WorldWideScience

Sample records for blood flow autoregulation

  1. Ocular Blood Flow Autoregulation Mechanisms and Methods

    OpenAIRE

    Xue Luo; Yu-meng Shen; Meng-nan Jiang; Xiang-feng Lou; Yin Shen

    2015-01-01

    The main function of ocular blood flow is to supply sufficient oxygen and nutrients to the eye. Local blood vessels resistance regulates overall blood distribution to the eye and can vary rapidly over time depending on ocular need. Under normal conditions, the relation between blood flow and perfusion pressure in the eye is autoregulated. Basically, autoregulation is a capacity to maintain a relatively constant level of blood flow in the presence of changes in ocular perfusion pressure and va...

  2. Ocular Blood Flow Autoregulation Mechanisms and Methods

    Directory of Open Access Journals (Sweden)

    Xue Luo

    2015-01-01

    Full Text Available The main function of ocular blood flow is to supply sufficient oxygen and nutrients to the eye. Local blood vessels resistance regulates overall blood distribution to the eye and can vary rapidly over time depending on ocular need. Under normal conditions, the relation between blood flow and perfusion pressure in the eye is autoregulated. Basically, autoregulation is a capacity to maintain a relatively constant level of blood flow in the presence of changes in ocular perfusion pressure and varied metabolic demand. In addition, ocular blood flow dysregulation has been demonstrated as an independent risk factor to many ocular diseases. For instance, ocular perfusion pressure plays key role in the progression of retinopathy such as glaucoma and diabetic retinopathy. In this review, different direct and indirect techniques to measure ocular blood flow and the effect of myogenic and neurogenic mechanisms on ocular blood flow are discussed. Moreover, ocular blood flow regulation in ocular disease will be described.

  3. Blood flow autoregulation in pedicled flaps

    DEFF Research Database (Denmark)

    Bonde, Christian T; Holstein-Rathlou, Niels-Henrik; Elberg, Jens J

    2009-01-01

    INTRODUCTION: Clinical work on the blood perfusion in skin and muscle flaps has suggested that some degree of blood flow autoregulation exists in such flaps. An autoregulatory mechanism would enable the flap to protect itself from changes in the perfusion pressure. The purpose of the present study...... was to evaluate if, and to what extent, a tissue flap could compensate a reduction in blood flow due to an acute constriction of the feed artery. Further, we wanted to examine the possible role of smooth muscle L-type calcium channels in the autoregulatory mechanism by pharmacological intervention with the L......-type calcium channel blocker nimodipine and the vasodilator papaverine. MATERIAL AND METHODS: Pedicled flaps were raised in pigs. Flow in the pedicle was reduced by constriction of the feed artery (n=34). A transit time flow probe measured the effect on blood flow continuously. Following this, three different...

  4. Cerebral autoregulation control of blood flow in the brain

    CERN Document Server

    Payne, Stephen

    2016-01-01

    This Brief provides a comprehensive introduction to the control of blood flow in the brain. Beginning with the basic physiology of autoregulation, the author goes on to discuss measurement techniques, mathematical models, methods of analysis, and relevant clinical conditions, all within this single volume. The author draws together this disparate field, and lays the groundwork for future research directions. The text gives an up-to-date review of the state of the art in cerebral autoregulation, which is particularly relevant as cerebral autoregulation moves from the laboratory to the bedside. Cerebral Autoregulation will be useful to researchers in the physical sciences such as mathematical biology, medical physics, and biomedical engineering whose work is concerned with the brain. Researchers in the medical sciences and clinicians dealing with the brain and blood flow, as well as industry professionals developing techniques such as ultrasound, MRI, and CT will also find this Brief of interest.

  5. Autoregulation of cerebral blood flow in experimental focal brain ischemia.

    Science.gov (United States)

    Dirnagl, U; Pulsinelli, W

    1990-05-01

    The relationship between systemic arterial pressure (SAP) and neocortical microcirculatory blood-flow (CBF) in areas of focal cerebral ischemia was studied in 15 spontaneously hypertensive rats (SHRs) anesthetized with halothane (0.5%). Ischemia was induced by ipsilateral middle cerebral artery/common carotid artery occlusion and CBF was monitored continuously in the ischemic territory using laser-Doppler flowmetry during manipulation of SAP with I-norepinephrine (hypertension) or nitroprusside (hypotension). In eight SHRs not subjected to focal ischemia, we demonstrated that 0.5% halothane and the surgical manipulations did not impair autoregulation. Autoregulation was partly preserved in ischemic brain tissue with a CBF of greater than 30% of preocclusion values. In areas where ischemic CBF was less than 30% of preocclusion values, autoregulation was completely lost. Changes in SAP had a greater influence on CBF in tissue areas where CBF ranged from 15 to 30% of baseline (9% change in CBF with each 10% change in SAP) than in areas where CBF was less than 15% of baseline (6% change in CBF with each 10% change in SAP). These findings demonstrate that the relationship between CBF and SAP in areas of focal ischemia is highly dependent on the severity of ischemia. Autoregulation is lost in a gradual manner until CBF falls below 30% of normal. In areas without autoregulation, the slope of the CBF/SAP relationship is inversely related to the degree of ischemia.

  6. Autoregulation of cerebral blood flow in orthostatic hypotension

    Science.gov (United States)

    Novak, V.; Novak, P.; Spies, J. M.; Low, P. A.

    1998-01-01

    BACKGROUND AND PURPOSE: We sought to evaluate cerebral autoregulation in patients with orthostatic hypotension (OH). METHODS: We studied 21 patients (aged 52 to 78 years) with neurogenic OH during 80 degrees head-up tilt. Blood flow velocities (BFV) from the middle cerebral artery were continuously monitored with transcranial Doppler sonography, as were heart rate, blood pressure (BP), cardiac output, stroke volume, CO2, total peripheral resistance, and cerebrovascular resistance. RESULTS: All OH patients had lower BP (PTPR (P.75) but with a flat slope. An expansion of the "autoregulated" range was seen in some patients. The OH_AF group was characterized by a profound fall in BFV in response to a small reduction in BP (mean deltaBP .75). CONCLUSIONS: The most common patterns of cerebral response to OH are autoregulatory failure with a flat flow-pressure relationship or intact autoregulation with an expanded autoregulated range. The least common pattern is autoregulatory failure with a steep flow-pressure relationship. Patients with patterns 1 and 2 have an enhanced capacity to cope with OH, while those with pattern 3 have reduced capacity.

  7. Cerebral blood flow autoregulation in experimental liver failure

    DEFF Research Database (Denmark)

    Dethloff, T.J.; Larsen, F.S.; Knudsen, Gitte Moos

    2008-01-01

    Patients with acute liver failure (ALF) display impairment of cerebral blood flow (CBF) autoregulation, which may contribute to the development of fatal intracranial hypertension, but the pathophysiological mechanism remains unclear. In this study, we examined whether loss of liver mass causes...... impairment of CBF autoregulation. Four rat models were chosen, each representing different aspects of ALF: galactosamine (GlN) intoxication represented liver necrosis, 90% hepatectomy (PHx90) represented reduction in liver mass, portacaval anastomosis (PCA) represented shunting of blood....../toxins into the systemic circulation thus mimicking intrahepatic shunting in ALF, PCA+NH(3) provided information about the additional effects of hyperammonemia Rats were intubated and sedated with pentobarbital. We measured CBF with laser Doppler, intracranial pressure (ICP) was measured in the fossa posterior...

  8. Tubuloglomerular feedback dynamics and renal blood flow autoregulation in rats

    DEFF Research Database (Denmark)

    Holstein-Rathlou, N H; Wagner, A J; Marsh, D J

    1991-01-01

    To decide whether tubuloglomerular feedback (TGF) can account for renal autoregulation, we tested predictions of a TGF simulation. Broad-band and single-frequency perturbations were applied to arterial pressure; arterial blood pressure, renal blood flow and proximal tubule pressure were measured....... Data were analyzed by linear systems analysis. Broad-band forcings of arterial pressure were also applied to the model to compare experimental results with simulations. With arterial pressure as the input and tubular pressure, renal blood flow, or renal vascular resistance as outputs, the model......Hz in which, in addition, there are autonomous oscillations in TGF. Higher amplitude forcings in this band were attenuated by autoregulatory mechanisms, but low-amplitude forcings entrained the autonomous oscillations and provoked amplified oscillations in blood flow, showing an effect of TGF on whole kidney...

  9. Dynamics of renal blood flow autoregulation in rats

    DEFF Research Database (Denmark)

    Holstein-Rathlou, N H; Wagner, A J; Marsh, D J

    1991-01-01

    Two separate components could be resolved in tests of the dynamic autoregulation of renal blood flow. The slow component corresponds to the frequency at which spontaneous proximal tubular pressure oscillations are found, and are most likely due to the operation of the TGF. The high frequency...... component most likely represents an intrinsic vascular, myogenic, mechanism. The gain maximum of the admittance in the frequency range corresponding to the autonomous tubular oscillations indicates that the dynamic characteristics responsible for the occurrence of the spontaneous tubular oscillations must...

  10. A dynamic model of renal blood flow autoregulation

    DEFF Research Database (Denmark)

    Holstein-Rathlou, N H; Marsh, D J

    1994-01-01

    To test whether a mathematical model combining dynamic models of the tubuloglomerular feedback (TGF) mechanism and the myogenic mechanism was sufficient to explain dynamic autoregulation of renal blood flow, we compared model simulations with experimental data. To assess the dynamic characteristics...... nephrons act in parallel, each simulation was performed with 125 parallel versions of the model. The key parameters of the 125 versions of the model were chosen randomly within the physiological range. None of the constituent models, i.e., the TGF and the myogenic, could alone reproduce the experimental...... observations. However, in combination they reproduced most of hte features of the various transfer functions calculated from the experimental data. The major discrepancy was the presence of a bimodal distribution of the admittance phase in the simulations. This is not consistent with most of the experimental...

  11. Role of the renin-angiotensin system in regulation and autoregulation of renal blood flow

    DEFF Research Database (Denmark)

    Sørensen, Charlotte Mehlin; Leyssac, Paul Peter; Skøtt, Ole;

    2000-01-01

    The role for ANG II in renal blood flow (RBF) autoregulation is unsettled. The present study was designed to test the effect of clamping plasma ANG II concentrations ([ANG II]) by simultaneous infusion of the angiotensin-converting enzyme inhibitor captopril and ANG II on RBF autoregulation in ha...

  12. Loss of autoregulation of blood flow in subcutaneous tissue in juvenile diabetes

    DEFF Research Database (Denmark)

    Henriksen, O; Kastrup, J; Parving, H H;

    1984-01-01

    and retinopathy. The blood flow remained constant in all normal subjects, when the arterial perfusion pressure was varied between 70 and 150 mm Hg. All diabetics had impaired or reduced autoregulation of the subcutaneous blood flow. The blood flow increased and decreased almost linearly with the changes...... in arterial perfusion pressure. The mechanism underlying the defect autoregulation of blood flow in diabetics is uncertain; possibilities include structural changes of the arterioles and/or alterations of local metabolic factors.......The autoregulation of blood flow in subcutaneous tissue was investigated at the level of the lateral malleolus by the local 133Xenon washout technique. We have investigated eight long-term insulin-dependent diabetics and seven healthy controls. All diabetics had moderate diabetic nephropathy...

  13. Altered phase interactions between spontaneous blood pressure and flow fluctuations in type 2 diabetes mellitus: Nonlinear assessment of cerebral autoregulation

    Science.gov (United States)

    Hu, Kun; Peng, C. K.; Huang, Norden E.; Wu, Zhaohua; Lipsitz, Lewis A.; Cavallerano, Jerry; Novak, Vera

    2008-04-01

    Cerebral autoregulation is an important mechanism that involves dilatation and constriction in arterioles to maintain relatively stable cerebral blood flow in response to changes of systemic blood pressure. Traditional assessments of autoregulation focus on the changes of cerebral blood flow velocity in response to large blood pressure fluctuations induced by interventions. This approach is not feasible for patients with impaired autoregulation or cardiovascular regulation. Here we propose a newly developed technique-the multimodal pressure-flow (MMPF) analysis, which assesses autoregulation by quantifying nonlinear phase interactions between spontaneous oscillations in blood pressure and flow velocity during resting conditions. We show that cerebral autoregulation in healthy subjects can be characterized by specific phase shifts between spontaneous blood pressure and flow velocity oscillations, and the phase shifts are significantly reduced in diabetic subjects. Smaller phase shifts between oscillations in the two variables indicate more passive dependence of blood flow velocity on blood pressure, thus suggesting impaired cerebral autoregulation. Moreover, the reduction of the phase shifts in diabetes is observed not only in previously-recognized effective region of cerebral autoregulation (type 2 diabetes mellitus alters cerebral blood flow regulation over a wide frequency range and that this alteration can be reliably assessed from spontaneous oscillations in blood pressure and blood flow velocity during resting conditions. We also show that the MMPF method has better performance than traditional approaches based on Fourier transform, and is more suitable for the quantification of nonlinear phase interactions between nonstationary biological signals such as blood pressure and blood flow.

  14. Impaired autoregulation of renal blood flow in the fawn-hooded rat

    NARCIS (Netherlands)

    R.P.E. van Dokkum (Richard); M. Alonso-Galicia; A.P. Provoost (Abraham); H.J. Jacob (Howard); R.J. Roman

    1999-01-01

    textabstractThe responses to changes in renal perfusion pressure (RPP) were compared in 12-wk-old fawn-hooded hypertensive (FHH), fawn-hooded low blood pressure (FHL), and August Copenhagen Irish (ACI) rats to determine whether autoregulation of renal blood flow (RBF) i

  15. Regional cerebral blood flow autoregulation in patients with fulminant hepatic failure

    DEFF Research Database (Denmark)

    Larsen, Fin Stolze; Strauss, Gitte Irene; Møller, Kirsten;

    2000-01-01

    The absence of cerebral blood flow autoregulation in patients with fulminant hepatic failure (FHF) implies that changes in arterial pressure directly influence cerebral perfusion. It is assumed that dilatation of cerebral arterioles is responsible for the impaired autoregulation. Recently, frontal...... blood flow was reported to be lower compared with other brain regions, indicating greater arteriolar tone and perhaps preserved regional cerebral autoregulation. In patients with severe FHF (6 women, 1 man; median age, 46 years; range, 18 to 55 years), we tested the hypothesis that perfusion...... in the anterior cerebral artery would be less affected by an increase in mean arterial pressure compared with the brain area supplied by the middle cerebral artery. Relative changes in cerebral perfusion were determined by transcranial Doppler-measured mean flow velocity (V(mean)), and resistance was determined...

  16. Cerebral blood flow autoregulation in patients with acute bacterial meningitis

    DEFF Research Database (Denmark)

    Møller, Kirsten

    2001-01-01

    Ph.d. afhandlingen omhandler sammenhængen mellem hjernens blodtilførsel (CBF) og middelarterietrykket (MAP) hos patienter med akut bakteriel meningitis. Hos raske er CBF uafhængig af MAP, hvilket kaldes CBF autoregulation. Svækket autoregulation antages at øge risikoen for cerebral hypoperfusion ...

  17. Transfer function analysis for the assessment of cerebral autoregulation using spontaneous oscillations in blood pressure and cerebral blood flow

    NARCIS (Netherlands)

    Abeelen, A.S.S. van den; Beek, A.H. van; Slump, C.H.; Panerai, R.B.; Claassen, J.A.H.R.

    2014-01-01

    Cerebral autoregulation (CA) is a key mechanism to protect the brain against excessive fluctuations in blood pressure (BP) and maintain cerebral blood flow. Analyzing the relationship between spontaneous BP and cerebral blood flow velocity (CBFV) using transfer function analysis is a widely used tec

  18. The effect of S. pneumoniae bacteremia on cerebral blood flow autoregulation in rats

    DEFF Research Database (Denmark)

    Pedersen, Michael; Brandt, Christian T.; Knudsen, Gitte Moos

    2008-01-01

    In the present study, we studied the effect of bacteremia on cerebral blood flow (CBF) autoregulation in a rat model of pneumococcal bacteremia and meningitis. Anesthetized rats were divided into five groups (A to E) and inoculated with pneumococci intravenously and normal saline intracisternally...

  19. Mathematical model for blood flow autoregulation by endothelium-derived relaxing factor

    CERN Document Server

    Chernyavsky, I L; Chernyavsky, Igor L.; Kudryashov, Nikolai A.

    2006-01-01

    The fluid shear stress is an important regulator of the cardiovascular system via the endothelium-derived relaxing factor (EDRF) that is Nitric Oxide. This mechanism involves biochemical reactions in an arterial wall. The autoregulation process is managed by the vascular tonus and gives the negative feedback for the shear stress changing. A new mathematical model for the autoregulation of a blood flow through arteria under the constant transmural pressure is presented. Endothelium-derived relaxing factor Nitric Oxide, the multi-layer structure of an arterial wall, and kinetic-diffusion processes are taken into consideration. The limit case of the thin-wall artery is analytically studied. The stability condition for a stationary point of the linearized system is given. The exact stationary solutions of the origin system are found. The numerical simulation for the autoregulation system is presented. It is shown the arteria adaptation to an initial radial perturbation and the transition of the system to new equi...

  20. Effect of pregnancy on autoregulation of cerebral blood flow in anterior versus posterior cerebrum.

    Science.gov (United States)

    Cipolla, Marilyn J; Bishop, Nicole; Chan, Siu-Lung

    2012-09-01

    Severe preeclampsia and eclampsia are associated with brain edema that forms preferentially in the posterior cerebral cortex possibly because of decreased sympathetic innervation of posterior cerebral arteries and less effective autoregulation during acute hypertension. In the present study, we examined the effect of pregnancy on the effectiveness of cerebral blood flow autoregulation using laser Doppler flowmetry and edema formation by wet:dry weight in acute hypertension induced by phenylephrine infusion in the anterior and posterior cerebrum from nonpregnant (n=8) and late-pregnant (n=6) Sprague-Dawley rats. In addition, we compared the effect of pregnancy on sympathetic innervation by tyrosine hydroxylase staining of posterior and middle cerebral arteries (n=5-6 per group) and endothelial and neuronal NO synthase expression using quantitative PCR (n=3 per group). In nonpregnant animals, there was no difference in autoregulation between the anterior and posterior cerebrum. However, in late-pregnant animals, the threshold of cerebral blood flow autoregulation was shifted to lower pressures in the posterior cerebrum, which was associated with increased neuronal NO synthase expression in the posterior cerebral cortex versus anterior. Compared with the nonpregnant state, pregnancy increased the threshold of autoregulation in both brain regions that was related to decreased expression of endothelial NO synthase. Lastly, acute hypertension during pregnancy caused greater edema formation in both brain cortices that was not attributed to changes in sympathetic innervation. These findings suggest that, although pregnancy shifted the cerebral blood flow autoregulatory curve to higher pressures in both the anterior and posterior cortices, it did not protect from edema during acute hypertension.

  1. Cerebral blood flow autoregulation in hypertension and effects of antihypertensive drugs

    DEFF Research Database (Denmark)

    Barry, David; Lassen, N A

    1984-01-01

    If antihypertensive treatment, especially emergency blood pressure lowering, is always to be safe, more thought should be given to autoregulation of cerebral blood in the hypertensive patient. This topic is reviewed in the present article, in the hypertensive patient. This topic is reviewed...... in the present article, particular emphasis being placed on the resetting of the lower limit of autoregulation to higher pressure in hypertension and the effects of acute administration of anti-hypertensive drugs on CBF and CBF-autoregulation....

  2. Impaired autoregulation of cerebral blood flow in the distressed newborn infant

    DEFF Research Database (Denmark)

    Lou, H C; Lassen, N A; Friis-Hansen, B

    1979-01-01

    Cerebral blood flow was measured, using the 133Xe clearance technique, a few hours after birth in 19 infants with varying degrees of respiratory distress syndrome. Ten of these infants had had asphyxia at birth. The least affected infants with normotension (systolic blood pressure 60 to 65 mm Hg...... at birth and infants with RDS only. CBF varied considerably with spontaneous variations in blood pressure, suggesting that autoregulation was lacking. This finding may explain why distressed premature infants are prone to develop massive capillary bleeding in the germinal layer with penetration...

  3. Effect of short-term hyperventilation on cerebral blood flow autoregulation in patients with acute bacterial meningitis

    DEFF Research Database (Denmark)

    Møller, Kirsten

    2000-01-01

    BACKGROUND AND PURPOSE: Cerebral blood flow (CBF) autoregulation is impaired in patients with acute bacterial meningitis: this may be caused by cerebral arteriolar dilatation. We tested the hypothesis that CBF autoregulation is recovered by acute mechanical hyperventilation in 9 adult patients...... with acute bacterial meningitis. METHODS: Norepinephrine was infused to increase mean arterial pressure (MAP) 30 mm Hg from baseline. Relative changes in CBF were concomitantly recorded by transcranial Doppler ultrasonography of the middle cerebral artery, measuring mean flow velocity (V...... completely during hyperventilation. The slope of the autoregulation curve decreased during hyperventilation compared with normoventilation (Pmeningitis, indicating...

  4. Laser Doppler flowmetry is valid for measurement of cerebral blood flow autoregulation lower limit in rats

    DEFF Research Database (Denmark)

    Tonnesen, Jan; Pryds, Anders; Larsen, Erik Hviid

    2005-01-01

    Laser Doppler flowmetry (LDF) is a recent technique that is increasingly being used to monitor relative changes in cerebral blood flow whereas the intra-arterial 133xenon injection technique is a well-established method for repeated absolute measurements of cerebral blood flow. The aim of this st...... CO2 challenge. Haemodilution influences the two methods differently causing relative overestimation of blood flow by the laser Doppler technique compared to the 133xenon method....... of this study was to validate LDF for assessment of cerebral autoregulation and CO2 reactivity with the 133xenon injection technique as the gold standard. Simultaneous measurements of cerebral blood flow (CBF) were collected by LDF (CBFLDF) and the 133xenon method (CBFXe) while (1) cerebral autoregulation...... was challenged by controlled systemic haemorrhage, or (2) cerebral blood flow was varied by manipulating the arterial partial pressure of CO2 (Pa,CO2). LDF slightly overestimated CBF under conditions of haemorrhagic shock and haemodilution caused by controlled haemorrhage (paired t test, P

  5. Cerebral blood flow and autoregulation: current measurement techniques and prospects for noninvasive optical methods.

    Science.gov (United States)

    Fantini, Sergio; Sassaroli, Angelo; Tgavalekos, Kristen T; Kornbluth, Joshua

    2016-07-01

    Cerebral blood flow (CBF) and cerebral autoregulation (CA) are critically important to maintain proper brain perfusion and supply the brain with the necessary oxygen and energy substrates. Adequate brain perfusion is required to support normal brain function, to achieve successful aging, and to navigate acute and chronic medical conditions. We review the general principles of CBF measurements and the current techniques to measure CBF based on direct intravascular measurements, nuclear medicine, X-ray imaging, magnetic resonance imaging, ultrasound techniques, thermal diffusion, and optical methods. We also review techniques for arterial blood pressure measurements as well as theoretical and experimental methods for the assessment of CA, including recent approaches based on optical techniques. The assessment of cerebral perfusion in the clinical practice is also presented. The comprehensive description of principles, methods, and clinical requirements of CBF and CA measurements highlights the potentially important role that noninvasive optical methods can play in the assessment of neurovascular health. In fact, optical techniques have the ability to provide a noninvasive, quantitative, and continuous monitor of CBF and autoregulation.

  6. Autoregulation of cerebral blood flow to changes in arterial pressure in mild Alzheimer's disease.

    Science.gov (United States)

    Zazulia, Allyson R; Videen, Tom O; Morris, John C; Powers, William J

    2010-11-01

    Studies in transgenic mice overexpressing amyloid precursor protein (APP) demonstrate impaired autoregulation of cerebral blood flow (CBF) to changes in arterial pressure and suggest that cerebrovascular dysfunction may be critically important in the development of pathological Alzheimer's disease (AD). Given the relevance of such a finding for guiding hypertension treatment in the elderly, we assessed autoregulation in individuals with AD. Twenty persons aged 75±6 years with very mild or mild symptomatic AD (Clinical Dementia Rating 0.5 or 1.0) underwent (15)O-positron emission tomography (PET) CBF measurements before and after mean arterial pressure (MAP) was lowered from 107±13 to 92±9 mm Hg with intravenous nicardipine; (11)C-PIB-PET imaging and magnetic resonance imaging (MRI) were also obtained. There were no significant differences in mean CBF before and after MAP reduction in the bilateral hemispheres (-0.9±5.2 mL per 100 g per minute, P=0.4, 95% confidence interval (CI)=-3.4 to 1.5), cortical borderzones (-1.9±5.0 mL per 100 g per minute, P=0.10, 95% CI=-4.3 to 0.4), regions of T2W-MRI-defined leukoaraiosis (-0.3±4.4 mL per 100 g per minute, P=0.85, 95% CI=-3.3 to 3.9), or regions of peak (11)C-PIB uptake (-2.5±7.7 mL per 100 g per minute, P=0.30, 95% CI=-7.7 to 2.7). The absence of significant change in CBF with a 10 to 15 mm Hg reduction in MAP within the normal autoregulatory range demonstrates that there is neither a generalized nor local defect of autoregulation in AD.

  7. Assessment of cerebral blood flow autoregulation (CBF AR) with rheoencephalography (REG): studies in animals

    Science.gov (United States)

    Popovic, Djordje; Bodo, Michael; Pearce, Frederick; van Albert, Stephen; Garcia, Alison; Settle, Tim; Armonda, Rocco

    2013-04-01

    The ability of cerebral vasculature to regulate cerebral blood flow (CBF) in the face of changes in arterial blood pressure (SAP) or intracranial pressure (ICP) is an important guard against secondary ischemia in acute brain injuries, and official guidelines recommend that therapeutic decisions be guided by continuous monitoring of CBF autoregulation (AR). The common method for CBF AR monitoring, which rests on real-time derivation of the correlation coefficient (PRx) between slow oscillations in SAP and ICP is, however, rarely used in clinical practice because it requires invasive ICP measurements. This study investigated whether the correlation coefficient between SAP and the pulsatile component of the non-invasive transcranial bioimpedance signal (rheoencephalography, REG) could be used to assess the state and lower limit of CBF AR. The results from pigs and rhesus macaques affirm the utility of REG; however, additional animal and clinical studies are warranted to assess selectivity of automatic REG-based evaluation of CBF AR.

  8. High-NaCl intake impairs dynamic autoregulation of renal blood flow in ANG II-infused rats

    DEFF Research Database (Denmark)

    Saeed, Aso; Dibona, Gerald F; Marcussen, Niels;

    2010-01-01

    The aim of this study was to investigate dynamic autoregulation of renal blood flow (RBF) in ANG II-infused rats and the influence of high-NaCl intake. Sprague-Dawley rats received ANG II (250 ng·kg(-1)·min(-1) sc) or saline vehicle (sham) for 14 days after which acute renal clearance experiments...

  9. Analysis of interaction between TGF and the myogenic response in renal blood flow autoregulation

    DEFF Research Database (Denmark)

    Feldberg, R; Colding-Jørgensen, M; Holstein-Rathlou, N H

    1995-01-01

    The present study investigates the interaction between the tubuloglomerular feedback (TGF) response and the myogenic mechanism by use of a mathematical model. The two control mechanisms are implemented in a spatially distributed model of the rat renal juxtamedullary afferent arteriole. The model....... The contribution of TGF to smooth muscle activity is assumed to be a linear function of the glomerular capillary pressure. The results show that the myogenic response plays an important role in renal blood flow autoregulation. Without a myogenic response, mechanisms such as TGF that are localized in the distal...... located in the distal part of the afferent arteriole. An ascending myogenic response could enhance the regulatory efficiency of the TGF mechanism by increasing the open-loop gain of the system. However, such a synergistic interaction will only be observed when the two mechanisms operate on more or less...

  10. Monitoring of cerebral blood flow autoregulation in adults undergoing sevoflurane anesthesia: a prospective cohort study of two age groups.

    Science.gov (United States)

    Goettel, Nicolai; Patet, Camille; Rossi, Ariane; Burkhart, Christoph S; Czosnyka, Marek; Strebel, Stephan P; Steiner, Luzius A

    2016-06-01

    Autoregulation of blood flow is a key feature of the human cerebral vascular system to assure adequate oxygenation and metabolism of the brain under changing physiological conditions. The impact of advanced age and anesthesia on cerebral autoregulation remains unclear. The primary objective of this study was to determine the effect of sevoflurane anesthesia on cerebral autoregulation in two different age groups. This is a follow-up analysis of data acquired in a prospective observational cohort study. One hundred thirty-three patients aged 18-40 and ≥65 years scheduled for major noncardiac surgery under general anesthesia were included. Cerebral autoregulation indices, limits, and ranges were compared in young and elderly patient groups. Forty-nine patients (37 %) aged 18-40 years and 84 patients (63 %) aged ≥65 years were included in the study. Age-adjusted minimum alveolar concentrations of sevoflurane were 0.89 ± 0.07 in young and 0.99 ± 0.14 in older subjects (P blood pressure range of 13.8 ± 9.8 mmHg in young and 10.2 ± 8.6 mmHg in older patients (P = 0.079). The lower limit of autoregulation was 66 ± 12 mmHg and 73 ± 14 mmHg in young and older patients, respectively (P = 0.075). The association between sevoflurane concentrations and autoregulatory capacity was similar in both age groups. Our data suggests that the autoregulatory plateau is shortened in both young and older patients under sevoflurane anesthesia with approximately 1 MAC. Lower and upper limits of cerebral blood flow autoregulation, as well as the autoregulatory range, are not influenced by the age of anesthetized patients. Trial registration ClinicalTrials.gov (NCT00512200).

  11. Effect of pregnancy and nitric oxide on the myogenic vasodilation of posterior cerebral arteries and the lower limit of cerebral blood flow autoregulation.

    Science.gov (United States)

    Chapman, Abbie C; Cipolla, Marilyn J; Chan, Siu-Lung

    2013-09-01

    Hemorrhage during parturition can lower blood pressure beyond the lower limit of cerebral blood flow (CBF) autoregulation that can cause ischemic brain injury. However, the impact of pregnancy on the lower limit of CBF autoregulation is unknown. We measured myogenic vasodilation, a major contributor of CBF autoregulation, in isolated posterior cerebral arteries (PCAs) from nonpregnant and late-pregnant rats (n = 10/group) while the effect of pregnancy on the lower limit of CBF autoregulation was studied in the posterior cerebral cortex during controlled hemorrhage (n = 8). Pregnancy enhanced myogenic vasodilation in PCA and shifted the lower limit of CBF autoregulation to lower pressures. Inhibition of nitric oxide synthase (NOS) prevented the enhanced myogenic vasodilation during pregnancy but did not affect the lower limit of CBF autoregulation. The shift in the autoregulatory curve to lower pressures during pregnancy is likely protective of ischemic injury during hemorrhage and appears to be independent of NOS.

  12. Chronically impaired autoregulation of cerebral blood flow in long-term diabetics

    DEFF Research Database (Denmark)

    Bentsen, N; Larsen, B; Lassen, N A

    1975-01-01

    of the patient. Regression analysis was carried out on the results in order to quantify autoregulatory capacity. In the control patients CBF did not vary with moderate blood pressure variations, indicating normal autoregulation. In four of the 16 diabetic patients CBF showed significant pressure dependency...

  13. Impaired autoregulation of blood flow in subcutaneous tissue of long-term type 1 (insulin-dependent) diabetic patients with microangiopathy

    DEFF Research Database (Denmark)

    Kastrup, J; Nørgaard, T; Parving, H H;

    1985-01-01

    Autoregulation of blood flow in subcutaneous tissue was studied at the level of the lateral malleolus in eight long-term Type 1 (insulin-dependent) diabetic patients with clinical microangiopathy, eight short-term Type 1 diabetic patients without clinical microangiopathy and seven healthy control...... by activation of the leg muscle vein pump (heel raising). Mean arterial blood pressure was thus varied between 60 and 160 mmHg. In normal and short-term diabetic subjects blood flow remained within 10% of control values during the changes in arterial blood pressure. In six of the eight Type 1 diabetic patients...... with clinical microangiopathy, autoregulation of blood flow was impaired, blood flow changing approximately 20% per 10 mmHg change in arterial blood pressure; the slope of the autoregulation curves was significantly higher compared with the two control groups (p less than 0.02). Resting mean arterial blood...

  14. Impaired autoregulation of blood flow in skeletal muscle and subcutaneous tissue in long-term Type 1 (insulin-dependent) diabetic patients with microangiopathy

    DEFF Research Database (Denmark)

    Faris, I; Vagn Nielsen, H; Henriksen, O

    1983-01-01

    Autoregulation of blood flow was studied in skeletal muscle and subcutaneous tissue in seven Type 1 (insulin-dependent) diabetic patients (median age: 36 years) with nephropathy and retinopathy and in eight normal subjects of the same age. Blood flow was measured by the local 133Xe washout...

  15. Upper limit of cerebral blood flow autoregulation in experimental renovascular hypertension in the baboon

    DEFF Research Database (Denmark)

    Strandgaard, S; Jones, J V; MacKenzie, E T;

    1975-01-01

    The effect of arterial hypertension on cerebral blood flow was studied by the intracarotid 133Xe clearance method in baboons. The arterial blood pressure was raised in gradual steps with angiotensin. Baboons with renal hypertension of 8-12 weeks duration were studied along with normotensive baboons....... In initially normotensive baboons, cerebral blood flow remained constant until the mean arterial blood pressure had risen to the range of 140 to 154 mm Hg; thereafter cerebral blood flow increased with each rise in mean arterial blood pressure. In the chronically hypertensive baboons, cerebral blood flow...... remained constant until the mean arterial blood pressure had been elevated to the range of 155 to 169 mm Hg. Thus, in chronic hypertension it appears that there are adaptive changes in the cerebral circulation which may help to protect the brain from further increases in arterial blood pressure....

  16. High-NaCl diet impairs dynamic renal blood flow autoregulation in rats with adenine-induced chronic renal failure

    DEFF Research Database (Denmark)

    Saeed, Aso; DiBona, Gerald F; Grimberg, Elisabeth

    2014-01-01

    This study examined the effects of 2 wk of high-NaCl diet on kidney function and dynamic renal blood flow autoregulation (RBFA) in rats with adenine-induced chronic renal failure (ACRF). Male Sprague-Dawley rats received either chow containing adenine or were pair-fed an identical diet without...... increase the susceptibility to hypertensive end-organ injury and progressive renal failure by facilitating pressure transmission to the microvasculature....... adenine (controls). After 10 wk, rats were randomized to either remain on the same diet (0.6% NaCl) or to be switched to high 4% NaCl chow. Two weeks after randomization, renal clearance experiments were performed under isoflurane anesthesia and dynamic RBFA, baroreflex sensitivity (BRS), systolic...

  17. T-type Ca(2+) channels and Autoregulation of Local Blood Flow

    DEFF Research Database (Denmark)

    Jensen, Lars Jørn; Nielsen, Morten Schak; Salomonsson, Max;

    2017-01-01

    L-type voltage gated Ca(2+) channels are considered to be the primary source of calcium influx during the myogenic response. However, many vascular beds also express T-type voltage gated Ca(2+) channels. Recent studies suggest that these channels may also play a role in autoregulation. At low pre...

  18. High-NaCl diet impairs dynamic renal blood flow autoregulation in rats with adenine-induced chronic renal failure.

    Science.gov (United States)

    Saeed, Aso; DiBona, Gerald F; Grimberg, Elisabeth; Nguy, Lisa; Mikkelsen, Minne Line Nedergaard; Marcussen, Niels; Guron, Gregor

    2014-03-15

    This study examined the effects of 2 wk of high-NaCl diet on kidney function and dynamic renal blood flow autoregulation (RBFA) in rats with adenine-induced chronic renal failure (ACRF). Male Sprague-Dawley rats received either chow containing adenine or were pair-fed an identical diet without adenine (controls). After 10 wk, rats were randomized to either remain on the same diet (0.6% NaCl) or to be switched to high 4% NaCl chow. Two weeks after randomization, renal clearance experiments were performed under isoflurane anesthesia and dynamic RBFA, baroreflex sensitivity (BRS), systolic arterial pressure variability (SAPV), and heart rate variability were assessed by spectral analytical techniques. Rats with ACRF showed marked reductions in glomerular filtration rate and renal blood flow (RBF), whereas mean arterial pressure and SAPV were significantly elevated. In addition, spontaneous BRS was reduced by ∼50% in ACRF animals. High-NaCl diet significantly increased transfer function fractional gain values between arterial pressure and RBF in the frequency range of the myogenic response (0.06-0.09 Hz) only in ACRF animals (0.3 ± 4.0 vs. -4.4 ± 3.8 dB; P renal failure by facilitating pressure transmission to the microvasculature.

  19. Impaired autoregulation of cerebral blood flow in long-term type I (insulin-dependent) diabetic patients with nephropathy and retinopathy

    DEFF Research Database (Denmark)

    Kastrup, J; Rørsgaard, S; Parving, H H;

    1986-01-01

    . Cerebral blood flow was measured by the intravenous 133Xenon method. Mean arterial blood pressure was elevated approximately 30 mmHg by intravenous infusion of angiotensin amide II and lowered about 10 mmHg by intravenous infusion of trimethaphan camsylate. In the control subjects the flow/pressure curve...... was horizontal indicating perfect autoregulation. In the diabetic patients the flow/pressure curve showed a significant slope with a 1.9% change in CBF per 10 mmHg change in mean arterial blood pressure as compared to a slope value of -0.4% in the control subjects (P less than 0.05). Our results confirm...

  20. Zinc-Finger Nuclease Knockout of Dual-Specificity Protein Phosphatase-5 Enhances the Myogenic Response and Autoregulation of Cerebral Blood Flow in FHH.1BN Rats

    Science.gov (United States)

    Fan, Fan; Geurts, Aron M.; Pabbidi, Mallikarjuna R.; Smith, Stanley V.; Harder, David R.; Jacob, Howard; Roman, Richard J.

    2014-01-01

    We recently reported that the myogenic responses of the renal afferent arteriole (Af-Art) and middle cerebral artery (MCA) and autoregulation of renal and cerebral blood flow (RBF and CBF) were impaired in Fawn Hooded hypertensive (FHH) rats and were restored in a FHH.1BN congenic strain in which a small segment of chromosome 1 from the Brown Norway (BN) containing 15 genes including dual-specificity protein phosphatase-5 (Dusp5) were transferred into the FHH genetic background. We identified 4 single nucleotide polymorphisms in the Dusp5 gene in FHH as compared with BN rats, two of which altered CpG sites and another that caused a G155R mutation. To determine whether Dusp5 contributes to the impaired myogenic response in FHH rats, we created a Dusp5 knockout (KO) rat in the FHH.1BN genetic background using a zinc-finger nuclease that introduced an 11 bp frame-shift deletion and a premature stop codon at AA121. The expression of Dusp5 was decreased and the levels of its substrates, phosphorylated ERK1/2 (p-ERK1/2), were enhanced in the KO rats. The diameter of the MCA decreased to a greater extent in Dusp5 KO rats than in FHH.1BN and FHH rats when the perfusion pressure was increased from 40 to 140 mmHg. CBF increased markedly in FHH rats when MAP was increased from 100 to 160 mmHg, and CBF was better autoregulated in the Dusp5 KO and FHH.1BN rats. The expression of Dusp5 was higher at the mRNA level but not at the protein level and the levels of p-ERK1/2 and p-PKC were lower in cerebral microvessels and brain tissue isolated from FHH than in FHH.1BN rats. These results indicate that Dusp5 modulates myogenic reactivity in the cerebral circulation and support the view that a mutation in Dusp5 may enhance Dusp5 activity and contribute to the impaired myogenic response in FHH rats. PMID:25397684

  1. Zinc-finger nuclease knockout of dual-specificity protein phosphatase-5 enhances the myogenic response and autoregulation of cerebral blood flow in FHH.1BN rats.

    Directory of Open Access Journals (Sweden)

    Fan Fan

    Full Text Available We recently reported that the myogenic responses of the renal afferent arteriole (Af-Art and middle cerebral artery (MCA and autoregulation of renal and cerebral blood flow (RBF and CBF were impaired in Fawn Hooded hypertensive (FHH rats and were restored in a FHH.1BN congenic strain in which a small segment of chromosome 1 from the Brown Norway (BN containing 15 genes including dual-specificity protein phosphatase-5 (Dusp5 were transferred into the FHH genetic background. We identified 4 single nucleotide polymorphisms in the Dusp5 gene in FHH as compared with BN rats, two of which altered CpG sites and another that caused a G155R mutation. To determine whether Dusp5 contributes to the impaired myogenic response in FHH rats, we created a Dusp5 knockout (KO rat in the FHH.1BN genetic background using a zinc-finger nuclease that introduced an 11 bp frame-shift deletion and a premature stop codon at AA121. The expression of Dusp5 was decreased and the levels of its substrates, phosphorylated ERK1/2 (p-ERK1/2, were enhanced in the KO rats. The diameter of the MCA decreased to a greater extent in Dusp5 KO rats than in FHH.1BN and FHH rats when the perfusion pressure was increased from 40 to 140 mmHg. CBF increased markedly in FHH rats when MAP was increased from 100 to 160 mmHg, and CBF was better autoregulated in the Dusp5 KO and FHH.1BN rats. The expression of Dusp5 was higher at the mRNA level but not at the protein level and the levels of p-ERK1/2 and p-PKC were lower in cerebral microvessels and brain tissue isolated from FHH than in FHH.1BN rats. These results indicate that Dusp5 modulates myogenic reactivity in the cerebral circulation and support the view that a mutation in Dusp5 may enhance Dusp5 activity and contribute to the impaired myogenic response in FHH rats.

  2. Local Control of Blood Flow

    Science.gov (United States)

    Clifford, Philip S.

    2011-01-01

    Organ blood flow is determined by perfusion pressure and vasomotor tone in the resistance vessels of the organ. Local factors that regulate vasomotor tone include myogenic and metabolic autoregulation, flow-mediated and conducted responses, and vasoactive substances released from red blood cells. The relative importance of each of these factors…

  3. Mimicking of cerebral autoregulation by flow-dependent cerebrovascular resistance: a feasibility study.

    Science.gov (United States)

    Kaufmann, Tim A S; Wong, Kai C; Schmitz-Rode, Thomas; Steinseifer, Ulrich

    2012-04-01

    Understanding circulatory autoregulation is essential for improving physiological control of rotary blood pumps and support conditions during cardiopulmonary bypass (CPB). Cerebral autoregulation (CAR), arguably the most critical, is the body's intrinsic ability to maintain sufficient cerebral blood flow (CBF) despite changes in aortic perfusion pressure. It is therefore imperative to include this mechanism into computational fluid dynamics (CFD), particle image velocimetry (PIV), or mock circulation loop (MCL) studies. Without such inclusions, potential losses of CBF are overestimated. In this study, a mathematical model to mimic CAR is implemented in a MCL- and PIV-validated CFD model. A three-dimensional model of the human vascular system was created from magnetic resonance imaging records. Numerical flow simulations were performed for physiological conditions and CPB. The inlet flow was varied between 4.5 and 6 L/min. Arterial outlets were modeled using vessel-specific, flow-dependent cerebrovascular resistances (CVRs), resulting in a variation of the pressure drop between 0 and 80mmHg. CBF is highly dependent on the level of CAR during CPB. By varying the CVR parameters up to the beginning of plateau phase, it can be regulated between 0 and 80% of physiological CBF. So while implementing autoregulation, CBF remains unchanged during a simulated native cardiac output of 5L/min or CPB support of 6L/min. Neglecting CAR, constant backflow from the brain occurs for some cannula positions. Using flow-dependent CVR, CBF returns to its baseline at a rate of recovery of 0.25s. Results demonstrate that modeling of CAR by flow-dependent CVR delivers feasible results. The presented method can be used to optimize physiological control of assist devices dependent upon different levels of CAR representing different patients.

  4. Cerebral Autoregulation in Normal Pregnancy and Preeclampsia

    NARCIS (Netherlands)

    van Veen, Teelkien R.; Panerai, Ronney B.; Haeri, Sina; Griffioen, Annemiek C.; Zeeman, Gerda; Belfort, Michael A.

    2013-01-01

    OBJECTIVE: To test the hypothesis that preeclampsia is associated with impaired dynamic cerebral autoregulation. METHODS: In a prospective cohort analysis, cerebral blood flow velocity of the middle cerebral artery (determined by transcranial Doppler), blood pressure (determined by noninvasive arter

  5. Altered free radical metabolism in acute mountain sickness: implications for dynamic cerebral autoregulation and blood-brain barrier function

    DEFF Research Database (Denmark)

    Bailey, D M; Evans, K A; James, P E

    2008-01-01

    (2)) and following 6 h passive exposure to hypoxia (12% O(2)). Blood flow velocity in the middle cerebral artery (MCAv) and mean arterial blood pressure (MAP) were measured for determination of CA following calculation of transfer function analysis and rate of regulation (RoR). Nine subjects......We tested the hypothesis that dynamic cerebral autoregulation (CA) and blood-brain barrier (BBB) function would be compromised in acute mountain sickness (AMS) subsequent to a hypoxia-mediated alteration in systemic free radical metabolism. Eighteen male lowlanders were examined in normoxia (21% O...

  6. Nephron blood flow dynamics measured by laser speckle contrast imaging

    DEFF Research Database (Denmark)

    von Holstein-Rathlou, Niels-Henrik; Sosnovtseva, Olga V; Pavlov, Alexey N

    2011-01-01

    Tubuloglomerular feedback (TGF) has an important role in autoregulation of renal blood flow and glomerular filtration rate (GFR). Because of the characteristics of signal transmission in the feedback loop, the TGF undergoes self-sustained oscillations in single-nephron blood flow, GFR, and tubula...

  7. Cerebral blood flow in the neonate.

    Science.gov (United States)

    Vutskits, Laszlo

    2014-01-01

    Ensuring adequate oxygenation of the developing brain is the cornerstone of neonatal critical care. Despite decades of clinical research dedicated to this issue of paramount importance, our knowledge and understanding regarding the physiology and pathophysiology of neonatal cerebral blood flow are still rudimentary. This review primarily focuses on currently available human clinical and experimental data on cerebral blood flow and autoregulation in the preterm and term infant. Limitations of systemic blood pressure values as surrogates for monitoring adequate cerebral oxygen delivery are discussed. Particular emphasis is placed on the high interindividual variability in cerebral blood flow values, vasoreactivity, and autoregulatory thresholds making the applications of normative values highly questionable. Technical and ethical difficulties to conduct such trials leave us with a near complete lack of knowledge on how pharmacological and surgical interventions impact on cerebral autoregulation. The ensemble of these works argues for the necessity of highly individualized care by taking advantage of continuous bedside monitoring of cerebral circulation. They also point to the urgent need for further studies addressing the exciting but difficult issue of cerebral blood flow autoregulation in the neonate.

  8. Elevation of D-glucose impairs coronary artery autoregulation after slight reduction of coronary flow.

    Science.gov (United States)

    Wascher, T C; Bachernegg, M; Kickenweiz, E; Stark, G; Stark, U; Toplak, H; Graier, W F; Krejs, G J

    1995-08-01

    Diabetes mellitus is thought to increase the susceptibility of tissue to hypoxic injury through D-glucose-induced alterations of intracellular metabolism. Therefore the effects of hyperglycaemia on coronary artery autoregulation under slight reduction of coronary flow were investigated in isolated perfused guinea-pig hearts. Under normal (10 mM) D-glucose concentrations coronary autoregulation was intact in response to a slight reduction of coronary flow (from 6 to 4.5 mL min-1) when L-arginine as a precursor of the endothelium-derived relaxing factor (EDRF/NO) was available and formation of prostaglandines was intact. Under high (44 mM) D-glucose concentrations on the other hand, a sustained vasodilatation dependent on the availability of L-arginine was observed, when formation of prostaglandins was blocked. This effect was partially reduced in the presence of prostaglandin synthesis. Furthermore, the effect of L-arginine under both conditions could be antagonized by the L-arginine-analogue NG-nitro-L-arginine-methyl-ester (100 microM). Our results suggest that hyperglycaemia impairs coronary artery autoregulation by reducing the threshold for hypoxic vasodilatation in an EDRF/NO-dependent manner. Concomitantly a shift from the formation of vasodilatatory to vasoconstrictive prostaglandines was observed. These results might be of particular interest in patients with diabetes mellitus and ischaemic heart disease.

  9. Cardiac baroreflex function and dynamic cerebral autoregulation in elderly Masters athletes

    NARCIS (Netherlands)

    Aengevaeren, V.L.; Claassen, J.A.H.R.; Levine, B.D.; Zhang, R.

    2013-01-01

    Cerebral blood flow (CBF) is stably maintained through the combined effects of blood pressure (BP) regulation and cerebral autoregulation. Previous studies suggest that aerobic exercise training improves cardiac baroreflex function and beneficially affects BP regulation, but may negatively affect ce

  10. Rhythmic components in renal autoregulation: Nonlinear modulation phenomena

    DEFF Research Database (Denmark)

    Pavlov, A. N.; Sosnovtseva, Olga; Pavlova, O. N.;

    2009-01-01

    Autoregulation of nephron blood flow involves two oscillatory processes: the tubular-flow sensitive tubuloglomerular feedback (TGF) mechanism and the blood-pressure sensitive myogenic mechanism. Both act to regulate the diameter of the afferent arteriole, which carries blood to the nephron...

  11. Effects of desflurane on cerebral autoregulation.

    Science.gov (United States)

    Bedforth, N M; Girling, K J; Skinner, H J; Mahajan, R P

    2001-08-01

    The aim of this study was to determine the effects of desflurane, at 1 and 1.5 MAC, on cerebral autoregulation. Data were analysed from eight patients undergoing non-neurosurgical procedure. The blood flow velocity in the middle cerebral artery was measured by transcranial Doppler ultrasound and cerebral autoregulation was assessed by the transient hyperaemic response test. Partial pressure of the end-tidal carbon dioxide (PE'(CO(2))) and mean arterial pressure were measured throughout the study. Anaesthesia was induced with propofol and was maintained with desflurane at end-tidal concentrations of 7.4% (1 MAC) or 10.8% (1.5 MAC). The order of administration of the desflurane concentrations was determined randomly and a period of 15 min was allowed for equilibration at each concentration. The transient hyperaemic response tests were performed before induction of anaesthesia and after equilibration with each concentration of desflurane. An infusion of phenylephrine was used to maintain pre-induction mean arterial pressure and ventilation was adjusted to maintain the pre-induction value of PE'(CO(2)) throughout the study. Two indices derived from the transient hyperaemic response test (the transient hyperaemic response ratio and the strength of autoregulation) were used to assess cerebral autoregulation. Desflurane resulted in a marked and significant impairment in cerebral autoregulation; at concentrations of 1.5 MAC, autoregulation was almost abolished.

  12. Impaired Cerebral Autoregulation Using Near-Infrared Spectroscopy and Its Relation to Clinical Outcomes in Premature Infants

    NARCIS (Netherlands)

    Caicedo, Alexander; De Smet, Dominique; Vanderhaegen, Joke; Naulaers, Gunnar; Wolf, Martin; Lemmers, Petra; Van Bel, Frank; Ameye, Lieveke; Van Huffel, Sabine; LaManna, JC; Puchowicz, MA; Xu, K; Harrison, DK; Bruley, DF

    2011-01-01

    The concordance between the change in the Mean Arterial Blood Pressure (MABP) and the Cerebral Blood Flow (CBF) is studied using the Correlation, Coherence and Partial Coherence methods in order to detect Impaired Cerebral Autoregulation in Neonates. The presence of impaired autoregulation is assess

  13. Aortic blood flow subtraction: an alternative method for measuring total renal blood flow in conscious dogs

    DEFF Research Database (Denmark)

    Sandgaard, N C F; Andersen, J L; Holstein-Rathlou, N-H;

    2002-01-01

    We have measured total renal blood flow (TRBF) as the difference between signals from ultrasound flow probes implanted around the aorta above and below the renal arteries. The repeatability of the method was investigated by repeated, continuous infusions of angiotensin II and endothelin-1 seven...... arterial blood pressure by 49% and decreased TRBF by 12%, providing an increase in renal vascular resistance of 69%. Dynamic analysis showed autoregulation of renal blood flow in the frequency range ... of TRBF by aortic blood flow subtraction is a practical and reliable method that allows direct comparison of excretory function and renal blood flow from two kidneys. The method also allows direct comparison between TRBF and flow in the caudal aorta....

  14. Dynamic cerebral autoregulation to induced blood pressure changes in human experimental and clinical sepsis

    DEFF Research Database (Denmark)

    Berg, Ronan M G; Plovsing, Ronni R; Bailey, Damian M

    2016-01-01

    (Pvolunteers at baseline; Pvolunteers after LPS). The corresponding RoR values increased from 0·46 (0·31-0·49) s(-1) at baseline to 0·58 (0·36-0·74) s(-1) after LPS (Pvolunteers, whereas they were similar to values observed in patients [0·43 (0·36-0·52) s...... shock. In this study, we hypothesized that this pattern of response would be identical during induced changes in blood pressure. Dynamic cerebral autoregulation was assessed in nine healthy volunteers and six septic patients. The healthy volunteers underwent a 4-h intravenous infusion of LPS (total dose......R). This was performed before and after LPS infusion in healthy volunteers, and within 72 h following clinical diagnosis of sepsis in patients. In healthy volunteers, thigh-cuff deflation caused a MAP reduction of 16 (13-20) % at baseline and 18 (16-20) % after LPS, while the MAP reduction was 12 (11-13) % in patients...

  15. Nonlinear interactions in renal blood flow regulation

    DEFF Research Database (Denmark)

    Marsh, Donald J.; Sosnovtseva, Olga; Chon, Ki H.

    2005-01-01

    , identical except for the strength of TGF input, with a third, fixed resistance segment representing prearteriolar vessels. The two arteriolar segments are electrically coupled. The arteriolar, glomerular, and tubular models are linked; TGF modulates arteriolar circumference, which determines vascular...... resistance and glomerular capillary pressure. The model couples TGF input to voltage-gated Ca channels. It predicts autoregulation of GFR and renal blood flow, matches experimental measures of tubular pressure and macula densa NaCl concentration, and predicts TGF-induced oscillations and a faster smaller...

  16. Nonlinear Analysis of Renal Autoregulation Under Broadband Forcing Conditions

    DEFF Research Database (Denmark)

    Marmarelis, V Z; Chon, K H; Chen, Y M;

    1994-01-01

    Linear analysis of renal blood flow fluctuations, induced experimentally in rats by broad-band (pseudorandom) arterial blood pressure forcing at various power levels, has been unable to explain fully the dynamics of renal autoregulation at low frequencies. This observation has suggested the possi...

  17. CHARACTERIZATION OF RENAL BLOOD FLOW REGULATION BASED ON WAVELET COEFFICIENTS

    DEFF Research Database (Denmark)

    Pavlov, A.N.; Pavlova, O.N.; Mosekilde, Erik;

    2010-01-01

    The purpose of this study is to demonstrate the possibility of revealing new characteristic features of renal blood flow autoregulation in healthy and pathological states through the application of discrete wavelet transforms to experimental time series for normotensive and hypertensive rats....... A reduction in the variability of the wavelet coefficients in hypertension is observed at both the microscopic level of the blood flow in efferent arterioles of individual nephrons and at the macroscopic level of the blood pressure in the main arteries. The reduction is manifest in both of the main frequency...

  18. Autonomic dysfunction and impaired cerebral autoregulation in cirrhosis

    DEFF Research Database (Denmark)

    Frøkjaer, Vibe G; Mehlsen, Jesper; Knudsen, Gitte M;

    2006-01-01

    by norepinephrine infusion (NE). The severity of liver disease was assessed using the Child-Pugh scale (class A, mild; class B, moderate; class C, severe liver dysfunction).NE increased blood pressure similarly in the controls (27 (24-32) mmHg) and patients with the most severe liver cirrhosis (Child-Pugh C, 31 (26.......0+/-2.0 bpm) compared to the controls (21.7+/-2.2 bpm, p=0.001, Tukey' test). Systolic blood pressure fell during head-up tilt only in patients with severe cirrhosis. Our results imply that cerebral autoregulation was impaired in the most severe cases of liver cirrhosis, and that those with impaired cerebral......Cerebral blood flow autoregulation is lost in patients with severe liver cirrhosis. The cause of this is unknown. We determined whether autonomic dysfunction was related to impaired cerebral autoregulation in patients with cirrhosis. Fourteen patients with liver cirrhosis and 11 healthy volunteers...

  19. Autoregulation of brain circulation in severe arterial hypertension

    DEFF Research Database (Denmark)

    Strandgaard, S; Olesen, Jes; Skinhoj, E

    1973-01-01

    beyond which an increase of cerebral blood flow above the resting value was seen without clinical symptoms. No evidence of vasospasm was found in any patient at high blood pressure. These observations may be of importance for the understanding of the pathogenesis of hypertensive encephalopathy.......Cerebral blood flow was studied by the arteriovenous oxygen difference method in patients with severe hypertension and in normotensive controls. The blood pressure was lowered to study the lower limit of autoregulation (the pressure below which cerebral blood flow decreases) and the pressure limit...... of brain hypoxia. Both limits were shifted upwards in the hypertensive patients, probably as a consequence of hypertrophy of the arteriolar walls. These findings have practical implications for antihypertensive therapy.When the blood pressure was raised some patients showed an upper limit of autoregulation...

  20. A simple model of cerebral blood flow dependence on arterial blood pressure

    CERN Document Server

    Gersten, Alexander

    2011-01-01

    It is shown that the dependence of the cerebral blood flow (CBF) on mean arterial blood pressure (MABP) can be described with a simple model having the following assumptions. Below certain MABP (denoted as MABP1) there are no autoregulatory or feedback mechanisms influencing CBF. Between MABP1 and MABP2 (MABP at which breakthrough accurs) there is a linear (on MABP) dependent feedback with a sloap depending very much on the individual considered. The classical autoregulation model with a plateau in between MABP1 and MABP2 is a particular case of this model. The model describes well the experiments performed on dogs (Harper 1966), for which the individual feedback sloap parameter varied to great extent, indicating the importance of mesurments on individuals against averaged mesurments (or measurments on diffent individuals) which superficially support the classical autoregulation. New effect of decreased CBF, while increasing MABP, was observed.

  1. Changes of cerebral blood flow and cerebral autoregulation during propofol or sevoflurane anaesthesia in patients undergoing gynecologic laparoscopic surgery%七氟醚或异丙酚对妇科腹腔镜手术病人脑血流量和脑血管自身调节能力的影响

    Institute of Scientific and Technical Information of China (English)

    田复波; 黄绍强; 梁伟民

    2009-01-01

    Objective To observe the effects of propofol or sevoflurane combined with remifentanil on cerebral blood flow (CBF) and cerebral autoregulation in patients undergoing gynecologic laparoscopic surgery. Methods Forty patients were randomly divided into two groups: the propofol group (group P, n=20) and the sevoflurane group (group S, n=20). Anaesthesia was induced with target-controlled infusion (TCI) of propofol and remifentanil in group P, with an inhaled induction of sevoflurane and TCI of remifentanil in group S, respectively. The depth of anesthesia was regulated according to bispectral index (BIS). The pressure of end-tidal carbon dioxide (P_(ET)CO_2) was kept at 35-40 mmHg by mechanical ventilation. The mean arterial pressure (MAP), heart rate (HR), pressure of arterial carbon dioxide (PaCO_2), P_(ET)CO_2, time-averaged peak flow velocity (TAP) and the transient hyperaemic response ratio (THRR) were recorded at 7 different time points: supine position (T_1) and supine lithotomy position before induction (T_2), the instant and 5 min after tracheal intubation (T_3,T_4), the instant and 15 min after abdominal CO_2 insufflation and trendelenburg-lithotomy position (T_5,T_6), and 10 min after the deflation abdomen (T_7), respectively. Results Compared with the baseline values at T_1, TAP was not significantly changed at T_2, T_5, or T_6 in group P, but was markedly decreased at T_3, T_4 and T_7. TAP in group S only decreased at T_4 and T_7, while it was much higher than that in group P at T_3. In group S, THRR was markedly lowered at T_3 compared with that at T_1; but in group P, it showed a significant increase at T_3. Conclusions Combined with remifentanil, propofol decreased CBF, but has no effect on the brain self-regulation. When inhaled in high concentrations, sevoflurane significantly reduces the brain self-regulation. Intraoperation pneumoperitoneum and postural factor significantly increase CBF, playing a stronger role than the narcotic drugs in clinical

  2. On the efficacy of linear system analysis of renal autoregulation in rats

    DEFF Research Database (Denmark)

    Chon, K H; Chen, Y M; Holstein-Rathlou, N H;

    1993-01-01

    In order to assess the linearity of the mechanisms subserving renal blood flow autoregulation, broad-band arterial pressure fluctuations at three different power levels were induced experimentally and the resulting renal blood flow responses were recorded. Linear system analysis methods were...

  3. Ocular Blood Flow and Normal Tension Glaucoma

    Directory of Open Access Journals (Sweden)

    Ning Fan

    2015-01-01

    Full Text Available Normal tension glaucoma (NTG is known as a multifactorial optic neuropathy characterized by progressive retinal ganglion cell death and glaucomatous visual field loss, even though the intraocular pressure (IOP does not exceed the normal range. The pathophysiology of NTG remains largely undetermined. It is hypothesized that the abnormal ocular blood flow is involved in the pathogenesis of this disease. A number of evidences suggested that the vascular factors played a significant role in the development of NTG. In recent years, the new imaging techniques, fluorescein angiography, color Doppler imaging (CDI, magnetic resonance imaging (MRI, and laser speckle flowgraphy (LSFG, have been used to evaluate the ocular blood flow and blood vessels, and the impaired vascular autoregulation was found in patients with NTG. Previous studies showed that NTG was associated with a variety of systemic diseases, including migraine, Alzheimer’s disease, primary vascular dysregulation, and Flammer syndrome. The vascular factors were involved in these diseases. The mechanisms underlying the abnormal ocular blood flow in NTG are still not clear, but the risk factors for glaucomatous optic neuropathy likely included oxidative stress, vasospasm, and endothelial dysfunction.

  4. Human cerebral autoregulation before, during and after spaceflight.

    Science.gov (United States)

    Iwasaki, Ken-ichi; Levine, Benjamin D; Zhang, Rong; Zuckerman, Julie H; Pawelczyk, James A; Diedrich, André; Ertl, Andrew C; Cox, James F; Cooke, William H; Giller, Cole A; Ray, Chester A; Lane, Lynda D; Buckey, Jay C; Baisch, Friedhelm J; Eckberg, Dwain L; Robertson, David; Biaggioni, Italo; Blomqvist, C Gunnar

    2007-03-15

    Exposure to microgravity alters the distribution of body fluids and the degree of distension of cranial blood vessels, and these changes in turn may provoke structural remodelling and altered cerebral autoregulation. Impaired cerebral autoregulation has been documented following weightlessness simulated by head-down bed rest in humans, and is proposed as a mechanism responsible for postspaceflight orthostatic intolerance. In this study, we tested the hypothesis that spaceflight impairs cerebral autoregulation. We studied six astronauts approximately 72 and 23 days before, after 1 and 2 weeks in space (n = 4), on landing day, and 1 day after the 16 day Neurolab space shuttle mission. Beat-by-beat changes of photoplethysmographic mean arterial pressure and transcranial Doppler middle cerebral artery blood flow velocity were measured during 5 min of spontaneous breathing, 30 mmHg lower body suction to simulate standing in space, and 10 min of 60 deg passive upright tilt on Earth. Dynamic cerebral autoregulation was quantified by analysis of the transfer function between spontaneous changes of mean arterial pressure and cerebral artery blood flow velocity, in the very low- (0.02-0.07 Hz), low- (0.07-0.20 Hz) and high-frequency (0.20-0.35 Hz) ranges. Resting middle cerebral artery blood flow velocity did not change significantly from preflight values during or after spaceflight. Reductions of cerebral blood flow velocity during lower body suction were significant before spaceflight (P e.m.) cerebral blood flow velocity after 10 min upright tilt were smaller after than before spaceflight (absolute, -4 +/- 3 cm s(-1) after versus -14 +/- 3 cm s(-1) before, P = 0.001; and percentage, -8.0 +/- 4.8% after versus -24.8 +/- 4.4% before, P < 0.05), consistent with improved rather than impaired cerebral blood flow regulation. Low-frequency gain decreased significantly (P < 0.05) by 26, 23 and 27% after 1 and 2 weeks in space and on landing day, respectively, compared with

  5. Intrinsic regulation of blood flow in adipose tissue

    DEFF Research Database (Denmark)

    Henriksen, O; Nielsen, Steen Levin; Paaske, W

    1976-01-01

    Previous studies on intact human subcutaneous tissue have shown, that blood flow remains constant during minor changes in perfusion pressure. This so-called autoregulatory response has not been demonstrable in isolated preparations of adipose tissue. In the present study on isolated, denervated...... subcutaneous tissue in female rabbits only 2 of 12 expts. revealed an autoregulatory response during reduction in arterial perfusion pressure. Effluent blood flow from the tissue in the control state was 15.5 ml/100 g-min (S.D. 6.4, n = 12) corresponding to slight vasodilatation of the exposed tissue....... Following total ischemia all experiments showed a period with reactive hyperemia, and both duration of hyperemia and excess flow was related to the duration of the ischemia. This response therefore seems more resistant to the experimental procedure, while autoregulation of blood flow to lowered pressure...

  6. Cerebral autoregulation in the preterm newborn using near-infrared spectroscopy

    DEFF Research Database (Denmark)

    Eriksen, Vibeke R; Hahn, Gitte H; Greisen, Gorm

    2015-01-01

    The aim was to compare two conventional methods used to describe cerebral autoregulation (CA): frequency-domain analysis and time-domain analysis. We measured cerebral oxygenation (as a surrogate for cerebral blood flow) and mean arterial blood pressure (MAP) in 60 preterm infants. In the frequency...

