in the wavelength range from 500 to 600 nm. A Y-shaped vessel was made using porcine carotid arteries having an inner diameter of 3.5 to 4 mm. The graft vessel was anastomosed at a 45° angle with 8-0 polypropylene suture. Fresh porcine blood at an oxygen saturation of 100% was circulated in the specially designed circuit loop and through the graft or main vessel. The vessels were then irradiated with light, and the reflected light was captured with an HSI camera. The attenuation (A) image at each wavelength (λ) was obtained and the spectral A(λ) image was created. The spectral A(λ) image showed graft patency and changes in the hemoglobin concentration. The A(λ) decreased as the flow rate increased due to the orientation of the red blood cells. The experimental results indicated that imaging of the hemoglobin concentration without distortion from blood flow is possible using two wavelengths: 625 and 770 nm. This method is able to distinguish between the blood flow and changes in hemoglobin concentration. The multispectral and hyperspectral imaging method is useful for the non-invasive evaluation of graft function. PMID:26737232

  5. Evaluation of tumor blood flow after feeder embolization in meningiomas by arterial spin-labeling perfusion magnetic resonance imaging.

    Science.gov (United States)

    Kawaji, Hiroshi; Koizumi, Shinichiro; Sakai, Naoto; Yamasaki, Tomohiro; Hiramatsu, Hisaya; Kanoko, Yusuke; Kamiya, Mika; Yamashita, Shuhei; Takehara, Yasuo; Sakahara, Harumi; Namba, Hiroki

    2013-10-01

    Preoperative embolization changes the amount of blood flow and pattern of flow distribution in meningioma. Tumor blood flow was investigated in eight meningioma patients before and after embolization using arterial spin-labeling (ASL) perfusion imaging. Although blood flow was significantly reduced in the whole tumor after embolization, changes in flow distribution patterns varied from one case to another. The findings suggest that evaluation of post-embolization tumor blood flow by ASL perfusion imaging would be useful in the surgical planning of meningioma.

  6. Fast Blood Vector Velocity Imaging using ultrasound: In-vivo examples of complex blood flow in the vascular system

    DEFF Research Database (Denmark)

    Hansen, Kristoffer Lindskov; Udesen, Jesper; Gran, Fredrik;

    2008-01-01

    in the superficial branch of the femoral artery during diastole, 3) that retrograde flow was present in the subclavian artery and antegrade in the common carotid artery during diastole, 4) that vortices were formed in the buckets behind the venous valves in both antegrade and retrograde flow, and 5) that secondary......Conventional ultrasound methods for acquiring color flow images of the blood motion are restricted by a relatively low frame rate and angle dependent velocity estimates. The Plane Wave Excitation (PWE) method has been proposed to solve these limitations. The frame rate can be increased, and the 2-D...... speckle tracking between segments in consecutive speckle images. The flow patterns of six bifurcations and two veins were investigated in-vivo. It was shown: 1) that a stable vortex in the carotid bulb was present opposed to other examined bifurcations, 2) that retrograde flow was present...

  7. The effect of lung orientation on functional imaging of blood flow

    Science.gov (United States)

    Burrowes, Kelly S.; Tawhai, Merryn H.

    2007-03-01

    Advancing technology has enabled rapid improvements in imaging and image processing techniques providing increasing amounts of structural and functional information. While these imaging modalities now offer a wealth of information about function within the body in health and disease certain limitations remain. We believe these can largely be addressed through a combined medical imaging - computational modeling approach. For example, imaging may only be performed in the prone or supine postures but humans function naturally in the upright position. We have developed an image-based computational model of coupled tissue mechanics and pulmonary blood flow to enable predictions of pulmonary perfusion in various postures and lung volumes. Lung and vascular geometries are derived using a combination of imaging reconstruction and computational algorithms. Solution of finite deformation equations provides predictions of tissue deformation and internal pressure distributions within the lung parenchyma. By embedding vascular models within the lung volume we obtain a coupled model of blood vessel deformation as a result of changes in lung volume. A 1D form of the Navier-Stokes flow equations are solved within the vascular model to predict perfusion. Tissue pressures calculated from the mechanics model are incorporated into the vascular constitutive pressure-radius relationship. Results demonstrated a relatively consistent flow distribution in all postures indicating the large influence of branching structure on flow distribution. It is hoped that this modeling approach may provide insights to enable interpolation of imaging measurements in alternate postures and lung volumes and enable an increased understanding of the mechanisms influencing pulmonary perfusion distribution.

  8. Infrared Imaging of Nitric Oxide-Mediated Blood Flow in Human Sickle Cell Disease

    OpenAIRE

    Gorbach, Alexander M; Hans C Ackerman; Liu, Wei-Min; Meyer, Joseph M.; Littel, Patricia L.; Seamon, Catherine; Footman, Eleni; Chi, Amy; Zorca, Suzana; Krajewski, Megan L.; Cuttica, Michael J.; Machado, Roberto F; Cannon, Richard O.; Kato, Gregory J.

    2012-01-01

    Vascular dysfunction is an important pathophysiologic manifestation of sickle cell disease (SCD), a condition that increases risk of pulmonary hypertension and stroke. We hypothesized that infrared (IR) imaging would detect changes in cutaneous blood flow reflective of vascular function. We performed IR imaging and conventional strain gauge plethysmography in twenty-five adults with SCD at baseline and during intra-arterial infusions of an endothelium-dependent vasodilator acetylcholine (ACh)...

  9. Low-cost laser speckle contrast imaging of blood flow using a webcam.

    Science.gov (United States)

    Richards, Lisa M; Kazmi, S M Shams; Davis, Janel L; Olin, Katherine E; Dunn, Andrew K

    2013-01-01

    Laser speckle contrast imaging has become a widely used tool for dynamic imaging of blood flow, both in animal models and in the clinic. Typically, laser speckle contrast imaging is performed using scientific-grade instrumentation. However, due to recent advances in camera technology, these expensive components may not be necessary to produce accurate images. In this paper, we demonstrate that a consumer-grade webcam can be used to visualize changes in flow, both in a microfluidic flow phantom and in vivo in a mouse model. A two-camera setup was used to simultaneously image with a high performance monochrome CCD camera and the webcam for direct comparison. The webcam was also tested with inexpensive aspheric lenses and a laser pointer for a complete low-cost, compact setup ($90, 5.6 cm length, 25 g). The CCD and webcam showed excellent agreement with the two-camera setup, and the inexpensive setup was used to image dynamic blood flow changes before and after a targeted cerebral occlusion. PMID:24156082

  10. Evaluation of ocular acupuncture on cerebral infarction with cerebral blood flow perfusion imaging

    International Nuclear Information System (INIS)

    To evaluate the immediate effect of ocular acupuncture on patients, an method of SPECT image of cerebral blood flow daily stress test was established. 10 patients diagnosed as cerebral infarction by CT or MRI were tested. They all received 99Tcm-ECD SPECT imaging at twice before and after ocular acupuncture. By means of image subtraction technique and semi-quantitative method of regional interesting area, the change of regional cerebral blood flow was observed between the two images. Under restful state perfusion of cerebral blood flow in 18 foci was low at the frontal lobe, the cerebellum, the basal ganglia and temporal lobe. After ocular acupuncture, the perfusions were obviously increased in 16 foci among them and the reactivity of the frontal lobe and the cerebellum to ocular acupuncture was higher, the average improvement rate of which was 55.15% and 53.06% respectively, lower in the basal ganglia and temporal lobe, the average improvement rate was 31.79% and 36.67% respectively. 99Tcm-ECD SPECT cerebral perfusion image has some significant clinic value for evaluating the effect of ocular acupuncture to treating cerebral infarction. (authors)

  11. Validation of an axial flow blood pump: computational fluid dynamics results using particle image velocimetry.

    Science.gov (United States)

    Su, Boyang; Chua, Leok Poh; Wang, Xikun

    2012-04-01

    A magnetically suspended axial flow blood pump is studied experimentally in this article. The pump casing enclosed a three-blade straightener, a two-blade impeller shrouded by a permanent magnet-embedded cylinder, and a three-blade diffuser. The internal flow fields were simulated earlier using computational fluid dynamics (CFD), and the pump characteristic curves were determined. The simulation results showed that the internal flow field was basically streamlined, except the diffuser region. Particle image velocimetry (PIV) measurement of the 1:1 pump model was conducted to validate the CFD result. In order to ensure the optical access, an acrylic prototype was fabricated with the impeller driven by a servomotor instead, as the magnet is opaque. In addition to the transparent model, the blood analog fluid with the refractive index close to that of acrylic was used to avoid refraction. According to the CFD results, the axial flow blood pump could generate adequate pressure head at the rotating speed of 9500rpm and flow rate of 5L/min, and the same flow condition was applied during the PIV measurement. Through the comparisons, it was found that the experimental results were close to those obtained by CFD and had thus validated the CFD model, which could complement the limitation of the measurement in assessing the more detailed flow fields of the axial flow pump.

  12. Validation of an axial flow blood pump: computational fluid dynamics results using particle image velocimetry.

    Science.gov (United States)

    Su, Boyang; Chua, Leok Poh; Wang, Xikun

    2012-04-01

    A magnetically suspended axial flow blood pump is studied experimentally in this article. The pump casing enclosed a three-blade straightener, a two-blade impeller shrouded by a permanent magnet-embedded cylinder, and a three-blade diffuser. The internal flow fields were simulated earlier using computational fluid dynamics (CFD), and the pump characteristic curves were determined. The simulation results showed that the internal flow field was basically streamlined, except the diffuser region. Particle image velocimetry (PIV) measurement of the 1:1 pump model was conducted to validate the CFD result. In order to ensure the optical access, an acrylic prototype was fabricated with the impeller driven by a servomotor instead, as the magnet is opaque. In addition to the transparent model, the blood analog fluid with the refractive index close to that of acrylic was used to avoid refraction. According to the CFD results, the axial flow blood pump could generate adequate pressure head at the rotating speed of 9500rpm and flow rate of 5L/min, and the same flow condition was applied during the PIV measurement. Through the comparisons, it was found that the experimental results were close to those obtained by CFD and had thus validated the CFD model, which could complement the limitation of the measurement in assessing the more detailed flow fields of the axial flow pump. PMID:22040356

  13. Quantification of myocardial blood flow with 82Rb dynamic PET imaging

    International Nuclear Information System (INIS)

    The PET tracer 82Rb is commonly used to evaluate regional perfusion defects for the diagnosis of coronary artery disease. There is limited information on the quantification of myocardial blood flow and flow reserve with this tracer. The goal of this study was to investigate the use of a one-compartment model of 82Rb kinetics for the quantification of myocardial blood flow. Fourteen healthy volunteers underwent rest and dipyridamole stress imaging with both 13N-ammonia and 82Rb within a 2-week interval. Myocardial blood flow was estimated from the time-activity curves measured with 13N-ammonia using a standard two-compartment model. The uptake parameter of the one-compartment model was estimated from the time-activity curves measured with 82Rb. To describe the relationship between myocardial blood flow and the uptake parameter, a nonlinear extraction function was fitted to the data. This function was then used to convert estimates of the uptake parameter to flow estimates. The extraction function was validated with an independent data set obtained from 13 subjects with documented evidence of coronary artery disease (CAD). The one-compartment model described 82Rb kinetics very well (median R-square = 0.98). The flow estimates obtained with 82Rb were well correlated with those obtained with 13N-ammonia (r = 0.85), and the best-fit line did not differ significantly from the identity line. Data obtained from the subjects with CAD confirmed the validity of the estimated extraction function. It is possible to obtain accurate estimates of myocardial blood flow and flow reserve with a one-compartment model of 82Rb kinetics and a nonlinear extraction function. (orig.)

  14. Laser Doppler blood flow complementary metal oxide semiconductor imaging sensor with analog on-chip processing.

    Science.gov (United States)

    Gu, Quan; Hayes-Gill, Barrie R; Morgan, Stephen P

    2008-04-20

    A 4 x 4 pixel array with analog on-chip processing has been fabricated within a 0.35 mum complementary metal oxide semiconductor process as a prototype sensor for laser Doppler blood flow imaging. At each pixel the bandpass and frequency weighted filters necessary for processing laser Doppler blood flow signals have been designed and fabricated. Because of the space constraints of implementing an accurate omega(0.5) filter at the pixel level, this has been approximated using the "roll off" of a high-pass filter with a cutoff frequency set at 10 kHz. The sensor has been characterized using a modulated laser source. Fixed pattern noise is present that is demonstrated to be repeatable across the array and can be calibrated. Preliminary blood flow results on a finger before and after occlusion demonstrate that the sensor array provides the potential for a system that can be scaled to a larger number of pixels for blood flow imaging.

  15. Microvascular blood flow monitoring with laser speckle contrast imaging using the generalized differences algorithm.

    Science.gov (United States)

    Humeau-Heurtier, Anne; Mahé, Guillaume; Abraham, Pierre

    2015-03-01

    Laser speckle contrast imaging (LSCI) is a full-field optical technique to monitor microvascular blood flow with high spatial and temporal resolutions. It is used in many medical fields such as dermatology, vascular medicine, or neurosciences. However, LSCI leads to a large amount of data: image sampling frequency is often of several Hz and recordings usually last several minutes. Therefore, clinicians often perform regions of interest in which a spatial averaging of blood flow is performed and the result is followed with time. Unfortunately, this leads to a poor spatial resolution for the analyzed data. At the same time, a higher spatial resolution for the perfusion maps is wanted. To get over this dilemma we propose a new post-acquisition visual representation for LSCI perfusion data using the so-called generalized differences (GD) algorithm. From a stack of perfusion images, the procedure leads to a new single image with the same spatial resolution as the original images and this new image reflects perfusion changes. The algorithm is herein applied on simulated stacks of images and on experimental LSCI perfusion data acquired in three different situations with a commercialized laser speckle contrast imager. The results show that the GD algorithm provides a new way of visualizing LSCI perfusion data. PMID:25576743

  16. Non invasive blood flow assessment in diabetic foot ulcer using laser speckle contrast imaging technique

    Science.gov (United States)

    Jayanthy, A. K.; Sujatha, N.; Reddy, M. Ramasubba; Narayanamoorthy, V. B.

    2014-03-01

    Measuring microcirculatory tissue blood perfusion is of interest for both clinicians and researchers in a wide range of applications and can provide essential information of the progress of treatment of certain diseases which causes either an increased or decreased blood flow. Diabetic ulcer associated with alterations in tissue blood flow is the most common cause of non-traumatic lower extremity amputations. A technique which can detect the onset of ulcer and provide essential information on the progress of the treatment of ulcer would be of great help to the clinicians. A noninvasive, noncontact and whole field laser speckle contrast imaging (LSCI) technique has been described in this paper which is used to assess the changes in blood flow in diabetic ulcer affected areas of the foot. The blood flow assessment at the wound site can provide critical information on the efficiency and progress of the treatment given to the diabetic ulcer subjects. The technique may also potentially fulfill a significant need in diabetic foot ulcer screening and management.

  17. Absolute cerebral blood flow and blood volume measured by magnetic resonance imaging bolus tracking: comparison with positron emission tomography values

    DEFF Research Database (Denmark)

    Østergaard, Leif; Smith, D F; Vestergaard-Poulsen, Peter;

    1998-01-01

    The authors determined cerebral blood flow (CBF) with magnetic resonance imaging (MRI) of contrast agent bolus passage and compared the results with those obtained by O-15 labeled water (H215O) and positron emission tomography (PET). Six pigs were examined by MRI and PET under normo......- and hypercapnic conditions. After dose normalization and introduction of an empirical constant phi Gd, absolute regional CBF was calculated from MRI. The spatial resolution and the signal-to-noise ratio of CBF measurements by MRI were better than by the H215O-PET protocol. Magnetic resonance imaging cerebral...... blood volume (CBV) estimates obtained using this normalization constant correlated well with values obtained by O-15 labeled carbonmonooxide (C15O) PET. However, PET CBV values were approximately 2.5 times larger than absolute MRI CBV values, supporting the hypothesized sensitivity of MRI to small...

  18. The role of nuclear imaging in the failing heart: myocardial blood flow, sympathetic innervation, and future applications

    OpenAIRE

    Boogers, Mark J.; Fukushima, Kenji; Bengel, Frank M.; Bax, Jeroen J.

    2010-01-01

    Heart failure represents a common disease affecting approximately 5 million patients in the United States. Several conditions play an important role in the development and progression of heart failure, including abnormalities in myocardial blood flow and sympathetic innervation. Nuclear imaging represents the only imaging modality with sufficient sensitivity to assess myocardial blood flow and sympathetic innervation of the failing heart. Although nuclear imaging with single-photon emission c...

  19. A Pulsatile Flow Phantom for Image-Guided HIFU Hemostasis of Blood Vessels

    Science.gov (United States)

    Greaby, Robyn; Vaezy, Shahram

    2005-03-01

    A pulsatile flow phantom for studying ultrasound image-guided acoustic hemostasis in a controlled environment has been developed. An ex vivo porcine carotid artery was attached to the phantom and embedded in a visually and ultrasonically transparent gel. Heparinized porcine blood was pumped through the phantom. Power-Doppler and B-mode ultrasound were used to remotely target the HIFU focus to the site of a needle puncture. In nine trials, complete hemostasis was achieved after an average HIFU application of 55 +/- 34 seconds. The vessels remained patent after treatment. With this phantom, it will be possible to do controlled studies of ultrasound image-guided acoustic hemostasis.

  20. Capillary blood flow imaging within human finger cuticle using optical microangiography

    OpenAIRE

    Baran, Utku; Shi, Lei; Ruikang K. Wang

    2013-01-01

    We report non-invasive 3D imaging of capillary blood flow within human finger cuticle by the use of Doppler optical microangiography (DOMAG) and ultra-high sensitive optical microangiography (UHS-OMAG) techniques. Wide velocity range DOMAG method is applied to provide RBC axial velocity mapping in capillary loops with ranges of ±0.9 mm/s and ±0.3 mm/s. Additionally, UHS-OMAG technique is engineered to acquire high resolution image of capillary morphology. The presented results are promising t...

  1. Full-field high-speed laser Doppler imaging system for blood-flow measurements

    Science.gov (United States)

    Serov, Alexandre; Lasser, Theo

    2006-02-01

    We describe the design and performance of a new full-field high-speed laser Doppler imaging system developed for mapping and monitoring of blood flow in biological tissue. The total imaging time for 256x256 pixels region of interest is 1.2 seconds. An integrating CMOS image sensor is utilized to detect Doppler signal in a plurality of points simultaneously on the sample illuminated by a divergent laser beam of a uniform intensity profile. The integrating property of the detector improves the signal-to-noise ratio of the measurement, which results in high-quality flow-images provided by the system. The new technique is real-time, non-invasive and the instrument is easy to use. The wide range of applications is one of the major challenges for a future application of the imager. High-resolution high-speed laser Doppler perfusion imaging is a promising optical technique for diagnostic and assessing the treatment effect of the diseases such as e.g. atherosclerosis, psoriasis, diabetes, skin cancer, allergies, peripheral vascular diseases, skin irritancy and wound healing. We present some biological applications of the new imager and discuss the perspectives for the future implementations of the imager for clinical and physiological applications.

  2. The Diagnostic Value of Superb Microvascular Imaging (SMI) in Detecting Blood Flow Signals of Breast Lesions

    Science.gov (United States)

    Ma, Yan; Li, Gang; Li, Jing; Ren, Wei-dong

    2015-01-01

    Abstract The correlation between color Doppler flow imaging (CDFI) and Superb Microvascular Imaging (SMI) for detecting blood flow in breast lesions was investigated, as was the diagnostic value of SMI in differentiating benign from malignant breast lesions. These lesions were evaluated using both CDFI and SMI according to Adler's method. Pathologic examination showed 57 malignant lesions and 66 benign lesions. The number of blood vessels in a single mass was detected by 2 techniques (SMI and CDFI), and the difference between the 2 values (SMI-CDFI) was calculated. The optimal threshold for the diagnosis of malignant neoplasms and the diagnostic performances of SMI, CDFI, and SMI-CDFI were calculated. For the total lesions and malignant lesions alone, the difference between SMI and CDFI for detecting blood flow was significant (P < 0.01), but the difference was not significant for benign lesions (P = 0.15). The area under the receiver operating characteristic curve was 0.73 (95% confidence interval [CI]: 0.64–0.82) for CDFI; 0.81 (95% CI: 0.74–0.89) for SMI; and 0.89 (95% CI: 0.82–0.95) for SMI-CDFI. Furthermore, the modality of “SMI-CDFI” showed the best diagnostic performance. SMI provides further microvessel information in breast lesions. The diagnostic modality of “SMI-CDFI” can improve the diagnostic performance of ultrasound in the differentiation between benign and malignant masses. PMID:26356718

  3. Changes of renal blood flow after ESWL: Assessment by ASL MR imaging, contrast enhanced MR imaging, and renal resistive index

    Energy Technology Data Exchange (ETDEWEB)

    Abd Ellah, Mohamed, E-mail: dr_m_hamdy2006@hotmail.co [Innsbruck Medical University, Radiology Dept., Anich St. 35, 6020 Innsbruck (Austria); Kremser, Christian, E-mail: christian.kremser@i-med.ac.a [Innsbruck Medical University, Radiology Dept., Anich St. 35, 6020 Innsbruck (Austria); Pallwein, Leo, E-mail: leo.pallwein-prettner@uki.a [Innsbruck Medical University, Radiology Dept., Anich St. 35, 6020 Innsbruck (Austria); Aigner, Friedrich, E-mail: friedrich.Aigner@uki.a [Innsbruck Medical University, Radiology Dept., Anich St. 35, 6020 Innsbruck (Austria); Schocke, Michael, E-mail: michael.schocke@i-med.ac.a [Innsbruck Medical University, Radiology Dept., Anich St. 35, 6020 Innsbruck (Austria); Peschel, Reinhard, E-mail: reinhard.peschel@uki.a [Innsbruck Medical University, Urology Dept., Anich St. 35, 6020 Innsbruck (Austria); Pedross, Florian, E-mail: florian.pedross@i-med.ac.a [Innsbruck Medical University, Medical Statistics Dept., Anich St. 35, 6020 Innsbruck (Austria); Pinggera, Germar-Michael, E-mail: germar.pinggera@uki.a [Innsbruck Medical University, Urology Dept., Anich St. 35, 6020 Innsbruck (Austria); Wolf, Christian, E-mail: christian.wolf@bkh-reutte.a [Innsbruck Medical University, Radiology Dept., Anich St. 35, 6020 Innsbruck (Austria); Alsharkawy, Mostafa A.M., E-mail: drmostafamri@yahoo.co [Assiut University, Radiology Dept., Assiut (Egypt); Jaschke, Werner, E-mail: werner.jaschke@i-med.ac.a [Innsbruck Medical University, Radiology Dept., Anich St. 35, 6020 Innsbruck (Austria); Frauscher, Ferdinand, E-mail: ferdinand.frauscher@uki.a [Innsbruck Medical University, Radiology Dept., Anich St. 35, 6020 Innsbruck (Austria)

    2010-10-15

    The annual incidence of stone formation is increased in the industrialised world. Extracorporeal shockwave lithotripsy is a non-invasive effective treatment of upper urinary tract stones. This study is aimed to evaluate changes of renal blood flow in patients undergoing extracorporeal shock wave lithotripsy (ESWL) by arterial spin labeling (ASL) MR imaging, contrast enhanced dynamic MR imaging, and renal resistive index (RI). Thirteen patients with nephrolithiasis were examined using MR imaging and Doppler ultrasound 12 h before and 12 h after ESWL. ASL sequence was done for both kidneys and followed by contrast enhanced MR imaging. In addition RI Doppler ultrasound measurements were performed. A significant increase in RI (p < 0.001) was found in both treated and untreated kidneys. ASL MR imaging also showed significant changes in both kidneys (p < 0.001). Contrast enhanced dynamic MR imaging did not show significant changes in the kidneys. ESWL causes changes in RI and ASL MR imaging, which seem to reflect changes in renal blood flow.

  4. Changes of renal blood flow after ESWL: Assessment by ASL MR imaging, contrast enhanced MR imaging, and renal resistive index

    International Nuclear Information System (INIS)

    The annual incidence of stone formation is increased in the industrialised world. Extracorporeal shockwave lithotripsy is a non-invasive effective treatment of upper urinary tract stones. This study is aimed to evaluate changes of renal blood flow in patients undergoing extracorporeal shock wave lithotripsy (ESWL) by arterial spin labeling (ASL) MR imaging, contrast enhanced dynamic MR imaging, and renal resistive index (RI). Thirteen patients with nephrolithiasis were examined using MR imaging and Doppler ultrasound 12 h before and 12 h after ESWL. ASL sequence was done for both kidneys and followed by contrast enhanced MR imaging. In addition RI Doppler ultrasound measurements were performed. A significant increase in RI (p < 0.001) was found in both treated and untreated kidneys. ASL MR imaging also showed significant changes in both kidneys (p < 0.001). Contrast enhanced dynamic MR imaging did not show significant changes in the kidneys. ESWL causes changes in RI and ASL MR imaging, which seem to reflect changes in renal blood flow.

  5. Retinal blood flow velocity in patients with active uveitis using the retinal function imager

    Institute of Scientific and Technical Information of China (English)

    FENG Xing; Kedhar Sanjay; Bhoomibunchoo Chavakij

    2013-01-01

    Background Previous studies suggest a link between macular edema and retinal blood flow velocity (RBFV).The effects of inflammation in the retinal blood vessels are not clearly understood.We want to evaluate the differences in retinal blood flow velocities of patients with active uveitis and healthy controls using the retinal function imager (RFI)and determine the correlation between retinal blood flow veiocity and central macular thickness in uveitis patients.Methods Twenty-eight eyes of 24 patients with active anterior uveitis and 51 eyes of 51 normal control subjects were enrolled.Retinal blood flow velocities evaluated by RFI and central macular thickness evaluated by optical coherence tomography (SLO-OCT) were obtained.Differences among the groups were assessed using Stata statistical software.Results Ten eyes had uveitic cystoid macular edema (CME).Median (first quartile,third quartile) venous velocity for uveitic eyes with CME,uveitic eyes without CME,and controls were 2.09 (1.92,2.44),2.64 (2.32,2.86),and 2.82 (2.39,3.53) mm/s respectively.Median (first and quartile) arterial velocity for uveitic eyes with CME,uveitic eyes without CME,and controls were 3.79 (3.61,4.09),3.46 (2.86,4.12),and 3.93 (3.35,4.65) mm/s.Uveitic eyes with CME had significantly lower venous velocity than controls (P=0.044).There was a strong linear relationship between venous velocity and central retinal thickness (P=-0.007).Conclusions Retinal venous velocities were significantly decreased in eyes with uveitic CME relative to controls.Decreased venous velocity was correlated with increased central retinal thickness in uveitic eyes.

  6. Mobile phone based laser speckle contrast imager for assessment of skin blood flow

    Science.gov (United States)

    Jakovels, Dainis; Saknite, Inga; Krievina, Gita; Zaharans, Janis; Spigulis, Janis

    2014-10-01

    Assessment of skin blood flow is of interest for evaluation of skin viability as well as for reflection of the overall condition of the circulatory system. Laser Doppler perfusion imaging (LDPI) and laser speckle contrast imaging (LASCI) are optical techniques used for assessment of skin perfusion. However, these systems are still too expensive and bulky to be widely available. Implementation of such techniques as connection kits for mobile phones have a potential for primary diagnostics. In this work we demonstrate simple and low cost LASCI connection kit for mobile phone and its comparison to laser Doppler perfusion imager. Post-occlusive hyperemia and local thermal hyperemia tests are used to compare both techniques and to demonstrate the potential of LASCI device.

  7. In Vivo Photoacoustic Tomography of Total Blood Flow and Potential Imaging of Cancer Angiogenesis and Hypermetabolism

    OpenAIRE

    Yao, Junjie; Maslov, Konstantin I.; Wang, Lihong V.

    2012-01-01

    Blood flow is a key parameter in studying cancer angiogenesis and hypermetabolism. Current photoacoustic blood flow estimation methods focus on either the axial or transverse component of the flow vector. However, the Doppler angle (beam-to-flow angle) is needed to calculate the total flow speed, and it cannot always be estimated accurately in practice, especially when the system's axial and lateral resolutions are different. To overcome this problem, we propose a method to compute the total ...

  8. Study of regional cerebral blood flow SPECT imaging for sudden sensorineural deafness

    International Nuclear Information System (INIS)

    Purpose: To study the clinical value of regional cerebral blood flow (rCBF) SPECT imaging for sudden sensorineural deafness (SSD). Methods: 10 normal persons, 19 conductive deafness and 31 SSD patients were examined by rCBF SPECT imaging, and compared with X CT at the same time. All SSD patients were followed up for 6∼12 months with repeated rCBF SPECT imaging. Results: 1) The radioactivity of diseased and normal horizontal temporal gyrus ratio (T/NT) in SSD patients was the lowest among three groups (P < 0.01). 2) The sensitivity (80.6%) and accurate rate (88.3%) of rCBF SPECT imaging in SSD patients were much higher than those of CT (3.2% and 50%, P < 0.01). 3) There was a significant correlation between degree of deafness and T/NT in SSD patients. 4) Good prognosis of SSD patients with normal rCBF SPECT was found. 5) The rCBF SPECT had close concordance between rCBF SPECT imaging and clinical prognosis (84.6%). Conclusions: rCBF SPECT imaging was superior to X CT in diagnosis of SSD and played an important clinical role

  9. Fluorescence endoscopic imaging for evaluation of gastric mucosal blood flow: a preliminary study

    Science.gov (United States)

    Bocquillon, Nicolas; Mordon, Serge R.; Mathieu, D.; Maunoury, Vincent; Marechal, Xavier-Marie; Neviere, Remi; Wattel, Francis; Chopin, Claude

    1999-02-01

    Microcirculatory disorders of the gastrointestinal tract appear to be a major compound of the multiple organ dysfunction syndrome secondary to sepsis or septic shock. A better analysis of mucosal hypoperfusion in critically ill patients with sepsis may be helpful for the comprehension of this high mortality-associated syndrome. Fluorescence endoscopy has been recognized as a non-invasive method for both spatial and temporal evaluation of gastrointestinal mucosal perfusion. We performed this imaging technique during routine gastric endoscopy in patients with sepsis criteria. The study included gastric observation and appearance time of gastric fluorescence after an intravenous 10% sodium - fluorescein bolus. Qualitative analysis of high fluorescence areas was compared with mucosal blood flow measurements by laser - Doppler flowmetry. We concluded that the fluorescence endoscopic imaging in critically ill patients with sepsis may reveal spacial and temporal differences in the mucosal microcirculation distribution.

  10. Pulsatile microvascular blood flow imaging by short-time Fourier transform analysis of ultrafast laser holographic interferometry

    CERN Document Server

    Puyo, L; Rancillac, A; Simonutti, M; Paques, M; Sahel, J A; Fink, M; Atlan, M

    2015-01-01

    We report on wide-field imaging of pulsatile microvascular blood flow in the exposed cerebral cortex of a mouse by holographic interferometry. We recorded interferograms of laser light backscattered by the tissue, beating against an off-axis reference beam with a 50 kHz framerate camera. Videos of local Doppler contrasts were rendered numerically by Fresnel transformation and short-time Fourier transform analysis. This approach enabled instantaneous imaging of pulsatile blood flow contrasts in superficial blood vessels over 256 x 256 pixels with a spatial resolution of 10 microns and a temporal resolution of 20 ms.

  11. 4-D flow magnetic resonance imaging: blood flow quantification compared to 2-D phase-contrast magnetic resonance imaging and Doppler echocardiography

    Energy Technology Data Exchange (ETDEWEB)

    Gabbour, Maya [Ann and Robert H. Lurie Children' s Hospital of Chicago, Department of Medical Imaging 9, Chicago, IL (United States); Schnell, Susanne [Northwestern University Feinberg School of Medicine, Department of Radiology, Chicago, IL (United States); Jarvis, Kelly [Northwestern University, Department of Biomedical Engineering, McCormick School of Engineering, Evanston, IL (United States); Robinson, Joshua D. [Ann and Robert H. Lurie Children' s Hospital of Chicago, Department of Pediatrics, Division of Pediatric Cardiology, Chicago, IL (United States); Northwestern University Feinberg School of Medicine, Department of Pediatrics, Chicago, IL (United States); Markl, Michael [Northwestern University Feinberg School of Medicine, Department of Radiology, Chicago, IL (United States); Northwestern University, Department of Biomedical Engineering, McCormick School of Engineering, Evanston, IL (United States); Rigsby, Cynthia K. [Ann and Robert H. Lurie Children' s Hospital of Chicago, Department of Medical Imaging 9, Chicago, IL (United States); Northwestern University Feinberg School of Medicine, Department of Radiology, Chicago, IL (United States)

    2015-06-15

    Doppler echocardiography (echo) is the reference standard for blood flow velocity analysis, and two-dimensional (2-D) phase-contrast magnetic resonance imaging (MRI) is considered the reference standard for quantitative blood flow assessment. However, both clinical standard-of-care techniques are limited by 2-D acquisitions and single-direction velocity encoding and may make them inadequate to assess the complex three-dimensional hemodynamics seen in congenital heart disease. Four-dimensional flow MRI (4-D flow) enables qualitative and quantitative analysis of complex blood flow in the heart and great arteries. The objectives of this study are to compare 4-D flow with 2-D phase-contrast MRI for quantification of aortic and pulmonary flow and to evaluate the advantage of 4-D flow-based volumetric flow analysis compared to 2-D phase-contrast MRI and echo for peak velocity assessment in children and young adults. Two-dimensional phase-contrast MRI of the aortic root, main pulmonary artery (MPA), and right and left pulmonary arteries (RPA, LPA) and 4-D flow with volumetric coverage of the aorta and pulmonary arteries were performed in 50 patients (mean age: 13.1 ± 6.4 years). Four-dimensional flow analyses included calculation of net flow and regurgitant fraction with 4-D flow analysis planes similarly positioned to 2-D planes. In addition, 4-D flow volumetric assessment of aortic root/ascending aorta and MPA peak velocities was performed and compared to 2-D phase-contrast MRI and echo. Excellent correlation and agreement were found between 2-D phase-contrast MRI and 4-D flow for net flow (r = 0.97, P < 0.001) and excellent correlation with good agreement was found for regurgitant fraction (r = 0.88, P < 0.001) in all vessels. Two-dimensional phase-contrast MRI significantly underestimated aortic (P = 0.032) and MPA (P < 0.001) peak velocities compared to echo, while volumetric 4-D flow analysis resulted in higher (aortic: P = 0.001) or similar (MPA: P = 0.98) peak

  12. Intraoperative laser speckle contrast imaging for monitoring cerebral blood flow: results from a 10-patient pilot study

    Science.gov (United States)

    Richards, Lisa M.; Weber, Erica L.; Parthasarathy, Ashwin B.; Kappeler, Kaelyn L.; Fox, Douglas J.; Dunn, Andrew K.

    2012-02-01

    Monitoring cerebral blood flow (CBF) during neurosurgery can provide important physiological information for a variety of surgical procedures. Although multiple intraoperative vascular monitoring technologies are currently available, a quantitative method that allows for continuous monitoring is still needed. Laser speckle contrast imaging (LSCI) is an optical imaging method with high spatial and temporal resolution that has been widely used to image CBF in animal models in vivo. In this pilot clinical study, we adapted a Zeiss OPMI Pentero neurosurgical microscope to obtain LSCI images by attaching a camera and a laser diode. This LSCI adapted instrument has been used to acquire full field flow images from 10 patients during tumor resection procedures. The patient's ECG was recorded during acquisition and image registration was performed in post-processing to account for pulsatile motion artifacts. Digital photographs confirmed alignment of vasculature and flow images in four cases, and a relative change in blood flow was observed in two patients after bipolar cautery. The LSCI adapted instrument has the capability to produce real-time, full field CBF image maps with excellent spatial resolution and minimal intervention to the surgical procedure. Results from this study demonstrate the feasibility of using LSCI to monitor blood flow during neurosurgery.

  13. Study of blood flow parameters in a phantom by magnetic resonance imaging MRI

    OpenAIRE

    Καζέρου, Ασπασία

    2012-01-01

    The study of pulsatile flow through a stenosis is motivated by the need to obtain a better understanding of the impact of flow phenomena on atherosclerosis and stroke. MRI techniques have been employed to characterize flow emerging from a stenosis and non-stenotic tube. Detection and quantification of stenosis, serve as the basis for surgical intervention. In the future, the study of arterial blood flow will lead to the prediction of individual hemodynamic flows in any patient, th...

  14. Quantitative measurements of cerebral blood flow in volume imaging PET scanners

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R.J.; Shao, L.; Freifelder, R.; Karp, J.S.; Ragland, J.D. [Univ. of Pennsylvania, Philadelphia, PA (United States)

    1995-08-01

    Quantitative measurements of Cerebral Blood Flow (CBF) are performed in a volume imaging PET Scanner by means of moderate activity infusions. In equilibrium infusions, activations are measured by scanning over 10 minutes with 16 minute activations. Typical measured whole brain CBF values are 37{+-}8 ml/min/100g, close to the value of 42 ml/min/100g reported by other groups using this method. For ramped infusions, scanning over 4 minutes with 5 minute activations results in whole brain CBFs of 49 {+-} 9 ml/min/100g, close to the Kety and Schmidt value of 50 ml/min/100g. Both equilibrium and ramped infusion methods have been used to study face and word memory in human subjects. Both methods were able to detect significant activations in regions implicated in human memory. The authors conclude that precise quantitation of regional CBF is achieved using both methods, and that ramped infusions also provide accurate measures of CBF. In addition a simplified protocol for ramped infusion studies has been developed. In this method the whole brain tissue time activity curve generated from dynamic scanning is replaced by an appropriately scaled camera coincidence countrate curve. The resulting whole brain CBF values are only 7% different from the dynamic scan and fit results. Regional CBFs (rCBF) may then be generated from the summed image (4.25 minutes) using a count density vs flow lookup table.

  15. In-vivo imaging of blood flow in human retinal vessels using color Doppler optical coherence tomography

    Science.gov (United States)

    Yazdanfar, Siavash; Rollins, Andrew M.; Izatt, Joseph A.

    1999-04-01

    Quantification of retinal blood flow may lead to a better understanding of the progression and treatment of several ocular disorders, including diabetic retinopathy, age- related macular degeneration, and glaucoma. Current techniques, such as fluorescein angiography and laser Doppler velocimetry are limited, failing to provide sufficient information to the clinician. Color Doppler optical coherence tomography (CDOCT) is a novel technique using coherent heterodyne detection for simultaneous cross- sectional imaging of tissue microstructure and blood flow. This technique is capable of high spatial and velocity resolution imaging in highly scattering media. We implemented CDOCT for retinal blood flow mapping in human subjects. No dilation of the pupil was necessary. CDOCT is demonstrated for determining bidirectional flow in sub- 100micrometers diameter vessels in the retina. Additionally, we calculated Doppler broadening using the variance of depth- resolved spectra to identify regions with large velocity gradients within the Xenopus heart. This technique may be useful in quantifying local tissue perfusion in highly vascular retinal tissue.

  16. Color functional images of the cerebral blood flow. [/sup 133/Xe

    Energy Technology Data Exchange (ETDEWEB)

    Toyama, H.; Iio, M.; Iisaka, J.; Chiba, K.; Yamada, H.; Matsui, K.; Hoshi, Y.; Fuse, M.

    1976-11-01

    Functional gamma imaging, in color, was established for regional cerebral blood flow (rCBF) using /sup 133/Xe. During 10 min after intracarotid injection of /sup 133/Xe in saline, 60 picture frames of the /sup 133/Xe clearance curve for the entire hemisphere were obtained. After nine-point smoothing, the rCBF for each of the 4,096 picture elements was calculated by two methods: the half-time method and the height-over-area method. Both the /sup 133/Xe clearance half-times and the calculated CBF values were displayed, using 13 steps of color, as functional CBF images of the brain. Images of peak count and total count were also displayed on the same frame of the color television. Forty-six studies, performed on 37 patients with various cerebral disorders, were divided into two types: diffuse and focal. In the diffuse type, a decrease in CBF was noted in cases of normal-pressure hydrocephalus; successful ventriculoperitoneal shunt operations were followed by recovery of CBF. Occlusion of the middle cerebral artery showed up as a wedge-shaped area of decreased CBF, even when the conventional brain scan looked normal. Increased perfusion to a tumor was frequently associated with decreased CBF in the rest of the lateral hemisphere; such a decrease could be improved by surgical removal of the tumor.

  17. Clinical application of /sup 99m/Tc-HM-PAO for cerebral blood flow imaging by SPECT. Comparison with cerebral blood flow study by PET

    Energy Technology Data Exchange (ETDEWEB)

    Inugami, Atsushi; Uemura, Kazuo; Shishido, Fumio; Tomura, Noriaki; Higano, Shuichi; Fujita, Hideaki; Kanno, Iwao

    1988-02-01

    Recently, a new tracer for cerebral blood flow (CBF) study; /sup 99m/Tc-labelled-hexamethyl-propyleneamine-oxime (/sup 99m/Tc-HM-PAO) was developed by Amersham international institute. In this paper, we reported the initial experience of tomographic CBF imaging with /sup 99m/Tc-HM-PAO in the comparison of CBF study using positron CT (PET) and 0 approx. 15 labelled CO/sub 2/. Thirty-nine patients with cerebro-vascular disease were examined mainly in the acute phase. All the subjects showed verious disturbances of CBF, which corresponded well to the PET study. However, the image-contrast with /sup 99m/Tc-HM-PAO were inferior to those of the PET study. /sup 99m/Tc-HM-PAO is considered to a good radiopharmaceutical which is readily applicable to eaven an emergency cases.

  18. The Diagnostic Value of Superb Microvascular Imaging (SMI) in Detecting Blood Flow Signals of Breast Lesions: A Preliminary Study Comparing SMI to Color Doppler Flow Imaging.

    Science.gov (United States)

    Ma, Yan; Li, Gang; Li, Jing; Ren, Wei-dong

    2015-09-01

    The correlation between color Doppler flow imaging (CDFI) and Superb Microvascular Imaging (SMI) for detecting blood flow in breast lesions was investigated, as was the diagnostic value of SMI in differentiating benign from malignant breast lesions.These lesions were evaluated using both CDFI and SMI according to Adler's method. Pathologic examination showed 57 malignant lesions and 66 benign lesions. The number of blood vessels in a single mass was detected by 2 techniques (SMI and CDFI), and the difference between the 2 values (SMI-CDFI) was calculated. The optimal threshold for the diagnosis of malignant neoplasms and the diagnostic performances of SMI, CDFI, and SMI-CDFI were calculated.For the total lesions and malignant lesions alone, the difference between SMI and CDFI for detecting blood flow was significant (P < 0.01), but the difference was not significant for benign lesions (P = 0.15). The area under the receiver operating characteristic curve was 0.73 (95% confidence interval [CI]: 0.64-0.82) for CDFI; 0.81 (95% CI: 0.74-0.89) for SMI; and 0.89 (95% CI: 0.82-0.95) for SMI-CDFI. Furthermore, the modality of "SMI-CDFI" showed the best diagnostic performance.SMI provides further microvessel information in breast lesions. The diagnostic modality of "SMI-CDFI" can improve the diagnostic performance of ultrasound in the differentiation between benign and malignant masses.

  19. 3D real-time visualization of blood flow in cerebral aneurysms by light field particle image velocimetry

    Science.gov (United States)

    Carlsohn, Matthias F.; Kemmling, André; Petersen, Arne; Wietzke, Lennart

    2016-04-01

    Cerebral aneurysms require endovascular treatment to eliminate potentially lethal hemorrhagic rupture by hemostasis of blood flow within the aneurysm. Devices (e.g. coils and flow diverters) promote homeostasis, however, measurement of blood flow within an aneurysm or cerebral vessel before and after device placement on a microscopic level has not been possible so far. This would allow better individualized treatment planning and improve manufacture design of devices. For experimental analysis, direct measurement of real-time microscopic cerebrovascular flow in micro-structures may be an alternative to computed flow simulations. An application of microscopic aneurysm flow measurement on a regular basis to empirically assess a high number of different anatomic shapes and the corresponding effect of different devices would require a fast and reliable method at low cost with high throughout assessment. Transparent three dimensional 3D models of brain vessels and aneurysms may be used for microscopic flow measurements by particle image velocimetry (PIV), however, up to now the size of structures has set the limits for conventional 3D-imaging camera set-ups. On line flow assessment requires additional computational power to cope with the processing large amounts of data generated by sequences of multi-view stereo images, e.g. generated by a light field camera capturing the 3D information by plenoptic imaging of complex flow processes. Recently, a fast and low cost workflow for producing patient specific three dimensional models of cerebral arteries has been established by stereo-lithographic (SLA) 3D printing. These 3D arterial models are transparent an exhibit a replication precision within a submillimeter range required for accurate flow measurements under physiological conditions. We therefore test the feasibility of microscopic flow measurements by PIV analysis using a plenoptic camera system capturing light field image sequences. Averaging across a sequence of

  20. Noninvasive quantification of regional blood flow in the human heart using N-13 ammonia and dynamic positron emission tomographic imaging

    International Nuclear Information System (INIS)

    Evaluation of regional myocardial blood flow by conventional scintigraphic techniques is limited to the qualitative assessment of regional tracer distribution. Dynamic imaging with positron emission tomography allows the quantitative delineation of myocardial tracer kinetics and, hence, the measurement of physiologic processes such as myocardial blood flow. To test this hypothesis, positron emission tomographic imaging in combination with N-13 ammonia was performed at rest and after pharmacologically induced vasodilation in seven healthy volunteers. Myocardial and blood time-activity curves derived from regions of interest over the heart and ventricular chamber were fitted using a three compartment model for N-13 ammonia, yielding rate constants for tracer uptake and retention. Myocardial blood flow (K1) averaged 88 +/- 17 ml/min per 100 g at rest and increased to 417 +/- 112 ml/min per 100 g after dipyridamole infusion (0.56 mg/kg) and handgrip exercise. The coronary reserve averaged 4.8 +/- 1.3 and was not significantly different in the septal, anterior and lateral walls of the left ventricle. Blood flow values showed only a minor dependence on the correction for blood metabolites of N-13 ammonia. These data demonstrate that quantification of regional myocardial blood flow is feasible by dynamic positron emission tomographic imaging. The observed coronary flow reserve after dipyridamole is in close agreement with the results obtained by invasive techniques, indicating accurate flow estimates over a wide range. Thus, positron emission tomography may provide accurate and noninvasive definition of the functional significance of coronary artery disease and may allow the improved selection of patients for revascularization

  1. Absolute Versus Relative Myocardial Blood Flow by Dynamic CT Myocardial Perfusion Imaging in Patients With Anatomic Coronary Artery Disease

    NARCIS (Netherlands)

    Wichmann, Julian L.; Meinel, Felix G.; Schoepf, U. Joseph; Lo, Gladys G.; Choe, Yeon Hyeon; Wang, Yining; Vliegenthart, Rozemarijn; Varga-Szemes, Akos; Muscogiuri, Giuseppe; Cannao, Paola M.; De Cecco, Carlo N.

    2015-01-01

    OBJECTIVE. The purpose of this study was to evaluate differences in the diagnostic accuracy of absolute and relative territorial myocardial blood flow (MBF) derived from stress dynamic CT myocardial perfusion imaging (MPI) for the detection of significant coronary artery stenosis. MATERIALS AND METH

  2. Modeling of Cerebral Oxygen Transport Based on In vivo Microscopic Imaging of Microvascular Network Structure, Blood Flow, and Oxygenation.

    Science.gov (United States)

    Gagnon, Louis; Smith, Amy F; Boas, David A; Devor, Anna; Secomb, Timothy W; Sakadžić, Sava

    2016-01-01

    Oxygen is delivered to brain tissue by a dense network of microvessels, which actively control cerebral blood flow (CBF) through vasodilation and contraction in response to changing levels of neural activity. Understanding these network-level processes is immediately relevant for (1) interpretation of functional Magnetic Resonance Imaging (fMRI) signals, and (2) investigation of neurological diseases in which a deterioration of neurovascular and neuro-metabolic physiology contributes to motor and cognitive decline. Experimental data on the structure, flow and oxygen levels of microvascular networks are needed, together with theoretical methods to integrate this information and predict physiologically relevant properties that are not directly measurable. Recent progress in optical imaging technologies for high-resolution in vivo measurement of the cerebral microvascular architecture, blood flow, and oxygenation enables construction of detailed computational models of cerebral hemodynamics and oxygen transport based on realistic three-dimensional microvascular networks. In this article, we review state-of-the-art optical microscopy technologies for quantitative in vivo imaging of cerebral microvascular structure, blood flow and oxygenation, and theoretical methods that utilize such data to generate spatially resolved models for blood flow and oxygen transport. These "bottom-up" models are essential for the understanding of the processes governing brain oxygenation in normal and disease states and for eventual translation of the lessons learned from animal studies to humans. PMID:27630556

  3. Modeling of Cerebral Oxygen Transport Based on In vivo Microscopic Imaging of Microvascular Network Structure, Blood Flow, and Oxygenation

    Science.gov (United States)

    Gagnon, Louis; Smith, Amy F.; Boas, David A.; Devor, Anna; Secomb, Timothy W.; Sakadžić, Sava

    2016-01-01

    Oxygen is delivered to brain tissue by a dense network of microvessels, which actively control cerebral blood flow (CBF) through vasodilation and contraction in response to changing levels of neural activity. Understanding these network-level processes is immediately relevant for (1) interpretation of functional Magnetic Resonance Imaging (fMRI) signals, and (2) investigation of neurological diseases in which a deterioration of neurovascular and neuro-metabolic physiology contributes to motor and cognitive decline. Experimental data on the structure, flow and oxygen levels of microvascular networks are needed, together with theoretical methods to integrate this information and predict physiologically relevant properties that are not directly measurable. Recent progress in optical imaging technologies for high-resolution in vivo measurement of the cerebral microvascular architecture, blood flow, and oxygenation enables construction of detailed computational models of cerebral hemodynamics and oxygen transport based on realistic three-dimensional microvascular networks. In this article, we review state-of-the-art optical microscopy technologies for quantitative in vivo imaging of cerebral microvascular structure, blood flow and oxygenation, and theoretical methods that utilize such data to generate spatially resolved models for blood flow and oxygen transport. These “bottom-up” models are essential for the understanding of the processes governing brain oxygenation in normal and disease states and for eventual translation of the lessons learned from animal studies to humans.

  4. Flow measurements in a blood-perfused collagen vessel using x-ray micro-particle image velocimetry.

    Science.gov (United States)

    Antoine, Elizabeth; Buchanan, Cara; Fezzaa, Kamel; Lee, Wah-Keat; Rylander, M Nichole; Vlachos, Pavlos

    2013-01-01

    Blood-perfused tissue models are joining the emerging field of tumor engineering because they provide new avenues for modulation of the tumor microenvironment and preclinical evaluation of the therapeutic potential of new treatments. The characterization of fluid flow parameters in such in-vitro perfused tissue models is a critical step towards better understanding and manipulating the tumor microenvironment. However, traditional optical flow measurement methods are inapplicable because of the opacity of blood and the thickness of the tissue sample. In order to overcome the limitations of optical method we demonstrate the feasibility of using phase-contrast x-ray imaging to perform microscale particle image velocimetry (PIV) measurements of flow in blood perfused hydrated tissue-representative microvessels. However, phase contrast x-ray images significantly depart from the traditional PIV image paradigm, as they have high intensity background, very low signal-to-noise ratio, and volume integration effects. Hence, in order to achieve accurate measurements special attention must be paid to the image processing and PIV cross-correlation methodologies. Therefore we develop and demonstrate a methodology that incorporates image preprocessing as well as advanced PIV cross-correlation methods to result in measured velocities within experimental uncertainty.

  5. Flow measurements in a blood-perfused collagen vessel using x-ray micro-particle image velocimetry.

    Directory of Open Access Journals (Sweden)

    Elizabeth Antoine

    Full Text Available Blood-perfused tissue models are joining the emerging field of tumor engineering because they provide new avenues for modulation of the tumor microenvironment and preclinical evaluation of the therapeutic potential of new treatments. The characterization of fluid flow parameters in such in-vitro perfused tissue models is a critical step towards better understanding and manipulating the tumor microenvironment. However, traditional optical flow measurement methods are inapplicable because of the opacity of blood and the thickness of the tissue sample. In order to overcome the limitations of optical method we demonstrate the feasibility of using phase-contrast x-ray imaging to perform microscale particle image velocimetry (PIV measurements of flow in blood perfused hydrated tissue-representative microvessels. However, phase contrast x-ray images significantly depart from the traditional PIV image paradigm, as they have high intensity background, very low signal-to-noise ratio, and volume integration effects. Hence, in order to achieve accurate measurements special attention must be paid to the image processing and PIV cross-correlation methodologies. Therefore we develop and demonstrate a methodology that incorporates image preprocessing as well as advanced PIV cross-correlation methods to result in measured velocities within experimental uncertainty.

  6. Micro-particle image velocimetry measurement of blood flow: validation and analysis of data pre-processing and processing methods

    International Nuclear Information System (INIS)

    The intent of this paper is to investigate the application of a pre-processing method previously validated on glycerol to blood flows in microchannels and to compare the accuracy of results obtained when applied to a non-homogeneous fluid such as blood with results from previously applied processing methods for blood data. Comparisons of common processing methods are desired for a clear measure of accuracy in order to make recommendations for various flows. It is hypothesized that increasing the correlation window overlap improves the profile prediction. The amount of correlation window overlap and window shape in the processing of data have a significant effect on the results. Image pre-processing is explored to improve the correlation using the ‘image overlapping’ which is extended to the case of blood and the blood-specific pre-processing ‘base-clipping’ or ‘thresholding’ technique currently applied to blood. Both pre-processing methods are tested with multiple processing methods for two channel geometries: a straight rectangular channel and a Y-channel resulting in a controlled shear flow. The resulting profiles and calculations demonstrate that ‘image-overlapping’ is found to achieve a profile closer to the predicted theoretical profile than current blood pre-processing methods when both are applied to the same set of data and both are superior to conventional cross-correlation on its own. In all cases, pre-processing decreases the smoothness of the predicted profile. The use of ‘image-overlapping’ is shown to have greater accuracy when calculating the shear rate at the wall of the channel as well. (paper)

  7. Measurement of regional hepatic blood flow and scintigraphic imaging of portal circulation with /sup 133/Xe

    Energy Technology Data Exchange (ETDEWEB)

    Kroiss, A. (Krankenanstalt der Stadt Wien Rudolfstiftung (Austria) 1. Medizinische Abt.)

    1980-01-01

    Regional hepatic blood flow has been determined by 4 methods with the aid of /sup 133/Xe washout technique: 1. scintisplenoportography (direct application of /sup 133/Xe into the spleen by means of a thin needle); 2. arterial method (/sup 133/Xe is injected into the A. hepatica by means of a catheter); 3. retrograde-venous method (/sup 133/Xe administered by an occluding hepatic vein catheter); 4. percutaneous intrahepatic method (/sup 133/Xe administered directly into the parenchyma by means of a Chiba needle). It was possible to demonstrate that hepatic blood flow values established with the aid of /sup 133/Xe are independent of the form of application (scintisplenoportography, arterial method, retrograde-venous method).

  8. Myocardial blood flow assessment with {sup 82}rubidium-PET imaging in patients with left bundle branch block

    Energy Technology Data Exchange (ETDEWEB)

    Falcao, Andrea; Chalela, William; Giorgi, Maria Clementina; Imada, Rodrigo; Soares Junior, Jose; Do Val, Renata; Oliveira, Marco Antonio; Izaki, Marisa; Kalil Filho, Roberto; Meneghetti, Jose C., E-mail: andrea.falcao@incor.usp.br [Universidade de Sao Paulo (InCor/USP), Sao Paulo, SP (Brazil). Hospital das Clinicas. Instituto do Coracao

    2015-11-15

    Objectives: Perfusion abnormalities are frequently seen in Single Photon Emission Computed Tomography (SPECT) when a left bundle branch block is present. A few studies have shown decreased coronary flow reserve in the left anterior descending territory, regardless of the presence of coronary artery disease. Objective: we sought to investigate rubidium-82 ({sup 82}Rb) positron emission tomography imaging in the assessment of myocardial blood flow and coronary flow reserve in patients with left bundle branch block. Methods: thirty-eight patients with left bundle branch block (GI), median age 63.5 years, 22 (58%) female, 12 with coronary artery disease (≥70%; GI-A) and 26 with no evidence of significant coronary artery disease (GI-B), underwent rest-dipyridamole stress {sup 82}Rb-positron emission tomography with absolute quantitative flow measurements using Cedars-Sinai software (mL/min/g). The relative myocardial perfusion and left ventricular ejection fraction were assessed in 17 segments. These parameters were compared with those obtained from 30 patients with normal {sup 82}Rb-positron emission tomography studies and without left bundle branch block (GII). Results: stress myocardial blood flow and coronary flow reserve were significantly lower in GI than in GII (p>0.05). The comparison of coronary flow reserve between GI-A and GI-B showed that it was different from the global coronary flow reserve (p<0.05) and the stress flow was significantly lower in the anterior than in the septal wall for both groups. Perfusion abnormalities were more prevalent in GI-A (p=0.06) and the left ventricular ejection fraction was not different between GI-A and GI-B, whereas it was lower in GI than in GII (p<0.001). Conclusion: the data confirm that patients with left bundle branch block had decreased myocardial blood flow and coronary flow reserve and coronary flow reserve assessed by {sup 82}Rb-positron emission tomography imaging may be useful in identifying coronary artery

  9. Blood Flow Multiscale Phenomena

    OpenAIRE

    Agić, Ante; Mijović, Budimir; Nikolić, Tatjana

    2007-01-01

    The cardiovascular disease is one of most frequent cause deaths in modern society. The objective of this work is analyse the effect of dynamic vascular geometry (curvature, torsion,bifurcation) and pulsatile blood nature on secondary flow, wall shear stress and platelet deposition. The problem was examined as multi-scale physical phenomena using perturbation analysis and numerical modelling. The secondary flow determined as influence pulsatile pressure, vascular tube time-dependen...

  10. Gd-EOB-DTPA-enhanced magnetic resonance images of hepatocellular carcinoma: correlation with histological grading and portal blood flow

    International Nuclear Information System (INIS)

    To retrospectively investigate enhancement patterns of hepatocellular carcinoma (HCC) and dysplastic nodule (DN) in the hepatobiliary phase of gadolinium-ethoxybenzyl-diethylenetriamine (Gd-EOB-DTPA)-enhanced MRI in relation to histological grading and portal blood flow. Sixty-nine consecutive patients with 83 histologically proven HCCs and DNs were studied. To assess Gd-EOB-DTPA uptake, we calculated the EOB enhancement ratio, which is the ratio of the relative intensity of tumorous lesion to surrounding nontumorous area on hepatobiliary phase images (post-contrast EOB ratio) to that on unenhanced images (pre-contrast EOB ratio). Portal blood flow was evaluated by CT during arterial portography. Post-contrast EOB ratios significantly decreased as the degree of differentiation declined in DNs (1.00 ± 0.14) and well, moderately and poorly differentiated HCCs (0.79 ± 0.19, 0.60 ± 0.27, 0.49 ± 0.10 respectively). Gd-EOB-DTPA uptake, assessed by EOB enhancement ratios, deceased slightly in DNs and still more in HCCs, while there was no statistical difference in the decrease between different histological grades of HCC. Reductions in portal blood flow were observed less frequently than decreases in Gd-EOB-DTPA uptake in DNs and well-differentiated HCCs. Reduced Gd-EOB-DTPA uptake might be an early event of hepatocarcinogenesis, preceding portal blood flow reduction. The hepatobiliary phase of Gd-EOB-DTPA-enhanced MRI may help estimate histological grading, although difficulties exist in differentiating HCCs from DNs. (orig.)

  11. Quantification of hepatic parenchymal blood flow by contrast ultrasonography with flash-replenishment imaging.

    Science.gov (United States)

    Metoki, Ryo; Moriyasu, Fuminori; Kamiyama, Naohisa; Sugimoto, Katsutoshi; Iijima, Hiroko; Xu, Hui-Xiong; Aoki, Takaya; Miyata, Yuki; Yamamoto, Kei; Kudo, Kosei; Shimizu, Masafumi; Yamada, Masahiko

    2006-10-01

    Flash-replenishment (FR) utilizes destruction of microbubbles in the scan volume by high-power ultrasound and enables to observe reperfusion at a low acoustic power. In this paper, we introduced theoretic equation between probability density function (PDF) of the transit time in the scan volume and time intensity curve (TIC) measured by FR method. From the equations, it was explained that the mean transit time (MTT) through the scan volume was calculated from the plateau level and tangent of the initial slope. Animal experiments were also performed to measure TIC in the parenchymal region of the liver using FR method. From the result of the TIC, the variant of the PDF for the transit time was found to be small and the average MTT was 11.1 s. Hepatic blood flow by an ultrasonic transit time flowmeter was also measured in the same experiment, and adequate correlation was obtained from between the two methods. The results suggested that the FR method, which is a noninvasive measurement, can predict the blood flow of the liver. PMID:17045864

  12. In vivo functional imaging of blood flow and wall strain rate in outflow tract of embryonic chick heart using ultrafast spectral domain optical coherence tomography

    Science.gov (United States)

    Li, Peng; Yin, Xin; Shi, Liang; Rugonyi, Sandra; Wang, Ruikang K.

    2012-09-01

    During cardiac development, the cardiac wall and flowing blood are two important cardiac tissues that constantly interact with each other. This dynamic interaction defines appropriate biomechanical environment to which the embryonic heart is exposed. Quantitative assessment of the dynamic parameters of wall tissues and blood flow is required to further our understanding of cardiac development. We report the use of an ultrafast 1310-nm dual-camera spectral domain optical coherence tomography (SDOCT) system to characterize/image, in parallel, the dynamic radial strain rate of the myocardial wall and the Doppler velocity of the underlying flowing blood within an in vivo beating chick embryo. The OCT system operates at 184-kHz line scan rate, providing the flexibility of imaging the fast blood flow and the slow tissue deformation within one scan. The ability to simultaneously characterize tissue motion and blood flow provides a useful approach to better understand cardiac dynamics during early developmental stages.

  13. Combined vector velocity and spectral Doppler imaging for improved imaging of complex blood flow in the carotid arteries.

    Science.gov (United States)

    Ekroll, Ingvild Kinn; Dahl, Torbjørn; Torp, Hans; Løvstakken, Lasse

    2014-07-01

    Color flow imaging and pulsed wave (PW) Doppler are important diagnostic tools in the examination of patients with carotid artery disease. However, measurement of the true peak systolic velocity is dependent on sample volume placement and the operator's ability to provide an educated guess of the flow direction. Using plane wave transmissions and a duplex imaging scheme, we present an all-in-one modality that provides both vector velocity and spectral Doppler imaging from one acquisition, in addition to separate B-mode images of sufficient quality. The vector Doppler information was used to provide automatically calibrated (angle-corrected) PW Doppler spectra at every image point. It was demonstrated that the combined information can be used to generate spatial maps of the peak systolic velocity, highlighting regions of high velocity and the extent of the stenotic region, which could be used to automate work flow as well as improve the accuracy of measurement of true peak systolic velocity. The modality was tested in a small group (N = 12) of patients with carotid artery disease. PW Doppler, vector velocity and B-mode images could successfully be obtained from a single recording for all patients with a body mass index ranging from 21 to 31 and a carotid depth ranging from 16 to 28 mm. PMID:24785436

  14. Functional Flow Patterns and Static Blood Pooling in Tumors Revealed by Combined Contrast-Enhanced Ultrasound and Photoacoustic Imaging.

    Science.gov (United States)

    Bar-Zion, Avinoam; Yin, Melissa; Adam, Dan; Foster, F Stuart

    2016-08-01

    Alterations in tumor perfusion and microenvironment have been shown to be associated with aggressive cancer phenotypes, raising the need for noninvasive methods of tracking these changes. Dynamic contrast-enhanced ultrasound (DCEUS) and photoacoustic (PA) imaging serve as promising candidates-one has the ability to measure tissue perfusion, whereas the other can be used to monitor tissue oxygenation and hemoglobin concentration. In this study, we investigated the relationship between the different functional parameters measured with DCEUS and PA imaging, using two morphologically different hind-limb tumor models and drug-induced alterations in an orthotopic breast tumor model. Imaging results showed some correlation between perfusion and oxygen saturation maps and the ability to sensitively monitor antivascular treatment. In addition, DCEUS measurements revealed different vascular densities in the core of specific tumors compared with their rims. Noncorrelated perfusion and hemoglobin concentration measurements facilitated discrimination between blood lakes and necrotic areas. Taken together, our results illustrate the utility of a combined contrast-enhanced ultrasound method with photoacoustic imaging to visualize blood flow patterns in tumors. Cancer Res; 76(15); 4320-31. ©2016 AACR. PMID:27325651

  15. Label free imaging system for measuring blood flow speeds using a single multi-mode optical fiber (Conference Presentation)

    Science.gov (United States)

    Sigal, Iliya; Caravaca Aguirre, Antonio M.; Gad, Raanan; Piestun, Rafael; Levi, Ofer

    2016-03-01

    We demonstrate a single multi-mode fiber-based micro-endoscope for measuring blood flow speeds. We use the transmission-matrix wavefront shaping approach to calibrate the multi-mode fiber and raster-scan a focal spot across the distal fiber facet, imaging the cross-polarized back-reflected light at the proximal facet using a camera. This setup allows assessment of the backscattered photon statistics: by computing the mean speckle contrast values across the proximal fiber facet we show that spatially-resolved flow speed maps can be inferred by selecting an appropriate camera integration time. The proposed system is promising for minimally-invasive studies of neurovascular coupling in deep brain structures.

  16. Computer-aided method for automated selection of optimal imaging plane for measurement of total cerebral blood flow by MRI

    Science.gov (United States)

    Teng, Pang-yu; Bagci, Ahmet Murat; Alperin, Noam

    2009-02-01

    A computer-aided method for finding an optimal imaging plane for simultaneous measurement of the arterial blood inflow through the 4 vessels leading blood to the brain by phase contrast magnetic resonance imaging is presented. The method performance is compared with manual selection by two observers. The skeletons of the 4 vessels for which centerlines are generated are first extracted. Then, a global direction of the relatively less curved internal carotid arteries is calculated to determine the main flow direction. This is then used as a reference direction to identify segments of the vertebral arteries that strongly deviates from the main flow direction. These segments are then used to identify anatomical landmarks for improved consistency of the imaging plane selection. An optimal imaging plane is then identified by finding a plane with the smallest error value, which is defined as the sum of the angles between the plane's normal and the vessel centerline's direction at the location of the intersections. Error values obtained using the automated and the manual methods were then compared using 9 magnetic resonance angiography (MRA) data sets. The automated method considerably outperformed the manual selection. The mean error value with the automated method was significantly lower than the manual method, 0.09+/-0.07 vs. 0.53+/-0.45, respectively (p<.0001, Student's t-test). Reproducibility of repeated measurements was analyzed using Bland and Altman's test, the mean 95% limits of agreements for the automated and manual method were 0.01~0.02 and 0.43~0.55 respectively.

  17. Attempts to Improve Absolute Quantification of Cerebral Blood Flow in Dynamic Susceptibility Contrast Magnetic Resonance Imaging: A Simplified T1-Weighted Steady-State Cerebral Blood Volume Approach

    Energy Technology Data Exchange (ETDEWEB)

    Wirestam, R.; Knutsson, L.; Risberg, J.; Boerjesson, S.; Larsson, E.M.; Gustafson, L.; Passant, U.; Staahlberg, F. [Depts. of Medical Radiation Physics, Diagnostic Radiology, Psychiatry, and Psychogeriatrics, Lund Univ, Lund (Sweden)

    2007-07-15

    Background: Attempts to retrieve absolute values of cerebral blood flow (CBF) by dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) have typically resulted in overestimations. Purpose: To improve DSC-MRI CBF estimates by calibrating the DSC-MRI-based cerebral blood volume (CBV) with a corresponding T1-weighted (T1W) steady-state (ss) CBV estimate. Material and Methods: 17 volunteers were investigated by DSC-MRI and 133Xe SPECT. Steady-state CBV calculation, assuming no water exchange, was accomplished using signal values from blood and tissue, before and after contrast agent, obtained by T1W spin-echo imaging. Using steady-state and DSC-MRI CBV estimates, a calibration factor K = CBV(ss)/CBV(DSC) was obtained for each individual. Average whole-brain CBF(DSC) was calculated, and the corrected MRI-based CBF estimate was given by CBF(ss) = KxCBF(DSC). Results: Average whole-brain SPECT CBF was 40.1{+-}6.9 ml/min 100 g, while the corresponding uncorrected DSC-MRI-based value was 69.2{+-}13.8 ml/mi 100 g. After correction with the calibration factor, a CBF(ss) of 42.7{+-}14.0 ml/min 100 g was obtained. The linear fit to CBF(ss)-versus-CBF(SPECT) data was close to proportionality (R = 0.52). Conclusion: Calibration by steady-state CBV reduced the population average CBF to a reasonable level, and a modest linear correlation with the reference 133Xe SPECT technique was observed. Possible explanations for the limited accuracy are, for example, large-vessel partial-volume effects, low post-contrast signal enhancement in T1W images, and water-exchange effects.

  18. Autoradiographic imaging of cerebral ischaemia using a combination of blood flow and hypoxic markers in an animal model

    Energy Technology Data Exchange (ETDEWEB)

    Lythgoe, M.F. [Royal College of Surgeons Unit of Biophysics, Institute of Child Health, London (United Kingdom)]|[Department of Radiology, Great Ormond Street Hospital for Children NHS Trust, London (United Kingdom); Williams, S.R. [Royal College of Surgeons Unit of Biophysics, Institute of Child Health, London (United Kingdom); Wiebe, L.I. [University of Alberta, Edmonton, AB (Canada); McEwan, A.J.B. [University of Alberta, Edmonton, AB (Canada); Gordon, I. [Department of Radiology, Great Ormond Street Hospital for Children NHS Trust, London (United Kingdom)

    1997-01-01

    Current routine clinical techniques, including angiography and perfusional single-photon emission tomography, can be used to indicate problems in cerebral vascular supply and areas of cerebral hypoperfusion following a stroke, but cannot distinguish between ischaemic core and penumbra. In order to image specifically the penumbra, a method or indicator should be able to define areas with reduced blood flow, and a degree of metabolic compromise. In this context, the tissue could be regarded as hypoxic rather than ischaemic, and we have therefore chosen to investigate the potential of radio-labelled hypoxic markers in the study of ischaemia. In order to combine a hypoxic marker with a blood flow marker we used technetium-99m hexamethylpropylene amine oxime ({sup 99m}Tc-HMPAO) and iodine-125 iodoazomycin arabinoside ({sup 125}I-IAZA), during cerebral ischaemia in the rat middle cerebral artery occlusion model. {sup 99m}Tc-HMPAO and {sup 125}I-IAZA were injected simultaneously 2 h following occlusion of the middle cerebral artery, and 5 h before decapitation. Paired autoradiograms were produced and compared. Three distinct patterns emerged from the autoradiograms: slightly decreased perfusion with no uptake of the hypoxic marker indicating an area of misery perfusion; moderately decreased perfusion with concomitant uptake of iodoazomycin arabinoside, a region of hypoxia; and severely decreased perfusion with no retention of the hypoxic tracer. In conclusion, we present a new use for an imaging agent in the investigation of cerebral hypoxia. This agent, IAZA together with HMPAO, provides a means of separating the penumbra into regions of misery perfusion and hypoxia. The potential impact of this may be important in the clinical investigation of stroke. (orig.). With 3 figs.

  19. In-vitro validation of a novel model-based approach to the measurement of arterial blood flow waveforms from dynamic digital x-ray images

    Science.gov (United States)

    Rhode, Kawal; Lambrou, Tryphon; Seifalian, Alexander M.; Hawkes, David J.

    2002-04-01

    We have developed a waveform shape model-based algorithm for the extraction of blood flow from dynamic arterial x-ray angiographic images. We have carried out in-vitro validation of this technique. A pulsatile physiological blood flow circuit was constructed using an anthropomorphic cerebral vascular phantom to simulate the cerebral arterial circulation with whole blood as the fluid. Instantaneous recording of flow from an electromagnetic flow meter (EMF) provided the gold standard measurement. Biplane dynamic digital x-ray images of the vascular phantom with injection of contrast medium were acquired at 25 fps using a PC frame capture card with calibration using a Perspex cube. Principal component analysis was used to construct a shape model by collecting 434 flow waveforms from the EMF under varying flow conditions. Blood flow waveforms were calculated from the angiographic data by using our previous concentration-distance curve matching (ORG) algorithm and by using the new model-based (MB) algorithm. Both instantaneous and mean flow values calculated using the MB algorithm showed greater correlation, less bias, and lower variability than those calculated using the ORG algorithm when compared to the EMF values. We have successfully demonstrated that use of a priori waveform shape information can improve flow measurements from dynamic x-ray angiograms.

  20. Regional cerebral blood flow imaging assessment of brain function reconstruction in elderly hemiplegia patients by body weight support treadmill training

    Institute of Scientific and Technical Information of China (English)

    Wenqing Wang; Yongping Liu; Diqing Wang; Yanshuang Li; Jinglai Hao; Hongwei Zhang; Sheng Bi; Changshui Weng

    2011-01-01

    The mechanism underlying body weight support treadmill training in elderly hemiplegic stroke patients is largely unknown. This study aimed to elucidate the changes of cortical blood flow in seven elderly patients with post-stroke hemiplegia before and after body weight support treadmill training by semi-quantitative analysis of regional cerebral blood flow assessed by single photon emission computed tomography. Body weight support treadmill training for 6 months was effective in improving cerebral blood flow and promoting the walking speed and balance recovery in elderly patients with post-stroke hemiplegia.

  1. Analysis and dynamic 3D visualization of cerebral blood flow combining 3D and 4D MR image sequences

    Science.gov (United States)

    Forkert, Nils Daniel; Säring, Dennis; Fiehler, Jens; Illies, Till; Möller, Dietmar; Handels, Heinz

    2009-02-01

    In this paper we present a method for the dynamic visualization of cerebral blood flow. Spatio-temporal 4D magnetic resonance angiography (MRA) image datasets and 3D MRA datasets with high spatial resolution were acquired for the analysis of arteriovenous malformations (AVMs). One of the main tasks is the combination of the information of the 3D and 4D MRA image sequences. Initially, in the 3D MRA dataset the vessel system is segmented and a 3D surface model is generated. Then, temporal intensity curves are analyzed voxelwise in the 4D MRA image sequences. A curve fitting of the temporal intensity curves to a patient individual reference curve is used to extract the bolus arrival times in the 4D MRA sequences. After non-linear registration of both MRA datasets the extracted hemodynamic information is transferred to the surface model where the time points of inflow can be visualized color coded dynamically over time. The dynamic visualizations computed using the curve fitting method for the estimation of the bolus arrival times were rated superior compared to those computed using conventional approaches for bolus arrival time estimation. In summary the procedure suggested allows a dynamic visualization of the individual hemodynamic situation and better understanding during the visual evaluation of cerebral vascular diseases.

  2. Retinal blood flow in diabetic retinopathy.

    OpenAIRE

    Patel, V.; Rassam, S; NEWSOM, R.; Wiek, J; Kohner, E.

    1992-01-01

    OBJECTIVES--(a) To report on the basic parameters of retinal blood flow in a population of diabetic patients with and without retinopathy and non-diabetic controls; (b) to formulate a haemodynamic model for the pathogenesis of diabetic retinopathy from this and other studies. DESIGN--Laser-Doppler velocimetry and computerised image analysis to determine retinal blood flow in a large cross sectional study. SETTING--Diabetic retinopathy outpatient clinic. SUBJECTS--24 non-diabetic controls and ...

  3. Perfusion MRI (dynamic susceptibility contrast imaging) with different measurement approaches for the evaluation of blood flow and blood volume in human gliomas

    Energy Technology Data Exchange (ETDEWEB)

    Thomsen, H. (Den Sundhedsfaglige Kandidatuddannelse, Aarhus Universitet Bygning 1264, Aarhus (Denmark); University College Nordjylland, Aalborg (Denmark)), Email: hnt@ucn.dk; Steffensen, E. (Aalborg Hospital/Aarhus University Hospital, Department of Radiology, Aalborg (Denmark)); Larsson, E. M. (Aalborg Hospital/Aarhus University Hospital, Department of Radiology, Aalborg (Denmark); Uppsala University Hospital, Department of Radiology, Uppsala (Sweden))

    2012-02-15

    Background. Perfusion magnetic resonance imaging (MRI) is increasingly used in the evaluation of brain tumors. Relative cerebral blood volume (rCBV) is usually obtained by dynamic susceptibility contrast (DSC) MRI using normal appearing white matter as reference region. The emerging perfusion technique arterial spin labelling (ASL) presently provides measurement only of cerebral blood flow (CBF), which has not been widely used in human brain tumor studies. Purpose. To assess if measurement of blood flow is comparable with measurement of blood volume in human biopsy-proven gliomas obtained by DSC-MRI using two different regions for normalization and two different measurement approaches. Material and Methods. Retrospective study of 61 patients with different types of gliomas examined with DSC perfusion MRI. Regions of interest (ROIs) were placed in tumor portions with maximum perfusion on rCBF and rCBV maps, with contralateral normal appearing white matter and cerebellum as reference regions. Larger ROIs were drawn for histogram analyses. The type and grade of the gliomas were obtained by histopathology. Statistical comparison was made between diffuse astrocytomas, anaplastic astrocytomas, and glioblastomas. Results. rCBF and rCBV measurements obtained with the maximum perfusion method were correlated when normalized to white matter (r = 0.60) and to the cerebellum (r = 0.49). Histogram analyses of rCBF and rCBV showed that mean and median values as well as skewness and peak position were correlated (0.61 < r < 0.93), whereas for kurtosis and peak height, the correlation coefficient was about 0.3 when comparing rCBF and rCBV values for the same reference region. Neither rCBF nor rCBV quantification provided a statistically significant difference between the three types of gliomas. However, both rCBF and rCBV tended to increase with tumor grade and to be lower in patients who had undergone resection/treatment. Conclusion. rCBF measurements normalized to white matter

  4. Assessment of Blood Flow in Hepatocellular Carcinoma: Correlations of Computed Tomography Perfusion Imaging and Circulating Angiogenic Factors

    Directory of Open Access Journals (Sweden)

    Chen-Pin Chou

    2013-08-01

    Full Text Available Hepatocellular carcinoma (HCC is a highly vascular tumor through the process of angiogenesis. To evaluate more non-invasive techniques for assessment of blood flow (BF in HCC, this study examined the relationships between BF of HCC measured by computer tomography (CT perfusion imaging and four circulating angiogenic factors in HCC patients. Interleukin 6 (IL-6, interleukin 8 (IL-8, vascular endothelial growth factor (VEGF, and platelet derived growth factor (PDGF in plasma were measured using Bio-Plex multiplex immunoassay in 21 HCC patients and eight healthy controls. Circulating IL-6, IL-8 and VEGF showed higher concentrations in HCC patients than in controls (p < 0.05, and predicted HCC occurrence better than chance (p < 0.01. Twenty-one patients with HCC received 21-phase liver imaging using a 64-slice CT. Total BF, arterial BF, portal BF, arterial fraction (arterial BF/total BF of the HCC and surrounding liver parenchyma, and HCC-parenchyma ratio were measured using a dual-vessel model. After analyzing the correlations between BF in HCC and four circulating angiogenic factors, we found that the HCC-parenchyma ratio of arterial BF showed a significantly positive correlation with the level of circulating IL-8 (p < 0.05. This circulating biomarker, IL-8, provides a non-invasive tool for assessment of BF in HCC.

  5. The Effect of Blood Flow on Magnetic Resonance Imaging of Non Thermal Irreversible Electroporation

    OpenAIRE

    Mohammad Hjouj; Jacob Lavee; David Last; David Guez; Dianne Daniels; Shirley Sharabi; Boris Rubinsky; Yael Mardor

    2013-01-01

    To generate an understanding of the physiological significance of MR images of Non-Thermal Irreversible Electroporation (NTIRE) we compared the following MR imaging sequences: T1W, T2W, PD, GE, and T2 SPAIR acquired after NTIRE treatment in a rodent liver model. The parameters that were studied included the presence or absence of a Gd-based contrast agent, and in vivo and ex-vivo NTIRE treatments in the same liver. NTIRE is a new minimally invasive tissue ablation modality in which pulsed ele...

  6. Characterization of extracellular vesicles in whole blood: Influence of pre-analytical parameters and visualization of vesicle-cell interactions using imaging flow cytometry.

    Science.gov (United States)

    Fendl, Birgit; Weiss, René; Fischer, Michael B; Spittler, Andreas; Weber, Viktoria

    2016-09-01

    Extracellular vesicles are central players in intercellular communication and are released from the plasma membrane under tightly regulated conditions, depending on the physiological and pathophysiological state of the producing cell. Their heterogeneity requires a spectrum of methods for isolation and characterization, where pre-analytical parameters have profound impact on vesicle analysis, particularly in blood, since sampling, addition of anticoagulants, as well as post-sampling vesicle generation may influence the outcome. Here, we characterized microvesicles directly in whole blood using a combination of flow cytometry and imaging flow cytometry. We assessed the influence of sample agitation, anticoagulation, and temperature on post-sampling vesicle generation, and show that vesicle counts remained stable over time in samples stored without agitation. Storage with gentle rolling mimicking agitation, in contrast, resulted in strong release of platelet-derived vesicles in blood anticoagulated with citrate or heparin, whereas vesicle counts remained stable upon anticoagulation with EDTA. Using imaging flow cytometry, we could visualize microvesicles adhering to blood cells and revealed an anticoagulant-dependent increase in vesicle-cell aggregates over time. We demonstrate that vesicles adhere preferentially to monocytes and granulocytes in whole blood, while no microvesicles could be visualized on lymphocytes. Our data underscore the relevance of pre-analytical parameters in vesicle analysis and demonstrate that imaging flow cytometry is a suitable tool to study the interaction of extracellular vesicles with their target cells. PMID:27444383

  7. Local Control of Blood Flow

    Science.gov (United States)

    Clifford, Philip S.

    2011-01-01

    Organ blood flow is determined by perfusion pressure and vasomotor tone in the resistance vessels of the organ. Local factors that regulate vasomotor tone include myogenic and metabolic autoregulation, flow-mediated and conducted responses, and vasoactive substances released from red blood cells. The relative importance of each of these factors…

  8. I-123 hydroxyiodobenzyl propanediamine (HIPDM) cerebral blood flow imaging demonstrating transtentorial diaschisis

    Energy Technology Data Exchange (ETDEWEB)

    Shih, W.J.; Dekosky, S.T.; Coupal, J.J.; Simmons, G.; Pulmano, C.; Kung, H.F.; Ryo, U.Y.; Clark, D.B. (Veterans Affairs Medical Center, Lexington, KY (USA))

    1990-09-01

    To assess the clinical significance of transtentorial diaschisis (TTD) as demonstrated by I-123 HIPDM brain imaging, SPECT and/or planar images of 35 patients with stroke, 26 patients with Alzheimer's disease (AD), 2 patients with Creutzfeldt-Jakob disease (CJD), and 1 patient with a schizoaffective disorder were analyzed. TTD was observed in 21 of the 35 patients with strokes. In 13 stroke patients, TTD was associated with large infarcts in the middle cerebral artery (MCA) territory; in the remaining 8 stroke patients, TTD was associated with internal capsule and/or basal ganglia infarcts. TTD was not associated with small occipital or parietal infarcts. Despite cortical perfusion decrements, TTD was not seen in the AD patients, the CJD patients, or the patient with schizoaffective disorder. It is concluded that (1) TTD frequently occurs following cerebral infarct of the MCA territory (60% of the patients in this sample); (2) absence of TTD in the presence of a large cerebral perfusion abnormality may represent neuronal dysfunction of the cerebral cortex; and (3) the presence of TTD without a significant cortical perfusion abnormality may indicate basal ganglia and/or internal capsule infarct.

  9. Glial and neuronal control of brain blood flow

    DEFF Research Database (Denmark)

    Attwell, David; Buchan, Alastair M; Charpak, Serge;

    2010-01-01

    Blood flow in the brain is regulated by neurons and astrocytes. Knowledge of how these cells control blood flow is crucial for understanding how neural computation is powered, for interpreting functional imaging scans of brains, and for developing treatments for neurological disorders. It is now...... recognized that neurotransmitter-mediated signalling has a key role in regulating cerebral blood flow, that much of this control is mediated by astrocytes, that oxygen modulates blood flow regulation, and that blood flow may be controlled by capillaries as well as by arterioles. These conceptual shifts...... in our understanding of cerebral blood flow control have important implications for the development of new therapeutic approaches....

  10. Cerebral blood flow changes in hemodialysis and peritoneal dialysis patients: an arterial-spin labeling MR imaging.

    Science.gov (United States)

    Jiang, Xiao Lu; Wen, Ji Qiu; Zhang, Long Jiang; Zheng, Gang; Li, Xue; Zhang, Zhe; Liu, Ya; Zheng, Li Juan; Wu, Long; Chen, Hui Juan; Kong, Xiang; Luo, Song; Lu, Guang Ming; Ji, Xue Man; Zhang, Zong Jun

    2016-08-01

    We used arterial-spin labeling (ASL) MR imaging, a non-invasive technique to evaluate cerebral blood flow (CBF) changes in patients with end-stage renal disease (ESRD) undergoing peritoneal dialysis (PD) and hemodialysis (HD), and nondialysis ESRD patients compared with healthy cohort. Ninety seven ESRD patients including 32 PD patients (20 male, 12 female; mean age 33 ± 8 years), 33 HD patients (22 male, 11 female; mean age 33 ± 8 years) and 32 nondialysis patients (20 male, 12 female; mean age 35 ± 7 years) and 31 age- and gender-matched healthy controls (20 male, 11 female; mean age 32 ± 8 years) were included in this study. All subjects underwent ASL MR imaging, neuropsychologic tests, and ESRD patients underwent laboratory testing. CBF values were compared among PD, HD, nondialysis patients and control groups. Correlation analysis and multiple regression analysis were performed to investigate the association between CBF values and hemoglobin, neuropsychologic test results, serum creatinine, urea levels, disease duration, and dialysis duration. Elevated CBFs of whole brain region, gray matter, and white matter were found in all ESRD patient groups compared with healthy controls (all P differences for CBF between PD and HD patient groups. Negative correlations were observed between mean CBFs of whole brain region, gray matter, and white matter and the hemoglobin level in all ESRD patients. Multiple linear regression showed elevated CBF of multiple brain areas correlated with some neuropsychological tests in ESRD patients (all P differences of CBF change and cognitive function between PD and HD ESRD patients with long-term treatment. The degree of anemia may be a predominant risk factor for cognitive impairment in these ESRD patients. PMID:27167984

  11. Endovascular blood flow measurement system

    Science.gov (United States)

    Khe, A. K.; Cherevko, A. A.; Chupakhin, A. P.; Krivoshapkin, A. L.; Orlov, K. Yu

    2016-06-01

    In this paper an endovascular measurement system used for intraoperative cerebral blood flow monitoring is described. The system is based on a Volcano ComboMap Pressure and Flow System extended with analogue-to-digital converter and PC laptop. A series of measurements performed in patients with cerebrovascular pathologies allows us to introduce “velocity-pressure” and “flow rate-energy flow rate” diagrams as important characteristics of the blood flow. The measurement system presented here can be used as an additional instrument in neurosurgery for assessment and monitoring of the operation procedure. Clinical data obtained with the system are used for construction of mathematical models and patient-specific simulations. The monitoring of the blood flow parameters during endovascular interventions was approved by the Ethics Committee at the Meshalkin Novosibirsk Research Institute of Circulation Pathology and included in certain surgical protocols for pre-, intra- and postoperative examinations.

  12. Relationship between SPECT regional cerebral blood flow imaging and cognitive function in school-age children with epilepsy

    International Nuclear Information System (INIS)

    Objective: To explore the feature of SPECT regional cerebral blood flow(rCBF) imaging, the cognitive functions and the relationship between them in school-age children with primary epilepsy. Methods: 99Tcm-ethylene cysteinate dimer (ECD) brain imaging was performed on 32 school-age children with primary generalized tonic and (or) clonic seizures(GTCS). Cognitive functions were also evaluated in all patients and normal children. Relationship between cognitive function and rCBF was compared. Results: (1) Thirty of 32 (93.8%) patients were abnormal on SPECT imaging. Fifty areas of 29 cases showed decreased rCBF, the percentage of decreased rCBF was (21.07 ± 7.09)%; 2 areas of 1 case showed increased rCBF, the percentage of increased rCBF was (32.22 ± 4.31)%. 92.3% of the epileptic foci were located in frontal, temporal, parietal and occipital cortexes. (2) Verbal intelligence quotient (VIQ), performance intelligence quotient (PIQ) and full-scale intelligence quotient (FIQ) of children with epilepsy were significantly lower than those of the controls, and there were some cognitive skewnesses in children with epilepsy (VIQ >PIQ). (3)There was negative correlation between the number of foci and VIQ, PIQ, FIQ, the correlation coefficients were -0.543 (P=0.002), -0.469 (P=0.009), -0.578 (P=0.001); there was negative correlation between the extent of foci and VIQ, PIQ, FIQ, the correlation coefficients were -0.560 (P=0.003), -0.142 (P=0.016), -0.582 (P=0.001); there was no significant correlation between all the IQ of cognitive test and the percentage of changed rCBF. Conclusions: SPECT rCBF imaging may be useful for the localization of epileptic focus. Some of school-age children with epilepsy have impairment of the cognitive function, its magnitude is negative correlated with the number and extent of epileptic foci. (authors)

  13. Blood flow in the choriocapillaris

    OpenAIRE

    Zouache, M. A.; Eames, I; Luthert, P J

    2015-01-01

    The choriocapillaris is a capillary bed located in a thin layer adjacent to the outer retina and is part of the oxygen delivery system to the photoreceptors of the eye. The blood flow is approximately planar and is serviced by microvessels, which join the choriocapillaris through inlets perpendicular to its plane. Capillaries are densely organised and separated by avascular septal posts, which direct the blood flow. The capillary bed is composed of a juxtaposition of tessellating vascular uni...

  14. Perfusion MRI (dynamic susceptibility contrast imaging) with different measurement approaches for the evaluation of blood flow and blood volume in human gliomas

    DEFF Research Database (Denmark)

    Thomsen, Henrik; Larsson, Elna-Marie; Steffensen, Elena

    2012-01-01

    technique arterial spin labelling (ASL) presently provides measurement only of cerebral blood flow (CBF), which has not been widely used in human brain tumor studies. Purpose: To assess if measurement of blood flow is comparable with measurement of blood volume in human biopsy-proven gliomas obtained by DSC......, and glioblastomas. Results: rCBF and rCBV measurements obtained with the maximum perfusion method were correlated when normalized to white matter (r ¼ 0.60) and to the cerebellum (r ¼ 0.49). Histogram analyses of rCBF and rCBV showed that mean and median values as well as skewness and peak position were correlated......-MRI using two different regions for normalization and two different measurement approaches. Material and Methods: Retrospective study of 61 patients with different types of gliomas examined with DSC perfusion MRI. Regions of interest (ROIs) were placed in tumor portions with maximum perfusion on rCBF and r...

  15. Hyperhomocysteinemia decreases bone blood flow

    Directory of Open Access Journals (Sweden)

    Neetu T

    2011-01-01

    Full Text Available Neetu Tyagi*, Thomas P Vacek*, John T Fleming, Jonathan C Vacek, Suresh C TyagiDepartment of Physiology and Biophysics, School of Medicine, University of Louisville, Louisville, KY, USA *These authors have equal authorshipAbstract: Elevated plasma levels of homocysteine (Hcy, known as hyperhomocysteinemia (HHcy, are associated with osteoporosis. A decrease in bone blood flow is a potential cause of compromised bone mechanical properties. Therefore, we hypothesized that HHcy decreases bone blood flow and biomechanical properties. To test this hypothesis, male Sprague–Dawley rats were treated with Hcy (0.67 g/L in drinking water for 8 weeks. Age-matched rats served as controls. At the end of the treatment period, the rats were anesthetized. Blood samples were collected from experimental or control rats. Biochemical turnover markers (body weight, Hcy, vitamin B12, and folate were measured. Systolic blood pressure was measured from the right carotid artery. Tibia blood flow was measured by laser Doppler flow probe. The results indicated that Hcy levels were significantly higher in the Hcy-treated group than in control rats, whereas vitamin B12 levels were lower in the Hcy-treated group compared with control rats. There was no significant difference in folate concentration and blood pressure in Hcy-treated versus control rats. The tibial blood flow index of the control group was significantly higher (0.78 ± 0.09 flow unit compared with the Hcy-treated group (0.51 ± 0.09. The tibial mass was 1.1 ± 0.1 g in the control group and 0.9 ± 0.1 in the Hcy-treated group. The tibia bone density was unchanged in Hcy-treated rats. These results suggest that Hcy causes a reduction in bone blood flow, which contributes to compromised bone biomechanical properties.Keywords: homocysteine, tibia, bone density

  16. Effects of Ginkgo biloba on cerebral blood flow assessed by quantitative MR perfusion imaging: a pilot study

    Energy Technology Data Exchange (ETDEWEB)

    Mashayekh, Ameneh; Pham, Dzung L.; Yousem, David M.; Dizon, Mercedes; Barker, Peter B.; Lin, Doris D.M. [Johns Hopkins University School of Medicine, Department of Radiology, Division of Neuroradiology, Baltimore, MD (United States)

    2011-03-15

    Extract of Ginkgo biloba (EGb), a dietary supplement used for a number of conditions including dementia, has been suggested to increase cerebral blood flow (CBF). The purpose of this study was to determine if changes in CBF could be detected by dynamic susceptibility contrast-enhanced magnetic resonance imaging (DSC-MRI) in elderly human subjects taking EGb. DSC-MRI was performed in nine healthy men (mean age 61 {+-} 10 years) before and after 4 weeks of 60 mg EGb taken twice daily. One subject underwent six consecutive scans to evaluate intrasubject reproducibility. CBF values were computed before and after EGb, and analyzed at three different levels of spatial resolution, using voxel-based statistical parametric mapping (SPM), and regions of interest in different lobes, and all regions combined. Normalized intrasubject CBF (nCBF) measurements had a standard deviation of 7% and 4% in gray and white matter (WM) regions, respectively. SPM using an uncorrected, voxel-level threshold of P {<=} 0.001 showed a small CBF increase in the left parietal-occipital region. CBF in individual lobar regions did not show any significant change post-EGb, but all regions combined showed a significant increase of non-normalized CBF after EGb (15% in white and 13% in gray matter, respectively, P {<=} 0.0001). nCBF measured by DSC-MRI has good intrasubject reproducibility. In this small cohort of normal elderly individuals, a mild increase in CBF is found in the left parietal-occipital WM after EGb, as well as a small but statistically significant increase in global CBF. (orig.)

  17. Effects of Ginkgo biloba on cerebral blood flow assessed by quantitative MR perfusion imaging: a pilot study

    International Nuclear Information System (INIS)

    Extract of Ginkgo biloba (EGb), a dietary supplement used for a number of conditions including dementia, has been suggested to increase cerebral blood flow (CBF). The purpose of this study was to determine if changes in CBF could be detected by dynamic susceptibility contrast-enhanced magnetic resonance imaging (DSC-MRI) in elderly human subjects taking EGb. DSC-MRI was performed in nine healthy men (mean age 61 ± 10 years) before and after 4 weeks of 60 mg EGb taken twice daily. One subject underwent six consecutive scans to evaluate intrasubject reproducibility. CBF values were computed before and after EGb, and analyzed at three different levels of spatial resolution, using voxel-based statistical parametric mapping (SPM), and regions of interest in different lobes, and all regions combined. Normalized intrasubject CBF (nCBF) measurements had a standard deviation of 7% and 4% in gray and white matter (WM) regions, respectively. SPM using an uncorrected, voxel-level threshold of P ≤ 0.001 showed a small CBF increase in the left parietal-occipital region. CBF in individual lobar regions did not show any significant change post-EGb, but all regions combined showed a significant increase of non-normalized CBF after EGb (15% in white and 13% in gray matter, respectively, P ≤ 0.0001). nCBF measured by DSC-MRI has good intrasubject reproducibility. In this small cohort of normal elderly individuals, a mild increase in CBF is found in the left parietal-occipital WM after EGb, as well as a small but statistically significant increase in global CBF. (orig.)

  18. Capillary pericytes regulate cerebral blood flow in health and disease

    DEFF Research Database (Denmark)

    Hall, Catherine N; Reynell, Clare; Gesslein, Bodil;

    2014-01-01

    Increases in brain blood flow, evoked by neuronal activity, power neural computation and form the basis of BOLD (blood-oxygen-level-dependent) functional imaging. Whether blood flow is controlled solely by arteriole smooth muscle, or also by capillary pericytes, is controversial. We demonstrate...... blood flow, capillaries dilate before arterioles and are estimated to produce 84% of the blood flow increase. In pathology, ischaemia evokes capillary constriction by pericytes. We show that this is followed by pericyte death in rigor, which may irreversibly constrict capillaries and damage the blood-brain...

  19. Cerebral blood flow and related factors in hyperthyroidism patients by SPECT imaging and statistical parametric mapping analysis

    International Nuclear Information System (INIS)

    Objective: To investigate the cerebral blood flow (CBF) perfusion patterns and related factors in hyperthyroidism patients. Methods: Twenty-five patients with hyperthyroidism and twenty-two healthy controls matched for age, sex, education were enrolled. 99Tcm-ethylene cysteinate dimer (ECD) SPECT CBF perfusion imaging was performed at rest. Statistical parametric mapping 5.0 software (SPM5) was used and a statistical threshold of P3, FT4), thyroid autoimmune antibodies: sensitive thyroid stimulating hormone (sTSH), thyroid peroxidase antibody (TPOAb) and TSH receptor antibody (TRAb) by Pearson analysis, with disease duration by Spearman analysis. Results: rCBF was decreased significantly in limbic system and frontal lobe, including parahippocampal gyrus, uncus (posterior entorhinal cortex, posterior parolfactory cortex, parahippocampal cortex, anterior cingulate, right inferior temporal gyrus), left hypothalamus and caudate nucleus (P3 (r=-0.468, -0.417, both P4 (r=-0.4M, -0.418, -0.415, -0.459, all P4 (r=0.419, 0.412, both P<0.05). rCBF in left insula was negatively correlated with concentration of sTSH, and right auditory associated cortex was positively correlated with concentration of sTSH (r=-0.504, 0.429, both P<0.05). rCBF in left middle temporal gyrus, left angular gyrus was positively correlated with concentration of TRAb while that in right thalamus, right hypothalamus, left anterior nucleus,left ventralis nucleus was negatively correlated with concentration of TRAb (r=0.750, 0.862, -0.691, -0.835, -0.713, -0.759, all P<0.05). rCBF in right anterior cingulate, right cuneus, right rectus gyrus, right superior marginal gyrus was positively correlated with concentration of TPOAb (r=0.696, 0.581, 0.779, 0.683, all P<0.05). rCBF in postcentral gyrus, temporal gyrus, left superior marginal gyrus and auditory associated cortex was positively correlated with disease duration (r=0.502, 0.457, 0.524, 0.440, all P<0.05). Conclusion: Hypoperfusions in limbic system

  20. Ocular Blood Flow and Normal Tension Glaucoma

    Directory of Open Access Journals (Sweden)

    Ning Fan

    2015-01-01

    Full Text Available Normal tension glaucoma (NTG is known as a multifactorial optic neuropathy characterized by progressive retinal ganglion cell death and glaucomatous visual field loss, even though the intraocular pressure (IOP does not exceed the normal range. The pathophysiology of NTG remains largely undetermined. It is hypothesized that the abnormal ocular blood flow is involved in the pathogenesis of this disease. A number of evidences suggested that the vascular factors played a significant role in the development of NTG. In recent years, the new imaging techniques, fluorescein angiography, color Doppler imaging (CDI, magnetic resonance imaging (MRI, and laser speckle flowgraphy (LSFG, have been used to evaluate the ocular blood flow and blood vessels, and the impaired vascular autoregulation was found in patients with NTG. Previous studies showed that NTG was associated with a variety of systemic diseases, including migraine, Alzheimer’s disease, primary vascular dysregulation, and Flammer syndrome. The vascular factors were involved in these diseases. The mechanisms underlying the abnormal ocular blood flow in NTG are still not clear, but the risk factors for glaucomatous optic neuropathy likely included oxidative stress, vasospasm, and endothelial dysfunction.

  1. Cerebral blood-flow tomography

    DEFF Research Database (Denmark)

    Lassen, N A; Henriksen, L; Holm, S;

    1983-01-01

    Tomographic maps of local cerebral blood flow (CBF) were obtained with xenon-133 and with isopropyl-amphetamine-iodine-123 (IMP) in 11 subjects: one normal, two tumor cases, and eight cerebrovascular cases. A highly sensitive four-face, rapidly rotating, single-photon emission tomograph was used...

  2. [An Examination of Variable Image Positions in the Aortic Valve Blood Flow Using Phase Contrast MRI: Effect of Breath-holding Methods in Healthy Volunteers].

    Science.gov (United States)

    Nakagawa, Kenichi; Morimoto, Noriyoshi; Fukushima, Sachi

    2015-12-01

    Phase contrast MRI (PC-MRI) is a useful tool for evaluating valvular pathology. In addition, PC-MRI can provide a noninvasive assessment of blood flow in an arbitrary cross section. However, the blood flow measurement with breath-hold or free breath PC-MRI may be different from each other because of intrathoracic pressure changing and variable image position. The aim of this study was to find both the optimal breath-hold technique and the image position. Quantitative flow images were acquired in four planes (ascending aorta: Ao, sino-tubular junction: STJ, valsalva sinus: valsalva, left ventricular outflow tract: LVOT), in healthy subjects (n=10). The study protocol was divided into two parts: (1) stroke volume (SV) measured in each slice positions by using inspiration, expiration, and navigation method during normal breathing and (2) SV measured at each breath-hold techniques in the Ao, STJ, valsalva, and LVOT. As a result, (1) SV of the respective measurement positions were not significant by using inspiration, expiration, and navigation method and (2) LVOT SV was significantly lower than Ao, STJ, and valsalva. PMID:26685835

  3. Influence of temporal noise on the skin blood flow measurements performed by cooled thermal imaging camera: limit possibilities within each physiological frequency range

    Science.gov (United States)

    Sagaidachnyi, A. A.; Volkov, I. U.; Fomin, A. V.

    2016-04-01

    This paper describes limit possibilities of modern cooled thermal imaging cameras as a tool for estimation of blood flow oscillations at the surface of living body. Skin temperature oscillations, as we assumed, are a consequence of the blood flow oscillations. We considered the temperature sensitivity 0.01-0.02 °C as a typical for the most of modern cooled long wave thermal imaging cameras. Fourier filter used to investigate the temperature signal separately within endothelial, neurogenic, myogenic, respiratory and cardiac frequency ranges. The level of temporal noise has been estimated during measurements of no living body with stabilized temperature ~ 24°C. The level of temperature oscillations has been calculated for the group of healthy subjects within each frequency range. Thus, we were able to determine signal-to-noise ratio within frequency band [0.001, 1] Hz. As a result, we determine that skin temperature oscillations measured by thermal imaging camera with sensitivity 0.02°C have the upper frequency limit ~ 0.2 Hz. In other words, within the respiratory and cardiac frequency ranges of blood flow oscillations the noise level exceeds signal one, and temperature measurements at the skin surface are practically useless. The endothelial, neurogenic and myogenic components of the temperature oscillations contain ~98% of the total spectral power of the signal. We have plot the empirical extrapolated curve of sensitivity of thermal imaging camera vs. frequency of the temperature oscillations. The data analysis shows that measurements of skin temperature oscillations within respiratory and cardiac ranges require the temperature sensitivity at least ~ 0.01°C and 0.001°C, respectively.

  4. Ultrasound Vector Flow Imaging: Part I: Sequential Systems

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Nikolov, Svetoslav Ivanov; Yu, Alfred C. H.;

    2016-01-01

    The paper gives a review of the most important methods for blood velocity vector flow imaging (VFI) for conventional, sequential data acquisition. This includes multibeam methods, speckle tracking, transverse oscillation, color flow mapping derived vector flow imaging, directional beamforming...

  5. Blood flow characteristics in the aortic arch

    Science.gov (United States)

    Prahl Wittberg, Lisa; van Wyk, Stevin; Mihaiescu, Mihai; Fuchs, Laszlo; Gutmark, Ephraim; Backeljauw, Philippe; Gutmark-Little, Iris

    2012-11-01

    The purpose with this study is to investigate the flow characteristics of blood in the aortic arch. Cardiovascular diseases are associated with specific locations in the arterial tree. Considering atherogenesis, it is claimed that the Wall Shear Stress (WSS) along with its temporal and spatial gradients play an important role in the development of the disease. The WSS is determined by the local flow characteristics, that in turn depends on the geometry as well as the rheological properties of blood. In this numerical work, the time dependent fluid flow during the entire cardiac cycle is fully resolved. The Quemada model is applied to account for the non-Newtonian properties of blood, an empirical model valid for different Red Blood Cell loading. Data obtained through Cardiac Magnetic Resonance Imaging have been used in order to reconstruct geometries of the the aortic arch. Here, three different geometries are studied out of which two display malformations that can be found in patients having the genetic disorder Turner's syndrome. The simulations show a highly complex flow with regions of secondary flow that is enhanced for the diseased aortas. The financial support from the Swedish Research Council (VR) and the Sweden-America Foundation is gratefully acknowledged.

  6. Modeling of blood flow in arterial trees.

    Science.gov (United States)

    Anor, Tomer; Grinberg, Leopold; Baek, Hyoungsu; Madsen, Joseph R; Jayaraman, Mahesh V; Karniadakis, George E

    2010-01-01

    Advances in computational methods and medical imaging techniques have enabled accurate simulations of subject-specific blood flows at the level of individual blood cell and in complex arterial networks. While in the past, we were limited to simulations with one arterial bifurcation, the current state-of-the-art is simulations of arterial networks consisting of hundreds of arteries. In this paper, we review the advances in methods for vascular flow simulations in large arterial trees. We discuss alternative approaches and validity of various assumptions often made to simplify the modeling. To highlight the similarities and discrepancies of data computed with different models, computationally intensive three-dimensional (3D) and inexpensive one-dimensional (1D) flow simulations in very large arterial networks are employed. Finally, we discuss the possibilities, challenges, and limitations of the computational methods for predicting outcomes of therapeutic interventions for individual patients. PMID:20836052

  7. [Pulmonary blood flow measurement using magnetic resonance imaging (MRI) without contrast medium;comparison of phase contrast MRI and perfusion-ventilation scintigraphy].

    Science.gov (United States)

    Yatsuyanagi, Eiji; Sato, Kazuhiro; Kikuchi, Keisuke; Saito, Hirotsugu

    2014-02-01

    To define the accuracy of pulmonary arterial blood flow (PA-flow) measured by phase contrast magnetic resonance imaging (PC-MRI), we compared the PA-flow data of PC-MRI with the data of perfusion-ventilation lung scintigraphy. Eighteen patients who preoperatively underwent PA-flow measurement using PC-MRI and perfusion-ventilation lung scintigraphy were evaluated. The PA-flow (cm3/sec) of MRI was calculated by multiplying maximum velocity (cm/sec) by region of interest (ROI) area (cm2) of measured main pulmonary artery using phase contrast method. The left to right ratio (R/L ratio) of PA-flow measured by PC-MRI was compared with the R/L ratios of the date of perfusion-ventilation lung scintigraphy. The R/L ratios of PC-MRI and perfusion lung scintigraphy were 1.43 ± 1.07 and 1.35 ± 0.82, respectively. Both ratios showed excellent correlation( y=-0.50+1.30x, r=0.99,pperfusion lung scintigraphy in the patients with a past history of lung resection, even if their R/L ratios of perfusion lung scintigraphy differed from those of ventilation lung scintigraphy. These results revealed that the PA-flow could be accurately measured by PC-MRI without contrast medium and nuclear medicine instruments.

  8. Monitoring hypoxia induced changes in cochlear blood flow and hemoglobin concentration using a combined dual-wavelength laser speckle contrast imaging and Doppler optical microangiography system.

    Directory of Open Access Journals (Sweden)

    Roberto Reif

    Full Text Available A synchronized dual-wavelength laser speckle contrast imaging (DWLSCI system and a Doppler optical microangiography (DOMAG system was developed to determine several ischemic parameters in the cochlea due to a systemic hypoxic challenge. DWLSCI can obtain two-dimensional data, and was used to determine the relative changes in cochlear blood flow, and change in the concentrations of oxyhemoglobin (HbO, deoxyhemoglobin (Hb and total hemoglobin (HbT in mice. DOMAG can obtain three-dimensional data, and was used to determine the changes in cochlear blood flow with single vessel resolution. It was demonstrated that during a hypoxic challenge there was an increase in the concentrations of Hb, a decrease in the concentrations of HbO and cochlear blood flow, and a slight decrease in the concentration of HbT. Also, the rate of change in the concentrations of Hb and HbO was quantified during and after the hypoxic challenge. The ability to simultaneously measure these ischemic parameters with high spatio-temporal resolution will allow the detailed quantitative analysis of several hearing disorders, and will be useful for diagnosing and developing treatments.

  9. Mapping blood flow directionality in the human brain.

    Science.gov (United States)

    Park, Sung-Hong; Do, Won-Joon; Choi, Seung Hong; Zhao, Tiejun; Bae, Kyongtae Ty

    2016-07-01

    Diffusion properties of tissue are often expressed on the basis of directional variance, i.e., diffusion tensor imaging. In comparison, common perfusion-weighted imaging such as arterial spin labeling yields perfusion in a scalar quantity. The purpose of this study was to test the feasibility of mapping cerebral blood flow directionality using alternate ascending/descending directional navigation (ALADDIN), a recently-developed arterial spin labeling technique with sensitivity to blood flow directions. ALADDIN was applied along 3 orthogonal directions to assess directional blood flow in a vector form and also along 6 equally-spaced directions to extract blood flow tensor matrix (P) based on a blood flow ellipsoid model. Tensor elements (eigenvalues, eigenvectors, etc) were calculated to investigate characteristics of the blood flow tensor, in comparison with time-of-flight MR angiogram. While the directions of the main eigenvectors were heterogeneous throughout the brain, regional clusters of blood flow directionality were reproducible across subjects. The technique could show heterogeneous blood flow directionality within and around brain tumor, which was different from that of the contralateral normal side. The proposed method is deemed to provide information of blood flow directionality, which has not been demonstrated before. The results warrant further studies to assess changes in the directionality map as a function of scan parameters, to understand the signal sources, to investigate the possibility of mapping local blood perfusion directionality, and to evaluate its usefulness for clinical diagnosis.

  10. Use of Caval Subtraction 2D Phase-Contrast MR Imaging to Measure Total Liver and Hepatic Arterial Blood Flow: Preclinical Validation and Initial Clinical Translation.

    Science.gov (United States)

    Chouhan, Manil D; Mookerjee, Rajeshwar P; Bainbridge, Alan; Walker-Samuel, Simon; Davies, Nathan; Halligan, Steve; Lythgoe, Mark F; Taylor, Stuart A

    2016-09-01

    Purpose To validate caval subtraction two-dimensional (2D) phase-contrast magnetic resonance (MR) imaging measurements of total liver blood flow (TLBF) and hepatic arterial fraction in an animal model and evaluate consistency and reproducibility in humans. Materials and Methods Approval from the institutional ethical committee for animal care and research ethics was obtained. Fifteen Sprague-Dawley rats underwent 2D phase-contrast MR imaging of the portal vein (PV) and infrahepatic and suprahepatic inferior vena cava (IVC). TLBF and hepatic arterial flow were estimated by subtracting infrahepatic from suprahepatic IVC flow and PV flow from estimated TLBF, respectively. Direct PV transit-time ultrasonography (US) and fluorescent microsphere measurements of hepatic arterial fraction were the standards of reference. Thereafter, consistency of caval subtraction phase-contrast MR imaging-derived TLBF and hepatic arterial flow was assessed in 13 volunteers (mean age, 28.3 years ± 1.4) against directly measured phase-contrast MR imaging PV and proper hepatic arterial inflow; reproducibility was measured after 7 days. Bland-Altman analysis of agreement and coefficient of variation comparisons were undertaken. Results There was good agreement between PV flow measured with phase-contrast MR imaging and that measured with transit-time US (mean difference, -3.5 mL/min/100 g; 95% limits of agreement [LOA], ±61.3 mL/min/100 g). Hepatic arterial fraction obtained with caval subtraction agreed well with those with fluorescent microspheres (mean difference, 4.2%; 95% LOA, ±20.5%). Good consistency was demonstrated between TLBF in humans measured with caval subtraction and direct inflow phase-contrast MR imaging (mean difference, -1.3 mL/min/100 g; 95% LOA, ±23.1 mL/min/100 g). TLBF reproducibility at 7 days was similar between the two methods (95% LOA, ±31.6 mL/min/100 g vs ±29.6 mL/min/100 g). Conclusion Caval subtraction phase-contrast MR imaging is a simple and clinically

  11. Glial and neuronal control of brain blood flow

    DEFF Research Database (Denmark)

    Attwell, David; Buchan, Alastair M; Charpak, Serge;

    2010-01-01

    Blood flow in the brain is regulated by neurons and astrocytes. Knowledge of how these cells control blood flow is crucial for understanding how neural computation is powered, for interpreting functional imaging scans of brains, and for developing treatments for neurological disorders. It is now...

  12. Ocular Blood Flow Autoregulation Mechanisms and Methods

    Directory of Open Access Journals (Sweden)

    Xue Luo

    2015-01-01

    Full Text Available The main function of ocular blood flow is to supply sufficient oxygen and nutrients to the eye. Local blood vessels resistance regulates overall blood distribution to the eye and can vary rapidly over time depending on ocular need. Under normal conditions, the relation between blood flow and perfusion pressure in the eye is autoregulated. Basically, autoregulation is a capacity to maintain a relatively constant level of blood flow in the presence of changes in ocular perfusion pressure and varied metabolic demand. In addition, ocular blood flow dysregulation has been demonstrated as an independent risk factor to many ocular diseases. For instance, ocular perfusion pressure plays key role in the progression of retinopathy such as glaucoma and diabetic retinopathy. In this review, different direct and indirect techniques to measure ocular blood flow and the effect of myogenic and neurogenic mechanisms on ocular blood flow are discussed. Moreover, ocular blood flow regulation in ocular disease will be described.

  13. Decrease of uteroplacental blood flow after feticide during second-trimester pregnancy termination with complete placenta previa: quantitative analysis using contrast-enhanced ultrasound imaging.

    Science.gov (United States)

    Poret-Bazin, H; Simon, E G; Bleuzen, A; Dujardin, P A; Patat, F; Perrotin, F

    2013-11-01

    Contrast enhanced ultrasound (CEUS) was used to quantify the dynamic changes in uteroplacental blood flow before and after the interruption of fetal villus circulation resulting from feticide during a second trimester pregnancy termination in a patient with complete placenta previa. Quantitative analysis was performed on time-intensity curves acquired 24 h before and 48 h and 120 h after feticide and demonstrated the persistence of utero-placental blood flow with a progressive and two-step reduction in intervillous space and uteroplacental blood flow. Our results suggest that placental blood flow reduction after interruption of fetal circulation is a progressive and delayed mechanism.

  14. Complementary tumor vascularity imaging in a single PET-CT routine using FDG early dynamic blood flow and contrast-enhanced CT texture analysis

    Science.gov (United States)

    Carmi, Raz; Yefremov, Nikolay; Bernstine, Hanna; Groshar, David

    2014-03-01

    A feasibility study of improved PET-CT tumor imaging approach is presented. A single PET-CT routine includes three different techniques: 18F-FDG early dynamic blood flow intended for perfusion assessment; standard late 18F-FDG uptake; and high-resolution contrast-enhanced CT enabling tissue texture analysis. Both PET protocols utilize the same single standard radiotracer dose administration. Quantitative volumetric arterial perfusion maps are derived from the reconstructed dynamic PET images corresponding to successive acquisition time intervals of 3 seconds only. For achieving high accuracy, the analysis algorithm differentiates the first-pass arterial flow from other interfering dynamic effects, and a noise reduction scheme based on adaptive total-variation minimization aims to provide appreciable quantitative map in physical conditions of high noise and low spatial resolution. The CT texture analysis comprises a practical and robust method for generating volumetric tissue irregularity maps. A local map value is represented by the entropy function which is derived from a weighted co-occurrence matrix histogram of the corresponding image voxel three-dimensional vicinity. Unique entropy scaling scheme and parameter optimization process, as well as appropriate scaling for varying image noise levels and contrast agent concentrations, improve the results toward quantitative absolute measure with respect to diverse scanning conditions and key analysis parameters. Representative imaging results are demonstrated on several clinical cases involving different organs and cancer types. In these cases, significant tumor characterization relative to the normal surrounding tissues is seen on the quantitative maps of all three imaging techniques. This proof of concept can lead the way to a new practical diagnostic imaging application.

  15. Magnetic Resonance Imaging Quantification of Regional Cerebral Blood Flow and Cerebrovascular Reactivity to Carbon Dioxide in Normotensive and Hypertensive Rats

    Science.gov (United States)

    Leoni, Renata F.; Paiva, Fernando F.; Henning, Erica C.; Nascimento, George C.; Tannús, Alberto; de Araujo, Draulio B.; Silva, Afonso C.

    2011-01-01

    Hypertension afflicts 25% of the general population and over 50% of the elderly. In the present work, arterial spin labeling MRI was used to non-invasively quantify regional cerebral blood flow (CBF), cerebrovascular resistance and CO2 reactivity in spontaneously hypertensive rats (SHR) and in normotensive Wistar Kyoto rats (WKY), at two different ages (3 months and 10 months) and under the effects of two anesthetics, α-chloralose and 2% isoflurane (1.5 MAC). Repeated CBF measurements were highly consistent, differing by less than 10% and 18% within and across animals, respectively. Under α-chloralose, whole brain CBF at normocapnia did not differ between groups (young WKY: 61±3ml/100g/min; adult WKY: 62±4ml/100g/min; young SHR: 70±9ml/100g/min; adult SHR: 69±8ml/100g/min), indicating normal cerebral autoregulation in SHR. At hypercapnia, CBF values increased significantly, and a linear relationship between CBF and PaCO2 levels was observed. In contrast, 2% isoflurane impaired cerebral autoregulation. Whole brain CBF in SHR was significantly higher than in WKY rats at normocapnia (young SHR: 139±25ml/100g/min; adult SHR: 104±23ml/100g/min; young WKY: 55±9ml/100g/min; adult WKY: 71±19ml/100g/min). CBF values increased significantly with increasing CO2; however, there was a clear saturation of CBF at PaCO2 levels greater than 70 mmHg in both young and adult rats, regardless of absolute CBF values, suggesting that isoflurane interferes with the vasodilatory mechanisms of CO2. This behavior was observed for both cortical and subcortical structures. Under either anesthetic, CO2 reactivity values in adult SHR were decreased, confirming that hypertension, when combined with age, increases cerebrovascular resistance and reduces cerebrovascular compliance. PMID:21708273

  16. Correlation of skin temperature and blood flow oscillations

    Science.gov (United States)

    Sagaidachnyi, A. A.; Usanov, D. A.; Skripal, A. V.; Fomin, A. V.

    2012-03-01

    Interrelation of skin temperature and blood flow oscillations of fingers under normal conditions in healthy subjects has been investigated. Oscillations of a blood flow were measured by means of photoplethysmography; oscillations of a temperature were registered by means of thermal imaging camera. The method of blood flow reconstruction by temperature oscillations with the use of the Pennes bioheat transfer equation and a definition of delay time of a temperature in relation to blood flow signal has been described. Temperature oscillations have a lag in relation to blood flow oscillations of approximately 10-20 seconds. Delay time of temperature waves can be used for the definition of an effective thickness of a tissue layer separating blood vessels and skin surface. Use of the described technique of comparison of finger blood flow and temperature oscillations allows to raise correlation coefficient of the signals from 0.35 to 0.63 on average, which testifies of high degree of conditionality of temperature oscillations by blood flow oscillations. The considered method of non-contact restoration of blood flow oscillations by means of temperature oscillation measurements might find practical application in skin thermal lesions research, research of influence of physical and chemical factors on a skin microcirculation.

  17. Radiohalogenated thienylethylamine derivatives for evaluating local cerebral blood flow

    Science.gov (United States)

    Goodman, Mark M.; Knapp, Jr., Furn F.

    1990-01-01

    Radiopharmaceuticals useful in brain imaging comprising radiohalogenated thienylethylamine derivatives. The compounds are 5-halo-thiophene-2-isopropyl amines able to cross the blood-brain barrier and be retained for a sufficient length of time to allow the evaluation or regional blood flow by radioimaging of the brain.

  18. Cerebral blood flow with [15O]water PET studies using an image-derived input function and MR-defined carotid centerlines

    Science.gov (United States)

    Fung, Edward K.; Carson, Richard E.

    2013-03-01

    Full quantitative analysis of brain PET data requires knowledge of the arterial input function into the brain. Such data are normally acquired by arterial sampling with corrections for delay and dispersion to account for the distant sampling site. Several attempts have been made to extract an image-derived input function (IDIF) directly from the internal carotid arteries that supply the brain and are often visible in brain PET images. We have devised a method of delineating the internal carotids in co-registered magnetic resonance (MR) images using the level-set method and applying the segmentations to PET images using a novel centerline approach. Centerlines of the segmented carotids were modeled as cubic splines and re-registered in PET images summed over the early portion of the scan. Using information from the anatomical center of the vessel should minimize partial volume and spillover effects. Centerline time-activity curves were taken as the mean of the values for points along the centerline interpolated from neighboring voxels. A scale factor correction was derived from calculation of cerebral blood flow (CBF) using gold standard arterial blood measurements. We have applied the method to human subject data from multiple injections of [15O]water on the HRRT. The method was assessed by calculating the area under the curve (AUC) of the IDIF and the CBF, and comparing these to values computed using the gold standard arterial input curve. The average ratio of IDIF to arterial AUC (apparent recovery coefficient: aRC) across 9 subjects with multiple (n = 69) injections was 0.49 ± 0.09 at 0-30 s post tracer arrival, 0.45 ± 0.09 at 30-60 s, and 0.46 ± 0.09 at 60-90 s. Gray and white matter CBF values were 61.4 ± 11.0 and 15.6 ± 3.0 mL/min/100 g tissue using sampled blood data. Using IDIF centerlines scaled by the average aRC over each subjects’ injections, gray and white matter CBF values were 61.3 ± 13.5 and 15.5 ± 3.4 mL/min/100 g tissue. Using global

  19. Test-retest repeatability of myocardial blood flow and infarct size using {sup 11}C-acetate micro-PET imaging in mice

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, Etienne; Renaud, Jennifer M.; McDonald, Matthew; Klein, Ran; DaSilva, Jean N.; Beanlands, Rob S.B.; DeKemp, Robert A. [University of Ottawa Heart Institute, National Cardiac PET Centre, Ottawa, Ontario (Canada)

    2015-09-15

    Global and regional responses of absolute myocardial blood flow index (iMBF) are used as surrogate markers to assess response to therapies in coronary artery disease. In this study, we assessed the test-retest repeatability of iMBF imaging, and the accuracy of infarct sizing in mice using {sup 11}C-acetate PET. {sup 11}C-Acetate cardiac PET images were acquired in healthy controls, endothelial nitric oxide synthase (eNOS) knockout transgenic mice, and mice after myocardial infarction (MI) to estimate global and regional iMBF, and myocardial infarct size compared to {sup 18}F-FDG PET and ex-vivo histology results. Global test-retest iMBF values had good coefficients of repeatability (CR) in healthy mice, eNOS knockout mice and normally perfused regions in MI mice (CR = 1.6, 2.0 and 1.5 mL/min/g, respectively). Infarct size measured on {sup 11}C-acetate iMBF images was also repeatable (CR = 17 %) and showed a good correlation with the infarct sizes found on {sup 18}F-FDG PET and histopathology (r{sup 2} > 0.77; p < 0.05). {sup 11}C-Acetate micro-PET assessment of iMBF and infarct size is repeatable and suitable for serial investigation of coronary artery disease progression and therapy. (orig.)

  20. Regional and voxel-wise comparisons of blood flow measurements between dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) and arterial spin labeling (ASL) in brain tumors.

    Science.gov (United States)

    White, Carissa M; Pope, Whitney B; Zaw, Taryar; Qiao, Joe; Naeini, Kourosh M; Lai, Albert; Nghiemphu, Phioanh L; Wang, J J; Cloughesy, Timothy F; Ellingson, Benjamin M

    2014-01-01

    The objective of the current study was to evaluate the regional and voxel-wise correlation between dynamic susceptibility contrast (DSC) and arterial spin labeling (ASL) perfusion magnetic resonance imaging (MRI) measurement of cerebral blood flow (CBF) in patients with brain tumors. Thirty patients with histologically verified brain tumors were evaluated in the current study. DSC-MRI was performed by first using a preload dose of gadolinium contrast, then collecting a dynamic image acquisition during a bolus of contrast, followed by posthoc contrast agent leakage correction. Pseudocontinuous ASL was collected using 30 pairs of tag and control acquisition using a 3-dimensional gradient-echo spin-echo (GRASE) acquisition. All images were registered to a high-resolution anatomical atlas. Average CBF measurements within regions of contrast-enhancement and T2 hyperintensity were evaluated between the two modalities. Additionally, voxel-wise correlation between CBF measurements obtained with DSC and ASL were assessed. Results demonstrated a positive linear correlation between DSC and ASL measurements of CBF when regional average values were compared; however, a statistically significant voxel-wise correlation was only observed in around 30-40% of patients. These results suggest DSC and ASL may provide regionally similar, but spatially different measurements of CBF.

  1. Test-retest repeatability of myocardial blood flow and infarct size using 11C-acetate micro-PET imaging in mice

    International Nuclear Information System (INIS)

    Global and regional responses of absolute myocardial blood flow index (iMBF) are used as surrogate markers to assess response to therapies in coronary artery disease. In this study, we assessed the test-retest repeatability of iMBF imaging, and the accuracy of infarct sizing in mice using 11C-acetate PET. 11C-Acetate cardiac PET images were acquired in healthy controls, endothelial nitric oxide synthase (eNOS) knockout transgenic mice, and mice after myocardial infarction (MI) to estimate global and regional iMBF, and myocardial infarct size compared to 18F-FDG PET and ex-vivo histology results. Global test-retest iMBF values had good coefficients of repeatability (CR) in healthy mice, eNOS knockout mice and normally perfused regions in MI mice (CR = 1.6, 2.0 and 1.5 mL/min/g, respectively). Infarct size measured on 11C-acetate iMBF images was also repeatable (CR = 17 %) and showed a good correlation with the infarct sizes found on 18F-FDG PET and histopathology (r2 > 0.77; p < 0.05). 11C-Acetate micro-PET assessment of iMBF and infarct size is repeatable and suitable for serial investigation of coronary artery disease progression and therapy. (orig.)

  2. Tissue blood flow mapping using laser technology

    Science.gov (United States)

    Wardell, Karin; Linden, Maria; Nilsson, Gert E.

    1995-03-01

    By the introduction of the laser Doppler perfusion imager (LDPI) the microvascular blood flow in a tissue area can be mapped by sequentially moving a laser beam over the tissue. The measurement is performed without touching the tissue and the captured perfusion values in the peripheral circulation are presented as a color-coded image. In the ordinary LDPI-set-up, 64 X 64 measurement sites cover an area in the range of about 10 - 150 cm2 depending on system settings. With a high resolution modification, recordings can be done on tissue areas as small as 1 cm2. This high resolution option has been assessed in animal models for the mapping of small vessels. To be able to record not only spatial but also temporal perfusion components of tissue blood flow, different local area scans (LAS) have been developed. These include single point recording as well as integration of either 2 X 2, 3 X 3, or 4 X 4 measurement sites. The laser beam is repeatedly moved in a quadratic pattern over the small tissue area of interest and the output value constitutes the average perfusion of all captured values within the actual region. For the evaluation, recordings were performed on healthy volunteers before and after application of a vasodilatating cream on the dorsal side of the hand.

  3. Subtracted dynamic MR perfusion source images (sMRP-SI) provide collateral blood flow assessment in MCA occlusions and predict tissue fate

    Energy Technology Data Exchange (ETDEWEB)

    Villringer, Kersten; Serrano-Sandoval, Rafael; Galinovic, Ivana; Ostwaldt, Ann-Christin; Brunecker, Peter; Fiebach, Jochen B. [Charite-Universitaetsmedizin, Academic Neuroradiology, Center for Stroke Research (CSB), Berlin (Germany); Grittner, Ulrike [Charite, Universitaetsmedizin Berlin, Center for Stroke Research, Berlin (Germany); Charite, Department for Biostatistics and Clinical Epidemiology, Berlin (Germany); Schneider, Alice [Charite, Universitaetsmedizin Berlin, Center for Stroke Research, Berlin (Germany); Rocco, Andrea [Charite, Department of Neurology and Center for Stroke Research, Berlin (Germany)

    2016-05-15

    Collateral blood flow is accepted as a predictive factor of tissue fate in ischemic stroke. Thus, we aimed to evaluate a new method derived from MR perfusion source images to assess collateral flow in patients with ICA/MCA occlusions. A total of 132 patients of the prospective 1000+ study were examined. MR perfusion source images were assessed according to Δimg{sub n} = img{sub n} + 1 - img{sub n} - 1 using the five-grade Higashida collateral flow rating system. Higashida scores were correlated to mismatch (MM) volume, mismatch ratio, day 6 FLAIR lesion volumes and day 90 mRS. Patients with Higashida scores 3 and 4 had significantly lower admission NIHSS, smaller FLAIR day 6 lesion volumes (p < 0.001) and higher rates of better long-term outcome (mRS 0-2, p = 0.002). There was a linear trend for the association of Higashida grade 1 (p = 0.002) and 2 (p = 0.001) with unfavourable outcome (day 90 mRS 3-6), but no significant association was found for MM volume, MM ratio and day 90 mRS. Inter-rater agreement was 0.58 (95 % CI 0.43-0.73) on day 1, 0.70 (95 % CI 0.58-0.81) on day 2. sMRP-SI Higashida score offers a non-invasive collateral vessel and tissue perfusion assessment of ischemic tissue. The predictive value of Higashida rating proved superior to MM with regard to day 90 mRS. (orig.)

  4. Subtracted dynamic MR perfusion source images (sMRP-SI) provide collateral blood flow assessment in MCA occlusions and predict tissue fate

    International Nuclear Information System (INIS)

    Collateral blood flow is accepted as a predictive factor of tissue fate in ischemic stroke. Thus, we aimed to evaluate a new method derived from MR perfusion source images to assess collateral flow in patients with ICA/MCA occlusions. A total of 132 patients of the prospective 1000+ study were examined. MR perfusion source images were assessed according to Δimgn = imgn + 1 - imgn - 1 using the five-grade Higashida collateral flow rating system. Higashida scores were correlated to mismatch (MM) volume, mismatch ratio, day 6 FLAIR lesion volumes and day 90 mRS. Patients with Higashida scores 3 and 4 had significantly lower admission NIHSS, smaller FLAIR day 6 lesion volumes (p < 0.001) and higher rates of better long-term outcome (mRS 0-2, p = 0.002). There was a linear trend for the association of Higashida grade 1 (p = 0.002) and 2 (p = 0.001) with unfavourable outcome (day 90 mRS 3-6), but no significant association was found for MM volume, MM ratio and day 90 mRS. Inter-rater agreement was 0.58 (95 % CI 0.43-0.73) on day 1, 0.70 (95 % CI 0.58-0.81) on day 2. sMRP-SI Higashida score offers a non-invasive collateral vessel and tissue perfusion assessment of ischemic tissue. The predictive value of Higashida rating proved superior to MM with regard to day 90 mRS. (orig.)