  7. Phase Synchronization of Pressure-Flow Fluctuations: A measure of cerebral autoregulation dynamics

    CERN Document Server

    Chen, Z; Ivanov, P C; Novák, V; Stanley, H E

    2006-01-01

    We employ a synchronization method to investigate the relationship between the blood flow velocities (BFV) in the middle cerebral arteries (MCA) and beat-to-beat blood pressure (BP) recorded from a finger in healthy and post-stroke subjects during four different physiologic conditions: supine, head-up tilt, hyperventilation and CO$_2$ rebreathing in upright position. To evaluate whether instantaneous BP changes are synchronized with changes in the BFV, we compare dynamical patterns in the instantaneous phases of these signals, obtained from the Hilbert transform, as a function of time. We find that in post-stroke subjects the instantaneous phase increments of BP and BFV exhibit well pronounced patterns that remain stable in time for all four physiologic conditions, while in healthy subjects these patterns are different, less pronounced and more variable. Further, we show that the instantaneous phase increments of BP and BFV are cross-correlated even within a single heartbeat cycle. The maximum correlation str...

  8. Peripheral blood flow control in diabetes mellitus

    DEFF Research Database (Denmark)

    Hilsted, Jannik

    1991-01-01

    Long term diabetes has a profound effect on the peripheral circulation. This has been demonstrated to be due to the presence of angiopathy and autonomic neuropathy, affecting autoregulation and distensibility of the vessels as well as local and central reflex regulation of the vascular resistance....... Whereas the hemodynamic consequences of vascular denervation are well known (causing blood pressure maladaptation to a number of stimuli such as standing, exercise and agonist infusion) (Hilsted 1985), the consequences of disturbances in autoregulation and distensibility remain to be established....

  9. Ocular Blood Flow Measured Noninvasively in Zero Gravity

    Science.gov (United States)

    Ansari, Rafat R.; Manuel, Francis K.; Geiser, Martial; Moret, Fabrice; Messer, Russell K.; King, James F.; Suh, Kwang I.

    2003-01-01

    In spaceflight or a reduced-gravity environment, bodily fluids shift to the upper extremities of the body. The pressure inside the eye, or intraocular pressure, changes significantly. A significant number of astronauts report changes in visual acuity during orbital flight. To date this remains of unknown etiology. Could choroidal engorgement be the primary mechanism and a change in the curvature or shape of the cornea or lens be the secondary mechanism for this change in visual acuity? Perfused blood flow in the dense meshwork of capillaries of the choroidal tissue (see the preceding illustration) provides necessary nutrients to the outer layers of the retina (photoreceptors) to keep it healthy and maintain good vision. Unlike the vascular system, the choroid has no baroreceptors to autoregulate fluid shifts, so it can remain engorged, pushing the macula forward and causing a hyperopic (farsighted) shift of the eye. Experiments by researchers at the NASA Glenn Research Center could help answer this question and facilitate planning for long-duration missions. We are investigating the effects of zero gravity on the choroidal blood flow of volunteer subjects. This pilot project plans to determine if choroidal blood flow is autoregulated in a reduced-gravity environment.

  10. Testing impact of perinatal inflammation on cerebral autoregulation in preterm neonates

    DEFF Research Database (Denmark)

    Hahn, Gitte Holst

    2013-01-01

    us to evaluate the precision and validity of this method. We monitored 22 preterm neonates and demonstrated that reliable detection of impaired cerebral autoregulation requires several hours of monitoring. However, weighting measurements with large variations in blood pressure in favour of those...... is impaired, cerebral blood flow follows changes in arterial blood pressure passively. Both impaired cerebral autoregulation and perinatal inflammation have been associated with perinatal brain injury in preterm neonates. We hypothesized that impaired cerebral autoregulation might represent a hemodynamic link...... between inflammation and brain injury. We used an apparently well established non-invasive method based on frequency analysis between spontaneous changes in arterial blood pressure and cerebral oxygenation as measured with near-infrared spectroscopy. It turned out that the methodology was weak. This led...

  11. Multichannel near infrared spectroscopy indicates regional variations in cerebral autoregulation in infants supported on extracorporeal membrane oxygenation

    Science.gov (United States)

    Papademetriou, Maria D.; Tachtsidis, Ilias; Elliot, Martin J.; Hoskote, Aparna; Elwell, Clare E.

    2012-06-01

    Assessing noninvasively cerebral autoregulation, the protective mechanism of the brain to maintain constant cerebral blood flow despite changes in blood pressure, is challenging. Infants on life support system (ECMO) for cardiorespiratory failure are at risk of cerebral autoregulation impairment and consequent neurological problems. We measured oxyhaemoglobin concentration (HbO2) by multichannel (12 channels) near-infrared spectroscopy (NIRS) in six infants during sequential changes in ECMO flow. Wavelet cross-correlation (WCC) between mean arterial pressure (MAP) and HbO2 was used to construct a time-frequency representation of the concordance between the two signals to assess the nonstationary aspect of cerebral autoregulation and investigate regional variations. Group data showed that WCC increases with decreasing ECMO flow indicating higher concordance between MAP and HbO2 and demonstrating loss of cerebral autoregulation at low ECMO flows. Statistically significant differences in WCC were observed between channels placed on the right and left scalp with channels on the right exhibiting higher values of WCC suggesting that the right hemisphere was more susceptible to disruption of cerebral autoregulation. Multichannel NIRS in conjunction with wavelet analysis methods can be used to assess regional variations in dynamic cerebral autoregulation with important clinical application in the management of critically ill children on life support systems.

  12. Blood pressure and blood flow variation during postural change from sitting to standing: model development and validation

    DEFF Research Database (Denmark)

    Olufsen, M.S.; Ottesen, Johnny T.; Tran, H.T.

    2005-01-01

    Short-term cardiovascular responses to postural change from sitting to standing involve complex interactions between the autonomic nervous system, which regulates blood pressure, and cerebral autoregulation, which maintains cerebral perfusion. We present a mathematical model that can predict...... dynamic changes in beat-to-beat arterial blood pressure and middle cerebral artery blood flow velocity during postural change from sitting to standing. Our cardiovascular model utilizes 11 compartments to describe blood pressure, blood flow, compliance, and resistance in the heart and systemic circulation....... To include dynamics due to the pulsatile nature of blood pressure and blood flow, resistances in the large systemic arteries are modeled using nonlinear functions of pressure. A physiologically based submodel is used to describe effects of gravity on venous blood pooling during postural change. Two types...

  13. Modulation of cerebral blood flow with transcutaneous electrical neurostimulation (TENS) in patients with cerebral vasospasm after subarachnoid hemorrhage

    NARCIS (Netherlands)

    ter Laan, Mark; van Dijk, J.M.C.; Stewart, Roy; Staal, Michiel J; Elting, Jan-Willem J

    2014-01-01

    ObjectivesTranscutaneous electrical neurostimulation (TENS) and spinal cord stimulation have been shown to increase peripheral and cerebral blood flow. We postulate that certain pathological conditions attenuate cerebral autoregulation, which may result in a relative increase of the importance of ne

  14. Blood flow and microgravity

    Science.gov (United States)

    Bureau, Lionel; Coupier, Gwennou; Dubois, Frank; Duperray, Alain; Farutin, Alexander; Minetti, Christophe; Misbah, Chaouqi; Podgorski, Thomas; Tsvirkun, Daria; Vysokikh, Mikhail

    2017-01-01

    The absence of gravity during space flight can alter cardio-vascular functions partially due to reduced physical activity. This affects the overall hemodynamics, and in particular the level of shear stresses to which blood vessels are submitted. Long-term exposure to space environment is thus susceptible to induce vascular remodeling through a mechanotransduction cascade that couples vessel shape and function with the mechanical cues exerted by the circulating cells on the vessel walls. Central to such processes, the glycocalyx - i.e. the micron-thick layer of biomacromolecules that lines the lumen of blood vessels and is directly exposed to blood flow - is a major actor in the regulation of biochemical and mechanical interactions. We discuss in this article several experiments performed under microgravity, such as the determination of lift force and collective motion in blood flow, and some preliminary results obtained in artificial microfluidic circuits functionalized with endothelium that offer interesting perspectives for the study of the interactions between blood and endothelium in healthy condition as well as by mimicking the degradation of glycocalyx caused by long space missions. A direct comparison between experiments and simulations is discussed. xml:lang="fr"

  15. No apparent role for T-type Ca²⁺ channels in renal autoregulation.

    Science.gov (United States)

    Frandsen, Rasmus Hassing; Salomonsson, Max; Hansen, Pernille B L; Jensen, Lars J; Braunstein, Thomas Hartig; Holstein-Rathlou, Niels-Henrik; Sorensen, Charlotte Mehlin

    2016-04-01

    Renal autoregulation protects glomerular capillaries against increases in renal perfusion pressure (RPP). In the mesentery, both L- and T-type calcium channels are involved in autoregulation. L-type calcium channels participate in renal autoregulation, but the role of T-type channels is not fully elucidated due to lack of selective pharmacological inhibitors. The role of T- and L-type calcium channels in the response to acute increases in RPP in T-type channel knockout mice (CaV3.1) and normo- and hypertensive rats was examined. Changes in afferent arteriolar diameter in the kidneys from wild-type and CaV3.1 knockout mice were assessed. Autoregulation of renal blood flow was examined during acute increases in RPP in normo- and hypertensive rats under pharmacological blockade of T- and L-type calcium channels using mibefradil (0.1 μM) and nifedipine (1 μM). In contrast to the results from previous pharmacological studies, genetic deletion of T-type channels CaV3.1 did not affect renal autoregulation. Pharmacological blockade of T-type channels using concentrations of mibefradil which specifically blocks T-type channels also had no effect in wild-type or knockout mice. Blockade of L-type channels significantly attenuated renal autoregulation in both strains. These findings are supported by in vivo studies where blockade of T-type channels had no effect on changes in the renal vascular resistance after acute increases in RPP in normo- and hypertensive rats. These findings show that genetic deletion of T-type channels CaV3.1 or treatment with low concentrations of mibefradil does not affect renal autoregulation. Thus, T-type calcium channels are not involved in renal autoregulation in response to acute increases in RPP.

  16. Defective cerebrovascular autoregulation after carotid endarterectomy

    DEFF Research Database (Denmark)

    Jørgensen, L G; Schroeder, T V

    1993-01-01

    that ipsilateral middle cerebral artery mean flow velocity was pressure dependent. This substantiates the hypothesis of defective autoregulation in the ipsilateral hemisphere after carotid endarterectomy, and in turn demonstrates an immediate cessation of symptoms with reduction of arterial pressure even...

  17. Resting cerebral blood flow

    Science.gov (United States)

    Ances, B M.; Sisti, D; Vaida, F; Liang, C L.; Leontiev, O; Perthen, J E.; Buxton, R B.; Benson, D; Smith, D M.; Little, S J.; Richman, D D.; Moore, D J.; Ellis, R J.

    2009-01-01

    Objective: HIV enters the brain soon after infection causing neuronal damage and microglial/astrocyte dysfunction leading to neuropsychological impairment. We examined the impact of HIV on resting cerebral blood flow (rCBF) within the lenticular nuclei (LN) and visual cortex (VC). Methods: This cross-sectional study used arterial spin labeling MRI (ASL-MRI) to measure rCBF within 33 HIV+ and 26 HIV− subjects. Nonparametric Wilcoxon rank sum test assessed rCBF differences due to HIV serostatus. Classification and regression tree (CART) analysis determined optimal rCBF cutoffs for differentiating HIV serostatus. The effects of neuropsychological impairment and infection duration on rCBF were evaluated. Results: rCBF within the LN and VC were significantly reduced for HIV+ compared to HIV− subjects. A 2-tiered CART approach using either LN rCBF ≤50.09 mL/100 mL/min or LN rCBF >50.09 mL/100 mL/min but VC rCBF ≤37.05 mL/100 mL/min yielded an 88% (29/33) sensitivity and an 88% (23/26) specificity for differentiating by HIV serostatus. HIV+ subjects, including neuropsychologically unimpaired, had reduced rCBF within the LN (p = 0.02) and VC (p = 0.001) compared to HIV− controls. A temporal progression of brain involvement occurred with LN rCBF significantly reduced for both acute/early (<1 year of seroconversion) and chronic HIV-infected subjects, whereas rCBF in the VC was diminished for only chronic HIV-infected subjects. Conclusion: Resting cerebral blood flow (rCBF) using arterial spin labeling MRI has the potential to be a noninvasive neuroimaging biomarker for assessing HIV in the brain. rCBF reductions that occur soon after seroconversion possibly reflect neuronal or vascular injury among HIV+ individuals not yet expressing neuropsychological impairment. GLOSSARY AEH = acute/early HIV infection; ANOVA = analysis of variance; ASL-MRI = arterial spin labeling MRI; CART = classification and regression tree; CBF = cerebral blood flow; CH = chronic HIV

  18. Detection of cerebral autoregulation by near-infrared spectroscopy in neonates: performance analysis of measurement methods

    Science.gov (United States)

    Caicedo, Alexander; Naulaers, Gunnar; Lemmers, Petra; van Bel, Frank; Wolf, Martin; Van Huffel, Sabine

    2012-11-01

    Cerebral Autoregulation, in clinical practice, is assessed by means of correlation or coherence analysis between mean arterial blood pressure (MABP) and cerebral blood flow (CBF). However, even though there is evidence linking cerebral autoregulation assessment with clinical outcome in preterm infants, available methods lack precision for clinical use. Classical methods, used for cerebral autoregulation, are influenced by the choice of parameters such as the length of the epoch under analysis and the choice of suitable frequency bands. The influence of these parameters, in the derived measurements for cerebral autoregulation, has not yet been evaluated. In this study, cerebral autoregulation was assessed using correlation, coherence, a modified version of coherence and transfer function gain, and phase. The influence of the extra-parameters on the final scores was evaluated by means of sensitivity analysis. The methods were applied to a database of 18 neonates with measurements of MABP and tissue oxygenation index (TOI). TOI reflects changes in CBF and was measured by means of near-infrared spectroscopy.

  19. Impaired Cerebral Autoregulation during Head Up Tilt in Patients with Severe Brain Injury

    DEFF Research Database (Denmark)

    Riberholt, Christian Gunge; Olesen, Niels Damkjær; Thing, Mira;

    2016-01-01

    acquired brain injury and a low level of consciousness. Fourteen patients with severe acquired brain injury and orthostatic intolerance and fifteen healthy volunteers were enrolled. Blood pressure was evaluated by pulse contour analysis, heart rate and RR-intervals were determined by electrocardiography...... mean velocity and estimated cerebral perfusion pressure. Patients with acquired brain injury presented an increase in mean flow index during head-up tilt indicating impaired autoregulation (P ....1 Hz spectral power in patients compared to healthy controls suggesting baroreflex dysfunction. In conclusion, patients with severe acquired brain injury and orthostatic intolerance during head-up tilt have impaired cerebral autoregulation more than one month after brain injury....

  20. Mechanisms of temporal variation in single-nephron blood flow in rats

    DEFF Research Database (Denmark)

    Yip, K P; Holstein-Rathlou, N H; Marsh, D J

    1993-01-01

    Modified laser-Doppler velocimetry was used to determine the number of different mechanisms regulating single-nephron blood flow. Two oscillations were identified in star vessel blood flow, one at 20-50 mHz and another at 100-200 mHz. Tubuloglomerular feedback (TGF) mediates the slower oscillation......, and the faster one is probably myogenic in origin. Acute hypertension increased autospectral power in the 20-50 mHz and 100-200 mHz frequency bands to 282 +/- 50 and 248 +/- 64%, respectively, of control even though mean single-nephron blood flow was autoregulated. Mean blood flow increased 24.6 +/- 6.1% when...... components in efferent arteriole blood flow....

  1. Nonlinear system analysis of renal autoregulation in normotensive and hypertensive rats

    DEFF Research Database (Denmark)

    Chon, K H; Chen, Y M; Holstein-Rathlou, N H;

    1998-01-01

    We compared the dynamic characteristics in renal autoregulation of blood flow of normotensive Sprague-Dawley rats (SDR) and spontaneously hypertensive rats (SHR), using both linear and nonlinear systems analysis. Linear analysis yielded only limited information about the differences in dynamics...... of nonlinear interactions between the oscillatory components of the myogenic mechanism and tubuloglomerular feedback (TGF) at the level of whole kidney blood flow in SDR. An interaction between these two mechanisms had previously been revealed for SDR only at the single nephron level. However, nonlinear......, NMSE are significantly higher in SHR than SDR, suggesting a more complex nonlinear system in SHR. The contribution of the third-order kernel in describing the dynamics of renal autoregulation in arterial blood pressure and blood flow was found to be important. Moreover, we have identified the presence...

  2. Intensive blood pressure control affects cerebral blood flow in type 2 diabetes mellitus patients

    DEFF Research Database (Denmark)

    Kim, Yu-Sok; Davis, Shyrin C A T; Truijen, Jasper;

    2011-01-01

    Type 2 diabetes mellitus is associated with microvascular complications, hypertension, and impaired dynamic cerebral autoregulation. Intensive blood pressure (BP) control in hypertensive type 2 diabetic patients reduces their risk of stroke but may affect cerebral perfusion. Systemic hemodynamic...... variables and transcranial Doppler-determined cerebral blood flow velocity (CBFV), cerebral CO2 responsiveness, and cognitive function were determined after 3 and 6 months of intensive BP control in 17 type 2 diabetic patients with microvascular complications (T2DM+), in 18 diabetic patients without (T2DM......-) microvascular complications, and in 16 nondiabetic hypertensive patients. Cerebrovascular reserve capacity was lower in T2DM+ versus T2DM- and nondiabetic hypertensive patients (4.6±1.1 versus 6.0±1.6 [P

  3. Blood Flow in the Microcirculation

    Science.gov (United States)

    Secomb, Timothy W.

    2017-01-01

    The microcirculation is an extensive network of microvessels that distributes blood flow throughout living tissues. Reynolds numbers are much less than 1, and the equations of Stokes flow apply. Blood is a suspension of cells with dimensions comparable to microvessel diameters. Highly deformable red blood cells, which transport oxygen, have a volume concentration (hematocrit) of 40–45% in humans. In the narrowest capillaries, these cells move in single file with a surrounding lubricating layer of plasma. In larger vessels, the red blood cells migrate toward the centerline, reducing the resistance to blood flow. Vessel walls are coated with a layer of macromolecules that restricts flow. At diverging bifurcations, hematocrit is not evenly distributed in the downstream vessels. Other particles are driven toward the walls by interactions with red blood cells. These physiologically important phenomena are discussed here from a fluid mechanical perspective.

  4. Hepatic autoregulation

    DEFF Research Database (Denmark)

    Staehr, Peter; Hother-Nielsen, Ole; Beck-Nielsen, Henning

    2007-01-01

    The effect of increased glycogenolysis, simulated by galactose's conversion to glucose, on the contribution of gluconeogenesis (GNG) to hepatic glucose production (GP) was determined. The conversion of galactose to glucose is by the same pathway as glycogen's conversion to glucose, i.e., glucose 1......-phosphate --> glucose 6-phosphate --> glucose. Healthy men (n = 7) were fasted for 44 h. At 40 h, hepatic glycogen stores were depleted. GNG then contributed approximately 90% to a GP of approximately 8 micromol.kg(-1).min(-1). Galactose, 9 g/h, was infused over the next 4 h. The contribution of GNG to GP...... declined from approximately 90% to 65%, i.e., by approximately 2 micromol.kg(-1).min(-1). The rate of galactose conversion to blood glucose, measured by labeling the infused galactose with [1-(2)H]galactose (n = 4), was also approximately 2 micromol.kg(-1).min(-1). The 41st h GP rose by approximately 1...

  5. Effects of autoregulation and CO2 reactivity on cerebral oxygen transport.

    Science.gov (United States)

    Payne, S J; Selb, J; Boas, D A

    2009-11-01

    Both autoregulation and CO(2) reactivity are known to have significant effects on cerebral blood flow and thus on the transport of oxygen through the vasculature. In this paper, a previous model of the autoregulation of blood flow in the cerebral vasculature is expanded to include the dynamic behavior of oxygen transport through binding with hemoglobin. The model is used to predict the transfer functions for both oxyhemoglobin and deoxyhemoglobin in response to fluctuations in arterial blood pressure and arterial CO(2) concentration. It is shown that only six additional nondimensional groups are required in addition to the five that were previously found to characterize the cerebral blood flow response. A resonant frequency in the pressure-oxyhemoglobin transfer function is found to occur in the region of 0.1 Hz, which is a frequency of considerable physiological interest. The model predictions are compared with results from the published literature of phase angle at this frequency, showing that the effects of changes in breathing rate can significantly alter the inferred phase dynamics between blood pressure and hemoglobin. The question of whether dynamic cerebral autoregulation is affected under conditions of stenosis or stroke is then examined.

  6. Endovascular blood flow measurement system

    Science.gov (United States)

    Khe, A. K.; Cherevko, A. A.; Chupakhin, A. P.; Krivoshapkin, A. L.; Orlov, K. Yu

    2016-06-01

    In this paper an endovascular measurement system used for intraoperative cerebral blood flow monitoring is described. The system is based on a Volcano ComboMap Pressure and Flow System extended with analogue-to-digital converter and PC laptop. A series of measurements performed in patients with cerebrovascular pathologies allows us to introduce “velocity-pressure” and “flow rate-energy flow rate” diagrams as important characteristics of the blood flow. The measurement system presented here can be used as an additional instrument in neurosurgery for assessment and monitoring of the operation procedure. Clinical data obtained with the system are used for construction of mathematical models and patient-specific simulations. The monitoring of the blood flow parameters during endovascular interventions was approved by the Ethics Committee at the Meshalkin Novosibirsk Research Institute of Circulation Pathology and included in certain surgical protocols for pre-, intra- and postoperative examinations.

  7. Autoregulation of superficial nephron function in the alloperfused dog kidney.

    Science.gov (United States)

    Heller, J; Horácek, V

    1979-10-01

    Isolated dog kidneys were each pump-perfused by another dog during 4 experimental periods at perfusion pressures (PP) of 21, 17, 13, and 8 kPa, resp. (i.e. 160, 130, 94, and 60 mm Hg). At the 3 highest PP values, the total kidney renal blood flow (RBF) and glomerular filtration rate (GFR) were perfectly autoregulated while at the lowest value both values were significantly lowered. No significant difference was observed between the single nephron GFR (SNGFR) of periods 1 and 2; in period 3 (PP = 13 kPa) a lower value was observed (P less than 0.05). Free flow pressure in proximal convolution (FFP), stop-flow pressure (SFP), and peritubular capillary pressure (PCP) were not different in period 2 than in period 1, but were significantly lower in period 3 (P = 0.02--0.05). Effective filtration pressure (EFP) was the highest in period 1, decreasing significantly with decreasing PP. Filtration pressure equilibrium was observed in period 4 at PP 8 kPa. Total blood flow resistance (RT) fell with decreasing PP, the drop being due to a steep decline in afferent resistance (RA). Efferent resistance (RE) increased as PP decreased. Ultrafiltration coefficient (Kf) rose with declining PP both within and outside the autoregulatory range. The results indicate that the lower limit of autoregulation is higher in superficial nephrons than in the whole kidney.

  8. Neuromodulation of cerebral blood flow

    NARCIS (Netherlands)

    ter Laan, Mark

    2014-01-01

    Dit proefschrift behandelt de modulatie van de cerebrale doorbloeding (cerebral blood flow, CBF) door cervicale elektrische stimulatie en de aanname dat het sympathisch zenuwstelsel hierin een specifieke rol speelt. Enkele resultaten met cervicale ruggenmergsstimulatie (spinal cord stimulation, SCS)

  9. Impaired Cerebral Autoregulation during Head Up Tilt in Patients with Severe Brain Injury.

    Directory of Open Access Journals (Sweden)

    Christian Gunge Riberholt

    Full Text Available Early mobilization is of importance for improving long-term outcome for patients after severe acquired brain injury. A limiting factor for early mobilization by head-up tilt is orthostatic intolerance. The purpose of the present study was to examine cerebral autoregulation in patients with severe acquired brain injury and a low level of consciousness. Fourteen patients with severe acquired brain injury and orthostatic intolerance and fifteen healthy volunteers were enrolled. Blood pressure was evaluated by pulse contour analysis, heart rate and RR-intervals were determined by electrocardiography, middle cerebral artery velocity was evaluated by transcranial Doppler, and near-infrared spectroscopy determined frontal lobe oxygenation in the supine position and during head-up tilt. Cerebral autoregulation was evaluated as the mean flow index calculated as the ratio between middle cerebral artery mean velocity and estimated cerebral perfusion pressure. Patients with acquired brain injury presented an increase in mean flow index during head-up tilt indicating impaired autoregulation (P < 0.001. Spectral analysis of heart rate variability in the frequency domain revealed lower magnitudes of ~0.1 Hz spectral power in patients compared to healthy controls suggesting baroreflex dysfunction. In conclusion, patients with severe acquired brain injury and orthostatic intolerance during head-up tilt have impaired cerebral autoregulation more than one month after brain injury.

  10. Hyperhomocysteinemia decreases bone blood flow

    Directory of Open Access Journals (Sweden)

    Neetu T

    2011-01-01

    Full Text Available Neetu Tyagi*, Thomas P Vacek*, John T Fleming, Jonathan C Vacek, Suresh C TyagiDepartment of Physiology and Biophysics, School of Medicine, University of Louisville, Louisville, KY, USA *These authors have equal authorshipAbstract: Elevated plasma levels of homocysteine (Hcy, known as hyperhomocysteinemia (HHcy, are associated with osteoporosis. A decrease in bone blood flow is a potential cause of compromised bone mechanical properties. Therefore, we hypothesized that HHcy decreases bone blood flow and biomechanical properties. To test this hypothesis, male Sprague–Dawley rats were treated with Hcy (0.67 g/L in drinking water for 8 weeks. Age-matched rats served as controls. At the end of the treatment period, the rats were anesthetized. Blood samples were collected from experimental or control rats. Biochemical turnover markers (body weight, Hcy, vitamin B12, and folate were measured. Systolic blood pressure was measured from the right carotid artery. Tibia blood flow was measured by laser Doppler flow probe. The results indicated that Hcy levels were significantly higher in the Hcy-treated group than in control rats, whereas vitamin B12 levels were lower in the Hcy-treated group compared with control rats. There was no significant difference in folate concentration and blood pressure in Hcy-treated versus control rats. The tibial blood flow index of the control group was significantly higher (0.78 ± 0.09 flow unit compared with the Hcy-treated group (0.51 ± 0.09. The tibial mass was 1.1 ± 0.1 g in the control group and 0.9 ± 0.1 in the Hcy-treated group. The tibia bone density was unchanged in Hcy-treated rats. These results suggest that Hcy causes a reduction in bone blood flow, which contributes to compromised bone biomechanical properties.Keywords: homocysteine, tibia, bone density

  11. Chaotic advection in blood flow.

    Science.gov (United States)

    Schelin, A B; Károlyi, Gy; de Moura, A P S; Booth, N A; Grebogi, C

    2009-07-01

    In this paper we argue that the effects of irregular chaotic motion of particles transported by blood can play a major role in the development of serious circulatory diseases. Vessel wall irregularities modify the flow field, changing in a nontrivial way the transport and activation of biochemically active particles. We argue that blood particle transport is often chaotic in realistic physiological conditions. We also argue that this chaotic behavior of the flow has crucial consequences for the dynamics of important processes in the blood, such as the activation of platelets which are involved in the thrombus formation.

  12. Dynamic cerebral autoregulation changes during sub-maximal handgrip maneuver.

    Directory of Open Access Journals (Sweden)

    Ricardo C Nogueira

    Full Text Available PURPOSE: We investigated the effect of handgrip (HG maneuver on time-varying estimates of dynamic cerebral autoregulation (CA using the autoregressive moving average technique. METHODS: Twelve healthy subjects were recruited to perform HG maneuver during 3 minutes with 30% of maximum contraction force. Cerebral blood flow velocity, end-tidal CO₂ pressure (PETCO₂, and noninvasive arterial blood pressure (ABP were continuously recorded during baseline, HG and recovery. Critical closing pressure (CrCP, resistance area-product (RAP, and time-varying autoregulation index (ARI were obtained. RESULTS: PETCO₂ did not show significant changes during HG maneuver. Whilst ABP increased continuously during the maneuver, to 27% above its baseline value, CBFV raised to a plateau approximately 15% above baseline. This was sustained by a parallel increase in RAP, suggestive of myogenic vasoconstriction, and a reduction in CrCP that could be associated with metabolic vasodilation. The time-varying ARI index dropped at the beginning and end of the maneuver (p<0.005, which could be related to corresponding alert reactions or to different time constants of the myogenic, metabolic and/or neurogenic mechanisms. CONCLUSION: Changes in dynamic CA during HG suggest a complex interplay of regulatory mechanisms during static exercise that should be considered when assessing the determinants of cerebral blood flow and metabolism.

  13. Dependency of cerebral blood flow upon mean arterial pressure in patients with acute bacterial meningitis

    DEFF Research Database (Denmark)

    Møller, Kirsten; Larsen, Fin Stolze; Qvist, Jesper;

    2000-01-01

    OBJECTIVE: Patients with acute bacterial meningitis are often treated with sympathomimetics to maintain an adequate mean arterial pressure (MAP). We studied the influence of such therapy on cerebral blood flow (CBF). DESIGN: Prospective physiologic trial. SETTING: The Department of Infectious...... Diseases, Copenhagen University Hospital, Denmark. PATIENTS: Sixteen adult patients with acute bacterial meningitis. INTERVENTION: Infusion of norepinephrine to increase MAP. MEASUREMENTS: During a rise in MAP induced by norepinephrine infusion, we measured relative changes in CBF by transcranial Doppler...... bacterial meningitis, CBF autoregulation is impaired. With recovery from meningitis, the cerebral vasculature regains the ability to maintain cerebral perfusion at a constant level despite variations in MAP....

  14. Regional cerebral blood flow alterations remote from the site of intracranial tumors

    DEFF Research Database (Denmark)

    Endo, H; Larsen, B; Lassen, N A

    1977-01-01

    Regional cerebral blood flow (rCBF) was investigated in 12 patients with brain tumors, using a 254-channel dynamic gamma camera. In nine of the 12 cases, hyperemic regions with loss of autoregulation were seen in sites remote from the tumor (the area around the tumor was in most cases also...... hyperemic). These remote rCBF abnormalities were found in the lower posterior part of the hemisphere in six cases, and in the frontal region in three. The location of the remote rCBF abnormality seemed to depend on the site of the tumor: cases with frontal and posterior fossa mass lesions had hyperemia...

  15. Sympathetic influence on cerebral blood flow and metabolism during exercise in humans

    DEFF Research Database (Denmark)

    Seifert, Thomas; Secher, Niels H

    2011-01-01

    This review focuses on the possibility that autonomic activity influences cerebral blood flow (CBF) and metabolism during exercise in humans. Apart from cerebral autoregulation, the arterial carbon dioxide tension, and neuronal activation, it may be that the autonomic nervous system influences CBF......, but increases during cycling exercise. The increase in CMRO(2) is unaffected by beta-adrenergic blockade even though CBF is reduced suggesting that cerebral oxygenation becomes critical and a limited cerebral mitochondrial oxygen tension may induce fatigue. Also, sympathetic activity may drive cerebral non...

  16. Magnetohydrodynamics of blood flow.

    Science.gov (United States)

    Keltner, J R; Roos, M S; Brakeman, P R; Budinger, T F

    1990-10-01

    The changes in hydrostatic pressure and electrical potentials across vessels in the human vasculature in the presence of a large static magnetic field are estimated to determine the feasibility of in vivo NMR spectroscopy at fields as high as 10 T.A 10-T magnetic field changes the vascular pressure in a model of the human vasculature by less than 0.2%. An exact solution to the magnetohydrodynamic equations describing a conducting fluid flowing transverse to a static magnetic field in a nonconducting, straight, circular tube is used. This solution is compared to an approximate solution that assumes that no magnetic fields are induced in the fluid and that has led previous investigators to predict significant biological effects from static magnetic fields. Experimental results show that the exact solution accurately predicts the magnetohydrodynamic slowing of 15% NaCl flowing transverse to 2.3- and 4.7-T magnetic fields for fluxes below 0.5 liter/min while the approximate solution predicts a much more retarded flow.

  17. Cerebral blood-flow tomography

    DEFF Research Database (Denmark)

    Lassen, N A; Henriksen, L; Holm, S;

    1983-01-01

    Tomographic maps of local cerebral blood flow (CBF) were obtained with xenon-133 and with isopropyl-amphetamine-iodine-123 (IMP) in 11 subjects: one normal, two tumor cases, and eight cerebrovascular cases. A highly sensitive four-face, rapidly rotating, single-photon emission tomograph was used......., and with low radiation exposure to patient and personnel. On the other hand, IMP gives an image of slightly higher resolution. It also introduces a new class of iodinated brain-seeking compounds allowing, perhaps, imaging of other functions more important than mere blood flow.......Tomographic maps of local cerebral blood flow (CBF) were obtained with xenon-133 and with isopropyl-amphetamine-iodine-123 (IMP) in 11 subjects: one normal, two tumor cases, and eight cerebrovascular cases. A highly sensitive four-face, rapidly rotating, single-photon emission tomograph was used...

  18. Cerebral autoregulation and flow/metabolism coupling during cardiopulmonary bypass: the influence of PaCO/sub 2/

    Energy Technology Data Exchange (ETDEWEB)

    Murkin, J.M.; Farrar, J.K.; Tweed, W.A.; McKenzie, F.N.; Guiraudon, G.

    1987-09-01

    Measurement of /sup 133/Xe clearance and effluent cerebral venous blood sampling were used in 38 patients to determine the effects of cardiopulmonary bypass, and of maintaining temperature corrected or noncorrected PaCO/sub 2/ at 40 mm Hg on regulation of cerebral blood flow (CBF) and flow/metabolism coupling. After induction of anesthesia with diazepam and fentanyl, mean CBF was 25 ml X 100 g-1 X min-1 and cerebral oxygen consumption, 1.67 ml X 100 g-1 X min-1. Cerebral oxygen consumption during nonpulsatile cardiopulmonary bypass at 26 degrees C was reduced to 0.42 ml X 100 g-1 X min-1 in both groups. CBF was reduced to 14-15 ml X 100 g-1 X min-1 in the non-temperature-corrected group (n = 21), was independent of cerebral perfusion pressure over the range of 20-100 mm Hg, but correlated with cerebral oxygen consumption. In the temperature-corrected group (n = 17), CBF varied from 22 to 32 ml X 100 g-1 X min-1, and flow/metabolism coupling was not maintained (i.e., CBF and cerebral oxygen consumption varied independently). However, variation in CBF correlated significantly with cerebral perfusion pressure over the pressure range of 15-95 mm Hg. This study demonstrates a profound reduction in cerebral oxygen consumption during hypothermic nonpulsatile cardiopulmonary bypass. When a non-temperature-corrected PaCO/sub 2/ of approximately 40 mm Hg was maintained, CBF was lower, and analysis of pooled data suggested that CBF regulation was better preserved, i.e., CBF was independent of pressure changes and dependent upon cerebral oxygen consumption.

  19. Regulation of regional cerebral blood flow during and between migraine attacks

    DEFF Research Database (Denmark)

    Lauritzen, M; Olsen, T S; Lassen, N A

    1983-01-01

    in 254 areas of one hemisphere. The partly hypoperfused hemisphere allowed for comparison of adjacent hypoperfused and normally perfused brain areas. During attacks the carbon dioxide reactivity was decreased to 2.8 +/- 0.8% per mm Hg in the oligemic regions compared with 5.8 +/- 0.8% per mm Hg...... in the normally perfused brain. Blood pressure autoregulation was normal in all brain regions. Regional blood flow increase in response to physiological activation was severely impaired in the hypoperfused brain areas, whereas neighboring normally perfused regions reacted normally. Confinement of the regulation...... abnormalities to the area of the oligemia supports our suggestion that the blood flow changes are caused by a change in local metabolism. Between attacks of migraine, the patients had normal regulation of brain circulation....

  20. A single subcutaneous bolus of erythropoietin normalizes cerebral blood flow autoregulation after subarachnoid haemorrhage in rats

    DEFF Research Database (Denmark)

    Springborg, Jacob Bertram; Ma, XiaoDong; Rochat, Per;

    2002-01-01

    Systemic administration of recombinant erythropoietin (EPO) has been demonstrated to mediate neuroprotection. This effect of EPO may in part rely on a beneficial effect on cerebrovascular dysfunction leading to ischaemic neuronal damage. We investigated the in vivo effects of subcutaneously...

  1. Endotoxemia reduces cerebral perfusion but enhances dynamic cerebrovascular autoregulation at reduced arterial carbon dioxide tension*

    DEFF Research Database (Denmark)

    Brassard, Patrice; Kim, Yu-Sok; van Lieshout, Johannes

    2012-01-01

    OBJECTIVE:: The administration of endotoxin to healthy humans reduces cerebral blood flow but its influence on dynamic cerebral autoregulation remains unknown. We considered that a reduction in arterial carbon dioxide tension would attenuate cerebral perfusion and improve dynamic cerebral......-104] mm Hg; p = .75), but increased cardiac output (8.3 [6.1-9.5] L·min vs. 6.0 [4.5-8.2] L·min; p = .02) through an elevation in heart rate (82 ± 9 beats·min vs. 63 ± 10 beats·min; p arterial carbon dioxide tension (37 ± 5 mm Hg vs. 41 ± 2 mm Hg; p artery mean...... in arterial carbon dioxide tension explains the improved dynamic cerebral autoregulation and the reduced cerebral perfusion encountered in healthy subjects during endotoxemia....

  2. A Stochastic Delay Differential Model of Cerebral Autoregulation

    Science.gov (United States)

    Panunzi, Simona; D’Orsi, Laura; Iacoviello, Daniela; De Gaetano, Andrea

    2015-01-01

    Mathematical models of the cardiovascular system and of cerebral autoregulation (CAR) have been employed for several years in order to describe the time course of pressures and flows changes subsequent to postural changes. The assessment of the degree of efficiency of cerebral auto regulation has indeed importance in the prognosis of such conditions as cerebro-vascular accidents or Alzheimer. In the quest for a simple but realistic mathematical description of cardiovascular control, which may be fitted onto non-invasive experimental observations after postural changes, the present work proposes a first version of an empirical Stochastic Delay Differential Equations (SDDEs) model. The model consists of a total of four SDDEs and two ancillary algebraic equations, incorporates four distinct delayed controls from the brain onto different components of the circulation, and is able to accurately capture the time course of mean arterial pressure and cerebral blood flow velocity signals, reproducing observed auto-correlated error around the expected drift. PMID:25830915

  3. Eppur Si Muove: The dynamic nature of physiological control of renal blood flow by the renal sympathetic nerves.

    Science.gov (United States)

    Schiller, Alicia M; Pellegrino, Peter Ricci; Zucker, Irving H

    2016-08-03

    Tubuloglomerular feedback and the myogenic response are widely appreciated as important regulators of renal blood flow, but the role of the sympathetic nervous system in physiological renal blood flow control remains controversial. Where classic studies using static measures of renal blood flow failed, dynamic approaches have succeeded in demonstrating sympathetic control of renal blood flow under normal physiological conditions. This review focuses on transfer function analysis of renal pressure-flow, which leverages the physical relationship between blood pressure and flow to assess the underlying vascular control mechanisms. Studies using this approach indicate that the renal nerves are important in the rapid regulation of the renal vasculature. Animals with intact renal innervation show a sympathetic signature in the frequency range associated with sympathetic vasomotion that is eliminated by renal denervation. In conscious rabbits, this sympathetic signature exerts vasoconstrictive, baroreflex control of renal vascular conductance, matching well with the rhythmic, baroreflex-influenced control of renal sympathetic nerve activity and complementing findings from other studies employing dynamic approaches to study renal sympathetic vascular control. In this light, classic studies reporting that nerve stimulation and renal denervation do not affect static measures of renal blood flow provide evidence for the strength of renal autoregulation rather than evidence against physiological renal sympathetic control of renal blood flow. Thus, alongside tubuloglomerular feedback and the myogenic response, renal sympathetic outflow should be considered an important physiological regulator of renal blood flow. Clinically, renal sympathetic vasomotion may be important for solving the problems facing the field of therapeutic renal denervation.

  4. Sympathetic influence on cerebral blood flow and metabolism during exercise in humans

    DEFF Research Database (Denmark)

    Seifert, Thomas; Secher, Niels H

    2011-01-01

    , but not by beta1-adrenergic blockade. Furthermore, endurance training appears to lower the cerebral non-oxidative carbohydrate uptake and preserve cerebral oxygenation during submaximal exercise. This is possibly related to an attenuated catecholamine response. Finally, exercise promotes brain health as evidenced......This review focuses on the possibility that autonomic activity influences cerebral blood flow (CBF) and metabolism during exercise in humans. Apart from cerebral autoregulation, the arterial carbon dioxide tension, and neuronal activation, it may be that the autonomic nervous system influences CBF...... as evidenced by pharmacological manipulation of adrenergic and cholinergic receptors. Cholinergic blockade by glycopyrrolate blocks the exercise-induced increase in the transcranial Doppler determined mean flow velocity (MCA Vmean). Conversely, alpha-adrenergic activation increases that expression of cerebral...

  5. Quantitative Cerebral Blood Flow Measurements Using MRI

    OpenAIRE

    Muir, Eric R; Watts, Lora Talley; Tiwari, Yash Vardhan; Bresnen, Andrew; Timothy Q Duong

    2014-01-01

    Magnetic resonance imaging utilized as a quantitative and noninvasive method to image cerebral blood flow. The two most common techniques used to detect cerebral blood flow are dynamic susceptibility contrast (DSC) perfusion MRI and arterial spin labeling perfusion MRI. Herein we describe the use of these two techniques to measure cerebral blood flow in rodents, including methods, analysis, and important considerations when utilizing these techniques.

  6. Regional cerebral blood flow in schizophrenia

    Energy Technology Data Exchange (ETDEWEB)

    Mathew, R.J.; Duncan, G.C.; Weinman, M.L.; Barr, D.L.

    1982-10-01

    Regional cerebral blood flow (rCBF) was measured via xenon133 inhalation technique in 23 patients with schizophrenia and 18 age- and sex-matched controls. The mean blood flow to both hemispheres was found to be lower for the patients. The patients and their controls did not differ on interhemispheric differences in blood flow. There were no differences in rCBF between medicated and unmedicated, subchronic and chronic, and paranoid and nonparanoid patients. Hallucinations were associated with reduced blood flow to several postcentral regions.

  7. Open-loop (feed-forward) and feedback control of coronary blood flow during exercise, cardiac pacing, and pressure changes.

    Science.gov (United States)

    Pradhan, Ranjan K; Feigl, Eric O; Gorman, Mark W; Brengelmann, George L; Beard, Daniel A

    2016-06-01

    A control system model was developed to analyze data on in vivo coronary blood flow regulation and to probe how different mechanisms work together to control coronary flow from rest to exercise, and under a variety of experimental conditions, including cardiac pacing and with changes in coronary arterial pressure (autoregulation). In the model coronary flow is determined by the combined action of a feedback pathway signal that is determined by the level of plasma ATP in coronary venous blood, an adrenergic open-loop (feed-forward) signal that increases with exercise, and a contribution of pressure-mediated myogenic control. The model was identified based on data from exercise experiments where myocardial oxygen extraction, coronary flow, cardiac interstitial norepinephrine concentration, and arterial and coronary venous plasma ATP concentrations were measured during control and during adrenergic and purinergic receptor blockade conditions. The identified model was used to quantify the relative contributions of open-loop and feedback pathways and to illustrate the degree of redundancy in the control of coronary flow. The results indicate that the adrenergic open-loop control component is responsible for most of the increase in coronary blood flow that occurs during high levels of exercise. However, the adenine nucleotide-mediated metabolic feedback control component is essential. The model was evaluated by predicting coronary flow in cardiac pacing and autoregulation experiments with reasonable fits to the data. The analysis shows that a model in which coronary venous plasma adenine nucleotides are a signal in local metabolic feedback control of coronary flow is consistent with the available data.

  8. Impaired Cerebral Autoregulation during Head Up Tilt in Patients with Severe Brain Injury

    DEFF Research Database (Denmark)

    Riberholt, Christian Gunge; Olesen, Niels Damkjær; Thing, Mira;

    2016-01-01

    acquired brain injury and a low level of consciousness. Fourteen patients with severe acquired brain injury and orthostatic intolerance and fifteen healthy volunteers were enrolled. Blood pressure was evaluated by pulse contour analysis, heart rate and RR-intervals were determined by electrocardiography......, middle cerebral artery velocity was evaluated by transcranial Doppler, and near-infrared spectroscopy determined frontal lobe oxygenation in the supine position and during head-up tilt. Cerebral autoregulation was evaluated as the mean flow index calculated as the ratio between middle cerebral artery...

  9. Pancreatic islet blood flow and its measurement.

    Science.gov (United States)

    Jansson, Leif; Barbu, Andreea; Bodin, Birgitta; Drott, Carl Johan; Espes, Daniel; Gao, Xiang; Grapensparr, Liza; Källskog, Örjan; Lau, Joey; Liljebäck, Hanna; Palm, Fredrik; Quach, My; Sandberg, Monica; Strömberg, Victoria; Ullsten, Sara; Carlsson, Per-Ola

    2016-05-01

    Pancreatic islets are richly vascularized, and islet blood vessels are uniquely adapted to maintain and support the internal milieu of the islets favoring normal endocrine function. Islet blood flow is normally very high compared with that to the exocrine pancreas and is autonomously regulated through complex interactions between the nervous system, metabolites from insulin secreting β-cells, endothelium-derived mediators, and hormones. The islet blood flow is normally coupled to the needs for insulin release and is usually disturbed during glucose intolerance and overt diabetes. The present review provides a brief background on islet vascular function and especially focuses on available techniques to measure islet blood perfusion. The gold standard for islet blood flow measurements in experimental animals is the microsphere technique, and its advantages and disadvantages will be discussed. In humans there are still no methods to measure islet blood flow selectively, but new developments in radiological techniques hold great hopes for the future.

  10. Bone blood flow and metabolism in humans

    DEFF Research Database (Denmark)

    Heinonen, Ilkka; Kemppainen, Jukka; Kaskinoro, Kimmo;

    2012-01-01

    Human bone blood flow and metabolism during physical exercise remains poorly characterised. In the present study we measured femoral bone blood flow and glucose uptake in young healthy subjects by positron emission tomography in three separate protocols. In six women, blood flow was measured...... in femoral bone at rest and during one leg intermittent isometric exercise with increasing exercise intensities. In nine men, blood flow in femur was determined at rest and during dynamic one leg exercise, and two other physiological perturbations: moderate systemic hypoxia (14 O(2) ) at rest and during...... exercise, and during intra-femoral infusion of high-dose adenosine. Bone glucose uptake was measured at rest and during dynamic one leg exercise in five men. The results indicate that isometric exercise increased femoral bone blood flow from rest (1.8 ± 0.6 ml/100g/min) to low intensity exercise (4.1 ± 1...

  11. The Physics of Coronary Blood Flow

    CERN Document Server

    Zamir, M

    2005-01-01

    Coronary blood flow is blood flow to the heart for its own metabolic needs. In the most common form of heart disease there is a disruption in this flow because of obstructive disease in the vessels that carry the flow. The subject of coronary blood flow is therefore associated mostly with the pathophysiology of this disease, rarely with dynamics or physics. Yet, the system responsible for coronary blood flow, namely the "coronary circulation," is a highly sophisticated dynamical system in which the dynamics and physics of the flow are as important as the integrity of the conducting vessels. While an obstruction in the conducting vessels is a fairly obvious and clearly visible cause of disruption in coronary blood flow, any discord in the complex dynamics of the system can cause an equally grave, though less conspicuous, disruption in the flow. This book is devoted specifically to the dynamics and physics of coronary blood flow. While relevance to the clinical and pathophysiological issues is clearly maintaine...

  12. Mechanics of blood flow in the microcirculation.

    Science.gov (United States)

    Secomb, T W

    1995-01-01

    The microcirculation in most tissues consists of an intricate network of very narrow tubes. In analyses of blood flow through the microcirculation, inertial effects can be neglected, but continuum models for blood cannot be assumed, since blood is a concentrated suspension of cells with dimensions comparable to vessel diameters. These cells strongly influence blood flow. About 45% of blood volume consists of red blood cells, whose key mechanical properties are known. A red cell has a fluid interior, surrounded by a flexible membrane, which strongly resists area changes, but bends and shears easily. White blood cells are comparable in size but much less numerous. They are less flexible than red cells and capable of active locomotion. Other suspended elements are much smaller than red cells: This review focuses on the mechanics of red cell motion in the microcirculation. Experimental and theoretical studies of blood flow in uniform tubes, bifurcations and networks are discussed. Comparisons between predicted and observed flows in networks imply that resistance to blood flow in living microvessels is higher than that in uniform tubes with corresponding diameters. Living microvessels have non-uniform geometries, and red cells must deform continually to traverse them. Theoretical results are presented implying that these transient deformations contribute to increased flow resistance in the microcirculation.

  13. Autonomic dysfunction and impaired cerebral autoregulation in cirrhosis

    DEFF Research Database (Denmark)

    Frøkjaer, Vibe G; Strauss, Gitte I; Mehlsen, Jesper;

    2006-01-01

    .0+/-2.0 bpm) compared to the controls (21.7+/-2.2 bpm, p=0.001, Tukey' test). Systolic blood pressure fell during head-up tilt only in patients with severe cirrhosis. Our results imply that cerebral autoregulation was impaired in the most severe cases of liver cirrhosis, and that those with impaired cerebral...

  14. Carbon dioxide and liver blood flow.

    Science.gov (United States)

    Dutton, R; Levitzky, M; Berkman, R

    1976-01-01

    This study was designed to determine blood flow to the liver during hypercapnia and combined hypercapnia-hypoxia with the portal vein and hepatic artery intact except for placement of an electromagnetic flow probe around these vessels. Twenty mongrel dogs weighing 30-45 kg were anesthetized with pentobarbital and flow probes and occluders were surgically implanted. Ten of these dogs were subjected to hypercapnia alone. During inspiration of 6% CO2 in room air, portal vein flow increased from 588 +/- 73 ml/min to 731 +/- 113 ml/min (p less than .05), while hepatic artery flow did not change significantly from its control mean of 221 +/- 38 ml/min. In the remaining dogs, inhalation of 6% O2 resulted in a reduction of portal blood flow within 30 min from 527 +/- 55 ml/min to 381 +/- 41 ml/min (p less than .01). Again, mean hepatic artery flow did not increase significantly above its control of 273 +/- 43 ml/min. Subsequent inhalation of 6% CO2 plus 6% O2 (combined hypercapniahypoxia) for 30 min in these same animals resulted in a significant increase of portal vein blood flow from 514 +/- 46 ml/min to 716 +/- 116 ml/min (p less than .05). Thus, hypercapnia alone increases total liver blood flow, primarily by an increase in portal vein flow. Hypoxia results in a decrease in portal vein flow. The superimposition of hypercapnia on hypoxia restores blood flow to a level close to that found with hypercapnia alone. Hypercapnia in the range of 63 +/- 4 mmHg PCO2 overwhelms the tendency toward a reduction of portal vein blood flow induced by an arterial PO2 of 42 +/- 5 mmHg in the presence of mild hypocapnia (PCO2 : 30.2 +/- 1 mmHg).

  15. Frequency encoding in renal blood flow regulation

    DEFF Research Database (Denmark)

    Marsh, Donald J; Sosnovtseva, Olga; Pavlov, Alexey N;

    2005-01-01

    With a model of renal blood flow regulation, we examined consequences of tubuloglomerular feedback (TGF) coupling to the myogenic mechanism via voltage-gated Ca channels. The model reproduces the characteristic oscillations of the two mechanisms and predicts frequency and amplitude modulation...... of the myogenic oscillation by TGF. Analysis by wavelet transforms of single-nephron blood flow confirms that both amplitude and frequency of the myogenic oscillation are modulated by TGF. We developed a double-wavelet transform technique to estimate modulation frequency. Median value of the ratio of modulation...... TGF cycle to the next. We used a blood pressure signal recorded by telemetry from a conscious rat as the input to the model. Blood pressure fluctuations induced variability in the modulation records similar to those found in the nephron blood flow results. Frequency and amplitude modulation can...

  16. Regulation of blood flow by prostaglandins

    DEFF Research Database (Denmark)

    Boushel, Robert Christopher; Langberg, H; Risum, N;

    2004-01-01

    adaptation of connective tissues e.g. tendon. This review covers the role of PG for mediating tissue blood flow at rest and during increases in metabolic demand such as exercise and reactive hyperaemia. There is strong evidence that PGs contribute to elevate blood flow at rest and during reactive hyperaemia...... in a variety of tissues. Their role for regulating the large increases in muscle blood flow during exercise is less clear which may be explained by redundant mechanisms. Several interactions are known to exist between specific vasodilator substances, and therefore PGs can act in synergy with other substances...... and contribute to functional hyperaemia. Furthermore, there is evidence for differential, tissue-specific influences of PGs where their influence on blood flow during exercise may be profound....

  17. Blood flow and permeability in microvessels

    Science.gov (United States)

    Sugihara-Seki, Masako; Fu, Bingmei M.

    2005-07-01

    The mechanics of blood flow in microvessels and microvessel permeability are reviewed. In the first part, characteristics of blood flow in vivo and in vitro are described from a fluid-mechanical point of view, and mathematical models for blood flow in microvessels are presented. Possible causes of the increased flow resistance obtained in vivo compared to in vitro are examined, including the effects of irregularities of vessel lumen, the presence of endothelial surface glycocalyx and white blood cells. In the second part, the ultrastructural pathways and mechanisms whereby endothelial cells and the clefts between the cells modulate microvessel permeability to water and solutes are introduced. Previous and current models for microvessel permeability to water and solutes are reviewed. These models examine the role of structural components of interendothelial cleft, such as junction strands and surface glycocalyx, in the determination of water and solute transport across the microvessel walls. Transport models in the tissue space surrounding the microvessel are also described.

  18. Peripheral blood flow control in diabetes mellitus

    DEFF Research Database (Denmark)

    Hilsted, Jannik

    1991-01-01

    Long term diabetes has a profound effect on the peripheral circulation. This has been demonstrated to be due to the presence of angiopathy and autonomic neuropathy, affecting autoregulation and distensibility of the vessels as well as local and central reflex regulation of the vascular resistance...

  19. 21 CFR 870.2120 - Extravascular blood flow probe.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Extravascular blood flow probe. 870.2120 Section... blood flow probe. (a) Identification. An extravascular blood flow probe is an extravascular ultrasonic or electromagnetic probe used in conjunction with a blood flowmeter to measure blood flow in...

  20. Cerebral blood flow response to functional activation

    DEFF Research Database (Denmark)

    Paulson, Olaf B; Hasselbalch, Steen G; Rostrup, Egill

    2010-01-01

    Cerebral blood flow (CBF) and cerebral metabolic rate are normally coupled, that is an increase in metabolic demand will lead to an increase in flow. However, during functional activation, CBF and glucose metabolism remain coupled as they increase in proportion, whereas oxygen metabolism only...

  1. An implantable blood pressure and flow transmitter.

    Science.gov (United States)

    Rader, R. D.; Meehan, J. P.; Henriksen, J. K. C.

    1973-01-01

    A miniature totally implantable FM/FM telemetry system has been developed to simultaneously measure blood pressure and blood flow, thus providing an appreciation of the hemodynamics of the circulation to the entire body or to a particular organ. Developed for work with animal subjects, the telemetry system's transmission time is controlled by an RF signal that permits an operating life of several months. Pressure is detected by a miniature intravascular transducer and flow is detected by an extravascular interferometric ultrasonic technique. Both pressure and flow are calibrated prior to implanting. The pressure calibration can be checked after the implanting by cannulation; flow calibration can be verified only at the end of the experiment by determining the voltage output from the implanted sensing system as a function of several measured flow rates. The utility of this device has been established by its use in investigating canine renal circulation during exercise, emotional encounters, administration of drugs, and application of accelerative forces.

  2. BLOOD FLOW AND MACROMOLECULAR TRANSPORT IN CURVED BLOOD VESSELS

    Institute of Scientific and Technical Information of China (English)

    WEI Lan; WEN Gong-bi; TAN Wen-chang

    2006-01-01

    A numerical analysis of the steady/pulsatile flow and macromolecular (such as LDL and Albumin) transport in curved blood vessels was carried out. The computational results predict that the vortex of the secondary flow is time-dependent in the aortic arch.The concentration of macromolecule concentrates at the region of sharp curve, and the wall concentration at the outer part is higher than that at the inner part. Atherosclerosis and thrombosis are prone to develop in such regions with sharp flow.

  3. Double-wavelet approach to study frequency and amplitude modulation in renal autoregulation

    DEFF Research Database (Denmark)

    Sosnovtseva, Olga; Pavlov, A N; Mosekilde, E;

    2004-01-01

    Biological time series often display complex oscillations with several interacting rhythmic components. Renal autoregulation, for instance, involves at least two separate mechanisms both of which can produce oscillatory variations in the pressures and flows of the individual nephrons. Using double......-wavelet analysis we propose a method to examine how the instantaneous frequency and amplitude of a fast mode is modulated by the presence of a slower mode. Our method is applied both to experimental data from normotensive and hypertensive rats showing different oscillatory patterns and to simulation results...... obtained from a physiologically based model of the nephron pressure and flow control. We reveal a nonlinear interaction between the two mechanisms that regulate the renal blood flow in the form of frequency and amplitude modulation of the myogenic oscillations....

  4. Cerebral blood flow and carbon dioxide reactivity in children with bacterial meningitis

    Energy Technology Data Exchange (ETDEWEB)

    Ashwal, S.; Stringer, W.; Tomasi, L.; Schneider, S.; Thompson, J.; Perkin, R. (Loma Linda Univ. School of Medicine, CA (USA))

    1990-10-01

    We examined total and regional cerebral blood flow (CBF) by stable xenon computed tomography in 20 seriously ill children with acute bacterial meningitis to determine whether CBF was reduced and to examine the changes in CBF during hyperventilation. In 13 children, total CBF was normal (62 +/- 20 ml/min/100 gm) but marked local variability of flow was seen. In five other children, total CBF was significantly reduced (26 +/- 10 ml/min/100 gm; p less than 0.05), with flow reduced more in white matter (8 +/- 5 ml/min/100 gm) than in gray matter (30 +/- 15 ml/min/100 gm). Autoregulation of CBF appeared to be present in these 18 children within a range of mean arterial blood pressure from 56 to 102 mm Hg. In the remaining two infants, brain dead within the first 24 hours, total flow was uniformly absent, averaging 3 +/- 3 ml/min/100 gm. In seven children, CBF was determined at two carbon dioxide tension (PCO2) levels: 40 (+/- 3) mm Hg and 29 (+/- 3) mm Hg. In six children, total CBF decreased 33%, from 52 (+/- 25) to 35 (+/- 15) ml/min/100 gm; the mean percentage of change in CBF per millimeter of mercury of PCO2 was 3.0%. Regional variability of perfusion to changes in PCO2 was marked in all six children. The percentage of change in CBF per millimeter of mercury of PCO2 was similar in frontal gray matter (3.1%) but higher in white matter (4.5%). In the seventh patient a paradoxical response was observed; total and regional CBF increased 25% after hyperventilation. Our findings demonstrate that (1) CBF in children with bacterial meningitis may be substantially decreased globally, with even more variability noted regionally, (2) autoregulation of CBF is preserved, (3) CBF/CO2 responsitivity varies among patients and in different regions of the brain in the same patient, and (4) hyperventilation can reduce CBF below ischemic thresholds.

  5. Blood flow characteristics in the aortic arch

    Science.gov (United States)

    Prahl Wittberg, Lisa; van Wyk, Stevin; Mihaiescu, Mihai; Fuchs, Laszlo; Gutmark, Ephraim; Backeljauw, Philippe; Gutmark-Little, Iris

    2012-11-01

    The purpose with this study is to investigate the flow characteristics of blood in the aortic arch. Cardiovascular diseases are associated with specific locations in the arterial tree. Considering atherogenesis, it is claimed that the Wall Shear Stress (WSS) along with its temporal and spatial gradients play an important role in the development of the disease. The WSS is determined by the local flow characteristics, that in turn depends on the geometry as well as the rheological properties of blood. In this numerical work, the time dependent fluid flow during the entire cardiac cycle is fully resolved. The Quemada model is applied to account for the non-Newtonian properties of blood, an empirical model valid for different Red Blood Cell loading. Data obtained through Cardiac Magnetic Resonance Imaging have been used in order to reconstruct geometries of the the aortic arch. Here, three different geometries are studied out of which two display malformations that can be found in patients having the genetic disorder Turner's syndrome. The simulations show a highly complex flow with regions of secondary flow that is enhanced for the diseased aortas. The financial support from the Swedish Research Council (VR) and the Sweden-America Foundation is gratefully acknowledged.

  6. Transcutaneous measurement of volume blood flow

    Science.gov (United States)

    Daigle, R. E.; Mcleod, F. D.; Miller, C. W.; Histand, M. B.; Wells, M. K.

    1974-01-01

    Blood flow velocity measurements, using Doppler velocimeter, are described. The ability to measure blood velocity using ultrasound is derived from the Doppler effect; the change in frequency which occurs when sound is reflected or transmitted from a moving target. When ultrasound of the appropriate frequency is transmitted through a moving blood stream, the blood cells act as point scatterers of ultrasonic energy. If this scattered ultrasonic energy is detected, it is found to be shifted in frequency according to the velocity of the blood cells, nu, the frequency of the incident sound, f sub o, the speed of sound in the medium, c, and the angle between the sound beam and the velocity vector, o. The relation describing this effect is known as the Doppler equation. Delta f = 2 f sub o x nu x cos alpha/c. The theoretical and experimental methods are evaluated.

  7. Dynamic cerebral autoregulation: different signal processing methods without influence on results and reproducibility.

    Science.gov (United States)

    Gommer, Erik D; Shijaku, Eri; Mess, Werner H; Reulen, Jos P H

    2010-12-01

    Cerebral autoregulation controls cerebral blood flow under changing cerebral perfusion pressure. Standards for measurement and analysis of dynamic cerebral autoregulation (dCA) are lacking. In this study, dCA reproducibility, quantified by intraclass correlation coefficient, is evaluated for different methodological approaches of transfer function analysis (TFA) and compared with multimodal pressure flow analysis (MMPF). dCA parameters were determined in 19 healthy volunteers during three 15-min lasting epochs of spontaneous breathing. Every spontaneous breathing epoch was followed by 5 min of paced breathing at 6 cycles/min. These six measurements were performed in both a morning and an afternoon session. Analysis compared raw data pre-processing by mean subtraction versus smoothness priors detrending. The estimation of spectral density was either performed by averaging of subsequent time windows or by smoothing the spectrum of the whole recording. No significant influence of pre-processing and spectral estimation on dCA parameters was found. Therefore, there seems to be no need to prescribe a specific signal-processing regime. Poor reproducibility of gain and phase was found for TFA as well as for MMPF. Based on reproducibility, no preference can be made for morning versus afternoon measurements, neither for spontaneous versus paced breathing. Finally, reproducibility results are not in favour of TFA or MMPF.

  8. Ventricular Volume Load Reveals the Mechanoelastic Impact of Communicating Hydrocephalus on Dynamic Cerebral Autoregulation.

    Directory of Open Access Journals (Sweden)

    Christina Haubrich

    Full Text Available Several studies have shown that the progression of communicating hydrocephalus is associated with diminished cerebral perfusion and microangiopathy. If communicating hydrocephalus similarly alters the cerebrospinal fluid circulation and cerebral blood flow, both may be related to intracranial mechanoelastic properties as, for instance, the volume pressure compliance. Twenty-three shunted patients with communicating hydrocephalus underwent intraventricular constant-flow infusion with Hartmann's solution. The monitoring included transcranial Doppler (TCD flow velocities (FV in the middle (MCA and posterior cerebral arteries (PCA, intracranial pressure (ICP, and systemic arterial blood pressure (ABP. The analysis covered cerebral perfusion pressure (CPP, the index of pressure-volume compensatory reserve (RAP, and phase shift angles between Mayer waves (3 to 9 cpm in ABP and MCA-FV or PCA-FV. Due to intraventricular infusion, the pressure-volume reserve was exhausted (RAP 0.84+/-0.1 and ICP was increased from baseline 11.5+/-5.6 to plateau levels of 20.7+/-6.4 mmHg. The ratio dRAP/dICP distinguished patients with large 0.1+/-0.01, medium 0.05+/-0.02, and small 0.02+/-0.01 intracranial volume compliances. Both M wave phase shift angles (r = 0.64; p<0.01 and CPP (r = 0.36; p<0.05 displayed a gradual decline with decreasing dRAP/dICP gradients. This study showed that in communicating hydrocephalus, CPP and dynamic cerebral autoregulation in particular, depend on the volume-pressure compliance. The results suggested that the alteration of mechanoelastic characteristics contributes to a reduced cerebral perfusion and a loss of autonomy of cerebral blood flow regulation. Results warrant a prospective TCD follow-up to verify whether the alteration of dynamic cerebral autoregulation may indicate a progression of communicating hydrocephalus.

  9. Blood flow dynamics in the snake spectacle.

    Science.gov (United States)

    van Doorn, Kevin; Sivak, Jacob G

    2013-11-15

    The eyes of snakes are shielded beneath a layer of transparent integument referred to as the 'reptilian spectacle'. Well adapted to vision by virtue of its optical transparency, it nevertheless retains one characteristic of the integument that would otherwise prove detrimental to vision: its vascularity. Given the potential consequence of spectacle blood vessels on visual clarity, one might expect adaptations to have evolved that mitigate their negative impact. Earlier research demonstrated an adaptation to their spatial layout in only one species to reduce the vessels' density in the region serving the foveal and binocular visual fields. Here, we present a study of spectacle blood flow dynamics and provide evidence of a mechanism to mitigate the spectacle blood vessels' deleterious effect on vision by regulation of blood flow through them. It was found that when snakes are at rest and undisturbed, spectacle vessels undergo cycles of dilation and constriction, such that the majority of the time the vessels are fully constricted, effectively removing them from the visual field. When snakes are presented with a visual threat, spectacle vessels constrict and remain constricted for longer periods than occur during the resting cycles, thus guaranteeing the best possible visual capabilities in times of need. Finally, during the snakes' renewal phase when they are generating a new stratum corneum, the resting cycle is abolished, spectacle vessels remain dilated and blood flow remains strong and continuous. The significance of these findings in terms of the visual capabilities and physiology of snakes is discussed.