  5. Blood flow measurement of portal vein with fast cine phase contrast MR imaging under breath-holding

    International Nuclear Information System (INIS)

    Flow measurements of the right portal vein were performed in seven healthy volunteers with the segmented k-space fast gradient-echo phase-contrast (fcard-PC) sequence under breath-holding. The mean velocity and the flow rate of the right portal vein at maximal expiration, 14.3±4.4 cm/sec and 457±218 ml/min, were significantly greater (p<0.01) than those at maximal inspiration: 11.8±3.8 cm/sec (mean±SD) and 364±191 ml/min, respectively. Fcard-PC enabled flow measurements to be obtained under breath-holding. Using this technique, we demonstrated portal venous flow changes according to respiratory phase. (author)

  6. Blood flow measurement of portal vein with fast cine phase contrast MR imaging under breath-holding

    Energy Technology Data Exchange (ETDEWEB)

    Inaba, Fumitaka; Murakami, Takamichi; Sakurai, Kosuke; Tsuda, Kyo; Kim, Tonsoku; Tanaka, Hisashi; Kashiwagi, Nobuo; Nakamura, Hironobu [Osaka Univ. (Japan). Faculty of Medicine; Harada, Koshi

    1996-03-01

    Flow measurements of the right portal vein were performed in seven healthy volunteers with the segmented k-space fast gradient-echo phase-contrast (fcard-PC) sequence under breath-holding. The mean velocity and the flow rate of the right portal vein at maximal expiration, 14.3{+-}4.4 cm/sec and 457{+-}218 ml/min, were significantly greater (p<0.01) than those at maximal inspiration: 11.8{+-}3.8 cm/sec (mean{+-}SD) and 364{+-}191 ml/min, respectively. Fcard-PC enabled flow measurements to be obtained under breath-holding. Using this technique, we demonstrated portal venous flow changes according to respiratory phase. (author).

  7. Autoregressive moving average (ARMA) model applied to quantification of cerebral blood flow using dynamic susceptibility contrast-enhanced magnetic resonance imaging

    International Nuclear Information System (INIS)

    The purpose of this study was to investigate the feasibility of the autoregressive moving average (ARMA) model for quantification of cerebral blood flow (CBF) with dynamic susceptibility contrast-enhanced magnetic resonance imaging (DSC-MRI) in comparison with deconvolution analysis based on singular value decomposition (DA-SVD). Using computer simulations, we generated a time-dependent concentration of the contrast agent in the volume of interest (VOI) from the arterial input function (AIF) modeled as a gamma-variate function under various CBFs, cerebral blood volumes and signal-to-noise ratios (SNRs) for three different types of residue function (exponential, triangular, and box-shaped). We also considered the effects of delay and dispersion in AIF. The ARMA model and DA-SVD were used to estimate CBF values from the simulated concentration-time curves in the VOI and AIFs, and the estimated values were compared with the assumed values. We found that the CBF value estimated by the ARMA model was more sensitive to the SNR and the delay in AIF than that obtained by DA-SVD. Although the ARMA model considerably overestimated CBF at low SNRs, it estimated the CBF more accurately than did DA-SVD at high SNRs for the exponential or triangular residue function. We believe this study will contribute to an understanding of the usefulness and limitations of the ARMA model when applied to quantification of CBF with DSC-MRI. (author)

  8. 21 CFR 870.2120 - Extravascular blood flow probe.

    Science.gov (United States)

    2010-04-01

    ... blood flow probe. (a) Identification. An extravascular blood flow probe is an extravascular ultrasonic or electromagnetic probe used in conjunction with a blood flowmeter to measure blood flow in...

  9. Fully automated quantification of regional cerebral blood flow with three-dimensional stereotaxic region of interest template. Validation using magnetic resonance imaging. Technical note

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, Ryo; Katayama, Shigenori; Takeda, Naoya; Fujita, Katsuzo [Nishi-Kobe Medical Center (Japan); Yonekura, Yoshiharu [Fukui Medical Univ., Matsuoka (Japan); Konishi, Junji [Kyoto Univ. (Japan). Graduate School of Medicine

    2003-03-01

    The previously reported three-dimensional stereotaxic region of interest (ROI) template (3DSRT-t) for the analysis of anatomically standardized technetium-99m-L,L-ethyl cysteinate dimer ({sup 99m}Tc-ECD) single photon emission computed tomography (SPECT) images was modified for use in a fully automated regional cerebral blood flow (rCBF) quantification software, 3DSRT, incorporating an anatomical standardization engine transplanted from statistical parametric mapping 99 and ROIs for quantification based on 3DSRT-t. Three-dimensional T{sub 2}-weighted magnetic resonance images of 10 patients with localized infarcted areas were compared with the ROI contour of 3DSRT, and the positions of the central sulcus in the primary sensorimotor area were also estimated. All positions of the 20 lesions were in strict accordance with the ROI delineation of 3DSRT. The central sulcus was identified on at least one side of 210 paired ROIs and in the middle of 192 (91.4%) of these 210 paired ROIs among the 273 paired ROIs of the primary sensorimotor area. The central sulcus was recognized in the middle of more than 71.4% of the ROIs in which the central sulcus was identifiable in the respective 28 slices of the primary sensorimotor area. Fully automated accurate ROI delineation on anatomically standardized images is possible with 3DSRT, which enables objective quantification of rCBF and vascular reserve in only a few minutes using {sup 99m}Tc-ECD SPECT images obtained by the resting and vascular reserve (RVR) method. (author)

  10. Synthetic aperture tissue and flow ultrasound imaging

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav

    at every emission, which makes it possible to average over a large number of lines. This makes stationary echo canceling easier and significantly improves the velocity estimates. Only 8 emissions per plane are necessary to create the color flow map. Scanning 12 cm in depth, up to 800 planes can be obtained...... imaging applied to medical ultrasound. It is divided into two major parts: tissue and blood flow imaging. Tissue imaging using synthetic aperture algorithms has been investigated for about two decades, but has not been implemented in medical scanners yet. Among the other reasons, the conventional scanning...... and beamformation methods are adequate for the imaging modalities in clinical use - the B-mode imaging of tissue structures, and the color mapping of blood flow. The acquisition time, however, is too long, and these methods fail to perform real-time three-dimensional scans. The synthetic transmit aperture...

  11. Bone blood flow and metabolism in humans

    DEFF Research Database (Denmark)

    Heinonen, Ilkka; Kemppainen, Jukka; Kaskinoro, Kimmo;

    2012-01-01

    Human bone blood flow and metabolism during physical exercise remains poorly characterised. In the present study we measured femoral bone blood flow and glucose uptake in young healthy subjects by positron emission tomography in three separate protocols. In six women, blood flow was measured...... in femoral bone at rest and during one leg intermittent isometric exercise with increasing exercise intensities. In nine men, blood flow in femur was determined at rest and during dynamic one leg exercise, and two other physiological perturbations: moderate systemic hypoxia (14 O(2) ) at rest and during...... exercise, and during intra-femoral infusion of high-dose adenosine. Bone glucose uptake was measured at rest and during dynamic one leg exercise in five men. The results indicate that isometric exercise increased femoral bone blood flow from rest (1.8 ± 0.6 ml/100g/min) to low intensity exercise (4.1 ± 1...

  12. Diagnostic examination performance by using microvascular leakage, cerebral blood volume, and blood flow derived from 3-T dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging in the differentiation of glioblastoma multiforme and brain metastasis

    Energy Technology Data Exchange (ETDEWEB)

    Server, Andres; Nakstad, Per H. [Oslo University Hospital-Ullevaal, Section of Neuroradiology, Department of Radiology and Nuclear Medicine, Oslo (Norway); University of Oslo, Oslo (Norway); Orheim, Tone E.D. [Oslo University Hospital, Interventional Centre, Oslo (Norway); Graff, Bjoern A. [Oslo University Hospital-Ullevaal, Department of Radiology and Nuclear Medicine, Oslo (Norway); Josefsen, Roger [Oslo University Hospital-Ullevaal, Department of Neurosurgery, Oslo (Norway); Kumar, Theresa [Oslo University Hospital-Ullevaal, Department of Pathology, Oslo (Norway)

    2011-05-15

    Conventional magnetic resonance (MR) imaging has limited capacity to differentiate between glioblastoma multiforme (GBM) and metastasis. The purposes of this study were: (1) to compare microvascular leakage (MVL), cerebral blood volume (CBV), and blood flow (CBF) in the distinction of metastasis from GBM using dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging (DSC-MRI), and (2) to estimate the diagnostic accuracy of perfusion and permeability MR imaging. A prospective study of 61 patients (40 GBMs and 21 metastases) was performed at 3 T using DSC-MRI. Normalized rCBV and rCBF from tumoral (rCBVt, rCBFt), peri-enhancing region (rCBVe, rCBFe), and by dividing the value in the tumor by the value in the peri-enhancing region (rCBVt/e, rCBFt/e), as well as MVL were calculated. Hemodynamic and histopathologic variables were analyzed statistically and Spearman/Pearson correlations. Receiver operating characteristic curve analysis was performed for each of the variables. The rCBVe, rCBFe, and MVL were significantly greater in GBMs compared with those of metastases. The optimal cutoff value for differentiating GBM from metastasis was 0.80 which implies a sensitivity of 95%, a specificity of 92%, a positive predictive value of 86%, and a negative predictive value of 97% for rCBVe ratio. We found a modest correlation between rCBVt and rCBFt ratios. MVL measurements in GBMs are significantly higher than those in metastases. Statistically, both rCBVe, rCBVt/e and rCBFe, rCBFt/e were useful in differentiating between GBMs and metastases, supporting the hypothesis that perfusion MR imaging can detect infiltration of tumor cells in the peri-enhancing region. (orig.)

  13. The Physics of Coronary Blood Flow

    CERN Document Server

    Zamir, M

    2005-01-01

    Coronary blood flow is blood flow to the heart for its own metabolic needs. In the most common form of heart disease there is a disruption in this flow because of obstructive disease in the vessels that carry the flow. The subject of coronary blood flow is therefore associated mostly with the pathophysiology of this disease, rarely with dynamics or physics. Yet, the system responsible for coronary blood flow, namely the "coronary circulation," is a highly sophisticated dynamical system in which the dynamics and physics of the flow are as important as the integrity of the conducting vessels. While an obstruction in the conducting vessels is a fairly obvious and clearly visible cause of disruption in coronary blood flow, any discord in the complex dynamics of the system can cause an equally grave, though less conspicuous, disruption in the flow. This book is devoted specifically to the dynamics and physics of coronary blood flow. While relevance to the clinical and pathophysiological issues is clearly maintaine...

  14. Reproducibility of the capsaicin-induced dermal blood flow response as assessed by laser Doppler perfusion imaging

    OpenAIRE

    Van der Schueren, B J; Hoon, J.N.; Vanmolkot, F H; van Hecken, A; Depre, M; Kane, S.A.; De Lepeleire, I; Sinclair, S R

    2007-01-01

    What is already known about this subjectCapsaicin rapidly produces local neurogenic inflammation (characterized by oedema and erythema) when locally administered to the human skin by binding to the TRPV1 receptor present on dermal sensory nerve endings.In nonhuman primates, a pharmacodynamic assay has been described and validated using capsaicin-induced dermal vasodilation measured by laser Doppler perfusion imaging to assess calcitonin gene-related peptide antagonist activity.Laser Doppler p...

  15. Blood flow changes coincide with cellular rearrangements during blood vessel pruning in zebrafish embryos.

    Directory of Open Access Journals (Sweden)

    Eva Kochhan

    Full Text Available After the initial formation of a highly branched vascular plexus, blood vessel pruning generates a hierarchically structured network with improved flow characteristics. We report here on the cellular events that occur during the pruning of a defined blood vessel in the eye of developing zebrafish embryos. Time-lapse imaging reveals that the connection of a new blood vessel sprout with a previously perfused multicellular endothelial tube leads to the formation of a branched, Y-shaped structure. Subsequently, endothelial cells in parts of the previously perfused branch rearrange from a multicellular into a unicellular tube, followed by blood vessel detachment. This process is accompanied by endothelial cell death. Finally, we show that differences in blood flow between neighboring vessels are important for the completion of the pruning process. Our data suggest that flow induced changes in tubular architecture ensure proper blood vessel pruning.

  16. Surgical results in patients with unruptured asymptomatic cerebral aneurysms. Significance of evaluation of neuropsychological function, magnetic resonance images and cerebral blood flow

    International Nuclear Information System (INIS)

    We evaluated neuropsychological function, magnetic resonance (MR) images and cerebral blood flow (CBF) in patients with unruptured asymptomatic cerebral aneurysms. Among consecutive operations (n=73) on 70 patients since 2000, direct surgery was performed in 53 operations on 50 patients, and intravascular surgery was performed in 20 operations on 20 patients. Surgical results of direct surgery were studied. Direct surgery was selected mainly for patients with small and anterior circulation aneurysms. MR imaging was conducted 1 week after surgery, and Wechsler Adult Intelligence Scale-Revised (WAIS-R) examination and CBF measurement using 133Xe-SPECT were done before and 1 month after surgery. Abnormal neurological findings were recognized postoperatively in 26% of surgeries. Among them, visual disturbance was permanent in 4% of surgeries, all of which were surgeries for paraclinoid internal carotid artery aneurysms. WAIS-R results deteriorated in 26% of surgeries at 1 month and at least in 5% of surgeries at 1 year after surgery. MR images at 1 week after surgery revealed brain damage in 30% of surgeries and subdural fluid collection in 19% of surgeries. Patients with large brain damage or thick subdural fluid collection frequently showed neurological deficits and/or WAISR deterioration. These complications were recognized frequently in patients with ACoA aneurysms. Resting CBF decreased significantly in the area supplied by the anterior cerebral artery and anterior border zone on the operated side postoperatively. The brain damage and subdural fluid collection were observed frequently and caused neurological deficits and neuropsychological dysfunction, although these were usually transient. It may be necessary to evaluate neuropsychological function, MRI and CBF in patients with unruptured asymptomatic cerebral aneurysms to improve surgical results. (author)

  17. Stochastic modeling for magnetic resonance quantification of myocardial blood flow

    Science.gov (United States)

    Seethamraju, Ravi T.; Muehling, Olaf; Panse, Prasad M.; Wilke, Norbert M.; Jerosch-Herold, Michael

    2000-10-01

    Quantification of myocardial blood flow is useful for determining the functional severity of coronary artery lesions. With advances in MR imaging it has become possible to assess myocardial perfusion and blood flow in a non-invasive manner by rapid serial imaging following injection of contrast agent. To date most approaches reported in the literature relied mostly on deriving relative indices of myocardial perfusion directly from the measured signal intensity curves. The central volume principle on the other hand states that it is possible to derive absolute myocardial blood flow from the tissue impulse response. Because of the sensitivity involved in deconvolution due to noise in measured data, conventional methods are sub-optimal, hence, we propose to use stochastic time series modeling techniques like ARMA to obtain a robust impulse response estimate. It is shown that these methods when applied for the optical estimation of the transfer function give accurate estimates of myocardial blood flow. The most significant advantage of this approach, compared with compartmental tracer kinetic models, is the use of a minimum set of prior assumptions on data. The bottleneck in assessing myocardial blood flow, does not lie in the MRI acquisition, but rather in the effort or time for post processing. It is anticipated that the very limited requirements for user input and interaction will be of significant advantage for the clinical application of these methods. The proposed methods are validated by comparison with mean blood flow measurements obtained from radio-isotope labeled microspheres.

  18. Cerebral blood flow in asymptomatic individuals; Relationship with cerebrovascular risk factors and magnetic resonance imaging signal abnormalities

    Energy Technology Data Exchange (ETDEWEB)

    Isaka, Yoshinari; Iiji, Osamu; Ashida, Keiichi; Imaizumi, Masatoshi (National Osaka Hospital (Japan))

    1993-04-01

    We studied the relationship between cortical grey matter flow (CBF) and age, cerebrovascular risk factors and the severity of subcortical hypersignals (HS, hyperintensity score in MRI) in 47 asymptomatic subjects with cerebrovascular risk factors. Multiple regression analysis revealed that HS was most strongly related to CBF, and that hematocrit, age and evidence of ischemic change detected in the electrocardiogram also appeared to be independent determinants of CBF. Both the severity and location of hypersignals were correlated with CBF. The most significant negative correlation observed was that between CBF and HS in the basal ganglia-thalamic region, where the degree of signal abnormality was modest. Decreased CBF in asymptomatic subjects with cerebrovascular risk factors may be related to microcirculatory disturbance associated with elevated hematocrit and an increase in the number of risk factors, and functional suppression of cerebral cortex due to the neuronal disconnection associated with subcortical lesions. In addition, impaired cerebral circulation may be related to MRI signal abnormalities. (author).

  19. Measurements of diagnostic examination performance and correlation analysis using microvascular leakage, cerebral blood volume, and blood flow derived from 3T dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging in glial tumor grading

    International Nuclear Information System (INIS)

    To assess the diagnostic accuracy of microvascular leakage (MVL), cerebral blood volume (CBV) and blood flow (CBF) values derived from dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging (DSC-MR imaging) for grading of cerebral glial tumors, and to estimate the correlation between vascular permeability/perfusion parameters and tumor grades. A prospective study of 79 patients with cerebral glial tumors underwent DSC-MR imaging. Normalized relative CBV (rCBV) and relative CBF (rCBF) from tumoral (rCBVt and rCBFt), peri-enhancing region (rCBVe and rCBFe), and the value in the tumor divided by the value in the peri-enhancing region (rCBVt/e and rCBFt/e), as well as MVL, expressed as the leakage coefficient K2 were calculated. Hemodynamic variables and tumor grades were analyzed statistically and with Pearson correlations. Receiver operating characteristic (ROC) curve analyses were also performed for each of the variables. The differences in rCBVt and the maximum MVL (MVLmax) values were statistically significant among all tumor grades. Correlation analysis using Pearson was as follows: rCBVt and tumor grade, r = 0.774; rCBFt and tumor grade, r = 0.417; MVLmax and tumor grade, r = 0.559; MVLmax and rCBVt, r = 0.440; MVLmax and rCBFt, r = 0.192; and rCBVt and rCBFt, r = 0.605. According to ROC analyses for distinguishing tumor grade, rCBVt showed the largest areas under ROC curve (AUC), except for grade III from IV. Both rCBVt and MVLmax showed good discriminative power in distinguishing all tumor grades. rCBVt correlated strongly with tumor grade; the correlation between MVLmax and tumor grade was moderate. (orig.)

  20. Measurements of diagnostic examination performance and correlation analysis using microvascular leakage, cerebral blood volume, and blood flow derived from 3T dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging in glial tumor grading

    Energy Technology Data Exchange (ETDEWEB)

    Server, Andres; Nakstad, Per H. [Oslo University Hospital-Ullevaal, Section of Neuroradiology, Department of Radiology and Nuclear Medicine, Oslo (Norway); University of Oslo, Oslo (Norway); Graff, Bjoern A. [Oslo University Hospital-Ullevaal, Department of Radiology and Nuclear Medicine, Oslo (Norway); Orheim, Tone E.D.; Gadmar, Oeystein B. [Oslo University Hospital, Interventional Centre, Oslo (Norway); Schellhorn, Till [Oslo University Hospital-Ullevaal, Section of Neuroradiology, Department of Radiology and Nuclear Medicine, Oslo (Norway); Josefsen, Roger [Oslo University Hospital-Ullevaal, Department of Neurosurgery, Oslo (Norway)

    2011-06-15

    To assess the diagnostic accuracy of microvascular leakage (MVL), cerebral blood volume (CBV) and blood flow (CBF) values derived from dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging (DSC-MR imaging) for grading of cerebral glial tumors, and to estimate the correlation between vascular permeability/perfusion parameters and tumor grades. A prospective study of 79 patients with cerebral glial tumors underwent DSC-MR imaging. Normalized relative CBV (rCBV) and relative CBF (rCBF) from tumoral (rCBVt and rCBFt), peri-enhancing region (rCBVe and rCBFe), and the value in the tumor divided by the value in the peri-enhancing region (rCBVt/e and rCBFt/e), as well as MVL, expressed as the leakage coefficient K{sub 2} were calculated. Hemodynamic variables and tumor grades were analyzed statistically and with Pearson correlations. Receiver operating characteristic (ROC) curve analyses were also performed for each of the variables. The differences in rCBVt and the maximum MVL (MVL{sub max}) values were statistically significant among all tumor grades. Correlation analysis using Pearson was as follows: rCBVt and tumor grade, r = 0.774; rCBFt and tumor grade, r = 0.417; MVL{sub max} and tumor grade, r = 0.559; MVL{sub max} and rCBVt, r = 0.440; MVL{sub max} and rCBFt, r = 0.192; and rCBVt and rCBFt, r = 0.605. According to ROC analyses for distinguishing tumor grade, rCBVt showed the largest areas under ROC curve (AUC), except for grade III from IV. Both rCBVt and MVL{sub max} showed good discriminative power in distinguishing all tumor grades. rCBVt correlated strongly with tumor grade; the correlation between MVL{sub max} and tumor grade was moderate. (orig.)

  1. Blood flow autoregulation in pedicled flaps

    DEFF Research Database (Denmark)

    Bonde, Christian T; Holstein-Rathlou, Niels-Henrik; Elberg, Jens J

    2009-01-01

    INTRODUCTION: Clinical work on the blood perfusion in skin and muscle flaps has suggested that some degree of blood flow autoregulation exists in such flaps. An autoregulatory mechanism would enable the flap to protect itself from changes in the perfusion pressure. The purpose of the present study...... was to evaluate if, and to what extent, a tissue flap could compensate a reduction in blood flow due to an acute constriction of the feed artery. Further, we wanted to examine the possible role of smooth muscle L-type calcium channels in the autoregulatory mechanism by pharmacological intervention with the L......-type calcium channel blocker nimodipine and the vasodilator papaverine. MATERIAL AND METHODS: Pedicled flaps were raised in pigs. Flow in the pedicle was reduced by constriction of the feed artery (n=34). A transit time flow probe measured the effect on blood flow continuously. Following this, three different...

  2. High speed optical holography of retinal blood flow

    Science.gov (United States)

    Pellizzari, M.; Simonutti, M.; Degardin, J.; Sahel, J.-A.; Fink, M.; Paques, M.; Atlan, M.

    2016-08-01

    We performed non-invasive video imaging of retinal blood flow in a pigmented rat by holographic interferometry of near-infrared laser light backscattered by retinal tissue, beating against an off-axis reference beam sampled at a frame rate of 39 kHz with a high throughput camera. Local Doppler contrasts emerged from the envelopes of short-time Fourier transforms and the phase of autocorrelation functions of holograms rendered by Fresnel transformation. This approach permitted imaging of blood flow in large retinal vessels (30 microns diameter) over 400 by 400 pixels with a spatial resolution of 8 microns and a temporal resolution of 6.5 ms.

  3. High speed optical holography of retinal blood flow

    CERN Document Server

    Pellizzari, Mathilde; Degardin, Julie; Sahel, Jose-Alain; Fink, Mathias; Paques, Michel; Atlan, Michael

    2016-01-01

    We performed non-invasive video imaging of retinal blood flow in a pigmented rat by holographic interferometry of near-infrared laser light backscattered by retinal tissue, beating against an off-axis reference beam sampled at a frame rate of 39 kHz with a high throughput camera. Local Doppler contrasts emerged from the envelopes of short-time Fourier transforms and the phase of autocorrelation functions of holograms rendered by Fresnel transformation. This approach permitted imaging of blood flow in large retinal vessels (30 microns diameter) over 400 by 400 pixels with a spatial resolution of 8 microns and a temporal resolution of 6.5 ms.

  4. Total Mini-Mental State Examination score and regional cerebral blood flow using Z score imaging and automated ROI analysis software in subjects with memory impairment

    International Nuclear Information System (INIS)

    The Mini-Mental State Examination (MMSE) is considered a useful supplementary method to diagnose dementia and evaluate the severity of cognitive disturbance. However, the region of the cerebrum that correlates with the MMSE score is not clear. Recently, a new method was developed to analyze regional cerebral blood flow (rCBF) using a Z score imaging system (eZIS). This system shows changes of rCBF when compared with a normal database. In addition, a three-dimensional stereotaxic region of interest (ROI) template (3DSRT), fully automated ROI analysis software was developed. The objective of this study was to investigate the correlation between rCBF changes and total MMSE score using these new methods. The association between total MMSE score and rCBF changes was investigated in 24 patients (mean age±standard deviation (SD) 71.5±9.2 years; 6 men and 18 women) with memory impairment using eZIS and 3DSRT. Step-wise multiple regression analysis was used for multivariate analysis, with the total MMSE score as the dependent variable and rCBF change in 24 areas as the independent variable. Total MMSE score was significantly correlated only with the reduction of left hippocampal perfusion but not with right (P<0.01). Total MMSE score is an important indicator of left hippocampal function. (author)

  5. Brain magnetic resonance imaging with contrast dependent on blood oxygenation

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, S.; Lee, T.M.; Kay, A.R.; Tank, D.W. (AT and T Bell Laboratories, Murray Hill, NJ (United States))

    1990-12-01

    Paramagnetic deoxyhemoglobin in venous blood is a naturally occurring contrast agent for magnetic resonance imaging (MRI). By accentuating the effects of this agent through the use of gradient-echo techniques in high yields, the authors demonstrate in vivo images of brain microvasculature with image contrast reflecting the blood oxygen level. This blood oxygenation level-dependent (BOLD) contrast follows blood oxygen changes induced by anesthetics, by insulin-induced hypoglycemia, and by inhaled gas mixtures that alter metabolic demand or blood flow. The results suggest that BOLD contrast can be used to provide in vivo real-time maps of blood oxygenation in the brain under normal physiological conditions. BOLD contrast adds an additional feature to magnetic resonance imaging and complement other techniques that are attempting to provide position emission tomography-like measurements related to regional neural activity.

  6. Brain magnetic resonance imaging with contrast dependent on blood oxygenation

    International Nuclear Information System (INIS)

    Paramagnetic deoxyhemoglobin in venous blood is a naturally occurring contrast agent for magnetic resonance imaging (MRI). By accentuating the effects of this agent through the use of gradient-echo techniques in high yields, the authors demonstrate in vivo images of brain microvasculature with image contrast reflecting the blood oxygen level. This blood oxygenation level-dependent (BOLD) contrast follows blood oxygen changes induced by anesthetics, by insulin-induced hypoglycemia, and by inhaled gas mixtures that alter metabolic demand or blood flow. The results suggest that BOLD contrast can be used to provide in vivo real-time maps of blood oxygenation in the brain under normal physiological conditions. BOLD contrast adds an additional feature to magnetic resonance imaging and complement other techniques that are attempting to provide position emission tomography-like measurements related to regional neural activity

  7. 3D vector flow imaging

    DEFF Research Database (Denmark)

    Pihl, Michael Johannes

    The main purpose of this PhD project is to develop an ultrasonic method for 3D vector flow imaging. The motivation is to advance the field of velocity estimation in ultrasound, which plays an important role in the clinic. The velocity of blood has components in all three spatial dimensions, yet...... conventional methods can estimate only the axial component. Several approaches for 3D vector velocity estimation have been suggested, but none of these methods have so far produced convincing in vivo results nor have they been adopted by commercial manufacturers. The basis for this project is the Transverse...... on the TO fields are suggested. They can be used to optimize the TO method. In the third part, a TO method for 3D vector velocity estimation is proposed. It employs a 2D phased array transducer and decouples the velocity estimation into three velocity components, which are estimated simultaneously based on 5...

  8. Accurate blood flow measurements: are artificial tracers necessary?

    Directory of Open Access Journals (Sweden)

    Christian Poelma

    Full Text Available Imaging-based blood flow measurement techniques, such as particle image velocimetry, have become an important tool in cardiovascular research. They provide quantitative information about blood flow, which benefits applications ranging from developmental biology to tumor perfusion studies. Studies using these methods can be classified based on whether they use artificial tracers or red blood cells to visualize the fluid motion. We here present the first direct comparison in vivo of both methods. For high magnification cases, the experiments using red blood cells strongly underestimate the flow (up to 50% in the present case, as compared to the tracer results. For medium magnification cases, the results from both methods are indistinguishable as they give the same underestimation of the real velocities (approximately 33%, based on in vitro reference measurements. These results suggest that flow characteristics reported in literature cannot be compared without a careful evaluation of the imaging characteristics. A method to predict the expected flow averaging behavior for a particular facility is presented.

  9. A Reconstruction Method of Blood Flow Velocity in Left Ventricle Using Color Flow Ultrasound.

    Science.gov (United States)

    Jang, Jaeseong; Ahn, Chi Young; Jeon, Kiwan; Heo, Jung; Lee, DongHak; Joo, Chulmin; Choi, Jung-il; Seo, Jin Keun

    2015-01-01

    Vortex flow imaging is a relatively new medical imaging method for the dynamic visualization of intracardiac blood flow, a potentially useful index of cardiac dysfunction. A reconstruction method is proposed here to quantify the distribution of blood flow velocity fields inside the left ventricle from color flow images compiled from ultrasound measurements. In this paper, a 2D incompressible Navier-Stokes equation with a mass source term is proposed to utilize the measurable color flow ultrasound data in a plane along with the moving boundary condition. The proposed model reflects out-of-plane blood flows on the imaging plane through the mass source term. The boundary conditions to solve the system of equations are derived from the dimensions of the ventricle extracted from 2D echocardiography data. The performance of the proposed method is evaluated numerically using synthetic flow data acquired from simulating left ventricle flows. The numerical simulations show the feasibility and potential usefulness of the proposed method of reconstructing the intracardiac flow fields. Of particular note is the finding that the mass source term in the proposed model improves the reconstruction performance. PMID:26078773

  10. Multiscale Image Based Flow Visualization

    NARCIS (Netherlands)

    Telea, Alexandru; Strzodka, Robert

    2006-01-01

    We present MIBFV, a method to produce real-time, multiscale animations of flow datasets. MIBFV extends the attractive features of the Image-Based Flow Visualization (IBFV) method, i.e. dense flow domain coverage with flow-aligned noise, real-time animation, implementation simplicity, and few (or no)

  11. Quantitative myocardial blood flow with Rubidium-82 PET

    DEFF Research Database (Denmark)

    Hagemann, Christoffer E; Ghotbi, Adam A; Kjær, Andreas;

    2015-01-01

    Positron emission tomography (PET) allows assessment of myocardial blood flow in absolute terms (ml/min/g). Quantification of myocardial blood flow (MBF) and myocardial flow reserve (MFR) extend the scope of conventional semi-quantitative myocardial perfusion imaging (MPI): e.g. in 1) identificat......Positron emission tomography (PET) allows assessment of myocardial blood flow in absolute terms (ml/min/g). Quantification of myocardial blood flow (MBF) and myocardial flow reserve (MFR) extend the scope of conventional semi-quantitative myocardial perfusion imaging (MPI): e.g. in 1...... pretest probability of CAD can support the clinical decision-making in treatment of CAD patients as a complementary tool to the invasive coronary angiography (CAG). Recently, several studies have proven Rubidium-82 ((82)Rb) PET's long-term prognostic value by a significant association between compromised...... global MFR and major adverse cardiovascular events (MACE), and together with new diagnostic possibilities from measuring the longitudinal myocardial perfusion gradient, cardiac (82)Rb PET faces a promising clinical future. This article reviews current evidence on quantitative (82)Rb PET's ability...

  12. Non-gated fetal MRI of umbilical blood flow in an acardiac twin

    Energy Technology Data Exchange (ETDEWEB)

    Hata, Nobuhiko [University of Tokyo, Graduate School of Information Science and Technology, Tokyo (Japan); Brigham and Women' s Hospital, Department of Radiology, Boston, MA (United States); Wada, Toru [University of Tokyo, Graduate School of Information Science and Technology, Tokyo (Japan); Kashima, Kyoko; Okada, Yoshiyuki [National Center for Child Health and Development, Department of Radiology, Tokyo (Japan); Unno, Nobuya [Nagano Children' s Hospital, Center for Perinatal Medicine, Nagano (Japan); Kitagawa, Michihiro [National Center for Child Health and Development, Department of Prenatal Medicine and Maternal Care, Tokyo (Japan); Chiba, Toshio [National Center for Child Health and Development, Department of Strategic Medicine, Tokyo (Japan)

    2005-08-01

    Currently, the standard method of diagnosis of twin reversed arterial perfusion (TRAP) sequence is ultrasound imaging. The use of MRI for flow visualization may be a useful adjunct to US imaging for assessing the presence of retrograde blood flow in the acardiac fetus and/or umbilical artery. The technical challenge in fetal MRI flow imaging, however, is that fetal electrocardiogram (ECG) monitoring required for flow imaging is currently unavailable in the MRI scanner. A non-gated MRI flow imaging technique that requires no ECG monitoring was developed using the t-test to detect blood flow in 20 slices of phase-contrast MRI images randomly scanned at the same location over multiple cardiac cycles. A feasibility study was performed in a 24-week acardiac twin that showed no umbilical flow sonographically. Non-gated MRI flow images clearly indicated the presence of blood flow in the umbilical artery to the acardiac twin; however, there was no blood flow beyond the abdomen. This study leads us to conjecture that non-gated MRI flow imaging is sensitive in detecting low-range blood flow velocity and can be an adjunct to Doppler US imaging. (orig.)

  13. Effect of blood flow parameters on flow patterns at arterial bifurcations--studies in models.

    Science.gov (United States)

    Liepsch, D W

    1990-01-01

    Atherosclerotic lesions are found primarily at arterial bends and bifurcations. Flow disturbances at these anatomic sites play a major role in atherogenesis. How hemodynamic factors such as vessel geometry, the pulsatile nature of blood flow, vessel wall elasticity and the non-Newtonian flow behavior of blood influence the flow field at these sites must be clarified. We have performed fundamental studies using a birefringent solution in a simplified rigid 90 degree T-bifurcation and pulsatile flow. The velocity distribution was measured with a laser Doppler anemometer. Flow in an elastic abdominal aorta model has been visualized using magnetic resonance imaging. In both flow studies, zones with negative velocity were found. These model measurements demonstrate that no flow parameter can be neglected. Further detailed studies are necessary to examine the interaction between fluid dynamic and cellular surface properties. PMID:2404201

  14. Topical menthol increases cutaneous blood flow.

    Science.gov (United States)

    Craighead, Daniel H; Alexander, Lacy M

    2016-09-01

    Menthol, the active ingredient in several topically applied analgesics, activates transient receptor potential melastatin 8 (TRPM8) receptors on sensory nerves and on the vasculature inducing a cooling sensation on the skin. Ilex paraguariensis is also a common ingredient in topical analgesics that has potential vasoactive properties and may alter the mechanisms of action of menthol. We sought to characterize the microvascular effects of topical menthol and ilex application and to determine the mechanism(s) through which these compounds may independently and combined alter cutaneous blood flow. We hypothesized that menthol would induce vasoconstriction and that ilex would not alter skin blood flow (SkBF). Three separate protocols were conducted to examine menthol and ilex-mediated changes in SkBF. In protocol 1, placebo, 4% menthol, 0.7% ilex, and combination menthol+ilex gels were applied separately to the skin and red cell flux was continuously measured utilizing laser speckle contrast imaging (LSCI). In protocol 2, seven concentrations of menthol gel (0.04%, 0.4%, 1%, 2%, 4%, 7%, 8%) were applied to the skin to model the dose-response curve. In protocol 3, placebo, menthol, ilex, and menthol+ilex gels were applied to skin under local thermal control (34°C) both with and without sensory nerve blockage (topical lidocaine 4%). Post-occlusive reactive hyperemia (PORH) and local heating (42°C) protocols were conducted to determine the relative contribution of endothelium derived hyperpolarizing factors (EDHFs)/sensory nerves and nitric oxide (NO), respectively. Red cell flux was normalized to mean arterial pressure expressed as cutaneous vascular conductance (CVC: flux·mmHg(-1)) in all protocols. Topical menthol application increased SkBF compared to placebo (3.41±0.33 vs 1.1±0.19CVC: peffect, p<0.05) with an ED50 of 1.0%. Similarly, SkBF was increased after menthol application during PORH (3.62±0.29 vs. 2.50±0.21flux·mmHg(-1); p<0.001), but not local heating

  15. An implantable blood pressure and flow transmitter.

    Science.gov (United States)

    Rader, R. D.; Meehan, J. P.; Henriksen, J. K. C.

    1973-01-01

    A miniature totally implantable FM/FM telemetry system has been developed to simultaneously measure blood pressure and blood flow, thus providing an appreciation of the hemodynamics of the circulation to the entire body or to a particular organ. Developed for work with animal subjects, the telemetry system's transmission time is controlled by an RF signal that permits an operating life of several months. Pressure is detected by a miniature intravascular transducer and flow is detected by an extravascular interferometric ultrasonic technique. Both pressure and flow are calibrated prior to implanting. The pressure calibration can be checked after the implanting by cannulation; flow calibration can be verified only at the end of the experiment by determining the voltage output from the implanted sensing system as a function of several measured flow rates. The utility of this device has been established by its use in investigating canine renal circulation during exercise, emotional encounters, administration of drugs, and application of accelerative forces.

  16. Manage your blood sugar (image)

    Science.gov (United States)

    Checking your blood sugar levels often and writing down the results will tell you how well you are managing your diabetes so you ... possible. The best times to check your blood sugar are before meals and at bedtime. Your blood ...

  17. Regional cerebral blood flow in neuropediatrics

    International Nuclear Information System (INIS)

    Single photon emission computed tomography can effectively and non-invasively measure regional blood flow. Mostly used 99mTc-HMPAO is a safe brain imaging agent for pediatric applications. The radiation dose is acceptable. Knowledge of the normal rCBF pattern, including normal asymmetries and variations due to age, is necessary prerequisite for the evaluation and reporting of the results of 99mTc-HMPAO brain SPECT studies in clinical practice. The interpretation of he rCBF study in a child requires knowledge of normal brain maturation. The aim of the present review is to focus on the contribution to clinical developmental neurology of SPECT The clinical use of SPECT in developmental neurology are epilepsy, brain death, acute neurological loss including stroke, language disorders, cerebral palsy, high-risk neonates, hypertension due to renovascular disease, traumatic brain injury, migraine, anorexia nervosa, autism, Gilles de la Tourette syndrome, attention deficit disorder-hyperactivity, and monitoring therapy. Sedation is not routinely used, rather each child is evaluated. However, drug sedation is mandatory in some uncooperative children. (author)

  18. Peak flow meter (image)

    Science.gov (United States)

    A peak flow meter is commonly used by a person with asthma to measure the amount of air that can be ... become narrow or blocked due to asthma, peak flow values will drop because the person cannot blow ...

  19. Electromechanical Model of Blood Flow in Vessels

    OpenAIRE

    Ivo Cap; Barbora Czippelova

    2008-01-01

    The present paper deals with some theoretical derivations connected with very efficient method of solution of hydrodynamic problems of blood flow in human cardiovascular system. The electromechanical analogy of liquid flow in a tube and electromagnetic wave propagating along an electric transmission line is discussed. We have derived a detailed circuit-like model of an elementary section of the elastic tube with viscose Newtonian liquid. The analogy harmonic current electrical cir...

  20. Blood flow dynamics in the snake spectacle.

    Science.gov (United States)

    van Doorn, Kevin; Sivak, Jacob G

    2013-11-15

    The eyes of snakes are shielded beneath a layer of transparent integument referred to as the 'reptilian spectacle'. Well adapted to vision by virtue of its optical transparency, it nevertheless retains one characteristic of the integument that would otherwise prove detrimental to vision: its vascularity. Given the potential consequence of spectacle blood vessels on visual clarity, one might expect adaptations to have evolved that mitigate their negative impact. Earlier research demonstrated an adaptation to their spatial layout in only one species to reduce the vessels' density in the region serving the foveal and binocular visual fields. Here, we present a study of spectacle blood flow dynamics and provide evidence of a mechanism to mitigate the spectacle blood vessels' deleterious effect on vision by regulation of blood flow through them. It was found that when snakes are at rest and undisturbed, spectacle vessels undergo cycles of dilation and constriction, such that the majority of the time the vessels are fully constricted, effectively removing them from the visual field. When snakes are presented with a visual threat, spectacle vessels constrict and remain constricted for longer periods than occur during the resting cycles, thus guaranteeing the best possible visual capabilities in times of need. Finally, during the snakes' renewal phase when they are generating a new stratum corneum, the resting cycle is abolished, spectacle vessels remain dilated and blood flow remains strong and continuous. The significance of these findings in terms of the visual capabilities and physiology of snakes is discussed.

  1. Time-resolved volumetric MRI blood flow: a Doppler ultrasound perspective

    Science.gov (United States)

    van Pelt, Roy; Oliván Bescós, Javier; Nagel, Eike; Vilanova, Anna

    2014-03-01

    Hemodynamic information is increasingly inspected to assess cardiovascular disease. Abnormal blood-flow patterns include high-speed jet flow and regurgitant flow. Such pathological blood-flow patterns are nowadays mostly inspected by means of color Doppler ultrasound imaging. To date, Doppler ultrasound has been the prevailing modality for blood-flow analysis, providing non-invasive and cost-effective blood-flow imaging. Since recent years, magnetic resonance imaging (MRI) is increasingly employed to measure time-resolved blood-flow data. Albeit more expensive, MRI enables volumetric velocity encoding, providing true vector-valued data with less noise. Domain experts in the field of ultrasound and MRI have extensive experience in the interpretation of blood-flow information, although they employ different analysis techniques. We devise a visualization framework that extends on common Doppler ultrasound visualizations, exploiting the added value of MRI velocity data, and aiming for synergy between the domain experts. Our framework enables experts to explore the advantages and disadvantages of the current renditions of their imaging data. Furthermore, it facilitates the transition from conventional Doppler ultrasound images to present-day high-dimensional velocity fields. To this end, we present a virtual probe that enables direct exploration of MRI-acquired blood-flow velocity data using user-friendly interactions. Based on the probe, Doppler ultrasound inspired visualizations convey both in-plane and through-plane blood-flow velocities. In a compound view, these two-dimensional visualizations are linked to state-of-the-art three-dimensional blood-flow visualizations. Additionally, we introduce a novel volume rendering of the blood-flow velocity data that emphasizes anomalous blood-flow patterns. The visualization framework was evaluated by domain experts, and we present their feedback.

  2. Cerebral blood flow in acute mountain sickness

    DEFF Research Database (Denmark)

    Jensen, J B; Wright, Anne; Lassen, N A;

    1990-01-01

    Changes in cerebral blood flow (CBF) were measured using the radioactive xenon technique and were related to the development of acute mountain sickness (AMS). In 12 subjects, ascending from 150 to 3,475 m, CBF was 24% increased at 24 h [45.1 to 55.9 initial slope index (ISI) units] and 4% increased...

  3. Effects of aortic irregularities on blood flow.

    Science.gov (United States)

    Prahl Wittberg, Lisa; van Wyk, Stevin; Fuchs, Laszlo; Gutmark, Ephraim; Backeljauw, Philippe; Gutmark-Little, Iris

    2016-04-01

    Anatomic aortic anomalies are seen in many medical conditions and are known to cause disturbances in blood flow. Turner syndrome (TS) is a genetic disorder occurring only in females where cardiovascular anomalies, particularly of the aorta, are frequently encountered. In this study, numerical simulations are applied to investigate the flow characteristics in four TS patient- related aortic arches (a normal geometry, dilatation, coarctation and elongation of the transverse aorta). The Quemada viscosity model was applied to account for the non-Newtonian behavior of blood. The blood is treated as a mixture consisting of water and red blood cells (RBC) where the RBCs are modeled as a convected scalar. The results show clear geometry effects where the flow structures and RBC distribution are significantly different between the aortas. Transitional flow is observed as a jet is formed due to a constriction in the descending aorta for the coarctation case. RBC dilution is found to vary between the aortas, influencing the WSS. Moreover, the local variations in RBC volume fraction may induce large viscosity variations, stressing the importance of accounting for the non-Newtonian effects. PMID:26104133

  4. Frequency encoding in renal blood flow regulation

    DEFF Research Database (Denmark)

    Marsh, Donald J; Sosnovtseva, Olga; Pavlov, Alexey N;

    2005-01-01

    With a model of renal blood flow regulation, we examined consequences of tubuloglomerular feedback (TGF) coupling to the myogenic mechanism via voltage-gated Ca channels. The model reproduces the characteristic oscillations of the two mechanisms and predicts frequency and amplitude modulation...

  5. Cerebral blood flow tomography with xenon-133

    DEFF Research Database (Denmark)

    Lassen, N A

    1985-01-01

    Cerebral blood flow (CBF) can be measured tomographically by inhalation of Xenon-133. The calculation is based on taking a sequence of tomograms during the wash-in and wash-out phase of the tracer. Due to the dynamic nature of the process, a highly sensitive and fast moving single photon emission...

  6. Frequency encoding in renal blood flow regulation

    DEFF Research Database (Denmark)

    Marsh, D.J.; Sosnovtseva, Olga; Pavlov, A.N.;

    2005-01-01

    With a model of renal blood flow regulation, we examined consequences of tubuloglomerular feedback (TGF) coupling to the myogenic mechanism via voltage-gated Ca channels. The model reproduces the characteristic oscillations of the two mechanisms and predicts frequency and amplitude modulation of ...

  7. Xenon computed tomographic blood flow mapping

    International Nuclear Information System (INIS)

    Xenon CT flow information appears to be clinically useful in the diagnosis and management of a broad spectrum of clinical disorders. It also appears to be a useful tool for the experimental study of the cerebral circulation, with recent work also extending to application to the study of solid abdominal organs. The authors therefore found xenon CT CBF mapping to be a useful new blood flow methodology and are of the opinion that as CT technology improves, one will be able to obtain still better flow information with less accompanying radiation exposure and/or a reduction in the level of xenon inhalation required

  8. Low blood sugar symptoms (image)

    Science.gov (United States)

    ... nervousness and irritability are signs that a person's blood sugar is getting dangerously low. A person showing any of these symptoms should check their blood sugar. If the level is low (70 mg/dl), ...

  9. Arterial secondary blood flow patterns visualized with vector flow ultrasound

    DEFF Research Database (Denmark)

    Pedersen, Mads Møller; Pihl, Michael Johannes; Hansen, Jens Munk;

    2011-01-01

    This study presents the first quantification and visualisation of secondary flow patterns with vector flow ultrasound. The first commercial implementation of the vector flow method Transverse Oscillation was used to obtain in-vivo, 2D vector fields in real-time. The hypothesis of this study...... was that the rotational direction is constant within each artery. Three data sets of 10 seconds were obtained from three main arteries in healthy volunteers. For each data set the rotational flow patterns were identified during the diastole. Each data set contains a 2D vector field over time and with the vector angles...... and velocity magnitudes the blood flow patterns were visualised with streamlines in Matlab (Mathworks, Natick, MA, USA). The rotational flow was quantified by the angular frequency for each cardiac cycle, and the mean rotational frequencies and standard deviations were calculated for the abdominal aorta f-1...

  10. High speed optical holography of retinal blood flow.

    Science.gov (United States)

    Pellizzari, M; Simonutti, M; Degardin, J; Sahel, J-A; Fink, M; Paques, M; Atlan, M

    2016-08-01

    We performed noninvasive video imaging of retinal blood flow in a pigmented rat by holographic interferometry of near-infrared laser light backscattered by retinal tissue, beating against an off-axis reference beam sampled at a frame rate of 39 kHz with a high throughput camera. Local Doppler contrasts emerged from the envelopes of short-time Fourier transforms and the phase of autocorrelation functions of holograms rendered by Fresnel transformation. This approach permitted imaging of blood flow in large retinal vessels (∼30 microns diameter) over 400×400  pixels with a spatial resolution of ∼8 microns and a temporal resolution of ∼6.5  ms.

  11. High speed optical holography of retinal blood flow.

    Science.gov (United States)

    Pellizzari, M; Simonutti, M; Degardin, J; Sahel, J-A; Fink, M; Paques, M; Atlan, M

    2016-08-01

    We performed noninvasive video imaging of retinal blood flow in a pigmented rat by holographic interferometry of near-infrared laser light backscattered by retinal tissue, beating against an off-axis reference beam sampled at a frame rate of 39 kHz with a high throughput camera. Local Doppler contrasts emerged from the envelopes of short-time Fourier transforms and the phase of autocorrelation functions of holograms rendered by Fresnel transformation. This approach permitted imaging of blood flow in large retinal vessels (∼30 microns diameter) over 400×400  pixels with a spatial resolution of ∼8 microns and a temporal resolution of ∼6.5  ms. PMID:27472604

  12. Dexmedetomidine decreases the oral mucosal blood flow.

    Science.gov (United States)

    Kawaai, Hiroyoshi; Yoshida, Kenji; Tanaka, Eri; Togami, Kohei; Tada, Hitoshi; Ganzberg, Steven; Yamazaki, Shinya

    2013-12-01

    There is an abundance of blood vessels in the oral cavity, and intraoperative bleeding can disrupt operations. There have been some interesting reports about constriction of vessels in the oral cavity, one of which reported that gingival blood flow in cats is controlled by sympathetic α-adrenergic fibres that are involved with vasoconstriction. Dexmedetomidine is a sedative and analgesic agent that acts through the α-2 adrenoceptor, and is expected to have a vasoconstrictive action in the oral cavity. We have focused on the relation between the effects of α-adrenoceptors by dexmedetomidine and vasoconstriction in oral tissues, and assessed the oral mucosal blood flow during sedation with dexmedetomidine. The subjects comprised 13 healthy male volunteers, sedated with dexmedetomidine in a loading dose of 6 μg/kg/h for 10 min and a continuous infusion of 0.7 μg/kg/h for 32 min. The mean arterial pressure (MAP), heart rate (HR), cardiac output (CO), stroke volume (SV), systemic vascular resistance (SVR), and palatal mucosal blood flow (PMBF) were measured at 0, 5, 10, 12, 22, and 32 min after the start of the infusion. The HR, CO, and PBMF decreased significantly during the infusion even though there were no differences in the SV. The SVR increased significantly but the PMBF decreased significantly. In conclusion, PMBF was reduced by the mediating effect of dexmedetomidine on α-2 adrenoceptors. PMID:23958351

  13. Feasibility of patient specific aortic blood flow CFD simulation.

    Science.gov (United States)

    Svensson, Johan; Gårdhagen, Roland; Heiberg, Einar; Ebbers, Tino; Loyd, Dan; Länne, Toste; Karlsson, Matts

    2006-01-01

    Patient specific modelling of the blood flow through the human aorta is performed using computational fluid dynamics (CFD) and magnetic resonance imaging (MRI). Velocity patterns are compared between computer simulations and measurements. The workflow includes several steps: MRI measurement to obtain both geometry and velocity, an automatic levelset segmentation followed by meshing of the geometrical model and CFD setup to perform the simulations follwed by the actual simulations. The computational results agree well with the measured data. PMID:17354898

  14. Supersonic flow imaging via nanoparticles

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Due to influence of compressibility,shock wave,instabilities,and turbulence on supersonic flows, current flow visualization and imaging techniques encounter some problems in high spatiotemporal resolution and high signal-to-noise ratio(SNR)measurements.Therefore,nanoparticle based planar laser scattering method(NPLS)is developed here.The nanoparticles are used as tracer,and pulse planar laser is used as light source in NPLS;by recording images of particles in flow field with CCD, high spatiotemporal resolution supersonic flow imaging is realized.The flow-following ability of nanoparticles in supersonic flows is studied according to multiphase flow theory and calibrating experiment of oblique shock wave.The laser scattering characteristics of nanoparticles are analyzed with light scattering theory.The results of theoretical and experimental studies show that the dynamic behavior and light scattering characteristics of nanoparticles highly enhance the spatiotemporal resolution and SNR of NPLS,with which the flow field involving shock wave,expansion,Mach disk,boundary layer,sliding-line,and mixing layer can be imaged clearly at high spatiotemporal resolution.

  15. Supersonic flow imaging via nanoparticles

    Institute of Scientific and Technical Information of China (English)

    ZHAO YuXin; YI ShiHe; TIAN LiFeng; CHENG ZhongYu

    2009-01-01

    Due to influence of compressibility,shock wave,instabilities,and turbulence on supersonic flows,current flow visualization and imaging techniques encounter some problems in high spatiotemporal resolution and high signal-to-noise ratio(SNR)measurements.Therefore,nanoparticle based planar laser scattering method(NPLS)is developed here.The nanoparticles are used as tracer,and pulse planar laser is used as light source in NPLS;by recording images of particles in flow field with CCD,high spatiotemporal resolution supersonic flow imaging is realized.The flow-following ability of nanoparticles in supersonic flows is studied according to multiphase flow theory and calibrating experiment of oblique shock wave.The laser scattering characteristics of nanoparticles are analyzed with light scattering theory.The results of theoretical and experimental studies show that the dynamic behavior and light scattering characteristics of nanoparticles highly enhance the spatiotemporal resolution and SNR of NPLS,with which the flow field involving shock wave,expansion,Mach disk,boundary layer,sliding-line,and mixing layer can be imaged clearly at high spatiotemporal resolution.

  16. Methods for blood flow measurements using ultrasound contrast agents

    Science.gov (United States)

    Fowlkes, J. Brian

    2003-10-01

    Blood flow measurements using ultrasound contrast agents are being investigated for myocardial perfusion and more recently in other organ systems. The methods are based largely on the relative increase in echogenicity due to the concentration of bubbles present in the ultrasound beam. In the simplest form, regional differences in blood volume can be inferred but the possibility exists to extract perfusion from the transit of contrast agent through tissue. Perfusion measurements rely on determining the flux of blood through a tissue volume and as such require knowledge of the fractional blood volume (FBV), i.e., ml blood/g tissue and the rate of exchange, commonly measured as the mean transit time (MTT). This presentation will discuss methods of determining each of these values and their combination to estimate tissue perfusion. Underlying principles of indicator-dilution theory will be provided in the context of ultrasound contrast agents. Current methods for determining MTT will include imaging of the intravenous bolus, in-plane contrast disruption with interval and real-time contrast recovery imaging, and control of contrast agent flow using arterial disruption (contrast interruption). The advantages and limitations of the methods will be examined along with current applications. [Work supported in part by NIH.

  17. Diabetes and blood pressure (image)

    Science.gov (United States)

    People with diabetes have a higher risk for heart attacks and strokes. Your doctor or nurse should check your blood pressure ... People with diabetes have a higher risk for heart attacks and strokes. Your doctor or nurse should check your blood pressure ...

  18. Effect of TIPS placement on portal and splanchnic arterial blood flow in 4-dimensional flow MRI

    Energy Technology Data Exchange (ETDEWEB)

    Stankovic, Zoran [Northwestern University, Department of Radiology, Feinberg School of Medicine, Chicago, IL (United States); University Medical Center Freiburg, Department of Diagnostic Radiology and Medical Physics, Freiburg (Germany); Roessle, Martin; Schultheiss, Michael [University Medical Center Freiburg, Department of Gastroenterology, Freiburg (Germany); Euringer, Wulf; Langer, Mathias [University Medical Center Freiburg, Department of Diagnostic Radiology and Medical Physics, Freiburg (Germany); Salem, Riad; Barker, Alex; Carr, James; Collins, Jeremy D. [Northwestern University, Department of Radiology, Feinberg School of Medicine, Chicago, IL (United States); Markl, Michael [Northwestern University, Department of Radiology, Feinberg School of Medicine, Chicago, IL (United States); Northwestern University, Department of Biomedical Engineering, McCormick School of Engineering, Chicago, IL (United States)

    2015-09-15

    To assess changes in portal and splanchnic arterial haemodynamics in patients undergoing transjugular intrahepatic portosystemic shunt (TIPS) using four-dimensional (4D) flow MRI, a non-invasive, non-contrast imaging technique. Eleven patients undergoing TIPS implantation were enrolled. K-t GRAPPA accelerated non-contrast 4D flow MRI of the liver vasculature was applied with acceleration factor R = 5 at 3Tesla. Flow analysis included three-dimensional (3D) blood flow visualization using time-resolved 3D particle traces and semi-quantitative flow pattern grading. Quantitative evaluation entailed peak velocities and net flows throughout the arterial and portal venous (PV) systems. MRI measurements were taken within 24 h before and 4 weeks after TIPS placement. Three-dimensional flow visualization with 4D flow MRI revealed good image quality with minor limitations in PV flow. Quantitative analysis revealed a significant increase in PV flow (562 ± 373 ml/min before vs. 1831 ± 965 ml/min after TIPS), in the hepatic artery (176 ± 132 ml/min vs. 354 ± 140 ml/min) and combined flow in splenic and superior mesenteric arteries (770 ml/min vs. 1064 ml/min). Shunt-flow assessment demonstrated stenoses in two patients confirmed and treated at TIPS revision. Four-dimensional flow MRI might have the potential to give new information about the effect of TIPS placement on hepatic perfusion. It may explain some unexpected findings in clinical observation studies. (orig.)

  19. Effect of TIPS placement on portal and splanchnic arterial blood flow in 4-dimensional flow MRI

    International Nuclear Information System (INIS)

    To assess changes in portal and splanchnic arterial haemodynamics in patients undergoing transjugular intrahepatic portosystemic shunt (TIPS) using four-dimensional (4D) flow MRI, a non-invasive, non-contrast imaging technique. Eleven patients undergoing TIPS implantation were enrolled. K-t GRAPPA accelerated non-contrast 4D flow MRI of the liver vasculature was applied with acceleration factor R = 5 at 3Tesla. Flow analysis included three-dimensional (3D) blood flow visualization using time-resolved 3D particle traces and semi-quantitative flow pattern grading. Quantitative evaluation entailed peak velocities and net flows throughout the arterial and portal venous (PV) systems. MRI measurements were taken within 24 h before and 4 weeks after TIPS placement. Three-dimensional flow visualization with 4D flow MRI revealed good image quality with minor limitations in PV flow. Quantitative analysis revealed a significant increase in PV flow (562 ± 373 ml/min before vs. 1831 ± 965 ml/min after TIPS), in the hepatic artery (176 ± 132 ml/min vs. 354 ± 140 ml/min) and combined flow in splenic and superior mesenteric arteries (770 ml/min vs. 1064 ml/min). Shunt-flow assessment demonstrated stenoses in two patients confirmed and treated at TIPS revision. Four-dimensional flow MRI might have the potential to give new information about the effect of TIPS placement on hepatic perfusion. It may explain some unexpected findings in clinical observation studies. (orig.)

  20. Synchronized renal blood flow dynamics mapped with wavelet analysis of laser speckle flowmetry data

    DEFF Research Database (Denmark)

    Brazhe, Alexey R; Marsh, Donald J; von Holstein-Rathlou, Niels-Henrik;

    2014-01-01

    Full-field laser speckle microscopy provides real-time imaging of superficial blood flow rate. Here we apply continuous wavelet transform to time series of speckle-estimated blood flow from each pixel of the images to map synchronous patterns in instantaneous frequency and phase on the surface...... of rat kidneys. The regulatory mechanism in the renal microcirculation generates oscillations in arterial blood flow at several characteristic frequencies. Our approach to laser speckle image processing allows detection of frequency and phase entrainments, visualization of their patterns, and estimation...... of the extent of synchronization in renal cortex dynamics....

  1. Regional blood flow studies with radioisotopes

    International Nuclear Information System (INIS)

    The methodological approaches to blood flow analysis include (1) diffusible indicator methods, (2) clearance techniques and (3) nondiffusible indicator methods. In each case, accurate measurements of blood flow can be obtained by developing mathematical models which relate the time-dependent observation derived from following the fate of a radiotracer as a function of time to the physiological process itself. Application of these models to biological systems involves constraints and necessitates compromises which may affect the validity of the measurements. Nevertheless, when these techniques are carefully applied and adequately validated, they have provided critical physiological information about such organ systems as the brain and kidney and promise to provide diagnostic information in patients with suspected coronary and peripheral vascular disease

  2. Caffeine reduces myocardial blood flow during exercise.

    Science.gov (United States)

    Higgins, John P; Babu, Kavita M

    2013-08-01

    Caffeine consumption has been receiving increased interest from both the medical and lay press, especially given the increased amounts now available in energy products. Acute ingestion of caffeine usually increases cardiac work; however, caffeine impairs the expected proportional increase in myocardial blood flow to match this increased work of the heart, most notably during exercise. This appears to be mainly due to caffeine's effect on blocking adenosine-induced vasodilatation in the coronary arteries in normal healthy subjects. This review summarizes the available medical literature specifically relating to pure caffeine tablet ingestion and reduced exercise coronary blood flow, and suggests possible mechanisms. Further studies are needed to evaluate this effect for other common caffeine-delivery systems, including coffee, energy beverages, and energy gels, which are often used for exercise performance enhancement, especially in teenagers and young athletes. PMID:23764265

  3. A stereotaxic method of anatomical localization by means of H{sub 2}{sup 15}O positron emission tomography applicable to the brain activation study in cats. Registration of images of cerebral blood flow to brain atlas

    Energy Technology Data Exchange (ETDEWEB)

    Sakiyama, Yojiro; Toyama, Hinako; Oda, Keiichi; Ishii, Shin-ichi; Ishiwata, Kiichi; Ishii, Kenji; Suzuki, Atsuko; Nakayama, Hitomi; Senda, Michio [Tokyo Metropolitan Inst. of Gerontology (Japan)

    1997-11-01

    In the neuronal activation study of normal animals, precise anatomical correlation, preferentially to a detailed brain atlas, is required for the activation foci co-registration. To obtain precise regional correlation between H{sub 2}{sup 15}O-PET images and the brain atlas, a method of stereotaxic image reorientation was applied to an activation study with vibrotactile stimulation. Cats anesthetized with halothane underwent repeated measurements of regional cerebral blood flow (rCBF) in the resting condition and during vibration of the right forepaw. The image set was adjusted three-dimensionally to the atlas. The postmortem brain was sectioned according to the atlas planes. The activated areas were determined by the stimulus-minus-resting subtraction images, and the areas were projected to the atlas. The PET images of the cat brain were compatible both to the postmortem brain slices and to the brain atlas. The activation foci obtained from the subtraction images corresponded to the area around the coronal sulcus, which is electrophysiologically known as the primary sensory area as described in the atlas. There were precise regional correlations between the PET image and anatomy in a PET activation study of the cat by means of stereotaxic image reorientation. (author)

  4. Blood flow-restricted exercise in space

    OpenAIRE

    Hackney, Kyle J; Everett, Meghan; Scott, Jessica M; Ploutz-Snyder, Lori

    2012-01-01

    Prolonged exposure to microgravity results in chronic physiological adaptations including skeletal muscle atrophy, cardiovascular deconditioning, and bone demineralization. To attenuate the negative consequences of weightlessness during spaceflight missions, crewmembers perform moderate- to high-load resistance exercise in conjunction with aerobic (cycle and treadmill) exercise. Recent evidence from ground-based studies suggests that low-load blood flow-restricted (BFR) resistance exercise tr...

  5. Red blood cell in simple shear flow

    Science.gov (United States)

    Chien, Wei; Hew, Yayu; Chen, Yeng-Long

    2013-03-01

    The dynamics of red blood cells (RBC) in blood flow is critical for oxygen transport, and it also influences inflammation (white blood cells), thrombosis (platelets), and circulatory tumor migration. The physical properties of a RBC can be captured by modeling RBC as lipid membrane linked to a cytoskeletal spectrin network that encapsulates cytoplasm rich in hemoglobin, with bi-concave equilibrium shape. Depending on the shear force, RBC elasticity, membrane viscosity, and cytoplasm viscosity, RBC can undergo tumbling, tank-treading, or oscillatory motion. We investigate the dynamic state diagram of RBC in shear and pressure-driven flow using a combined immersed boundary-lattice Boltzmann method with a multi-scale RBC model that accurately captures the experimentally established RBC force-deformation relation. It is found that the tumbling (TU) to tank-treading (TT) transition occurs as shear rate increases for cytoplasm/outer fluid viscosity ratio smaller than 0.67. The TU frequency is found to be half of the TT frequency, in agreement with experiment observations. Larger viscosity ratios lead to the disappearance of stable TT phase and unstable complex dynamics, including the oscillation of the symmetry axis of the bi-concave shape perpendicular to the flow direction. The dependence on RBC bending rigidity, shear modulus, the order of membrane spectrin network and fluid field in the unstable region will also be discussed.

  6. Aortic blood flow subtraction: an alternative method for measuring total renal blood flow in conscious dogs

    DEFF Research Database (Denmark)

    Sandgaard, N C F; Andersen, J L; Holstein-Rathlou, N-H;

    2002-01-01

    We have measured total renal blood flow (TRBF) as the difference between signals from ultrasound flow probes implanted around the aorta above and below the renal arteries. The repeatability of the method was investigated by repeated, continuous infusions of angiotensin II and endothelin-1 seven...