  10. Regional cerebral blood flow in aphasia

    DEFF Research Database (Denmark)

    Soh, K; Larsen, B; Skinhøj, E

    1978-01-01

    Regional cerebral blood flow (rCBF) was studied in 13 aphasic patients with left hemisphere lesions, using the intracarotid xenon 133 injection method and a 254-detector gamma camera system. The rCBF was measured during rest and during various function tests, including a simple speech test...

  11. Effects of aortic irregularities on blood flow.

    Science.gov (United States)

    Prahl Wittberg, Lisa; van Wyk, Stevin; Fuchs, Laszlo; Gutmark, Ephraim; Backeljauw, Philippe; Gutmark-Little, Iris

    2016-04-01

    Anatomic aortic anomalies are seen in many medical conditions and are known to cause disturbances in blood flow. Turner syndrome (TS) is a genetic disorder occurring only in females where cardiovascular anomalies, particularly of the aorta, are frequently encountered. In this study, numerical simulations are applied to investigate the flow characteristics in four TS patient- related aortic arches (a normal geometry, dilatation, coarctation and elongation of the transverse aorta). The Quemada viscosity model was applied to account for the non-Newtonian behavior of blood. The blood is treated as a mixture consisting of water and red blood cells (RBC) where the RBCs are modeled as a convected scalar. The results show clear geometry effects where the flow structures and RBC distribution are significantly different between the aortas. Transitional flow is observed as a jet is formed due to a constriction in the descending aorta for the coarctation case. RBC dilution is found to vary between the aortas, influencing the WSS. Moreover, the local variations in RBC volume fraction may induce large viscosity variations, stressing the importance of accounting for the non-Newtonian effects.

  12. Ergot alkaloids decrease rumen epithelial blood flow

    Science.gov (United States)

    Two experiments were conducted to determine if ergot alkaloids affect blood flow to the absorptive surface of the rumen of steers. Steers (n=8 total) were pair-fed alfalfa cubes at 1.5× NEM and received ground endophyte-infected tall fescue seed (E+) or endophyte-free tall fescue seed (E-) via rumen...

  13. Cerebral blood flow in acute mountain sickness

    DEFF Research Database (Denmark)

    Jensen, J B; Wright, Anne; Lassen, N A

    1990-01-01

    Changes in cerebral blood flow (CBF) were measured using the radioactive xenon technique and were related to the development of acute mountain sickness (AMS). In 12 subjects, ascending from 150 to 3,475 m, CBF was 24% increased at 24 h [45.1 to 55.9 initial slope index (ISI) units] and 4% increased...

  14. Frequency encoding in renal blood flow regulation

    DEFF Research Database (Denmark)

    Marsh, D.J.; Sosnovtseva, Olga; Pavlov, A.N.

    2005-01-01

    With a model of renal blood flow regulation, we examined consequences of tubuloglomerular feedback (TGF) coupling to the myogenic mechanism via voltage-gated Ca channels. The model reproduces the characteristic oscillations of the two mechanisms and predicts frequency and amplitude modulation...

  15. Dexmedetomidine decreases the oral mucosal blood flow.

    Science.gov (United States)

    Kawaai, Hiroyoshi; Yoshida, Kenji; Tanaka, Eri; Togami, Kohei; Tada, Hitoshi; Ganzberg, Steven; Yamazaki, Shinya

    2013-12-01

    There is an abundance of blood vessels in the oral cavity, and intraoperative bleeding can disrupt operations. There have been some interesting reports about constriction of vessels in the oral cavity, one of which reported that gingival blood flow in cats is controlled by sympathetic α-adrenergic fibres that are involved with vasoconstriction. Dexmedetomidine is a sedative and analgesic agent that acts through the α-2 adrenoceptor, and is expected to have a vasoconstrictive action in the oral cavity. We have focused on the relation between the effects of α-adrenoceptors by dexmedetomidine and vasoconstriction in oral tissues, and assessed the oral mucosal blood flow during sedation with dexmedetomidine. The subjects comprised 13 healthy male volunteers, sedated with dexmedetomidine in a loading dose of 6 μg/kg/h for 10 min and a continuous infusion of 0.7 μg/kg/h for 32 min. The mean arterial pressure (MAP), heart rate (HR), cardiac output (CO), stroke volume (SV), systemic vascular resistance (SVR), and palatal mucosal blood flow (PMBF) were measured at 0, 5, 10, 12, 22, and 32 min after the start of the infusion. The HR, CO, and PBMF decreased significantly during the infusion even though there were no differences in the SV. The SVR increased significantly but the PMBF decreased significantly. In conclusion, PMBF was reduced by the mediating effect of dexmedetomidine on α-2 adrenoceptors.

  16. A comparison of measurements of cerebral blood flow in the rabbit using laser Doppler spectroscopy and radionuclide labelled microspheres.

    Science.gov (United States)

    Eyre, J A; Essex, T J; Flecknell, P A; Bartholomew, P H; Sinclair, J I

    1988-02-01

    Laser Doppler spectroscopy has been evaluated for the measurement of cerebral blood flow (CBF) by correlation with simultaneous measurements by radionuclide labelled microspheres. The experimental procedures were carried out on five anaesthetised rabbits. The cortical tissue was exposed by means of a small burr hole and illuminated by a helium neon laser (632.8 nm). Reflected light was detected using a silicon photodiode, and CBF was calculated continuously from the power of the frequency weighted Doppler spectrum in the reflected light. Three successive measurements of CBF were made using the microsphere technique. Following an initial baseline measurement, CBF was increased by an infusion of metaraminol and then reduced by controlled haemorrhage. Laser Doppler spectroscopy provided continuous monitoring of blood flow fluctuations and during the haemorrhage it was possible to demonstrate CBF autoregulation until the mean blood pressure fell below 6.7 kPa (50 mmHg). A regression analysis was performed between the simultaneous CBF measurements from the two techniques using a least squares best fit straight line analysis (r = 0.92, P less than 0.001). It was concluded that the flow computed from laser Doppler spectroscopy varied linearly with CBF and offers the unique advantage of continuous and instantaneous measurements even during nonsteady state flow.

  17. The Longitudinal Evolution of Cerebral Blood Flow Regulation after Acute Ischaemic Stroke

    Directory of Open Access Journals (Sweden)

    Angela S.M. Salinet

    2014-08-01

    Full Text Available Background: Acute stroke is known to impair cerebral blood flow (CBF regulation, but the longitudinal changes of these effects have been poorly reported. The main CBF regulatory mechanisms [cerebral autoregulation (CA and neurovascular coupling (NVC] were assessed over 3 months after acute ischaemic stroke. Methods: Recordings of CBF velocity (CBFv, blood pressure (BP, and end-tidal CO2 were performed during 5 min baseline and 1 min passive movement of the elbow. Stroke patients were assessed Results: Fifteen acute stroke subjects underwent all 4 sessions and were compared to 22 control subjects. Baseline recordings revealed a significantly lower CBFv in the affected hemisphere within 72 h after stroke compared to controls (p = 0.02 and a reduction in CA index most marked at 2 weeks (p = 0.009. CBFv rise in response to passive arm movement was decreased bilaterally after stroke, particularly in the affected hemisphere (p Conclusion: The major novel finding of this study was that both CA and NVC regulatory mechanisms deteriorated initially following stroke onset, but returned to control levels during the recovery period. These findings are relevant to guide the timing of interventions to manipulate BP and potentially for the impact of intensive rehabilitation strategies that may precipitate acute physiological perturbations but require further exploration in a larger population that better reflects the heterogeneity of stroke. Further, they will also enable the potential influence of stroke subtype to be investigated.

  18. Pulsatile blood flow interaction with arterial walls of aorta : autoregulation and impedance pressure boundary condition and its biomedical applications

    OpenAIRE

    Afkari, Damon

    2016-01-01

    Para las decisiones urgentes sobre intervenciones quirúrgicas en el sistema cardiovascular se necesitan simulaciones computacionales con resultados fiables y que consuman un tiempo de cálculo razonable. Durante años los investigadores han trabajado en diversos métodos numéricos de cálculo que resulten atractivos para los cirujanos. Estos métodos, precisos pero costosos desde el punto de vista del coste computacional, crean un desajuste entre la oferta de los ingenieros que real...

  19. Cerebral autoregulation dynamics in endurance-trained individuals

    DEFF Research Database (Denmark)

    Lind-Holst, Mikkel; Cotter, James D; Helge, Jørn W;

    2011-01-01

    of increase in the cerebrovascular conductance index (CVCi = MCA V(mean)/MAP) appeared later in the athletes (3.9 ± 0.4 vs. 2.7 ± 0.4s, P = 0.01). Spectral analysis revealed a normal MAP-to-MCA V(mean) phase in both groups but ~40% higher normalized MAP to MCA V(mean) low-frequency transfer function gain...... in untrained subjects and was associated with parallel changes in indexes of cerebral blood flow. Once initiated, the autoregulatory response was similar between the groups. A delayed onset of autoregulation with a larger normalized transfer gain conforms with a less effective dampening of MAP oscillations...... pressure (MAP) after 2.5 min of leg ischemia in endurance athletes and untrained subjects (maximal O(2) uptake: 69 ± 7 vs. 42 ± 5 ml O(2)·min(-1)·kg(-1); n = 9 for both, means ± SE). After cuff release when seated, endurance athletes had larger drops in MAP (94 ± 6 to 62 ± 5 mmHg, -39%, vs. 99 ± 5 to 73...

  20. Red blood cell clusters in Poiseuille flow

    Science.gov (United States)

    Ghigliotti, Giovanni; Selmi, Hassib; Misbah, Chaouqi; Elasmi, Lassaad

    2011-11-01

    We present 2D numerical simulations of sets of vesicles (closed bags of a lipid bilayer membrane) in a parabolic flow, a setup that mimics red blood cells (RBCs) in the microvasculature. Vesicles, submitted to sole hydrodynamical interactions, are found to form aggregates (clusters) of finite size. The existence of a maximal cluster size is pointed out and characterized as a function of the flow intensity and the swelling ratio of the vesicles. Moreover bigger clusters move at lower velocity, a fact that may prove of physiological interest. These results quantify previous observations of the inhomogeneous distribution of RBCs in vivo (Gaehtgens et al., Blood Cells 6 - 1980). An interpretation of the phenomenon is put forward based on the presence of boli (vortices) between vesicles. Both the results and the explanation can be transposed to the three-dimensional case.

  1. Cerebral hemodynamics after short- and long-term reduction in blood pressure in mild and moderate hypertension.

    NARCIS (Netherlands)

    Zhang, R.; Witkowski, S.; Fu, Q.; Claassen, J.A.H.R.; Levine, B.D.

    2007-01-01

    This study tested the hypothesis that acute reduction in blood pressure (BP) at the initial stage of antihypertensive therapy compromises brain perfusion and dynamic cerebral autoregulation in patients with hypertension. Cerebral blood flow velocity and BP were measured in patients with mild and mod

  2. Deterministic Aperiodic Sickle Cell Blood Flows

    Science.gov (United States)

    Atsaves, Louis; Harris, Wesley

    2013-11-01

    In this paper sickle cell blood flow in the capillaries is modeled as a hydrodynamical system. The hydrodynamical system consists of the axisymmetric unsteady, incompressible Navier-Stokes equations and a set of constitutive equations for oxygen transport. Blood cell deformation is not considered in this paper. The hydrodynamical system is reduced to a system of non-linear partial differential equations that are then transformed into a system of three autonomous non-linear ordinary differential equations and a set of algebraic equations. We examine the hydrodynamical system to discern stable/unstable, periodic/nonperiodic, reversible/irreversible properties of the system. The properties of the solutions are driven in large part by the coefficients of the governing system of equations. These coefficients depend on the physiological properties of the sickle cell blood. The chaotic nature of the onset of crisis in sickle cell patients is identified. Research Assistant.

  3. Computational Analysis of Human Blood Flow

    Science.gov (United States)

    Panta, Yogendra; Marie, Hazel; Harvey, Mark

    2009-11-01

    Fluid flow modeling with commercially available computational fluid dynamics (CFD) software is widely used to visualize and predict physical phenomena related to various biological systems. In this presentation, a typical human aorta model was analyzed assuming the blood flow as laminar with complaint cardiac muscle wall boundaries. FLUENT, a commercially available finite volume software, coupled with Solidworks, a modeling software, was employed for the preprocessing, simulation and postprocessing of all the models.The analysis mainly consists of a fluid-dynamics analysis including a calculation of the velocity field and pressure distribution in the blood and a mechanical analysis of the deformation of the tissue and artery in terms of wall shear stress. A number of other models e.g. T branches, angle shaped were previously analyzed and compared their results for consistency for similar boundary conditions. The velocities, pressures and wall shear stress distributions achieved in all models were as expected given the similar boundary conditions. The three dimensional time dependent analysis of blood flow accounting the effect of body forces with a complaint boundary was also performed.

  4. Blood flow measurements and clot detection with nearinfrared spectroscopy

    OpenAIRE

    Rossow, MJ; Gatto, R.; D'amico, E.; Mantulin, WW; Gratton, E

    2006-01-01

    Detecting impeded blood flow and locating the clot causing it is a major challenge in neurosurgery. We propose an instrument that uses near-infrared spectroscopy to simultaneously detect clots and measure blood flow. © 2006 Optical Society of America.

  5. Glial and neuronal control of brain blood flow

    DEFF Research Database (Denmark)

    Attwell, David; Buchan, Alastair M; Charpak, Serge

    2010-01-01

    Blood flow in the brain is regulated by neurons and astrocytes. Knowledge of how these cells control blood flow is crucial for understanding how neural computation is powered, for interpreting functional imaging scans of brains, and for developing treatments for neurological disorders. It is now...... in our understanding of cerebral blood flow control have important implications for the development of new therapeutic approaches....

  6. Patterns of synchrony for feed-forward and auto-regulation feed-forward neural networks.

    Science.gov (United States)

    Aguiar, Manuela A D; Dias, Ana Paula S; Ferreira, Flora

    2017-01-01

    We consider feed-forward and auto-regulation feed-forward neural (weighted) coupled cell networks. In feed-forward neural networks, cells are arranged in layers such that the cells of the first layer have empty input set and cells of each other layer receive only inputs from cells of the previous layer. An auto-regulation feed-forward neural coupled cell network is a feed-forward neural network where additionally some cells of the first layer have auto-regulation, that is, they have a self-loop. Given a network structure, a robust pattern of synchrony is a space defined in terms of equalities of cell coordinates that is flow-invariant for any coupled cell system (with additive input structure) associated with the network. In this paper, we describe the robust patterns of synchrony for feed-forward and auto-regulation feed-forward neural networks. Regarding feed-forward neural networks, we show that only cells in the same layer can synchronize. On the other hand, in the presence of auto-regulation, we prove that cells in different layers can synchronize in a robust way and we give a characterization of the possible patterns of synchrony that can occur for auto-regulation feed-forward neural networks.

  7. Blood flow in healed and inflamed periodontal tissues of dogs

    Energy Technology Data Exchange (ETDEWEB)

    Hock, J.M.; Kim, S.

    1987-01-01

    The objectives of this study were to determine if increased blood flow associated with gingivitis would decrease following resolution of gingival inflammation in dogs with periodontitis; if increased blood flow in inflamed gingiva was associated with changes in the blood flow of alveolar bone, and if blood flow in gingiva and alveolar bone increased if periodontitis was reactivated by ligating teeth. Regional blood flow was measured in dogs with pre-existing periodontitis, using radioisotope-labelled, plastic microspheres. In the first experiment on 4 adult Beagle dogs, teeth in the left jaws were treated to resolve the periodontitis, while teeth in the right jaws were not treated. Gingival and bone blood flow were measured after 12 wk. Blood flow was significantly (p<0.05) lower in non-inflamed healed gingiva (32.1 +- 2.7 ml/min/100 g) than in inflamed gingiva (46.1 +- 5.3 ml/min/100 g). No differences in the blood flow of the alveolar bone underlying inflamed or non-inflamed gingiva were present. In the second experiment, the right mandibular teeth of 5 dogs were treated to resolve periodontitis while teeth in the other quadrants were ligated for 4, 10 or 12 wk. The duration of ligation did not alter blood flow. Gingival blood flow around ligated maxillary and mandibular teeth was comparable and approximately 54% higher than around non-ligated teeth (p<0.03). The difference in blood flow between gingiva with G.I.>1 and gingiva with G.I.<2 was significant (p<0.04). Blood flow in bone was not altered by changes in the inflammatory status of the overlying gingiva. The findings suggest that changes in blood flow associated with inflammation are reversible and that blood flow alveolar bone is regulated independently of gingival blood flow.

  8. Skin blood flow changes during apneic spells in preterm infants

    NARCIS (Netherlands)

    Suichies, H.E.; Aarnoudse, J.G.; Okken, A.; Jentink, H.W.; Mul, de F.F.M.; Greve, J.

    1989-01-01

    Changes in skin blood flow during apneic spells were determined in 18 preterm infants using a diode laser Doppler flow meter without light conducting fibres. Heart rate, nasal air flow, impedance pneumography, skin and incubator temperature and laser Doppler skin blood flow were recorded simultaneou

  9. Absolute quantification of myocardial blood flow.

    Science.gov (United States)

    Yoshinaga, Keiichiro; Manabe, Osamu; Tamaki, Nagara

    2016-07-21

    With the increasing availability of positron emission tomography (PET) myocardial perfusion imaging, the absolute quantification of myocardial blood flow (MBF) has become popular in clinical settings. Quantitative MBF provides an important additional diagnostic or prognostic information over conventional visual assessment. The success of MBF quantification using PET/computed tomography (CT) has increased the demand for this quantitative diagnostic approach to be more accessible. In this regard, MBF quantification approaches have been developed using several other diagnostic imaging modalities including single-photon emission computed tomography, CT, and cardiac magnetic resonance. This review will address the clinical aspects of PET MBF quantification and the new approaches to MBF quantification.

  10. Changes in cerebral blood flow and psychometric indicators in veterans with early forms of chronic brain ischemia

    Directory of Open Access Journals (Sweden)

    Vasilenko Т.М.

    2015-09-01

    Full Text Available The goal is to study the cerebral blood flow and psychometric characteristics in veterans of Afghanistan with early forms of chronic brain ischemia. Material and Methods. The study included 74 veterans of the Afghan war aged from 45 to 55 years: group 1, 28 people with NPNKM; Group 2-28 patients with circulatory encephalopathy stage 1; group 3-18 healthy persons. Doppler examination of cerebral vessels was carried out on the unit «Smart-lite». Reactive and personal anxiety of patients was assessed using the scale of Spielberger, evaluation of the quality of life through the test SAN. Determining the level of neuroticism and psychoticism was conducted by the scale of neuroticism and psy-choticism. Results: The study of cerebral blood flow in the Afghan war veterans showed signs of insolvency of carotid and carotid-basilar anastomoses, hypoperfusion phenomenon with the depletion of autoregulation, violation of the outflow of venous blood at the level of the microvasculature, accompanied by cerebral arteries spasm. More than 40% of patients with early forms of chronic brain ischemia had high personal anxiety, low levels of well-being and activity, with maximum expression of dyscirculatory hypoxia. Conclusion. Readaptation of veterans of Afghanistan is accompanied by the changes in psychometric performance and the formation of the earliest forms of brain chronic ischemia associated with inadequate hemodynamics providing increased functional activity of the brain and the inefficiency of compensatory-adaptive reactions.

  11. Capillary pericytes regulate cerebral blood flow in health and disease

    DEFF Research Database (Denmark)

    Hall, Catherine N; Reynell, Clare; Gesslein, Bodil;

    2014-01-01

    Increases in brain blood flow, evoked by neuronal activity, power neural computation and form the basis of BOLD (blood-oxygen-level-dependent) functional imaging. Whether blood flow is controlled solely by arteriole smooth muscle, or also by capillary pericytes, is controversial. We demonstrate...... blood flow, capillaries dilate before arterioles and are estimated to produce 84% of the blood flow increase. In pathology, ischaemia evokes capillary constriction by pericytes. We show that this is followed by pericyte death in rigor, which may irreversibly constrict capillaries and damage the blood......-brain barrier. Thus, pericytes are major regulators of cerebral blood flow and initiators of functional imaging signals. Prevention of pericyte constriction and death may reduce the long-lasting blood flow decrease that damages neurons after stroke....

  12. Decorrelation-based blood flow velocity estimation: effect of spread of flow velocity, linear flow velocity gradients, and parabolic flow.

    NARCIS (Netherlands)

    Lupotti, F.A.; Steen, A.F.W. van der; Mastik, F.; Korte, C.L. de

    2002-01-01

    In recent years, a new method to measure transverse blood flow, based on the decorrelation of the radio frequency (RF) signals has been developed. In this paper, we investigated the influence of nonuniform flow on the velocity estimation. The decorrelation characteristics of transverse blood flow us

  13. Regional cerebral blood flow in schizophrenics

    Energy Technology Data Exchange (ETDEWEB)

    Uchino, J.; Ohta, Y.; Nakane, Y.; Mori, H.; Hirota, N.; Yonekura, M.

    1987-01-01

    The present study on schizophrenics dealt with the relationship of regional cerebral blood flow (rCBF) to age, disease duration, and treatment length with chlorpromazine hydrochloride (CPZ). Regional cerebral blood flow in 28 cerebral regions of interest was measured by iv injection of /sup 133/X in 54 schizophrenic patients and 39 healthy volunteers. Neither age nor dosage of CPZ significantly influenced rCBF. All patients, including 11 treated for a short period of time (6 months or less), were characterized by having a decreased rCBF over the whole cerebrum. Thirty-four patients treated for a long period of time (2 years or more) had a varied rCBF distribution in the left hemisphere, with the most predominant feature being the decrease in rCBF in the frontal lobe (i.e., hypofrontality); however, there was no linear correlation between rCBF and disease duration. A decreased rCBE in the right occipital region was seen in patients with paranoid schizophrenia, suggesting that manifestations of symptoms may depend on disturbed regions. These results suggest that cerebral dysfunction in schizophrenic patients may not be restricted to the frontal lobe, but cover the whole cerebrum, and that nonuniform dysfunction in various regions of the cerebrum, including the frontal lobe, may be involved in manifestations of symptoms.

  14. Cerebral blood flow tomography with xenon-133

    Energy Technology Data Exchange (ETDEWEB)

    Lassen, N.A.

    1985-10-01

    Cerebral blood flow (CBF) can be measured tomographically by inhalation of Xenon-/sup 133/. The calculation is based on taking a sequence of tomograms during the wash-in and wash-out phase of the tracer. Due to the dynamic nature of the process, a highly sensitive and fast moving single photon emission computed tomograph (SPECT) is required. Two brain-dedicated SPECT systems designed for this purpose are mentioned, and the method is described with special reference to the limitations inherent in the soft energy of the 133Xe primary photons. CBF tomography can be used for a multitude of clinical and investigative purposes. This article discusses in particular its use for the selection of patients with carotid occlusion for extracranial/intracranial bypass surgery, for detection of severe arterial spasm after aneurysm bleeding, and for detection of low flow areas during severe migraine attacks. The use of other tracers for CBF tomography using SPECT is summarized with emphasis on the /sup 99m/Tc chelates that freely pass the intact blood-brain barrier. The highly sensitive brain-dedicated SPECT systems described are a prerequisite for achieving high resolution tomograms with such tracers.

  15. Tissue blood flow mapping using laser technology

    Science.gov (United States)

    Wardell, Karin; Linden, Maria; Nilsson, Gert E.

    1995-03-01

    By the introduction of the laser Doppler perfusion imager (LDPI) the microvascular blood flow in a tissue area can be mapped by sequentially moving a laser beam over the tissue. The measurement is performed without touching the tissue and the captured perfusion values in the peripheral circulation are presented as a color-coded image. In the ordinary LDPI-set-up, 64 X 64 measurement sites cover an area in the range of about 10 - 150 cm2 depending on system settings. With a high resolution modification, recordings can be done on tissue areas as small as 1 cm2. This high resolution option has been assessed in animal models for the mapping of small vessels. To be able to record not only spatial but also temporal perfusion components of tissue blood flow, different local area scans (LAS) have been developed. These include single point recording as well as integration of either 2 X 2, 3 X 3, or 4 X 4 measurement sites. The laser beam is repeatedly moved in a quadratic pattern over the small tissue area of interest and the output value constitutes the average perfusion of all captured values within the actual region. For the evaluation, recordings were performed on healthy volunteers before and after application of a vasodilatating cream on the dorsal side of the hand.

  16. T2’-Imaging to Assess Cerebral Oxygen Extraction Fraction in Carotid Occlusive Disease: Influence of Cerebral Autoregulation and Cerebral Blood Volume

    Science.gov (United States)

    Deichmann, Ralf; Pfeilschifter, Waltraud; Hattingen, Elke; Singer, Oliver C.; Wagner, Marlies

    2016-01-01

    Purpose Quantitative T2'-mapping detects regional changes of the relation of oxygenated and deoxygenated hemoglobin (Hb) by using their different magnetic properties in gradient echo imaging and might therefore be a surrogate marker of increased oxygen extraction fraction (OEF) in cerebral hypoperfusion. Since elevations of cerebral blood volume (CBV) with consecutive accumulation of Hb might also increase the fraction of deoxygenated Hb and, through this, decrease the T2’-values in these patients we evaluated the relationship between T2’-values and CBV in patients with unilateral high-grade large-artery stenosis. Materials and Methods Data from 16 patients (13 male, 3 female; mean age 53 years) with unilateral symptomatic or asymptomatic high-grade internal carotid artery (ICA) or middle cerebral artery (MCA) stenosis/occlusion were analyzed. MRI included perfusion-weighted imaging and high-resolution T2’-mapping. Representative relative (r)CBV-values were analyzed in areas of decreased T2’ with different degrees of perfusion delay and compared to corresponding contralateral areas. Results No significant elevations in cerebral rCBV were detected within areas with significantly decreased T2’-values. In contrast, rCBV was significantly decreased (pperfusion delay and decreased T2’. Furthermore, no significant correlation between T2’- and rCBV-values was found. Conclusions rCBV is not significantly increased in areas of decreased T2’ and in areas of restricted perfusion in patients with unilateral high-grade stenosis. Therefore, T2’ should only be influenced by changes of oxygen metabolism, regarding our patient collective especially by an increase of the OEF. T2’-mapping is suitable to detect altered oxygen consumption in chronic cerebrovascular disease. PMID:27560515

  17. Cardiovascular and Postural Control Interactions during Hypergravity: Effects on Cerebral Autoregulation in Males and Females

    Science.gov (United States)

    Goswami, Nandu; Blaber, Andrew; Bareille, Marie-Pierre; Beck, Arnaud; Avan, Paul; Bruner, Michelle; Hinghofer-Szalkay, Helmut

    2012-07-01

    Orthostatic intolerance remains a problem upon return to Earth from the microgravity environment of spaceflight. A variety of conditions including hypovolemia, cerebral vasoconstriction, cerebral or peripheral vascular disease, or cardiac arrhythmias may result in syncope if the person remains upright. Current research indicates that there is a greater dependence on visual and somatosensory information at the beginning of space flight with a decreased otolith gain during prolonged space flight (Herault et al., 2002). The goal of the research is to further our understanding of the fundamental adaptive homeostatic mechanisms involved in gravity related changes in cardiovascular and postural function. Cardiovascular, cerebrovascular, and postural sensory motor control systems in male and female participants before, during, and after exposure to graded levels of hyper-G were investigated. Hypotheses: 1) Activation of skeletal muscle pump will be directly related to the degree of orthostatic stress. 2) Simultaneous measurement of heart rate, blood pressure and postural sway will predict cardio-postural stability. Blood pressure and heart rate (means and variability), postural sway, center of pressure (COP), baroreflex function, calf blood flow, middle cerebral artery blood flow, non-invasive intracranial pressure measurements, and two-breath CO2 were measured. Results from the study will be used to provide an integrated insight into mechanisms of cardio-postural control and cerebral autoregulation, which are important aspects of human health in flights to Moon, Mars and distant planets.

  18. Low cerebral blood flow in hypotensive perinatal distress

    DEFF Research Database (Denmark)

    Lou, H C; Lassen, N A; Friis-Hansen, B

    1977-01-01

    was used for the cerebral blood flow measurements. The study confirmed that perinatal distress may be associated with low arterial blood pressure, and it was shown that cerebral blood flow is very low, 20 ml/100 g/min or less, in hypotensive perinatal distress. It is concluded that cerebral ischaemia plays...

  19. Magnetic Resonance Imaging Quantification of Regional Cerebral Blood Flow and Cerebrovascular Reactivity to Carbon Dioxide in Normotensive and Hypertensive Rats

    Science.gov (United States)

    Leoni, Renata F.; Paiva, Fernando F.; Henning, Erica C.; Nascimento, George C.; Tannús, Alberto; de Araujo, Draulio B.; Silva, Afonso C.

    2011-01-01

    Hypertension afflicts 25% of the general population and over 50% of the elderly. In the present work, arterial spin labeling MRI was used to non-invasively quantify regional cerebral blood flow (CBF), cerebrovascular resistance and CO2 reactivity in spontaneously hypertensive rats (SHR) and in normotensive Wistar Kyoto rats (WKY), at two different ages (3 months and 10 months) and under the effects of two anesthetics, α-chloralose and 2% isoflurane (1.5 MAC). Repeated CBF measurements were highly consistent, differing by less than 10% and 18% within and across animals, respectively. Under α-chloralose, whole brain CBF at normocapnia did not differ between groups (young WKY: 61±3ml/100g/min; adult WKY: 62±4ml/100g/min; young SHR: 70±9ml/100g/min; adult SHR: 69±8ml/100g/min), indicating normal cerebral autoregulation in SHR. At hypercapnia, CBF values increased significantly, and a linear relationship between CBF and PaCO2 levels was observed. In contrast, 2% isoflurane impaired cerebral autoregulation. Whole brain CBF in SHR was significantly higher than in WKY rats at normocapnia (young SHR: 139±25ml/100g/min; adult SHR: 104±23ml/100g/min; young WKY: 55±9ml/100g/min; adult WKY: 71±19ml/100g/min). CBF values increased significantly with increasing CO2; however, there was a clear saturation of CBF at PaCO2 levels greater than 70 mmHg in both young and adult rats, regardless of absolute CBF values, suggesting that isoflurane interferes with the vasodilatory mechanisms of CO2. This behavior was observed for both cortical and subcortical structures. Under either anesthetic, CO2 reactivity values in adult SHR were decreased, confirming that hypertension, when combined with age, increases cerebrovascular resistance and reduces cerebrovascular compliance. PMID:21708273

  20. Intraoperative cerebral blood flow imaging of rodents

    Science.gov (United States)

    Li, Hangdao; Li, Yao; Yuan, Lu; Wu, Caihong; Lu, Hongyang; Tong, Shanbao

    2014-09-01

    Intraoperative monitoring of cerebral blood flow (CBF) is of interest to neuroscience researchers, which offers the assessment of hemodynamic responses throughout the process of neurosurgery and provides an early biomarker for surgical guidance. However, intraoperative CBF imaging has been challenging due to animal's motion and position change during the surgery. In this paper, we presented a design of an operation bench integrated with laser speckle contrast imager which enables monitoring of the CBF intraoperatively. With a specially designed stereotaxic frame and imager, we were able to monitor the CBF changes in both hemispheres during the rodent surgery. The rotatable design of the operation plate and implementation of online image registration allow the technician to move the animal without disturbing the CBF imaging during surgery. The performance of the system was tested by middle cerebral artery occlusion model of rats.

  1. Mapping blood flow directionality in the human brain.

    Science.gov (United States)

    Park, Sung-Hong; Do, Won-Joon; Choi, Seung Hong; Zhao, Tiejun; Bae, Kyongtae Ty

    2016-07-01

    Diffusion properties of tissue are often expressed on the basis of directional variance, i.e., diffusion tensor imaging. In comparison, common perfusion-weighted imaging such as arterial spin labeling yields perfusion in a scalar quantity. The purpose of this study was to test the feasibility of mapping cerebral blood flow directionality using alternate ascending/descending directional navigation (ALADDIN), a recently-developed arterial spin labeling technique with sensitivity to blood flow directions. ALADDIN was applied along 3 orthogonal directions to assess directional blood flow in a vector form and also along 6 equally-spaced directions to extract blood flow tensor matrix (P) based on a blood flow ellipsoid model. Tensor elements (eigenvalues, eigenvectors, etc) were calculated to investigate characteristics of the blood flow tensor, in comparison with time-of-flight MR angiogram. While the directions of the main eigenvectors were heterogeneous throughout the brain, regional clusters of blood flow directionality were reproducible across subjects. The technique could show heterogeneous blood flow directionality within and around brain tumor, which was different from that of the contralateral normal side. The proposed method is deemed to provide information of blood flow directionality, which has not been demonstrated before. The results warrant further studies to assess changes in the directionality map as a function of scan parameters, to understand the signal sources, to investigate the possibility of mapping local blood perfusion directionality, and to evaluate its usefulness for clinical diagnosis.

  2. Blood flow and vascular reactivity during attacks of classic migraine--limitations of the Xe-133 intraarterial technique

    Energy Technology Data Exchange (ETDEWEB)

    Skyhoj Olsen, T.; Lassen, N.A.

    1989-01-01

    The present study reports cerebral blood flow (CBF) measurements in 11 patients during attacks of classic migraine (CM)--migraine with aura. In 6 and 7 patients, respectively, cerebral vascular reactivity to increased blood pressure and to hypocapnia was also investigated during the CM attacks. The Xenon-133 intraarterial injection technique was used to measure CBF. In this study, based in part on previously published data, methodological limitations, in particular caused by scattered radiation (Compton scatter), are critically analysed. Based on this analysis and the results of the CBF studies it is concluded: During CM attacks CBF appears to decrease focally in the posterior part of the brain to a level around 20 ml/100 g/min which is consistent with a mild degree of ischemia. Changes of CBF in focal low flow areas are difficult to evaluate accurately with the Xe-133 technique. In most cases true CBF may change 50% or more in the low flow areas without giving rise to significantly measurable changes of CBF. This analysis suggests that the autoregulation response cannot be evaluated in the low flow areas with the technique used while the observations are compatible with the concept that a vasoconstrictive state, unresponsive to hypocapnia, prevails in the low flow areas during CM attacks. The gradual increase in size of the low flow area seen in several cases may be interpreted in two different ways. A spreading process may actually exist. However, due to Compton scatter, a gradual decrease of CBF in a territory that does not increase in size will also appear as a gradually spreading low flow area when studied with the Xe-133 intracarotid technique.

  3. The effect of hyperosmotic solutions on the hepatic blood flow

    DEFF Research Database (Denmark)

    Winkler, K; Henriksen, Jens Henrik Sahl; Tygstrup, N

    1993-01-01

    The present study was undertaken in order to measure the effect of hyperosmotic solutions on portal and hepatic blood flow. In five anaesthetized pigs without arterial blood supply to the liver, portal blood flow rate was measured (electromagnetic flowmeter) during 5 min lasting intravenous infus...... for these osmotic effects are not known, but they have to be taken into consideration in studies of the portal and hepatic blood flow.......The present study was undertaken in order to measure the effect of hyperosmotic solutions on portal and hepatic blood flow. In five anaesthetized pigs without arterial blood supply to the liver, portal blood flow rate was measured (electromagnetic flowmeter) during 5 min lasting intravenous...

  4. Intraoperative blood pressure and cerebral perfusion: strategies to clarify hemodynamic goals.

    Science.gov (United States)

    Williams, Monica; Lee, Jennifer K

    2014-07-01

    Blood pressure can vary considerably during anesthesia. If blood pressure falls outside the limits of cerebrovascular autoregulation, children can become at risk of cerebral ischemic or hyperemic injury. However, the blood pressure limits of autoregulation are unclear in infants and children, and these limits can shift after brain injury. This article will review autoregulation, considerations for the hemodynamic management of children with brain injuries, and research on autoregulation monitoring techniques.

  5. Intraoperative blood pressure and cerebral perfusion: strategies to clarify hemodynamic goals

    OpenAIRE

    Williams, Monica; Lee, Jennifer K.

    2014-01-01

    Blood pressure can vary considerably during anesthesia. If blood pressure falls outside the limits of cerebrovascular autoregulation, children can become at risk of cerebral ischemic or hyperemic injury. However, the blood pressure limits of autoregulation are unclear in infants and children, and these limits can shift after brain injury. This article will review autoregulation, considerations for the hemodynamic management of children with brain injuries, and research on autoregulation monit...

  6. Applicability of near-infrared spectroscopy to measure cerebral autoregulation noninvasively in neonates: a validation study in piglets

    DEFF Research Database (Denmark)

    Holst Hahn, Gitte; Heiring, Christian; Pryds, Ole;

    2011-01-01

    , we compared NIRS-derived measures of CA with a conventional measure of CA: cerebral blood flow was measured by laser Doppler flowmetry, and changes in ABP were induced by inflating a thoracic aorta balloon. CA capacity was calculated as %¿CVR/%¿ABP (i.e. percentage of full autoregulatory capacity......Impaired cerebral autoregulation (CA) is common and is associated with brain damage in sick neonates. Frequency analysis using spontaneous changes in arterial blood pressure (ABP) and cerebral near-infrared spectroscopy (NIRS) has been used to measure CA in several clinical studies. Coherence...... capacity in measurements with significant coherence (r = -0.55, n = 15, p = 0.03). In conclusion, our data validate frequency analysis for estimation of CA in clinical research. Low precision, however, hampers its clinical application....

  7. Compromised cerebrovascular modulation in chronic anxiety: evidence from cerebral blood flow velocity measured by transcranial Doppler sonography

    Institute of Scientific and Technical Information of China (English)

    Hong-Liang Zhang; Zhen-Ni Guo; Ge Yang; Le Yang; Ke Han; Jiang Wu; Yingqi Xing; Yi Yang

    2012-01-01

    Objective Cerebral autoregulation (CA) is the mechanism by which constant cerebral blood flow is maintained despite changes in cerebral perfusion pressure.CA can be evaluated by dynamic monitoring of cerebral blood flow velocity (CBFV) with transcranial Doppler sonography (TCD).The present study aimed to explore CA in chronic anxiety.Methods Subjects with Hamilton anxiety scale scores ≥14 were enrolled and the dynamic changes of CBFV in response to an orthostatic challenge were investigated using TCD.Results In both the anxious and the healthy subjects,the mean CBFV was significantly lower in the upright position than when supine.However,the CBFV changes from supine to upright differed between the anxious and the healthy groups.Anxious subjects showed more pronounced decreases in CBFV with abrupt standing.Conclusion Our results indicate that cerebrovascular modulation is compromised in chronic anxiety; anxious subjects have some insufficiency in maintaining cerebral perfusion after postural change.Given the fact that anxiety and impaired CA are associated with cardiovascular disease,early ascertainment of compromised cerebrovascular modulation using TCD might suggest interventional therapies in the anxious population,and improve the primary prevention of cardiovascular disease.

  8. Cerebral blood flow simulations in realistic geometries

    Directory of Open Access Journals (Sweden)

    Szopos Marcela

    2012-04-01

    Full Text Available The aim of this work is to perform the computation of the blood flow in all the cerebral network, obtained from medical images as angiographies. We use free finite elements codes as FreeFEM++. We first test the code on analytical solutions in simplified geometries. Then, we study the influence of boundary conditions on the flow and we finally perform first computations on realistic meshes. L’objectif est ici de simuler l’écoulement sanguin dans tout le réseau cérébral (artériel et veineux obtenu à partir d’angiographies cérébrales 3D à l’aide de logiciels d’éléments finis libres, comme FreeFEM++. Nous menons d’abord une étude détaillée des résultats sur des solutions analytiques et l’influence des conditions limites à imposer dans des géométries simplifiées avant de travailler sur les maillages réalistes.

  9. Dynamic Effect of Rolling Massage on Blood Flow

    Institute of Scientific and Technical Information of China (English)

    CHEN Yan-Yan; YI Hou-Hui; LI Hua-Bing; FANG Hai-Ping

    2009-01-01

    The Chinese traditional medical massage has been used as a natural therapy to eliminate some diseases.Here, the effect of the rolling massage frequency to the blood flow in the blood vessels under the rolling massage manipulation is studied by the lattice Boltzmann simulation.The simulation results show that when the frequency is smaller than or comparable to the putsatile frequency of the blood flow, the effect on the blood flux by the rolling massage is small.On the contrast, if the frequency is twice or more times of the putsatile frequency of the blood flow, the blood flux is greatly enhanced and increases linearly with respect to the frequency.Similar behavior has also been observed on the shear stress on the blood vessel waits.The result is helpful for understanding that the rolling massage has the function of promoting the blood circulation and removing the blood stasis.

  10. Dynamic Effect of Rolling Massage on Blood Flow

    Science.gov (United States)

    Chen, Yan-Yan; Yi, Hou-Hui; Li, Hua-Bing; Fang, Hai-Ping

    2009-02-01

    The Chinese traditional medical massage has been used as a natural therapy to eliminate some diseases. Here, the effect of the rolling massage frequency to the blood flow in the blood vessels under the rolling massage manipulation is studied by the lattice Boltzmann simulation. The simulation results show that when the frequency is smaller than or comparable to the pulsatile frequency of the blood flow, the effect on the blood flux by the rolling massage is small. On the contrast, if the frequency is twice or more times of the pulsatile frequency of the blood flow, the blood flux is greatly enhanced and increases linearly with respect to the frequency. Similar behavior has also been observed on the shear stress on the blood vessel walls. The result is helpful for understanding that the rolling massage has the function of promoting the blood circulation and removing the blood stasis.

  11. Multiscale modeling of blood flow: from single cells to blood rheology.

    Science.gov (United States)

    Fedosov, Dmitry A; Noguchi, Hiroshi; Gompper, Gerhard

    2014-04-01

    Mesoscale simulations of blood flow, where the red blood cells are described as deformable closed shells with a membrane characterized by bending rigidity and stretching elasticity, have made much progress in recent years to predict the flow behavior of blood cells and other components in various flows. To numerically investigate blood flow and blood-related processes in complex geometries, a highly efficient simulation technique for the plasma and solutes is essential. In this review, we focus on the behavior of single and several cells in shear and microcapillary flows, the shear-thinning behavior of blood and its relation to the blood cell structure and interactions, margination of white blood cells and platelets, and modeling hematologic diseases and disorders. Comparisons of the simulation predictions with existing experimental results are made whenever possible, and generally very satisfactory agreement is obtained.

  12. Wavelet coherence analysis of dynamic cerebral autoregulation in neonatal hypoxic–ischemic encephalopathy

    Directory of Open Access Journals (Sweden)

    Fenghua Tian

    2016-01-01

    Full Text Available Cerebral autoregulation represents the physiological mechanisms that keep brain perfusion relatively constant in the face of changes in blood pressure and thus plays an essential role in normal brain function. This study assessed cerebral autoregulation in nine newborns with moderate-to-severe hypoxic–ischemic encephalopathy (HIE. These neonates received hypothermic therapy during the first 72 h of life while mean arterial pressure (MAP and cerebral tissue oxygenation saturation (SctO2 were continuously recorded. Wavelet coherence analysis, which is a time-frequency domain approach, was used to characterize the dynamic relationship between spontaneous oscillations in MAP and SctO2. Wavelet-based metrics of phase, coherence and gain were derived for quantitative evaluation of cerebral autoregulation. We found cerebral autoregulation in neonates with HIE was time-scale-dependent in nature. Specifically, the spontaneous changes in MAP and SctO2 had in-phase coherence at time scales of less than 80 min (<0.0002 Hz in frequency, whereas they showed anti-phase coherence at time scales of around 2.5 h (~0.0001 Hz in frequency. Both the in-phase and anti-phase coherence appeared to be related to worse clinical outcomes. These findings suggest the potential clinical use of wavelet coherence analysis to assess dynamic cerebral autoregulation in neonatal HIE during hypothermia.

  13. EFFECT OF INCREASED WHOLE-BLOOD VISCOSITY ON REGIONAL BLOOD FLOWS IN CHRONICALLY HYPOXEMIC LAMBS

    NARCIS (Netherlands)

    DALINGHAUS, M; KNOESTER, H; GRATAMA, JWC; VANDERMEER, J; ZIJLSTRA, WG; KUIPERS, JRG

    1994-01-01

    In chronic hypoxemia blood flow and oxygen supply to vital organs are maintained, but to nonvital organs they are decreased. We measured organ blood flows (microspheres) and whole blood viscosity in 10 chronically hypoxemic lambs, with an atrial septal defect and pulmonary stenosis, and in 8 control

  14. Prediction of Anomalous Blood Viscosity in Confined Shear Flow

    Science.gov (United States)

    Thiébaud, Marine; Shen, Zaiyi; Harting, Jens; Misbah, Chaouqi

    2014-06-01

    Red blood cells play a major role in body metabolism by supplying oxygen from the microvasculature to different organs and tissues. Understanding blood flow properties in microcirculation is an essential step towards elucidating fundamental and practical issues. Numerical simulations of a blood model under a confined linear shear flow reveal that confinement markedly modifies the properties of blood flow. A nontrivial spatiotemporal organization of blood elements is shown to trigger hitherto unrevealed flow properties regarding the viscosity η, namely ample oscillations of its normalized value [η]=(η-η0)/(η0ϕ) as a function of hematocrit ϕ (η0=solvent viscosity). A scaling law for the viscosity as a function of hematocrit and confinement is proposed. This finding can contribute to the conception of new strategies to efficiently detect blood disorders, via in vitro diagnosis based on confined blood rheology. It also constitutes a contribution for a fundamental understanding of rheology of confined complex fluids.

  15. Cerebellar blood flow in methylmercury poisoning (Minamata disease)

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, K.; Korogi, Y.; Tomiguchi, S.; Takahashi, M. [Dept. of Radiology, Kumamoto University School of Medicine (Japan); Okajima, T. [Dept. of Neurology, Johnan Hospital, Maihara, Johnan-mochi (Japan); Sato, H. [Dept. of Neurology, Minamata City General Hospital and Medical Centre (Japan)

    2001-04-01

    We looked at regional cerebellar blood flow in patients with Minamata disease (MD) using technetium-99 m ethyl cysteinate dimer (99m-Tc-ECD). We carried out single-photon emission computed tomography (SPECT) on 15 patients with MD (eight men, seven women, aged 51-78 years, mean 70.5 years) and 11 control subjects (eight men, three women, aged 62-80 years, mean 72.5 years). Regional blood flow was measured in the superior, middle, and inferior portions of the cerebellar hemispheres, and the frontal, temporal and occipital cerebral lobes. The degree of cerebellar atrophy was assessed on MRI. There were significant differences in regional blood flow in all parts of the cerebellum between patients and control, but no significant decrease was observed in the cerebrum. Blood flow was lower in the inferior cerebellum than in the other parts. Even in patients without cerebellar atrophy, flow was significantly decreased regional blood flow in the inferior part. (orig.)

  16. Cerebellar blood flow in methylmercury poisoning (Minamata disease).

    Science.gov (United States)

    Itoh, K; Korogi, Y; Tomiguchi, S; Takahashi, M; Okajima, T; Sato, H

    2001-04-01

    We looked at regional cerebellar blood flow in patients with Minamata disease (MD) using technetium-99m ethyl cysteinate dimer (99m-Tc-ECD). We carried out single-photon emission computed tomography (SPECT) on 15 patients with MD (eight men, seven women, aged 51-78 years, mean 70.5 years) and 11 control subjects (eight men, three women, aged 62-80 years, mean 72.5 years). Regional blood flow was measured in the superior, middle, and inferior portions of the cerebellar hemispheres, and the frontal, temporal and occipital cerebral lobes. The degree of cerebellar atrophy was assessed on MRI. There were significant differences in regional blood flow in all parts of the cerebellum between patients and control, but no significant decrease was observed in the cerebrum. Blood flow was lower in the inferior cerebellum than in the other parts. Even in patients without cerebellar atrophy, flow was significantly decreased regional blood flow in the inferior part.

  17. The effect of isovolemic hemodilution with oxycyte, a perfluorocarbon emulsion, on cerebral blood flow in rats.

    Directory of Open Access Journals (Sweden)

    Zhong-jin Yang

    Full Text Available BACKGROUND: Cerebral blood flow (CBF is auto-regulated to meet the brain's metabolic requirements. Oxycyte is a perfluorocarbon emulsion that acts as a highly effective oxygen carrier compared to blood. The aim of this study is to determine the effects of Oxycyte on regional CBF (rCBF, by evaluating the effects of stepwise isovolemic hemodilution with Oxycyte on CBF. METHODOLOGY: Male rats were intubated and ventilated with 100% O(2 under isoflurane anesthesia. The regional (striatum CBF (rCBF was measured with a laser doppler flowmeter (LDF. Stepwise isovolemic hemodilution was performed by withdrawing 4ml of blood and substituting the same volume of 5% albumin or 2 ml Oxycyte plus 2 ml albumin at 20-minute intervals until the hematocrit (Hct values reached 5%. PRINCIPAL FINDINGS: In the albumin-treated group, rCBF progressively increased to approximately twice its baseline level (208+/-30% when Hct levels were less than 10%. In the Oxycyte-treated group on the other hand, rCBF increased by significantly smaller increments, and this group's mean rCBF was only slightly higher than baseline (118+/-18% when Hct levels were less than 10%. Similarly, in the albumin-treated group, rCBF started to increase when hemodilution with albumin caused the CaO(2 to decrease below 17.5 ml/dl. Thereafter, the increase in rCBF was accompanied by a nearly proportional decrease in the CaO(2 level. In the Oxycyte-treated group, the increase in rCBF was significantly smaller than in the albumin-treated group when the CaO(2 level dropped below 10 ml/dl (142+/-20% vs. 186+/-26%, and rCBF returned to almost baseline levels (106+/-15 when the CaO(2 level was below 7 ml/dl. CONCLUSIONS/SIGNIFICANCE: Hemodilution with Oxycyte was accompanied with higher CaO(2 and PO(2 than control group treated with albumin alone. This effect may be partially responsible for maintaining relatively constant CBF and not allowing the elevated blood flow that was observed with albumin.

  18. Subcutaneous blood flow during insulin-induced hypoglycaemia

    DEFF Research Database (Denmark)

    Hilsted, J; Madsbad, S; Sestoft, L

    1982-01-01

    Subcutaneous blood flow was measured preceding insulin-induced hypoglycaemia, at the onset of hypoglycaemic symptoms and 2 h later in juvenile diabetics with and without autonomic neuropathy and in normal males. In all groups subcutaneous blood flow decreased at the onset of hypoglycaemic symptoms...... compared with pre-hypoglycaemic flow. Two hours after onset of hypoglycaemic symptoms, subcutaneous blood flow was still significantly decreased compared with pre-hypoglycaemic flow. In normal subjects local nerve blockade had no effect on blood flow changes during hypoglycaemia, whereas local alpha......-receptor blockade abolished the vasoconstrictor response. We suggest that circulating catecholamines stimulating vascular alpha-receptors are probably responsible for flow reduction in the subcutaneous tissue during hypoglycaemia....

  19. Pulsatile blood flow in Abdominal Aortic Aneurysms

    Science.gov (United States)

    Salsac, Anne-Virginie; Lasheras, Juan C.; Singel, Soeren; Varga, Chris

    2001-11-01

    We discuss the results of combined in-vitro laboratory measurements and clinical observations aimed at determining the effect that the unsteady wall shear stresses and the pressure may have on the growth and eventual rupturing of an Abdominal Aortic Aneurysm (AAA), a permanent bulging-like dilatation occurring near the aortic bifurcation. In recent years, new non-invasive techniques, such as stenting, have been used to treat these AAAs. However, the development of these implants, aimed at stopping the growth of the aneurysm, has been hampered by the lack of understanding of the effect that the hemodynamic forces have on the growth mechanism. Since current in-vivo measuring techniques lack the precision and the necessary resolution, we have performed measurements of the pressure and shear stresses in laboratory models. The models of the AAA were obtained from high resolution three-dimensional CAT/SCANS performed in patients at early stages of the disease. Preliminary DPIV measurements show that the pulsatile blood flow discharging into the cavity of the aneurysm leads to large spikes of pressure and wall shear stresses near and around its distal end, indicating a possible correlation between the regions of high wall shear stresses and the observed location of the growth of the aneurysm.

  20. Synthetic Capillaries to Control Microscopic Blood Flow

    Science.gov (United States)

    Sarveswaran, K.; Kurz, V.; Dong, Z.; Tanaka, T.; Penny, S.; Timp, G.

    2016-02-01

    Capillaries pervade human physiology. The mean intercapillary distance is only about 100 μm in human tissue, which indicates the extent of nutrient diffusion. In engineered tissue the lack of capillaries, along with the associated perfusion, is problematic because it leads to hypoxic stress and necrosis. However, a capillary is not easy to engineer due to its complex cytoarchitecture. Here, it is shown that it is possible to create in vitro, in about 30 min, a tubular microenvironment with an elastic modulus and porosity consistent with human tissue that functionally mimicks a bona fide capillary using “live cell lithography”(LCL) to control the type and position of cells on a composite hydrogel scaffold. Furthermore, it is established that these constructs support the forces associated with blood flow, and produce nutrient gradients similar to those measured in vivo. With LCL, capillaries can be constructed with single cell precision—no other method for tissue engineering offers such precision. Since the time required for assembly scales with the number of cells, this method is likely to be adapted first to create minimal functional units of human tissue that constitute organs, consisting of a heterogeneous population of 100–1000 cells, organized hierarchically to express a predictable function.

  1. Blood Flow Restricted Exercise and Vascular Function

    Directory of Open Access Journals (Sweden)

    Masahiro Horiuchi

    2012-01-01

    Full Text Available It is established that regular aerobic training improves vascular function, for example, endothelium-dependent vasodilatation and arterial stiffness or compliance and thereby constitutes a preventative measure against cardiovascular disease. In contrast, high-intensity resistance training impairs vascular function, while the influence of moderate-intensity resistance training on vascular function is still controversial. However, aerobic training is insufficient to inhibit loss in muscular strength with advancing age; thus, resistance training is recommended to prevent sarcopenia. Recently, several lines of study have provided compelling data showing that exercise and training with blood flow restriction (BFR leads to muscle hypertrophy and strength increase. As such, BFR training might be a novel means of overcoming the contradiction between aerobic and high-intensity resistance training. Although it is not enough evidence to obtain consensus about impact of BFR training on vascular function, available evidences suggested that BFR training did not change coagulation factors and arterial compliance though with inconsistence results in endothelial function. This paper is a review of the literature on the impact of BFR exercise and training on vascular function, such as endothelial function, arterial compliance, or other potential factors in comparison with those of aerobic and resistance training.

  2. Glial and neuronal control of brain blood flow

    DEFF Research Database (Denmark)

    Attwell, David; Buchan, Alastair M; Charpak, Serge

    2010-01-01

    Blood flow in the brain is regulated by neurons and astrocytes. Knowledge of how these cells control blood flow is crucial for understanding how neural computation is powered, for interpreting functional imaging scans of brains, and for developing treatments for neurological disorders. It is now...

  3. Blood flow velocity in migraine attacks - a transcranial Doppler study

    Energy Technology Data Exchange (ETDEWEB)

    Zwetsloot, C.P.; Caekebeke, J.F.V.; Jansen, J.C.; Odink, J.; Ferrari, M.D. (Rijksuniversiteit Leiden (Netherlands))

    1991-05-01

    A pulsed Doppler device was used to measure blood flow velocities in the common carotid artery, the extracranial part of the internal carotid artery, the external carotid artery, the middle cerebral artery, and the anterior cerebral artery in 31 migraneurs without aura (n=27) and with aura (n=4), both during and ouside an attack. The aims were to compare blood flow velocity during and between migraine attacks and to study asymmetries of the blood flow velocity. Compared with blood flow velocity values obtained in the attack-free interval, blood flow velocity was lower during attacks without aura in both common carotid arteries, but not in the other extra- and intracranial vessels which were examined. However, during attacks of migraine with aura, blood flow velocity tended to be lower in all examined vessels. There were no asymmetries of the blood flow velocity. It is suggested that during migraine attacks without aura there is a dissociation in blood flow regulation in the common carotid and middle cerebral arteries. 20 refs., 2 tabs.

  4. Blood flow rate measurements with indicator techniques revisited

    DEFF Research Database (Denmark)

    Sejrsen, Per; Bülow, Jens

    2009-01-01

    In view of the emerging role, disturbances in regional blood flow rate seem to play in the pathogenesis of the metabolic syndrome; we review the concepts of the classical indicator dilution and washout techniques used for determinations of regional blood flow rate. Prerequisites, assumptions...

  5. Data adaptive estimation of transversal blood flow velocities

    DEFF Research Database (Denmark)

    Pirnia, E.; Jakobsson, A.; Gudmundson, E.

    2014-01-01

    , posing natural difficulties due to the complex behaviour of blood flow, and due to the natural orientation of most blood vessels. Recently, a transversal modulation scheme was introduced to induce also an oscillation along the transversal direction, thereby allowing for the measurement of also...... the transversal blood flow. In this paper, we propose a novel data-adaptive blood flow estimator exploiting this modulation scheme. Using realistic Field II simulations, the proposed estimator is shown to achieve a notable performance improvement as compared to current state-of-the-art techniques....

  6. Micro-PIV measurements of blood flow in extraembryonic blood vessels of chicken embryos.

    Science.gov (United States)

    Lee, Jung Yeop; Ji, Ho Seong; Lee, Sang Joon

    2007-10-01

    The hemodynamic characteristics of blood flow are important in the diagnosis of circulatory diseases, since such diseases are related to wall shear stress of cardiovascular vessels. In chicken embryos at early stages of development, it is possible to directly visualize blood flow inside blood vessels. We therefore employed a micro-PIV technique to assess blood flow in extraembryonic venous and arterial blood vessels of chicken embryos, using red blood cells (RBCs) as tracers and obtaining flow images of RBCs using a high-speed CMOS camera. The mean velocity field showed non-Newtonian flow characteristics. The blood flow in two venous vessels merged smoothly into the Y-shaped downstream vein without any flow separation or secondary flow. Vorticity was high in the inner regions, where the radius of curvature varied greatly. A periodic variation of temporally resolved velocity signals, due to beating of the heart, was observed in arterial blood vessels. The pulsating frequency was obtained by fast Fourier transform analysis using the measured velocity data. The measurement technique used here was useful in analyzing the hemodynamic characteristics of in vivo blood flow in chicken embryos.

  7. Exploration of 4D MRI blood flow using stylistic visualization.

    Science.gov (United States)

    van Pelt, Roy; Oliván Bescós, Javier; Breeuwer, Marcel; Clough, Rachel E; Gröller, M Eduard; ter Haar Romenij, Bart; Vilanova, Anna

    2010-01-01

    Insight into the dynamics of blood-flow considerably improves the understanding of the complex cardiovascular system and its pathologies. Advances in MRI technology enable acquisition of 4D blood-flow data, providing quantitative blood-flow velocities over time. The currently typical slice-by-slice analysis requires a full mental reconstruction of the unsteady blood-flow field, which is a tedious and highly challenging task, even for skilled physicians. We endeavor to alleviate this task by means of comprehensive visualization and interaction techniques. In this paper we present a framework for pre-clinical cardiovascular research, providing tools to both interactively explore the 4D blood-flow data and depict the essential blood-flow characteristics. The framework encompasses a variety of visualization styles, comprising illustrative techniques as well as improved methods from the established field of flow visualization. Each of the incorporated styles, including exploded planar reformats, flow-direction highlights, and arrow-trails, locally captures the blood-flow dynamics and may be initiated by an interactively probed vessel cross-section. Additionally, we present the results of an evaluation with domain experts, measuring the value of each of the visualization styles and related rendering parameters.

  8. Lattice BGK Simulations of the Blood Flow in Elastic Vessels

    Institute of Scientific and Technical Information of China (English)

    LU Xiao-Yang; YI Hou-Hui; CHEN Ji-Yao; FANG Hai-Ping

    2006-01-01

    @@ The lattice Boltzmann method is applied to study the flow in elastic blood vessels. The volume-flow rate increases considerably when the compliance constant of the blood vessel is below a critical value. There is a region of the compliance constant in which the average volume-flow rate is dramatically enhanced. A harmonic perturbation of the pressure does not change the behaviour of the average volume-flow rate while the harmonic wave attenuates very quickly along the tube when the resonant period is close to that of the input wave. The model, together with the simulation results, is expected to be helpful to understand the mechanism of the blood volume-flow rate related to the compliance constant of the blood vessel, especially on the dependence of the flux of human blood vessel under weather changes, which has medical significance.

  9. Blood flow controls bone vascular function and osteogenesis

    Science.gov (United States)

    Ramasamy, Saravana K.; Kusumbe, Anjali P.; Schiller, Maria; Zeuschner, Dagmar; Bixel, M. Gabriele; Milia, Carlo; Gamrekelashvili, Jaba; Limbourg, Anne; Medvinsky, Alexander; Santoro, Massimo M.; Limbourg, Florian P.; Adams, Ralf H.

    2016-01-01

    While blood vessels play important roles in bone homeostasis and repair, fundamental aspects of vascular function in the skeletal system remain poorly understood. Here we show that the long bone vasculature generates a peculiar flow pattern, which is important for proper angiogenesis. Intravital imaging reveals that vessel growth in murine long bone involves the extension and anastomotic fusion of endothelial buds. Impaired blood flow leads to defective angiogenesis and osteogenesis, and downregulation of Notch signalling in endothelial cells. In aged mice, skeletal blood flow and endothelial Notch activity are also reduced leading to decreased angiogenesis and osteogenesis, which is reverted by genetic reactivation of Notch. Blood flow and angiogenesis in aged mice are also enhanced on administration of bisphosphonate, a class of drugs frequently used for the treatment of osteoporosis. We propose that blood flow and endothelial Notch signalling are key factors controlling ageing processes in the skeletal system. PMID:27922003

  10. Mammary blood flow regulation in the nursing rabbit

    Energy Technology Data Exchange (ETDEWEB)

    Katz, M.; Creasy, R.K.

    1984-11-01

    Cardiac output and mammary blood flow distribution prior to and after suckling were studied in 10 nursing rabbits by means of radionuclide-labeled microspheres. Suckling was followed by a 5.8% rise in cardiac output and a 20.4% rise in mammary blood flow. Determinations of intraglandular blood flow distribution have shown that there was a 43% increase in blood flow to the glands suckled from as compared to a 22.7% rise to the contralateral untouched glands and a 4.9% rise in the remainder of untouched glands. The conclusion is that a local mechanism may be involved in the regulation of mammary blood flow in the nursing rabbit.

  11. Ultrasonic Doppler measurement of renal artery blood flow

    Science.gov (United States)

    Freund, W. R.; Beaver, W. L.; Meindl, J. D.

    1976-01-01

    Studies were made of (1) blood flow redistribution during lower body negative pressure (LBNP), (2) the profile of blood flow across the mitral annulus of the heart (both perpendicular and parallel to the commissures), (3) testing and evaluation of a number of pulsed Doppler systems, (4) acute calibration of perivascular Doppler transducers, (5) redesign of the mitral flow transducers to improve reliability and ease of construction, and (6) a frequency offset generator designed for use in distinguishing forward and reverse components of blood flow by producing frequencies above and below the offset frequency. Finally methodology was developed and initial results were obtained from a computer analysis of time-varying Doppler spectra.

  12. PERFORMANCE MODELING AND ANALYSIS OF BLOOD FLOW IN ELASTIC ARTERIES

    Institute of Scientific and Technical Information of China (English)

    Anil Kumar; C.L. Varshney; G.C. Sharma

    2005-01-01

    Two different non-Newtonian models for blood flow are considered, first a simple power law model displaying shear thinning viscosity, and second a generalized Maxwell model displaying both shear thinning viscosity and oscillating flow viscous-elasticity. These models are used along with a Newtonian model to study sinusoidal flow of blood in rigid and elastic straight arteries in the presence of magnetic field. The elasticity of blood does not appear to influence its flow behavior under physiological conditions in the large arteries,purely viscous shear thinning model should be quite realistic for simulating blood flow under these conditions. On using the power law model with high shear rate for sinusoidal flow simulation in elastic arteries, the mean and amplitude of the flow rate were found to be lower for a power law fluid compared to Newtonian fluid for the same pressure gradient. The governing equations have been solved by Crank-Niclson scheme. The results are interpreted in the context of blood in the elastic arteries keeping the magnetic effects in view. For physiological flow simulation in the aorta, an increase in mean wall shear stress, but a reduction in peak wall shear stress were observed for power law model compared to a Newtonian fluid model for matched flow rate wave form. Blood flow in the presence of transverse magnetic field in an elastic artery is investigated and the influence of factors such as morphology and surface irregularity is evaluated.

  13. Synchronization among Mechanisms of Renal Autoregulation is Reduced in Hypertensive Rats

    DEFF Research Database (Denmark)

    Sosnovtseva, Olga; Pavlov, A. N.; Mosekilde, Erik;

    2007-01-01

    We searched for synchronization among autoregulation mechanisms using wavelet transforms applied to tubular pressure recordings in nephron pairs from the surface of rat kidneys. Nephrons have two oscillatory modes in the regulation of their pressures and flows: a faster (100-200 mHz) myogenic mode...

  14. Dynamics of blood flow in a microfluidic ladder network

    Science.gov (United States)

    Maddala, Jeevan; Zilberman-Rudenko, Jevgenia; McCarty, Owen

    The dynamics of a complex mixture of cells and proteins, such as blood, in perturbed shear flow remains ill-defined. Microfluidics is a promising technology for improving the understanding of blood flow under complex conditions of shear; as found in stent implants and in tortuous blood vessels. We model the fluid dynamics of blood flow in a microfluidic ladder network with dimensions mimicking venules. Interaction of blood cells was modeled using multiagent framework, where cells of different diameters were treated as spheres. This model served as the basis for predicting transition regions, collision pathways, re-circulation zones and residence times of cells dependent on their diameters and device architecture. Based on these insights from the model, we were able to predict the clot formation configurations at various locations in the device. These predictions were supported by the experiments using whole blood. To facilitate platelet aggregation, the devices were coated with fibrillar collagen and tissue factor. Blood was perfused through the microfluidic device for 9 min at a physiologically relevant venous shear rate of 600 s-1. Using fluorescent microscopy, we observed flow transitions near the channel intersections and at the areas of blood flow obstruction, which promoted larger thrombus formation. This study of integrating model predictions with experimental design, aids in defining the dynamics of blood flow in microvasculature and in development of novel biomedical devices.

  15. Cerebral blood flow and metabolism during sleep.

    Science.gov (United States)

    Madsen, P L; Vorstrup, S

    1991-01-01

    A review of the current literature regarding sleep-induced changes in cerebral blood flow (CBF) and cerebral metabolic rate (CMR) is presented. Early investigations have led to the notion that dreamless sleep was characterized by global values of CBF and CMR practically at the level of wakefulness, while rapid eye movement (REM) sleep (dream sleep) was a state characterized by a dramatically increased level of CBF and possibly also of CMR. However, recent investigations firmly contradict this notion. Investigations on CBF and CMR performed during non-REM sleep, taking the effect of different levels of sleep into consideration, show that light sleep (stage II) is characterized by global levels of CBF and CMR only slightly reduced by 3-10% below the level associated with wakefulness, whereas CBF and CMR during deep sleep (stage III-IV) is dramatically reduced by 25-44%. Furthermore, recent data indicate that global levels of CBF and CMR are about the same during REM sleep as in wakefulness. On the regional level, deep sleep seems to be associated with a uniform decrease in regional CBF and CMR. Investigations concerning regional CBF and CMR during REM sleep are few but data from recent investigations seem to identify site-specific changes in regional CBF and CMR during REM sleep. CBF and CMR are reflections of cerebral synaptic activity and the magnitude of reduction in these variables associated with deep sleep indicates that overall cerebral synaptic activity is reduced to approximately one-half the level associated with wakefulness, while cerebral synaptic activity levels during REM sleep are similar to wakefulness. However, even though the new understanding of CBF and CMR during sleep provides significant and important information of the brain's mode of working during sleep, it does not at its current state identify the physiological processes involved in sleep or the physiological role of sleep.

  16. Regional patterns of cortical blood flow distinguish extraverts from introverts

    OpenAIRE

    Stenberg, Georg; Risberg, Jarl; Warkentin, S.; Rosén, Ingmar

    1990-01-01

    Eysenck's hypothesis of higher cortical arousal in introverts was examined using regional cerebral blood flow measurement in 37 healthy subjects . The measurement was made at rest, using the133Xe-inhalation method. Estimates of gray matter flow were obtained for 32 brain regions. There was no significant evidence of personality differences in general arousal, as measured by the mean flow level, averaged over all regions. There were, however, regional differences. An overall test of the blood ...

  17. Quantification of complex blood flow using real-time in vivo vector flow ultrasound

    DEFF Research Database (Denmark)

    Pedersen, Mads Møller; Pihl, Michael Johannes; Haugaard, Per;

    2010-01-01

    A quantitative method for distinguishing complex from non-complex flow patterns in ultrasound is presented. A new commercial BK Medical ultrasound scanner uses the Transverse Oscillation vector flow technique for visualising flow patterns in real-time. In vivo vector flow data of the blood flow...

  18. On the flow dependency of the electrical conductivity of blood

    NARCIS (Netherlands)

    Hoetink, AE; Faes, TJC; Visser, KR; Heethaar, RM

    2004-01-01

    Experiments presented in the literature show that the electrical conductivity of flowing blood depends on flow velocity. The aim of this study is to extend the Maxwell-Fricke theory, developed for a dilute suspension of ellipsoidal particles in an electrolyte, to explain this flow dependency of the

  19. ANALYSIS OF PULSATILE BLOOD FLOW IN AXIALLY MOVING ARTERIES

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In order to study motional properties of pulsatile blood flow in axially moving arteries, the authors derived some expressions of the pulsatile blood flow from the basic equations of motion for blood and vascular walls, including an axial blood velocity equation, a flow rate equation and a wall shear stress equation, which described not only the overall axial movement of the arteries but also the elastic properties of the vascular walls, discussed the effects of the arterial wall elasticity on the wall shear stress in coronary arteries in terms of these expressions, and analyzed changes of motional properties of pulsatile blood flow between an elastic arterial tube model and a rigid tube model. The results proved the inference by J.E. Moore Jr. et al. (1994) that the axial movement of arteries be as important in determining coronary artery hemodynamics as the elastic property of the vascular wall.

  20. The effect of hyperosmotic solutions on the hepatic blood flow

    DEFF Research Database (Denmark)

    Winkler, K; Henriksen, Jens Henrik; Tygstrup, N

    1993-01-01

    The present study was undertaken in order to measure the effect of hyperosmotic solutions on portal and hepatic blood flow. In five anaesthetized pigs without arterial blood supply to the liver, portal blood flow rate was measured (electromagnetic flowmeter) during 5 min lasting intravenous...... infusions of hyperosmotic galactose (50%, 84-100 ml) and mannitol (25%, 100 ml), with physiological saline (100 ml) as control. Portal blood flow increased to a peak value of (39% [P = 0.06] galactose and 37%, [P = 0.06], mannitol) soon after stop of the hyperosmotic infusion. For galactose the change ended...... somewhat earlier than for mannitol. Saline induced a minor increase (15%). Similarly, increments of, on average, 144% of the hepatic blood flow rate was seen in six patients with cirrhosis, following infusion of hyperosmotic galactose, the increase being more pronounced than in the pigs. The causes...

  1. Mesenteric, coeliac and splanchnic blood flow in humans during exercise

    DEFF Research Database (Denmark)

    Perko, M J; Nielsen, H B; Skak, C;

    1998-01-01

    1. Exercise reduces splanchnic blood flow, but the mesenteric contribution to this response is uncertain. 2. In nineteen humans, superior mesenteric and coeliac artery flows were determined by duplex ultrasonography during fasting and postprandial submaximal cycling and compared with the splanchnic...... blood flow as assessed by the Indocyanine Green dye-elimination technique. 3. Cycling increased arterial pressure, heart rate and cardiac output, while it reduced total vascular resistance. These responses were not altered in the postprandial state. During fasting, cycling increased mesenteric, coeliac...... and splanchnic resistances by 76, 165 and 126 %, respectively, and it reduced corresponding blood flows by 32, 50 and 43 % (by 0.18 +/- 0.04, 0.42 +/- 0.03 and 0.60 +/- 0.04 l min-1). Postprandially, mesenteric and splanchnic vascular resistances decreased, thereby elevating regional blood flow, while...

  2. Effects of non Newtonian spiral blood flow through arterial stenosis

    Science.gov (United States)

    Hasan, Md. Mahmudul; Maruf, Mahbub Alam; Ali, Mohammad

    2016-07-01

    The spiral component of blood flow has both beneficial and detrimental effects in human circulatory system. A numerical investigation is carried out to analyze the effect of spiral blood flow through an axisymmetric three dimensional artery having 75% stenosis at the center. Blood is assumed as a Non-Newtonian fluid. Standard k-ω model is used for the simulation with the Reynolds number of 1000. A parabolic velocity profile with spiral flow is used as inlet boundary condition. The peak values of all velocity components are found just after stenosis. But total pressure gradually decreases at downstream. Spiral flow of blood has significant effects on tangential component of velocity. However, the effect is mild for radial and axial velocity components. The peak value of wall shear stress is at the stenosis zone and decreases rapidly in downstream. The effect of spiral flow is significant for turbulent kinetic energy. Detailed investigation and relevant pathological issues are delineated throughout the paper.

  3. Spontaneous oscillations of capillary blood flow in artificial microvascular networks.

    Science.gov (United States)

    Forouzan, Omid; Yang, Xiaoxi; Sosa, Jose M; Burns, Jennie M; Shevkoplyas, Sergey S

    2012-09-01

    Previous computational studies have suggested that the capillary blood flow oscillations frequently observed in vivo can originate spontaneously from the non-linear rheological properties of blood, without any regulatory input. Testing this hypothesis definitively in experiments involving real microvasculature has been difficult because in vivo the blood flow in capillaries is always actively controlled by the host. The objective of this study was to test the hypothesis experimentally and to investigate the relative contribution of different blood cells to the capillary blood flow dynamics under static boundary conditions and in complete isolation from the active regulatory mechanisms mediated by the blood vessels in vivo. To accomplish this objective, we passed whole blood and re-constituted blood samples (purified red blood cells suspended in buffer or in autologous plasma) through an artificial microvascular network (AMVN) comprising completely inert, microfabricated vessels with the architecture inspired by the real microvasculature. We found that the flow of blood in capillaries of the AMVN indeed oscillates with characteristic frequencies in the range of 0-0.6 Hz, which is in a very good agreement with previous computational studies and in vivo observations. We also found that the traffic of leukocytes through the network (typically neglected in computational modeling) plays an important role in generating the oscillations. This study represents the key piece of experimental evidence in support of the hypothesis that spontaneous, self-sustained oscillations of capillary blood flow can be generated solely by the non-linear rheological properties of blood flowing through microvascular networks, and provides an insight into the mechanism of this fundamentally important microcirculatory phenomenon.

  4. Modified Beer-Lambert law for blood flow

    Science.gov (United States)

    Baker, Wesley B.; Parthasarathy, Ashwin B.; Busch, David R.; Mesquita, Rickson C.; Greenberg, Joel H.; Yodh, A. G.

    2015-03-01

    The modified Beer-Lambert law is among the most widely used approaches for analysis of near-infrared spectroscopy (NIRS) reflectance signals for measurements of tissue blood volume and oxygenation. Briefly, the modified Beer-Lambert paradigm is a scheme to derive changes in tissue optical properties based on continuous-wave (CW) diffuse optical intensity measurements. In its simplest form, the scheme relates differential changes in light transmission (in any geometry) to differential changes in tissue absorption. Here we extend this paradigm to the measurement of tissue blood flow by diffuse correlation spectroscopy (DCS). In the new approach, differential changes of the intensity temporal auto-correlation function at a single delay-time are related to differential changes in blood flow. The key theoretical results for measurement of blood flow changes in any tissue geometry are derived, and we demonstrate the new method to monitor cerebral blood flow in a pig under conditions wherein the semi-infinite geometry approximation is fairly good. Specifically, the drug dinitrophenol was injected in the pig to induce a gradual 200% increase in cerebral blood flow, as measured with MRI velocity flow mapping and by DCS. The modified Beer-Lambert law for flow accurately recovered these flow changes using only a single delay-time in the intensity auto-correlation function curve. The scheme offers increased DCS measurement speed of blood flow. Further, the same techniques using the modified Beer-Lambert law to filter out superficial tissue effects in NIRS measurements of deep tissues can be applied to the DCS modified Beer-Lambert law for blood flow monitoring of deep tissues.

  5. AN ANALYSIS MODEL OF PULSATILE BLOOD FLOW IN ARTERIES

    Institute of Scientific and Technical Information of China (English)

    LIUZhao-rong; XUGang; CHENYong; TENGZhong0=zhao; QINKai-rong

    2003-01-01

    Blood flow in artery was treated as the flow under equilibriums state(the steady flow under mean pressure)combined with the periodically small pulsatile flow.Using vascular strain energy function advanced by Fung,the vascular stress-strain relationship under equilibrium state was analyzed and the circumferential and axial elastic moduli were deduced that are expressed while the arterial strains around the equilibrium state are relatively small,so that the equations of vesse wall motion under the pulsatile pressure could be established here.Through solving both the vessel equations and the linear Navier-Stokes equations,the analytic expressions of the blood flow velocities and the vascular displacements were obtained.The influence of the difference between vascular circumferentia and axial elasticities on pulsatile blood flow and vascular motion was discussed in details.

  6. AN ANALYSIS MODEL OF PULSATILE BLOOD FLOW IN ARTERIES

    Institute of Scientific and Technical Information of China (English)

    柳兆荣; 徐刚; 陈泳; 滕忠照; 覃开蓉

    2003-01-01

    Blood flow in artery was treated as the flow under equilibrium state ( the steady flow under mean pressure ) combined with the periodically small pulsatile flow. Using vascular strain energy function advanced by Fung, the vascular stress-strain relationship under equilibrium state was analyzed and the circumferential and axial elastic moduli were deduced that are expressed while the arterial strains around the equilibrium state are relatively small, so that the equations of vessel wall motion under the pulsatile pressure could be established here. Through solving both the vessel equations and the linear NavierStokes equations, the analytic expressions of the blood flow velocities and the vascular displacements were obtained. The influence of the difference between vascular circumferential and axial elasticities on pulsatile blood flow and vascular motion was discussed in details.

  7. Arterial secondary blood flow patterns visualized with vector flow ultrasound

    DEFF Research Database (Denmark)

    Pedersen, Mads Møller; Pihl, Michael Johannes; Hansen, Jens Munk

    2011-01-01

    This study presents the first quantification and visualisation of secondary flow patterns with vector flow ultrasound. The first commercial implementation of the vector flow method Transverse Oscillation was used to obtain in-vivo, 2D vector fields in real-time. The hypothesis of this study...

  8. Regulation of exercise blood flow: Role of free radicals.

    Science.gov (United States)

    Trinity, Joel D; Broxterman, Ryan M; Richardson, Russell S

    2016-09-01

    During exercise, oxygen and nutrient rich blood must be delivered to the active skeletal muscle, heart, skin, and brain through the complex and highly regulated integration of central and peripheral hemodynamic factors. Indeed, even minor alterations in blood flow to these organs have profound consequences on exercise capacity by modifying the development of fatigue. Therefore, the fine-tuning of blood flow is critical for optimal physical performance. At the level of the peripheral circulation, blood flow is regulated by a balance between the mechanisms responsible for vasodilation and vasoconstriction. Once thought of as toxic by-products of in vivo chemistry, free radicals are now recognized as important signaling molecules that exert potent vasoactive responses that are dependent upon the underlying balance between oxidation-reduction reactions or redox balance. Under normal healthy conditions with low levels of oxidative stress, free radicals promote vasodilation, which is attenuated with exogenous antioxidant administration. Conversely, with advancing age and disease where background oxidative stress is elevated, an exercise-induced increase in free radicals can further shift the redox balance to a pro-oxidant state, impairing vasodilation and attenuating blood flow. Under these conditions, exogenous antioxidants improve vasodilatory capacity and augment blood flow by restoring an "optimal" redox balance. Interestingly, while the active skeletal muscle, heart, skin, and brain all have unique functions during exercise, the mechanisms by which free radicals contribute to the regulation of blood flow is remarkably preserved across each of these varied target organs.

  9. Quantitative myocardial blood flow with Rubidium-82 PET

    DEFF Research Database (Denmark)

    Hagemann, Christoffer E; Ghotbi, Adam A; Kjær, Andreas

    2015-01-01

    Positron emission tomography (PET) allows assessment of myocardial blood flow in absolute terms (ml/min/g). Quantification of myocardial blood flow (MBF) and myocardial flow reserve (MFR) extend the scope of conventional semi-quantitative myocardial perfusion imaging (MPI): e.g. in 1......) identification of the extent of a multivessel coronary artery disease (CAD) burden, 2) patients with balanced 3-vessel CAD, 3) patients with subclinical CAD, and 4) patients with regional flow variance, despite of a high global MFR. A more accurate assessment of the ischemic burden in patients with intermediate...

  10. Large-Eddy simulation of pulsatile blood flow.

    Science.gov (United States)

    Paul, Manosh C; Mamun Molla, Md; Roditi, Giles

    2009-01-01

    Large-Eddy simulation (LES) is performed to study pulsatile blood flow through a 3D model of arterial stenosis. The model is chosen as a simple channel with a biological type stenosis formed on the top wall. A sinusoidal non-additive type pulsation is assumed at the inlet of the model to generate time dependent oscillating flow in the channel and the Reynolds number of 1200, based on the channel height and the bulk velocity, is chosen in the simulations. We investigate in detail the transition-to-turbulent phenomena of the non-additive pulsatile blood flow downstream of the stenosis. Results show that the high level of flow recirculation associated with complex patterns of transient blood flow have a significant contribution to the generation of the turbulent fluctuations found in the post-stenosis region. The importance of using LES in modelling pulsatile blood flow is also assessed in the paper through the prediction of its sub-grid scale contributions. In addition, some important results of the flow physics are achieved from the simulations, these are presented in the paper in terms of blood flow velocity, pressure distribution, vortices, shear stress, turbulent fluctuations and energy spectra, along with their importance to the relevant medical pathophysiology.

  11. Reduced myocardial blood flow in acute and chronic digitalization.

    Science.gov (United States)

    Steiness, E; Bille-Brahe, N E; Hansen, J F; Lomholt, N; Ring-Larsen, H

    1978-07-01

    The myocardial blood flow was measured by the 133Xenon disappearance curve from the left ventricular wall following an injection of 133Xenon in the left coronary artery in 8 dogs without digoxin pretreatment and in 8 chronically digitalized dogs. The myocardial blood flow was significantly less (30%) in the digitalized dogs than in the dogs without pretreatment. In the digitalized dogs as well as in those without pretreatment an intravenous injection of digoxin resulted in a further significant decrease of the myocardial blood flow of about 20% and a significant increase of the coronary vascular resistance. The reduced myocardial blood flow both during acute and chronic digitalization is beleived to be of clinical importance.

  12. Skeletal Blood Flow in Bone Repair and Maintenance

    Institute of Scientific and Technical Information of China (English)

    Ryan E.Tomlinson; Matthew J.Silva

    2013-01-01

    Bone is a highly vascularized tissue, although this aspect of bone is often overlooked. In this article, the importance of blood flow in bone repair and regeneration will be reviewed. First, the skeletal vascular anato-my, with an emphasis on long bones, the distinct mechanisms for vascularizing bone tissue, and methods for remodeling existing vasculature are discussed. Next, techniques for quantifying bone blood flow are briefly summarized. Finally, the body of experimental work that demonstrates the role of bone blood flow in fracture healing, distraction osteogenesis, osteoporosis, disuse osteopenia, and bone grafting is examined. These results illustrate that adequate bone blood flow is an important clinical consideration, particularly during bone regeneration and in at-risk patient groups.

  13. Study Links Stuttering to Less Blood Flow in Brain

    Science.gov (United States)

    ... medlineplus.gov/news/fullstory_162922.html Study Links Stuttering to Less Blood Flow in Brain The more ... to speech may put people at risk for stuttering, a small study suggests. There are also signs ...

  14. Current Imaging Modalities for assessing Ocular Blood Flow in Glaucoma

    OpenAIRE

    Mohindroo, Chirayu; Ichhpujani, Parul; Kumar, Suresh

    2016-01-01

    Glaucoma may be caused by an interplay of elevated intraocular pressure (IOP), vascular, genetic, anatomical, brain, and immune factors. The direct assessment of ocular hemodynam-ics offers promise for glaucoma detection, differentiation, and possibly new treatment modalities. All the methods currently in use to measure ocular blood flow have inherent limitations and measure different aspects of ocular blood flow. This review article attempts to provide detailed information on ocular perfu-si...

  15. Salt-gland secretion and blood flow in the goose.

    Science.gov (United States)

    Hanwell, A; Linzell, J L; Peaker, M

    1971-03-01

    1. Salt-gland blood flow in the domestic goose has been measured using a combination of Sapirstein's indicator fractionation technique for organ blood flow and Fegler's thermodilution method for cardiac output.2. Nasal salt secretion was induced by giving 0.5 M-NaCl or 0.154 M-NaCl I.V. or by giving artificial sea water by stomach tube into the proventriculus.3. During secretion, salt-gland blood flow increased from 82.7 +/- 21.9 ml./100 g tissue. min to as high as 2179 ml./100 g. min (mean 1209 +/- 140).4. The rate of secretion in response to salt loading was very variable and was not correlated with the rate of blood flow.5. From the data obtained, it could be calculated that the median values for the percentage extraction of ions from the arterial plasma were Na 15%, K 35%, Cl 21% and water 5.8%.6. Atropine abolished secretion but not the increase in blood flow produced by salt loading.7. Unilateral complete denervation abolished secretion from and the increase in blood flow through the operated but not the control gland.8. Anaesthesia, induced by pentobarbitone sodium, almost completely blocked secretion and the increase in blood flow in the salt-gland in response to salt loading.9. In geese given 0.5 or 0.154 M-NaCl I.V. a positive, significant correlation was found between the total amount of nasal secretion collected over 30 min and the concentrations of Na and Cl in the nasal fluid. However, when the time course of secretion was followed in any one bird, the rate of secretion was inversely related to the concentrations of Na and Cl.10. Harderian gland blood flow was not affected by salt loading.

  16. Experimental comparison of mammalian and avian blood flow in microchannels

    Science.gov (United States)

    Fink, Kathryn; Liepmann, Dorian

    2015-11-01

    The non-Newtonian, shear rate dependent behavior of blood in microchannel fluid dynamics has been studied for nearly a century, with a significant focus on the characteristics of human blood. However, for over 200 years biologists have noted significant differences in red blood cell characteristics across vertebrate species, with particularly drastic differences in cell size and shape between mammals and non-mammalian classes. We present an experimental analysis of flow in long microchannels for several varieties of mammalian and avian blood, across a range of hematocrits, channel diameters, and flow rates. Correlation of shear rate and viscosity is compared to existing constitutive equations for human blood to further quantify the importance of red blood cell characteristics. Ongoing experimental results are made available in an online database for reference or collaboration. K.F. acknowledges funding from the ARCS Foundation and an NSF Graduate Research Fellowship through NSF Grant DGE 1106400.

  17. APPLICATION OF THE THEORY OF INTERACTING CONTINUA TO BLOOD FLOW

    Energy Technology Data Exchange (ETDEWEB)

    Massoudi, Mehrdad; Kim, Jeongho; Hund, Samuel J.; Antaki, James F.

    2011-01-01

    Micro-scale investigations of the flow and deformation of blood and its formed elements have been studied for many years. Early in vitro investigations in the rotational viscometers or small glass tubes revealed important rheological properties such as the reduced blood apparent viscosity, Fahraeus effect and Fahraeus-Lindqvist effect [1], exhibiting the nonhomogeneous property of blood in microcirculation. We have applied Mixture Theory, also known as Theory of Interacting Continua, to study and model this property of blood [2, 3]. This approach holds great promise for predicting the trafficking of RBCs in micro-scale flows (such as the depletion layer near the wall), and other unique hemorheological phenomena relevant to blood trauma. The blood is assumed to be composed of an RBC component modeled as a nonlinear fluid, suspended in plasma, modeled as a linearly viscous fluid.

  18. Blood flow changes coincide with cellular rearrangements during blood vessel pruning in zebrafish embryos.

    Directory of Open Access Journals (Sweden)

    Eva Kochhan

    Full Text Available After the initial formation of a highly branched vascular plexus, blood vessel pruning generates a hierarchically structured network with improved flow characteristics. We report here on the cellular events that occur during the pruning of a defined blood vessel in the eye of developing zebrafish embryos. Time-lapse imaging reveals that the connection of a new blood vessel sprout with a previously perfused multicellular endothelial tube leads to the formation of a branched, Y-shaped structure. Subsequently, endothelial cells in parts of the previously perfused branch rearrange from a multicellular into a unicellular tube, followed by blood vessel detachment. This process is accompanied by endothelial cell death. Finally, we show that differences in blood flow between neighboring vessels are important for the completion of the pruning process. Our data suggest that flow induced changes in tubular architecture ensure proper blood vessel pruning.

  19. Functional Doppler optical coherence tomography for cortical blood flow imaging

    Science.gov (United States)

    Yu, Lingfeng; Liu, Gangjun; Nguyen, Elaine; Choi, Bernard; Chen, Zhongping

    2010-02-01

    Optical methods have been widely used in basic neuroscience research to study the cerebral blood flow dynamics in order to overcome the low spatial resolution associated with magnetic resonance imaging and positron emission tomography. Although laser Doppler imaging and laser speckle imaging can map out en face cortical hemodynamics and columns, depth resolution is not available. Two-photon microscopy has been used for mapping cortical activity. However, flow measurement requires fluorescent dye injection, which can be problematic. The noninvasive and high resolution tomographic capabilities of optical coherence tomography make it a promising technique for mapping depth resolved cortical blood flow. Here, we present a functional Doppler optical coherence tomography (OCT) imaging modality for quantitative evaluation of cortical blood flow in a mouse model. Fast, repeated, Doppler OCT scans across a vessel of interest were performed to record flow dynamic information with a high temporal resolution of the cardiac cycles. Spectral Doppler analysis of continuous Doppler images demonstrates how the velocity components and longitudinally projected flow-volume-rate change over time, thereby providing complementary temporal flow information to the spatially distributed flow information of Doppler OCT. The proposed functional Doppler OCT imaging modality can be used to diagnose vessel stenosis/blockage or monitor blood flow changes due to pharmacological agents/neuronal activities. Non-invasive in-vivo mice experiments were performed to verify the capabilities of function Doppler OCT.

  20. Blood flow and microdialysis in the human femoral head

    DEFF Research Database (Denmark)

    Bøgehøj, Morten; Emmeluth, Claus; Overgaard, Søren

    2007-01-01

    BACKGROUND: If it would be possible to detect lack of flow and/or the development of ischemia in bone, we might have a way of predicting whether a broken bone will heal. We established microdialysis (MD) and laser Doppler (LD) flow measurement in the human femoral head in order to be able to detect...... ischemia and measure changes in blood flow. MATERIAL AND METHODS: In 9 patients undergoing total hip arthroplasty for primary osteoarthrosis, two MD catheters were inserted into the femoral head through two drill holes after the blood flow had been visualized by LD. Then primary samples were collected...... detected within 2 h of cessation of blood flow in most patients....

  1. Establishing the diffuse correlation spectroscopy signal relationship with blood flow.

    Science.gov (United States)

    Boas, David A; Sakadžić, Sava; Selb, Juliette; Farzam, Parisa; Franceschini, Maria Angela; Carp, Stefan A

    2016-07-01

    Diffuse correlation spectroscopy (DCS) measurements of blood flow rely on the sensitivity of the temporal autocorrelation function of diffusively scattered light to red blood cell (RBC) mean square displacement (MSD). For RBCs flowing with convective velocity [Formula: see text], the autocorrelation is expected to decay exponentially with [Formula: see text], where [Formula: see text] is the delay time. RBCs also experience shear-induced diffusion with a diffusion coefficient [Formula: see text] and an MSD of [Formula: see text]. Surprisingly, experimental data primarily reflect diffusive behavior. To provide quantitative estimates of the relative contributions of convective and diffusive movements, we performed Monte Carlo simulations of light scattering through tissue of varying vessel densities. We assumed laminar vessel flow profiles and accounted for shear-induced diffusion effects. In agreement with experimental data, we found that diffusive motion dominates the correlation decay for typical DCS measurement parameters. Furthermore, our model offers a quantitative relationship between the RBC diffusion coefficient and absolute tissue blood flow. We thus offer, for the first time, theoretical support for the empirically accepted ability of the DCS blood flow index ([Formula: see text]) to quantify tissue perfusion. We find [Formula: see text] to be linearly proportional to blood flow, but with a proportionality modulated by the hemoglobin concentration and the average blood vessel diameter.

  2. Stochastic modeling for magnetic resonance quantification of myocardial blood flow

    Science.gov (United States)

    Seethamraju, Ravi T.; Muehling, Olaf; Panse, Prasad M.; Wilke, Norbert M.; Jerosch-Herold, Michael

    2000-10-01

    Quantification of myocardial blood flow is useful for determining the functional severity of coronary artery lesions. With advances in MR imaging it has become possible to assess myocardial perfusion and blood flow in a non-invasive manner by rapid serial imaging following injection of contrast agent. To date most approaches reported in the literature relied mostly on deriving relative indices of myocardial perfusion directly from the measured signal intensity curves. The central volume principle on the other hand states that it is possible to derive absolute myocardial blood flow from the tissue impulse response. Because of the sensitivity involved in deconvolution due to noise in measured data, conventional methods are sub-optimal, hence, we propose to use stochastic time series modeling techniques like ARMA to obtain a robust impulse response estimate. It is shown that these methods when applied for the optical estimation of the transfer function give accurate estimates of myocardial blood flow. The most significant advantage of this approach, compared with compartmental tracer kinetic models, is the use of a minimum set of prior assumptions on data. The bottleneck in assessing myocardial blood flow, does not lie in the MRI acquisition, but rather in the effort or time for post processing. It is anticipated that the very limited requirements for user input and interaction will be of significant advantage for the clinical application of these methods. The proposed methods are validated by comparison with mean blood flow measurements obtained from radio-isotope labeled microspheres.

  3. Hepatic and intestinal blood flow following thermal injury

    Energy Technology Data Exchange (ETDEWEB)

    Carter, E.A.; Tompkins, R.G.; Burke, J.F.

    1988-07-01

    Because cardiac output decreases after burn injuries, investigators have assumed, based upon dye clearance techniques, that hepatic and intestinal blood flow are also decreased following these injuries. Blood flow to the liver, stomach, small intestine, and kidney was determined by the uptake of 201thallium and 125I-labeled fatty acid (para-125I-phenyl-3-methyl pentanoic acid) in a 20% body surface area scald injury that also included plasma volume replacement resuscitation. Uptake of these radioisotopes was determined 15 minutes, 18 hours, and 72 hours after injury. The uptake of the 201thallium and 125I-labeled fatty acid by the gastrointestinal tissues was not statistically different at any of the time periods after comparison of the injured and control (sham-treated) animals. 201Thallium uptake by the kidney was significantly diminished 15 minutes after the burn injury (P less than 0.01). Based on these blood flow measurement techniques, the data suggest that the 20% body surface area scald injury did not alter blood flow to the liver or gastrointestinal tract within the initial 72 hours after the burn injury even though a decrease in renal blood flow was easily detected. These results suggest that the dysfunction of the gastrointestinal system or hepatic system observed after an acute burn injury is not simply the result of hypovolemic shock, which reduces both renal and mesenteric blood flow. These gastrointestinal and hepatic alterations may be related to a factor or factors other than intestinal ischemia.

  4. Radiohalogenated thienylethylamine derivatives for evaluating local cerebral blood flow

    Science.gov (United States)

    Goodman, Mark M.; Knapp, Jr., Furn F.

    1990-01-01

    Radiopharmaceuticals useful in brain imaging comprising radiohalogenated thienylethylamine derivatives. The compounds are 5-halo-thiophene-2-isopropyl amines able to cross the blood-brain barrier and be retained for a sufficient length of time to allow the evaluation or regional blood flow by radioimaging of the brain.

  5. Impaired cerebral autoregulation is associated with brain atrophy and worse functional status in chronic ischemic stroke.

    Directory of Open Access Journals (Sweden)

    Mikio C Aoi

    Full Text Available Dynamic cerebral autoregulation (dCA is impaired following stroke. However, the relationship between dCA, brain atrophy, and functional outcomes following stroke remains unclear. In this study, we aimed to determine whether impairment of dCA is associated with atrophy in specific regions or globally, thereby affecting daily functions in stroke patients.We performed a retrospective analysis of 33 subjects with chronic infarctions in the middle cerebral artery territory, and 109 age-matched non-stroke subjects. dCA was assessed via the phase relationship between arterial blood pressure and cerebral blood flow velocity. Brain tissue volumes were quantified from MRI. Functional status was assessed by gait speed, instrumental activities of daily living (IADL, modified Rankin Scale, and NIH Stroke Score.Compared to the non-stroke group, stroke subjects showed degraded dCA bilaterally, and showed gray matter atrophy in the frontal, parietal and temporal lobes ipsilateral to infarct. In stroke subjects, better dCA was associated with less temporal lobe gray matter atrophy on the infracted side ([Formula: see text] = 0.029, faster gait speed ([Formula: see text] = 0.018 and lower IADL score ([Formula: see text]0.002. Our results indicate that better dynamic cerebral perfusion regulation is associated with less atrophy and better long-term functional status in older adults with chronic ischemic infarctions.

  6. Microvascular blood flow resistance: Role of red blood cell migration and dispersion.

    Science.gov (United States)

    Katanov, Dinar; Gompper, Gerhard; Fedosov, Dmitry A

    2015-05-01

    Microvascular blood flow resistance has a strong impact on cardiovascular function and tissue perfusion. The flow resistance in microcirculation is governed by flow behavior of blood through a complex network of vessels, where the distribution of red blood cells across vessel cross-sections may be significantly distorted at vessel bifurcations and junctions. In this paper, the development of blood flow and its resistance starting from a dispersed configuration of red blood cells is investigated in simulations for different hematocrit levels, flow rates, vessel diameters, and aggregation interactions between red blood cells. Initially dispersed red blood cells migrate toward the vessel center leading to the formation of a cell-free layer near the wall and to a decrease of the flow resistance. The development of cell-free layer appears to be nearly universal when scaled with a characteristic shear rate of the flow. The universality allows an estimation of the length of a vessel required for full flow development, lc ≲ 25D, for vessel diameters in the range 10 μm red blood cell dispersion at vessel bifurcations and junctions on the flow resistance may be significant in vessels which are shorter or comparable to the length lc. Aggregation interactions between red blood cells generally lead to a reduction of blood flow resistance. The simulations are performed using the same viscosity for both external and internal fluids and the RBC membrane viscosity is not considered; however, we discuss how the viscosity contrast may affect the results. Finally, we develop a simple theoretical model which is able to describe the converged cell-free-layer thickness at steady-state flow with respect to flow rate. The model is based on the balance between a lift force on red blood cells due to cell-wall hydrodynamic interactions and shear-induced effective pressure due to cell-cell interactions in flow. We expect that these results can also be used to better understand the flow

  7. Ultrafast Ultrasound Imaging of Ocular Anatomy and Blood Flow

    Science.gov (United States)

    Urs, Raksha; Ketterling, Jeffrey A.; Silverman, Ronald H.

    2016-01-01

    Purpose Ophthalmic ultrasound imaging is currently performed with mechanically scanned single-element probes. These probes have limited capabilities overall and lack the ability to image blood flow. Linear-array systems are able to detect blood flow, but these systems exceed ophthalmic acoustic intensity safety guidelines. Our aim was to implement and evaluate a new linear-array–based technology, compound coherent plane-wave ultrasound, which offers ultrafast imaging and depiction of blood flow at safe acoustic intensity levels. Methods We compared acoustic intensity generated by a 128-element, 18-MHz linear array operated in conventionally focused and plane-wave modes and characterized signal-to-noise ratio (SNR) and lateral resolution. We developed plane-wave B-mode, real-time color-flow, and high-resolution depiction of slow flow in postprocessed data collected continuously at a rate of 20,000 frames/s. We acquired in vivo images of the posterior pole of the eye by compounding plane-wave images acquired over ±10° and produced images depicting orbital and choroidal blood flow. Results With the array operated conventionally, Doppler modes exceeded Food and Drug Administration safety guidelines, but plane-wave modalities were well within guidelines. Plane-wave data allowed generation of high-quality compound B-mode images, with SNR increasing with the number of compounded frames. Real-time color-flow Doppler readily visualized orbital blood flow. Postprocessing of continuously acquired data blocks of 1.6-second duration allowed high-resolution depiction of orbital and choroidal flow over the cardiac cycle. Conclusions Newly developed high-frequency linear arrays in combination with plane-wave techniques present opportunities for the evaluation of ocular anatomy and blood flow, as well as visualization and analysis of other transient phenomena such as vessel wall motion over the cardiac cycle and saccade-induced vitreous motion. PMID:27428169

  8. Femoral Blood Flow and Cardiac Output During Blood Flow Restricted Leg Press Exercise

    Science.gov (United States)

    Everett, M. E.; Hackney, K.; Ploutz-Snyder, L.

    2011-01-01

    Low load blood flow restricted resistance exercise (LBFR) causes muscle hypertrophy that may be stimulated by the local ischemic environment created by the cuff pressure. However, local blood flow (BF) during such exercise is not well understood. PURPOSE: To characterize femoral artery BF and cardiac output (CO) during leg press exercise (LP) performed at a high load (HL) and low load (LL) with different levels of cuff pressure. METHODS: Eleven subjects (men/women 4/7, age 31.4+/-12.8 y, weight 68.9+/-13.2 kg, mean+/-SD) performed 3 sets of supine left LP to fatigue with 90 s of rest in 4 conditions: HL (%1-RM/cuff pressure: 80%/0); LL (20%/0); LBFR(sub DBP) (20%/1.3 x diastolic blood pressure, BP); LBFR(sub SBP) (20%/1.3 x supine systolic BP). The cuff remained inflated throughout the LBFR exercise sessions. Artery diameter, velocity time integral (VTI), and stroke volume (SV) were measured using Doppler ultrasound at rest and immediately after each set of exercise. Heart rate (HR) was monitored using a 3-lead ECG. BF was calculated as VTI x vessel cross-sectional area. CO was calculated as HR x SV. The data obtained after each set of exercise were averaged and used for analyses. Multi-level modeling was used to determine the effect of exercise condition on dependent variables. Statistical significance was set a priori at p LL (9.92+/-0.82 cm3) > LBFR(sub dBP)(6.47+/-0.79 cm3) > LBFR(sub SBP) (3.51+/-0.59 cm3). Blunted exercise induced increases occurred in HR, SV, and CO after LBFR compared to HL and LL. HR increased 45% after HL and LL and 28% after LBFR (p<0.05), but SV increased (p<0.05) only after HL. Consequently, the increase (p<0.05) in CO was greater in HL and LL (approximately 3 L/min) than in LBFR (approximately 1 L/min). CONCLUSION: BF during LBFR(sub SBP) was 1/3 of that observed in LL, which supports the hypothesis that local ischemia stimulates the LBFR hypertrophic response. As the cuff did not compress the artery, the ischemia may have occurred

  9. Methods for measurement of cerebral blood flow in man

    DEFF Research Database (Denmark)

    Lassen, N A

    1976-01-01

    A survey of the currently available methods for the measurement of cerebral blood flow in man is given. Many of the clinically important brain diseases such as tumors, stroke, brain trauma or epilepsy entail focal or regional flow alterations. Therefore a special emphasis is placed on methods all...

  10. Blood Flow through an Open-Celled Foam

    Science.gov (United States)

    Ortega, Jason; Maitland, Duncan

    2011-11-01

    The Hazen-Dupuit-Darcy (HDD) equation is commonly used in engineering applications to model the pressure gradient of flow through a porous media. One major advantage of this equation is that it simplifies the complex geometric details of the porous media into two coefficients: the permeability, K, and form factor, C. However through this simplification, the flow details within the porous media are no longer accessible, making it difficult to study the phenomena that contribute to changes in K and C due to clotting of blood flow. To obtain a more detailed understanding of blood flow through a porous media, a direct assessment of the complex interstitial geometry and flow is required. In this study, we solve the Navier-Stokes equations for Newtonian and non-Newtonian blood flow through an open-celled foam geometry obtained from a micro-CT scan. The nominal strut size of the foam sample is of O(10e-5) m and the corresponding Reynolds number based upon this length ranges up to O(10). Fitting the pressure gradient vs. Darcy velocity data with the HDD equation demonstrates that both viscous and inertial forces play an important role in the flow through the foam at these Reynolds numbers. Recirculation zones are observed to form in the wake of the pore struts, producing regions of flow characterized by both low shear rates and long fluid residence times, factors of which have been shown in previous studies to promote blood clotting.

  11. Ultrasonic Imaging of Hemodynamic Force in Carotid Blood Flow

    Science.gov (United States)

    Nitta, N.; Homma, K.

    Hemodynamic forces including blood pressure and shear stress affect vulnerable plaque rupture in arteriosclerosis and biochemical activation of endothelium such as NO production. In this study, a method for estimating and imaging shear stress and pressure gradient distributions in blood vessel as the hemodynamic force based on viscosity estimation is presented. Feasibility of this method was investigated by applying to human carotid blood flow. Estimated results of shear stress and pressure gradient distributions coincide with the ideal distributions obtained by numerical simulation and flow-phantom experiment.

  12. Abnormality in cerebellar blood flow in solo vertigo patients

    Energy Technology Data Exchange (ETDEWEB)

    Nagahori, Takeshi [Shakaihoken Takaoka Hospital, Toyama (Japan); Nishijima, Michiharu; Endo, Shunro; Takaku, Akira

    1997-03-01

    Little is known about the blood flow of the vertebrobasilar system as a cause of vertigo and dizziness. We used Xe-CT to study cerebellar blood flow in 53 patients who ranged in age from 35 to 85 years. The patients were divided into two groups. One of them was the vertigo group that comprised 28 patients with rotatory sensation, and the other, the non-vertigo group of 25 patients with a sensation other than rotation. At the stage of severe symptoms, there was decreased cerebellar blood flow in all patients of both, the vertigo and the non-vertigo groups, and a decrease in the bilateral cerebellar hemisphere was observed in five patients and in a unilateral hemisphere in three patients of the vertigo group. By comparison, in the non-vertigo group, unilateral decrease of cerebellar blood flow was observed in only one patient, and a bilateral decrease in five. At the stage of severe symptoms, the mean regional cerebellar blood flow was 40.5{+-}8.0 ml/100 g/min (n=16 sides) in the vertigo group and 45.3{+-}9.5 ml/100 g/min (n=12 sides) in the non-vertigo group. At the stage of moderate symptoms, blood flow image was normal in four of 14 vertigo patients and in seven of 12 non-vertigo patients. The mean regional blood flow was 47.8{+-}8.6 ml/100 g/min (n=28 sides) in the vertigo group and 47.1{+-}5.1 ml/100 g/min (n=24 sides) in the non-vertigo group. At the asymptomatic stage, a high proportion of normal blood flow images (nine of 16 vertigo patients and 10 of 10 non-vertigo patients) was observed. The mean regional cerebellar blood flow was 51.6{+-}10.7 ml/100 g/min (n=32 sides) in the vertigo group and 52.8{+-}8.5 ml/100 g/min (n=20 sides) in the non-vertigo group. This study demonstrates that a unilateral or bilateral decrease in blood flow of the vertebrobasilar system may cause vertigo and dizziness. It also shows that Xe-CT of the cerebellum may be a valuable examination modality for the diagnosis and treatment of vertigo and dizziness. (author)

  13. A multiple disk centrifugal pump as a blood flow device.

    Science.gov (United States)

    Miller, G E; Etter, B D; Dorsi, J M

    1990-02-01

    A multiple disk, shear force, valveless centrifugal pump was studied to determine its suitability as a blood flow device. A pulsatile version of the Tesla viscous flow turbine was designed by modifying the original steady flow pump concept to produce physiological pressures and flows with the aid of controlling circuitry. Pressures and flows from this pump were compared to a Harvard Apparatus pulsatile piston pump. Both pumps were connected to an artificial circulatory system. Frequency and systolic duration were varied over a range of physiological conditions for both pumps. The results indicated that the Tesla pump, operating in a pulsatile mode, is capable of producing physiologic pressures and flows similar to the Harvard pump and other pulsatile blood pumps.

  14. Viscoelastic capillary flow: the case of whole blood

    Directory of Open Access Journals (Sweden)

    David Rabaud

    2016-07-01

    Full Text Available The dynamics of spontaneous capillary flow of Newtonian fluids is well-known and can be predicted by the Lucas-Washburn-Rideal (LWR law. However a wide variety of viscoelastic fluids such as alginate, xanthan and blood, does not exhibit the same Newtonian behavior.In this work we consider the Herschel-Bulkley (HB rheological model and Navier-Stokes equation to derive a generic expression that predicts the capillary flow of non-Newtonian fluids. The Herschel-Bulkley rheological model encompasses a wide variety of fluids, including the Power-law fluids (also called Ostwald fluids, the Bingham fluids and the Newtonian fluids. It will be shown that the proposed equation reduces to the Lucas-Washburn-Rideal law for Newtonian fluids and to the Weissenberg-Rabinowitsch-Mooney (WRM law for power-law fluids. Although HB model cannot reduce to Casson’s law, which is often used to model whole blood rheology, HB model can fit the whole blood rheology with the same accuracy.Our generalized expression for the capillary flow of non-Newtonian fluid was used to accurately fit capillary flow of whole blood. The capillary filling of a cylindrical microchannel by whole blood was monitored. The blood first exhibited a Newtonian behavior, then after 7 cm low shear stress and rouleaux formation made LWR fails to fit the data: the blood could not be considered as Newtonian anymore. This non-Newtonian behavior was successfully fit by the proposed equation.

  15. Coded ultrasound for blood flow estimation using subband processing

    DEFF Research Database (Denmark)

    Gran, Fredrik; Udesen, Jesper; Nielsen, Michael bachmann

    2007-01-01

    This paper further investigates the use of coded excitation for blood flow estimation in medical ultrasound. Traditional autocorrelation estimators use narrow-band excitation signals to provide sufficient signal-to-noise-ratio (SNR) and velocity estimation performance. In this paper, broadband...... was carried out using an experimental ultrasound scanner and a commercial linear array 7 MHz transducer. A circulating flow rig was scanned with a beam-to-flow angle of 60 degrees. The flow in the rig was laminar and had a parabolic flow-profile with a peak velocity of 0.09 m/s. The mean relative standard...

  16. Quantifying Blood Flow in the DIEP Flap: An Ultrasonographic Study

    Directory of Open Access Journals (Sweden)

    Joseph Richard Dusseldorp, BCom, MBBS(Hons

    2014-10-01

    Conclusions: This study confirms that perforator size is a critical factor in optimizing blood flow in perforator-based free tissue transfer. Further research is required to understand the flow dynamics of perforator flaps based on multiple perforators. However, surgeons should be cognizant that a single large perforator may have substantially higher flow rates than multiple small perforators. Routine FVI calculation is recommended to ensure complete flap survival.

  17. Pulsatile blood flow, shear force, energy dissipation and Murray's Law

    Directory of Open Access Journals (Sweden)

    Bengtsson Hans-Uno

    2006-08-01

    Full Text Available Abstract Background Murray's Law states that, when a parent blood vessel branches into daughter vessels, the cube of the radius of the parent vessel is equal to the sum of the cubes of the radii of daughter blood vessels. Murray derived this law by defining a cost function that is the sum of the energy cost of the blood in a vessel and the energy cost of pumping blood through the vessel. The cost is minimized when vessel radii are consistent with Murray's Law. This law has also been derived from the hypothesis that the shear force of moving blood on the inner walls of vessels is constant throughout the vascular system. However, this derivation, like Murray's earlier derivation, is based on the assumption of constant blood flow. Methods To determine the implications of the constant shear force hypothesis and to extend Murray's energy cost minimization to the pulsatile arterial system, a model of pulsatile flow in an elastic tube is analyzed. A new and exact solution for flow velocity, blood flow rate and shear force is derived. Results For medium and small arteries with pulsatile flow, Murray's energy minimization leads to Murray's Law. Furthermore, the hypothesis that the maximum shear force during the cycle of pulsatile flow is constant throughout the arterial system implies that Murray's Law is approximately true. The approximation is good for all but the largest vessels (aorta and its major branches of the arterial system. Conclusion A cellular mechanism that senses shear force at the inner wall of a blood vessel and triggers remodeling that increases the circumference of the wall when a shear force threshold is exceeded would result in the observed scaling of vessel radii described by Murray's Law.

  18. Cerebral blood flow tomography with xenon-133

    DEFF Research Database (Denmark)

    Lassen, N A

    1985-01-01

    and investigative purposes. This article discusses in particular its use for the selection of patients with carotid occlusion for extracranial/intracranial bypass surgery, for detection of severe arterial spasm after aneurysm bleeding, and for detection of low flow areas during severe migraine attacks. The use...

  19. [Unfavorable outcome of aggressive lowering of high blood pressure. Case report].

    Science.gov (United States)

    Kuperczkó, Diána; Csécsei, Péter; Komáromy, Hedvig; Szapáry, László; Fehér, Gergely

    2014-10-19

    Cerebral autoregulation is essential in the maintenance of cerebral blood flow. Due to this autoregulation, cerebral perfusion is constant in healthy subjects if blood pressure values are between 50-150 mmHg. In hypertensive patients the curve is right-shifted towards higher blood pressure values (pathological autoregulation). Aggressive blood pressure reduction can lead to severe ischaemia. The authors report the history of a 73-year-old man with the background history of widespread atherosclerotic disease. The patient complained about headache and dizziness and was found to have high blood pressure (160/100 mmHg) and increased blood glucose (14.8 mmol/l). Prior to his admission an aggressive blood pressure and blood sugar reduction was carried out and, within a short period of time he became unconscious and was transferred to the department of the authors with the possible diagnosis of brainstem stroke. On admission the patient was unresponsive, comatose with brainstem symptoms. Urgent brain computed tomography failed to show any acute alterations. However, repeat CT scan revealed extensive bilateral space occupying ischemic changes involving in territories of both internal carotid arteries with consequent brainstem compression. Computed tomography angiography confirmed bilateral internal carotid artery occlusion. The authors conclude that intensive blood pressure reduction result in ischemic lesions via hypoperfusion especially in patients with widespread atherosclerotic disease and significant carotid vessel pathology.

  20. Cerebral autoregulation in the preterm newborn using near-infrared spectroscopy: a comparison of time-domain and frequency-domain analyses

    Science.gov (United States)

    Eriksen, Vibeke R.; Hahn, Gitte H.; Greisen, Gorm

    2015-03-01

    The aim was to compare two conventional methods used to describe cerebral autoregulation (CA): frequency-domain analysis and time-domain analysis. We measured cerebral oxygenation (as a surrogate for cerebral blood flow) and mean arterial blood pressure (MAP) in 60 preterm infants. In the frequency domain, outcome variables were coherence and gain, whereas the cerebral oximetry index (COx) and the regression coefficient were the outcome variables in the time domain. Correlation between coherence and COx was poor. The disagreement between the two methods was due to the MAP and cerebral oxygenation signals being in counterphase in three cases. High gain and high coherence may arise spuriously when cerebral oxygenation decreases as MAP increases; hence, time-domain analysis appears to be a more robust-and simpler-method to describe CA.

  1. Impact of extracorporeal blood flow rate on blood pressure, pulse rate and cardiac output during haemodialysis

    DEFF Research Database (Denmark)

    Schytz, Philip Andreas; Mace, Maria Lerche; Soja, Anne Merete Boas

    2015-01-01

    BACKGROUND: If blood pressure (BP) falls during haemodialysis (HD) [intradialytic hypotension (IDH)] a common clinical practice is to reduce the extracorporeal blood flow rate (EBFR). Consequently the efficacy of the HD (Kt/V) is reduced. However, only very limited knowledge on the effect of redu...

  2. Nocturnal variations in peripheral blood flow, systemic blood pressure, and heart rate in humans

    DEFF Research Database (Denmark)

    Sindrup, J H; Kastrup, J; Christensen, H;

    1991-01-01

    Subcutaneous adipose tissue blood flow rate, together with systemic arterial blood pressure and heart rate under ambulatory conditions, was measured in the lower legs of 15 normal human subjects for 12-20 h. The 133Xe-washout technique, portable CdTe(Cl) detectors, and a portable data storage unit...

  3. Design and Simulation of Axial Flow Maglev Blood Pump

    Directory of Open Access Journals (Sweden)

    Huachun Wu

    2011-03-01

    Full Text Available The axial flow maglev blood pump (AFMBP has become a global research focus and emphasis for artificial ventricular assist device, which has no mechanical contact, mechanical friction, compact structure and light weight, can effectively solve thrombus and hemolysis. Magnetic suspension and impeller is two of the important parts in the axial flow maglev blood pump, and their structure largely determines the blood pump performance. The research adopts electromagnetic and fluid finite element analysis, and puts forward a method to design the magnetic suspension and impeller of axial flow blood pump, which tacks into account the small volume of axial blood pump. The magnetic bearing’s characteristics are evaluated by electromagnetic finite element analysis. The Blades have been designed by calculating aerofoil bone line, and make simulation analysis for different thicken ways of blade by Fluent software, and make a conclusion that the blade thickened with certain rules has better characteristics in the same conditions. The results will provide some guidance for design of axial flow maglev blood pump, and establish theoretical basis for application of the implantable artificial heart pump.

  4. Complex blood flow quantification using real-time in vivo vector flow ultrasound

    DEFF Research Database (Denmark)

    Pedersen, Mads Møller; Pihl, Michael Johannes; Per, Haugaard;

    A new method to define and quantify complex blood flow is presented. The standard deviations of real-time in vivo vector flow angle estimates are used. Using vector flow ultrasound imaging both carotid bifurcations of two healthy volunteers were scanned. Scanning was performed with a 7.6 MHz linear...... patterns can be visualised and quantified with real-time in vivo vector flow. Good agreement between visual evaluation and the quantitative method has been shown. A standard deviation of vector angle estimates above 30 is proposed to define complex blood flow....

  5. [The landmarks of the measurement of cerebral blood flow].

    Science.gov (United States)

    István, Nyáry

    2008-01-30

    History of the measurement of local cerebral blood flow may cover a period of one and a half centuries. Parallel forthcoming of both theoretical and technical development were the key elements of ensuing progress resulting in the present state, when by the aid of in vivo blood flow and metabolic maps, we can visualize locales of brain functioning and their interconnections. Two theoretical landmarks should be mentioned in this historic process. First, the work of Adolf Fick, as the starter of quantitative measurements in this field, and Seymour Kety's model of a single, homogenously perfused tissue element. The solution of this model, in the form of Kety's equation is still fundamental to present day blood flow mapping techniques. Among the numerous investigators over the past years, two Hungarian scientist can be named as major contributors. Kálmán Sántha made substantial studies with continuous registration of local cerebral blood flow by the aid of thermocouples, while Emil P6sztor invented the hydrogen clearance method for the measurement of local cerebral blood flow both in human and in animal studies.

  6. Regional neurohypophysial and hypothalamic blood flow in rats during hypercapnia

    Energy Technology Data Exchange (ETDEWEB)

    Bryan, R.M. Jr.; Myers, C.L.; Page, R.B.

    1988-08-01

    Regional cerebral blood flow (rCBF) was measured in the neurohypophysis and hypothalamus in normocapnic and hypercapnic rats using (/sup 14/C)isopropyliodoamphetamine. Rats were surgically prepared using nitrous oxide and halothane and placed in plaster restraining casts. Hypercapnia was produced by increasing the fractional concentration of inspired CO/sub 2/ (FICO/sub 2/). rCBF in normocapnic rats was higher in the paraventricular nucleus, supraoptic nucleus, median eminence, and neural lobe than rates previously measured by use of diffusible tracers. During hypercapnia blood flow increased linearly with arterial PCO/sub 2/ (PACO/sub 2/) in all regions except the median eminence and neural lobe, which were not affected by hypercapnia. When rats were pretreated with phentolamine (1 mg/kg) to block the alpha-adrenergic receptors, blood flow in the median eminence and neural lobe increased significantly during hypercapnia. We conclude that blood flow in the cell bodies of the paraventricular nucleus and supraoptic nucleus is regulated differently during hypercapnia than blood flow in the nerve terminals in the median eminence and neural lobe. Furthermore, vasodilation produced by increased CO/sub 2/ is offset by alpha-receptor stimulation in the median eminence and neural lobe.

  7. An analysis of the sluicing gate in pulmonary blood flow.

    Science.gov (United States)

    Fung, Y C; Zhuang, F Y

    1986-05-01

    For pulmonary blood flow in zone 2 condition, in which the blood pressure in the venule (pven) is lower than the alveolar gas pressure (pA), the blood exiting from the capillary sheet and entering a venule must go through a sluicing gate. The sluicing gate exists because the venule remains patent while the capillaries will collapse when the static pressure of blood falls below the alveolar gas pressure. In the original theory of sheet flow the effect of the tension in the interalveolar septa on the flow through the sluicing gate was ignored. Since the tension multiplied by the curvature of the membrane is equivalent to a lateral pressure tending to open the gate, and since the curvature of the capillary wall is high in the gate region, this effect may be important. The present analysis improves the original theory and demonstrates that the effect of membrane tension is to cause flow to increase when the venous pressure continues to decrease. The shape of the sluicing gate resembles that of a venturi tube, and can be determined by an iterative integration of the differential equations. The result forms an important link in the theory of pulmonary blood flow in zone 2 condition.

  8. Effects of Aortic Irregularities on the Blood Flow

    Science.gov (United States)

    Gutmark-Little, Iris; Prahl-Wittberg, Lisa; van Wyk, Stevin; Mihaescu, Mihai; Fuchs, Laszlo; Backeljauw, Philippe; Gutmark, Ephraim

    2013-11-01

    Cardiovascular defects characterized by geometrical anomalies of the aorta and its effect on the blood flow are investigated. The flow characteristics change with the aorta geometry and the rheological properties of the blood. Flow characteristics such as wall shear stress often play an important role in the development of vascular disease. In the present study, blood is considered to be non-Newtonian and is modeled using the Quemada model, an empirical model that is valid for different red blood cell loading. Three patient-specific aortic geometries are studied using Large Eddy Simulations (LES). The three geometries represent malformations that are typical in patients populations having a genetic disorder called Turner syndrome. The results show a highly complex flow with regions of recirculation that are enhanced in two of the three aortas. Moreover, blood flow is diverted, due to the malformations, from the descending aorta to the three side branches of the arch. The geometry having an elongated transverse aorta has larger areas of strong oscillatory wall shear stress.

  9. Nonuniform blood flow in the canine left ventricle.

    Science.gov (United States)

    Flynn, A E; Coggins, D L; Austin, R E; Muehrcke, D D; Aldea, G S; Goto, M; Doucette, J W; Hoffman, J I

    1990-11-01

    In order to investigate the relationship between coronary perfusion pressure and blood flow distribution in the left ventricle (LV), we measured myocardial blood flow in small regions using radioactive microspheres in six anesthetized, open-chest dogs. Mean coronary perfusion pressure (CPP) was controlled with a femoral artery to left main coronary artery shunt which included a pressurized, servo-controlled blood reservoir. In each dog, we measured flow in 192 regions of the LV free wall (mean weight per region = 206 +/- 38 mg) at different perfusion pressures. At CPP = 80 mm Hg, blood flow to individual regions varied fourfold (0.30 to 1.18 ml/min/g; relative dispersion (RD) = 21.8 +/- 2.3%). At CPP = 50 mm Hg, flow varied over sevenfold (0.08 to 0.60 ml/min/g; RD = 42.8 +/- 10%; P less than 0.01 vs 80 mm Hg). This relationship between flow variability and CPP was present within individual LV layers as well between layers and is much higher than the error associated with the microsphere technique. We conclude that blood flow to small regions of the LV is markedly nonuniform. This heterogeneity becomes more profound at lower CPP. These findings suggest that (1) global measurements of coronary flow must be interpreted with caution, and (2) even in hearts with normal coronary arteries some regions of the LV are more susceptible to ischemia than others. In addition, these findings may help explain the patchy nature of myocardial damage that occurs following periods of low coronary pressure or inadequate myocardial protection during cardiopulmonary bypass.

  10. Coded Ultrasound for Blood Flow Estimation Using Subband Processing

    DEFF Research Database (Denmark)

    Gran, Fredrik; Udesen, Jesper; Nielsen, Michael Bachamnn

    2008-01-01

    This paper investigates the use of coded excitation for blood flow estimation in medical ultrasound. Traditional autocorrelation estimators use narrow-band excitation signals to provide sufficient signal-to-noise-ratio (SNR) and velocity estimation performance. In this paper, broadband coded...... for velocity estimation is compared with a conventional approach transmitting a narrow-band pulse. The study was carried out using an experimental ultrasound scanner and a commercial linear array 7 MHz transducer. A circulating flow rig was scanned with a beam-to-flow angle of 60°. The flow in the rig...

  11. Maximum Likelihood Blood Velocity Estimator Incorporating Properties of Flow Physics

    DEFF Research Database (Denmark)

    Schlaikjer, Malene; Jensen, Jørgen Arendt

    2004-01-01

    The aspect of correlation among the blood velocities in time and space has not received much attention in previous blood velocity estimators. The theory of fluid mechanics predicts this property of the blood flow. Additionally, most estimators based on a cross-correlation analysis are limited...... of simulated and in vivo data from the carotid artery. The estimator is meant for two-dimensional (2-D) color flow imaging. The resulting mathematical relation for the estimator consists of two terms. The first term performs a cross-correlation analysis on the signal segment in the radio frequency (RF......)-data under investigation. The flow physic properties are exploited in the second term, as the range of velocity values investigated in the cross-correlation analysis are compared to the velocity estimates in the temporal and spatial neighborhood of the signal segment under investigation. The new estimator...

  12. Mediators of increased blood flow in porcine skin

    Directory of Open Access Journals (Sweden)

    H. D. Moore

    1992-01-01

    Full Text Available Nicotinates and benzalkonium chloride (B.Cl cause inflammatory changes in human skin, thought to be dependent upon prostaglandin formation. This study has examined the effects of hexyl-nicotinate (HN and B.Cl on blood flow in porcine skin. The role of prostaglandins and interleukin (IL-1 in the blood flow response has been investigated. Blood flow was increased by both HN and B.Cl, the response to B.Cl being more protracted. Cyclooxygenase inhibitor pretreatment reduced these responses. IL-1-like biological activity was identified in normal porcine epidermis and the amounts recovered from inflamed skin were similar. Thus prostaglandin formation in HN or B.Cl-induced inflammation, if IL-1 dependent, is not associated with the loss of significant amounts of the cytokine from the epidermis.

  13. Reduced blood flow to contracting skeletal muscle in ageing humans

    DEFF Research Database (Denmark)

    Nyberg, Michael Permin; Hellsten, Ylva

    2016-01-01

    The ability to sustain a given absolute submaximal workload declines with advancing age likely due to a lower level of blood flow and O2 delivery to the exercising muscles. Given that physical inactivity mimics many of the physiological changes associated with ageing, separating the physiological...... consequences of ageing and physical inactivity can be challenging; yet, observations from cross-sectional and longitudinal studies on the effects of physical activity have provided some insight. Physical activity has the potential to offset the age-related decline in blood flow to contracting skeletal muscle...... the O2 demand of the active skeletal muscle of aged individuals during conditions where systemic blood flow is not limited by cardiac output seems to a large extent to be related to the level of physical activity. This article is protected by copyright. All rights reserved....

  14. Regulation of the skeletal muscle blood flow in humans

    DEFF Research Database (Denmark)

    Mortensen, Stefan; Saltin, Bengt

    2014-01-01

    In humans, skeletal muscle blood flow is regulated by an interaction between several locally formed vasodilators including nitric oxide (NO) and prostaglandins. In plasma, ATP is a potent vasodilator that stimulates the formation of NO and prostaglandins and very importantly can offset local...... concentration does not increase during exercise. In the skeletal muscle interstitium, there is a marked increase in the concentration of ATP and adenosine and this increase is tightly coupled to the increase in blood flow. The sources of interstitial ATP and adenosine are thought to be skeletal muscle cells...... hyperaemia whereas the role of ATP remains uncertain due to lack of specific purinergic receptor blockers for human use. The purpose of this review is to address the interaction between vasodilator systems and to discuss the multiple proposed roles of ATP in human skeletal muscle blood flow regulation...

  15. Coronary blood flow during cardiopulmonary resuscitation in swine

    Energy Technology Data Exchange (ETDEWEB)

    Bellamy, R.F.; DeGuzman, L.R.; Pedersen, D.C.

    1984-01-01

    Recent papers have raised doubt as to the magnitude of coronary blood flow during closed-chest cardiopulmonary resuscitation. We will describe experiments that concern the methods of coronary flow measurement during cardiopulmonary resuscitation. Nine anesthetized swine were instrumented to allow simultaneous measurements of coronary blood flow by both electromagnetic cuff flow probes and by the radiomicrosphere technique. Cardiac arrest was caused by electrical fibrillation and closed-chest massage was performed by a Thumper (Dixie Medical Inc., Houston). The chest was compressed transversely at a rate of 66 strokes/min. Compression occupied one-half of the massage cycle. Three different Thumper piston strokes were studied: 1.5, 2, and 2.5 inches. Mean aortic pressure and total systemic blood flow measured by the radiomicrosphere technique increased as Thumper piston stroke was lengthened (mean +/- SD): 1.5 inch stroke, 23 +/- 4 mm Hg, 525 +/- 195 ml/min; 2 inch stroke, 33 +/- 5 mm Hg, 692 +/- 202 ml/min; 2.5 inch stroke, 40 +/- 6 mm Hg, 817 +/- 321 ml/min. Both methods of coronary flow measurement (electromagnetic (EMF) and radiomicrosphere (RMS)) gave similar results in technically successful preparations (data expressed as percent prearrest flow mean +/- 1 SD): 1.5 inch stroke, EMF 12 +/- 5%, RMS 16 +/- 5%; 2 inch stroke, EMF 30 +/- 6%, RMS 26 +/- 11%; 2.5 inch stroke, EMF 50 +/- 12%, RMS 40 +/- 20%. The phasic coronary flow signal during closed-chest compression indicated that all perfusion occurred during the relaxation phase of the massage cycle. We concluded that coronary blood flow is demonstrable during closed-chest massage, but that the magnitude is unlikely to be more than a fraction of normal.