  7. Application of stressed cerebral blood flow perfusion imaging in cerebrovascular disease%负荷试验脑血流灌注显像在脑血管疾病中的应用

    Institute of Scientific and Technical Information of China (English)

    尹立杰; 刘杰; 金超岭; 王荣福

    2016-01-01

    The incidence of ischemic cerebrovascular disease is currently high. The disease can be diagnosed and treated by numerous methods, including transcranial doppler, CT angiography, MRI, digital subtraction angiography and cerebral blood flow perfusion imaging of resting and stress states. In these methods, the clinical application of stressed cerebral blood flow perfusion imaging is very wide and includes vertical load tests, CO2 inhalation load tests, acetazolamide stress tests, dipyridamole stress tests, and adenosine stress tests. Stressed cerebral blood flow perfusion imaging can provide an objective basis for the early diagnosis, curative effect evaluation, prognostic estimation, and evaluation of brain reserve function.%目前,缺血性脑血管病发病率较高,对其诊治方法很多,包括经颅多普勒超声、 CT血管造影、 MRI、数字减影血管造影和静息及负荷试验脑血流灌注显像等。其中,负荷试验脑血流灌注显像包括直立负荷试验、 CO2吸入负荷试验、乙酰唑胺负荷试验、潘生丁负荷试验、腺苷负荷试验等,其临床应用非常广泛,为临床早期诊断、疗效评价、预后以及脑血流储备功能的评估提供了客观依据。

  8. Surfactant bolus instillation: effects of different doses on blood pressure and cerebral blood flow velocities

    OpenAIRE

    Rey, M.; Segerer, Hugo; Kiessling, C.; Obladen, Michael

    1994-01-01

    Fifteen preterm infants suffering from respiratory distress syndrome were randomly allocated to receive either high-dose (200 mg/kg) or low-dose (100 mg/kg) surfactant treatment. Retreatments were done with the low dose. Blood pressure, blood gases and cerebral blood flow velocities were determined before and after 24 bolus instillations. With the high dose mean blood pressure and mean cerebral blood flow velocity dropped significantly. With the low dose only mean cerebral blood flow velocity...

  9. Dynamic changes in the distribution and time course of blood-brain barrier-permeative nitroxides in the mouse head with EPR imaging: visualization of blood flow in a mouse model of ischemia.

    Science.gov (United States)

    Emoto, Miho C; Sato-Akaba, Hideo; Hirata, Hiroshi; Fujii, Hirotada G

    2014-09-01

    Electron paramagnetic resonance (EPR) imaging using nitroxides as redox-sensitive probes is a powerful, noninvasive method that can be used under various physiological conditions to visualize changes in redox status that result from oxidative damage. Two blood-brain barrier-permeative nitroxides, 3-hydroxymethyl-2,2,5,5-tetramethylpyrrolidine-1-oxyl (HMP) and 3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine-1-yloxy (MCP), have been widely used as redox-sensitive probes in the brains of small animals, but their in vivo distribution and properties have not yet been analyzed in detail. In this study, a custom-made continuous-wave three-dimensional (3D) EPR imager was used to obtain 3D EPR images of mouse heads using MCP or HMP. This EPR imager made it possible to take 3D EPR images reconstructed from data from 181 projections acquired every 60s. Using this improved EPR imager and magnetic resonance imaging, the distribution and reduction time courses of HMP and MCP were examined in mouse heads. EPR images of living mice revealed that HMP and MCP have different distributions and different time courses for entering the brain. Based on the pharmacokinetics of the reduction reactions of HMP and MCP in the mouse head, the half-lives of HMP and MCP were clearly and accurately mapped pixel by pixel. An ischemic mouse model was prepared, and the half-life of MCP was mapped in the mouse head. Compared to the half-life in control mice, the half-life of MCP in the ischemic model mouse brain was significantly increased, suggesting a shift in the redox balance. This in vivo EPR imaging method using BBB-permeative MCP is a useful noninvasive method for assessing changes in the redox status in mouse brains under oxidative stress.

  10. Images of Blood in American Cinema

    DEFF Research Database (Denmark)

    Rødje, Kjetil

    Through studying images of blood in film from the mid-1950s to the end of the 1960s, this path-breaking book explores how blood as an (audio)visual cinematic element went from predominately operating as a signifier, providing audiences with information about a film’s plot and characters, to incre...

  11. Feasibility of measuring renal blood flow by phase-contrast magnetic resonance imaging in patients with autosomal dominant polycystic kidney disease

    Energy Technology Data Exchange (ETDEWEB)

    Spithoven, E.M.; Meijer, E.; Boertien, W.E.; Gaillard, C.A.J.M.; Jong, P.E. de; Gansevoort, R.T. [University of Groningen, Department of Nephrology, Community and Occupational Medicine, University Medical Center Groningen, PO Box 30.001, RB Groningen (Netherlands); Borns, C.; Kappert, P.; Greuter, M.J.W.; Jagt, E. van der [University of Groningen, Department of Radiology, Community and Occupational Medicine, University Medical Center Groningen, Groningen (Netherlands); Vart, P. [University of Groningen, Department of Health Sciences, Community and Occupational Medicine, University Medical Center Groningen, Groningen (Netherlands)

    2016-03-15

    Renal blood flow (RBF) has been shown to predict disease progression in autosomal dominant polycystic kidney disease (ADPKD). We investigated the feasibility and accuracy of phase-contrast RBF by MRI (RBF{sub MRI}) in ADPKD patients with a wide range of estimated glomerular filtration rate (eGFR) values. First, we validated RBF{sub MRI} measurement using phantoms simulating renal artery hemodynamics. Thereafter, we investigated in a test-set of 21 patients intra- and inter-observer coefficient of variation of RBF{sub MRI}. After validation, we measured RBF{sub MRI} in a cohort of 91 patients and compared the variability explained by characteristics indicative for disease severity for RBF{sub MRI} and RBF measured by continuous hippuran infusion. The correlation in flow measurement using phantoms by phase-contrast MRI was high and fluid collection was high (CCC=0.969). Technical problems that precluded RBF{sub MRI} measurement occurred predominantly in patients with a lower eGFR (34% vs. 16%). In subjects with higher eGFRs, variability in RBF explained by disease characteristics was similar for RBF{sub MRI} compared to RBF{sub Hip,} whereas in subjects with lower eGFRs, this was significantly less for RBF{sub MRI}. Our study shows that RBF can be measured accurately in ADPKD patients by phase-contrast, but this technique may be less feasible in subjects with a lower eGFR. (orig.)

  12. Feasibility of measuring renal blood flow by phase-contrast magnetic resonance imaging in patients with autosomal dominant polycystic kidney disease

    International Nuclear Information System (INIS)

    Renal blood flow (RBF) has been shown to predict disease progression in autosomal dominant polycystic kidney disease (ADPKD). We investigated the feasibility and accuracy of phase-contrast RBF by MRI (RBFMRI) in ADPKD patients with a wide range of estimated glomerular filtration rate (eGFR) values. First, we validated RBFMRI measurement using phantoms simulating renal artery hemodynamics. Thereafter, we investigated in a test-set of 21 patients intra- and inter-observer coefficient of variation of RBFMRI. After validation, we measured RBFMRI in a cohort of 91 patients and compared the variability explained by characteristics indicative for disease severity for RBFMRI and RBF measured by continuous hippuran infusion. The correlation in flow measurement using phantoms by phase-contrast MRI was high and fluid collection was high (CCC=0.969). Technical problems that precluded RBFMRI measurement occurred predominantly in patients with a lower eGFR (34% vs. 16%). In subjects with higher eGFRs, variability in RBF explained by disease characteristics was similar for RBFMRI compared to RBFHip, whereas in subjects with lower eGFRs, this was significantly less for RBFMRI. Our study shows that RBF can be measured accurately in ADPKD patients by phase-contrast, but this technique may be less feasible in subjects with a lower eGFR. (orig.)

  13. Regional cerebral blood flow in childhood headache

    International Nuclear Information System (INIS)

    Regional cerebral blood flow (rCBF) was measured in 16 cranial regions in 23 children and adolescents with frequent headaches using the non-invasive Xenon-133 inhalation technique. Blood flow response to 5% carbon dioxide (CO2) was also determined in 21 patients, while response to 50% oxygen was measured in the two patients with hemoglobinopathy. Included were 10 patients with a clinical diagnosis of migraine, 4 with musculoskeletal headaches, and 3 with features of both types. Also studied were 2 patients with primary thrombocythemia, 2 patients with hemoglobinopathy and headaches, 1 patient with polycythemia, and 1 with headaches following trauma. With two exceptions, rCBF determinations were done during an asymptomatic period. Baseline rCBF values tended to be higher in these young patients than in young adults done in our laboratory. Localized reduction in the expected blood flow surge after CO2 inhalation, most often noted posteriorly, was seen in 8 of the 13 vascular headaches, but in none of the musculoskeletal headache group. Both patients with primary thrombocythemia had normal baseline flow values and altered responsiveness to CO2 similar to that seen in migraineurs; thus, the frequently reported headache and transient neurologic signs with primary thrombocythemia are probably not due to microvascular obstruction as previously suggested. These data support the concept of pediatric migraine as a disorder of vasomotor function and also add to our knowledge of normal rCBF values in younger patients. Demonstration of altered vasomotor reactivity to CO2 could prove helpful in children whose headache is atypical

  14. Positron emission tomography/magnetic resonance hybrid scanner imaging of cerebral blood flow using 15O-water positron emission tomography and arterial spin labeling magnetic resonance imaging in newborn piglets

    DEFF Research Database (Denmark)

    Andersen, Julie B; Henning, William S; Lindberg, Ulrich;

    2015-01-01

    Abnormality in cerebral blood flow (CBF) distribution can lead to hypoxic-ischemic cerebral damage in newborn infants. The aim of the study was to investigate minimally invasive approaches to measure CBF by comparing simultaneous (15)O-water positron emission tomography (PET) and single TI pulsed...

  15. Regulation of cerebral blood flow during exercise.

    Science.gov (United States)

    Querido, Jordan S; Sheel, A William

    2007-01-01

    Constant cerebral blood flow (CBF) is vital to human survival. Originally thought to receive steady blood flow, the brain has shown to experience increases in blood flow during exercise. Although increases have not consistently been documented, the overwhelming evidence supporting an increase may be a result of an increase in brain metabolism. While an increase in metabolism may be the underlying causative factor for the increase in CBF during exercise, there are many modulating variables. Arterial blood gas tensions, most specifically the partial pressure of carbon dioxide, strongly regulate CBF by affecting cerebral vessel diameter through changes in pH, while carbon dioxide reactivity increases from rest to exercise. Muscle mechanoreceptors may contribute to the initial increase in CBF at the onset of exercise, after which exercise-induced hyperventilation tends to decrease flow by pial vessel vasoconstriction. Although elite athletes may benefit from hyperoxia during intense exercise, cerebral tissue is well protected during exercise, and cerebral oxygenation does not appear to pose a limiting factor to exercise performance. The role of arterial blood pressure is important to the increase in CBF during exercise; however, during times of acute hypotension such as during diastole at high-intensity exercise or post-exercise hypotension, cerebral autoregulation may be impaired. The impairment of an increase in cardiac output during exercise with a large muscle mass similarly impairs the increase in CBF velocity, suggesting that cardiac output may play a key role in the CBF response to exercise. Glucose uptake and CBF do not appear to be related; however, there is growing evidence to suggest that lactate is used as a substrate when glucose levels are low. Traditionally thought to have no influence, neural innervation appears to be a protective mechanism to large increases in cardiac output. Changes in middle cerebral arterial velocity are independent of changes in

  16. N-13 ammonia for the noninvasive evaluation of myocardial blood flow by positron emission computed tomography

    International Nuclear Information System (INIS)

    The kinetics and characteristics of nitrogen-13 labelled ammonia as an indicator of blood flow in the myocardium were evaluated in open-chest dogs. Its utility as an imaging agent was tested in animals and man

  17. Pulsed photoacoustic flow imaging with a handheld system.

    Science.gov (United States)

    van den Berg, Pim J; Daoudi, Khalid; Steenbergen, Wiendelt

    2016-02-01

    Flow imaging is an important technique in a range of disease areas, but estimating low flow speeds, especially near the walls of blood vessels, remains challenging. Pulsed photoacoustic flow imaging can be an alternative since there is little signal contamination from background tissue with photoacoustic imaging. We propose flow imaging using a clinical photoacoustic system that is both handheld and portable. The system integrates a linear array with 7.5 MHz central frequency in combination with a high-repetition-rate diode laser to allow high-speed photoacoustic imaging--ideal for this application. This work shows the flow imaging performance of the system in vitro using microparticles. Both two-dimensional (2-D) flow images and quantitative flow velocities from 12 to 75  mm/s were obtained. In a transparent bulk medium, flow estimation showed standard errors of ∼7% the estimated speed; in the presence of tissue-realistic optical scattering, the error increased to 40% due to limited signal-to-noise ratio. In the future, photoacoustic flow imaging can potentially be performed in vivo using fluorophore-filled vesicles or with an improved setup on whole blood.

  18. Regional cerebral blood flow in diabetic patients

    International Nuclear Information System (INIS)

    N-isopropyl-p-123I-iodoamphetamine (IMP) was used to quantify the regional cerebral blood flow (r-CBF) in 11 diabetic patients (average age; 67.9 years) and 12 non-diabetic subjects (average age; 67.4 years), none of whom had (cerebrovascular disease (CVD) on CT studies. A reference sampling method by continuous arterial blood sampling was used to quantify r-CBF. There were no significant differences in physiological or laboratory data between diabetic and non-diabetic groups except for fasting plasma glucose and HbA1c levels. The average of r-CBF in each region of cerebrum and cerebellum was significantly lower in diabetic group than that in the control group (p<0.01). These observations show that r-CBF of diabetic patients is reduced, even in the absence of findings of CVD on a CT study. (author)

  19. Regional cerebral blood flow in diabetic patients

    Energy Technology Data Exchange (ETDEWEB)

    Nagamachi, Shigeki; Ono, Shinnichi; Nishikawa, Takushi (Nichinan Hospital of Miyazaki Prefecture (Japan)) (and others)

    1993-02-01

    N-isopropyl-p-[sup 123]I-iodoamphetamine (IMP) was used to quantify the regional cerebral blood flow (r-CBF) in 11 diabetic patients (average age; 67.9 years) and 12 non-diabetic subjects (average age; 67.4 years), none of whom had (cerebrovascular disease (CVD) on CT studies). A reference sampling method by continuous arterial blood sampling was used to quantify r-CBF. There were no significant differences in physiological or laboratory data between diabetic and non-diabetic groups except for fasting plasma glucose and HbA[sub 1c] levels. The average of r-CBF in each region of cerebrum and cerebellum was significantly lower in diabetic group than that in the control group (p<0.01). These observations show that r-CBF of diabetic patients is reduced, even in the absence of findings of CVD on a CT study. (author).

  20. Blood flow in healed and inflamed periodontal tissues of dogs

    Energy Technology Data Exchange (ETDEWEB)

    Hock, J.M.; Kim, S.

    1987-01-01

    The objectives of this study were to determine if increased blood flow associated with gingivitis would decrease following resolution of gingival inflammation in dogs with periodontitis; if increased blood flow in inflamed gingiva was associated with changes in the blood flow of alveolar bone, and if blood flow in gingiva and alveolar bone increased if periodontitis was reactivated by ligating teeth. Regional blood flow was measured in dogs with pre-existing periodontitis, using radioisotope-labelled, plastic microspheres. In the first experiment on 4 adult Beagle dogs, teeth in the left jaws were treated to resolve the periodontitis, while teeth in the right jaws were not treated. Gingival and bone blood flow were measured after 12 wk. Blood flow was significantly (p<0.05) lower in non-inflamed healed gingiva (32.1 +- 2.7 ml/min/100 g) than in inflamed gingiva (46.1 +- 5.3 ml/min/100 g). No differences in the blood flow of the alveolar bone underlying inflamed or non-inflamed gingiva were present. In the second experiment, the right mandibular teeth of 5 dogs were treated to resolve periodontitis while teeth in the other quadrants were ligated for 4, 10 or 12 wk. The duration of ligation did not alter blood flow. Gingival blood flow around ligated maxillary and mandibular teeth was comparable and approximately 54% higher than around non-ligated teeth (p<0.03). The difference in blood flow between gingiva with G.I.>1 and gingiva with G.I.<2 was significant (p<0.04). Blood flow in bone was not altered by changes in the inflammatory status of the overlying gingiva. The findings suggest that changes in blood flow associated with inflammation are reversible and that blood flow alveolar bone is regulated independently of gingival blood flow.

  1. Directional synthetic aperture flow imaging

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Nikolov, Svetoslav

    2004-01-01

    . A plastic tube with an internal diameter of 17 mm was used with an EcoWatt 1 pump generating a laminar, stationary flow. The velocity profile was measured for flow angles of 90 and 60 degrees. The RASMUS research scanner was used for acquiring RF data from 128 elements of the array using 8 emissions with 11...... elements in each emission. A 20 us chirp was used during emission. The RF data were subsequently beamformed off-line and stationary echo canceling was performed. The 60 degrees flow with a peak velocity of 0.15 m/s was determined using 16 groups of 8 emissions and the relative standard deviation was 0......A method for flow estimation using synthetic aperture imaging and focusing along the flow direction is presented. The method can find the correct velocity magnitude for any flow angle and full color flow images can be measured using only 32 to 128 pulse emissions. The approach uses spherical wave...

  2. Comparison of detection pattern of HCC by ferumoxide-enhanced MRI and intratumoral blood flow pattern

    Energy Technology Data Exchange (ETDEWEB)

    Itou, Naoki; Kotake, Fumio [Tokyo Medical Coll., Ami, Ibaraki (Japan). Kasumigaura Hospital; Saitou, Kazuhiro; Abe, Kimihiko

    2000-08-01

    We compared the detection rate and pattern of ferumoxide-enhanced magnetic resonance imaging (Fe-MRI) with the intratumoral blood flow pattern determined by CT angiography (CTA) and CT portography (CTAP) in 124 nodes (34 cases) diagnosed as hepatocellular carcinoma (HCC) or borderline HCC, based on the clinical course. Sequences to obtain a T1-weighted images (T1W), proton density-weighted images (PDW), T2-weighted images (T2W), T2*-weighted images (T2*W) were used in Fe-MRI. In nodes shown to be hypervascular on CTA, the detection rate by Fe-MRI was 69.7%. In nodes shown to be avascular by CTAP, the detection rate by Fe-MRI was 67.3%. These rates were higher than with other flow patterns. In nodes showing high signal intensity (HSI) on any sequences, arterial blood flow was increased and portal blood flow decreased in comparison with nodes without high signal intensity. All nodes showing HSI, both on Fe-MRI T2W and T2*W, were hypervascular on CTA, and portal blood flow was absent on CTAP. Nodes showing HSI on both T2*W and T2W were considered to have greater arterial blood flow and decreased portal blood flow compared with nodes appearing as HSI on T2*W, but only as iso- or low signal intensity on T2W (Mann-Whitney U-test; p<0.05). (author)

  3. Blood flow in healed and inflamed periodontal tissues of dogs

    International Nuclear Information System (INIS)

    The objectives of this study were to determine if increased blood flow associated with gingivitis would decrease following resolution of gingival inflammation in dogs with periodontitis; if increased blood flow in inflamed gingiva was associated with changes in the blood flow of alveolar bone, and if blood flow in gingiva and alveolar bone increased if periodontitis was reactivated by ligating teeth. Regional blood flow was measured in dogs with pre-existing periodontitis, using radioisotope-labelled, plastic microspheres. In the first experiment on 4 adult Beagle dogs, teeth in the left jaws were treated to resolve the periodontitis, while teeth in the right jaws were not treated. Gingival and bone blood flow were measured after 12 wk. Blood flow was significantly (p1 and gingiva with G.I.<2 was significant (p<0.04). Blood flow in bone was not altered by changes in the inflammatory status of the overlying gingiva. The findings suggest that changes in blood flow associated with inflammation are reversible and that blood flow alveolar bone is regulated independently of gingival blood flow. (author)

  4. Absolute Cerebral Blood Flow Infarction Threshold for 3-Hour Ischemia Time Determined with CT Perfusion and 18F-FFMZ-PET Imaging in a Porcine Model of Cerebral Ischemia.

    Science.gov (United States)

    Wright, Eric A; d'Esterre, Christopher D; Morrison, Laura B; Cockburn, Neil; Kovacs, Michael; Lee, Ting-Yim

    2016-01-01

    CT Perfusion (CTP) derived cerebral blood flow (CBF) thresholds have been proposed as the optimal parameter for distinguishing the infarct core prior to reperfusion. Previous threshold-derivation studies have been limited by uncertainties introduced by infarct expansion between the acute phase of stroke and follow-up imaging, or DWI lesion reversibility. In this study a model is proposed for determining infarction CBF thresholds at 3hr ischemia time by comparing contemporaneously acquired CTP derived CBF maps to 18F-FFMZ-PET imaging, with the objective of deriving a CBF threshold for infarction after 3 hours of ischemia. Endothelin-1 (ET-1) was injected into the brain of Duroc-Cross pigs (n = 11) through a burr hole in the skull. CTP images were acquired 10 and 30 minutes post ET-1 injection and then every 30 minutes for 150 minutes. 370 MBq of 18F-FFMZ was injected ~120 minutes post ET-1 injection and PET images were acquired for 25 minutes starting ~155-180 minutes post ET-1 injection. CBF maps from each CTP acquisition were co-registered and converted into a median CBF map. The median CBF map was co-registered to blood volume maps for vessel exclusion, an average CT image for grey/white matter segmentation, and 18F-FFMZ-PET images for infarct delineation. Logistic regression and ROC analysis were performed on infarcted and non-infarcted pixel CBF values for each animal that developed infarct. Six of the eleven animals developed infarction. The mean CBF value corresponding to the optimal operating point of the ROC curves for the 6 animals was 12.6 ± 2.8 mL·min-1·100g-1 for infarction after 3 hours of ischemia. The porcine ET-1 model of cerebral ischemia is easier to implement then other large animal models of stroke, and performs similarly as long as CBF is monitored using CTP to prevent reperfusion.

  5. Absolute Cerebral Blood Flow Infarction Threshold for 3-Hour Ischemia Time Determined with CT Perfusion and 18F-FFMZ-PET Imaging in a Porcine Model of Cerebral Ischemia.

    Directory of Open Access Journals (Sweden)

    Eric A Wright

    Full Text Available CT Perfusion (CTP derived cerebral blood flow (CBF thresholds have been proposed as the optimal parameter for distinguishing the infarct core prior to reperfusion. Previous threshold-derivation studies have been limited by uncertainties introduced by infarct expansion between the acute phase of stroke and follow-up imaging, or DWI lesion reversibility. In this study a model is proposed for determining infarction CBF thresholds at 3hr ischemia time by comparing contemporaneously acquired CTP derived CBF maps to 18F-FFMZ-PET imaging, with the objective of deriving a CBF threshold for infarction after 3 hours of ischemia. Endothelin-1 (ET-1 was injected into the brain of Duroc-Cross pigs (n = 11 through a burr hole in the skull. CTP images were acquired 10 and 30 minutes post ET-1 injection and then every 30 minutes for 150 minutes. 370 MBq of 18F-FFMZ was injected ~120 minutes post ET-1 injection and PET images were acquired for 25 minutes starting ~155-180 minutes post ET-1 injection. CBF maps from each CTP acquisition were co-registered and converted into a median CBF map. The median CBF map was co-registered to blood volume maps for vessel exclusion, an average CT image for grey/white matter segmentation, and 18F-FFMZ-PET images for infarct delineation. Logistic regression and ROC analysis were performed on infarcted and non-infarcted pixel CBF values for each animal that developed infarct. Six of the eleven animals developed infarction. The mean CBF value corresponding to the optimal operating point of the ROC curves for the 6 animals was 12.6 ± 2.8 mL·min-1·100g-1 for infarction after 3 hours of ischemia. The porcine ET-1 model of cerebral ischemia is easier to implement then other large animal models of stroke, and performs similarly as long as CBF is monitored using CTP to prevent reperfusion.

  6. Absolute Cerebral Blood Flow Infarction Threshold for 3-Hour Ischemia Time Determined with CT Perfusion and 18F-FFMZ-PET Imaging in a Porcine Model of Cerebral Ischemia.

    Science.gov (United States)

    Wright, Eric A; d'Esterre, Christopher D; Morrison, Laura B; Cockburn, Neil; Kovacs, Michael; Lee, Ting-Yim

    2016-01-01

    CT Perfusion (CTP) derived cerebral blood flow (CBF) thresholds have been proposed as the optimal parameter for distinguishing the infarct core prior to reperfusion. Previous threshold-derivation studies have been limited by uncertainties introduced by infarct expansion between the acute phase of stroke and follow-up imaging, or DWI lesion reversibility. In this study a model is proposed for determining infarction CBF thresholds at 3hr ischemia time by comparing contemporaneously acquired CTP derived CBF maps to 18F-FFMZ-PET imaging, with the objective of deriving a CBF threshold for infarction after 3 hours of ischemia. Endothelin-1 (ET-1) was injected into the brain of Duroc-Cross pigs (n = 11) through a burr hole in the skull. CTP images were acquired 10 and 30 minutes post ET-1 injection and then every 30 minutes for 150 minutes. 370 MBq of 18F-FFMZ was injected ~120 minutes post ET-1 injection and PET images were acquired for 25 minutes starting ~155-180 minutes post ET-1 injection. CBF maps from each CTP acquisition were co-registered and converted into a median CBF map. The median CBF map was co-registered to blood volume maps for vessel exclusion, an average CT image for grey/white matter segmentation, and 18F-FFMZ-PET images for infarct delineation. Logistic regression and ROC analysis were performed on infarcted and non-infarcted pixel CBF values for each animal that developed infarct. Six of the eleven animals developed infarction. The mean CBF value corresponding to the optimal operating point of the ROC curves for the 6 animals was 12.6 ± 2.8 mL·min-1·100g-1 for infarction after 3 hours of ischemia. The porcine ET-1 model of cerebral ischemia is easier to implement then other large animal models of stroke, and performs similarly as long as CBF is monitored using CTP to prevent reperfusion. PMID:27347877

  7. Subcutaneous blood flow during insulin-induced hypoglycaemia

    DEFF Research Database (Denmark)

    Hilsted, J; Madsbad, S; Sestoft, L

    1982-01-01

    Subcutaneous blood flow was measured preceding insulin-induced hypoglycaemia, at the onset of hypoglycaemic symptoms and 2 h later in juvenile diabetics with and without autonomic neuropathy and in normal males. In all groups subcutaneous blood flow decreased at the onset of hypoglycaemic symptoms...... compared with pre-hypoglycaemic flow. Two hours after onset of hypoglycaemic symptoms, subcutaneous blood flow was still significantly decreased compared with pre-hypoglycaemic flow. In normal subjects local nerve blockade had no effect on blood flow changes during hypoglycaemia, whereas local alpha...

  8. Intestinal blood flow assessment by indocyanine green fluorescence imaging in a patient with the incarcerated umbilical hernia: Report of a case.

    Science.gov (United States)

    Ryu, Shunjin; Yoshida, Masashi; Ohdaira, Hironori; Tsutsui, Nobuhiro; Suzuki, Norihiko; Ito, Eisaku; Nakajima, Keigo; Yanagisawa, Satoru; Kitajima, Masaki; Suzuki, Yutaka

    2016-06-01

    After reduction of the incarceration during surgery for incarcerated hernia, intestinal blood flow (IBF) and the need for bowel resection must be evaluated. We report the case of a patient with incarcerated umbilical hernia in whom the bowel was preserved after evaluating IBF using indocyanine green (ICG) fluorescence. A woman in her 40s with a chief complaint of abdominal pain visited our hospital, was diagnosed with incarcerated umbilical hernia and underwent surgery. Laparotomy was performed to reduce bowel incarceration. After reducing the incarceration, IBF was observed using ICG fluorescence detected using a brightfield full-color fluorescence camera. The small bowel that had been incarcerated showed deep-red discoloration on gross evaluation, but intravenous injection of ICG revealed uniform fluorescence of the mesentery and bowel wall. This indicated an absence of irreversible ischemic changes of the bowel, so no resection was performed. The patient showed a good postoperative course, including resumption of eating on day 4 and discharge on day 11. In surgery for incarcerated hernia, ICG fluorescence may offer a useful method to evaluate IBF after reducing the incarceration. This case implied that PINPOINT could be used in open conventional surgery. PMID:27257484

  9. Intestinal blood flow assessment by indocyanine green fluorescence imaging in a patient with the incarcerated umbilical hernia: Report of a case

    Directory of Open Access Journals (Sweden)

    Shunjin Ryu

    2016-06-01

    Full Text Available After reduction of the incarceration during surgery for incarcerated hernia, intestinal blood flow (IBF and the need for bowel resection must be evaluated. We report the case of a patient with incarcerated umbilical hernia in whom the bowel was preserved after evaluating IBF using indocyanine green (ICG fluorescence. A woman in her 40s with a chief complaint of abdominal pain visited our hospital, was diagnosed with incarcerated umbilical hernia and underwent surgery. Laparotomy was performed to reduce bowel incarceration. After reducing the incarceration, IBF was observed using ICG fluorescence detected using a brightfield full-color fluorescence camera. The small bowel that had been incarcerated showed deep-red discoloration on gross evaluation, but intravenous injection of ICG revealed uniform fluorescence of the mesentery and bowel wall. This indicated an absence of irreversible ischemic changes of the bowel, so no resection was performed. The patient showed a good postoperative course, including resumption of eating on day 4 and discharge on day 11. In surgery for incarcerated hernia, ICG fluorescence may offer a useful method to evaluate IBF after reducing the incarceration. This case implied that PINPOINT could be used in open conventional surgery.

  10. In-vivo synthetic aperture flow imaging in medical ultrasound

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav; Jensen, Jørgen Arendt

    2003-01-01

    . Any type of filter can be used for discrimination between tissue and blood flow without initialization, and the number of lines used for velocity estimation is limited only by the nonstationarity of the flow. The new approach is investigated through both simulations and measurements. A flow rig...... is used for generating a parabolic laminar flow, and a research scanner is used for acquiring RF data from individual transducer elements. A reference profile is calculated from a mass flow meter. The parabolic velocity profile is estimated using the new approach with a relative standard deviation of 2......A new method for acquiring flow images using synthetic aperture techniques in medical ultrasound is presented. The new approach makes it possible to have a continuous acquisition of flow data throughout the whole image simultaneously, and this can significantly improve blood velocity estimation...

  11. Relations of blood pressure and head injury to regional cerebral blood flow.

    Science.gov (United States)

    Kisser, Jason E; Allen, Allyssa J; Katzel, Leslie I; Wendell, Carrington R; Siegel, Eliot L; Lefkowitz, David; Waldstein, Shari R

    2016-06-15

    Hypertension confers increased risk for cognitive decline, dementia, and cerebrovascular disease. These associations have been attributed, in part, to cerebral hypoperfusion. Here we posit that relations of higher blood pressure to lower levels of cerebral perfusion may be potentiated by a prior head injury. Participants were 87 community-dwelling older adults - 69% men, 90% white, mean age=66.9years, 27.6% with a history of mild traumatic brain injury (mTBI) defined as a loss of consciousness ≤30min resulting from an injury to the head, and free of major medical (other than hypertension), neurological or psychiatric comorbidities. All engaged in clinical assessment of systolic and diastolic blood pressure (SBP, DBP) and single photon emission computed tomography (SPECT). Computerized coding of the SPECT images yielded relative ratios of blood flow in left and right cortical and select subcortical regions. Cerebellum served as the denominator. Sex-stratified multiple regression analyses, adjusted for age, education, race, alcohol consumption, smoking status, and depressive symptomatology, revealed significant interactions of blood pressure and head injury to cerebral blood flow in men only. Specifically, among men with a history of head injury, higher systolic blood pressure was associated with lower levels of perfusion in the left orbital (β=-3.21, p=0.024) and left dorsolateral (β=-2.61, p=0.042) prefrontal cortex, and left temporal cortex (β=-3.36, p=0.014); higher diastolic blood pressure was marginally associated with lower levels of perfusion in the left dorsolateral prefrontal cortex (β=-2.79, p=0.051). Results indicate that men with a history of head injury may be particularly vulnerable to the impact of higher blood pressure on cerebral perfusion in left anterior cortical regions, thus potentially enhancing risk for adverse brain and neurocognitive outcomes. PMID:27206865

  12. Complex blood flow quantification using real-time in vivo vector flow ultrasound

    DEFF Research Database (Denmark)

    Pedersen, Mads Møller; Pihl, Michael Johannes; Per, Haugaard;

    for the vector angle estimates was calculated for each box in every frame. For comparison three ultrasound experts evaluated the presence of complex flow in every box. The trial was blinded. For every sequence the mean standard deviation of the vector angle estimates were calculated for box1 {39......A new method to define and quantify complex blood flow is presented. The standard deviations of real-time in vivo vector flow angle estimates are used. Using vector flow ultrasound imaging both carotid bifurcations of two healthy volunteers were scanned. Scanning was performed with a 7.6 MHz linear...... transducer (8670, B-K Medical, Denmark) and a commercial vector flow ultrasound scanner (ProFocus 2202, B-K Medical). Eight video sequences of one cardiac cycle were obtained. In every frame boxes were placed to define the common carotid artery(box1) and the carotid bulb(box2). The standard deviation...

  13. Interactive retinal blood flow analysis of the macular region.

    Science.gov (United States)

    Tian, Jing; Somfai, Gábor Márk; Campagnoli, Thalmon R; Smiddy, William E; Debuc, Delia Cabrera

    2016-03-01

    The study of retinal hemodynamics plays an important role to understand the onset and progression of diabetic retinopathy. In this work, we developed an interactive retinal analysis tool to quantitatively measure the blood flow velocity (BFV) and blood flow rate (BFR) in the macular region using the Retinal Function Imager (RFI). By employing a high definition stroboscopic fundus camera, the RFI device is able to assess retinal blood flow characteristics in vivo. However, the measurements of BFV using a user-guided vessel segmentation tool may induce significant inter-observer differences and BFR is not provided in the built-in software. In this work, we have developed an interactive tool to assess the retinal BFV and BFR in the macular region. Optical coherence tomography data was registered with the RFI image to locate the fovea accurately. The boundaries of the vessels were delineated on a motion contrast enhanced image and BFV was computed by maximizing the cross-correlation of pixel intensities in a ratio video. Furthermore, we were able to calculate the BFR in absolute values (μl/s). Experiments were conducted on 122 vessels from 5 healthy and 5 mild non-proliferative diabetic retinopathy (NPDR) subjects. The Pearson's correlation of the vessel diameter measurements between our method and manual labeling on 40 vessels was 0.984. The intraclass correlation (ICC) of BFV between our proposed method and built-in software was 0.924 and 0.830 for vessels from healthy and NPDR subjects, respectively. The coefficient of variation between repeated sessions was reduced significantly from 22.5% to 15.9% in our proposed method (p<0.001).

  14. 灰阶血流成像对获得性梗阻性无精症患者睾丸血流灌注的评价%Evaluation of testicular blood perfusion in patients with acquired obstructive azoospermia using B-mode blood flow imaging

    Institute of Scientific and Technical Information of China (English)

    谢军

    2013-01-01

    目的 探讨灰阶血流成像(B-flow)评价获得性梗阻性无精症患者睾丸血流灌注的临床应用价值.方法 使用B-flow和能量多普勒血流成像(PDI)技术观察71例获得性梗阻性无精症患者两侧睾丸的血流灌注情况,以PDI为标准评价B-flow观察获得性梗阻性无精症患者睾丸血流灌注的价值.结果 B-flow在睾丸最大切面检出血管数目:左侧(5.35±0.81)条,右侧(5.27±0.83)条;PDI在睾丸最大切面上检出血管数目:左侧(5.21±0.89)条,右侧(5.10±0.85)条,两者有较高相关性(r=0.82,P=0.00),差异无统计学意义.结论 B-flow对评价获得性梗阻性无精症患者睾丸的血流灌注有重要应用价值,可临床推广.%Objective To explore clinic application value of B — mode blood flow imaging ( B—flow ) in evaluating testicular blood perfusion in patients with, acquired obstructive azoospermia.Methods Seventy—one patients with acquired obstructive azoospermia were examined for observing testicular blood perfusion by B—mode blood flow imaging and power Doppler flow imaging (PDI),Using PD1 as standards.the value of B—flow observaing teslicular blood perfusion in patients with acquired obstructive azoospermia was evaluated.Results Testicular vascular number was detected by B—flow,There were (5.35+0.81 ) blood vessels or. the left,and there were ( 5.27+0.83) blood vessels on the right .Testicular vascular number was detected by PDI. There were v5.2i±0.89) blood vessels on the left, and there were (5.10×0.85) blood vessels on the right.There was a correlation between them (r =0.82,P=0.00).Thcre was no significant difference between thcm.Conclusion B-flow has an important application value in evaluating testicular blood perfusion in patients with acquired obstructive azoospcrmia.

  15. Palmar skin blood flow and temperature responses throughout endoscopic sympathectomy.

    Science.gov (United States)

    Crandall, Craig G; Meyer, Dan M; Davis, Scott L; Dellaria, Suzanne M

    2005-01-01

    Thoracic surgical sympathectomy is often performed to treat primary palmar and axillary hyperhidrosis. An increase in palmar skin temperature is frequently used to identify the success of the procedure. Because changes in palmar skin temperature occur secondary to changes in skin blood flow, the objective of this study was to test the hypothesis that monitoring palmar skin blood flow would provide greater temporal resolution relative to monitoring palmar skin temperature. In 11 patients with palmar and/or axillary hyperhidrosis, we measured palmar skin temperature and blood flow (via laser Doppler flowmetry) throughout the sympathectomy procedure. Five minutes after the initial cautery, skin blood flow increased from 48 +/- 7 perfusion units to 121 +/- 17 perfusion units (P 0.05). The time required to reach peak skin blood flow (22 +/- 3 min) was significantly less than the time required to reach peak skin temperature (34 +/- 0.3 min; P <0.001). Finally at 5, 10, and 15 min after the initial cautery, skin blood flow increased to a larger percentage of the total increase in skin blood flow relative skin temperature (all P <0.006). These data suggest that monitoring skin blood flow provides greater temporal resolution when compared with monitoring skin temperature during thoracic sympathectomy. However, the initial cautery of the parietal pleura over the ganglion may result in increases in skin blood flow before physical disruption of the ganglion. This occurrence may limit the utility of skin blood-flow measurements in identifying the success of the procedure. PMID:15616091

  16. In-vivo synthetic aperture flow imaging in medical ultrasound.

    Science.gov (United States)

    Nikolov, Svetoslav Ivanov; Jensen, Jørgen Arendt

    2003-07-01

    A new method for acquiring flow images using synthetic aperture techniques in medical ultrasound is presented. The new approach makes it possible to have a continuous acquisition of flow data throughout the whole image simultaneously, and this can significantly improve blood velocity estimation. Any type of filter can be used for discrimination between tissue and blood flow without initialization, and the number of lines used for velocity estimation is limited only by the nonstationarity of the flow. The new approach is investigated through both simulations and measurements. A flow rig is used for generating a parabolic laminar flow, and a research scanner is used for acquiring RF data from individual transducer elements. A reference profile is calculated from a mass flow meter. The parabolic velocity profile is estimated using the new approach with a relative standard deviation of 2.2% and a mean relative bias of 3.4% using 24 pulse emissions at a flow angle of 45 degrees. The 24 emissions can be used for making a full-color flow map image. An in-vivo image of flow in the carotid artery for a 29-year-old male also is presented. The full image is acquired using 24 emissions.

  17. In-vivo synthetic aperture flow imaging in medical ultrasound.

    Science.gov (United States)

    Nikolov, Svetoslav Ivanov; Jensen, Jørgen Arendt

    2003-07-01

    A new method for acquiring flow images using synthetic aperture techniques in medical ultrasound is presented. The new approach makes it possible to have a continuous acquisition of flow data throughout the whole image simultaneously, and this can significantly improve blood velocity estimation. Any type of filter can be used for discrimination between tissue and blood flow without initialization, and the number of lines used for velocity estimation is limited only by the nonstationarity of the flow. The new approach is investigated through both simulations and measurements. A flow rig is used for generating a parabolic laminar flow, and a research scanner is used for acquiring RF data from individual transducer elements. A reference profile is calculated from a mass flow meter. The parabolic velocity profile is estimated using the new approach with a relative standard deviation of 2.2% and a mean relative bias of 3.4% using 24 pulse emissions at a flow angle of 45 degrees. The 24 emissions can be used for making a full-color flow map image. An in-vivo image of flow in the carotid artery for a 29-year-old male also is presented. The full image is acquired using 24 emissions. PMID:12894918

  18. Quantitative phase-flow MR imaging in dogs by using standard sequences: comparison with in vivo flow-meter measurements.

    Science.gov (United States)

    Pettigrew, R I; Dannels, W; Galloway, J R; Pearson, T; Millikan, W; Henderson, J M; Peterson, J; Bernardino, M E

    1987-02-01

    For evaluation of the feasibility and clinical potential of using the phase data from standard MR imaging sequences to measure blood flow, 11 vessels with diameters of 4 to 7 mm were imaged in seven dogs. The flow in either the superior mesenteric vein or the inferior vena cava was measured first at laparotomy (in ml/min) with electromagnetic flow meters. Immediately thereafter, these vessels were imaged by MR in 25-mm thick sections by using a standard spin echo (SE) 750/30 sequence with a Philips 0.5-T imager. Previous phase-flow calibration of the imager and sequence allowed calculation of the blood flow rates from the phase images that were used to measure the vessels' cross-sectional areas and blood phase values. Comparison of the measurements obtained with each technique showed a significant correlation (r = .977, p less than .05) between MR-imaging values and flow-meter measurements when the blood velocity was less than approximately 40 cm/sec, the known upper limit of the flow dynamic range for the MR hardware and sequence used. There was no correlation for blood velocities greater than 40 cm/sec. However, the range of blood flow velocities in dogs and man extends to more than 100 cm/sec. Thus, these results suggest that this technique might yield valuable adjunctive flow data in routine clinical imaging provided that improvements in hardware and software permit a larger dynamic range. PMID:2948376

  19. Laser Doppler measurement of cutaneous blood flow

    International Nuclear Information System (INIS)

    Laser Doppler velocimetry is an instrument system which has only recently been applied to the evaluation and quantitation of perfusion in the micro-vascular bed. The instrument is based on the Doppler principle, but uses low power laser light rather than the more commonly used ultrasound, and has a sample volume of approximately 1 mm/sup 3/. As it is non-invasive, it can be used on any skin surface or exposed microvascular bed and provides a continuous semi-quantitative measure of microcirculatory perfusion, it has a number of advantages as compared to other cutaneous blood flow measurement techniques. Initial studies have shown that it is easily used, and it has demonstrated good correlation with both xenon radio-isotope clearance and microsphere deposition techniques. Areas of current evaluation and utilization are in most major areas of medicine and surgery and include plastic, vascular and orthopaedic surgery, dermatology, gastro-enterology, rheumatology, burns and anaesthesiology

  20. Cerebral blood flow and metabolism during sleep

    DEFF Research Database (Denmark)

    Madsen, Peter Lund; Vorstrup, S

    1991-01-01

    A review of the current literature regarding sleep-induced changes in cerebral blood flow (CBF) and cerebral metabolic rate (CMR) is presented. Early investigations have led to the notion that dreamless sleep was characterized by global values of CBF and CMR practically at the level of wakefulness......, while rapid eye movement (REM) sleep (dream sleep) was a state characterized by a dramatically increased level of CBF and possibly also of CMR. However, recent investigations firmly contradict this notion. Investigations on CBF and CMR performed during non-REM sleep, taking the effect of different...... levels of sleep into consideration, show that light sleep (stage II) is characterized by global levels of CBF and CMR only slightly reduced by 3-10% below the level associated with wakefulness, whereas CBF and CMR during deep sleep (stage III-IV) is dramatically reduced by 25-44%. Furthermore, recent...

  1. Imaging molten steel flow profiles

    Science.gov (United States)

    Binns, R.; Lyons, A. R. A.; Peyton, A. J.; Pritchard, W. D. N.

    2001-08-01

    Control of delivery of molten steel in continuous casting is critical in order to ensure stability of the meniscus and satisfactory mould flow patterns, which in turn are determinants of cleanness and surface quality of steel. Considerable effort has been expended over the last ten years on optimizing the design of the metal delivery system, particularly the pouring nozzle, in order to allow the consistent production of high quality steel at a high throughput. This paper looks forward to possible systems that are capable of tomographically imaging the distribution of molten steel flows in these applications. The paper will concentrate on the feasibility of using electromagnetic methods. The paper will present some initial results; an overview of the applied image reconstruction process will also be included. The paper will conclude with a discussion of possible future developments, such as the use of a tomographic or multi-frequency approach, future research on the reconstruction image procedures and the potential for visualization and flow measurement. There is a need for further research in this area and some priority areas for future work will be suggested.

  2. Image analysis of blood platelets adhesion.

    Science.gov (United States)

    Krízová, P; Rysavá, J; Vanícková, M; Cieslar, P; Dyr, J E

    2003-01-01

    Adhesion of blood platelets is one of the major events in haemostatic and thrombotic processes. We studied adhesion of blood platelets on fibrinogen and fibrin dimer sorbed on solid support material (glass, polystyrene). Adhesion was carried on under static and dynamic conditions and measured as percentage of the surface covered with platelets. Within a range of platelet counts in normal and in thrombocytopenic blood we observed a very significant decrease in platelet adhesion on fibrin dimer with bounded active thrombin with decreasing platelet count. Our results show the imperative use of platelet poor blood preparations as control samples in experiments with thrombocytopenic blood. Experiments carried on adhesive surfaces sorbed on polystyrene showed lower relative inaccuracy than on glass. Markedly different behaviour of platelets adhered on the same adhesive surface, which differed only in support material (glass or polystyrene) suggest that adhesion and mainly spreading of platelets depends on physical quality of the surface. While on polystyrene there were no significant differences between fibrin dimer and fibrinogen, adhesion measured on glass support material markedly differed between fibrin dimer and fibrinogen. We compared two methods of thresholding in image analysis of adhered platelets. Results obtained by image analysis of spreaded platelets showed higher relative inaccuracy than results obtained by image analysis of platelets centres and aggregates.

  3. Generating New Blood Flow : Integrating Developmental Biology and Tissue Engineering

    NARCIS (Netherlands)

    Krenning, Guido; Moonen, Jan-Renier A. J.; van Luyn, Marja J. A.; Harmsen, Martin C.

    2008-01-01

    Vascular tissue engineering aims to restore blood flow by seeding artificial tubular scaffolds with endothelial and smooth muscle cells, thus creating bioartificial blood vessels. Herein, the progenitors of smooth muscle and endothelial cells hold great promise because they efficiently differentiate

  4. Blood flow dynamics after laser therapy of port wine stain birthmarks

    Science.gov (United States)

    Huang, Yu-Chih; Tran, Nadia; Ross, E. Victor; Shumaker, Peter R.; Nelson, J. Stuart; Kelly, Kristen; Choi, Bernard

    2009-02-01

    During laser therapy of port wine stain (PWS) birthmarks, regions of persistent perfusion may exist. We hypothesize that such regions, which are not readily visible, exist even during laser surgery performed by highly experienced clinicians. The objective of this study was to use objective feedback to assess the acute vascular response to laser therapy. We have developed a clinic-friendly laser speckle imaging (LSI) instrument to provide the clinician with real-time images of blood flow during laser therapy. We acquired images from patients undergoing laser therapy of PWS birthmarks at Scripps Clinic and Beckman Laser Institute and Medical Clinic. We extracted blood flow maps from the acquired imaging data. Collectively, we have observed two regimes of patient response to therapy: 1) an immediate increase in perfusion within minutes after laser therapy; and 2) an overall decrease in blood perfusion approximately one hour after laser therapy, with distinct regions of persistent perfusion apparent in the majority of post-treatment blood-flow images. A comparison of blood flow in PWS and adjacent normal skin demonstrated that PWS blood flow can be greater than or sometimes equivalent to that of normal skin. Regions of persistent perfusion frequently exist immediately after laser therapy of PWS birthmarks. Existence of these regions may be correlated to the need for multiple treatment sessions to improve substantially PWS skin appearance. With the use of intraoperative LSI, immediate retreatment of these regions may improve the outcome of each session.

  5. Nocturnal variations in peripheral blood flow, systemic blood pressure, and heart rate in humans

    DEFF Research Database (Denmark)

    Sindrup, J H; Kastrup, J; Christensen, H;

    1991-01-01

    Subcutaneous adipose tissue blood flow rate, together with systemic arterial blood pressure and heart rate under ambulatory conditions, was measured in the lower legs of 15 normal human subjects for 12-20 h. The 133Xe-washout technique, portable CdTe(Cl) detectors, and a portable data storage unit...... were used for measurement of blood flow rates. An automatic portable blood pressure recorder and processor unit was used for measurement of systolic blood pressure, diastolic blood pressure, and heart rate every 15 min. The change from upright to supine position at the beginning of the night period...... was associated with a 30-40% increase in blood flow rate and a highly significant decrease in mean arterial blood pressure and heart rate (P less than 0.001 for all). Approximately 100 min after the subjects went to sleep an additional blood flow rate increment (mean 56%) and a simultaneous significant decrease...

  6. Data adaptive estimation of transversal blood flow velocities

    DEFF Research Database (Denmark)

    Pirnia, E.; Jakobsson, A.; Gudmundson, E.;

    2014-01-01

    The examination of blood flow inside the body may yield important information about vascular anomalies, such as possible indications of, for example, stenosis. Current Medical ultrasound systems suffer from only allowing for measuring the blood flow velocity along the direction of irradiation...... the transversal blood flow. In this paper, we propose a novel data-adaptive blood flow estimator exploiting this modulation scheme. Using realistic Field II simulations, the proposed estimator is shown to achieve a notable performance improvement as compared to current state-of-the-art techniques....

  7. Adrenergically stimulated blood flow in brown adipose tissue is not dependent on thermogenesis.

    Science.gov (United States)

    Abreu-Vieira, Gustavo; Hagberg, Carolina E; Spalding, Kirsty L; Cannon, Barbara; Nedergaard, Jan

    2015-05-01

    Brown adipose tissue (BAT) thermogenesis relies on blood flow to be supplied with nutrients and oxygen and for the distribution of the generated heat to the rest of the body. Therefore, it is fundamental to understand the mechanisms by which blood flow is regulated and its relation to thermogenesis. Here, we present high-resolution laser-Doppler imaging (HR-LDR) as a novel method for noninvasive in vivo measurement of BAT blood flow in mice. Using HR-LDR, we found that norepinephrine stimulation increases BAT blood flow in a dose-dependent manner and that this response is profoundly modulated by environmental temperature acclimation. Surprisingly, we found that mice lacking uncoupling protein 1 (UCP1) have fully preserved BAT blood flow response to norepinephrine despite failing to perform thermogenesis. BAT blood flow was not directly correlated to systemic glycemia, but glucose injections could transiently increase tissue perfusion. Inguinal white adipose tissue, also known as a brite/beige adipose tissue, was also sensitive to cold acclimation and similarly increased blood flow in response to norepinephrine. In conclusion, using a novel noninvasive method to detect BAT perfusion, we demonstrate that adrenergically stimulated BAT blood flow is qualitatively and quantitatively fully independent of thermogenesis, and therefore, it is not a reliable parameter for the estimation of BAT activation and heat generation.

  8. Computational Modelling of Blood Flow Development and Its Characteristics in Magnetic Environment

    OpenAIRE

    Gopal Chandra Shit

    2013-01-01

    Of concern in this paper is an investigation of the entrance length behind singularities in cardiovascular hemodynamics under magnetic environment. In order to get better interpretation of scan MRI images, the characteristics of blood flow and electromagnetic field within the circulatory system have to be furthermore investigated. A 3D numerical model has been developed as an example of blood flowing through a straight circular tube. The governing coupled nonlinear differential equations of m...

  9. Cerebellar blood flow in methylmercury poisoning (Minamata disease)

    International Nuclear Information System (INIS)

    We looked at regional cerebellar blood flow in patients with Minamata disease (MD) using technetium-99 m ethyl cysteinate dimer (99m-Tc-ECD). We carried out single-photon emission computed tomography (SPECT) on 15 patients with MD (eight men, seven women, aged 51-78 years, mean 70.5 years) and 11 control subjects (eight men, three women, aged 62-80 years, mean 72.5 years). Regional blood flow was measured in the superior, middle, and inferior portions of the cerebellar hemispheres, and the frontal, temporal and occipital cerebral lobes. The degree of cerebellar atrophy was assessed on MRI. There were significant differences in regional blood flow in all parts of the cerebellum between patients and control, but no significant decrease was observed in the cerebrum. Blood flow was lower in the inferior cerebellum than in the other parts. Even in patients without cerebellar atrophy, flow was significantly decreased regional blood flow in the inferior part. (orig.)

  10. High-resolution ultrasound imaging and noninvasive optoacoustic monitoring of blood variables in peripheral blood vessels

    Science.gov (United States)

    Petrov, Irene Y.; Petrov, Yuriy; Prough, Donald S.; Esenaliev, Rinat O.

    2011-03-01

    Ultrasound imaging is being widely used in clinics to obtain diagnostic information non-invasively and in real time. A high-resolution ultrasound imaging platform, Vevo (VisualSonics, Inc.) provides in vivo, real-time images with exceptional resolution (up to 30 microns) using high-frequency transducers (up to 80 MHz). Recently, we built optoacoustic systems for probing radial artery and peripheral veins that can be used for noninvasive monitoring of total hemoglobin concentration, oxyhemoglobin saturation, and concentration of important endogenous and exogenous chromophores (such as ICG). In this work we used the high-resolution ultrasound imaging system Vevo 770 for visualization of the radial artery and peripheral veins and acquired corresponding optoacoustic signals from them using the optoacoustic systems. Analysis of the optoacoustic data with a specially developed algorithm allowed for measurement of blood oxygenation in the blood vessels as well as for continuous, real-time monitoring of arterial and venous blood oxygenation. Our results indicate that: 1) the optoacoustic technique (unlike pure optical approaches and other noninvasive techniques) is capable of accurate peripheral venous oxygenation measurement; and 2) peripheral venous oxygenation is dependent on skin temperature and local hemodynamics. Moreover, we performed for the first time (to the best of our knowledge) a comparative study of optoacoustic arterial oximetry and a standard pulse oximeter in humans and demonstrated superior performance of the optoacoustic arterial oximeter, in particular at low blood flow.

  11. Heart blood flow simulation: a perspective review.

    Science.gov (United States)

    Doost, Siamak N; Ghista, Dhanjoo; Su, Boyang; Zhong, Liang; Morsi, Yosry S

    2016-01-01

    Cardiovascular disease (CVD), the leading cause of death today, incorporates a wide range of cardiovascular system malfunctions that affect heart functionality. It is believed that the hemodynamic loads exerted on the cardiovascular system, the left ventricle (LV) in particular, are the leading cause of CVD initiation and propagation. Moreover, it is believed that the diagnosis and prognosis of CVD at an early stage could reduce its high mortality and morbidity rate. Therefore, a set of robust clinical cardiovascular assessment tools has been introduced to compute the cardiovascular hemodynamics in order to provide useful insights to physicians to recognize indicators leading to CVD and also to aid the diagnosis of CVD. Recently, a combination of computational fluid dynamics (CFD) and different medical imaging tools, image-based CFD (IB-CFD), has been widely employed for cardiovascular functional assessment by providing reliable hemodynamic parameters. Even though the capability of CFD to provide reliable flow dynamics in general fluid mechanics problems has been widely demonstrated for many years, up to now, the clinical implications of the IB-CFD patient-specific LVs have not been applicable due to its limitations and complications. In this paper, we review investigations conducted to numerically simulate patient-specific human LV over the past 15 years using IB-CFD methods. Firstly, we divide different studies according to the different LV types (physiological and different pathological conditions) that have been chosen to reconstruct the geometry, and then discuss their contributions, methodologies, limitations, and findings. In this regard, we have studied CFD simulations of intraventricular flows and related cardiology insights, for (i) Physiological patient-specific LV models, (ii) Pathological heart patient-specific models, including myocardial infarction, dilated cardiomyopathy, hypertrophic cardiomyopathy and hypoplastic left heart syndrome. Finally, we

  12. Blood Flow Restricted Exercise and Vascular Function

    Directory of Open Access Journals (Sweden)

    Masahiro Horiuchi

    2012-01-01

    Full Text Available It is established that regular aerobic training improves vascular function, for example, endothelium-dependent vasodilatation and arterial stiffness or compliance and thereby constitutes a preventative measure against cardiovascular disease. In contrast, high-intensity resistance training impairs vascular function, while the influence of moderate-intensity resistance training on vascular function is still controversial. However, aerobic training is insufficient to inhibit loss in muscular strength with advancing age; thus, resistance training is recommended to prevent sarcopenia. Recently, several lines of study have provided compelling data showing that exercise and training with blood flow restriction (BFR leads to muscle hypertrophy and strength increase. As such, BFR training might be a novel means of overcoming the contradiction between aerobic and high-intensity resistance training. Although it is not enough evidence to obtain consensus about impact of BFR training on vascular function, available evidences suggested that BFR training did not change coagulation factors and arterial compliance though with inconsistence results in endothelial function. This paper is a review of the literature on the impact of BFR exercise and training on vascular function, such as endothelial function, arterial compliance, or other potential factors in comparison with those of aerobic and resistance training.

  13. Synthetic Capillaries to Control Microscopic Blood Flow

    Science.gov (United States)

    Sarveswaran, K.; Kurz, V.; Dong, Z.; Tanaka, T.; Penny, S.; Timp, G.

    2016-02-01

    Capillaries pervade human physiology. The mean intercapillary distance is only about 100 μm in human tissue, which indicates the extent of nutrient diffusion. In engineered tissue the lack of capillaries, along with the associated perfusion, is problematic because it leads to hypoxic stress and necrosis. However, a capillary is not easy to engineer due to its complex cytoarchitecture. Here, it is shown that it is possible to create in vitro, in about 30 min, a tubular microenvironment with an elastic modulus and porosity consistent with human tissue that functionally mimicks a bona fide capillary using “live cell lithography”(LCL) to control the type and position of cells on a composite hydrogel scaffold. Furthermore, it is established that these constructs support the forces associated with blood flow, and produce nutrient gradients similar to those measured in vivo. With LCL, capillaries can be constructed with single cell precision—no other method for tissue engineering offers such precision. Since the time required for assembly scales with the number of cells, this method is likely to be adapted first to create minimal functional units of human tissue that constitute organs, consisting of a heterogeneous population of 100-1000 cells, organized hierarchically to express a predictable function.

  14. Pulsatile blood flow in Abdominal Aortic Aneurysms

    Science.gov (United States)

    Salsac, Anne-Virginie; Lasheras, Juan C.; Singel, Soeren; Varga, Chris

    2001-11-01

    We discuss the results of combined in-vitro laboratory measurements and clinical observations aimed at determining the effect that the unsteady wall shear stresses and the pressure may have on the growth and eventual rupturing of an Abdominal Aortic Aneurysm (AAA), a permanent bulging-like dilatation occurring near the aortic bifurcation. In recent years, new non-invasive techniques, such as stenting, have been used to treat these AAAs. However, the development of these implants, aimed at stopping the growth of the aneurysm, has been hampered by the lack of understanding of the effect that the hemodynamic forces have on the growth mechanism. Since current in-vivo measuring techniques lack the precision and the necessary resolution, we have performed measurements of the pressure and shear stresses in laboratory models. The models of the AAA were obtained from high resolution three-dimensional CAT/SCANS performed in patients at early stages of the disease. Preliminary DPIV measurements show that the pulsatile blood flow discharging into the cavity of the aneurysm leads to large spikes of pressure and wall shear stresses near and around its distal end, indicating a possible correlation between the regions of high wall shear stresses and the observed location of the growth of the aneurysm.

  15. Regional cerebral blood flow in focal cortical epilepsy

    DEFF Research Database (Denmark)

    Hougaard, Kristina Dupont; Oikawa, T; Sveinsdottir, E;

    1976-01-01

    Regional cerebral blood flow (rCBF) was studied in ten patients with focal cortical epilepsy. The blood flow was measured by the intra-arterial injection of xenon 133 (133Xe), and the isotope clearance was recorded by a multidetector scintillation camera with 254 detectors. Three patients were...

  16. Blood flow velocity in migraine attacks - a transcranial Doppler study

    Energy Technology Data Exchange (ETDEWEB)

    Zwetsloot, C.P.; Caekebeke, J.F.V.; Jansen, J.C.; Odink, J.; Ferrari, M.D. (Rijksuniversiteit Leiden (Netherlands))

    1991-05-01

    A pulsed Doppler device was used to measure blood flow velocities in the common carotid artery, the extracranial part of the internal carotid artery, the external carotid artery, the middle cerebral artery, and the anterior cerebral artery in 31 migraneurs without aura (n=27) and with aura (n=4), both during and ouside an attack. The aims were to compare blood flow velocity during and between migraine attacks and to study asymmetries of the blood flow velocity. Compared with blood flow velocity values obtained in the attack-free interval, blood flow velocity was lower during attacks without aura in both common carotid arteries, but not in the other extra- and intracranial vessels which were examined. However, during attacks of migraine with aura, blood flow velocity tended to be lower in all examined vessels. There were no asymmetries of the blood flow velocity. It is suggested that during migraine attacks without aura there is a dissociation in blood flow regulation in the common carotid and middle cerebral arteries. 20 refs., 2 tabs.

  17. Evaluation of changes of intracranial blood flow after carotid artery stenting using digital subtraction angiography flow assessment

    Institute of Scientific and Technical Information of China (English)

    Hajime; Wada; Masato; Saito; Kyousuke; Kamada

    2015-01-01

    AIM: To evaluate the changes of intracranial blood flow after carotid artery stenting(CAS), using the flow assessment application "Flow-Insight", which was developed in our department.METHODS: Twenty patients treated by CAS participated in this study. We analyzed the change in concentration of the contrast media at the anterior-posterior and profile view image with the flow assessment application "Flow-Insight". And we compared the results with N-isopropyl-p-[123I] iodoamphetamine-single-photon emission computed tomography(IMP SPECT) performed before and after the treatment. RESULTS: From this study, 200% of the parameter "blood flow" change in the post/pre-treatment is suggested as the critical line of the hyperperfusion syndrome arise. Although the observed blood flow increase in the digital subtraction angiography system did not strongly correlate with the rate of increase of SPECT, the "Flow-Insight" reflected the rate of change of the vessels well. However, for patients with reduced reserve blood flow before CAS, a highly elevated site was in agreement with the site analysis results. CONCLUSION: We concluded that the cerebral angiography flow assessment application was able to more finely reveal hyperperfusion regions in the brain after CAS compared to SPECT.

  18. Measurement of cerebral blood flow rate and its relationship with brain function using optical coherence tomography

    Science.gov (United States)

    Liu, Jian; Wang, Yi; Zhao, Yuqian; Dou, Shidan; Ma, Yushu; Ma, Zhenhe

    2016-03-01

    Activity of brain neurons will lead to changes in local blood flow rate (BFR). Thus, it is important to measure the local BFR of cerebral cortex on research of neuron activity in vivo, such as rehabilitation evaluation after stroke, etc. Currently, laser Doppler flowmetry is commonly used for blood flow measurement, however, relatively low resolution limits its application. Optical coherence tomography (OCT) is a powerful noninvasive 3D imaging modality with high temporal and spatial resolutions. Furthermore, OCT can provide flow distribution image by calculating Doppler frequency shift which makes it possible for blood flow rate measurement. In this paper, we applied OCT to measure the blood flow rate of the primary motor cortex in rats. The animal was immobilized and anesthetized with isoflurane, an incision was made along the sagittal suture, and bone was exposed. A skull window was opened on the primary motor cortex. Then, blood flow rate changes in the primary motor cortex were monitored by our homemade spectral domain OCT with a stimulation of the passive movement of the front legs. Finally, we established the relationship between blood flow rate and the test design. The aim is to demonstrate the potential of OCT in the evaluation of cerebral cortex function.

  19. Lattice BGK Simulations of the Blood Flow in Elastic Vessels

    Institute of Scientific and Technical Information of China (English)

    LU Xiao-Yang; YI Hou-Hui; CHEN Ji-Yao; FANG Hai-Ping

    2006-01-01

    @@ The lattice Boltzmann method is applied to study the flow in elastic blood vessels. The volume-flow rate increases considerably when the compliance constant of the blood vessel is below a critical value. There is a region of the compliance constant in which the average volume-flow rate is dramatically enhanced. A harmonic perturbation of the pressure does not change the behaviour of the average volume-flow rate while the harmonic wave attenuates very quickly along the tube when the resonant period is close to that of the input wave. The model, together with the simulation results, is expected to be helpful to understand the mechanism of the blood volume-flow rate related to the compliance constant of the blood vessel, especially on the dependence of the flux of human blood vessel under weather changes, which has medical significance.

  20. Mammary blood flow regulation in the nursing rabbit

    Energy Technology Data Exchange (ETDEWEB)

    Katz, M.; Creasy, R.K.

    1984-11-01

    Cardiac output and mammary blood flow distribution prior to and after suckling were studied in 10 nursing rabbits by means of radionuclide-labeled microspheres. Suckling was followed by a 5.8% rise in cardiac output and a 20.4% rise in mammary blood flow. Determinations of intraglandular blood flow distribution have shown that there was a 43% increase in blood flow to the glands suckled from as compared to a 22.7% rise to the contralateral untouched glands and a 4.9% rise in the remainder of untouched glands. The conclusion is that a local mechanism may be involved in the regulation of mammary blood flow in the nursing rabbit.

  1. Design and Simulation of Axial Flow Maglev Blood Pump

    OpenAIRE

    Huachun Wu; Ziyan Wang; Xujun Lv

    2011-01-01

    The axial flow maglev blood pump (AFMBP) has become a global research focus and emphasis for artificial ventricular assist device, which has no mechanical contact, mechanical friction, compact structure and light weight, can effectively solve thrombus and hemolysis. Magnetic suspension and impeller is two of the important parts in the axial flow maglev blood pump, and their structure largely determines the blood pump performance. The research adopts electromagnetic and fluid finite element an...