  16. Flow of Red Blood Cells in Stenosed Microvessels

    Science.gov (United States)

    Vahidkhah, Koohyar; Balogh, Peter; Bagchi, Prosenjit

    2016-06-01

    A computational study is presented on the flow of deformable red blood cells in stenosed microvessels. It is observed that the Fahraeus-Lindqvist effect is significantly enhanced due to the presence of a stenosis. The apparent viscosity of blood is observed to increase by several folds when compared to non-stenosed vessels. An asymmetric distribution of the red blood cells, caused by geometric focusing in stenosed vessels, is observed to play a major role in the enhancement. The asymmetry in cell distribution also results in an asymmetry in average velocity and wall shear stress along the length of the stenosis. The discrete motion of the cells causes large time-dependent fluctuations in flow properties. The root-mean-square of flow rate fluctuations could be an order of magnitude higher than that in non-stenosed vessels. Several folds increase in Eulerian velocity fluctuation is also observed in the vicinity of the stenosis. Surprisingly, a transient flow reversal is observed upstream a stenosis but not downstream. The asymmetry and fluctuations in flow quantities and the flow reversal would not occur in absence of the cells. It is concluded that the flow physics and its physiological consequences are significantly different in micro- versus macrovascular stenosis.

  17. Intraoperative multi-exposure speckle imaging of cerebral blood flow.

    Science.gov (United States)

    Richards, Lisa M; Kazmi, Sm Shams; Olin, Katherine E; Waldron, James S; Fox, Douglas J; Dunn, Andrew K

    2017-01-01

    Multiple studies have demonstrated that laser speckle contrast imaging (LSCI) has high potential to be a valuable cerebral blood flow monitoring technique during neurosurgery. However, the quantitative accuracy and sensitivity of LSCI is limited, and highly dependent on the exposure time. An extension to LSCI called multi-exposure speckle imaging (MESI) overcomes these limitations, and was evaluated intraoperatively in patients undergoing brain tumor resection. This clinical study ( n = 8) recorded multiple exposure times from the same cortical tissue area spanning 0.5-20 ms, and evaluated images individually as single-exposure LSCI and jointly using the MESI model. This study demonstrated that the MESI estimates provided the broadest flow sensitivity for sampling the flow magnitude in the human brain, closely followed by the shorter exposure times. Conservation of flow analysis on vascular bifurcations was used to validate physiological accuracy, with highly conserved flow estimates (blood flow changes after tissue cautery. Results from this study demonstrate that intraoperative MESI can be performed with high quantitative accuracy and sensitivity for cerebral blood flow monitoring.

  18. Diabetes augments in vivo microvascular blood flow dynamics after stroke.

    Science.gov (United States)

    Tennant, Kelly A; Brown, Craig E

    2013-12-04

    Stroke usually affects people with underlying medical conditions. In particular, diabetics are significantly more likely to have a stroke and the prognosis for recovery is poor. Because diabetes is associated with degenerative changes in the vasculature of many organs, we sought to determine how hyperglycemia affects blood flow dynamics after an ischemic stroke. Longitudinal in vivo two-photon imaging was used to track microvessels before and after photothrombotic stroke in a diabetic mouse model. Chronic hyperglycemia exacerbated acute (3-7 d) ischemia-induced increases in blood flow velocity, vessel lumen diameter, and red blood cell flux in peri-infarct regions. These changes in blood flow dynamics were most evident in superficial blood vessels within 500 μm from the infarct, rather than deeper or more distant cortical regions. Long-term imaging of diabetic mice not subjected to stroke indicated that these acute stroke-related changes in vascular function could not be attributed to complications from hyperglycemia alone. Treating diabetic mice with insulin immediately after stroke resulted in less severe alterations in blood flow within the first 7 d of recovery, but had more variable results at later time points. Analysis of microvessel branching patterns revealed that stroke led to a pruning of microvessels in peri-infarct cortex, with very few instances of sprouting. These results indicate that chronic hyperglycemia significantly affects the vascular response to ischemic stroke and that insulin only partially mitigates these changes. The combination of these acute and chronic alterations in blood flow dynamics could underlie diabetes-related deficits in cortical plasticity and stroke recovery.

  19. Fontan Outcomes and Pulmonary Blood Flow at Birth.

    Science.gov (United States)

    Evans, William N; Acherman, Ruben J; Reardon, Leigh C; Ciccolo, Michael L; Galindo, Alvaro; Rothman, Abraham; Winn, Brody J; Yumiaco, Noel S; Restrepo, Humberto

    2016-01-01

    We previously noted, in a small group of post-Fontan patients, a possible association between hepatic fibrosis scores and the status of pulmonary blood flow at birth. To further explore this observation, we examined data from all Fontan patients seen in our center from July 2010 to March 2015. We identified 200 patients for analysis. Of the 200 patients, 56 underwent transvenous-hepatic biopsy. Of the 200 patients, 13 (6.5%) had protein-losing enteropathy. We divided both the 56 biopsy patients and the entire cohort of 200 patients into 4 groups: (1) unobstructed pulmonary blood flow at birth with functional left ventricles, (2) unobstructed pulmonary blood flow at birth with functional right ventricles, (3) obstructed pulmonary blood flow at birth with functional left ventricles, and (4) obstructed pulmonary blood flow at birth with functional right ventricles. Analysis of the 56 liver-biopsy patient groups showed median hepatic total-fibrosis scores for the 4 groups of 2 (0-6), 2 (0-8), 3 (2-6), and 4 (1-8), respectively, with statistical significance between groups 4 and 1 (p = 0.031). For the entire cohort of 200 patients, we analyzed the incidence of protein-losing enteropathy for each of the four groups and found protein-losing enteropathy percent occurrences of 0, 2.9, 8.8, and 16.1, respectively, with statistical significance between groups 4 and 2 (p = 0.031) and between groups 4 and 1 (p = 0.025). A history of obstructed pulmonary blood flow at birth, coupled with a functional right ventricle, may predict a poorer long-term Fontan outcome.

  20. Adrenergic influence on gastric mucosal blood flow in gastric fistula dogs

    DEFF Research Database (Denmark)

    Hovendal, C P; Bech, K; Gottrup, F;

    1984-01-01

    by an initial increase in mucosal blood flow and in the last two periods a decrease in blood flow. alpha-Blockade (phentolamine) reduced the pentagastrin stimulated gastric acid secretion and gastric mucosal blood flow but the ratio between blood flow and acid secretion was increased, indicating a relatively...

  1. Spring-network-based model of a red blood cell for simulating mesoscopic blood flow.

    Science.gov (United States)

    Nakamura, Masanori; Bessho, Sadao; Wada, Shigeo

    2013-01-01

    We developed a mechanical model of a red blood cell (RBC) that is capable of expressing its characteristic behaviors in shear flows. The RBC was modeled as a closed shell membrane consisting of spring networks in the framework of the energy minimum concept. The fluid forces acting on RBCs were modeled from Newton's viscosity law and the conservation of momentum. In a steady shear flow, the RBC model exhibited various behaviors, depending on the shear rate; it tumbled, tank-treaded, or both. The transition from tumbling to tank-treading occurred at a shear rate of 20 s( - 1). The simulation of an RBC in steady and unsteady parallel shear flows (Couette flows) showed that the deformation parameters of the RBC were consistent with experimental results. The RBC in Poiseuille flow migrated radially towards the central axis of the flow channel. Axial migration became faster with an increase in the viscosity of the media, qualitatively consistent with experimental results. These results demonstrate that the proposed model satisfies the essential conditions for simulating RBC behavior in blood flow. Finally, a large-scale RBC flow simulation was implemented to show the capability of the proposed model for analyzing the mesoscopic nature of blood flow.

  2. Splanchnic blood flow and hepatic glucose production in exercising humans

    DEFF Research Database (Denmark)

    Bergeron, R; Kjaer, M; Simonsen, L;

    2001-01-01

    The study examined the implication of the renin-angiotensin system (RAS) in regulation of splanchnic blood flow and glucose production in exercising humans. Subjects cycled for 40 min at 50% maximal O(2) consumption (VO(2 max)) followed by 30 min at 70% VO(2 max) either with [angiotensin-converti......The study examined the implication of the renin-angiotensin system (RAS) in regulation of splanchnic blood flow and glucose production in exercising humans. Subjects cycled for 40 min at 50% maximal O(2) consumption (VO(2 max)) followed by 30 min at 70% VO(2 max) either with [angiotensin...

  3. High speed optical holography of retinal blood flow

    CERN Document Server

    Pellizzari, Mathilde; Degardin, Julie; Sahel, Jose-Alain; Fink, Mathias; Paques, Michel; Atlan, Michael

    2016-01-01

    We performed non-invasive video imaging of retinal blood flow in a pigmented rat by holographic interferometry of near-infrared laser light backscattered by retinal tissue, beating against an off-axis reference beam sampled at a frame rate of 39 kHz with a high throughput camera. Local Doppler contrasts emerged from the envelopes of short-time Fourier transforms and the phase of autocorrelation functions of holograms rendered by Fresnel transformation. This approach permitted imaging of blood flow in large retinal vessels (30 microns diameter) over 400 by 400 pixels with a spatial resolution of 8 microns and a temporal resolution of 6.5 ms.

  4. Age and gender related differences in aortic blood flow

    DEFF Research Database (Denmark)

    Traberg, Marie Sand; Pedersen, Mads Møller; Hemmsen, Martin Christian

    2012-01-01

    The abdominal aorta (AA) is predisposed to development of abdominal aneurysms (AAA), a focal dilatation of the artery with fatal consequences if left untreated. The blood flow patterns in the AA is thought to play an important role in the development of AAA. The purpose of this work is to investi......The abdominal aorta (AA) is predisposed to development of abdominal aneurysms (AAA), a focal dilatation of the artery with fatal consequences if left untreated. The blood flow patterns in the AA is thought to play an important role in the development of AAA. The purpose of this work...

  5. Metabolic control of muscle blood flow during exercise in humans

    DEFF Research Database (Denmark)

    Boushel, Robert Christopher

    2003-01-01

    and the vasculature that induce vasodilation. A link between muscle metabolic events and microvascular control of blood flow is illustrated by local dilation of terminal arterioles during contraction of muscle fibers and conduction of vasodilation upstream. Endothelial-derived vasodilator mechanisms are known...... to exert control of muscle vasodilation. Adenosine, nitric oxide (NO), prostacyclin (PGI2), and endothelial-derived hyperpolarization factor (EDHF) are possible mediators of muscle vasodilation during exercise. In humans, adenosine has been shown to contribute to functional hyperemia as blood flow...

  6. Cerebral blood flow and oxidative metabolism during human endotoxemia

    DEFF Research Database (Denmark)

    Møller, Kirsten; Strauss, Gitte Irene; Qvist, Jesper;

    2002-01-01

    The proinflammatory cytokine, tumor necrosis factor-alpha (TNF-alpha), has been suggested to mediate septic encephalopathy through an effect on cerebral blood flow (CBF) and metabolism. The effect of an intravenous bolus of endotoxin on global CBF, metabolism, and net flux of cytokines...... and catecholamines was investigated in eight healthy young volunteers. Cerebral blood flow was measured by the Kety-Schmidt technique at baseline (during normocapnia and voluntary hyperventilation for calculation of subject-specific cerebrovascular CO reactivity), and 90 minutes after an intravenous bolus...

  7. A New Technology for Detecting Cerebral Blood Flow

    DEFF Research Database (Denmark)

    Schytz, Henrik W; Guo, Song; Jensen, Lars T;

    2012-01-01

    There is a need for real-time non-invasive, continuous monitoring of cerebral blood flow (CBF) during surgery, in intensive care units and clinical research. We investigated a new non-invasive hybrid technology employing ultrasound tagged near infrared spectroscopy (UT-NIRS) that may estimate...... changes in CBF using a cerebral blood flow index (CFI). Changes over time for UT-NIRS CFI and (133)Xenon single photon emission computer tomography ((133)Xe-SPECT) CBF data were assessed in 10 healthy volunteers after an intravenous bolus of acetazolamide. UT-NIRS CFI was measured continuously and SPECT...

  8. Accurate blood flow measurements: are artificial tracers necessary?

    Directory of Open Access Journals (Sweden)

    Christian Poelma

    Full Text Available Imaging-based blood flow measurement techniques, such as particle image velocimetry, have become an important tool in cardiovascular research. They provide quantitative information about blood flow, which benefits applications ranging from developmental biology to tumor perfusion studies. Studies using these methods can be classified based on whether they use artificial tracers or red blood cells to visualize the fluid motion. We here present the first direct comparison in vivo of both methods. For high magnification cases, the experiments using red blood cells strongly underestimate the flow (up to 50% in the present case, as compared to the tracer results. For medium magnification cases, the results from both methods are indistinguishable as they give the same underestimation of the real velocities (approximately 33%, based on in vitro reference measurements. These results suggest that flow characteristics reported in literature cannot be compared without a careful evaluation of the imaging characteristics. A method to predict the expected flow averaging behavior for a particular facility is presented.

  9. Accurate blood flow measurements: are artificial tracers necessary?

    Science.gov (United States)

    Poelma, Christian; Kloosterman, Astrid; Hierck, Beerend P; Westerweel, Jerry

    2012-01-01

    Imaging-based blood flow measurement techniques, such as particle image velocimetry, have become an important tool in cardiovascular research. They provide quantitative information about blood flow, which benefits applications ranging from developmental biology to tumor perfusion studies. Studies using these methods can be classified based on whether they use artificial tracers or red blood cells to visualize the fluid motion. We here present the first direct comparison in vivo of both methods. For high magnification cases, the experiments using red blood cells strongly underestimate the flow (up to 50% in the present case), as compared to the tracer results. For medium magnification cases, the results from both methods are indistinguishable as they give the same underestimation of the real velocities (approximately 33%, based on in vitro reference measurements). These results suggest that flow characteristics reported in literature cannot be compared without a careful evaluation of the imaging characteristics. A method to predict the expected flow averaging behavior for a particular facility is presented.

  10. Regional cerebral blood flow in focal cortical epilepsy

    DEFF Research Database (Denmark)

    Hougaard, Kristina Dupont; Oikawa, T; Sveinsdottir, E;

    1976-01-01

    Regional cerebral blood flow (rCBF) was studied in ten patients with focal cortical epilepsy. The blood flow was measured by the intra-arterial injection of xenon 133 (133Xe), and the isotope clearance was recorded by a multidetector scintillation camera with 254 detectors. Three patients were...... studied both during a seizure and (in the same setting) in the interictal period; six patients were studied only in the interictal period, and one patient was studied only during a seizure. Studies during seizures all showed marked flow increases in areas presumed to participate in the seizure activity....... This finding accords with earlier studies. All nine patients studied in the interictal phase showed, either spontaneously or during activation by intermittent light, focal flow increases in areas presumed to comprise the epileptic focus. These interictal hyperemic foci probably reflect subictal neuronal...

  11. Improved technique for blood flow velocity measurement using Doppler effect

    Science.gov (United States)

    Valadares Oliveira, Eduardo J.; Nantes Button, Vera L. d. S.; Maia, Joaquim M.; Costa, Eduardo T.

    2002-04-01

    The Doppler velocimeter developed allows to determine the angle between the ultrasonic beam and the velocity vector of the flow, and to calculate the precise blood flow in a vessel. Four piezoelectric transducers constitute the Doppler velocimeter. Three of these transducers are positioned to form an equilateral triangle (base of a pyramid). When these transducers move simultaneously, backward or forward from the initial position, the emitted ultrasonic beams focalize on a position (peak of the pyramid) closer or farther from the transducers faces, according to the depth of the vessel where we intend to measure de flow. The angle between the transducers allows adjusting the height of this pyramid and the position of the focus (where the three beams meet). A forth transducer is used to determine the diameter of the vessel and monitor the position of the Doppler velocimeter relative to the vessel. Simulation results showed that with this technique is possible to accomplish precise measurement of blood flow.

  12. Collective Phenomena in Kidney Autoregulation

    DEFF Research Database (Denmark)

    Mosekilde, Erik; Sosnovtseva, Olga; Holstein-Rathlou, N.-H.

    2004-01-01

    By controling the excretion of water and salts, the kidneys play all important role ill regulating the blood pressure and maintaining a proper environment for the cells of the body. This control depends to a large extent oil mechanisms that are associated with the individual functional unit...

  13. Age and gender related differences in aortic blood flow

    Science.gov (United States)

    Enevoldsen, Marie Sand; Pedersen, Mads Møller; Hemmsen, Martin Christian; Lönn, Lars; Henneberg, Kaj-Åge; Jensen, Jørgen Arendt

    2012-03-01

    The abdominal aorta (AA) is predisposed to development of abdominal aneurysms (AAA), a focal dilatation with fatal consequences if left untreated. The blood flow patterns is thought to play an important role in the development of AAA. The purpose of this work is to investigate the blood flow patterns within a group of healthy volunteers (six females, eight males) aged 23 to 76 years to identify changes and differences related to age and gender. The healthy volunteers were categorized by gender (male/female) and age (below/above 35 years). Subject-specific flow and geometry data were acquired using the research interface on a Profocus ultrasound scanner (B-K Medical, Herlev, Denmark; segmentation of 3D magnetic resonance angiography (Magnetom Trio, Siemens Healthcare, Erlangen, Germany). The largest average diameter was among the elderly males (19.7 (+/- 1.33) mm) and smallest among the young females (12.4 (+/- 0.605) mm). The highest peak systolic velocity was in the young female group (1.02 (+/- 0.336) m/s) and lowest in the elderly male group (0.836 (+/- 0.127) m/s). A geometrical change with age was observed as the AA becomes more bended with age. This also affects the blood flow velocity patterns, which are markedly different from young to elderly. Thus, changes in blood flow patterns in the AA related to age and gender are observed. Further investigations are needed to determine the relation between changes in blood flow patterns and AAA development.

  14. [Measurement of cerebral blood flow by thermal diffusion using a flow probe with a Peltier stack].

    Science.gov (United States)

    Yamagata, S; Kikuchi, H; Hashimoto, K; Minamikawa, J; Watanabe, Y

    1987-05-01

    In order to evaluate the blood flow by means of thermal diffusion, relationship between blood flow and parameters induced by thermal diffusion was investigated. Flow probe employed for measurement by thermal diffusion incorporated a Peltier stack which contained a small semiconductor and two L-shaped gold plates. These two plates were attached to both sides of the semiconductor by one side of each gold plate and the other side was surfaced with a tissue to be measured. Temperature gradient is created with current applied to the Peltier stack between two plates, one cooled and the other heated, and it is affected only by tissue blood flow. Two kinds of parameters of thermal diffusion were subjected to compare to blood flow. One was temperature gradient when the constant current was applied to the Peltier stack. The other was a current required to maintain a definite temperature gradient which was determined before hand. From the theoretical principle in thermodynamics, the correlations between blood flow and each of thermal diffusion parameters were defined by the following equations: (Formula: see text) where F is blood flow, delta V is voltage converted from temperature gradient, and Ci and Cv are constants. Each of phi v and phi i indicates the characteristics of each probe. Experimental study was carried out to confirm the above relationship using cortex of experimental animals. Under the general anesthesia, a cat was placed in prone position. After the craniotomy, dura mater was opened and a small flow probe, 10 mm in diameter, 5 mm in height and 5 g in weight, was placed on the cortex and blood flow was continuously evaluated by two parameters.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Ultrasonic Doppler blood flow meter for extracorporeal circulation

    Science.gov (United States)

    Dantas, Ricardo G.; Costa, Eduardo T.; Maia, Joaquim M.; Nantes Button, Vera L. d. S.

    2000-04-01

    In cardiac surgeries it is frequently necessary to carry out interventions in internal heart structures, and where the blood circulation and oxygenation are made by artificial ways, out of the patient's body, in a procedure known as extracorporeal circulation (EC). During this procedure, one of the most important parameters, and that demands constant monitoring, is the blood flow. In this work, an ultrasonic pulsed Doppler blood flowmeter, to be used in an extracorporeal circulation system, was developed. It was used a 2 MHz ultrasonic transducer, measuring flows from 0 to 5 liters/min, coupled externally to the EC arterial line destined to adults perfusion (diameter of 9.53 mm). The experimental results using the developed flowmeter indicated a maximum deviation of 3.5% of full scale, while the blood flow estimator based in the rotation speed of the peristaltic pump presented deviations greater than 20% of full scale. This ultrasonic flowmeter supplies the results in a continuous and trustworthy way, and it does not present the limitations found in those flowmeters based in other transduction methods. Moreover, due to the fact of not being in contact with the blood, it is not disposable and it does not need sterilization, reducing operational costs and facilitating its use.

  16. Development of a miniature intraventricular axial flow blood pump.

    Science.gov (United States)

    Yamazaki, K; Umezu, M; Koyanagi, H; Outa, E; Ogino, S; Otake, Y; Shiozaki, H; Fujimoto, T; Tagusari, O; Kitamura, M

    1993-01-01

    A new intraventricular axial flow blood pump has been designed and developed as a totally implantable left ventricular assist device (LVAD). This pump consists of an impeller combined with a guide-vane, a tube housing, and a DC motor. The pump is introduced into the LV cavity through the LV apex, and the outlet cannula is passed antegrade across the aortic valve. Blood is withdrawn from the LV through the inlet ports at the pump base, and discharged to the ascending aorta. Our newly developed axial flow pump system has the following advantages: 1) it is a simple and compact system, 2) minimal blood stasis both in the device and the LV cavity, 3) minimal blood contacting surface of the pump, 4) easy accessibility with a less invasive surgical procedure, and 5) low cost. A pump flow > 5 L/min was obtained against 100 mmHg differential pressure in the mock circulatory system. The pump could produce a passive pulsatile flow effect with a beating heart more efficiently than other non-pulsatile pumps because of minimal pressure drop and inertia along the bypass tract. Anatomic fit studies using dissected hearts of dilated cardiomyopathy (DCM) cadavers showed that this pump could smoothly pass through the aortic valve without any interference with mitral valve function. Recently, a dynamic pressure groove bearing and a miniature lip seal have been developed. The dynamic pressure groove bearing has a simple structure and acts as a pressure resistant sealing mechanism.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Renal blood flow in experimental septic acute renal failure

    NARCIS (Netherlands)

    Langenberg, C.; Wan, L.; Egi, M.; May, C. N.; Bellomo, R.

    2006-01-01

    Reduced renal blood flow (RBF) is considered central to the pathogenesis of septic acute renal failure (ARF). However, no controlled experimental studies have continuously assessed RBF during the development of severe septic ARF. We conducted a sequential animal study in seven female Merino sheep. F

  18. Increased cerebral blood flow in preeclampsia with magnetic resonance imaging

    NARCIS (Netherlands)

    Zeeman, GG; Hatab, MR; Twickler, DM

    2004-01-01

    Objective: The purpose of this study was to compare third trimester and nonpregnant cerebral blood flow of women with preeclampsia to normotensive control subjects with the use of magnetic resonance imaging techniques. Study design: Nine normotensive pregnant women and 12 untreated women with preecl

  19. Longitudinal Cerebral Blood Flow Changes during Speech in Hereditary Ataxia

    Science.gov (United States)

    Sidtis, John J.; Strother, Stephen C.; Naoum, Ansam; Rottenberg, David A.; Gomez, Christopher

    2010-01-01

    The hereditary ataxias constitute a group of degenerative diseases that progress over years or decades. With principal pathology involving the cerebellum, dysarthria is an early feature of many of the ataxias. Positron emission tomography was used to study regional cerebral blood flow changes during speech production over a 21 month period in a…

  20. Nocturnal foot blood flow in patients with arterial insufficiency

    DEFF Research Database (Denmark)

    Jelnes, Rolf; Tønnesen, K H

    1984-01-01

    was on average the same in patients with normal circulations and in patients with different degrees of arterial insufficiency (mean: 2.0 +/- 0.8 ml min-1 100 g-1). During sleep the blood flow nearly doubled in patients with normal circulations; no systematic change was seen in patients with intermittent...

  1. [Measurement of cerebral blood flow using phase-contrast MRI].

    Science.gov (United States)

    Obata, T; Shishido, F; Koga, M; Ikehira, H; Kimura, F; Yoshida, K

    1997-07-01

    The development of phase-contrast magnetic resonance imaging(P-C MRI) provides a noninvasive method for measurement of volumetric blood flow(VFR). The VFR of the left and right internal carotid arteries and basilar artery were measured using P-C MRI, and total cerebral blood flow(tCBF) was calculated by summing up the VFR values in three vessels. We investigated the changes in these blood flows as influenced from age, head size, height, weight, body surface area and handedness. Moreover, regional CBF(rCBF) was measured by combining with the single photon emission computed tomography(SPECT) of 123I. The blood flows were 142 +/- 58 mL/ min(mean +/- SD) in the basilar artery, 229 +/- 86 mL/min in the left, 223 +/- 58 mL/min in the right internal carotid artery, and tCBF was 617 +/- 128 mL/min(Ref. Magn Resn Imaging 14:P. 1143, 1996). Significant increases were observed in head-size-related change of VFR in the basilar artery and height-related change of tCBF. The value of rCBF was easily acquired in combination with SPECT. Phase-contrast MRI is useful for a noninvasive and rapid analysis of cerebral VFR and has potential for clinical use.

  2. Cerebral blood flow response to propranolol in streptozotocin diabetic rats

    DEFF Research Database (Denmark)

    Lass, Preben; Knudsen, G M

    1990-01-01

    The influence of propranolol on cerebral blood flow (CBF) was tested in streptozotocin diabetic rats and in control animals. Resting CBF values were 40% lower in the diabetic rats compared with controls. Intravenous injection of propranolol (2 mg kg-1) decreased CBF significantly in the control...

  3. Influence of blood flow on the coagulation cascade

    DEFF Research Database (Denmark)

    The influence of diffusion and convetive flows on the blood coagulation cascade is investigated for a controlled perfusion experiment. We present a cartoon model and reaction schemes for parts of the coagulation cascade with sunsequent set up of a mathematical model in two space dimensions plus one...

  4. Patterns of regional cerebral blood flow in acute stroke

    DEFF Research Database (Denmark)

    Olsen, T S; Skriver, E B

    1981-01-01

    In a consecutive group of 56 stroke patients the regional cerebral blood flow was measured within 84 hours after stroke. A 254 multidetector scintillation camera and the intracarotid Xenon-133 injection method was used to study rCBF. Typical rCBF-patterns are described and compared to the findings...

  5. Vasodilator interactions in skeletal muscle blood flow regulation

    DEFF Research Database (Denmark)

    Hellsten, Ylva; Nyberg, Michael Permin; Jensen, Lasse Gliemann;

    2012-01-01

    that this remaining hyperemia may be explained by cAMP and cGMP independent smooth muscle relaxation, such as effects of endothelial derived hyperpolarization factors (EDHFs) or through metabolic modulation of sympathetic effects. The nature and role of EDHF as well as potential novel mechanisms in muscle blood flow...

  6. A VARIATIONAL MODEL FOR 2-D MICROPOLAR BLOOD FLOW

    Institute of Scientific and Technical Information of China (English)

    He Ji-huan

    2003-01-01

    The micropolar fluid model is an essential generalization of the well-established Navier-Stokes model in the sense that it takes into account the microstructure of the fluid.This paper is devolted to establishing a variational principle for 2-D incompressible micropolar blood flow.

  7. Optically measured microvascular blood flow contrast of malignant breast tumors.

    Directory of Open Access Journals (Sweden)

    Regine Choe

    Full Text Available Microvascular blood flow contrast is an important hemodynamic and metabolic parameter with potential to enhance in vivo breast cancer detection and therapy monitoring. Here we report on non-invasive line-scan measurements of malignant breast tumors with a hand-held optical probe in the remission geometry. The probe employs diffuse correlation spectroscopy (DCS, a near-infrared optical method that quantifies deep tissue microvascular blood flow. Tumor-to-normal perfusion ratios are derived from thirty-two human subjects. Mean (95% confidence interval tumor-to-normal ratio using surrounding normal tissue was 2.25 (1.92-2.63; tumor-to-normal ratio using normal tissues at the corresponding tumor location in the contralateral breast was 2.27 (1.94-2.66, and using normal tissue in the contralateral breast was 2.27 (1.90-2.70. Thus, the mean tumor-to-normal ratios were significantly different from unity irrespective of the normal tissue chosen, implying that tumors have significantly higher blood flow than normal tissues. Therefore, the study demonstrates existence of breast cancer contrast in blood flow measured by DCS. The new, optically accessible cancer contrast holds potential for cancer detection and therapy monitoring applications, and it is likely to be especially useful when combined with diffuse optical spectroscopy/tomography.

  8. Coded ultrasound for blood flow estimation using subband processing

    DEFF Research Database (Denmark)

    Gran, F.; Udesen, J.; Jensen, J.A.;

    2008-01-01

    This paper investigates the use of coded excitation for blood flow estimation in medical ultrasound. Traditional autocorrelation estimators use narrow-band excitation signals to provide sufficient signal-to-noise-ratio (SNR) and velocity estimation performance. In this paper, broadband coded sign...

  9. Noninvasive pulsatile flow estimation for an implantable rotary blood pump.

    Science.gov (United States)

    Karantonis, Dean M; Cloherty, Shaun L; Mason, David G; Ayre, Peter J; Lovell, Nigel H

    2007-01-01

    A noninvasive approach to the task of pulsatile flow estimation in an implantable rotary blood pump (iRBP) has been proposed. Employing six fluid solutions representing a range of viscosities equivalent to 20-50% blood hematocrit (HCT), pulsatile flow data was acquired from an in vitro mock circulatory loop. The entire operating range of the pump was examined, including flows from -2 to 12 L/min. Taking the pump feedback signals of speed and power, together with the HCT level, as input parameters, several flow estimate models were developed via system identification methods. Three autoregressive with exogenous input (ARX) model structures were evaluated: structures I and II used the input parameters directly; structure II incorporated additional terms for HCT; and the third structure employed as input a non-pulsatile flow estimate equation. Optimal model orders were determined, and the associated models yielded minimum mean flow errors of 5.49% and 0.258 L/min for structure II, and 5.77% and 0.270 L/min for structure III, when validated on unseen data. The models developed in this study present a practical method of accurately estimating iRBP flow in a pulsatile environment.

  10. Quantitating error in blood flow measurements with radioactive microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Austin, R.E. Jr.; Hauck, W.W.; Aldea, G.S.; Flynn, A.E.; Coggins, D.L.; Hoffman, J.I.

    1989-07-01

    Accurate determination of the reproducibility of measurements using the microsphere technique is important in assessing differences in blood flow to different organs or regions within organs, as well as changes in perfusion under various experimental conditions. The sources of error of the technique are briefly reviewed. In addition, we derived a method for combining quantifiable sources of error into a single estimate that was evaluated experimentally by simultaneously injecting eight or nine sets of microspheres (each with a different radionuclide label) into four anesthetized dogs. Each nuclide was used to calculate blood flow in 145-190 myocardial regions. We compared each flow determination (using a single nuclide label) with a weighted mean for the piece (based on the remaining nuclides). The difference was defined as ''measured'' error. In all, there were a total of 5,975 flow observations. We compared measured error with theoretical estimates based on the Poisson error of radioactive disintegration and microsphere entrapment, nuclide separation error, and reference flow error. We found that combined estimates based on these sources completely accounted for measured error in the relative distribution of microspheres. In addition, our estimates of the error in measuring absolute flows (which were established using microsphere reference samples) slightly, but significantly, underestimated measured error in absolute flow.

  11. Microheterogeneity of blood flow in the rat urinary bladder

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Takahiro [Kawasaki Medical School, Kurashiki, Okayama (Japan)

    2002-08-01

    The microheterogeneity of blood flow in the mucous membrane of the urinary bladder and that in the detrusor muscle in anesthetized rats (n=8) were investigated at an extremely high spatial resolution (0.1 x 0.1 mm{sup 2}) using digital radiography combined with the {sup 3}H-labeled desmethylimipramine deposition technique. The spatial pattern of flow distribution was quantified by the coefficient of variation regional flow (CV: standard deviation/mean). The results showed muscle blood flow to be lower than mucous blood flow (muscle: mucosa=2.9:5), with the distribution of the former being more heterogeneous than that of the latter (CV in muscle vs. CV in mucosa=0.33{+-}0.033 vs. 0.16{+-}0.019, p<0.001) at the capillary level. It was therefore considered that the muscle would more easily experience mechanical irritation and be more easily influenced by arterial tonus than the mucous membrane, ant it was thought that this difference reflected a difference in regional perfusion. (author)

  12. Precision of coherence analysis to detect cerebral autoregulation by near-infrared spectroscopy in preterm infants

    DEFF Research Database (Denmark)

    Hahn, GH; Christensen, KB; Leung, TS;

    2010-01-01

    Coherence between spontaneous fluctuations in arterial blood pressure (ABP) and the cerebral near-infrared spectroscopy signal can detect cerebral autoregulation. Because reliable measurement depends on signals with high signal-to-noise ratio, we hypothesized that coherence is more precisely...... for the variabilityABP among repeated measurements (i.e., weighting measurements with high variabilityABP in favor of those with low) improved the precision. The evidence of drift in individual infants was weak. Minimum monitoring time needed to discriminate among infants was 1.3–3.7 h. Coherence analysis in low...... frequencies (0.04–0.1 Hz) had higher precision and statistically more power than in very low frequencies (0.003–0.04 Hz). In conclusion, a reliable detection of cerebral autoregulation takes hours and the precision is improved by adjusting for variabilityABP between repeated measurements....

  13. The effects of probe placement on measured flow velocity in transcranial Doppler ultrasound imaging in-vitro and in-vivo experiments

    Science.gov (United States)

    de Jong, Daan L. K.; Meel-van den Abeelen, Aisha S. S.; Lagro, Joep; Claassen, Jurgen A. H. R.; Slump, Cornelis H.

    2014-03-01

    The measurement of the blood flow in the middle cerebral artery (MCA) using transcranial Doppler ultrasound (US) imaging is clinically relevant for the study of cerebral autoregulation. Especially in the aging population, impairement of the autoregulation may coincide or relate to loss of perfusion and consequently loss of brain function. The cerebral autoregulation can be assessed by relating the blood pressure to the blood flow in the brain. Doppler US is a widely used, non-invasive method to measure the blood flow in the MCA. However, Doppler flow imaging is known to produce results that are dependent of the operator. The angle of the probe insonation with respect to the centerline of the blood vessel is a well known factor for output variability. In patients also the skull must be traversed and the MCA must be detected, influencing the US signal intensity. In this contribution we report two studies. We describe first an in-vitro setup to study the Doppler flow in a situation where the ground truth is known. Secondly, we report on a study with healthy volunteers where the effects of small probe displacements on the flow velocity signals are investigated. For the latter purpose, a special probe holder was designed to control the experiment.

  14. Simulation of red blood cell aggregation in shear flow.

    Science.gov (United States)

    Lim, B; Bascom, P A; Cobbold, R S

    1997-01-01

    A simulation model has been developed for red blood cell (RBC) aggregation in shear flow. It is based on a description of the collision rates of RBC, the probability of particles sticking together, and the breakage of aggregates by shear forces. The influence of shear rate, hematocrit, aggregate fractal dimension, and binding strength on aggregation kinetics were investigated and compared to other theoretical and experimental results. The model was used to simulate blood flow in a long large diameter tube under steady flow conditions at low Reynolds numbers. The time and spatial distribution of the state of aggregation are shown to be in qualitative agreement with previous B-mode ultrasound studies in which a central region of low echogenicity was noted. It is suggested that the model can provide a basis for interpreting prior measurements of ultrasound echogenicity and may help relate them to the local state of aggregation.

  15. Quantitative blood flow velocity imaging using laser speckle flowmetry

    Science.gov (United States)

    Nadort, Annemarie; Kalkman, Koen; van Leeuwen, Ton G.; Faber, Dirk J.

    2016-04-01

    Laser speckle flowmetry suffers from a debated quantification of the inverse relation between decorrelation time (τc) and blood flow velocity (V), i.e. 1/τc = αV. Using a modified microcirculation imager (integrated sidestream dark field - laser speckle contrast imaging [SDF-LSCI]), we experimentally investigate on the influence of the optical properties of scatterers on α in vitro and in vivo. We found a good agreement to theoretical predictions within certain limits for scatterer size and multiple scattering. We present a practical model-based scaling factor to correct for multiple scattering in microcirculatory vessels. Our results show that SDF-LSCI offers a quantitative measure of flow velocity in addition to vessel morphology, enabling the quantification of the clinically relevant blood flow, velocity and tissue perfusion.

  16. Blood flow in the cerebral venous system: modeling and simulation.

    Science.gov (United States)

    Miraucourt, Olivia; Salmon, Stéphanie; Szopos, Marcela; Thiriet, Marc

    2017-04-01

    The development of a software platform incorporating all aspects, from medical imaging data, through three-dimensional reconstruction and suitable meshing, up to simulation of blood flow in patient-specific geometries, is a crucial challenge in biomedical engineering. In the present study, a fully three-dimensional blood flow simulation is carried out through a complete rigid macrovascular circuit, namely the intracranial venous network, instead of a reduced order simulation and partial vascular network. The biomechanical modeling step is carefully analyzed and leads to the description of the flow governed by the dimensionless Navier-Stokes equations for an incompressible viscous fluid. The equations are then numerically solved with a free finite element software using five meshes of a realistic geometry obtained from medical images to prove the feasibility of the pipeline. Some features of the intracranial venous circuit in the supine position such as asymmetric behavior in merging regions are discussed.

  17. Noninvasive miniaturized mass-flow meter using a curved cannula for implantable axial flow blood pump.

    Science.gov (United States)

    Kosaka, Ryo; Nishida, Masahiro; Maruyama, Osamu; Yamane, Takashi

    2011-01-01

    Blood flow should be measured to monitor conditions of patients with implantable artificial hearts continuously and noninvasively. We have developed a noninvasive miniaturized mass-flow meter using a curved cannula for an axial flow blood pump. The mass-flow meter utilized centrifugal force generated by the mass-flow rate in the curved cannula. Two strain gauges served as sensors. Based on the numerical analysis, the first gauge, attached to the curved area, measured static pressure and centrifugal force, and the second, attached to the straight area, measured static pressure for static pressure compensation. The mass-flow rate was determined by the differences in output from the two gauges. To compensate for the inertia force under the pulsatile flow, a 0.75-Hz low-pass filter was added to the electrical circuit. In the evaluation tests, numerical analysis and an actual measurement test using bovine blood were performed to evaluate the measurement performances. As a result, in the numerical analysis, the relationship between the differential pressure caused by centrifugal force and the flow rate was verified. In the actual measurement test, measurement error was less than ± 0.5 L/min, and the time delay was 0.12 s. We confirmed that the developed mass-flow meter was able to measure mass-flow rate continuously and noninvasively.

  18. Cerebral autoregulation in the first day after preterm birth

    DEFF Research Database (Denmark)

    Hahn, Gitte Holst; Maroun, Lisa L; Larsen, Nanna Brink;

    2012-01-01

    Both systemic inflammation and impaired cerebral autoregulation (CA) have been associated with brain injury in preterm infants. We hypothesized that impaired CA represents a hemodynamic link between inflammation and brain injury.......Both systemic inflammation and impaired cerebral autoregulation (CA) have been associated with brain injury in preterm infants. We hypothesized that impaired CA represents a hemodynamic link between inflammation and brain injury....

  19. Cerebral autoregulation in pregnancies complicated by diabetes and overweight

    NARCIS (Netherlands)

    van Veen, Teelkien R.; Panerai, Ronney B.; Haeri, Sina; van den Berg, Paul P.; Zeeman, Gerda G.; Belfort, Michael A.

    2015-01-01

    Aim: The aim of this study was to estimate the impact of diabetes and obesity on cerebral autoregulation in pregnancy. Methods: Cerebral autoregulation was evaluated in women with gestational diabetes, type 2 diabetes mellitus and/or overweight (body mass index >= 25kgm(-2)) and compared to a cohort

  20. Blood flow simulation on a role for red blood cells in platelet adhesion

    Science.gov (United States)

    Shimizu, Kazuya; Sugiyama, Kazuyasu; Takagi, Shu

    2016-11-01

    Large-scale blood flow simulations were conducted and a role for red blood cells in platelet adhesion was discussed. The flow conditions and hematocrit values were set to the same as corresponding experiments, and the numerical results were compared with the measurements. Numerical results show the number of platelets adhered on the wall is increased with the increase in hematocrit values. The number of adhered platelets estimated from the simulation was approximately 28 (per 0.01 square millimeter per minute) for the hematocrit value of 20%. These results agree well with the experimental results qualitatively and quantitatively, which proves the validity of the present numerical model including the interaction between fluid and many elastic bodies and the modeling of platelet adhesion. Numerical simulation also reproduces the behavior of red blood cells in the blood flow and their role in platelet adhesion. Red blood cells deform to a flat shape and move towards channel center region. In contrast, platelets are pushed out and have many chances to contact with the wall. As a result, the large number of adhered platelets is observed as hematocrit values becomes high. This result indicates the presence of red blood cells plays a crucial role in platelet adhesion.

  1. Cerebral blood flow in migraine and cortical spreading depression

    Energy Technology Data Exchange (ETDEWEB)

    Lauritzen, M.

    1987-01-01

    In a series of migraine patients, carotid arteriography was carried out as part of the clinical evalution. Nine patients developed a migrainous attack with focal neurological symptoms and headache after the angiography and during the subsequent, ongoing regional cerebral blood flow rCBF study. rCBF was measured by bolus injection of Xenon/sup 133/ into the internal carotid artery and a gamma camera with 254 collimated scintillation detectors covering the lateral aspect of the hemisphere. This technique depicts rCBF mainly at the level of the superficial cortex, with no depth resolution. The resolution is 1 cm/sup 2/ providing detailed spatial information of the cortical blood flow. Other methods for measuring local blood flow in animal and man employ a radioactive, freely diffusible tracer, in combination with an autoradiographic technique for the assessment of the tissue concentration, the so-called autoradiographic methods. In the series of patients with spontaneous migraine, rCBF was estimated using an in-vivo application of the autoradiographic principle. Xenon/sup 133/ was administered by inhalation and the time course of the arterial concentration curve was assessed by a scintillation detector over the upper right lung, since the arterial curve has been found to follow the shape of the lung curve. The rCBF was studied accompanying cortical spreading depression in rat experiments to evaluate wheter this phenomenon could explain the blood flow changes in migraine. (/sup 14/C) iodoantipyrine was given as an intravenous bolus injection and the brain content of indicator was determined by tissue sample or autoradiography after 10 or 20 seconds of isotope circulation. The conditions of the autoradiographic methods are that the flow remains constant within the period of measuring, and that the region under study is homogenous with regard to flow and lambda. (EG).

  2. Assessment of maternal cerebral blood flow in patients with preeclampsia

    Directory of Open Access Journals (Sweden)

    Mandić Vesna

    2005-01-01

    Full Text Available Introduction Systemic vasoconstrktion in preeclamptic patients increases vascular resistance, and is manifested by increased arterial blood flow velocity. The aim of the study is to evaluate if there is a change of Doppler indices in maternal medial cerbral artery (MCA in severe preeclampsia due to: 1 severity of clinical symptoms, 2 the beginning of eclamptic attack and 3 the application of anticonvidsive therapy. Material and methods A prospective clinical study included 92 pregnant women, gestational age 28-36 weeks. They were divided into three groups: normotensive (n=30, mild preeclampsia (n=33, and severe preeclampsia (n=29. We investigated maternal cerebral circulation by assessing the MCA. We registrated: pulsatility index (Pi, resistance index (Ri, Systolic/diastolic ratio (S/D, and the maximum systolic, end diastolic and medium velocity. Patients with severe preeclampsia were divided into two subgroups: subgroup 1 included patients without symptoms of threatening eclampsia (n=18; 62.06%; while subgroup 2 included those with symptoms of preeclampsia (n=11; 37.94%. All patients with severe preeclampsia were treated with magnesium sulfate (MgSO4, and cerebral blood flow was measured before and after the treatment. Statistical analysis was done by oneway ANOVA, Student t-test and t-paired sample test. The difference was considered to be significant if p < 0.05. Results Significantly increased Pi, Ri and all velocities were established in the group of patients with severe preeclampsia compared with the other two groups. In the group with severe preeclamsia we registrated significantly increased values of all velocities (patients with signs of threatening eclampsia. After MgSO4 treatment in patients with severe preeclampsia significantly decreased values of Pi, Ri, S/D ratio and all velocities were registered. Discussion In the studied group of patients with severe preclampsia we found increased velocity values, Pi and Ri, especially in

  3. Skeletal blood flow, iliac histomorphometry, and strontium kinetics in osteoporosis: a relationship between blood flow and corrected apposition rate

    Energy Technology Data Exchange (ETDEWEB)

    Reeve, J.; Arlot, M.; Wootton, R.; Edouard, C.; Tellez, M.; Hesp, R.; Green, J.R.; Meunier, P.J.

    1988-06-01

    In 20 untreated patients with idiopathic or postmenopausal osteoporosis, kinetic studies of skeletal blood flow (using /sup 18/F) and bone turnover (using /sup 85/Sr) were combined with dynamic histomorphometry performed on transiliac biopsies taken within 6 weeks of each other. In 8 patients the combined studies were repeated after treatment. A further 5 patients were studied only while receiving treatment. As expected, skeletal blood flow measured by /sup 18/F correlated with an index of /sup 85/Sr uptake into the exchangeable pools of bone. Additionally and independently, skeletal blood flow correlated with an index of the work rate of the osteoblasts in each multicellular unit of bone (the corrected apposition rate of Parfitt). These correlations were statistically significant in both the untreated patients (P less than 0.05) and the whole group (P less than 0.001). Further indices related to bone turnover at the level of the skeleton as a whole were significantly associated with skeletal blood flow only in the combined group.

  4. Lattice Boltzmann Simulation of Blood Flow in Blood Vessels with the Rolling Massage

    Institute of Scientific and Technical Information of China (English)

    YI Hou-Hui; XU Shi-Xiong; QIAN Yue-Hong; FANG Hai-Ping

    2005-01-01

    @@ The rolling massage manipulation is a classic Chinese massage, which is expected to improve the circulation by pushing, pulling and kneading of the muscle. A model for the rolling massage manipulation is proposed and the lattice Boltzmann method is applied to study the blood flow in the blood vessels. The simulation results show that the blood flux is considerably modified by the rolling massage and the explicit value depends on the rolling frequency, the rolling depth, and the diameter of the vessel. The smaller the diameter of the blood vessel, the larger the enhancement of the blood flux by the rolling massage. The model, together with the simulation results,is expected to be helpful to understand the mechanism and further development of rolling massage techniques.

  5. MR assessment of absolute myocardial blood flow and vasodilator flow reserve in patients with hypertrophic cardiomyopathy

    Energy Technology Data Exchange (ETDEWEB)

    Kawada, Nanaka; Sakuma, Hajime; Takeda, Kan; Nakagawa, Tsuyoshi; Yamakado, Tetsu; Nakano, Takeshi [Mie Univ., Tsu (Japan). School of Medicine

    1997-04-01

    Absolute coronary blood flow per myocardial mass and coronary flow reserve for the entire left ventricle were evaluated in normals and in patients with hypertrophic cardiomyopathy (HCM) by using fast cine MR imaging and fast velocity encoded cine (VENC) MR imaging. Nine healthy volunteers and 8 patients with HCM were studied with a 1.5 T imager. Breath-hold cine MR images encompassing the whole left ventricle were acquired on short axis imaging planes in order to evaluate myocardial mass. A fast VENC MR images were obtained to measure blood flow volume in the coronary sinus before and after dipyridamole administration (TR/TE=15/5 ms, FOV=28 x 22 cm, slice thickness=5 mm). Coronary flow reserve was calculated as a ratio of hyperemic to baseline coronary flow volumes. In the baseline state, coronary blood flow per myocardial mass was significantly lower in patients with HCM than in normal myocardium (0.56{+-}0.23 vs. 0.78{+-}0.27 ml/min/g, p<0.05). After dipyridamole administration, coronary blood flow per myocardial mass in patients with HCM increased substantially less than that in healthy subjects (0.99{+-}0.38 vs. 2.22{+-}0.55 ml/min/g, p<0.01), resulting in the significantly decreased coronary flow reserve ratio in HCM in comparison with that in normal myocardium (1.86{+-}0.56 vs. 3.11{+-}1.37, p<0.05). In conclusion, breath-hold velocity encoded cine MR imaging is a noninvasive technique which can provide assessments of altered coronary blood flow volume per myocardial mass and vasodilator flow reserve in patients with HCM. (author)

  6. Structural analysis of red blood cell aggregates under shear flow.

    Science.gov (United States)

    Chesnutt, J K W; Marshall, J S

    2010-03-01

    A set of measures of red blood cell (RBC) aggregates are developed and applied to examine the aggregate structure under plane shear and channel flows. Some of these measures are based on averages over the set of red blood cells which are in contact with each other at a given time. Other measures are developed by first fitting an ellipse to the planar projection of the aggregate, and then examining the area and aspect ratio of the fit ellipse as well as the orientations of constituent RBCs with respect to the fit ellipse axes. The aggregate structural measures are illustrated using a new mesoscale computational model for blood cell transport, collision and adhesion. The sensitivity of this model to change in adhesive surface energy density and shear rate on the aggregate structure is examined. It is found that the mesoscale model predictions exhibit reasonable agreement with experimental and theoretical data for blood flow in plane shear and channel flows. The new structural measures are used to examine the differences between predictions of two- and three-dimensional computations of the aggregate formation, showing that two-dimensional computations retain some of the important aspects of three-dimensional computations.

  7. Laser speckle imaging of blood flow in microcirculation

    Energy Technology Data Exchange (ETDEWEB)

    Cheng Haiying; Luo Qingming; Liu Qian; Lu Qiang; Gong Hui; Zeng Shaoqun [Key Laboratory of Biomedical Photonics of Ministry of Education of China, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2004-04-07

    Monitoring the spatio-temporal characteristics of microcirculation is crucial for studying the functional activities of biotissue and the mechanism of disease. However, conventional methods used to measure blood flow suffer from limited spatial resolution or the injection of exogenous substances or the need of scanning to obtain the dynamic of regional blood flow. Laser speckle imaging (LSI) technique makes up these disadvantages by obtaining the regional blood flow distribution with high spatio-temporal resolution without the need to scan. In this paper, LSI was introduced to investigate the dynamic responses of the rat mesenteric microcirculation to an incremental dose of phentolamine. The results showed that when the dose of phentolamine was less than 4 {mu}g ml{sup -1}, local application of phentolamine on the mesentery would increase the blood perfusion as the concentration increased. When the dose increased further, the improvement decreased. At a dose of 200 {mu}g ml{sup -1}, a microcirculation impediment was caused. At the same time, different responses between veinules and arterioles were manifested. These suggested that LSI is promising to be a useful contribution to drug development and testing.

  8. Ozone Therapy on Cerebral Blood Flow: A Preliminary Report

    Directory of Open Access Journals (Sweden)

    Bernardino Clavo

    2004-01-01

    Full Text Available Ozone therapy is currently being used in the treatment of ischemic disorders, but the underlying mechanisms that result in successful treatment are not well known. This study assesses the effect of ozone therapy on the blood flow in the middle cerebral and common carotid arteries. Seven subjects were recruited for the therapy that was performed by transfusing ozone-enriched autologous blood on 3 alternate days over 1 week. Blood flow quantification in the common carotid artery (n = 14 was performed using color Doppler. Systolic and diastolic velocities in the middle cerebral artery (n = 14 were estimated using transcranial Doppler. Ultrasound assessments were conducted at the following three time points: 1 basal (before ozone therapy, 2 after session #3 and 3 1 week after session #3. The common carotid blood flow had increased by 75% in relation to the baseline after session #3 (P < 0.001 and by 29% 1 week later (P = 0.039. In the middle cerebral artery, the systolic velocity had increased by 22% after session #3 (P = 0.001 and by 15% 1 week later (P = 0.035, whereas the diastolic velocity had increased by 33% after session #3 (P < 0.001 and by 18% 1 week later (P = 0.023. This preliminary Doppler study supports the clinical experience of achieving improvement by using ozone therapy in peripheral ischemic syndromes. Its potential use as a complementary treatment in cerebral low perfusion syndromes merits further clinical evaluation.

  9. Resistance exercise with different volumes: blood pressure response and forearm blood flow in the hypertensive elderly

    Science.gov (United States)

    Brito, Aline de Freitas; de Oliveira, Caio Victor Coutinho; Brasileiro-Santos, Maria do Socorro; Santos, Amilton da Cruz

    2014-01-01

    Background The purpose of this study was to evaluate the effect of two sessions of resistance exercise with different volumes on post-exercise hypotension, forearm blood flow, and forearm vascular resistance in hypertensive elderly subjects. Methods The study was conducted with ten hypertensive elderly (65±3 years, 28.7±3 kg/m2) subjected to three experimental sessions, ie, a control session, exercise with a set (S1), and exercise with three sets (S3). For each session, the subjects were evaluated before and after intervention. In the pre-intervention period, blood pressure, forearm blood flow, and forearm vascular resistance were measured after 10 minutes of rest in the supine position. Thereafter, the subjects were taken to the gym to perform their exercise sessions or remained at rest during the same time period. Both S1 and S3 comprised a set of ten repetitions of ten exercises, with an interval of 90 seconds between exercises. Subsequently, the measurements were again performed at 10, 30, 50, 70, and 90 minutes of recovery (post-intervention) in the supine position. Results Post-exercise hypotension was greater in S3 than in S1 (systolic blood pressure, −26.5±4.2 mmHg versus −17.9±4.7 mmHg; diastolic blood pressure, −13.8±4.9 mmHg versus −7.7±5 mmHg, P<0.05). Similarly, forearm blood flow and forearm vascular resistance changed significantly in both sessions with an increase and decrease, respectively, that was more evident in S3 than in S1 (P<0.05). Conclusion Resistance exercises with higher volume were more effective in causing post-exercise hypotension, being accompanied by an increase in forearm blood flow and a reduction of forearm vascular resistance. PMID:25540580

  10. A Reconstruction Method of Blood Flow Velocity in Left Ventricle Using Color Flow Ultrasound

    Directory of Open Access Journals (Sweden)

    Jaeseong Jang

    2015-01-01

    Full Text Available Vortex flow imaging is a relatively new medical imaging method for the dynamic visualization of intracardiac blood flow, a potentially useful index of cardiac dysfunction. A reconstruction method is proposed here to quantify the distribution of blood flow velocity fields inside the left ventricle from color flow images compiled from ultrasound measurements. In this paper, a 2D incompressible Navier-Stokes equation with a mass source term is proposed to utilize the measurable color flow ultrasound data in a plane along with the moving boundary condition. The proposed model reflects out-of-plane blood flows on the imaging plane through the mass source term. The boundary conditions to solve the system of equations are derived from the dimensions of the ventricle extracted from 2D echocardiography data. The performance of the proposed method is evaluated numerically using synthetic flow data acquired from simulating left ventricle flows. The numerical simulations show the feasibility and potential usefulness of the proposed method of reconstructing the intracardiac flow fields. Of particular note is the finding that the mass source term in the proposed model improves the reconstruction performance.

  11. Methods for blood flow measurements using ultrasound contrast agents

    Science.gov (United States)

    Fowlkes, J. Brian

    2003-10-01

    Blood flow measurements using ultrasound contrast agents are being investigated for myocardial perfusion and more recently in other organ systems. The methods are based largely on the relative increase in echogenicity due to the concentration of bubbles present in the ultrasound beam. In the simplest form, regional differences in blood volume can be inferred but the possibility exists to extract perfusion from the transit of contrast agent through tissue. Perfusion measurements rely on determining the flux of blood through a tissue volume and as such require knowledge of the fractional blood volume (FBV), i.e., ml blood/g tissue and the rate of exchange, commonly measured as the mean transit time (MTT). This presentation will discuss methods of determining each of these values and their combination to estimate tissue perfusion. Underlying principles of indicator-dilution theory will be provided in the context of ultrasound contrast agents. Current methods for determining MTT will include imaging of the intravenous bolus, in-plane contrast disruption with interval and real-time contrast recovery imaging, and control of contrast agent flow using arterial disruption (contrast interruption). The advantages and limitations of the methods will be examined along with current applications. [Work supported in part by NIH.

  12. Narcolepsy: regional cerebral blood flow during sleep and wakefulness

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, F.; Meyer, J.S.; Karacan, I.; Yamaguchi, F.; Yamamoto, M.

    1979-01-01

    Serial measurements of regional cerebral blood flow were made by the 135Xe inhalation method during the early stages of sleep and wakefulness in eight normal volunteers and 12 patients with narcolepsy. Electroencephalogram, electro-oculogram, and submental electromyogram were recorded simultaneously. In normals, mean hemispheric gray matter blood flow (Fg) during stages I and II sleep was significantly less than waking values. Maximum regional blood flow decreases during sleep occurred in the brainstem-cerebellar, right inferior temporal, and bilateral frontal regions. In patients with narcolepsy, mean hemispheric Fg while awake was 80.5 +- 13 ml per 100 gm brain per minute. During REM sleep, mean hemispheric Fg increased concurrently with large increases in brainstem-cerebellar region flow. During stages I and II sleep without REM, there were significant increases in mean hemispheric Fg and brainstem-cerebellar Fg, just the opposite of changes in normals. In narcolepsy, there appears to be a reversal of normal cerebral deactivation patterns, particularly involving the brainstem, during stages I and II sleep.

  13. Occlusion-free Blood Flow Animation with Wall Thickness Visualization.

    Science.gov (United States)

    Lawonn, Kai; Glaßer, Sylvia; Vilanova, Anna; Preim, Bernhard; Isenberg, Tobias

    2016-01-01

    We present the first visualization tool that combines pathlines from blood flow and wall thickness information. Our method uses illustrative techniques to provide occlusion-free visualization of the flow. We thus offer medical researchers an effective visual analysis tool for aneurysm treatment risk assessment. Such aneurysms bear a high risk of rupture and significant treatment-related risks. Therefore, to get a fully informed decision it is essential to both investigate the vessel morphology and the hemodynamic data. Ongoing research emphasizes the importance of analyzing the wall thickness in risk assessment. Our combination of blood flow visualization and wall thickness representation is a significant improvement for the exploration and analysis of aneurysms. As all presented information is spatially intertwined, occlusion problems occur. We solve these occlusion problems by dynamic cutaway surfaces. We combine this approach with a glyph-based blood flow representation and a visual mapping of wall thickness onto the vessel surface. We developed a GPU-based implementation of our visualizations which facilitates wall thickness analysis through real-time rendering and flexible interactive data exploration mechanisms. We designed our techniques in collaboration with domain experts, and we provide details about the evaluation of the technique and tool.

  14. Axial dispersion in flowing red blood cell suspensions

    Science.gov (United States)

    Podgorski, Thomas; Losserand, Sylvain; Coupier, Gwennou

    2016-11-01

    A key parameter in blood microcirculation is the transit time of red blood cells (RBCs) through an organ, which can influence the efficiency of gas exchange and oxygen availability. A large dispersion of this transit time is observed in vivo and is partly due to the axial dispersion in the flowing suspension. In the classic Taylor-Aris example of a solute flowing in a tube, the combination of molecular diffusion and parabolic velocity profile leads to enhanced axial dispersion. In suspensions of non-Brownian deformable bodies such as RBCs, axial dispersion is governed by a combination of shear induced migration and shear-induced diffusion arising from hydrodynamic interactions. We revisit this problem in the case of RBC pulses flowing in a microchannel and show that the axial dispersion of the pulse eventually saturates with a final extension that depends directly on RBC mechanical properties. The result is especially interesting in the dilute limit since the final pulse length depends only on the channel width, exponent of the migration law and dimensionless migration velocity. In continuous flow, the dispersion of transit times is the result of complex cell-cell and cell-wall interactions and is strongy influenced by the polydispersity of the blood sample. The authors acknowledge support from LabEx TEC21 and CNES.

  15. In vivo photoacoustic imaging of transverse blood flow using Doppler broadening of bandwidth

    OpenAIRE

    Yao, Junjie; Maslov, Konstantin I.; Shi, Yunfei; Taber, Larry A.; Lihong V. Wang

    2010-01-01

    A new method is proposed to measure transverse blood flow using photoacoustic Doppler broadening of bandwidth. By measuring bovine blood flowing through a plastic tube, the linear dependence of the broadening on the flow speed was validated. The blood flow of the microvasculature in a mouse ear and a chicken embryo (stage 16) was also studied.

  16. In vivo photoacoustic imaging of transverse blood flow by using Doppler broadening of bandwidth

    OpenAIRE

    Yao, Junjie; Maslov, Konstantin I.; Shi, Yunfei; Taber, Larry A.; Lihong V. Wang

    2010-01-01

    A method is proposed to measure transverse blood flow by using photoacoustic Doppler broadening of bandwidth. By measuring bovine blood flowing through a plastic tube, the linear dependence of the broadening on the flow speed was validated. The blood flow of the microvasculature in a mouse ear and a chicken embryo (stage 16) was also studied.

  17. Anisodamine augments mucosal blood flow during gut ischemia/reperfusion

    Institute of Scientific and Technical Information of China (English)

    Hu Sen; Sheng Zhiyong

    2002-01-01

    Objective: To determine if anisodamine is able to augment mucosal perfusion during gut ischemia-reperfusion (I/R). Methods: A jejunal sac was formed in Sprague Dawley rat. A Laser Doppler probe and a tonometer were inserted into the sac which was filled with saline. The superior mesenteric artery was occluded (SMAO) for 60minutes followed by 90 minutes of reperfusion. At the end of 60 minutes of SMAO, either 0.2mg/kg of anisodmine or dobutamine was injected into the jejunal sac. Laser Doppler mucosal blood flow and regional PCO2 (PrCO2) measurements were made. Results: Mucosal blood flow was significantly increased at 30,60 and 90 minutes of reperfusion (R30, R60, R90 ) when intraluminal anisodamine or dobutamine was introduced compared to intraluminal saline only (44±3.3)% or (48±4.1)% vs. (37±2.6) % at R30, (57±5.0)% or (56±4.7)% vs. (45±2.7)% at R60, (64±3.3) % or (56 ± 4.2) % vs. (48 ± 3.4) % at R90 , respectively P<0.05). Blood flow changes were also reflected by lowering of jejunal PrCO2 measurements after intraluminal anisodamine or dobutamine compared with that of the saline controls (41±3. 1)mmHg or (44±3.0)mmHg vs. (49±3.7) mmHg at R30 , (38±3.7)mmHg or (40±2. 1)mmHg vs. (47±3.8) mmHgat R60, (34±2.1) mmHg or (39± 3.0) mmHg vs. (46±3.4) mmHg at R90, respectively,P<0. 05). The most interesting finding was that there were significantly higher mucosal blood flow and lower jejunal PrCO2 in anisodamine group than those in dobutamine group at 90 minutes of reperfusion (64± 3.3) %vs. (56±4.2)% for blood flow or (34 ± 2.1)mmHg vs. (39 ± 3.0)mmHg for PrCO2, respectively, P<0.05),suggesting that anisodamine had more lasting effect on mucosal perfusion than dobutamine. Conclusions:Intraluminal anisodamine can augment mucosal blood flow during gut I/R, and it may provide the protective effect on gut from ischemia and reperfusion injury.

  18. Blood Flow Imaging in Maternal and Fetal Arteries and Veins

    Science.gov (United States)

    Ricci, S.; Urban, G.; Vergani, P.; Paidas, M. J.; Tortoli, P.

    Maternal and fetal blood circulation has been investigated for nearly a decade through ultrasound (US) techniques. Evaluation of the spectrogram related to a single sample volume has been proven valuable for the assessment of fetal well-being and for prediction of pregnancy complications. In this work, an alternative technique, called Multigate Spectral Doppler Analysis (MSDA), is proposed. In this approach, 128 sample volumes aligned along the same scan line are simultaneously investigated to detect the blood velocity profile with high resolution. Profiles obtained through MSDA reveal features not detectable with the standard US technique, thus representing a more accurate flow signature. Some preliminary illustrative results are reported here.

  19. Sympathetic reflex control of blood flow in human peripheral tissues

    DEFF Research Database (Denmark)

    Henriksen, O

    1991-01-01

    Sympathetic vasoconstrictor reflexes are essential for the maintenance of arterial blood pressure in upright position. It has been generally believed that supraspinal sympathetic vasoconstrictor reflexes elicited by changes in baroreceptor activity play an important role. Recent studies on human...... sympathetic vasoconstrictor reflexes are blocked. Blood flow has been measure by the local 133Xe-technique. The results indicate the presence of spinal as well as supraspinal sympathetic vasoconstrictor reflexes to human peripheral tissues. Especially is emphasized the presence of a local sympathetic veno...

  20. Effect of pregnancy on regional cerebral blood flow

    Energy Technology Data Exchange (ETDEWEB)

    Nagamachi, Shigeki; Hoshi, Hiroaki; Jinnouchi, Seishi; Ohnishi, Takashi; Futami, Shigemi; Watanabe, Katsushi; Ikeda, Tomoaki; Mori, Norimasa [Miyazaki Medical Coll., Kiyotake (Japan)

    1993-12-01

    Regional cerebral blood flow (r-CBF) of 10 pregnant women were quantified by {sup 133}Xe SPECT study with inhalation method before and after artificial abortion. During pregnancy, value of r-CBF in each region except occipital lobe was significantly higher than that of the post abortion. Arterial blood gas was analyzed after SPECT procedure. P{sub co2} concentration increased significantly after artificial abortion. Although its mechanism is unknown, our preliminary work demonstrates that r-CBF increased by pregnancy. (author).

  1. Holographic laser Doppler imaging of pulsatile blood flow

    CERN Document Server

    Bencteux, Jeffrey; Kostas, Thomas; Bayat, Sam; Atlan, Michael

    2015-01-01

    We report on wide-field imaging of pulsatile motion induced by blood flow using heterodyne holographic interferometry on the thumb of a healthy volunteer, in real-time. Optical Doppler images were measured with green laser light by a frequency-shifted Mach-Zehnder interferometer in off-axis configuration. The recorded optical signal was linked to local instantaneous out-of-plane motion of the skin at velocities of a few hundreds of microns per second, and compared to blood pulse monitored by plethysmoraphy during an occlusion-reperfusion experiment.