  2. MUSCLE METABOLISM WITH BLOOD FLOW RESTRICTION IN CHRONIC FATIGUE SYNDROME

    OpenAIRE

    McCully, Kevin K; Smith, Sinclair; Rajaei, Sheeva; Leigh, John S.; Natelson, Benjamin H

    2003-01-01

    The purpose of this study was to determine if chronic fatigue syndrome (CFS) is associated with reduced blood flow and muscle oxidative metabolism. Patients with CFS according to CDC criteria (n=19) were compared to normal sedentary subjects (n = 11). Muscle blood flow was measured in the femoral artery with Doppler ultrasound after exercise. Muscle metabolism was measured in the medial gastrocnemius muscle using 31P magnetic resonance spectroscopy (MRS). Muscle oxygen saturation and blood vo...

  3. Our experience of blood flow measurements using radioactive tracers

    International Nuclear Information System (INIS)

    A critical study of blood flow measuring methods is proposed. After a review of the various diffusible and non-diffusible radioactive tracers and the corresponding detector systems, the principles which allow to measure blood flow from the data so obtained, are studied. There is a different principle of flow measurement for each type of tracer. The theory of flow measurement using non-diffusible tracers (human serum albumin labelled with 131I or sup(99m)Tc, 113In-labelled siderophiline) and its application to cardiac flow measurement are described first. Then the theory of flow measurement using diffusible tracers (133Xe, 85Kr) and its application to measurement of blood flow through tissues (muscles and kidney particularly) are described. A personal experience of this various flow measurements is reported. The results obtained, the difficulties encountered and the improvments proposed are developed

  4. PERFORMANCE MODELING AND ANALYSIS OF BLOOD FLOW IN ELASTIC ARTERIES

    Institute of Scientific and Technical Information of China (English)

    Anil Kumar; C.L. Varshney; G.C. Sharma

    2005-01-01

    Two different non-Newtonian models for blood flow are considered, first a simple power law model displaying shear thinning viscosity, and second a generalized Maxwell model displaying both shear thinning viscosity and oscillating flow viscous-elasticity. These models are used along with a Newtonian model to study sinusoidal flow of blood in rigid and elastic straight arteries in the presence of magnetic field. The elasticity of blood does not appear to influence its flow behavior under physiological conditions in the large arteries,purely viscous shear thinning model should be quite realistic for simulating blood flow under these conditions. On using the power law model with high shear rate for sinusoidal flow simulation in elastic arteries, the mean and amplitude of the flow rate were found to be lower for a power law fluid compared to Newtonian fluid for the same pressure gradient. The governing equations have been solved by Crank-Niclson scheme. The results are interpreted in the context of blood in the elastic arteries keeping the magnetic effects in view. For physiological flow simulation in the aorta, an increase in mean wall shear stress, but a reduction in peak wall shear stress were observed for power law model compared to a Newtonian fluid model for matched flow rate wave form. Blood flow in the presence of transverse magnetic field in an elastic artery is investigated and the influence of factors such as morphology and surface irregularity is evaluated.

  5. Prognostic value of tumour blood flow, [{sup 18}F]EF5 and [{sup 18}F]FDG PET/CT imaging in patients with head and neck cancer treated with radiochemotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Komar, Gaber; Eskola, Olli; Sipilae, Hannu; Solin, Olof [Turku PET Centre, Turku (Finland); Lehtioe, Kaisa; Levola, Helena; Lindholm, Paula; Seppaelae, Jan [Turku University Hospital and University of Turku, Department of Oncology and Radiotherapy, Turku (Finland); Seppaenen, Marko [Turku PET Centre, Turku (Finland); Turku University Hospital and University of Turku, Department of Nuclear Medicine, Turku (Finland); Grenman, Reidar [Turku University Hospital and University of Turku, Department of Otorhinolaryngology, Head and Neck Surgery, Turku (Finland); Minn, Heikki [Turku PET Centre, Turku (Finland); Turku University Hospital and University of Turku, Department of Oncology and Radiotherapy, Turku (Finland)

    2014-11-15

    In order to improve the treatment of squamous cell carcinoma of the head and neck, precise information on the treated tumour's biology is required and the prognostic importance of different biological parameters needs to be determined. The aim of our study was to determine the predictive value of pretreatment PET/CT imaging using [{sup 18}F]FDG, a new hypoxia tracer [{sup 18}F]EF5 and the perfusion tracer [{sup 15}O]H{sub 2}O in patients with squamous cell cancer of the head and neck treated with radiochemotherapy. The study group comprised 22 patients with confirmed squamous cell carcinoma of the head and neck who underwent a PET/CT scan using the above tracers before any treatment. Patients were later treated with a combination of radiochemotherapy and surgery. Parametric blood flow was calculated from dynamic [{sup 15}O]H{sub 2}O PET images using a one-tissue compartment model. [{sup 18}F]FDG images were analysed by calculating standardized uptake values (SUV) and metabolically active tumour volumes (MATV). [{sup 18}F]EF5 images were analysed by calculating tumour-to-muscle uptake ratios (T/M ratio). A T/M ratio of 1.5 was considered a significant threshold and used to determine tumour hypoxic subvolumes (HS) and hypoxic fraction area. The findings were finally correlated with the pretreatment clinical findings (overall stage and TNM stage) as well as the outcome following radiochemotherapy in terms of local control and overall patient survival. Tumour stage and T-classification did not show any significant differences in comparison to the patients' metabolic and functional characteristics measured on PET. Using the Cox proportional hazards model, a shorter overall survival was associated with MATV (p = 0.008, HR = 1.108), maximum [{sup 18}F]EF5 T/M ratio (p = 0.0145, HR = 4.084) and tumour HS (p = 0.0047, HR = 1.112). None of the PET parameters showed a significant effect on patient survival in the log-rank test, although [{sup 18}F]EF5 maximum T

  6. Alterations of Regional Cerebral Blood Flow in Major Depressive Disorder

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Won Hyoung; Chung, Yong An; Seo, Ye Young; Yoo, Ik Dong; Na, Sae Jung; Jung, Hyun Suk; Kim, Ki Jun [College of Medicine, The Catholic University of Korea, Seoul (Korea, Republic of)

    2009-04-15

    The authors analyzed how the regional cerebral blood flow (rCBF) findings of patients with major depression differ from the normal control, and our results were compared to previous reports. Twelve patients fulfilling DSM-IV criteria for major depression who were off all psychotropic medications for > 4 weeks (male: 7, female: 5, age range: 19approx52 years, average age: 29.3+-9.9 years) and 14 normal volunteers (male: 8, female: 6, age range: 19approx53 years, average age: 31.4+-9.2 years) were recruited. Images of brain perfusion SPECT were obtained using Tc-99m ECD and patterns of the rCBF were compared between patients with major depression and the healthy control subjects. The patients with major depression showed increase of the r-CBF in right lingual gyrus, right fusiform gyrus, left lingual gyrus, left precuneus, and left superior temporal gyrus, and showed decrease of r-CBF in right pons, left medial frontal gyrus, cingulate gyrus of left limbic lobe, cingulate gyrus of right frontal lobe, and cingulate gyrus of right limbic lobe compared to the normal control. The Tc-99m ECD brain perfusion SPECT findings in our study did not differ from the previously reported regional cerebral blood flow pattern of patients with major depression. Especially, decreased rCBF pattern typical to major depression patients in the right pons, left medial frontal gyrus, and cingulate regions was clearly demonstrated

  7. Laser Doppler flowmetry: reproducibility, reliability, and diurnal blood flow variations.

    Science.gov (United States)

    Roeykens, Herman J J; Deschepper, Ellen; De Moor, Roeland J G

    2016-08-01

    The aim of this investigation was (1) to evaluate the reliability of laser Doppler flowmetry (LDF) taking into consideration the use of a silicone splint and the inclination of the probe towards the buccal surface of a human tooth and (2) to determine whether diurnal variations of pulpal blood flow can be registered by means of LDF. Forty-one splints were made by one and the same principal investigator for the registration of pulpal blood flow in vivo in a maxillary right central incisor. Thirty dentists, without experience in LDF recording, were then asked to drill a right-angled shaft in a pre-manufactured splint with a referral point at 2 mm from the enamel-cement border central on the buccal surface of the right central upper incisor. The remaining 11 splints were handled by the principal investigator. The shafts in the 30 splints were analysed using Cone Beam CT imaging of the axial and sagittal angles and compared these to the 11 shafts prepared by the trained principal investigator. LDF was recorded for 90 s in each splint and statistically analysed. LDF values without the use of a splint were statistically significantly different (p < 0.05) and the variance was greater, indicating the superiority of splint use. Significant diurnal variations on LDF values were observed, indicating that special attention should be paid to registration during the day, especially when multiple measurements are to be compared. PMID:27184153

  8. Spiral blood flow in aorta-renal bifurcation models.

    Science.gov (United States)

    Javadzadegan, Ashkan; Simmons, Anne; Barber, Tracie

    2016-01-01

    The presence of a spiral arterial blood flow pattern in humans has been widely accepted. It is believed that this spiral component of the blood flow alters arterial haemodynamics in both positive and negative ways. The purpose of this study was to determine the effect of spiral flow on haemodynamic changes in aorta-renal bifurcations. In this regard, a computational fluid dynamics analysis of pulsatile blood flow was performed in two idealised models of aorta-renal bifurcations with and without flow diverter. The results show that the spirality effect causes a substantial variation in blood velocity distribution, while causing only slight changes in fluid shear stress patterns. The dominant observed effect of spiral flow is on turbulent kinetic energy and flow recirculation zones. As spiral flow intensity increases, the rate of turbulent kinetic energy production decreases, reducing the region of potential damage to red blood cells and endothelial cells. Furthermore, the recirculation zones which form on the cranial sides of the aorta and renal artery shrink in size in the presence of spirality effect; this may lower the rate of atherosclerosis development and progression in the aorta-renal bifurcation. These results indicate that the spiral nature of blood flow has atheroprotective effects in renal arteries and should be taken into consideration in analyses of the aorta and renal arteries. PMID:26414530

  9. Use of phase-contrast magnetic resonance angiography to measure blood flow in the ophthalmic artery

    International Nuclear Information System (INIS)

    The aim of this study was to examine the usefulness of phase-contrast magnetic resonance (MR) angiography (PC-MRA) to measure blood flow in the ophthalmic artery. PC-MRA was performed in 16 volunteers with no ophthalmic abnormalities and measurement of blood flow based on the results was attempted. It was possible to measure blood flow in the ophthalmic artery using PC-MRA in all 16 volunteers. The mean (±1 standard deviation) velocity was 9.17±2.28 cm/second, peak systolic velocity was 16.69±3.33 cm/second, and end diastolic velocity was 3.69±2.44 cm/second. The resistivity index was 0.79±0.12, the pulsatility index was 1.49±0.41, and flow was 6.25±2.33 ml/minute. It was possible to identify the ophthalmic artery and a portion of the artery in which blood flow could be measured using MR imaging, a preliminary step to blood flow measurement using MR angiography. In addition to the velocity of blood flow in the ophthalmic artery, measurement of the amount of flow was possible with PC-MRA, which is one advantage of this method. (author)

  10. Blood flow measurement using a highly filled carbon polymer sandwich sensor and an elasto-pseudo compressible vascular flow.

    Science.gov (United States)

    Mehdian, M; Rahnejat, H

    1996-01-01

    Vascular grafts are widely employed in clinical practice and still pose significant problems of compatibility and longevity, particularly when the prosthesis is to replace arteries of small diameter. Once a graft has been implanted in the vascular tree, there is no easy way of assessing its interactions with the surrounding tissue. Doppler flow probes or some imaging techniques are commonly used to monitor flow velocity in vascular prostheses. It is, however, difficult to monitor a patient's recovery on a continuous basis. Continuous means of measurement can be quite invaluable. This paper presents a high-carbon filled polymer (HCFP) sensor that is developed for blood flow measurement in vascular grafts. Furthermore, a computational fluid dynamics model of incompressible blood flow in elastic blood vessels is presented. PMID:9046189

  11. ANALYSIS OF PULSATILE BLOOD FLOW IN AXIALLY MOVING ARTERIES

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In order to study motional properties of pulsatile blood flow in axially moving arteries, the authors derived some expressions of the pulsatile blood flow from the basic equations of motion for blood and vascular walls, including an axial blood velocity equation, a flow rate equation and a wall shear stress equation, which described not only the overall axial movement of the arteries but also the elastic properties of the vascular walls, discussed the effects of the arterial wall elasticity on the wall shear stress in coronary arteries in terms of these expressions, and analyzed changes of motional properties of pulsatile blood flow between an elastic arterial tube model and a rigid tube model. The results proved the inference by J.E. Moore Jr. et al. (1994) that the axial movement of arteries be as important in determining coronary artery hemodynamics as the elastic property of the vascular wall.

  12. Regional blood flow during exercise in humans measured by near-infrared spectroscopy and indocyanine green

    DEFF Research Database (Denmark)

    Boushel, R; Langberg, Henning; Olesen, J;

    2000-01-01

    Using near-infrared spectroscopy (NIRS) and the tracer indocyanine green (ICG), we quantified blood flow in calf muscle and around the Achilles tendon during plantar flexion (1-9 W). For comparison, blood flow in calf muscle was determined by dye dilution in combination with magnetic resonance...... imaging measures of muscle volume, and, for the peritendon region, blood flow was measured by (133)Xe washout. From rest to a peak load of 9 W, NIRS-ICG blood flow in calf muscle increased from 2.4+/-0.2 to 74+/-5 ml x 100 ml tissue(-1) x min(-1), similar to that measured by reverse dye (77+/-6 ml x 100...

  13. On the flow dependency of the electrical conductivity of blood

    NARCIS (Netherlands)

    Hoetink, AE; Faes, TJC; Visser, KR; Heethaar, RM

    2004-01-01

    Experiments presented in the literature show that the electrical conductivity of flowing blood depends on flow velocity. The aim of this study is to extend the Maxwell-Fricke theory, developed for a dilute suspension of ellipsoidal particles in an electrolyte, to explain this flow dependency of the

  14. Cerebral blood flow and metabolism during exercise: implications for fatigue

    NARCIS (Netherlands)

    N.H. Secher; T. Seifert; J.J. van Lieshout

    2008-01-01

    During exercise: the Kety-Schmidt-determined cerebral blood flow (CBF) does not change because the jugular vein is collapsed in the upright position. In contrast, when CBF is evaluated by (133)Xe clearance, by flow in the internal carotid artery, or by flow velocity in basal cerebral arteries, a app

  15. Microwave imaging of tissue blood content changes.

    Science.gov (United States)

    Hawley, M S; Broquetas, A; Jofre, L; Bolomey, J C; Gaboriaud, G

    1991-05-01

    Active microwave imaging gives information on the dielectric properties of of the body, allowing the collection of data that are distinct from, but complementary to, those available from other imaging methods based on different radiations. Two types of microwave imaging systems have been developed. The first is a planar system that irradiates the object with a plane wave and collects scattered phase and amplitude data at 1024 points on a parallel plane. The data can be reconstructed using a back propagation technique to give an image of the object. The second type of system is a tomographic scanner, consisting of a multiplexed 64-element circular array of waveguides. The waveguides are electronically scanned, alternately as sources and receivers, to give a complete scan of the object with no mechanical movement. A tomographic 'slice' of the object is reconstructed using spectral domain interpolation. Both systems work at 2.45 GHz with an incident power less than 1 mW cm-2 at the object and require a coupling medium (usually water) between the object and the source/receiver. Imaging parameters are appropriate for clinical use: a spatial resolution of 1 cm, measurement time of a few seconds and contrast resolution of around 1%. The effects of changes in perfusion on images of isolated animal organs are presented. Images have also been obtained, with both systems, of the internal dielectric structure of the forearm and of variations in dielectric properties due to changes of tissue blood content effected by application and release of tourniquets to the upper arm. Results show that these changes are well demonstrated by microwave imaging, and possible clinical applications are discussed. PMID:1870328

  16. Effects of non Newtonian spiral blood flow through arterial stenosis

    Science.gov (United States)

    Hasan, Md. Mahmudul; Maruf, Mahbub Alam; Ali, Mohammad

    2016-07-01

    The spiral component of blood flow has both beneficial and detrimental effects in human circulatory system. A numerical investigation is carried out to analyze the effect of spiral blood flow through an axisymmetric three dimensional artery having 75% stenosis at the center. Blood is assumed as a Non-Newtonian fluid. Standard k-ω model is used for the simulation with the Reynolds number of 1000. A parabolic velocity profile with spiral flow is used as inlet boundary condition. The peak values of all velocity components are found just after stenosis. But total pressure gradually decreases at downstream. Spiral flow of blood has significant effects on tangential component of velocity. However, the effect is mild for radial and axial velocity components. The peak value of wall shear stress is at the stenosis zone and decreases rapidly in downstream. The effect of spiral flow is significant for turbulent kinetic energy. Detailed investigation and relevant pathological issues are delineated throughout the paper.

  17. Increased bone marrow blood flow in polycythemia vera

    Energy Technology Data Exchange (ETDEWEB)

    Lathinen, R.; Lathinen, T.; Hyoedynmaa, S.

    1983-01-01

    Bone marrow blood flow was measured in polycythemia vera, in compensatory and in relative polycythemia with a /sup 133/Xe washout method. In the treated polycythemia vera bone marrow blood flow was significantly increased compared with the age-matched controls. The fraction of blood flow entering the bone and flowing through the hematopoietic marrow was markedly increased in both the untreated and the treated polycythemia vera. Although the number of observations in compensatory and relative polycythemia was small, the results suggest that bone marrow blood flow is not markedly increased in these diseases. The results also suggest that in older patients the simple /sup 133/Xe method may support the diagnosis of polycythemia vera.

  18. A Framework for White Blood Cell Segmentation in Microscopic Blood Images Using Digital Image Processing

    OpenAIRE

    Seman Zainina; Abdul Kahar Badrul; Sadeghian Farnoosh; Ramli Abdul; Saripan M-Iqbal

    2009-01-01

    Abstract Evaluation of blood smear is a commonly clinical test these days. Most of the time, the hematologists are interested on white blood cells (WBCs) only. Digital image processing techniques can help them in their analysis and diagnosis. For example, disease like acute leukemia is detected based on the amount and condition of the WBC. The main objective of this paper is to segment the WBC to its two dominant elements: nucleus and cytoplasm. The segmentation is conducted using a proposed ...

  19. Modified Beer-Lambert law for blood flow

    Science.gov (United States)

    Baker, Wesley B.; Parthasarathy, Ashwin B.; Busch, David R.; Mesquita, Rickson C.; Greenberg, Joel H.; Yodh, A. G.

    2015-03-01

    The modified Beer-Lambert law is among the most widely used approaches for analysis of near-infrared spectroscopy (NIRS) reflectance signals for measurements of tissue blood volume and oxygenation. Briefly, the modified Beer-Lambert paradigm is a scheme to derive changes in tissue optical properties based on continuous-wave (CW) diffuse optical intensity measurements. In its simplest form, the scheme relates differential changes in light transmission (in any geometry) to differential changes in tissue absorption. Here we extend this paradigm to the measurement of tissue blood flow by diffuse correlation spectroscopy (DCS). In the new approach, differential changes of the intensity temporal auto-correlation function at a single delay-time are related to differential changes in blood flow. The key theoretical results for measurement of blood flow changes in any tissue geometry are derived, and we demonstrate the new method to monitor cerebral blood flow in a pig under conditions wherein the semi-infinite geometry approximation is fairly good. Specifically, the drug dinitrophenol was injected in the pig to induce a gradual 200% increase in cerebral blood flow, as measured with MRI velocity flow mapping and by DCS. The modified Beer-Lambert law for flow accurately recovered these flow changes using only a single delay-time in the intensity auto-correlation function curve. The scheme offers increased DCS measurement speed of blood flow. Further, the same techniques using the modified Beer-Lambert law to filter out superficial tissue effects in NIRS measurements of deep tissues can be applied to the DCS modified Beer-Lambert law for blood flow monitoring of deep tissues.

  20. In-vitro study on haemodiluted blood flow in a sinusoidal microstenosis.

    Science.gov (United States)

    Kang, M J; Ji, H-S; Lee, S J

    2010-01-01

    In-vitro experiments were carried out to investigate the haemodynamic and haemorheological behaviours of haemodiluted blood flow through a microstenosis using a micro-particle image velocimetry (PIV) technique. The micro-PIV system employed in this study consisted of a two-head neodymium:yttrium-aluminium-garnet (Nd:YAG) laser, a cooled charge-coupled device camera, and a delay generator. To simulate blood flow in a stenosed vascular vessel, a polydimethylsiloxane (PDMS) microchannel with a sinusoidal throat of 80 per cent severity was employed. The width and depth of the microchannel were 100 microm and 50 microm, respectively. To compare the flow characteristics in the microstenosis, the same experiments were repeated in a straight microchannel under the same flow conditions. Using a syringe pump, human blood with 5 per cent haematocrit was supplied into the microstenosis channel. The flow characteristics and transport of blood cells through the microstenosis were investigated with various flowrates. The mean velocity fields were nearly symmetric with respect to the channel centreline. In the contraction section, the oncoming blood flow was accelerated rapidly, and the maximum velocity at the throat was almost 4.99 times faster than that of the straight microchannel without stenosis. In the diffusion section, the blood cells show rolling, deformation, twisting, and tumbling motion due to the flow-choking characteristics at the stenotic region. The results from this study will provide useful basic data for comparison with those obtained by clinical researchers. PMID:20225454

  1. Regulation of exercise blood flow: Role of free radicals.

    Science.gov (United States)

    Trinity, Joel D; Broxterman, Ryan M; Richardson, Russell S

    2016-09-01

    During exercise, oxygen and nutrient rich blood must be delivered to the active skeletal muscle, heart, skin, and brain through the complex and highly regulated integration of central and peripheral hemodynamic factors. Indeed, even minor alterations in blood flow to these organs have profound consequences on exercise capacity by modifying the development of fatigue. Therefore, the fine-tuning of blood flow is critical for optimal physical performance. At the level of the peripheral circulation, blood flow is regulated by a balance between the mechanisms responsible for vasodilation and vasoconstriction. Once thought of as toxic by-products of in vivo chemistry, free radicals are now recognized as important signaling molecules that exert potent vasoactive responses that are dependent upon the underlying balance between oxidation-reduction reactions or redox balance. Under normal healthy conditions with low levels of oxidative stress, free radicals promote vasodilation, which is attenuated with exogenous antioxidant administration. Conversely, with advancing age and disease where background oxidative stress is elevated, an exercise-induced increase in free radicals can further shift the redox balance to a pro-oxidant state, impairing vasodilation and attenuating blood flow. Under these conditions, exogenous antioxidants improve vasodilatory capacity and augment blood flow by restoring an "optimal" redox balance. Interestingly, while the active skeletal muscle, heart, skin, and brain all have unique functions during exercise, the mechanisms by which free radicals contribute to the regulation of blood flow is remarkably preserved across each of these varied target organs. PMID:26876648

  2. Regulation of exercise blood flow: Role of free radicals.

    Science.gov (United States)

    Trinity, Joel D; Broxterman, Ryan M; Richardson, Russell S

    2016-09-01

    During exercise, oxygen and nutrient rich blood must be delivered to the active skeletal muscle, heart, skin, and brain through the complex and highly regulated integration of central and peripheral hemodynamic factors. Indeed, even minor alterations in blood flow to these organs have profound consequences on exercise capacity by modifying the development of fatigue. Therefore, the fine-tuning of blood flow is critical for optimal physical performance. At the level of the peripheral circulation, blood flow is regulated by a balance between the mechanisms responsible for vasodilation and vasoconstriction. Once thought of as toxic by-products of in vivo chemistry, free radicals are now recognized as important signaling molecules that exert potent vasoactive responses that are dependent upon the underlying balance between oxidation-reduction reactions or redox balance. Under normal healthy conditions with low levels of oxidative stress, free radicals promote vasodilation, which is attenuated with exogenous antioxidant administration. Conversely, with advancing age and disease where background oxidative stress is elevated, an exercise-induced increase in free radicals can further shift the redox balance to a pro-oxidant state, impairing vasodilation and attenuating blood flow. Under these conditions, exogenous antioxidants improve vasodilatory capacity and augment blood flow by restoring an "optimal" redox balance. Interestingly, while the active skeletal muscle, heart, skin, and brain all have unique functions during exercise, the mechanisms by which free radicals contribute to the regulation of blood flow is remarkably preserved across each of these varied target organs.

  3. Collateral sources of costal and crural diaphragmatic blood flow

    International Nuclear Information System (INIS)

    We measured the contribution of aortic, internal mammary, and intercostal arteries to the blood flow to the costal and crural segments of the diaphragm and other respiratory muscles in seven dogs breathing against a fixed inspiratory elastic load. We used radiolabeled microspheres to measure the blood flow with control circulation, occlusion of the aorta distal to the left subclavian artery, combined occlusion of the aorta and both internal mammary arteries, and occlusion of internal mammary arteries alone. With occlusion of the aorta distal to the left subclavian artery, blood flow to the crural diaphragm decreased from 40.3 to 23.5 ml . min-1 X 100 g-1, whereas costal flow did not change significantly (from 41.7 to 38.1 ml . min-1 . 100 g-1). Blood flows to the sternomastoid and scalene muscles (above the occlusion) increased by 200 and 340%, respectively, whereas flows to the other respiratory muscles did not change significantly. Blood flows to organs above the occlusion either remained unchanged or increased, whereas flows to those below the occlusion all decreased. When the internal mammary artery was also occluded, flows to the crural segment decreased further to 12.1 and costal flow decreased to 20.4 ml X min-1 X 100 g-1. Internal mammary arterial occlusion alone in two dogs had no effect on diaphragmatic flow. In conclusion, intercostal collateral vessels are capable of supplying a significant proportion of blood flow to both segments of the diaphragm but the costal segment is better served than the crural segment

  4. Coronary blood flow in the anesthetized American alligator (Alligator mississippiensis).

    Science.gov (United States)

    Jensen, Bjarke; Elfwing, Magnus; Elsey, Ruth M; Wang, Tobias; Crossley, Dane A

    2016-01-01

    Coronary circulation of the heart evolved early within ectothermic vertebrates and became of vital importance to cardiac performance in some teleost fish, mammals and birds. In contrast, the role and function of the coronary circulation in ectothermic reptiles remains largely unknown. Here, we investigated the systemic and coronary arterial responses of five anesthetized juvenile American alligators (Alligator mississippiensis) to hypoxia, acetylcholine, adenosine, sodium nitroprusside, isoproterenol, and phenylephrine. We recorded electrocardiograms, monitored systemic blood pressure, blood flows in both aortae, and blood flow in a major coronary artery supplying most of the right ventricle. Coronary arterial blood flow was generally forward, but there was a brief retrograde flow during a ventricular contraction. Blood pressure was significantly changed in all conditions. Acetylcholine decreased coronary forward flow, but this response was confounded by the concomitant lowered work of the ventricles due to decreased heart rate and blood pressure. Coronary forward flow was poorly correlated with heart rate and mean arterial pressure across treatments. Overall changes in coronary forward flow, significant and not significant, were generally in the same direction as mean arterial pressure and ventricular power, approximated as the product of systemic cardiac output and mean arterial pressure. PMID:26436857

  5. Low cerebral blood flow in hypotensive perinatal distress

    International Nuclear Information System (INIS)

    Hypoxic brain injury is the most important neurological problem in the neonatal period and accounts for more neurological deficits in children than any other lesion. The neurological deficits are notably mental retardation, epilepsy and cerebral palsy. The pathogenesis has hitherto been poorly understood. Arterial hypoxia has been taken as the obvious mechanism but this does not fully explain the patho-anatomical findings. In the present investigation we have examined the arterial blood pressure and the cerebral blood flow in eight infants a few hours after birth. The 133Xe clearance technique was used for the cerebral blood flow measurements. The study confirmed that perinatal distress may be associated with low arterial blood pressure, and it was shown that cerebral blood flow is very low, 20 ml/100 g/min or less, in hypotensive perinatal distress. It is concluded that cerebral ischaemia plays a crucial role in the development of perinatal hypoxic brain injury. (author)

  6. Aging, regional cerebral blood flow, and neuropsychological functioning

    International Nuclear Information System (INIS)

    Previous studies found changes in regional cerebral blood flow (rCBF) patterns related to both age and various cognitive tasks. However, no study has yet demonstrated a relationship between rCBF and performance on the Luria-Nebraska Neuropsychological Battery (LNNB) in an elderly group. Seventy-nine elderly volunteers (56-88 years old), both healthy and demented, underwent the 133xenon inhalation rCBF procedure and were given the LNNB. The decrements in the gray-matter blood flow paralleled decrements in performance on the LNNB. Using partial correlations, a significant proportion of shared variance was observed between gray-matter blood flow and the LNNB scales. However, there was much less of a relationship between white-matter blood flow and performance on the LNNB. This study suggests that even within a restricted age sample rCBF is related in a global way to neuropsychological functioning

  7. Aging, regional cerebral blood flow, and neuropsychological functioning

    Energy Technology Data Exchange (ETDEWEB)

    MacInnes, W.D.; Golden, C.J.; Gillen, R.W.; Sawicki, R.F.; Quaife, M.; Uhl, H.S.; Greenhouse, A.J.

    1984-10-01

    Previous studies found changes in regional cerebral blood flow (rCBF) patterns related to both age and various cognitive tasks. However, no study has yet demonstrated a relationship between rCBF and performance on the Luria-Nebraska Neuropsychological Battery (LNNB) in an elderly group. Seventy-nine elderly volunteers (56-88 years old), both healthy and demented, underwent the /sup 133/xenon inhalation rCBF procedure and were given the LNNB. The decrements in the gray-matter blood flow paralleled decrements in performance on the LNNB. Using partial correlations, a significant proportion of shared variance was observed between gray-matter blood flow and the LNNB scales. However, there was much less of a relationship between white-matter blood flow and performance on the LNNB. This study suggests that even within a restricted age sample rCBF is related in a global way to neuropsychological functioning.

  8. Skeletal Blood Flow in Bone Repair and Maintenance

    Institute of Scientific and Technical Information of China (English)

    Ryan E.Tomlinson; Matthew J.Silva

    2013-01-01

    Bone is a highly vascularized tissue, although this aspect of bone is often overlooked. In this article, the importance of blood flow in bone repair and regeneration will be reviewed. First, the skeletal vascular anato-my, with an emphasis on long bones, the distinct mechanisms for vascularizing bone tissue, and methods for remodeling existing vasculature are discussed. Next, techniques for quantifying bone blood flow are briefly summarized. Finally, the body of experimental work that demonstrates the role of bone blood flow in fracture healing, distraction osteogenesis, osteoporosis, disuse osteopenia, and bone grafting is examined. These results illustrate that adequate bone blood flow is an important clinical consideration, particularly during bone regeneration and in at-risk patient groups.

  9. Reduced blood flow to contracting skeletal muscle in ageing humans

    DEFF Research Database (Denmark)

    Nyberg, Michael Permin; Hellsten, Ylva

    2016-01-01

    consequences of ageing and physical inactivity can be challenging; yet, observations from cross-sectional and longitudinal studies on the effects of physical activity have provided some insight. Physical activity has the potential to offset the age-related decline in blood flow to contracting skeletal muscle...... during exercise where systemic blood flow is not limited by cardiac output, thereby improving O2 delivery and allowing for an enhanced energy production from oxidative metabolism. The mechanisms underlying the increase in blood flow with regular physical activity include improved endothelial function...... the O2 demand of the active skeletal muscle of aged individuals during conditions where systemic blood flow is not limited by cardiac output seems to a large extent to be related to the level of physical activity. This article is protected by copyright. All rights reserved....

  10. Cerebral blood flow in Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Roher AE

    2012-10-01

    Full Text Available Alex E Roher,1 Josef P Debbins,2 Michael Malek-Ahmadi,3 Kewei Chen,4 James G Pipe,2 Sharmeen Maze,2 Christine Belden,3 Chera L Maarouf,1 Pradeep Thiyyagura,4 Hua Mo,4 Jesse M Hunter,1 Tyler A Kokjohn,1,5 Douglas G Walker,6 Jane C Kruchowsky,6 Marek Belohlavek,7 Marwan N Sabbagh,3 Thomas G Beach81The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute, Sun City, 2Keller Center for Imaging Innovation, Neuroimaging Research, Barrow Neurological Institute, Phoenix, 3Cleo Roberts Center for Clinical Research, Banner Sun Health Research Institute, Sun City, 4Computational Image Analysis Program, Banner Alzheimer’s Institute, Phoenix, 5Department of Microbiology, Midwestern University, Glendale, 6Laboratory of Neuroinflammation, Banner Sun Health Research Institute, Sun City, 7Division of Cardiovascular Diseases, Mayo Clinic, Scottsdale, 8Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, USABackground: Alzheimer’s disease (AD dementia is a consequence of heterogeneous and complex interactions of age-related neurodegeneration and vascular-associated pathologies. Evidence has accumulated that there is increased atherosclerosis/arteriosclerosis of the intracranial arteries in AD and that this may be additive or synergistic with respect to the generation of hypoxia/ischemia and cognitive dysfunction. The effectiveness of pharmacologic therapies and lifestyle modification in reducing cardiovascular disease has prompted a reconsideration of the roles that cardiovascular disease and cerebrovascular function play in the pathogenesis of dementia.Methods: Using two-dimensional phase-contrast magnetic resonance imaging, we quantified cerebral blood flow within the internal carotid, basilar, and middle cerebral arteries in a group of individuals with mild to moderate AD (n = 8 and compared the results with those from a group of age-matched nondemented control (NDC subjects (n = 9

  11. High-resolution nuclear magnetic resonance imaging and single photon emission computerized tomography--cerebral blood flow in a case of pure sensory stroke and mild dementia owing to subcortical arteriosclerotic encephalopathy (Binswanger's disease)

    Energy Technology Data Exchange (ETDEWEB)

    De Chiara, S.; Lassen, N.A.; Andersen, A.R.; Gade, A.; Lester, J.; Thomsen, C.; Henriksen, O.

    1987-01-01

    Pure sensory stroke (PSS) is typically caused by a lacunar infarct located in the ventral-posterior (VP) thalamic nucleus contralateral to the paresthetic symptoms. The lesion is usually so small that it cannot be seen on computerized tomography (CT), as illustrated by our case. In our moderately hypertensive, 72-year-old patient with PSS, CT scanning and conventional nuclear magnetic resonance imaging (NMRI) scanning using a 7-mm-thick slice on a 1.5 Tesla instrument all failed to visualize the thalamic infarct. Using the high-resolution mode with 2-mm slice thickness it was, however, clearly seen. In addition, NMRI unexpectedly showed diffuse periventricular demyelinization as well as three other lacunar infarcts, i.e., findings characteristic of subcortical arteriosclerotic encephalopathy (SAE). This prompted psychometric testing, which revealed signs of mild (subclinical) dementia, in particular involving visiospatial apraxia; this pointed to decreased function of the right parietal cortex, which was structurally intact on CT and NMRI. Single photon emission computerized tomography by Xenon-133 injection and by hexamethyl-propyleneamine-oxim labeled with Technetium-99m showed asymmetric distribution of cerebral blood flow (CBF), with an 18% lower value in the right parietal cortex compared to the left side; this indicated asymmetric disconnection of the cortex by the SAE. Thus, the tomograms of the functional parameter, CBF, correlated better with the deficits revealed by neuropsychological testing than by CT or NMRI.

  12. Experimental comparison of mammalian and avian blood flow in microchannels

    Science.gov (United States)

    Fink, Kathryn; Liepmann, Dorian

    2015-11-01

    The non-Newtonian, shear rate dependent behavior of blood in microchannel fluid dynamics has been studied for nearly a century, with a significant focus on the characteristics of human blood. However, for over 200 years biologists have noted significant differences in red blood cell characteristics across vertebrate species, with particularly drastic differences in cell size and shape between mammals and non-mammalian classes. We present an experimental analysis of flow in long microchannels for several varieties of mammalian and avian blood, across a range of hematocrits, channel diameters, and flow rates. Correlation of shear rate and viscosity is compared to existing constitutive equations for human blood to further quantify the importance of red blood cell characteristics. Ongoing experimental results are made available in an online database for reference or collaboration. K.F. acknowledges funding from the ARCS Foundation and an NSF Graduate Research Fellowship through NSF Grant DGE 1106400.

  13. Measuring bovine mammary gland blood flow using a transit time ultrasonic flow probe.

    Science.gov (United States)

    Gorewit, R C; Aromando, M C; Bristol, D G

    1989-07-01

    Lactating cattle were used to validate a transit time ultrasonic blood flow metering system for measuring mammary gland arterial blood flow. Blood flow probes were surgically placed around the right external pudic artery. An electromagnetic flow probe was implanted in tandem with the ultrasonic probe in two cows for comparative measurements. The absolute accuracy of the implanted flow probes was assessed in vivo by mechanical means on anesthetized cows after 2 to 3 wk of implantation. The zero offset of the ultrasonic probes ranged from -12 to 8 ml/min. When the ultrasonic probe was properly implanted, the slopes of the calibration curves were linear and ranged from .92 to .95, tracking absolute flow to within 8%. The transit time instrument's performance was examined under a variety of physiological conditions. These included milking and hormone injections. The transit time ultrasonic flow meter accurately measured physiological changes in mammary arterial blood flow in chronically prepared conscious cattle. Blood flow increased 29% during milking. Epinephrine decreased mammary blood flow by 90 to 95%. Oxytocin doses increased mammary blood flow by 15 to 24%. PMID:2674232

  14. Establishing the diffuse correlation spectroscopy signal relationship with blood flow.

    Science.gov (United States)

    Boas, David A; Sakadžić, Sava; Selb, Juliette; Farzam, Parisa; Franceschini, Maria Angela; Carp, Stefan A

    2016-07-01

    Diffuse correlation spectroscopy (DCS) measurements of blood flow rely on the sensitivity of the temporal autocorrelation function of diffusively scattered light to red blood cell (RBC) mean square displacement (MSD). For RBCs flowing with convective velocity [Formula: see text], the autocorrelation is expected to decay exponentially with [Formula: see text], where [Formula: see text] is the delay time. RBCs also experience shear-induced diffusion with a diffusion coefficient [Formula: see text] and an MSD of [Formula: see text]. Surprisingly, experimental data primarily reflect diffusive behavior. To provide quantitative estimates of the relative contributions of convective and diffusive movements, we performed Monte Carlo simulations of light scattering through tissue of varying vessel densities. We assumed laminar vessel flow profiles and accounted for shear-induced diffusion effects. In agreement with experimental data, we found that diffusive motion dominates the correlation decay for typical DCS measurement parameters. Furthermore, our model offers a quantitative relationship between the RBC diffusion coefficient and absolute tissue blood flow. We thus offer, for the first time, theoretical support for the empirically accepted ability of the DCS blood flow index ([Formula: see text]) to quantify tissue perfusion. We find [Formula: see text] to be linearly proportional to blood flow, but with a proportionality modulated by the hemoglobin concentration and the average blood vessel diameter.

  15. Blood flow structure in patients with coronary heart disease

    Science.gov (United States)

    Malinova, Lidia I.; Simonenko, Georgy V.; Denisova, Tatyana P.; Tuchin, Valery V.

    2007-05-01

    Blood flow structure was studied by PC integrated video camera with following slide by slide analysis. Volumetric blood flow velocity was supporting on constant level (1 ml/h). Silicone tube of diameter comparable with coronary arteries diameter was used as vessel model. Cell-cell interactions were studied under glucose and anticoagulants influence. Increased adhesiveness of blood cells to tube walls was revealed in patient with coronary heart disease (CHD) compare to practically healthy persons (PHP). In patients with stable angina pectoris of high functional class and patients with AMI shear stress resistant erythrocyte aggregates were predominating in blood flow structure up to microclots formation. Clotting and erythrocytes aggregation increase as response to glucose solution injection, sharply defined in patients with CHD. Heparin injection (10 000 ED) increased linear blood flow velocity both in patients with CHD and PHP. After compare our results with other author's data we can consider that method used in our study is sensible enough to investigate blood flow structure violations in patients with CHD and PHP. Several differences of cell-cell interaction in flow under glucose and anticoagulant influence were found out in patients with CHD and PHP.

  16. Hepatic and intestinal blood flow following thermal injury

    International Nuclear Information System (INIS)

    Because cardiac output decreases after burn injuries, investigators have assumed, based upon dye clearance techniques, that hepatic and intestinal blood flow are also decreased following these injuries. Blood flow to the liver, stomach, small intestine, and kidney was determined by the uptake of 201thallium and 125I-labeled fatty acid (para-125I-phenyl-3-methyl pentanoic acid) in a 20% body surface area scald injury that also included plasma volume replacement resuscitation. Uptake of these radioisotopes was determined 15 minutes, 18 hours, and 72 hours after injury. The uptake of the 201thallium and 125I-labeled fatty acid by the gastrointestinal tissues was not statistically different at any of the time periods after comparison of the injured and control (sham-treated) animals. 201Thallium uptake by the kidney was significantly diminished 15 minutes after the burn injury (P less than 0.01). Based on these blood flow measurement techniques, the data suggest that the 20% body surface area scald injury did not alter blood flow to the liver or gastrointestinal tract within the initial 72 hours after the burn injury even though a decrease in renal blood flow was easily detected. These results suggest that the dysfunction of the gastrointestinal system or hepatic system observed after an acute burn injury is not simply the result of hypovolemic shock, which reduces both renal and mesenteric blood flow. These gastrointestinal and hepatic alterations may be related to a factor or factors other than intestinal ischemia

  17. ABO Blood-Typing Using an Antibody Array Technique Based on Surface Plasmon Resonance Imaging

    OpenAIRE

    Toemsak Srikhirin; Armote Somboonkaew; Ratthasart Amarit; Boonsong Sutapun; Mongkol Kunakorn; Pimpun Kitpoka; Krisda Sudprasert; Patjaree Peungthum; Nongluck Houngkamhang; Apirom Vongsakulyanon

    2013-01-01

    In this study, readily available antibodies that are used in standard agglutination tests were evaluated for their use in ABO blood typing by a surface plasmon resonance imaging (SPR imaging) technique. Five groups of antibodies, including mixed clones of anti-A, anti-B, and anti-AB, and single clones of anti-A and anti-B, were used to construct the five-line detection arrays using a multichannel flow cell in the SPR imager. The red blood cell (RBC) samples were applied to a multichannel flow...

  18. Femoral Blood Flow and Cardiac Output During Blood Flow Restricted Leg Press Exercise

    Science.gov (United States)

    Everett, M. E.; Hackney, K.; Ploutz-Snyder, L.

    2011-01-01

    Low load blood flow restricted resistance exercise (LBFR) causes muscle hypertrophy that may be stimulated by the local ischemic environment created by the cuff pressure. However, local blood flow (BF) during such exercise is not well understood. PURPOSE: To characterize femoral artery BF and cardiac output (CO) during leg press exercise (LP) performed at a high load (HL) and low load (LL) with different levels of cuff pressure. METHODS: Eleven subjects (men/women 4/7, age 31.4+/-12.8 y, weight 68.9+/-13.2 kg, mean+/-SD) performed 3 sets of supine left LP to fatigue with 90 s of rest in 4 conditions: HL (%1-RM/cuff pressure: 80%/0); LL (20%/0); LBFR(sub DBP) (20%/1.3 x diastolic blood pressure, BP); LBFR(sub SBP) (20%/1.3 x supine systolic BP). The cuff remained inflated throughout the LBFR exercise sessions. Artery diameter, velocity time integral (VTI), and stroke volume (SV) were measured using Doppler ultrasound at rest and immediately after each set of exercise. Heart rate (HR) was monitored using a 3-lead ECG. BF was calculated as VTI x vessel cross-sectional area. CO was calculated as HR x SV. The data obtained after each set of exercise were averaged and used for analyses. Multi-level modeling was used to determine the effect of exercise condition on dependent variables. Statistical significance was set a priori at p LL (9.92+/-0.82 cm3) > LBFR(sub dBP)(6.47+/-0.79 cm3) > LBFR(sub SBP) (3.51+/-0.59 cm3). Blunted exercise induced increases occurred in HR, SV, and CO after LBFR compared to HL and LL. HR increased 45% after HL and LL and 28% after LBFR (p<0.05), but SV increased (p<0.05) only after HL. Consequently, the increase (p<0.05) in CO was greater in HL and LL (approximately 3 L/min) than in LBFR (approximately 1 L/min). CONCLUSION: BF during LBFR(sub SBP) was 1/3 of that observed in LL, which supports the hypothesis that local ischemia stimulates the LBFR hypertrophic response. As the cuff did not compress the artery, the ischemia may have occurred

  19. Laser Doppler perfusion monitoring and imaging of blood microcirculation

    Science.gov (United States)

    Nilsson, Gert E.; Wardell, Karin

    1994-07-01

    Laser Doppler perfusion monitoring is a method of assessing tissue perfusion based on measurements performed using Doppler broadening of monochromatic light scattered in moving blood cells. Ever since laser Doppler perfusion monitors became available about 15 years ago they have been used in numerous applications in both clinical and laboratory settings. The high spatial resolution has in practice manifested itself as one of the main limitations of the method. The reason for this is the difficulty in attaining reproducible values at successive measurement sites because most skin tissue possesses a substantial variation in blood flow even at adjacent measurement sites. In order to overcome this difficulty the laser Doppler perfusion imager was developed. In this camera-like device, the laser beam successively scans the tissue and the Doppler components of the backscattered light are detected by a remote photodiode. After a scanning procedure is complete, a color-coded perfusion map showing the spatial variation of skin blood flow is displayed on a monitor. The operating principle and early applications of this emerging technology are addressed in further detail.

  20. Plane wave fast color flow mode imaging

    DEFF Research Database (Denmark)

    Bolic, Ibrahim; Udesen, Jesper; Gran, Fredrik;

    2006-01-01

    A new Plane wave fast color flow imaging method (PWM) has been investigated, and performance evaluation of the PWM based on experimental measurements has been made. The results show that it is possible to obtain a CFM image using only 8 echo-pulse emissions for beam to flow angles between 45....... It is hereby shown that, by carefully choosing the set of parameters, PWM is feasible for fast CFM imaging with an acceptable bias and standard deviation....

  1. CHARACTERIZATION OF RENAL BLOOD FLOW REGULATION BASED ON WAVELET COEFFICIENTS

    DEFF Research Database (Denmark)

    Pavlov, A.N.; Pavlova, O.N.; Mosekilde, Erik;

    2010-01-01

    The purpose of this study is to demonstrate the possibility of revealing new characteristic features of renal blood flow autoregulation in healthy and pathological states through the application of discrete wavelet transforms to experimental time series for normotensive and hypertensive rats....... A reduction in the variability of the wavelet coefficients in hypertension is observed at both the microscopic level of the blood flow in efferent arterioles of individual nephrons and at the macroscopic level of the blood pressure in the main arteries. The reduction is manifest in both of the main frequency...

  2. Research Advances: DRPS--Let The Blood Flow!

    Science.gov (United States)

    King, Angela G.

    2007-01-01

    A team from the University of Pittsburgh's McGowan Institute for Regenerative Medicine has shown the potential for clinical use of the drag-reducing polymer (DRP) poly(N-vinylformamide), or PNVF. The high molecular weight PNVF is shown to reduce resistance to turbulent flow in a pipe and to enhance blood flow in animal models and it also…

  3. Blood Flow through an Open-Celled Foam

    Science.gov (United States)

    Ortega, Jason; Maitland, Duncan

    2011-11-01

    The Hazen-Dupuit-Darcy (HDD) equation is commonly used in engineering applications to model the pressure gradient of flow through a porous media. One major advantage of this equation is that it simplifies the complex geometric details of the porous media into two coefficients: the permeability, K, and form factor, C. However through this simplification, the flow details within the porous media are no longer accessible, making it difficult to study the phenomena that contribute to changes in K and C due to clotting of blood flow. To obtain a more detailed understanding of blood flow through a porous media, a direct assessment of the complex interstitial geometry and flow is required. In this study, we solve the Navier-Stokes equations for Newtonian and non-Newtonian blood flow through an open-celled foam geometry obtained from a micro-CT scan. The nominal strut size of the foam sample is of O(10e-5) m and the corresponding Reynolds number based upon this length ranges up to O(10). Fitting the pressure gradient vs. Darcy velocity data with the HDD equation demonstrates that both viscous and inertial forces play an important role in the flow through the foam at these Reynolds numbers. Recirculation zones are observed to form in the wake of the pore struts, producing regions of flow characterized by both low shear rates and long fluid residence times, factors of which have been shown in previous studies to promote blood clotting.

  4. An evaluation of the regional cerebral blood flow (rCBF) measurement by xenon-enhanced dynamic CT with helical scanning technique and the functional imaging by multiplanar reconstruction (MPR). Fundamental study and clinical application

    International Nuclear Information System (INIS)

    We evaluated the quantitative rCBF by xenon-enhanced dynamic CT with helical scanning technique on all brain regions, and also examined clinical usefulness of coronal and sagittal section images which are similar to SPECT images obtained by the functional multiplanar reconstitution (MPR) imaging of many successive flow maps. We used 14 clinical cases. The conventional xenon-enhanced CT was simple and ideal method to measure rCBF, however, it had disadvantages; it gives a few laminagraphical images or only the axial directional images, compared to SPECT or PET. There is a risk to overlook lesions out of the image or not to obtain the whole images of the lesion. Although the helical scanning technique has a methodological characteristics to use adjacent data for the image reconstitution, it is by no means inferior to the conventional method in the contrast resolution or the image resolution when the co-helical function and an appropriate reconstituted function were used. It has an advantage to scan all brain regions by only one cycle of scanning. Furthermore on making good use of the property that the helical scanning technique can give the successive data, we can observe rCBF by coronal and sagittal images when many flow maps were made up by reconstituted images of the narrow steps. This shows the clinical usefulness of this technique. One of the future problem to be solved is to decrease the exposure dose. (K.H.)

  5. Measurement of blood flow in the superior sagittal sinus in healthy volunteers, and in patients with normal pressure hydrocephalus and idiopathic intracranial hypertension with phase-contrast cine MR imaging

    DEFF Research Database (Denmark)

    Gideon, P; Thomsen, C; Gjerris, F;

    1996-01-01

    PURPOSE: To measure blood flow and velocity in the superior sagittal ++sinus. MATERIAL AND METHODS: MR velocity mapping was used to examine 14 healthy volunteers, 15 patients with normal pressure hydrocephalus (NPH), 3 patients with high pressure hydrocephalus (HPH), and 11 patients with idiopath...

  6. Functional morphology and patterns of blood flow in the heart of Python regius.

    Science.gov (United States)

    Starck, J Matthias

    2009-06-01

    Brightness-modulated ultrasonography, continuous-wave Doppler, and pulsed-wave Doppler-echocardiography were used to analyze the functional morphology of the undisturbed heart of ball pythons. In particular, the action of the muscular ridge and the atrio-ventricular valves are key features to understand how patterns of blood flow emerge from structures directing blood into the various chambers of the heart. A step-by-step image analysis of echocardiographs shows that during ventricular diastole, the atrio-ventricular valves block the interventricular canals so that blood from the right atrium first fills the cavum venosum, and blood from the left atrium fills the cavum arteriosum. During diastole, blood from the cavum venosum crosses the muscular ridge into the cavum pulmonale. During middle to late systole the muscular ridge closes, thus prohibiting further blood flow into the cavum pulmonale. At the same time, the atrio-ventricular valves open the interventricular canal and allow blood from the cavum arteriosum to flow into the cavum venosum. In the late phase of ventricular systole, all blood from the cavum pulmonale is pressed into the pulmonary trunk; all blood from the cavum venosum is pressed into both aortas. Quantitative measures of blood flow volume showed that resting snakes bypass the pulmonary circulation and shunt about twice the blood volume into the systemic circulation as into the pulmonary circulation. When digesting, the oxygen demand of snakes increased tremendously. This is associated with shunting more blood into the pulmonary circulation. The results of this study allow the presentation of a detailed functional model of the python heart. They are also the basis for a functional hypothesis of how shunting is achieved. Further, it was shown that shunting is an active regulation process in response to changing demands of the organism (here, oxygen demand). Finally, the results of this study support earlier reports about a dual pressure

  7. A multiple disk centrifugal pump as a blood flow device.

    Science.gov (United States)

    Miller, G E; Etter, B D; Dorsi, J M

    1990-02-01

    A multiple disk, shear force, valveless centrifugal pump was studied to determine its suitability as a blood flow device. A pulsatile version of the Tesla viscous flow turbine was designed by modifying the original steady flow pump concept to produce physiological pressures and flows with the aid of controlling circuitry. Pressures and flows from this pump were compared to a Harvard Apparatus pulsatile piston pump. Both pumps were connected to an artificial circulatory system. Frequency and systolic duration were varied over a range of physiological conditions for both pumps. The results indicated that the Tesla pump, operating in a pulsatile mode, is capable of producing physiologic pressures and flows similar to the Harvard pump and other pulsatile blood pumps. PMID:2312140

  8. Quantitative Measurements using Ultrasound Vector Flow Imaging

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    2016-01-01

    L/stroke (true: 1.15 mL/stroke, bias: 12.2%). Measurements down to 160 mm were obtained with a relative standard deviation and bias of less than 10% for the lateral component for stationary, parabolic flow. The method can, thus, find quantitative velocities, angles, and volume flows at sites currently......Duplex Vector Flow Imaging (VFI) imaging is introduced as a replacement for spectral Doppler, as it automatically can yield fully quantitative flow estimates without angle correction. Continuous VFI data over 9 s for 10 pulse cycles were acquired by a 3 MHz convex probe connected to the SARUS...... scanner for pulsating flow mimicking the femoral artery from a CompuFlow 1000 pump (Shelley Medical). Data were used in four estimators based on directional transverse oscillation for velocity, flow angle, volume flow, and turbulence estimation and their respective precisions. An adaptive lag scheme gave...

  9. Effect of intravenous infusion of iodinated contrast media on the coronary blood flow in dogs

    OpenAIRE

    Abd, Thura T; Asim I. Shafique; Hayder S. Yasir; Jung-Hee Seo; George, Richard T.; Rajat Mittal; Lardo, Albert C.

    2016-01-01

    Background: Coronary computed tomography angiography (CCTA) is obtained using peripheral intravenous iodinated contrast agents (ICA) injection. There is continuing attempts to derive coronary physiological information like coronary blood flow (CBF) and/or fractional flow reserve from CCTA images. However, no data is available regarding the effect of peripheral intravenous injection of ICA on CBF. Methods: A series of 4 experiments was performed using healthy mongrel dogs. All dogs underwen...

  10. Pulsatile blood flow, shear force, energy dissipation and Murray's Law

    Directory of Open Access Journals (Sweden)

    Bengtsson Hans-Uno

    2006-08-01

    Full Text Available Abstract Background Murray's Law states that, when a parent blood vessel branches into daughter vessels, the cube of the radius of the parent vessel is equal to the sum of the cubes of the radii of daughter blood vessels. Murray derived this law by defining a cost function that is the sum of the energy cost of the blood in a vessel and the energy cost of pumping blood through the vessel. The cost is minimized when vessel radii are consistent with Murray's Law. This law has also been derived from the hypothesis that the shear force of moving blood on the inner walls of vessels is constant throughout the vascular system. However, this derivation, like Murray's earlier derivation, is based on the assumption of constant blood flow. Methods To determine the implications of the constant shear force hypothesis and to extend Murray's energy cost minimization to the pulsatile arterial system, a model of pulsatile flow in an elastic tube is analyzed. A new and exact solution for flow velocity, blood flow rate and shear force is derived. Results For medium and small arteries with pulsatile flow, Murray's energy minimization leads to Murray's Law. Furthermore, the hypothesis that the maximum shear force during the cycle of pulsatile flow is constant throughout the arterial system implies that Murray's Law is approximately true. The approximation is good for all but the largest vessels (aorta and its major branches of the arterial system. Conclusion A cellular mechanism that senses shear force at the inner wall of a blood vessel and triggers remodeling that increases the circumference of the wall when a shear force threshold is exceeded would result in the observed scaling of vessel radii described by Murray's Law.

  11. Quantifying Blood Flow in the DIEP Flap: An Ultrasonographic Study

    Directory of Open Access Journals (Sweden)

    Joseph Richard Dusseldorp, BCom, MBBS(Hons

    2014-10-01

    Conclusions: This study confirms that perforator size is a critical factor in optimizing blood flow in perforator-based free tissue transfer. Further research is required to understand the flow dynamics of perforator flaps based on multiple perforators. However, surgeons should be cognizant that a single large perforator may have substantially higher flow rates than multiple small perforators. Routine FVI calculation is recommended to ensure complete flap survival.

  12. Intrinsic regulation of blood flow in adipose tissue

    DEFF Research Database (Denmark)

    Henriksen, O; Nielsen, Steen Levin; Paaske, W

    1976-01-01

    Previous studies on intact human subcutaneous tissue have shown, that blood flow remains constant during minor changes in perfusion pressure. This so-called autoregulatory response has not been demonstrable in isolated preparations of adipose tissue. In the present study on isolated, denervated...... vasoconstriction with pronounced flow reduction. These two reactions may be important for local regulation of blood flow in subcutaneous tissue during orthostatic changes in arterial and venous pressure. It is concluded that the response in adipose tissue to changes in arterial pressure (autoregulation), venous...... subcutaneous tissue in female rabbits only 2 of 12 expts. revealed an autoregulatory response during reduction in arterial perfusion pressure. Effluent blood flow from the tissue in the control state was 15.5 ml/100 g-min (S.D. 6.4, n = 12) corresponding to slight vasodilatation of the exposed tissue...

  13. Nonlinear interactions in renal blood flow regulation

    DEFF Research Database (Denmark)

    Marsh, Donald J.; Sosnovtseva, Olga; Chon, Ki H.;

    2005-01-01

    We have developed a model of tubuloglomerular feedback (TGF) and the myogenic mechanism in afferent arterioles to understand how the two mechanisms are coupled. This paper presents the model. The tubular model predicts pressure, flow, and NaCl concentration as functions of time and tubular length...

  14. Patient-specific coronary artery blood flow simulation using myocardial volume partitioning

    Science.gov (United States)

    Kim, Kyung Hwan; Kang, Dongwoo; Kang, Nahyup; Kim, Ji-Yeon; Lee, Hyong-Euk; Kim, James D. K.

    2013-03-01

    Using computational simulation, we can analyze cardiovascular disease in non-invasive and quantitative manners. More specifically, computational modeling and simulation technology has enabled us to analyze functional aspect such as blood flow, as well as anatomical aspect such as stenosis, from medical images without invasive measurements. Note that the simplest ways to perform blood flow simulation is to apply patient-specific coronary anatomy with other average-valued properties; in this case, however, such conditions cannot fully reflect accurate physiological properties of patients. To resolve this limitation, we present a new patient-specific coronary blood flow simulation method by myocardial volume partitioning considering artery/myocardium structural correspondence. We focus on that blood supply is closely related to the mass of each myocardial segment corresponding to the artery. Therefore, we applied this concept for setting-up simulation conditions in the way to consider many patient-specific features as possible from medical image: First, we segmented coronary arteries and myocardium separately from cardiac CT; then the myocardium is partitioned into multiple regions based on coronary vasculature. The myocardial mass and required blood mass for each artery are estimated by converting myocardial volume fraction. Finally, the required blood mass is used as boundary conditions for each artery outlet, with given average aortic blood flow rate and pressure. To show effectiveness of the proposed method, fractional flow reserve (FFR) by simulation using CT image has been compared with invasive FFR measurement of real patient data, and as a result, 77% of accuracy has been obtained.

  15. Synthetic Aperture Flow Imaging Using a Dual Beamformer Approach

    DEFF Research Database (Denmark)

    Li, Ye

    Color flow mapping systems have become widely used in clinical applications. It provides an opportunity to visualize the velocity profile over a large region in the vessel, which makes it possible to diagnose, e.g., occlusion of veins, heart valve deficiencies, and other hemodynamic problems....... However, while the conventional ultrasound imaging of making color flow mapping provides useful information in many circumstances, the spatial velocity resolution and frame rate are limited. The entire velocity distribution consists of image lines from different directions, and each image line...... is estimated using multiple emissions. Therefore, it is very difficult to acquire a full volume of data for the blood flow in the heart in real-time. A radical break with this has been the synthetic aperture technique. This technique makes it possible to increase the frame rate, and the reconstruction also...

  16. Diffuse optical correlation tomography of cerebral blood flow during cortical spreading depression in rat brain

    Science.gov (United States)

    Zhou, Chao; Yu, Guoqiang; Furuya, Daisuke; Greenberg, Joel; Yodh, Arjun; Durduran, Turgut

    2006-02-01

    Diffuse optical correlation methods were adapted for three-dimensional (3D) tomography of cerebral blood flow (CBF) in small animal models. The image reconstruction was optimized using a noise model for diffuse correlation tomography which enabled better data selection and regularization. The tomographic approach was demonstrated with simulated data and during in-vivo cortical spreading depression (CSD) in rat brain. Three-dimensional images of CBF were obtained through intact skull in tissues(~4mm) deep below the cortex.

  17. Impact of extracorporeal blood flow rate on blood pressure, pulse rate and cardiac output during haemodialysis

    DEFF Research Database (Denmark)

    Schytz, Philip Andreas; Mace, Maria Lerche; Soja, Anne Merete Boas;

    2015-01-01

    BACKGROUND: If blood pressure (BP) falls during haemodialysis (HD) [intradialytic hypotension (IDH)] a common clinical practice is to reduce the extracorporeal blood flow rate (EBFR). Consequently the efficacy of the HD (Kt/V) is reduced. However, only very limited knowledge on the effect of redu...

  18. Peripheral blood flow control in diabetes mellitus

    DEFF Research Database (Denmark)

    Hilsted, Jannik

    1991-01-01

    Long term diabetes has a profound effect on the peripheral circulation. This has been demonstrated to be due to the presence of angiopathy and autonomic neuropathy, affecting autoregulation and distensibility of the vessels as well as local and central reflex regulation of the vascular resistance....... Whereas the hemodynamic consequences of vascular denervation are well known (causing blood pressure maladaptation to a number of stimuli such as standing, exercise and agonist infusion) (Hilsted 1985), the consequences of disturbances in autoregulation and distensibility remain to be established....

  19. Development of miniaturized mass flow meter for an axial flow blood pump.

    Science.gov (United States)

    Kosaka, Ryo; Maruyama, Osamu; Nishida, Masahiro; Yamane, Takashi

    2007-05-01

    To grasp the conditions of patients and implantable artificial hearts, it is essential to monitor the blood flow rate continuously and noninvasively. However, it is difficult to monitor the pump flow rate in an implantable artificial heart, because the conventional flow meter is too large to implant into the human body, and the flow estimation method is influenced by changes in the blood characteristics and the pump performance. In particular, the power consumption has neither linearity nor uniqueness with respect to the pump flow rate in an axial flow blood pump. In this research, we develop a prototype miniaturized mass flow meter that uses centrifugal force F(c) for discharged patients with an axial flow blood pump. This flow meter measures the F(c) corresponding to the mass flow rate, and implements compensation for static pressure. Because the strain gauges are attached outside of the curved tube, this mass flow meter has no blood contact point, resulting in a compact design. To evaluate the measurement accuracy and the tracking performance, the mass flow meter was compared with the conventional ultrasonic flow meter in a mock-up circulation study. As a result, the measurement error ranging from 0.5 to 5.0 L/min was less than +/-10% with respect to the maximum flow rate. The tracking performance of pulsation flow was approximately equivalent to that of the conventional flow meter. These experiments demonstrated that the prototype miniaturized mass flow meter using F(c) could accurately measure the mass flow rate continuously and noninvasively. PMID:17470214

  20. Assessment of Perfusion CT Imaging in the Hepatic Blood Flow of Hepatocellular Carcinoma Based on Cirrhosis%肝硬化基础上肝癌肝血流变化功能CT灌注成像研究

    Institute of Scientific and Technical Information of China (English)

    姜慧杰; 张在人; 赵雁鸣; 王金娥; 郝雪佳; 董旭鹏; 李金平

    2012-01-01

    Objective To analyze the 64 slice CT perfusion of normal liver, liver cirrhosis and HCC based on liver cirrhosis , in order to assess its diagnostic value for hepatic blood flow of HCC in cirrhotic liver. Materials and Methods 30 volunteers without liver disease (control subjects) and 49 patients with cirrhosis (study subjects) were enrolled, including 27 with hepatocellular carcinoma (HCC). All patients received CT perfusion study after their informed, central slice of tumor or hepatic portal were selected, scanning was carried out using a low radiation dose( 120 kV,60 mA) .volume coverage up to 40 mm. The rate of injection of contrast medium was 4 - 5 ml/sec with a dose of 1.0 ml/kg body weight. 50 seconds of continuous scanning time set at 5 seconds after the injection of contrast material, 1 second per 360°revolution,5 mm slice thickness image reconstruction, and a matrix size of 512 ×512 pixels were adopted, Deconvolution mathematical model was used to obtain perfusion parameters associated with changes in hepatic blood flow; blood flow ( HBF), hepatic blood volume (HBV), hepatic arterial perfusion fraction (HAF), hepatic artery perfusion (HAP) and portal venous perfusion ( HPP). Perfusion parameters were measured three times at each time point for each different region of interest: normal liver parenchyma, HCC rim, background liver parenchyma adjacent to HCC, liver cirrhosis without cancer. Results HBF, HAP,HPP,HBV in background liver parenchyma adjacent to HCC and HBF,HAP,HPP in tumor rim were different from those in control (P 0.05). Conclusion Perfusion CT can reflect the information of liv- er blood flow about liver cancer based on liver cirrhosis, and can be used as a good method to study the liver hemodynamic changes.%目的 对正常肝实质、肝硬化和肝硬化基础上肝癌患者的64层螺旋CT灌注成像进行分析,评价多层螺旋CT灌注成像对肝硬化基础上肝癌肝血流变化的诊断价值.资料与方法 无肝脏疾病的30

  1. Hall effect in electrolyte flow measurements: introduction to blood flow measurements.

    Science.gov (United States)

    Szwast, Maciej; Piatkiewicz, Wojciech

    2012-06-01

    The Hall effect has been applied to electrolyte flow measurement. It has been proven that Hall voltage does not depend on electrolyte concentration; however, there is a linear relationship between Hall voltage and flow velocity. Obtained results for electrolyte allow us to suppose that Hall effect can be used to determine blood flow. Research on blood will be conducted as the next step. PMID:22145845

  2. Design and Simulation of Axial Flow Maglev Blood Pump

    Directory of Open Access Journals (Sweden)

    Huachun Wu

    2011-03-01

    Full Text Available The axial flow maglev blood pump (AFMBP has become a global research focus and emphasis for artificial ventricular assist device, which has no mechanical contact, mechanical friction, compact structure and light weight, can effectively solve thrombus and hemolysis. Magnetic suspension and impeller is two of the important parts in the axial flow maglev blood pump, and their structure largely determines the blood pump performance. The research adopts electromagnetic and fluid finite element analysis, and puts forward a method to design the magnetic suspension and impeller of axial flow blood pump, which tacks into account the small volume of axial blood pump. The magnetic bearing’s characteristics are evaluated by electromagnetic finite element analysis. The Blades have been designed by calculating aerofoil bone line, and make simulation analysis for different thicken ways of blade by Fluent software, and make a conclusion that the blade thickened with certain rules has better characteristics in the same conditions. The results will provide some guidance for design of axial flow maglev blood pump, and establish theoretical basis for application of the implantable artificial heart pump.

  3. Effects of Aortic Irregularities on the Blood Flow

    Science.gov (United States)

    Gutmark-Little, Iris; Prahl-Wittberg, Lisa; van Wyk, Stevin; Mihaescu, Mihai; Fuchs, Laszlo; Backeljauw, Philippe; Gutmark, Ephraim

    2013-11-01

    Cardiovascular defects characterized by geometrical anomalies of the aorta and its effect on the blood flow are investigated. The flow characteristics change with the aorta geometry and the rheological properties of the blood. Flow characteristics such as wall shear stress often play an important role in the development of vascular disease. In the present study, blood is considered to be non-Newtonian and is modeled using the Quemada model, an empirical model that is valid for different red blood cell loading. Three patient-specific aortic geometries are studied using Large Eddy Simulations (LES). The three geometries represent malformations that are typical in patients populations having a genetic disorder called Turner syndrome. The results show a highly complex flow with regions of recirculation that are enhanced in two of the three aortas. Moreover, blood flow is diverted, due to the malformations, from the descending aorta to the three side branches of the arch. The geometry having an elongated transverse aorta has larger areas of strong oscillatory wall shear stress.

  4. [The landmarks of the measurement of cerebral blood flow].

    Science.gov (United States)

    István, Nyáry

    2008-01-30

    History of the measurement of local cerebral blood flow may cover a period of one and a half centuries. Parallel forthcoming of both theoretical and technical development were the key elements of ensuing progress resulting in the present state, when by the aid of in vivo blood flow and metabolic maps, we can visualize locales of brain functioning and their interconnections. Two theoretical landmarks should be mentioned in this historic process. First, the work of Adolf Fick, as the starter of quantitative measurements in this field, and Seymour Kety's model of a single, homogenously perfused tissue element. The solution of this model, in the form of Kety's equation is still fundamental to present day blood flow mapping techniques. Among the numerous investigators over the past years, two Hungarian scientist can be named as major contributors. Kálmán Sántha made substantial studies with continuous registration of local cerebral blood flow by the aid of thermocouples, while Emil P6sztor invented the hydrogen clearance method for the measurement of local cerebral blood flow both in human and in animal studies.

  5. Nocturnal foot blood flow in patients with arterial insufficiency

    DEFF Research Database (Denmark)

    Jelnes, Rolf; Tønnesen, K H

    1984-01-01

    Twenty-four hour continuous recording of xenon (133Xe) wash-out from the forefoot was performed on patients with normal circulations (n = 10) and on patients with different degrees of arterial insufficiency (n = 36). During day hours the calculated subcutaneous blood flow in the forefoot was on a...... claudication. In patients with severe ischaemia, i.e. having rest pain, the blood flow decreased by approximately 50%. The changes in local blood flow may be due to changes in local sympathetic tone and to changes in local perfusion pressure.......Twenty-four hour continuous recording of xenon (133Xe) wash-out from the forefoot was performed on patients with normal circulations (n = 10) and on patients with different degrees of arterial insufficiency (n = 36). During day hours the calculated subcutaneous blood flow in the forefoot...... was on average the same in patients with normal circulations and in patients with different degrees of arterial insufficiency (mean: 2.0 +/- 0.8 ml min-1 100 g-1). During sleep the blood flow nearly doubled in patients with normal circulations; no systematic change was seen in patients with intermittent...

  6. An analysis of the sluicing gate in pulmonary blood flow.

    Science.gov (United States)

    Fung, Y C; Zhuang, F Y

    1986-05-01

    For pulmonary blood flow in zone 2 condition, in which the blood pressure in the venule (pven) is lower than the alveolar gas pressure (pA), the blood exiting from the capillary sheet and entering a venule must go through a sluicing gate. The sluicing gate exists because the venule remains patent while the capillaries will collapse when the static pressure of blood falls below the alveolar gas pressure. In the original theory of sheet flow the effect of the tension in the interalveolar septa on the flow through the sluicing gate was ignored. Since the tension multiplied by the curvature of the membrane is equivalent to a lateral pressure tending to open the gate, and since the curvature of the capillary wall is high in the gate region, this effect may be important. The present analysis improves the original theory and demonstrates that the effect of membrane tension is to cause flow to increase when the venous pressure continues to decrease. The shape of the sluicing gate resembles that of a venturi tube, and can be determined by an iterative integration of the differential equations. The result forms an important link in the theory of pulmonary blood flow in zone 2 condition.

  7. [Evaluation of coronary blood flow using digital subtraction technique and cine coronary angiography: a preliminary report].

    Science.gov (United States)

    Uwatoko, M; Miyagi, Y; Nomura, M; Shiga, Y; Koike, A; Tateishi, R; Mitsuguchi, F; Mano, K; Hishida, H; Mizuno, Y

    1988-06-01

    To evaluate coronary circulation in ischemic heart disease, digital image processing with cine coronary angiography was performed. Using time-density curves obtained from individual pixels, images showing the distribution of contrast density and transit time were obtained. To record angiograms, contrast medium was injected into the coronary artery in a steady manner during right atrial pacing. Frames in the end-diastolic phase immediately before the P wave were selected, and digitized into a 512 x 512 x 8 bit matrix using a system composed of a video camera, an analog-to-digital converter, and a computer. These digitized images were then stored in a disk memory. A mask image was prepared before the injection of contrast medium. Subtraction was performed using the mask image and a series of images following contrast injection. The subtracted images were of sufficient quality to permit clear observation of the individual coronary arterial branches. Time-density curves were then determined from these subtracted images. From these curves, time from the onset of contrast injection to its peak density (Tp), time from the peak density to the half peak density (T 1/2) and the attenuation factor of the curves (tau) were derived. Their distributions were expressed as color images. Examples of a normal control and a case of inferior infarction were demonstrated. Blood flow function images with good spatial resolution were thus obtained. This method is useful for evaluating coronary blood flow. PMID:2977791

  8. Inner ocular blood flow responses to an acute decrease in blood pressure in resting humans

    International Nuclear Information System (INIS)

    Whether inner ocular vessels have an autoregulatory response to acute fluctuations in blood pressure is unclear. We tried to examine the validity of acute hypotension elicited by thigh-cuff release as to assess the dynamic autoregulation in the ocular circulation. Blood flow velocity in the superior nasal and inferior temporal retinal arterioles, and in the retinal and choroidal vasculature were measured with the aid of laser speckle flowgraphy before and immediately after an acute decrease in blood pressure in 20 healthy subjects. Acute hypotension was induced by a rapid release of bilateral thigh occlusion cuffs that had been inflated to 220 mmHg for 2 min. The ratio of the relative change in retinal and choroidal blood flow velocity to the relative change in mean arterial blood pressure (MAP) was calculated. Immediately after cuff release, the MAP and blood flows in the all ocular target vessels decreased significantly from the baseline values obtained before thigh-cuff release. The ratio of the relative change in inner ocular blood flow velocity to that in the MAP exceeded 1% / %mmHg. An explicit dynamic autoregulation in inner ocular vessels cannot be demonstrated in response to an acute hypotension induced by the thigh-cuff release technique. (paper)

  9. Verapamil buffering effect on the abrupt elevation in blood pressure, linkage with microcirculatory blood flow.

    Science.gov (United States)

    Gmitrov, J

    2008-01-01

    1 We studied the effects of verapamil on sudden elevation in blood pressure, microcirculation and arterial baroreflex sensitivity (BRS). 2 Thirty experiments (10 controls and 20 with verapamil) were performed in rabbits sedated using pentobarbital infusion (5 mg kg(-1) h(-1)). 3 BRS, mean femoral artery blood pressure (MAP), heart rate (HR) and ear lobe skin microcirculatory blood flow, estimated using microphotoelectric plethysmography (MPPG), were simultaneously measured during 30 min of verapamil infusion (20 mug kg(-1) min(-1)). BRS was assessed from HR and MAP responses to intravenous phenylephrine (Ph) and by power spectral analysis using transfer function (TF) from MAP to the HR (BRS(Ph,TF)). 4 Verapamil significantly increased microcirculatory blood flow, and decreased BRS(Ph,TF) and phenylephrine-induced abrupt elevation in MAP (MAP(AE)). 5 A significant inverse correlation was found between verapamil-induced changes in MAP(AE), BRS and in microcirculatory blood flow, measured before phenylephrine blood pressure ramps (DeltaMAP(AE) with DeltaBRS(TF), r = -0.47, P < 0.036; DeltaMAP(AE) with DeltaMPPG, r = -0.49, P < 0.025). 6 These results suggest involvement of the arterial baroreflex and vascular blood pressure-buffering mechanisms, their enhancement by verapamil, and thus a potential benefit of verapamil in cardiovascular conditions where patients present with abrupt high elevations in blood pressure. PMID:18598288

  10. A numerical study of blood flow using mixture theory.

    Science.gov (United States)

    Wu, Wei-Tao; Aubry, Nadine; Massoudi, Mehrdad; Kim, Jeongho; Antaki, James F

    2014-03-01

    In this paper, we consider the two dimensional flow of blood in a rectangular microfluidic channel. We use Mixture Theory to treat this problem as a two-component system: One component is the red blood cells (RBCs) modeled as a generalized Reiner-Rivlin type fluid, which considers the effects of volume fraction (hematocrit) and influence of shear rate upon viscosity. The other component, plasma, is assumed to behave as a linear viscous fluid. A CFD solver based on OpenFOAM(®) was developed and employed to simulate a specific problem, namely blood flow in a two dimensional micro-channel, is studied. Finally to better understand this two-component flow system and the effects of the different parameters, the equations are made dimensionless and a parametric study is performed. PMID:24791016

  11. Mediators of increased blood flow in porcine skin

    Directory of Open Access Journals (Sweden)

    H. D. Moore

    1992-01-01

    Full Text Available Nicotinates and benzalkonium chloride (B.Cl cause inflammatory changes in human skin, thought to be dependent upon prostaglandin formation. This study has examined the effects of hexyl-nicotinate (HN and B.Cl on blood flow in porcine skin. The role of prostaglandins and interleukin (IL-1 in the blood flow response has been investigated. Blood flow was increased by both HN and B.Cl, the response to B.Cl being more protracted. Cyclooxygenase inhibitor pretreatment reduced these responses. IL-1-like biological activity was identified in normal porcine epidermis and the amounts recovered from inflamed skin were similar. Thus prostaglandin formation in HN or B.Cl-induced inflammation, if IL-1 dependent, is not associated with the loss of significant amounts of the cytokine from the epidermis.

  12. The numerical analysis of non-Newtonian blood flow in human patient-specific left ventricle.

    Science.gov (United States)

    Doost, Siamak N; Zhong, Liang; Su, Boyang; Morsi, Yosry S

    2016-04-01

    Recently, various non-invasive tools such as the magnetic resonance image (MRI), ultrasound imaging (USI), computed tomography (CT), and the computational fluid dynamics (CFD) have been widely utilized to enhance our current understanding of the physiological parameters that affect the initiation and the progression of the cardiovascular diseases (CVDs) associated with heart failure (HF). In particular, the hemodynamics of left ventricle (LV) has attracted the attention of the researchers due to its significant role in the heart functionality. In this study, CFD owing its capability of predicting detailed flow field was adopted to model the blood flow in images-based patient-specific LV over cardiac cycle. In most published studies, the blood is modeled as Newtonian that is not entirely accurate as the blood viscosity varies with the shear rate in non-linear manner. In this paper, we studied the effect of Newtonian assumption on the degree of accuracy of intraventricular hemodynamics. In doing so, various non-Newtonian models and Newtonian model are used in the analysis of the intraventricular flow and the viscosity of the blood. Initially, we used the cardiac MRI images to reconstruct the time-resolved geometry of the patient-specific LV. After the unstructured mesh generation, the simulations were conducted in the CFD commercial solver FLUENT to analyze the intraventricular hemodynamic parameters. The findings indicate that the Newtonian assumption cannot adequately simulate the flow dynamic within the LV over the cardiac cycle, which can be attributed to the pulsatile and recirculation nature of the flow and the low blood shear rate. PMID:26849955

  13. Effect of pregnancy on regional cerebral blood flow

    International Nuclear Information System (INIS)

    Regional cerebral blood flow (r-CBF) of 10 pregnant women were quantified by 133Xe SPECT study with inhalation method before and after artificial abortion. During pregnancy, value of r-CBF in each region except occipital lobe was significantly higher than that of the post abortion. Arterial blood gas was analyzed after SPECT procedure. Pco2 concentration increased significantly after artificial abortion. Although its mechanism is unknown, our preliminary work demonstrates that r-CBF increased by pregnancy. (author)

  14. Cerebral blood flow velocity changes after rapid administration of surfactant.

    OpenAIRE

    Cowan, F.; Whitelaw, A; D. Wertheim; Silverman, M

    1991-01-01

    A computer linked Doppler system was used to make continuous measurements of cerebral blood flow velocity (CBFV) from the middle cerebral artery, mean arterial blood pressure (MAP) from the umbilical artery, and heart rate before, during, and for 20 minutes after the endotracheal administration of 200 mg/kg of porcine surfactant in 10 preterm infants with respiratory distress syndrome. Within two minutes of surfactant administration, there was a median fall of 6 mm Hg (15%) fall in MAP and 36...

  15. Color doppler blood flow imaging in twin reversed arterial perfusion sequence%彩色多普勒超声诊断双胎反向动脉灌注序列征

    Institute of Scientific and Technical Information of China (English)

    李雪蕾; 李昌安; 穆仲平

    2012-01-01

    目的探讨彩色多普勒超声诊断双胎反向动脉灌注序列征的价值.方法对5例双胎反向动脉灌注序列征的产前彩色多普勒超声检查结果进行回顾性分析,并与产后结果对照,总结声像图表现及诊断要点.结果 5例于产前彩色多普勒超声检查中发现并于产后证实为双胎反向动脉灌注序列征;5例均为单绒毛膜双胎,其中3例为单羊膜囊,2例为双羊膜囊;5例均为无脑、无心畸胎.结论彩色多普勒超声检查可以准确并及早诊断双胎反向动脉灌注序列征,有助于指导临床实现优生优育.%Objective To detect the diagnostic value of color doppler blood flow imaging in twin reversed arterial perfusion sequence. Methods Review and analysis of 5 cases of twin reversed arterial perfusion sequence were examined by color Doppler, and compared with the results of the clinical diagnosis after delivery. The main points of diagnosis were summarized. Results The twin reversed arterial perfusion sequence was observed in prenatal examination and demonstrated in postpartum through prenatal ultrasonic inspection system of 5 inspection objects. All 5 cases were confirmed to monochorionic twin. Among them 3 cases were monoamnionic twin and 2 cases were diamnionic twin. All 5 cases were anencephalia and acardia. Conclusion Color doppler imaging can provide accurate diagnoses with twin reversed arterial perfusion sequence timely, and will offer available instructions on clinical therapy to achieve prenatal and postnatal care.

  16. Fontan Outcomes and Pulmonary Blood Flow at Birth.

    Science.gov (United States)

    Evans, William N; Acherman, Ruben J; Reardon, Leigh C; Ciccolo, Michael L; Galindo, Alvaro; Rothman, Abraham; Winn, Brody J; Yumiaco, Noel S; Restrepo, Humberto

    2016-01-01

    We previously noted, in a small group of post-Fontan patients, a possible association between hepatic fibrosis scores and the status of pulmonary blood flow at birth. To further explore this observation, we examined data from all Fontan patients seen in our center from July 2010 to March 2015. We identified 200 patients for analysis. Of the 200 patients, 56 underwent transvenous-hepatic biopsy. Of the 200 patients, 13 (6.5%) had protein-losing enteropathy. We divided both the 56 biopsy patients and the entire cohort of 200 patients into 4 groups: (1) unobstructed pulmonary blood flow at birth with functional left ventricles, (2) unobstructed pulmonary blood flow at birth with functional right ventricles, (3) obstructed pulmonary blood flow at birth with functional left ventricles, and (4) obstructed pulmonary blood flow at birth with functional right ventricles. Analysis of the 56 liver-biopsy patient groups showed median hepatic total-fibrosis scores for the 4 groups of 2 (0-6), 2 (0-8), 3 (2-6), and 4 (1-8), respectively, with statistical significance between groups 4 and 1 (p = 0.031). For the entire cohort of 200 patients, we analyzed the incidence of protein-losing enteropathy for each of the four groups and found protein-losing enteropathy percent occurrences of 0, 2.9, 8.8, and 16.1, respectively, with statistical significance between groups 4 and 2 (p = 0.031) and between groups 4 and 1 (p = 0.025). A history of obstructed pulmonary blood flow at birth, coupled with a functional right ventricle, may predict a poorer long-term Fontan outcome.

  17. Cerebral blood flow in asymptomatic individuals

    International Nuclear Information System (INIS)

    We studied the relationship between cortical grey matter flow (CBF) and age, cerebrovascular risk factors and the severity of subcortical hypersignals (HS, hyperintensity score in MRI) in 47 asymptomatic subjects with cerebrovascular risk factors. Multiple regression analysis revealed that HS was most strongly related to CBF, and that hematocrit, age and evidence of ischemic change detected in the electrocardiogram also appeared to be independent determinants of CBF. Both the severity and location of hypersignals were correlated with CBF. The most significant negative correlation observed was that between CBF and HS in the basal ganglia-thalamic region, where the degree of signal abnormality was modest. Decreased CBF in asymptomatic subjects with cerebrovascular risk factors may be related to microcirculatory disturbance associated with elevated hematocrit and an increase in the number of risk factors, and functional suppression of cerebral cortex due to the neuronal disconnection associated with subcortical lesions. In addition, impaired cerebral circulation may be related to MRI signal abnormalities. (author)

  18. Pulmonary blood flow distribution in transposition of the great arteries

    International Nuclear Information System (INIS)

    Pulmonary blood flow distribution was studied by scintillation scanning of the lungs after the infusion of iodine-131-labeled macroaggregates of human albumin before and after the Mustard operation in 53 patients with transposition of the great arteries. The patients were classified as follows: Group 1 (24 infants with uncomplicated transposition of the great arteries); Group II (18 patients with transposition and ventricular septal defect); and Group III (11 patients with transposition, ventricular septal defect and pulmonary obstruction). Before operation, 21 patients had a normal distribution of pulmonary blood flow, 10 had preferential flow to the right lung and 2 had preferential flow to the left lung. After operation, 19 had a normal pattern of pulmonary blood flow, 21 had preferential flow to the right lung and 3 had preferential flow to the left lung. The scanning studies have proved helpful in follow-up of patients to rule out recurrence of the shunt, pulmonary or systemic venous obstruction, development of pulmonary hypertension and occlusion of a palliative systemic-pulmonary shunt

  19. Flow of Red Blood Cells in Stenosed Microvessels

    Science.gov (United States)

    Vahidkhah, Koohyar; Balogh, Peter; Bagchi, Prosenjit

    2016-06-01

    A computational study is presented on the flow of deformable red blood cells in stenosed microvessels. It is observed that the Fahraeus-Lindqvist effect is significantly enhanced due to the presence of a stenosis. The apparent viscosity of blood is observed to increase by several folds when compared to non-stenosed vessels. An asymmetric distribution of the red blood cells, caused by geometric focusing in stenosed vessels, is observed to play a major role in the enhancement. The asymmetry in cell distribution also results in an asymmetry in average velocity and wall shear stress along the length of the stenosis. The discrete motion of the cells causes large time-dependent fluctuations in flow properties. The root-mean-square of flow rate fluctuations could be an order of magnitude higher than that in non-stenosed vessels. Several folds increase in Eulerian velocity fluctuation is also observed in the vicinity of the stenosis. Surprisingly, a transient flow reversal is observed upstream a stenosis but not downstream. The asymmetry and fluctuations in flow quantities and the flow reversal would not occur in absence of the cells. It is concluded that the flow physics and its physiological consequences are significantly different in micro- versus macrovascular stenosis.

  20. Uteroplacental blood flow during alkalosis in the sheep

    International Nuclear Information System (INIS)

    Uteroplacental blood flow was measured by the radioactive-microsphere technique in eight near-term pregnant ewes during a normal control period and during maternal metabolic alkalosis. All measurements were made on awake, unanesthetized animals. Alkalosis, defined for this study as an arterial pH of 7.60 or greater, was produced by the oral administration of sodium bicarbonate, 3 g/kg body wt. The rise in pH thus produced was unaccompanied by significant changes in systemic arterial blood pressure and cardiac output, while maternal arterial P/sub CO2/ rose slightly from control levels. Cotyledonary blood flow declined from a control value of 1.177 ml/min to 1.025 ml/min during alkalosis. This decline of 13 percent in cotyledonary blood flow is significant (P less than 0.02). Blood flow to the remaining uterine tissue, or noncotyledonary uterus, did not change with alkalosis, being maintained at approximately 195 ml/min. It is concluded that maternal alkalosis, unaccompanied by major changes in P /sub CO2/ and systemic arterial pressure, causes a small increase in the resistance of the uteroplacental circulation

  1. Metabolic control of muscle blood flow during exercise in humans

    DEFF Research Database (Denmark)

    Boushel, Robert Christopher

    2003-01-01

    and the vasculature that induce vasodilation. A link between muscle metabolic events and microvascular control of blood flow is illustrated by local dilation of terminal arterioles during contraction of muscle fibers and conduction of vasodilation upstream. Endothelial-derived vasodilator mechanisms are known...... to exert control of muscle vasodilation. Adenosine, nitric oxide (NO), prostacyclin (PGI2), and endothelial-derived hyperpolarization factor (EDHF) are possible mediators of muscle vasodilation during exercise. In humans, adenosine has been shown to contribute to functional hyperemia as blood flow...

  2. Measurement of tumor blood flow following neutron irradiation

    International Nuclear Information System (INIS)

    Clinical oncologists and cancer researchers benefit from information on the vascularization or non-vascularization of solid tumors because of blood flow's influence on three popular treatment types: hyperthermia therapy, radiotherapy, and chemotherapy. The objective of this research is the development of a clinically useful tumor blood flow measurements technique. The designed technique is sensitive, has good spatial resolution, in non-invasive and presents no risk to the patient beyond his usual treatment. Tumor blood flow was determined by measuring the washout of positron emitting isotopes created through neutron therapy treatment. In order to do this, several technical and scientific questions were addressed first. These questions have been answered through both theoretical calculation and measurement. The first question was answered through the measurement of macroscopic cross sections for the predominant nuclear reactions in the body. These results correlate well with an independent mathematical prediction of tissue activation and measurements of mouse spleen neutron activation. The second question was addressed by performing cell suspension and protein precipitation techniques on neutron activated mouse spleens. The third and final question was answered by using first physical principles to develop a model mimicking the blood flow system and measurement technique. In a final set of experiments, the above were applied to flow models and animals. The ultimate aim of this project is to apply its methodology to neutron therapy patients

  3. Blood Pump Development Using Rocket Engine Flow Simulation Technology

    Science.gov (United States)

    Kiris, Cetin C.; Kwak, Dochan

    2002-01-01

    This viewgraph presentation provides information on the transfer of rocket engine flow simulation technology to work involving the development of blood pumps. Details are offered regarding the design and requirements of mechanical heart assist devices, or VADs (ventricular assist device). There are various computational fluid dynamics issues involved in the visualization of flow in such devices, and these are highlighted and compared to those of rocket turbopumps.

  4. Regional cerebral blood flow in fibromyalgia

    International Nuclear Information System (INIS)

    Full text: Little is known of the aetiology of fibromyalgia (FM), a condition diagnosed on the basis of widespread chronic pain and multiple tender points. We have used Tc-99m HMPAO SPECT to compare regional cerebral bloodflow (rCBF) in 17 women who fulfill American College of Rheumatology criteria for FM to 22 age, sex and education matched controls. Both Statistical Parametric Mapping (SPM95) and coregistered MRI guided ROI were used for analysis. SPM95 revealed statistically significant hypoperfusion in the pontine tegmentum (p=0.048) and a trend to hypoperfusion in the left putamen (p=0.07). MRI guided ROI placement by an operator blinded to clinical information and the coregistered SPECT images, confirmed significant hypoperfusion of the left thalamus (p<0.0001) and the pontine tegmentum (p=0.001) and revealed trends towards hypoperfusion in the caudate nuclei and right thalamus. These results are consistent with the hypothesis that FM is due to dysfunction of central pain pathways. Spinothalamic neurones are known to be involved in pain perception and there are synapse connections to the thalamus in the gigantocellular part of the medulla and pons

  5. Regional cerebral blood flow in fibromyalgia

    Energy Technology Data Exchange (ETDEWEB)

    Kwiatek, R.; Barnden, L.; Rowe, C.; McKinnon, J.; Pile, K. [The Queen Elizabeth Hospital , Adelaide, SA (Australia)

    1998-06-01

    Full text: Little is known of the aetiology of fibromyalgia (FM), a condition diagnosed on the basis of widespread chronic pain and multiple tender points. We have used Tc-99m HMPAO SPECT to compare regional cerebral bloodflow (rCBF) in 17 women who fulfill American College of Rheumatology criteria for FM to 22 age, sex and education matched controls. Both Statistical Parametric Mapping (SPM95) and coregistered MRI guided ROI were used for analysis. SPM95 revealed statistically significant hypoperfusion in the pontine tegmentum (p=0.048) and a trend to hypoperfusion in the left putamen (p=0.07). MRI guided ROI placement by an operator blinded to clinical information and the coregistered SPECT images, confirmed significant hypoperfusion of the left thalamus (p<0.0001) and the pontine tegmentum (p=0.001) and revealed trends towards hypoperfusion in the caudate nuclei and right thalamus. These results are consistent with the hypothesis that FM is due to dysfunction of central pain pathways. Spinothalamic neurones are known to be involved in pain perception and there are synapse connections to the thalamus in the gigantocellular part of the medulla and pons

  6. Use of three-dimensional time-resolved phase-contrast magnetic resonance imaging with vastly undersampled isotropic projection reconstruction to assess renal blood flow in a renal cell carcinoma patient treated with sunitinib: a case report

    OpenAIRE

    Takayama, Tatsuya; Takehara, Yasuo; Sugiyama, Masataka; Sugiyama, Takayuki; Ishii, Yasuo; Johnson, Kevin E; Wieben, Oliver; Wakayama, Tetsuya; Sakahara, Harumi; Ozono, Seiichiro

    2014-01-01

    Background New imaging modalities to assess the efficacy of drugs that have molecular targets remain under development. Here, we describe for the first time the use of time-resolved three-dimensional phase-contrast magnetic resonance imaging to monitor changes in blood supply to a tumor during sunitinib treatment in a patient with localized renal cell carcinoma. Case presentation A 43-year-old Japanese woman with a tumor-bearing but functional single kidney presented at our hospital in July 2...

  7. Particle Image Velocimetry Study of Pulsatile Flow in Bi-leaflet Mechanical Heart Valves with Image Compensation Method

    OpenAIRE

    Shi, Yubing; Yeo, Tony Joon Hock; Zhao, Yong; Hwang, Ned H. C.

    2006-01-01

    Particle Image Velocimetry (PIV) is an important technique in studying blood flow in heart valves. Previous PIV studies of flow around prosthetic heart valves had different research concentrations, and thus never provided the physical flow field pictures in a complete heart cycle, which compromised their pertinence for a better understanding of the valvular mechanism. In this study, a digital PIV (DPIV) investigation was carried out with improved accuracy, to analyse the pulsatile flow field ...

  8. Quantification of volumetric cerebral blood flow using hybrid laser speckle contract and optical coherence tomography (Conference Presentation)

    Science.gov (United States)

    Valim, Niksa; Dunn, Andrew K.

    2016-03-01

    Studying neurovascular blood flow function in cerebrovascular activities requires accurate visualization and characterization of blood flow volume as well as the dynamics of blood cells in microcirculation. In this study, we present a novel integration of laser speckle contrast imaging (LSCI) and spectral domain optical coherence tomography (SD-OCT) for rapid volumetric imaging of blood flow in cortical capillaries. LSCI uses the illumination of wide-field near infrared light (NIR) and monitors back scattered light to characterize the relative dynamics of blood flow in microcirculation. Absolute measurement of blood cells and blood volume requires high-resolution volumetric structural information. SD-OCT system uses coherence gating to measure scattered light from a small volume within high structural resolution. The structural imaging system rapidly assesses large number of capillaries for spatio-temporal tracking of red blood cells (RBC). A very fast-ultra resolution SD-OCT system was developed for imaging high-resolution volumetric samples. The system employed an ultra wideband light source (1310 ± 200 nm in wavelength) corresponding to an axial resolution of 3 micrometers in tissue. The spectrometer of the SD-OCT was customized for a maximum scanning rate of 147,000 line/s. We demonstrated a fast volumetric OCT angiography algorithm to visualize large numbers of vessels in a 2-mm deep sample volume. A LSCI system that has been developed previously in our group was integrated to the imaging system for the characterization of dynamic blood cells. The conjunction data from LSCI and SD-OCT systems imply the feasibility of accurate quantification of absolute cortical blood flow.

  9. 4-D MRI flow analysis in the course of interrupted aortic arch reveals complex morphology and quantifies amount of collateral blood flow

    Energy Technology Data Exchange (ETDEWEB)

    Hirtler, Daniel [University Hospital Freiburg, Department of Pediatric Cardiology and Congenital Heart Disease, Freiburg (Germany); Geiger, Julia; Jung, Bernd [University Hospital Freiburg, Department of Radiology, Medical Physics, Freiburg (Germany); Markl, Michael [Northwestern University, Departments of Radiology and Biomedical Engineering, Chicago, IL (United States); Arnold, Raoul [University Hospital Heidelberg, Department of Pediatric Cardiology and Congenital Heart Disease, Heidelberg (Germany)

    2013-08-15

    We present findings in a 17-year-old with interrupted aortic arch, in whom standard imaging techniques missed functional and morphological problems. Flow-sensitive four-dimensional magnetic resonance (4-D MR) enabled assessment of the complex anatomy and blood-flow characteristics in the entire aorta and direct quantification of blood flow in collateral vessels. Our findings highlight the entire morphological and functional problem of interrupted aortic arch and illustrate the potential of flow-sensitive 4-D MR for surgical planning in congenital heart disease. (orig.)

  10. Blood flow changes after unilateral carotid artery ligation monitored by optical coherence tomography

    Science.gov (United States)

    Ma, Yushu; Liang, Chengbo; Suo, Yanyan; Zhao, Yuqian; Wang, Yi; Xu, Tao; Wang, Ruikang; Ma, Zhenhe

    2016-03-01

    Unilateral carotid artery ligation which could induce adaptive improvement is a classic model that has been widely used to study pathology of ischemic disease. In those studies, blood flow is an important parameter to characterize the ischemia. Optical coherence tomography (OCT) is a powerful imaging modality which can provide depth resolved images in biological tissue with high spatial and temporal resolution. SPF rats was anesthetized with isoflurane and divided into two groups. In first group, bilateral carotid artery was surgically exposed, and then left carotid artery was ligated. Blood flow changes of the contralateral carotid artery was monitored using high speed spectral domain optical coherence tomography, including the absolute flow velocity and the flow volume. In the other group, skull window was opened at the ipsilateral cerebral cortex of ligation and blood supply of small artery was measured before and after the ligation. The measured results demonstrate the blood supply compensation process after unilateral carotid artery ligation. With the superiority of high resolution, OCT is an effective technology in monitoring results of carotid artery after ligation.

  11. Ultrasonic Doppler blood flow meter for extracorporeal circulation

    Science.gov (United States)

    Dantas, Ricardo G.; Costa, Eduardo T.; Maia, Joaquim M.; Nantes Button, Vera L. d. S.

    2000-04-01

    In cardiac surgeries it is frequently necessary to carry out interventions in internal heart structures, and where the blood circulation and oxygenation are made by artificial ways, out of the patient's body, in a procedure known as extracorporeal circulation (EC). During this procedure, one of the most important parameters, and that demands constant monitoring, is the blood flow. In this work, an ultrasonic pulsed Doppler blood flowmeter, to be used in an extracorporeal circulation system, was developed. It was used a 2 MHz ultrasonic transducer, measuring flows from 0 to 5 liters/min, coupled externally to the EC arterial line destined to adults perfusion (diameter of 9.53 mm). The experimental results using the developed flowmeter indicated a maximum deviation of 3.5% of full scale, while the blood flow estimator based in the rotation speed of the peristaltic pump presented deviations greater than 20% of full scale. This ultrasonic flowmeter supplies the results in a continuous and trustworthy way, and it does not present the limitations found in those flowmeters based in other transduction methods. Moreover, due to the fact of not being in contact with the blood, it is not disposable and it does not need sterilization, reducing operational costs and facilitating its use.

  12. History of International Society for Cerebral Blood Flow and Metabolism

    DEFF Research Database (Denmark)

    Paulson, Olaf B; Kanno, Iwao; Reivich, Martin;

    2012-01-01

    dealing with CBF and metabolism were arranged, and the fast growing research led to a demand for a specialized journal. In this scientific environment, the International Society for Cerebral Blood Flow and Metabolism (ISCBFM) and its official Journal of Cerebral Metabolism were established in 1981 and has...

  13. Renal blood flow in experimental septic acute renal failure

    NARCIS (Netherlands)

    Langenberg, C.; Wan, L.; Egi, M.; May, C. N.; Bellomo, R.

    2006-01-01

    Reduced renal blood flow (RBF) is considered central to the pathogenesis of septic acute renal failure (ARF). However, no controlled experimental studies have continuously assessed RBF during the development of severe septic ARF. We conducted a sequential animal study in seven female Merino sheep. F

  14. Development of a miniature intraventricular axial flow blood pump.

    Science.gov (United States)

    Yamazaki, K; Umezu, M; Koyanagi, H; Outa, E; Ogino, S; Otake, Y; Shiozaki, H; Fujimoto, T; Tagusari, O; Kitamura, M

    1993-01-01

    A new intraventricular axial flow blood pump has been designed and developed as a totally implantable left ventricular assist device (LVAD). This pump consists of an impeller combined with a guide-vane, a tube housing, and a DC motor. The pump is introduced into the LV cavity through the LV apex, and the outlet cannula is passed antegrade across the aortic valve. Blood is withdrawn from the LV through the inlet ports at the pump base, and discharged to the ascending aorta. Our newly developed axial flow pump system has the following advantages: 1) it is a simple and compact system, 2) minimal blood stasis both in the device and the LV cavity, 3) minimal blood contacting surface of the pump, 4) easy accessibility with a less invasive surgical procedure, and 5) low cost. A pump flow > 5 L/min was obtained against 100 mmHg differential pressure in the mock circulatory system. The pump could produce a passive pulsatile flow effect with a beating heart more efficiently than other non-pulsatile pumps because of minimal pressure drop and inertia along the bypass tract. Anatomic fit studies using dissected hearts of dilated cardiomyopathy (DCM) cadavers showed that this pump could smoothly pass through the aortic valve without any interference with mitral valve function. Recently, a dynamic pressure groove bearing and a miniature lip seal have been developed. The dynamic pressure groove bearing has a simple structure and acts as a pressure resistant sealing mechanism.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Patterns of regional cerebral blood flow in acute stroke

    DEFF Research Database (Denmark)

    Olsen, T S; Skriver, E B

    1981-01-01

    In a consecutive group of 56 stroke patients the regional cerebral blood flow was measured within 84 hours after stroke. A 254 multidetector scintillation camera and the intracarotid Xenon-133 injection method was used to study rCBF. Typical rCBF-patterns are described and compared to the findings...

  16. Simple technique for measuring relative renal blood flow

    International Nuclear Information System (INIS)

    To determine whether externally monitored early renal uptake of 131I-hippurate is proportional to renal blood flow, the renal uptake of 131-hippurate at 1 to 2 min after injection was compared with the renal accumulation of radioactive carbonized microspheres in dogs. A renal artery catheter equipped with a balloon was used to decrease renal blood flow unilaterally. One minute after the intravenous injection of 100 μCi of 131I-hippurate, about 1 μCi of either 85Sr- or 95Nb-labeled carbon microspheres was injected into the left ventricle. Radioactivity was measured over both kidneys. The total radioactivity within each kidney region of interest was corrected for background and integrated over the 1 to 2 min interval after injection. Thirteen measurements of relative renal blood flow were made for seven dogs. The dogs were then killed and both kidneys were excised and counted for the radioactivity of the microspheres. The 1 to 2-min relative renal uptake of 131I-hippurate correlated well with relative microsphere uptake, suggesting that relative renal blood flow can be simply determined from the external measurements of renal uptake of 131I-hippurate

  17. Whole-body vibration dosage alters leg blood flow.

    NARCIS (Netherlands)

    Lythgo, N.; Eser, P.; Groot, P.C.E. de; Galea, M.

    2009-01-01

    The effect of whole-body vibration dosage on leg blood flow was investigated. Nine healthy young adult males completed a set of 14 random vibration and non-vibration exercise bouts whilst squatting on a Galileo 900 plate. Six vibration frequencies ranging from 5 to 30 Hz (5 Hz increments) were used

  18. Splanchnic blood flow and hepatic glucose production in exercising humans

    DEFF Research Database (Denmark)

    Bergeron, R; Kjaer, M; Simonsen, L;

    2001-01-01

    The study examined the implication of the renin-angiotensin system (RAS) in regulation of splanchnic blood flow and glucose production in exercising humans. Subjects cycled for 40 min at 50% maximal O(2) consumption (VO(2 max)) followed by 30 min at 70% VO(2 max) either with [angiotensin...

  19. Age and gender related differences in aortic blood flow

    DEFF Research Database (Denmark)

    Traberg, Marie Sand; Pedersen, Mads Møller; Hemmsen, Martin Christian;

    2012-01-01

    The abdominal aorta (AA) is predisposed to development of abdominal aneurysms (AAA), a focal dilatation of the artery with fatal consequences if left untreated. The blood flow patterns in the AA is thought to play an important role in the development of AAA. The purpose of this work...

  20. Influence of blood flow on the coagulation cascade

    DEFF Research Database (Denmark)

    The influence of diffusion and convetive flows on the blood coagulation cascade is investigated for a controlled perfusion experiment. We present a cartoon model and reaction schemes for parts of the coagulation cascade with sunsequent set up of a mathematical model in two space dimensions plus one...

  1. A VARIATIONAL MODEL FOR 2-D MICROPOLAR BLOOD FLOW

    Institute of Scientific and Technical Information of China (English)

    He Ji-huan

    2003-01-01

    The micropolar fluid model is an essential generalization of the well-established Navier-Stokes model in the sense that it takes into account the microstructure of the fluid.This paper is devolted to establishing a variational principle for 2-D incompressible micropolar blood flow.

  2. Impaired endothelial function and blood flow in repetitive strain injury

    NARCIS (Netherlands)

    Brunnekreef, J.J.; Benda, N.M.M.; Schreuder, T.H.A.; Hopman, M.T.E.; Thijssen, D.H.J.

    2012-01-01

    Repetitive Strain Injury (RSI) is a disabling upper extremity overuse injury that may be associated with pathophysiological changes in the vasculature. In this study we investigated whether RSI is associated with endothelial dysfunction and impaired exercise-induced blood flow in the affected forear

  3. Haemodialysis decreases finger pressures independent of artificial kidney blood flow.

    NARCIS (Netherlands)

    Hoek, F. van; Scheltinga, M.R.M.; Houterman, S.; Beerenhout, C.H.

    2010-01-01

    BACKGROUND: During haemodialysis, some patients experience intensification of symptoms of haemodialysis access-induced distal ischaemia. Aim of this study is to compare the effects of two different regimens of arterial blood flow in patients with an arteriovenous access. METHODS: A questionnaire ide

  4. Cerebral blood flow during static exercise in humans

    DEFF Research Database (Denmark)

    Rogers, H B; Schroeder, T; Secher, N H;

    1990-01-01

    Cerebral blood flow (CBF) was determined in humans at rest and during four consecutive unilateral static contractions of the knee extensors. Each contraction was maintained for 3 min 15 s with the subjects in a semisupine position. The contractions corresponded to 8, 16, 24, and 32% of the maxima...

  5. Longitudinal Cerebral Blood Flow Changes during Speech in Hereditary Ataxia

    Science.gov (United States)

    Sidtis, John J.; Strother, Stephen C.; Naoum, Ansam; Rottenberg, David A.; Gomez, Christopher

    2010-01-01

    The hereditary ataxias constitute a group of degenerative diseases that progress over years or decades. With principal pathology involving the cerebellum, dysarthria is an early feature of many of the ataxias. Positron emission tomography was used to study regional cerebral blood flow changes during speech production over a 21 month period in a…

  6. Cerebral blood flow in patients with dementia of Alzheimer's type

    DEFF Research Database (Denmark)

    Postiglione, A; Lassen, N A; Holman, B L

    1993-01-01

    In the normal brain as well as in Alzheimer's disease (AD), regional cerebral blood flow (CBF) is coupled to metabolic demand and, therefore, changes in CBF reflect variations in neuronal metabolism. The use of radionuclide techniques, such as positron emission tomography (PET) and single photon...

  7. Ascending aortic blood flow dynamics following intense exercise.

    Science.gov (United States)

    Kilgour, R D; Sellers, W R

    1990-10-01

    The purpose of this study was to compare and contrast aortic blood flow kinetics during recovery from intense aerobic (maximal oxygen uptake test) and anaerobic (Wingate anaerobic power test) exercise. Fifteen healthy male subjects (VO2max = 56.1 +/- 5.8 mk/kg/min) participated in this study. Beat-to-beat peak aortic blood flow velocity (pkV) and acceleration (pkA) measurements were obtained by placing a 3.0 MHz continuous-wave ultrasonic transducer on the suprasternal notch at rest and during recovery (immediately post-exercise, 2.5 min, and 5.0 min) following the two exercise conditions. Peak velocity and acceleration significantly increased (p less than 0.01) from rest to immediately post-exercise and remained elevated throughout the 5-min recovery period. No differences were observed between the aerobic and anaerobic tests. Stroke distance significantly declined (p less than 0.01) immediately following exercise and progressively rose during the 5-min recovery period. The results indicate that: 1) aortic blood flow kinetics remained elevated during short-term recovery, and 2) intense aerobic and anaerobic exercise exhibit similar post-exercise aortic blood flow kinetics. PMID:2262232

  8. Coded ultrasound for blood flow estimation using subband processing

    DEFF Research Database (Denmark)

    Gran, Fredrik; Udesen, Jesper; Nielsen, Michael bachmann;

    2007-01-01

    This paper further investigates the use of coded excitation for blood flow estimation in medical ultrasound. Traditional autocorrelation estimators use narrow-band excitation signals to provide sufficient signal-to-noise-ratio (SNR) and velocity estimation performance. In this paper, broadband co...

  9. Coded ultrasound for blood flow estimation using subband processing

    DEFF Research Database (Denmark)

    Gran, F.; Udesen, J.; Jensen, J.A.;

    2008-01-01

    This paper investigates the use of coded excitation for blood flow estimation in medical ultrasound. Traditional autocorrelation estimators use narrow-band excitation signals to provide sufficient signal-to-noise-ratio (SNR) and velocity estimation performance. In this paper, broadband coded sign...

  10. Oscillations and chaos in renal blood flow control

    DEFF Research Database (Denmark)

    Holstein-Rathlou, N H

    1993-01-01

    In normotensive, halothane-anesthetized rats, oscillations can be found both in the single-nephron blood flow and in the tubular pressure. Experimental data and computer simulations support the hypothesis that the oscillations are caused by the tubuloglomerular feedback (TGF) mechanism. Model...

  11. Vasodilator interactions in skeletal muscle blood flow regulation

    DEFF Research Database (Denmark)

    Hellsten, Ylva; Nyberg, Michael Permin; Jensen, Lasse Gliemann;

    2012-01-01

    During exercise, oxygen delivery to skeletal muscle is elevated to meet the increased oxygen demand. The increase in blood flow to skeletal muscle is achieved by vasodilators formed locally in the muscle tissue, either on the intraluminal or the extraluminal side of the blood vessels. A number...... vasodilators are both stimulated by several compounds, eg. adenosine, ATP, acetylcholine, bradykinin, and are affected by mechanically induced signals, such as shear stress. NO and prostacyclin have also been shown to interact in a redundant manner where one system can take over when formation of the other...... that this remaining hyperemia may be explained by cAMP and cGMP independent smooth muscle relaxation, such as effects of endothelial derived hyperpolarization factors (EDHFs) or through metabolic modulation of sympathetic effects. The nature and role of EDHF as well as potential novel mechanisms in muscle blood flow...

  12. Results of Pancreatic Blood Shunting into the Systemic Blood Flow in Insulin-Dependent Diabetics

    OpenAIRE

    Galperin, E. I.; Diuzheva, T. G.; Petrovsky, P. F.; A. Yu. Chevokin; Dokuchayev, K. V.; Rabinovich, S. E.; Gitel, E. P.; Kuzovlev, N. F.; Platonov, L. V.

    1996-01-01

    A new surgical method of treating patients with unstable insulin-dependent diabetes (IDD) has been developed-that of surgically shunting pancreatic blood into the systemic blood flow with the purpose of creating a more optimal interaction of subcutaneously administered insulin and pancreas-secreted glucagon. The long term results of the operation depend on the patency of a splenorenal anastomosis. This has been studied by following up 137 patients over periods from half a year to three years....

  13. CT 灌注成像评价肾癌健侧肾血流量%Evaluation of uninjured lateral renal blood flow using CT perfusion imaging on renal cell carcinoma

    Institute of Scientific and Technical Information of China (English)

    赵金坤; 叶兆祥; 白人驹

    2015-01-01

    目的:探讨 CT 灌注所得“标准”肾血流量(BF)替代放射性核素法(radionuclide labeled microspheres)的有效肾血浆流量(ERPF)评估肾细胞癌患者健侧肾脏 BF 的可行性。方法对26例肾癌患者行 CT 灌注扫描,获取健侧肾脏所选层面肾实质的平均单位 BF 值,应用肾实质期图像健侧肾脏肾门水平肾实质最大截面积与肾脏上下极之间最大径乘积作为肾脏“标准”体积,其与平均单位 BF 值的乘积作为全肾 BF 值的近似值,即“标准”肾 BF 值。应用放射性核素法获取相应健侧肾脏 ERPF 值。应用SPSS19.0的 Pearson 相关分析检验肾癌患者健肾 CT 灌注“标准”肾 BF 值与放射性核素法 ERPF 值的相关性。结果26例肾癌患者行健肾CT 灌注组的“标准”肾 BF 值为(620.59~820.76)mL·min-1·g-1·cm3,平均(718.87±58.40)mL·min-1·g-1·cm3,放射性核素法 ERPF 组的平均值为(244~411)mL/min,平均(320.54±55.71)mL/min。2组数据间存在正相关(r=0.754,P <0.01)。结论肾脏 CT 灌注检查在一定程度上可以代替放射性核素法的肾功能检查。%Objective To analyze the correlation between renal blood flow (BF)of CT perfusion and effective renal plasma flow (ERPF)of radionuclide labeled microspheres.Methods CT perfusion was applied to 26 cases of renal cell carcinoma (RCC)in order to obtain the average unit BF of the target layer of the uninjured lateral kidney.For the renal image of the uninjured lateral kidney in the nephrographic phase (NP),we used the value of maximal renal cross-sectional area times the value of renal maximal height as the standardized volume.The product of this standardized volume and average unit BF could be used as an approximation of total re-nal blood flow,which was a standardized renal BF value.Meanwhile,we took radionuclide labeled microspheres into practice to ob-tain an ERPF value of the corresponding uninjured lateral kidney.The correlation between standard renal BF

  14. In vitro validation of volumetric blood flow measurement using Doppler flow wire.

    Science.gov (United States)

    Jenni, R; Kaufmann, P A; Jiang, Z; Attenhofer, C; Linka, A; Mandinov, L

    2000-10-01

    Determination of any volumetric blood flow requires assessment of mean blood flow velocity and vessel cross-sectional area. For evaluation of coronary blood flow and flow reserve, however, assessment of average peak velocity alone is widely used, but changes in velocity profile and vessel area are not taken into account. We studied the feasibility of a new method for calculation of volumetric blood flow by Doppler power using a Doppler flow wire. An in vitro model with serially connected silicone tubes of known lumen diameters (1.5, 2.0, 2.5, 3.0, 3.5 and 4.0 mm) and pulsatile blood flow ranging from 10 to 200 mL/min was used. A Doppler flow wire was connected to a commercially available Doppler system (FloMap(R), Cardiometrics) for online calculation of the zeroth (M(0)) and the first (M(1)) Doppler moment, as well as mean flow velocity (V(m)). Two different groups of sample volumes (at different gate depths) were used: 1. two proximal sample volumes lying completely within the vessel were required to evaluate the effect of scattering and attenuation on Doppler power, and 2. distal sample volumes intersecting completely the vessel lumen to assess the vessel cross-sectional area. Area (using M(0)) and V(m) (using M(1)/M(0)) obtained from the distal gates were corrected for scattering and attenuation by the data obtained from the proximal gates, allowing calculation of absolute volumetric flow. These results were compared to the respective time collected flow. Correlation between time collected and Doppler-derived flow measurements was 0.98 (p measurements in each individual tube. The mean paired flow difference between the two techniques was 1.5 +/- 9.0 mL/min (ns). Direct volumetric blood flow measurement from received Doppler power using a Doppler flow wire system is feasible. This technique may potentially be of great clinical value because it allows an accurate assessment of coronary flow and flow reserve with a commercially available flow wire system. PMID

  15. Test-Retest Repeatability of Myocardial Blood Flow Measurements using Rubidium-82 Positron Emission Tomography

    Science.gov (United States)

    Efseaff, Matthew

    Rubidium-82 positron emission tomography (PET) imaging has been proposed for routine myocardial blood flow (MBF) quantification. Few studies have investigated the test-retest repeatability of this method. Same-day repeatability of rest MBF imaging was optimized with a highly automated analysis program using image-derived input functions and a dual spillover correction (SOC). The effects of heterogeneous tracer infusion profiles and subject hemodynamics on test-retest repeatability were investigated at rest and during hyperemic stress. Factors affecting rest MBF repeatability included gender, suspected coronary artery disease, and dual SOC (p stress, and 0.95 for stress / rest myocardial flow reserve (MFR). Subjects with heterogeneous tracer infusion profiles and hemodynamic conditions had significantly less repeatable MBF measurements at rest, stress, and stress/rest flow reserve (p < 0.05).

  16. Adaptive Multi-Lag for Synthetic Aperture Vector Flow Imaging

    DEFF Research Database (Denmark)

    Villagómez Hoyos, Carlos Armando; Stuart, Matthias Bo; Jensen, Jørgen Arendt

    2014-01-01

    ulti- lag method, which is performed in synthetic aperture vector flow data. Measurements are made on laminar and pulsatile, transverse flow profiles. A 7 MHz linear array is connected to t he SARUS research, and acquisitions are made on a vessel phanto m with recirculating blood mimicking fluid driven......The range of detectable velocities in ultrasound flow imaging is linked to the user selection of pulse repetiti on frequency. Whenever a region with large differences in velo city magnitude is visualized, a trade-off has to be made. This work suggests an adaptive spatio-temporaly independent, m...... by a softwar e controlled pump. A multi-lag velocity estimation is perfor med, and a lag is adaptively selected for every estimation point. Results from the constant flow compared to a true parabolic profile sho w an improvement in relative bias from 76.99% to 0.91% and standard deviation from 13.60% to 1...

  17. Experimental Study of Quantitative Analysis of Canine Renal Blood Flow Perfusion in Power Doppler Imaging%能量多普勒显像定量分析犬肾血流灌注的实验研究

    Institute of Scientific and Technical Information of China (English)

    王建宏; 钱蕴秋; 贺建国; 朱霆; 赵振源; 李志宏

    2001-01-01

    Objective:To observe the accuracy of PDI in different canine renal blood perfusions by using computer analysis.Methods:Six healthy dogs were chosen and their main right renal arteries were exposed by surgery.Under the guidance of renal artery blood flow volume displayed on the electromagnetic flowmeter,different renal blood perfusion models were made with the micrometer constrictor.Then the color pixel area (CPA)and color value(CV) of PDI and the peak systolic velocity (PSV)and RI of renal segmental artery were calculated and analyzed.Results:The CPA、CV、PSV and RI tended to decrease with gradual reduction of the blood flow of renal artery and the decrease was especially significant when the renal blood flow reduced by 75%(P<0.05).The changes of PSV and RI were also significant(P<0.05).Conclusions:PDI can accurately reflect changes in the canine renal blood perfusions.%目的:应用计算机定量分析能量多普勒显像(PDI)显示犬肾不同程度血流灌注的准确性。方法:手术暴露犬右肾动脉,将电磁流量计和微米缩窄器固定其上,制备不同肾血流灌注模型。PDI显示肾血流图,计算机脱机分析肾血流图的彩色象素面积(CPA)和彩色亮度值(CV)。PWD测量肾段动脉的PSV、RI。结果:肾血流图CPA、CV及肾段动脉PSV、RI均与肾动脉血流量呈线性正相关(r=0.99)。以肾血流量减少50%和75%时,CPA减少明显(P<0.05和P<0.01)。而CV值仅在血流减少75%时下降明显(P<0.05)。PSV、RI均有明显变化(P<0.05)。结论:PDI可以较准确反映犬肾血流灌注的异常变化。

  18. Mechanical axial flow blood pump to support cavopulmonary circulation.

    Science.gov (United States)

    Throckmorton, A L; Kapadia, J; Madduri, D

    2008-11-01

    We are developing a collapsible, percutaneously inserted, axial flow blood pump to support the cavopulmonary circulation in infants with a failing single ventricle physiology. An initial design of the impeller for this axial flow blood pump was performed using computational fluid dynamics analysis, including pressure-flow characteristics, scalar stress estimations, blood damage indices, and fluid force predictions. A plastic prototype was constructed for hydraulic performance testing, and these experimental results were compared with the numerical predictions. The numerical predictions and experimental findings of the pump performance demonstrated a pressure generation of 2-16 mm Hg for 50-750 ml/min over 5,500-7,500 RPM with deviation found at lower rotational speeds. The axial fluid forces remained below 0.1 N, and the radial fluid forces were determined to be virtually zero due to the centered impeller case. The scalar stress levels remained below 250 Pa for all operating conditions. Blood damage analysis yielded a mean residence time of the released particles, which was found to be less than 0.4 seconds for both flow rates that were examined, and a maximum residence time was determined to be less than 0.8 seconds. We are in the process of designing a cage with hydrodynamically shaped filament blades to act as a diffuser and optimizing the impeller blade shape to reduce the flow vorticity at the pump outlet. This blood pump will improve the clinical treatment of patients with failing Fontan physiology and provide a unique catheter-based therapeutic approach as a bridge to recovery or transplantation. PMID:19089799

  19. Radioisotope penile plethysmography: A technique for evaluating corpora cavernosal blood flow during early tumescence

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, A.N.; Graham, M.M.; Ferency, G.F.; Miura, R.S.

    1989-04-01

    Radioisotope penile plethysmography is a nuclear medicine technique which assists in the evaluation of patients with erectile dysfunction. This technique attempts to noninvasively quantitate penile corpora cavernosal blood flow during early penile tumescence using technetium-99m-labeled red blood cells. Penile images and counts were acquired in a steady-state blood-pool phase prior to and after the administration of intracorporal papaverine. Penile counts, images, and time-activity curves were computer analyzed in order to determine peak corporal flow and volume changes. Peak corporal flow rates were compared to arterial integrity (determined by angiography) and venosinusoidal corporal leak (determined by cavernosometry). Peak corporal flow correlated well with arterial integrity (r = 0.91) but did not correlate with venosinusoidal leak parameters (r = 0.01). This report focuses on the methodology and the assumptions which form the foundation of this technique. The strong correlation of peak corporal flow and angiography suggests that radioisotope penile plethysmography could prove useful in the evaluation of arterial inflow disorders in patients with erectile dysfunction.

  20. Influence of Gravity on Blood Volume and Flow Distribution

    Science.gov (United States)

    Pendergast, D.; Olszowka, A.; Bednarczyk, E.; Shykoff, B.; Farhi, L.

    1999-01-01

    In our previous experiments during NASA Shuttle flights SLS 1 and 2 (9-15 days) and EUROMIR flights (30-90 days) we observed that pulmonary blood flow (cardiac output) was elevated initially, and surprisingly remained elevated for the duration of the flights. Stroke volume increased initially and then decreased, but was still above 1 Gz values. As venous return was constant, the changes in SV were secondary to modulation of heart rate. Mean blood pressure was at or slightly below 1 Gz levels in space, indicating a decrease in total peripheral resistance. It has been suggested that plasma volume is reduced in space, however cardiac output/venous return do not return to 1 Gz levels over the duration of flight. In spite of the increased cardiac output, central venous pressure was not elevated in space. These data suggest that there is a change in the basic relationship between cardiac output and central venous pressure, a persistent "hyperperfusion" and a re-distribution of blood flow and volume during space flight. Increased pulmonary blood flow has been reported to increase diffusing capacity in space, presumably due to the improved homogeneity of ventilation and perfusion. Other studies have suggested that ventilation may be independent of gravity, and perfusion may not be gravity- dependent. No data for the distribution of pulmonary blood volume were available for flight or simulated microgravity. Recent studies have suggested that the pulmonary vascular tree is influenced by sympathetic tone in a manner similar to that of the systemic system. This implies that the pulmonary circulation is dilated during microgravity and that the distribution of blood flow and volume may be influenced more by vascular control than by gravity. The cerebral circulation is influenced by sympathetic tone similarly to that of the systemic and pulmonary circulations; however its effects are modulated by cerebral autoregulation. Thus it is difficult to predict if cerebral perfusion is

  1. Functional imaging using the retinal function imager: direct imaging of blood velocity, achieving fluorescein angiography-like images without any contrast agent, qualitative oximetry, and functional metabolic signals.

    Science.gov (United States)

    Izhaky, David; Nelson, Darin A; Burgansky-Eliash, Zvia; Grinvald, Amiram

    2009-07-01

    The Retinal Function Imager (RFI; Optical Imaging, Rehovot, Israel) is a unique, noninvasive multiparameter functional imaging instrument that directly measures hemodynamic parameters such as retinal blood-flow velocity, oximetric state, and metabolic responses to photic activation. In addition, it allows capillary perfusion mapping without any contrast agent. These parameters of retinal function are degraded by retinal abnormalities. This review delineates the development of these parameters and demonstrates their clinical applicability for noninvasive detection of retinal function in several modalities. The results suggest multiple clinical applications for early diagnosis of retinal diseases and possible critical guidance of their treatment. PMID:19763751

  2. Assessment of maternal cerebral blood flow in patients with preeclampsia

    Directory of Open Access Journals (Sweden)

    Mandić Vesna

    2005-01-01

    Full Text Available Introduction Systemic vasoconstrktion in preeclamptic patients increases vascular resistance, and is manifested by increased arterial blood flow velocity. The aim of the study is to evaluate if there is a change of Doppler indices in maternal medial cerbral artery (MCA in severe preeclampsia due to: 1 severity of clinical symptoms, 2 the beginning of eclamptic attack and 3 the application of anticonvidsive therapy. Material and methods A prospective clinical study included 92 pregnant women, gestational age 28-36 weeks. They were divided into three groups: normotensive (n=30, mild preeclampsia (n=33, and severe preeclampsia (n=29. We investigated maternal cerebral circulation by assessing the MCA. We registrated: pulsatility index (Pi, resistance index (Ri, Systolic/diastolic ratio (S/D, and the maximum systolic, end diastolic and medium velocity. Patients with severe preeclampsia were divided into two subgroups: subgroup 1 included patients without symptoms of threatening eclampsia (n=18; 62.06%; while subgroup 2 included those with symptoms of preeclampsia (n=11; 37.94%. All patients with severe preeclampsia were treated with magnesium sulfate (MgSO4, and cerebral blood flow was measured before and after the treatment. Statistical analysis was done by oneway ANOVA, Student t-test and t-paired sample test. The difference was considered to be significant if p < 0.05. Results Significantly increased Pi, Ri and all velocities were established in the group of patients with severe preeclampsia compared with the other two groups. In the group with severe preeclamsia we registrated significantly increased values of all velocities (patients with signs of threatening eclampsia. After MgSO4 treatment in patients with severe preeclampsia significantly decreased values of Pi, Ri, S/D ratio and all velocities were registered. Discussion In the studied group of patients with severe preclampsia we found increased velocity values, Pi and Ri, especially in

  3. Skeletal blood flow, iliac histomorphometry, and strontium kinetics in osteoporosis: a relationship between blood flow and corrected apposition rate

    Energy Technology Data Exchange (ETDEWEB)

    Reeve, J.; Arlot, M.; Wootton, R.; Edouard, C.; Tellez, M.; Hesp, R.; Green, J.R.; Meunier, P.J.

    1988-06-01

    In 20 untreated patients with idiopathic or postmenopausal osteoporosis, kinetic studies of skeletal blood flow (using /sup 18/F) and bone turnover (using /sup 85/Sr) were combined with dynamic histomorphometry performed on transiliac biopsies taken within 6 weeks of each other. In 8 patients the combined studies were repeated after treatment. A further 5 patients were studied only while receiving treatment. As expected, skeletal blood flow measured by /sup 18/F correlated with an index of /sup 85/Sr uptake into the exchangeable pools of bone. Additionally and independently, skeletal blood flow correlated with an index of the work rate of the osteoblasts in each multicellular unit of bone (the corrected apposition rate of Parfitt). These correlations were statistically significant in both the untreated patients (P less than 0.05) and the whole group (P less than 0.001). Further indices related to bone turnover at the level of the skeleton as a whole were significantly associated with skeletal blood flow only in the combined group.

  4. Decreased cerebral blood flow and prognosis of Alzheimer's disease. A multicenter HMPAO-SPECT study

    International Nuclear Information System (INIS)

    The purpose of this study was to determine the usefulness of brain perfusion single photon emission computed tomography (SPECT) for evaluating the severity and progression of Alzheimer's disease (AD). Eighty-four AD patients were included. At entry, 99mTc-HMPAO-SPECT, the Mini Mental State Examination (MMSE), Mental Function Impairment Scale (MENFIS), and the Raven Colored Progression Matrix (RCPM) were performed for all 84 patients. During the follow-up periods, two individual MMSE evaluations in 34 patients, two MENFIS evaluations in 30 patients, and two RCPM evaluations in 20 patients were performed. Based on the regions of decreased cerebral blood flow demonstrated on three-dimensional stereotactic surface projection (3D-SSP) images of SPECT, the cases were classified as type A (no decrease), type B (decreased blood flow in the parietal or temporal lobe), type C (decreased blood flow in the frontal lobe and parietal or temporal lobe), type Pc (decreased blood flow in posterior cingulate gyrus only), and ''other types''. The types of decreased blood flow, scores on neuropsychological evaluations, and symptom progression were analyzed. The MENFIS, MMSE, and RCPM scores were poorest in type C patients at entry. The degree of decrease of these scores during the follow-up periods was also greatest in type C. The greatest difference between patients with and without rapid progression in SPECT data of the mild AD patients (MMSE score≥24) was in the frontal lobe. Decreased blood flow in the frontal lobe of AD patients is correlated not only with reduced cognitive function at the time of the evaluation but with rapid progression in the subsequent clinical course. (author)

  5. Quantitative imaging of turbulent and reacting flows

    Energy Technology Data Exchange (ETDEWEB)

    Paul, P.H. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    Quantitative digital imaging, using planar laser light scattering techniques is being developed for the analysis of turbulent and reacting flows. Quantitative image data, implying both a direct relation to flowfield variables as well as sufficient signal and spatial dynamic range, can be readily processed to yield two-dimensional distributions of flowfield scalars and in turn two-dimensional images of gradients and turbulence scales. Much of the development of imaging techniques to date has concentrated on understanding the requisite molecular spectroscopy and collision dynamics to be able to determine how flowfield variable information is encoded into the measured signal. From this standpoint the image is seen as a collection of single point measurements. The present effort aims at realizing necessary improvements in signal and spatial dynamic range, signal-to-noise ratio and spatial resolution in the imaging system as well as developing excitation/detection strategies which provide for a quantitative measure of particular flowfield scalars. The standard camera used for the study is an intensified CCD array operated in a conventional video format. The design of the system was based on detailed modeling of signal and image transfer properties of fast UV imaging lenses, image intensifiers and CCD detector arrays. While this system is suitable for direct scalar imaging, derived quantities (e.g. temperature or velocity images) require an exceptionally wide dynamic range imaging detector. To apply these diagnostics to reacting flows also requires a very fast shuttered camera. The authors have developed and successfully tested a new type of gated low-light level detector. This system relies on fast switching of proximity focused image-diode which is direct fiber-optic coupled to a cooled CCD array. Tests on this new detector show significant improvements in detection limit, dynamic range and spatial resolution as compared to microchannel plate intensified arrays.