  2. Tomographic cerebral blood flow measurement during carotid surgery

    DEFF Research Database (Denmark)

    Rathenborg, Lisbet Knudsen; Vorstrup, Sidsel; Olsen, K S

    1994-01-01

    OBJECTIVES: The aim of the study was to depict regional cerebral blood flow (rCBF) during carotid cross clamping using 99mTechnetium-hexamethylpropylene amine oxime (TcHMPAO). This tracer rapidly passes the blood-brain barrier and is retained for hours in the brain tissue. Injecting TcHMPAO during...... RESULTS: We found a significant correlation between stump pressure and enhancement of side-to-side asymmetry in rCBF due to carotid cross clamping. Pronounced variations were seen in which regions were deprived of perfusion during clamping. CONCLUSION: TcHMPAO allows tomographic assessment of CBF during...

  3. Involvement of calcitonin gene-related peptide in migraine: regional cerebral blood flow and blood flow velocity in migraine patients

    DEFF Research Database (Denmark)

    Lassen, L.H.; Jacobsen, V.B.; Haderslev, P.A.

    2008-01-01

    g/min) or placebo for 20 min was studied in 12 patients with migraine without aura outside attacks. Xenon-133 inhalation SPECT-determined regional cerebral blood flow (rCBF) and transcranial Doppler (TCD)-determined blood velocity (V-mean) in the middle cerebral artery (MCA), as well as the heart......Calcitonin gene-related peptide (CGRP)-containing nerves are closely associated with cranial blood vessels. CGRP is the most potent vasodilator known in isolated cerebral blood vessels. CGRP can induce migraine attacks, and two selective CGRP receptor antagonists are effective in the treatment...... of migraine attacks. It is therefore important to investigate its mechanism of action in patients with migraine. We here investigate the effects of intravenous human alpha-CGRP (h alpha CGRP) on intracranial hemodynamics. In a double-blind, cross-over study, the effect of intravenous infusion of haCGRP (2 mu...

  4. Skin temperature and subcutaneous adipose blood flow in man

    DEFF Research Database (Denmark)

    Astrup, A; Bülow, J; Madsen, J

    1980-01-01

    The abdominal subcutaneous adipose tissue blood flow (ATBF) was measured bilaterally by the 133Xe washout method. At one side of the skin (epicutaneous) temperature was varied with a temperature blanket, the other side served as control. There was a significant (P less than 0.001) positive...... correlation between skin temperature and ATBF. In the range from 25 to 37 degrees CATBF increased 9% of the control flow on average per centigrade increase in skin temperature. ATBF at the control side was uninfluenced by the contralateral variations in skin temperature. Although no better correlation could...

  5. Case with stenosis of internal carotid artery detected as a region of decreased blood flow by Tc-99m HMPAO cerebral blood flow scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Hayashida, K.; Nishimura, T.; Uehara, T.; Imakita, S.; Yokota, I.; Ogura, H.; Oka, H.; Hayashi, M.; Kikuchi, H.

    1987-04-01

    Tc-99m hexamethylpropyleneamine oxime (= HMPAO) is expected to be an excellent agent as blood flow tracer of brain because it passes through blood brain barrier and is retained in brain parenchyma for several hours. Tc-99m HMPAO scintigraphy was applied to a patient complaining of transient ischemic attack without neurological findings. Left hemispheric hypoperfusion was detected by Tc-99m HMPAO cerebral blood flow scintigraphy. Although it was normal in CT and MRI, it was proved to be a 99 % stenosis of left internal carotid artery by digital subtraction angiography. Tc-99m HMPAO cerebral blood flow scintigraphy is useful for detecting abnormality of cerebral blood flow.

  6. Pressure Gradient Estimation Based on Ultrasonic Blood Flow Measurement

    Science.gov (United States)

    Nitta, Naotaka; Homma, Kazuhiro; Shiina, Tsuyoshi

    2006-05-01

    Mechanical load to the blood vessel wall, such as shear stress and pressure, which occurs in blood flow dynamics, contribute greatly to plaque rupture in arteriosclerosis and to biochemical activation of endothelial cells. Therefore, noninvasive estimations of these mechanical loads are able to provide useful information for the prevention of vascular diseases. Although the pressure is the dominant component of mechanical load, for practical purposes, the pressure gradient is also often important. So far, we have investigated the estimation of the kinematic viscosity coefficient using a combination of the Navier-Stokes equations and ultrasonic velocity measurement. In this paper, a method for pressure gradient estimation using the estimated kinematic viscosity coefficient is proposed. The validity of the proposed method was investigated on the basis of the analysis with the data obtained by computer simulation and a flow phantom experiment. These results revealed that the proposed method can provide a valid estimation of the pressure gradient.

  7. Chronic intestinal ischemia and splanchnic blood-flow

    DEFF Research Database (Denmark)

    Zacho, Helle Damgaard; Henriksen, Jens Henrik; Abrahamsen, Jan

    2013-01-01

    -1390), and this value increased significantly to 1787 mL/min after the meal in healthy volunteers (P ...-induced increase in SBF was equal to 282 mL/min + 5.4 mL/min × bodyweight, (P = 0.025). The SO₂U in healthy volunteers and patients was 50.7 mL/min and 48.0 mL/min, respectively, and these values increased to 77.5 mL/min and 75 mL/min postprandially, respectively. Both baseline and postprandial SO₂U were directly......AIM: To determine the splanchnic blood flow and oxygen uptake in healthy-subjects and patients and to relate the findings to body-composition. METHODS: The total splanchnic blood flow (SBF) and oxygen uptake (SO₂U) were measured in 20 healthy volunteers (10 women) and 29 patients with suspected...

  8. Subcutaneous blood flow in early male pattern baldness

    Energy Technology Data Exchange (ETDEWEB)

    Klemp, P.; Peters, K.; Hansted, B.

    1989-05-01

    The subcutaneous blood flow (SBF) was measured by the /sup 133/Xe washout method in the scalp of 14 patients with early male pattern baldness. Control experiments were performed in 14 normal haired men matched for age. The SBF in the scalp of the normal individuals was about 10 times higher than previously reported SBF values in other anatomical regions. In patients with early male pattern baldness, SBF was 2.6 times lower than the values found in the normal individuals (13.7 +/- 9.6 vs 35.7 +/- 10.5 ml/100 g/min-1). This difference was statistically significant (p much less than 0.001). A reduced nutritive blood flow to the hair follicles might be a significant event in the pathogenesis of early male pattern baldness.

  9. High speed optical holography of retinal blood flow.

    Science.gov (United States)

    Pellizzari, M; Simonutti, M; Degardin, J; Sahel, J-A; Fink, M; Paques, M; Atlan, M

    2016-08-01

    We performed noninvasive video imaging of retinal blood flow in a pigmented rat by holographic interferometry of near-infrared laser light backscattered by retinal tissue, beating against an off-axis reference beam sampled at a frame rate of 39 kHz with a high throughput camera. Local Doppler contrasts emerged from the envelopes of short-time Fourier transforms and the phase of autocorrelation functions of holograms rendered by Fresnel transformation. This approach permitted imaging of blood flow in large retinal vessels (∼30 microns diameter) over 400×400  pixels with a spatial resolution of ∼8 microns and a temporal resolution of ∼6.5  ms.

  10. Clitoral blood flow increases following vaginal pressure stimulation.

    Science.gov (United States)

    Lavoisier, P; Aloui, R; Schmidt, M H; Watrelot, A

    1995-02-01

    The vascular responses of clitoral arteries to vaginal pressure stimulation in 10 volunteer women were evaluated by Doppler ultrasonography. Pressure stimulations (20-160 mm Hg) along the lower third of the vagina increased blood velocity and flow into clitoral arteries in 9 of the 10 women. The latency and duration of the Doppler responses ranged from 0.1 to 1.6 sec and from 3.2 to 9.5 sec, respectively, and the response was associated with a blood flow increase of 4 to 11 times the baseline prestimulation level. This response parallels that recorded in the cavernous arteries in men when a similar range of pressure stimulations are applied to the glans penis. Similar responses evoked in the male and female suggest a sexual synergy that may occur during intercourse in that such physiological responses and reflexes may be reciprocally reinforced.

  11. Unsteady magnetohydrodynamic blood flow through irregular multi-stenosed arteries.

    Science.gov (United States)

    Mustapha, Norzieha; Amin, Norsarahaida; Chakravarty, Santabrata; Mandal, Prashanta Kumar

    2009-10-01

    Flow of an electrically conducting fluid characterizing blood through the arteries having irregular shaped multi-stenoses in the environment of a uniform transverse magnetic-field is analysed. The flow is considered to be axisymmetric with an outline of the irregular stenoses obtained from a three-dimensional casting of a mild stenosed artery, so that the physical problem becomes more realistic from the physiological point of view. The marker and cell (MAC) and successive-over-relaxation (SOR) methods are respectively used to solve the governing unsteady magnetohydrodynamic (MHD) equations and pressure-Poisson equation quantitatively and to observe the flow separation. The results obtained show that the flow separates mostly towards the downstream of the multi-stenoses. However, the flow separation region keeps on shrinking with the increasing intensity of the magnetic-field which completely disappears with sufficiently large value of the Hartmann number. The present observations certainly have some clinical implications relating to magnetotherapy which help reducing the complex flow separation zones causing flow disorder leading to the formation and progression of the arterial diseases.

  12. Autoregulation monitoring and outcome prediction in neurocritical care patients: Does one index fit all?

    Science.gov (United States)

    Schmidt, Bernhard; Reinhard, Matthias; Lezaic, Vesna; McLeod, Damian D; Weinhold, Marco; Mattes, Heinz; Klingelhöfer, Jürgen

    2016-06-01

    Indexes PRx and Mx have been formerly introduced to assess cerebral autoregulation and have been shown to be associated with 3-month clinical outcome. In a mixed cohort of neurocritical care patients, we retrospectively investigated the impact of selected clinical characteristics on this association. Forty-one patients (18-77 years) with severe traumatic (TBI, N = 20) and non-traumatic (N = 21) brain injuries were studied. Cerebral blood flow velocity, arterial blood pressure and intracranial pressure were repeatedly recorded during 1-h periods. Calculated PRx and Mx were correlated with 3-month clinical outcome score of modified Rankin Scale (mRS) in different subgroups with specific clinical characteristics. Both PRx and Mx correlated significantly with outcome (PRx: r = 0.38, p PRx: r = 0.73, p PRx, correlated significantly with mRS in patients with heart failure (N = 17; r = 0.69, p PRx, not Mx, correlated significantly with mRS in TBI patients (r = 0.63, p PRx failed in hypocapnic patients (N = 26). Both PRx and Mx were significantly associated with 3-month clinical outcome, even in patients with hemicraniectomy. PRx was more appropriate for TBI patients, while Mx was better suited for non-traumatic patients and patients with heart failure. Prognostic values of indexes were affected by diabetes (both Mx and PRx) and hypocapnia (PRx only).

  13. Efficacy, Safety and Mechanisms of Blood Flow Restricted Exercise

    Science.gov (United States)

    Ploutz-Snyder, Lori

    2009-01-01

    This 20 minute talk will review studies in the peer-reviewed literature related to the effectiveness of blood flow restricted exercise as an exercise training program. There is controversy regarding the talk with cover the effectiveness of various exercise protocols and these differences will be compared and contrasted. Unpublished data from my laboratory at Syracuse University will be presented (see other abstract), as well as some unpublished work from the labs of Manini, Clark and Rasmussen (none are NASA funded).

  14. Effect of TIPS placement on portal and splanchnic arterial blood flow in 4-dimensional flow MRI

    Energy Technology Data Exchange (ETDEWEB)

    Stankovic, Zoran [Northwestern University, Department of Radiology, Feinberg School of Medicine, Chicago, IL (United States); University Medical Center Freiburg, Department of Diagnostic Radiology and Medical Physics, Freiburg (Germany); Roessle, Martin; Schultheiss, Michael [University Medical Center Freiburg, Department of Gastroenterology, Freiburg (Germany); Euringer, Wulf; Langer, Mathias [University Medical Center Freiburg, Department of Diagnostic Radiology and Medical Physics, Freiburg (Germany); Salem, Riad; Barker, Alex; Carr, James; Collins, Jeremy D. [Northwestern University, Department of Radiology, Feinberg School of Medicine, Chicago, IL (United States); Markl, Michael [Northwestern University, Department of Radiology, Feinberg School of Medicine, Chicago, IL (United States); Northwestern University, Department of Biomedical Engineering, McCormick School of Engineering, Chicago, IL (United States)

    2015-09-15

    To assess changes in portal and splanchnic arterial haemodynamics in patients undergoing transjugular intrahepatic portosystemic shunt (TIPS) using four-dimensional (4D) flow MRI, a non-invasive, non-contrast imaging technique. Eleven patients undergoing TIPS implantation were enrolled. K-t GRAPPA accelerated non-contrast 4D flow MRI of the liver vasculature was applied with acceleration factor R = 5 at 3Tesla. Flow analysis included three-dimensional (3D) blood flow visualization using time-resolved 3D particle traces and semi-quantitative flow pattern grading. Quantitative evaluation entailed peak velocities and net flows throughout the arterial and portal venous (PV) systems. MRI measurements were taken within 24 h before and 4 weeks after TIPS placement. Three-dimensional flow visualization with 4D flow MRI revealed good image quality with minor limitations in PV flow. Quantitative analysis revealed a significant increase in PV flow (562 ± 373 ml/min before vs. 1831 ± 965 ml/min after TIPS), in the hepatic artery (176 ± 132 ml/min vs. 354 ± 140 ml/min) and combined flow in splenic and superior mesenteric arteries (770 ml/min vs. 1064 ml/min). Shunt-flow assessment demonstrated stenoses in two patients confirmed and treated at TIPS revision. Four-dimensional flow MRI might have the potential to give new information about the effect of TIPS placement on hepatic perfusion. It may explain some unexpected findings in clinical observation studies. (orig.)

  15. Blood flow distribution with adrenergic and histaminergic antagonists

    Energy Technology Data Exchange (ETDEWEB)

    Baker, C.H.; Davis, D.L.; Sutton, E.T.

    1989-03-01

    Superficial fibular nerve stimulation (SFNS) causes increased pre- and post-capillary resistances as well as increased capillary permeability in the dog hind paw. These responses indicate possible adrenergic and histaminergic interactions. The distribution of blood flow between capillaries and arteriovenous anastomoses (AVA) may depend on the relative effects of these neural inputs. Right hind paws of anesthetized heparinized dogs were vascularly and neurally isolated and perfused with controlled pressure. Blood flow distribution was calculated from the venous recovery of 85Sr-labeled microspheres (15 microns). The mean transit times of 131I-albumin and 85Sr-labeled microspheres were calculated. The effects of adrenergic and histaminergic antagonists with and without SFNS were determined. Phentolamine blocked the entire response to SFNS. Prazosin attenuated increases in total and AVA resistance. Yohimbine prevented increased total resistance, attenuated the AVA resistance increase, and revealed a decrease in capillary circuit resistance. Pyrilamine attenuated total resistance increase while SFNS increased capillary and AVA resistances. Metiamide had no effect on blood flow distribution with SFNS. The increase in AVA resistance with SFNS apparently resulted from a combination of alpha 1 and alpha 2 receptor stimulation but not histaminergic effects.

  16. Predicting Endometrium Receptivity with Parameters of Spiral Artery Blood Flow

    Institute of Scientific and Technical Information of China (English)

    GONG Xuehao; LI Quanshui; ZHANG Qingping; ZHU Guijin

    2005-01-01

    Summary: In order To evaluate whether the parameters of spiral artery blood flow, as measured by transvaginal color Doppler, may be used to assess endometrium receptivity prior to embryo transfer (ET), a retrospective study of 94 infertile women who had undergone ART treatments with different outcomes (pregnant or nonpregnant) was done. Subendometrial blood flow was evaluated. The resistance index (RI), systolic/diastolic ratio (S/D) and pulsatility index (PI) were significantly lower in those who achieved pregnancy as compared with those who did not: 0.62±0.04 vs 0.68±0.04 (P<0.001), 2.66±0.33 vs 3.19±0.39 (P<0.01) and 1.15±0.17 vs 1.34±0.22 (P<0.05), respectively. Furthermore, when RI>0.72, PI>1.6, and S/D>3.6, no pregnancy occurred. These data suggest that the parameters of spiral artery blood flow could be used as a new assay in predicting endometrial receptivity before ET.

  17. Pulsed photoacoustic Doppler flow measurements in blood-mimicking phantoms

    Science.gov (United States)

    Brunker, J.; Beard, P.

    2011-03-01

    The feasibility of making spatially resolved measurements of blood flow using pulsed photoacoustic Doppler techniques has been explored. Doppler time shifts were quantified via cross-correlation of pairs of photoacoustic waveforms generated within a blood-simulating phantom using pairs of laser light pulses. The photoacoustic waves were detected using a focussed or planar PZT ultrasound transducer. For each flow measurement, a series of 100 waveform pairs was collected. Previous data processing methods involved rejection of poorly correlated waveform pairs; the modal velocity value and standard deviation were then extracted from the selected distribution of velocity measurements. However, the data selection criteria used in this approach is to some extent arbitrary. A new data analysis protocol, which involves averaging the 100 cross-correlation functions and thus uses all of the measured data, has been designed in order to prevent exclusion of outliers. This more rigorous approach has proved effective for quantifying the linear motion of micron-scale absorbers imprinted on an acetate sheet moving with velocities in the range 0.14 to 1.25 ms-1. Experimental parameters, such as the time separation between the laser pulses and the transducer frequency response, were evaluated in terms of their effect on the accuracy, resolution and range of measurable velocities. The technique was subsequently applied to fluid phantoms flowing at rates less than 5 mms-1 along an optically transparent tube. Preliminary results are described for three different suspensions of phenolic resin microspheres, and also for whole blood. Velocity information was obtained even under non-optimal conditions using a low frequency transducer and a low pulse repetition frequency. The distinguishing advantage of pulsed rather than continuous-wave excitation is that spatially resolved velocity measurements can be made. This offers the prospect of mapping flow within the microcirculation and thus

  18. Rotating permanent magnet excitation for blood flow measurement.

    Science.gov (United States)

    Nair, Sarath S; Vinodkumar, V; Sreedevi, V; Nagesh, D S

    2015-11-01

    A compact, portable and improved blood flow measurement system for an extracorporeal circuit having a rotating permanent magnetic excitation scheme is described in this paper. The system consists of a set of permanent magnets rotating near blood or any conductive fluid to create high-intensity alternating magnetic field in it and inducing a sinusoidal varying voltage across the column of fluid. The induced voltage signal is acquired, conditioned and processed to determine its flow rate. Performance analysis shows that a sensitivity of more than 250 mV/lpm can be obtained, which is more than five times higher than conventional flow measurement systems. Choice of rotating permanent magnet instead of an electromagnetic core generates alternate magnetic field of smooth sinusoidal nature which in turn reduces switching and interference noises. These results in reduction in complex electronic circuitry required for processing the signal to a great extent and enable the flow measuring device to be much less costlier, portable and light weight. The signal remains steady even with changes in environmental conditions and has an accuracy of greater than 95%. This paper also describes the construction details of the prototype, the factors affecting sensitivity and detailed performance analysis at various operating conditions.

  19. Relationship between cardiac function and resting cerebral blood flow

    DEFF Research Database (Denmark)

    Henriksen, Otto M; Jensen, Lars T; Krabbe, Katja;

    2014-01-01

    Although both impaired cardiac function and reduced cerebral blood flow are associated with ageing, current knowledge of the influence of cardiac function on resting cerebral blood flow (CBF) is limited. The aim of this study was to investigate the potential effects of cardiac function on CBF. CBF...... and cardiac output were measured in 31 healthy subjects 50-75 years old using magnetic resonance imaging techniques. Mean values of CBF, cardiac output and cardiac index were 43.6 ml per 100 g min(-1), 5.5 l min(-1) and 2.7 l min(-1) m(-2), respectively, in males, and 53.4 ml per 100 g min(-1), 4.3 l min(-1......) and 2.4 l min(-1) m(-2), respectively, in females. No effects of cardiac output or cardiac index on CBF or structural signs of brain ageing were observed. However, fractional brain flow defined as the ratio of total brain flow to cardiac output was inversely correlated with cardiac index (r(2) = 0.22, P...

  20. In vivo evaluation of femoral blood flow measured with magnetic resonance

    DEFF Research Database (Denmark)

    Henriksen, O; Ståhlberg, F; Thomsen, C;

    1989-01-01

    Quantitative measurements of blood flow based on magnetic resonance imaging (MRI) using conventional multiple spin echo sequences were evaluated in vivo in healthy young volunteers. Blood flow was measured using MRI in the femoral vein. The initial slope of the multiple spin echo decay curve...... that in vivo blood flow measurements made with MRI based on wash-out effects, commonly used in multiple spin echo imaging, do not give reliable absolute values for blood flow in the femoral artery or vein......., corrected for the T2 decay of non-flowing blood was used to calculate the blood flow. As a reference, the blood flow in the femoral artery was measured simultaneously with an invasive indicator dilution technique. T2 of non-flowing blood was measured in vivo in popliteal veins during regional circulatory...

  1. Laser speckle contrast imaging to measure changes in cerebral blood flow.

    Science.gov (United States)

    Winship, Ian R

    2014-01-01

    Laser speckle contrast imaging (LSCI) is a powerful tool capable of acquiring detailed maps of blood flow in arteries and veins on the cortical surface. Based on the blurring of laser speckle patterns by the motion of blood cells, LSCI can be combined with a variety of optical imaging preparations to acquire high-spatiotemporal resolution images of blood flow, and track changes in blood flow over time, using relatively simple instrumentation. Here, we describe methods for LSCI of cerebral blood flow via a thin skull imaging preparation in mice or rats. This preparation allows precise semiquantitative mapping of changes in blood flow over time using straightforward surgical protocols and equipment.

  2. PERFUSION PRESSURE AND RENAL BLOOD FLOW: THEIR RELATIONSHIP AND DIFFERENCES

    Directory of Open Access Journals (Sweden)

    Carlos G. Musso, MD. PhD.1,2, Manuel Vilas, MD.

    2014-05-01

    Full Text Available The concepts of renal perfusion pressure (RPP and renal blood flow (RBF are usually confused, but although they are intimately related, they are not strictly the same. RPP originates from the minute cardiac volume and is, therefore, the cause of RBF, which generates glomerular filtration and as a consequence, also induces the urinary flow. On the other hand, whereas RPP can be subject to fluctuations, the same happens to RBF though at a much lower level due to the existence of physiological mechanisms, such as self-regulation of the flow and tubule-glomerular feed-back. We conclude that there is a dependence of the RBF in relation with RPP, with the former acting as the final responsible of the glomerular filtration.

  3. Renal blood flow and metabolism after cold ischaemia

    DEFF Research Database (Denmark)

    Henriksen, J H; Petersen, H K

    1984-01-01

    Peroperative measurements of renal blood flow (RBF), renal O2-uptake, and renal venous lactate/pyruvate (L/P) ratio were performed before and after a period of 30-71 min of hypothermic (10-15 degrees C) renal ischaemia in nine patients, undergoing surgery for renal calculi. Before ischaemia, RBF.......01) immediately after re-established perfusion and 36% (P less than 0.02) 30 min later. In one additional patient, who had a short warm ischaemia (8 min), the flow pattern was the same. As arterial pressure remained constant, the reduced RBF signifies an increased renal vascular resistance. Renal O2-uptake...... and renal venous L/P ratio were almost constant, indicating no significant anaerobic processes being involved in the flow response. None of the patients showed any signs of reactive hyperaemia. It is concluded that hypothermic renal ischaemia may be followed by an increased renal vascular resistance even...

  4. A model of blood flow in the mesenteric arterial system

    Directory of Open Access Journals (Sweden)

    Cheng Leo K

    2007-05-01

    Full Text Available Abstract Background There are some early clinical indicators of cardiac ischemia, most notably a change in a person's electrocardiogram. Less well understood, but potentially just as dangerous, is ischemia that develops in the gastrointestinal system. Such ischemia is difficult to diagnose without angiography (an invasive and time-consuming procedure mainly due to the highly unspecific nature of the disease. Understanding how perfusion is affected during ischemic conditions can be a useful clinical tool which can help clinicians during the diagnosis process. As a first step towards this final goal, a computational model of the gastrointestinal system has been developed and used to simulate realistic blood flow during normal conditions. Methods An anatomically and biophysically based model of the major mesenteric arteries has been developed to be used to simulate normal blood flows. The computational mesh used for the simulations has been generated using data from the Visible Human project. The 3D Navier-Stokes equations that govern flow within this mesh have been simplified to an efficient 1D scheme. This scheme, together with a constitutive pressure-radius relationship, has been solved numerically for pressure, vessel radius and velocity for the entire mesenteric arterial network. Results The computational model developed shows close agreement with physiologically realistic geometries other researchers have recorded in vivo. Using this model as a framework, results were analyzed for the four distinct phases of the cardiac cycle – diastole, isovolumic contraction, ejection and isovolumic relaxation. Profiles showing the temporally varying pressure and velocity for a periodic input varying between 10.2 kPa (77 mmHg and 14.6 kPa (110 mmHg at the abdominal aorta are presented. An analytical solution has been developed to model blood flow in tapering vessels and when compared with the numerical solution, showed excellent agreement. Conclusion An

  5. Resistance exercise with different volumes: blood pressure response and forearm blood flow in the hypertensive elderly

    Directory of Open Access Journals (Sweden)

    Brito AF

    2014-12-01

    Full Text Available Aline de Freitas Brito,1 Caio Victor Coutinho de Oliveira,2 Maria do Socorro Brasileiro-Santos,1 Amilton da Cruz Santos1 1Physical Education Department, 2Research Laboratory for Physical Training Applied to Performance and Health, Federal University of Paraíba, João Pessoa, Brazil Background: The purpose of this study was to evaluate the effect of two sessions of resistance exercise with different volumes on post-exercise hypotension, forearm blood flow, and forearm vascular resistance in hypertensive elderly subjects.Methods: The study was conducted with ten hypertensive elderly (65±3 years, 28.7±3 kg/m2 subjected to three experimental sessions, ie, a control session, exercise with a set (S1, and exercise with three sets (S3. For each session, the subjects were evaluated before and after intervention. In the pre-intervention period, blood pressure, forearm blood flow, and forearm vascular resistance were measured after 10 minutes of rest in the supine position. Thereafter, the subjects were taken to the gym to perform their exercise sessions or remained at rest during the same time period. Both S1 and S3 comprised a set of ten repetitions of ten exercises, with an interval of 90 seconds between exercises. Subsequently, the measurements were again performed at 10, 30, 50, 70, and 90 minutes of recovery (post-intervention in the supine position.Results: Post-exercise hypotension was greater in S3 than in S1 (systolic blood pressure, −26.5±4.2 mmHg versus −17.9±4.7 mmHg; diastolic blood pressure, −13.8±4.9 mmHg versus −7.7±5 mmHg, P<0.05. Similarly, forearm blood flow and forearm vascular resistance changed significantly in both sessions with an increase and decrease, respectively, that was more evident in S3 than in S1 (P<0.05.Conclusion: Resistance exercises with higher volume were more effective in causing post-exercise hypotension, being accompanied by an increase in forearm blood flow and a reduction of forearm vascular

  6. Fetal blood flow measurements in severe rhesus isoimmunization. A case report.

    Science.gov (United States)

    Stiller, R J; Ashmead, G G; Paul, D; Weiner, S

    1987-06-01

    Maternal isoimmunization can result in fetal anemia. Current management of isoimmunized pregnancies involves amniocentesis and spectrophotometry. Pulsed Doppler ultrasound can provide fetal blood flow determinations from the fetal umbilical vein. A pregnancy complicated by severe rhesus isoimmunization was studied with Doppler ultrasound. Increased fetal umbilical blood flow was associated with increased fetal hemolysis. Umbilical vein blood flow decreased after intrauterine transfusion. Doppler ultrasound assessment of fetal blood flow is a useful noninvasive adjunct in isoimmunized pregnancies.

  7. Quantification of myocardial blood flow and blood flow reserve in the presence of arterial dispersion: a simulation study.

    Science.gov (United States)

    Schmitt, Melanie; Viallon, Magalie; Thelen, Manfred; Schreiber, Wolfgang G

    2002-04-01

    Myocardial blood flow (MBF) can be quantified using dynamic T1-weighted MRI of diffusible tracers and a mathematical model of underlying vasculature. Quantification of MBF by means of T1- weighted MRI requires knowledge of the arterial input function (AIF). The AIF can be estimated from the left ventricular (LV) cavity. However, dispersion may occur between the LV and the tissue of interest because of the laminar blood flow profiles, branching of venules, and because of stenosis. To evaluate the influence of dispersion on the results of MBF quantification, a simulation study was performed. The dispersion was described as a convolution of the AIF with an exponential residue function. Synthetic tissue and AIF curves were analyzed and the derived parameters fit to the simulated parameters. The results show that an unaccounted dispersion may result in a systematic underestimation of MBF up to approximately 50%. Underestimation increases with increasing dispersion and with increasing MBF. Assuming equal dispersion at rest and during hyperemia, myocardial perfusion reserve (MPR) estimates are also susceptible to underestimation of approximately 20%. An unaccounted dispersion therefore can lead to systematic underestimation of both blood flow and perfusion reserve.

  8. ASSESSMENT OF VERTEBRAL ARTERIES BLOOD FLOW SPECTRAL DOPPLER INDICES IN COMPARISON WITH INTERNAL AND COMMON CAROTID ARTERIES BLOOD FLOW SPECTRAL DOPPLER INDICES

    Directory of Open Access Journals (Sweden)

    H. Mazaher

    2007-05-01

    Full Text Available Vertebrobasilar insufficiency is the cause of cerebrovascular accidents in 20% of cases. There are few reports regarding spectral Doppler indices (SDIs of vertebral arteries (VAs normal blood flow. The objective of this study was to provide basic reference data about SDIs of VAs normal blood flow separately and in comparison with internal carotid arteries (ICAs and common carotid arteries (CCAs normal blood flows SDIs. This cross-sectional study performed on 70 normal patients. Color Doppler sonography (CDS and spectral Doppler sonography (SDS of right and left VAs (RVA and LVA, right and left CCAs (RCCA and LCCA, right and left ICAs (RICA and LICA, were performed. The mean PSV, EDV, and RI values of RVA blood flow were as 41.60 ± 9.6 cm/s, 14.60 ± 3.7 cm/s and 0.65 ± 0.06, and the mean PSV, EDV and RI values of LVA blood flow were as 42.20 ± 10.2 cm/s, 15.20 ± 4.2 cm/s, and 0.64 ± 0.05, respectively. There was not statistically significant difference between the mean PSV, EDV and RI values of RVA and LVA blood flows. The mean PSV and EDV values of VAs blood flows were significantly lower than the values of CCAs and ICCAs blood flows, respectively. The mean RI value of VAs blood flows was significantly lower than the mean RI Value of CCAs blood flows, but there was not statistically significant difference between the mean RI value of VAs blood flows and the mean RI value of ICAs blood flows.

  9. Cerebral blood flow assessment of preterm infants during respiratory therapy with the expiratory flow increase technique

    Directory of Open Access Journals (Sweden)

    Mariana Almada Bassani

    2016-06-01

    Full Text Available Abstract Objective: To assess the impact of respiratory therapy with the expiratory flow increase technique on cerebral hemodynamics of premature newborns. Methods: This is an intervention study, which included 40 preterm infants (≤34 weeks aged 8-15 days of life, clinically stable in ambient air or oxygen catheter use. Children with heart defects, diagnosis of brain lesion and/or those using vasoactive drugs were excluded. Ultrasonographic assessments with transcranial Doppler flowmetry were performed before, during and after the increase in expiratory flow session, which lasted 5min. Cerebral blood flow velocity and resistance and pulsatility indices in the pericallosal artery were assessed. Results: Respiratory physical therapy did not significantly alter flow velocity at the systolic peak (p=0.50, the end diastolic flow velocity (p=0.17, the mean flow velocity (p=0.07, the resistance index (p=0.41 and the pulsatility index (p=0.67 over time. Conclusions: The expiratory flow increase technique did not affect cerebral blood flow in clinically-stable preterm infants.

  10. Mucosal/submucosal blood flow in the gut wall determined by local washout of 133Xenon

    DEFF Research Database (Denmark)

    Mortensen, Peter; Olsen, J; Bülow, J

    1991-01-01

    the initial slope of the washout was used for measuring blood flow rate. Blood flow rate was simultaneously measured by microsphere entrapment technique. There was an excellent correlation between the blood flow rate determined by the two techniques the correlation coefficient R being 0.89 in the small...

  11. Numerical Simulations of Blood Flows in the Left Atrium

    Science.gov (United States)

    Zhang, Lucy

    2008-11-01

    A novel numerical technique of solving complex fluid-structure interactions for biomedical applications is introduced. The method is validated through rigorous convergence and accuracy tests. In this study, the technique is specifically used to study blood flows in the left atrium, one of the four chambers in the heart. Stable solutions are obtained at physiologic Reynolds numbers by applying pulmonary venous inflow, mitral valve outflow and appropriate constitutive equations to closely mimic the behaviors of biomaterials. Atrial contraction is also implemented as a time-dependent boundary condition to realistically describe the atrial wall muscle movements, thus producing accurate interactions with the surrounding blood. From our study, the transmitral velocity, filling/emptying velocity ratio, durations and strengths of vortices are captured numerically for sinus rhythms (healthy heart beat) and they compare quite well with reported clinical studies. The solution technique can be further used to study heart diseases such as the atrial fibrillation, thrombus formation in the chamber and their corresponding effects in blood flows.

  12. Tracking flow of leukocytes in blood for drug analysis

    Science.gov (United States)

    Basharat, Arslan; Turner, Wesley; Stephens, Gillian; Badillo, Benjamin; Lumpkin, Rick; Andre, Patrick; Perera, Amitha

    2011-03-01

    Modern microscopy techniques allow imaging of circulating blood components under vascular flow conditions. The resulting video sequences provide unique insights into the behavior of blood cells within the vasculature and can be used as a method to monitor and quantitate the recruitment of inflammatory cells at sites of vascular injury/ inflammation and potentially serve as a pharmacodynamic biomarker, helping screen new therapies and individualize dose and combinations of drugs. However, manual analysis of these video sequences is intractable, requiring hours per 400 second video clip. In this paper, we present an automated technique to analyze the behavior and recruitment of human leukocytes in whole blood under physiological conditions of shear through a simple multi-channel fluorescence microscope in real-time. This technique detects and tracks the recruitment of leukocytes to a bioactive surface coated on a flow chamber. Rolling cells (cells which partially bind to the bioactive matrix) are detected counted, and have their velocity measured and graphed. The challenges here include: high cell density, appearance similarity, and low (1Hz) frame rate. Our approach performs frame differencing based motion segmentation, track initialization and online tracking of individual leukocytes.

  13. Intracranial mechanisms for preserving brain blood flow in health and disease.

    Science.gov (United States)

    McBryde, F D; Malpas, S C; Paton, J F R

    2017-01-01

    The brain is an exceptionally energetically demanding organ with little metabolic reserve, and multiple systems operate to protect and preserve the brain blood supply. But how does the brain sense its own perfusion? In this review, we discuss how the brain may harness the cardiovascular system to counter threats to cerebral perfusion sensed via intracranial pressure (ICP), cerebral oxygenation and ischaemia. Since the work of Cushing over 100 years ago, the existence of brain baroreceptors capable of eliciting increases in sympathetic outflow and blood pressure has been hypothesized. In the clinic, this response has generally been thought to occur only in extremis, to perfuse the severely ischaemic brain as cerebral autoregulation fails. We review evidence that pressor responses may also occur with smaller, physiologically relevant increases in ICP. The incoming brain oxygen supply is closely monitored by the carotid chemoreceptors; however, hypoxia and other markers of ischaemia are also sensed intrinsically by astrocytes or other support cells within brain tissue itself and elicit reactive hyperaemia. Recent studies suggest that astrocytic oxygen signalling within the brainstem may directly affect sympathetic nerve activity and blood pressure. We speculate that local cerebral oxygen tension is a major determinant of the mean level of arterial pressure and discuss recent evidence that this may be the case. We conclude that intrinsic intra- and extra-cranial mechanisms sense and integrate information about hypoxia/ischaemia and ICP and play a major role in determining the long-term level of sympathetic outflow and arterial pressure, to optimize cerebral perfusion.

  14. Form, shape and function: segmented blood flow in the choriocapillaris

    Science.gov (United States)

    Zouache, M. A.; Eames, I.; Klettner, C. A.; Luthert, P. J.

    2016-10-01

    The development of fluid transport systems was a key event in the evolution of animals and plants. While within vertebrates branched geometries predominate, the choriocapillaris, which is the microvascular bed that is responsible for the maintenance of the outer retina, has evolved a planar topology. Here we examine the flow and mass transfer properties associated with this unusual geometry. We show that as a result of the form of the choriocapillaris, the blood flow is decomposed into a tessellation of functional vascular segments of various shapes delineated by separation surfaces across which there is no flow, and in the vicinity of which the transport of passive substances is diffusion-limited. The shape of each functional segment is determined by the distribution of arterioles and venules and their respective relative flow rates. We also show that, remarkably, the mass exchange with the outer retina is a function of the shape of each functional segment. In addition to introducing a novel framework in which the structure and function of the metabolite delivery system to the outer retina may be investigated in health and disease, the present work provides a general characterisation of the flow and transfers in multipole Hele-Shaw configurations.

  15. Laser Doppler flowmetry for bone blood flow measurement: correlation with microsphere estimates and evaluation of the effect of intracapsular pressure on femoral head blood flow

    Energy Technology Data Exchange (ETDEWEB)

    Swiontkowski, M.F.; Tepic, S.; Perren, S.M.; Moor, R.; Ganz, R.; Rahn, B.A.

    1986-01-01

    Laser Doppler flowmetry (LDF) was used to measure bone blood flow in the rabbit femoral condyles. To correlate the LDF output signal blood cell flux to in vivo blood flow, simultaneous measurements using LDF and /sup 85/Sr-labeled microspheres were made in an adult rabbit model. There was no correlation between the two methods for blood flow in the femoral condyles and the correlation between the two methods for blood flow in the femoral head does not achieve statistical significance. An LDF signal of 0.4 V was approximately equal to a microsphere measured flow rate of 0.4 ml blood/g bone/min. The strength of the correlation in the latter case may have been affected by (a) large arteriovenous shunts, (b) inadequate mixing of the microspheres with a left ventricular injection, and (c) insufficient numbers of microspheres present in the bone samples. When LDF was used to evaluate the effect of elevated intracapsular pressure on femoral head blood flow in skeletally mature rabbits, femoral head subchondral bone blood flow declined with increasing intracapsular pressure from a baseline value of 0.343 +/- 0.036 to a value of 0.127 +/- 0.27 at 120 cm of water pressure. The decline in femoral head blood flow was statistically significant at pressures of 40 cm of water or higher (p less than 0.001), and evaluation of sections of the proximal femora made from preterminal disulphine blue injections confirmed these findings. Intracapsular tamponade has an adverse effect on femoral head blood flow beginning well below central venous pressure and should be considered in the pathophysiology of posttraumatic and nontraumatic necrosis of the femoral head. Laser Doppler flowmetry was easy to use and appears to be a reproducible technique for evaluating femoral head blood flow, offering distinct advantages over the microsphere technique for measuring bone blood flow.

  16. Theoretical model of blood flow measurement by diffuse correlation spectroscopy

    Science.gov (United States)

    Sakadžić, Sava; Boas, David A.; Carp, Stefan

    2017-02-01

    Diffuse correlation spectroscopy (DCS) is a noninvasive method to quantify tissue perfusion from measurements of the intensity temporal autocorrelation function of diffusely scattered light. However, DCS autocorrelation function measurements in tissue better match theoretical predictions based on the diffusive motion of the scatterers than those based on a model where the advective nature of blood flow dominates the stochastic properties of the scattered light. We have recently shown using Monte Carlo (MC) simulations and assuming a simplistic vascular geometry and laminar flow profile that the diffusive nature of the DCS autocorrelation function decay is likely a result of the shear-induced diffusion of the red blood cells. Here, we provide theoretical derivations supporting and generalizing the previous MC results. Based on the theory of diffusing-wave spectroscopy, we derive an expression for the autocorrelation function along the photon path through a vessel that takes into account both diffusive and advective scatterer motion, and we provide the solution for the DCS autocorrelation function in a semi-infinite geometry. We also derive the correlation diffusion and correlation transfer equation, which can be applied for an arbitrary sample geometry. Further, we propose a method to take into account realistic vascular morphology and flow profile.

  17. Regional cerebral blood flow and blood volume in patients with subcortical arteriosclerotic encephalopathy (SAE).

    Science.gov (United States)

    Gückel, Friedemann J; Brix, Gunnar; Hennerici, Michael; Lucht, Robert; Ueltzhöffer, Christine; Neff, Wolfgang

    2007-10-01

    The aim of the present study was a detailed analysis of the regional cerebral blood flow and blood volume in patients with subcortical arteriosclerotic encephalopathy (SAE) by means of functional magnetic resonance imaging (MRI). A group of 26 patients with SAE and a group of 16 age-matched healthy volunteers were examined. Using a well-established dynamic susceptibility contrast-enhanced MRI method, the regional cerebral blood flow (rCBF) and blood volume (rCBV) were quantified for each subject in 12 different regions in the brain parenchyma. As compared to healthy volunteers, patients with SAE showed significantly reduced rCBF and rCBV values in white matter regions and in the occipital cortex. Regions containing predominantly grey matter show almost normal rCBF and rCBV values. In conclusion, quantitative analysis of rCBF and rCBV values demonstrates clearly that SAE is a disease that is associated with a reduced microcirculation predominantly in white matter.

  18. Cerebral autoregulation in different hypertensive disorders of pregnancy

    NARCIS (Netherlands)

    van Veen, Teelkien R.; Panerai, Ronney B.; Haeri, Sina; Singh, Jasbir; Adusumalli, Jasvant A.; Zeeman, Gerda G.; Belfort, Michael A.

    2015-01-01

    OBJECTIVE: Cerebrovascular complications that are associated with hypertensive disorders of pregnancy (preeclampsia, chronic hypertension [CHTN], and gestational hypertension [GHTN]) are believed to be associated with impaired cerebral autoregulation, which is a physiologic process that maintains bl

  19. Endoscopic retrograde cholangiopancreatography causes reduced myocardial blood flow

    DEFF Research Database (Denmark)

    Christensen, M; Hendel, H W; Rasmussen, V;

    2002-01-01

    ). PATIENTS AND METHODS: 11 patients scheduled for ERCP were monitored with a Holter tape recorder and underwent myocardial perfusion scintigraphies, to evaluate myocardial perfusion at rest and during ERCP. RESULTS: Ten patients completed the study. Eight patients had no sign of myocardial ischemia...... with either of the two methods, while two patients developed signs of ischemia during ERCP with both the Holter tape recording and on myocardial scintigraphy (P = 0.02). CONCLUSIONS: Patients undergoing ERCP may develop true myocardial ischemia with reduced myocardial blood flow. Although this is a small...

  20. Oscillations and chaos in renal blood flow control

    DEFF Research Database (Denmark)

    Holstein-Rathlou, N H

    1993-01-01

    In normotensive, halothane-anesthetized rats, oscillations can be found both in the single-nephron blood flow and in the tubular pressure. Experimental data and computer simulations support the hypothesis that the oscillations are caused by the tubuloglomerular feedback (TGF) mechanism. Model...... to the other. In renovascular and spontaneously hypertensive rats, regular oscillations give way to highly irregular, chaotic fluctuations. The chaotic fluctuations appear to have the same mechanism as the regular TGF-mediated oscillations. The irregular fluctuations most likely represent a parameter...

  1. Skin blood flow with elastic compressive extravehicular activity space suit.

    Science.gov (United States)

    Tanaka, Kunihiko; Gotoh, Taro M; Morita, Hironobu; Hargens, Alan R

    2003-10-01

    During extravehicular activity (EVA), current space suits are pressurized with 100% oxygen at approximately 222 mmHg. A tight elastic garment, or mechanical counter pressure (MCP) suit that generates pressure by compression, may have several advantages over current space suit technology. In this study, we investigated local microcirculatory effects produced with negative ambient pressure with an MCP sleeve. The MCP glove and sleeve generated pressures similar to the current space suit. MCP remained constant during negative pressure due to unchanged elasticity of the material. Decreased skin capillary blood flow and temperature during MCP compression was counteracted by greater negative pressure or a smaller pressure differential.

  2. Frequency domain analysis of noise in autoregulated gene circuits

    OpenAIRE

    Simpson, Michael L.; Cox, Chris D.; Sayler, Gary S.

    2003-01-01

    We describe a frequency domain technique for the analysis of intrinsic noise within negatively autoregulated gene circuits. This approach is based on the transfer function around the feedback loop (loop transmission) and the equivalent noise bandwidth of the system. The loop transmission, T, is shown to be a determining factor of the dynamics and the noise behavior of autoregulated gene circuits, and this T-based technique provides a simple and flexible method for the analysis of noise arisin...

  3. Developmental validation of a novel lateral flow strip test for rapid identification of human blood (Rapid Stain Identification--Blood).

    Science.gov (United States)

    Schweers, Brett A; Old, Jennifer; Boonlayangoor, P W; Reich, Karl A

    2008-06-01

    Human blood is the body fluid most commonly encountered at crime scenes, and blood detection may aid investigators in reconstructing what occurred during a crime. In addition, blood detection can help determine which items of evidence should be processed for DNA-STR testing. Unfortunately, many common substances can cause red-brown stains that resemble blood. Furthermore, many current human blood detection methods are presumptive and prone to false positive results. Here, the developmental validation of a new blood identification test, Rapid Stain Identification--Blood (RSID--Blood), is described. RSID--Blood utilizes two anti-glycophorin A (red blood cell membrane specific protein) monoclonal antibodies in a lateral flow strip test format to detect human blood. We present evidence demonstrating that this test is accurate, reproducible, easy to use, and highly specific for human blood. Importantly, RSID--Blood does not cross-react with ferret, skunk, or primate blood and exhibits no high-dose hook effect. Also, we describe studies on the sensitivity, body fluid specificity, and species specificity of RSID--Blood. In addition, we show that the test can detect blood from a variety of forensic exhibits prior to processing for DNA-STR analysis. In conclusion, we suggest that RSID--Blood is effective and useful for the detection of human blood on forensic exhibits, and offers improved blood detection when compared to other currently used methods.

  4. In-vitro laser anemometry blood flow systems

    Science.gov (United States)

    Liepsch, Dieter W.; Poll, Axel; Pflugbeil, Gottlieb

    1993-08-01

    Lasers are used in a wide variety of medical applications. While laser catheters have been developed for highly accurate velocity measurements these are invasive; noninvasive techniques are more desirable but not as precise. The laser is, however, a great tool for in vitro measurements. Several groups internationally are using the laser in the study of local velocity distribution in microscopic areas of specially constructed models. Laser Doppler anemometry is widely used to measure the local, time-dependent velocities, while phase Doppler anemometry has been developed to measure particle size, distribution and velocity. Most recently, laser analyzer techniques have been developed for analyzing the particle size of two phase flow systems. It has become increasingly important for physicians to visualize blood flow. In addition to the techniques mentioned above, several laser sheet techniques have been developed for precise measurements. This paper presents a short review of laser techniques and shows some applications especially for the laser-Doppler anemometer.

  5. Holographic laser Doppler imaging of microvascular blood flow

    CERN Document Server

    Magnain, C; Boucneau, T; Simonutti, M; Ferezou, I; Rancillac, A; Vitalis, T; Sahel, J A; Paques, M; Atlan, M

    2014-01-01

    We report on local superficial blood flow monitoring in biological tissue from laser Doppler holographic imaging. In time averaging recording conditions, holography acts as a narrowband bandpass filter, which, combined with a frequency shifted reference beam, permits frequency selective imaging in the radiofrequency range. These Doppler images are acquired with an off axis Mach Zehnder interferometer. Microvascular hemodynamic components mapping is performed in the cerebral cortex of the mouse and the eye fundus of the rat with near-infrared laser light without any exogenous marker. These measures are made from a basic inverse method analysis of local first order optical fluctuation spectra at low radiofrequencies, from 0 Hz to 100 kHz. Local quadratic velocity is derived from Doppler broadenings induced by fluid flows, with elementary diffusing wave spectroscopy formalism in backscattering configuration. We demonstrate quadratic mean velocity assessment in the 0.1 to 10 millimeters per second range in vitro ...

  6. Cerebral blood flow in patients with dementia of Alzheimer's type

    DEFF Research Database (Denmark)

    Postiglione, A; Lassen, N A; Holman, B L

    1993-01-01

    In the normal brain as well as in Alzheimer's disease (AD), regional cerebral blood flow (CBF) is coupled to metabolic demand and, therefore, changes in CBF reflect variations in neuronal metabolism. The use of radionuclide techniques, such as positron emission tomography (PET) and single photon...... of the disease. Lateral CBF asymmetry is also very frequent; speech disorders are highly characteristic of left-sided flow reduction, while visuospatial apraxia is dominating in the right-sided cases. In advanced and severe cases of AD, CBF and metabolism tend to be more uniformly reduced throughout the cortex......, sparing only the primary visual and sensory-motor cortices. PET and SPECT measurement of brain perfusion and metabolism has added a new dimension to the knowledge of dementia disorders, with a better differential diagnosis between AD and other forms of dementia. The correlation with neuropsychological...

  7. Validation of Blood Flow Simulations in Intracranial Aneurysms

    Science.gov (United States)

    Yu, Yue; Anor, Tomer; Baek, Hyoungsu; Jayaraman, Mahesh; Madsen, Joseph; Karniadakis, George

    2010-11-01

    Catheter-based digital subtraction angiography (DSA) is the most accurate diagnostic procedure for investigating vascular anomalies and cerebral blood flow. Here we describe utilization of DSA in a patient with an intracranial aneursysm to validate corresponding spectral element simulations. Subsequently, we examine via visualization the structure of flow in internal carotid arteries laden with three different types of aneurysms: (1) a wide-necked saccular aneurysm, (2) a narrower-necked saccular aneurysm, and (3) a case with two adjacent saccular aneurysms. We have found through high resolution simulations that in cases (1) and (3) in physiological conditions a hydrodynamic instability occurs during the decelerating systolic phase resulting in a high frequency oscillation (20-50 Hz). We use the in-silico dye visualization to discriminate among different physical mechanisms causing the instability and contrast their effect with case (2) for which an instability arises only at much higher flowrates.

  8. Numerical Simulation of Unsteady Blood Flow through Capillary Networks.

    Science.gov (United States)

    Davis, J M; Pozrikidis, C

    2011-08-01

    A numerical method is implemented for computing unsteady blood flow through a branching capillary network. The evolution of the discharge hematocrit along each capillary segment is computed by integrating in time a one-dimensional convection equation using a finite-difference method. The convection velocity is determined by the local and instantaneous effective capillary blood viscosity, while the tube to discharge hematocrit ratio is deduced from available correlations. Boundary conditions for the discharge hematocrit at divergent bifurcations arise from the partitioning law proposed by Klitzman and Johnson involving a dimensionless exponent, q≥1. When q=1, the cells are partitioned in proportion to the flow rate; as q tends to infinity, the cells are channeled into the branch with the highest flow rate. Simulations are performed for a tree-like, perfectly symmetric or randomly perturbed capillary network with m generations. When the tree involves more than a few generations, a supercritical Hopf bifurcation occurs at a critical value of q, yielding spontaneous self-sustained oscillations in the absence of external forcing. A phase diagram in the m-q plane is presented to establish conditions for unsteady flow, and the effect of various geometrical and physical parameters is examined. For a given network tree order, m, oscillations can be induced for a sufficiently high value of q by increasing the apparent intrinsic viscosity, decreasing the ratio of the vessel diameter from one generation to the next, or by decreasing the diameter of the terminal vessels. With other parameters fixed, oscillations are inhibited by increasing m. The results of the continuum model are in excellent agreement with the predictions of a discrete model where the motion of individual cells is followed from inlet to outlet.

  9. Human red blood cells deformed under thermal fluid flow.

    Science.gov (United States)

    Foo, Ji-Jinn; Chan, Vincent; Feng, Zhi-Qin; Liu, Kuo-Kang

    2006-03-01

    The flow-induced mechanical deformation of a human red blood cell (RBC) during thermal transition between room temperature and 42.0 degrees C is interrogated by laser tweezer experiments. Based on the experimental geometry of the deformed RBC, the surface stresses are determined with the aid of computational fluid dynamics simulation. It is found that the RBC is more deformable while heating through 37.0 degrees C to 42.0 degrees C, especially at a higher flow velocity due to a thermal-fluid effect. More importantly, the degree of RBC deformation is irreversible and becomes softer, and finally reaches a plateau (at a uniform flow velocity U > 60 microm s(-1)) after the heat treatment, which is similar to a strain-hardening dominated process. In addition, computational simulated stress is found to be dependent on the progression of thermotropic phase transition. Overall, the current study provides new insights into the highly coupled temperature and hydrodynamic effects on the biomechanical properties of human erythrocyte in a model hydrodynamic flow system.

  10. Measurement of anterior and posterior circulation flow contributions to cerebral blood flow. An ultrasound-derived volumetric flow analysis.

    Science.gov (United States)

    Boyajian, R A; Schwend, R B; Wolfe, M M; Bickerton, R E; Otis, S M

    1995-01-01

    Ultrasound-derived volumetric flow analysis may be useful in answering questions of basic physiological interest in the cerebrovascular circulation. Using this technique, the authors have sought to describe quantitatively the complete concurrent flow relations among all four arteries supplying the brain. The aim of this study of normal subjects was to determine the relative flow contributions of the anterior (internal carotid arteries) and posterior (vertebral arteries) cerebral circulation. Comparisons between the observed and theoretically expected anterior and posterior flow distribution would provide an opportunity to assess traditional rheological conceptions in vivo. Pulsed color Doppler ultrasonography was used to measure mean flow rates in the internal carotid and vertebral arteries in 21 normal adults. The anterior circulation (internal carotid arteries bilaterally) carried 82% of the brain's blood supply and comprised 67% of the total vascular cross-sectional area. These values demonstrate precise concordance between observations in vivo and the theoretically derived (Hagen-Poiseuille) expected flow distribution. These cerebrovascular findings support the traditional conception of macroscopic blood flow. Further studies using ultrasound-derived volumetric analysis of the brain's arterial flow relations may illuminate the vascular pathophysiology underlying aging, cerebral ischemia, and dementias.

  11. To autoregulate or not to autoregulate--that is no longer the question

    DEFF Research Database (Denmark)

    Greisen, Gorm

    2009-01-01

    In the late 1970s, high cerebral blood flow was perceived as a cause of intracranial hemorrhage in the preterm infant. Intracranial hemorrhage was diagnosed by computed tomography and ultrasound found to be frequent not only in babies who died. Hemorrhage was soon linked to cerebral palsy in surv...

  12. A reconstruction method of intra-ventricular blood flow using color flow ultrasound: a simulation study

    Science.gov (United States)

    Jang, Jaeseong; Ahn, Chi Young; Jeon, Kiwan; Choi, Jung-il; Lee, Changhoon; Seo, Jin Keun

    2015-03-01

    A reconstruction method is proposed here to quantify the distribution of blood flow velocity fields inside the left ventricle from color Doppler echocardiography measurement. From 3D incompressible Navier- Stokes equation, a 2D incompressible Navier-Stokes equation with a mass source term is derived to utilize the measurable color flow ultrasound data in a plane along with the moving boundary condition. The proposed model reflects out-of-plane blood flows on the imaging plane through the mass source term. For demonstrating a feasibility of the proposed method, we have performed numerical simulations of the forward problem and numerical analysis of the reconstruction method. First, we construct a 3D moving LV region having a specific stroke volume. To obtain synthetic intra-ventricular flows, we performed a numerical simulation of the forward problem of Navier-Stokes equation inside the 3D moving LV, computed 3D intra-ventricular velocity fields as a solution of the forward problem, projected the 3D velocity fields on the imaging plane and took the inner product of the 2D velocity fields on the imaging plane and scanline directional velocity fields for synthetic scanline directional projected velocity at each position. The proposed method utilized the 2D synthetic projected velocity data for reconstructing LV blood flow. By computing the difference between synthetic flow and reconstructed flow fields, we obtained the averaged point-wise errors of 0.06 m/s and 0.02 m/s for u- and v-components, respectively.

  13. Renal Heme Oxygenase-1 Induction with Hemin Augments Renal Hemodynamics, Renal Autoregulation, and Excretory Function

    Directory of Open Access Journals (Sweden)

    Fady T. Botros

    2012-01-01

    Full Text Available Heme oxygenases (HO-1; HO-2 catalyze conversion of heme to free iron, carbon monoxide, and biliverdin/bilirubin. To determine the effects of renal HO-1 induction on blood pressure and renal function, normal control rats (n=7 and hemin-treated rats (n=6 were studied. Renal clearance studies were performed on anesthetized rats to assess renal function; renal blood flow (RBF was measured using a transonic flow probe placed around the left renal artery. Hemin treatment significantly induced renal HO-1. Mean arterial pressure and heart rate were not different (115±5 mmHg versus 112±4 mmHg and 331±16 versus 346±10 bpm. However, RBF was significantly higher (9.1±0.8 versus 7.0±0.5 mL/min/g, P<0.05, and renal vascular resistance was significantly lower (13.0±0.9 versus 16.6±1.4 [mmHg/(mL/min/g], P<0.05. Likewise, glomerular filtration rate was significantly elevated (1.4±0.2 versus 1.0±0.1 mL/min/g, P<0.05, and urine flow and sodium excretion were also higher (18.9±3.9 versus 8.2±1.0 μL/min/g, P<0.05 and 1.9±0.6 versus 0.2±0.1 μmol/min/g, P<0.05, resp.. The plateau of the autoregulation relationship was elevated, and renal vascular responses to acute angiotensin II infusion were attenuated in hemin-treated rats reflecting the vasodilatory effect of HO-1 induction. We conclude that renal HO-1 induction augments renal function which may contribute to the antihypertensive effects of HO-1 induction observed in hypertension models.

  14. Alterations of Regional Cerebral Blood Flow in Major Depressive Disorder

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Won Hyoung; Chung, Yong An; Seo, Ye Young; Yoo, Ik Dong; Na, Sae Jung; Jung, Hyun Suk; Kim, Ki Jun [College of Medicine, The Catholic University of Korea, Seoul (Korea, Republic of)

    2009-04-15

    The authors analyzed how the regional cerebral blood flow (rCBF) findings of patients with major depression differ from the normal control, and our results were compared to previous reports. Twelve patients fulfilling DSM-IV criteria for major depression who were off all psychotropic medications for > 4 weeks (male: 7, female: 5, age range: 19approx52 years, average age: 29.3+-9.9 years) and 14 normal volunteers (male: 8, female: 6, age range: 19approx53 years, average age: 31.4+-9.2 years) were recruited. Images of brain perfusion SPECT were obtained using Tc-99m ECD and patterns of the rCBF were compared between patients with major depression and the healthy control subjects. The patients with major depression showed increase of the r-CBF in right lingual gyrus, right fusiform gyrus, left lingual gyrus, left precuneus, and left superior temporal gyrus, and showed decrease of r-CBF in right pons, left medial frontal gyrus, cingulate gyrus of left limbic lobe, cingulate gyrus of right frontal lobe, and cingulate gyrus of right limbic lobe compared to the normal control. The Tc-99m ECD brain perfusion SPECT findings in our study did not differ from the previously reported regional cerebral blood flow pattern of patients with major depression. Especially, decreased rCBF pattern typical to major depression patients in the right pons, left medial frontal gyrus, and cingulate regions was clearly demonstrated

  15. Monitoring blood flow and photobleaching during topical ALA PDT treatment

    Science.gov (United States)

    Sands, Theresa L.; Sunar, Ulas; Foster, Thomas H.; Oseroff, Allan R.

    2009-02-01

    Photodynamic therapy (PDT) using topical aminolevulinic acid (ALA) is currently used as a clinical treatment for nonmelanoma skin cancers. In order to optimize PDT treatment, vascular shutdown early in treatment must be identified and prevented. This is especially important for topical ALA PDT where vascular shutdown is only temporary and is not a primary method of cell death. Shutdown in vasculature would limit the delivery of oxygen which is necessary for effective PDT treatment. Diffuse correlation spectroscopy (DCS) was used to monitor relative blood flow changes in Balb/C mice undergoing PDT at fluence rates of 10mW/cm2 and 75mW/cm2 for colon-26 tumors implanted intradermally. DCS is a preferable method to monitor the blood flow during PDT of lesions due to its ability to be used noninvasively throughout treatment, returning data from differing depths of tissue. Photobleaching of the photosensitizer was also monitored during treatment as an indirect manner of monitoring singlet oxygen production. In this paper, we show the conditions that cause vascular shutdown in our tumor model and its effects on the photobleaching rate.

  16. Multiscale modeling and simulation of brain blood flow

    Energy Technology Data Exchange (ETDEWEB)

    Perdikaris, Paris, E-mail: parisp@mit.edu [Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Grinberg, Leopold, E-mail: leopoldgrinberg@us.ibm.com [IBM T.J Watson Research Center, 1 Rogers St, Cambridge, Massachusetts 02142 (United States); Karniadakis, George Em, E-mail: george-karniadakis@brown.edu [Division of Applied Mathematics, Brown University, Providence, Rhode Island 02912 (United States)

    2016-02-15

    The aim of this work is to present an overview of recent advances in multi-scale modeling of brain blood flow. In particular, we present some approaches that enable the in silico study of multi-scale and multi-physics phenomena in the cerebral vasculature. We discuss the formulation of continuum and atomistic modeling approaches, present a consistent framework for their concurrent coupling, and list some of the challenges that one needs to overcome in achieving a seamless and scalable integration of heterogeneous numerical solvers. The effectiveness of the proposed framework is demonstrated in a realistic case involving modeling the thrombus formation process taking place on the wall of a patient-specific cerebral aneurysm. This highlights the ability of multi-scale algorithms to resolve important biophysical processes that span several spatial and temporal scales, potentially yielding new insight into the key aspects of brain blood flow in health and disease. Finally, we discuss open questions in multi-scale modeling and emerging topics of future research.

  17. Clustering of microscopic particles in constricted blood flow

    CERN Document Server

    Bächer, Christian; Gekle, Stephan

    2016-01-01

    A mixed suspension of red blood cells (RBCs) and microparticles flows through a cylindrical channel with a constriction mimicking a stenosed blood vessel. Our three-dimensional Lattice-Boltzmann simulations show that the RBCs are depleted right ahead and after the constriction. Although the RBC mean concentration (hematocrit) is 16.5% or 23.7%, their axial concentration profile is very similar to that of isolated tracer particles flowing along the central axis. Most importantly, however, we find that the stiff microparticles exhibit the opposite behavior. Arriving on a marginated position near the channel wall, they can pass through the constriction only if they find a suitable gap to dip into the dense plug of RBCs occupying the channel center. This leads to a prolonged dwell time and, as a consequence, to a pronounced increase in microparticle concentration right in front of the constriction. For biochemically active particles such as drug delivery agents or activated platelets this clustering may lead to p...

  18. Clustering of microscopic particles in constricted blood flow

    Science.gov (United States)

    Bächer, Christian; Schrack, Lukas; Gekle, Stephan

    2017-01-01

    A mixed suspension of red blood cells (RBCs) and microparticles flows through a cylindrical channel with a constriction mimicking a stenosed blood vessel. Our three-dimensional Lattice-Boltzmann simulations show that the RBCs are depleted right ahead of and after the constriction. Although the RBC mean concentration (hematocrit) is 16.5% or 23.7%, their axial concentration profile is very similar to that of isolated tracer particles flowing along the central axis. Most importantly, however, we find that the stiff microparticles exhibit the opposite behavior. Arriving on a marginated position near the channel wall, they can pass through the constriction only if they find a suitable gap to dip into the dense plug of RBCs occupying the channel center. This leads to a prolonged dwell time and, as a consequence, to a pronounced increase in microparticle concentration right in front of the constriction. For biochemically active particles such as drug delivery agents or activated platelets this clustering may have important physiological consequences, e.g., for the formation of microthrombi.

  19. Adipose tissue and skeletal muscle blood flow during mental stress

    Energy Technology Data Exchange (ETDEWEB)

    Linde, B.; Hjemdahl, P.; Freyschuss, U.; Juhlin-Dannfelt, A.

    1989-01-01

    Mental stress (a modified Stroop color word conflict test (CWT)) increased adipose tissue blood flow (ATBF; 133Xe clearance) by 70% and reduced adipose tissue vascular resistance (ATR) by 25% in healthy male volunteers. The vasculatures of adipose tissue (abdomen as well as thigh), skeletal muscle of the calf (133Xe clearance), and the entire calf (venous occlusion plethysmography) responded similarly. Arterial epinephrine (Epi) and glycerol levels were approximately doubled by stress. Beta-Blockade by metoprolol (beta 1-selective) or propranolol (nonselective) attenuated CWT-induced tachycardia similarly. Metoprolol attenuated stress-induced vasodilation in the calf and tended to do so in adipose tissue. Propranolol abolished vasodilation in the calf and resulted in vasoconstriction during CWT in adipose tissue. Decreases in ATR, but not in skeletal muscle or calf vascular resistances, were correlated to increases in arterial plasma glycerol (r = -0.42, P less than 0.05), whereas decreases in skeletal muscle and calf vascular resistances, but not in ATR, were correlated to increases in arterial Epi levels (r = -0.69, P less than 0.01; and r = -0.43, P less than 0.05, respectively). The results suggest that mental stress increases nutritive blood flow in adipose tissue and skeletal muscle considerably, both through the elevation of perfusion pressure and via vasodilatation. Withdrawal of vasoconstrictor nerve activity, vascular beta 2-adrenoceptor stimulation by circulating Epi, and metabolic mechanisms (in adipose tissue) may contribute to the vasodilatation.