  6. Fast Blood Vector Velocity Imaging: Simulations and Preliminary In Vivo Results

    DEFF Research Database (Denmark)

    Udesen, Jesper; Gran, Fredrik; Hansen, Kristoffer Lindskov;

    2007-01-01

    I Background: Conventional ultrasound methods for acquiring color flow images of the blood velocity are limited by a relatively low frame rate and are restricted to only give velocity estimates along the ultrasound beam direction. To circumvent these limitations, we propose a method where the fra...

  7. 脑血流灌注显像、CT以及MRI用于缺血性脑卒诊断结果比较%The Comparison of Cerebral Blood Flow Imaging, CT and MRI in the Diag-nosis of Ischemic Stroke

    Institute of Scientific and Technical Information of China (English)

    李颖

    2016-01-01

    Objective On cerebral blood flow perfusion imaging, CT and MRI in the diagnosis of ischemic stroke results were compared. Methods Convenient selection from July 2013 to March2016 in our hospital accepted treatment of 203 cas-es of ischemic stroke patients were analyzed, in patients after admission of patients of cerebral blood flow perfusion imaging, CT and MRI examination, record and compare the imaging parameters of ischemic stroke in patients with ipsilateral and contralateral, assessment of cerebral blood flow perfusion imaging, CT and MRI in the diagnosis of results. Results Showed cerebral blood flow perfusion imaging, CT and MRI in the diagnosis of image data found: for patients into Diagnosis when cerebral blood flow perfusion imaging detection rate of negative 89.16% and negative MRI detection rate of 88.18% were higher than those of CT 66.01%. brain perfusion SPECT and MRI diagnosis rate had no significant difference. Secondly, cerebral blood flow perfusion imaging detected negative NIHSS score for 0.631. MRI detected negative NIHSS score for 0.470 were lower than CT 2.321. difference was statistically significant, P< 0.05. Conclusion The ischemic stroke patients with cerebral perfusion imaging, CT and MRI diagnosis of node Fruit for comparison, according to the patient's condition to choose the best method of inspection, the clinical value.%目的:对脑血流灌注显像、CT以及MRI应用于缺血性脑卒的诊断结果进行比较。方法方便收集自2013年7月—2016年3月在该院所接受治疗的203例缺血性脑卒中患者进行分析,在患者入院后对患者进行脑血流灌注显像、CT以及MRI的检查,记录和比较缺血性脑卒患者的病灶侧和健侧的显像参数,评估脑血流灌注显像、CT以及MRI的诊断结果。结果观察脑血流灌注显像、CT以及MRI的诊断图像数据发现:①对患者进行诊断时脑血流灌注显像的阴性检出率89.16%,MRI的阴性检出率为88.18%,均高于CT的66

  8. Ozone Therapy on Cerebral Blood Flow: A Preliminary Report

    Directory of Open Access Journals (Sweden)

    Bernardino Clavo

    2004-01-01

    Full Text Available Ozone therapy is currently being used in the treatment of ischemic disorders, but the underlying mechanisms that result in successful treatment are not well known. This study assesses the effect of ozone therapy on the blood flow in the middle cerebral and common carotid arteries. Seven subjects were recruited for the therapy that was performed by transfusing ozone-enriched autologous blood on 3 alternate days over 1 week. Blood flow quantification in the common carotid artery (n = 14 was performed using color Doppler. Systolic and diastolic velocities in the middle cerebral artery (n = 14 were estimated using transcranial Doppler. Ultrasound assessments were conducted at the following three time points: 1 basal (before ozone therapy, 2 after session #3 and 3 1 week after session #3. The common carotid blood flow had increased by 75% in relation to the baseline after session #3 (P < 0.001 and by 29% 1 week later (P = 0.039. In the middle cerebral artery, the systolic velocity had increased by 22% after session #3 (P = 0.001 and by 15% 1 week later (P = 0.035, whereas the diastolic velocity had increased by 33% after session #3 (P < 0.001 and by 18% 1 week later (P = 0.023. This preliminary Doppler study supports the clinical experience of achieving improvement by using ozone therapy in peripheral ischemic syndromes. Its potential use as a complementary treatment in cerebral low perfusion syndromes merits further clinical evaluation.

  9. High quality optical microangiography of ocular microcirculation and measurement of total retinal blood flow in mouse eye

    Science.gov (United States)

    Zhi, Zhongwei; Yin, Xin; Dziennis, Suzan; Alpers, Charles E.; Wang, Ruikang K.

    2013-03-01

    Visualization and measurement of retinal blood flow (RBF) is important to the diagnosis and management of different eye diseases, including diabetic retinopathy. Optical microangiography (OMAG) is developed for generating 3D dynamic microcirculation image and later refined into ultra-high sensitive OMAG (UHS-OMAG) for true capillary vessels imaging. Here, we present the application of OMAG imaging technique for visualization of depth-resolved vascular network within retina and choroid as well as measurement of total retinal blood flow in mice. A fast speed spectral domain OCT imaging system at 820nm with a line scan rate of 140 kHz was developed to image mouse posterior eye. By applying UHS-OMAG scanning protocol and processing algorithm, we achieved true capillary level imaging of retina and choroid vasculature in mouse eye. The vascular pattern within different retinal layers and choroid was presented. An en face Doppler OCT approach [1] without knowing Doppler angle was adopted for the measurement of total retinal blood flow. The axial blood flow velocity is measured in an en face plane by raster scanning and the flow is calculated by integrating over the vessel area of the central retinal artery.

  10. Classification of Unsteady Flow Patterns in a Rotodynamic Blood Pump: Introduction of Non-Dimensional Regime Map.

    Science.gov (United States)

    Shu, Fangjun; Vandenberghe, Stijn; Brackett, Jaclyn; Antaki, James F

    2015-09-01

    Rotodynamic blood pumps (also known as rotary or continuous flow blood pumps) are commonly evaluated in vitro under steady flow conditions. However, when these devices are used clinically as ventricular assist devices (VADs), the flow is pulsatile due to the contribution of the native heart. This study investigated the influence of this unsteady flow upon the internal hemodynamics of a centrifugal blood pump. The flow field within the median axial plane of the flow path was visualized with particle image velocimetry (PIV) using a transparent replica of the Levacor VAD. The replica was inserted in a dynamic cardiovascular simulator that synchronized the image acquisition to the cardiac cycle. As compared to steady flow, pulsatile conditions produced periodic, transient recirculation regions within the impeller and separation in the outlet diffuser. Dimensional analysis revealed that the flow characteristics could be uniquely described by the non-dimensional flow coefficient (Φ) and its time derivative ([Formula: see text]), thereby eliminating impeller speed from the experimental matrix. Four regimes within the Φ-[Formula: see text] plane were found to classify the flow patterns, well-attached or disturbed. These results and methods can be generalized to provide insights for both design and operation of rotodynamic blood pumps for safety and efficacy. PMID:26577357

  11. Occlusion-free Blood Flow Animation with Wall Thickness Visualization.

    Science.gov (United States)

    Lawonn, Kai; Glaßer, Sylvia; Vilanova, Anna; Preim, Bernhard; Isenberg, Tobias

    2016-01-01

    We present the first visualization tool that combines pathlines from blood flow and wall thickness information. Our method uses illustrative techniques to provide occlusion-free visualization of the flow. We thus offer medical researchers an effective visual analysis tool for aneurysm treatment risk assessment. Such aneurysms bear a high risk of rupture and significant treatment-related risks. Therefore, to get a fully informed decision it is essential to both investigate the vessel morphology and the hemodynamic data. Ongoing research emphasizes the importance of analyzing the wall thickness in risk assessment. Our combination of blood flow visualization and wall thickness representation is a significant improvement for the exploration and analysis of aneurysms. As all presented information is spatially intertwined, occlusion problems occur. We solve these occlusion problems by dynamic cutaway surfaces. We combine this approach with a glyph-based blood flow representation and a visual mapping of wall thickness onto the vessel surface. We developed a GPU-based implementation of our visualizations which facilitates wall thickness analysis through real-time rendering and flexible interactive data exploration mechanisms. We designed our techniques in collaboration with domain experts, and we provide details about the evaluation of the technique and tool.

  12. Involvement of calcitonin gene-related peptide in migraine: regional cerebral blood flow and blood flow velocity in migraine patients

    DEFF Research Database (Denmark)

    Lassen, L.H.; Jacobsen, V.B.; Haderslev, P.A.;

    2008-01-01

    g/min) or placebo for 20 min was studied in 12 patients with migraine without aura outside attacks. Xenon-133 inhalation SPECT-determined regional cerebral blood flow (rCBF) and transcranial Doppler (TCD)-determined blood velocity (V-mean) in the middle cerebral artery (MCA), as well as the heart......Calcitonin gene-related peptide (CGRP)-containing nerves are closely associated with cranial blood vessels. CGRP is the most potent vasodilator known in isolated cerebral blood vessels. CGRP can induce migraine attacks, and two selective CGRP receptor antagonists are effective in the treatment...... of migraine attacks. It is therefore important to investigate its mechanism of action in patients with migraine. We here investigate the effects of intravenous human alpha-CGRP (h alpha CGRP) on intracranial hemodynamics. In a double-blind, cross-over study, the effect of intravenous infusion of haCGRP (2 mu...

  13. Intraoperative Vector Flow Imaging of the Heart

    DEFF Research Database (Denmark)

    Hansen, Kristoffer Lindskov; Møller-Sørensen, Hasse; Pedersen, Mads Møller;

    2013-01-01

    patients. Antegrade central jet and retrograde flow near the vessel wall in the ascending aorta and the pulmonary artery were seen during systole, while stable vortices were seen in the aortic sinuses and complex flow patterns were seen around the valves during diastole. In the right atrium, a stable......The cardiac flow is complex and multidirectional, and difficult to measure with conventional Doppler ultrasound (US) methods due to the one-dimensional and angle-dependent velocity estimation. The vector velocity method Transverse Oscillation (TO) has been proposed as a solution to this....... TO is implemented on a conventional US scanner (Pro Focus 2202 UltraView, BK Medical) using a linear transducer (8670, BK Medical) and can provide real-time, angle-independent vector velocity estimates of the cardiac blood flow. During cardiac surgery, epicardiac US examinations using TO were performed on three...

  14. Margination of leukocytes in blood flow through small tubes.

    Science.gov (United States)

    Goldsmith, H L; Spain, S

    1984-03-01

    Leukocyte margination in the vessels of the microcirculation has been attributed to a flow-dependent interaction with red cells. To determine the extent of this effect, experiments with human blood were done in 100- to 180-micron tubes to detect changes in cell distribution as a function of hematocrit and flow rate. Using a flow visualization technique, the leukocyte concentration distribution was determined in 45% ghost cell suspensions. Migration of cells toward the wall was observed at centerline velocities greater than 1 mm sec-1 and increased with increasing flow rate. The effect was probably due to a more rapid inward migration of ghosts than leukocytes because of fluid inertia and cell density differences. Experiments were therefore carried out in whole blood at hematocrits from 20 to 60%, measuring the number concentration of leukocytes and erythrocytes within the tube, nt, and comparing it to that in the infusing reservoir, no, (Fahraeus effect). At mean tube shear rates G less than 100 sec-1, nt/no less than 1 for both leukocytes and erythrocytes showing net migration of cells away from the wall, although at nearly all hematocrits there was an enrichment of leukocytes relative to erythrocytes in the tubes. At G less than 50 sec-1, nt/no remained less than 1 for erythrocytes but increased to greater than 1 for leukocytes showing migration toward the wall, the increase being greatest at 20% hematocrit in the 100-micron tubes. The nature of the effect was revealed by cine films which showed that, as the flow rate decreased, erythrocytes formed rouleaux which migrated inward creating a core and displacing leukocytes to the periphery. In control experiments using washed blood cells in phosphate buffer-albumin, nt/no less than 1 for both leukocytes and erythrocytes at all G and hematocrits, and leukocytes were now distributed. Cine films of washed blood confirmed that, in the absence of rouleaux, no significant inward migration of erythrocytes occurred. PMID

  15. Anisodamine augments mucosal blood flow during gut ischemia/reperfusion

    Institute of Scientific and Technical Information of China (English)

    Hu Sen; Sheng Zhiyong

    2002-01-01

    Objective: To determine if anisodamine is able to augment mucosal perfusion during gut ischemia-reperfusion (I/R). Methods: A jejunal sac was formed in Sprague Dawley rat. A Laser Doppler probe and a tonometer were inserted into the sac which was filled with saline. The superior mesenteric artery was occluded (SMAO) for 60minutes followed by 90 minutes of reperfusion. At the end of 60 minutes of SMAO, either 0.2mg/kg of anisodmine or dobutamine was injected into the jejunal sac. Laser Doppler mucosal blood flow and regional PCO2 (PrCO2) measurements were made. Results: Mucosal blood flow was significantly increased at 30,60 and 90 minutes of reperfusion (R30, R60, R90 ) when intraluminal anisodamine or dobutamine was introduced compared to intraluminal saline only (44±3.3)% or (48±4.1)% vs. (37±2.6) % at R30, (57±5.0)% or (56±4.7)% vs. (45±2.7)% at R60, (64±3.3) % or (56 ± 4.2) % vs. (48 ± 3.4) % at R90 , respectively P<0.05). Blood flow changes were also reflected by lowering of jejunal PrCO2 measurements after intraluminal anisodamine or dobutamine compared with that of the saline controls (41±3. 1)mmHg or (44±3.0)mmHg vs. (49±3.7) mmHg at R30 , (38±3.7)mmHg or (40±2. 1)mmHg vs. (47±3.8) mmHgat R60, (34±2.1) mmHg or (39± 3.0) mmHg vs. (46±3.4) mmHg at R90, respectively,P<0. 05). The most interesting finding was that there were significantly higher mucosal blood flow and lower jejunal PrCO2 in anisodamine group than those in dobutamine group at 90 minutes of reperfusion (64± 3.3) %vs. (56±4.2)% for blood flow or (34 ± 2.1)mmHg vs. (39 ± 3.0)mmHg for PrCO2, respectively, P<0.05),suggesting that anisodamine had more lasting effect on mucosal perfusion than dobutamine. Conclusions:Intraluminal anisodamine can augment mucosal blood flow during gut I/R, and it may provide the protective effect on gut from ischemia and reperfusion injury.

  16. Laser speckle contrast imaging of skin blood perfusion responses induced by laser coagulation

    Energy Technology Data Exchange (ETDEWEB)

    Ogami, M; Kulkarni, R; Wang, H; Reif, R; Wang, R K [University of Washington, Department of Bioengineering, Seattle, Washington 98195 (United States)

    2014-08-31

    We report application of laser speckle contrast imaging (LSCI), i.e., a fast imaging technique utilising backscattered light to distinguish such moving objects as red blood cells from such stationary objects as surrounding tissue, to localise skin injury. This imaging technique provides detailed information about the acute perfusion response after a blood vessel is occluded. In this study, a mouse ear model is used and pulsed laser coagulation serves as the method of occlusion. We have found that the downstream blood vessels lacked blood flow due to occlusion at the target site immediately after injury. Relative flow changes in nearby collaterals and anastomotic vessels have been approximated based on differences in intensity in the nearby collaterals and anastomoses. We have also estimated the density of the affected downstream vessels. Laser speckle contrast imaging is shown to be used for highresolution and fast-speed imaging for the skin microvasculature. It also allows direct visualisation of the blood perfusion response to injury, which may provide novel insights to the field of cutaneous wound healing. (laser biophotonics)

  17. Laser speckle contrast imaging of skin blood perfusion responses induced by laser coagulation

    Science.gov (United States)

    Ogami, M.; Kulkarni, R.; Wang, H.; Reif, R.; Wang, R. K.

    2014-08-01

    We report application of laser speckle contrast imaging (LSCI), i.e., a fast imaging technique utilising backscattered light to distinguish such moving objects as red blood cells from such stationary objects as surrounding tissue, to localise skin injury. This imaging technique provides detailed information about the acute perfusion response after a blood vessel is occluded. In this study, a mouse ear model is used and pulsed laser coagulation serves as the method of occlusion. We have found that the downstream blood vessels lacked blood flow due to occlusion at the target site immediately after injury. Relative flow changes in nearby collaterals and anastomotic vessels have been approximated based on differences in intensity in the nearby collaterals and anastomoses. We have also estimated the density of the affected downstream vessels. Laser speckle contrast imaging is shown to be used for highresolution and fast-speed imaging for the skin microvasculature. It also allows direct visualisation of the blood perfusion response to injury, which may provide novel insights to the field of cutaneous wound healing.

  18. Automated blood vessel extraction using local features on retinal images

    Science.gov (United States)

    Hatanaka, Yuji; Samo, Kazuki; Tajima, Mikiya; Ogohara, Kazunori; Muramatsu, Chisako; Okumura, Susumu; Fujita, Hiroshi

    2016-03-01

    An automated blood vessel extraction using high-order local autocorrelation (HLAC) on retinal images is presented. Although many blood vessel extraction methods based on contrast have been proposed, a technique based on the relation of neighbor pixels has not been published. HLAC features are shift-invariant; therefore, we applied HLAC features to retinal images. However, HLAC features are weak to turned image, thus a method was improved by the addition of HLAC features to a polar transformed image. The blood vessels were classified using an artificial neural network (ANN) with HLAC features using 105 mask patterns as input. To improve performance, the second ANN (ANN2) was constructed by using the green component of the color retinal image and the four output values of ANN, Gabor filter, double-ring filter and black-top-hat transformation. The retinal images used in this study were obtained from the "Digital Retinal Images for Vessel Extraction" (DRIVE) database. The ANN using HLAC output apparent white values in the blood vessel regions and could also extract blood vessels with low contrast. The outputs were evaluated using the area under the curve (AUC) based on receiver operating characteristics (ROC) analysis. The AUC of ANN2 was 0.960 as a result of our study. The result can be used for the quantitative analysis of the blood vessels.

  19. White blood cell count - series (image)

    Science.gov (United States)

    ... the hand. The puncture site is cleaned with antiseptic, and a tourniquet (an elastic band) or blood ... or young child: The area is cleansed with antiseptic and punctured with a sharp needle or a ...

  20. Quantification of complex blood flow using real-time in vivo vector flow ultrasound

    DEFF Research Database (Denmark)

    Pedersen, Mads Møller; Pihl, Michael Johannes; Haugaard, Per;

    2010-01-01

    A quantitative method for distinguishing complex from non-complex flow patterns in ultrasound is presented. A new commercial BK Medical ultrasound scanner uses the Transverse Oscillation vector flow technique for visualising flow patterns in real-time. In vivo vector flow data of the blood flow...... ultrasound. From the same data the mean standard deviation of the flow angles (MSTDA) were calculated and compared to the expert evaluations. Comparison between the combined experts evaluations and the MSTDA was performed. Using linear regression analysis, a correlation coefficient of 0.925 was found....... The upper and lower bounds for a 95% confidence interval of 0.974 and 0.792 respectively, were calculated. The MSTDA was below 25 for the common carotid artery and above 25 for the carotid bulb. Thus, the MSTDA value can distinguishing complex flow from non-complex flow and can be used as the basis...

  1. Study on the diagnostic value of 99Tcm-MIBI dynamic blood flow perfusion imaging and double-phase radionuclide imaging in benign and malignant cold thyroid nodules%99Tcm-MIBI动态血流灌注显像和双时相核素显像对甲状腺冷结节良恶性的诊断价值研究

    Institute of Scientific and Technical Information of China (English)

    胡旻; 刘雅洁; 许小飞; 盛丹丹; 王颖

    2010-01-01

    Objective To study the value of 99Tcm-MIBI dynamic blood flow perfusion imaging and double-phase radionuclide imaging in benign and malignant cold thyroid nodules. Methods Retrospective analysis of surgical treatment of cold thyroid nodules of 28 patients. Use dual-head SPECT with low energy and high resolution collimator to get dynamic 9Tcm-MIBI blood flow perfusion imaging, 30 min early-phase and 120 min delayed-phase static planar imaging. The images are comprehensive analysed by T/NT and other methods. Results Nine cases of thyroid cancer in the dynamic blood flow perfusion, 30 min early-phase and 120 min delayed-phase static planar imaging, contain positive imaging 5, 6 and 7 cases respectively. 19 cases of benign lesions contain negative imaging 14, 11 and 16 cases respectively. Sensitivity of 99Tcm-MIBI dynamic perfusion imaging in the diagnosis of thyroid cancer is 55.56%, specificity is 73.68%, accuracy is 67.85%. Sensitivity of 30 min early-phase static planar in the diagnosis of thyroid cancer is 66.67%, specificity is 57.89%, accuracy is 67.85%. Sensitivity of 120 min delayed-phase static planar imaging in the diagnosis of thyroid cancer is 77.78%, specificity is 84.21%, accuracy is 82.14%. Conclusions 99Tcm-MIBI dual-phase imaging in the diagnosis and differential diagnosis of cold thyroid nodules has some value,comprehensive analysis of the blood perfusion and the T/NT of 99Tcm-MIBI dual-phase imaging can reduce the occurrence of false positive and false negative cases.%目的 探讨99Tcm-MIBI动态血流灌注显像和双时相显像对甲状腺冷结节良恶性的诊断价值.方法 回顾性分析甲状腺冷结节行手术治疗的患者28例,所有患者使用配备低能高分辨准直器的SPECT仪行99Tcm-MIBI动态血流灌注、30 min早期相及120 min延迟相静态平面显像,并用T/NT值等综合分析显像结果.结果 9例甲状腺癌患者在动态血流灌注、30 min早期相和120 min延迟相显像中阳性数分别为5例、6

  2. Case with stenosis of internal carotid artery detected as a region of decreased blood flow by Tc-99m HMPAO cerebral blood flow scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Hayashida, K.; Nishimura, T.; Uehara, T.; Imakita, S.; Yokota, I.; Ogura, H.; Oka, H.; Hayashi, M.; Kikuchi, H.

    1987-04-01

    Tc-99m hexamethylpropyleneamine oxime (= HMPAO) is expected to be an excellent agent as blood flow tracer of brain because it passes through blood brain barrier and is retained in brain parenchyma for several hours. Tc-99m HMPAO scintigraphy was applied to a patient complaining of transient ischemic attack without neurological findings. Left hemispheric hypoperfusion was detected by Tc-99m HMPAO cerebral blood flow scintigraphy. Although it was normal in CT and MRI, it was proved to be a 99 % stenosis of left internal carotid artery by digital subtraction angiography. Tc-99m HMPAO cerebral blood flow scintigraphy is useful for detecting abnormality of cerebral blood flow.

  3. Methods for measurement of cerebral blood flow in man

    DEFF Research Database (Denmark)

    Lassen, N A

    1976-01-01

    A survey of the currently available methods for the measurement of cerebral blood flow in man is given. Many of the clinically important brain diseases such as tumors, stroke, brain trauma or epilepsy entail focal or regional flow alterations. Therefore a special emphasis is placed on methods...... information both on spatial localization and, especially, on ischemic areas. The most promising is computer-assisted axial tomography with freely diffusible radioactive isotopes or with x-rays using an intra-arterial injection of contrast. But, the available techniques are still too slow: in order to measure...

  4. Occlusion cuff for routine measurement of digital blood pressure and blood flow

    DEFF Research Database (Denmark)

    Lassen, N A; Krähenbühl, B; Hirai, M

    1977-01-01

    A miniaturized blood pressure cuff made of plastic material and applicable to fingers and toes is described. The cuff was compared to rubber cuffs and to bladder-free cuffs. It was found to be more reliable than the former type and much easier to use than the latter type. It is recommended for us...... in conjunction with a mercury-in-Silastic strain gauge for routine measurement of digital blood pressure and blood flow in patients with arterial disease.......A miniaturized blood pressure cuff made of plastic material and applicable to fingers and toes is described. The cuff was compared to rubber cuffs and to bladder-free cuffs. It was found to be more reliable than the former type and much easier to use than the latter type. It is recommended for use...

  5. Subcutaneous blood flow in early male pattern baldness

    International Nuclear Information System (INIS)

    The subcutaneous blood flow (SBF) was measured by the 133Xe washout method in the scalp of 14 patients with early male pattern baldness. Control experiments were performed in 14 normal haired men matched for age. The SBF in the scalp of the normal individuals was about 10 times higher than previously reported SBF values in other anatomical regions. In patients with early male pattern baldness, SBF was 2.6 times lower than the values found in the normal individuals (13.7 +/- 9.6 vs 35.7 +/- 10.5 ml/100 g/min-1). This difference was statistically significant (p much less than 0.001). A reduced nutritive blood flow to the hair follicles might be a significant event in the pathogenesis of early male pattern baldness

  6. Clitoral blood flow increases following vaginal pressure stimulation.

    Science.gov (United States)

    Lavoisier, P; Aloui, R; Schmidt, M H; Watrelot, A

    1995-02-01

    The vascular responses of clitoral arteries to vaginal pressure stimulation in 10 volunteer women were evaluated by Doppler ultrasonography. Pressure stimulations (20-160 mm Hg) along the lower third of the vagina increased blood velocity and flow into clitoral arteries in 9 of the 10 women. The latency and duration of the Doppler responses ranged from 0.1 to 1.6 sec and from 3.2 to 9.5 sec, respectively, and the response was associated with a blood flow increase of 4 to 11 times the baseline prestimulation level. This response parallels that recorded in the cavernous arteries in men when a similar range of pressure stimulations are applied to the glans penis. Similar responses evoked in the male and female suggest a sexual synergy that may occur during intercourse in that such physiological responses and reflexes may be reciprocally reinforced.

  7. Pressure Gradient Estimation Based on Ultrasonic Blood Flow Measurement

    Science.gov (United States)

    Nitta, Naotaka; Homma, Kazuhiro; Shiina, Tsuyoshi

    2006-05-01

    Mechanical load to the blood vessel wall, such as shear stress and pressure, which occurs in blood flow dynamics, contribute greatly to plaque rupture in arteriosclerosis and to biochemical activation of endothelial cells. Therefore, noninvasive estimations of these mechanical loads are able to provide useful information for the prevention of vascular diseases. Although the pressure is the dominant component of mechanical load, for practical purposes, the pressure gradient is also often important. So far, we have investigated the estimation of the kinematic viscosity coefficient using a combination of the Navier-Stokes equations and ultrasonic velocity measurement. In this paper, a method for pressure gradient estimation using the estimated kinematic viscosity coefficient is proposed. The validity of the proposed method was investigated on the basis of the analysis with the data obtained by computer simulation and a flow phantom experiment. These results revealed that the proposed method can provide a valid estimation of the pressure gradient.

  8. Subcutaneous blood flow in early male pattern baldness

    Energy Technology Data Exchange (ETDEWEB)

    Klemp, P.; Peters, K.; Hansted, B.

    1989-05-01

    The subcutaneous blood flow (SBF) was measured by the /sup 133/Xe washout method in the scalp of 14 patients with early male pattern baldness. Control experiments were performed in 14 normal haired men matched for age. The SBF in the scalp of the normal individuals was about 10 times higher than previously reported SBF values in other anatomical regions. In patients with early male pattern baldness, SBF was 2.6 times lower than the values found in the normal individuals (13.7 +/- 9.6 vs 35.7 +/- 10.5 ml/100 g/min-1). This difference was statistically significant (p much less than 0.001). A reduced nutritive blood flow to the hair follicles might be a significant event in the pathogenesis of early male pattern baldness.

  9. Cerebral autoregulation control of blood flow in the brain

    CERN Document Server

    Payne, Stephen

    2016-01-01

    This Brief provides a comprehensive introduction to the control of blood flow in the brain. Beginning with the basic physiology of autoregulation, the author goes on to discuss measurement techniques, mathematical models, methods of analysis, and relevant clinical conditions, all within this single volume. The author draws together this disparate field, and lays the groundwork for future research directions. The text gives an up-to-date review of the state of the art in cerebral autoregulation, which is particularly relevant as cerebral autoregulation moves from the laboratory to the bedside. Cerebral Autoregulation will be useful to researchers in the physical sciences such as mathematical biology, medical physics, and biomedical engineering whose work is concerned with the brain. Researchers in the medical sciences and clinicians dealing with the brain and blood flow, as well as industry professionals developing techniques such as ultrasound, MRI, and CT will also find this Brief of interest.

  10. Regulation of the skeletal muscle blood flow in humans

    DEFF Research Database (Denmark)

    Mortensen, Stefan; Saltin, Bengt

    2014-01-01

    In humans, skeletal muscle blood flow is regulated by an interaction between several locally formed vasodilators including nitric oxide (NO) and prostaglandins. In plasma, ATP is a potent vasodilator that stimulates the formation of NO and prostaglandins and very importantly can offset local...... sympathetic vasoconstriction. ATP is released into plasma from erythrocytes and endothelial cells and the plasma concentration increases in both the feeding artery and the vein draining the contracting skeletal muscle. Adenosine also stimulates the formation of NO and prostaglandins, but the plasma adenosine...... concentration does not increase during exercise. In the skeletal muscle interstitium, there is a marked increase in the concentration of ATP and adenosine and this increase is tightly coupled to the increase in blood flow. The sources of interstitial ATP and adenosine are thought to be skeletal muscle cells...

  11. Pulmonary blood flow distribution measured by radionuclide computed tomography

    International Nuclear Information System (INIS)

    Distributions of pulmonary blood flow per unit lung volume were measured in sitting patients with a radionuclide computed tomography (RCT) by intravenously administered Tc-99m macroaggregates of human serum albumin (MAA). Four different types of distribution were distinguished, among which a group referred as type 2 had a three zonal blood flow distribution as previously reported (West and co-workers, 1964). The pulmonary arterial pressure (Pa) and the venous pressure (Pv) were determined in this group of distribution. These values showed satifactory agreements with the pulmonary artery pressure (Par) and the capillary wedged pressure (Pcw) measured by Swan-Ganz catheter in eighteen supine patients. Those good correlations enable to establish a noninvasive methodology for measurement of pulmonary vascular pressures

  12. An Ultrasound Simulation Model for the Pulsatile Blood Flow Modulated by the Motion of Stenosed Vessel Wall.

    Science.gov (United States)

    Zhang, Qinghui; Zhang, Yufeng; Zhou, Yi; Zhang, Kun; Zhang, Kexin; Gao, Lian

    2016-01-01

    This paper presents an ultrasound simulation model for pulsatile blood flow, modulated by the motion of a stenosed vessel wall. It aims at generating more realistic ultrasonic signals to provide an environment for evaluating ultrasound signal processing and imaging and a framework for investigating the behaviors of blood flow field modulated by wall motion. This model takes into account fluid-structure interaction, blood pulsatility, stenosis of the vessel, and arterial wall movement caused by surrounding tissue's motion. The axial and radial velocity distributions of blood and the displacement of vessel wall are calculated by solving coupled Navier-Stokes and wall equations. With these obtained values, we made several different phantoms by treating blood and the vessel wall as a group of point scatterers. Then, ultrasound echoed signals from oscillating wall and blood in the axisymmetric stenotic-carotid arteries were computed by ultrasound simulation software, Field II. The results show better consistency with corresponding theoretical values and clinical data and reflect the influence of wall movement on the flow field. It can serve as an effective tool not only for investigating the behavior of blood flow field modulated by wall motion but also for quantitative or qualitative evaluation of new ultrasound imaging technology and estimation method of blood velocity. PMID:27478840

  13. Applications of Imaging Flow Cytometry for Microalgae.

    Science.gov (United States)

    Hildebrand, Mark; Davis, Aubrey; Abbriano, Raffaela; Pugsley, Haley R; Traller, Jesse C; Smith, Sarah R; Shrestha, Roshan P; Cook, Orna; Sánchez-Alvarez, Eva L; Manandhar-Shrestha, Kalpana; Alderete, Benjamin

    2016-01-01

    The ability to image large numbers of cells at high resolution enhances flow cytometric analysis of cells and cell populations. In particular, the ability to image intracellular features adds a unique aspect to analyses, and can enable correlation between molecular phenomena resulting in alterations in cellular phenotype. Unicellular microalgae are amenable to high-throughput analysis to capture the diversity of cell types in natural samples, or diverse cellular responses in clonal populations, especially using imaging cytometry. Using examples from our laboratory, we review applications of imaging cytometry, specifically using an Amnis(®) ImageStream(®)X instrument, to characterize photosynthetic microalgae. Some of these examples highlight advantages of imaging flow cytometry for certain research objectives, but we also include examples that would not necessarily require imaging and could be performed on a conventional cytometer to demonstrate other concepts in cytometric evaluation of microalgae. We demonstrate the value of these approaches for (1) analysis of populations, (2) documentation of cellular features, and (3) analysis of gene expression.

  14. Myocardial blood flow and metabolism in left ventricular ischemic dysfunction

    OpenAIRE

    Vanoverschelde, Jean-Louis

    1995-01-01

    Due to its inherent truly quantitative capabilities, its noninvasive nature and its nondestructive characteristics, PET has emerged as a unique investigative tool for the assessment and quantification of myocardial blood flow and metabolism in man. The present thesis reviews some of the insights gained with the use of PET into the pathophysiology of regional left ventricular ischemic dysfunction. Chapters 1 and 2 dealt with definitions and specific issues pertinent to the pathophysiologic...

  15. Estimation of cerebral blood flow during cardiopulmonary resuscitation in humans

    DEFF Research Database (Denmark)

    Christensen, S F; Stadeager, Carsten Preben; Siemkowicz, E

    1990-01-01

    Cerebral blood flow (CBF) and cardiac output (CO) were measured during cardiopulmonary resuscitation in patients who were unsuccessfully resuscitated by use of C14-iodoantipyrine injected into the left ventricle. CO varied between 1.3 and 2.2 l/min with mean 1.8 +/- 0.6 l/min (+/- SD) (28 ml...... resuscitation showed signs of maldistribution suggestive of a patchy and incomplete perfusion....

  16. Determination of cerebral blood flow with the EMI CT scanner

    International Nuclear Information System (INIS)

    Cerebral blood flow (CBF) determinations were made in seven baboons and two patients with the EMI CT dedicated head scanner. The method for determining the CBF was tested and measurements were made during physiological states elicited by changes in pCO2 and depth of anaesthesia. The method has a number of advantages, particularly for assessing CBF responses to pCO2 changes. (author)

  17. Flow of red blood cells in capillary networks

    OpenAIRE

    Couto, Ana; Teixeira, Lúcia; Leble, Vladimir; Lima, R.; Ribeiro, António E.; Dias, Ricardo

    2011-01-01

    In the present work we have studied the flow of red blood cells through a column packed with soda lime glass spheres with diameter of 337.5 micron (pore diameter 150 micron). The ratio between the average velocity of the RBCs and the average velocity of the carrying fluid (physiological saline) was close to 0.9. The RBCs migrated faster through the column than the carrying fluid mainly due to a hydrodynamic chromatographic effect.

  18. CEREBRAL BLOOD FLOW AND METABOLISM IN ANXIETY AND ANXIETY DISORDERS

    OpenAIRE

    Mathew, Roy J.

    1994-01-01

    Anxiety disorders are some of the commonest psychiatric disorders and anxiety commonly co-exists with other psychiatric conditions. Anxiety can also be a normal emotion. Thus, study of the neurobiological effects of anxiety is of considerable significance. In the normal brain, cerebral blood flow (CBF) and metabolism (CMR) serve as indices of brain function. CBF/CMR research is expected to provide new insight into alterations in brain function in anxiety disorders and other psychiatric disord...

  19. Modeling study of terminal transients of blood flow

    Science.gov (United States)

    Stiukhina, Elena S.; Postnov, Dmitry E.

    2016-04-01

    In spite of growing body of experimental and theoretical results on blood flow (BF) patterns under the continuously sustained circulation, much less is known about BF dynamics under the exceptional, but still important cases of venous or arterial occlusion used in medical probes. Since these conditions finally lead to complete or nearly complete stop of red blood cells (RBC) motion, we term it as TTBF, being the Terminal Transients of Blood Flow. An extreme case of such transients is the ultimate extinction of BF after the stopping of heart contractions, during which it is governed by gravitation, some vascular-originated propulsion mechanisms, and, possibly, by RBC aggregation. Quite little is known about this process, while reports the detectable post-mortal motion of mice RBC during at least 2 hours. In our work we present the modeling study of TTBF patterns due to gravitational forces. We present the minimalistic model configuration of vasculature in order to simulate what happens immediately after the pumping of blood has been stopped. Our main findings are concerned to reversal of arterial BF, as well as to duration and non-monotonicity of transients.

  20. Unsteady magnetohydrodynamic blood flow through irregular multi-stenosed arteries.

    Science.gov (United States)

    Mustapha, Norzieha; Amin, Norsarahaida; Chakravarty, Santabrata; Mandal, Prashanta Kumar

    2009-10-01

    Flow of an electrically conducting fluid characterizing blood through the arteries having irregular shaped multi-stenoses in the environment of a uniform transverse magnetic-field is analysed. The flow is considered to be axisymmetric with an outline of the irregular stenoses obtained from a three-dimensional casting of a mild stenosed artery, so that the physical problem becomes more realistic from the physiological point of view. The marker and cell (MAC) and successive-over-relaxation (SOR) methods are respectively used to solve the governing unsteady magnetohydrodynamic (MHD) equations and pressure-Poisson equation quantitatively and to observe the flow separation. The results obtained show that the flow separates mostly towards the downstream of the multi-stenoses. However, the flow separation region keeps on shrinking with the increasing intensity of the magnetic-field which completely disappears with sufficiently large value of the Hartmann number. The present observations certainly have some clinical implications relating to magnetotherapy which help reducing the complex flow separation zones causing flow disorder leading to the formation and progression of the arterial diseases.

  1. Unsteady magnetohydrodynamic blood flow through irregular multi-stenosed arteries.

    Science.gov (United States)

    Mustapha, Norzieha; Amin, Norsarahaida; Chakravarty, Santabrata; Mandal, Prashanta Kumar

    2009-10-01

    Flow of an electrically conducting fluid characterizing blood through the arteries having irregular shaped multi-stenoses in the environment of a uniform transverse magnetic-field is analysed. The flow is considered to be axisymmetric with an outline of the irregular stenoses obtained from a three-dimensional casting of a mild stenosed artery, so that the physical problem becomes more realistic from the physiological point of view. The marker and cell (MAC) and successive-over-relaxation (SOR) methods are respectively used to solve the governing unsteady magnetohydrodynamic (MHD) equations and pressure-Poisson equation quantitatively and to observe the flow separation. The results obtained show that the flow separates mostly towards the downstream of the multi-stenoses. However, the flow separation region keeps on shrinking with the increasing intensity of the magnetic-field which completely disappears with sufficiently large value of the Hartmann number. The present observations certainly have some clinical implications relating to magnetotherapy which help reducing the complex flow separation zones causing flow disorder leading to the formation and progression of the arterial diseases. PMID:19665698

  2. Cerebral blood flow is reduced in patients with sepsis syndrome

    International Nuclear Information System (INIS)

    The relationship between sepsis-induced CNS dysfunction and changes in brain blood flow remains unknown, and animal studies examining the influence of sepsis on cerebral blood flow (CBF) do not satisfactorily address that relationship. We measured CBF and cerebrovascular reactivity to CO2 in nine patients with sepsis syndrome using the 133Xe clearance technique. Mean CBF was 29.6 +/- 15.8 (SD) ml/100 g.min, significantly lower than the normal age-matched value in this laboratory of 44.9 +/- 6.2 ml/100 g.min (p less than .02). This depression did not correlate with changes in mean arterial pressure. Despite the reduction in CBF, the specific reactivity of the cerebral vasculature to changes in CO2 was normal, 1.3 +/- 0.9 ml/100 g.min/mm Hg. Brain blood flow is reduced in septic humans; the contribution of this reduction to the metabolic and functional changes observed in sepsis requires further study

  3. Cerebral blood flow is reduced in patients with sepsis syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Bowton, D.L.; Bertels, N.H.; Prough, D.S.; Stump, D.A.

    1989-05-01

    The relationship between sepsis-induced CNS dysfunction and changes in brain blood flow remains unknown, and animal studies examining the influence of sepsis on cerebral blood flow (CBF) do not satisfactorily address that relationship. We measured CBF and cerebrovascular reactivity to CO/sub 2/ in nine patients with sepsis syndrome using the /sup 133/Xe clearance technique. Mean CBF was 29.6 +/- 15.8 (SD) ml/100 g.min, significantly lower than the normal age-matched value in this laboratory of 44.9 +/- 6.2 ml/100 g.min (p less than .02). This depression did not correlate with changes in mean arterial pressure. Despite the reduction in CBF, the specific reactivity of the cerebral vasculature to changes in CO/sub 2/ was normal, 1.3 +/- 0.9 ml/100 g.min/mm Hg. Brain blood flow is reduced in septic humans; the contribution of this reduction to the metabolic and functional changes observed in sepsis requires further study.

  4. Predicting Endometrium Receptivity with Parameters of Spiral Artery Blood Flow

    Institute of Scientific and Technical Information of China (English)

    GONG Xuehao; LI Quanshui; ZHANG Qingping; ZHU Guijin

    2005-01-01

    Summary: In order To evaluate whether the parameters of spiral artery blood flow, as measured by transvaginal color Doppler, may be used to assess endometrium receptivity prior to embryo transfer (ET), a retrospective study of 94 infertile women who had undergone ART treatments with different outcomes (pregnant or nonpregnant) was done. Subendometrial blood flow was evaluated. The resistance index (RI), systolic/diastolic ratio (S/D) and pulsatility index (PI) were significantly lower in those who achieved pregnancy as compared with those who did not: 0.62±0.04 vs 0.68±0.04 (P<0.001), 2.66±0.33 vs 3.19±0.39 (P<0.01) and 1.15±0.17 vs 1.34±0.22 (P<0.05), respectively. Furthermore, when RI>0.72, PI>1.6, and S/D>3.6, no pregnancy occurred. These data suggest that the parameters of spiral artery blood flow could be used as a new assay in predicting endometrial receptivity before ET.

  5. Regional cerebral blood flow studied by gamma camera and gamma tomography

    International Nuclear Information System (INIS)

    The conventional multi-detector systems used for studying regional cerebral blood flow, rCBF, are stationary, usually viewing the hemispheres laterally. A 2-dimensional brain image is obtained. The intrinsic limitation of this approach in recording flow in a complex 3-dimensional structure such as the brain is obvious. This difficulty can be circumvented by applying a tomographic approach to the detection of the emission of radioisotopes. Current development in this field will be outlined with special regard to the dynamic single photon emission tomograph we have developed specifically for the purpose of measuring rCBF. (orig./VJ)

  6. SPECT Myocardial Blood Flow Quantitation Concludes Equivocal Myocardial Perfusion SPECT Studies to Increase Diagnostic Benefits.

    Science.gov (United States)

    Chen, Lung-Ching; Lin, Chih-Yuan; Chen, Ing-Jou; Ku, Chi-Tai; Chen, Yen-Kung; Hsu, Bailing

    2016-01-01

    Recently, myocardial blood flow quantitation with dynamic SPECT/CT has been reported to enhance the detection of coronary artery disease in human. This advance has created important clinical applications to coronary artery disease diagnosis and management for areas where myocardial perfusion PET tracers are not available. We present 2 clinical cases that undergone a combined test of 1-day rest/dipyridamole-stress dynamic SPECT and ECG-gated myocardial perfusion SPECT scans using an integrated imaging protocol and demonstrate that flow parameters are capable to conclude equivocal myocardial perfusion SPECT studies, therefore increasing diagnostic benefits to add value in making clinical decisions.

  7. SPECT Myocardial Blood Flow Quantitation Concludes Equivocal Myocardial Perfusion SPECT Studies to Increase Diagnostic Benefits.

    Science.gov (United States)

    Chen, Lung-Ching; Lin, Chih-Yuan; Chen, Ing-Jou; Ku, Chi-Tai; Chen, Yen-Kung; Hsu, Bailing

    2016-01-01

    Recently, myocardial blood flow quantitation with dynamic SPECT/CT has been reported to enhance the detection of coronary artery disease in human. This advance has created important clinical applications to coronary artery disease diagnosis and management for areas where myocardial perfusion PET tracers are not available. We present 2 clinical cases that undergone a combined test of 1-day rest/dipyridamole-stress dynamic SPECT and ECG-gated myocardial perfusion SPECT scans using an integrated imaging protocol and demonstrate that flow parameters are capable to conclude equivocal myocardial perfusion SPECT studies, therefore increasing diagnostic benefits to add value in making clinical decisions. PMID:26053731

  8. The Effect of Pulsatile Versus Nonpulsatile Blood Flow on Viscoelasticity and Red Blood Cell Aggregation in Extracorporeal Circulation

    OpenAIRE

    Ahn, Chi Bum; Kang, Yang Jun; Kim, Myoung Gon; Yang, Sung; Lim, Choon Hak; Son, Ho Sung; Kim, Ji Sung; Lee, So Young; Son, Kuk Hui; Sun, Kyung

    2016-01-01

    Background Extracorporeal circulation (ECC) can induce alterations in blood viscoelasticity and cause red blood cell (RBC) aggregation. In this study, the authors evaluated the effects of pump flow pulsatility on blood viscoelasticity and RBC aggregation. Methods Mongrel dogs were randomly assigned to two groups: a nonpulsatile pump group (n=6) or a pulsatile pump group (n=6). After ECC was started at a pump flow rate of 80 mL/kg/min, cardiac fibrillation was induced. Blood sampling was perfo...

  9. An analytical phantom for the evaluation of medical flow imaging algorithms

    International Nuclear Information System (INIS)

    Blood flow characteristics (e.g. velocity, pressure, shear stress, streamline and volumetric flow rate) are effective tools in diagnosis of cardiovascular diseases such as atherosclerotic plaque, aneurism and cardiac muscle failure. Noninvasive estimation of cardiovascular blood flow characteristics is mostly limited to the measurement of velocity components by medical imaging modalities. Once the velocity field is obtained from the images, other flow characteristics within the cardiovascular system can be determined using algorithms relating them to the velocity components. In this work, we propose an analytical flow phantom to evaluate these algorithms accurately. The Navier-Stokes equations are used to derive this flow phantom. The exact solution of these equations obtains analytical expression for the flow characteristics inside the domain. Features such as pulsatility, incompressibility and viscosity of flow are included in a three-dimensional domain. The velocity domain of the resulted system is presented as reference images. These images could be employed to evaluate the performance of different flow characteristic algorithms. In this study, we also present some applications of the obtained phantom. The calculation of pressure domain from velocity data, volumetric flow rate, wall shear stress and particle trace are the characteristics whose algorithms are evaluated here. We also present the application of this phantom in the analysis of noisy and low-resolution images. The presented phantom can be considered as a benchmark test to compare the accuracy of different flow characteristic algorithms.

  10. Effects of blood flow control on clinical outcomes after ethanolamine oleate sclerotherapy for vascular malformations

    International Nuclear Information System (INIS)

    The purpose of this study was to assess the control of nidus blood flow and the association between such control and clinical outcomes after ethanolamine oleate (EO) sclerotherapy for vascular malformations. Morphological grades on magnetic resonance (MR) images (grades 1-3), preprocedure nidus blood flow control, and clinical results in 22 cases of vascular malformation were reviewed. Cases were subdivided by MR morphological grade as follows: grade 1, 3 patients; grade 2A, 6 patients; grade 3, 13 patients. Responses to EO sclerotherapy were as follows: excellent, 3 patients; good, 5 patients; poor, 14 patients. An excellent response was achieved in one grade 1 case, one grade 2A case, and one grade 3 case. Preprocedure nidus flow was controlled in 8 lesions (type A) and not controlled in 14 lesions (type B). Three (37.5%) type A lesions had an excellent response, five had a good response; and none had a poor response. All type B lesions had a poor response. Flow control predicted an excellent result (P<0.05). Preprocedure nidus blood flow control (versus lack of control) is associated with a significantly higher incidence of favorable clinical responses to EO sclerotherapy for vascular malformations. (author)

  11. Particle image velocimetry experimental and computational investigation of a blood pump

    Science.gov (United States)

    Yang, Xiaochen; Gui, Xingmin; Huang, Hui; Shen, Yongbin; Yu, Ziwen; Zhang, Yan

    2012-06-01

    Blood pumps have been adopted to treat heart failure over the past decades. A novel blood pump adopting the rotor with splitter blades and tandem cascade stator was developed recently. A particle image velocimetry (PIV) experiment was carried out to verify the design of the blood pump based on computational fluid dynamics (CFD) and further analyze the flow properties in the rotor and stator. The original sized pump model with an acrylic housing and an experiment loop were constructed to perform the optical measurement. The PIV testing was carried out at the rotational speed of 6952±50 r/min with the flow rate of 3.1 l/min and at 8186±50 r/min with 3.5 l/min, respectively. The velocity and the Reynolds shear stress distributions were investigated by PIV and CFD, and the comparisons between them will be helpful for the future blood pump design.

  12. Resistance exercise with different volumes: blood pressure response and forearm blood flow in the hypertensive elderly

    Directory of Open Access Journals (Sweden)

    Brito AF

    2014-12-01

    Full Text Available Aline de Freitas Brito,1 Caio Victor Coutinho de Oliveira,2 Maria do Socorro Brasileiro-Santos,1 Amilton da Cruz Santos1 1Physical Education Department, 2Research Laboratory for Physical Training Applied to Performance and Health, Federal University of Paraíba, João Pessoa, Brazil Background: The purpose of this study was to evaluate the effect of two sessions of resistance exercise with different volumes on post-exercise hypotension, forearm blood flow, and forearm vascular resistance in hypertensive elderly subjects.Methods: The study was conducted with ten hypertensive elderly (65±3 years, 28.7±3 kg/m2 subjected to three experimental sessions, ie, a control session, exercise with a set (S1, and exercise with three sets (S3. For each session, the subjects were evaluated before and after intervention. In the pre-intervention period, blood pressure, forearm blood flow, and forearm vascular resistance were measured after 10 minutes of rest in the supine position. Thereafter, the subjects were taken to the gym to perform their exercise sessions or remained at rest during the same time period. Both S1 and S3 comprised a set of ten repetitions of ten exercises, with an interval of 90 seconds between exercises. Subsequently, the measurements were again performed at 10, 30, 50, 70, and 90 minutes of recovery (post-intervention in the supine position.Results: Post-exercise hypotension was greater in S3 than in S1 (systolic blood pressure, −26.5±4.2 mmHg versus −17.9±4.7 mmHg; diastolic blood pressure, −13.8±4.9 mmHg versus −7.7±5 mmHg, P<0.05. Similarly, forearm blood flow and forearm vascular resistance changed significantly in both sessions with an increase and decrease, respectively, that was more evident in S3 than in S1 (P<0.05.Conclusion: Resistance exercises with higher volume were more effective in causing post-exercise hypotension, being accompanied by an increase in forearm blood flow and a reduction of forearm vascular

  13. Retrobulbar blood flow and visual field alterations after acute ethanol ingestion

    Directory of Open Access Journals (Sweden)

    Weber A

    2013-08-01

    Full Text Available Anke Weber, Andreas Remky, Marion Bienert, Klaudia Huber-van der Velden, Thomas Kirschkamp, Corinna Rennings, Gernot Roessler, Niklas Plange Department of Ophthalmology, RWTH Aachen University, Aachen, Germany Background: The purpose of this study was to test the effect of ethyl alcohol on the koniocellular and magnocellular pathway of visual function and to investigate the relationship between such visual field changes and retrobulbar blood flow in healthy subjects. Methods: In 12 healthy subjects (mean age 32 ± 4 years, color Doppler imaging, short-wavelength automated perimetry, and frequency doubling perimetry was performed before and 60 minutes after oral intake of 80 mL of 40 vol% ethanol. Mean and pattern standard deviations for short-wavelength automated and frequency doubling perimetry were assessed. End diastolic velocity (EDV and peak systolic velocity (PSV were measured in the central retinal and ophthalmic arteries using color Doppler imaging. Systemic blood pressure, heart rate, intraocular pressure, and blood alcohol concentration were determined. Results: Mean PSV and EDV in the central retinal artery showed a significant increase after alcohol intake (P = 0.03 and P = 0.02, respectively. Similarly, we found a significant acceleration of blood flow velocity in the ophthalmic artery (P = 0.02 for PSV; P = 0.04 for EDV. Mean intraocular pressure decreased by 1.0 mmHg after alcohol ingestion (P = 0.01. Retinal sensitivity in short-wavelength automated perimetry did not alter, whereas in frequency doubling perimetry, the mean deviation decreased significantly. Systolic and diastolic blood pressure did not change significantly. Mean blood alcohol concentration was 0.38 ± 0.16 g/L. Conclusion: Although ethanol is known to cause peripheral vasodilation, our subjects had no significant drop in systemic blood pressure. However, a significant increase of blood flow velocity was seen in the retrobulbar vessels. Regarding visual function

  14. Renal blood flow and metabolism after cold ischaemia

    DEFF Research Database (Denmark)

    Henriksen, J H; Petersen, H K

    1984-01-01

    Peroperative measurements of renal blood flow (RBF), renal O2-uptake, and renal venous lactate/pyruvate (L/P) ratio were performed before and after a period of 30-71 min of hypothermic (10-15 degrees C) renal ischaemia in nine patients, undergoing surgery for renal calculi. Before ischaemia, RBF.......01) immediately after re-established perfusion and 36% (P less than 0.02) 30 min later. In one additional patient, who had a short warm ischaemia (8 min), the flow pattern was the same. As arterial pressure remained constant, the reduced RBF signifies an increased renal vascular resistance. Renal O2-uptake...... and renal venous L/P ratio were almost constant, indicating no significant anaerobic processes being involved in the flow response. None of the patients showed any signs of reactive hyperaemia. It is concluded that hypothermic renal ischaemia may be followed by an increased renal vascular resistance even...

  15. A rapid and reversible skull optical clearing method for monitoring cortical blood flow

    Science.gov (United States)

    Zhang, Chao; Zhao, Yanjie; Shi, Rui; Zhu, Dan

    2016-03-01

    In vivo cortex optical imaging is of great important for revealing both structural and functional architecture of brain with high temporal-spatial resolution. To reduce the limitation of turbid skull, researchers had to establish various skull windows or directly expose cortex through craniotomy. Here we developed a skull optical clearing method to make skull transparent. Laser speckle contrast imaging technique was used to monitor the cortical blood flow after topical treatment with the optical clearing agents. The results indicated that the image contrast increased gradually, and then maintained at a high level after 15 min for adult mice, which made the image quality and resolution of micro-vessels nearly approximate to those of exposed cortex. Both the cortical blood flow velocity almost kept constant after skull became transparent. Besides, the treatment of physiological saline on the skull could make skull return to the initial state again and the skull could become transparent again when SOCS retreated it. Thus, we could conclude that the skull optical clearing method was rapid, valid, reversible and safe, which provided us available approach for performing the cortical structural and functional imaging at high temporal-spatial resolution.

  16. ABO Blood-Typing Using an Antibody Array Technique Based on Surface Plasmon Resonance Imaging

    Science.gov (United States)

    Houngkamhang, Nongluck; Vongsakulyanon, Apirom; Peungthum, Patjaree; Sudprasert, Krisda; Kitpoka, Pimpun; Kunakorn, Mongkol; Sutapun, Boonsong; Amarit, Ratthasart; Somboonkaew, Armote; Srikhirin, Toemsak

    2013-01-01

    In this study, readily available antibodies that are used in standard agglutination tests were evaluated for their use in ABO blood typing by a surface plasmon resonance imaging (SPR imaging) technique. Five groups of antibodies, including mixed clones of anti-A, anti-B, and anti-AB, and single clones of anti-A and anti-B, were used to construct the five-line detection arrays using a multichannel flow cell in the SPR imager. The red blood cell (RBC) samples were applied to a multichannel flow cell that was orthogonal to the detection line arrays for blood group typing. We found that the blood samples were correctly grouped in less than 12 min by the SPR imaging technique, and the results were consistent with those of the standard agglutination technique for all 60 samples. We found that mixed clones of antibodies provided 33%–68% greater change in the SPR signal than the single-clone antibodies. Applying the SPR imaging technique using readily available antibodies may reduce the costs of the antibodies, shorten the measurement time, and increase the throughput. PMID:24021965

  17. ABO Blood-Typing Using an Antibody Array Technique Based on Surface Plasmon Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Toemsak Srikhirin

    2013-09-01

    Full Text Available In this study, readily available antibodies that are used in standard agglutination tests were evaluated for their use in ABO blood typing by a surface plasmon resonance imaging (SPR imaging technique. Five groups of antibodies, including mixed clones of anti-A, anti-B, and anti-AB, and single clones of anti-A and anti-B, were used to construct the five-line detection arrays using a multichannel flow cell in the SPR imager. The red blood cell (RBC samples were applied to a multichannel flow cell that was orthogonal to the detection line arrays for blood group typing. We found that the blood samples were correctly grouped in less than 12 min by the SPR imaging technique, and the results were consistent with those of the standard agglutination technique for all 60 samples. We found that mixed clones of antibodies provided 33%–68% greater change in the SPR signal than the single-clone antibodies. Applying the SPR imaging technique using readily available antibodies may reduce the costs of the antibodies, shorten the measurement time, and increase the throughput.

  18. Quantification of myocardial blood flow and blood flow reserve in the presence of arterial dispersion: a simulation study.

    Science.gov (United States)

    Schmitt, Melanie; Viallon, Magalie; Thelen, Manfred; Schreiber, Wolfgang G

    2002-04-01

    Myocardial blood flow (MBF) can be quantified using dynamic T1-weighted MRI of diffusible tracers and a mathematical model of underlying vasculature. Quantification of MBF by means of T1- weighted MRI requires knowledge of the arterial input function (AIF). The AIF can be estimated from the left ventricular (LV) cavity. However, dispersion may occur between the LV and the tissue of interest because of the laminar blood flow profiles, branching of venules, and because of stenosis. To evaluate the influence of dispersion on the results of MBF quantification, a simulation study was performed. The dispersion was described as a convolution of the AIF with an exponential residue function. Synthetic tissue and AIF curves were analyzed and the derived parameters fit to the simulated parameters. The results show that an unaccounted dispersion may result in a systematic underestimation of MBF up to approximately 50%. Underestimation increases with increasing dispersion and with increasing MBF. Assuming equal dispersion at rest and during hyperemia, myocardial perfusion reserve (MPR) estimates are also susceptible to underestimation of approximately 20%. An unaccounted dispersion therefore can lead to systematic underestimation of both blood flow and perfusion reserve.

  19. The effect of glucagon-like peptide-2 on arterial blood flow and cardiac parameters

    DEFF Research Database (Denmark)

    Bremholm, Lasse; Hornum, Mads; Andersen, Ulrik B;

    2010-01-01

    Glucagon-like peptide-2 (GLP-2) is known to increase mesenteric blood flow. The aim of the study was to evaluate the effect of GLP-2 on blood flow in different vascular sites, and dynamic changes in cardiac parameters.......Glucagon-like peptide-2 (GLP-2) is known to increase mesenteric blood flow. The aim of the study was to evaluate the effect of GLP-2 on blood flow in different vascular sites, and dynamic changes in cardiac parameters....

  20. Dose reduction in dynamic perfusion CT of the brain: effects of the scan frequency on measurements of cerebral blood flow, cerebral blood volume, and mean transit time

    Energy Technology Data Exchange (ETDEWEB)

    Wiesmann, Martin [University of Munich, Department of Neuroradiology, Muenchen (Germany); Klinikum der Universitaet Muenchen - Grosshadern, Abteilung fuer Neuroradiologie, Muenchen (Germany); Berg, Scott; Stoeckelhuber, B.M. [University of Luebeck, Department of Radiology, Luebeck (Germany); Bohner, G.; Klingebiel, R. [University Medicine Berlin, Department of Neuroradiology, Charite, Berlin (Germany); Schoepf, V.; Yousry, I.; Linn, J. [University of Munich, Department of Neuroradiology, Muenchen (Germany); Missler, U. [Evangelisches Krankenhaus Duisburg-Nord, Department of Neuroradiology, Duisburg (Germany)

    2008-12-15

    The influence of the frequency of computed tomography (CT) image acquistion on the diagnostic quality of dynamic perfusion CT (PCT) studies of the brain was investigated. Eight patients with clinically suspected acute ischemia of one hemisphere underwent PCT, performed on average 3.4 h after the onset of symptoms. Sixty consecutive images per slice were obtained with individual CT images obtained at a temporal resolution of two images per second. Eight additional data sets were reconstructed with temporal resolutions ranging from one image per second to one image per 5 s. Cerebral blood flow (CBF), cerebral blood volume (CBV) and mean transit time (MTT) measurements were performed in identical regions of interest. Two neuroradiologists evaluated the PCT images visually to identify areas of abnormal perfusion. Perfusion images created up to a temporal resolution of one image per 3 s were rated to be diagnostically equal to the original data. Even at one image per 4 s, all areas of infarction were identified. Quantitative differences of CBF, CBV and MTT measurements were {<=}10% up to one image per 3 s. For PCT of the brain, temporal resolution can be reduced to one image per 3 s without significant compromise in image quality. This significantly reduces the radiation dose of the patient. (orig.)

  1. Blood pressure and blood flow variation during postural change from sitting to standing: model development and validation

    DEFF Research Database (Denmark)

    Olufsen, M.S.; Ottesen, Johnny T.; Tran, H.T.;

    2005-01-01

    Short-term cardiovascular responses to postural change from sitting to standing involve complex interactions between the autonomic nervous system, which regulates blood pressure, and cerebral autoregulation, which maintains cerebral perfusion. We present a mathematical model that can predict...... dynamic changes in beat-to-beat arterial blood pressure and middle cerebral artery blood flow velocity during postural change from sitting to standing. Our cardiovascular model utilizes 11 compartments to describe blood pressure, blood flow, compliance, and resistance in the heart and systemic circulation....... To include dynamics due to the pulsatile nature of blood pressure and blood flow, resistances in the large systemic arteries are modeled using nonlinear functions of pressure. A physiologically based submodel is used to describe effects of gravity on venous blood pooling during postural change. Two types...

  2. Mean arterial pressure change associated with cerebral blood flow in healthy older adults.

    Science.gov (United States)

    Deverdun, Jeremy; Akbaraly, Tasnime N; Charroud, Celine; Abdennour, Meriem; Brickman, Adam M; Chemouny, Stephane; Steffener, Jason; Portet, Florence; Bonafe, Alain; Stern, Yaakov; Ritchie, Karen; Molino, François; Le Bars, Emmanuelle; Menjot de Champfleur, Nicolas

    2016-10-01

    We investigate over a 12-year period the association between regional cerebral blood flow (CBF) and cardiovascular risk factors in a prospective cohort of healthy older adults (81.96 ± 3.82 year-old) from the Cognitive REServe and Clinical ENDOphenotype (CRESCENDO) study. Cardiovascular risk factors were measured over 12 years, and gray matter CBF was measured at the end of the study from high-resolution magnetic resonance imaging using arterial spin labeling. The association between cardiovascular risk factors, their long-term change, and CBF was assessed using multivariate linear regression models. Women were observed to have higher CBF than men (p < 0.05). Increased mean arterial pressure (MAP) over the 12-year period was correlated with a low cerebral blood flow (p < 0.05, R(2) = 0.21), whereas no association was detected between CBF and MAP at the time of imaging. High levels of glycemia tended to be associated with low cerebral blood flow values (p < 0.05). Age, alcohol consumption, smoking status, body mass index, history of cardiovascular disease, and hypertension were not associated with CBF. Our main result suggests that change in MAP is the most significant predictor of future CBF in older adults.

  3. Protection of spermatogenisis during X-irradiation and chemotherapy by temporary blood flow interruption

    International Nuclear Information System (INIS)

    In an animal model the possibility was tested to interrupt the blood flow to the testis temporarily and repeatedly. Subsequently, it was investigated whether blood flow interuption during irradiation or during cytostatic drug administration could limit the damage induced to the spermatogonial stem cells. The effect of repeatedly blood flow interruptions on spermatogenesis was evaluated. (author). 192 refs.; 15 figs.; 11 tabs

  4. Glucagon-like peptide-2 increases mesenteric blood flow in humans

    DEFF Research Database (Denmark)

    Bremholm, Lasse; Hornum, Mads; Henriksen, Birthe Merete;

    2008-01-01

    OBJECTIVE: Mesenteric blood flow is believed to be influenced by digestion and absorption of ingested macronutrients. We hypothesized that the intestinotrophic hormone, GLP-2 (glucagons-like peptide 2), may be involved in the regulation of mesenteric blood flow. Changes in mesenteric blood flow...

  5. Structured Tree Outflow Condition for Blood Flow in Arteries

    Science.gov (United States)

    Olufsen, Mette

    1998-11-01

    Modeling blood flow and especially propagation of the pulse wave in the systemic arteries is of interests to the medical society because of the significance of the dicrotic wave. The pulse wave propagating along the larger arteries is reflected because of tapering and branching of the vessels, as well as the peripheral resistance, which is mainly stemming from the smaller arteries and arterioles. In order to avoid artificial reflections it is important to determine a boundary condition, representing the smaller arteries and arterioles, which is physiologically correct. In this work we have proposed a boundary condition based on a structured tree model. The result will be compared both with other modeling approaches as well as with results from measurements of flow and pressure at a number of locations along the larger arteries. The model for the larger arteries is based on the axisymmetrical Navier Stokes equations where the blood is assumed Newtonian and incompressible and the vessels are tapering. In the structured tree the model is based on a linearization of the axisymmetrical Navier-Stokes equations. The reason for setting up a structured tree is that the smaller arteries consist of an almost binary tree. Furthermore, the role of the smaller arteries is to allow blood perfusion of specific tissues. This is done in a structured and optimal way such that the smaller arteries cover the tissue evenly using a minimization principle.

  6. Effects of exercise training with blood flow restriction on blood pressure in medicated hypertensive patients

    Directory of Open Access Journals (Sweden)

    Marcos Antônio Cezar

    2016-06-01

    Full Text Available Abstract The development of non-pharmacological approaches to hypertension (HA is critical for both prevention and treatment. This study examined the hemodynamic and biochemical responses of medicated hypertensive women to resistance exercise with blood flow restriction (vascular occlusion. Twenty-three women were randomly assigned to one of three groups: High intensity strength training (n = 8; low-intensity resistance exercise with occlusion (n = 8; and control (n = 7. The first two groups underwent eight weeks of training performed twice a week, including three series of wrist flexion exercises with or without vascular occlusion. The exercised with occlusion group showed pre- to post-test reduction in systolic and diastolic blood pressure, mean arterial pressure, and double product, whereas the other groups showed no significant hemodynamic changes. In conclusion, resistance exercise during 8 weeks was effective in lowering blood pressure in medicated hypertensive subjects.

  7. Portal venous blood flow while breath-holding after inspiration or expiration and during normal respiration in controls and cirrhotics

    Energy Technology Data Exchange (ETDEWEB)

    Sugano, Shigeo; Yamamoto, Kunihiro; Sasao, Ken-ichiro; Watanabe, Manabu [Saiseikai Wakakusa Hospital, Yakohama (Japan)

    1999-07-01

    In this study, we used magnetic resonance (MR) imaging to measure portal blood flow in 12 healthy controls and 17 cirrhotics while they were breath-holding after inspiration and after expiration. We then compared the results with measurements made during normal respiration in the healthy controls and cirrhotics. Blood flow in the main portal vein under basal fasting conditions was quantitated using the cine phase-contrast MR velocity mapping method. Three measurements were made on one occasion, as follows: throughout the cardiac cycle during normal respiration, with the subject breath-holding after maximal inspiration, and with the subject breath-holding after maximal expiration. During normal respiration, portal blood flow was 1.3{+-}0.2 l/min in controls vs 1.0{+-}0.1 l/min in cirrhotics (P<0.0001); while subjects were breath-holding after inspiration, portal blood flow was 1.0{+-}0.2 l/min in controls vs 0.9{+-}0.1 l/min in cirrhotics; and while subjects were breath-holding after expiration, portal blood flow was 1.5{+-}0.2 l/min in controls vs 1.1{+-}0.2 l/min in cirrhotics (P<0.0001). The differences were primarily due to changes in flow velocity. When the magnitude of these hemodynamic changes in the three respiratory conditions was compared in controls and cirrhotics, analysis of variance (ANOVA) showed a significant difference (P<0.0001). In controls, portal blood flow decreased during maximal inspiration relative to flow during normal respiration (-24.6{+-}8.3%). Changes in portal blood flow in controls were greater than in cirrhotics (-13.5{+-}4.5%) (P<0.0001); however, the difference in blood flow increase associated with maximal expiration between the two groups (+11.8{+-}9.4% vs +5.9{+-}11.5%) was not significant. We found that the respiration-induced hemodynamic variation in portal blood flow was less in cirrhotics than in the healthy controls. Portal blood flow measurements made during normal respiration using MR imaging closely reflect nearly

  8. Portal venous blood flow while breath-holding after inspiration or expiration and during normal respiration in controls and cirrhotics

    International Nuclear Information System (INIS)

    In this study, we used magnetic resonance (MR) imaging to measure portal blood flow in 12 healthy controls and 17 cirrhotics while they were breath-holding after inspiration and after expiration. We then compared the results with measurements made during normal respiration in the healthy controls and cirrhotics. Blood flow in the main portal vein under basal fasting conditions was quantitated using the cine phase-contrast MR velocity mapping method. Three measurements were made on one occasion, as follows: throughout the cardiac cycle during normal respiration, with the subject breath-holding after maximal inspiration, and with the subject breath-holding after maximal expiration. During normal respiration, portal blood flow was 1.3±0.2 l/min in controls vs 1.0±0.1 l/min in cirrhotics (P<0.0001); while subjects were breath-holding after inspiration, portal blood flow was 1.0±0.2 l/min in controls vs 0.9±0.1 l/min in cirrhotics; and while subjects were breath-holding after expiration, portal blood flow was 1.5±0.2 l/min in controls vs 1.1±0.2 l/min in cirrhotics (P<0.0001). The differences were primarily due to changes in flow velocity. When the magnitude of these hemodynamic changes in the three respiratory conditions was compared in controls and cirrhotics, analysis of variance (ANOVA) showed a significant difference (P<0.0001). In controls, portal blood flow decreased during maximal inspiration relative to flow during normal respiration (-24.6±8.3%). Changes in portal blood flow in controls were greater than in cirrhotics (-13.5±4.5%) (P<0.0001); however, the difference in blood flow increase associated with maximal expiration between the two groups (+11.8±9.4% vs +5.9±11.5%) was not significant. We found that the respiration-induced hemodynamic variation in portal blood flow was less in cirrhotics than in the healthy controls. Portal blood flow measurements made during normal respiration using MR imaging closely reflect nearly physiologic conditions

  9. Maximum Likelihood Blood Velocity Estimator Incorporating Properties of Flow Physics

    DEFF Research Database (Denmark)

    Schlaikjer, Malene; Jensen, Jørgen Arendt

    2004-01-01

    of simulated and in vivo data from the carotid artery. The estimator is meant for two-dimensional (2-D) color flow imaging. The resulting mathematical relation for the estimator consists of two terms. The first term performs a cross-correlation analysis on the signal segment in the radio frequency (RF......)-data under investigation. The flow physic properties are exploited in the second term, as the range of velocity values investigated in the cross-correlation analysis are compared to the velocity estimates in the temporal and spatial neighborhood of the signal segment under investigation. The new estimator...

  10. Quantification of the secondary flow in a radial coupled centrifugal blood pump based on particle tracking velocimetry.

    Science.gov (United States)

    Watanabe, Nobuo; Masuda, Takaya; Iida, Tomoya; Kataoka, Hiroyuki; Fujimoto, Tetsuo; Takatani, Setsuo

    2005-01-01

    Secondary flow in the centrifugal blood pump helps to enhance the washout effect and to minimize thrombus formation. On the other hand, it has an adverse effect on pump efficiency. Excessive secondary flow may induce hemolytic effects. Understanding the secondary flow is thus important to the design of a compact, efficient, biocompatible blood pump. This study examined the secondary flow in a radial coupled centrifugal blood pump based on a simple particle tracking velocimetry (PTV) technique. A radial magnetically coupled centrifugal blood pump has a bell-shaped narrow clearance between the impeller inner radius and the pump casing. In order to vary the flow levels through the clearance area, clearance widths of 0.25 mm and 0.50 mm and impeller washout holes with diameters of 0 mm, 2.5 mm, and 4 mm were prepared. A high-speed video camera (2000 frames per second) was used to capture the particle images from which radial flow components were derived. The flow in the space behind the impeller was assumed to be laminar and Couette type. The larger the inner clearance or diameter of washout hole, the greater was the secondary flow rate. Without washout holes, the flow behind the impeller resulted in convection. The radial flow through the washout holes of the impeller was conserved in the radial as well as in the axial direction behind the impeller. The increase in the secondary flow reduced the net pump efficiency. Simple PTV was successful in quantifying the flow in the space behind the impeller. The results verified the hypothesis that the flow behind the impeller was theoretically Couette along the circumferential direction. The convection flow observed behind the impeller agreed with the reports of other researchers. Simple PTV was effective in understanding the fluid dynamics to help improve the compact, efficient, and biocompatible centrifugal blood pump for safe clinical applications.

  11. Development of a Flexible Implantable Sensor for Postoperative Monitoring of Blood Flow

    OpenAIRE

    Cannata, Jonathan M.; Chilipka, Thomas; Yang, Hao-Chung; Han, Sukgu; Ham, Sung W.; Rowe, Vincent L.; Weaver, Fred A; Shung, K. Kirk; Vilkomerson, David

    2012-01-01

    We have developed a blood flow measurement system using Doppler ultrasound flow sensors fabricated of thin and flexible piezoelectric-polymer films. These flow sensors can be wrapped around a blood vessel and accurately measure flow. The innovation that makes this flow sensor possible is the diffraction-grating transducer. A conventional transducer produces a sound beam perpendicular to its face; therefore, when placed on the wall of a blood vessel, the Doppler shift in the backscattered ultr...

  12. Vessel Segmentation and Blood Flow Simulation Using Level-Sets and Embedded Boundary Methods

    Energy Technology Data Exchange (ETDEWEB)

    Deschamps, T; Schwartz, P; Trebotich, D; Colella, P; Saloner, D; Malladi, R

    2004-12-09

    In this article we address the problem of blood flow simulation in realistic vascular objects. The anatomical surfaces are extracted by means of Level-Sets methods that accurately model the complex and varying surfaces of pathological objects such as aneurysms and stenoses. The surfaces obtained are defined at the sub-pixel level where they intersect the Cartesian grid of the image domain. It is therefore straightforward to construct embedded boundary representations of these objects on the same grid, for which recent work has enabled discretization of the Navier-Stokes equations for incompressible fluids. While most classical techniques require construction of a structured mesh that approximates the surface in order to extrapolate a 3D finite-element gridding of the whole volume, our method directly simulates the blood-flow inside the extracted surface without losing any complicated details and without building additional grids.

  13. Oesophageal heat transfer properties indication of segmental blood flow changes during distension

    DEFF Research Database (Denmark)

    Liao, Donghua; Frøkjær, Jens Brøndum; Brock, Christina;

    2008-01-01

    on measurement of heat transfer. A bag was distended in the distal oesophagus of six healthy subjects followed by cooling or heating of the bag fluid to 5 or 60 degrees C. After equilibrium, the temperature was allowed to change back to body temperature. The temperature was recorded together with intraluminal...... ultrasound imaging, allowing assessment of the heat transfer properties at different bag volumes. The heat transfer constants were higher after heating the bag than after cooling the bag (Tukey, P heat transfer constants after heating the bag decreased as function of bag volumes whereas the heat...... transfer during cooling was not affected by the bag volume (F = 0.9, P = 0.4). The findings indicate that segmental blood flow can be assessed indirectly by calculating the heat transfer properties. Distension induced a drop in regional blood flow. Hence, ischaemia may contribute to distension-induced pain...

  14. Autoregulation of cerebral blood flow in orthostatic hypotension

    Science.gov (United States)

    Novak, V.; Novak, P.; Spies, J. M.; Low, P. A.

    1998-01-01

    BACKGROUND AND PURPOSE: We sought to evaluate cerebral autoregulation in patients with orthostatic hypotension (OH). METHODS: We studied 21 patients (aged 52 to 78 years) with neurogenic OH during 80 degrees head-up tilt. Blood flow velocities (BFV) from the middle cerebral artery were continuously monitored with transcranial Doppler sonography, as were heart rate, blood pressure (BP), cardiac output, stroke volume, CO2, total peripheral resistance, and cerebrovascular resistance. RESULTS: All OH patients had lower BP (PTPR (P.75) but with a flat slope. An expansion of the "autoregulated" range was seen in some patients. The OH_AF group was characterized by a profound fall in BFV in response to a small reduction in BP (mean deltaBP .75). CONCLUSIONS: The most common patterns of cerebral response to OH are autoregulatory failure with a flat flow-pressure relationship or intact autoregulation with an expanded autoregulated range. The least common pattern is autoregulatory failure with a steep flow-pressure relationship. Patients with patterns 1 and 2 have an enhanced capacity to cope with OH, while those with pattern 3 have reduced capacity.

  15. The challenges of analysing blood stains with hyperspectral imaging

    Science.gov (United States)

    Kuula, J.; Puupponen, H.-H.; Rinta, H.; Pölönen, I.

    2014-06-01

    Hyperspectral imaging is a potential noninvasive technology for detecting, separating and identifying various substances. In the forensic and military medicine and other CBRNE related use it could be a potential method for analyzing blood and for scanning other human based fluids. For example, it would be valuable to easily detect whether some traces of blood are from one or more persons or if there are some irrelevant substances or anomalies in the blood. This article represents an experiment of separating four persons' blood stains on a white cotton fabric with a SWIR hyperspectral camera and FT-NIR spectrometer. Each tested sample includes standardized 75 _l of 100 % blood. The results suggest that on the basis of the amount of erythrocytes in the blood, different people's blood might be separable by hyperspectral analysis. And, referring to the indication given by erythrocytes, there might be a possibility to find some other traces in the blood as well. However, these assumptions need to be verified with wider tests, as the number of samples in the study was small. According to the study there also seems to be several biological, chemical and physical factors which affect alone and together on the hyperspectral analyzing results of blood on fabric textures, and these factors need to be considered before making any further conclusions on the analysis of blood on various materials.

  16. Effects of intramedullary reaming and nailing on blood flow in rat femora

    Energy Technology Data Exchange (ETDEWEB)

    Indrekvam, K.; Lekven, J.; Engesaeter, L.B.; Langeland, N. (University of Bergen, Surgical Research Laboratory, Orthopedic Division, Haukeland Hospital, Bergen (Norway))

    1992-01-01

    The right femur in 40 rats was reamed, and in 40 others it was additionally nailed. Analysis of bone blood flow was performed by the distribution of radiolabeled microspheres at different postoperative time intervals. Blood-flow measurements were accompanied by analyses of hydroxyproline and calcium contents. Immediately after reaming, the blood flow of the diaphyseal part of the femur was reduced to approximately one third of that of the intact femur, whereas the contents of hydroxyproline and calcium were reduced by 10 percent. Within 1 week, the blood flow was normal. This study provides evidence that the presence of a nail does not interfere with the restoration of bone blood flow. Restoration of blood flow in bone apparently is a rapid process. The replacement of hydroxyproline and calcium contents seemed to be linked to flow, as no increase in these constituents were found until the blood flow had approximated the level of the intact femur. (au).

  17. Implementation of laser speckle contrast analysis as connection kit for mobile phone for assessment of skin blood flow

    Science.gov (United States)

    Jakovels, Dainis; Saknite, Inga; Spigulis, Janis

    2014-05-01

    Laser speckle contrast analysis (LASCA) offers a non-contact, full-field, and real-time mapping of capillary blood flow and can be considered as an alternative method to Laser Doppler perfusion imaging. LASCA technique has been implemented in several commercial instruments. However, these systems are still too expensive and bulky to be widely available. Several optical techniques have found new implementations as connection kits for mobile phones thus offering low cost screening devices. In this work we demonstrate simple implementation of LASCA imaging technique as connection kit for mobile phone for primary low-cost assessment of skin blood flow. Stabilized 650 nm and 532 nm laser diode modules were used for LASCA illumination. Dual wavelength illumination could provide additional information about skin hemoglobin and oxygenation level. The proposed approach was tested for arterial occlusion and heat test. Besides, blood flow maps of injured and provoked skin were demonstrated.

  18. Developmental validation of a novel lateral flow strip test for rapid identification of human blood (Rapid Stain Identification--Blood).

    Science.gov (United States)

    Schweers, Brett A; Old, Jennifer; Boonlayangoor, P W; Reich, Karl A

    2008-06-01

    Human blood is the body fluid most commonly encountered at crime scenes, and blood detection may aid investigators in reconstructing what occurred during a crime. In addition, blood detection can help determine which items of evidence should be processed for DNA-STR testing. Unfortunately, many common substances can cause red-brown stains that resemble blood. Furthermore, many current human blood detection methods are presumptive and prone to false positive results. Here, the developmental validation of a new blood identification test, Rapid Stain Identification--Blood (RSID--Blood), is described. RSID--Blood utilizes two anti-glycophorin A (red blood cell membrane specific protein) monoclonal antibodies in a lateral flow strip test format to detect human blood. We present evidence demonstrating that this test is accurate, reproducible, easy to use, and highly specific for human blood. Importantly, RSID--Blood does not cross-react with ferret, skunk, or primate blood and exhibits no high-dose hook effect. Also, we describe studies on the sensitivity, body fluid specificity, and species specificity of RSID--Blood. In addition, we show that the test can detect blood from a variety of forensic exhibits prior to processing for DNA-STR analysis. In conclusion, we suggest that RSID--Blood is effective and useful for the detection of human blood on forensic exhibits, and offers improved blood detection when compared to other currently used methods.

  19. Quantitative assessment of regional myocardial blood flow with thallium-201 and SPECT.

    Science.gov (United States)

    Iida, H; Eberl, S

    1998-01-01

    Thallium-201 has been used extensively as a myocardial perfusion agent and to assess myocardial viability. Unlike other 99mTc-labeled agents such as 99mTc-sestamibi and 99mTc-tetrofosmine, the regional concentration of 201Tl varies with time, and its kinetics make it a potential candidate for estimating absolute physiologic parameters with kinetic model analysis. This article outlines a strategy for quantitative assessment of regional myocardial blood flow in man using 201Tl and dynamic single photon emission computed tomography (SPECT). Quantitatively accurate SPECT images that are proportional to the true radioactivity distribution are prerequisites for model-based kinetic analysis. Our technique for quantitative SPECT includes ordered-subset maximum likelihood-expectation maximization (ML-EM) reconstruction with transmission data-based attenuation correction and transmission-dependent convolution subtraction scatter correction. A three-compartment model was found to reproduce the observed regional time-activity curves well, and dog experiments demonstrated that influx rate constant (K1) values estimated from the dynamic SPECT data correlated well with absolute myocardial blood flow determined by in vitro microspheres for a physiologically wide range of flows. Several possible strategies for simplifying the study procedures, without compromising accuracy, are also presented, which should make absolute quantitation of regional myocardial blood flow feasible using 201Tl and a conventional SPECT camera in a clinical setting.

  20. Testing of models of flow-induced hemolysis in blood flow through hypodermic needles.

    Science.gov (United States)

    Chen, Yangsheng; Kent, Timothy L; Sharp, M Keith

    2013-03-01

    Hemolysis caused by flow in hypodermic needles interferes with a number of tests on blood samples drawn by venipuncture, including assays for metabolites, electrolytes, and enzymes, causes discomfort during dialysis sessions, and limits transfusion flow rates. To evaluate design modifications to address this problem, as well as hemolysis issues in other cardiovascular devices, computational fluid dynamics (CFD)-based prediction of hemolysis has potential for reducing the time and expense for testing of prototypes. In this project, three CFD-integrated blood damage models were applied to flow-induced hemolysis in 16-G needles and compared with experimental results, which demonstrated that a modified needle with chamfered entrance increased hemolysis, while a rounded entrance decreased hemolysis, compared with a standard needle with sharp entrance. After CFD simulation of the steady-state velocity field, the time histories of scalar stress along a grid of streamlines were calculated. A strain-based cell membrane failure model and two empirical power-law blood damage models were used to predict hemolysis on each streamline. Total hemolysis was calculated by weighting the predicted hemolysis along each streamline by the flow rate along each streamline. The results showed that only the strain-based blood damage model correctly predicted increased hemolysis in the beveled needle and decreased hemolysis in the rounded needle, while the power-law models predicted the opposite trends. PMID:23419169

  1. Optimal velocity encoding during measurement of cerebral blood flow volume using phase-contrast magnetic resonance angiography

    Institute of Scientific and Technical Information of China (English)

    Gang Guo; Yonggui Yang; Weiqun Yang

    2011-01-01

    This study investigated the effect of velocity encoding on measurement of brain blood flow and blood volume of inflow and outflow using phase-contrast magnetic resonance angiography. A single two-dimensional phase-contrast magnetic resonance angiography slice was applied perpendicular to the internal carotid artery and the vertebral artery at C2 level. For each subject, the velocity encoding was set from 30 to 90 cm/s with an interval of 10 cm/s for a total of seven settings. Various velocity encodings greatly affected blood flow volume, maximal blood flow velocity and mean blood flow velocity in the internal carotid artery, but did not significantly affect vertebral arteries and jugular veins. When velocity encoding was 60-80 cm/s, the inflow blood volume was 655 ± 118 mL/min, and the outflow volume was 506 ± 186 mL/min. The ratio of outflow/inflow was steady at 0.78-0.83, and there was no aliasing in any of the images. These findings suggest that velocity encodings of 60-80 cm/s should be selected during measurement of cerebral blood flow volume using phase-contrast magnetic resonance angiography.

  2. Coupling of cerebral blood flow and oxygen metabolism is conserved for chromatic and luminance stimuli in human visual cortex

    OpenAIRE

    Leontiev, Oleg; Buracas, Giedrius T.; Liang, Christine; Ances, Beau M.; Perthen, Joanna E.; Shmuel, Amir; Buxton, Richard B.

    2012-01-01

    The ratio of the changes in cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO2) during brain activation is a critical determinant of the magnitude of the blood oxygenation level dependent (BOLD) response measured with functional magnetic resonance imaging (fMRI). Cytochrome oxidase (CO), a key component of oxidative metabolism in the mitochondria, is non-uniformly distributed in visual area V1 in distinct blob and interblob regions, suggesting significant spatial variation...

  3. Wall morphology, blood flow and wall shear stress: MR findings in patients with peripheral artery disease

    Energy Technology Data Exchange (ETDEWEB)

    Galizia, Mauricio S.; Barker, Alex; Collins, Jeremy; Carr, James [Northwestern University, Department of Radiology, Feinberg School of Medicine, Chicago, IL (United States); Liao, Yihua [Northwestern University' s Feinberg School of Medicine, Department of Preventive Medicine, Chicago, IL (United States); McDermott, Mary M. [Northwestern University' s Feinberg School of Medicine, Department of Preventive Medicine, Chicago, IL (United States); Northwestern University' s Feinberg School of Medicine, Department of Medicine, Chicago, IL (United States); Markl, Michael [Northwestern University, Department of Radiology, Feinberg School of Medicine, Chicago, IL (United States); Northwestern University, Department Biomedical Engineering, McCormick School of Engineering, Chicago, IL (United States)

    2014-04-15

    To investigate the influence of atherosclerotic plaques on femoral haemodynamics assessed by two-dimensional (2D) phase-contrast (PC) magnetic resonance imaging (MRI) with three-directional velocity encoding. During 1 year, patients with peripheral artery disease and an ankle brachial index <1.00 were enrolled. After institutional review board approval and written informed consent, 44 patients (age, 70 ± 12 years) underwent common femoral artery MRI. Patients with contra-indications for MRI were excluded. Sequences included 2D time-of-flight, proton-density, T1-weighted and T2-weighted MRI. Electrocardiogram (ECG)-gated 2D PC-MRI with 3D velocity encoding was acquired. A radiologist classified images in five categories. Blood flow, velocity and wall shear stress (WSS) along the vessel circumference were quantified from the PC-MRI data. The acquired images were of good quality for interpretation. There were no image quality problems related to poor ECG-gating or slice positioning. Velocities, oscillatory shear stress and total flow were similar between patients with normal arteries and wall thickening/plaque. Patients with plaques demonstrated regionally increased peak systolic WSS and enhanced WSS eccentricity. Combined multi-contrast morphological imaging of the peripheral arterial wall with PC-MRI with three-directional velocity encoding is a feasible technique. Further study is needed to determine whether flow is an appropriate marker for altered endothelial cell function, vascular remodelling and plaque progression. (orig.)

  4. Cerebral lactate production and blood flow in acute stroke

    DEFF Research Database (Denmark)

    Henriksen, O; Gideon, P; Sperling, B;

    1992-01-01

    Eight stroke patients were examined serially in the acute phase and 1 week and 2-4 weeks after stroke with water-suppressed proton magnetic resonance spectroscopy. The time courses of lactate level and regional cerebral blood flow were studied. A high lactate level was found in the acute phase...... that follows reperfusion. The amount of lactate present in the acute phase reflects the severity of ischemia in the affected region. The lactate level was still above normal in the subacute phase with hyperemia, suggesting lactate production through aerobic glycolysis. Thus, the lactate level in the subacute...

  5. Endoscopic retrograde cholangiopancreatography causes reduced myocardial blood flow

    DEFF Research Database (Denmark)

    Christensen, M; Hendel, H W; Rasmussen, V;

    2002-01-01

    ). PATIENTS AND METHODS: 11 patients scheduled for ERCP were monitored with a Holter tape recorder and underwent myocardial perfusion scintigraphies, to evaluate myocardial perfusion at rest and during ERCP. RESULTS: Ten patients completed the study. Eight patients had no sign of myocardial ischemia...... with either of the two methods, while two patients developed signs of ischemia during ERCP with both the Holter tape recording and on myocardial scintigraphy (P = 0.02). CONCLUSIONS: Patients undergoing ERCP may develop true myocardial ischemia with reduced myocardial blood flow. Although this is a small...

  6. Skin blood flow with elastic compressive extravehicular activity space suit.

    Science.gov (United States)

    Tanaka, Kunihiko; Gotoh, Taro M; Morita, Hironobu; Hargens, Alan R

    2003-10-01

    During extravehicular activity (EVA), current space suits are pressurized with 100% oxygen at approximately 222 mmHg. A tight elastic garment, or mechanical counter pressure (MCP) suit that generates pressure by compression, may have several advantages over current space suit technology. In this study, we investigated local microcirculatory effects produced with negative ambient pressure with an MCP sleeve. The MCP glove and sleeve generated pressures similar to the current space suit. MCP remained constant during negative pressure due to unchanged elasticity of the material. Decreased skin capillary blood flow and temperature during MCP compression was counteracted by greater negative pressure or a smaller pressure differential.

  7. Cerebral blood flow and oxidative metabolism during human endotoxemia

    DEFF Research Database (Denmark)

    Møller, Kirsten; Strauss, Gitte Irene; Qvist, Jesper;

    2002-01-01

    The proinflammatory cytokine, tumor necrosis factor-alpha (TNF-alpha), has been suggested to mediate septic encephalopathy through an effect on cerebral blood flow (CBF) and metabolism. The effect of an intravenous bolus of endotoxin on global CBF, metabolism, and net flux of cytokines and catech...... cerebral flux of TNF-alpha, interleukin (IL)-1beta, and IL-6 did not differ significantly from zero. Thus, high circulating levels of TNF-alpha during human endotoxemia do not induce a direct reduction in cerebral oxidative metabolism....

  8. Methylphenidate decreases regional cerebral blood flow in normal human subjects

    Energy Technology Data Exchange (ETDEWEB)

    Wang, G.J.; Volkow, N.D. (Brookhaven National Lab., Upton, NY (United States) SUNY, Stony Brook, NY (United States)); Fowler, J.S.; Ferrieri, R.; Schlyer, D.J.; Alexoff, D.; Warner, D.; Wolf, A.P.; Pappas, N.; King, P.; Wong, C. (Brookhaven National Lab., Upton, NY (United States)); Hitzemann, R.J. (SUNY, Stony Brook, NY (United States)); Lieberman, J. (Hillside Hospital, Glen Oaks, NY (United States))

    1994-01-01

    To assess the effects of methylphenidate (MP) on cerebral blood flow (CBF), 5 healthy males were studied using [sup 15]O-water and positron emission tomography before and after MP (0.5mg/kg iv). MP significantly decreased whole brain CBF at 5-10 minutes (25[+-]11%) and at 30 minutes (20[+-]10%) after its administration. Decrements in CBF were homogeneous throughout the brain (regional decrements 23-30%) and probably reflect the vasoactive properties of MP. The vasoactive properties of MP should be considered when prescribing this drug chronically and/or when giving it to subjects with cerebrovascular compromise.

  9. The influence of venous blood flow on the retinal ganglion cell complex in patients with primary open angle glaucoma

    Directory of Open Access Journals (Sweden)

    N. I. Kurysheva

    2014-07-01

    Full Text Available Purpose: To study the influence of venous blood flow on the ganglion cell complex (GCC in patients with preperimetric and perimetric open angle glaucoma.Methods: 74 patients were included in the research. 59 eyes and 62 eyes were diagnosed with preperimetric and perimetric open angle glaucoma respectively. The mean age was 56.5±10.5 years. 22 (12 female and 10 male healthy individuals constituted the control group. The ganglion cell complex and retinal nerve fibre layer were evaluated with the help of optical coherence tomography (RTVue-100 OCT, Optovue, Inc., Fremont, CA. Ocular blood flow was measured by Color Doppler Imaging (multifunctional VOLUSON 730 ProSystem. The statistical analysis included correlation between GCC and RNFL thickness in both glaucoma groups.Results: The results showed a statistically significant reduction of venous blood flow velocity in both glaucoma groups compared to the control group. No difference in venous blood flow parameters between two glaucoma groups was found, except resistance index, which was higher in perimetric group in comparison to preperimetric group. A correlation was also obtained between venous blood flow parameters and GCC and RNFL thickness in both glaucoma groups.Conclusion: Early GCC damage in glaucoma might occur due to venous blood flow reduction. This fact may be of great value in understanding glaucoma pathogenesis and search for novel treatment options.

  10. Assessment of blood flow with 68Ga-DOTA PET in experimental inflammation: a validation study using 15O-water

    OpenAIRE

    Autio, Anu; Saraste, Antti; Kudomi, Nobuyuki; Saanijoki, Tiina; Johansson, Jarkko; Liljenbäck, Heidi; Tarkia, Miikka; Oikonen, Vesa; Sipilä, Hannu T; Roivainen, Anne

    2014-01-01

    Increased blood flow and vascular permeability are key events in inflammation. Based on the fact that Gadolinium-1,4,7,10-tetraazacyclododecane-N,N‘,N‘‘,N‘‘‘-tetraacetic acid (Gd-DOTA) is commonly used in magnetic resonance (MR) imaging of blood flow (perfusion), we evaluated the feasibility of its Gallium-68 labeled DOTA analog (68Ga-DOTA) for positron emission tomography (PET) imaging of blood flow in experimental inflammation. Adult, male Sprague-Dawley rats with turpentine oil induced ste...

  11. Skin temperature and subcutaneous adipose blood flow in man

    DEFF Research Database (Denmark)

    Astrup, A; Bülow, J; Madsen, J

    1980-01-01

    correlation between skin temperature and ATBF. In the range from 25 to 37 degrees CATBF increased 9% of the control flow on average per centigrade increase in skin temperature. ATBF at the control side was uninfluenced by the contralateral variations in skin temperature. Although no better correlation could......The abdominal subcutaneous adipose tissue blood flow (ATBF) was measured bilaterally by the 133Xe washout method. At one side of the skin (epicutaneous) temperature was varied with a temperature blanket, the other side served as control. There was a significant (P less than 0.001) positive...... be demonstrated between ATBF and subcutaneous temperature than between ATBF and skin temperature, arguments are presented in favour of the hypothesis that ATBF is influenced by the subcutaneous temperature rather than via reflexes from the skin. Infiltration of the 133Xe depots with 20 microgram...

  12. Cerebral blood flow single-photon emission tomography with 123I-IMP in vascular dementia

    International Nuclear Information System (INIS)

    Cerebral blood flow differences between patients with vascular dementia, patients with multiple lacunar infarction without cognitive dysfunction, and age-matched controls were examined. Thirty four patients with vascular dementia (VD) were selected from consecutive referrals to the Memory Clinic at Narita Memorial Hospital. All the patients had routine assessment including history, physical and neurological examinations, neuropsychological assessment, blood tests, EEG, head MRI, and single photon emission computed tomography (SPECT). All of them fulfilled the NINDS-AIREN diagnostic criteria for vascular dementia. Thirty nine patients with multiple lacunar infarction without cognitive dysfunction and 110 age-matched controls were included in this study. Mean cerebral blood flow (mCBF) and regional cerebral blood flow (rCBF) were measured using N-isopropyl-P-123I-iodoamphetamine (123I-IMP) and SPECT imager. The mCBF in VD was 27.6±5.3 ml/100 g/min, while those in the control group and multiple lacunar infarction without cognitive dysfunction were 36.6±6.1 ml/100 g/min and 32.5±5.5 ml/100 g/min, respectively. The patients with VD demonstrated significantly reduced mCBF and rCBF in twenty regions including both cerebellar hemispheres as compared with those of the control group. Although there was no significant rCBF differences in bilateral inferior occipital regions and the right cerebellar hemisphere between patients with VD and multiple lacunar infarction without cognitive dysfunction, we could find significant lower rCBF in the remaining brain areas. In spite of the severity of VD, the diffuse decrease of cerebral blood flow was recognized in all patients with VD. (author)

  13. Numerical Simulation of Unsteady Blood Flow through Capillary Networks.

    Science.gov (United States)

    Davis, J M; Pozrikidis, C

    2011-08-01

    A numerical method is implemented for computing unsteady blood flow through a branching capillary network. The evolution of the discharge hematocrit along each capillary segment is computed by integrating in time a one-dimensional convection equation using a finite-difference method. The convection velocity is determined by the local and instantaneous effective capillary blood viscosity, while the tube to discharge hematocrit ratio is deduced from available correlations. Boundary conditions for the discharge hematocrit at divergent bifurcations arise from the partitioning law proposed by Klitzman and Johnson involving a dimensionless exponent, q≥1. When q=1, the cells are partitioned in proportion to the flow rate; as q tends to infinity, the cells are channeled into the branch with the highest flow rate. Simulations are performed for a tree-like, perfectly symmetric or randomly perturbed capillary network with m generations. When the tree involves more than a few generations, a supercritical Hopf bifurcation occurs at a critical value of q, yielding spontaneous self-sustained oscillations in the absence of external forcing. A phase diagram in the m-q plane is presented to establish conditions for unsteady flow, and the effect of various geometrical and physical parameters is examined. For a given network tree order, m, oscillations can be induced for a sufficiently high value of q by increasing the apparent intrinsic viscosity, decreasing the ratio of the vessel diameter from one generation to the next, or by decreasing the diameter of the terminal vessels. With other parameters fixed, oscillations are inhibited by increasing m. The results of the continuum model are in excellent agreement with the predictions of a discrete model where the motion of individual cells is followed from inlet to outlet.

  14. Techniques for estimating blood pressure variation using video images.

    Science.gov (United States)

    Sugita, Norihiro; Obara, Kazuma; Yoshizawa, Makoto; Abe, Makoto; Tanaka, Akira; Homma, Noriyasu

    2015-08-01

    It is important to know about a sudden blood pressure change that occurs in everyday life and may pose a danger to human health. However, monitoring the blood pressure variation in daily life is difficult because a bulky and expensive sensor is needed to measure the blood pressure continuously. In this study, a new non-contact method is proposed to estimate the blood pressure variation using video images. In this method, the pulse propagation time difference or instantaneous phase difference is calculated between two pulse waves obtained from different parts of a subject's body captured by a video camera. The forehead, left cheek, and right hand are selected as regions to obtain pulse waves. Both the pulse propagation time difference and instantaneous phase difference were calculated from the video images of 20 healthy subjects performing the Valsalva maneuver. These indices are considered to have a negative correlation with the blood pressure variation because they approximate the pulse transit time obtained from a photoplethysmograph. However, the experimental results showed that the correlation coefficients between the blood pressure and the proposed indices were approximately 0.6 for the pulse wave obtained from the right hand. This result is considered to be due to the difference in the transmission depth into the skin between the green and infrared light used as light sources for the video image and conventional photoplethysmogram, respectively. In addition, the difference in the innervation of the face and hand may be related to the results. PMID:26737225

  15. Human red blood cells deformed under thermal fluid flow.

    Science.gov (United States)

    Foo, Ji-Jinn; Chan, Vincent; Feng, Zhi-Qin; Liu, Kuo-Kang

    2006-03-01

    The flow-induced mechanical deformation of a human red blood cell (RBC) during thermal transition between room temperature and 42.0 degrees C is interrogated by laser tweezer experiments. Based on the experimental geometry of the deformed RBC, the surface stresses are determined with the aid of computational fluid dynamics simulation. It is found that the RBC is more deformable while heating through 37.0 degrees C to 42.0 degrees C, especially at a higher flow velocity due to a thermal-fluid effect. More importantly, the degree of RBC deformation is irreversible and becomes softer, and finally reaches a plateau (at a uniform flow velocity U > 60 microm s(-1)) after the heat treatment, which is similar to a strain-hardening dominated process. In addition, computational simulated stress is found to be dependent on the progression of thermotropic phase transition. Overall, the current study provides new insights into the highly coupled temperature and hydrodynamic effects on the biomechanical properties of human erythrocyte in a model hydrodynamic flow system.

  16. Wavelet-analysis for Laser Images of Blood Plasma

    Directory of Open Access Journals (Sweden)

    ANGELSKY, A.-P.

    2011-05-01

    Full Text Available The possibilities of the local wavelet-analysis of polarization-inhomogeneous laser image of human blood plasma were considered. The set of statistics, correlation and fractal parameters of the distributions of wavelet-coefficients that are characterize different scales of the polarization maps of polycrystalline networks of amino acids of blood plasma were defined. The criteria for the differentiation of the transformation of birefringence optical-anisotropic structures of blood plasma at different scales of their geometric dimensions were determined.

  17. Regional cerebral blood flow in patients with transient ischemic attacks studied by Xenon-133 inhalation and emission tomography

    DEFF Research Database (Denmark)

    Vorstrup, S; Hemmingsen, R; Henriksen, L;

    1983-01-01

    Cerebral blood flow CBF was studied in 14 patients with transient ischemic attacks TIA and arteriosclerotic neck vessel disease. CBF was measured by a rapidly rotating single photon emission computerized tomograph using Xenon-133 inhalation. This method yields images of 3 brain slices depicting CBF...

  18. Integration of Quantitative Positron Emission Tomography Absolute Myocardial Blood Flow Measurements in the Clinical Management of Coronary Artery Disease.

    Science.gov (United States)

    Gewirtz, Henry; Dilsizian, Vasken

    2016-05-31

    In the >40 years since planar myocardial imaging with(43)K-potassium was introduced into clinical research and management of patients with coronary artery disease (CAD), diagnosis and treatment have undergone profound scientific and technological changes. One such innovation is the current state-of-the-art hardware and software for positron emission tomography myocardial perfusion imaging, which has advanced it from a strictly research-oriented modality to a clinically valuable tool. This review traces the evolving role of quantitative positron emission tomography measurements of myocardial blood flow in the evaluation and management of patients with CAD. It presents methodology, currently or soon to be available, that offers a paradigm shift in CAD management. Heretofore, radionuclide myocardial perfusion imaging has been primarily qualitative or at best semiquantitative in nature, assessing regional perfusion in relative terms. Thus, unlike so many facets of modern cardiovascular practice and CAD management, which depend, for example, on absolute values of key parameters such as arterial and left ventricular pressures, serum lipoprotein, and other biomarker levels, the absolute levels of rest and maximal myocardial blood flow have yet to be incorporated into routine clinical practice even in most positron emission tomography centers where the potential to do so exists. Accordingly, this review focuses on potential value added for improving clinical CAD practice by measuring the absolute level of rest and maximal myocardial blood flow. Physiological principles and imaging fundamentals necessary to understand how positron emission tomography makes robust, quantitative measurements of myocardial blood flow possible are highlighted.

  19. Integration of Quantitative Positron Emission Tomography Absolute Myocardial Blood Flow Measurements in the Clinical Management of Coronary Artery Disease.

    Science.gov (United States)

    Gewirtz, Henry; Dilsizian, Vasken

    2016-05-31

    In the >40 years since planar myocardial imaging with(43)K-potassium was introduced into clinical research and management of patients with coronary artery disease (CAD), diagnosis and treatment have undergone profound scientific and technological changes. One such innovation is the current state-of-the-art hardware and software for positron emission tomography myocardial perfusion imaging, which has advanced it from a strictly research-oriented modality to a clinically valuable tool. This review traces the evolving role of quantitative positron emission tomography measurements of myocardial blood flow in the evaluation and management of patients with CAD. It presents methodology, currently or soon to be available, that offers a paradigm shift in CAD management. Heretofore, radionuclide myocardial perfusion imaging has been primarily qualitative or at best semiquantitative in nature, assessing regional perfusion in relative terms. Thus, unlike so many facets of modern cardiovascular practice and CAD management, which depend, for example, on absolute values of key parameters such as arterial and left ventricular pressures, serum lipoprotein, and other biomarker levels, the absolute levels of rest and maximal myocardial blood flow have yet to be incorporated into routine clinical practice even in most positron emission tomography centers where the potential to do so exists. Accordingly, this review focuses on potential value added for improving clinical CAD practice by measuring the absolute level of rest and maximal myocardial blood flow. Physiological principles and imaging fundamentals necessary to understand how positron emission tomography makes robust, quantitative measurements of myocardial blood flow possible are highlighted. PMID:27245647

  20. Deuterium MR spectroscopy at 4.7 T. Quantification of tumour and subcutaneous tissue blood flow in animal models

    DEFF Research Database (Denmark)

    Wirestam, R; Larsen, V.A.; Stubgaard, M;

    1995-01-01

    Deuterium MR spectroscopy was used for the determination of tissue blood flow (TBF). The tracer D2O was injected into the tissue of interest, and tracer washout was followed using a 4.7 T spectroscopy/imaging unit. Normal subcutaneous tissue in rats was studied, as well as tissue influenced by...

  1. Pulmonary blood flow distribution in sheep: effects of anesthesia, mechanical ventilation, and change in posture

    Science.gov (United States)

    Walther, S. M.; Domino, K. B.; Glenny, R. W.; Hlastala, M. P.

    1997-01-01

    BACKGROUND: Recent studies providing high-resolution images of pulmonary perfusion have questioned the classical zone model of pulmonary perfusion. Hence the present work was undertaken to provide detailed maps of regional pulmonary perfusion to examine the influence of anesthesia, mechanical ventilation, and posture. METHODS: Pulmonary perfusion was analyzed with intravenous fluorescent microspheres (15 microm) in six sheep studied in four conditions: prone and awake, prone with pentobarbital-anesthesia and breathing spontaneously, prone with anesthesia and mechanical ventilation, and supine with anesthesia and mechanical ventilation. Lungs were air dried at total lung capacity and sectioned into approximately 1,100 pieces (about 2 cm3) per animal. The pieces were weighed and assigned spatial coordinates. Fluorescence was read on a spectrophotometer, and signals were corrected for piece weight and normalized to mean flow. Pulmonary blood flow heterogeneity was assessed using the coefficient of variation of flow data. RESULTS: Pentobarbital anesthesia and mechanical ventilation did not influence perfusion heterogeneity, but heterogeneity increased when the animals were in the supine posture (P Pulmonary perfusion was distributed with a hilar-to-peripheral gradient in animals breathing spontaneously (P ventilation on pulmonary perfusion heterogeneity is small compared with the effect of changes in posture. Analysis of flow gradients indicate that gravity plays a small role in determining pulmonary blood flow distribution.

  2. Pulmonary blood flow distribution in sheep: effects of anesthesia, mechanical ventilation, and change in posture

    Science.gov (United States)

    Walther, S. M.; Domino, K. B.; Glenny, R. W.; Hlastala, M. P.

    1997-01-01

    BACKGROUND: Recent studies providing high-resolution images of pulmonary perfusion have questioned the classical zone model of pulmonary perfusion. Hence the present work was undertaken to provide detailed maps of regional pulmonary perfusion to examine the influence of anesthesia, mechanical ventilation, and posture. METHODS: Pulmonary perfusion was analyzed with intravenous fluorescent microspheres (15 microm) in six sheep studied in four conditions: prone and awake, prone with pentobarbital-anesthesia and breathing spontaneously, prone with anesthesia and mechanical ventilation, and supine with anesthesia and mechanical ventilation. Lungs were air dried at total lung capacity and sectioned into approximately 1,100 pieces (about 2 cm3) per animal. The pieces were weighed and assigned spatial coordinates. Fluorescence was read on a spectrophotometer, and signals were corrected for piece weight and normalized to mean flow. Pulmonary blood flow heterogeneity was assessed using the coefficient of variation of flow data. RESULTS: Pentobarbital anesthesia and mechanical ventilation did not influence perfusion heterogeneity, but heterogeneity increased when the animals were in the supine posture (P mechanical ventilation on pulmonary perfusion heterogeneity is small compared with the effect of changes in posture. Analysis of flow gradients indicate that gravity plays a small role in determining pulmonary blood flow distribution.

  3. Pulmonary blood flow distribution in sheep: effects of anesthesia, mechanical ventilation, and change in posture

    Science.gov (United States)

    Walther, S. M.; Domino, K. B.; Glenny, R. W.; Hlastala, M. P.

    1997-01-01

    BACKGROUND: Recent studies providing high-resolution images of pulmonary perfusion have questioned the classical zone model of pulmonary perfusion. Hence the present work was undertaken to provide detailed maps of regional pulmonary perfusion to examine the influence of anesthesia, mechanical ventilation, and posture. METHODS: Pulmonary perfusion was analyzed with intravenous fluorescent microspheres (15 microm) in six sheep studied in four conditions: prone and awake, prone with pentobarbital-anesthesia and breathing spontaneously, prone with anesthesia and mechanical ventilation, and supine with anesthesia and mechanical ventilation. Lungs were air dried at total lung capacity and sectioned into approximately 1,100 pieces (about 2 cm3) per animal. The pieces were weighed and assigned spatial coordinates. Fluorescence was read on a spectrophotometer, and signals were corrected for piece weight and normalized to mean flow. Pulmonary blood flow heterogeneity was assessed using the coefficient of variation of flow data. RESULTS: Pentobarbital anesthesia and mechanical ventilation did not influence perfusion heterogeneity, but heterogeneity increased when the animals were in the supine posture (P Pulmonary perfusion was distributed with a hilar-to-peripheral gradient in animals breathing spontaneously (P mechanical ventilation on pulmonary perfusion heterogeneity is small compared with the effect of changes in posture. Analysis of flow gradients indicate that gravity plays a small role in determining pulmonary blood flow distribution.

  4. Computational Modelling of Blood Flow Development and Its Characteristics in Magnetic Environment

    Directory of Open Access Journals (Sweden)

    Gopal Chandra Shit

    2013-01-01

    Full Text Available Of concern in this paper is an investigation of the entrance length behind singularities in cardiovascular hemodynamics under magnetic environment. In order to get better interpretation of scan MRI images, the characteristics of blood flow and electromagnetic field within the circulatory system have to be furthermore investigated. A 3D numerical model has been developed as an example of blood flowing through a straight circular tube. The governing coupled nonlinear differential equations of magnetohydrodynamic (MHD fluid flow are reduced to a nondimensional form, which are then characterized by four dimensionless parameters. With an aim to validate our numerical approach, the computational results are compared with those of the analytical solution available in the developed region far from the singularity. The hydraulic impedance by unit length within the developed flow region increases with the magnetic field. The time average entrance length with a greater precision on the unsteady case decreases with increasing magnetic field strength. The overall voltage characteristics do not depend on the developed flow field within the entry region.

  5. Pulmonary blood flow distribution in sheep: effects of anesthesia, mechanical ventilation, and change in posture

    Science.gov (United States)

    Walther, S. M.; Domino, K. B.; Glenny, R. W.; Hlastala, M. P.

    1997-01-01

    BACKGROUND: Recent studies providing high-resolution images of pulmonary perfusion have questioned the classical zone model of pulmonary perfusion. Hence the present work was undertaken to provide detailed maps of regional pulmonary perfusion to examine the influence of anesthesia, mechanical ventilation, and posture. METHODS: Pulmonary perfusion was analyzed with intravenous fluorescent microspheres (15 microm) in six sheep studied in four conditions: prone and awake, prone with pentobarbital-anesthesia and breathing spontaneously, prone with anesthesia and mechanical ventilation, and supine with anesthesia and mechanical ventilation. Lungs were air dried at total lung capacity and sectioned into approximately 1,100 pieces (about 2 cm3) per animal. The pieces were weighed and assigned spatial coordinates. Fluorescence was read on a spectrophotometer, and signals were corrected for piece weight and normalized to mean flow. Pulmonary blood flow heterogeneity was assessed using the coefficient of variation of flow data. RESULTS: Pentobarbital anesthesia and mechanical ventilation did not influence perfusion heterogeneity, but heterogeneity increased when the animals were in the supine posture (P perfusion was distributed with a hilar-to-peripheral gradient in animals breathing spontaneously (P ventilation on pulmonary perfusion heterogeneity is small compared with the effect of changes in posture. Analysis of flow gradients indicate that gravity plays a small role in determining pulmonary blood flow distribution.

  6. High-speed imaging of blood splatter patterns

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, T.E.; Albright, K.A.; King, N.S.P.; Yates, G.J. [Los Alamos National Lab., NM (United States); Levine, G.F. [California Dept. of Justice, Sacramento, CA (United States). Bureau of Forensic Services

    1993-05-01

    The interpretation of blood splatter patterns is an important element in reconstructing the events and circumstances of an accident or crime scene. Unfortunately, the interpretation of patterns and stains formed by blood droplets is not necessarily intuitive and study and analysis are required to arrive at a correct conclusion. A very useful tool in the study of blood splatter patterns is high-speed photography. Scientists at the Los Alamos National Laboratory, Department of Energy (DOE), and Bureau of Forensic Services, State of California, have assembled a high-speed imaging system designed to image blood splatter patterns. The camera employs technology developed by Los Alamos for the underground nuclear testing program and has also been used in a military mine detection program. The camera uses a solid-state CCD sensor operating at approximately 650 frames per second (75 MPixels per second) with a microchannel plate image intensifier that can provide shuttering as short as 5 ns. The images are captured with a laboratory high-speed digitizer and transferred to an IBM compatible PC for display and hard copy output for analysis. The imaging system is described in this paper.

  7. Murine myocardium OCT imaging with a blood substitute

    Science.gov (United States)

    Kim, Jeehyun; Villard, Joseph W.; Lee, Ho; Feldman, Marc D.; Milner, Thomas E.

    2002-06-01

    Imaging of the in vivo murine myocardium using optical coherence tomography (OCT) is described. Application of conventional techniques (e.g. MRI, Ultrasound imaging) for imaging the murine myocardium is problematic because the wall thickness is less than 1.5mm (20g mouse), and the heart rate can be as high as six-hundred beats per minute. To acquire a real-time image of the murine myocardium, OCT can provide sufficient spatial resolution (10 micrometers ) and imaging speed (1000 A-Scans/s). Strong light scattering by blood in the heart causes significant light attenuation making delineation of the endocardium-chamber boundary problematic. By replacing whole blood in the mouse with an artificial blood substitute we demonstrate significant reduction of light scattering in the murine myocardium. The results indicate a significant reduction in light scattering as whole blood hematocrit is diminished below 5%. To measure thickness change of the myocardium during one cycle, a myocardium edge detection algorithm is developed and demonstrated.

  8. Measurement of regional cerebral blood flow by positron emission tomography

    International Nuclear Information System (INIS)

    The principal advantage of positron emission tomography over other methods for measuring cerebral blood flow stems from the accurate, quantitative three-dimensional measurements of regional brain radioactivity that are possible with this technique. As a result, accurate quantitative measurements of regional cerebral blood flow can be obtained for both superficial and deep cerebral structures. The value of PET for investigating central nervous system physiology and pathology extends far beyond this, however. Through the use of different radiotracers and appropriate mathematical models, PET can be applied to the measurement of a wide variety of physiologic variables. Measurements of rCBF tell only part of the story. Experience with PET and with a variety of other techniques has taught us that rCBF is at times a poor indicator of the metabolic, functional, and biochemical status of cerebral tissue. It is only by understanding the interaction of all of these factors that our understanding of neurologic disease can advance. It is in the investigation of these complex relationships that the real value of PET resides

  9. Clustering of microscopic particles in constricted blood flow

    CERN Document Server

    Bächer, Christian; Gekle, Stephan

    2016-01-01

    A mixed suspension of red blood cells (RBCs) and microparticles flows through a cylindrical channel with a constriction mimicking a stenosed blood vessel. Our three-dimensional Lattice-Boltzmann simulations show that the RBCs are depleted right ahead and after the constriction. Although the RBC mean concentration (hematocrit) is 16.5% or 23.7%, their axial concentration profile is very similar to that of isolated tracer particles flowing along the central axis. Most importantly, however, we find that the stiff microparticles exhibit the opposite behavior. Arriving on a marginated position near the channel wall, they can pass through the constriction only if they find a suitable gap to dip into the dense plug of RBCs occupying the channel center. This leads to a prolonged dwell time and, as a consequence, to a pronounced increase in microparticle concentration right in front of the constriction. For biochemically active particles such as drug delivery agents or activated platelets this clustering may lead to p...

  10. Multiscale modeling and simulation of brain blood flow

    Science.gov (United States)

    Perdikaris, Paris; Grinberg, Leopold; Karniadakis, George Em

    2016-02-01

    The aim of this work is to present an overview of recent advances in multi-scale modeling of brain blood flow. In particular, we present some approaches that enable the in silico study of multi-scale and multi-physics phenomena in the cerebral vasculature. We discuss the formulation of continuum and atomistic modeling approaches, present a consistent framework for their concurrent coupling, and list some of the challenges that one needs to overcome in achieving a seamless and scalable integration of heterogeneous numerical solvers. The effectiveness of the proposed framework is demonstrated in a realistic case involving modeling the thrombus formation process taking place on the wall of a patient-specific cerebral aneurysm. This highlights the ability of multi-scale algorithms to resolve important biophysical processes that span several spatial and temporal scales, potentially yielding new insight into the key aspects of brain blood flow in health and disease. Finally, we discuss open questions in multi-scale modeling and emerging topics of future research.

  11. Multiscale modeling and simulation of brain blood flow

    Energy Technology Data Exchange (ETDEWEB)

    Perdikaris, Paris, E-mail: parisp@mit.edu [Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Grinberg, Leopold, E-mail: leopoldgrinberg@us.ibm.com [IBM T.J Watson Research Center, 1 Rogers St, Cambridge, Massachusetts 02142 (United States); Karniadakis, George Em, E-mail: george-karniadakis@brown.edu [Division of Applied Mathematics, Brown University, Providence, Rhode Island 02912 (United States)

    2016-02-15

    The aim of this work is to present an overview of recent advances in multi-scale modeling of brain blood flow. In particular, we present some approaches that enable the in silico study of multi-scale and multi-physics phenomena in the cerebral vasculature. We discuss the formulation of continuum and atomistic modeling approaches, present a consistent framework for their concurrent coupling, and list some of the challenges that one needs to overcome in achieving a seamless and scalable integration of heterogeneous numerical solvers. The effectiveness of the proposed framework is demonstrated in a realistic case involving modeling the thrombus formation process taking place on the wall of a patient-specific cerebral aneurysm. This highlights the ability of multi-scale algorithms to resolve important biophysical processes that span several spatial and temporal scales, potentially yielding new insight into the key aspects of brain blood flow in health and disease. Finally, we discuss open questions in multi-scale modeling and emerging topics of future research.

  12. Altered Cerebral Blood Flow Covariance Network in Schizophrenia.

    Science.gov (United States)

    Liu, Feng; Zhuo, Chuanjun; Yu, Chunshui

    2016-01-01

    Many studies have shown abnormal cerebral blood flow (CBF) in schizophrenia; however, it remains unclear how topological properties of CBF network are altered in this disorder. Here, arterial spin labeling (ASL) MRI was employed to measure resting-state CBF in 96 schizophrenia patients and 91 healthy controls. CBF covariance network of each group was constructed by calculating across-subject CBF covariance between 90 brain regions. Graph theory was used to compare intergroup differences in global and nodal topological measures of the network. Both schizophrenia patients and healthy controls had small-world topology in CBF covariance networks, implying an optimal balance between functional segregation and integration. Compared with healthy controls, schizophrenia patients showed reduced small-worldness, normalized clustering coefficient and local efficiency of the network, suggesting a shift toward randomized network topology in schizophrenia. Furthermore, schizophrenia patients exhibited altered nodal centrality in the perceptual-, affective-, language-, and spatial-related regions, indicating functional disturbance of these systems in schizophrenia. This study demonstrated for the first time that schizophrenia patients have disrupted topological properties in CBF covariance network, which provides a new perspective (efficiency of blood flow distribution between brain regions) for understanding neural mechanisms of schizophrenia.

  13. Optimal design and uncertainty quantification in blood flow simulations for congenital heart disease

    Science.gov (United States)

    Marsden, Alison

    2009-11-01

    Recent work has demonstrated substantial progress in capabilities for patient-specific cardiovascular flow simulations. Recent advances include increasingly complex geometries, physiological flow conditions, and fluid structure interaction. However inputs to these simulations, including medical image data, catheter-derived pressures and material properties, can have significant uncertainties associated with them. For simulations to predict clinically useful and reliable output information, it is necessary to quantify the effects of input uncertainties on outputs of interest. In addition, blood flow simulation tools can now be efficiently coupled to shape optimization algorithms for surgery design applications, and these tools should incorporate uncertainty information. We present a unified framework to systematically and efficient account for uncertainties in simulations using adaptive stochastic collocation. In addition, we present a framework for derivative-free optimization of cardiovascular geometries, and layer these tools to perform optimization under uncertainty. These methods are demonstrated using simulations and surgery optimization to improve hemodynamics in pediatric cardiology applications.

  14. Assessment of fluctuating velocities in disturbed cardiovascular blood flow : in vivo feasibility of generalized phase-contrast MRI

    OpenAIRE

    Dyverfeldt, Petter; Escobar Kvitting, John-Peder; Sigfridsson, Andreas; Engvall, Jan; Bolger, Ann F.; Ebbers, Tino

    2008-01-01

    Purpose To evaluate the feasibility of generalized phase-contrast magnetic resonance imaging (PC-MRI) for the noninvasive assessment of fluctuating velocities in cardiovascular blood flow. Materials and Methods Multidimensional PC-MRI was used in a generalized manner to map mean flow velocities and intravoxel velocity standard deviation (IVSD) values in one healthy aorta and in three patients with different cardiovascular diseases. The acquired data were used to assess the kinetic energy of b...

  15. Two and Three Dimensional Blood Flow Simulations in Different Types of Blood Vessels

    Directory of Open Access Journals (Sweden)

    Balazs ALBERT

    2015-12-01

    Full Text Available In this paper we present a synthesis of our results obtained on blood flow simulation in different types of blood vessels. We present first some remarks on the wall shear stress (WSS in the case of a human abdominal aortic aneurysm (AAA, and then we concentrate on the mechanical conditions which would lead to the “rupture” of the vascular vessel with aneurysm and implicitly to a possible stroke. We also make some investigations on the Fahraeus-Lindqvist effect in arterioles. Considering an axial-symmetric reservoir full of blood and which is linked to an arteriole (with the same particular geometry, we have pointed out the concentration of the red blood cells in this arteriole towards the core of the vessel. To improve our work we have considered a real three-dimensional geometry, which is a serious jump versus our previous results, where only the axial-symmetric geometries were considered. In this respect we have reconsidered the case of a carotid artery stenosis with and without a stent.

  16. Intensive blood pressure control affects cerebral blood flow in type 2 diabetes mellitus patients

    DEFF Research Database (Denmark)

    Kim, Yu-Sok; Davis, Shyrin C A T; Truijen, Jasper;

    2011-01-01

    Type 2 diabetes mellitus is associated with microvascular complications, hypertension, and impaired dynamic cerebral autoregulation. Intensive blood pressure (BP) control in hypertensive type 2 diabetic patients reduces their risk of stroke but may affect cerebral perfusion. Systemic hemodynamic...... variables and transcranial Doppler-determined cerebral blood flow velocity (CBFV), cerebral CO2 responsiveness, and cognitive function were determined after 3 and 6 months of intensive BP control in 17 type 2 diabetic patients with microvascular complications (T2DM+), in 18 diabetic patients without (T2DM......-) microvascular complications, and in 16 nondiabetic hypertensive patients. Cerebrovascular reserve capacity was lower in T2DM+ versus T2DM- and nondiabetic hypertensive patients (4.6±1.1 versus 6.0±1.6 [P

  17. A simple model of cerebral blood flow dependence on arterial blood pressure

    CERN Document Server

    Gersten, Alexander

    2011-01-01

    It is shown that the dependence of the cerebral blood flow (CBF) on mean arterial blood pressure (MABP) can be described with a simple model having the following assumptions. Below certain MABP (denoted as MABP1) there are no autoregulatory or feedback mechanisms influencing CBF. Between MABP1 and MABP2 (MABP at which breakthrough accurs) there is a linear (on MABP) dependent feedback with a sloap depending very much on the individual considered. The classical autoregulation model with a plateau in between MABP1 and MABP2 is a particular case of this model. The model describes well the experiments performed on dogs (Harper 1966), for which the individual feedback sloap parameter varied to great extent, indicating the importance of mesurments on individuals against averaged mesurments (or measurments on diffent individuals) which superficially support the classical autoregulation. New effect of decreased CBF, while increasing MABP, was observed.

  18. Determinants of resting cerebral blood flow in sickle cell disease.

    Science.gov (United States)

    Bush, Adam M; Borzage, Matthew T; Choi, Soyoung; Václavů, Lena; Tamrazi, Benita; Nederveen, Aart J; Coates, Thomas D; Wood, John C

    2016-09-01

    Stroke is common in children with sickle cell disease and results from an imbalance in oxygen supply and demand. Cerebral blood flow (CBF) is increased in patients with sickle cell disease to compensate for their anemia, but adequacy of their oxygen delivery has not been systematically demonstrated. This study examined the physiological determinants of CBF in 37 patients with sickle cell disease, 38 ethnicity matched control subjects and 16 patients with anemia of non-sickle origin. Cerebral blood flow was measured using phase contrast MRI of the carotid and vertebral arteries. CBF increased inversely to oxygen content (r(2)  = 0.69, P Brain oxygen delivery, the product of CBF and oxygen content, was normal in all groups. Brain composition, specifically the relative amounts of grey and white matter, was the next strongest CBF predictor, presumably by influencing cerebral metabolic rate. Grey matter/white matter ratio and CBF declined monotonically until the age of 25 in all subjects, consistent with known maturational changes in brain composition. Further CBF reductions were observed with age in subjects older than 35 years of age, likely reflecting microvascular aging. On multivariate regression, CBF was independent of disease state, hemoglobin S, hemoglobin F, reticulocyte count and cell free hemoglobin, suggesting that it is regulated similarly in patients and control subjects. In conclusion, sickle cell disease patients had sufficient oxygen delivery at rest, but accomplish this only by marked increases in their resting CBF, potentially limiting their ability to further augment flow in response to stress. Am. J. Hematol. 91:912-917, 2016. © 2016 Wiley Periodicals, Inc. PMID:27263497

  19. Laser Doppler Imaging para quantificação do fluxo sanguíneo de polpa digital em condições basais e após estímulo frio em pacientes com esclerose sistêmica Quantification of basal digital blood flow and after cold stimulus by laser doppler imaging in patients with systemic sclerosis

    Directory of Open Access Journals (Sweden)

    Marcelo José Uchoa Corrêa

    2010-04-01

    Full Text Available OBJETIVO: Determinar o comportamento dinâmico do fluxo sanguíneo da microcirculação digital, antes e após dois estímulos frios (EF de diferentes intensidades, utilizando o método do Laser Doppler Imaging (LDI em pacientes com esclerose sistêmica (ES e controles saudáveis. MÉTODOS: Foram incluídos 14 pacientes com ES (51,2 ± 5,5 anos de idade e 12 controles saudáveis (44,8 ± 9,9 anos. Foram realizados dois protocolos alternativos de EF (submersão das mãos em água a 10 ºC ou 15 ºC, durante 1 minuto. O fluxo médio das quatro polpas digitais da mão esquerda (FPD foi mensurado com a utilização do LDI (Moor LDI-VR, em condições basais, nos períodos de 1, 4, 10, 25 e 40 minutos após EF. RESULTADOS: O fluxo basal foi significativamente menor em ambos os protocolos em pacientes com ES comparados a controles (312,9 ± 102,7 versus 465,4 ± 135,4 PU, P = 0,006, no protocolo a 15 ºC; 305,2 ± 121,0 versus 437,9 ± 119,8 PU, P = 0,01, no protocolo a 10 ºC. Nos controles houve declínio significativo do FPD após EF, em comparação aos valores basais apenas no tempo de um minuto após EF a 15 ºC (P = 0,001 e nos tempos de 1 e 25 minutos após EF a 10 ºC (P = 0,005; P = 0,001, respectivamente. Nos pacientes com ES, houve declínio significativo do FPD nos tempos de 1, 4 e 10 minutos após ambos EFs (P OBJECTIVES: The objective of this study was to investigate the dynamic behavior of the blood flow of the microvascular circulation of the fingertips before and after two cold stimuli (CS, using Laser Doppler Imaging with different intensities in patients with systemic sclerosis (SSc and in healthy individuals. PATIENTS AND METHODS: Fourteen SSc patients (51.2 ± 5.5 years with Raynaud's phenomenon and 12 healthy controls (44.8 ± 9.0 years were included in this study. Two CS protocols (submersion of the hands in water at 10 ºC or 15 ºC for 1 minute were performed on the same day. Mean fingertip blood flow (FBF of four digits of

  20. Blood flowing state analysis in outflow tract of chick embryonic heart based on spectral domain optical coherence tomography

    Science.gov (United States)

    Zhao, Yuqian; Suo, Yanyan; Liang, Chengbo; Ma, Zhenhe

    2016-03-01

    The cardiac development is a complicated process affected by genetic and environmental factors. Wall shear stress (WSS) and periodic stress (WPS) are the components which have been proved to influence the morphogenesis during early stages of cardiac development. The vessel wall will be deformed by the blood pressure and produce natural elastic force acting on the blood. Because blood flowing in different flow state and show different characteristics of fluid, which influence the calculation of WSS and WPS directly, it is necessary to study the blood flow state. In this paper, we introduce a method to quantify the blood flowing state of early stage chick embryonic heart based on high speed spectral domain optical coherence tomography (SDOCT).4D (x,y,z,t) scan was performed on the outflow tract (OFT) of HH18 (~3 days of incubation) chick embryonic heart. By processing the structural image, the geometric parameters were obtained. Blood flow velocity distribution in the OFT were calculated by Doppler OCT method. Hemodynamic parameters were obtained at different times during the cardiac cycle used biofluid mechanics theory, such as Reynolds number and Womersley number.