  20. Local blood flow measured by fluorescence excitation of nonradioactive microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Morita, Y.; Payne, B.D.; Aldea, G.S.; McWatters, C.; Husseini, W.; Mori, H.; Hoffman, J.I.; Kaufman, L. (Univ. of California, San Francisco (USA))

    1990-05-01

    An X-ray fluorescence system with low Compton background and high counting efficiency was developed to measure regional blood flow with nonradioactive microspheres. The performance of the system was tested in vitro by counting mixed aqueous solutions of either Mo, Ag, and I; Nb, Ag, and Ba; or Zr, Mo, Rh, Ag, Sn, I, and Ba, as well as a mixture of Ag and Ba nonradioactive microspheres. Mixtures containing 2-20 ppm of each element were counted for 10 min by the fluorescence system, and the individual elements in mixtures of three to seven nonradioactive elements were measured with high accuracy. The best counting statistics were obtained for Ag. For 10-min counts, the system measures as few as 120 Ag microspheres with 30% standard deviation but measures 800 Ag microspheres per sample with 3.6% standard deviation. We compared regional myocardial blood flows determined simultaneously by fluorescence and radioactive microsphere methods; the latter samples were counted by a 3-in. NaI (Tl) well detector and pulse-height analyzer. The radioactive and nonradioactive measurements showed good correlations.

  1. Blood flows and metabolic components of the cardiome.

    Science.gov (United States)

    Bassingthwaighte, J B; Li, Z; Qian, H

    1998-01-01

    This is a plan for the first stage of The Cardiome Project. The cardiome is the representation, in quantitative, testable form, of the functioning of the normal heart and its responses to intervention. The goal is to integrate the efforts of many years into a comprehensive understandable scheme. Past efforts have spanned the fields of transport within blood vessels, the distributions of regional coronary blood flows, permeation processes through capillary and cell walls, mediated cell membrane transport, extra- and intracellular diffusion, cardiac electrophysiology, the uptake and metabolism of the prime substrates (fatty acid and glucose), the metabolism of the purine nucleosides and nucleotides (mainly adenosine and ATP), the regulation of the ionic currents and of excitation-contraction coupling and finally the regulation of contraction. The central theme is to define the coronary flows and metabolic components of a computer model that will become a part of a three-dimensional heart with appropriate fibre shortening and volume ejection. The components are: (a) coronary flow distributions with appropriate heterogeneity, (b) metabolism of the substrates for energy production, (c) ATP, PCr and energy metabolism and (d) calcium metabolism as it relates to excitation-contraction coupling. The modeling should provide: (1) appropriate responses to regional ischemia induced by constriction of a coronary artery, including tissue contractility loss and aneurysmal dilation of the ischemic region; (2) physiological responses to rate changes such as treppe and changes in metabolic demand and (3) changes in local metabolic needs secondary to changes in the site of pacing stimulation and shortening inactivation or stretch activation of contraction.

  2. Effect of labetalol on cerebral blood flow and middle cerebral arterial flow velocity in healthy volunteers

    DEFF Research Database (Denmark)

    Schroeder, T; Schierbeck, Jens; Howardy, P;

    1991-01-01

    in normotensive subjects. Neither does it affect CO2 reactivity. The uniform results obtained with the two methods suggest TCD as a usable alternative to conventional CBF technique in the assessment of cerebral vasoactivity of various drugs in subjects with a normal cerebral circulation.......The effect of labetalol, a combined alpha- and beta-adrenoceptor antagonist, on the cerebral circulation was investigated in 7 normotensive subjects. Cerebral blood flow (CBF) was measured with the intravenous 133Xe method and mean flow velocity (Vmean) in the middle cerebral artery was determined...

  3. Absolute counting of neutrophils in whole blood using flow cytometry.

    Science.gov (United States)

    Brunck, Marion E G; Andersen, Stacey B; Timmins, Nicholas E; Osborne, Geoffrey W; Nielsen, Lars K

    2014-12-01

    Absolute neutrophil count (ANC) is used clinically to monitor physiological dysfunctions such as myelosuppression or infection. In the research laboratory, ANC is a valuable measure to monitor the evolution of a wide range of disease states in disease models. Flow cytometry (FCM) is a fast, widely used approach to confidently identify thousands of cells within minutes. FCM can be optimised for absolute counting using spiked-in beads or by measuring the sample volume analysed. Here we combine the 1A8 antibody, specific for the mouse granulocyte protein Ly6G, with flow cytometric counting in straightforward FCM assays for mouse ANC, easily implementable in the research laboratory. Volumetric and Trucount™ bead assays were optimized for mouse neutrophils, and ANC values obtained with these protocols were compared to ANC measured by a dual-platform assay using the Orphee Mythic 18 veterinary haematology analyser. The single platform assays were more precise with decreased intra-assay variability compared with ANC obtained using the dual protocol. Defining ANC based on Ly6G expression produces a 15% higher estimate than the dual protocol. Allowing for this difference in ANC definition, the flow cytometry counting assays using Ly6G can be used reliably in the research laboratory to quantify mouse ANC from a small volume of blood. We demonstrate the utility of the volumetric protocol in a time-course study of chemotherapy induced neutropenia using four drug regimens.

  4. What is the optimal anesthetic protocol for measurements of cerebral autoregulation in spontaneously breathing mice?

    Science.gov (United States)

    Wang, Zhenghui; Schuler, Beat; Vogel, Olga; Arras, Margarete; Vogel, Johannes

    2010-12-01

    Autoregulation, an important feature of the cerebral circulation, is affected in many diseases. Since genetically modified mice are a fundamental tool in biomedical research, including neuro(bio)logy also in this specie measurements of cerebral autoregulation (CA) are mandatory. However, this requires anesthesia that unfortunately significantly impacts cerebral perfusion and consequently might distort CA measurements directly or by altering arterial pCO(2). The latter can be avoided by artificial ventilation but requires several control measurements of blood gases, each consuming at least 100 μl of blood or 5% of a mouse's blood volume. To avoid such diagnostic hemorrhage, we systematically analyzed the effect of different common anesthetic protocols used for rodents in spontaneously breathing mice on CA measured with Laser speckle perfusion imaging. Halothane, Isoflurane and Pentobarbital abrogated CA and Ketamin/Xylazine as well as Chloralose had a moderate reproducibility. In contrast, the rather rarely used anesthetic Ethomidate applied in low doses combined with local anesthetics had the best reproducibility. Although with this anesthesia the lower CA limit was lower than with Ketamin/Xylazine and Chloralose as reported in the handful of papers so far dealing with CA in mice, we suggest Ethomidate as the anesthetic of choice for CA measurements in spontaneously breathing mice.

  5. An approach to automatic blood vessel image registration of microcirculation for blood flow analysis on nude mice.

    Science.gov (United States)

    Lin, Wen-Chen; Wu, Chih-Chieh; Zhang, Geoffrey; Wu, Tung-Hsin; Lin, Yang-Hsien; Huang, Tzung-Chi; Liu, Ren-Shyan; Lin, Kang-Ping

    2011-04-01

    Image registration is often a required and a time-consuming step in blood flow analysis of large microscopic video sequences in vivo. In order to obtain stable images for blood flow analysis, frame-to-frame image matching as a preprocessing step is a solution to the problem of movement during image acquisition. In this paper, microscopic system analysis without fluorescent labelling is performed to provide precise and continuous quantitative data of blood flow rate in individual microvessels of nude mice. The performance properties of several matching metrics are evaluated through simulated image registrations. An automatic image registration programme based on Powell's optimisation search method with low calculation redundancy was implemented. The matching method by variance of ratio is computationally efficient and improves the registration robustness and accuracy in practical application of microcirculation registration. The presented registration method shows acceptable results in close requisition to analyse red blood cell velocities, confirming the scientific potential of the system in blood flow analysis.

  6. Theory to predict shear stress on cells in turbulent blood flow.

    Science.gov (United States)

    Morshed, Khandakar Niaz; Bark, David; Forleo, Marcio; Dasi, Lakshmi Prasad

    2014-01-01

    Shear stress on blood cells and platelets transported in a turbulent flow dictates the fate and biological activity of these cells. We present a theoretical link between energy dissipation in turbulent flows to the shear stress that cells experience and show that for the case of physiological turbulent blood flow: (a) the Newtonian assumption is valid, (b) turbulent eddies are universal for the most complex of blood flow problems, and (c) shear stress distribution on turbulent blood flows is possibly universal. Further we resolve a long standing inconsistency in hemolysis between laminar and turbulent flow using the theoretical framework. This work demonstrates that energy dissipation as opposed to bulk shear stress in laminar or turbulent blood flow dictates local mechanical environment of blood cells and platelets universally.

  7. Dynamic Modeling of Renal Blood Flow in Dahl Hypertensive and Normotensive Rats

    DEFF Research Database (Denmark)

    Knudsen, Torben; Elmer, H.; Knudsen, Morten;

    2004-01-01

    A method is proposed in this paper which allows characterisation of renal autoregulatory dynamics and efficiency using quantitative mathematical methods. Based on data from rat experiments, where arterial blood pressure and renal blood flow are measured, a quantitative model for renal blood flow ...

  8. Sympathetic reflex control of subcutaneous blood flow in tetraplegic man during postural changes

    DEFF Research Database (Denmark)

    Skagen, K; Jensen, K; Henriksen, O

    1982-01-01

    1. The effect of head-up tilt upon subcutaneous blood flow in the distal arm and leg was studied in 12 patients with complete traumatic spinal cord transection at the cervical level. 2. Blood flow was measured by the local 133Xe washout technique. 3. Leg lowering induced a 47% decrease in blood f...

  9. Outcome of splanchnic blood flow determination in patients with suspected chronic intestinal ischaemia. A retrospective survey

    DEFF Research Database (Denmark)

    Møller, Søren; Madsen, Jan Lysgård

    2002-01-01

    flow: A, normal response (splanchnic blood flow > or = 200 ml/min); B, possible abnormal response (splanchnic blood flow 51-199 ml/min); and C, definitive abnormal response (splanchnic blood flow place, the type of operation was noted. RESULTS: Forty patients had...... a normal meal-induced response, 23 patients had a possible abnormal response and 10 patients had a definitive abnormal response, which gave evidence of chronic intestinal ischaemia. In the total patient population, the increase in splanchnic blood flow was significantly correlated to an increase in hepatic...

  10. Glucagon-like peptide-2 increases mesenteric blood flow in humans

    DEFF Research Database (Denmark)

    Bremholm, Lasse; Hornum, Mads; Henriksen, Birthe Merete;

    2008-01-01

    OBJECTIVE: Mesenteric blood flow is believed to be influenced by digestion and absorption of ingested macronutrients. We hypothesized that the intestinotrophic hormone, GLP-2 (glucagons-like peptide 2), may be involved in the regulation of mesenteric blood flow. Changes in mesenteric blood flow...... were measured by Doppler ultrasound scanning of the superior mesenteric artery (SMA). The aim of the study was to demonstrate the influence of GLP-2 on this flow, expressed as changes in resistance index (RI). MATERIAL AND METHODS: A homogeneous group of 10 fasting healthy volunteers completed a 2-day...... support the hypothesis that GLP-2 is an important regulator of mesenteric blood flow....

  11. Middle cerebral artery blood velocity and cerebral blood flow and O2 uptake during dynamic exercise

    DEFF Research Database (Denmark)

    Madsen, P L; Sperling, B K; Warming, T

    1993-01-01

    Results obtained by the 133Xe clearance method with external detectors and by transcranial Doppler sonography (TCD) suggest that dynamic exercise causes an increase of global average cerebral blood flow (CBF). These data are contradicted by earlier data obtained during less-well-defined conditions....... To investigate this controversy, we applied the Kety-Schmidt technique to measure the global average levels of CBF and cerebral metabolic rate of oxygen (CMRO2) during rest and dynamic exercise. Simultaneously with the determination of CBF and CMRO2, we used TCD to determine mean maximal flow velocity...... in the middle cerebral artery (MCA Vmean). For values of CBF and MCA Vmean a correction for an observed small drop in arterial PCO2 was carried out. Baseline values for global CBF and CMRO2 were 50.7 and 3.63 ml.100 g-1.min-1, respectively. The same values were found during dynamic exercise, whereas a 22% (P

  12. Cell-cell interaction in blood flow in patients with coronary heart disease (in vitro study)

    Science.gov (United States)

    Malinova, Lidia I.; Simonenko, Georgy V.; Denisova, Tatyana P.; Tuchin, Valery V.

    2007-02-01

    Blood cell-cell and cell-vessel wall interactions are one of the key patterns in blood and vascular pathophysiology. We have chosen the method of reconstruction of pulsative blood flow in vitro in the experimental set. Blood flow structure was studied by PC integrated video camera with following slide by slide analysis. Studied flow was of constant volumetric blood flow velocity (1 ml/h). Diameter of tube in use was comparable with coronary arteries diameter. Glucose solution and unfractured heparin were used as the nonspecial irritants of studied flow. Erythrocytes space structure in flow differs in all groups of patients in our study (men with stable angina pectoris (SAP), myocardial infarction (MI) and practically healthy men (PHM). Intensity of erythrocytes aggregate formation was maximal in patients with SAP, but time of their "construction/deconstruction" at glucose injection was minimal. Phenomena of primary clotting formation in patients with SAP of high function class was reconstructed under experimental conditions. Heparin injection (10 000 ED) increased linear blood flow velocity both in patients with SAP, MI and PHP but modulated the cell profile in the flow. Received data correspond with results of animal model studies and noninvasive blood flow studies in human. Results of our study reveal differences in blood flow structure in patients with coronary heart disease and PHP under irritating conditions as the possible framework of metabolic model of coronary blood flow destabilization.

  13. Brain energy metabolism and blood flow differences in healthy aging

    DEFF Research Database (Denmark)

    Aanerud, Joel; Borghammer, Per; Chakravarty, M Mallar

    2012-01-01

    Cerebral metabolic rate of oxygen consumption (CMRO(2)), cerebral blood flow (CBF), and oxygen extraction fraction (OEF) are important indices of healthy aging of the brain. Although a frequent topic of study, changes of CBF and CMRO(2) during normal aging are still controversial, as some authors...... find decreases of both CBF and CMRO(2) but increased OEF, while others find no change, and yet other find divergent changes. In this reanalysis of previously published results from positron emission tomography of healthy volunteers, we determined CMRO(2) and CBF in 66 healthy volunteers aged 21 to 81......, and in the temporal cortex. Because of the inverse relation between OEF and capillary oxygen tension, increased OEF can compromise oxygen delivery to neurons, with possible perturbation of energy turnover. The results establish a possible mechanism of progression from healthy to unhealthy brain aging, as the regions...

  14. Numerical method of characteristics for one-dimensional blood flow

    CERN Document Server

    Acosta, Sebastian; Riviere, Beatrice; Penny, Daniel J; Rusin, Craig G

    2014-01-01

    Mathematical modeling at the level of the full cardiovascular system requires the numerical approximation of solutions to a one-dimensional nonlinear hyperbolic system describing flow in a single vessel. This model is often simulated by computationally intensive methods like finite elements and discontinuous Galerkin, while some recent applications require more efficient approaches (e.g. for real-time clinical decision support, phenomena occurring over multiple cardiac cycles, iterative solutions to optimization/inverse problems, and uncertainty quantification). Further, the high speed of pressure waves in blood vessels greatly restricts the time-step needed for stability in explicit schemes. We address both cost and stability by presenting an efficient and unconditionally stable method for approximating solutions to diagonal nonlinear hyperbolic systems. Theoretical analysis of the algorithm is given along with a comparison of our method to a discontinuous Galerkin implementation. Lastly, we demonstrate the ...

  15. Cerebral blood flow and oxygen metabolism in the Rett syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, Hideto; Fueki, Noboru; Suzuki, Hisaharu; Sakuragawa, Norio; Iio, Masaaki (National Central Hospital for Mental, Nervous and Muscular Disorders, Tokyo (Japan))

    1992-05-01

    Positron emission tomography (PET) was performed on six patients with the Rett syndrome and the results were compared with the concurrent clinical status of the patients. The cerebral metabolic rate of oxygen (CMRO{sub 2}) was low in five patients, and oxygen extraction fraction (OEF) was low in four patients; both had a tendency to decline with advancing age. Although the cause is unknown, it is suggested that impaired oxidative metabolism exists in the Rett syndrome. An analysis of the distribution among brain regions showed that the ratios of values for the frontal cortex to those for the temporal cortex for both the cerebral blood flow (CBF) and CMRO{sub 2} were lower than those for the controls, which may indicate the loss of of hyperfrontality in the Rett syndrome. Distribution of brain metabolism may be immature in the Rett syndrome. (author).

  16. Laser Doppler flowmetry to measure changes in cerebral blood flow.

    Science.gov (United States)

    Sutherland, Brad A; Rabie, Tamer; Buchan, Alastair M

    2014-01-01

    Laser Doppler flowmetry (LDF) is a method by which relative cerebral blood flow (CBF) of the cortex can be measured. Although the method is easy to employ, LDF only measures relative CBF, while absolute CBF cannot be quantified. LDF is useful for investigating CBF changes in a number of different applications including neurovascular and stroke research. This chapter will prepare the reader for rodent experiments using LDF with two preparations. The closed skull preparation can be used to monitor CBF with an intact skull, but in adult rats, thinning of the skull is required to obtain an accurate cortical CBF signal. The open skull preparation requires a craniotomy to expose the surface of the brain and the LDF probe is held close to the surface to measure cerebral perfusion.

  17. Peculiarities of Brain's Blood Flow : Role of Carbon Dioxide

    CERN Document Server

    Gersten, Alexander

    2011-01-01

    Among the major factors controlling the cerebral blood flow (CBF), the effect of PaCO2 is peculiar in that it violates autoregulatory CBF mechanisms and allows to explore the full range of the CBF. This research resulted in a simple physical model, with a four parameter formula, relating the CBF to PaCO2. The parameters can be extracted in an easy manner, directly from the experimental data. With this model earlier experimental data sets of Rhesus monkeys and rats were well fitted. Human data were also fitted with this model. Exact formulae were found, which can be used to transform the fits of one animal to the fits of another one. The merit of this transformation is that it enable us the use of rats data as monkeys data simply by rescaling the PaCO2 values and the CBF data. This transformation makes possible the use of experimental animal data instead of human ones.

  18. Biology and Mechanics of Blood Flows Part I: Biology

    CERN Document Server

    Thiriet, Marc

    2008-01-01

    Biology and Mechanics of Blood Flows presents the basic knowledge and state-of-the-art techniques necessary to carry out investigations of the cardiovascular system using modeling and simulation. Part I of this two-volume sequence, Biology, addresses the nanoscopic and microscopic scales. The nanoscale corresponds to the scale of biochemical reaction cascades involved in cell adaptation to mechanical stresses among other stimuli. The microscale is the scale of stress-induced tissue remodeling associated with acute or chronic loadings. The cardiovascular system, like any physiological system, has a complicated three-dimensional structure and composition. Its time dependent behavior is regulated, and this complex system has many components. In this authoritative work, the author provides a survey of relevant cell components and processes, with detailed coverage of the electrical and mechanical behaviors of vascular cells, tissues, and organs. Because the behaviors of vascular cells and tissues are tightly coupl...

  19. Coagulation on biomaterials in flowing blood: some theoretical considerations.

    Science.gov (United States)

    Basmadjian, D; Sefton, M V; Baldwin, S A

    1997-12-01

    Are truly inert biomaterials feasible? Recent mathematical models of coagulation which are reviewed here suggest that such materials are impossible. This conclusion, which is certainly consistent with our collective experimental evidence, arises from the calculation that conversion of Factor XI to XIa never drops to zero even at the highest flow rates and with virtually no Factor XIIa bound to a surface. Residual amounts of XIa are still formed which can in principle kick-off the coagulation cascade. Furthermore, if the flow rates and corresponding mass transfer coefficients are low and in spite of these near-vanishing levels of the initiating coagulants, the surprising result is that substantial amounts of thrombin are produced. On the contrary, under slightly higher flow conditions, there can be more substantial levels of initiating coagulants, yet paradoxically thrombin production is near zero. This article presents a theoretical understanding of the events which take place during the interaction of biomaterials with flowing blood. We follow these events from the time of first contact to the final production of thrombin. The effect of flow and surface activity on the contact phase reactions is examined in detail and the two are found to be intertwined. The common pathway is also examined and here the main feature is the existence of three flow dependent regions which produce either high or very low levels of thrombin, as well as multiple thrombin steady states. In a final analysis we link the two segments of the cascade and consider the events which result. In addition, we note that multiple steady states arise only in the presence of two (thrombin) feedback loops. Single loops or the bare cascade will produce only single steady states. With some imagination one can attribute to the feedback loops the role of providing the cascade with a mechanism to produce high thrombin levels in case of acute need (e.g. bleeding) or to allow levels to subside to 'stand

  20. Doppler Assessment of Uterine Blood Flow in Recurrent Pregnancy Loss

    Directory of Open Access Journals (Sweden)

    Maryam Barzin

    2011-05-01

    Full Text Available Recurrent spontaneous abortion affects 2%-5% of"ncouples. Uterine perfusion is considered as one of the"nfactors that influences the success of implantation."nDuring the normal menstrual cycle, the impedance"nto uterine artery blood flow diminishes progressively"nduring the luteal phase, reaching the lowest values"nin the period coinciding with the implantation time."nImpedance of uterine arteries is a good indicator of"nthe possibility of a subsequent pregnancy. High blood"nflow resistance is associated with a reduced conception"nrate and women with lower pulsatility index values"nhave the highest possibility of becoming pregnant. An"nimpaired uterine perfusion could play a major role in"nthe pathogenesis of recurrent spontaneous abortion. In"nthis study, we examined sixty women with recurrent"nspontaneous abortion and a control group including"nthirty normal women with at least one previous"nuncomplicated pregnancy and without history of any"nabortion. Transvaginal sonography associated with"nDoppler flow measurement was performed during"nthe midluteal phase of a cycle in all women. The"nmeasurement of the ascending branch of both right"nand left uterine arteries was taken lateral to the cervix"nat the level of the internal os. The pulsatility and"nresistance index of both uterine arteries were calculated"nand compared in both groups. In this presentation we"nreport our finding in two groups. We also explain the"nexact method of study and present some interesting"ncases

  1. Nitric oxide and prostaglandins influence local skeletal muscle blood flow during exercise in humans: coupling between local substrate uptake and blood flow

    DEFF Research Database (Denmark)

    Kalliokoski, Kari K; Langberg, Henning; Ryberg, Ann Kathrine;

    2006-01-01

    skeletal muscle. Skeletal muscle blood flow was measured in seven healthy young men using near-infrared spectroscopy and indocyanine green and muscle glucose uptake using positron emission tomography and 2-fluoro-2-deoxy-D-[(18)F]glucose without and with local blockade of NO and PG at rest and during one-legged...... dynamic knee-extension exercise. Local blockade was produced by infusing nitro-L-arginine methyl ester and indomethacin directly in the muscle via a microdialysis catheter. Blood flow and glucose uptake were measured in the region of blockade and in two additional regions of vastus lateralis muscle 1......Synergic action of nitric oxide (NO) and prostaglandins (PG) in the regulation of muscle blood flow during exercise has been demonstrated. In the present study, we investigated whether these vasodilators also regulate local blood flow, flow heterogeneity, and glucose uptake within the exercising...

  2. Role of cerebral blood flow in extreme breath holding

    Directory of Open Access Journals (Sweden)

    Bain Anthony R.

    2016-01-01

    Full Text Available The role of cerebral blood flow (CBF on a maximal breath-hold (BH in ultra-elite divers was examined. Divers (n = 7 performed one control BH, and one BH following oral administration of the non-selective cyclooxygenase inhibitor indomethacin (1.2 mg/kg. Arterial blood gases and CBF were measured prior to (baseline, and at BH termination. Compared to control, indomethacin reduced baseline CBF and cerebral delivery of oxygen (CDO2 by about 26% (p < 0.01. Indomethacin reduced maximal BH time from 339 ± 51 to 319 ± 57 seconds (p = 0.04. In both conditions, the CDO2 remained unchanged from baseline to the termination of apnea. At BH termination, arterial oxygen tension was higher following oral administration of indomethacin compared to control (4.05 ± 0.45 vs. 3.44 ± 0.32 kPa. The absolute increase in CBF from baseline to the termination of apnea was lower with indomethacin (p = 0.01. These findings indicate that the impact of CBF on maximal BH time is likely attributable to its influence on cerebral H+ washout, and therefore central chemoreceptive drive to breathe, rather than to CDO2.

  3. Subcutaneous blood flow in the temporal region of migraine patients

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, K.

    1987-01-01

    Subcutaneous blood flow in the temporal region (TSBF) was measured by the local 133 Xenon washout technique in 43 migraine patients; 19 were reexamined in the course of spontaneous attacks. During attacks, TSBF was normal compared to headache-free state. In 13 unilateral attacks, the median ipsilateral to contralateral ratio TSBF was 1: 1.276, (NS). During 30 deg C passive head-up tilt, TSBF descreased by a median of 27% during headache-free intervals and by a median, 21% during migraine attacks. The difference between the 2 occasions was not significant. Head-up tilt resulted in a median 4.5% increase in mean arterial blood pressure (MAP) and a median 5.3% increase in heart rate (HR) during headache-free intervals and 3.4% and 3.2% respectively during migraine attacks. These results are evidence against a vasomotor disturbance of the extracranial tissues during attacks of migraine. The cardio-vascular response to the orthostatic stimulus indicates a normal function of this part of the autonomic nervous system during migraine attacks.

  4. Information Processing in Auto-regulated Systems

    Directory of Open Access Journals (Sweden)

    Karl Javorszky

    2003-06-01

    Full Text Available Abstract: We present a model of information processing which is based on two concurrent ways of describing the world, where a description in one of the languages limits the possibilities for realisations in the other language. The two describing dimensions appear in our common sense as dichotomies of perspectives: subjective - objective; diversity - similarity; individual - collective. We abstract from the subjective connotations and treat the test theoretical case of an interval on which several concurrent categories can be introduced. We investigate multidimensional partitions as potential carriers of information and compare their efficiency to that of sequenced carriers. We regard the same assembly once as a contemporary collection, once as a longitudinal sequence and find promising inroads towards understanding information processing by auto-regulated systems. Information is understood to point out that what is the case from among alternatives, which could be the case. We have translated these ideas into logical operations on the set of natural numbers and have found two equivalence points on N where matches between sequential and commutative ways of presenting a state of the world can agree in a stable fashion: a flip-flop mechanism is envisioned. By following this new approach, a mathematical treatment of some poignant biomathematical problems is allowed. Also, the concepts presented in this treatise may well have relevance and applications within the information processing and the theory of language fields.

  5. Blood flow and oxygenation in peritendinous tissue and calf muscle during dynamic exercise in humans

    DEFF Research Database (Denmark)

    Boushel, R; Langberg, Henning; Green, Stefan Mathias;

    2000-01-01

    1. Circulation around tendons may act as a shunt for muscle during exercise. The perfusion and oxygenation of Achilles' peritendinous tissue was measured in parallel with that of calf muscle during exercise to determine (1) whether blood flow is restricted in peritendinous tissue during exercise......, and (2) whether blood flow is coupled to oxidative metabolism. 2. Seven individuals performed dynamic plantar flexion from 1 to 9 W. Radial artery and popliteal venous blood were sampled for O2, peritendinous blood flow was determined by 133Xe-washout, calf blood flow by plethysmography, cardiac output...... by dye dilution, arterial pressure by an arterial catheter-transducer, and muscle and peritendinous O2 saturation by spatially resolved spectroscopy (SRS). 3. Calf blood flow rose 20-fold with exercise, reaching 44 +/- 7 ml (100 g)-1 min-1 (mean +/- s.e.m. ) at 9 W, while Achilles' peritendinous flow...

  6. Subcutaneous blood flow in man during sleep with continous epdural anaesthesia

    DEFF Research Database (Denmark)

    Sindrup, JH; Petersen, Lars Jelstrup; Kastrup, Jens;

    1996-01-01

    BACKGROUND: Subcutaneous blood flow increases during sleep and we evaluated if this increase is affected by epidural anaesthesia. METHODS: Lower leg subcutaneous blood flow was determined by 133Xenon clearance in ten subjects during continous epidural anaesthesia at L2-L3 including eight hours...... of sleep, while the opper abdominal subcutaneous blood flow served as control. RESULTS: Epidural anaesthesia to the level of the umbilicus was followed by an increase in the lower leg subcutaneous blood flow fra 3.4 (1.8-6.3) to 7.8 (3.6-16.9) ml min-1 (median and range; P...-1 100 g-1 after 34 (29-70) min (Pepidural anaesthesia induced only a temporary increase in lower leg subcutaneous blood flow, it hindered the rise in subcutaneous blood flow normally manifest...

  7. Skeletal blood flow in Paget's disease of bone and its response to calcitonin therapy.

    Science.gov (United States)

    Wootton, R; Reeve, J; Spellacy, E; Tellez-Yudilevich, M

    1978-01-01

    1. Blood flow to the skeleton was measured by the 18F clearance method of Wooton, Reeve & Veall (1976) in 24 patients with untreated Paget's disease. In every patient but one, resting skeletal blood flow was increased. There was a significant positive correlation between skeletal blood flow and serum alkaline phosphatase and between skeletal blood flow and urinary total hydroxyproline excretion. 2. Fourteen patients were re-studied after they had received short-term (7 days or less) or long-term (7 weeks or more) calcitonin. Skeletal blood flow, alkaline phosphatase and urinary hydroxy-proline excretion fell towards normal in every case. There was some evidence from the short-term studies that calcitonin produced a more rapid fall in skeletal blood flow than in alkaline phosphatase. 3. Glomerular filtration rate appeared to increase transiently in response to calcitonin.

  8. Timing and topography of cerebral blood flow, aura, and headache during migraine attacks

    DEFF Research Database (Denmark)

    Olesen, J; Friberg, L; Olsen, T S

    1990-01-01

    and statistically significant spatial relations. The first observable event was a decrease of regional cerebral blood flow posteriorly in one cerebral hemisphere. Further development of this pathological process was accompanied by the aura symptoms. Thereafter headache occurred while regional cerebral blood flow...... remained decreased. During the headache phase, regional cerebral blood flow gradually changed from abnormally low to abnormally high without apparent change in headache. In some patients headache disappeared while regional cerebral blood flow remained increased. Although regional cerebral blood flow...... reduction and aura symptoms in the great majority of patients were unilateral, one-third had bilateral headache. Unilateral headache usually localized to the side on which regional cerebral blood flow was reduced and from which the aura symptoms originated (i.e., aura symptoms were perceived to occur...

  9. Physiological non-Newtonian blood flow through single stenosed artery

    Science.gov (United States)

    Mamun, Khairuzzaman; Rahman, Mohammad Matiur; Akhter, Most. Nasrin; Ali, Mohammad

    2016-07-01

    A numerical simulation to investigate the Non-Newtonian modelling effects on physiological flows in a three dimensional idealized artery with a single stenosis of 85% severity. The wall vessel is considered to be rigid. Oscillatory physiological and parabolic velocity profile has been imposed for inlet boundary condition. Where the physiological waveform is performed using a Fourier series with sixteen harmonics. The investigation has a Reynolds number range of 96 to 800. Low Reynolds number k - ω model is used as governing equation. The investigation has been carried out to characterize two Non-Newtonian constitutive equations of blood, namely, (i) Carreau and (ii) Cross models. The Newtonian model has also been investigated to study the physics of fluid. The results of Newtonian model are compared with the Non-Newtonian models. The numerical results are presented in terms of pressure, wall shear stress distributions and the streamlines contours. At early systole pressure differences between Newtonian and Non-Newtonian models are observed at pre-stenotic, throat and immediately after throat regions. In the case of wall shear stress, some differences between Newtonian and Non-Newtonian models are observed when the flows are minimum such as at early systole or diastole.

  10. Airway blood flow response to dry air hyperventilation in sheep

    Energy Technology Data Exchange (ETDEWEB)

    Parsons, G.H.; Baile, E.M.; Pare, P.D.

    1986-03-01

    Airway blood flow (Qaw) may be important in conditioning inspired air. To determine the effect of eucapneic dry air hyperventilation (hv) on Qaw in sheep the authors studied 7 anesthetized open-chest sheep after 25 min. of warm dry air hv. During each period of hv the authors have recorded vascular pressures, cardiac output (CO), and tracheal mucosal and inspired air temperature. Using a modification of the reference flow technique radiolabelled microspheres were injected into the left atrium to make separate measurements after humid air and dry air hv. In 4 animals a snare around the left main pulmonary artery was used following microsphere injection to prevent recirculation (entry into L lung of microspheres from the pulmonary artery). Qaw to the trachea and L lung as measured and Qaw for the R lung was estimated. After the final injection the sheep were killed and bronchi (Br) and lungs removed. Qaw (trachea plus L lung plus R lung) in 4 sheep increased from a mean of 30.8 to 67.0 ml/min. Airway mucosal temp. decreased from 39/sup 0/ to 33/sup 0/C. The authors conclude that dry air hv cools airway mucosa and increases Qaw in sheep.

  11. Chronic intestinal ischaemia: measurement of the total splanchnic blood flow.

    Science.gov (United States)

    Zacho, Helle D

    2013-04-01

    A redundant collateral network between the intestinal arteries is present at all times. In case of ischaemia in the gastrointestinal tract, the collateral blood supply can develop further, thus accommodating the demand for oxygen even in the presence of significant stenosis or occlusion of the intestinal arteries without clinical symptoms of intestinal ischaemia. Symptoms of ischemia develop when the genuine and collateral blood supply no longer can accommodate the need for oxygen. Atherosclerosis is the most common cause of obliteration in the intestinal arteries. In chronic intestinal ischaemia (CII), the fasting splanchnic blood flow (SBF) is sufficient, but the postprandial increase in SBF is inadequate and abdominal pain will therefore develop in relation to food intake causing the patient to eat smaller meals at larger intervals with a resulting weight loss. Traditionally, the CII-diagnosis has exclusively been based upon morphology (angiography) of the intestinal arteries; however, substantial discrepancies between CII-symptoms and the presence of atherosclerosis/stenosis in the intestinal arteries have been described repeatedly in the literature impeding the diagnosis of CII. This PhD thesis explores a method to determine the total SBF and its potential use as a diagnostic tool in patients suspected to suffer from CII. The SBF can be measured using a continuous infusion of a tracer and catheterisation of a hepatic vein and an artery. By measuring the SBF before and after a standard meal it is possible to assess the ability or inability to enhance the SBF and thereby diagnosing CII. In Study I, measurement of SBF was tested against angiography in a group of patients suspected to suffer from CII due to pain and weight loss. A very good agreement between the postprandial increase in SBF and angiography was found. The method was validated against a well-established method independent of the hepatic extraction of tracer using pAH in a porcine model (study II

  12. Extraction of the magnetohydrodynamic blood flow potential from the surface electrocardiogram in magnetic resonance imaging.

    Science.gov (United States)

    Nijm, Grace M; Swiryn, Steven; Larson, Andrew C; Sahakian, Alan V

    2008-07-01

    The magnetohydrodynamic effect generates voltages related to blood flow, which are superimposed on the electrocardiogram (ECG) used for gating during cardiac magnetic resonance imaging (MRI). A method is presented for extracting the magnetohydrodynamic signal from the ECG. The extracted magnetohydrodynamic blood flow potential may be physiologically meaningful due to its relationship to blood flow. Removal of the magnetohydrodynamic voltages from the ECG can potentially lead to improved gating and diagnostically useful ECGs.

  13. The application of blood flow measurements to the study of aging muscle.

    Science.gov (United States)

    McCully, K K; Posner, J D

    1995-11-01

    Blood flow to skeletal muscle is a potentially important factor in the reduction of muscle function associated with aging (sarcopenia). The main influence of reduced blood flow capacity on muscle function is in limiting oxidative metabolism. Direct measures of blood flow include: intravital-microscopy, plethysmography, radioactive microspheres, 133Xenon washout, thermodilution, and Doppler ultrasound. Indirect measurement of blood flow includes arm-to-ankle pressure index and the rate of phosphocreatine recovery after exercise. Several new methodologies have been developed to evaluate muscle blood flow, including color-Doppler imaging, magnetic resonance imaging/angiography (MRI/MRA), and near-infrared spectroscopy (NIRS). As adaptations of traditional techniques, these methods promise more precise information under less invasive conditions. MRI is an expensive and technically challenging method able to measure vessel location, blood flow, and wall diameter in blood vessels throughout the cardiac cycle. Color-Doppler provides excellent temporal resolution blood flow throughout the cardiac cycle, along with some anatomical information. NIRS is an inexpensive and portable technology that can measure changes in oxygen saturation and provide information on tissue oxygen delivery in studies of frailer and more difficult-to-study subjects. Muscle blood flow is not thought to limit oxidative metabolism under normal conditions in young individuals. However, it is not clear what happens to muscle blood flow in healthy older individuals. Reduced capillary density, less maximal blood flow, and a slower hyperemic flow response have been reported in some, but not all, studies. Further studies with the newer methodologies are needed to re-examine age-related changes in muscle blood flow.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Skin and muscle components of forearm blood flow in directly heated resting man.

    Science.gov (United States)

    Detry, J.-M. R.; Brengelmann, G. L.; Rowell, L. B.; Wyss, C.

    1972-01-01

    Changes in forearm muscle blood flow (FMBF) during direct whole-body heating were measured in 17 normal subjects using three different methods. We conclude that FMBF is not increased by direct whole-body heating. Since renal and splanchnic blood flow fall 30% under these conditions, maximal total skin blood flow in 12 previously studied subjects can be estimated from the rise in cardiac output to be 7.6 L/min (3.0-11.1 L/min).

  15. BIFURCATION OF FLOW AND MASS TRANSPORT IN A CURVED BLOOD VESSEL

    Institute of Scientific and Technical Information of China (English)

    TAN Wenchang(谭文长); WEI Lan(魏兰); ZHAO Yaohua(赵耀华); TAKASHI Masuoka

    2003-01-01

    A numerical analysis of flow and concentration fields of macromolecules in a slightly curved blood vessel was carried out. Based on these results, the effect of the bifurcation of a flow on the mass transport in a curved blood vessel was discussed. The macromolecules turned out to be easier to deposit in the inner part of the curved blood vessel near the critical Dean number. Once the Dean number is higher than the critical number, the bifurcation of the flow appears. This bifurcation can prevent macromolecules from concentrating in the inner part of the curved blood vessel. This result is helpful for understanding the possible correlations between the blood dynamics and atherosclerosis.

  16. Quantitative retinal blood flow mapping from fluorescein videoangiography using tracer kinetic modeling.

    Science.gov (United States)

    Tichauer, Kenneth M; Guthrie, Micah; Hones, Logan; Sinha, Lagnojita; St Lawrence, Keith; Kang-Mieler, Jennifer J

    2015-05-15

    Abnormal retinal blood flow (RBF) has been associated with numerous retinal pathologies, yet existing methods for measuring RBF predominantly provide only relative measures of blood flow and are unable to quantify volumetric blood flow, which could allow direct patient to patient comparison. This work presents a methodology based on linear systems theory and an image-based arterial input function to quantitatively map volumetric blood flow from standard fluorescein videoangiography data, and is therefore directly translatable to the clinic. Application of the approach to fluorescein retinal videoangiography in rats (4 control, 4 diabetic) demonstrated significantly higher RBF in 4-5 week diabetic rats as expected from the literature.

  17. Modeling cerebral blood flow during posture change from sitting to standing

    DEFF Research Database (Denmark)

    Ottesen, Johnny T.; Olufsen, M.; Tran, H.T.

    2004-01-01

    extremities, the brain, and the heart. We use physiologically based control mechanisms to describe the regulation of cerebral blood flow velocity and arterial pressure in response to orthostatic hypotension resulting from postural change. To justify the fidelity of our mathematical model and control......Abstract Hypertension, decreased cerebral blood flow, and diminished cerebral blood flow velocity regulation, are among the first signs indicating the presence of cerebral vascular disease. In this paper, we will present a mathematical model that can predict blood flow and pressure during posture...

  18. Noninvasive color Doppler sonography of uterine blood flow throughout pregnancy in sheep and goats.

    Science.gov (United States)

    Elmetwally, M; Rohn, K; Meinecke-Tillmann, S

    2016-04-01

    In contrast to cattle or horses, uterine blood flow in small ruminants has been investigated predominantly after surgical intervention and chronic instrumentation. The objective of the present study was to investigate the clinical applicability of noninvasive color Doppler sonography to characterize blood flow in the maternal uterine artery of sheep, n = 11 (18 pregnancies) and goats, n = 11 (20 pregnancies). The following parameters were measured transrectally or transabdominally: blood flow volume, time-averaged maximum velocity (TAMV), resistance index (RI), pulsatility index (PI), Time-averaged mean velocity, impedance of blood flow (AB or systolic/diastolic [S/D] velocity ratio), peak velocity of blood flow and blood flow acceleration. Examinations started 2 weeks after breeding and continued at 2-week intervals until parturition. Outcomes for sheep and goats were similar and will be discussed together. Based on noninvasive color Doppler sonography, blood flow volume increased (approximately 60-fold, P sheep and goats. Furthermore, for uterine artery blood flow, there was an effect of stage of pregnancy on PI and RI (P sheep and goats, respectively, and then decreased until parturition. Similar to PI and RI, vascular impedance of the uterine decreased (P < 0.0001) throughout pregnancy. This is apparently the first study using noninvasive color Doppler sonography of uterine blood flow throughout physiological pregnancy in small ruminants. Clearly, this technology facilitates repeated, noninvasive assessments, with great potential for future studies.

  19. Mathematical analysis of non-Newtonian blood flow in stenosis narrow arteries.

    Science.gov (United States)

    Sriyab, Somchai

    2014-01-01

    The flow of blood in narrow arteries with bell-shaped mild stenosis is investigated that treats blood as non-Newtonian fluid by using the K-L model. When skin friction and resistance of blood flow are normalized with respect to non-Newtonian blood in normal artery, the results present the effect of stenosis length. When skin friction and resistance of blood flow are normalized with respect to Newtonian blood in stenosis artery, the results present the effect of non-Newtonian blood. The effect of stenosis length and effect of non-Newtonian fluid on skin friction are consistent with the Casson model in which the skin friction increases with the increase of either stenosis length or the yield stress but the skin friction decreases with the increase of plasma viscosity coefficient. The effect of stenosis length and effect of non-Newtonian fluid on resistance of blood flow are contradictory. The resistance of blood flow (when normalized by non-Newtonian blood in normal artery) increases when either the plasma viscosity coefficient or the yield stress increases, but it decreases with the increase of stenosis length. The resistance of blood flow (when normalized by Newtonian blood in stenosis artery) decreases when either the plasma viscosity coefficient or the yield stress increases, but it decreases with the increase of stenosis length.

  20. Negative autoregulation by Fas stabilizes adult erythropoiesis and accelerates its stress response.

    Directory of Open Access Journals (Sweden)

    Miroslav Koulnis

    Full Text Available Erythropoiesis maintains a stable hematocrit and tissue oxygenation in the basal state, while mounting a stress response that accelerates red cell production in anemia, blood loss or high altitude. Thus, tissue hypoxia increases secretion of the hormone erythropoietin (Epo, stimulating an increase in erythroid progenitors and erythropoietic rate. Several cell divisions must elapse, however, before Epo-responsive progenitors mature into red cells. This inherent delay is expected to reduce the stability of erythropoiesis and to slow its response to stress. Here we identify a mechanism that helps to offset these effects. We recently showed that splenic early erythroblasts, 'EryA', negatively regulate their own survival by co-expressing the death receptor Fas, and its ligand, FasL. Here we studied mice mutant for either Fas or FasL, bred onto an immune-deficient background, in order to avoid an autoimmune syndrome associated with Fas deficiency. Mutant mice had a higher hematocrit, lower serum Epo, and an increased number of splenic erythroid progenitors, suggesting that Fas negatively regulates erythropoiesis at the level of the whole animal. In addition, Fas-mediated autoregulation stabilizes the size of the splenic early erythroblast pool, since mutant mice had a significantly more variable EryA pool than matched control mice. Unexpectedly, in spite of the loss of a negative regulator, the expansion of EryA and ProE progenitors in response to high Epo in vivo, as well as the increase in erythropoietic rate in mice injected with Epo or placed in a hypoxic environment, lagged significantly in the mutant mice. This suggests that Fas-mediated autoregulation accelerates the erythropoietic response to stress. Therefore, Fas-mediated negative autoregulation within splenic erythropoietic tissue optimizes key dynamic features in the operation of the erythropoietic network as a whole, helping to maintain erythroid homeostasis in the basal state, while

  1. MEASUREMENT OF REGIONAL BONE BLOOD FLOW IN THE CANINE MANDIBULAR RAMUS USING RADIOLABELLED TOAD RED BLOOD CELLS

    Institute of Scientific and Technical Information of China (English)

    毛驰; 王翰章

    1994-01-01

    Toad red blood cells were used to measure regional bone blood flow in the canine mandibular ramus.The blood cells were labelled with sodium pertechnetate and fixed in 10% formalin;they were 22×15 μm in size and had a specific gravity close to that of dog red blood cells.These cells had no discernible effect on systemic hemody-namics after injection,did not agglutinate,were well mixed and evenly distributed throughout the body,and were completely extracted in one circulation through the mandible.The mandibular ramus was divided into six regions,and the blood flow rates in each were found to be similar to those reported in previous studies with radiolabelled carbonized,microspheres.Furthermore,the blood flow distribution pattern of the mandibular ramus determined in this study was identical to that of our previous study using the bone-seeking radionuclide method.We suggest that radiolabelled toad red blood cells are an ideal marker for measuring regional blood flow in the canine mandible.

  2. Blood flow characteristics in the ascending aorta after TAVI compared to surgical aortic valve replacement.

    Science.gov (United States)

    Trauzeddel, Ralf Felix; Löbe, Ulrike; Barker, Alex J; Gelsinger, Carmen; Butter, Christian; Markl, Michael; Schulz-Menger, Jeanette; von Knobelsdorff-Brenkenhoff, Florian

    2016-03-01

    Ascending aortic blood flow characteristics are altered after aortic valve surgery, but the effect of transcatheter aortic valve implantation (TAVI) is unknown. Abnormal flow may be associated with aortic and cardiac remodeling. We analyzed blood flow characteristics in the ascending aorta after TAVI in comparison to conventional stented aortic bioprostheses (AVR) and healthy subjects using time-resolved three-dimensional flow-sensitive cardiovascular magnetic resonance imaging (4D-flow MRI). Seventeen patients with TAVI (Edwards Sapien XT), 12 with AVR and 9 healthy controls underwent 4D-flow MRI of the ascending aorta. Target parameters were: severity of vortical and helical flow pattern (semiquantitative grading from 0 = none to 3 = severe) and the local distribution of systolic wall shear stress (WSSsystole). AVR revealed significantly more extensive vortical and helical flow pattern than TAVI (p = 0.042 and p = 0.002) and controls (p flow than controls (p blood flow eccentricity (64.7 and 66.7%, respectively), whereas controls showed central blood flow (88.9%). TAVI and AVR exhibited an asymmetric distribution of WSSsystole in the mid-ascending aorta with local maxima at the right anterior aortic wall and local minima at the left posterior wall. In contrast, controls showed a symmetric distribution of WSSsystole along the aortic circumference. Blood flow was significantly altered in the ascending aorta after TAVI and AVR. Changes were similar regarding WSSsystole distribution, while TAVI resulted in less helical and vortical blood flow.

  3. Effects of friction massage of the popliteal fossa on blood flow velocity of the popliteal vein

    Science.gov (United States)

    Iwamoto, Koji; Mizukami, Masafumi; Asakawa, Yasutsugu; Endo, Yusuke; Takata, Yuichi; Yoshikawa, Kenichi; Yoshio, Masaharu

    2017-01-01

    [Purpose] Friction massage (friction) of the popliteal fossa is provided for the purpose of relieving pain related to circulatory disorders by improving venous flow in the lower legs. The purpose of this study is to verify the effects of enhancing the venous flow based on measuring the blood flow velocity of the popliteal vein before and after providing friction to the patients. [Subjects and Methods] Fifteen healthy male university students participated in the study. The Doppler ultrasonography (DU) was used to measure the blood flow velocity of the popliteal vein, in order to verify the effects of enhancing the venous flow by comparing the measured values before and after a friction massage. [Results] The result of comparing the blood flow velocity before and after providing friction showed that there was a significant increase after friction. [Conclusion] This study proved that friction to the popliteal fossa is effectively enhances venous flow by increasing the blood flow velocity in the popliteal vein.

  4. Dynamic Cerebral Autoregulation in Pregnancy and the Risk of Preeclampsia

    DEFF Research Database (Denmark)

    Janzarik, Wibke G; Ehlers, Elena; Ehmann, Renata;

    2014-01-01

    Preeclampsia may affect severely the cerebral circulation leading to impairment of cerebral autoregulation, edema, and ischemia. It is not known whether impaired autoregulation occurs before the clinical onset of preeclampsia, and whether this can predict the occurrence of preeclampsia. Seventy......) of respiratory-induced 0.1 Hz hemodynamic oscillations. Uterine artery ultrasound was performed to search for a notch sign as an early marker of general endothelial dysfunction. All women were followed up until 6 weeks after delivery for the occurrence of preeclampsia. The autoregulation parameter gain did...... not differ between pregnant and nonpregnant women. Phase was slightly but significantly higher in pregnant women, indicating better DCA. Women with a notch sign did not show altered DCA. A history of preeclampsia during a previous pregnancy was associated with lower phase in middle cerebral artery...

  5. Simple Radiowave-Based Method For Measuring Peripheral Blood Flow Project

    Science.gov (United States)

    Oliva-Buisson, Yvette J.

    2014-01-01

    Project objective is to design small radio frequency based flow probes for the measurement of blood flow velocity in peripheral arteries such as the femoral artery and middle cerebral artery. The result will be the technological capability to measure peripheral blood flow rates and flow changes during various environmental stressors such as microgravity without contact to the individual being monitored. This technology may also lead to an easier method of detecting venous gas emboli during extravehicular activities.

  6. Cerebral blood flow in Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Roher AE

    2012-10-01

    Full Text Available Alex E Roher,1 Josef P Debbins,2 Michael Malek-Ahmadi,3 Kewei Chen,4 James G Pipe,2 Sharmeen Maze,2 Christine Belden,3 Chera L Maarouf,1 Pradeep Thiyyagura,4 Hua Mo,4 Jesse M Hunter,1 Tyler A Kokjohn,1,5 Douglas G Walker,6 Jane C Kruchowsky,6 Marek Belohlavek,7 Marwan N Sabbagh,3 Thomas G Beach81The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute, Sun City, 2Keller Center for Imaging Innovation, Neuroimaging Research, Barrow Neurological Institute, Phoenix, 3Cleo Roberts Center for Clinical Research, Banner Sun Health Research Institute, Sun City, 4Computational Image Analysis Program, Banner Alzheimer’s Institute, Phoenix, 5Department of Microbiology, Midwestern University, Glendale, 6Laboratory of Neuroinflammation, Banner Sun Health Research Institute, Sun City, 7Division of Cardiovascular Diseases, Mayo Clinic, Scottsdale, 8Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, USABackground: Alzheimer’s disease (AD dementia is a consequence of heterogeneous and complex interactions of age-related neurodegeneration and vascular-associated pathologies. Evidence has accumulated that there is increased atherosclerosis/arteriosclerosis of the intracranial arteries in AD and that this may be additive or synergistic with respect to the generation of hypoxia/ischemia and cognitive dysfunction. The effectiveness of pharmacologic therapies and lifestyle modification in reducing cardiovascular disease has prompted a reconsideration of the roles that cardiovascular disease and cerebrovascular function play in the pathogenesis of dementia.Methods: Using two-dimensional phase-contrast magnetic resonance imaging, we quantified cerebral blood flow within the internal carotid, basilar, and middle cerebral arteries in a group of individuals with mild to moderate AD (n = 8 and compared the results with those from a group of age-matched nondemented control (NDC subjects (n = 9

  7. Vascular Function and Regulation of Blood Flow in Resting and Contracting Skeletal Muscle

    DEFF Research Database (Denmark)

    Nyberg, Michael Permin

    in the regulation of exercise hyperemia. Furthermore, blood flow to contracting leg skeletal muscles is reduced both in essential hypertension and with aging. The potential difference in vasoactive system(s) responsible for the reduction in blood flow in the two conditions is in agreement with the suggestion......The precise matching of blood flow, oxygen delivery and metabolism is essential as it ensures that any increase in muscle work is precisely matched by increases in oxygen delivery. Therefore, understanding the control mechanisms of skeletal muscle blood flow regulation is of great biological...... importance. The present work provides new insight in to vasodilator interactions important for exercise hyperemia and sheds light on mechanisms important for vascular function and regulation of skeletal muscle blood flow in essential hypertension (high blood pressure) and aging and identifies mechanisms...

  8. Uteroplacental blood flow measured by placental scintigraphy during epidural anaesthesia for caesarean section

    Energy Technology Data Exchange (ETDEWEB)

    Skjoeldebrand, A.; Eklund, J.; Johansson, H.; Lunell, N.-O.; Nylund, L.; Sarby, B.; Thornstroem, S. (Departments of Anaesthesiology, Obstetrics and Gynaecology and Medical Physics, Karolinska Institute at Huddinge University Hospital, Stockholm (Sweden))

    1990-01-01

    The uteroplacental blood flow was measured before and during epidural anaesthesia for caesarean section in 11 woman. The blood flow was measured with dynamic placental scintigraphy. After an i.v. injection of indium-113m chloride, the gamma radiation over the placenta was recorded with a computer-linked scintillation camera. The uteroplacental blood flow could be calculated from the isotope accumulation curve. The anaesthesia was performed with bupivacaine plain 0.5%, 18-22 ml and a preload of a balanced electrolyte solution 10 ml/kg b.w. was given. The placental blood flow decreased in eight patients and increased in three with a median change of -21%, not being statistically significant. No correlation between maternal blood pressure and placental blood flow was found. (author).

  9. Coupling between arterial and venous cerebral blood flow during postural change.

    Science.gov (United States)

    Ogoh, Shigehiko; Washio, Takuro; Sasaki, Hiroyuki; Petersen, Lonnie G; Secher, Niels H; Sato, Kohei

    2016-12-01

    In supine humans the main drainage from the brain is through the internal jugular vein (IJV), but the vertebral veins (VV) become important during orthostatic stress because the IJV is partially collapsed. To identify the effect of this shift in venous drainage from the brain on the cerebral circulation, this study addressed both arterial and venous flow responses in the "anterior" and "posterior" parts of the brain when nine healthy subjects (5 men) were seated and flow was manipulated by hyperventilation and inhalation of 6% carbon dioxide (CO2). From a supine to a seated position, both internal carotid artery (ICA) and IJV blood flow decreased (P = 0.004 and P = 0.002), while vertebral artery (VA) flow did not change (P = 0.348) and VV flow increased (P = 0.024). In both supine and seated positions the ICA response to manipulation of end-tidal CO2 tension was reflected in IJV (r = 0.645 and r = 0.790, P blood flow (r = 0.771 and r = 0.828, P blood flow did not affect venous outflow, but the decrease in IJV blood flow was associated with the increase in VV blood flow (r = 0.479, P = 0.044). In addition, the increase in VV blood flow when seated was reflected in VA blood flow (r = 0.649, P = 0.004), and the two flows were coupled during manipulation of the end-tidal CO2 tension (supine, r = 0.551, P = 0.004; seated, r = 0.612, P blood flow when seated and that VV may influence VA blood flow.

  10. Numerical Modeling of Interstitial Fluid Flow Coupled with Blood Flow through a Remodeled Solid Tumor Microvascular Network.

    Directory of Open Access Journals (Sweden)

    M Soltani

    Full Text Available Modeling of interstitial fluid flow involves processes such as fluid diffusion, convective transport in extracellular matrix, and extravasation from blood vessels. To date, majority of microvascular flow modeling has been done at different levels and scales mostly on simple tumor shapes with their capillaries. However, with our proposed numerical model, more complex and realistic tumor shapes and capillary networks can be studied. Both blood flow through a capillary network, which is induced by a solid tumor, and fluid flow in tumor's surrounding tissue are formulated. First, governing equations of angiogenesis are implemented to specify the different domains for the network and interstitium. Then, governing equations for flow modeling are introduced for different domains. The conservation laws for mass and momentum (including continuity equation, Darcy's law for tissue, and simplified Navier-Stokes equation for blood flow through capillaries are used for simulating interstitial and intravascular flows and Starling's law is used for closing this system of equations and coupling the intravascular and extravascular flows. This is the first study of flow modeling in solid tumors to naturalistically couple intravascular and extravascular flow through a network. This network is generated by sprouting angiogenesis and consisting of one parent vessel connected to the network while taking into account the non-continuous behavior of blood, adaptability of capillary diameter to hemodynamics and metabolic stimuli, non-Newtonian blood flow, and phase separation of blood flow in capillary bifurcation. The incorporation of the outlined components beyond the previous models provides a more realistic prediction of interstitial fluid flow pattern in solid tumors and surrounding tissues. Results predict higher interstitial pressure, almost two times, for realistic model compared to the simplified model.

  11. Intensive blood pressure lowering increases cerebral blood flow in older subjects with hypertension.

    Science.gov (United States)

    Tryambake, Dinesh; He, Jiabao; Firbank, Michael J; O'Brien, John T; Blamire, Andrew M; Ford, Gary A

    2013-06-01

    Hypertension is associated with reduced cerebral blood flow (CBF). Intensive (blood pressure (BP) lowering in older people might give greater reduction in cardiovascular risk, but there are concerns that this might produce hypoperfusion which may precipitate falls and possibly stroke. We determined the effect of intensive compared with usual BP lowering on CBF in hypertensive older subjects. Individuals aged >70 years with a history of systolic hypertension on 1 or no BP lowering drugs were recruited from primary care (n=37; age, 75±4 years; systolic BP, >150 mm Hg) and randomized to receive intensive (target BP, treatment. Baseline BP (ambulatory or in clinic) and baseline gray matter CBF were not significantly different between the groups. After treatment, BP was reduced significantly in both groups but fell more in the intensive group (26/17 versus 15/5 mm Hg; Phypertension increases CBF, compared with BP lowering to usual target. These findings suggest hypertension in older people shifts the autoregulatory CBF curve rightward and downward and is reversible with BP lowering.

  12. Comparison of instruments for investigation of microcirculatory blood flow and red blood cell concentration

    Science.gov (United States)

    O'Doherty, Jim; McNamara, Paul; Clancy, Neil T.; Enfield, Joey G.; Leahy, Martin J.

    2009-05-01

    The use of laser Doppler perfusion imaging (LDPI) and laser speckle perfusion imaging (LSPI) is well known in the noninvasive investigation of microcirculatory blood flow. This work compares the two techniques with the recently developed tissue viability (TiVi) imaging system, which is proposed as a useful tool to quantify red blood cell concentration in microcirculation. Three systems are evaluated with common skin tests such as the use of vasodilating and vasoconstricting drugs (methlynicotinate and clobetasol, respectively) and a reactive hyperaemia maneuver (using a sphygmomanometer). The devices investigated are the laser Doppler line scanner (LDLS), the laser speckle perfusion imager (FLPI)-both from Moor Instruments (Axminster, United Kingdom)-and the TiVi imaging system (WheelsBridge AB, Linköping, Sweden). Both imaging and point scanning by the devices are used to quantify the provoked reactions. Perfusion images of vasodilatation and vasoconstriction are acquired with both LDLS and FLPI, while TiVi images are acquired with the TiVi imager. Time acquisitions of an averaged region of interest are acquired for temporal studies such as the reactive hyperaemia. In contrast to the change in perfusion over time with pressure, the TiVi imager shows a different response due its measurement of blood concentration rather than perfusion. The responses can be explained by physiological understanding. Although the three devices sample different compartments of tissue, and output essentially different variables, comparisons can be seen between the three systems. The LDLS system proves to be suited to measurement of perfusion in deeper vessels, while FLPI and TiVi showed sensitivity to more superficial nutritional supply. LDLS and FLPI are insensitive to the action of the vasoconstrictor, while TiVi shows the clear boundaries of the reaction. Assessment of the resolution, penetration depth, and acquisition rate of each instrument show complimentary features that should

  13. In vivo analysis of physiological 3D blood flow of cerebral veins

    Energy Technology Data Exchange (ETDEWEB)

    Schuchardt, Florian; Schroeder, Laure; Baeuerle, Jochen; Harloff, Andreas [University Medical Centre, Department of Neurology, Freiburg (Germany); Anastasopoulos, Constantin [University Medical Center, Department of Neuropaediatrics and Muscle Disorders, Freiburg (Germany); University Medical Centre, Department of Neuroradiology, Freiburg (Germany); Markl, Michael [Northwestern University, Department of Radiology, Feinberg School of Medicine and McCormick School of Engineering, Chicago, IL (United States); Hennemuth, Anja; Drexl, Johann [Fraunhofer MEVIS, Bremen (Germany); Valdueza, Jose M. [Neurological Center, Segeberger Kliniken, Bad Segeberg (Germany); Mader, Irina [University Medical Centre, Department of Neuroradiology, Freiburg (Germany)

    2015-08-15

    To visualize and quantify physiological blood flow of intracranial veins in vivo using time-resolved, 3D phase-contrast MRI (4D flow MRI), and to test measurement accuracy. Fifteen healthy volunteers underwent repeated ECG-triggered 4D flow MRI (3 Tesla, 32-channel head coil). Intracranial venous blood flow was analysed using dedicated software allowing for blood flow visualization and quantification in analysis planes at the superior sagittal, straight, and transverse sinuses. MRI was evaluated for intra- and inter-observer agreement and scan-rescan reproducibility. Measurements of the transverse sinuses were compared with transcranial two-dimensional duplex ultrasound. Visualization of 3D blood flow within cerebral sinuses was feasible in 100 % and within at least one deep cerebral vein in 87 % of the volunteers. Blood flow velocity/volume increased along the superior sagittal sinus and was lower in the left compared to the right transverse sinus. Intra- and inter-observer reliability and reproducibility of blood flow velocity (mean difference 0.01/0.02/0.02 m/s) and volume (mean difference 0.0002/-0.0003/0.00003 l/s) were good to excellent. High/low velocities were more pronounced (8 % overestimation/9 % underestimation) in MRI compared to ultrasound. Four-dimensional flow MRI reliably visualizes and quantifies three-dimensional cerebral venous blood flow in vivo and is promising for studies in patients with sinus thrombosis and related diseases. (orig.)

  14. Fast Blood Vector Velocity Imaging using ultrasound: In-vivo examples of complex blood flow in the vascular system

    DEFF Research Database (Denmark)

    Hansen, Kristoffer Lindskov; Udesen, Jesper; Gran, Fredrik;

    2008-01-01

    speckle tracking between segments in consecutive speckle images. The flow patterns of six bifurcations and two veins were investigated in-vivo. It was shown: 1) that a stable vortex in the carotid bulb was present opposed to other examined bifurcations, 2) that retrograde flow was present......Conventional ultrasound methods for acquiring color flow images of the blood motion are restricted by a relatively low frame rate and angle dependent velocity estimates. The Plane Wave Excitation (PWE) method has been proposed to solve these limitations. The frame rate can be increased, and the 2-D...... vector velocity of the blood motion can be estimated. The transmitted pulse is not focused, and a full speckle image of the blood can be acquired for each emission. A 13 bit Barker code is transmitted simultaneously from each transducer element. The 2-D vector velocity of the blood is found using 2-D...

  15. Determining tumor blood flow parameters from dynamic image measurements

    Science.gov (United States)

    Libertini, Jessica M.

    2008-11-01

    Many recent cancer treatments focus on preventing angiogenesis, the process by which a tumor promotes the growth of large and efficient capillary beds for the increased nourishment required to support the tumor's rapid growth[l]. To measure the efficacy of these treatments in a timely fashion, there is an interest in using data from dynamic sequences of contrast-enhanced medical imaging, such as MRI and CT, to measure blood flow parameters such as perfusion, permeability-surface-area product, and the relative volumes of the plasma and extracellular-extravascular space. Starting with a two compartment model presented by the radiology community[2], this work challenges the application of a simplification to this problem, which was originally developed to model capillary reuptake[3]. While the primary result of this work is the demonstration of the inaccuracy of this simplification, the remainder of the paper is dedicated to presenting alternative methods for calculating the perfusion and plasma volume coefficients. These methods are applied to model data sets based on real patient data, and preliminary results are presented.

  16. Determining tumor blood flow parameters from dynamic image measurements

    Energy Technology Data Exchange (ETDEWEB)

    Libertini, Jessica M [Division of Applied Mathematics, Brown University, Providence, Rhode Island 02906 (United States)], E-mail: Jessica_Libertini@brown.edu

    2008-11-01

    Many recent cancer treatments focus on preventing angiogenesis, the process by which a tumor promotes the growth of large and efficient capillary beds for the increased nourishment required to support the tumor's rapid growth. To measure the efficacy of these treatments in a timely fashion, there is an interest in using data from dynamic sequences of contrast-enhanced medical imaging, such as MRI and CT, to measure blood flow parameters such as perfusion, permeability-surface-area product, and the relative volumes of the plasma and extracellular-extravascular space. Starting with a two compartment model presented by the radiology community, this work challenges the application of a simplification to this problem, which was originally developed to model capillary reuptake. While the primary result of this work is the demonstration of the inaccuracy of this simplification, the remainder of the paper is dedicated to presenting alternative methods for calculating the perfusion and plasma volume coefficients. These methods are applied to model data sets based on real patient data, and preliminary results are presented.

  17. Blood flow dynamics, atherosclerosis and bypass graft failure.

    Science.gov (United States)

    Langille, B L; Ojha, M

    1997-05-01

    Atherosclerosis occurs at reproducible sites in the arterial tree and intimal proliferation that leads to bypass graft occlusion also show a well-defined focal distribution. These observations have led to the hypothesis that local blood flow conditions, especially low or fluctuating shear stresses, are important in the development of both disorders. Basic research using both cell culture and animal models has revealed that endothelial cell biology is very sensitive to local shear stresses and rapid progress is being made in characterizing how endothelial cells transduce shear stress. Endothelial sensitivity to shear stress affects control of hemostasis, leukocyte adherence and transmigration, growth factor production, vasomotor responses, endothelial repair and arterial wall remodeling, all of which can be expected to influence development of vascular pathologies. Also, substantial progress has been made in characterizing complex local hemodynamics at relevant arterial sites; however, further progress is needed in this area, as well as in the extrapolation of advances in basic vascular biology to human vascular disease. (Trends Cardiovasc Med 1997;7:111-118). © 1997, Elsevier Science Inc.

  18. Cerebral blood flow in sickle cell cerebrovascular disease

    Energy Technology Data Exchange (ETDEWEB)

    Huttenlocher, P.R.; Moohr, J.W.; Johns, L.; Brown, F.D.

    1984-05-01

    Cerebral blood flow (CBF) has been studied by the xenon-133 (/sup 133/Xe) inhalation method in 16 children with suspected sickle cell cerebrovascular disease. Abnormalities consisting of decreases in total, hemispheral, or regional CBF were found in 17 of 26 studies. Eleven studies performed immediately after stroke, transient ischemic attack, or depression of state of alertness showed abnormalities. In addition to confirming regional cerebrovascular insufficiency in children with stroke due to major cerebral artery occlusion, the method detected diffuse decrease in CBF in children with stupor, coma, and seizures who had normal angiographic findings. In contrast, six of seven studies obtained after exchange transfusion or during maintenance on hypertransfusion therapy showed normal findings. The difference between results in patients with acute neurologic disturbances and those receiving transfusion therapy was statistically significant (P less than .005). The data indicate that the /sup 133/Xe method reliably demonstrates cerebrovascular impairment in sickle cell disease. They also suggest that CBF changes in patients with sickle cell disease can be reversed by exchange transfusion and by hypertransfusion therapy. The /sup 133/Xe CBF method may be useful for following up children with sickle cell disease who are at high risk for recurrent stroke.

  19. Unveiling astrocytic control of cerebral blood flow with optogenetics.

    Science.gov (United States)

    Masamoto, Kazuto; Unekawa, Miyuki; Watanabe, Tatsushi; Toriumi, Haruki; Takuwa, Hiroyuki; Kawaguchi, Hiroshi; Kanno, Iwao; Matsui, Ko; Tanaka, Kenji F; Tomita, Yutaka; Suzuki, Norihiro

    2015-06-16

    Cortical neural activities lead to changes in the cerebral blood flow (CBF), which involves astrocytic control of cerebrovascular tone. However, the manner in which astrocytic activity specifically leads to vasodilation or vasoconstriction is difficult to determine. Here, cortical astrocytes genetically expressing a light-sensitive cation channel, channelrhodopsin-2 (ChR2), were transcranially activated with a blue laser while the spatiotemporal changes in CBF were noninvasively monitored with laser speckle flowgraphy in the anesthetised mouse cortex. A brief photostimulation induced a fast transient increase in CBF. The average response onset time was 0.7 ± 0.7 sec at the activation foci, and this CBF increase spread widely from the irradiation spot with an apparent propagation speed of 0.8-1.1 mm/sec. The broad increase in the CBF could be due to a propagation of diffusible vasoactive signals derived from the stimulated astrocytes. Pharmacological manipulation showed that topical administration of a K(+) channel inhibitor (BaCl2; 0.1-0.5 mM) significantly reduced the photostimulation-induced CBF responses, which indicates that the ChR2-evoked astrocytic activity involves K(+) signalling to the vascular smooth muscle cells. These findings demonstrate a unique model for exploring the role of the astrocytes in gliovascular coupling using non-invasive, time-controlled, cell-type specific perturbations.

  20. Analysis of Systolic Backflow and Secondary Helical Blood Flow in the Ascending Aorta Using Vector Flow Imaging

    DEFF Research Database (Denmark)

    Hansen, Kristoffer Lindskov; Møller-Sørensen, Hasse; Kjaergaard, Jesper

    2016-01-01

    Secondary rotational flow and systolic backflow are seen in the ascending aorta and, in this study, were analyzed with the vector velocity method transverse oscillation. Twenty-five patients were scanned intra-operatively, and the vector velocities were related to estimates of transesophageal...... that backflow is injurious and that secondary flow is a normal flow phenomenon. The study also shows that transverse oscillation can provide new information on blood flow in the ascending aorta....

  1. Blood flow dynamics and sensitivity in breasts after reconstruction with DIEP-flap.

    Science.gov (United States)

    Klasson, Stina; Svensson, Karin; Wollmer, Per; Velander, Patrik; Svensson, Henry

    2014-12-01

    A method of breast reconstruction is based on the Deep Inferior Epigastric Perforator (DIEP) technique. Skin and fat are transplanted from the abdomen to the chest; blood vessels are reconnected through microsurgery. Nerves are, however, left unconnected. This study aims to evaluate the blood flow and reinnervation of blood vessels and skin in breasts reconstructed by DIEP flaps without neural repair. In all, DIEP flaps of 10 patients were tested at an average of 16.3 months postoperatively. Blood flow was assessed by PeriScan PIM II System, both before and after indirect heating. Tactile perception threshold was assessed by Semmes-Weinstein monofilament and thermal sensibility by SENSELab MSA Thermotest. The patients' contralateral breasts were used as controls. The blood flow of the flaps was statistically significantly lower than in the control breasts, both before and after indirect heating. The change in blood flow after indirect heating did, however, not significantly differ when comparing the breasts. All flaps regained deep pressure sensibility in all four quadrants. Five patients regained even better sensibility in one of their quadrants. Seven patients regained perception of cold stimuli, five perceived warmth. This study has shown that skin blood flow regulation is present in DIEP flaps 1 year after reconstruction. Blood flow dynamics are very similar to those in the normal breast. There is also a recovery of tactile and thermal sensibility, but this study has not shown any clear parallels between recovery blood flow, tactile sensibility and thermal sensibility.

  2. Measurement of temperature decrease caused by blood flow in focused ultrasound irradiation by thermal imaging method

    Science.gov (United States)

    Tsuchiya, Takenobu; Hatano, Yuichi; Mori, Yashunori; Shen, Rakushin; Endoh, Nobuyuki

    2016-07-01

    In this study, to estimate the local temperature changes caused by a thick blood vessel, the temperature distribution in a tissue phantom with a thick blood vessel during focused ultrasound irradiation was measured by a thermal imaging method. The blood flow rate in the simulated blood vessel was varied and the relationship between flow rate and temperature decrease was examined. The phantom using the thermal imaging method is divided into two parts, and the increases in temperature distribution as a function of blood flow rate are measured using a thermocamera under constant ultrasound irradiation. The irradiation conditions of ultrasound waves were a central frequency of 1 MHz, a wave number length of 200 cycles, and a duty ratio of 0.2. The irradiation duration was 5 min, and the ultrasound intensity I SPTA was 36 W/cm2. The amount of temperature decrease caused by the cooling effect of blood flow increased with the blood flow rate and it became constant at a certain threshold of blood flow rate. The threshold of blood flow rate is about 250 ml/min.

  3. Evaluation of changes of intracranial blood flow after carotid artery stenting using digital subtraction angiography flow assessment

    Institute of Scientific and Technical Information of China (English)

    Hajime; Wada; Masato; Saito; Kyousuke; Kamada

    2015-01-01

    AIM: To evaluate the changes of intracranial blood flow after carotid artery stenting(CAS), using the flow assessment application "Flow-Insight", which was developed in our department.METHODS: Twenty patients treated by CAS participated in this study. We analyzed the change in concentration of the contrast media at the anterior-posterior and profile view image with the flow assessment application "Flow-Insight". And we compared the results with N-isopropyl-p-[123I] iodoamphetamine-single-photon emission computed tomography(IMP SPECT) performed before and after the treatment. RESULTS: From this study, 200% of the parameter "blood flow" change in the post/pre-treatment is suggested as the critical line of the hyperperfusion syndrome arise. Although the observed blood flow increase in the digital subtraction angiography system did not strongly correlate with the rate of increase of SPECT, the "Flow-Insight" reflected the rate of change of the vessels well. However, for patients with reduced reserve blood flow before CAS, a highly elevated site was in agreement with the site analysis results. CONCLUSION: We concluded that the cerebral angiography flow assessment application was able to more finely reveal hyperperfusion regions in the brain after CAS compared to SPECT.

  4. Insulin partially reverses deficits in peripheral nerve blood flow and conduction in experimental diabetes

    NARCIS (Netherlands)

    Gispen, W.H.; Biessels, G.J.; Stevens, E.J.; Mahmood, S.J.; Tomlinson, D.R.

    1996-01-01

    Decreased nerve blood flow may be a pathogenetic factor in diabetic neuropathy. Previously it was shown that insulin treatment, commenced at the onset of streptozotocin-diabetes, prevents the development of a nerve blood flow deficit in the diabetic rat. The present study sought to determine the eff

  5. Blood flow response to electrically induced twitch and tetanic lower-limb muscle contractions.

    NARCIS (Netherlands)

    Janssen, T.W.; Hopman, M.T.E.

    2003-01-01

    OBJECTIVES: To compare the effect of electric stimulation (ES)-induced twitch with tetanic leg muscle contractions on blood flow responses and to assess blood flow responses in the contralateral inactive leg. DESIGN: Intervention with within-subject comparisons. SETTING: University research laborato

  6. Effect of intracapsular hyperpressure on femoral head blood flow. Laser Doppler flowmetry in dogs.

    Science.gov (United States)

    Vegter, J; Klopper, P J

    1991-08-01

    Intracapsular hyperpressure in the hip joint of dogs affected femoral head blood flow, especially in the juvenile animals. Graphic recording of the laser Doppler signal curve using rapid sampling time demonstrated venous hip joint tamponade in both juvenile and adult dogs. Laser Doppler flowmetry seems to be a sensitive and reproducible method to demonstrate femoral-head blood-flow changes.

  7. Effects of inspiratory resistance, inhaled beta-agonists and histamine on canine tracheal blood flow

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, W.T.; Baile, E.M.; Brancatisano, A.; Pare, P.D.; Engel, L.A. (Dept. of Respiratory Medicine, Westmead Hospital, Westmead, NSW (Australia))

    1992-01-01

    Tracheobronchial blood flow is potentially important in asthma as it could either influence the clearance of mediators form the airways, thus affecting the duration and severity of bronchoispasm, or enhance oedema formation with a resultant increase in airflow obstruction. In anaesthetized dogs, spontaneously breathing via a tracheostomy, we investigated the effects of three interventions which are relevant to acute asthma attacks and could potentially influence blood flow and its distribution to the mucosa and remaining tissues of the trachea: (1) increased negative intrathoracic pressure swings (-25[+-]1 cmH[sub 2]O) induced by an inspiratory resistance; (2) variable inhaled doses of a beta-adrenoceptor-agonist (terbutaline); and (3) aerosolized histamine sufficient to produce a threefold increase in pulmonary resistance. Microspheres labelled with different radioisotopes were used to measure blood flow. Resistive breathing did not influence tracheobronchial blood flow. Following a large dose of terbutaline, mucosal blood flow (Qmb) increased by 50%. After inhaled histamine, Qmb reached 265% of the baseline value. We conclude that, whereas increased negative pressure swings do not influence tracheobronchial blood flow or its distribution, inhalation of aerosolized terbutaline, corresponding to a conventionally nebulized dose, increases mucosal blood flow. Our results also confirm that inhaled histamine, in a dose sufficient to produce moderate bronchoconstriction, increases tracheal mucosal blood flow in the area of deposition. (au).

  8. Phase-Contrast Magnetic Resonance Angiography Measurements of Global Cerebral Blood Flow in the Neonate

    NARCIS (Netherlands)

    Benders, Manon J. N. L.; Hendrikse, Jeroen; de Vries, Linda S.; van Bel, Frank; Groenendaal, Floris

    2011-01-01

    Cerebral blood flow (CBF) alterations are important in pathogenesis of neonatal ischemic/hemorrhagic brain damage. In clinical practice, estimation of neonatal CBF is mostly based on Doppler-measured blood flow velocities in major intracranial arteries. Using phase-contrast magnetic resonance angiog

  9. Cerebral oxygen extraction, oxygen consumption, and regional cerebral blood flow during the aura phase of migraine

    DEFF Research Database (Denmark)

    Friberg, L; Olesen, Jes; Lassen, N A

    1994-01-01

    The aura phase of migraine is associated with focal blood flow changes, but it has been largely unknown whether these changes are correlated to changes in the cerebral metabolism.......The aura phase of migraine is associated with focal blood flow changes, but it has been largely unknown whether these changes are correlated to changes in the cerebral metabolism....

  10. Leg blood flow measurements using venous occlusion plethysmography during head-up tilt.

    NARCIS (Netherlands)

    Kooijman, M.; Poelkens, F.; Rongen, G.A.; Smits, P.; Hopman, M.T.E.

    2007-01-01

    We tested whether venous occlusion plethysmography (VOP) is an appropriate method to measure calf blood flow (CBF) during head-up tilt (HUT). CBF measured with VOP was compared with superficial femoral artery blood flow as measured by Doppler ultrasound during incremental tilt angles. Measurements o

  11. Dynamic noise correction for IVUS quantitative volume blood flow: methods and numerical validation.

    NARCIS (Netherlands)

    Lupotti, F.A.; Korte, C.L. de; Mastik, F.; Steen, A.F.W. van der

    2002-01-01

    In recent years, a new method to measure transverse blood flow based on the decorrelation of the radio-frequency (RF) signals, has been developed. Transverse blood flow estimation may be influenced by noise. In this paper, we investigated a new correlation-based method for noise correction. The deco

  12. Should blood flow during cardiopulmonary bypass be individualized more than to body surface area?

    DEFF Research Database (Denmark)

    Thomassen, Sisse Anette; Larsson, A; Andreasen, Jan Jesper;

    Blood flow during cardiopulmonary bypass (CPB) is calculated on body surface area (BSA). Increasing comorbidity, age and weight of today's cardiac patients question this calculation as it may not reflect individual metabolic requirement. The hypothesis was that a measured cardiac index (CI) prior...... not improve cerebral and systemic oxygenation compared to a blood flow based on BSA....

  13. Regional blood flow during exercise in humans measured by near-infrared spectroscopy and indocyanine green

    DEFF Research Database (Denmark)

    Boushel, R; Langberg, Henning; Olesen, J;

    2000-01-01

    Using near-infrared spectroscopy (NIRS) and the tracer indocyanine green (ICG), we quantified blood flow in calf muscle and around the Achilles tendon during plantar flexion (1-9 W). For comparison, blood flow in calf muscle was determined by dye dilution in combination with magnetic resonance im...

  14. Effect of spinal sympathetic blockade upon postural changes of blood flow in human peripheral tissues

    DEFF Research Database (Denmark)

    Skagen, K; Haxholdt, O; Henriksen, O

    1982-01-01

    local nervous blockade was induced by Lidocaine in 133Xe labelled subcutaneous tissue on one side. During epidural blockade and tilt blood flow increased by 12% whereas blood flow decreased by 30% on the control side. Thus epidural blockade had no influence on the vasoconstrictor response...

  15. Adrenergically stimulated blood flow in brown adipose tissue is not dependent on thermogenesis.

    Science.gov (United States)

    Abreu-Vieira, Gustavo; Hagberg, Carolina E; Spalding, Kirsty L; Cannon, Barbara; Nedergaard, Jan

    2015-05-01

    Brown adipose tissue (BAT) thermogenesis relies on blood flow to be supplied with nutrients and oxygen and for the distribution of the generated heat to the rest of the body. Therefore, it is fundamental to understand the mechanisms by which blood flow is regulated and its relation to thermogenesis. Here, we present high-resolution laser-Doppler imaging (HR-LDR) as a novel method for noninvasive in vivo measurement of BAT blood flow in mice. Using HR-LDR, we found that norepinephrine stimulation increases BAT blood flow in a dose-dependent manner and that this response is profoundly modulated by environmental temperature acclimation. Surprisingly, we found that mice lacking uncoupling protein 1 (UCP1) have fully preserved BAT blood flow response to norepinephrine despite failing to perform thermogenesis. BAT blood flow was not directly correlated to systemic glycemia, but glucose injections could transiently increase tissue perfusion. Inguinal white adipose tissue, also known as a brite/beige adipose tissue, was also sensitive to cold acclimation and similarly increased blood flow in response to norepinephrine. In conclusion, using a novel noninvasive method to detect BAT perfusion, we demonstrate that adrenergically stimulated BAT blood flow is qualitatively and quantitatively fully independent of thermogenesis, and therefore, it is not a reliable parameter for the estimation of BAT activation and heat generation.

  16. Changes in subcutaneous blood flow during locally applied negative pressure to the skin

    DEFF Research Database (Denmark)

    Skagen, K; Henriksen, O

    1983-01-01

    The effect of locally applied subatmospheric pressure on subcutaneous blood flow was studied in 12 healthy subjects. Blood flow was measured on the forearm by the local 133Xe wash-out technique. Air suction between 10 mmHg and 250 mmHg was applied to the skin. Subatmospheric pressure of 20 mmHg c...

  17. Quantitative evaluation of myocardial function by a volume-normalized map generated from relative blood flow

    Energy Technology Data Exchange (ETDEWEB)

    Fukami, Tadanori [Department of Bio-system Engineering, Faculty of Engineering, Yamagata University, Yonezawa, Yamagata 992-8510 (Japan); Sato, Hidenori [Department of Bio-system Engineering, Faculty of Engineering, Yamagata University, Yonezawa, Yamagata 992-8510 (Japan); Wu, Jin [Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki 305-8575 (Japan); Lwin, Thet-Thet- [Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki 305-8575 (Japan); Yuasa, Tetsuya [Department of Bio-system Engineering, Faculty of Engineering, Yamagata University, Yonezawa, Yamagata 992-8510 (Japan); Kawano, Satoru [Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki 305-8575 (Japan); Iida, Keiji [Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki 305-8575 (Japan); Akatsuka, Takao [Department of Bio-system Engineering, Faculty of Engineering, Yamagata University, Yonezawa, Yamagata 992-8510 (Japan); Hontani, Hidekata [Department of Computer Science and Engineering, Nagoya Institute of Technology, Aichi 466-8555 (Japan); Takeda, Tohoru [Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki 305-8575 (Japan); Tamura, Masao [Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki 305-8575 (Japan); Yokota, Hiroshi [Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki 305-8575 (Japan)

    2007-07-21

    Our study aimed to quantitatively evaluate blood flow in the left ventricle (LV) of apical hypertrophic cardiomyopathy (APH) by combining wall thickness obtained from cardiac magnetic resonance imaging (MRI) and myocardial perfusion from single-photon emission computed tomography (SPECT). In this study, we considered paired MRI and myocardial perfusion SPECT from ten patients with APH and ten normals. Myocardial walls were detected using a level set method, and blood flow per unit myocardial volume was calculated using 3D surface-based registration between the MRI and SPECT images. We defined relative blood flow based on the maximum in the whole myocardial region. Accuracies of wall detection and registration were around 2.50 mm and 2.95 mm, respectively. We finally created a bull's-eye map to evaluate wall thickness, blood flow (cardiac perfusion) and blood flow per unit myocardial volume. In patients with APH, their wall thicknesses were over 10 mm. Decreased blood flow per unit myocardial volume was detected in the cardiac apex by calculation using wall thickness from MRI and blood flow from SPECT. The relative unit blood flow of the APH group was 1/7 times that of the normals in the apex. This normalization by myocardial volume distinguishes cases of APH whose SPECT images resemble the distributions of normal cases.

  18. A disturbed macrocirculatory supply as a determinant for a reduced sciatic nerve blood flow in diabetic rats

    NARCIS (Netherlands)

    Gispen, W.H.; Buren, Th. van; Kappelle, A.C.; Kasbergen, C.M.; Wildt, D.J. de

    1996-01-01

    The aim of this study was to evaluate macrocirculatory disturbances in relation to the reduced sciatic nerve blood flow seen in diabetic rats. Therefore, both femoral blood flow, the macrocirculatory arterial blood supply to the sciatic nerve, and the microcirculatory neuronal blood flow were measur

  19. Magnetic field effect on blood flow of Casson fluid in axisymmetric cylindrical tube: A fractional model

    Science.gov (United States)

    Ali, Farhad; Sheikh, Nadeem Ahmad; Khan, Ilyas; Saqib, Muhammad

    2017-02-01

    The effects of magnetohydrodynamics on the blood flow when blood is represented as a Casson fluid, along with magnetic particles in a horizontal cylinder is studied. The flow is due to an oscillating pressure gradient. The Laplace and finite Hankel transforms are used to obtain the closed form solutions of the fractional partial differential equations. Effects of various parameters on the flow of both blood and magnetic particles are shown graphically. The analysis shows that, the model with fractional order derivatives bring a remarkable changes as compared to the ordinary model. The study highlights that applied magnetic field reduces the velocities of both the blood and magnetic particles.

  20. Impaired autoregulation of glomerular filtration rate in type 1 (insulin-dependent) diabetic patients with nephropathy

    DEFF Research Database (Denmark)

    Parving, H H; Kastrup, Helge; Smidt, U M

    1984-01-01

    The effect of acute lowering of arterial blood pressure upon kidney function in nephropathy was studied in 13 patients with long-term Type 1 (insulin-dependent) diabetes. Ten normal subjects (six normotensive and four hypertensive) and five short-term Type 1 diabetic patients without nephropathy...... micrograms) or saline (0.154 mmol/l). The arterial blood pressure was similar in the diabetic patients with nephropathy (mean 136 +/- 11 divided by 88 +/- mmHg) and in the non-diabetic control subjects (mean 140 +/- 25 divided by 92 +/- 15 mmHg). The clonidine injection induced similar reductions in mean...... excretion declined from 1707 to 938 micrograms/min (p less than 0.01) in the patients with diabetic nephropathy. Our results suggest that an intrinsic vascular (arteriolar) mechanism underlying the normal autoregulation of glomerular filtration rate, i.e. the relative constancy of glomerular filtration rate...

  1. Numerical simulation of the non-Newtonian blood flow through a mechanical aortic valve. Non-Newtonian blood flow in the aortic root

    Science.gov (United States)

    De Vita, F.; de Tullio, M. D.; Verzicco, R.

    2016-04-01

    This work focuses on the comparison between Newtonian and non-Newtonian blood flows through a bileaflet mechanical heart valve in the aortic root. The blood, in fact, is a concentrated suspension of cells, mainly red blood cells, in a Newtonian matrix, the plasma, and consequently its overall behavior is that of a non-Newtonian fluid owing to the action of the cells' membrane on the fluid part. The common practice, however, assumes the blood in large vessels as a Newtonian fluid since the shear rate is generally high and the effective viscosity becomes independent of the former. In this paper, we show that this is not always the case even in the aorta, the largest artery of the systemic circulation, owing to the pulsatile and transitional nature of the flow. Unexpectedly, for most of the pulsating cycle and in a large part of the fluid volume, the shear rate is smaller than the threshold level for the blood to display a constant effective viscosity and its shear thinning character might affect the system dynamics. A direct inspection of the various flow features has shown that the valve dynamics, the transvalvular pressure drop and the large-scale features of the flow are very similar for the Newtonian and non-Newtonian fluid models. On the other hand, the mechanical damage of the red blood cells (hemolysis), induced by the altered stress values in the flow, is larger for the non-Newtonian fluid model than for the Newtonian one.

  2. Changes in cortisol level in saliva following relaxation-activation autoregulative intervention.

    Science.gov (United States)

    Machac, M; Machacová, H; Stárka, L; Hampl, R

    1987-09-01

    The relaxation-activation autoregulative method (RAM) is a psychoregulative procedure characterized by typical autonomic patterns of relaxation and activation phases (blood pressure, electric skin resistance, heart beat, EEG, etc.). They are used as feedback information in the training of autoregulative abilities. RAM has a multidimensional (non-specific) tuning effect which is manifested by changes in the psychophysiological state (emotional tuning, physiological functioning and performance). It has a therapeutical effect on disorders with a psychic pathogenic component, e.g., essential hypertension. The increased production of adrenaline following the application of RAM was found in previous experiments.--The present experiment with a sample of six persons well mastering RAM has shown that the cortisol level following this psychoregulative intervention also rises significantly and that this rise has been recorded over three days, i.e., over the whole period of saliva sampling. It may be said that RAM has a non-specific, ergotropic (activating) subsequent effect and that this effect has the character of stress, more accurately eustress. Autogenic training, on the other hand, reduces the cortisol level.

  3. Precision of coherence analysis to detect cerebral autoregulation by near-infrared spectroscopy in preterm infants

    Science.gov (United States)

    Hahn, Gitte Holst; Christensen, Karl Bang; Leung, Terence S.; Greisen, Gorm

    2010-05-01

    Coherence between spontaneous fluctuations in arterial blood pressure (ABP) and the cerebral near-infrared spectroscopy signal can detect cerebral autoregulation. Because reliable measurement depends on signals with high signal-to-noise ratio, we hypothesized that coherence is more precisely determined when fluctuations in ABP are large rather than small. Therefore, we investigated whether adjusting for variability in ABP (variabilityABP) improves precision. We examined the impact of variabilityABP within the power spectrum in each measurement and between repeated measurements in preterm infants. We also examined total monitoring time required to discriminate among infants with a simulation study. We studied 22 preterm infants (GA<30) yielding 215 10-min measurements. Surprisingly, adjusting for variabilityABP within the power spectrum did not improve the precision. However, adjusting for the variabilityABP among repeated measurements (i.e., weighting measurements with high variabilityABP in favor of those with low) improved the precision. The evidence of drift in individual infants was weak. Minimum monitoring time needed to discriminate among infants was 1.3-3.7 h. Coherence analysis in low frequencies (0.04-0.1 Hz) had higher precision and statistically more power than in very low frequencies (0.003-0.04 Hz). In conclusion, a reliable detection of cerebral autoregulation takes hours and the precision is improved by adjusting for variabilityABP between repeated measurements.

  4. Cerebral blood flow, oxygen and glucose metabolism with PET in progressive supranuclear palsy

    Energy Technology Data Exchange (ETDEWEB)

    Otsuka, Makoto; Ichiya, Yuici; Kuwabara, Yasuo (Kyushu Univ., Fukuoka (Japan). Faculty of Medicine) (and others)

    1989-11-01

    Cerebral blood flow, cerebral oxygen metabolic rate and cerebral glucose metabolic rate were measured with positron emission tomography (PET) in four patients with progressive supranuclear palsy (PSP). Decreased blood flow and hypometabolism of oxygen and glucose were found in both subcortical and cortical regions, particularly in the striatum including the head of the caudate nucleus and the frontal cortex. The coupling between blood flow and metabolism was preserved even in the regions which showed decreased blood flow and hypometabolism. These findings indicated the hypofunction, as revealed by decreased blood flow and hypometablolism on PET, both in the striatum and the frontal cortex, and which may underlie the pathophysiological mechanism of motor and mental disturbance in PSP. (author).

  5. Peculiarities of Blood Flow Changes in Venae Cavae during Experimental Pulmonary Embolism.

    Science.gov (United States)

    Evlakhov, V I; Poyassov, I Z; Shaidakov, E V

    2016-10-01

    The model of acute pulmonary embolism in rabbits demonstrated reduced pulmonary blood flow, cardiac output, left atrial pressure, and blood flow in venae cavae against the background of elevated left pulmonary artery pressure and increased pulmonary vascular resistance. Simultaneously, the blood flow in the superior vena cava decreased to a lesser extent than that in the inferior vena cava, which was a characteristic feature of the model of pulmonary pathology. In contrast, when histamine was infused into the left jugular vein to equally elevate pressure in pulmonary artery as in the above model, the blood flow in the superior vena cava decreased to a greater extent than that in inferior vena cava. During stenosis of inferior vena cava that decreased the cardiac output to the level observed during modeled pulmonary embolism, the blood flows in both venae cavae dropped equally.

  6. Micro-PIV quantification of capillary blood flow redistribution caused by laser-assisted vascular occlusion

    Science.gov (United States)

    Kurochkin, Maxim A.; Stiukhina, Elena S.; Fedosov, Ivan V.; Postnov, Dmitry E.; Tuchin, Valery V.

    2016-04-01

    We propose μPIV-based technique for quantitative assessment of blood flow redistribution in microcirculatory networks. Our approach is based on per-segment averaging of measured quantities so we can avoid most of problems that are typical for point-wise measurements. The key point of our technique is the digital processing algorithms of recorded data that include: capillary network axial line construction; interrogation regions centering; blood flow velocity local estimate using PIV approach; blood flow velocity calculation by means of averaging over entire vessel segment; the calculation of blood volume flow rate map. We illustrate the application of developed technique with in vivo measurements and blood flow velocity map reconstruction for chorioallantoic membrane (CAM) of chicken embryo, in which the local vascular occlusion was produced using continuous wave laser light irradiation..

  7. Elevated Skin Blood Flow Influences Near Infrared Spectroscopy Measurements During Supine Rest

    Science.gov (United States)

    Lee, Stuart M. C.; Clarke, Mark S. F.

    2004-01-01

    Near infrared spectroscopy is a non-invasive technique that allows determination of tissue oxygenation/blood flow based on spectrophotometric quantitation of oxy- and deoxyhemoglobin present within a tissue. This technique has gained acceptance as a means of detecting and quantifying changes in tissue blood flow due to physiological perturbation, such as that which is elicited in skeletal muscle during exercise. Since the NIRS technique requires light to penetrate the skin and subcutaneous fat in order to reach the muscle of interest, changes in skin blood flow may alter the NIRS signal in a fashion unrelated to blood flow in the muscle of interest. The aim of this study was to determine the contribution of skin blood flow to the NIRS signal obtained from resting vastus lateralis muscle of the thigh.

  8. Blood flow and epithelial thickness in different regions of feline oral mucosa and skin.

    Science.gov (United States)

    Johnson, G K; Squier, C A; Johnson, W T; Todd, G L

    1987-07-01

    The relationship between epithelial thickness and blood flow was examined in 6 mucosal and 3 skin regions of the cat. Blood flow to these tissues was determined using the radiolabelled microsphere method. From histologic sections the proportion of the tissue biopsy occupied by epithelium and the average epithelial thickness were calculated. The oral tissues had a significantly higher blood flow than the skin regions (p less than 0.05). In terms of epithelial thickness, the tissues could be divided into 4 groups (p less than 0.05). These were: a) palate; b) gingival regions and dorsum of the tongue; c) lip and buccal mucosa; d) all skin regions. When epithelial thickness was related to blood flow there was a significant positive correlation (p less than 0.005) indicating that a thicker epithelium is associated with a higher blood flow. This finding may reflect the greater metabolic demands of the thicker epithelia.

  9. Transcranial Doppler-determined change in posterior cerebral artery blood flow velocity does not reflect vertebral artery blood flow during exercise.

    Science.gov (United States)

    Washio, Takuro; Sasaki, Hiroyuki; Ogoh, Shigehiko

    2017-02-10

    We examined whether a change in posterior cerebral artery flow velocity (PCAv) reflected the posterior cerebral blood flow, in healthy subjects, during both static and dynamic exercise. PCAv and vertebral artery (VA) blood flow, as an index of posterior blood flow, were continuously measured during an exercise trial, using transcranial Doppler (TCD) ultrasonography and Doppler ultrasound, respectively. Static handgrip exercise significantly increased both PCAv and VA blood flow. Increasing intensity of dynamic exercise further increased VA blood flow from moderate exercise, while PCAv decreased to almost resting level. During both static and dynamic exercise, the PCA cerebrovascular conductance (CVC) index significantly decreased from rest (static and high intensity dynamic exercise; -11.5 ± 12.2% and -18.0 ± 16.8%; mean ± SD, respectively), despite no change in the CVC of VA. These results indicate that vasoconstriction occurred at PCA but not VA during exercise-induced hypertension. This discrepancy in vascular response to exercise between PCA and VA may be due to different cerebral arterial characteristics. Therefore, to determine the effect of exercise on posterior cerebral circulation, at least, we need to consider carefully which cerebral artery to measure, regardless of exercise mode.

  10. Modelling of the Blood Coagulation Cascade in an In Vitro Flow System

    DEFF Research Database (Denmark)

    Andersen, Nina Marianne; Sørensen, Mads Peter; Efendiev, Messoud A.;

    2010-01-01

    We derive a mathematical model of a part of the blood coagulation cascade set up in a perfusion experiment. Our purpose is to simulate the influence of blood flow and diffusion on the blood coagulation pathway. The resulting model consists of a system of partial differential equations taking into...... and flow equations, which guarantee non negative concentrations at all times. The criteria is applied to the model of the blood coagulation cascade.......We derive a mathematical model of a part of the blood coagulation cascade set up in a perfusion experiment. Our purpose is to simulate the influence of blood flow and diffusion on the blood coagulation pathway. The resulting model consists of a system of partial differential equations taking...

  11. Semiquantitative imaging measurement of baseline and vasomodulated normal prostatic blood flow using sildenafil

    Science.gov (United States)

    Haaga, JR; Exner, A; Fei, B; Seftel, AD

    2013-01-01

    The physiologic variability of blood flow to the prostate has not been studied until this time. We report the vasoactive effects of sildenafil and phenylephrine on blood flow of the normal prostate. Sildenafil increases prostate blood flow by approximately 75% and phenylephrine reduces the flow incrementally. Administration of these drugs with dynamic contrast-enhanced magnetic resonance imaging may improve the diagnosis of cancerous tissue because according to the literature, tumor angiogenic vessels lack the vasoactive physiologic response of the normal tissue. PMID:16728965

  12. Renal cortical and medullary blood flow responses to altered NO-availability in humans

    DEFF Research Database (Denmark)

    Damkjaer, Mads; Vafaee, Manoucher; Møller, Michael Lehd;

    2010-01-01

    of one voxel were eliminated stepwise from the external surface of the VOI ('voxel peeling'), and the blood flow subsequently determined in each new, reduced VOI. Blood flow in the shrinking volumes of interest (VOIs) decreased as the number of cycles of voxel peeling increased. After 4-5 cycles, blood...... flow was not reduced further by additional voxel peeling. This volume-insensitive flow was measured to be 2.30 ±0.17 ml·(g·min)(-1) during the control period; it increased during infusion of glyceryl nitrate to 2.97 ±0.18 ml·(g·min)(-1) (p...

  13. Topical negative pressure effects on coronary blood flow in a sternal wound model

    DEFF Research Database (Denmark)

    Lindstedt, Sandra; Malmsjö, Malin; Gesslein, Bodil;

    2008-01-01

    patients with topical negative pressure (TNP)-treated mediastinitis and CABG patients without mediastinitis. The present study was designed to elucidate if TNP, applied over the myocardium, resulted in an increase of the total amount of coronary blood flow. Six pigs underwent median sternotomy....... The coronary blood flow was measured, before and after the application of TNP (-50 mmHg), using coronary electromagnetic flow meter probes. Analyses were performed before left anterior descending artery (LAD) occlusion (normal myocardium) and after 20 minutes of LAD occlusion (ischaemic myocardium). Normal...... coronary blood flow in both normal and ischaemic myocardium....

  14. Experimental determination of blood permittivity and conductivity in simple shear flow.

    Science.gov (United States)

    Balan, Corneliu; Balut, Corina; Gheorghe, Liana; Gheorghe, Cristian; Gheorghiu, Eugen; Ursu, George

    2004-01-01

    The paper is concerned with the determination of blood permittivity and conductivity in Poiseuille and Couette simple shear flows. The experimental procedure, based on dielectric spectroscopy, evidences the sensitivity of blood electric properties to the applied frequency and local shear rate magnitude. The method evidences the possibility to correlate (for well-defined flow geometry) magnitude of shear rate, and consequently the shear stress level, with spectra permittivity of blood.

  15. Stability depends on positive autoregulation in Boolean gene regulatory networks.

    Directory of Open Access Journals (Sweden)

    Ricardo Pinho

    2014-11-01

    Full Text Available Network motifs have been identified as building blocks of regulatory networks, including gene regulatory networks (GRNs. The most basic motif, autoregulation, has been associated with bistability (when positive and with homeostasis and robustness to noise (when negative, but its general importance in network behavior is poorly understood. Moreover, how specific autoregulatory motifs are selected during evolution and how this relates to robustness is largely unknown. Here, we used a class of GRN models, Boolean networks, to investigate the relationship between autoregulation and network stability and robustness under various conditions. We ran evolutionary simulation experiments for different models of selection, including mutation and recombination. Each generation simulated the development of a population of organisms modeled by GRNs. We found that stability and robustness positively correlate with autoregulation; in all investigated scenarios, stable networks had mostly positive autoregulation. Assuming biological networks correspond to stable networks, these results suggest that biological networks should often be dominated by positive autoregulatory loops. This seems to be the case for most studied eukaryotic transcription factor networks, including those in yeast, flies and mammals.

  16. Stability Depends on Positive Autoregulation in Boolean Gene Regulatory Networks

    Science.gov (United States)

    Pinho, Ricardo; Garcia, Victor; Irimia, Manuel; Feldman, Marcus W.

    2014-01-01

    Network motifs have been identified as building blocks of regulatory networks, including gene regulatory networks (GRNs). The most basic motif, autoregulation, has been associated with bistability (when positive) and with homeostasis and robustness to noise (when negative), but its general importance in network behavior is poorly understood. Moreover, how specific autoregulatory motifs are selected during evolution and how this relates to robustness is largely unknown. Here, we used a class of GRN models, Boolean networks, to investigate the relationship between autoregulation and network stability and robustness under various conditions. We ran evolutionary simulation experiments for different models of selection, including mutation and recombination. Each generation simulated the development of a population of organisms modeled by GRNs. We found that stability and robustness positively correlate with autoregulation; in all investigated scenarios, stable networks had mostly positive autoregulation. Assuming biological networks correspond to stable networks, these results suggest that biological networks should often be dominated by positive autoregulatory loops. This seems to be the case for most studied eukaryotic transcription factor networks, including those in yeast, flies and mammals. PMID:25375153

  17. Cerebral blood flow in small vessel disease: A systematic review and meta-analysis.

    Science.gov (United States)

    Shi, Yulu; Thrippleton, Michael J; Makin, Stephen D; Marshall, Ian; Geerlings, Mirjam I; de Craen, Anton Jm; van Buchem, Mark A; Wardlaw, Joanna M

    2016-10-01

    White matter hyperintensities are frequent on neuroimaging of older people and are a key feature of cerebral small vessel disease. They are commonly attributed to chronic hypoperfusion, although whether low cerebral blood flow is cause or effect is unclear. We systematically reviewed studies that assessed cerebral blood flow in small vessel disease patients, performed meta-analysis and sensitivity analysis of potential confounders. Thirty-eight studies (n = 4006) met the inclusion criteria, including four longitudinal and 34 cross-sectional studies. Most cerebral blood flow data were from grey matter. Twenty-four cross-sectional studies (n = 1161) were meta-analysed, showing that cerebral blood flow was lower in subjects with more white matter hyperintensity, globally and in most grey and white matter regions (e.g. mean global cerebral blood flow: standardised mean difference-0.71, 95% CI -1.12, -0.30). These cerebral blood flow differences were attenuated by excluding studies in dementia or that lacked age-matching. Four longitudinal studies (n = 1079) gave differing results, e.g., more baseline white matter hyperintensity predated falling cerebral blood flow (3.9 years, n = 575); cerebral blood flow was low in regions that developed white matter hyperintensity (1.5 years, n = 40). Cerebral blood flow is lower in subjects with more white matter hyperintensity cross-sectionally, but evidence for falling cerebral blood flow predating increasing white matter hyperintensity is conflicting. Future studies should be longitudinal, obtain more white matter data, use better age-correction and stratify by clinical diagnosis.

  18. Assessment of changes in liver blood flow after food intake—comparison of ICG clearance and echo-Doppler

    OpenAIRE

    Burggraaf, J; Schoemaker, H C; Cohen, A F

    1996-01-01

    Echo-Doppler measurements of portal venous blood flow in intrahepatic branches and indocyanine green (ICG) clearance after continuous i.v. infusion as measure for liver blood flow were compared to evaluate the increase in splanchnic blood flow after food intake. It was shown that both methods assessed the changes in flow in a similar manner. Changes in blood flow in intrahepatic portal vein branches measured with echo-Doppler adequately predicted the change in ICG concentrations. Hence, echo-...

  19. Computational modelling of blood-flow-induced changes in blood electrical conductivity and its contribution to the impedance cardiogram.

    Science.gov (United States)

    Trakic, A; Akhand, M; Wang, H; Mason, D; Liu, F; Wilson, S; Crozier, S

    2010-01-01

    Studies have shown that blood-flow-induced change in electrical conductivity is of equal importance in assessment of the impedance cardiogram (ICG) as are volumetric changes attributed to the motion of heart, lungs and blood vessels. To better understand the sole effect of time-varying blood conductivity on the spatiotemporal distribution of trans-thoracic electric fields (i.e. ICG), this paper presents a segmented high-resolution (1 mm(3)) thoracic cardiovascular system, in which the time-varying pressures, flows and electrical conductivities of blood in different vessels are evaluated using a set of coupled nonlinear differential equations, red blood cell orientation and cardiac cycle functions. Electric field and voltage simulations are performed using two and four electrode configurations delivering a small alternating electric current to an anatomically realistic and electrically accurate model of modelled human torso. The simulations provide a three-dimensional electric field distribution and show that the time-varying blood conductivity alters the voltage potential difference between the electrodes by a maximum of 0.28% for a cardiac output of about 5 L min(-1). As part of a larger study, it is hoped that this initial model will be useful in providing improved insights into blood-flow-related spatiotemporal electric field variations and assist in the optimal placement of electrodes in impedance cardiography experiments.

  20. EFFECTS OF VASCULAR ZERO-STRESS STATE ON PULSATILE BLOOD FLOW

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In this paper, blood flow in artery was treated as the flow under equilibrium state (the steady flow under mean pressure) combined with the periodically small pulsatile flow. Based on vascular zero-stress state[1], the pulsatile strains according to the radial and axial displacements of blood vessel were obtained. With the use of Hooke’s law, the pulsatile strains and the corresponding Cauchy stresses were connected, so the corresponding wall motion equations could be established here. By solving the linearized Navier-Stokes equations, the analytic expressions of the blood flow velocities and the vascular displacements could be obtained, and the influence of the circumferential and axial stretch ratio on pulsatile blood flow and vascular motion was discussed in details.

  1. Facial skin blood flow responses during exposures to emotionally charged movies.

    Science.gov (United States)

    Matsukawa, Kanji; Endo, Kana; Ishii, Kei; Ito, Momoka; Liang, Nan

    2017-01-21

    The changes in regional facial skin blood flow and vascular conductance have been assessed for the first time with noninvasive two-dimensional laser speckle flowmetry during audiovisually elicited emotional challenges for 2 min (comedy, landscape, and horror movie) in 12 subjects. Limb skin blood flow and vascular conductance and systemic cardiovascular variables were simultaneously measured. The extents of pleasantness and consciousness for each emotional stimulus were estimated by the subjective rating from -5 (the most unpleasant; the most unconscious) to +5 (the most pleasant; the most conscious). Facial skin blood flow and vascular conductance, especially in the lips, decreased during viewing of comedy and horror movies, whereas they did not change during viewing of a landscape movie. The decreases in facial skin blood flow and vascular conductance were the greatest with the comedy movie. The changes in lip, cheek, and chin skin blood flow negatively correlated (P blood flow and vascular conductance and systemic hemodynamics correlated with the subjective ratings. The mental arithmetic task did not alter facial and limb skin blood flows, although the task influenced systemic cardiovascular variables. These findings suggest that the more emotional status becomes pleasant or conscious, the more neurally mediated vasoconstriction may occur in facial skin blood vessels.

  2. Computational Fluid Dynamics Analysis of Pulsatile Blood Flow Behavior in Modelled Stenosed Vessels with Different Severities

    Directory of Open Access Journals (Sweden)

    Mohsen Mehrabi

    2012-01-01

    Full Text Available This study focuses on the behavior of blood flow in the stenosed vessels. Blood is modelled as an incompressible non-Newtonian fluid which is based on the power law viscosity model. A numerical technique based on the finite difference method is developed to simulate the blood flow taking into account the transient periodic behaviour of the blood flow in cardiac cycles. Also, pulsatile blood flow in the stenosed vessel is based on the Womersley model, and fluid flow in the lumen region is governed by the continuity equation and the Navier-Stokes equations. In this study, the stenosis shape is cosine by using Tu and Devil model. Comparing the results obtained from three stenosed vessels with 30%, 50%, and 75% area severity, we find that higher percent-area severity of stenosis leads to higher extrapressure jumps and higher blood speeds around the stenosis site. Also, we observe that the size of the stenosis in stenosed vessels does influence the blood flow. A little change on the cross-sectional value makes vast change on the blood flow rate. This simulation helps the people working in the field of physiological fluid dynamics as well as the medical practitioners.

  3. HIV and chronic methamphetamine dependence affect cerebral blood flow.

    Science.gov (United States)

    Ances, Beau M; Vaida, Florin; Cherner, Mariana; Yeh, Melinda J; Liang, Christine L; Gardner, Carly; Grant, Igor; Ellis, Ronald J; Buxton, Richard B

    2011-09-01

    Human immunodeficiency virus (HIV) and methamphetamine (METH) dependence are independently associated with neuronal dysfunction. The coupling between cerebral blood flow (CBF) and neuronal activity is the basis of many task-based functional neuroimaging techniques. We examined the interaction between HIV infection and a previous history of METH dependence on CBF within the lenticular nuclei (LN). Twenty-four HIV-/METH-, eight HIV-/METH+, 24 HIV+/METH-, and 15 HIV+/METH+ participants performed a finger tapping paradigm. A multiple regression analysis of covariance assessed associations and two-way interactions between CBF and HIV serostatus and/or previous history of METH dependence. HIV+ individuals had a trend towards a lower baseline CBF (-10%, p = 0.07) and greater CBF changes for the functional task (+32%, p = 0.01) than HIV- subjects. Individuals with a previous history of METH dependence had a lower baseline CBF (-16%, p = 0.007) and greater CBF changes for a functional task (+33%, p = 0.02). However, no interaction existed between HIV serostatus and previous history of METH dependence for either baseline CBF (p = 0.53) or CBF changes for a functional task (p = 0.10). In addition, CBF and volume in the LN were not correlated. A possible additive relationship could exist between HIV infection and a history of METH dependence on CBF with a previous history of METH dependence having a larger contribution. Abnormalities in CBF could serve as a surrogate measure for assessing the chronic effects of HIV and previous METH dependence on brain function.

  4. Regional cerebral blood flow abnormalities in patients with primary hyperparathyroidism

    Energy Technology Data Exchange (ETDEWEB)

    Cermik, Tevfik F. [Hospital of the University of Trakya, Department of Nuclear Medicine, Edirne (Turkey); Trakya Universitesi Hastanesi, Nukleer Tip Anabilim Dali, Gullapoglu Yerleskesi, Edirne (Turkey); Kaya, Meryem; Bedel, Deniz; Berkarda, Sakir; Yigitbasi, Oemer N. [Hospital of the University of Trakya, Department of Nuclear Medicine, Edirne (Turkey); Ugur-Altun, Betuel [Hospital of the University of Trakya, Department of Internal Medicine, Division of Endocrinology, Edirne (Turkey)

    2007-04-15

    We assessed the alterations in regional cerebral blood flow (rCBF) in patients with primary hyperparathyroidism (PHP) before parathyroidectomy by semiquantitative analysis of brain single photon emission computed tomography (SPECT) images. Included in this prospective study were 14 patients (mean age 47.6 {+-} 10.4 years; 3 male, 11 female) and 10 control subjects (mean age 36.0 {+-} 8.5 years, 6 male, 4 female) were SPECT imaging was performed using a dual-headed gamma camera 60-90 min after intravenous administration of 925 MBq Tc-99m HMPAO. The corticocerebellar rCBF ratios were calculated from 52 brain areas and reference lower values (RLVs) were calculated from the rCBF ratios of control subjects. The regional ratios that were below the corresponding RLV were considered abnormal (hypoperfused). Hypoperfusion was shown in 171 out of 728 regions (23%) and there was a significant correlation between serum calcium, PTH levels and the sum of hypoperfused regions in the patient group (R = 0.75 and P = 0.001, and R = 0.75, P = 0.001, respectively). Significantly reduced rCBF were found in the following cortical regions: bilateral cingulate cortex, superior and inferior frontal cortex, anterior temporal cortex, precentral gyrus, postcentral gyrus and parietal cortex, and right posterior temporal cortex. Our results indicate that alterations in rCBF in patients with PHP can be demonstrated with brain SPECT. The correlation between serum calcium, PTH levels and the sum of hypoperfused regions indicates that there may be a strong relationship between rCBF abnormalities and increased levels of serum calcium and PTH. In addition, the degree of rCBF abnormalities could be determined by brain SPECT in PHP patients with or without psychiatric symptoms. (orig.)

  5. Dynamical Modes of Deformed Red Blood Cells and Lipid Vesicles in Flows

    Science.gov (United States)

    Noguchi, H.

    Red blood cells and lipid vesicles exhibit rich behaivor in flows.Their dynamics were studied using a particle-based hydrodynamic simulation method, multi-particle collision dynamics. Rupture of lipid vesicles in simple shear flow was simulated by meshless membrane model. Several shape transitions of lipid vesicles and red blood cells are induced by flows. Transition of a lipid vesicle from budded to prolate shapes with increasing shear rate and ordered alignments of deformed elastic vesicles in high density are presented.

  6. Blood flow measurements during hemodialysis vascular access interventions - Catheter-based thermodilution or Doppler ultrasound?

    DEFF Research Database (Denmark)

    Heerwagen, Søren T; Hansen, Marc A; Schroeder, Torben V

    2012-01-01

    Purpose: To test the clinical performance of catheter-based thermodilution and Doppler ultrasound of the feeding brachial artery for blood flow measurements during hemodialysis vascular access interventions.Methods: Thirty patients with arteriovenous fistulas who underwent 46 interventions had...... access blood flow measured before and after every procedure. Two methods, catheter-based thermodilution and Doppler ultrasound, were compared to the reference method of ultrasound dilution. Catheter-based thermodilution and Doppler ultrasound were performed during the endovascular procedures while flow...

  7. A theoretical computerized study for the electrical conductivity of arterial pulsatile blood flow by an elastic tube model.

    Science.gov (United States)

    Shen, Hua; Zhu, Yong; Qin, Kai-Rong

    2016-12-01

    The electrical conductivity of pulsatile blood flow in arteries is an important factor for the application of the electrical impedance measurement system in clinical settings. The electrical conductivity of pulsatile blood flow depends not only on blood-flow-induced red blood cell (RBC) orientation and deformation but also on artery wall motion. Numerous studies have investigated the conductivity of pulsatile blood based on a rigid tube model, in which the effects of wall motion on blood conductivity are not considered. In this study, integrating Ling and Atabek's local flow theory and Maxwell-Fricke theory, we develop an elastic tube model to explore the effects of wall motion as well as blood flow velocity on blood conductivity. The simulation results suggest that wall motion, rather than blood flow velocity, is the primary factor that affects the conductivity of flowing blood in arteries.

  8. Continuous-flow microfluidic blood cell sorting for unprocessed whole blood using surface-micromachined microfiltration membranes.

    Science.gov (United States)

    Li, Xiang; Chen, Weiqiang; Liu, Guangyu; Lu, Wei; Fu, Jianping

    2014-07-21

    White blood cells (WBCs) constitute about 0.1% of the blood cells, yet they play a critical role in innate and adaptive immune responses against pathogenic infections, allergic conditions, and malignancies and thus contain rich information about the immune status of the body. Rapid isolation of WBCs directly from whole blood is a prerequisite for any integrated immunoassay platform designed for examining WBC phenotypes and functions; however, such functionality is still challenging for blood-on-a-chip systems, as existing microfluidic cell sorting techniques are inadequate for efficiently processing unprocessed whole blood on chip with concurrent high throughput and cell purity. Herein we report a microfluidic chip for continuous-flow isolation and sorting of WBCs from whole blood with high throughput and separation efficiency. The microfluidic cell sorting chip leveraged the crossflow filtration scheme in conjunction with a surface-micromachined poly(dimethylsiloxane) (PDMS) microfiltration membrane (PMM) with high porosity. With a sample throughput of 1 mL h(-1), the microfluidic cell sorting chip could recover 27.4 ± 4.9% WBCs with a purity of 93.5 ± 0.5%. By virtue of its separation efficiency, ease of sample recovery, and high throughput enabled by its continuous-flow operation, the microfluidic cell sorting chip holds promise as an upstream component for blood sample preparation and analysis in integrated blood-on-a-chip systems.

  9. Tumor blood flow differs between mouse strains: consequences for vasoresponse to photodynamic therapy.

    Directory of Open Access Journals (Sweden)

    Rickson C Mesquita

    Full Text Available Fluctuations in tumor blood flow are common and attributed to factors such as vasomotion or local vascular structure, yet, because vessel structure and physiology are host-derived, animal strain of tumor propagation may further determine blood flow characteristics. In the present report, baseline and stress-altered tumor hemodynamics as a function of murine strain were studied using radiation-induced fibrosacomas (RIF grown in C3H or nude mice. Fluctuations in tumor blood flow during one hour of baseline monitoring or during vascular stress induced by photodynamic therapy (PDT were measured by diffuse correlation spectroscopy. Baseline monitoring revealed fluctuating tumor blood flow highly correlated with heart rate and with similar median periods (i.e., ∼9 and 14 min in C3H and nudes, respectively. However, tumor blood flow in C3H animals was more sensitive to physiologic or stress-induced perturbations. Specifically, PDT-induced vascular insults produced greater decreases in blood flow in the tumors of C3H versus nude mice; similarly, during baseline monitoring, fluctuations in blood flow were more regular and more prevalent within the tumors of C3H mice versus nude mice; finally, the vasoconstrictor L-NNA reduced tumor blood flow in C3H mice but did not affect tumor blood flow in nudes. Underlying differences in vascular structure, such as smaller tumor blood vessels in C3H versus nude animals, may contribute to strain-dependent variation in vascular function. These data thus identify clear effects of mouse strain on tumor hemodynamics with consequences to PDT and potentially other vascular-mediated therapies.

  10. Effect of Hematocrit on Wall Shear Stress for Blood Flow through Tapered Artery

    OpenAIRE

    Singh, A. K.; Singh, D. P.

    2013-01-01

    The purpose of this study to show the effects of Hematocrit (Red blood cells), height of stenosis, porous parameter and velocity of blood on wall shear stress of the flow of blood through tapered artery. The study reveals that wall shear stress reduces for increasing Hematocrit percentage. It is also observed that wall shear stress increases as stenosis height and porous parameter increase whereas it decreases with the increasing values of velocity of blood and slope of tapered artery.

  11. In vivo lateral blood flow velocity measurement using speckle size estimation.

    Science.gov (United States)

    Xu, Tiantian; Hozan, Mohsen; Bashford, Gregory R

    2014-05-01

    In previous studies, we proposed blood measurement using speckle size estimation, which estimates the lateral component of blood flow within a single image frame based on the observation that the speckle pattern corresponding to blood reflectors (typically red blood cells) stretches (i.e., is "smeared") if blood flow is in the same direction as the electronically controlled transducer line selection in a 2-D image. In this observational study, the clinical viability of ultrasound blood flow velocity measurement using speckle size estimation was investigated and compared with that of conventional spectral Doppler of carotid artery blood flow data collected from human patients in vivo. Ten patients (six male, four female) were recruited. Right carotid artery blood flow data were collected in an interleaved fashion (alternating Doppler and B-mode A-lines) with an Antares Ultrasound Imaging System and transferred to a PC via the Axius Ultrasound Research Interface. The scanning velocity was 77 cm/s, and a 4-s interval of flow data were collected from each subject to cover three to five complete cardiac cycles. Conventional spectral Doppler data were collected simultaneously to compare with estimates made by speckle size estimation. The results indicate that the peak systolic velocities measured with the two methods are comparable (within ±10%) if the scan velocity is greater than or equal to the flow velocity. When scan velocity is slower than peak systolic velocity, the speckle stretch method asymptotes to the scan velocity. Thus, the speckle stretch method is able to accurately measure pure lateral flow, which conventional Doppler cannot do. In addition, an initial comparison of the speckle size estimation and color Doppler methods with respect to computational complexity and data acquisition time indicated potential time savings in blood flow velocity estimation using speckle size estimation. Further studies are needed for calculation of the speckle stretch method

  12. Effect of blood flow on muscle lactate release studied in perfused rat hindlimb

    DEFF Research Database (Denmark)

    Pilegaard, H; Bangsbo, Jens; Henningsen, P;

    1995-01-01

    The influence of blood flow on muscle lactate and H+ release as well as muscle glyconeogenesis was studied in the perfused rat hindlimb. After 2 min of supramaximal stimulation the perfusate flow rate was 7 (F7), 12 (F12), or 18 (F18) ml/min for 30 min. Perfusate samples were drawn frequently...... between H+ and lactate release was larger (P flow in each of the muscles. The present data suggest that 1) in the range of blood...... flow rates from 0.61 to 0.92 ml.min-1.g-1, lactate and H+ release are independent of the flow rate, whereas at a lower flow rate (0.36 ml.min-1.g-1) release of these substances is decreased; 2) low blood flow influences lactate efflux more than H+ release; and 3) muscle glyconeogenesis from lactate...

  13. [Doppler studies of arterial blood flow in the uterus during labor].

    Science.gov (United States)

    Fendel, H; Fendel, M; Pauen, A; Liedtke, B; Schonlau, H; Warnking, R

    1984-01-01

    By the pulsed doppler method the arterial uterine blood velocity was studied in 19 patients with contractions before and during labour. It is shown, that uterine contractions reduce blood velocity significantly. Normally there is a low resistance in uterine arteries, so that the diastolic flow is nearly as high as the systolic flow. In uterine contractions the vascular resistance increases. Systolic flow is reduced slightly and diastolic flow severely or completely. But a complete zero-flow couldn't observed in any studied uterine contraction.

  14. Effect of Rolling Massage on the Vortex Flow in Blood Vessels with Lattice Boltzmann Simulation

    Science.gov (United States)

    Yi, Hou Hui

    The rolling massage manipulation is a classic Chinese Medical Massage, which is a nature therapy in eliminating many diseases. Here, the effect of the rolling massage on the cavity flows in blood vessel under the rolling manipulation is studied by the lattice Boltzmann simulation. The simulation results show that the vortex flows are fully disturbed by the rolling massage. The flow behavior depends on the rolling velocity and the rolling depth. Rolling massage has a better effect on the flows in the cavity than that of the flows in a planar blood vessel. The result is helpful to understand the mechanism of the massage and develop the rolling techniques.

  15. Carbon dioxide induced changes in cerebral blood flow and flow velocity: Role of cerebrovascular resistance and effective cerebral perfusion pressure

    NARCIS (Netherlands)

    F. Grüne (Frank); S. Kazmaier (Stephan); R.J. Stolker (Robert J.); G.H. Visser (Gerhard Henk); A. Weyland (Andreas)

    2015-01-01

    textabstractIn addition to cerebrovascular resistance (CVR) zero flow pressure (ZFP), effective cerebral perfusion pressure (CPPe) and the resistance area product (RAP) are supplemental determinants of cerebral blood flow (CBF). Until now, the interrelationship of PaCO2 -induced changes in CBF, CVR,

  16. Anxiety and cerebral blood flow during behavioral challenge. Dissociation of central from peripheral and subjective measures

    Energy Technology Data Exchange (ETDEWEB)

    Zohar, J.; Insel, T.R.; Berman, K.F.; Foa, E.B.; Hill, J.L.; Weinberger, D.R.

    1989-06-01

    To investigate the relationship between anxiety and regional cerebral blood flow, we administered behavioral challenges to 10 patients with obsessive-compulsive disorder while measuring regional cerebral blood flow with the xenon 133 inhalation technique. Each patient was studied under three conditions: relaxation, imaginal flooding, and in vivo (actual) exposure to the phobic stimulus. Subjective anxiety, obsessive-compulsive ratings, and autonomic measures (heart rate, blood pressure) increased significantly, but respiratory rate and PCO/sub 2/ did not change across the three conditions. Regional cerebral blood flow increased slightly (in the temporal region) during imaginal flooding, but decreased markedly in several cortical regions during in vivo exposure, when anxiety was highest by subjective and peripheral autonomic measures. These results demonstrate that intense anxiety can be associated with decreased rather than increased cortical perfusion and that ostensibly related states of anxiety (eg, anticipatory and obsessional anxiety) may be associated with opposite effects on regional cerebral blood flow.

  17. Effects of dopamine infusion on cardiac and renal blood flows in dogs.

    Science.gov (United States)

    Furukawa, Shuji; Nagashima, Yukiko; Hoshi, Katsuichiro; Hirao, Hidehiro; Tanaka, Ryou; Maruo, Kohji; Yamane, Yoshihisa

    2002-01-01

    In veterinary medicine, dopamine is currently being administered clinically by infusion for treatment of kidney disorders at low doses (high doses (> or = 5 microg/kg/min). However, since high doses of dopamine cause peripheral vasoconstriction due to its effect on alpha adrenoceptors, high doses have no longer been recommended. The present study was conducted to explore possible regimens for the use of dopamine infusion in dogs. The regional (renal and cardiac) blood flow for 60 min was measured by using colored microspheres at three doses (3, 10 and 20 microg/kg/min) of dopamine infusion in healthy anesthetized mongrel dogs. The effects on kidney and peripheral hemodynamics at each dose and the resultant cardiac output, mean arterial blood pressure and total peripheral resistance were determined. Renal blood flow increased markedly at 3 microg/kg/min dopamine. Improvement in hemodynamics indicated by marked increase in cardiac blood flow, cardiac output and mean arterial blood pressure and decreased total peripheral resistance was observed at higher doses (10 and 20 microg/kg/min). At 10 microg/kg/min, in addition to the satisfactory increase in cardiac blood flow, there was also a stable satisfactory increase in renal blood flow. However, at 20 microg/kg/min, increased myocardial oxygen consumption (manifested by marked increased in cardiac output), arrythmia and irregular increase in renal blood flow were detected. This study suggests that the clinical use of dopamine infusion in dogs could be safely expanded to moderately higher doses.

  18. Internal filtration, filtration fraction, and blood flow resistance in high- and low-flux dialyzers.

    Science.gov (United States)

    Schneditz, Daniel; Zierler, Edda; Vanholder, Raymond; Eloot, Sunny

    2014-01-01

    It was the aim to examine the fluid flow in blood and dialysate compartments of highly permeable hollow fiber dialyzers where internal filtration contributes to solute removal but where excessive filtration bears a risk of cell activation and damage. Flow characteristics of high- (HF) and low-flux (LF) dialyzers were studied in lab-bench experiments using whole bovine blood. Measurements obtained under different operating conditions and under zero net ultrafiltration were compared to theoretical calculations obtained from a mathematical model. Experimental resistances in the blood compartment were within ±2% of those calculated from the model when dialysate was used as a test fluid. With whole blood, the experimental resistances in the blood compartment were only 81.8 ± 2.8% and 83.7 ± 4.3% of those calculated for the LF and HF dialyzer, respectively. Surprisingly, measured blood flow resistance slightly but significantly decreased with increasing flow rate (p filtration fraction, while overall internal filtration increased. The increase in internal filtration when increasing blood flow is associated with a beneficial reduction in internal filtration fraction. Concerns of increased hemoconcentration when increasing blood flow therefore appear to be unwarranted.

  19. The Rheology of Blood Flow in a Branched Arterial System.

    Science.gov (United States)

    Shibeshi, Shewaferaw S; Collins, William E

    2005-01-01

    Blood flow rheology is a complex phenomenon. Presently there is no universally agreed upon model to represent the viscous property of blood. However, under the general classification of non-Newtonian models that simulate blood behavior to different degrees of accuracy, there are many variants. The power law, Casson and Carreau models are popular non-Newtonian models and affect hemodynamics quantities under many conditions. In this study, the finite volume method is used to investigate hemodynamics predictions of each of the models. To implement the finite volume method, the computational fluid dynamics software Fluent 6.1 is used. In this numerical study the different hemorheological models are found to predict different results of hemodynamics variables which are known to impact the genesis of atherosclerosis and formation of thrombosis. The axial velocity magnitude percentage difference of up to 2 % and radial velocity difference up to 90 % is found at different sections of the T-junction geometry. The size of flow recirculation zones and their associated separation and reattachment point's locations differ for each model. The wall shear stress also experiences up to 12 % shift in the main tube. A velocity magnitude distribution of the grid cells shows that the Newtonian model is close dynamically to the Casson model while the power law model resembles the Carreau model. ZUSAMMENFASSUNG: Die Rheologie von Blutströmungen ist ein komplexes Phänomen. Gegenwärtig existiert kein allgemein akzeptiertes Modell, um die viskosen Eigenschaften von Blut wiederzugeben. Jedoch gibt es mehrere Varianten unter der allgemeinen Klassifikation von nicht-Newtonschen Modellen, die das Verhalten von Blut mit unterschiedlicher Genauigkeit simulieren. Die Potenzgesetz-, Casson und Carreau-Modelle sind beliebte nicht-New-tonsche Modelle und beeinflussen die hämodynamischen Eigenschaften in vielen Situationen. In dieser Studie wurde die finite Volumenmethode angewandt, um die h

  20. Changes in interstitial K+ and pH during exercise: implications for blood flow regulation

    DEFF Research Database (Denmark)

    Juel, Carsten

    2007-01-01

    The analysis of blood samples has clearly demonstrated that exercise is associated with the release of K+ and H+ from muscle. However, blood samples give only incomplete information about the ion changes in the muscle interstitium. Interstitial changes in ion composition may affect the transport...... of fatigue. It has also been demonstrated with microdialysis that the interstitial decrease in pH during muscle activity is larger than the reduction in blood pH. Ion changes in the interstitium may affect blood flow directly or indirectly. Infusion of K+ into the femoral artery in humans has demonstrated...... that blood flow is affected by changes in K+ as low as 0.1 mmol/L. The vasodilatory effect of K+ can be inhibited with simultaneous barium infusion, indicating that inward rectifier potassium (Kir)channels are involved. Acidosis has a direct effect on blood flow and an indirect effect, mediated by changes...